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Preface

When in 1986 Yves Kodratoff started the European Working Session on Lear-
ning at Orsay, France, it could not be foreseen that the conference would grow
year by year and become the premier European conference of the field, attrac-
ting submissions from all over the world. The first European Conference on
Principles of Data Mining and Knowledge Discovery was organized by Henryk
Jan Komorowski and Jan Zytkow in 1997 in Trondheim, Norway. Since 2001 the
two conferences have been collocated, offering participants from both areas the
opportunity to listen to each other’s talks. This year, the integration has moved
even further. Instead of first splitting the field according to ECML or PKDD
topics, we flattened the structure of the field to a single set of topics. For each of
the topics, experts were invited to the Program Committee. Submitted papers
were gathered into one collection and characterized according to their topics.
The reviewers were then asked to bid on all papers, regardless of the conference.
This allowed us to allocate papers more precisely.

The hierarchical reviewing process as introduced in 2005 was continued. We
nominated 30 Area Chairs, each supervising the reviews and discussions of about
17 papers. In addition, 307 reviewers completed the Program Committee. Many
thanks to all of them! It was a considerable effort for the reviewers to carefully
review the papers, some providing us with additional reviews even at short no-
tice. Based on their reviews and internal discussions, which were concluded by
the recommendations of the Area Chairs, we could manage the final selection for
the program. We received 521 submissions, of which 100 were presented at the
conferences, giving us an acceptance rate of 20%. This high selectivity means,
on the one hand, that some good papers could not make it into the conference
program. On the other hand, it supports the traditionally high standards of the
joint conference. We thank the authors from all over the world for submitting
their contributions!

Following the tradition, the first and the last day of the joint conference were
dedicated to workshops and tutorials. ECML PKDD 2008 offered 8 tutorials and
11 workshops. We thank the Workshop and Tutorial Chairs Siegfried Nijssen and
Arno Siebes for their excellent selection. The discovery challenge is also a tradi-
tion of ECML PKDD that we continued. We are grateful to Andreas Hotho and
his colleagues from the Bibsonomy project for organizing the discovery challenge
of this year. The results were presented at the Web 2.0 Mining Workshop.

One of the pleasures of chairing a conference is the opportunity to invite
colleagues whose work we esteem highly. We are grateful to Françoise Fogelman
Soulié (KXEN) for opening the industrial track, Yoav Freund (University of
California, San Diego), Anil K. Jain (Michigan State University), Ray Mooney
(University of Texas at Austin), and Raghu Ramakrishnan (Yahoo! Research)
for accepting our invitation to present recent work at the conference.



VI Preface

Some novelties were introduced to the joint conference this year.
First, there was no distinction into long and short papers. Instead, paper

length was raised to 16 pages for all submissions.
Second, 14 papers were selected for publication in Springer Journals

Seven papers were published in the Machine Learning Journal 72:3 (September
2008), and 7 papers were published in the Data Mining and Knowledge Discovery
Journal 17:1 (August 2008). This LNAI volume includes the abstracts of these
papers, each containing a reference to the respective full journal contribution.
At the conference, participants received the proceedings, the tutorial notes and
workshop proceedings on a USB memory stick.

Third, all papers were additionally allowed to be presented as posters. Since
the number of participants has become larger, questions and discussions after
a talk are no longer possible for all those interested. Introducing poster pre-
sentations for all accepted papers allows for more detailed discussions. Hence,
we did not reserve this opportunity for a minority of papers and it was not an
alternative to an oral presentation.

Fourth, a special demonstration session was held that is intended to be a
forum for showcasing the state of the art in machine learning and knowledge
discovery software. The focus lies on innovative prototype implementations in
machine learning and data analysis. The demo descriptions are included in the
proceedings. We thank Christian Borgelt for reviewing the submitted demos.
Finally, for the first time, the conference took place in Belgium!

September 2008 Walter Daelemans
Bart Goethals

Katharina Morik
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Thomas Hofmann
Jaakko Hollmen
Tamas Horvath
Andreas Hotho
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José Orlando Pereira
Alessandro Orso
Johan Ovlinger
Marc Pantel
Jean-François Perrot
Patrik Persson
Frédéric Peschanski
Gian Pietro Picco
Birgit Pröll
Christian Queinnec
Osmar R. Zaiane
Barry Redmond
Sigi Reich
Arend Rensink
Werner Retschitzegger
Nicolas Revault
Matthias Rieger
Mario Südholt
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Roćıo Alaiz-Rodŕıguez, Nathalie Japkowicz, and Peter Tischer



XXIV Table of Contents – Part II

Pleiades: Subspace Clustering and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 666
Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, and
Thomas Seidl

SEDiL: Software for Edit Distance Learning . . . . . . . . . . . . . . . . . . . . . . . . 672
Laurent Boyer, Yann Esposito, Amaury Habrard, Jose Oncina, and
Marc Sebban

Monitoring Patterns through an Integrated Management and Mining
Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678

Evangelos E. Kotsifakos, Irene Ntoutsi, Yannis Vrahoritis, and
Yannis Theodoridis

A Knowledge-Based Digital Dashboard for Higher Learning
Institutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

Wan Maseri Binti Wan Mohd, Abdullah Embong, and
Jasni Mohd Zain

SINDBAD and SiQL: An Inductive Database and Query Language in
the Relational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690

Jörg Wicker, Lothar Richter, Kristina Kessler, and Stefan Kramer

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695



Industrializing Data Mining, Challenges and
Perspectives

Françoise Fogelman-Soulié

KXEN, France

Business Intelligence is a very active sector in all industrial domains. Classical tech-
niques (reporting and Olap), mainly concerned with presenting data, are already widely
deployed. Meanwhile, Data Mining has long been used in companies as a niche-
technique, reserved for experts only and for very specific problems (credit scoring,
fraud detection for example). But with the increasing availability of large data volumes
(in particular, but not only, from the Web), companies are more and more turning to data
mining to provide them with high added-value predictive analytics. However producing
models in large numbers, making use of large data volumes in an industrial context can
only happen if solutions to challenges, both theoretic and operational, are found: we
need algorithms which can be used to produce models when datasets have thousands
of variables and millions of observations; we need to learn how to run and control the
correct execution of hundreds of models; we need ways to automate the data mining
process.

I will present these constraints in industrial contexts and show how KXEN has ex-
ploited theoretical results (coming from Vladimir Vapnik’s work) to provide answers to
the above-mentioned challenges. I will give a few examples of real-life applications and
will conclude with some remarks on the future of data mining in the industrial domain.
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From Microscopy Images to Models of Cellular

Processes

Yoav Freund

Computer Science and Engineering
University of California, San Diego, USA

The advance of fluorescent tagging and of confocal microscopy is allowing biol-
ogists to image biochemical processes at a level of detail that was unimaginable
just a few years ago. However, as the analysis of these images is done mostly
by hand, there is a severe bottleneck in transforming these images into useful
quantitative data that can be used to evaluate mathematical models.

One of the inherent challenges involved in automating this transformation is
that image data is highly variable. This requires a recalibration of the image
processing algorithms for each experiment. We use machine learning methods to
enable the experimentalist to calibrate the image processing methods without
having any knowledge of how these methods work. This, we believe, will allow the
rapid integration of computer vision methods with confocal microscopy and open
the way to the development of quantitative spatial models of cellular processes.

For more information, see http://seed.ucsd.edu/~yfreund/NewHomePage/
Applications/Biomedical Imaging.html
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Data Clustering: 50 Years Beyond K-means

Anil K. Jain

Computer Science and Engineering
Michigan State University, USA

The practice of classifying objects according to perceived similarities is the basis
for much of science. Organizing data into sensible groupings is one of the most
fundamental modes of understanding and learning. As an example, a common
scheme of scientific classification puts organisms in to taxonomic ranks: domain,
kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms
and methods for grouping objects according to measured or perceived intrinsic
characteristics. Cluster analysis does not use category labels that tag objects
with prior identifiers, i.e., class labels. The absence of category information dis-
tinguishes cluster analysis (unsupervised learning) from discriminant analysis
(supervised learning). The objective of cluster analysis is to simply find a con-
venient and valid organization of the data, not to establish rules for separating
future data into categories.

The development of clustering methodology has been a truly interdisciplinary
endeavor. Taxonomists, social scientists, psychologists, biologists, statisticians,
engineers, computer scientists, medical researchers, and others who collect and
process real data have all contributed to clustering methodology. According to
JSTOR, data clustering first appeared in the title of a 1954 article dealing with
anthropological data. One of the most well-known, simplest and popular cluster-
ing algorithms is K-means. It was independently discovered by Steinhaus (1955),
Lloyd (1957), Ball and Hall (1965) and McQueen (1967)! A search via Google
Scholar found 22,000 entries with the word clustering and 1,560 entries with the
words data clustering in 2007 alone. Among all the papers presented at CVPR,
ECML, ICDM, ICML, NIPS and SDM in 2006 and 2007, 150 dealt with clus-
tering. This vast literature speaks to the importance of clustering in machine
learning, data mining and pattern recognition.

A cluster is comprised of a number of similar objects grouped together. While
it is easy to give a functional definition of a cluster, it is very difficult to give
an operational definition of a cluster. This is because objects can be grouped
into clusters with different purposes in mind. Data can reveal clusters of differ-
ent shapes and sizes. Thus the crucial problem in identifying clusters in data
is to specify or learn a similarity measure. In spite of thousands of clustering
algorithms that have been published, a user still faces a dilemma regarding the
choice of algorithm, distance metric, data normalization, number of clusters,
and validation criteria. A familiarity with the application domain and cluster-
ing goals will certainly help in making an intelligent choice. This talk will pro-
vide background, discuss major challenges and key issues in designing clustering

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 3–4, 2008.
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algorithms, summarize well known clustering methods, and point out some of
the emerging research directions, including semi-supervised clustering that ex-
ploits pairwise constraints, ensemble clustering that combines results of multiple
clusterings, learning distance metrics from side information, and simultaneous
feature selection and clustering.



Learning Language from Its Perceptual Context

Raymond J. Mooney

University of Texas at Austin, USA

Current systems that learn to process natural language require laboriously constructed
human-annotated training data. Ideally, a computer would be able to acquire language
like a child by being exposed to linguistic input in the context of a relevant but am-
biguous perceptual environment. As a step in this direction, we present a system that
learns to sportscast simulated robot soccer games by example. The training data con-
sists of textual human commentaries on Robocup simulation games. A set of possible
alternative meanings for each comment is automatically constructed from game event
traces. Our previously developed systems for learning to parse and generate natural lan-
guage (KRISP and WASP) were augmented to learn from this data and then commen-
tate novel games. The system is evaluated based on its ability to parse sentences into
correct meanings and generate accurate descriptions of game events. Human evaluation
was also conducted on the overall quality of the generated sportscasts and compared to
human-generated commentaries.
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The Role of Hierarchies in Exploratory Data

Mining

Raghu Ramakrishnan

Yahoo! Research, Santa Clara, CA, USA

In a broad range of data mining tasks, the fundamental challenge is to efficiently
explore a very large space of alternatives. The difficulty is two-fold: first, the
size of the space raises computational challenges, and second, it can introduce
data sparsity issues even in the presence of very large datasets. In this talk,
well consider how the use of hierarchies (e.g., taxonomies, or the OLAP multi-
dimensional model) can help mitigate the problem.
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Rollout Sampling Approximate Policy Iteration�

Christos Dimitrakakis1 and Michail G. Lagoudakis2

1 Informatics Institute
University of Amsterdam

Amsterdam, The Netherlands
dimitrak@science.uva.nl

2 Department of Electronic and Computer Engineering
Technical University of Crete
Chania 73100, Crete, Greece

lagoudakis@intelligence.tuc.gr

Several researchers [2,3] have recently investigated the connection between rein-
forcement learning and classification. Our work builds on [2], which suggests an
approximate policy iteration algorithm for learning a good policy represented
as a classifier, without explicit value function representation. At each iteration,
a new policy is produced using training data obtained through rollouts of the
previous policy on a simulator. These rollouts aim at identifying better action
choices over a subset of states in order to form a set of data for training the
classifier representing the improved policy. Even though [2,3] examine how to
distribute training states over the state space, their major limitation remains
the large amount of sampling employed at each training state.

We suggest methods to reduce the number of samples needed to obtain a
high-quality training set. This is done by viewing the setting as akin to a bandit
problem over the states from which rollouts are performed. Our contribution
is two-fold: (a) we suitably adapt existing bandit techniques for rollout man-
agement, and (b) we suggest a more appropriate statistical test for identifying
states with dominating actions early and with high confidence. Experiments on
two classical domains (inverted pendulum, mountain car) demonstrate an im-
provement in sample complexity that substantially increases the applicability of
rollout-based algorithms. In future work, we aim to obtain algorithms specifi-
cally tuned to this task with even lower sample complexity and to address the
question of the choice of sampling distribution.

References

1. Dimitrakakis, C., Lagoudakis, M.: Rollout sampling approximate policy iteration.
Machine Learning 72(3), 157–171 (September 2008)

2. Lagoudakis, M.G., Parr, R.: Reinforcement learning as classification: Leveraging
modern classifiers. In: Proceedings of the 20th International Conference on Machine
Learning (ICML), Washington, DC, USA, August 2003, pp. 424–431 (2003)

3. Fern, A., Yoon, S., Givan, R.: Approximate policy iteration with a policy language
bias. Advances in Neural Information Processing Systems 16(3) (2004)

� This is an extended abstract of an article published in the Machine Learning jour-
nal [1]. This project was partially supported by grant MCIRG-CT-2006-044980.
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New Closed-Form Bounds on the Partition Function�

Krishnamurthy Dvijotham, Soumen Chakrabarti, and Subhasis Chaudhuri

IIT Bombay

Estimating the partition function is a key computation in graphical models that is re-
quired for important tasks like parameter estimation, model selection and structure
learning. However, this computation is intractable in general. Thus, developing effi-
cient and accurate approximations is of considerable interest. Variational methods ex-
press the computation of the partition function as an optimization problem (solving
which intractable in general) and then relax the optimization problem in various ways
to obtain approximations to the partition function. Two popular algorithms belonging
to this framework are loopy belief propagation (LBP) and tree-reweighted belief propa-
gation (TRW-BP). Both these algorithms are so-called message passing algorithms that
work by updating local beliefs about probabilities at graph nodes by passing messages
between the nodes in the graph until convergence is achieved. TRW-BP is guaranteed
to give an upper bound on the partition function. However, neither algorithm is guar-
anteed to converge in general. Although convergent alternatives to TRW-BP have been
proposed, they have no guarantees on the number of iterations required for convergence.
Thus, these algorithms could be prohibitively expensive for applications requiring re-
peated inference on large graphs (like training large CRFs). In order to overcome this
problem, Sutton et al. propose the piecewise approximation (PW) to the partition func-
tion. PW tends to be loose, but can be computed very fast, because it has a closed-form
expression. Sutton et al. apply it successfully to common NLP tasks. In this paper, for
a special class of potentials (that contain associative potentials), we prove that both
LBP and TRW-BP converge in a single iteration. Using this fact, we obtain closed-form
expressions for the TRW and LBP approximations to the partition function. In recent
work, Wainwright et al. prove that LBP gives a lower bound on the partition function
for binary attractive MRFs. We thus also get closed-form lower bounds for attractive as-
sociative MRFs. This enables us to obtain bounds on the error between the true partition
function and these approximations for attractive associative MRFs. We also construct
examples which show that TRW and LBP can give arbitrarily bad approximations to the
marginal probabilities. Using the closed-form bounds for these special cases, we also
develop novel closed-form upper bounds for arbitrary MRFs and closed-form lower
bounds for associative binary MRFs. We also present experimental results showing that
the new upper bounds are almost always tighter than the piecewise bound. The ex-
periments also show that the novel lover bounds beat popular existing bounds like the
mean-field bound on densely connected graphs.

References

1. Dvijotham, K., Chakrabarti, S., Chaudhuri, S.: New closed-form bounds on the partition func-
tion. Machine Learning 72(3), 205–229 (September 2008)

� This is an extended abstract of an article published in the Machine Learning journal [1].
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We focus on distribution-free transductive learning. In this setting the learning
algorithm is given a ‘full sample’ of unlabeled points. Then, a training sample is
selected uniformly at random from the full sample and the labels of the training
points are revealed. The goal is to predict the labels of the remaining unlabeled
points as accurately as possible. The full sample partitions the transductive
hypothesis space into a finite number of equivalence classes. All hypotheses in
the same equivalence class, generate the same dichotomy of the full sample. We
consider a large volume principle, whereby the priority of each equivalence class
is proportional to its “volume” in the hypothesis space.

The large volume principle was previously treated for the case of hyperplanes.
In this paper, instead of hyperplanes, we consider soft classification vectors whose
set of equivalence classes w.r.t. the full sample contains all possible dichotomies.
Symmetry is broken by generating equivalence classes of non-uniform volume, de-
fined via a non axis aligned data-dependent ellipsoid. Since exact or quantifiable
approximate volume estimation is computationally hard, we resort to a cruder
approach whereby volume is crudely related to the angles between hypotheses
and the principal axes of the ellipsoid. This approach makes sense because long
principal axes lie in regions of large volume. Our construction leads to a family
of transductive algorithms and here we focus on one instantiation. Although the
resulting algorithm is defined in terms of a non-convex optimization problem,
we develop an efficient global optimum solution using a known technique. We
also derive a data-dependent error bound for this algorithm.

Our experiments with the new Approximate Volume Regularization (AVR)
algorithm over 31 datasets show its overwhelming advantage over TSVM and
SVM in text categorization and image classification. However, on a different set
of UCI datasets, TSVM and SVM are significantly superior to AVR. We iden-
tify some factors that influence the success and failure of our algorithm. One
interesting observation is that AVR has significant advantage over TSVM when
TSVM outperforms SVM, and vice versa.

� This is an extended abstract of an article published in the Machine Learning Jour-
nal [1].
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In this paper, we focus on the data classification problem when the classifier oper-
ates on an embedded device (e.g., fault detection in device condition-monitoring
data streams). Memory-based classifiers are an excellent choice in such cases,
however, an embedded device is unlikely to be able to hold a large training
dataset in memory (which could potentially keep increasing in size as new train-
ing data with new concepts arrive). A viable option then is to employ exemplar
learning (EL) techniques to find a training subset comprising a few carefully
selected exemplars of high functional value that fit in memory and effectively
delineate the class boundaries. We propose two novel incremental EL schemes
that unlike traditional EL approaches [3] are, (1) incremental (they naturally
incorporate new training data streams), (2) offer ordered removal of instances
(they can be customized to obtain exemplar sets of any user-defined size) and
(3) robust (such that the exemplar sets generalize for other classifiers as well).
Our proposed methods are as follows:

• EBEL (Entropy Based EL) – This method removes instances from the training
set based on their information content. Instead of using an adhoc ranking
scheme, it removes a training instance whose removal causes the least amount of
drop in the conditional entropy of the class indicator variable insuring minimum
loss of information.
• ABEL (AUC Based EL) – This method prunes data based on AUC (Area under
ROC curve) performance. ABEL uses a validation set and prunes an instance
if its removal offers the least drop in the AUC computed for this validation set.

We show that our schemes efficiently incorporate new training datasets while
maintaining high-quality exemplar sets of any user-defined size. We present a
comprehensive experimental analysis showing excellent classification-accuracy
versus memory-usage tradeoffs of our proposed methods.
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Collaborative filtering as a classical method of information retrieval is widely
used in helping people to deal with information overload. In this paper, we in-
troduce the concept of local user similarity and global user similarity, based on
surprisal-based vector similarity and the application of the concept of maximin
distance in graph theory. Surprisal-based vector similarity expresses the rela-
tionship between any two users based on the quantities of information (called
surprisal) contained in their ratings, which is based on the intuition that less
common ratings for a specific item tend to provide more discriminative infor-
mation than the most common ratings. Furthermore, traditional methods of
computing user similarity can not work if two users have not rated any identical
item. To solve this problem, the global user similarity is introduced to define
two users being similar if they can be connected through their locally similar
neighbors. A weighted user graph is first constructed by using local similarity
of any two users as the weight of the edge connecting them. Then the global
similarity can be calculated as the maximin distance of any two nodes in the
graph. Based on both of Local User Similarity and Global User Similarity, we
develop a collaborative filtering framework called LS&GS. An empirical study
using the MovieLens dataset shows that the proposed framework outperforms
other state-of-the-art collaborative filtering algorithms.
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The area under the ROC curve, or AUC, has been widely used to assess the
ranking performance of binary scoring classifiers. Given a sample of labeled in-
stances, the metric considers the number of correctly ordered pairs of instances
with different class label. Thus, its value only depends on the ordering of the
scores but not on the “margin” between them. Consequently, it can happen that
a small change in scores leads to a considerable change in AUC value. Such an
effect is especially apparent when the number of instances used to calculate the
AUC is small. On the other hand, two classifiers can have the same AUC value,
even though one of them is a “better separator” in the sense that it increases the
difference between scores of positive and negative instances, respectively. It has
been argued that this insensitivity toward score differences is disadvantageous
for model evaluation and selection. For this reason, three variants of the AUC
metric that take the score differences into account have recently been proposed,
along with first experimental results.

We present a unifying framework in which the conventional AUC and its
variants can be modeled as special cases of a generalized AUC metric. Within
this framework, we provide a formal analysis showing that the AUC variants
produce estimates of the true AUC with a non-constant, model-specific bias,
while the variance can decrease as well as increase. All things considered, the net
effect on the quality of the estimations is thus not clear and, hereby, there is no
solid theoretical foundation for the variants. Our analysis leads us to conjecture
that actually none of the variants should be able to perform better in model
selection than conventional AUC. This conjecture is corroborated by extensive
experiments with synthetic data as well as real benchmark data, showing that
the conventional AUC cannot be outperformed systematically by any variant,
not in an ideal setting according to the theoretical analysis, and not in real model
selection scenarios. Finally, our contribution also sheds light on recent research
dealing with the construction of classifiers that (approximately) optimize the
AUC directly, rather than accuracy or another performance metric.
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Maximum Margin Matrix Factorization (MMMF) has been proposed as a learn-
ing approach to the task of collaborative filtering with promising results. In our
recent paper [2], we proposed to extend the general MMMF framework to allow
for structured (ranking) losses in addition to the squared error loss.

In this paper, we introduce a novel algorithm to compute the ordinal regression
ranking loss which is significantly faster than the state of the art. In addition, we
propose severals extensions to the MMMF model: We introduce offset terms to
cater for user and item biases. Users exhibit vastly different rating frequencies
ranging from only one rating per user to thousands of them. Similarly, some
items get thousands of ratings while others get rated only once. We introduce an
adaptive regularizer to allow for more complex models for those items and users
with many ratings. Finally, we show equivalence between a recent extension
introduced in [3] and a graph kernel approach described in [4]. Both aim at
providing meaningful predictions for users with very little training data by virtue
of the recommender graph.

We performed an evaluation of these extensions on two standard data sets:
Eachmovie and Movielens. These experiments show that the introduced exten-
sions do improve the predictive performance over the original MMMF formula-
tion, even though we did not formally optimize the parameters.
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Consider information search or discovery in a large graph of concepts and their
weighted relationships. The user initiates a query by specifying some concepts
(“search terms”), and wishes to obtain other concepts and relationships that
connect the search concepts. An application example is in analysis of biological
information, conveniently represented as a graph of biological concepts and their
relations. A search engine we envision would allow a life scientist to query for
connections between a gene and a phenotype, for instance, to find information
supporting a hypothesis, or to help discover new hypothesis.

We propose two new methods for this problem, formalized as the most reliable
subgraph problem. Such a problem is specified by a probabilistic graph G sub-
ject to random edge failures, a set of terminal vertices, and an integer K. The
objective is to remove K edges from G such that the probability of connecting
the terminals in the remaining subgraph is maximized. Extracting a subgraph of
maximal reliability is a fundamental task. Besides the search problem described
above, subgraph extraction is useful for visualization of large graphs and for
preprocessing large graphs for other analysis methods.

The proposed methods, BPI and SPA, are based on greedy strategies for in-
crementally constructing a reliable subgraph of the desired size. BPI is based on
simple use of best paths to span a subgraph, whereas SPA involves a more elab-
orate construction of series-parallel graphs. Unlike previous methods that prune
the original graph until it reaches the given size, these incremental methods are
relatively insensitive to the size of the original graph. We provide some technical
details and a rough analysis of the algorithms. The practical performance of the
methods is evaluated on real probabilistic graphs from the biological domain.
The results indicate that the proposed methods scale much better to large input
graphs, both computationally and in terms of the quality of the result. We use
subgraph extraction as a component in Biomine1, a search engine prototype for
information discovery in biological databases.
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In the frequent string mining problem, one is given m databases D1, ...,Dm of
strings and searches for strings that fulfill certain frequency constraints. The
constraints consist of m pairs of thresholds (minf 1,maxf 1), ..., (minf m,maxf m)
and one wants to find all strings φ that satisfy minf i ≤ freq(φ,Di) ≤ maxf i for
all i with 1 ≤ i ≤ m, where freq(φ,Di) = |{ψ ∈ Di : φ is a substring of ψ}|.

Fischer et al. [2] presented an algorithm that solves the frequent string mining
problem in linear time under the assumption that the number of databases is
treated as a constant. The space consumption of this algorithm, however, is
proportional to the total size of all databases. We improve this algorithm in
such a way that its space consumption is proportional to the size of the largest
database, and it takes linear time regardless of the number of databases. Also,
our algorithm is more flexible in the sense that one of several databases can be
replaced without having to recalculate everything, that is, intermediate data can
be stored on file and be reused.

Algorithm for the Frequent String Mining Problem

– For each database D from the set of databases {D1, . . . ,Dm} do:
• Construct the enhanced suffix array of all strings in D and use a modified

version of the algorithm of [2] to determine which substrings are relevant,
i.e., satisfy the frequency constraint for database D.

• Store for each suffix φ the minimum and maximum length of relevant
substrings ψ for which φ is the lexicographically smallest suffix which
has ψ as a prefix.

– Iteratively calculate the intersection of the relevant substrings of databases
D1 and D2, then the intersection of the result with the relevant substrings
of D3, and so on. This is done by matching the respective database against
the enhanced suffix array of D1.
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Matrix decompositions are used for many data mining purposes. One of these
purposes is to find a concise but interpretable representation of a given data
matrix. Different decomposition formulations have been proposed for this task,
many of which assume a certain property of the input data (e.g., nonnegativity)
and aim at preserving that property in the decomposition.

In this paper we propose two new decomposition formulations for binary ma-
trices, namely the Boolean CX and CUR decompositions. They are natural com-
binations of two previously-presented decomposition formulations. The Boolean
CX (BCX) decomposition assumes a binary input matrix A and decomposes it
into two binary factor matrices, C and X , with matrix C containing a subset
of A’s columns. Matrix A is represented using the Boolean matrix product of
C and X , A ≈ C ◦X . The Boolean matrix product ◦ is like the normal matrix
product, but with addition defined as 1 + 1 = 1. In the Boolean CUR (BCUR)
decomposition, A is decomposed into three matrices, C, U , and R, with matrix
C containing a subset of A’s columns and matrix R containing a subset of A’s
rows. Matrix A is represented as A ≈ C ◦ U ◦R.

We also study two subproblems of these decompositions, the Basis Usage (BU)
problem and the Mixing Matrix (MM) problem. In the former we are given the
matrices A and C and our goal is to find the matrix X such that A ≈ C ◦X .
In the latter we are given the matrices A, C, and R and our goal is to find the
matrix U such that A ≈ C ◦ U ◦ R. We give lower and upper bounds for the
approximability of the BU and MM problems and use the results to show the
NP-completeness of the BCX problem.

We give algorithms for the problems and study the performance of the algo-
rithms via extensive experimental evaluation. Our results show that, despite the
high theoretical complexity of the problems, even simple algorithms can perform
well with both synthetic and real-world data.
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Graph mining is gaining importance due to the numerous applications that rely
on graph-based data. Some example applications are: (i) analysis of microarray
data in bioinformatics, (ii) pattern discovery in social networks, (iii) analysis
of transportation networks, (iv) community discovery in Web data. Existing
pattern discovery approaches operate by using simple constraints on the mined
patterns. For example, given a database of graphs, a typical graph mining task is
to report all subgraphs that appear in at least s graphs, where s is the frequency
support threshold. In other cases, we are interested in the discovery of dense
or highly-connected subgraphs. In such a case, a threshold is defined for the
density or the connectivity of the returned patterns. Other constraints may be
defined as well, towards restricting the number of mined patterns. There are
three important limitations with this approach: (i) there is an on-off decision
regarding the eligibility of patterns, i.e., a pattern either satisfies the constraints
or not, (ii) in the case where the constraints are very strict we risk an empty
answer or an answer with only a few patterns, and (iii) in the case where the
constraints are too weak the number of patterns may be huge.

Towards dealing with the previous limitations, we address the problem of
incorporating preferences in the pattern discovery process and we propose the
SkyGraph algorithm which is based on min-cut computations. Each subgraph is
seen as a record containing two attributes: (i) the order (number of vertices) and
(ii) the edge connectivity. The importance of a discovered subgraph increases as
both the order and the edge connectivity increase. Therefore, the best possible
subgraphs (termed skyline subgraphs) are the ones that are maximized both in
order and edge connectivity. To the best of the authors’ knowledge, this is the
first work studying the skyline problem in the process of knowledge discovery.
The performance of the proposed technique is evaluated by using real-life as well
as synthetically generated random graphs.
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In this paper we study the discovery of frequent sequences and we aim at ex-
tending the non-derivable condensed representation in frequent itemset mining
to sequential pattern mining. We start by showing a negative example: in the
context of frequent sequences, the notion of non-derivability is meaningless.

This negative result motivated us to look at a slightly different problem: the
mining of conjunctions of sequential patterns. This extended class of patterns
turns out to have much nicer mathematical properties. For example, for this
class of patterns we are able to extend the notion of non-derivable itemsets in
a non-trivial way, based on a new unexploited theoretical definition of equiva-
lence classes for sequential patterns. As a side-effect of considering conjunctions
of sequences as the pattern type, we can easily form association rules between
sequences. We believe that building a theoretical framework and an efficient ap-
proach for sequence association rules extraction problem is the first step toward
the generalization of association rules to all complex and ordered patterns.

We also present a new depth-first approach to mine non-derivable conjunctive
sequential patterns and show its use in mining association rules for sequences.
This approach is based on a well known combinatorial theorem: the Möbius
inversion. A performance study using both synthetic and real datasets illustrates
the efficiency of our mining algorithm. These new introduced patterns have a
high-potential for real-life applications, especially for network monitoring and
biomedical fields with the ability to get non-redundant sequential association
rules with all the classical statistical metrics such as confidence, conviction, lift
etc.
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Patterns are at the core of the discovery of a lot of knowledge from data but
their uses are limited due to their huge number and their mining cost. During
the last decade, many works addressed the concept of condensed representation
w.r.t. frequency queries. Such representations are several orders of magnitude
smaller than the size of the whole collections of patterns, and also enable us to
regenerate the frequency information of any pattern. Equivalence classes, based
on the Galois closure, are at the core of the pattern condensed representations.
However, in real-world applications, interestingness of patterns is evaluated by
various many other user-defined measures (e.g., confidence, lift, minimum). To
the best of our knowledge, these measures have received very little attention. The
Galois closure is appropriate to frequency based measures but unfortunately not
to other measures.

This paper extends the concept of pattern condensed representations. We pro-
pose a framework for condensed representations w.r.t. a large set of new and var-
ious queries named condensable functions. These queries encompass not only the
frequency (conjunctive, disjunctive or negative) and frequency-based measures,
but also address many other interestingness measures (e.g., minimum) and con-
straints having no suitable property of monotonicity. Condensed representations
are achieved thanks to new closure operators automatically derived from each
condensable function to get adequate condensed representations. We propose a
sound and correct generic algorithm MicMac to efficiently mine the adequate
condensed representations. Experiments show the conciseness of the adequate
condensed representations, especially in dense and/or correlated data. They also
demonstrate the scalability of our algorithm for measures or constraints which
are intractible with naive methods.

We think that generalizing closure-based condensed representations will offer
new tools for higher KDD tasks (e.g., non-redundant rules w.r.t. any measures),
similarly there are many uses stemming from the frequency.
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Data stream values are often associated with multiple aspects. For example, each
value observed at a given time-stamp from environmental sensors may have an as-
sociated type (e.g., temperature, humidity, etc) as well as location. Time-stamp,
type and location are the three aspects, which can be modeled using a tensor
(high-order array). However, the time aspect is special, with a natural ordering,
and with successive time-ticks having usually correlated values. Standard mul-
tiway analysis ignores this structure. To capture it, we propose 2 Heads Tensor
Analysis (2-heads), which provides a qualitatively different treatment on time.
Unlike most existing approaches that use a PCA-like summarization scheme
for all aspects, 2-heads treats the time aspect carefully. 2-heads combines the
power of classic multilinear analysis (PARAFAC [1], Tucker [5], DTA/STA [3],
WTA [2]) with wavelets, leading to a powerful mining tool. Furthermore, 2-heads
has several other advantages as well: (a) it can be computed incrementally in
a streaming fashion, (b) it has a provable error guarantee and, (c) it achieves
significant compression ratio against competitors. Finally, we show experiments
on real datasets, and we illustrate how 2-heads reveals interesting trends in the
data.

This is an extended abstract of an article published in the Data Mining and
Knowledge Discovery journal [4].
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Abstract. Alpha-helical transmembrane proteins mediate many
key biological processes and represent 20%–30% of all genes in many or-
ganisms. Due to the difficulties in experimentally determining their high-
resolution 3D structure, computational methods to predict the location
and orientation of transmembrane helix segments using sequence infor-
mation are essential. We present, TOPTMH a new transmembrane he-
lix topology prediction method that combines support vector machines,
hidden Markov models, and a widely-used rule-based scheme. The con-
tribution of this work is the development of a prediction approach that
first uses a binary SVM classifier to predict the helix residues and then
it employs a pair of HMM models that incorporate the SVM predictions
and hydropathy-based features to identify the entire transmembrane he-
lix segments by capturing the structural characteristics of these proteins.
TOPTMH outperforms state-of-the-art prediction methods and achieves
the best performance on an independent static benchmark.

1 Introduction

Transmembrane helical (TMH) proteins play a crucial role in several cellular
functions, such as cell-to-cell communication, cell signaling, and transportation
of ions and small molecules [3], and are of key interest to the pharmaceutical in-
dustry as approximately 50% of all existing drugs are targeting transmembrane
proteins [15]. Experimental determination of the three dimensional structure of
TMH proteins is challenging, because they are difficult to crystallize and are
too large for NMR studies [21]. As such, TMH proteins represent only 1% of
known 3D protein structures [2], even though they account for about 20%–30%
of the encoded proteins in several organisms [31]. Computational methods that
can accurately predict the topology of TMH proteins by identifying the helical
segments along with their orientation relative to the interior of the cell (also
called cytoplasm) are currently the only high-throughput approach to charac-
terize structural aspects of transmembrane proteins (See Figure 1).
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Fig. 1. Transmembrane α helix

Over the years, a number of different methods have been developed for pre-
dicting the topology of TMH proteins. In general, these methods need to predict
the following items: (i) the type of each residue (e.g., helix, loop, etc.), (ii) the
TMH segments, and (iii) their orientation. The various methods developed differ
on the number of distinct steps that they use to predict the above items. Some
methods predict each item individually, others utilize predictors that combine
some of these steps, and others predict all three items in a single step. The residue
types are predicted by either relying on the fact that membrane segments con-
tain primarily hydrophobic residues (e.g., TopPred [29]) or by utilizing machine-
learning approaches (e.g., neural networks, support vector machines) using as
features the amino acid sequence of the protein or evolutionary information in
the form of sequence profiles (e.g., PHDhtm [25], MEMSAT3 [10], SVMTop [20]).
The segments are identified using simple hydrophobicity plots [16] to ascertain
probable helical segments and then employ various rules based on the expected
lengths of the TMH segments to either accept, reject, or break long segments
[20,29,32]. The segment orientation is often determined by relying on the fact
that the regions between TMH segments that are positively charged tend to
reside in the intracellular regions of the membrane (positive-inside rule [29]).
The approaches that combine segment identification with orientation determi-
nation (e.g., MEMSAT3) employ dynamic programming methods to determine
the different segments of a TMH protein and its orientation relative to the cy-
toplasm. Finally, the approaches that predict all of the above items in a single
step utilize hidden Markov models (HMM) that capture the different structural
components of a TMH protein (e.g., TMH segment, inside loop, outside loop,
signal peptide, etc.) as separate modules. These models are trained on either the
amino acid sequence of the proteins (e.g., TMHMM [26] and HMMTOP [27])
or on sequence profiles (e.g., Phobius [17]) and predict the topology of a TMH

protein by determining its most probable path through that model using Viterbi
decoding [22].

This paper focuses on improving the accuracy of HMM-based approaches by
combining them with an SVM-based approach that predicts the types of each
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residue. Specifically, we developed a TMH topology prediction algorithm, called
TOPTMH, that solves the residue-type prediction, segment identification, and
orientation determination in three distinct steps. The type of each residue is
annotated via an SVM-based approach utilizing a window-based encoding of
the residues’ profile information and a second order exponential kernel func-
tion [12,23,24]. The segments are identified by using a pair of HMMs that model
the different structural components of TMH proteins. The first HMM uses as
input the SVM predictions for each residue, whereas the second HMM uses as
input hydropathy information as measured by a recently introduced hydropho-
bicity scale [8]. Finally, the orientation of the predicted segments is determined
by applying the positive-inside rule.

The advantages of this approach are three-fold. First, by using a discrimina-
tive approach to learn a residue-type prediction model, the accuracy of these
predictions are higher than those obtained (indirectly) by the HMM model. Sec-
ond, by encoding the protein sequences via the SVM predictions, whose signal is
significantly higher than that of the raw sequence profile, the demands imposed
during HMM parameter estimation are substantially reduced allowing it to bet-
ter focus on learning how to correctly identify the different segments. Third,
by combining the outputs of the HMM models trained on the SVM predictions
and on the hydrophobicity scores, it allows TOPTMH to correctly identify the
TMH segments that have an amino acid composition that is similar to that of
signal peptides.

We experimentally evaluated the performance of TOPTMH on three widely
used datasets. Our evaluation was performed in two phases. First, we evaluated
the gains obtained by TOPTMH by comparing it against an approach that
uses a rule-based scheme to identify the TMH segments from the SVM pre-
dictions and another that uses just a single HMM model trained on the SVM
predictions. Our evaluation showed that the HMM-based segment identification
outperforms the rule-based approach by at least 50% in terms of the Qok score,
which measures per-segment accuracy, and that by combining both the SVM-
and the hydrophobicity-based HMM models, a further 3%–19% improvements
can be obtained. Second, we evaluated its performance by comparing it against
Phobius [17] and MEMSAT3 [10]. Our evaluation showed that TOPTMH out-
performs both of them across the different datasets. We also evaluated the per-
formance of TOPTMH on an independent static benchmark [14]. The results
on this blind evaluation showed that TOPTMH achieves the highest scores
on high-resolution sequences (Q2 score of 84% and Qok score of 86%) against
existing state-of-the-art systems while achieving low signal peptide error.

2 Background and Definitions

2.1 Transmembrane Helical Proteins

The structure of a typical TMH protein is shown in Figure 1. It consists of
a series of helical segments passing through the cell’s membrane (bilipid layer)
separated by loop segments that are either on the inside or the outside side of
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the membrane. TMH segments can have two orientations: they can be going
from the inside to the outside or from the outside to the inside of the cell. This
orientation is relative to the location of N-terminus of the TMH protein. The
TMH topology prediction problem involves predicting the residues that make
up the helical segments and their orientation.

2.2 Position Specific Scoring Matrices

The position specific scoring matrix (PSSM) of a protein is obtained from a
multiple sequence alignment of that protein and a set of other proteins that
have a statistical significant sequence similarity (i.e., they are expected to be
homologs). For a sequence X of length n, its PSSM is represented by a n × 20
matrix PX . The n rows of this matrix correspond to the various positions in X
and the columns correspond to the 20 distinct amino acids. The position specific
scoring matrices used by TOPTMH were generated using the latest version of
the PSI-BLAST algorithm [1] (available in NCBI’s blast release 2.2.13), and were
derived from the multiple sequence alignment constructed after five iterations
using an e value of 10−2 for initial and subsequent sequence inclusions (i.e.,
we used blastpgp -j 5 -e 0.01 -h 0.01). The PSI-BLAST was performed
against the SWISS-PROT [4] database release 53.0 that contains 269,293 se-
quences. A post processing step was performed to extract the log-odds scores
(n× 20 matrix) of each protein sequence from the PSI-BLAST output to use as
the input feature for residue classification.

2.3 Hydrophobicity Scale

A hydrophobicity (HP) scale assigns a value to each of the 20 standard amino
acids based on its hydrophobicity. In the context of TMH prediction methods,
the Kyte and Doolittle [16] and the GES [6] HP scales are commonly used.
These scales are based on biophysical or statistical analysis of high-resolution
membrane protein structures and do not fully capture the cellular context of the
membrane proteins [8]. For this reason, TOPTMH uses a recently published [8]
HP scale (ΔGaa

app scale) that captures the energetics of the protein-lipid inter-
action in biological contexts and thus is more biologically relevant. It has been
shown that this scale is able to determine the topology of membrane proteins
with higher precision than other scales [30].

3 TOPTMH Algorithm

The TOPTMH algorithm solves the TMH prediction problem by first assign-
ing a score to each residue based on its likelihood to be in a helix state (residue
annotation step), then using these scores it determines the protein’s TMH seg-
ments (segment identification step), and finally using the positive-inside rule it
determines their orientation (orientation determination step). These steps are
described in the rest of this section.
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3.1 Residue Annotation Step

We developed an SVM-based TMH residue annotation approach that uses
features obtained from the protein’s PSSM. Its overall structure is similar to
that used by existing methods for SVM-based structural and functional annota-
tion of protein residues using position specific scoring matrices (e.g., secondary
structure for globular proteins [12], solvent accessible surface area [24], disorder
prediction [24], and DNA-binding [24]).

TOPTMH formulates the residue annotation problem as a binary classifica-
tion problem whose goal is to predict if a residue belongs to a helix state or not.
For each residue i of a protein sequence X , the input to the SVM is a (2w + 1)-
length subsequence (wmer) of X centered at position i. Each wmer is represented
by a vector xi of length (2w+1)×20 that is obtained by concatenating the rows
of the PSSM for each position of the wmer. This wmer-based input is used for
both training and prediction. The parameter w determines the length of the local
environment around the ith sequence position used while building and applying
the model and its optimal value is determined experimentally.

TOPTMH uses SVMlight [9] to learn the actual SVM model and utilizes the
second order exponential function (soe) [12] as its kernel function. The soe kernel
has been shown to produce better results than the traditional radial basis function
(rbf ) kernel for various sequence annotation prediction problems [12,24,23]. For a
sequence, these predictions are available as a web service called MONSTER1. In
the context of TOPTMH, the soe kernel function is given by

Ksoe(xi, yj) = exp

(
1 + K2(xi, yj)√

K2(xi, yj)K2(xi, yj)

)
, (1)

where xi and yj are the vector representations of two wmers, K2 is given by

K2(xi, yj) = 〈xi, yj〉+ 〈xi, yj〉2, (2)

and 〈xi, yj〉 denotes the dot-product of the xi and yj vectors.

3.2 Segment Identification Step

In order to determine the best approach for identifying the TMH segments we
developed and studied three different approaches. The first approach utilizes a
simple scheme based on empirical rules and the other two predict the topology by
employing hidden Markov models (HMM) [22]. The first HMM-based approach
uses a single HMM based solely on the SVM scores, whereas the second uses two
HMMs—one based on SVM scores and one based on hydrophobicity scales.

Rule-Based. The rule-based segment identification approach post-processes
the SVM-based residue annotations and identifies the segments by applying some
heuristics rules that take into account the minimum and maximum lengths of
1 http://bio.dtc.umn.edu/monster
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the TMH segments. Specifically, for each protein, this approach traverses the
SVM annotated residues and identifies all maximal contiguous segments that
were annotated as TMHs by the SVM. Any TMH segment whose length l is
shorter than the minimum length of Lmin residues is rejected (i.e., converted into
non-helix residues). If any of the remaining segments have l > Lmax, they are
split into two separate segments as follows. For the segments with l ≤ 2Lopt +C,
the segment is split by changing the middle C residues into loops. For segments
with l > 2Lopt + C, the segment is split by creating two helical segments con-
sisting of the first and last Lopt residues and converting the remaining central
residues into loops. The threshold values Lmin, Lmax, Lopt and C are set as 9,
38, 19 and 6 respectively. These values were initially chosen based on a litera-
ture review [29,3,32] and then optimized to provide the best results given the
SVM-based annotations produced by TOPTMH.

HMM-Based. The HMM-based segment identification approaches determine
the segments of a TMH protein by threading the sequence into an HMM model
that is designed to capture the various structural components of a TMH pro-
tein. These approaches were motivated by recent studies which showed that
HMM-based TMH prediction methods are well-suited for predicting the topol-
ogy of TMH proteins as they can directly learn from the data the various struc-
tural constraints associated with TMH protein segments and their relations to
the protein’s underlying sequence and/or PSSM [3,18,5]. However, unlike these
methods, the HMM-based approaches that we developed take into account the
SVM-scores produced by the residue annotation step, which provide better per-
residue predictions for the helix/non-helix states than the maximum likelihood
approaches used by HMMs. The architecture of our HMM model, shown in Fig-
ure 2, is designed to capture the known structural information of TMH proteins
and is similar to that employed by Phobius [17]. The model contains four major
compartments: (i) helix, (ii) inside loop, (iii) outside loop, and (iv) signal pep-
tide. The helix compartment is composed of two submodels each containing 35
states. One submodel is used for modeling helix segments that go from inside
towards the outside, and the other for the helix segments that go from outside
towards the inside. In each of these submodes, states 1–8 contain transitions to
only the next state, whereas states 9–34 can transition to the next state or to
state 35 (last state). Thus, any predicted helix segment will be of length 9–35
residues long. The outside loop compartment is divided into two submodels to
represent long and short non-cytoplasmic loops. Each of these submodels con-
tains 20 states to model loops that are at least 1–20 residues long. Each submodel
also has a state with self-transition to represent long cytoplasmic loops. The in-
side loop compartment also contains 20 states to allow it to model loops that
are 1–20 residues long. The signal peptide compartment was designed based on
Phobius model and it has three regions: the n-region (10 states), the h-region
(20 states), and the c-region (20 states). The last state of the c-region represents
a cleavage site transitioning to a outside loop state.
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Fig. 2. The layout of the HMM model used in TOPTMH

The HMM models were built using the UMDHMM [11] package (version 1.02),
which was modified to take as input annotated protein sequences. The threading
of a sequence through the HMM model was done using the Viterbi [22] algorithm.

HMM Based on SVM Scores (HMM-SVM). This approach builds an HMM
model that only takes into account the per-residue SVM scores produced by the
annotation step. To construct the training set, the SVM score for each residue
is computed. Since, HMMs are primarily designed to operate on finite size al-
phabets, the raw SVM scores are discretized into a finite number of bins with
each bin corresponding to a distinct symbol. The final training set for the HMM
corresponds to a set of proteins with known TMH topology represented as se-
quences of SVM-score based bins. A similar SVM-based prediction followed by
discretization is performed when this model is used to predict the topology
of a test protein. We discretized the SVM scores into equal-size intervals, and
assigned all residues with scores ≤ −3 and ≥ 3 into the first and last bin,
respectively.

HMM Based on SVM Scores and Hydrophobicity Scores (HMM-SVM+HP). This
model builds a pair of HMM models—one based on SVM scores (HMM-SVM)
and one based on the hydrophobicity values (HMM-HP) of known TMH se-
quences and combines the topology predictions from both HMM models. This
approach was motivated by the fact that in certain cases, the SVM-based residue
annotation may fail to identify certain hydrophobic TMH segments. This is
further discussed in Section 5.
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Table 1. Discretization of Hydrophobicity values

Labels Amino Acids HP Values

1 R, E, K, D 2.5 < h
2 N, H, P, Q 1.0 < h < 2.5
3 T, Y, G, S −0.1 < h < 0.9
4 F, V, C, A, M, W −0.4 < h < −0.1
5 I, L h < −0.5

HP Values denotes a range of hydrophobicity values decided based on [8]

The HMM-SVM model is identical to that described in the previous section.
The HMM-HP model is built by first encoding the amino acids of each TMH

protein as a sequence of discretized hydrophobicity values. Table 1 shows the
scheme used to discretize the hydrophobicity values for each amino acid. Both
the HMM-SVM and HMM-HP models are used independently to predict the
TMH segments. The final set of predictions consists of the segments predicted by
HMM-SVM and those segments predicted by HMM-HP that do not overlap with
any of the segments of HMM-SVM. Two segments are considered to overlap if
they have more than five residues in common. Since this approach combines both
the SVM- and HP-based HMM models, we will refer to it as HMM-SVM+HP.

3.3 Orientation Determination Step

Once the TMH segments have been identified, their orientation relative to the
N-terminus is determined by applying the positive-inside rule [29] using the
technique introduced in THUMBUP [32]. In this approach, each protein is first
coded into a binary sequence by assigning a one to the first protein residue and
all the arganine and lysine residues and a zero to the remaining residues. Then,
a score is computed for each loop by adding the values of its 15 neighboring
residues on each side. If the total score for odd-numbered loops is greater than
or equal to that of even loops, the N-terminus is inside the membrane, otherwise
it is outside.

4 Experimental Design

4.1 Datasets

We evaluated the prediction performance of the TOPTMH method on datasets
used by the Phobius and MEMSAT3 methods and by participating on the static
benchmark [13]. The datasets obtained from the Phobius study included a set
of 247 transmembrane proteins and a set of 45 transmembrane proteins that
contained signal peptide residues with transmembrane helix segments. We will
denote the first dataset as TM-Only and the second as TM-SP. The dataset
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obtained from MEMSAT3 consisted of a set of 184 non-homologous transmem-
brane proteins denoted as Möller that also contained a few signal peptide
proteins.

The static benchmark consists of a set of 2247 sequences whose true an-
notations are not given to the public. A method predicts the annotations for
these sequences and uploads them to the evaluation server. The server assesses
the quality of the predictions and compares them to that obtained by other
methods. The 2247 sequences contain four distinct subsets. The first is the high-
resolution subset which contains sequences of proteins whose high resolution
structure is available, the second is the low-resolution subset that includes mem-
brane proteins detected using low resolution structures, the third subset is the
globular protein subset which includes globular protein sequences and the fourth
is the signal peptide subset that includes proteins sequences with signal peptide
residues. The sequences provided to the public is not grouped in the above men-
tioned subsets, but the results published on the evaluation server is presented
accordingly.

4.2 Training and Testing Methodology

For each of the TM-SP and TM-Only datasets, the different methods were
evaluated using a standard 10-fold cross validation protocol by splitting the pro-
teins into 10 different parts. The percent sequence identity between the different
folds were at most 30% and 35% for the TM-Only and TM-SP datasets, respec-
tively. The ten folds were identical to that used by Phobius making it possible
to directly compare our results with those obtained by Phobius.

The two-level HMM-SVM model was trained as follows. The training set was
further split into 10 different folds {f1, . . . , f10}. For each fold fi, the other nine
folds were used to train the SVM model and then used to predict the residues
for the proteins in fi. At the end of this step all the residues of the proteins
in the training set have SVM predictions. These predictions are then used to
train the HMM model for the training set. In addition, the entire training set
is used to build an SVM residue prediction model. Note that the test set is not
used anywhere during training. During testing, the residues of each test protein
are first predicted using the SVM model built on the entire training set, and
these predictions are provided as input to the HMM model to predict the TMH

segments.
The predictions for the static benchmark were obtained by training the SVM

and HMM models using all the sequences from TM-SP and TM-Only datasets.

4.3 Evaluation Metrics

The performance of TMH prediction is evaluated on a per-residue and on a
per-segment basis using well-established metrics [3]. The per-residue evaluation
measures the ability of a method to correctly annotate the different residues into
helices or non-helices (two classes). We used three per-residue metrics denoted by
Q%obs

2T , Q%prd
2T , and Q2. Q%obs

2T is the percentage of observed TMH residues that
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are predicted correctly (helix recall), Q%prd
2T is the percentage of predicted TMH

residues that are predicted correctly (helix precision), and Q2 is the percentage
of correctly predicted residues (both helix and non-helix).

The per-segment evaluation measures the ability of a method to correctly
identify the actual TMH segments. We used three per-segment metrics denoted
by Q%obs

htm , Q%prd
htm , and Qok. Q%obs

htm is the percentage of observed TMH segments
that are predicted correctly (TMH segment recall), Q%prd

htm is the percentage of
predicted TMH segments that are predicted correctly (TMH segment preci-
sion), and Qok is the percentage of proteins for which all the TMH segments are
predicted correctly. Note that Qok is a very strict metric as each protein con-
tributes either a zero or an one. In the above metrics, a predicted TMH segment
is considered to be correctly identified if there is an overlap of ten residues be-
tween the predicted and observed helix segments2 In addition, a predicted helix
segment is counted only once. This is illustrated by considering the following
examples:

Obs1: TTTTTTTTTTTTTTTT------TTTTTTTTTTTTT
Pred1: -----TTTTTTTTTTTTTTTTTTTTTTTTTTT---

Obs2 : ---TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT--
Pred2: TTTTTTTTTTTTTT------TTTTTTTTTTTTTTT

In this example, Obs1 and Pred1 are the observed and predicted TMH segments
for a particular protein sequence. During evaluation, the second segment of the
Obs1 sequence will not be considered as correctly predicted, since the only seg-
ment predicted in Pred1 is already accounted for in the first segment of the Obs1
sequence. On the other hand, the second segment of the Pred2 sequence will be
considered as incorrectly predicted as the first segment will be considered for the
only segment in Obs2 sequence.

Although, the per-residue measures capture the accuracy of a method to pre-
dict the annotation label for a residue, it is not able to assess the ability of
the method to identify the TMH segments separated by loop regions of dif-
ferent lengths. Hence, TMH prediction algorithms are mostly evaluated using
per-segment metrics.

5 Results

5.1 Residue Annotation Performance

The performance achieved by the SVM-based residue annotation for different
values of w is shown in Table 2. This table shows the per-residue performance
metrics (Q2, Q%obs

2T and Q%prd
2T ) for a subset of the TM-Only dataset. We ob-

serve that in terms of the various metrics, the performance achieved for different
values of w is rather similar. The only exception is w = 2, where the performance
2 Earlier techniques used an overlap of only three [3] or five [17] residues, which is too

short and can artificially inflate the performance of a scheme.



TOPTMH: Topology Predictor for Transmembrane α-Helices 33

Table 2. Residue Annotation Performance with varying wmer length

wmer Q2 Q%obs
2T Q%prd

2T

2 86.6 78.1 76.9
5 88.2 85.3 75.5
7 88.3 84.7 77.4
11 88.3 85.5 76.6

The numbers in bold show the best wmer length performance as measured for that metric.

is substantially lower than the rest. Overall, the best performance was obtained
using wmer of length seven. For this reason, all the remaining experiments pre-
sented in this study use w = 7.

5.2 Segment Identification Performance

Table 3 presents the per-residue and per-segment based results of different TMH

segment identification approaches on the TM-Only and TM-SP datasets. For
the SVM-HMM approach, Table 3 shows three different sets of results that were
obtained by binning the SVM scores into 5, 7, and 12 bins (HMM-SVM-D5,
HMM-SVM-D7, and HMM-SVM-D12). The row labeled “Raw-SVM” shows the
results obtained by using as TMH segments the maximal contiguous segments
that were predicted as TMHs by the SVM (i.e., the set of segments that form
the input to the rule-based segment identification approach).

Comparing the per-residue performance achieved by the various approaches
we see that Raw-SVM achieves very good per-residue two-state accuracy (Q2).
It has the highest Q2 value for TM-Only and the second highest for TM-SP.
However, focusing on this metric alone is misleading because most of the residues
in transmembrane proteins are non-helix [19] and relatively high Q2 values can
be obtained by simply predicting most of the residues as being in a non-helix
state. Consequently, high Q2 values represent good performance only if they are
accompanied with high helix recall (Q%obs

2T ) values. In light of this discussion,
we see that the HMM-based segment identification approaches tend to achieve
considerably better recall values (especially for TM-SP) while their helix pre-
cision (Q%prd

2T ) is in some cases better than that of the Raw-SVM approach.
Among the different schemes, the rule-based approach achieves the best pre-
cision results, whereas the approach that combines the SVM- and HP-based
HMMs (HMM-SVM-D7+HP) achieves the best recall. However, unlike the high
precision achieved by the HMM-SVM-D7+HP approach, the rule-based scheme
achieves the lowest recall leading to the worst Q2 values.

Comparing the per-segment performance, we see that the Raw-SVM approach
achieves Qok scores that range from 35%–40%, which are by far the lowest among
the different approaches. These results indicate that even though Raw-SVM
can correctly predict a large fraction of the helical residues, it fails to predict
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Table 3. TMH Segment Identification Performance

TM-SP TM-Only

Per-Residues Scores

Methods Q2 Q%obs
2T Q%prd

2T Q2 Q%obs
2T Q%prd

2T

Raw-SVM 96.73 71.10 86.60 90.64 84.30 83.10
Rule 95.16 59.56 95.89 89.19 79.65 87.36
HMM-SVM-D5 96.28 76.39 84.87 89.40 85.54 82.25
HMM-SVM-D7 96.45 76.85 87.72 89.34 85.61 82.23
HMM-SVM-D12 96.24 77.56 84.45 89.31 86.13 81.35
HMM-SVM-D7+HP 97.08 84.80 88.50 89.46 86.21 82.04

Per-Segment Scores

Methods Qok Q%obs
htm Q%prd

htm Qok Q%obs
htm Q%prd

htm

Raw SVM 35.55 85.23 70.09 38.86 94.34 74.33
Rule 64.44 75.00 100.00 70.85 92.88 94.96
HMM-SVM-D5 64.44 84.09 87.05 71.66 95.39 93.73
HMM-SVM-D7 71.11 85.23 92.59 72.06 95.63 93.52
HMM-SVM-D12 60.00 85.22 85.22 70.04 95.80 92.87
HMM-SVM-D7+HP 84.44 93.18 93.18 73.68 96.12 93.33

correctly large contiguous portions of each helical segment. On the other hand,
the per-segment performance achieved by the other segment identification ap-
proaches are considerably higher. Both the rule- and HMM-based approaches are
able to significantly improve over Raw-SVM for both the TM-SP and TM-Only

datasets. Among them, the approaches based on HMM-SVM outperform the
rule-based approach by 2%–12%, even though the latter achieved the highest
Q%prd

htm scores (100% and 96.44% for TM-SP and TM-Only, respectively).
The overall best Qok results were obtained by the HMM-SVM-D7+HP ap-

proach. In particular, the Qok values achieved by HMM-SVM-D7+HP are 19%
and 3% better than the next best performing scheme (HMM-SVM-D7) on the
TM-SP and TM-Only datasets, respectively. The large performance advantage
of HMM-SVM-D7+HP over HMM-SVM-D7 on the TM-SP dataset are primar-
ily due to increases in recall (Q%obs

htm ). HMM-SVM-D7+HP achieves a Q%obs
htm of

93.18% compared to the 85.23% achieved by HMM-SVM-D7. A possible ex-
planation for the relatively poor performance of HMM-SVM-D7 is that due to
the signal peptide segments present in some of the sequences in the TM-SP

dataset, the SVM model fails to identify some of the TMH residues. However,
these residues can be correctly identified when hydrophobicity scores are consid-
ered, and as such the combined HMM-SVM-D7+HP approach leads to better
overall results.
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Table 4. Performance Comparison with Phobius

TM-SP TM-Only

Method Accuracy Accuracy

TOPTMH 93.18 75.71
Phobius 91.10 63.60

Accuracy denotes the percentage of the correctly predicted proteins and a prediction
was counted correct when all predicted TMH segments overlap all observed TMH seg-
ments over a five residue stretch and loops were located correctly. Prediction accuracy
did not consider incorrect prediction of signal peptide segments to be consistent as [17].

Table 5. Performance Comparison with MEMSAT3 on the Möller dataset

Method # TM SEG # TOPO # TOPO+LOC # TOPO+LOC(10)

TOPTMH 162 (88.04%) 149 (80.98%) 134 (72.83%) 131 (71.20%)
Phobius 152 (82.60%) 134 (72.80%) 126 (68.40%) 120 (65.20%)
MEMSAT3 156 (84.80%) 150 (81.50%) 147 (79.90%) 141 (76.60%)

# TM SEG denotes the number of predicted proteins that had correct number of TMH segments
irrespective of topology or location. # TOPO denotes the number of proteins for which the ori-
entation of the protein (N-terminus is inside or outside of the cytoplasm) was predicted correctly.
# TOPO+LOC denotes the number of proteins for which the topology and the TMH segment lo-
cations were predicted correctly. This score was calculated based on five residue segment overlap.
# TOPO+LOC(10) shows the # TOPO+LOC scores for ten residue segment overlap.

5.3 Performance Comparison with Previous Methods

We compared the TOPTMH method (i.e., HMM-SVM-D7+HP) with Phobius
and MEMSAT3, which are two of the best TMH prediction methods currently
available. Phobius uses a sophisticated HMM to mark the TMH and signal pep-
tide regions and MEMSAT3 uses a combination of neural network and dynamic
programming to identify the TMH segments. The results of these comparisons
are shown in Tables 4 and 5. To facilitate the comparisons between the different
schemes, the performance metrics used in these tables are similar to the metrics
used in Phobius and MEMSAT3 and allow us to directly compare TOPTMH

performance with these systems.
Comparing TOPTMH’s performance against Phobius (Table 4) we see that

TOPTMH achieves accuracies that are 2% and 10% higher than those achieved
by Phobius on the TM-SP and TM-Only datasets, respectively. The perfor-
mance advantage of TOPTMH over Phobius also holds for the Möller dataset
(Table 5) as well. TOPTMH performed better in all three categories by cor-
rectly predicting 162, 149, and 134 proteins compared to the 152, 134, and 126
proteins predicted by Phobius, respectively.

Comparing TOPTMH’s performance against MEMSAT3 (Table 5) we see
that TOPTMH was able to predict the correct number of TMH segments for
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Table 6. TMH Benchmark Results

High Resolution Accuracy Low Resolution Accuracy

Per-segment Per-residue Per-segment Per-residue

Method Qok Q%obs
htm Q%prd

htm Q2 Q%obs
2T Q%prd

2T Qok Q%obs
htm Q%prd

htm Q2 Q%obs
2T Q%prd

2T

TOPTMH 86 95 96 84 75 90 66 92 88 90 84 80
PHDpsihtm08 84 99 98 80 76 83 67 95 94 89 87 77
HMMTOP2 83 99 99 80 69 89 66 94 93 90 85 83
MEMSAT3 80 98 97 83 78 88 63 92 87 88 86 76
Phobius 80 92 93 80 69 84 65 90 88 90 81 79
DAS 79 99 96 72 48 94 39 93 81 86 65 85
TopPred2 75 90 90 77 64 83 48 84 79 88 74 71
TMHMM1 71 90 90 80 68 81 72 91 92 90 83 80
SOSUI 71 88 86 75 66 74 49 88 86 88 79 72
PHDhtm07 69 83 81 78 76 82 56 85 86 87 83 75

Results for TOPTMH and MEMSAT3 were obtained by collecting predictions for test set of the
TMH static benchmark [13] and submitting the results to the benchmark server. Phobius [17] pre-
diction were collected loading the benchmark test sequences to the Phobius web server [13] and
submitting the output to the benchmark server. All the other results were provided by the TMH
static benchmark evaluation web-site.

more proteins (162 vs 156) and predict the correct topology for a similar number
of proteins (149 vs 150). However MEMSAT3 was able to predict more proteins
with both correct topology and location than TOPTMH (147 vs 134). We be-
lieve that this is primarily due to the fact that due to the binary classification of
the protein sequences in helix and non-helix residues, TOPTMH was not able
to effectively differentiate between inside and outside loops and thus could not
perform similar to MEMSAT3.

TOPTMH Performance on the Static Benchmark. The performance of
TOPTMH on the static benchmark is shown on Table 6. The TOPTMH results
shown in these tables correspond to the results obtained using the HMM-SVM-
D7+HP topology prediction approach. From these results we see that TOPTMH

achieved the highest Qok score of 86% for the high-resolution sequences and the
highest Q2 scores of 84% and 90% for the high- and low-resolution sequences,
respectively. Moreover, TOPTMH has performed about 7% better in TMH

prediction than both MEMSAT3 and Phobius. Note that even though HMM-
TOP2 achieved Q%obs

htm and Q%prd
htm scores that were higher than the corresponding

scores achieved by TOPTMH, its Qok score of is lower than that achieved by
TOPTMH. This is due to the fact that even though HMMTOP2 identified more
TMH segments in total than TOPTMH, it was not as successful in predicting
proteins for which all of the TMH segments were identified correctly.
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6 Conclusions

In this paper we developed the TOPTMH method to predict the transmem-
brane α-helix topology using sequence information. TOPTMH uses PSI-BLAST
constructed profiles and hydrophobicity information within a hybrid SVM- and
HMM-based framework. This novel hybrid method captures the power of SVM-
based models to discriminate between the helical and non-helical residues with
the power of HMMs to identify length-dependent topological structures. Exper-
iments on the Phobius and Möller datasets showed that TOPTMH achieves
high per-residue and per-segment accuracies and that on an independent static
benchmark it outperforms existing state-of-the-art methods such as PHDpsi-
htm08 [25], HMMTOP2 [28], MEMSAT3 [10], Phobius [17], and TopPred2 [7].
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Abstract. We present nondeterministic hypotheses learned from an or-
dinal regression task. They try to predict the true rank for an entry,
but when the classification is uncertain the hypotheses predict a set of
consecutive ranks (an interval). The aim is to keep the set of ranks as
small as possible, while still containing the true rank. The justification
for learning such a hypothesis is based on a real world problem arisen in
breeding beef cattle. After defining a family of loss functions inspired in
Information Retrieval, we derive an algorithm for minimizing them. The
algorithm is based on posterior probabilities of ranks given an entry. A
couple of implementations are compared: one based on a multiclass SVM
and other based on Gaussian processes designed to minimize the linear
loss in ordinal regression tasks.

1 Introduction

In the last few years, ordinal regression has become an important issue in Ma-
chine Learning research. See [1] and [2] for a state of the art introduction. The
aim of ordinal regression is to find hypotheses able to predict classes or ranks
that belong to a finite ordered set. Applications include Information Retrieval
[3], Natural Language Processing [4], collaborative filtering [5], finances [6], and
user preferences [7].

The approach presented in this paper explores a new kind of predictions in
ordinal regression. We shall build hypotheses that try to predict the true rank
for an entry, but when the classification is uncertain the hypotheses predict an
interval of ranks. The aim is to return a set of consecutive ranks, such that the
set is as small as possible, while still containing the true rank. As we shall learn
hypotheses for ordinal regression tasks with multiple outcomes, like nondeter-
ministic automata, we shall call them nondeterministic ordinal regressors. From
another point of view, these hypothesis could be called set-valued predictors.

Predictors of more than one class are not completely new. Given an error ε,
the so called confidence machines, make conformal predictions [8]: they produce
a set of labels containing the true class with probability greater than 1−ε. Other
approaches arose in the context of hierarchical organization of biological objects:
predicting gene functions [9], or mapping biological entities into ontologies [10].
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In the next Section we shall show the usefulness of these nondeterministic
hypotheses in a real world application context: the assessment of muscle propor-
tion in carcasses of beef cattle. This is an important question in cattle breeding
since this proportion determines, on the one hand, the prices to be obtained by
carcasses, and on the other hand, the genetic value of animals to select studs for
the next generation.

We formalize the problem of nondeterministic predictions as a special kind of
Information Retrieval. Thus, we define a family of loss functions Fβ and derive
an algorithm for minimizing this loss. The algorithm needs the estimation of
posterior probabilities of ranks given the entries. Then, we compare a couple of
implementations built on the estimations provided by a SVM [11], and by the
Gaussian approach of [1] devised for ordinal regression tasks.

The last Section of the paper presents an exhaustive set of experiments carried
out in order to test the performance of the nondeterministic approach. Thus,
in addition to the beef cattle learning task, we shall use 24 datasets publicly
available that were previously used in ordinal regression tasks [1,12].

2 The Round Profile of Bovines

The problem that motivated the research reported in this paper arose when
we were trying to make reliable predictions of the value of the carcasses of
beef cattle. This learning task was proposed by ASEAVA, the Association of
Breeders of a beef breed of the North of Spain, Asturiana de los Valles. This
is a specialized breed with many double-muscled individuals; their carcass have
dressing percentages over 60%, with muscle content over 75%, and with a low
(8%) percentage of fat [13]. The market target of these carcasses is made up of
those consumers that prefer lean meat without any marbling [7,14,15].

Even if the animals are not going to be slaughtered, the prediction of car-
cass value of a beef cattle is interesting since it can be considered as a kind
of assessment that is useful for breeders to select the progenitors of the next
generation. Thus, the ICAR (International Committee for Animal Recording)
acknowledges as a good practice the recording of live animal assessments; since
these assessments are a description of an animal’s morphology that reveals part
of its economic value.

The records so obtained can be used for the evaluation of programs of genetic
selection of dairy, dual purpose and specialized beef breeds. The growth of the
scores over years of selection for specific goals can be seen as a measure of the
success of the selection policy. On the other hand, when the assessed traits are
heritable, the scores can be directly used for selection purposes given that they
are capturing part of animal’s genetic value.

Traditionally, the assessment procedures were based on visual appreciations
of well trained technicians that had to rank a number of morphological char-
acteristics that include linear lengths of significant parts of animals’ bodies.
Although this process has been used successfully, it is clear that there is a prob-
lem with the repeatability of the assessments; not only between assessors, but
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Fig. 1. The assessment of the round profile of a beef cattle is a measurement of the
roundness of the lines drawn in the pictures. Thus, the leftmost cow in the top row is
a paradigm of the animals which have rank 1, while the following are representative
examples of ranks 2, 3 and 4 respectively.

even within assessors scoring the same animal in different times. In order to
overcome these difficulties, we developed a new assessment method described
in [16] that is almost completely repeatable and can be carried out using just
3 lengths (in centimeters) plus the appreciation of the curvature of the round
profile (see the curves in Figure 1). For this learning task we used a kernel based
method described in [17].

The aim of the assessment of round profiles is to rank the muscularity of
animals. Therefore, it is a very important attribute for describing beef cattle.
However, the curvature of the round profile is assessed by visual appreciations
of experts. But visual appreciations is a source of problems. Thus, for instance,
in [18], the authors describe an experiment in which a set of expert graders were
asked to rank a collection of mushrooms into three major and eight subclasses of
commercial quality. Grader consistency was assessed by repeated classification
(four repetitions) of two 100-mushroom sets. Grader repeatability ranged from
6% to 15% misclassification.

Therefore, returning to beef cattle, to ensure the repeatability of the whole
process, we should skip the subjective appreciation of the rank of round profiles.
Thus, a new learning task arises: to estimate this rank from repeatable live
animal descriptions. For this purpose, we built a dataset with 891 pairs of animal
descriptions (6 lengths in centimeters of their bodies, live weight, and sex) and
ranks (in a scale of 1-4). To ensure a uniform criterion, the first author of this
paper measured and ranked the round profile of the 891 live animals.
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But this is a difficult learning task. The classification accuracy achieved by a
multiclass SVM was 77%; the implementation used was a probabilistic
libsvm [11]. These results are not improved when using a learner specially de-
vised for ordinal regression tasks. Thus, using the MAP approach of [1], the
accuracy was 76%. The details about how we obtained these scores are included
in the last section devoted to report a number of experimental results. On the
other hand, we shall prove that a nondeterministic hypothesis contains the true
class more than 84% of cases, while the average number of ranks predicted is
just 1.21 or 1.30 depending of the learner used.

Moreover, the nondeterministic approach is more useful than the plain deter-
ministic one in this problem for several reasons. First, the reliability of hypothesis
predictions is higher than in the deterministic case. Therefore, when the hypoth-
esis predicts only one rank, the estimation of the rank is very probably the true
one. Second, when the prediction is an interval of more than one rank, we can
appeal to a more expensive procedure to finally decide the true class. In this
case, we may turn to an actual expert, or we can wait until the natural growth
of the animal make the classification more clear.

However, sometimes even a nondeterministic prediction may be useful to dis-
card an animal as stud for the next generation: a prediction of [1, 2] must imply a
poor genetic value as meat producer, provided that the hypothesis is sufficiently
reliable.

3 Formal Framework

Let X be an input space, and Y a finite set of ordered ranks. Without any loss
of generality, we can assume that Y = {1, . . . , k} for a given k. We shall consider
an ordinal regression task given by a training set S = {(x1, y1), . . . , (xn, yn)}
drawn from an unknown distribution Pr(X,Y ) from the product X ×Y. Within
this context, we propose the following.

Definition 1. A nondeterministic hypothesis is a function h from the input
space to the set of non-empty intervals (subsets of consecutive ranks) of Y; in
symbols,

h : X −→ Intervals(Y). (1)

The aim of such a learning task is to find a nondeterministic hypothesis h from a
space H that optimizes the expected prediction performance (or risk) on samples
S′ independently and identically distributed (i.i.d.) according to the distribution
Pr(X,Y ):

RΔ(h) =
∫

Δ(h(x), y) d(Pr(x, y)), (2)

where Δ(h(x), y) is a loss function that measures the penalty due to the predic-
tion h(x) when the true value is y.

In nondeterministic ordinal regression, we would like to favor those decisions
of h that contain the true ranks, and a smaller rather than a larger number of
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ranks. In other words, we interpret the output h(x) as an imprecise answer to
a query about the right rank of an entry x ∈ X . Thus, the nondeterministic
ordinal regression can be seen as a kind of Information Retrieval task for each
entry.

In Information Retrieval, performance is compared using different measures in
order to consider different perspectives. The most frequently used are the Recall
(proportion of all relevant documents that are found by a search) and Precision
(proportion of retrieved documents that are relevant). The harmonic average of
the two amounts is used to capture the goodness of a hypothesis in a single
measure. In the weighted case, the measure is called Fβ . The idea is to measure
a tradeoff between Recall and Precision.

For further references, let us recall the formal definitions of these Information
Retrieval measures. Thus, for a prediction of a nondeterministic hypothesis h(x)
with x ∈ X , and a rank y ∈ Y, we can compute the following contingency
matrix, where z ∈ Y,

y = z y �= z
z ∈ h(x) a b
z /∈ h(x) c d

(3)

where each entry (a, b, c, d) is the number of times that happens the correspond-
ing combination of memberships. Thus, notice that a can only be 1 or 0, de-
pending on whether the rank y is in the prediction h(x) or not; b is the number
of ranks different from y included in h(x); c = 1 − a; and d is the number of
ranks different from y that are not in h(x).

According to the matrix (Eq. 3), if h is a nondeterministic hypothesis, and
(x, y) ∈ X × Y, we have the next definitions.

Definition 2. The Recall in a query (i.e. an entry x) is defined as the propor-
tion of relevant ranks (y) included in h(x):

R(h(x), y) =
a

a + c
= a = 1y∈h(x). (4)

Definition 3. The Precision is defined as the proportion of retrieved ranks in
h(x) that are relevant (y):

P (h(x), y) =
a

a + b
=

1y∈h(x)

|h(x)| . (5)

In other words, given an hypothesis h, the Precision for an entry x, that is
P (h(x), y), is the probability of finding the true rank (y) of the entry (x) by
randomly choosing one of the ranks of h(x).

Finally, the tradeoff is formalized by

Definition 4. The Fβ, in general is defined by

Fβ(h(x), y) =
(1 + β2)a

(1 + β2)a + b + β2c
. (6)
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Table 1. For an entry x with rank 1, (y = 1), Precision, Recall, F1, and F2 for different
predictions of a nondeterministic classifier h

h(x) Precision Recall F1 F2

[1, 2, 3] 0.33 1 0.50 0.71
[1, 2] 0.50 1 0.67 0.83
[1] 1 1 1 1

[2, 3, 4] 0 0 0 0

Thus, for a nondeterministic classifier h and a pair (x, y),

Fβ(h(x), y) =

{
1+β2

β2+|h(x)| if y ∈ h(x)
0 otherwise.

(7)

The most frequently used F-measure is F1. For ease of reference, let us state
that

F1(h(x), y) =
2y∈h(x)

1 + |h(x)| . (8)

To illustrate the use of F-measures of an entry, let us consider an example. If
we assume that the true rank of an entry x is 1, (y = 1), then, depending on
the value of h(x), Table 1 reports the Recall, Precision, F1, and F2. We observe
that the reward attached to a prediction containing the true rank with another
extra rank ranges from 0.667 for F1 to 0.833 for F2; while the amounts are lower
when the prediction includes 2 extra ranks.

Once we have the definition of Fβ for individual entries, it is straightforward
to extend it to a test set. So, when S′ is a test set of size n, the average loss on
it will be computed by

RΔ(h, S′) =
1
n

n∑
j=1

Δ(h(x′
j), y

′
j) =

1
n

n∑
j=1

(
1− Fβ(h(x′

j), y
′
j)
)

(9)

=
1
n

n∑
j=1

(
1− 1 + β2

β2 + |h(x′
j)|

1y′
j∈h(x′

j)

)
.

It is important to realize that for a deterministic hypothesis h this amount is
the average ”0/1” loss, since all predictions are singletons, |h(x)| = 1. Thus, the
nondeterministic loss used here is a generalization of the error rate of determin-
istic classifiers. Furthermore, the average Recall and Precision on test sets can
be similarly defined. In this case, the Recall on a test set is the proportion of
times that h(x′) includes y′, and is thus a generalization of the deterministic
accuracy.
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Algorithm 1. The nondeterministic ordinal regressor nd •, an algorithm for
computing the prediction with one or more ranks for an entry x provided that
the posterior probabilities of ranks are given

Input: object description x
Input: {Pr(j|x) : j = 1, .., k}
for i =1 to k do

[Start+(i), P r Inter+(i)] = max
��j+i−1

t=j Pr(t|x) : j = 1, . . . , k − i + 1
�

/* Pr Inter+(i) is the highest probability of the intervals of length i */
/* This interval starts at class Start+(i) */

end for
Min = argmin

�
1 − 1+β2

β2+i
Pr Inter+(i) : i = 1, . . . k

�

return
�
Start+(Min), Start+(Min) + Min − 1

�

4 How to Learn Intervals of Ranks with Posterior
Probabilities

In the general ordinal regression setting presented in Section 3, let x be an
entry of the input space X , and let us now assume that we know the conditional
probabilities of ranks given the entry, Pr(rank = j|x) for j ∈ {1, . . . , k}. In this
context, we wish to define

h(x) = Z ∈ Intervals{1, . . . , k} (10)

that minimizes the risk defined in (Eq. 2) when we use the nondeterministic loss
given by Fβ (Eqs. 6, 7, and 9). We shall prove that such h(x) can be computed
by Algorithm 1.

Proposition 1. (Correctness) If the conditional probabilities Pr(j|x) are
known, Algorithm 1 returns the nondeterministic prediction h(x) that minimizes
the risk given by the loss 1− Fβ.

Proof. To minimize the risk (Eq. 2), it suffices to compute

Δx(Z) =
∑
y∈Y

Δ(Z, y)Pr(y|x) =
∑
y∈Y

(1− Fβ(Z, y))Pr(y|x), (11)

with Z ∈ Intervals{1, . . . , k}. Then, we only have to define

h(x) = argmin{Δx(Z) : Z ∈ Intervals{1, . . . , k}}. (12)

First we shall prove that when Z is an interval of length i, say Z = [s, s+ i− 1],
given x, the value of Equation (11) can be expressed in function of i and the
probability of the interval. In fact, with a probability of 1−Pr(Z|x), we expect
a loss of 1: the true rank will not be one of the interval Z. On the other hand,



46 J. Alonso et al.

with the probability of Z, the true rank will be in h(x), and therefore the loss
will be 1 minus the Fβ of the prediction h(x) = Z = [s, s + i− 1]. In symbols,

Δx(Z) = Δx ([s, s + i− 1])

=

⎛
⎝1−

s+i−1∑
j=s

Pr(j|x)

⎞
⎠ 1 +

⎛
⎝s+i−1∑

j=s

Pr(j|x)

⎞
⎠(1− 1 + β2

β2 + i

)

= 1− 1 + β2

β2 + i

s+i−1∑
j=s

Pr(j|x). (13)

Therefore, the interval of length i with lower loss starts at Start+(i) according
to the Algorithm 1, moreover, its loss is

1− 1 + β2

β2 + i
Pr Inter+(i). (14)

Thus if Min is the length that gives rise to the lowest loss, the output of the
Algorithm is the value of Equation 12 as we wanted to prove.

In practice, posterior probabilities are not known: they are estimated by algo-
rithms that frequently try to optimize the classification accuracy of a hypothesis
that returns the class with the highest probability. In other words, probabilities
are discriminant values instead of thorough descriptions of the distribution of
classes in a learning task. Therefore, the actual role of β in Algorithm 1 is that of
a parameter that fixes the thresholds to decide the number of ranks to predict.
Hence, like other parameters, β should be tuned in order to achieve optimal
results. Thus, depending of the learning task and the probabilistic learner, to
reach the highest F1 scores, it might be necessary to use in Algorithm 1 a value
of β different from 1.

5 Experimental Results

In this section we report the results of a set of experiments designed to evaluate
the nondeterministic learners proposed in this paper. The aim is to compare,
on the one hand, the F1 scores of well known deterministic learners and their
nondeterministic counterparts. It may be argued that these comparisons are not
completely fair since the F1 score tolerates predictions of more than one rank,
where it is easier to include the true one. In any case, we report these comparisons
in order to test the capabilities of nondeterministic versions to achieve slightly
better F1 scores than their deterministic counterparts. On the other hand, we
shall compare the Recall and size of predictions attained by nondeterministic
learners.

Additionally, since we are dealing with ordinal regression tasks, we check
the performance of nondeterministic algorithms in linear loss (sometimes called
MAD, mean absolute deviation, or MAE, mean absolute error). For this purpose,
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Table 2. Description of the datasets used in the experiments. The classes are real
numbers, and they were discretized in 5 or 10 equal-frequency bins. The splits in
train/test were suggested by the experiments reported in [1].

Dataset #Attributes #Train #Test

pyrimidines 27 50 24

triazines 60 100 86

Wisconsin bc 32 150 44

machine cpu 6 150 59

auto mpg 7 200 192

stock 9 300 650

Boston 13 300 206

abalone 8 300 3877

bank 32 300 7892

computer 21 300 7892

California 8 300 20340

census 16 300 22484

we must assume singleton predictions; thus, we shall consider the center of each
interval as the prediction attached to every interval h(x). The idea is to consider
that each rank r can be interpreted as the interval [r − 0.5, r + 0.5] in the real
line; thus, a prediction of, say, [3, 4] represents the real interval [2.5, 4.5], and the
center point is 3.5.

We used two kinds of learning tasks. In addition to the dataset of beef cattle
profiles explained in Section 2, we used a collection of 12 benchmarks (Table 2)
that were originally used for metric regression learning tasks. They are publicly
available at Lúıs Torgo’s repository1. When they were used for ordinal regres-
sion in papers like [1,12], the continuous class values were discretized. We used
versions with five and ten bins with the same frequency of training examples.
The resulting rank values were ordered according to the original metric classes.

To compare the performance of different approaches, we randomly split each
data set into training/test partitions. Table 2 reports the characteristics of these
datasets and the sizes of splits. The partition was repeated 20 times independently.

Since the nondeterministic approach proposed in this paper is based on the
estimation of posterior probabilities of ranks, we used two alternative methods
for this stage. First, we used a multiclass SVM that estimates the probability of
each class given an entry; the implementation used was libsvm [11]. The non-
deterministic version built from it, following Algorithm 1, was called nd SVM.
Second, we used the MAP approach of [1] that was devised for ordinal regression
tasks. It provides estimations of posterior probabilities using Gaussian processes.
The nondeterministic counterpart was called nd MAP. The use of MAP in the
experiments required reduced sizes of training sets (Table 2) similar to those
used in [1]. Nevertheless, the computational requirements of SVM would allow
us to use nd SVM in tasks of bigger sizes.

1 http://www.liaad.up.pt/∼ltorgo/Regression/DataSets.html
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Parameter setting. With the SVM we used a rbf kernel. To set the regularization
parameter C and the rbf kernel parameter σ, we performed a grid search using
a 2-fold cross validation repeated 5 times. The initial search was done with
C ∈ {10−3, . . . , 103} (respectively σ ∈ {10−3, . . . , 102}) varying the exponent
in steps of 1. Let C′ and σ′ be the best parameters found; then followed a fine
search from C′ − 0.8 (respectively σ′ − 0.8) to C′ + 0.8 (respectively σ′ + 0.8)
with a step of 0.2. Additionally, for nd SVM we searched within β ∈ {0.5, 1, 1.5},
while the fine search explored the best β−0.2, and the best β+0.2. We looked for
a β, instead of simply using β = 1, since we wished to compensate any possible
inaccuracy in the estimation of probabilities.

The MAP learner was used with its default parameters, and no additional
tuning was required. The nondeterministic version nd MAP used the search for
β of the nd SVM.

The scores achieved in F1 are shown in Table 3. The nondeterministic learner
based on MAP bears favorable comparison with the learner based on SVM. Thus,
nd MAP wins in 18 out of 24 datasets, while nd SVM only wins 3 times out of
24; most of these victories are statistically significant using a Wilcoxon rank
sum test of 1-tail over the 20 trials. Comparing the performance over the 24
datasets, we also appreciate significant differences (using a Wilcoxon test with
p < 0.01) in favor of nd MAP. Therefore, the nondeterministic version of MAP
outperforms the version based on SVM in F1 when we are using sizes of train-
ing sets similar to those showed in Table 2. In the comparison of deterministic
versus nondeterministic, in all cases the nondeterministic version outperforms
its deterministic counterpart; all but one cases are statistically significant with
p < 0.01.

The scores in Recall are reported in Table 4. Again nd MAP wins in 17 out
of 24 datasets, while nd SVM only wins 4 times out of 24; however, now the
differences are not so frequently significant. To compare Recall scores with those
achieved by the deterministic versions, let us remember that for deterministic
algorithms, the proportion of successful predictions (accuracy) is also the F1 and
the Recall. Therefore, comparing the last two columns of Table 3 and the Recall
columns of Table 4, we appreciate that the nondeterministic learners outperform
the deterministic versions. Thus, in 5 bins datasets, the differences are about
0.24, while in 10 bins datasets the differences are even higher: about 0.31. These
results are logical since nondeterministic predictions have more opportunities to
include the true ranks.

The average sizes of predictions are shown in the last two columns of Table 4.
Here we observe that in the learning tasks of 5 bins these sizes in average are
below 2, while with 10 bins, the predictions used more than 3 ranks in average.

The explanation for these facts is straightforward. The nondeterministic al-
gorithms tend to accumulate as many ranks as they are allowed by the F1; thus,
in tasks in which the deterministic learners have a poor performance, the corre-
sponding nondeterministic learner may include more ranks in their predictions
than in easier tasks. And it is clear that the learning tasks with 5 bins are easier
than versions with 10 bins.
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Table 3. F1 scores of the two nondeterministic algorithms and their deterministic
counterparts. The results are the averages over 20 trials. In bold face we emphasize the
highest score of each dataset. Additionally we test the statistical significance of some
interesting differences: between nd MAP and nd SVM (see the first column labeled by
si.), nd MAP versus MAP (second si. column), and nd SVM versus SVM (last si. col-
umn). The symbols † (respectively ‡) show that differences are statistically significant
using a threshold of 0.05 (respectively 0.01) in a Wilcoxon rank sum test.

# Bins Dataset nd MAP (si.) nd SVM MAP (si.) SVM (si.)

5 pyrimidines 0.58 ‡ 0.52 0.57 0.45 ‡
triazines 0.40 0.39 0.34 ‡ 0.30 ‡
Wisconsin bc 0.38 ‡ 0.34 0.29 ‡ 0.26 ‡
machine cpu 0.66 ‡ 0.64 0.60 ‡ 0.59 ‡
auto mpg 0.73 ‡ 0.69 0.72 ‡ 0.67 ‡
stock 0.86 † 0.87 0.86 ‡ 0.86 ‡
Boston 0.71 ‡ 0.68 0.68 ‡ 0.66 ‡
abalone 0.53 0.53 0.47 ‡ 0.47 ‡
bank 0.50 ‡ 0.47 0.44 ‡ 0.40 ‡
computer 0.71 ‡ 0.71 0.69 ‡ 0.68 ‡
California 0.57 0.57 0.52 ‡ 0.52 ‡
census 0.53 ‡ 0.51 0.48 ‡ 0.46 ‡
Average (5 b) 0.597 0.576 0.555 0.527

10 pyrimidines 0.35 ‡ 0.27 0.28 ‡ 0.19 ‡
triazines 0.23 0.23 0.16 ‡ 0.16 ‡
Wisconsin bc 0.21 ‡ 0.19 0.15 ‡ 0.13 ‡
machine cpu 0.46 0.45 0.36 ‡ 0.37 ‡
auto mpg 0.51 ‡ 0.47 0.44 ‡ 0.35 ‡
stock 0.73 ‡ 0.76 0.70 ‡ 0.74 ‡
Boston 0.47 † 0.48 0.41 ‡ 0.42 ‡
abalone 0.35 ‡ 0.34 0.28 ‡ 0.27 ‡
bank 0.31 ‡ 0.28 0.24 ‡ 0.20 ‡
computer 0.53 ‡ 0.51 0.48 ‡ 0.45 ‡
California 0.39 ‡ 0.37 0.32 ‡ 0.30 ‡
census 0.34 ‡ 0.32 0.27 ‡ 0.25 ‡
Average (10 b) 0.407 0.388 0.342 0.320

Average all 0.502 0.482 0.449 0.423

Considering the performance over all datasets, we can only find significant
differences in Recall with p < 0.06; while the differences in size of predictions are
definitively not significant.

Finally, Table 5 shows the scores achieved in linear loss. This is a relevant
measure since we are dealing with ordinal regression learning tasks. Although
the nondeterministic algorithms were not designed to improve the linear loss, we
observe a good performance. Let us recall here that MAP is a state of the art
learner for these tasks. In datasets of 5 bins, MAP wins nd MAP 8 times out
of 12, with only 2 times out of 12 victories for nd MAP. While nd MAP wins 7
times out of 12, against 4 wins out of 12 for MAP. The result is that differences
over the 24 datasets are not statistically significant.

On the other hand, in linear loss, nd MAP outperform nd SVM in most of the
datasets with differences statistically significant, see Table 5. The performance
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Table 4. Scores of Recall and average size of predictions (|h(x)|) for nondeterministic
algorithms. Notice that for deterministic algorithms, the proportion of successful pre-
dictions (accuracy) is also the F1 and the Recall (see Table 3). The best scores for each
dataset are in bold. When the differences are statistically significant in a Wilcoxon
rank sum test, they are marked with † (threshold of 0.05) or ‡ (0.01).

Recall aver. |h(x)|
# Bins Dataset nd MAP (si.) nd SVM nd MAP (si.) nd SVM

5 pyrimidines 0.71 0.73 1.53 ‡ 1.95

triazines 0.78 † 0.71 3.04 2.75
Wisconsin bc 0.79 † 0.83 3.21 ‡ 3.84

machine cpu 0.84 † 0.80 1.67 1.61
auto mpg 0.80 0.80 1.22 ‡ 1.34

stock 0.92 † 0.91 1.16 ‡ 1.12
Boston 0.80 0.78 1.30 1.35

abalone 0.75 ‡ 0.70 2.02 ‡ 1.80
bank 0.74 † 0.77 2.08 ‡ 2.45

computer 0.82 0.81 1.35 1.34
California 0.78 0.75 1.83 † 1.74
census 0.74 0.73 1.93 1.89
Average (5 b) 0.788 0.777 1.862 1.931

10 pyrimidines 0.73 0.71 3.32 ‡ 4.74

triazines 0.73 0.68 5.80 5.17
Wisconsin bc 0.68 ‡ 0.86 5.42 ‡ 8.18

machine cpu 0.80 0.77 2.75 2.69
auto mpg 0.76 0.76 2.04 ‡ 2.29

stock 0.83 0.82 1.33 ‡ 1.21
Boston 0.66 0.72 1.92 ‡ 2.20

abalone 0.68 † 0.64 3.35 ‡ 3.06
bank 0.70 0.69 3.85 ‡ 4.33

computer 0.74 † 0.72 1.95 1.97

California 0.69 0.67 2.92 2.84
census 0.66 0.66 3.17 3.23

Average (10 b) 0.721 0.725 3.151 3.492

Average all 0.755 0.751 2.507 2.712

over all datasets is again statistically significant with p < 0.01. Finally, let us
point out that the nondeterministic nd SVM outperforms (significantly with
p < 0.01) SVM.

Profiles. Tables 6 summarize the scores achieved in the learning task described
in Section 2. We used two datasets of sizes 300 and 500. The scores are quite
similar for both sizes. Almost always, nd SVM outperforms nd MAP significantly
(p < 0.01) in F1 and linear loss, although the scores are quite similar. On the
other hand, nd MAP is superior to nd SVM in Recall, but again the scores are
similar and the significance is only achieved with p < 0.1 in one of the datasets.
The differences are clearly significant (p < 0.01) in the size of the predictions;
nd SVM only requires an average of 1.21 or 1.22 ranks to reach a proportion of
85% of predictions that contain the true rank.
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Table 5. Linear loss scores of the two nondeterministic algorithms and their deter-
ministic counterparts. The lowest scores for each dataset are highlighted in bold. When
the differences are statistically significant in a Wilcoxon rank sum test, they are marked
with † (threshold of 0.05) or ‡ (0.01).

# Bins Dataset nd MAP (si.) nd SVM MAP (si.) SVM (si.)

5 pyrimidines 0.55 ‡ 0.65 0.52 † 0.77 ‡
triazines 1.07 1.10 1.18 ‡ 1.34 ‡
Wisconsin bc 1.12 ‡ 1.19 1.36 ‡ 1.44 ‡
machine cpu 0.48 0.48 0.45 ‡ 0.46 †
auto mpg 0.32 ‡ 0.37 0.30 ‡ 0.35 ‡
stock 0.16 ‡ 0.15 0.14 ‡ 0.14 ‡
Boston 0.36 ‡ 0.41 0.34 ‡ 0.40 †
abalone 0.72 † 0.73 0.72 0.75 ‡
bank 0.76 ‡ 0.83 0.76 0.90 ‡
computer 0.37 0.38 0.34 ‡ 0.36 ‡
California 0.63 † 0.62 0.59 ‡ 0.60 ‡
census 0.73 ‡ 0.77 0.71 ‡ 0.79 †
Average (5 b) 0.607 0.640 0.618 0.692

10 pyrimidines 1.24 ‡ 1.88 1.31 † 2.25 ‡
triazines 2.23 2.21 2.79 ‡ 2.58 ‡
Wisconsin bc 2.44 2.48 3.08 ‡ 3.14 ‡
machine cpu 0.95 0.96 0.95 1.04 ‡
auto mpg 0.74 ‡ 0.80 0.69 ‡ 1.38 †
stock 0.34 ‡ 0.30 0.31 ‡ 0.28 ‡
Boston 1.06 ‡ 0.87 1.04 ‡ 0.89 ‡
abalone 1.47 ‡ 1.53 1.57 ‡ 1.71 ‡
bank 1.55 ‡ 1.76 1.65 ‡ 2.11 ‡
computer 0.75 ‡ 0.76 0.72 ‡ 0.80 ‡
California 1.22 ‡ 1.26 1.26 ‡ 1.36 ‡
census 1.49 ‡ 1.58 1.58 ‡ 1.71 ‡
Average (10 b) 1.289 1.365 1.413 1.603

Average all 0.948 1.002 1.015 1.147

6 Conclusions

We have presented a new kind of ordinal regressors: they are able to predict a
variable number of consecutive ranks (an interval of ranks) for each entry. We
call such set-valued hypotheses nondeterministic regressors. Roughly speaking,
the approach presented in this paper addresses the problem of deciding what
to predict when it is possible to envision that the label returned by a learning
algorithm is uncertain. The utility of these predictions was illustrated in the
context of a real world application: the assessment of muscle proportion in beef
cattle carcasses.

After presenting the formal framework as a kind of Information Retrieval, we
proposed a family of loss functions for nondeterministic ordinal regression: the
complementary of Fβ measures. Next we derived an algorithm to minimize such
loss functions provided we know the posterior probabilities of each rank given
the entry to be ranked. To check the influence of the estimation of conditional
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Table 6. Profiles (see Section 2). Dataset characterizations, and scores achieved by
deterministic and nondeterministic algorithms. All differences are statically significant
(p < 0.01) but those achieved in Recall (p < 0.1).

Dataset #Attributes #Train #Test

Profiles 500 8 500 391

Profiles 300 8 300 591

Dataset nd MAP (si.) nd SVM MAP (si.) SVM (si.)

F1 Profiles 500 0.78 ‡ 0.79 0.76 ‡ 0.77 ‡
Profiles 300 0.77 ‡ 0.78 0.76 ‡ 0.77 ‡

Linear Profiles 500 0.28 † 0.28 0.29 † 0.27
loss Profiles 300 0.29 ‡ 0.28 0.30 ‡ 0.27 ‡

Recall aver. |h(x)|
Dataset nd MAP (si) nd SVM nd MAP (si.) nd SVM

Profiles 500 0.85 0.84 1.28 ‡ 1.21
Profiles 300 0.85 0.84 1.30 ‡ 1.22

probabilities we compared two implementations. The first one, nd SVM is based
on a probabilistic SVM, while the second (nd MAP) is built on MAP, a learner
specialized in ordinal regression learning tasks that uses Gaussian processes to
estimate posterior probabilities.

The experiments reported in the previous Section show that nd MAP out-
performs nd SVM in almost all measures of performance. Therefore, it is clear
the importance of having good probability estimations. However, MAP is slower
than SVM, and it is not possible to handle datasets of medium or large size with
the approach based on Gaussian processes.

We think that the main goal of nondeterministic ordinal regressors is not to
achieve similar (in fact better) Fβ than their deterministic counterpart. We would
like to emphasize the dramatic improvement in the proportion of predictions that
include the true rank, when the price to be paid for that increase is usually a
tiny proportion of predictions with more than one rank.
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Abstract. The goal of distributed learning in P2P networks is to achieve
results as close as possible to those from centralized approaches. Learning
models of classification in a P2P network faces several challenges like
scalability, peer dynamism, asynchronism and data privacy preservation.
In this paper, we study the feasibility of building SVM classifiers in a
P2P network. We show how cascading SVM can be mapped to a P2P
network of data propagation. Our proposed P2P SVM provides a method
for constructing classifiers in P2P networks with classification accuracy
comparable to centralized classifiers and better than other distributed
classifiers. The proposed algorithm also satisfies the characteristics of
P2P computing and has an upper bound on the communication overhead.
Extensive experimental results confirm the feasibility and attractiveness
of this approach.

1 Introduction

Peer-to-peer (P2P) network is a large network of entities interconnected in a
point-to-point manner. The Internet as a large point-to-point network of com-
puters is a P2P network. P2P computing refers to computations performed in
a P2P network of computers where there is no absolute centralized control. In
recent years, data mining in P2P networks has attracted much attention as in-
creasingly many applications have distributed data, from which useful knowledge
may be mined. For instance, clustering and classification of peer data may reveal
networks of cliques in social networks, and classification of network traffic could
provide valuable information about network intrusions or usage behaviors.

The primary goal of learning in a P2P network is to achieve learning result
that is as close as possible to that of a centralized approach. Learning models
of classification (also clustering) is faced with several challenges [6]. In a P2P
setting, learning algorithms need to take into account the scalability issue (Can
the algorithm be computed when there are millions of peers?), peer dynamism
(Can the algorithm deal with the availability and unavailability of data as peers
connect and disconnect from the network?), asynchronism (Can the algorithm
produce sufficiently accurate results without global synchronization?), and data
privacy (Can the algorithm preserve the privacy of peer data when learning the
global model?).

In this paper, we study the feasibility of learning in a P2P network in the con-
text of learning classifiers. In particular, we are interested to know how Support
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Vector Machines (SVM) perform in a P2P network, as SVM is a class of pow-
erful classification and regression algorithms. Some of the weaknesses of SVM
is in its memory and computational requirements, which increase with the size
of training data set. A proven approach for alleviating such requirements, while
not degrading classification performance, is the cascade SVM approach, where
the data set is partitioned into smaller chunks and small-scale SVM learning
is performed on these chunks. Support vectors obtained from these small-scale
SVM models are combined with other chunks to derive better support vectors
and improve the final set of support vectors.

We show how the cascading of SVM learning can be mapped to a P2P network
of data propagation. As network communication is a performance issue, we show
how the sending of support vectors from peer to peer can be improved using
the Reduced Support Vector Machine (RSVM) [13] approach. Our proposed
P2P SVM provides a method for learning classifiers in a P2P network that
has classification accuracy comparable to a centralized classifier, yet satisfies the
characteristics of P2P computing and has an upper bound on the communication
overhead. We have implemented P2P SVM and experimental results confirm the
feasibility and attractiveness of using this approach.

We focus mainly on the classification accuracy, scalability in terms of compu-
tation and total bandwidth usage, effects of data distribution and imbalanced
class distribution. The other issues affecting classification in P2P networks such
as peer dynamism, data privacy, security and different types of P2P networks
will be studied in future works.

Our contributions in this paper are as follows: (1) We demonstrate the fea-
sibility of cascade SVM in a P2P network, which to the best of our knowledge,
is the first such attempt. (2) Our proposed P2P SVM has classification accu-
racy comparable to a centralized solution and better than other classification
approaches in a P2P network. (3) In order to reduce data propagation cost in a
P2P setting, we show how an upper bound can be derived to control the network
communication overhead.

The organization of this paper is as follows: Section 2 describes related work.
Section 3 introduces our proposed approach to perform SVM in a P2P network.
Section 4 describes our experiments and the last section concludes the paper.

2 Background and Related Work

Many well-known classifiers such as decision tree, nearest neighbor classifier,
artificial neural networks, Bayes classifier and support vector machine (SVM)
work well with small datasets, but fail to maintain reasonable time and cost
benefits on large datasets common to many domains. Hence, researchers have
developed alternative methods such as selective sampling [2, 13, 14], parallelized
and distributed learning [3, 9, 12, 15, 19, 23], in order to learn from such large
datasets.

Breiman [2] introduced the pasting of Ivotes (or Rvotes) that trains an en-
semble of classifiers, each built from a subset of data that has been selectively
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sampled using out-of-bag estimation (or randomly sampled for Rvotes). Lee and
Mangasarian [13] presented the Reduced Support Vector Machines (RSVM) ap-
proach that solves the SVM optimization problem using a randomly selected
smaller portion of the whole dataset. Lin and Lin [14] studied several imple-
mentations of RSVM and showed that for problems with dense support vectors,
RSVM significantly reduces the training time that is required for a small drop
in accuracy compared with the SVM solution.

Parallelized and distributed algorithms represent another paradigm to solve
the large dataset problem. These algorithms can be broadly classified as ensemble
and cascade approaches. In general, these approaches split a large problem into
smaller easily solvable sub-problems, and then combine their results. A useful
side-effect of approaches under this paradigm is that they can also be used on
naturally distributed data, saving the cost of moving data to a single location for
training using a centralized solution.

Distributed ensemble approaches can be further divided as voting [5, 12] and
meta-learning [3, 7, 17] approaches. Voting approaches build an ensemble of
classifiers and then perform final classification based on the votes of all classifiers
in the ensemble. For instance, Lazarevic and Obradovic [12] provide a distributed
boosting framework that exchanges training statistics and performs weighted
majority voting to obtain the final prediction. On the other hand, Chawla et al.
[5] present a distributed version of Ivotes (DIvotes) and Rvotes (DRvotes) that
works by first splitting the data, then performing Ivotes on each subset, and
obtaining the final hypothesis by majority voting. The advantage that DIvotes
has over distributed boosting is that no communication is required among the
distributed parities during the training phase, thus, significantly reducing the
communication overhead.

Meta-learning is in essence the learning of meta-attributes generated from var-
ious learners (classifiers). Chan and Stoflo [3] present an arbiter tree approach
that builds various levels of classifiers and combines the results using arbitra-
tion rules. More recently, Pfahringer et al. [17] proposed to landmark various
learning algorithms in order to characterize the classification problems and find
the relationship between classifiers, whereas Džeroski and Ženko [7] presented
their approach of using the model tree induction to learn the meta-level features
generated.

Cascade learning was proposed mainly for the purpose of speeding up com-
putation. Tveit and Engum [19] pioneered the work on cascading SVM by pro-
viding a heap-based tree topology framework for parallelizing the computation
of Proximal SVM. Since then, a number of works have focused on cascade SVM
[9, 15, 23]. Lu et al. [15] presented and compared various ways of cascading
SVM. Zhang et al. [23] further improved cascade SVM by examining various
ways of performing feedback to obtain a global optimal solution. Graf et al. [9]
also provided a cascade SVM algorithm with feedback and formally proved the
convergence of the algorithm.
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2.1 Learning in P2P Networks

In recent years, there has been increasing interest in classification problems in
P2P networks. A P2P network consists of a set of k peers P = {p1, . . . , pk},
where all peers function equally as both servers and clients. However, a P2P
environment possesses unique characteristics that introduce challenges for the
classification task. These characteristics include scalability, peer dynamism, data
dynamism, asynchronism and privacy and security [6]. P2P networks can be con-
sidered as a massively distributed environment as the number of peers, k, in the
network usually exceeds hundreds or thousands. In addition, these peers may
leave and join the network anytime, and the data they possess may change
frequently. Due to the size of the network, it is not feasible to perform syn-
chronization considering the network latency and bandwidth. If data exchange
among peers is involved, privacy and security may also pose concerns.

Based on data propagation, existing P2P classification approaches can be
categorized as 1) model propagation [18] and 2) test data propagation [8, 16]
approaches. Model propagation approaches build local classifiers on each peer
and then propagate the model to other peers. The peers can then use the col-
lected models for performing classification. In the latter approach, a peer only
propagates test instances to other peers, which in turn classify these instances
and return results to the requesting peer. The model propagation approaches
generally incur more communication cost during the model construction phase,
which exacerbates when the classification model frequently changes. However,
under this approach, classification of test instances is faster and peers have more
freedom on how the models can be used (e.g., perform meta-learning using the
models).

Siersdorfer and Sizov [18] have proposed a framework for classifying web doc-
uments in a P2P environment. The algorithm trains a local classifier and prop-
agates it to other peers. Each peer then uses the received models to construct
a meta model for performing classification. Although the paper states that the
propagated model should be a compressed representation of the local data set,
it neither provides details on how this may be achieved, nor on how the mod-
els may evolve with the addition of new data. Furthermore, the tuning of the
global model to improve accuracy requires synchronization among peers, which
increases communication cost.

On the contrary, test instance propagation approaches are not affected by
frequent changes of models and does not incur communication cost during con-
struction of models. However, classification tasks are slower since requests have
to be made to the P2P network, and if these tasks are frequent, the communi-
cation cost can be comparable to that of the model propagation.

Gorodetskiy et al. prototyped an agent-based, service-oriented P2P distrib-
uted classification approach [8]. However, the focus of the paper is not on the
classification task, but to provide a proof-of-concept implementation and to ex-
plore the issues that may exist in the agent-based, service-oriented P2P network.

More recently, Luo et al. [16] proposed a P2P classification approach by past-
ing of small votes. In this approach, each peer pastes small bites to build local
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classifiers until the error between subsequent models falls below a certain thresh-
old. The final classification is then performed by sending classification requests
to all peers based on an optimal communication protocol.

3 Approach

In this section, we present our proposed approach, illustrating the design process
and finally providing a complexity analysis. Our approach based on the cascade
SVM paradigm, is specifically designed for the P2P network, addressing the ad-
ditional constraints not found in the general distributed and parallel computing
environment. The three basic processes in cascade SVM are: 1)build an SVM for
each of the local data, then iteratively 2) propagate and 3) merge the models
to create an improved SVM until all subsets have been combined. Let us now
examine cascade SVM and our proposed approach in detail.

3.1 Cascade SVM

In cascade SVM, the algorithm starts by building SVM using local data. The
purpose of using SVM (as well as merging) is to filter out as many non support
vectors as early as possible, to reduce the time and space complexity required to
efficiently build the global solution. However, using standard SVM may generate
quite a high number of support vectors. Since our approach requires propagation
of models in the P2P network, these large number of support vectors result in a
high communication cost. Hence, algorithms based on standard SVM are usually
not viable. Therefore, our criteria for building local classifiers changes from being
able to effectively filter out redundant data, to being able to extract a very small
set of representative data.

3.2 P2P Cascade RSVM

Based on the above considerations, we employ an approximate SVM solution -
RSVM, which reduces the number of support vectors, for the task. The disadvan-
tage of using RSVM is that the resulting cascade SVM cannot produce a global
optimal solution. By global optimal solution, we refer to the solution produced
by SVM and cascade SVM with feedback/synchronization, which however, is in-
feasible to achieve, since the convergence to the global optimal solution requires
synchronization among all peers (for the validation process). As the number of
support vectors in a SVM has extensive influence on the memory and training
time, being able to reduce the number of support vectors greatly improves the
training speed and lowers the memory requirements. However, since the SVM
decision hyperplane is constructed from these support vectors, reducing the num-
ber of support vectors may also reduce the classification accuracy. Despite this,
it has been found that RSVM can use a very small subset to represent the whole
data, with only a slight drop in classification accuracy compared to traditional
SVM [16]. Hence, usage of RSVM does not cause any serious drawback.
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Since peer data constantly change in a P2P network, a set of new training data
is treated as a new peer’s dataset, and goes through the same processes as the
existing local data. This addresses the data dynamism issue, allowing incremen-
tal learning. Although, our approach allows incremental learning, decremental
learning or removal of data is not addressed, as this concerns the issue of concept
drift and is not within the scope of this paper.

After the model is generated, it is propagated to other peers. Despite the
main disadvantage of high communication cost (effect reduced as stated above),
model propagation provides a way to counter the peer dynamism constraint.
With model propagation, even when peers go offline, their models still exist on
other peers on the P2P network (provided they have successfully propagated to
other peers before they went offline). This allows sharing of models between peers
which were not present on the P2P network at the same time, which is an impor-
tant factor for maintaining high classification accuracy within the P2P network.
In addition, our approach ensures that models are only collected/merged once
to prevent duplication. Besides these, model propagation guarantees achieving a
local optimal solution with cascade SVM, since it becomes possible to validate
using the peers’ models, and the high duplication rate of models allows higher
throughput for the transfer of models.

Similar to the automatic document organization approach, model propagation
in our approach can be implemented separately from the building of the classifier.
This allows our approach to be deployed in any type of P2P network increasing
its flexibility. By viewing the models as files in a P2P network, we can map the
problem of model propagation in P2P network to the file propagation problem in
P2P network, which has been extensively studied. For our approach, we utilize
the UPTReC [21] algorithm, because it provides a probabilistic guarantee in
file consistency which helps to ensure that models can be properly propagated
within the P2P network. Experiments [21] show that UPTReC can reduce up to
70% overhead messages compared with other existing techniques.

Models are collected as peers propagate them in the P2P network. In contrast
to the cascade SVM, since we do not have control over how, when and how many
of the peers’ models will be collected, we perform the merging process as follows.
All models collected within t duration are merged together in a single process
and then merged with the peer’s local optimal SVM. In the two extreme cases,
given t = 0, this simply implies that each time a peer’s model is collected, it
is merged immediately with the last cascaded model, and given t = the time
required to collect models of all uncollected peers in the P2P network, all newly
collected models are merged in a single process with the previously cascaded
RSVM. For example, consider that peer j receives three new models from other
peers before time t after startup, and two other new models between time t
and 2t. Therefore, at time t from startup, peer j will merge the three newly
received models with the latest local model, and at time 2t from startup, it
will merge the two newly received models with the latest cascaded model. This
process is illustrated in Figure 1, and the training phase of the proposed approach
is given in Algorithm 1.
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Fig. 1. Illustration of merging support vectors

To summarize, the main differences between existing cascading approaches
and our proposed P2P Cascade RSVM lies in the use of RSVM, and in the
ad-hoc merging of the collected models due to the high dynamism of the P2P
networks. This greatly reduces the communication overhead for distributing data
after distributed and parallelized construction of local models. These extensions
of cascade SVM make it feasible to learn from the P2P environments and even
achieve results comparable to centralized solution, while reducing computation
and communication costs.

Algorithm 1. P2P Cascade RSVM algorithm for peer pi

input: the percentage p of support vectors to use,
the duration t to wait before merging,
local training data Di

SSVi = {}1

PSVi = {}2

training data T = ∅3

Train local classifier model Mi using RSVM on Di4

Propagate the support vectors SVi of Mi to other peers5

while true do6

while waiting time < t do7

foreach SVj of peer pj received do8

if SVj /∈ SSVi and SVj /∈ PSVi then9

PSVi = PSVi ∪ SVj10

if PSVi is not empty then11

T = support vectors of Mi12

forall SV ∈ PSVi do13

T = T ∪ SV14

Mi = SVM model trained using T15

SSVi = SSVi ∪ PSVi16

PSVi = {}17
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3.3 Model Propagation Cost

In our approach, since the number of support vectors directly determines the
size of the model to be propagated, the communication cost can also be greatly
reduced. Furthermore, by specifying the size of the support vectors, either ab-
solutely or as a percentage of the training data, we can give an upper bound
on the communication cost of the construction of the cascade SVM as follows.
Let N be the total number of peers in the P2P network, l be the total size (in
terms of number of vectors) of the problem and s, s < 1 be the percentage of
the problem to be used as support vectors. Then the upper bound of the total
communication cost, c, required for all peers to obtain the global model is

c = N · l · s (1)

for a two-class problem. For a multi class problem, where the number of classes
is nc, and using the one-against-one strategy for SVM classification, the cost is
as follows:

c = N · l · s · (nc · (nc− 1)/2) (2)

3.4 Computation Cost

Considering the following SVM optimization problem [20]:

min
w,b,ξ

1
2
wTw + C(

l∑
i=1

ξ2
i )

subject to yi(wTwφ(xi) + b) ≥ 1− ξi (3)

given that xi is a feature vector and yi is the corresponding label of a training
set, where xi ∈ Rn and yi ∈ {1,−1}. As φ(x) maps x into a higher dimensional
space, we can simply solve its dual, which is a quadratic programming problem:

min
α

1
2
αT (Q +

I

2C
)α− eTα

subject to yTα = 0,
0 ≤ αi, i = 1, . . . , l (4)

where the number of variables equals l, e is the unity vector, Q is an l by l
positive semi-definite matrix, Qij ≡ yiyjK(xi, xj) and K(xi, xj) ≡ φ(xi)Tφ(xj)
is the kernel function. Computing the kernel function K(xi, xj) for every training
instance costs O(l2) and solving (4) costs O(l3).

However, for RSVM based on Least-Square SVM, we are only required to
solve

min
α̃

f(α̃) =
1

2C
α̃T α̃ + α̃T (Q̃T Q̃)α̃− 2eT Q̃α̃ + eT e (5)
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where f can minimized by finding the solution of ∂f
∂α̃i

= 0, i = 1, . . . ,m:

1
C
α̃ + 2Q̃T Q̃α̃− 2Q̃T e = 0, (6)

(Q̃T Q̃ +
I

2C
)α̃ = Q̃T e (7)

a positive definite linear system of size m, where m is the size of the subset R used
in RSVM, α̃ are the coefficients of the separating hyperplane and Q̃ = [Q:,R y].
Hence, the total time complexity for RSVM is O(lm2). For the complete formu-
lation, refer to [14].

To analyze the time complexity of our approach, we have to examine the
process of building the local model and merging of the collected models. Given a
P2P network with N peers, and total training data of size l, let the size of local
data for peer i be li, and the percentage of local data to be used for RSVM be
s, s < 1. Then, the size of the subproblem to solve in RSVM is mi = lis, and the
time complexity for building a local model for peer i with RSVM is O(lim2

i ).
Since the size of the subproblem optimized by RSVM is already very small, and
we have no prior knowledge of the amount of reduction that can be achieved by
the optimization process, we assume that the size of the support vectors for the
resulting models is the same as the size of the subproblem. Hence, after a peer
constructs the local model (of size at most mi), it propagates the model to other
peers. The size of the support vectors collected from all peers is m =

∑N
1 mi.

If traditional SVM is used, the complexity of merging is O(m3). However, with
other more efficient techniques such as SMO, cost of merging can be reduced,
but in this case, we use the complexity of SVM to provide the upper bound. All
in all, with lim

2
i << m3, the complexity of our proposed approach is O(m3).

Using centralized SVM and RSVM as comparison, we present a summary of
the computation and communication costs of the various SVM based approaches
in Table 1. It can be seen from Table 1 that our proposed approach has the least
cost with respect to the centralized approaches.

Table 1. Summary of the training costs

Approach Computation Cost Communication Cost

SVM O(l3) O(l)

RSVM O(lm2) O(l)

P2P Cascade RSVM O(m3) O(m)

4 Experiments and Result Analysis

Here, we present the experimental results on some large sized problems to simu-
late the problem size that may exist in a real P2P environment. First we describe
the experimental setup. Then we compare the classification accuracy of central-
ized and existing P2P classification approaches, followed by a demonstration of
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the effect of scalability, peers’ data distribution and data class distribution on
the various algorithms. Finally we illustrate the effect of the number of support
vectors on the classification accuracy of our approach.

4.1 Experimental Setup

We used the covertype dataset and the waveform data generator available from
the UCI repository [1]. For waveform, we generated 100,000 instances with 21
attributes. The covertype dataset was used further to generate a binary covertype
dataset with class two versus all other classes. Summary of the datasets used is
presented in Table 2. All attributes of the datasets were scaled to between -1
and 1.

Table 2. Summary of the datasets used in experiments

Instances Attributes Classes

Binary Covertype 581,012 54 2

Covertype 581,012 54 7

Waveform 100,000 21 3

The experiments were conducted on a cluster of 16 machines, each with two
Intel Dual Core Xeon 3.0GHz processors, 4 GB of Ram and connected by a
gigabit ethernet.

The J48 algorithm (variant of the C4.5), from Weka [22] was used for the
centralized classification and as the base classifier for the algorithm from [16].
In addition, we implemented the algorithm from [16], which we refer to as P2P
Ivotes, in Java. We used the C-SVC algorithm from LIBSVM [4], in C++ as
the centralized SVM solution, and used RSVM based on Least Square SVM
algorithm from [14] in our approach which was implemented in C++.

In all P2P experiments, unless otherwise stated, we used 500 peers, and di-
vided the data equally among them. We did not experiment with more peers
since this would result in unrealistically small sizes for local peer data, which
would adversely affect performance of the P2P approaches. For P2P Ivotes, bite
size of 800 and λ of 0.02 were used. For SVM, SVM Ensemble and P2P Cascade
RSVM, we used the RBF kernel, and for each dataset, the γ and C values were
chosen using the model selection tool provided with LIBSVM on a 1 percent
stratified sampled data of the whole dataset. For all datasets, we used 1 percent
of the data as support vectors for our P2P cascade RSVM.

4.2 Classification Accuracy

In this experiment, we conducted a 10-fold cross validation using centralized
RSVM, centralized J48, plurality voting on ensemble of J48, plurality voting on
ensemble of SVM, P2P Ivotes and P2P Cascade RSVM on the binary covertype,
covertype and waveform dataset. In order to train all peers on the same amount
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Table 3. Tenfold cross-validation results

Accuracy (%)
Dataset RSVM J48 J48 SVM P2P P2P Cascade

Ensemble Ensemble Ivotes RSVM

Binary Covertype 71.97 73.3 58.26 54.16 58.72 72.93

Covertype 68.16 66.59 54.47 44.65 54.14 67.77

Waveform 99.8 99.86 99.62 99.79 99.78 99.61

Table 4. Average training time

Time (secs)
Dataset RSVM J48 J48 SVM P2P P2P Cascade

Ensemble Ensemble Ivotes RSVM

Binary Covertype 111.2 2357.9 159.04 48 326.56 11.9
Covertype 751.8 2501.64 238.12 53.5 378.38 126.4

Waveform 32 13.8 12 6.2 12 0.4

of data, we used 500 peers for binary covertype and covertype datasets and 100
peers for the waveform dataset. The classification accuracy and average training
time taken are shown in Tables 3 and 4 respectively.

As shown in Table 3, our approach has accuracy comparable to the centralized
solution on all datasets. Compared with other existing approaches, our approach
exhibits similar accuracy on the waveform dataset, but has far better accuracy
on the binary covertype and covertype datasets. In addition, our approach has
the least training time for binary covertype and waveform dataset and second
least for covertype dataset, which is probably due to the higher number of classes
in the latter. We note that the P2P Ivotes results obtained by our experiments
are dissimilar to those reported in [16], perhaps due to different methods of
assigning peers’ local training sets.

4.3 Scalability

To determine the scalability of the various P2P classification approaches, we
varied the number of peers from 100 to 600 based on a 10-fold cross validation.
For all approaches, the training data is divided equally among all peers with
random class distribution.

As can be seen in Figure 2, our approach achieves significantly (based on stu-
dent’s t-test with p-value of 0.05) higher accuracy on the binary covertype and
covertype data while producing similar accuracy on the waveform dataset. We
observe in Figure 2(a) and 2(b), that the two covertype datasets show similar re-
sults, which is not surprising. For the Waveform dataset, none of the approaches
seem to be affected by the number of peers that exist in the network. However,
for both covertype datasets, all approaches except ours lose some accuracy when
the number of peers increases. It is also noted that for all the datasets, the results
of the J48 ensemble and the P2P Ivotes showed similar trends.
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(a) Binary Covertype Dataset
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(b) Covertype Dataset
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(c) Waveform Dataset

Fig. 2. Effect of P2P network size on accuracy

We observed that some of the random data assignment resulted in a few
peers not obtaining data from certain classes, which might explain the poor
performance of the ensemble methods. This hypothesis will be verified in future
work with further experiments.

4.4 Peers’ Data Distribution

Here we illustrate the effect of distribution of peers’ data on the classification
accuracy. From 100 to 600 peers, we randomly assign a subset of the data to each
peer, where the size of the subset is based on exponential, uniform and normal
distributions and test the accuracy using 10-fold cross validation. We have used
the covertype dataset in this experiment.

As observed in Figure 3, the results for the different distributions do not seem
to be very much different. Including the results from Figure 2(b), which is based
on equal distribution, we conducted a student’s t-test and found that there is
actually no significant difference for each algorithm between the results of the dif-
ferent distributions. However, it would be interesting to see how peers dynamism
can actually affect accuracy based on the different data size distribution.

4.5 Effect of Imbalanced Class Distribution

To see if the P2P classification approaches can deal with peers having data with
imbalanced class distribution (natural class distribution of the whole dataset
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(a) Uniform Distribution
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(b) Normal Distribution
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(c) Exponential Distribution

Fig. 3. Effect of peers’ data distribution on accuracy (covertype dataset)

remains unchanged), we purposely vary the class distribution of the data subset
assigned to each peer. Using the binary covertype data, we modify the class
distribution such that the class distribution has d percentage of skew compared
to the natural class distribution. For example, if the natural class distribution
is 60/40, a skew of d = 10% generates a modified class distribution of 65/35 for
half of the peers and 55/45 for the other half of the peers. Although we modified
the class distribution of the local training data, we still ensured that every peer
received the same amount of data.

The results in Figure 4 show that our approach achieves better accuracy in the
presence of imbalanced class distribution. Performing a student’s t-test shows
that the difference in accuracy between the other existing P2P approaches and
our approach is significant with p-value of 0.05. Note that with the increase
in percentage of skewness, the accuracy of the J48 ensemble and P2P Ivotes
gradually decreases. However, the accuracies of our approach and SVM ensemble
are not affected. Our approach is unaffected by the class imbalance perhaps due
to the merging of support vectors that may have a rebalancing effect on the class
distribution.

4.6 Size of Support Vectors

By restricting the number of support vectors used to build the SVM, we can
limit the communication, computation and memory cost, albeit possibly at the
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Fig. 4. Effect of imbalance class distribution on accuracy (binary covertype dataset)
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Fig. 5. Effect of support vector size constraint on accuracy (covertype dataset)

expense of classification accuracy. Here, we demonstrate the effect of the number
of support vectors used on the accuracy. This experiment was conducted on the
covertype data using an ensemble of RSVM and P2P cascade RSVM with 500
peers, by varying the percentage of support vectors used (subproblem size) from
0.2 to 6 percent.

From Figure 5, we note that when the percentage of support vectors used is
too small (i.e. less than 1 percent), the classification accuracy is not stable and
of unacceptable level. However, when the percentage of support vectors increases
to above 1 percent, the increase in accuracy starts to plateau. Another point to
note is that time and memory complexity of SVM is quadratic with respect to
the number of support vectors. Therefore a low percentage of support vectors
would be preferred but care must be taken to ensure that there are enough
support vectors to represent the peers’ local training data (which is dependent
on the size of local training dataset).

5 Conclusion

In this paper, we study the problem of learning models of classification in a P2P
network. We have proposed a combination of the cascade SVM and Reduced Sup-
port Vector approaches to learn classifiers in a P2P setting. Experimental results
show that our proposed approach can learn classifiers with accuracies close to
those of centralized approaches. Moreover, our approach also outperforms other
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distributed models of classifier learning. The proposed approach scales with the
size of the network, and accuracy is not affected by the number of peers. Also, we
provide an upper bound on the massive communication overhead in P2P classi-
fication using the Reduced Support Vector approach to cap the number of sup-
port vectors computed. Overall, experimental results confirm the feasibility and
attractiveness of using our approach. As part of future work, we will be exploring
in detail, the effects of peer dynamism, cliques, and data privacy on the problem
of learning in P2P networks. In addition, we will investigate unified kernel ma-
chines [11] and distributed active learning [10] techniques for enhancing classifi-
cation performance.
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[16] Luo, P., Xiong, H., Lü, K., Shi, Z.: Distributed classification in peer-to-peer net-
works. In: SIGKDD, pp. 968–976 (2007)

[17] Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-learning by landmark-
ing various learning algorithms. In: ICML, pp. 743–750 (2000)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


70 H.H. Ang et al.

[18] Siersdorfer, S., Sizov, S.: Automatic document organization in a P2P environment.
In: European Conference on IR Research, pp. 265–276 (2006)

[19] Tveit, A., Engum, H.: Parallelization of the incremental proximal support vector
machine classifier using a heap-based tree topology. Technical report, IDI, NTNU,
Trondheim, Norway (2003)

[20] Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)
[21] Wang, Z., Das, S.K., Kumar, M., Shen, H.: An efficient update propagation algo-

rithm for P2P systems. Computer Communications 30(5), 1106–1115 (2007)
[22] Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
[23] Zhang, J., Li, Z., Yang, J.: A parallel SVM training algorithm on large-scale

classification problems. In: International Conference on Machine Learning and
Cybernetics, pp. 1637–1641 (2005)



An Algorithm for Transfer Learning in a

Heterogeneous Environment

Andreas Argyriou1, Andreas Maurer2, and Massimiliano Pontil1

1 Department of Computer Science
University College London

Malet Place, WC1E London, UK
{a.argyriou,m.pontil}@cs.ucl.ac.uk

2 Adalbertstrasse 55
D-80799 München, Germany

andreasmaurer@compuserve.com

Abstract. We consider the problem of learning in an environment of
classification tasks. Tasks sampled from the environment are used to im-
prove classification performance on future tasks. We consider situations
in which the tasks can be divided into groups. Tasks within each group
are related by sharing a low dimensional representation, which differs
across the groups. We present an algorithm which divides the sampled
tasks into groups and computes a common representation for each group.
We report experiments on a synthetic and two image data sets, which
show the advantage of the approach over single-task learning and a pre-
vious transfer learning method.

Keywords: Learning to learn, multi-task learning, transfer learning.

1 Introduction

Transfer learning uses the experience gathered from previous learning tasks in
order to improve learning a new task. In the context of machine learning, past
experience is provided by a collection of training sets, each sampled from a
specific task. The underlying assumption is that the tasks belong to the same
environment and share common properties. Uncovering these properties should
thus enhance learning future tasks in the environment.

An important approach to transfer learning relies on the assumption that all
the tasks are mutually related, in the sense that they share the same underly-
ing representation, see [1,2,6,7,10,13] and references therein. This requirement
may be too strong for heterogeneous environments. As an illustrative example,
consider object recognition involving different geometric invariances, such as ro-
tation, scaling, illumination etc., where only one invariance is relevant for any
given task.

The main contribution of this paper is a method to learn and represent the
structure of such a heterogeneous environment. Our method naturally extends a
previous method for multi-task and transfer learning with linear representations
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[2,10]. Furthermore, we connect this approach to previous work in the context
of spectral regularization [3] and collaborative filtering [11].

Previous work on task clustering [5,8,12,14] considers tasks to be related if the
corresponding weight vectors are close to each other. In contrast, our approach
assumes that tasks within the same group are related if their weight vectors
span a low dimensional subspace. For example, in a binary classification task a
target vector and its negative are far from each other in distance, but – lying in
a one-dimensional subspace – closely related according to our assumption.

The paper is organized as follows. In Section 2, we introduce the transfer
learning problem. In Section 3, we present our model for transfer learning over a
heterogeneous environment. In Section 4 we describe the algorithmic implemen-
tation of the model. Next, in Section 5 we present numerical experiments with
the algorithm. Finally, in Section 6 we present our conclusions.

2 Transfer Learning

We are interested in learning classification tasks, as they occur in a prescribed en-
vironment. For simplicity, we restrict ourselves to linear classification functions.
However, our considerations apply to kernel methods as well as to regression or
other learning problems.

Following [6], we regard an environment as a probability measure ρ on a set of
learning tasks and, since the tasks we consider are described by weight vectors,
we regard ρ as a probability measure on R

d.
Information on the environment may be obtained by the following two-step

procedure

• draw a weight vector w ∈ R
d from ρ

• generate a sample z ∈
(
R

d × {−1, 1}
)m using w.

The vector w above corresponds to a classification function

f(x) = sign (〈w, x〉) ,

x ∈ R
d. The sample (training set) z = ((x1, y1), . . . , (xm, ym)) is obtained by

sampling the function f at m random locations x1, . . . , xm with labelling noise.
The above procedure is then repeated n times, to yield a collection of n training
sets

Z = (z1, . . . , zn).

Each of the zt corresponds to a different classification task in the environment,
for t = 1, . . . , n. We have assumed, for simplicity, that the samples z1, . . . , zn

have the same size, m, but what follows applies also when the sample sizes are
different.

Transfer learning extracts structural knowledge from Z, so as to enhance learn-
ing a future task drawn from the environment. This is particularly important
when the number of examples for each task is relatively small in comparison to
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the number of parameters. In this case, single-task learning – learning each task
in isolation – leads to poor performance. However, if the tasks in the environ-
ment are related, transfer learning may work well [6,10]. Thus, the problem is
ultimately that of uncovering and exploiting relationships between the tasks.

As a very simple example, suppose that all the tasks are equal. In this case, a
good transfer learning algorithm would combine all training sets to learn a single
task. A more realistic situation is one in which all the tasks’ weight vectors are a
linear combination of a few feature vectors. A good transfer learning algorithm
would learn these feature vectors from the data Z. A classical approach, which
goes back to work on learning to learn and multi-task learning [6,7], is to search
for such a low dimensional representation shared by all the tasks. Knowledge
of the relevant features can reduce the burden of high dimensionality to the
estimation of a small number of coefficients.

We consider a linear representation described by a matrix T ∈ R
d×d, which

maps the raw representation x to the feature vector Tx. Our first step is to
design a quantity which measures the performance of T relative to a task. If T
is fixed, we learn a weight vector from a sample z by regularization, that is, we
solve the problem

r(T, z) = min
v∈Rd

{
1
m

m∑
i=1

� (〈v, Txi〉, yi) + λ‖v‖2 + ‖T ‖22

}
(1)

where λ is a positive parameter, ‖v‖2 = 〈v, v〉, � a loss function and ‖T ‖2 denotes
the Frobenius norm of matrix T . The minimizing vector in (1) – let us call it
v(T, z) – is then used in the classification of future inputs preprocessed by T . Note
that, with this notation, the target vector w mentioned previously corresponds
to T�v.

The term ‖T ‖22 plays no role in finding v(T, z), but it allows one to regard
r(T, z) as a measure of the learning performance of the representation T on the
sample z. Indeed, if the term ‖T ‖22 were omitted, the quantity r(γT, z) would
decrease in γ and would converge as γ →∞ to the minimal empirical error of a
linear function on the data z.

We now consider a set of tasks as represented by the multi-sample Z. A good
representation T is one which gives good learning performance, on average, over
the tasks. Hence, we may define the quantity

R(T,Z) =
1
n

n∑
t=1

r(T, zt)

and learn T by solving the problem

minimize
T∈Rd×d

R(T,Z). (2)

We note that this problem is conceptually equivalent to the multi-task feature
learning algorithm in [2]. Let us denote by H(Z) the minimum in (2). Intuitively,
this quantity is a measure of heterogeneity of the training sets. That is, the
smaller H(Z) the less heterogeneous (more related) the tasks, in that it is possible
to find a common representation which fits the training sets Z well.
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3 Heterogeneous Environment

The approach outlined above relies on the assumption that all the tasks are
mutually related in the sense that they share the same representation. This
requirement may be too strong when the environment is heterogeneous.

3.1 Method

Assume that there are several groups of tasks, so that the tasks within each
group are related but tasks from different groups have little in common. If I ⊆
{1, . . . , n} is the set of indices of the tasks within such a group, we expect the
training data Z(I) := (zt)t∈I to be highly related, that is, the heterogeneity
measure H(Z(I)) to be small.

Our goal therefore is to partition the training set Z into K groups that mini-
mize average heterogeneity. For this purpose, we let P be the set of all partitions
of size K of the set {1, . . . , n} and solve the problem

minimize
{I1,...,IK}∈P

K∑
k=1

|Ik|
n

H(Z(Ik)). (3)

The factors |Ik|
n weight each group in proportion to its size.

This approach can be equivalently seen as that of learning a library of K
feature maps T = (T1, . . . , TK), where each Tk is a d×d matrix representing the
k-th group of tasks in the environment. To see this, we rewrite problem (3) as

minimize
{I1,...,IK}∈P

minimize
T1,...,TK

K∑
k=1

|Ik|
n

R(Tk,Z(Ik)). (4)

Interchanging the minimization over the partitions and the matrices Tk, we
obtain

minimize
T1,...,TK

{
1
n

n∑
t=1

K
min
k=1

r(Tk, zt)

}
. (5)

This observation reformulates the combinatorial optimization problem (3) as
a continuous optimization problem and is analogous to the passage from the
assignment problem to the objective function of k-means clustering.

When K = 1 problem (5) reduces to problem (2). For K > 1, the minimization
over k effects an assignment of tasks to groups. The h-th group consists of
those tasks t for which the regularization error r(Tk, zt) is minimal for k =
h. Therefore, the matrix Tk is a common representation for the tasks of the
corresponding group.

We now describe how the library T is used to learn a new task from a given
training set z. First, we compute the weight vectors v(Tk, z) for k = 1, . . . ,K
and the associated minimal values r(Tk, z) in (1). Second, we assign the task to
the group

h = arg
K

min
k=1

r(Tk, z).
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The corresponding weight vector, v(Th, z), is then used for the classification of
future data from the same task, preprocessed by Th.

The two norms appearing in the definition (1) of r (T, z) have an effect of
complexity regularization, which we briefly sketch. The term ‖T ‖22 controls the
complexity of candidate libraries. If a large number of tasks have been observed
in the past, the quantity minimized in (5) is, with high probability in Z and
uniformly in all libraries T, a good upper estimate for the quantity

Ez

K
min
k=1

r (Tk, z) ,

where the expectation is over a training set generated from a random task drawn
from the environment. Similarly, the term ‖v‖2 regularizes the complexity of
candidate weight vectors and has the effect that r (T, z) is, for sufficient sample
size, a good upper estimate for the expected classification error incurred by
the use of v(T, z). Combining these observations, one finds that the quantity
minimized by our method is close to a high-probability upper bound on the
error incurred by the above algorithm using T on future tasks.

These arguments, which give a statistical justification for our method, are
made rigorous in [4] for a closely related model.

3.2 Connection to Spectral Regularization

We now explain why the learned representations T1, . . . , TK in (5) are encouraged
to be low dimensional. We first analyse the case K = 1. Let us use the notation
W = [w1, . . . , wn] if w1, . . . , wn ∈ R

d.

Lemma 1. Problem (2) is equivalent to

minimize
W∈Rd×n

{
1
mn

n∑
t=1

m∑
i=1

�(〈wt, xti〉, yti) + γ‖W‖1

}
(6)

where γ = 2
√
λ and ‖W‖1 is the �1 norm of the singular values of W . Moreover

if Ŵ solves (6) and T̂ solves (2), then

T̂�T̂ = (λŴ Ŵ�)
1
2 .

Proof. We define the matrix D = T�T . If T is full rank, we have, for every
training set z, that

r(T, z) = min
w∈Rd

{
�̂(w, z) + λ〈w,D−1w〉+ trD

}
,

where �̂(w, z) := 1
m

∑m
i=1 �(〈w, xi〉, yi). Thus, problem (2) becomes

inf
D�0

min
W∈Rd×n

{
1
n

n∑
t=1

�̂(wt, zt) + λtr(D−1WW�) + trD

}
.

Interchanging the infimum with the minimum and following [2], the infimum
over D is realized by (λWW�)

1
2 . The result then follows. ��
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We note that regularization with ‖W‖1, the trace norm, has originally been
considered by [11] in the context of collaborative filtering. As shown in [9], the
trace norm is the convex envelope of the rank function in the unit ball of ma-
trices. This provides some intuition as to why the optimal matrix Ŵ (and, by
Lemma 1, T̂ ) has low rank.

We now consider the general case K ≥ 1. If W is a d × n matrix and I ⊆
{1, . . . , n}, we let W (I) = [wt : t ∈ I]. The proof of the following result is
established along similar lines as in Lemma 1.

Theorem 1. Problem (3) is equivalent to the problem

minimize
W∈Rd×n

{
1
nm

n∑
t=1

m∑
i=1

�(〈wt, xti〉, yti) + γ min
{I1,...,IK}∈P

K∑
k=1

‖W (Ik)‖1
}
.

The above theorem states that problem (3) is equivalent to a regularization
problem in which the tasks are partitioned into groups, so that the associated
weight vectors have small trace norm on average. Regarding the trace norm as
an approximation of the rank, we interpret this regularization as favoring groups
of tasks which lie in low dimensional subspaces.

4 Learning Algorithm

We now describe an algorithm for solving problem (3). The algorithm performs
stochastic gradient descent on the objective function (5). At each iteration, it
selects a task index t ∈ {1, . . . , n} at random and computes the gradient1 of the
function

K
min
k=1

r(Tk, zt) .

Only the matrix which realizes this minimum needs to be updated. This step
requires the computation of the K vectors v(Tk, zt) for the current values of the
matrices T1, . . . , TK , that is, the solution of K standard regularization problems.
Thus, if the time complexity for solving each of these problems is C(m, d) then
the total time complexity per iteration is O(KC(m, d)+md2). This linear depen-
dence on K is appealing in practice since it allows for more complex models. We
also note that, since the optimal matrices in the library will be low dimensional,
we may further accelerate the algorithm by using rectangular matrices Tk with
a small but sufficient number of rows.

Although this algorithm is guaranteed to converge, the objective function (5)
is non-convex and hence the limiting point is not necessarily a global solution.
We note, in passing, that we are not aware of a single multi-task method on
heterogeneous task environments that is convex. However, for the purposes of
finding a good local minimum, the following initialization heuristic has been
observed to lead to good empirical results. First we train a single feature map
1 We ignore the issue of non-differentiability, because the objective function is almost

everywhere differentiable.
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Algorithm 1
Inputs: number of groups K, regularization parameter λ > 0, learning rate η > 0,
training sets zt = {(xt1, yt1), . . . , (xtm, ytm)}, t = 1, . . . , n.
Initialization: Randomly choose d × d real matrices T1, . . . , TK .
Repeat until convergence of the objective

Draw t at random from {1, . . . , n}
for k = 1, . . . , K do

Compute a solution v(Tk, zt) of (1)
end for

Set h = arg
K

min
k=1

r(Tk, zt) , v̄ = v(Th, zt)

Set Th = Th − η
m

m�

i=1
�′ (〈v̄, Thxti〉, yti) v̄x�

ti − 2ηTh

(K = 1) until convergence. Then from this map two slightly mutated matrices
are created to initialize the library with K = 2 and the process is repeated up
to the actual K we aim for. As we shall see in Section 5, in our experiments
the algorithm has always converged to a good local minimum, in that the great
majority of the tasks were assigned to correct groups.

5 Experiments

In classification experiments performed with synthetic and real data, we have
verified the following hypotheses.

– The learning algorithm correctly distinguishes the heterogeneous groups of
tasks and determines the appropriate subspaces within each group.

– The algorithm improves significantly over that in [2] (case K = 1) in terms
of the transfer error on new tasks.2 Moreover, when allowing more complex
models (that is, when K is larger than the actual number of groups in the
data) the transfer error does not improve.

– The performance improves monotonically with the number n of tasks avail-
able for training and deteriorates with the number G of underlying groups.

In all the experiments, we have used the SVM hinge loss and tuned the regular-
ization parameter λ using cross validation. Choosing K was also done by cross
validation, as we discuss below.

5.1 Synthetic Data

Environment. In the first experiment, we assume that the environment distri-
bution ρ is a uniform mixture of a number G of group-specific measures ρk on
the unit sphere Sd−1 in R

d. In other words, ρ = 1
G

∑G
k=1 ρk. A task is chosen

2 Average misclassification error on new tasks.
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Fig. 1. Synthetic data (with G = 2). Plot of transfer error and objective function (5)
versus K for n = 1000 tasks. The values of the objective have been rescaled to fit the
plot. The error obtained using the identity matrix (training the tasks independently)
was 0.35.

by selecting the k-th group with probability 1
G and then drawing a task weight

vector w from ρk.
We further assume that each measure ρk is concentrated and uniform on the

intersection of a low dimensional subspace of R
d with Sd−1 and that these sub-

spaces are mutually orthogonal. Each task is a binary classification represented
by a vector w ∈ Sd−1. An input x for each task is sampled uniformly on Sd−1

and the outputs are obtained by taking the sign of 〈w, x〉.
Our experiment consists in using the training set sampled from the environ-

ment to identify the subspace on which each group of tasks lies and subsequently
to reliably predict membership in such a subspace for new tasks drawn from the
distribution ρ.

Results. We first consider an environment with two groups of tasks (that is,
G = 2), each of which lies on a 2-dimensional space of R

100. We use m = 50
examples for training on each task and compute the transfer error over 200 new
tasks sampled from the same environment, training on 50 examples and testing
on 150 examples. In experiments with the synthetic data, the algorithm typically
converged in less than 100,000 iterations.

As shown in Figure 1, using K ≥ 2 yields a large improvement over grouping
all tasks in the same group. Moreover, adding more than two groups in the
model has a negative effect, the reason being that all matrices Tk are used in the
obtained solution. This means that for K > 2 the objective function continues
to decrease, as demontrated in the figure. Thus, K can be selected using cross
validation on the training tasks but cannot be selected using the objective (5).
Note that cross validation is meaningful when there is a sufficient number of
related tasks, even if the sample per task is small.
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Fig. 2. Synthetic data (with G = 2). Plot of transfer error versus n using K = 1, 2, 4.

In the case K = 2, the resulting matrices Tk reflect the structure of the envi-
ronment as each of them projects on a 2-dimensional subspace of R

100. Specifi-
cally, we found that the two largest singular values of T1 and T2 account for 97%
of the spectrum, whereas for K = 1 the four largest singular values are needed.
In addition, we have verified that the tasks are assigned to the correct groups
with 99% accuracy.

An interesting observation is that even for K �= 2 the 4-dimensional support
of the whole environment is correctly identified. Thus, for K = 1 the obtained
matrix projects on a 4-dimensional subspace, whereas for K = 4 the matrices
project on parts of this subspace.

Other issues relate to the effects of the dimensions of the problem on transfer
error. In Figure 2, we verify the known result – see e.g. [6] – that the error
decreases with n. Note that for small values of n, the method performs better
with K = 1 than with K = 4 and for even smaller values, it outperforms K = 2.
The reason is that with a small number of tasks the data may be insufficient
for learning each of the actual two subspaces but sufficient for learning the joint
subspace.

Another effect is that of G, the actual number of underlying subspaces. Our
method performs well with values of G much larger than 2 but as G increases
the problem inevitably becomes harder. In Figure 3, we plot the error obtained
by training our method and tuning K for different values of G.

5.2 Character Recognition Experiments

We now describe two experiments with images of handwritten characters3, which
further illustrate how our method works. The character images were obtained

3 Available at http://www.andreas-maurer.eu/similarity.htm
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Fig. 3. Synthetic data. Plot of transfer error versus G using n = 1000.

with a real camera. We also note that rotation/scaling (see below) of the char-
acter shown in an image was done mechanically during image acquisition. In the
experiments, we have treated images simply as vectors of pixels and no use of
image preprocessing techniques or special properties of image data was made.

Projection on Image Parts. We consider the problem of invariant classifica-
tion in the presence of noise. Every task is a pairwise classification of 28 × 56
images of characters. One half of the image contains the relevant character under
an arbitrary rotation, whereas the other half contains a randomly chosen char-
acter also under an arbitrary rotation. There are two groups of tasks occurring
with equal probability: tasks in which the relevant character appears on the left
half of the image and tasks in which it appears on the right half. For example,
the images of Figure 4 are examples of a task (classifying 6 versus 1) of the
“right” group.

To train a library we selected pairs of alphabetic characters. Since we wish
to obtain a library of features that represent the broader structural properties
of the environment, namely rotation invariance on one half of the image with
simultaneous irrelevance on the other half, we tested the learned library on
samples generated from the digit character set (after removing digit 9). In this
way we directly measured how well the representation transferred to novel but
structurally similar problems. We trained our algorithm until convergence, which
was achieved in 400,000 iterations.

To measure the transfer error, we generated 500 tasks of pairwise classification
from the digits data set. For each of these tasks, a sample of size 10 was chosen
to train a classifier using the library found during the training phase. The per-
formance of this classifier was then tested on 40 examples chosen from the same
task. The high dimensionality of the input space (1568) and the small sample
size (10) explain the high error (0.27) of learning each task independently, as
Table 1 shows. At the same time, the large number of tasks observed for the
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Fig. 4. Character recognition (left-right data set). Example images from one classifi-
cation task (6 versus 1) in the group that focuses on the right part of the image.

Table 1. Character recognition (left-right data set). Transfer error for different
methods.

Independent K = 1 K = 2

0.27 0.036 0.013

T

T1

T2

Fig. 5. Character recognition (left-right data set). Dominant right singular vectors of:
T learned with K = 1 (top); T1 and T2 learned with K = 2 (bottom). See text for
description.

training of the feature maps (1000) accounts for the spectacular improvement
obtained by transfer learning (K = 1).

A convenient way to visualize the effect of the resulting maps on the image
vector is to display their right singular vectors as 28 × 56 images. In Figure 5,
we present these after normalization to the range [−1, 1] and mapping of zero to
gray. We show only the singular vectors corresponding to the 6 largest singular
values for T and the 3 largest singular values for T1 and T2. The concentric
features in both halves clearly reflect the rotational invariance properties present
in the training data. In the single map case, the map does not distinguish the
relevance of each part of the image relative to the tasks, whereas in the two-map
case, matrix T1 represents the invariance properties of the “left” group of tasks
and matrix T2 those of the “right” group. In addition, the singular values of T ,
T1 and T2 (Figure 6) show that this specialization of T1 and T2 results in more
concise representations within each group of tasks. That is, the effective ranks of
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Fig. 6. Character recognition (left-right data set). Spectrum of T learned with K = 1
(top), spectra of T1 (bottom-left) and T2 (bottom-right), learned with K = 2.

Table 2. Character recognition (left-right data set). Assignment of tasks in groups,
when training with K = 2. The first three rows show percentage of assignments for the
transfer tasks, the last row for the training tasks.

T1 T2

All digits (left & right) 48.2% 51.8%
Left 99.2% 0.8%
Right 1.4% 98.6%

Training data 50.7% 49.3%

T1 and T2 equal 4, whereas that of T equals 8 and hence, setting K = 2 allows
us to learn subspaces with lower dimensionalities.

Finally, in Table 2 we verify that the assignment of tasks into groups reflects
the left-right structure of the data set. Here, the “Left” (“Right”) percentage was
measured over the sample that corresponds to classification on the left (right)
half of the image.

Rotation and Scale Invariance. Our final experiment is set in an environ-
ment which contains a mixture of tasks involving rotation invariant and scale
invariant character recognition, with scale factors ranging from 2/3 to 3/2 (see
Figure 7). As in the previous experiment, our libraries were trained using pairwise
classification of alphabetic characters and were transferred on pairwise classifi-



An Algorithm for Transfer Learning in a Heterogeneous Environment 83

Table 3. Character recognition (rotation-scaling data set). Transfer error for different
methods.

Independent K=1 K=2

0.17 0.018 0.015

cation of digits. Because of the difficulties caused by scale invariance, the images
were preprocessed using a Gaussian kernel, with 1000 centers chosen randomly
from the training data and Gaussian kernel width of 1/

√
8. Again, 400,000 iter-

ations were needed for training the algorithm.
Unlike the previous experiments, it is now unclear what the features relevant

to each group of tasks may be, or how the feature space relevant to rotation
invariant recognition relates to that of scale invariant recognition. To investigate
the potential of our method we ask two questions:

1. Is the grouping method (with K = 2) able to improve the transfer perfor-
mance of the more standard transfer learning algorithm with K = 1?

2. To what extent does the grouping reflect our intuition of rotation and scale
invariant problems as corresponding to two distinct groups of tasks?

For training our method, we generated 2000 samples of size 10 (5 per class)
from the alphabetic set, selecting rotation and scale invariant tasks with equal
probability. The transfer data was generated as in the previous experiment: 500
tasks drawn from the digits, 10 training examples per task, 40 examples for
testing.

As shown in Table 3, we observe again a dramatic improvement from inde-
pendent learning to transfer learning. There is also an observable advantage of
the grouping method but not as pronounced as in the previous experiments. The
most likely explanation is that the two feature subspaces may now be far from
orthogonal, unlike the previous experiments.

To answer the second of the above questions we counted the assignments
to T1, T2 within exclusively rotation or scale invariant tasks (Table 4). We see a
certain specialization of T2 to rotation invariant tasks and of T1 to scale invariant
tasks, but it is not as clearly defined as in the previous experiment. Here it

Table 4. Character recognition (rotation-scaling data set). Assignment of tasks in
groups, when training with K = 2. The first three rows show percentage of assignments
for the transfer tasks, the last row for the training tasks.

T1 T2

All digits (rotation & scale) 44.8% 55.2%
Rotation invariance 10% 90%
Scale invariance 72% 28%

Training data 46.5% 53.5%
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Fig. 7. Character recognition (rotation-scaling data set). Example images from a clas-
sification task in the rotationally invariant group (top) and one in the scale invariant
group (bottom).

is important to realize that grouping into rotation and scale invariant tasks
agrees with a certain human intuition, but there may well be other task-grouping
criteria (for example rounded characters versus characters with sharp corners)
which may be necessary for further improving performance.

6 Summary

We have presented a method for transfer learning over environments in which
tasks are concentrated on a number of low dimensional subspaces (heterogeneous
environments). Our approach, which is justified theoretically by a generalization
bound on the transfer error [4], uses gradient descent to learn a library of feature
maps that describe such subspaces. The method naturally extends previous work
on multi-task learning which considered only one common group of tasks [2].

We have reported experiments with synthetic and real data. These experiments
are illustrative examples of the many real problems in which multiple heteroge-
neous tasks occur. They clearly demonstrate that our method is effective in identi-
fying both the groups of tasks and the underlying common feature maps. Moreover,
the method outperforms both single-task learning and the precursor method [2],
which corresponds to the case that K = 1. We believe the work is a significant im-
provement over [2] (which in turn has shown state-of-the-art results in a number
of benchmark data sets), since any algorithm using K = 1 cannot distinguish the
different subspaces on which the tasks may lie.

We have also briefly sketched an interpretation of our approach in terms of
spectral regularization. We speculate that following this observation our method
can be easily applied in the context of collaborative filtering, see e.g. [11]. An-
other interesting question that can be the topic of future research is to study
conditions on the environment which ensure convergence of the algorithm to a
good local minimum.
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Departament de Llenguatges i Sistemes Informàtics
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Abstract. We focus on confidence-bounded association rules; we model
a rather practical situation in which the confidence threshold is fixed by
the user, as usually happens in applications. Within this model, we study
notions of redundancy among association rules from a fundamental per-
spective: we discuss several existing alternative definitions and provide
new characterizations and relationships between them. We show that
these alternatives correspond actually to just two variants, which differ
in the special treatment of full-confidence implications. For each of these
two notions of redundancy, we show how to construct complete bases of
absolutely minimum size.

Keywords: association rules, redundancy, optimum bases.

1 Motivation and Related Work

Few, if any, data mining tasks have the relative importance within that field of
research as association rule mining. Whereas practitioners provide some success
stories in various fields, researchers have provided a wealth of algorithmic ideas
related to the task. Since the publication of the first proposal of confidence-
and support-bound-based association mining [2], many algorithms have been
designed. The interesting FIMI competition tested a wide family of these al-
gorithms (http://fimi.cs.helsinki.fi). Currently, the amount of knowledge
related to association rules has grown to the extent that the tasks of creating
complete surveys and websites that maintain pointers to literature on association
rules become daunting (a recent survey is [8] but additional materials appear
in http://wwwai.wu-wien.ac.at/˜hahsler/research/association rules/,
for instance, at the time of writing); see also [3], [26], [32], [33], and the ref-
erences and discussions in their introductory sections.

A close relative of the notion of association rule, namely, that of exact im-
plication, that is, an association rule that holds in 100% of the cases, had been
studied before in the research area of closure spaces, where a number of methods
have been found to construct, for every binary dataset, sets of implications (often
called “bases”) that are complete in the sense that all other implications can be
derived from them; some of these bases enjoy minimality properties depending on
the notion of derivation at hand [10], [12], [27], [31], in fact, such implications can
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be seen also as conjunctions of definite Horn clauses, and the closure under inter-
section that characterizes closures spaces corresponds to the fact, well-known in
logic and knowledge representation, that Horn theories are exactly those closed
under bitwise intersection of propositional models (see e.g. [17]). Thus, as a form
of knowledge gathered from a dataset, implications have several advantages: ex-
plicit or implicit correspondence with Horn logic, therefore a tight parallel with
functional dependencies and a simple and well-known calculus through the Arm-
strong axioms (explained below), whence a clear notion of redundancy.

However, the fact has been long acknowledged (e.g. already in [23]) that,
often, it is inappropriate to search only for absolute implications in the analysis
of real world datasets. There may be many reasons to consider interesting a
co-occurrence pattern, even if the perceived implication does not hold in all the
cases. Already in [23], partial rules are defined in relation to their so-called-there
“precision”, that is, the notion of intensity of implication now widely called
“confidence”: for a given rule X → Y , the ratio of how often X and Y are seen
together to how often X is seen. Many other alternative measures of intensity
of implication exist, and several sources describe them (see [13], [14]); we keep
our focus on confidence, which is among the most common ones, certainly the
first one proposed, and has a natural interpretation for educated users because
it corresponds to a lower bound to the observed conditional probability.

The first attempts at mining partial rules were also proposed in [23]; yet, the
process of searching for implications or for partial rules was not used on really
large datasets until the introduction of the support bound: a threshold on how
often the itemsets under analysis appear in the dataset. The idea of restricting
the exploration for association rules to frequent itemsets, with respect to a sup-
port threshold, gave rise to the most widely discussed and applied algorithm,
Apriori [3], and to an intense research activity. Unfortunately, if the combinato-
rial properties of implications are already nontrivial to handle, those of partial
rules are even harder. Already with full-confidence implications, the output of an
association mining process often consists of large sets of rules, and a well-known
difficulty in applied association rule mining lies in that, on large datasets, and
for sensible settings of the confidence and support thresholds, huge amounts of
association rules are often obtained, much beyond what any user of the data
mining process may be expected to look at; and the difficulty of studying the
formal properties of partial rules makes it very difficult to select in a principled,
provably optimal way, a subset of the rules without losing information.

Therefore, besides the interesting progress in the topic of how to organize and
query the rules discovered (see [21], [22], [28]), one research topic that has been
worthy of attention is the identification of patterns that indicate redundancy of
rules, and ways to avoid that redundancy [1], [9], [18], [19], [23], [26], [32] (see
also section 6 of [8] and the references therein). A major problem, open since
[23], would be to give a general method for constructing bases of minimum size:
a basis for a given dataset would be a subset of the rules that hold in the dataset,
that is complete, in the sense that it makes all the remaining rules redundant.
Therefore, restricting ourselves to the basis does not incur loss of information.
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But the very notion of completeness of a basis depends on the concrete ways
specified to construct “redundant” rules out of the basis. Therefore, we discuss
this point briefly now and propose one specific standpoint. Imagine that a stan-
dard association rule miner has been run on a given dataset, with user-specified
thresholds of support and confidence — a situation that fully matches most cases
of application; its output R is now available, in the form of a (probably large)
set of rules, each labeled with its confidence, all of these above the threshold.
We want to select a basis B ⊆ R, aiming at choosing it as small as possible and,
simultaneously, making sure that we do not lose information in doing so. (In
fact, we are after better algorithmics that obtain directly B instead of mining
for the whole of R and postprocessing it, but, for the sake of the properties of
the basis, the discussion is clearer if we assume R known.) Thus, we are to find
a subset of rules B ⊆ R such that all the rules in R become redundant; and, of
course, the crux now is how to define formally “redundant”.

For the case of exact implications, “redundancy” has several equivalent nat-
ural, robust logical formalizations, such as entailment among definite Horn
clauses. Alternatively, it also corresponds to derivability under the so-called
Armstrong axiom schemes [30]: Reflexivity (X → X), Augmentation (if X → Z
and Y → W then XY → ZW ) and Transitivity (if X → Y and Y → Z then
X → Z).

But, in our context of partial rules with a hard confidence threshold in place,
Augmentation and Transitivity, and also other natural inference schemes, are not
valid anymore: for instance, if most of the times X appears it comes with Z, but
it only comes with Y when Z is not present, then the confidence of X → Z may
be high whereas the confidence of XY → Z may be null; that is, Augmentation
(with W = ∅ here) is not valid. Neither is Transitivity: knowing that A → B
and B → C (or even AB → C) hold with confidence γ does not inform us about
whether A→ C holds with confidence γ. Additionally, a rule with several items
in the consequent is not equivalent to the conjunction of the Horn-style rules
with the same antecedent and each item of the consequent separately, and, if we
look only into rules with singletons as consequents, we are almost certain to lose
information. Indeed, if the confidence of X → Y Z is high, it means that Y and
Z appear together in most of the transactions having X ; whereas the fact that
both Y and Z appear in fractions at least γ of the transactions having X does
not inform us that they show up together at a similar ratio of these transactions.
This is also a failing form of Augmentation, with X = Y this time.

Thus, we lack characterizations of derivability, and are left with the task of iden-
tifying, little by little, specific cases of redundancy, working them out, and seeing
whether they give us bases and with which properties. This task indeed has been
performed, and with great results already, but there is some progress to achieve
yet. Most notably for our work here, we find that [1], [19] [26], and [32] have all
proposed interesting notions of redundancy and methods to construct nonredun-
dant bases; some of them work (as does [23]) in a setting where all the partial rules,
plus their confidences, are to be inferred from the basis; and still the size of their
basis can be suboptimal. The basis of [1] and the representative rules of [19] are of
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minimum size in a well-defined sense, but this fact is a contribution of the present
paper. The “basic association rules” of [20] suffer a limitation that consequents
must be singletons, which loses information as indicated above (the same limi-
tation applies to the useful apriori implementation of Borgelt available on the
web [6]). Along a different avenue, some works are set up in a context of “using all
the information available”: namely, combining the supports of some sets in vari-
ous ways, one can determine, through short computations, the supports of many
other sets and the confidence of many rules. The “nonderivable” itemsets and rules
[7], [15], [25] and the “covering” scheme of [9] all refer to the possibility of deriv-
ing rules of confidence above the threshold from information about the supports of
specific sets. This seems a very effective approach, employing information about
actual supports, that depend on the dataset at hand. These works were inspiring,
and crucial to our research; however, we wish to study here a non-comparable ap-
proach: as discussed above, in our setting we are after a notion of redundancy based
only on little information, essentially as in [1] and [19]. Instead of considering a rule
redundant when its confidence can be somehow inferred from others, we take the
slightly different view that it is redundant when “the fact that its confidence is
above γ can be inferred from others”, where these other rules are known to have
confidence above γ but the inference process does not use their actual confidence
values. We believe that this approach will be a good complement to the existing
works, and expect that it would be particularly useful in cases where the user of the
data mining system is not familiar with inclusion-exclusion principles and similar
facts used in the “nonderivable itemsets” approach: only the rules (or almost only
the rules, as explained next) are brought to bear in the derivation of other rules.
We will see that this is possible, and indeed can be achieved through definitions
that are already in the literature [1], [18], of which we establish new, important
properties; and we will push this approach provably to the limit.

Then, we follow the proposals of [26], [32], and several other works, pushing
through beyond that limit by assuming that we are allowed one single additional
bit per rule: we will handle separately, to a given extent, full-confidence impli-
cations from lower-than-1-confidence rules, in order to profit from their very
different combinatorics. We discuss adequate notions of redundancy and com-
pleteness, prove new properties, and refine the existing basis constructions up
to a point where we can prove again that we attain the limit of the redundancy
notion. We close the paper with some empirical data regarding our proposals
(the author is grateful to Bart Goethals and Christian Borgelt for making their
respective implementations of fpgrowth and apriori so easily accessible) and
a short section of conclusions. Due to the space limits, here we defer the proofs
of the theorems and additional examples and discussions to an extended version
available from the author.

2 Preliminaries

A dataset D is given; it consists of transactions, each of which is an item-
set labeled by a unique transaction identifier. The identifiers allow for many
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transactions sharing the same itemset. Upper-case, often subscripted letters from
the end of the alphabet, like X1 or Y0, denote itemsets. Juxtaposition denotes
union of itemsets, as in XY ; and Z ⊂ X denotes proper subsets. For a transac-
tion t, we denote t |= X the fact that X is a subset of the itemset corresponding
to t.

From the given dataset we obtain a notion of support of an itemset: sD(X)
is the cardinality of the set of transactions that include it, {t ∈ D

∣∣ t |= X},
sometimes, abusing language, we also refer to that set of transactions itself as
support. Whenever D is clear, we drop the subindex: s(X).

We immediately obtain by standard means (see, for instance, [12] or [32]) a
notion of closed itemsets, namely, those that cannot be enlarged while maintain-
ing the same support. The function that maps each itemset to the smallest closed
set that contains it is known to be monotonic, extensive, and idempotent, that
is, it is a closure operator. This notion will be reviewed in more detail later on.

Association rules are pairs of itemsets, denoted as X → Y for itemsets X
and Y . Intuitively, they express that Y occurs particularly often among the
transactions in which X occurs. More precisely, each such rule has a confidence
associated: the confidence cD(X → Y ) of an association rule X → Y in a dataset
D is s(XY )

s(X) , that is, the ratio by which transactions having X have also Y , or,
again, the observed empirical approximation to a conditional probability of Y
given X . As with support, often we drop the subindex D. This view suggests
a form of correlation that, in many applications, is interpreted implicitly as a
form of causality (which, however, is not guaranteed in any formal way; see the
interesting discussion in [11]).

We denote as R the set of all the rules of confidence at least γ for the given
dataset D, again we should label R with D and γ as subscripts but these will be
always clear from the context. Always γ > 0. We resort to the convention that,
if s(X) = 0 (which implies s(XY ) = 0) we redefine the undefined confidence
as 1, since the intuitive expression “all transactions having X do have also Y ”
becomes vacuously true. Additionally, note that cD(X → Y ) = cD(X → XY ),
and we will switch rather freely between right hand sides that include the left
hand side and right hand sides that don’t: when two rules have the same left
hand side, and the union of left and right hand sides also coincide, we say that
they are equivalent by reflexivity. Clearly their confidences will always coincide.

3 Redundancy Notions

We start our analysis from one of the notions of redundancy proposed in [1], and
from a variation thereof, seemingly less restrictive.

Definition 1. 1. X0 → Y0 is AY-redundant with respect to X1 → Y1 if the
confidence and support of the former are always larger than or equal to those
of the latter, whatever the dataset [1].

2. X0 → Y0 is plainly redundant with respect to X1 → Y1 if the confidence of
X0 → Y0 is larger than or equal to the confidence of the latter, whatever the
dataset.
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Thus, plain redundancy is like AY-redundancy, but forgetting the condition re-
garding support. It turns out that the condition about confidence is already
rather strong, due to the “whatever the dataset” clause, to the point that our
first new result is that the simplified version is as powerful as the original one:

Theorem 1. Consider any two rules X0 → Y0 and X1 → Y1 where Y0 �⊆ X0.
Then X0 → Y0 is AY-redundant with respect to X1 → Y1 if and only if X0 → Y0

is plainly redundant with respect to X1 → Y1.

This will allow us to concentrate on confidence bounds at the time of discussing
complete bases, since support bounds will follow essentially from that result.
The reference indicated [1] also provides two simpler definitions of redundancy:

Definition 2. (From [1].)

1. If Z0 �= ∅, rule X0Z0 → Y0 is simply redundant with respect to X0 → Y0Z0;
2. if X1 ⊆ X0 and X0Y0 ⊂ X1Y1, rule X0 → Y0 is strictly redundant with

respect to X1 → Y1.

It is rather easy to check that moving attributes from the right hand side into
the left hand side can only increase the confidence and leave equal the support:
this fact corresponds to simple redundancy, and relates rules obtained from the
same frequent set X0Y0Z0. Strict redundancy focuses, instead, on rules extracted
from two different (frequent) itemsets, say X0Y0 where X0 will be considered as
antecedent, versus X1Y1, where X1 will be antecedent, and under the conditions
that X1 ⊆ X0 and X0Y0 ⊂ X1Y1 (the case X0Y0 = X1Y1 is already covered by
simple redundancy). Both simple and strict redundancies imply AY-redundancy;
this is argued in [1], which discusses most of the results just in terms of these two
simplified notions. Note that, in principle, there could possibly be many other
ways of being redundant beyond simple and strict redundancies: we show next,
however, that, in essence, this is not the case, as we can state the following new,
far from obvious characterization:

Theorem 2. Consider any two rules X0 → Y0 and X1 → Y1 where Y0 �⊆ X0.
The following are equivalent:

1. X1 ⊆ X0 and X0Y0 ⊆ X1Y1;
2. rule X0 → Y0 is either simply redundant or strictly redundant with respect

to X1 → Y1, or they are equivalent by reflexivity;
3. rule X0 → Y0 is plainly redundant with respect to X1 → Y1.

The two inclusions in the first statement form a condition that characterizes
exactly the cover operator of [18] (Property 3.3 there): hence that operator is
also fully equivalent to plain redundancy.

3.1 Optimum-Size Basis for Plain Redundancy

The main property of a basis, namely completeness, or not losing informa-
tion upon deletion of the remaining rules, corresponds now to the following
formalization:
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Definition 3. Given the set of rules R that hold in a given dataset D at confi-
dence at least γ, B ⊆ R is a complete basis if every rule of R is plainly redundant
with respect to some rule of B.

We describe now, briefly, the construction of a basis as proposed, almost simul-
taneously, in [1] and in [19] (called there “representative rules”).

Definition 4. Given itemsets Y and X ⊆ Y , X is a γ-antecedent for Y if
c(X → Y ) ≥ γ, that is, s(Y ) ≥ γs(X).

This is the same as organizing all the rules ofR according to the itemset resulting
from union of antecedent and consequent. For each itemset Z, we will keep some
rules X → Y with XY = Z, or equivalently, we will keep some antecedents X
for Z. Keeping all γ-antecedents of all sets yields, essentially, the whole of R.
We will keep only a part of them, as few as possible, but losing no information.

Definition 5. Given itemsets Y and X ⊆ Y , X is a valid γ-antecedent for Y
if the following holds:

1. X is a γ-antecedent of Y ,
2. X fulfills this preceding property minimally: no proper subset of X is a γ-

antecedent of Y , and
3. X is not a minimal γ-antecedent of an itemset strictly larger than Y .

Now, the basis we are studying consists of all rules X → Z−X for all itemsets Z
and for all valid antecedents X of Z. We refer to this basis as B0. It is immediate
to see that all the rules in the basis B0 actually hold with confidence at least γ
since, for X ⊆ Z, c(X → Z −X) = c(X → Z) ≥ γ which is explicitly required
for X to be an antecedent of Z. It is proved in [1] that this basis is irredundant
with respect to simple and strict redundancies. Completeness can be stated as
follows (see also [19]):

Proposition 1. B0 is a complete basis: all the rules in R are plainly redundant
with respect to B0.

Hence B0 contains rules that hold and which imply all the rules that hold, that
is, it is indeed a basis. Efficient algorithms to construct B0 are provided in [1] and
[19], where small examples can be found as well; we have developed alternative
algorithmics that we will describe elsewhere. Our contribution here, rather than
algorithmic, is foundational: now we can state and prove the most interesting
novel property of this basis. It was known [1] that it is irredundant with respect
to simple or strict redundancy, that is, none of the rules in it is simply redundant,
nor strictly redundant. Our characterization in Theorem 2 then applies, so that
none of the rules in B0 is, in fact, plainly redundant. But this irredundancy does
not rule out the possibility that some other basis, constructed in an altogether
different form, could have less many rules. We state and prove now that this is
not so: there is absolutely no other way of constructing a basis smaller than this
one, while preserving completeness with respect to plain redundancy, because it
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has absolutely minimum size among all complete bases. Therefore, in order to
find smaller ways of listing association rules from R, and not losing information,
a notion of redundancy more powerful than plain redundancy is unavoidably
necessary.

Theorem 3. Let B′ ⊆ R be any set of rules such that all the rules of R are
plainly redundant with respect to B′. Then, B′ has at least as many rules as B0.

Implementation and test of this approach reveals interesting reductions of the
sizes of the rules, but these are still somewhat large. We concentrate efforts
henceforth on the study of alternative existing notions of redundancy, as an
attempt at getting bases smaller than B0.

4 Closure-Based Redundancy

The theorems in the previous section tell us that, for plain redundancy, the
absolute limit of a basis, thus without losing information, is reached by the
construction of [1]. Several studies, prominently [32], have put forward a different
notion of redundancy; namely, they give a separate role to the full-confidence
implications. Along this way, one gets a stronger notion of redundancy and,
therefore, smaller bases can be constructed.

Indeed, implications can be summarized better, because they allow for transi-
tivity and augmentation to apply in order to find redundancies; moreover, they
can be combined in a certain form of transitivity with a partial rule of confi-
dence at least γ to give rules that also have confidence at least γ. The best way
to handle them is through a closure operator ([10], [12], [32], [26], [31]).

Given a dataset D, the closure operator associated to D maps each itemset X
to the largest itemset X that has the same support as X in D; it can be defined
in several alternative ways. A set is closed if it coincides with its closure. When
X = Y we also say that X is a generator of Y . Our definition gives directly
that always s(X) = s(X). We will make liberal use of this fact, which is easy to
check also with other definitions of the closure operator, as stated in [26], [32],
and others.

Implications, or association rules of confidence 1, are closely related to this
closure operator: c(X → Y ) = 1 if and only if Y ⊆ X. Several quite good
algorithms exist to find the closed sets and their supports. There are proposals
of basis constructions from closed sets in the literature. In the min-max basis of
[26], antecedents are minimal generators, that is, as small as possible, whereas
consequents are closures, that is, as large as possible. We will follow the approach
of [32] where both antecedents and consequents are chosen as small as possible;
but, if we consider only number of rules, and not their sizes, both approaches
share many similarities.

Redundancy based on closures is a natural generalization of equivalence by
reflexivity; it works as follows ([32], see also section 4 in [26]): given a dataset
and a closure operator corresponding to implications that have confidence 1 in
the dataset, two partial rules X0 → Y0 and X1 → Y1 such that X0 = X1 and



94 J.L. Balcázar

X0Y0 = X1Y1 turn out to be equivalent in terms of support and confidence;
the reason is that s(X0) = s(X0) = s(X1) = s(X1), and s(X0Y0) = s(X0Y0) =
s(X1Y1) = s(X1Y1). Therefore, groups of rules sharing the same closure of the
antecedent, and the same closure of the union of antecedent and consequent,
give cases of redundancy. The notion of redundancy in [32] leads to selecting as
irredundant rules from each such group that have inclusion-minimal antecedents
and consequents. The size of the basis obtained in this way is analyzed empiri-
cally in [32], where it is also combined with the strategy from [23] of using only
neighbor closures. This basis was found to be smaller than the set of all the rules
in all cases, many times exhibiting a huge reduction factor. We will provide addi-
tional improvements by refining the closure analysis and by combining the idea
of closure-based redundancy with the notion of valid antecedents of the previous
section. Most interestingly, we provide again a proof that, with our variant, we
reach the limit of closure-based redundancy: our basis will be shown again to
have the smallest possible size with respect to closure-based completeness.

4.1 Characterizing Closure-Based Redundancy

Let B be the set of implications, of confidence 1, in the dataset D; alternatively,
B can be any of the bases already known for implications in a dataset. In our
experiments later on we will use as B the Guigues-Duquenne basis, that has been
proved to be of minimum size [10], [31]. From here on, we require 0 < γ < 1,
leaving the rules of confidence 1 to be handled from B.

Definition 6. Let B be a set of implications. Rule X2 → Y2 has closure-based
redundancy relative to B with respect to rule X1 → Y1, which we denote by
B ∪ {X1 → Y1} |= X2 → Y2, if any dataset D in which all the rules in B hold
with confidence 1 gives cD(X2 → Y2) ≥ cD(X1 → Y1).

We continue our study by showing a necessary and sufficient condition for
closure-based redundancy, along the same lines as the one in the previous section.

Theorem 4. Let B be a set of exact rules, with associated closure operator map-
ping each itemset Z to its closure Z. Let X2 → Y2 be a rule not implied by B,
that is, where Y2 �⊆ X2. Then, the following are equivalent:

1. X1 ⊆ X2 and X2Y2 ⊆ X1Y1

2. B ∪ {X1 → Y1} |= X2 → Y2

4.2 Optimum-Size Basis for Closure-Based Redundancy

In a similar way as in the previous section, we give here a basis, similar to the
one proposed in [32] but smaller, by combining closure-based redundancy with
the conditions of Definition 5. As in [32], the rules of confidence 1 are handled
separately: we focus on the partial rules. We show first that our construction
indeed gives a basis, that is, consists of rules that hold and make redundant all
other rules that hold, in the following sense:
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Definition 7. Given the set of rules R that hold in a given dataset D at confi-
dence at least γ, and given in it the rules B that hold with confidence 1, closure-
based completeness of a set of partial rules B′ ⊆ R holds if every partial rule of
R has closure-based redundancy relative to B with respect to some rule of B′.

Conceptually, our new basis departs only slightly from the bases of [26] and [32],
but is nonetheless different in most cases (and therefore smaller, in some cases by
an important factor, as shown below). It is constructed as follows. For each closed
set X , we will consider a number of closed sets Y properly included in X to act as
antecedents. They follow a similar pattern to the one of valid antecedents; but,
instead of minimal antecedents, we will pick just minimal closed antecedents.
That is:

Definition 8. For each closed set X, a closed set Y ⊂ X (proper inclusion) is
a basic γ-antecedent if the following holds:

1. Y is a γ-antecedent of X: s(X) ≥ γs(Y );
2. Y is not a γ-antecedent of X ′ for any larger closed set X ′ ⊃ X: s(X ′) <

γs(Y );
3. Y is minimal among the closed proper subsets of X for which the previous

two conditions hold.

Then we use these antecedents for our basis:

Definition 9. The basis B�
γ consists of all the rules Y → X − Y for all closed

sets X and all basic γ-antecedents Y of X.

This set of rules entails exactly the rules that hold:

Theorem 5. Let B be any basis for implications that hold with confidence 1.

1. All the rules in B�
γ hold with confidence at least γ.

2. B�
γ is a complete basis for closure-based redundancy: if the rule Y → Z

holds with confidence at least γ, then, taken together with the full-confidence
implications, B ∪B�

γ |= Y → Z.

Now we can move to the main result of this section, and in fact of the whole
paper: this basis is of absolutely minimum size.

Theorem 6. Let B′ ⊆ R be an arbitrary basis having closure-based completeness
for R. Then, for each implication Y → Z ∈ B�

γ , there is in B′ an implication of
the form Y ′ → Z ′ with Y ′Z ′ = Y Z and Y ′ = Y .

That is, for each Y → X−Y ∈ B�
γ , there is a corresponding rule in Y ′ → Z ′ ∈ B′;

this rule in B′ provides us with X = Y ′Z ′ and Y = Y ′. Thus, both X and Y are
univocally determined by Y ′ → Z ′ and, hence, the same rule in B′ cannot yield
but one of the rules in B�

γ , so that B′ must have at least as many rules as B�
γ .

Therefore, B�
γ has a minimum number of rules, in an absolute sense, among all

bases that are complete according to closure-based redundancy.
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4.3 Support Bounds

Now we discuss, briefly, what happens if we work under a support threshold.
In fact, for most datasets, if we do not impose a support bound then even the
lattice including just closed sets reaches easily dozens or hundreds of thousands
of nodes, or indeed even millions.

Assume that we do not mine the rule basis from a lattice including all closed
sets but only those above a support threshold. Is there any risk of obtaining a
wrong basis? The answer is negative:

Proposition 2. For any fixed confidence threshold γ, mining the B�
γ basis only

on closed sets of support at least τ , for τ ≤ γ, provides a basis of the whole set
of rules that hold with confidence at least γ and support at least τ .

This proposition is proved by combining Theorem 1 with an easy observation: if
the rule X → Y has support at least τ , both X and XY have also support at least
τ , so that we can argue as in the proof of completeness above. We are therefore
safe if we apply the basis construction for B�

γ to a lattice of frequent closed
sets above support τ , instead of the whole lattice of closed sets. However, this
proposition does not ensure us that the basis obtained under a support bound is
minimal anymore. There is a strategy (to be described in a forthcoming paper)
that provides us with a correct and provably minimum basis also under a support
bound, at the price of somewhat longer computations. For our development here,
we just consider basis B�

γ as computed from the lattice of closed sets above the
support bound.

5 Empirical Validation

As indicated, this paper focuses rather on the foundational properties of re-
dundancy and bases, and its algorithmic content is not the main contribution.
However, we present some algorithmics and empirical results for the sake of
completeness. We have implemented a known construction of a minimal basis
for the full-confidence implications [10] to compute the closure operator, and an
algorithm that constructs our proposed basis. For this computation, we consider
an algorithm that conveniently uses as a black-box a separate closed itemsets
miner. It is explained in Table 1: it scans the lattice of closed sets repeatedly to
construct the basic γ-antecedents. That implementation has provided us with
all the figures in Table 3. The initialization of the lists scan the whole lattice to
pick up closed proper predecessors: a natural alternative would preprocess the
lattice as a graph in order to find the predecessors of a node directly; however, in
practice, with this alternative, whenever the graph requires too much space the
computation slows down unacceptably, probably due to a worse fit to virtual
memory caching. The search of the optimal algorithmic compromise between
avoiding repeated computations while efficiently handling virtual memory will
be the topic of further work; the current implementation gives answers in just
seconds in most cases, on a mid-range Windows XP laptop, taking a few minutes
when the closure space reaches a couple dozen thousand itemsets.
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Table 1. Algorithmic approach to B�
γ

Algorithm B�
γ-1(closed sets,γ):

for each of the closed sets:
construct a list of closed proper subsets
filter it to leave only γ-antecedents
filter again to leave only minimal γ-antecedents

for each of the closed sets:
filter out from the list minimal γ-antecedents of larger closed sets

for each of the closed sets:
for each antecedent in its list:

output as rule:
left hand side: a minimum-size generator of the antecedent
right hand side: a minimum-size generator of the closed set,

removing from it items appearing in the left hand side

Table 2. Parameters of the datasets

Dataset Num. Items Size in Transactions

Chess 76 3196
Connect 130 67557
Mushroom 120 8124
Pumsb 7117 49046
Pumsb star 7117 49046
T10I4D100K 1000 100000

An important property of our approach, shared with all the closure-based
works, is that the key parameter is neither the size nor the dimensionality of the
dataset, rather the size of the closures lattice. If that structure is of moderate
size, our proposal works very well; the average degree of the corresponding Hasse
graph is the next crucial value. If this degree is sublinear, which tends to be the
case, then the computation of the rules is quadratic on the number of closures.

We have run our implementation exactly on the same real datasets (down-
loaded from http://fimi.cs.helsinki.fi) as the main table in [32], and with
the same values of the parameters. Of course further comparisons are desirable,
but in this way it is clear that we did not pick our experiments specifically to
favor our approach. We have also included one of the synthetic datasets treated
there. Some parameters of the datasets are indicated in Table 2.

Numbers of rules appear in Table 3. The values of “Supp/Conf” is the value
of the confidence and support parameters; “Traditional” is the number of rules
obtained via the original definition; “Closure-based” is the number of rules of
the closure-based basis of [32] (which is already an impressive improvement);
these columns are taken literally from [32] (there the value of the confidence
parameter is made to coincide with the support parameter, so we do the same).
These numbers are to be compared with the number of rules for our approach,
that is, the sum of the columns “GDbasis” (number of rules in the Guigues-
Duquenne minimum-size basis for full-confidence implications) and B�

γ . That
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Table 3. Sizes of sets of rules for some datasets

Dataset Supp/Conf Traditional Closure-based GD basis B�
γ basis Total

Chess 80 552564 27711 5 226 231
Chess 70 8171198 152074 10 891 901
Connect 97 8092 1116 4 41 45
Connect 90 3640704 18848 14 222 236
Mushroom 40 7020 475 24 41 65
Mushroom 20 19191656 5741 170 158 328
Pumsb 95 1170 267 2 32 34
Pumsb 85 1408950 44483 9 1080 1089
Pumsb star 60 2358 192 5 6 11
Pumsb star 40 5659536 13479 47 82 129
T10I4D100K 0.5 2216 1231 0 585 585
T10I4D100K 0.1 431838 86902 214 4054 4268

Fig. 1. Number of rules in the basis B�
γ for pumsb-star at 20% support

total is provided in the last column. The improvements are apparent: however,
they are just consequences of our main theorems.

One very interesting outcome of the experiments was the following. Some of
us are used to a monotonicity intuition, by which lower confidence thresholds al-
low for more rules, so that the size of the output grows (sometimes enormously)
as the confidence drops. However, in the case of the basis B�

γ , some datasets ex-
hibit a nonmonotonic evolution: at lesser confidence thresholds, sometimes less
many rules are mined. Inspecting the actual rules, we can find the reason: some-
times there are several rules at, say, 90% confidence that become simultaneously
redundant due to a single rule of smaller confidence, say 85%, which does not
appear at 90% confidence. This may reduce the set of rules upon lowering the
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confidence threshold. An example illustrating this point is given by the dataset
pumsb-star, mined for our basis B�

γ at 20% support threshold with confidence
ranging from 99% to 51%. The number of full-confidence implications in the
Guigues-Duquenne basis at this support threshold is 47. The number of partial
rules varies between 476 (at 80% confidence) and 1282 (at 93%), except near 50%
confidence where the number of rules drops a bit more. The graphic in Figure 1
indicates the number of rules for each confidence level between 0.51 and 0.99,
computed at a granularity of 0.01.

6 Conclusions

Our main contribution, at a glance, is a way of thinking about confidence-
bounded association rules in terms of notions of redundancy. We have provided
characterizations of existing redundancy notions, from which we have been able
to exactly pinpoint the limitation of an existing basis proposal, for a plain notion
of redundancy, and also to improve the constructions of bases for closure-based
redundancy. As a consequence, analysis of specific datasets is now more feasible,
from the perspective of the human analyst who must read through the output
of the rule miner.

Several questions are worth further study. Mainly, it is not difficult to propose
stronger notions of redundancy, and, in fact, we could see these contributions
as progress towards a complete logical approach, where redundancy would play
the role of entailment: in a forthcoming paper [4], will describe logical calculi
that exactly correspond to plain redundancy and to closure-based redundancy.
Then, the following natural question arises: our notions of redundancy only relate
one partial rule to another partial rule, possibly in presence of full-confidence
implications, and always with respect to a fixed confidence threshold: is it indeed
possible that a partial rule is entailed by two partial rules, but not by a single
one? The failures of Transitivity and Augmentation strongly suggest the intuition
of a negative answer; in a forthcoming paper [4] we will see that this is so for
certain confidence thresholds, but that there are confidence thresholds where
this intuition is wrong: for instance, the reader may enjoy analyzing the case of
rules A→ BC and A→ BD, assuming that they hold with 65% confidence, and
trying to make rule ACD → B fall below the same confidence threshold in the
same dataset. This is, in fact, impossible, and our next paper [4] will characterize
exactly when two partial rules entail a third one, either in presence or in absence
of a closure operator for the exact rules. This could be a way towards stronger
redundancy notions and even smaller bases.

We are studying as well ways of computing bases of provably minimum size
under a support threshold; as discussed above, our basis is correct, and small,
but, for this particular case, full optimality is not guaranteed yet. We will discuss
an alternative in future works. Additional comparatives with other approaches
to redundancy, based on additional information beyond the list of rules mined,
is also necessary, including, for instance, the nonderivable itemsets of [7] or the
cover operator of [9].
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We plan also to extend this approach to the mining of more complex depen-
dencies [29] or of dependencies among structured objects; however, extending
the development to sequences, partial orders, and trees, is not fully trivial, be-
cause, as demonstrated in [5], the combinatorial structures may make redundant
rules that would not be redundant in a propositional (item-based) framework;
additionally, an intriguing question is: what part of all this discussion remains
true if implication intensity measures different from confidence are used?
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Abstract. Classifier outputs in the form of continuous values have of-
ten been combined using linear sum or stacking, but little is generally
known about evidential reasoning methods for combining truncated lists
of ordered decisions. In this paper we introduce a novel class-indifferent
method for combining such a kind of classifier decisions. Specifically we
model each output given by classifiers on new instances as a list of ranked
decisions that is divided into 2 subsets of decisions, which are represented
by triplet-based belief functions and then are combined using Dempster’s
rule of combination. We present a formalism for triplet-based belief func-
tions and establish a range of general formulae for combining these beliefs
in order to arrive at a consensus decision. In addition we carry out a com-
parative analysis with an alternative representation dichotomous belief
functions on the UCI benchmark data. We also compare our combina-
tion method with the popular methods of stacking, boosting, linear sum
and majority voting over the same benchmark data to demonstrate the
advantage of our approach.

1 Introduction

The idea of ensemble learning or a committee approach is to learn and retain
multiple classifiers and combine their decisions in some way to classify new in-
stances [8]. Thus the key to the success of ensemble learning relies not only on a
learning algorithm, but also on a combination function. In this work we focus on
the latter task − developing an effective combination method. The design of a
method for combining classifier decisions is a challenging task in constructing an
effective ensemble and various methods have been developed in the past decades.
Kuncheva in [12] roughly characterizes combination methods, based on the forms
of classifier outputs, into two categories. In the first category, the combination
of decisions is performed on single classes, such as majority voting and Bayesian
probability, which have extensively been examined in the ensemble literature [9],
[11] and [23].

The second category is concerned with the utilization of numeric scores
(probabilities) corresponding to classes. One typical method, often called a
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class-aligned method, is based on the same classes from different classifiers in
calculating the support for classes, regardless of what the support for the other
classes is. This method includes meta-learning − stacking where combination
functions are learnt from numeric values of classes [10] and [17], linear sum and
order statistics [11], [21] and [24] . An alternative group of methods called class-
indifferent methods makes use of as much information as possible obtained from
sets of classes in calculating the support for each class [12].

A class-aligned method and a class-indifferent method are both based on con-
tinuous values of classes in calculating the support for classes, but the latter
takes impact from different classes into account in determining the support for
classes that permits the presence of uncertainty information − as happens when
an instance is classified into different classes by different classifiers. Several work
related to class-indifferent methods utilizes single classes and sets of classes as
described in [1] and [23]. However class-indifferent methods for combining deci-
sions in the form of lists of ranked decisions have not been intensively studied and
are poorly understood. In particular, little is known about evidential reasoning
methods for combining truncated lists of ordered decisions.

In this study we propose a novel approach to modeling the process of com-
bining classifiers in the Dempster-Shafer theory framework, which is built on
our previous study for text categorization [4] and [5]. We model each output
given by classifiers on new instances as a list of ranked decisions (classes) that
is divided into 2 subsets of decisions along with the whole set of decisions which
are represented by the structure called a triplet. In each triplet, the first subset
contains a decision corresponding to the largest numeric score, the second subset
corresponds to the second largest numeric value and the whole set of decisions
represents the uncertainty in making the former two decisions in terms of ig-
norance. In particular we extend our previous work by establishing the general
formulae for combining triplets by Dempster’s rule of combination and empiri-
cally and analytically examine the effect of different sizes of decision list on their
accuracy for combining classifiers over the UCI benchmark data sets [7].

To evaluate the superiority of our method we have conducted a comparative
analysis on the three representations of classifier decisions in the forms of triplet-
based belief functions, dichotomous-based belief functions [3] and full list of
probabilities, we also compare them with two state of the art methods: Stacking
(multi-response linear regression) [17] and AdaBoost.M1 [16] along with majority
voting and linear sum methods in combining individual (base) classifiers. By
comparing the t-test results drawn from the various combinations of classifiers
and the ranking statistics win/draw/loss, we demonstrate the properties and
relative advantage of our method in combining classifiers.

2 Modelling Classifier Outputs and Combination
Methods

In supervised machine learning, a learning algorithm is provided with training
instances of the form {〈d1, c1〉, · · · , 〈d|D|, cq〉} (di ∈ D, ci ∈ C, 1 ≤ q ≤ |C|) for
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inducing some unknown function f such that f(d) = c. D is the space of attribute
vectors and each vector di is in the form (wi1 , · · · , win) whose components are
symbolic or numeric values; C is a set of categorical classes and each class ci

is in the form of class label. Given a set of training data, a learning algorithm
is aimed at learning a function ϕ − a classifier from the training data, where
classifier ϕ is an approximation to the unknown function f .

Given a new instance d, a classification task is to make the decision for d
using ϕ about whether instance d belongs to class ci. Instead of single-class
assignment, we denote such a process as a mapping:

ϕ : D → C × [0, 1] (1)

where C × [0, 1] = {(ci, si) | ci ∈ C, 0 ≤ si ≤ 1, 1 ≤ i ≤ |C|}, si is a numeric
values that can be in different forms, such as a similarity score, a class-conditional
probability (prior posterior probability) or other measures, depending on the
types of learning algorithms. It represents the degree of support or confidence
about the proposition of that instance d is assigned to class ci. The greater
the value of class ci, the greater the possibility of the instance belonging to
that class. Without loss of generality, we denote the classifier output by ϕ(d) =
{s1, · · · , s|C|} − a general representation of classifier outputs. Given an ensemble
of classifiers, ϕ1, ϕ2, · · · , ϕM , all classifier outputs can be organized into a matrix
called a decision profile as depicted in Fig. 1, the combination of classifier outputs
can be carried out in different ways. One of the most commonly used combination

Fig. 1. A decision profile for instance d generated by ϕ1(d), ϕ2(d), · · · , ϕM (d)

methods is to calculate the support for class cj using only the DP ’s jth column,
i.e. s1j , s2j , · · · , sMj , regardless of what the support for the other classes is. We
call such a methods a class-aligned method. Alternatively, the combination of
classifier outputs can be performed on an entire decision profile or the selected
information to constrain a class decision. We refer to this alternative group of
methods as class-indifferent methods [12].

In our work, the concept of the class-indifferent methods is slightly different
from the ones aforementioned in [1], [12] and [23] . We neither generate decision
templates nor use an entire decision profile to compute the degrees of support
for every class. Instead we select 2 classes from each ϕ(d) according to their
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numeric values and restructure it into a new list composed of three subsets of C
which are represented by the novel evidence structure of triplet. In this way, a
decision profile as illustrated in Fig. 1 will be restructured into a triplet decision
profile where each column no longer corresponds to the same class. The degree
of support for each class is computed through combining all triplets in a decision
profile. We will detail our method in later sections.

3 Dempster-Shafer (DS) Theory of Evidence

In any exercise where decisions are to be combined, quantitative and qualita-
tive pertinent information and knowledge often originate from different evidence
sources, and they are often pervaded with uncertainty. In this study we seek a
way to formalize such process in the context of ensembles for decision making
with uncertainty. We briefly describe the DS theory of evidence below [19].

Definition 1. Let Θ be a finite nonempty set, and call it the frame of dis-
cernment. Let [0, 1] denote the interval of real numbers from zero to one, i.e.
[0, 1] = {x|0 ≤ x ≤ 1}. A function m : 2Θ → [0, 1] is called a belief mass function
if it satisfies:

1) m(∅) = 0; 2)
∑

X⊆Θ

m(X) = 1.

A belief mass function is a basic probability assignment (bpa) to all subsets X
of Θ. A subset A of a frame Θ is called a focal element of a belief mass function
m over Θ if m(A) > 0 and it is called a singleton if it contains only one element.

Definition 2. Let m1 and m2 be belief mass functions on the same frame Θ,
and for any subsets A ⊆ Θ, the orthogonal sum ⊕ of two belief mass functions
on A is defined as

m(A) = (1/N)
∑

X∩Y =A

m1(X)m2(Y ) (2)

where N = 1−
∑

X∩Y =∅ m1(X)m2(Y ) and K = 1/N is called the normalization
constant of the orthogonal sum m1 ⊕m2. The orthogonal sum is a fundamen-
tal operation of evidential reasoning and it is often called Dempster’s rule of
combination. There are two conditions to ensure the orthogonal sum exists: 1)
N �= 0; 2) two belief mass functions must be independent of each other. We often
allocate some mass to undeterministic status by means of ignorance.

It should be noted that the second condition above is a theoretical restriction
on applying the orthogonal sum. In the case of classifier combination, it could
be argued that the pieces of evidence derived from classifiers may not be entirely
independent, but in this study we simply make an independence assumption on
this. A recent discussion on this issue can be found in [2].
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4 Triplet-Based Belief Mass Function

In this section we describe the development of a novel evidence structure − the
triplet and its formulation.

Starting by analyzing the computational complexity of combining multiple
pieces of evidence, we consider how a more efficient method for combining evi-
dence can be established. Given M pieces of evidence represented by
Fig. 1, the computational complexity of combining these pieces of evidence using
equation (2) is dominated by the number of elements in C and the number of
classifiers M . In the worst case, the time complexity of combining M pieces of
evidence is O(|C|M−1). One way of reducing the computational complexity is to
reduce the number of pieces of evidence being combined, so that the combina-
tion of evidence is carried by a partition of the frame of discernment C, with
less focal elements than C, but including possible answers to the proposition of
interest. The partition can thus be used in place of C when the computations of
the orthogonal sum are carried out [18]. For example, a dichotomous structure
can be used to partition the frame of discernment C into two subsets ϑ1 and
ϑ2, where there are a number of mass functions that represent evidence in favor
of ϑ1 and against ϑ2, along with the lack of evidence − ignorance. It has been
shown that Dempster’s rule can be implemented in such a way that the number
of computations increases only linearly with the number of elements in C if the
mass functions being combined are focused on the subsets where ϑ1 is singleton
and ϑ2 is the complement of ϑ1, i.e., O(|C|) [3].

The partitioning technique enables a large problem to be broken up into
several smaller and more tractable problems. However, a fundamental issue in
applying this technique is how to select elements that contain the possibly correct
answers to the propositions corresponding to C.

An intuitive way is to select the element with the highest degree of confidence.
Indeed, since the classifier outputs approximate class posteriori probabilities, se-
lecting the maximum probability reduces to selecting the output that is the
most ’certain’ of the decisions. This could be justified from two perspectives.
First, the probability assignments given in formula (1) give quantitative repre-
sentation of judgments made by classifiers on the propositions; the greater their
values, the more likely these decisions are correct. Thus selecting the maximum
distinguishes the trivial decisions from the important ones. Second, the combina-
tion of decisions with the lower degrees of confidence may not contribute to the
performance increase of combined classifiers, but only make the combination of
classifiers decisions more complicated [21]. The drawback of selecting the max-
imum, however, is that the combined performance can be reduced by a single
dominant classifier that repeatedly provides high confidence values. Contenders
with the higher values are always chosen as the final classification decisions, but
some of these may not be correct.

To cope with the deficiency resulting from the maximal selection, we pro-
pose to take the second maximum decision into account in combining classifiers.
Its inclusion not only provides valuable information contained in the discarded
classes by the maximal selection for combining classifiers, but this also to some
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extent avoids the deterioration of the combined performance caused by the er-
rors resulting from a single dominant classifier that repeatedly produces high
confidence values. We propose a novel structure − a triplet − partitioning a list
of decisions ϕ(d) into three subsets below.

Definition 3. Let C be a frame of discernment and let ϕ(d) = {s1, · · · , s|C|}
be a list of scores, an application-specific belief mass function is defined as a
mapping function, m : 2C → [0, 1], i.e. a bpa to ci ∈ C for 1 ≤ i ≤ |C| as follows:

m({ci}) =
si∑|C|

j=1 sj

(3)

where 1 ≤ i ≤ |C|.
This mass function expresses the degrees of belief with regard to the choices of
classes to which a given instance could belong. By equation (3), we can rewrite
ϕ(d) as ϕ(d) = m({c1}),m({c2}), · · · ,m({c|C|}).

Definition 4. Let Θ be a frame of discernment and ϕ(d) = {m({x1}),m({x2}),
...,m({xn})}, where |n| ≥ 2, an expression of the form Y = 〈{u}, {v}, C〉 is
defined as a triplet, where {u}, {v} are singletons, and C is the whole set Θ, and
they satisfy

m({u}) + m({v}) + m(C) = 1

To obtain triplet belief mass functions, we define a focusing operator and denote
it by mσ as follows:

{u} = arg max{m({x1}),m({x2}), ...,m({xn})} (4)

{v} = arg max{m({x}) | x ∈ {x1, ..., xn} − {u})} (5)

C = Θ,mσ(Θ) = 1−mσ({u}) + mσ({v}) (6)

and each row in Fig. 1 is simply rewritten as formula (7) below.

ϕi(d) = {mσ({u}),mσ({v}),mσ(C)} 1 ≤ i ≤M (7)

We refer to mσ as a triplet function or as a two-point mass function. For the
sake of simplicity, ϕi(d) = {m({u}),m({v}),m(C)}. Following the same way, we
divide ϕi(d) into four subsets which is represented by three-point focuses called a
quartet and define associated quartet belief mass functions. More details about
quartets can be found in [6].

Suppose we are given two triplets 〈{x1}, {y1}, C〉 and 〈{x2}, {y2}, C〉 where
xi, yi ∈ C (i = 1, 2), and the associated triplet mass functions m1 and m2.
The enumerative relations between any two pairs of focal elements {x1}, {y1}
and {x2}, {y2} include: two focal points equal; one focal point equal; and totally
different focal points. The general formulae for combining any number of triplet
functions based on the three different cases are given below.
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4.1 Two Focal Point Equal

Considering a collection of triplet belief mass functions m1, ...,ml that are defined
on {x, y,Θ}, ..., {x, y,Θ}, by formula (2) − the orthogonal sum − we can derive
the general formulae to combine these triplet functions:

m({x}) = K[
l∏

i=1

(mi({x}) + mi(Θ)) −
l∏

i=1

mi(Θ)] (8)

m({y}) = K[
l∏

i=1

(mi({y}) + mi(Θ)) −
l∏

i=1

mi(Θ)] (9)

m(Θ) = K

l∏
i=1

mi(Θ) (10)

K−1 =
l∏

i=1

(mi({x}) + mi(Θ))

+
l∏

i=1

(mi({y}) + mi(Θ)) −
l∏

i=1

mi(Θ) (11)

4.2 One Focal Point Equal

Similarly we consider the case of any number of triplet belief mass functions
m1, ...,ml defined on {x, y1, Θ}, ..., {x, yl, Θ}, where y1 �= ... �= yl, by repeatedly
using formula (2) we then have

m({x}) = K(
l∏

i=1

(mi({xi}) + mi(Θ)) −
l∏

i=1

mi(Θ)) (12)

m({yi}) = K(mi({yi})
l∏

j=1,j 
=i

mj(Θ)); i ∈ {1, · · · , l} (13)

m(Θ) = K
l∏

i=1

mi(Θ) (14)

K−1 =
l∏

i=1

(mi({xi}) + mi(Θ))+

mi({yi})
l∏

j=1,j 
=i

mj(Θ); i ∈ {1, · · · , l} (15)
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4.3 Completely Different Focal Points

Given a collection of triplet mass functions be m1, ...,ml defined on {x1, y1, Θ},
..., {xl, yl, Θ}, where xi �= yj, 1 ≤ i, j ≤ l, by repeatedly using formula (2) to
perform pairwise combination of any triplet functions, we then have

m({xi}) = K(
l∏

i
=j

(mi({xi})mj(Θ)) (16)

m({yi}) = K(
l∏

i
=j

(mi({yi})mj(Θ)) (17)

m(Θ) = K(
l∏

i=1

(mi(Θ)) (18)

K−1 =
l∑

i=1

l∏
i
=j

(mi({xi})mj(Θ)+

l∑
i=1

l∏
i
=j

(mi({yi})mj(Θ) +
l∏

i=1

(mi(Θ) (19)

With a collection of triplet functions m1,m2, ...,mn, simply it can be reorganized
on the basis of one focus being equal, two focuses being equal, and none of focuses
being equal as follows:

m = m11 ⊕ ...⊕m1l1︸ ︷︷ ︸
l1 items

...⊕mk1 ⊕ ...⊕mklk︸ ︷︷ ︸
lk items

(20)

where 1 ≤ k ≤ 3; 0 ≤ l1, ..., lk and l1 + ...+ lk = n, and n is the number of items
to be summed. For each li, we can use the formulae (8)−(19) to calculate the
combinations of n triplet functions. In calculating Equation (20), it is assumed
that at each step of pairwise calculation, the focusing operator will be applied
to obtain a new triplet function, and a final decision to be made on a class
assignment for an instance is based on the maximum selection of the belief given
by Equation (20).

5 Experimental Evaluation

5.1 Experimental Settings

In our experiments, we used thirteen data sets downloaded from the UCI machine
learning repository [7]. All the selected data sets have at least three or more
classes as required by the evidential structures. The details about these data
sets can be found in Table 1.
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Table 1. The general description about the datasets

Dataset Instance No Classes Attribute

anneal 798 6 38

audiology 200 23 69

balance 625 3 4

car 1728 4 6

glass 214 7 9

autos 205 6 25

iris 150 3 4

letter 20000 26 16

heart 303 5 13

segment 1500 7 19

soybean 683 19 35

wine 178 3 13

Zoo 101 7 17

For base (individual) classifiers, we used thirteen learning algorithms which
all are taken from the Waikato Environment for Knowledge Analysis (Weka)
version 3.4 (see Table 2). These algorithms were simply chosen on the basis of
their performance in three randomly picked data sets. For meta classifiers −
stacking, we chose the multi-response linear regression (MLR) and we also chose
AdaBoostM1 to compare with our method. Parameters used for each algorithm
were at the Weka default settings. The details about these algorithms can be
found in [22].

Table 2. The general description about thirteen learning algorithms

No Classifier No Classifier

0 AOD 1 NaiveBayes

2 SOM 3 IB1

4 IBk 5 KStar

6 DecisionStump 7 J48

8 RandomForest 9 DecisionTable

10 JRip 11 NNge

12 PART

The experiments were performed on a three partition scheme using a ten-
fold cross validation to avoid overfitting to some extent1. We divided the data
sets into 10 mutually exclusive sets. For each fold, after the test set removal,
the training set were further subdivided into 70% for a new training set and a
30% validation set. Apart from the evaluation of the performance of individual
classifiers, the validation set is used to select the best combination of classifiers.
The performance of the combinations of selected classifiers (the best ensembles of
1 Two partition with a ten-fold cross validation was used for MLR and AdaBoostM1.
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classifiers) using DS, majority voting (MV) and linear sum (SUM) combination
methods is evaluated on the testing set.

Eight groups of experiments are reported here, which were done individually
and in combination across all the thirteen data sets. These include 1) assessing
all the algorithms as shown in Table 2; 2) combining the individual classifiers
using DS, in which the outputs are represented by triplet functions and full list of
probabilities (prior to transforming them to triplets); 3) combining the individual
classifiers represented by the dichotomous functions using DS, where belief mass
functions were defined on the basis of the performance of classifiers in terms of
recognition, substitution and rejection rates [23]; 4) combining the individual
classifiers to construct the ensembles using MV, in which the individual outputs
were in single classes; 5) combining the individual classifiers using SUM, in which
the classifier outputs were in the form of full list of probabilities; 6) combining
J48, NaiveBayes, MLR and KStar by MLR as used in [17]; 7) combining the
best, the second best and the third best individual classifiers (SMO, IBk and
NNge) by MLR; and 8) experimenting on AdaBoostM1 with SMO − the best
individual classifier across the thirteen data sets.

To compare the classification accuracies between the individual classifiers and
the combined classifiers across all the data sets, we employed the ranking sta-
tistics in terms of win/draw/loss record [14]. The win/draw/loss record presents
three values, the number of data sets for which classifier A obtained better, equal,
or worse than classifier B with respect to a classification accuracy. All collected
classification accuracies were measured by the averaged F -measure [22]. A paired
t-test across all these domains were also carried out to determine whether the
differences between the base classifiers and combined classifiers are statistically
significant at the 0.05 level.

5.2 Experimental Results

The ten experimental results are summarized in Tables 3 and 4, respectively,
including all the classification accuracies of the best individual classifiers and the
best combined classifiers. Table 3 presents the classification accuracies of the best
individual classifiers and the best combined classifiers using DS under the four
different structures. Table 4 gives the best combined classifiers using MV, SUM,
boosting and stacking. In these tables, each cell represents either the accuracy of
a best ensemble or the best individual classifier on the corresponding data set.
If the difference between the best combined classifier and the best individual on
the same data set is statistically significant, then the larger of the two is shown
in bold.

The bottoms of Tables 3 and 4 provide summary statistics of comparing the
performance of the best base classifiers with the best combined classifiers across
the data sets. From these summaries, it can be observed that the accuracy of
the combined classifiers based on the triplet structure using DS is better than
the eight others on average. It has more wins to losses over the dichotomous,
Fullist and the best combined classifiers using MV, SUM, boosting and stacking
compared with the best individual classifiers. This finding is further supported
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Fig. 2. Ensemble size: number of individual classifiers involved in the best combined clas-
sifiers across all the data sets with the evidential structures of triplet and dichotomous

Table 3. The classification accuracies of the best INDIVIDUAL classifier, best com-
bined classifiers based on the different structures of TRIPLET, DICHOTOMOUS and
FULLIST using DS over the thirteen data sets

Dataset Individual Triplet Dichotoms Fullist

Anneal 80.23 81.57 80.68 69.88

Audiology 48.67 57.44 51.97 49.32

Balance 65.67 63.17 65.67 21.68

Car 89.62 94.29 91.92 90.03

Glass 65.36 66.81 66.26 62.75

Autos 77.59 79.28 78.78 66.80

Iris 95.33 96.67 96.67 60.71

Letter 92.05 92.91 93.41 68.38

Cleveland 35.48 37.09 35.37 34.26

Segment 96.69 97.35 97.74 88.40

Soybean 95.89 96.88 96.85 91.11

Wine 98.90 100.00 98.90 96.70

Zoo 90.62 93.61 93.61 64.39

Average 79.39 81.31 80.60 66.49

Win/Draw/Loss 12/0/1 10/2/1 2/0/10

Significant win 7 5 0

by the statistically significant wins in which the triplet has two more wins than
the dichotomous, three more wins than MV, four more wins than AdaBoost.M1,
and seven more wins than Fullist and MLR.

Fig. 2 presents the sizes of the best combined classifiers across all the data
sets. With the different structures, the construction of these ensembles involves
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Table 4. The classification accuracies of the best combined classifiers using MV, SUM,
AdaBoost.M1 (BOOSTING corresponds to setting (8) in Section 5.1), and MLRs
(STACK1,2 correspond to the settings (6) and (7) in Section 5.1) over the thirteen
data sets

Dataset MV Sum Boosting Stack1 Stack2

Anneal 81.14 80.51 77.35 72.77 75.34

Audiology 54.30 53.72 45.16 32.89 32.19

Balance 62.72 63.17 93.17 62.73 68.49
Car 91.75 91.41 92.60 86.18 90.03

Glass 66.69 66.40 65.97 58.41 57.77

Autos 77.94 78.28 77.32 75.34 77.32

Iris 96.67 95.33 98.00 94.67 94.00

Letter 92.77 92.89 92.53 92.03 92.53

Cleveland 34.37 37.64 31.91 35.13 31.87

Segment 96.55 97.68 96.57 96.59 95.85

Soybean 96.17 96.60 95.50 95.25 95.20

Wine 98.97 99.42 98.38 98.90 98.32

Zoo 93.61 93.61 89.43 82.57 83.64

Average 80.28 80.51 81.07 75.65 76.35

Win/Draw/Loss 10/0/3 11/1/1 5/0/8 0/1/12 3/0/10

Significant win 4 3 3 0 0

2-7 combinations of classifiers, and among them most of these combinations only
involves two classifiers. This result is consistent with previous studies conducted
in [4] and [20], and different from ones presented in [15] and [14] where their
experiments showed that ensemble accuracy increased with ensemble size and
the performance levels out with ensemble sizes of 10-25. Our experimental results
uncover that due to the different way of constructing ensembles, the sizes of
ensembles constructed by different learning algorithms working on a single data
set is not necessarily the same as that constructed by single learning methods
which manipulate different portion of features or instances of the data set.

6 Discussion

Perhaps one of the most important difference between the triplet-based class-
indifferent method from the single class label methods of AdaBoost.M1 and MV
lies in the fact that it is motivated or built around the appealing intuition that
the support contained in discarded classes−the second best decision− could help
improve the combined performance of classifiers. More precisely the combined
effect of two triplet classifiers will be affected by the first and second elements
along with ignorance. Therefore the use of support from the other classes may
play an important role in overcoming the single error produced by a classifier
that repeatedly provides the high confidence values of classes as occurred in
AdaBoost.M1 and MV. The empirical results show this property is appealing.
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Now we look at a theoretical justification on our claim. We state formally the
conditions for the first or second decision in either of two triplets to become the
best supported decision. Assume that two triplet functions m1 and m2 fall into
the category where a pair of singletons {x1}, {y1} is equal to a pair of {x2}, {y2},
i.e., x = x1 = x2 and y = y1 = y2 (see Section 4.1). By using formulae (2), we
have the following inequality when x is the best choice:

m1({x})m2({x}) + m1({x})m2(Θ) + m1(Θ)m2({x}) >
m1({y})m2({y}) + m1({y})m2(Θ) + m1(Θ)m2({y}) (21)

Substituting for Θ in formula (21) and rearranging it, we have the condition for
the best support of x below:

m1({x}) > 1− [1−m1({y})][1−m2({y})]
[1−m2({x})]

(22)

Likewise we can derive the condition for y being the best supported decision:

m2({y}) > 1− [1−m1({x})][1−m2({x})]
[1−m1({y})]

(23)

We can obtain the conditions for the other two cases in two triplets in a similar
manner.

The idea of MLR is to learn a single combination model for all the classes from
the outputs of original classifiers using linear regression. It can be regarded to as
a class-indifferent method. Our experimental results show that the performance
of DS is significantly better than that of MLR and the combined classifiers
by MV also outperform MLR that is consistent with the results on multi-class
data presented in [17]. The performance degradation of MLR might confirm its
limited ability to determine decision boundaries for the multi-class data. Our
experimental results also demonstrate this limitation could be improved to some
extent by integrating the individual classifiers which are better performed.

With respect to the dichotomous structure, the drawback of that method is
the way of measuring evidence, it ignores the fact that classifiers normally do not
have the same performance on different classes, which could cause a deterioration
in the performance of the combined classifiers.

Additionally compared with the performance of combined classifiers under
the full list using DS, it can be observed that SUM is significantly better than
DS. This finding suggests that to achieve the better performance of combining
classifiers using DS, it is necessary to approximate the full list of probabilities
(numeric scores) into some kind of structures, such as triplet. Inspecting the
calculation process of Dempster’s rule, it is not a surprise that the performance
of combining classifiers in the form of triplets is better than that in a full list
of decisions, because when a large number of decisions from each classifier are
involved in combinations, it increases possibilities of conflict between two respec-
tive decisions − the larger the conflict, the poorer the performance of combined
classifiers. This result is somehow consistent with the finding given in [13].
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7 Conclusion

We have presented a formalism for modelling classifier outputs in terms of triplets
and the general formulae for combining base classifiers represented in the form
of triplets which underpin our class-indifferent combination method. A wide
range of experiments have been carried out over the thirteen UCI data sets.
Our results show that the performance of the best combined classifiers is better
than that of the best individuals at most of the data sets and the corresponding
ensemble sizes are 2-7 where the combinations of 2 and 3 classifiers take 61.5%
in the thirteen best ensembles. The comparative analysis among the structures
of triplet, dichotomous and full list show that the triplet is the best one, and
compared with the combinations methods of MV, SUM, MLR and AdaBoost.M1,
DS is better than the others in combining the individual classifiers.

A decision rule defined on the basis of the DS theory of evidence is different
from the majority voting principle. DS makes use of evidence accumulated from
multiple classifiers in the process of classifier combination. It not only considers
the majority agreement on the decisions received from classifiers, but it also
incorporates the degrees of belief associated with those decisions into the decision
making process. So it provides an effective means to reconcile decisions made by
multiple classifiers.
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Abstract. We propose a family of multi-task learning algorithms for
collaborative computer aided diagnosis which aims to diagnose multiple
clinically-related abnormal structures from medical images. Our formula-
tions eliminate features irrelevant to all tasks, and identify discriminative
features for each of the tasks. A probabilistic model is derived to justify
the proposed learning formulations. By equivalence proof, some existing
regularization-based methods can also be interpreted by our probabilis-
tic model as imposing a Wishart hyperprior. Convergence analysis high-
lights the conditions under which the formulations achieve convexity and
global convergence. Two real-world medical problems: lung cancer prog-
nosis and heart wall motion analysis, are used to validate the proposed
algorithms.

1 Introduction

Physicians routinely use computer aided diagnosis (CAD) systems in clinical
practice [1]. It is well accepted that CAD systems decrease detection and recog-
nition errors when used as a second reader [2]. Typically, the goal of a CAD
system is to detect potentially abnormal structures in medical images. How-
ever, most CAD systems focus on the diagnosis of a single isolated abnormality
using images taken only for the specific disease, which neglects a fundamental
aspect of physicians diagnostic workflow where they examine not only primary
abnormalities but also symptoms of related diseases.

For instance, an automated lung cancer CAD system can be built to separately
identify solid nodules and ground glass opacities (GGOs). (Patients can have
both structures, or GGOs can later become calcified GGOs which become solid
or partly-solid nodules.) Radiologic classification of small adenocarcinoma of
lung by means of thoracic thin-section CT discriminates between solid nodules
and GGOs. Fig. 1 shows two CT slices with a nodule and a GGO respectively.
A solid nodule is defined as an area of increased opacification more than 5mm in
diameter, which completely obscures underlying vascular markings. A ground-
glass opacity (GGO) is defined as an area of a slight homogeneous increase
in density, which does not obscure underlying vascular markings [3]. Detecting
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Fig. 1. Lung CT images: left, solid nodule; right, ground glass opacity (GGO)

nodules and detecting GGOs are two dependent tasks with their own respective
characteristics, and is thus more sensible to be tackled jointly.

Another example is the wall motion analysis of the left ventricle which is used
to diagnose ischemia diseases. The left ventricle wall is medically segmented into
16 segments. Fig. 2 shows an ultrasound image of left ventricle in the apical four
chamber (A4C) view and the six segments seen from this view. The task is to
predict the wall motion abnormality of each segment by extracting features from
cardiac ultrasound images and classifying each segment as being normal versus
abnormal. Left ventricle segments are physically connected, and if any segment
has abnormalities, the neighboring segments are affected, which makes jointly
learning the classifiers both necessary and beneficial.

We introduce a concept – “collaborative” computer aided diagnosis (CCAD)
– that aims to improve the diagnosis of a single abnormality by fusing informa-
tion, knowledge or data from various related sources, such as detecting nodules
not only by itself but also by learning from multiple related abnormal structures
simultaneously. In the machine learning field, the collaborative learning problem

LARA

LV
RV

3 6

9 12

14 16

Fig. 2. Ultrasound image of heart: left, ultrasound image of A4C view; right, segments
of left ventricle seen from A4C view
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has been cast as multi-task learning (MTL), collaborative filtering or collabo-
rative prediction. Multi-task learning is a learning methodology that estimates
models for several tasks in a joint manner. Although almost all existing multi-
task learning methods assume some relatedness among tasks, the definition of
relatedness varies [4,5,6]. From the hierarchical Bayesian viewpoint [7], multi-
task learning essentially seeks to learn a good prior over all tasks to capture task
dependencies.

We model the across-task relatedness as sharing a common feature or kernel
representation. Dimension reduction or sparse kernel representation is essential
for CAD applications. Previous work on selecting features for multiple related
tasks include the work in [8] that is based on maximum entropy discrimination,
and the regularization-based methods [9,10] by applying a joint regularization of
the model parameters. We derive a family of effective approaches, which gener-
alizes our early multi-task learning study [12], by directly maximizing the joint
a posterior distribution across tasks. By imposing a hyperprior that corresponds
to a trace norm constraint [11] on model parameter variance, we are able to
eliminate features irrelevant to all tasks as well as select discriminative features
for each individual task.

2 MTL Algorithms

Assume that we have T tasks in total, for each task t, we have sample set
(Xt ∈ R�t×d,yt ∈ R�t). The matrix Xt is the feature matrix or kernel matrix
where the i-th row corresponds to the i-th example xt

i of task t, and each column
represents a feature or a kernel basis, and yt denotes the label vector where the
i-th component is yt

i . We consider functions of the form x�α which is linear in
terms of the model parameter α. We focus on models where x is in the original
feature space but many discussions in this article can be extended to kernel
spaces.

To learn the parameter vector αt, single task learning methods minimize a
regularized risk L(αt,Xt,yt) + λP (αt) for an optimal αt where P is a regular-
ization operator, such as a 2-norm penalty on αt, i.e.,

∑d
j=1(αtj)2, or a 1-norm

penalty,
∑d

j=1 |αtj |, L defines the loss term, and λ balances between L and P .
For example, the logistic regression loss

L(αt,Xt,yt) =
�t∑

i=1

log(1 + exp(−
d∑

j=1

αtjx
t
ijy

t
i)) (1)

and the least squares loss

L(αt,Xt,yt) =
�t∑

i=1

(
d∑

j=1

αtjx
t
ij − yt

i)
2 (2)

are both strictly convex functions in terms of αt.
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A family of joint learning algorithms can be derived by rewriting αt = Cβt

where C is a diagonal matrix with diagonal vector equal to c ≥ 0, and we solve
the following problem over all tasks:

min
βt,t=1,··· ,T,c≥0

T∑
t=1

(L(Cβt,Xt,yt) + P1(βt))

subject to P2(c) ≤ γ,
(3)

where P1 and P2 are any suitable regularization operators. For each task t,
solving problem (3) constructs a function f(x) = x�αt = x�Cβt =

∑
j xjcjβtj

where βt is task-specific while the same c is used across different tasks. We call
c an indicator vector indicating if an according feature is used in the model.
Typically c comprises entries that are equal to 0 or 1, which leads to difficult
combinatorial optimization problems, and thus has been relaxed to non-negative
real values in Problem (3). If cj = 0, the j-th variable is not used in any model
for all tasks regardless of the value of a specific β. Otherwise if cj > 0, the j-th
variable appears in all models but an appropriate β vector can rule out this
feature for a particular task. In other words, c is used to eliminate any irrelevant
features, and βt selects the best suitable features for each individual task.

Many regularization terms can be considered for the choices of P1 and P2.
For example, if the 2-norm regularization is employed for both P1 and P2, the
problem (3) becomes

min
βt,t=1,··· ,T,c≥0

T∑
t=1

(
L(Cβt,Xt,yt) +

∑d
j=1 β

2
tj

)
subject to

∑d
j=1 c

2
j ≤ γ,

(4)

where γ > 0 is a tuning parameter. Empirical results included in [12] demonstrate
the effectiveness of the formulation (3) with P1(·) =

∑d
j=1 β

2
tj and P2(·) =∑d

j=1 |cj |.
To effectively optimize (3), we design an alternating optimization algorithm,

which is, in spirit, similar to the Expectation-Maximization approach. At itera-
tion s, the “E” step estimates the optimal cs, which serves the common prior,
based on βs−1. The “M” step estimates a new βs

t for each t by maximizing
the posterior based on cs. The algorithm does the following steps at the s-th
iteration:

Algorithm A(Cs−1, βs−1
t , t = 1, · · · , T )

– Fix C = Cs−1 (initially, to I), convert X̃t ← XtC, solve (5) for βs
t ,

∀ t = 1, · · · , T, minβt
L(βt, X̃t,yt) + P1(βt). (5)

– Fix βt = βs
t , convert X̂t ← XtBt where Bt is a diagonal matrix with

diagonal elements equal to βs
t , solve problem (6) for cs,

min
c≥0

L(c, X̂t,yt), subject to P2(c) ≤ γ. (6)
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3 A Statistical Justification

Let p(yt|Xt,wt) specify the likelihood for task t, with a noise model which is
independent of other tasks. Here wt is the model parameter to be determined.
In a hierarchical Bayesian framework, we assume all the function weights wt are
i.i.d. sampled from a common prior p(·), which accounts for the dependencies
between different tasks. Typically a zero mean Gaussian prior with covariance
Σ is assigned to the weights wt, i.e., wt ∼ N(0,Σ). Then the a posteriori
distribution of all function coefficients {wt} can be calculated via Bayes rule
as, p(W|X,y,Σ) ∝

∏
t p(yt|Xt,wt)p(wt|Σ) where W is a matrix containing all

weight vectors wt as rows, and X, y contain data from all tasks.
We are interested in learning the shared covariance matrix Σ rather than

fixing it. A Bayesian treatment would be to assign a hyperprior to Σ and learn
W and Σ jointly. Since Σ is symmetric and positive definite, one choice of
the prior is p(Σ) ∝ |Σ|T/2 exp

(
− 1

2 tr(Σ)
)
, with tr(·) the matrix trace. This is

essentially a Wishart distribution with degrees of freedom d + T + 1 and scale
matrix I. Now the joint a posteriori distribution of (W,Σ) is

p(W,Σ|X,y) ∝ p(Σ)
∏

t

p(yt|Xt,wt)p(wt|Σ). (7)

The maximum a posteriori (MAP) estimate is to find a point estimate that max-
imizes the posterior (7). This is equivalent to solving the following optimization
problem minwt,Σ

∑T
t=1

(
L(wt,Xt,yt) + w�

t Σ−1wt

)
+ tr(Σ) by taking the

negation of the logarithm of (7) and removing the normalization constant. Here
the loss function for each task t is L(wt,Xt,yt) ∝ − log p(yt|Xt,wt). This can
also be equivalently written as

min
wt,t=1,··· ,T,Σ

T∑
t=1

L(wt,Xt,yt) + w�
t Σ−1wt,

subject to tr(Σ) ≤ γ
(8)

with an appropriately chosen γ > 0. For each of the task t, this trace condition
essentially requires that the expected variance of each weight component wj

t of
wt, ∀t, is proportional to γ. With a small γ, some components will become small
to achieve sparse estimates of wt. Thus this formulation leads to a jointly sparse
structure of the weight matrix W.

If we decompose the matrix Σ to its eigen-form Σ = UΛU� where U is an
orthonormal matrix and the diagonal matrix Λ contains eigen-values σj ≥ 0, the
problem (8) becomes an equivalent form with αt = U�wt:

min
αt,t=1,··· ,T,U,σ≥0

T∑
t=1

(
L(αt,XtU,yt) +

d∑
j=1

1
σj
α2

tj

)
,

subject to
d∑

j=1

σj ≤ γ.

(9)
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Problem (9) implies that the original input x has been transformed to U�x and
then a linear function is constructed in the transformed space where features are
independent.

Many image features in CAD applications are computationally expensive, so
one of the major goals is to reduce the number of image features in the models.
Since the resulting orthonormal U may not be sparse, we assume U = I to
enforce the sparsity on the original image features instead of sparse represen-
tations in the transformed space. By showing equivalence between (4) and (9),
the probabilistic model in this section provides a statistical justification for our
algorithms.

Theorem 1. For any optimal solution of Problem (9) where U = I, there is a
corresponding optimal solution to Problem (4), and vice versa.

The proof can be obtained by change of variables as follows: βtj = αtj/
√
σj ,

∀t = 1, . . . , T , cj = √σj , j = 1, . . . , d. Correspondingly, αtj = cjβtj and
∑

j c
2
j =∑

j σj ≤ γ.

4 Connection to Existing Methods

Feature selection for multi-task learning using a joint regularization has been
recently proposed in [9] where a so-called �1/�2 norm is applied to the weight
matrix A formed by all αt as rows. A more recent work [10] dedicated to multi-

task feature learning has defined a new norm as ‖A‖2,1 =
∑d

j=1

√∑T
t=1 α

2
tj ,

which is the same as the �1/�2 norm in [9]. Assuming U = I, both work essentially
solves the following optimization problem

min
αt,t=1,··· ,T

T∑
t=1

L(αt,Xt,yt),

subject to
d∑

j=1

√
T∑

t=1
α2

tj ≤ κ,

(10)

or an equivalent problem as follows

min
αt,t=1,··· ,T

T∑
t=1

L(αt,Xt,yt) + λ

(
d∑

j=1

√∑T
t=1 α

2
tj

)2

, (11)

where κ and λ are pre-specified parameters, and these two problems are equiv-
alent for properly chosen κ and λ. The problem in [9] does not use the squared
regularized term as in problem (10) whereas the formulation in [10] uses the
square of ‖A‖2,1 as the second term in problem (11).

As shown in [9,10], these regularization-based algorithms advance the multi-
task learning research, but there has been lack of investigation if a probabilistic
interpretation exists for these methods. The following theorem characterizes the
connection between our formulation and (11). Hence, our probabilistic model is
also feasible to justify these approaches that these methods assume a Wishart
prior on the common covariance Σ of function weights wt, ∀t.
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Theorem 2. The Karush-Kuhn-Tucker (KKT) conditions of Problem (9) with
U = I are identical to the KKT conditions of Problem (11) for any convex and
continuously differentiable loss function L(α,X,y).

Proof. The Lagrangian of the problem (9) is:

L(αt,σ, a,b) =
∑T

t=1 L(αt,Xt,yt) +
∑T

t=1

∑d
j=1

α2
tj

σj

+a(
∑d

j=1 σj − γ)− bTσ,

where a and b are Lagrangian multipliers, and a ≥ 0 is a scalar and b ≥ 0 is a
vector.

Problem (9) minimizes a convex objective over a convex feasible region, and
thus is a convex program. Then the KKT necessary and sufficient conditions are
as follows:

∂L
∂σj

= −
∑T

t=1

α2
tj

σ2
j

+ a− bj = 0, (12)

∂L
∂αtj

= ∂L(αt,Xt,yt)
∂αtj

+ 2αtj

σj
= 0, (13)∑d

j=1 σj ≤ γ, a ≥ 0, b ≥ 0, σ ≥ 0 (14)

a(
∑d

j=1 σj − γ) = 0 (15)
bjσj = 0, j = 1, . . . , d (16)

Now we discuss the various cases in terms of the Lagrange multipliers a and bj .

(1) If bj > 0, by the complementary condition (16), σj = 0. It implies α·j = 0
which denotes that for a specific number j, αtj = 0, ∀t = (1, . . . , T ).
(2) If bj = 0 (implying σj > 0) and a = 0, by KKT condition (12),

∑T
t=1 α

2
tj = 0.

Hence, α·j = 0.
(3) If bj = 0 and a > 0 (implying

∑
j σj = γ by (15)), then a = 1

σ2
j

∑T
t=1 α

2
tj ,

and further we have σj = γ
√∑T

t=1 α
2
tj/
∑d

j=1

√∑T
t=1 α

2
tj . Substituting σj into

KKT condition (13) yields the optimality condition, which can be summarized
as follows:

∀(t = 1, . . . , T, j = 1, . . . , d),⎧⎪⎨
⎪⎩

∂L(αt,Xt,yt)
∂αtj

+ 2
γ

(
d∑

j=1

√
T∑

t=1
α2

tj

)
(

T∑
t=1

α2
tj)

− 1
2αtj = 0

or α·j = 0,

Now let λ = 1/γ in Problem (11). Due to the convexity of Problem (11), its
KKT conditions are necessary and sufficient and can be shown as

∀(t = 1, . . . , T, j = 1, . . . , d),⎧⎪⎨
⎪⎩

∂l(αt,Xt,yt)
∂αtj

+ 2
γ

(
d∑

j=1

√
T∑

t=1
α2

tj

)
(

T∑
t=1

α2
tj)

− 1
2αtj = 0

or α·j = 0, and α·j = 0 ∈ ∂g(α·j),
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where we use g(α·j) to denote the objective function in (11) as a function of
α·j , and ∂f to denote the subgradient of function g. The use of subgradient
is necessary since the objective g becomes nondifferentiable as its argument
goes to zero. The equivalence is established by comparing the two sets of KKT
conditions.

Theorem 2 establishes an equivalence between the learning formulations (10),
(11) and (9) (more precisely (4)). Hence our probabilistic model in Section 3
can interpret all these formulations as assuming a common covariance matrix
Σ across wt, ∀t and employing a Wishart hyperprior on Σ. Furthermore, as a
byproduct of Theorem 2, a closed-form solution for c can be further derived to
simplify calculation in Algorithm A specifically for the formulation (4).

Theorem 3. Given β̂t, t = 1, · · · , T, that are optimal solutions of Problem (4),

cj =

√√√√ γ
∑T

t=1 β̂
2
tj∑d

j=1

∑T
t=1 β̂

2
tj

, j = 1, · · · , d

are optimal to Problem (4).

Proof. The proof can be obtained by re-examining Theorem 1 from which we
have αtj = √

σjβtj and cj = √
σj , and Theorem 2 from which we have σj =

γ
√∑T

t=1 α
2
tj/(
∑d

j=1

√∑T
t=1 α

2
tj). Substituting αtj into the formula for σj yields

σj = γ
∑T

t=1 β
2
tj/(
∑d

j=1

∑T
t=1 β

2
tj). Taking the square root of σj yields the for-

mula for cj .

5 Convergence Analysis

Although alternating optimization has been used to develop many efficient al-
gorithms, the convergence proof does not necessarily exist. Convergence analy-
sis usually encloses local convergence and global convergence properties. Local
convergence implies that the algorithm converges to a solution (β̂t, ĉ) if being
initialized from a close neighborhood of (β̂t, ĉ). A global convergence proves that
the algorithm converges when initialized at any arbitrary points in the feasible
region S.

The local convergence property of Algorithm A is analyzed for
Formulation (4). The key point is the requirement of the local strict convex-
ity of the loss function L with respect to (βt, c).

Theorem 4. Let (β̂t, ĉ) be a local minimizer of Problem (4). If ∃ a neighbor-
hood N of (β̂t, ĉ), such that the loss function L has continuous second-order
derivatives and is strictly convex in N , then ∃ N̂ ((β̂t, ĉ)) for any initial point
in N̂ ((β̂t, ĉ)), Algorithm A converges q-linearly to (β̂t, ĉ).
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Proof. Solving Problem (4) is equivalent to minimizing (5) with a properly cho-
sen γ̄ > 0

minβt,t=1,··· ,T,c≥0 g(β1, · · · ,βT , c) =
∑T

t=1 L(Cβt,Xt,yt)
+
∑T

t=1

∑d
j=1 β

2
tj + γ̄

∑d
j=1 c

2
j

The objective function g has continuous second-order derivatives with respect to
βt and c and is strict convex inN due to the local property of the loss function L.
Then the local convergence result developed in [13] on unconstrained problems
is applied to show our theorem.

Global convergence analysis is usually more difficult and requires stronger con-
ditions. We use the results developed in the mathematical programming field
[13,14] to obtain a global convergence analysis which requires that both sub-
problems, (5) and (6), have an unique optimal solution. This condition highly
relies on the property of loss functions. If strictly convex loss functions are em-
ployed, such as the logistic regression loss or least squares loss, the loss term
L(Cβt,Xt,yt) is bi-convex with respect to (βt, c), in other words, is strictly
convex with respect to βt if c is fixed, and vice versa. The strict bi-convexity
guarantees that sub-problems have an unique solution.

Let us denote the feasible set of the problem (4) as S. In Algorithm A, S =
S1 ×S2 where S1 is the feasible region for c, S1 = {c | ‖c‖2 ≤ γ}, and S2 is the
feasible region for βt, t = 1, · · · , T . Problem (4) has a 2-norm regularization on
β, so each βt has to remain in the set S2 = {(β1, · · · ,βT )|

∑T
t=1

∑d
j=1 β

2
tj ≤ γ̃}

for a γ̃ > 0.

Theorem 5. Let Ω be the set of fixed points of A as

{(c,β1, · · · ,βT ) ∈ S | (c,β1, · · · ,βT ) = A(c,β1, · · · ,βT )}.

If the loss function L is strictly convex in terms of βt, ∀ t, for fixed c and is
also strictly convex in terms of c for fixed β, and the regularizers P1 and P2 are
strictly convex respectively in terms of βt and c, then for any initial point in S,
Algorithm A

(i) either converges to Ω;
(ii) or the limit of every convergence subsequence is in Ω.

Proof. To achieve the results (i) or (ii), the theorem shown in [13,14] requires
the following conditions: (a) each sub-problem in A has an unique optimal
solution; (b) S = S1 × S2, where each Si is a compact subset in a real space of
proper dimension. We thus validate the satisfaction of these conditions.
Since the objective function of the unconstrained equivalent form (5) is strictly
convex in terms of one set of variables when fixing the other due to the strict
convexity of L, P1 and P2, (a) holds. Obviously, S1 = {c|P2(c) ≤ γ} is a closed
and bounded ball in a d-dimensional space, and S2 = {β|

∑
t P1(βt) ≤ γ̃} defines

a closed and bounded ball in a (d × T )-dimensional space. Thus both sets are
compact subsets of a real space.
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Some common loss functions satisfy the conditions in Theorem 5. For example,
in the logistic regression loss function (1) and the least squares loss function (2),
L(αt,Xt,yt) is strictly convex in terms of αt. Hence L(Cβt,Xt,yt) is strictly
convex in terms of c if all βt are fixed, and in terms of βt if c is fixed. For such
a loss function, the global convergence holds.

Particularly, Problem (4) is equivalent to Problem (9) which is a convex pro-
gram for any convex loss function, so any local optimal solution obtained by
Algorithm A is also a global minimizer of (4). In our experiments, we implement
Algorithm A with the logistic regression loss and the least squares loss with the
2-norm regularization for P1 and P2, and thus the algorithm globally converges.

6 Experiments

We validate the proposed collaborative learning approach by comparing it to
standard single-task learning (STL) approaches where multiple tasks are tackled
independently, and to two commonly-used multi-task learning (MTL) methods,
a regularization-based MTL method in [15] and a Bayesian MTL method based
on Gaussian processes (CGP) in [5]. Notice that Algorithm A with the 1-norm
penalty term for both P1 and P2 in Problem (3) has been implemented in our
early work [12] where a pooling method which trains a single model for all tasks
has also been compared. Readers can consult [12] for corresponding results.

6.1 Synthetic Data

We generated synthetic data to verify the behavior of the developed algorithms
regarding the selected features and the performance in comparison with single-
task learning (STL) logistic regression. The synthetic data was generated as
follows:

– generate x ∈ R10 with each component xi ∼ Uniform[−1, 1];
– set T = 3 and the coefficient vectors of the 3 tasks to

α1 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
α2 = [0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
α3 = [0, 0, 1, 1, 1, 0, 0, 0, 0, 0];

– y = sign(α�
t x) for every sample x of task t.

For each task, we generated training sets of sizes � = [20, 40, 60, 80], each
used in a different trial, 150 samples for tuning and 1000 samples for testing,
and repeated each trial 20 times. The misclassification rates averaged over the
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Fig. 3. Performance on synthetic data: error rates versus training sample sizes

3 tasks and 20 runs are shown in Fig. 3 for different training sample sizes,
respectively by our approach and STL. Fig. 3 obviously shows the superiority of
our approach. As expected, the difference of the two approaches becomes smaller
as the sample size of each task becomes larger.

We show bar plots of the averaged estimated coefficient vectors by our ap-
proach in Fig. 4-left and the STL logistic regression in Fig. 4-right. Our approach
successfully removed irrelevant features. For lucid presentation, each coefficient
vector was normalized by its norm, averaged over all trials, and shown on Fig. 4.
Although STL produced reasonable classifiers for each task, it could not delete
all irrelevant features using data available for each single task.

6.2 Lung Cancer Data

A prototype version of our lungCAD system [16] (not commercially available)
was applied on a proprietary anonymized patient data set collected from multiple
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Fig. 4. Performance on synthetic data: left, coefficient vectors by our MTL; right,
coefficient vectors by STL logistic regression



128 J. Bi et al.

hospitals. The nodule dataset consisted of 176 CT images that were randomly
partitioned into two groups by a third party agency for development and eval-
uation respectively: 90 volumes in training and 86 volumes in test. The GGO
dataset consisted of 60 CT images. Due to the limited size of GGO set, GGO
detection performance could not be measured reliably, so GGO cases were used
only for improving nodule detection performance. In total, 129 nodules and 53
GGOs were labeled by radiologists, and 81 nodules appeared in the training set
and 48 in the test set. The lungCAD system was independently applied to the
training, test nodule sets and the GGO set, generating totally 11056, 13985 and
10265 suspicious candidates in the respective sets. Among them, 131, 81 and 87
candidates were true detections associated with nodules or GGOs. A total of 86
numerical image features were calculated. The statistics of the lungCAD data
set is characterized in Table 1.

Table 1. Specifications of lungCAD data sets

Nodule train Nodule test GGO

No. patients 90 86 60

No. candidates 11056 13985 10265

No. cancer 81 48 53

No. positives 131 81 87

No. False Positives /vol 121 161 169

No. feature 86 86 86

The first set of experiments were conducted as follows. We randomly sampled
50% (45 volumes) of the nodule training cases and 50% (30 volumes) of the GGO
cases to train a classifier that was tested on 86 test nodule cases, and repeated
15 trials. In the first trial, we tuned the model parameter γ in Algorithm A
and the regularized parameters in [15] according to a 3-fold cross validation
performance within training, and we fixed them for other trials. Fig. 5 shows
the test ROC curves averaged over the 15 trials with error variance bars. Our
algorithm A produces a curve that dominates the ROC curves corresponding to
other approaches. It also had a relatively small model variance by referencing
the error bars. The regularized MTL and CGP were superior to STL learning,
inferior to our method, and the regularized MTL also presented a relatively large
error variance as shown by the error bars.

We conducted more complete performance comparisons using the AUC mea-
sure by randomly sampling p% of training nodule cases with a fixed amount of
GGO cases where p = 10, 25, 50, 75, 100, and 15 trials were performed for
each p. We averaged the AUC numbers over 15 trials for each value of p, and il-
lustrated them in Fig. 6 together with error bars. The resulting models achieved
better performance with less help from related tasks when more samples of the
nodule detection task were used.
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Fig. 5. On Lung Cancer Data: test ROC plots of models trained using 50% of nodule
and GGO training patient volumes

6.3 Heart Wall Motion Data

Cardiac wall motion data has a different structure from lung cancer data (in
lungCAD data, different patient data were provided for different tasks). Here we
collected 220 ultrasound images of patients hearts, and 432 image features were
extracted from the left ventricle of each heart to characterize the global motion
and segment-level wall motion of the LV. Hence each heart was represented by a
feature vector of 432 components. Overall 16 labels, one for each segment, were
provided to a single feature vector. Hence the same set of patients were provided
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Fig. 7. On Heart Data: the plot of test AUC versus task index

for the different 16 tasks. This is sometimes referred to as multi-label prediction
problems.

Although great efforts were made to collect a reasonable number of abnormal
studies, the normal versus abnormal segment-level distribution was extremely
unbalanced since most patients only have one or two abnormal segments. Many
of the segments had fewer than 3 abnormal cases. Only 8 segments (out of 16
segments), for which enough abnormal cases (25 cases on average) were present
in the 220 cases, were used in our experiments.

The 220 cases were randomly split 15 times into two sets of an equal size, one
for training and one for test. We tuned model parameters such as γ using a 2-fold
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cross validation within the training set. The average test AUC values for each of
the 8 tasks are depicted in Figure 7 which clearly shows the effectiveness of our
MTL approach. The regularized MTL and CGP were not originally proposed
for sparse estimation, which may result in poor performance on data where
dimension is much larger than the available sample size, such as the heart data.

The c vector learned by our approach was very sparse as shown in Fig. 8 which
shows only 21 features were used by all the 8 classifiers combined. Notice that
each classifier only chooses features from the features selected by c. Whereas,
STL logistic regression used much more features as the averaged weight vector
α in Fig. 8 was dense.

7 Conclusions

We have designed a series of approaches to learning multiple tasks jointly. Effi-
cient algorithms have been developed through alternating optimization to find
the optimal solutions of these approaches. Convergence analysis shows that the
algorithms globally converge for strictly convex loss functions and regularization
conditions. Our framework also provides a probabilistic interpretation for exist-
ing regularized multi-task learning methods. Although the proposed algorithms
are general enough to be applied to any multi-task setting, they are motivated
by the challenges of the real-world medical diagnostic problems. Computational
results of the proposed approach on medical diagnostic problems demonstrate
superiority to some early multi-task learning approaches. The proposed approach
has been deployed in our lungCAD system which has received clinical approval
from Food and Drug Administration. Possible extension of this work includes
the examination of general feature representation without the independence as-
sumption among features and the related algorithm design.
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Abstract. Kernel canonical correlation analysis (KCCA) is a dimen-
sionality reduction technique for paired data. By finding directions that
maximize correlation, KCCA learns representations that are more closely
tied to the underlying semantics of the data rather than noise. However,
meaningful directions are not only those that have high correlation to an-
other modality, but also those that capture the manifold structure of the
data. We propose a method that is simultaneously able to find highly
correlated directions that are also located on high variance directions
along the data manifold. This is achieved by the use of semi-supervised
Laplacian regularization of KCCA. We show experimentally that Lapla-
cian regularized training improves class separation over KCCA with only
Tikhonov regularization, while causing no degradation in the correlation
between modalities. We propose a model selection criterion based on
the Hilbert-Schmidt norm of the semi-supervised Laplacian regularized
cross-covariance operator, which we compute in closed form.

1 Introduction

Kernel canonical correlation analysis (KCCA) is a fundamental technique for
dimensionality reduction that relies on paired data to learn directions that max-
imize correlation between the projected representations in each space [1,2]. Tech-
niques based on only one space are susceptible to failure in the event that there
are high-variance, semantically meaningless noise directions. KCCA overcomes
this weakness by requiring that the projected data be correlated to a projection of
the other modality, and has been shown to increase class separability when com-
pared to single modality dimensionality reduction [3]. While KCCA often gives
superior results to single modality dimensionality reduction techniques, correla-
tion with some output modality may not be the only criterion of interest. We
wish to find directions that not only relate the two modalities, but also lie along
the data manifold, in order to better represent the structure of the data and im-
prove class separability. In this work, we describe a method to incorporate these
two goals into a common optimization by employing semi-supervised Laplacian
regularization. This method gives an embedding of the data that makes use of
the information between modalities, as well as the information within each single

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 133–145, 2008.
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modality. By using Laplacian regularization, we are able to learn directions that
tend to lie along the data manifold estimated from a much larger set of data [4].
This gives us greater confidence that the learned directions represent the un-
derlying statistical structure of the data and that we have not been misled by
small sample effects. We show experimentally that learning along the manifold
results in increased performance, even in the fully supervised setting, in that the
learned embeddings give better class separability on a variety of datasets.

One way to evaluate the performance of KCCA is to take the sum of the
squared correlations that it reveals. This quantity turns out to be the Hilbert-
Schmidt norm of the normalized covariance operator between the feature repre-
sentations of each modality, and is referred to as the Hilbert-Schmidt normalized
independence criterion [5]. The underlying concept of semi-supervised Laplacian
regularization of KCCA can also be applied to an empirical estimate of this op-
erator, and therefore also to the independence criterion. Here, we make use of
this Laplacian regularized estimate to define a model selection criterion for the
regularization parameters that can be computed in closed form from the kernel
matrices and Laplacian.

The rest of the paper is organized as follows. We discuss related work in
Section 2 and give a review of KCCA in Section 3. In Section 4 we present the
semi-supervised Laplacian regularization of KCCA. In Section 4.3 we discuss the
relationship between the proposed algorithm and a recently introduced semi-
supervised Fisher linear discriminant analysis algorithm. We describe our model
selection criterion in Section 5 and also introduce the semi-supervised Lapla-
cian regularized estimate of the HSNIC. Experimental results are presented in
Section 6. Finally, we conclude in Section 7.

2 Related Work

Although KCCA has been applied in many situations, including cross media
information retrieval [2,6], multi-modal data clustering [3], analysis of fMRI
data [7], extraction of gene clusters [8], testing for independence [9,10], and
ICA [11], to our knowledge there have been no semi-supervised extensions of the
algorithm. Laplacian regularization is a common technique for semi-supervised
learning [4,12]. [13] have recently proposed a semi-supervised Fisher linear dis-
criminant analysis algorithm based on Laplacian regularization, which we show
in Section 4.3 to be a special case of the algorithm proposed here.

In our experiments, we will perform model selection by making use of var-
ious statistics computed on the correlation operator spectrum (see Section 5):
we therefore provide a brief overview of methods used to evaluate and sum-
marize this spectrum. A variety of statistics on the correlation operator spec-
trum are presented in [9] (for the spline kernel RKHS), where these are used
for independence testing. Statistics on the correlation operator used for inde-
pendent component analysis in [11] include the maximum singular value and
kernel generalized variance, where the latter is an upper bound near indepen-
dence on the mutual information [14]. Finally, a closed form expression for the
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Hilbert-Schmidt norm of the correlation operator is provided in [5], where it is
shown that this norm is an estimate of the mean squared contingency. Finally,
the spectrum of two correlation operators can be compared directly for model
selection, as in [2].

3 A Review of Kernel Canonical Correlation Analysis

3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) seeks to utilize paired datasets to simul-
taneously find projections from each feature space that maximize the correla-
tion between the projected representations [1]. Given a sample from a paired
dataset1 {(x1, y1), . . . , (xn, yn)} we would like to simultaneously find directions
wx and wy that maximize the correlation of the projections of x onto wx with the
projections of y onto wy. This is expressed as

max
wx,wy

Ê [〈x,wx〉〈y, wy〉]√
Ê [〈x,wx〉2] Ê [〈y, wy〉2]

, (1)

where Ê denotes the empirical expectation. We denote the covariance matrix of
(x, y) by C and use the notation Cxy (Cxx) to denote the cross (auto) covariance
matrices between x and y. Equation (1) is equivalent to

max
wx,wy

wT
x Cxywy√

wT
x Cxxwx wT

y Cyywy

. (2)

This Rayleigh quotient can be optimized as a generalized eigenvalue problem, or
by decomposing the problem using the Schur complement as described in [2].

There is a natural extension of CCA in the event where there are more than
two modalities. This can be written as a generalized eigenvector problem that
subsumes two-way CCA as a special case⎛

⎜⎝
C11 . . . C1k

...
. . .

...
Ck1 . . . Ckk

⎞
⎟⎠
⎛
⎜⎝
w1

...
wk

⎞
⎟⎠ = λ

⎛
⎜⎝
C11 . . . 0
...

. . .
...

0 . . . Ckk

⎞
⎟⎠
⎛
⎜⎝
w1

...
wk

⎞
⎟⎠ . (3)

3.2 Kernel Canonical Correlation Analysis

We can extend CCA, e.g. to non-vectorial domains by defining kernels over x and
y: kx(xi, xj) = 〈φx(xi), φx(xj)〉 and ky(yi, yj) = 〈φy(yi), φy(yj)〉, and searching

1 We assume the samples have zero mean for notational convenience.
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for solutions that lie in the span of φx(x) and φy(y): wx =
∑

i αiφx(xi) and
wy =

∑
i βiφy(yi). In this setting we use an empirical estimator for C:

Ĉxy =
1
n

n∑
i=1

φx(xi) · φy(yi)T , (4)

where n is the sample size, and φx(xi) and φy(yi) are assumed to have 0 mean.
Ĉxx and Ĉyy are defined similarly. Denoting the kernel matrices defined by our
sample as Kx and Ky, the solution of Equation (2) is equivalent to maximizing
the following with respect to coefficient vectors, α and β

αT 1
nKxKyβ√

αT 1
nK

2
xαβ

T 1
nK

2
yβ

=
αTKxKyβ√
αTK2

xαβ
TK2

yβ
. (5)

As discussed in [2] this optimization leads to degenerate solutions in the case that
either Kx or Ky is invertible so we maximize the following regularized expression

αTKxKyβ√
αT (K2

x + εxKx)αβT
(
K2

y + εyKy

)
β
, (6)

which is equivalent to Tikhonov regularization of the norms of wx and wy in the
denominator of Equation (2). In the limit case that εx → ∞ and εy → ∞, the
algorithm maximizes covariance instead of correlation.

The formulation of CCA in Equation (3) is also readily regularized and ker-
nelized, and allows one to take advantage of more than two modalities at a
time.

4 Semi-supervised Kernel Canonical Correlation Analysis

If we have additional data available that do not have correspondences to the
other modality, we can search for solutions that lie in the span of the larger set of
training points, and regularize using the additional data. We propose Laplacian
regularization, which tends to find solutions that lie along an empirical estimate
of the data manifold [4]. This gives increased robustness to the algorithm, and
increases class separability in the absence of label information.

4.1 The Two-Modality Case

We have training data {x1, . . . , xn} with corresponding data {y1, . . . , yn} as well
as additional training data {xn+1, . . . , xn+px} and {yn+1, . . . , yn+py} that do
not have correspondences. We use the variables mx = n + px (my = n + py)
to denote the total number of samples in modality x (y). We denote the d ×
n data matrix X = (x1, . . . , xn), and the matrix including all data with and
without correspondences X̂ = (x1, . . . , xn, xn+1, . . . , xn+px), and similarly for Y
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and Ŷ . Furthermore we denote kernel matrices between the various sets of data
as follows: Φx(X)TΦx(X) = Kxx, Φx(X̂)TΦx(X) = Kx̂x, Φx(X̂)TΦx(X̂) = Kx̂x̂,
etc.. Kernel matrices for Y are defined analogously. We wish to optimize the
following generalization of Equation (6)

αTKx̂xKyŷβ√
αT (Kx̂xKxx̂ + Rx̂)αβT (KŷyKyŷ + Rŷ)β

, (7)

where Rx̂ = εxKx̂x̂ + γx

m2
x
Kx̂x̂Lx̂Kx̂x̂ and Lx̂ is the empirical graph Laplacian

estimated from the mx samples of labeled and unlabeled data.

4.2 The General Case

In the general case, we have more than two modalities. As a result, the data
that has correspondences between modalities 1 and 2 can be different than the
data that has correspondences between modalities 2 and 3, etc.. We abuse the
notation Kîj to denote the kernel matrix computed between all the data for
modality i and the data for modality i that also has correspondences to the data
in modality j. This matrix has dimensionality mi × nij , where mi is the total
number of training examples (with or without correspondences) for modality i,
and nij is the number of correspondences between modalities i and j.

The following generalizes Equations (3) and (7)

⎛
⎜⎝

0 . . . 1
n1k

K1̂kK1k̂
...

. . .
...

1
n1k

Kk̂1Kk1̂ . . . 0

⎞
⎟⎠
⎛
⎜⎝
β1

...
βk

⎞
⎟⎠ = (8)

λ

⎛
⎜⎝

1
m1

K1̂1K11̂ + R1̂ . . . 0
...

. . .
...

0 . . . 1
mk

Kk̂kKkk̂ + Rk̂

⎞
⎟⎠
⎛
⎜⎝
β1

...
βk

⎞
⎟⎠ .

4.3 Fisher Linear Discriminant Analysis

There is an intimate relationship between CCA and Fisher linear discriminant
analysis (LDA) [15]. LDA is a special case of CCA where the second modality is
the labels [16,17], consequently, any semi-supervised algorithm for CCA implies
a semi-supervised LDA algorithm as well. Recently [13] have proposed a semi-
supervised LDA approach. If we use the identity kernel on the labels, set the
label regularization parameters to 0, and set εx = 0, the directions learned from
Equation (7) are the same as those found using the method of [13].

Similarly, when one of the spaces is one-dimensional (i.e. the kernel matrix
is rank 1), Laplacian regularized KCCA gives a generalization of kernel ridge
regression.
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5 Model Selection

We propose a model selection algorithm based on the Hilbert-Schmidt normal-
ized information criterion (HSNIC). The HSNIC is closely related to KCCA and
is equivalent to the squared �2 norm of the spectrum of the normalized cross-
covariance operator, which in the limit is independent of the kernel2 used in
its estimation [5,10]. Because the spectrum of the normalized cross-covariance
operator is identical to the spectrum of the solutions to KCCA, this provides
us with a useful statistic upon which we can base our model selection. HSNIC
gives us access to the �2 norm of the spectrum, which is dominated by the first
KCCA directions for kernels with quickly decaying spectra, such as the Gaussian
kernel [11,18].

We first derive the semi-supervised empirical HSNIC estimate in Section 5.1
and then use this result to define our model selection criterion in Section 5.2.

5.1 Semi-supervised Empirical HSNIC Estimate

The HSNIC is the Hilbert-Schmidt norm of the normalized cross-covariance oper-
ator, Vxy, which we define to be regularized using the Laplace-Beltrami operators
on the manifolds of the data [4], ΔMx and ΔMy ,

Vxy =(Σxx + εxI + γxΔMx)−
1
2 Σxy

(
Σyy + εyI + γyΔMy

)− 1
2 . (9)

We estimate the normalized cross-covariance operator empirically using a finite
sample of data, yielding

V̂xy =
(

1
n
XXT + εxI +

γx

m2
x

X̂Lx̂X̂
T

)− 1
2 1
n
XY T ·

(
1
n
Y Y T + εyI +

γy

m2
y

Ŷ LŷŶ
T

)− 1
2

. (10)

The semi-supervised Laplacian regularized empirical estimate of the HSNIC is
therefore

‖V̂xy‖2HS = Tr
[
V̂xyV̂

T
xy

]
= Tr [MxMy] , (11)

where

Mx =I − n

(
nI +

1
εx

Kxx −
1
εx

Kxx̂

(
m2

xεx

γx
I + Lx̂Kx̂x̂

)−1

Lx̂Kx̂x

)−1

, (12)

and My is defined analogously. See Section A for the derivation.

2 Assuming that the kernel comes from the class of characteristic kernels, as defined
in [10]. A Gaussian kernel is sufficient.
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5.2 HSNIC Model Selection Criterion

HSNIC is an interesting model selection criterion for many problems as it pro-
vides an estimate of the dependence between X and Y [10]. As discussed ear-
lier, KCCA in high dimensional feature spaces requires regularization to return
non-trivial projection directions: in the event that all regularization is set to 0,
HSNIC estimates perfect correlation if the kernel matrices, Kxx and Kyy, are
invertible. Since choosing the parameters that maximize HSNIC risks overfit-
ting, it is more meaningful to consider the amount by which the dependence
witnessed by HSNIC increases over its value at independence (i.e., in the ab-
sence of correlations between X and Y). We can simulate the latter quantity by
randomly permuting the labels relative to the data: if we were to average several
such permutations, we would obtain an estimate of HSNIC at independence.
The averaging procedure is computationally expensive, however: thus, we use
a single data permutation to approximate the HSNIC value at independence.
We observed on our data that the values of HSNIC for different permutations
were highly concentrated about their mean, which makes this a reasonable ap-
proximation. The model selection criterion consists of the ratio between the
non-permuted and the permuted HSNIC values. If this ratio is high, we are con-
fident that the correlation found is genuine and is not a result of overfitting. The
HSNIC estimate for the permuted dataset is easily computed using a random
permutation matrix, P ,

‖V̂xyR‖2HS = Tr
[
MxP

TMyP
]
, (13)

where V̂xyR is the empirical estimate computed using YR = Y P in place of Y
in Equation (10). This can be verified with an analogous derivation to that in
Section A. We denote the model selection criterion

ρ(εx, γx, εy, γy) =
‖V̂xy‖2HS

‖V̂xyR‖2HS

, (14)

and maximize with respect to its parameters. The cost of computing Equa-
tion (14) is only marginally higher than computing Equation (11) as we can
reuse the computation of Mx and My in the permuted version.

6 Experimental Results

6.1 Data

We have performed experiments on a number of datasets of images with asso-
ciated text. We have used the three datasets included in the UIUC-ISD collec-
tion [19]. These consist of images collected from search engines using ambiguous
search terms, “bass,” “crane,” and “squash,” the webpages in which the images
originally appeared, and an annotation of which sense of the word the image
represents, e.g. fish vs. musical instrument. There are 2881 images in the Bass
dataset which have been grouped into 6 categories, 2650 in the Crane dataset
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grouped into 9 categories, and 1948 images in the Squash dataset grouped into 6
categories. For all three datasets, we extracted 128 dimensional SURF descrip-
tors without rotation invariance and with the keypoint threshold set to 0 [20] and
constructed a codebook of 1000 visual words using k-means with 50000 sampled
descriptors. Images were represented by a normalized histogram of these visual
words. For the text representation, we used term frequency histograms extracted
from the webpage title, removing special characters and stop words using the
list from [21]. Both image and text similarities were computed using a χ2 kernel,

k(x, x′) = e
− 1

2A

�d
i=1

(xi−x′
i)

2

xi+x′
i , (15)

with normalization parameter A set to the median of the χ2 distances in the
training set.

Additionally, we have used the multimedia image-text web database used
in [2,22] which consists of samples from three classes: sports, aviation, and paint-
ball, with 400 image-text pairs each. Images were represented using HSV color
and Gabor textures as in [2,22]. Text was represented using term frequencies.
As in [2] we have used a Gaussian kernel for the image space, and a linear kernel
for text.

6.2 Evaluation Methodology

To evaluate the performance of the algorithm, the following evaluation is per-
formed. We randomly split the data into equally sized train and test portions.
The train portion is further split into data with and without correspondences be-
tween the different modalities. Semi-supervised Laplacian regularized KCCA is
trained using data with and without correspondences, using parameters learned
with grid search on the objective described in Section 5.2. Test data are em-
bedded using the learned parameters, and correlations are computed between
the embeddings of the two modalities. We repeat this procedure 40 times, and
evaluate the performance using two metrics: the mean �2 norm of the cross-
correlation coefficients, to determine how well the projected data are correlated;
and the ratio of the determinant of the total scatter matrix and the determinant
of sum of within class scatter matrices for each modality to determine how well
the within-class variation along the data manifold is captured:

|St|
|
∑c

i=1 Sci |
, (16)

where μ denotes the mean of the embedded test data, ci denotes the test data
that are in class i, μi denotes the mean of class i,

St =
∑

j∈test

(xj − μ)(xj − μ)T , (17)

and
Sci =

∑
j∈ci

(xj − μi)(xj − μi)T . (18)
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(c) Squash
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(d) Sports, Aviation, Paintball

Fig. 1. Experimental results for four different datasets. The first column is the �2 norm
of the cross correlations between the modalities of the held out data. The second and
third columns are the scatter ratios for images and text, respectively.
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Although class labels are available for the dataset, we only use them at test time
during this evaluation in order to measure the separation of semantic classes
achieved by the embeddings. We compute the embeddings without the semi-
supervised Laplacian regularization and also visualize the norm of the resulting
correlation coefficients, and scatter ratios.

In all experiments except for the “Sports Aviation Paintball” dataset, we
have defined the Laplacian using the similarity matrix, W , defined by the kernel
described in Section 6.1. In the “Sports Aviation Paintball” dataset, we use a
linear kernel on the text modality for consistency with previous publications [2,3].
Insted, we have used a Gaussian kernel to compute the Laplacian matrix for
the text modality. In all cases, we use the symmetric normalized Laplacian,
L = D− 1

2 (D −W )D− 1
2 , where D is the diagonal matrix whose entries are the

row sums of W .

6.3 Results

Figure 1 gives results for the four datasets described in Section 6.1. The plots
have been computed by varying the percentage of training data for which corre-
spondences between images and text have been provided to the algorithms. For
more pairs of data, we see that correlations are better represented for KCCA with
and without Laplacian regularization, as expected. The advantage of Laplacian
regularization is shown by improved class separability (as measured by scatter
ratios) for three of the four datasets. This indicates that the manifold structure
of these datasets is important for class separability, and that this is captured
without sacrificing performance on correlation.

Laplacian regularization slightly decreases cross-correlation and scatter ratios
in the “Sport, Aviation, Paintball” dataset (first column). This can be described
in part by the relatively simple structure of the “Sport, Aviation, Paintball”
dataset. PCA, kernel-PCA, and KCCA all give similar embeddings for this
dataset, with the majority of variance contained in only two dimensions [3].
The use of Laplacian regularization is therefore unnecessary as there is little
non-linearity in the data manifold; manifold structure is effectively captured
by linear high variance directions and non-parametric Laplacian regularization
degrades performance.

For the “Bass,” “Crane,” and “Squash” datasets, Laplacian regularization is
able to capture relevant discriminative structure that is available in each modal-
ity without sacrificing performance in finding directions that show correlation
between the modalities.

7 Conclusions and Future Work

In this work we have proposed the use of Laplacian regularized kernel canoni-
cal correlation analysis as a dimensionality reduction technique. Experimental
results show increased performance in class separation for datasets that have suf-
ficient nonlinear structure. We have proposed a model selection criterion based
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on the Hilbert-Schmidt norm of the Laplacian regularized normalized cross co-
variance operator and have derived its solution in closed form (Equation (11)).

The Hilbert-Schmidt normalized information criterion is an important statis-
tical object that can be used to test for independence of sets of variables, which
gives rise to many applications in machine learning. A promising area for future
work is to experimentally validate the benefit of using the Laplacian regularized
empirical estimate in applications where only Tikhonov regularization has been
previously applied. Examples include causality inference [10] and ICA [11].

All experiments here have been performed using only two modalities. Lapla-
cian regularization of KCCA for multiple modalities, as described in Equation (8)
warrants further experimental evaluation. This is particularly relevant, e.g., in
multi-language text corpora for which correspondences for some but not all doc-
uments are known. Laplacian regularization would allow better modeling of the
characteristics of each of the individual languages.

Finally, depending on the structure of a dataset, iterated Laplacian regular-
ization may be appropriate in some cases [23]. This gives stronger conditions on
the structure of the manifold which may help in avoiding overfitting.
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A Derivation of Semi-supervised Empirical HSNIC
Estimate

The measure of interest is the Hilbert-Schmidt norm of the semi-supervised
empirical estimate of the normalized cross-covariance operator
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V̂xy · V̂ T

xy

]
(19)
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Ŷ LŷŶ
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Y

]
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Using the Woodbury matrix identity, (A + BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1, we substitute A = εxI + 1

nXXT , B = X̂, C = γx

m2
x
Lx̂, and

D = X̂T . The following holds
(

1
n
XXT + εxI +

γx

m2
x

X̂Lx̂X̂
T

)−1

=

(
εxI +

1
n
XXT

)−1

−
(
εxI +

1
n
XXT

)−1

X̂ ·
(
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x

γx
L−1

x̂ + X̂T

(
εxI +

1
n
XXT

)−1

X̂

)−1

·

X̂T

(
εxI +

1
n
XXT

)−1

. (21)

We apply the same identity again with the substitution A = εxI, B = X ,
C = 1

nI, and D = XT to achieve the result

(
εxI +

1
n
XXT

)−1

=
1
εx

I − 1
ε2

x

X

(
nI +

1
εx

XTX

)−1

. (22)

Plugging in the results of Equations (21) and (22), along with the analogous
term for Y , into Equation (20), we achieve the result

‖V̂xy‖2HS = Tr [MxMy] , (23)

where

Mx =
1
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(
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, (24)

and My is defined analogously. We can further simplify this expression by ap-
plying the Woodbury matrix identity in reverse twice, which results in

Mx = I − n

(
nI +

1
εx

Kxx −
1
εx

Kxx̂

(
m2

xεx

γx
I + Lx̂Kx̂x̂

)−1

Lx̂Kx̂x

)−1

. (25)
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Abstract. This paper proposes an online solver of the dual formulation
of support vector machines for structured output spaces. We apply it to
sequence labelling using the exact and greedy inference schemes. In both
cases, the per-sequence training time is the same as a perceptron based
on the same inference procedure, up to a small multiplicative constant.
Comparing the two inference schemes, the greedy version is much faster.
It is also amenable to higher order Markov assumptions and performs
similarly on test. In comparison to existing algorithms, both versions
match the accuracies of batch solvers that use exact inference after a
single pass over the training examples.

1 Introduction

The sequence labelling task consists in predicting a sequence of labels (y1. . . yT )
given an observed sequence of tokens (x1. . . xT ). This task is an example of a
structured output learning system (see e.g. [1]). It appears in practical problems
in computational linguistics and signal processing.

Two informal assumptions are crucial for this task. The first states that a label
yt depends only on the surrounding labels and tokens. The second states that
this dependency is invariant with t. These assumptions are expressed through
the parametric formulation of the models, and, in the case of probabilistic mod-
els, through conditional independence assumptions (e.g. Markov models). Part
of the model specification is then the inference procedure that recovers the pre-
dicted labels for any input sequence. Exact inference can be carried out with the
Viterbi algorithm. The more efficient greedy inference, which predicts the labels
in the order of the sequence using the past predictions, can also be competi-
tive in terms of accuracy by considering higher order Markov assumptions. The
parameters for both inference schemes can be learned using structured output
learning algorithms.

Batch sequence algorithms optimize a global objective function that depends
on all training sequences or tokens [2,3,4,5,6]. They mainly consist of an iterative
procedure that run several times over the entire dataset until some convergence
criterion is met. The number of epochs of these algorithms usually increases with
the number of examples, leading to training times that grow faster than the size
of the training set.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 146–161, 2008.
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A crucial issue with these algorithms is their scalability. When learning the pa-
rameters for exact inference, support vector methods (e.g. [3]) require the applica-
tion of the costly Viterbi algorithm each time a sequence is visited in the iterative
process. Output space factorization methods (e.g. [5]) solve an alternative prob-
lem with additional variables that encode the structure of the possible predicted
sequences. In these methods, each sequence adds a number of such variables that is
polynomial in the length of the sequence. Learning for greedy inference reduces to
a smaller multiclass classification problem and is therefore much faster. However
algorithms then focus on tokens rather than sequences, dramatically increasing
the size of the training set. Batch sequence learning algorithms, having a com-
putational cost that grows more than linearly with the number of sequences, are
impracticable on large datasets because of the high per-sequence training cost.

Online sequence learning algorithms have been proposed as a scalable alterna-
tive to batch algorithms. They run a single pass on the training set, sequentially
updating their parameters depending on the loss observed after each sequence
(e.g. [7]) or token (e.g. [8]). Their computational cost therefore depends linearly
on the number of observations.

Proponents of such algorithms often mention that generalization bounds for
online algorithms are no worse than generalization bounds for batch
algorithms [9], or that specific algorithms like the second order stochastic gradi-
ent descent (SOSGD) provably loose nothing relatively to the batch optimization
of the same cost [10]. However, the error bounds are not tight, such theoretical
guarantees are thus not very informative, and SOSGD algorithms requires an
impractically large inverse Hessian matrix. In practice, it appears that online
algorithms are still significantly less accurate than batch algorithms.1

In this paper, we propose an online algorithm for the optimization of the
dual formulation of support vector methods for structured output spaces [2,3].
Following recent works on the fast optimization of Support Vector Machines
[6,11], the algorithm performs SMO-like optimization steps over pairs of dual
variables, alternating between unseen patterns and currently support patterns.
It can be seen as an adaptation of LaRank ([6]), originally proposed for the batch
optimization of multiclass SVMs, to online structured output learning.

The algorithm we propose shares the scalability property of other online algo-
rithms, its training time increasing linearly with the number of examples. Sim-
ilarly to [3,6], its number of support vectors is conveniently bounded. Finally,
using an extension of [12] to structured outputs, we show that our algorithm has
at least the same theoretical guarantees in terms of regret (difference between
the online error and the optimal train error) as passive-aggressive online algo-
rithms. Its only drawback is to keep in memory the current vector expansion.
However this memory usage grows at most linearly with the number of examples
and does not impact the computational cost. This drawback is shared by other
online algorithms such as kernel or averaged perceptrons.

1 A common workaround consists in performing several passes over the training exam-
ples. But this is no longer an online algorithm and it no longer enjoys the theoretical
guarantees of online algorithms.
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We present an empirical evaluation of our algorithm on standard benchmarks
for sequence labelling. We test both exact and greedy inference. The perfor-
mances are very close to state-of-the-art batch optimizers of the same dual,
while being an order of magnitude faster. The new algorithm is then only a
constant time slower than perceptron-like algorithms using the same inference
scheme, while being significantly better in terms of accuracies. We therefore ob-
tain new kinds of compromises in terms of training time/test performance. For
example, the greedy version of our algorithm is approximately as fast as an on-
line perceptron using exact inference, while being almost as accurate as a batch
optimizer.

2 Representation and Inference

In the rest of this paper, we use bold characters for sequences such as the se-
quence of tokens x = (x1. . . xT ) or the sequence of labels y = (y1. . . yT ). Subse-
quences are denoted using superscripts, as in y{t−k..t−1} = (yt−k. . . yt−1). We call
X the set of possible tokens and Y the set of possible labels, augmented with
a special symbol to represent the absence of a label. By convention, a label ys

is the special symbol whenever s ≤ 0. Angle brackets 〈.,.〉 are used to represent
the canonical dot product.

An inference procedure assigns a label yt to each corresponding xt taking into
account the correlations between labels at different positions in the sequence.
This work takes into account correlations between k+1 successive labels (Markov
assumption of order k). More specifically, we assume that the inference procedure
determines the predicted label sequence y on the sole basis of the scores

st(w,x,y) =
〈
w,Φg

(
xt,y{t−k..t−1}, yt

)〉
t = 1...T ,

where w ∈ R
D is a parameter vector and function Φg : X × Yk × Y → R

D de-
termines the feature space.

2.1 Exact Inference

Exact inference maximizes the sum
∑T

t=1 s
t(w,x,y) over all possible label se-

quences y. For a given input sequence x, the prediction function fe(w,x) is then
defined by

fe(w,x) = argmax
y∈YT

T∑
t=1

st(w,x,y) (1)

= argmax
y∈YT

〈w,Φe(x,y)〉 ,

where Φe(x,y) =
∑T

t=1 Φg(xt,y{t−k..t−1}, yt).
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2.2 Greedy Inference

Greedy inference predicts the successive labels yt in sequence by maximizing〈
w,Φg(xt,y{t−k..t−1}, yt)

〉
where the previously predicted labels y{t−k..t−1} are

frozen. For a given input sequence x, the prediction function fg(w,x) is then
defined by the recursion

f t
g(w,x) = argmax

y∈Y

〈
w,Φg

(
xt, f{t−k..t−1}

g (w,x), y
)〉

. (2)

2.3 Comparison

Although greedy inference is an approximation of exact inference, their differ-
ent computational complexity leads to a more nuanced picture. Exact infer-
ence solves (1) using the Viterbi algorithm. It requires a time proportional to
DT card(Y)k+1 and becomes intractable when the order k of the Markov assump-
tion increases. On the other hand, the recursion (2) runs in time proportional
to DT card(Y). Therefore greedy inference is practicable with large k.

In practice, greedy inference with large k can sometimes achieve a higher
accuracy than exact inference with Markov assumptions of lower order.

3 Training

In this section we write the convex optimization problem used for determining
the parameter vector for both cases of exact and greedy inference. We first
present a large margin formulation of the multiclass problem and show how it
applies to both problems.

3.1 Large-Margin Multiclass Problem

We consider training patterns p1. . . pn and their classes c1. . . cn. Following the
formulation of large-margin learning with interdependent output spaces [2,3],
the parameters of a prediction function of the form f(p) = arg maxc 〈w,Φ(p, c)〉
can be determined by minimizing the convex function

min
w

1

2
〈w, w〉 + C

n�
i=1

ξi (3)

subject to

�
∀i ξi ≥ 0
∀i ∀c 
= ci 〈w, Φ(pi, ci) − Φ(pi, c)〉 ≥ Δ(ci, c) − ξi ,

where Δ(ci, c) is the true loss incurred by predicting class c instead of the true
class ci. Following [6], we rewrite this optimization problem in dual form by
introducing one coefficient βc

i for each pattern pi and each class c ∈ C.

max
β

−
�
i,c

Δ(c, ci)β
c
i − 1

2

�
i,j,c,c̄

βc
i βc̄

j 〈Φ(pi, c), Φ(pj , c̄)〉

subject to

�
∀i ∀c βc

i ≤ δ(c, ci)C
∀i

�
c βc

i = 0
(4)
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where δ(c, c̄) is 1 when c = c̄ and 0 otherwise. The solution of the primal problem
is then recovered from the optimal coefficients βc

i as

w =
∑
i,c

βc
iΦ(pi, c) .

Multiple algorithms have been proposed to efficiently solve problem (4) even
in cases where the number of classes is very large [3,6]. As such, an optimizer
of problem (4) can be used for learning the parameters of sequence labelling
models for both exact and greedy inference. For clarity in the presentation, we
give the instantiation of the dual objective for both problems using the notations
introduced in section 2.

3.2 Training for Exact Inference

Since the exact inference prediction function (1) can be written under the form
argmaxc 〈w,Φ(p, c)〉, the above formulation applies directly. The patterns pi are
the token sequences xi and the classes c are complete label sequences y. The
feature function Φ(pi, c) = Φe(xi,y) has been defined in (1) and the loss Δ(y, ȳ)
is the Hamming distance between the sequences y and ȳ.

The dual problem is then

max
β

−
�
i,y

Δ(y,yi)β
y
i − 1

2

�
ij

�
yȳ

βy
i βȳ

j Kijyȳ
e

subject to

�
∀i ∀y βy

i ≤ δ(y,yi) C
∀i

�
y βy

i = 0 .
(5)

with the kernel matrix Kijyȳ
e = 〈Φe(xi,y), Φe(xj , ȳ)〉.

The solution is then w =
∑

iy βy
i Φe(xi,y).

3.3 Training for Greedy Inference

The greedy inference prediction function (2) does not readily have the form
argmaxc 〈w,Φ(p, c)〉 because of its recursive structure. However, each prediction
f t
g has the desired form with one pattern pit for each training token xt

i, and with
classes c taken from the set of labels and compared with Δ(y, ȳ) = 1− δ(y, ȳ).

This approach leads to difficulties because the feature function Φ(pit, y) =
Φg(xt

i, f
{t−k..t−1}
g , y) depends on the prediction function. We avoid this difficulty

by approximating the predicted labels f{t−k..t−1}
g with the true labels y{t−k..t−1}

i .
The corresponding dual problem is then

max
β

−
�
ity

Δ(y, yt
i)β

y
it − 1

2

�
itjr

�
yȳ

βy
itβ

ȳ
jrK

itjryȳ
g

subject to

�
∀i, t ∀y βy

it ≤ δ(y, yt
i) C

∀i, t
�

y βy
it = 0 .

(6)

with the kernel matrix Kitjryȳ
g =

�
Φg(x

t
i,y

{t−k..t−1}
i , y) , Φg(x

r
j ,y

{r−k..r−1}
j , ȳ)

�
.

The solution is then w =
�

ity βy
it Φg(x

t
i, y

{t−k..t−1}
i , y).
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3.4 Discussion

Both dual problems (5) and (6) are defined using very different sets of coeffi-
cients β. Experiments (section 6) show considerable differences in sparsity. Yet
the two kernel matrices Ke and Kg generate parameter vectors w in the same
feature space which is determined by the choice of the feature function Φg, or
equivalently the choice of the kernel Kg.

We use the following kernels in the rest of this paper.

Kitjryȳ
g = δ(y, ȳ)

�
k(xt

i, x
r
j) +

k�
s=1

δ(y t−s
i , ȳ r−s

j )
�

,

Kijyȳ
e =

�
tr

δ(yt, ȳr)
�
k(xt

i, x
r
j) +

k�
s=1

δ(y t−s, ȳ r−s)
�

,

where k(x, x̄) = 〈x, x̄〉 is a linear kernel defined on the tokens. These two kernels
satisfy the identity Φe(x,y) =

∑
i Φg(xt,y{t−k..t−1}, yt) by construction. Fur-

thermore, the exact inference kernel Ke is precisely the kernel proposed in [2].
The greedy kernel approximates the predicted labels with the true labels.

The same approximation was used in LaSO [8] and in the first iteration of
SEARN [4]. In the context of an online algorithm, other approximations would
have been possible, such as the sequence of predicted labels for the previous val-
ues of the parameter. However, the simpler approximation works slightly better
in our experiments.

4 Online Optimization

This section discusses the online optimization of problems (4), and therefore
problems (5) and (6). We call our algorithm OLaRank (for Online LaRank), be-
cause it uses the same building blocks as the LaRank algorithm [6]. We first
summarize these building blocks. Then, we describe how we adapted the origi-
nal LaRank for our purposes.

4.1 OLaRank Building Blocks

The LaRank algorithm is a batch optimizer of the dual problem (4), for the
specific case of multiclass classification with one representative vector per class.
It can however be straightforwardly adapted to the general case of structured
outputs we consider here. Assuming these adaptations done, LaRank can be
applied to both problems (5) and (6).

Each elementary step of the LaRank algorithm maximizes the objective func-
tion (4) restricted to only two coefficients βc

i and βc̄
i associated with a same pat-

tern pi. Because these coefficients appear in the same equality constraint, they
must move by opposite amounts. The maximization then simply becomes one-
dimensional and can be solved analytically (see details in [6]). Each
elementary step monotonically improves the dual objective function.
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[6] define three ways to select pairs of coefficients, namely ProcessNew,
ProcessOld, and Optimize. They prove that a reasonable mixture of these op-
erations approaches the solution of problem (4) with a predefined accuracy, after
a number of steps that grows linearly with the number of patterns and does not
depend on the number of classes.

OLaRank uses exactly the same three basic operations, with a difference in
the alternation between them. For clarity, we remind these definitions from [6]:
support vectors are the pairs (pi, c) such that βc

i �= 0, and support patterns are
the patterns pi for which at least one of the βc

i coefficients is nonzero.

– ProcessNew randomly picks a fresh example (pi, ci) and chooses the best
pair of coefficients βc

i and βc̄
i according to the gradient vector of the dual

objective function.
– ProcessOld randomly picks a support pattern pi and chooses the best pair

of coefficient βc
i and βc̄

i according to the gradient vector.
– Optimize randomly picks a support pattern pi and chooses the best pair of

coefficient βc
i and βc̄

i according to the gradient vector but solely among the
coefficients βc

i that are not zero.

The ProcessOld and Optimize steps differ essentially in their computational
costs. In the case of exact inference, ProcessOld requires to run the Viterbi
algorithm to find the label sequence that maximizes the gradient for the cho-
sen support pattern. Optimize only considers label sequences that are currently
support vectors, avoiding the costly inference procedure. In the case of greedy
inference, ProcessOld needs to compute the score of the current token for each
possible label, while Optimize only considers the labels that are currently in the
support vector expansion.

4.2 Scheduling

The LaRank algorithm schedules the three types of steps using a complex adap-
tive scheme that takes into account both the computing time and the progress of
the objective function. This scheme works well for simple multiclass problems.
However, we had mixed experiences with the exact inference models, because the
ProcessOld operations incur a penalization in terms of computation time due
to the Viterbi algorithm. In the end, ProcessOld was not sufficiently applied,
leading to poor performance.

OLaRank implements a much simpler approach. We call Reprocess the com-
bination of one ProcessOld step followed by ten Optimize steps. All our exper-
iments are carried out by repeatedly performing one ProcessNew step followed
by a predefined number nR of Reprocess combinations. The number nR depends
on each problem and is determined like an hyper-parameter using a validation
set (see table 1 and figure 3).

Notice that only performing ProcessNew steps (i.e. nR = 0) yields a typical
passive-aggressive online algorithm [13]. Therefore, the Reprocess operation is
the element that lets OLaRank match the test accuracy of batch optimization
after a single sweep over the training data (see section 6).
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5 Theoretical Analysis

This section displays theoretical results concerning the OLaRank algorithm pre-
sented in the previous section: a bound on the number of support vectors and
another on the regret.

5.1 Sparsity Guarantee

All three basic operations (ProcessNew, ProcessOld and Optimize) do nothing
unless they can find a search direction that fulfills two conditions: (1) the deriva-
tive of the objective function along this direction must be greater than τ > 0, and,
(2) a movement of size κ > 0 along that direction is possible without leaving the
constraint polytope. Therefore OLaRank is an Approximate Stochastic Witness
Direction Search (ASWDS) algorithm as defined in [11]. The number of support
vectors it adds during learning can be bounded by the following proposition:

Proposition 1. While training on n examples, OLaRank will add no more than

min
{
n(2 + nR), max{2ρmaxnC

τ2
,
2nC
κτ

}
}

support vectors, with ρmax = maxi,c ||Φ(pi, c)− Φ(pi, ci)||2.

The bound is actually a bound on the number of ProcessNew and ProcessOld

iterations, since each ProcessNew adds either 0 or 2 support vectors, and each
ProcessOld adds either 0 or 1 support vector. The term n(2 + nR) is immedi-
ate considering the scheduling described in section 4. The term max{ 2ρmaxnC

τ2 ,
2nC
κτ } is a bound on the maximal number of optimization steps carried out by

LaRank (and therefore OLaRank). Its proof follows the theorem of [6].
In practice, the smaller term is obviously n(2+nR), since reasonable values of

nR are between 1 and 20. The interest of the second term of the bound is at the
limit when nR tends to infinity. Then OLaRank converges, at each round, to a
κτ -approximate solution of problem (4), restricted to consider only the examples
that are currently support patterns (see theorem 18 of [11] for the convergence of
ASWDS algorithms). In that case, the bound proves that the number of support
vectors still grows at most linearly with the number of examples given κ and τ .

5.2 Regret Bound

The OLaRank algorithm performs an iterative optimization of the dual, where
only the parameters corresponding to already seen examples can be modified
at each step. The primal-dual view of online learning of [12] allows to obtain
online learning rates for that kind of algorithms in the case of SVMs for binary
classification. In this section, we extend their result to structured predictors (i.e.
online optimizers of equation (4)).
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Regret Bound for Online Structured Predictors. The learning rates are expressed
with the notion of regret defined by the difference between the mean loss incurred
by the algorithm on the course of learning and the empirical loss of a given weight
vector,

regret(n, w) =
1

n

n�
i=1

�(wi, (pi, ci)) − 1

n

n�
i=1

�(w, (pi, ci))

with wi the primal weight vector before seeing the i-th example, and �(w, (p, c))
the loss incurred by any weight vector w on the example (p, c). In our setup, the
loss �(wi, (pi, ci)) is defined as�

max
c∈C

Δ(ci, c) − 〈w, Φ(pi, ci) − Φ(pi, c)〉
	
+

where [x]+ = max(x, 0).
The following theorem gives a bound on the regret for any algorithm perform-

ing an online optimization of the dual of equation (4):

Theorem 1. Assume that for all i, the dual increase after seeing example (pi, ci)
is at least Cμρ(�(wi, (pi, ci))), with

μρ(x) =
1
ρC

min(x, ρC)
(
x− 1

2
min(x, ρC)

)

then, we have:

∀w, regret(n,w) ≤ ||w||2
2nC

+
ρC

2
.

The proof exactly follows section 5 of [12]. The crucial point of this theorem is to
directly relate the dual increase when seeing an example and the regret bound:
the more we can prove that the dual increases in the course of learning, the more
we can have guarantees on the performance.

Application. The following result allows to use theorem 1 to bound the regret
for the OLaRank algorithm:

Proposition 2. For a given i, the dual increase after performing a ProcessNew

step on example (pi, ci) is equal to Cμρi(�(wi, (pi, ci))), with ρi = ||Φ(pi, ci) −
Φ(pi, c

∗
i )||2 and c∗i = arg maxc∈C

(
Δ(ci, c) + 〈wi, Φ(pi, c)〉

)
.

This proposition is easily established by directly calculating the dual increase
caused by ProcessNew step (see [6]) and expressing the result using the function
μρ. Since Reprocess cannot decrease the dual, the whole OLaRank algorithm in-
creases the dual by at least Cμρi(�(wi, (pi, ci))) after seeing example i. Moreover,
as μρ monotonically decreases with ρ theorem 1 can be applied to OLaRank with
ρ = maxi ρ

i.

Interpretation. Proposition 2 first shows that OLaRank has the same guarantees
(in terms of regret) than a typical passive-aggressive algorithm as the latter is
equivalent to performing only ProcessNew operations.
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In addition, Theorem 1 provides a partial justification of the Reprocess func-
tion. Indeed, it expresses that we can relate the dual increase to the regret. As
such, if, for instance, Reprocess operations bring a dual increase of the same
order of magnitude as ProcessNew operations at each round, then the regret
of OLaRank would be typically two times smaller than the current bound. Al-
though we do not have any analytical results concerning the dual increase ratio
between ProcessNew and Reprocess operations, the theorem suggests that the
true regret of OLaRank should be much smaller than the bound.

Finally, we can notice that the regret we consider here does not match the true
applicative setting of greedy inference. Indeed, we consider in the regret bound
a set of examples that is fixed independently of the parameter vector w with
which we compare. But on test examples the greedy inference scheme uses the
past predictions instead of the true labels. Nevertheless the bound is informative
to compare online to batch learning. Indeed, if we consider the examples (pi, ci)
in the regret bound to be the training set, Theorem 1 relates the online error
with the error of the batch optimal. Then, we can claim that the online error of
OLaRank will not be too far from the batch optimal trained with the same set
of examples. The partial justification for the Reprocess function of the previous
paragraph is still valid.

6 Experiments

This section reports experiments performed on various label sequence learn-
ing tasks to study the behavior of our online learning algorithm. We denote
OLaRankGreedy, OLaRank using greedy inference and OLaRankExact when using
exact inference. Since such tasks are common in the recent literature, we focus
on fully supervised tasks where labels are provided for every time index. After
presenting the experimental tasks we chose, we compare the performances of
OLaRankExact and OLaRankGreedy to both batch and online methods to empiri-
cally validate their efficiency. We then investigate how the choice of the inference
method influences the performances.

6.1 Experimental Setup

Experiments were carried out on three datasets. The Optical Character Recogni-
tion dataset (OCR) contains handwritten words, with average length of 8 char-
acters, written by 150 human subjects and collected by [14]. This is a small
dataset for which the performance evaluation is performed using 10-fold cross-
validation. The Chunking dataset from the CoNLL 2000 shared task2 consists
of sentences divided in syntactically correlated segments or chunks. This dataset
has more than 75,000 input features. The Wall Street Journal dataset3 (WSJ)
is a larger dataset with around 1 million words in more than 40,000 sentences
and with a large number of features. The labels associated with each word are
“part-of-speech” tags.
2 http://www.cnts.ua.ac.be/conll2000/chunking/
3 http://www.cis.upenn.edu/∼treebank/

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cis.upenn.edu/~treebank/
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Table 1. Datasets and parameters used for the experiments

TRAINING SET TESTING SET CLASSES FEATURES C OLaRankGreedy OLaRankExact
SEQUENCES(TOKENS) SEQUENCES(TOKENS) nR k nR k

OCR 650 (∼4,600) 5500 (∼43,000) 26 128 0.1 5 10 10 1
Chunking 8,931 (∼212,000) 2,012 (∼47,000) 21 ∼76,000 0.1 1 2 5 1
WSJ 42,466 (∼1,000,000) 2,155 (∼53,000) 44 ∼130,000 0.1 1 2 5 1

Table 1 summarizes the main characteristics of these three datasets and spec-
ifies the parameters we have used for both batch and online algorithms: the con-
stant C, the number nR of Reprocess steps for each ProcessNew step, and the
order k of the Markov assumptions. They have been chosen by cross-validation
for the batch setting, online algorithms using the same parameters as their batch
counterparts. Exact inference algorithms such as OLaRankExact are limited to
first order Markov assumptions for tractability reasons.

6.2 General Performances

We report the training times for a number of algorithms as well as the percentage
of correctly predicted labels on the test sets (For Chunking, we also provide F1
scores on test sets). Results for exact inference algorithms are reported in table 2.
Results for greedy inference algorithms are reported in table 3.

Batch Counterparts. As discussed in the introduction, our main points of com-
parison are the prediction accuracies achieved by batch algorithms that fully
optimize the same dual problems as our online algorithms.

In the case of exact inference, our baseline is given by the SVM-HMM results
using the cutting plane optimization algorithm described by [3]. In the case of
greedy inference, we simply produced baseline results by running OLaRankGreedy
several times over the training set until the Karush-Kuhn-Tucker conditions are
satisfied. These results are labelled LaRankGreedyBatch.

Tables 2 and 3 show that both OLaRankGreedy and OLaRankExact reach com-
petitive testing set performances relative to these baselines while saving a lot of
training time.

Figure 1 depicts relative time increments. Denoting t0 the running time of a
model on a small portion of the training set of size s0, the time increment on a
training set of size s is defined as ts/t0. We also define the corresponding size
increment as s/s0. This allows to represent scaling in time for different models.
Figure 1 thus shows that our models scale linearly in time while a common batch
method as SVM-HMM does not.

The dual objective values reached by the online algorithms based
on OLaRank and by their batch counterparts are quite similar as presented
on table 4. OLaRankExact and OLaRankGreedy have good optimization abili-
ties; they both reach a dual value close to the convergence point of their corre-
sponding batch algorithms. We also provide the dual of PAExact and PAGreedy,
the passive-aggressive versions (i.e. without Reprocess) of OLaRankExact and
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Table 2. Compared accuracies and times of methods using exact inference

OCR Chunking (F1 score) WSJ

CRF Test. accuracy (%) - 96.03 (93.75) 96.75
(batch) Train. time (sec.) - 568 3,400

SVM-HMM Test. accuracy (%) 78.20 95.98 (93.64) 96.81
(batch) Train. time (sec.) 180 48,000 350,000

CRF Test. accuracy (%) - 95.26 (92.47) 94.42
(online) Train. time (sec.) - 30 240

PerceptronExact Test. accuracy (%) 51.44 93.74 (89.31) 91.49
(online) Train. time (sec.) 0.2 10 180

PAExact Test. accuracy (%) 56.13 95.15 (92.21) 94.67
(online) Train. time (sec.) 0.5 15 185

OLaRankExact Test. accuracy (%) 75.77 95.82 (93.34) 96.65
(online) Train. time (sec.) 4 130 1380

Table 3. Compared accuracies and times of methods using greedy inference

OCR Chunking (F1 score) WSJ

LaRankGreedyBatch Test. accuracy (%) 83.77 95.86 (93.59) 96.63
(batch) Train. time (sec.) 15 490 9,000

PerceptronGreedy Test. accuracy (%) 51.82 93.24 (88.84) 92.70
(online) Train. time (sec.) 0.05 3 10

PAGreedy Test. accuracy (%) 61.23 94.61 (91.55) 94.15
(online) Train. time (sec.) 0.1 5 25

OLaRankGreedy Test. accuracy (%) 81.15 95.81 (93.46) 96.46
(online) Train. time (sec.) 1.4 20 175

OLaRankGreedy. These low values illustrate the crucial influence of Reprocess

in the optimization process, independent of the inference method.

Other Comparisons. We also provide comparisons with a number of popular
algorithms for both exact and greedy inference.

For exact inference, the CRF results were obtained using a fast stochastic
gradient descent implementation4 of Conditional Random Fields: online results
were obtained after one stochastic gradient pass over the training data; batch
results were measured after reaching a performance peak on a validation set. The
PerceptronExact results were obtained using the perceptron update described
by [7] and the same exact inference scheme as OLaRankExact. The PAExact
results were obtained with the passive-aggressive version of OLaRankExact, that
is without Reprocess or Optimize steps.

For greedy inference, we report results for both PerceptronGreedy and PA-
Greedy. Like OLaRank, these algorithms were used in a strict online setup,
performing only a single pass over the training examples.
4 http://leon.bottou.org/projects/sgd

http://leon.bottou.org/projects/sgd
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Fig. 1. Scaling in time on Chunking
dataset, log-log plot. Solid black line:
OLaRankGreedy, Dashed black line:
OLaRankExact, Gray line: SVM-HMM.

Table 4. Values of dual objective after
training phase

Chunking WSJ

SVM-HMM (batch) 1360 9072

PAExact (online) 443 2122

OLaRankExact (online) 1195 7806

LaRankGreedyBatch (batch) 940 8913

PAGreedy (online) 410 2922

OLaRankGreedy (online) 905 8505

Results in tables 2 and 3 clearly display a gap between the accuracies of
these common online methods and the accuracies achieved by our two algo-
rithms OLaRankGreedy and OLaRankExact. The OLaRank based algorithms are
the only online algorithms able to match the accuracies of the batch algorithms.
Although higher than those of other online algorithms, their training times re-
main reasonable. For example, on our largest dataset, WSJ, OLaRankGreedy
reaches a test set accuracy competitive with the most accurate algorithms while
requiring less training time than PerceptronExact (about four milliseconds per
training sequence).

Results on the Chunking and WSJ benchmarks have been widely reported
in the literature. Our Chunking results are competitive with the best results
reported in the evaluation of the CoNLL 2000 shared task [15] (F1 score 93.48).
More recent works include including [16] (F1 score 94.13, training time 800 sec-
onds) and [17] (F1 score 94.19, training time 5000 seconds). The Stanford Tag-
ger [18] reaches 97.24% accuracy on the WSJ task but requires 150,000 seconds
of training. These state-of-the-art systems slightly exceed the performances re-
ported in this work because they exploit highly engineered feature vectors. Both
OLaRankExact and OLaRankGreedy need a fraction of these training times to
achieve the full potential of our relatively simple feature vectors.

6.3 Comparing Greedy and Exact Inference

This section focuses on an empirical comparison of the differences caused by the
inference scheme on learning.

Inference Cost. The same training set contains more training examples for an
algorithm based on a greedy inference scheme. This has a computational cost.
However the training time gap between PAExact and PAGreedy in tables 2 and
3 indicates that using exact inference entails much higher computational costs
because the inference procedure is more complex (see section 2.3).
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Fig. 2. Sparsity measures during learning on Chunking dataset. (Solid line:
OLaRankGreedy, Dashed line: OLaRankExact.).

Sparsity. As support vectors for OLaRankExact are complete sequences, local
dependencies are not represented in an invariant fashion. OLaRankExact thus
needs to store an important proportion of its training examples as support pat-
tern while OLaRankGreedy only requires a small fraction of them as illustrated in
figure 2. Moreover, for each support pattern, OLaRankExact also needs to store
more support vectors.

Reprocess. Figure 3 displays the gain in test accuracy that OLaRankGreedy and
OLaRankExact get according to the number of Reprocess. This gain is computed
relatively to the passive-aggressive algorithms which are similar but do not per-
form any Reprocess. OLaRankExact requires more Reprocess (10 on OCR) than
OLaRankGreedy (only 5) to reach its best accuracy. This empirical result is veri-
fied on all three datasets. Using exact inference instead of greedy inference causes
additional computations in the OLaRank algorithm.

Fig. 3. Gain in test accuracy compared to
the passive-aggressives according to nR on
OCR. (Solid line: OLaRankGreedy, Dashed
line: OLaRankExact).

Fig. 4. Test accuracy according to the
Markov interaction length on OCR.
(Solid line: OLaRankGreedy, Dashed line:
OLaRankExact for which k = 1).
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Markov Assumption Length. This section indicates that using exact inference in
our setup involves both time and sparsity penalties. Moreover the loss in accuracy
that could occur when using a greedy inference process and not an exact one
can be compensated by using Markov assumptions of order higher than 1. As
shown on figure 4 it can even lead to better generalization performances.

7 Conclusion

The OLaRank algorithm applied to sequence labelling combines the linear scaling
property of perceptrons and the accuracy of batch solvers.

Using the OLaRank algorithm with both exact and greedy inference leads to
two competitive sequence labelling algorithm. Both learn in a single pass over the
training data and reach the performance of equivalent batch algorithms. Both
offer training times that scale linearly with the number of examples. Both have
been shown to achieve good performances on well studied benchmark tasks.

Online learning and greedy inference offer the most attractive combination of
short training time, high sparsity and accuracy.
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Abstract This paper describes a novel technique, called D-walks, to
tackle semi-supervised classification problems in large graphs. We intro-
duce here a betweenness measure based on passage times during random
walks of bounded lengths. Such walks are further constrained to start and
end in nodes within the same class, defining a distinct betweenness for
each class. Unlabeled nodes are classified according to the class showing
the highest betweenness. Forward and backward recurrences are derived
to efficiently compute the passage times. D-walks can deal with directed
or undirected graphs with a linear time complexity with respect to the
number of edges, the maximum walk length considered and the number
of classes. Experiments on various real-life databases show that D-walks
outperforms NetKit [5], the approach of Zhou and Schölkopf [15] and
the regularized laplacian kernel [2]. The benefit of D-walks is particu-
larly noticeable when few labeled nodes are available. The computation
time of D-walks is also substantially lower in all cases.

1 Introduction

Mining and learning problems involving structured data such as graphs, trees or
sequences have received much attention recently. The present work is concerned
with semi-supervised classification of nodes in a graph. Given an input graph
with some nodes being labeled, the problem is to predict the missing node labels.
This problem has numerous applications such as classification of individuals in
social networks, linked documents (e.g. patents or scientific papers) categoriza-
tion or protein function prediction, to name a few. Even when the data is not
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initially structured as a graph, it can be convenient to build a neighborhood
graph of similar examples from an affinity matrix.

Several approaches have been proposed to tackle semi-supervised classifica-
tion problems in graphs. Kernel methods [12,15,14] embed the nodes of the input
graph into an Euclidean feature space where a decision boundary can be esti-
mated. For instance, the methods proposed in [15] rely on a kernel obtained by
computing the inverse of a regularized graph Laplacian matrix. Such a kernel
can be interpreted in terms of commute times during random walks performed
on the graph. The method proposed in the present paper is related to the for-
mer approach, however it relies on passage times during random walks rather
than on commute times. Despite their good predictive performance, kernel meth-
ods on graphs cannot easily scale up to large problems due to their high time
complexity. NetKit [5] is an alternative relational learning approach. This gen-
eral framework builds a model based on three components: a local classifier to
generate class-priors, a relational classifier, which relies on the relations in the
network to guess the class membership, and a so-called collective inferencing
component which further refines the class predictions. The main advantage of
this framework is that each of the three components can be instantiated with
various existing methods making it easily adaptable to many situations. This
flexibility comes however with a time-consuming tuning process to optimize per-
formance. Compared to the above mentioned kernel methods, it provides good
performance while having a lower time complexity.

The approach proposed in this paper, called D-walks (discriminative random
walks), relies on random walks performed on the input graph seen as a Markov
chain. More precisely, a betweenness measure, based on passage times during
random walks of bounded length, is derived for each class (or label category).
Unlabeled nodes are assigned to the category for which the betweenness is the
highest. The D-walks approach has the following properties: (i) it has a linear
time complexity with respect to the number of edges, the maximum walk length
considered and the number of classes; such a low complexity allows to deal with
very large graphs, (ii) it can handle directed or undirected graphs, (iii) it can deal
with multi-class problems and (iv) it has a unique hyper-parameter, the walk
length, that can be tuned efficiently. Moreover, an extension of the technique is
proposed to handle descriptive features on nodes (e.g. in social networks, such
features could be the age or the number of children of individuals) via a similarity
function.

This paper is organized as follows. Section 2 reviews basic notions about dis-
crete time Markov chain and passage times during random walks.
Section 3 introduces the D-walks approach for semi-supervised classification
in graphs. Section 4 introduces an extension to incorporate node features into
the D-walks classification technique. Links and differences between the D-walks
method and alternative approaches based on random walks are further described
in section 5. Finally, section 6 reports comparative experimental results on
real-life data.
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2 Background

The semi-supervised node classification technique proposed in section 3 is based
on passage times during random walks on the input graph seen as a Markov
chain (MC). These classical notions are briefly reviewed in the present section.
For a more detailed introduction to the MC theory, the reader is referred to the
classical text books [4,7].

Definition 1 (Discrete time Markov Chain (MC)). A discrete time
Markov Chain (MC) is a stochastic process {Xt | t ∈ N} where the random
variable X takes its value at any discrete time t in a countable set N and such
that:

P [Xt = q |Xt−1, Xt−2, . . . , X0] = P [Xt = q |Xt−1]. (1)

This condition states that the probability of the next outcome only depends on
the last value of the process (order 1 Markov property).

A finite MC can be represented by a 3-tuple T = 〈N , P, ι〉 where N is a finite
set of states with n = |N |, P is a n × n row-stochastic matrix encoding the
(homogeneous) transition probabilities pqq′ = P [Xt = q′ | Xt−1 = q] for all
q, q′ ∈ N and ι is an n-dimensional vector representing the initial probability
distribution, i.e. ιq = P [X0 = q] for all q ∈ N .

A random walk on a MC can be defined as follows: a random walker starts
in a state q according to the initial distribution ι. Next, he moves to some state
q′ ∈ N according to the transition probability matrix P . Repeating this last
operation l ∈ N times results in a l-step random walk. In a MC, a state q is said
to be absorbing if there is a probability 1 to go from q to itself. In other words,
once an absorbing state has been reached in a random walk, the walker will stay
on this state forever. A MC for which there is a probability 1 to end up in an
absorbing state is called an absorbing MC. In such a model, the state set can be
divided into the absorbing state set NA and its complementary set, the transient
state set NT = N \ NA. The passage time function counts the number of times
a given node has been visited during a random walk.

Definition 2 (Passage Time). Given a MC, T = 〈N , P, ι〉, the passage time
is a function pt : N ×N → N such that pt(q) is the number of times the process
reaches the state q:

pt(q) = |{t ∈ N |Xt = q}| (2)

The mean passage time (MPT) denotes the expectation of this quantity: E[pt(q)].
The MPT is clearly infinite for absorbing states. For transient states, the MPT
can be obtained by computing the so-called fundamental matrix : N = (I−PT )−1

where I is the |NT | × |NT | identity matrix and PT is the transition probability
matrix restricted to transient states (subscript T ). The entry nq′q contains the
MPT in state q ∈ NT during random walks starting in state q′. Hence, E[pt(q)] =
[ι′TN ]q where ι′T is the (transpose of the) initial probability vector reduced to
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transient states1. It should be stressed that this expectation is taken over ran-
dom walks of any (positive) length. In contrast, the betweenness proposed in
section 3.3 relies on passage times computed for walks of bounded length.

3 Discriminative Random Walks

This section presents the D-walks approach to perform semi-supervised classi-
fication of nodes in a graph. This technique is based on a betweenness mea-
sure computed from passage times during random walks performed in the input
graph. The problem statement is detailed in section 3.1. A betweenness measure
using random walks of unbounded length is introduced in section 3.2. Section
3.3 refines this measure by considering bounded walks up to a prescribed length.
Section 3.4 shows how to classify unlabeled nodes based on the proposed be-
tweenness measure.

3.1 Problem Statement

Let G = (N , E) denote an input graph where N is the set of nodes and E is the
set of edges. In the sequel, n = |N | denotes the number of nodes and m = |E| the
number of edges in the graph. Let also A denote the n×n adjacency matrix of G.
Since the graph G may be directed and weighted, the matrix A is not necessarily
symmetric nor binary. Furthermore, it is assumed that A is an affinity matrix:
the edge weights are positive and the higher the value, the easier the connection
between the corresponding nodes. The graph G is assumed partially labeled. The
nodes in the labeled set L ⊂ N are assigned to a category from a discrete set Y.
The unlabeled set is defined as U = N \ L. The label of a node q ∈ L is written
yq and Ly denotes the set of nodes in class y, with ny = |Ly|. A local consistency
of the node labeling is assumed, i.e. nodes within a neighborhood are likely to
share the same label. The task is to classify unlabeled nodes in the graph.

3.2 D-Walks Betweenness

Random walks on a graph can be modeled by a discrete-time Markov chain
{Xt ∈ N}t∈N (MC) describing the sequence of nodes visited during the walk.
The random variable Xt represents the state of the MC reached at the discrete
time index t. Since each state of the Markov chain corresponds to a distinct node
of the graph, the state set of the MC is simply the set of nodes N . The terms
nodes and states are thus used interchangeably in this paper. The transition
probability to state q′ at time t, given that the last state is q at time t − 1, is
defined as:

P [Xt = q′ |Xt−1 = q] = pqq′ � aqq′∑
q′∈N aqq′

. (3)

1 It is assumed here that random walks cannot start in an absorbing state.
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Thus, from any state q, the probability to jump to state q′ is proportional to
the weight aqq′ of the edge from q to q′ (and then normalized). These transition
probabilities are stored in an n× n transition matrix P = {pqq′}q,q′∈N .

We introduce discriminative random walks (D-walks, for short) to define a
betweenness measure used for node classification (see section 3.4). A D-walk is
a random walk starting in a labeled node and ending when any node having the
same label (possibly the starting node itself) is reached for the first time.

Definition 3 (D-walks). Given a MC defined on the state set N and a class
y ∈ Y, a D-walk is a sequence of state q0, . . . , ql such that yq0 = yql

= y and
yqt �= y for all 0 < t < l.

The notation Dy refers to the set of all D-walks starting and ending in a node
of class y.

The betweenness function B(q, y) measures how much a node q ∈ U is located
“between” nodes of class y ∈ Y. The betweenness B(q, y) is formally defined as
the expected number of times node q is reached during Dy-walks.

Definition 4 (D-walks betweenness). Given an unlabeled node q ∈ U and
a class y ∈ Y, the D-walks betweenness function U × Y → R

+ is defined as
follows:

B(q, y) � E [pt(q) | Dy] (4)

This betweenness measure is closely related to the one proposed by Newman in
[6]. Our measure is however relative to a specific class y rather than to the whole
graph, which is more informative in the context of classification. B(q, y) can
be computed using standard absorbing MC techniques (see section 2). Nodes
belonging to Ly are first duplicated such that the original nodes are used as
absorbing states and the duplicated ones as starting states. The transition matrix
P is augmented as follows: (i) one duplicates the rows of P corresponding to
nodes in Ly at the bottom of the matrix, (ii) one adds ny columns full of zeroes2

at the right of P and (iii) one defines pqq′ = 1 ⇐⇒ q′ = q and 0 otherwise, for all
q ∈ Ly. The augmented matrix is denoted here by yP . The initial distribution
vector is adapted accordingly, resulting in the vector yι. The betweenness is
finally computed as follows:

B(q, y) = [yι′T (I − yPT )−1]q (5)

where yPT and yιT respectively denote the transition matrix and the initial
distribution vector restricted to transient states (i.e. all states but those in Ly).
The betweenness computation has a computational complexity O(n3) due to
the matrix inversion. The space complexity is O(n2) since the inverse matrix is
generally dense even for sparse input graphs. Such high complexities makes the
technique only tractable for graphs containing a few thousands nodes. Optimized
matrix inversion, possibly relying on a spectral decomposition, can be used to
2 The ny added states are only used to start walks and cannot be reached from any

node in the graph.
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tackle this problem. We propose an alternative approach, detailed in the next
section, by adapting the betweenness definition. It offers a much lower time and
space complexity algorithm, which also proved to be more accurate for semi-
supervised classification.

3.3 Bounded D-Walks Betweenness

This section describes a betweenness measure based on D-walks of bounded
length. The notation Dy

l refers to the set of all D-walks of length exactly equal
to l, starting and ending in a node of class y. We also consider Dy

≤L referring to
the set of all bounded D-walks up to a given length L. The bounded D-walks
betweenness measure BL(q, y) is formally defined hereafter.

Definition 5 (Bounded D-walks betweenness). Given an unlabeled node
q ∈ U and a class y ∈ Y, the D-walks betweenness function U × Y → R

+ is
defined as follows:

BL(q, y) � E [pt(q) | Dy
≤L]

Bounding the walk length has two major benefits: (i) better classification re-
sults are systematically obtained with respect to unbounded walks3 in our ex-
periments, (ii) the betweenness measure can be computed very efficiently. The
unbounded betweenness can also be approximated with the bounded one by
considering large but finite L values. More precisely, it can be shown that the
bounded betweenness converges almost geometrically fast with L towards the
unbounded betweenness value [1].

An efficient betweenness computation can be achieved using forward and back-
ward variables, similar to those used in the Baum-Welch algorithm for Hidden
Markov Models (HMM) parameter estimation [9]. Given a state q ∈ N and a
time t ∈ N

0, the forward variable αy(q, t) computes the probability to reach
state q after t steps without passing through4 nodes in class y, while starting
initially from any state in class y. The forward variables are computed using the
following recurrence:

(case t = 1) αy(q, 1) =
∑

q′∈Ly

1
ny

pq′q

(case t ≥ 2) αy(q, t) =
∑

q′∈N\Ly
αy(q′, t− 1) pq′q

(6)

It is assumed that walks can start in any state of class y with a uniform
probability 1/ny. Notice that the case t = 1 allows transitions outgoing from a
state in class y (i.e. a starting state) whereas such transitions are forbidden in
the induction case (t ≥ 2), as walks are stopped as soon as a node in class y is
reached.
3 The maximum walk length has to be chosen for instance by cross-validation (see

section 6).
4 In contrast with leaving from a node q, passing through q means to jump from some

node q′ to q and then to leave from q.



168 J. Callut et al.

Given a state q ∈ N and a time t ∈ N
0, the backward variable βy(q, t) com-

putes the probability that state q is attained by the process t steps before reach-
ing any node labeled y for the first time. The backward variables are computed
using the following recurrence:

(case t = 1) βy(q, 1) =
∑

q′∈Ly
pqq′

(case t ≥ 2) βy(q, t) =
∑

q′∈N\Ly
βy(q′, t− 1) pqq′

(7)

Transitions incoming to a state in class y are only allowed at the end of walks
(case t = 1) since we are interested in walks ending when any node in Ly is
reached for the first time. The time complexity of the forward and backward
recurrences is Θ(mL), where m is the number of edges and L is the maximal
walk length considered.

In order to compute BL(q, y), let us first calculate the MPT in a node q ∈ U
during Dy

l -walks (i.e. walks of length exactly equal to l): E [pt(q) | Dy
l ]. The

(length-conditionned) passage time function pt(q) can be decomposed as a sum
of indicator variables: pt(q) =

∑l−1
t=1 I1{Xt = q}. Consequently, the desired ex-

pectation is given by

E [pt(q) | Dy
l ] = E

[
l−1∑
t=1

I1{Xt = q} Dy
l

]
=

l−1∑
t=1

E [ I1{Xt = q} | Dy
l ] (8)

=
l−1∑
t=1

P [Xt = q | Dy
l ] =

l−1∑
t=1

P [Xt = q ∧ Dy
l ]

P [Dy
l ]

(9)

The joint probability in the numerator of equation (9) can be computed as
P [Xt = q ∧ Dy

l ] = αy(q, t)βy(q, l − t), that is the probability to start in any
node of Ly, to reach node q at time t and to complete the walk l− t steps later.
The probability to perform a Dy

l -walk is obtained as P [Dy
l ] =

∑
q′∈Ly

αy(q′, l).
Therefore, the desired expectation is given by

E [pt(q) | Dy
l ] =

∑l−1
t=1 α

y(q, t)βy(q, l − t)∑
q′∈Ly

αy(q′, l)
(10)

Finally, the betweenness measure based on walks up to length L is obtained as
an expectation of the betweennesses for all length 1 ≤ l ≤ L:

BL(q, y) =
L∑

l=1

P [Dy
l ]

Z
E [pt(q) | Dy

l ] (11)

=
∑L

l=1

∑l−1
t=1 α

y(q, t)βy(q, l − t)∑L
l=1

∑
q′∈Ly

αy(q′, l)
(12)

=

(∑L
t=1 α

y(q, t)
)(∑L−t

l=1 βy(q, l)
)

∑L
l=1

∑
q′∈Ly

αy(q′, l)
(13)
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The distribution P [Dy
l ] is defined on all discrete times t ∈ [1,∞), however only

walks up to length L are considered here. Therefore, we introduce a normalization
constant Z ensuring that

∑L
l=1 P [Dy

l ]/Z sums to one, making the expectation
well-defined. Once the values of the forward and backward variables are stored
in lattices, BL(q, y) can be obtained with a time complexity in Θ(L.ny) by
precomputing all the terms of the inner sum contained in the numerator of
equation (13). The complexity for computing the betweenness for all unlabeled
nodes with respect to a specific class y is thus Θ(m.L) as it is dominated by the
cost of the recurrence computations. The space complexity is Θ(m + L.n), i.e.
the space required to store the graph and the forward and backward lattices.

3.4 Classification Using the Betweenness

Unlabeled nodes are classified using a maximum a posteriori (MAP) decision rule
from the betweenness computed for each class. The class-conditionned likelihood
of a node q with respect to a specific class y is defined from its class betweenness
as follows:

P [q | y] � BL(q, y)∑
y′∈Y BL(q, y′)

(14)

The label of a node q ∈ U is predicted by:

ŷq = argmax
y∈Y

P [q | y] P [y] (15)

where P [y] is estimated as the proportion of nodes belonging to class y. Taking
the argmax on the class posteriors corresponds to a crisp node classification.
A fuzzy node classification can be obtained by directly outputting the class
posteriors. Finally, the time complexity to classify all unlabeled nodes using the
bounded D-walks betweenness is Θ(|Y|.m.L) where m is the number of edges
in the graph and L is the maximal walk length allowed. The space complexity
is the same as for computing the betweenness relative to a specific class, i.e.
Θ(m + L.n).

4 Incorporating Node Features

This section presents an extension of the D-walks approach to take node features
or attributes into account during classification. For instance, such features could
be the age, the nationality or the marital status of individuals in a social network.
Incorporating such features can clearly improve the classification performance as
the system can discriminate using both structural and descriptive information
on nodes. The feature vector corresponding to a node q is denoted by φ(q).
We assume that a similarity function k(φ(q), φ(q′)) between feature vectors is
available. The resulting n × n similarity matrix for all pairs of nodes is written
K. Note that the similarity function needs not be a genuine Mercer kernel (i.e.
matrix K is not required to be positive-definite). However, it is assumed that
k(φ(q), φ(q′)) takes positive values.
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Our approach for incorporating nodes features is based on a reweighting of the
adjacency matrix. Each entry aqq′ of the adjacency matrix is simply multiplied by
the similarity between the concerned nodes kq,q′ . One of our modeling hypothesis
(see section 3.1) states that the higher the edge weight the easier the connection.
The edge reweighting proposed here is consistent with this assumption as the
connection between two nodes will be reinforced proportionally to their feature-
based similarity. In matrix form, the reweighted adjacency matrix φA is obtained
as follows:

φA = A ◦K (16)

where ◦ denotes the element-wise (Hadamard) product between matrices. This
multiplicative reweighting preserves the sparseness of the graph and the simi-
larity function needs only to be evaluated for pairs (q, q′) such that aqq′ > 0.
Consequently, the complexity of the D-walks approach using node features is
Θ(|Y|.m.L+m.Sim) where Sim is the time complexity of one similarity function
evaluation. The space complexity remains unchanged with respect to the original
D-walks approach.

5 Some Links between D-Walks and Related Approaches

It is worth stressing the links and differences between the D-walks method de-
scribed in section 3.3 and competing approaches. To simplify a bit the analysis
we restrict first our attention to undirected graphs. For such graphs, the weighted
adjacency matrix A is symmetric.

The method of Zhou and Schölkopf [15], compared experimentally with D-
walks in section 6, can also be interpreted in terms of random walks. This method
computes the matrix S = D−1/2AD−1/2 where D denotes the diagonal matrix
of node degrees: dq =

∑
q∈N aqq′ . A specific element of S is simply given by:

sqq′ =
aqq′√
dq

√
dq′

(17)

In contrast with the transition probability matrix P = D−1A, the S matrix
is not necessarily row-stochastic. Obviously, P = S whenever every node has
the same degree. Semi-supervised classification in [15] relies on the inverse of a
regularized and normalized5 laplacian L̃:

L̃−1 = (I − αS)−1 with 0 < α < 1 (18)

In particular, the classification rule for the unlabeled node q can be written:

ŷq = argmax
y∈Y

∑
{q′ | yq′=y}

[L̃−1]qq′ , where yq′ is the label of node q′ (19)

5 The approach of Zhou et al [15] can be considered as a variant of [2,3] which uses
the regularized laplacian matrix D − αA instead of the standard one. Performance
of the later approach is also reported in our experiments.
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Equation (18) can be reformulated using a Neumann series:

(I − αS)−1 =
∞∑
l=0

(αS)l = I + αS + α2S2 + . . . (20)

The first equality is valid only if the series converges6. Under this assumption,
the sum of matrix powers in (20) is highly similar to those computed (however
through recurrence relations) in the bounded D-walks approach.

To push the analogy a bit further, let us consider a scaled transition proba-
bility matrix P̃ = αP . Such matrix defines a lazy random walk in the original
graph since a transition from state q to a distinct state q′ has a probability

p̃qq′ =
α aqq′

dq′
, q �= q′ (21)

and, consequently, the random walk remains on state q with probability 1 − α.
Finally, equation (20) relies on the successive powers of αS and one specific
element of this matrix is written:

αsqq′ = α
aqq′√
dq

√
dq′

=
√

p̃qq′ p̃q′q (22)

One observes that the quantity of interest in this approach is the geometric
mean of the transition probability in one direction and the opposite direction
during such lazy random walks. This symmetric quantity is consistent with the
commute times interpretation detailed in [15].

The unique hyper-parameter is here α which controls the degree of laziness
of the random walks. In contrast, the unique hyper-parameter for the D-walks
method is the maximal walk length L, which corresponds to the maximal matrix
power considered. This difference can be interpreted as a distinct regularization
choice [10]. Note that bounding the maximal walk length may not be the most
appropriate choice when defining a graph kernel. We argue that this choice is
however better for the semi-supervised classification problem considered here, as
confirmed experimentally in section 6.

Another important aspect of the D-walks approach is to consider only walks
that start and end in a labeled node of a given class but do not go through labeled
nodes of the same class at intermediate steps. Intuitively, the random walks
explain the connections with labeled nodes of a given class without diffusing
unconditionally through the graph.

The method described in [15] was extended to directed graphs [14]. These
approaches require that the random walk model has a unique stationary distrib-
ution. For directed graphs, this property can be satisfied by considering teleport-
ing random walks as in [8]. The price to pay is the introduction of an additional
hyper-parameter which defines the trade-off between the teleporting uniform
probability and the natural transition probability derived from the adjacency
matrix. The D-walks approach does not require such an additional parameter
6 This condition is satisfied if the spectral radius of αS is < 1.
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to deal with directed graphs. This is an immediate consequence of bounding the
walk length rather than relying on the asymptotic behavior of the walks.

An alternative semi-supervised classification method using random walks was
proposed in [11]. This method considers walks starting from an unlabeled node
and reaching a labeled node in exactly L steps. Again, nothing prevents the walks
to go through labeled nodes of the same class during the intermediate steps.
Szummer and Jaakkola also proposed the use of a different length parameter
from each unlabeled node but this method did not pay off experimentally. The
recurrences detailed in section 3.3 are also specific to the D-walks approach.
They are essential to guarantee a low computational complexity to be able to
deal with large graphs.

6 Experiments

The experiments presented in this section have two goals. First, the classification
performance of our approach is compared against competing methods. Secondly,
the computing times on large-scale problems data are analyzed, demonstrating
the efficiency and the scalability of the approach.

6.1 Data

The three case studies used for this paper are real-world representation of net-
worked data. They all come from different domains that have been the subject
of prior study in machine learning [5].

IMDb: The collaborative Internet Movie Database (IMDb) has several appli-
cations such as making movie recommendation or movie category classifica-
tion. The classification problem focuses on the prediction of the movie notoriety
(whether the movie is a box-office or not). It contains a graph of movies linked
together whenever they share the same production company. The weight of an
edge in the resulting graph is the number of production companies two movies
have in common. The graph contains 1196 movies which have the following class
distribution (see Table 1):

Table 1. Class distribution for the IMDb data set

Category Size
High-revenue 572
Low-revenue 597

Total 1169
Majority class accuracy 51.07%

Number of Edges 40564
Mean degree 36.02
Min degree 1
Max degree 181
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Table 2. Class distribution for the CORA data set

Category Size
Case-Based 402

Genetic Algorithms 551
Neural Networks 1064

Probabilistic Methods 529
Reinforcement Learning 335

Rule Learning 230
Theory 472

Total 3583
Majority class accuracy 29.7%

Number of Edges 22516
Mean degree 6.28
Min degree 1
Max degree 311

CORA: The CORA dataset contains computer science research papers. It in-
cludes the full citation graph as well as the topic of each paper as labels. Two
papers are linked if one cites the other. The weight of an edge is generally one
unless two papers cite each other, in which case it is two. The graph contains
3582 nodes with the following class distribution (see Table 2):

WebKB: WebKB consists of sets of web pages gathered from four computer
science departments (one for each university), with each page manually labeled
into 6 categories: course, department, faculty, project, staff, and student. Two
pages are linked by co-citation (if x links to z and y links to z, then x and y are
co-citing z). The composition of the data set is shown in Table 3.

Table 3. Class distribution for the WebKB data set

Size
Category Cornell Texas Washington Wisconsin

course 54 51 170 83
department 25 36 20 37

faculty 62 50 44 37
project 54 28 39 25
staff 6 6 10 11

student 145 163 151 155

Total 346 334 434 348
Majority class accuracy 41.9% 48.8% 39.2% 44.5%

Number of Edges 26832 32988 30462 33250
Mean degree 77.55 98.77 70.19 95.55
Min degree 1 1 1 1
Max degree 191 215 286 229
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Figure 1. Classification rate of D-walks and the three competing methods on each
dataset. Error bars report standard deviations over 10 independent runs.

6.2 Methodology

Performances of the D-walks approach and competing methods are reported in
Figure 1 for the four datasets presented above. A network topology, along with
some node labels, generally contains a considerable amount of useful information
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for unlabeled nodes classification. Only a small proportion of labeled nodes might
be sufficient to predict the unlabeled set. For this reason, we have considered
several labeling rates, i.e. proportion of nodes for which the label is known. The
labels of remaining nodes are removed and used as test. For each considered
labeling rate, 10 random deletions were performed on which performances are
averaged.

Our approach has been compared to the following existing methods: NetKit
([5]; “NetKit”), Zhou and Schölkopf method ([15]; “Zhou et al.”) and the reg-
ularized laplacian kernel ([2] [3]; “RegLaplacian”). Hyper-parameters of each
approach were optimized using an internal 10-folds cross-validation. For the D-
walks approach, the unique parameter to tune is L. The best value for L is
computed in the range {1, . . . , 100}. Optimal L values typically fall between 6
and 30, showing the interest of bounding the walk length (see the right hand
side of Figure 2). Zhou et al. and the regularized laplacian kernel also require the
regularization parameter α to be tuned between 0 and 1. Concerning NetKit,
testing all the module configurations would have been very time-consuming. We
chose here the parameters that generally provide good results [5]. More precisely,
the local classifier inducer uses the class prior, the relational classifier inducer
uses the weighted vote Relational Neighbor classifier and a relaxation labeling
is used for the collective inferencing.

6.3 Results

This section details the classification accuracy of each method over the various
datasets. Figure 1 reports classification rates on test data obtained by each
approach as a function of the labeling rate.

As could be expected, the classification rate generally improves with higher
labeling rate. We can clearly observe that the D-walks approach outperforms
competing approaches most noticeably when fewer labeled nodes are considered.
Moreover, the variance of this method is generally significantly lower. D-walks
is also the fastest method. On data sets like CORA with 3583 nodes, it requires
less than a second of CPU on a standard PC including the tuning of its hyper-
parameter L with cross-validation. NetKit takes about 4.5 seconds and Zhou et
al. approach requires about one minute when explicitly computing the matrix
inverse.

The scalability of the D-walks approach was assessed on much larger data
sets which were artificially generated, up to 10 million edges. These random
graphs were generated using the algorithm presented in [13]. This technique
allows one to generate an undirected and unweighted graph with a prescribed
degree sequence drawn from a power law. The parameters of the power law were
tuned such that the mean degree equals 10. The computing times on a standard
PC7 for increasing graph sizes and L values are shown in Figure 2. Memory and
time requirements are strongly limiting factors to apply the other approaches on
such large graphs.

7 Intel Core 2 Duo 2.4Ghz.
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Figure 2. On the left, the CPU time of the D-walks approach on artificially generated
graphs of growing sizes, and for increasing maximum walk lengths L. The right side
represents the classification rate on the Cora dataset, with a 0.9 labeling rate, when
increasing the maximum walk length L. In this setting, the interest of bounding the
walk length is clearly observed.

7 Conclusion

We propose in this paper a novel approach to the semi-supervised classification
of nodes in a graph. The input graph is interpreted as a Markov chain (MC) in
which random walks are performed. Particular random walks, calledD-walks, are
introduced to define a node betweenness measure. A D-walk starts in any node of
a specific class y and ends as soon as some node of the same class is reached for the
first time. The betweenness of a node q with respect to a class y is defined as the
average number of times q is visited during D-walks. Our betweenness measure is
then refined by considering walks up to a prescribed length. Bounding the walk
length provides systematically a better classification rate with the additional
benefit that the betweenness can be computed very efficiently using forward and
backward recurrences. The classification of all the unlabeled nodes in the graph
can be performed with a time complexity Θ(|Y|.m.L) where |Y| is the number of
classes, m is the number of edges in the input graph and L is the maximum walk
length considered. Moreover, the memory requirement is Θ(m + L.n), allowing
one to take benefit of the possible graph sparseness. Such low complexities enable
to deal with very large graphs containing several millions of nodes and edges. An
extension of this approach is proposed to incorporate descriptive node features
(i.e. attributes attached to each node) during classification.

Experiments on real-life databases show that the D-walks approach outper-
forms three state-of-the-art approaches. The benefit of using bounded walks is
empirically observed as better classification rates are obtained with walk length
typically bounded between 2 and 10. We also show experimentally that the pro-
posed approach easily scales up to large-scale problems thanks to its linear time
complexity.

Our future work includes several extensions of the proposed approach. The in-
terest of incorporating node features, as described in section 4, should be assessed
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experimentally. A typical case study would be the labeling of protein-protein
interaction network. The node features could include gene expression measure-
ments coding for the corresponding proteins. The D-walks method could be
further extended to perform regression on a graph, that is to predict a continu-
ous value on nodes rather than a class label. Finally, we would like to investigate
the use of bounded random walks in item recommendation systems through
collaborative filtering.
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Abstract. Memory-based collaborative filtering aims at predicting the
utility of a certain item for a particular user based on the previous rat-
ings from similar users and similar items. Previous studies in finding
similar users and items are based on user-defined similarity metrics such
as Pearson Correlation Coefficient or Vector Space Similarity which are
not adaptive and optimized for different applications and datasets. More-
over, previous studies have treated the similarity function calculation
between users and items separately. In this paper, we propose a novel
adaptive bidirectional similarity metric for collaborative filtering. We au-
tomatically learn similarities between users and items simultaneously
through matrix factorization. We show that our model naturally extends
the memory based approaches. Theoretical analysis shows our model to
be a novel generalization of the SVD model. We evaluate our method
using three benchmark datasets, including MovieLens, EachMovie and
Netflix, through which we show that our methods outperform many pre-
vious baselines.

1 Introduction

Personalized services are becoming increasingly indispensable nowadays ranging
from providing searching result to product recommendation. Collaborative fil-
tering aims at predicting the preference of items for a particular user based on
the items previously rated by other users. Examples of successful applications of
collaborative filtering include recommending products at Amazon.com1, movies
by Netflix2, etc. Memory-based methods are a set of widely used approaches for
collaborative filtering which are simple and effective [1]. They usually fall into
two classes: user-based approaches [4,10] and item-based approaches [7,17]. To
predict a rating for an item from a user, user-based methods find other simi-
lar users and leverage their ratings to the item for prediction, while item-based
methods use the ratings to other similar items from the user instead.
1 http://www.amazon.com
2 http://www.netflix.com/

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 178–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Learning Bidirectional Similarity for Collaborative Filtering 179

Despite their success, memory-based methods suffer from several serious prob-
lems. First, missing data is a major problem in collaborative filtering, causing
the so-called sparseness problem [24]. This is because there are usually millions
of users and items in existence. But a single user can only rate a relatively small
number of items. When the data are extremely sparse, it is difficult to find simi-
lar users or items accurately. Second, in memory based approaches, similar users
and items are found by calculating a given similarity metric, including Pearson
Correlation Coefficient (PCC) [16] and Vector Space Similarity (VSS) [4]. How-
ever, these metrics are not adaptive to the application domains and the data
sets. Once given, they are not changeable. Third, the classical PCC and VSS
have trouble in distinguishing different importance of items. To cope with these
problems, many variations of similarity metrics, weighting approaches, combi-
nation measures, and rating normalization methods have been developed [9].
Although they can capture the correlation between users or items to a certain
extent, for these adaptations to work, there is no consensus as to which choice of
a technique is the most appropriate for a real world situation [9]. Finally, many
previous studies in collaborative filtering consider the similarities between users
and items separately. However, similarities between users and items in reality are
interdependent and can be used to reinforce each other. Therefore, it would be
more appropriate if the similarities between users and items be jointly learned
automatically.

In this paper, we propose a novel model to learn both the item and user sim-
ilarities together. Our model enables the similarity learning based collaborative
filtering (SLCF). We show that the joint similarity learning can be formulated as
a problem of matrix factorization with missing values. The learned similarities
between users as well as items can be regarded as being influenced by some latent
factors. Different from some previous latent factor models such as singular value
decomposition (SVD) [25] and Aspect Model [11], our model provides a more
flexible scheme that does not require the number of factors underling the user
space and the item space to be the same. Theoretical analysis shows that our
model corresponds to a novel generalization of the SVD model, thus allowing a
number of nice theoretical properties to be inherited from SVD research. In ad-
dition, we provide algorithms for rating prediction with different strategies based
on learned similarity. We evaluate our model using three widely used benchmark
datasets, the MovieLens, EachMovie and Netflix data sets. Experiment results
show that our method outperforms many of the well known baselines.

2 Related Work

In the past, many researchers have explored memory-based approaches to col-
laborative filtering. Many of them can be regarded as improving the definition
of similarity metric [4,6,9,14]. A drawback of these methods is that these simi-
larity metrics are not adaptive to different datasets or contain some parameters
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needed to be tuned but not learned. Another set of related work consider how
to utilize the user-based and item-based approaches together [14,21]. In [21],
Wang et al. proposed a probabilistic fusion model to combine user-based method
with item-based method. They found the fact that fusing all the ratings in the
user-item matrix can help solve the data sparseness problem. However, they still
estimate the user-based ratings and item-based ratings independently and omit
the relationship between them. Ma et al. in [14] proposed a method to fill in
the missing value first before prediction but it has the same drawback with [21].
One particular work which addressed learning similarity is in [12] where Jin
et al. proposed an automatic weighting scheme for items. Their method aims
at finding the optimal weights that can form a clustered distribution for user
vectors in the item space by bringing similar users closer and dissimilar users
far away. But they only considered the similarity weights for items, not users
simultaneously.

Model based approaches do not predict ratings based on some ad-hoc heuristic
rules, but rather, they are based on a model learned from the data using sta-
tistical and machine learning techniques. Viewed as a missing value prediction
problem, collaborative filtering can also be solved through matrix factorization.
SVD based approaches [3,20,25] can be regarded as latent factor models where
the eigenvectors correspond to the latent factors. Users and items are mapped
into a low dimensional space formed by the learned latent factors. Similar mod-
els also include [5,11]. A drawback of these models is that they all use the same
latent factors to model users and items. An underlying assumption is that the
numbers of latent factors that influence users and items are the same. Since a
user may have diverse interests and an item may have multiple aspects, it is
desirable to allow both items and users to be in a more flexible scheme. Si and
Jin in [19] proposed a flexible mixture model for collaborative filtering. They
are among the first to relax the restriction that users and items fall into the
same classes. However, their probabilistic model regarded the ratings as discrete
values. They also ignored the relation between ratings. As such, they did not
consider scores of 3 and 2 to be closer to each other than scores of 5 and 1.

2.1 Memory-Based Collaborative Filtering

We review memory-based and SVD-based approaches for collaborative filtering
(CF) in this and the next subsections. We construct a rating matrix R with
rows representing users and columns representing movies. Since only part of the
elements are known, we use X to denote the sparse matrix with elements known
and use Y to denote the sparse matrix with elements we want to estimate. Both
X and Y are subsets of rating matrix R. We define the problem of collaborative
filtering as predicting the values in Y based on X .

User-based collaborative filtering predicts a target user u’s interest in a test
item m based on rating information from similar users.

rum =
∑

v∈Cu

suvrvm for rum ∈ Y (1)
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where rum represents the rating for an item m from a user u and Cu is the set of
nearest neighbors of the user u within which a user v has influence weight suv on
u and suv can be calculated by normalizing Pearson Correlation Coefficient [16].
Hence suv = PPC(u, v)/

∑
w∈Cu

PPC(u,w), where

PCC(u, v) =

∑
i∈Ru∩Rv

(rui − ru) · (rvi − rv)√∑
i∈Ru∩Rv

(rui − ru)2 ·
√∑

i∈Ru∩Rv
(rvi − rv)2

(2)

or Vector Space Similarity [4], so suv = V SS(u, v)/
∑

w∈Cu
V SS(u,w), where

V SS(u, v) =

∑
i∈Ru∩Rv

rui · rvi√∑
i∈Ru∩Rv

r2
ui ·
√∑

i∈Ru∩Rv
r2
vi

(3)

where Ru is the set of items rated by the user u.
Similar to user-based approach, we write item-based approaches as

rum =
∑

n∈Cm

smnrun for rum ∈ Y (4)

where Cm is the set of nearest neighbors of the item m within which the item
n has influence weight smn on m and smn can also be calculated using PCC or
VSS as in the above equations.

2.2 SVD-Based Collaborative Filtering

Singular value decomposition (SVD)-based methods are also explored by many
researchers for collaborative filtering [3,20,25]. SVD seeks a low-ranked matrix
that minimizes the sum squared distance to the rating matrix R. Since most of
the entries in R are missing, the sum-squared distance is minimized with respect
to the partially observed entries of the rating matrix, which is X . So the loss
function we optimize is

l = |IX  (X − UV T )||2F + α(||U ||2F + ||V ||2F )

where  stands for element-wise multiplication, || · ||2F denotes the Frobenius
norm, and IX is the indicator function, with element IX(i, j) taking on value
1 if the user i rated the movie j, and 0 otherwise. U is a lower dimensional
representation for users and V is a lower dimensional representation for items.
The diagonal matrix Σ in traditional SVD is merged into U and V for simplicity.
The last term is a regularization term which prevents the model from overfitting.
Unobserved entries Y are then predicted by Y = IY  (UV T ). The regularized
SVD method has been shown to be successful in the competition of Netflix
Prize [8,22].

Another adaptation of SVD-based method is using the EM algorithm to solve
the missing value problem [25]. The basic idea is to iteratively estimate the



182 B. Cao et al.

missing ratings and conduct SVD decomposition. However, since the matrix is no
longer sparse in this approach, it quickly runs up against practical computational
limits.

3 Learning Similarity Functions

We present our main contributions in this section. To begin with, we consider
memory-based approaches in matrix form and extend it to one-directional simi-
larity learning.

3.1 One-Directional Similarity Learning

Memory-based collaborative filtering methods are usually separated from model-
based approaches and regarded as heuristic-based approaches [1]. In this paper
we provide a novel way to model memory-based methods from matrix point of
view.

Equation (1) can be written in a matrix form,

Y = Ŝ1X (5)

where Ŝ1 denotes the similarity matrix of row vectors corresponding to users
with Ŝ1(u, v) defined by

Ŝ1(u, v) =
{

suv, v ∈ Cu, (6)
0, otherwise. (6′)

Similar to the user-based approach, item-based methods can be represented in
matrix form as

Y = XŜ2 (7)

where Ŝ2 denotes the similarity matrix of the column vectors corresponding to
items with Ŝ2(m,n) defined by

Ŝ2(m,n) =
{

smn, n ∈ Cm, (8)
0, otherwise. (8′)

Noticing that X and Y are both subsets of the rating matrix R, Equations (5)
and (7) can actually be seen as matrix reconstruction equations with respect to
R. By replacing Y on the left side of the equation with R, we can obtain matrix
factorization formulas for similarity matrix learning.

R = S1X and R = XS2 (9)

In the above formulas, the similarity matrices S1 and S2 are no longer predefined
as in previous memory based approaches. Instead, they are the variables that
can be learned from the data.
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To reduce the number of parameters in a similarity matrix S, we can fac-
torize S with S = UV T . This means similarity matrices S1 and S2 can be
non-symmetric since the influence between users may not be symmetric. Then
we have a factorization problem with missing values,

R = UV TX (10)

If we ignore the missing values and replace R with X , this will lead to a new
factorization problem

X = UV TX (11)

Matrix factorization in this form is also discussed in [23] where it is solved for
document clustering.

If we assume the similarity matrices S1 and S2 are symmetric, we can reduce
the number of parameters further and reformulate Equation (10) as

R = UUTX (12)

This is one-directional similarity learning model. In next subsection we extend
it to bi-directional case.

3.2 Bi-Directional Similarity Learning

One-directional similarity learning considers users and items separately. In this
section, we extend the learning problem to a bi-directional similarity learning
problem that can learn the row and column similarities together. Recent stud-
ies [14,21] have found that the combination of user-based and item-based ap-
proaches can indeed boost the performance of collaborative filtering. However,
these recently proposed methods still conduct user-based prediction and item-
based prediction separately. In this section, we show how to integrate them
together to take the advantage of both.

Based on previous subsection, a natural way to combine user-based and item-
based approach can be stated as

rum =
∑
v,n

suvsmnrvn for rum ∈ Y (13)

In this formula, we extend the neighborhood to all users and all items. This
indicates that all ratings are interconnected: the prediction for a target user and
item can benefit from ratings of other users and items, and vice versa.

The above equation can be re-written in matrix form

Y = S1XS2 (14)

where S1 and S2 are also variables we need to learn. S1 represents the row (user)
similarity matrix and S2 represents the column (item) similarity matrix. Similar
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to one-directional similarity learning, we have a similarity learning problem in
matrix factorization form.

R = S1XS2 (15)

With the assumption that the similarity matrices S1 and S2 are symmetric, the
problem can be converted to

R = UUTXV V T (16)

where U is a rank-KU matrix and V is a rank-KV matrix with KU denoting the
number of latent factors for users and KV be the number of latent factors for
items.

We can also extend the model to nonsymmetric similarity matrix, but in that
case we have more parameters to learn. Symmetric assumption can significantly
decrease the number of variables we need to learn. Another advantage of using
this trick is that it guarantees the similarity matrix to be positive semi-definite
naturally. Therefore, we still follow the symmetric assumption in this paper.

3.3 Algorithms for Bi-directional Similarity Learning

Now the loss function we are going to minimize is

l = ||IX  (R− UUTXV V T )||2F + α(||U ||2F + ||V ||2F ) (17)

Since IX  R = IX  X , l can be converted to

l = ||IX  (X − UUTXV V T )||2F + α(||U ||2F + ||V ||2F )

The last term in l is a regularization term which prevents the model from over-
fitting. Let E = IX  (X −UUTXV V T ), then the loss function is simplified by

l = ||E||2F + α(||U ||2F + ||V ||2F ) (18)

We use gradient approaches to solve the minimization problem. We have the
derivation of U and V in matrix form:

∂l

∂U
= −2(EV V TXTU + XV V TETU) + 2αU (20)

∂l

∂V
= −2(ETUUTXV + XTUUTEV ) + 2αV (20′)

There are a lot of gradient based algorithms which have been developed for op-
timization problems such as conjugate gradient [15] and SMD [18]. In this paper
we use adaptive gain gradient decedent algorithm [2] to minimize the loss func-
tion. The algorithm is described in Algorithm 1. The advantage of adaptive gain
gradient decedent algorithm includes easy implementation and fast convergence
speed.
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Algorithm 1. Bi-directional Similarity Learning using Adaptive Gain
Input: training data X, parameters μ, KU , KV and T
Output: U and V
Initialization: Random initialize U and V
FOR t = 1 TO T :

Update U : U (t+1) = U (t) − η
(t)
U � ∂l

∂U

(t)

Update V : V (t+1) = V (t) − η
(t)
V � ∂l

∂V

(t)

Update ηU :
η
(t)
U = η

(t−1)
U · max( 1

2 , 1 + μ · η
(t)
U � ∂l

∂U

(t−1) � ∂l
∂U

(t)
)

Update ηV :
η
(t)
V = η

(t−1)
V · max( 1

2 , 1 + μ · η
(t)
V � ∂l

∂V

(t−1) � ∂l
∂V

(t)
)

Another point we should notice is that although the similarity matrices S1

and S2 are large and dense, we can avoid computing them in the algorithm by
carefully choosing the order of matrices multiplication.

3.4 Relation to SVD

In this section, we discuss the relation between our model and SVD model.

Theorem 1. If we disregard the missing data and require that the ranks of U
and V are the same, SV D is the solution to X = UUTXV V T .

Proof. Suppose that X = UΣV T . By plugging it into UUTXV V T , we obtain
UUTXV V T = UUTUΣV TV V T = UΣV T = X .

The equivalence of our model and SVD models can be established under the
condition that there are no missing values and U and V have equal ranks. How-
ever, when there are missing values, the two models are not equivalent anymore
even when we have KU = KV = K. We can see this point in the experiment
part again.

Another difference between our model and SVD is seen from the rank of
approximation matrix. SVD seeks the optimal rank-K approximation to the
original matrix. But in our problem, we are not explicitly given rank restriction
of the reconstructed matrix. The rank of reconstructed matrix is determined by
the ranks of S1, S2 and X itself.

From the dimension-reduction point of view, SVD seeks a K dimensional
space for row vectors and column vectors. However, in our model, we look for two
different ranked spaces for row vectors and column vectors. Therefore, our model
can also be regarded as bi-dimension-reduction-based method for row vectors and
column vectors with different dimensions. We also can find the relation between
the two spaces as two basis sets satisfy the following equation

U · B1 = B2 · V (21)

where the users’ basis B1 = UTXV V T and the items’ basis B2 = UUTXV .
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4 Rating Prediction Based on Bidirectional Similarity
Learning

Different strategies can be used for collaborative filtering based on our learned
similarity. In this section, we discuss three types of similarity learning based
collaborative filtering strategies.

4.1 Matrix Reconstruction Strategy

Model-based approaches keep the user profiles in a more compressed data struc-
ture than memory based methods. The prediction for a user’s interests is based
on the user’s profile that is learned during a training process. In our model, the
user u’s profile corresponds to row u in matrix U denoted by Uu and the item
i’s profile corresponds to column i in V , i.e. V T

i . With our learned model, we
predict a rating to the item i by the user u,

rui =
∑
v,j

svusijrvj = UuU
TXV V T

i for rui ∈ Y

This can be done when both u and i show up in the training data X . We refer to
this prediction strategy as matrix reconstruction strategy for SLCF (R-SLCF).

Matrix reconstruction strategy for collaborative filtering has the new user
and new item problem. It can only predict the rating for existing users and
items during training process. A naive solution to this problem is to retrain
the whole new dataset and then make prediction for the new users and items.
This procedure is clearly too time-consuming and often infeasible. In the next
sub-section, we will use another strategy to solve this problem.

4.2 Projection Strategy

In this section, we discuss projection based strategy P-SLCF in our new frame-
work which can bring new users and items into the model without retraining on
the whole dataset. The key issue is how to introduce new users and items into
the previous model and predict ratings for these new users and items based on
previous models.

Suppose that there are some new users who arrive with new rating information
Ŷ and Ŷ is to be included into the previous user rating matrix X . Then we have

a new rating matrix with X ′ =
(
X

Ŷ

)
. Let UY be a representation of new users.

Hence we have
Ŷ = U

�Y · U
TXV V T = U

�Y · B1 (22)

By solving the above linear equation, we find U
�Y with

U
�Y = Ŷ · ((I

�Y  B1) · (I�Y  B1)T + λI)−1 (23)

where I is identity matrix. We can regard the user as being projected to a lower
dimensional space spanned by the matrix B1. Then, all new users are projected
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into this space. The last term λI is introduced to guarantee that the inverse
operation is more stable [13].

Similar to adding new users, we can consider the new items as being projected
to a lower dimensional space spanned by B2. Suppose that there are some new
items that arrive with new rating information Ŷ and Ŷ is included into the
previous user rating matrix X to give X ′ = (X, Ŷ ). We can update V

�Y by

Ŷ = UUTXV · V T
�Y

= B2 · V T
�Y

(24)

U
�Y = Ŷ · ((I

�Y  B2) · (I�Y  B2)T + λI)−1 (25)

Then similar to R-SLCF, we can predict the rating by

R
�Y = U

�Y UTXV V T
�Y

Although we need to calculate inverse of matrices in projection based strategy,
but since the matrices are of rather small scale and can be computed efficiently.

4.3 Improved Memory-Based Strategy

Memory-based methods can also be adapted to use our learned similarity. The
idea is to use the learned similarity matrices S1 and S2 to find the nearest
neighbors. Then we can use the memory based methods for prediction. We refer
to this strategy as M-SLCF. This strategy is especially helpful for comparing
our learned similarity with the user-defined similarity such as PCC. We show
the results of comparison in Section 5.3.

5 Experiment

In this section, we will introduce data sets, evaluation metric and experiment
results of our similarity learning-based collaborative filtering. In Section 5.3, M-
SLCF is used and in Section 5.4, P-SLCF is used for comparison purpose. In
other parts, R-SLCF is used for experiments.

5.1 Datasets

Three benchmark datasets are used in our experiments.

– MovieLens3 is a widely used movie recommendation dataset. It contains
100,000 ratings with scale 1-5. The ratings are given by 943 users on 1,682
movies. The public dataset only contains users who have at least 20 ratings.

– EachMovie4 is another popular used dataset for collaborative filtering. It
contains 2,811,983 ratings from 72,916 users on 1,628 movies with scale 1-6.

3 http://www.grouplens.org/
4 http://www.cs.cmu.edu/ lebanon/IR-lab.htm
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Table 1. Optimal KV Given KU

KU 5 6 7 8 9 10 11 12 13 14 15

Opt KV 14 14 14 14 12 10 8 8 8 6 5

MAE 0.7611 0.7606 0.7606 0.7607 0.7604 0.7606 0.7605 0.7603 0.7606 0.7607 0.7608

Table 2. Optimal KU Given KV

KV 5 6 7 8 9 10 11 12 13 14 15

Opt KU 13 13 12 12 12 11 9 9 9 7 6

MAE 0.7608 0.7607 0.7606 0.7603 0.7606 0.7606 0.7606 0.7604 0.7607 0.7606 0.7610

0

5

10

15

0

5

10

15
0.76

0.765

0.77

0.775

0.78

0.785

K
U

K
V

M
A

E

Fig. 1. MAE surface of R-SLCF on
MovieLens dataset. Numbers of user
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varied simultaneously.
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– Netflix5 is a pubic dataset used in Netflix Prize competition. It contains
ratings from 480,000 users on nearly 18,000 movies with scale 1-5. In this
paper, we use a subset of 367,348 ratings from 5,000 users and 2,000 movies
for our experiments.

5.2 Evaluation Metrics

In this paper, we use Mean Absolute Error (MAE) for experiment evaluation.

MAE =

∑
u,m |rum − r̂um|

N

where rum denotes the rating of the user u for the item m, and r̂um denotes the
predicted rating for the item m of the user u. The denominator N is the number
of tested ratings. Smaller MAE score corresponds with better prediction.
5 http://www.netflixprize.com
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5.3 Empirical Study of our Approach

Impact of KU and KV . Two important parameters of our SLCF methods are
the user similarity matrix rank KU and the item similarity matrix rank KV . In
this experiment, we run experiments on MovieLens dataset to study the impact
of KU and KV . Figure (1) shows the three dimensional MAE surface with KU

and KV being changed simultaneously. We find that the best prediction result is
achieved when KU and KV are neither too small nor too large. Table (1) shows
the best KV for given KU and Table (2) shows the best KU for given KV . An
interesting observation is that most of the best prediction results are achieved
when KU + KV ≈ 20. This means that the inherent information conveyed by
latent user factors and item factors are complementary to each other. When
fewer user factors are available, more item factors are required to characterize
the inherent structure of rating matrix, and vice versa. From the MAE surface
of Figure (1), the best result is obtained when both user and item factors are
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considered (KU = 12, KV = 8 ). This verifies our motivation that user and item
spaces should be modeled with different numbers of factors. Another parameter
in our model is α which controls the balance between prediction error on training
data and model complexity. After testing on different values, we use α = 0.0001
in our experiments.

The Difference of R-SLCF and P-SLCF. Since it is costly to retrain the
model when new users or items come, we provide the P-SLCF algorithm in
Section 4.2. In this experiment, we compare the accuracy of prediction by R-
SLCF and P-SLCF. Figure (2) shows the comparison results on MovieLens. In
this experiment, we use 200 users as testing data. When training users are very
few, P-SLCF is not as good as R-SLCF. But as the number of training users
increases, the performances of P-SLCF and R-SLCF become very close.

An important parameter in P-SLCF is λ. Figure (3) shows the influence of λ
to the prediction accuracy. After testing different values of λ, we find that λ = 1
to be a good choice which we use in our experiments.

Impact of Data Sparseness. In this sub-section, we show experiments on the
impact of data sparseness on similarity learning using M-SLCF. For comparison
purpose, we also use the predefined similarity PCC (Equation (2)) for selecting
neighbors which we refer to as M-PCC. In both cases, Equation (1) with equal
weights for neighbors is used for making predictions.

We first filter the EachMovie dataset by keeping the users who have rated
different number of movies (from less than 50 to less than 5 in this experiment).
In this way, we construct datasets with different degree of sparseness. We use user
based method with neighbors found by SLCF and compare it with PCC. When
the data are not that sparse, PCC can do good job in finding nearest neighbors.
However, when the degree of sparseness increases, it does not work anymore. In
Figure (4), we can clearly see that SLCF is able to find more accurate neighbors
with the degree of sparseness increased. Figure (5) verifies our conclusion from
the other side. It shows how SLCF and PCC perform with different number of
nearest neighbors. We can see that PCC is good at finding the most similar users
but SLCF has the advantage of finding the potentially similar users. That is, we
can improve the recall of finding similar users. Therefore, when more nearest
neighbors are used, our model performs much better.

5.4 Comparison with Other Approaches

The baselines we use include user-based method using PCC, item-based method
using PCC and regularized SVD method. We also compare our method with an-
other recent proposed state-of-the-art method [21] which also fusions the similar-
ities of users as well as items. Although we also conduct experiments on Netflix
dataset, our results are not comparable with the top results on the leaderboard
since they are hybrid methods. We should notice regularized SVD, which is one
of the best algorithms in the Netflix Prize competition [8], is also included in
our baselines.
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Table 3. MAE comparison of R-SLCF
with SVD for different K. For R-SLCF1
we require KU = KV = K. For R-SLCF2
we require KU + KV = 2K.

Dataset K SVD R-SLCF1 R-SLCF2

MovieLens

K=5 0.7665 0.7534 0.7534
K=10 0.7676 0.7517 0.7516
K=15 0.7785 0.7533 0.7523
K=20 0.7906 0.7554 0.7532

EachMovie

K=5 0.8023 0.7902 0.7901
K=10 0.8272 0.7855 0.7845
K=15 0.8317 0.7920 0.7912
K=20 0.8127 0.7932 0.7920

Netflix

K=5 0.7557 0.7505 0.7501
K=10 0.7640 0.7490 0.7480
K=15 0.7737 0.7498 0.7498
K=20 0.7835 0.7571 0.7569

Table 4. MAE comparison of R-SLCF
with memory-based method and item-
based method. N = 30 means only users
with ratings no larger than 30 are in-
cluded.

Dataset #Rating I-based U-based R-SLCF

MovieLens

N=30 1.0936 0.8785 0.8418
N=40 0.9587 0.8527 0.8113
N=50 0.9144 0.8451 0.8104
N=60 0.8648 0.8239 0.8056

EachMovie

N=30 1.7238 0.9919 0.9347
N=40 1.6437 0.9908 0.9297
N=50 1.7792 0.9836 0.9338
N=60 1.6656 0.9886 0.9327

Netflix

N=30 0.9568 0.8804 0.7974
N=40 0.8647 0.8390 0.7782
N=50 0.8293 0.8114 0.7672
N=60 0.7934 0.7774 0.7439

Table 5. Compare with results of SF on MovieLens

Num. of Training Users 100 200 300

Num. of Ratings Given 5 10 20 5 10 20 5 10 20

P-SLCF 0.838 0.770 0.771 0.799 0.768 0.763 0.787 0.753 0.739
SF 0.847 0.774 0.792 0.827 0.773 0.783 0.804 0.761 0.769

Comparison with SVD-Based Approaches. Since our model is similar to
SVD, in this section, we carefully compare our model with the regularized SVD
model we introduced in Section 2.2 in different aspects. Figure (6) shows the
convergence curves of our approach compared with regularized SVD. In this ex-
periment, we use the same optimization algorithm (adaptive gain) with the same
initial point6 for U and V to run the algorithms and tune the best step length
for each algorithm. We can see our approach converges faster than regularized
SVD and finds better solution. It is also worthy to notice that in the last several
iterations regularized SVD has smaller MAE on training data but larger MAE
on test data when compared with R-SLCF. This indicates regularized SVD is
more likely to be overfitting than our model. This may be due to that regularized
SVD requires a strict rank-K approximation but we do not.

Table (3) shows a performance comparison of our model and regularized SVD
model with various Ks. In this experiment, R-SLCF uses the same number of
variables with regularized SVD for the fair of comparison. We can see our method
clearly outperforms regularized SVD model. This experiment also indicates that

6 Although the initial points are the same, the initial performance can be different.
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when there are missing values our model is different from regularized SVD even
KU = KV .

Comparison with Memory-Based Approaches. We compare our method
with user-based(U-based) and item-based(I-based) approaches with results
shown in Table (4). The experiment is carried out with different sparseness
condition with N = 30 meaning only users who have ratings less than or equal
to 30 are used. From this table we can see that our method clearly outperforms
the baselines.

We also compare our method with another stat-of-the-arts algorithm Similar-
ity Fusion (SF) [21] which also utilizes both user side and item side information.
The difference between our approach and SF is that the similarities used in our
algorithm is automatically learned rather than defined heuristically. To compare
with their algorithm, we followed the exactly same experiment settings in the
paper. Then, for the performance of their method, we quote their results from
their publication. We can see that our approach outperforms SF significantly.

6 Conclusion and Future Work

We proposed a novel model learning user and item similarities simultaneously
for collaborative filtering. We showed that our model can be regarded as a gen-
eralization of SVD model. We developed an efficient learning algorithm as well
as three prediction strategies. The experiments showed our method could out-
perform baselines including memory-based approaches and SVD.

For future work, we plan to develop more efficient algorithms to learn our
model in larger scale datasets. We also plan to relax the symmetry assumption.
Although it brings more variables to learn, it is a more reasonable assumption.
Although focused on collaborative filtering in this paper, our model is very gen-
eral for sparse data which has matrix form. Therefore, we plan to apply our
model to other kinds of data sets and tasks such as document clustering.
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Abstract. We consider the problem of extracting structured records
from semi-structured web pages with no human supervision required for
each target web site. Previous work on this problem has either required
significant human effort for each target site or used brittle heuristics
to identify semantic data types. Our method only requires annotation
for a few pages from a few sites in the target domain. Thus, after a
tiny investment of human effort, our method allows automatic extraction
from potentially thousands of other sites within the same domain. Our
approach extends previous methods for detecting data fields in semi-
structured web pages by matching those fields to domain schema columns
using robust models of data values and contexts. Annotating 2–5 pages
for 4–6 web sites yields an extraction accuracy of 83.8% on job offer sites
and 91.1% on vacation rental sites. These results significantly outperform
a baseline approach.

1 Introduction

This work addresses the problem of extracting structured records from semi-
structured web pages with no human supervision required for the target web site.
Semi-structured web pages are human-readable renderings of database entries.
Familiar examples of semi-structured web page domains include books for sale,
properties for rent, or job offers. We develop techniques that learn extraction
models applicable to an entire domain of web sites from just 2–5 annotated
pages from each of 4–6 web sites within that domain. The end result is a high-
accuracy system that can be applied to many web sites within a domain without
any human annotation of those sites.

In this work, we extract data from detail pages of web sites. These are pages
which correspond to a single data entity, and which render various attributes of
that entity in a human-readable form. An example detail page is shown in Fig. 1.
While we focus on the setting where a page contains one record in this work, our
methods could be easily adapted to the case where multiple data records exist
on one page through use of existing data record detection algorithms (e.g. [1]).

Extracting structured records from semi-structured web pages is an impor-
tant problem because a great deal of information on the internet is presented in
this form. Moreover, the resulting structured records are particularly valuable to

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 195–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Part of an example detail page from the vacation rental domain. The page is
about a particular house and displays attributes of that house such as its location,
occupancy limit, and number of bathrooms.

downstream learning or querying systems because of their attribute/value struc-
ture and conformance to a fixed domain schema. Solving this problem without
requiring human supervision for each target web site has been an understudied
topic. Most previous work on this problem has required human supervision by
requiring a person to either annotate example web pages from each target web
site [2,3,4] or map the extracted data fields for each target site to columns in a
domain schema [5,6,7]. The work that did not require supervision for each tar-
get site was not robust to typical variations on semi-structured web sites, such
as cases where data fields do not have a label and do not match some unique
pattern [8]. Our method only requires human supervision for a few web pages
from a few sites in the target domain, allowing minimally supervised extraction
from potentially hundreds or thousands of other sites within the same domain.

Our basic approach is to generalize extraction on a per-domain basis (e.g., for
vacation rental sites). In taking on a new domain, first a human decides what
the domain schema should be: that is, what schema columns are interesting and
are present on many sites in the domain. Next, we annotate a small number of
pages (2–5) for each of a few (4–6) web sites in the domain. These are provided
as training data to an existing supervised extraction system1, which learns a site-
specific extraction model for each of the 4–6 sites; each model is then applied
to all of the detail pages on the corresponding web site, yielding 4–6 machine-
annotated sets of detail pages to be used as training data for our model. Finally,
via the method presented in Sect. 3, we model both page contexts and values
for each column in the domain schema, learning how to perform extraction for
1 A supervised information extraction system making use of the partial tree alignment

algorithm from DEPTA [7].
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Fig. 2. A high-level view of learning under our system. By annotating 2–5 pages for 5
vacation rental sites, we train an extraction system that can be applied to thousands
of other vacation rentals sites with no additional supervision required.

new vacation rental sites2 with no additional human labeling effort. Figure 2
illustrates this learning scheme.

The experiments described in Sect. 4 measure an extraction accuracy of 83.8%
on a previously unseen domain (job offer sites, which were all completely held out
until evaluation time, providing a fair evaluation of how the system would per-
form in practice on other domains) with no direct supervision on the target sites
being labeled. For previously unseen web sites in the vacation rentals domain
(other vacation rental sites were used in algorithm development) we observed
an accuracy of 91.1%. These results show a strong improvement over baseline
accuracies of 61.8% for job sites and 65.8% for vacation rental sites, which were
obtained using a logistic regression model. Other performance measures, also
discussed in Sect. 4, indicate that use of our system for aiding human annota-
tors is extremely promising, allowing a very small amount of effort to further
increase accuracies.

2 Related Work

There has been much previous work on supervised learning of models for ex-
traction of structured records from semi-structured web sites [2,3,4]. Such work

2 Sites amenable to document object model tree alignment (implying that site-internal
templates are used for automatic page generation), and making only trivial use
of Javascript. We have observed that roughly 50% of vacation rental sites can be
expected to meet these criteria.
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requires a user to annotate training pages on a target web site, and then learns
to extract data from the rest of the site. This process is labor-intensive, as it
requires a new, separate labeling for every site.

Other previous work does not require a user to fully label example pages
on the target web site, but does require manual labeling of the output. These
approaches extract data fields by learning a common template for a page or site.
Then, the user typically selects a subset of the output data fields and labels
them according to the domain schema. Examples of such work are IEPAD [5],
OLERA [6], and DEPTA [7]. This can be a labor-intensive process, because
web sites tend to have many irrelevant fields, and thus the user must select
from many more data fields than there are schema columns (web sites in our
evaluation had an average of 20 data fields and 7 schema columns). Our work
extends these methods, providing an automatic labeling of the extracted data
by automatically mapping data fields to schema columns. This paper uses the
partial tree alignment method of DEPTA to detect data fields, but many other
template-finding algorithms, such as the repetitive pattern finding method of
IEPAD, or the string editing distance method of OLERA, could be used in its
place. Thus, this paper fills an important gap by allowing use of any one of a
number of previous methods for detecting data fields on a web site, and providing
minimally supervised selection of relevant fields and mapping to schema columns.

An exception to the requirement of user labeling of detected data fields is
the DeLa system [8], which uses heuristics to automatically label extracted data
fields. The heuristics depend on matches between the name of a schema column
and labels present on a web page, or on data conforming to specific formats (e.g.
dates or prices). There are many common cases where the DeLa system cannot
label data fields. For example, the DeLa heuristic misses a common case where
a data field does not have a label (for example, the job title field on most job
sites is a heading with no prompt or label). Also, the DeLa heuristic would be
confused by sites with multiple fields of the same data type (for example, the
bedrooms, bathrooms, and maximum occupancy fields in vacation rentals). Our
methods are much more robust to the variations typical on semi-structured web
sites, and can handle these cases.

We label extracted data fields by comparing them to data fields on other
annotated sites from the same domain. The only other previous work that we
found that uses this approach to label semi-structured data is that of Golgher
et al. [9]. This work bootstrapped onto new sites using examples of structured
records from other web sites. These example records discarded the page context
in which values appeared on the training web pages, and thus their system could
not generalize across web sites based on context (our results in Table 1 demon-
strate the high value of contextual features for the vacation rentals domain).
Also, their model matched data values only at the token level, discarding useful
textual features such as matches of short subsequences of characters.

Our method is partly inspired by techniques for schema matching in the data-
base community. Specifically, the authors in [10] match elements in different
database schemas by learning a model of schema columns which combines the
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output of several base classifiers using a logistic regression meta-classifier. Our
work applies a similar technique to a different problem. We match data fields
on different web sites to a domain schema, rather than working with database
fields. We also use different types of features, and we take advantage of the
availability of distributions of data values by comparing frequencies of different
values.

Freitag used a multi-strategy learning method where regression models were
learned to map confidence scores to probabilities for various information extrac-
tion strategies. The probabilities were then combined in a Bayesian manner to
make final predictions [11]. Our work uses a simpler, more direct method of com-
bining models— we use a regression model for each schema column to combine
confidence scores from our strategies (classifiers for each schema column that
use some feature type to classify data fields). Additionally, our method classifies
site-level data fields rather than individual data values, allowing better decisions
to be made because more information is available at the site level.

3 Methods

In this paper, a domain schema is a set of attributes usually present in a record
for the selected domain, while a schema column is a single attribute within that
schema. A detail page of a web site is a page that corresponds to a single data
record. A data field on a web site is a location within a template for that site
(in this work, a node within a DOM tree template for that site), and a data
value is an instance of that data field on a single detail page from that site.
Data values appear in contexts which in this work are the text preceding a data
value.

The central idea of our method is that we can bootstrap from a few training
sites by building a model of data values and contexts for each schema column
in our target domain schema, and then apply that model to many more sites
with no further human effort. As training data, we require a collection of detail
pages from a small number of web sites within the target domain that have been
automatically labeled using a supervised wrapper induction algorithm according
to some domain schema3. At test time, our method takes a collection of detail
pages from a previously unseen target site4 in the same domain. The goal is to
annotate these pages according to the domain schema, identifying where schema
columns are expressed in spans of text on the pages. We do this by first detecting
potential data fields on the pages, and then classifying the data fields using a
model learned from the training data.

3 As mentioned in Sect. 1 acquiring this training data requires annotating 2–5 pages
from 4–6 web sites to train a supervised system for each site, and then extracting
records from the rest of the pages from the training sites.

4 Our work assumes the availability of automatic methods for identifying such pages.
To implement this ability we could use an approach that clusters and classifies pages,
such as [12].
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More specifically, we use the following method:

1. On the target site, create a template for the detail pages that identifies
aligned regions across pages that look like potential data values. We consider
these regions to be potential data fields. Our method for identifying these
data fields is described in Sect. 3.1.

2. Based on the machine-annotated training data from a few training sites, label
the detected data fields on the target site with a score that indicates how
likely they are to be instances of each schema column in a domain schema.
This is described in Sect. 3.2 below.

3. Using these scores, either automatically annotate the target site, or else give
recommendations to aid a human annotator (these are alternate uses of our
output). Details of this procedure are given in Sect. 3.3.

Fig. 3. Alignment of document object model trees and subsequent detection of data
fields

3.1 Detecting Data Fields

We detect data fields across the pages on the target site by using the Partial
Tree Alignment algorithm, which is part of the DEPTA system [7]. The data
field detection is done in an unsupervised manner as follows. First, document
object model (DOM) trees for the detail pages on a site are aligned. Next, the
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strings occurring at aligned nodes are enumerated and inserted into a set. Any of
these sets containing more than one element, then, corresponds to a region in the
“template” for detail pages that exhibits variability across pages. Such regions
(aligned DOM tree nodes exhibiting variability) are taken as the candidate data
fields for the site. This process is illustrated in Fig. 3. Data fields that aligned
to fewer than half of the pages on a site were filtered out, because these were
typically not interesting data fields. Such filtered data fields tended to be different
paragraphs of free text which the tree alignment algorithm occasionally decided
to align. In effect, this filtering step ignores free text data fields which do not
occur on all pages of the site and are not interesting data fields.

3.2 Classifying Data Fields

For each data field on the target site, we assign a score representing its corre-
spondence to each schema column in the domain schema. A high score indicates
a high degree of confidence that a data field should be mapped to that schema
column. Informally, we find data fields on the target site that have data values
that are similar to the values observed in the training data for a schema column,
and we also want to find data fields that appear in page contexts that are similar
to contexts from the training data.

To compute the score for a data field f and a schema column c, an obvious
method to try is to extract a set of features for the data field, and use a classifier
to map data fields to schema columns, where we train the classifier with our
training sites. However, we discuss below in the ‘Motivation’ subsection that
this method is impractical given the number of different textual features we must
use (tens of thousands) and the number of training examples we have (roughly
one hundred), so that a single classifier will tend to overfit and give irrelevant
features high weights. Instead, we use a model that computes, for K different
feature types, how similar the feature values observed for that data field are to
the feature values observed in the training data for that schema column. This
yields K different subscores, one for each feature type. We then combine those
scores using a regression model that outputs a final score. The intuition is that
for each schema column, different types of features matter, and that comparing
distributions of observed features is much less noisy than singling out individual
features in our model.

In the rest of this subsection, we describe the types of features that we use
to represent data fields and schema columns. We then give details about our
method for comparing different distributions of values of these features, describe
the regression model that combines the similarity scores for each feature type,
and give details on how we train the model. We end the subsection with further
discussion of the motivation behind our model.

Feature Types. Our method uses four different feature types. A feature type
is a family of features, such as ‘lowercase tokens occurring in data values of a
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Fig. 4. Feature type distributions are created for data fields in aligned document object
model trees. This is done for both training and test sites, so that the resulting distrib-
utions can be compared. In the figure, counts exceeding 1 are indicated by subscripts.

data field.’ Our method combines different types of features because there can
be different indicators of the correct label for a data field. We might sometimes
have strong clues from the text before a data field (e.g. it might always say
‘Bedrooms:’, indicating that the data field holds the value for bedrooms). We
might also have strong clues from the text inside a data field (e.g. ‘Software
Engineer Level I’ indicating a job title). See Fig. 4 for an illustration of the
feature type distributions for an example data field. We use the following feature
types:

– Precontext character 3-grams: We extract character 3-grams from the non-tag
text preceding a data field in HTML. Web sites often abbreviate or use different
forms of labels, such as “Bedrooms”, “Beds”, “Bedrms”. Character 3-grams can
capture these variations.

– Lowercase value tokens: We tokenize data values by whitespace, and convert
them to lowercase. Many of the schema columns that occur in semi-structured data
have values that come from a limited vocabulary.

– Lowercase value character 3-grams: We extract character 3-grams of the data
values. Many types of data can be abbreviated, or use similar but not identical
words, or use special symbols or codes, all of which can be better captured using
character 3-grams.

– Value token types: We categorize tokens in data values into general types (e.g.
all caps, all digits, title case). These features are helpful for addresses, unique IDs,
or other schema column types with a mix of token types.

Comparing Distributions of Feature Values. We compare distributions of
features observed in training data to distributions observed in data fields to be
labeled on the target site. This approach uses all of the data, including relative
frequencies of features, to make its predictions. This is an advantage in cases
such as the vacation rental domain, which includes schema columns bedrooms
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and bathrooms which have very similar data values but, typically, different dis-
tributions of these values. Additionally, comparing distributions of features helps
us avoid overfitting when dealing with high-dimensional feature spaces and small
numbers of training examples.

A common method of comparing two distributions is Kullback-Leibler Diver-
gence, or KL-Divergence. For the kth feature type, we have a distribution Pkc

for the schema column c in the training data, and Pkf for the data field f in the
target site. The KL-Divergence from the training data distribution to the data
field distribution for feature type k is:

KLk(c||f) =
∑

i

Pkc(i) log
Pkc(i)
Pkf (i)

(1)

An issue with KL-Divergence is that when Pkc(i) > 0 and Pkf (i) = 0 for some
feature value i, the KL-Divergence is undefined. To counter this, we use Skew
Divergence, a smoothed version of KL-Divergence [13]:

SDk(c||f) = KLk(c||α ∗ f + (1− α) ∗ c) (2)

Note that α = 1 gives the original KL-divergence. A value close to 1 gives a
slightly smoothed KL-Divergence. We use α = 0.8 in this work.

We alter the Skew Divergence with a simple transformation to create the Skew
Similarity score, which has value 0 for the data field f most dissimilar from the
schema column c, and highest value for the data field which is most similar to
the schema column in the training data.

SSk(c, f) = [max
f

SDk(c||f)]− SDk(c||f) (3)

Our choice of Skew Divergence as the method of comparing distributions is
one of many reasonable choices. We chose to use a smoothed version of the KL-
Divergence. Other measures of the distance between two distributions, such as
the Jensen-Shannon divergence, would also be reasonable.

Combining Skew Similarity Scores. Skew Similarity scores for different
feature types will have different scales, and in some cases might actually be
misleading (for instance, if contextual features are not helpful for some schema
column in a domain, we want to ignore the Skew Similarity score for these
features). Thus, we cannot simply average or sum the scores. Instead, we combine
Skew Similarity scores for the different feature types using a linear regression
model. A data field f on a target site is given a score LRc(f) for a schema column
c using a linear regression model which combines the K different similarity scores
(one for each feature type). The final score is a weighted combination of the Skew
Similarity scores plus a constant:

LRc(f) = β0c +
K∑

k=1

βkcSSk(c, f) (4)
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If we view the Skew Similarity scores as different classifiers, each making pre-
dictions based on models over features learned from training data, then this
overall model can be viewed as a stacked classifier model. Stacking, which gen-
erally refers to using the outputs of classifiers as inputs to another classifier, has
been shown to often be an effective way of combining the predictions of multi-
ple classifiers [14]. Our choice of linear regression as the ‘top-level’ classifier was
motivated by the good empirical performance observed across a wide variety
of data sets in previous work on stacking [14], and by ease of implementation.
A number of other choices could be made for the top-level classifier, including
logistic regression if posterior probability estimates were desired.

Training the Model. Training the stacked classifier regression model involves
learning the weights β. This is done by holding out each training site, and gen-
erating data points for the linear regression for each data field on the held-
out site with Skew Similarity scores computed relative to the other training
sites. Using such a held-out approach to training the model is important, be-
cause otherwise the training examples will have very biased estimates of the
accuracies of the Skew Similarity scores (they will appear to be much better
than one would expect on held-out data). For every data field f on a train-
ing site and every schema column c in the domain, we generate an example:
(δ(c, f), SS1(c, f), SS2(c, f), . . . , SSK(c, f)) where δ(c, f) = 1 if the data field f
is annotated with schema column c in the training data and 0 otherwise. The
coefficient βkc controls how strong an indicator feature type k is for schema
column c. The coefficients allow our method to learn which feature types are
reliable indicators on a per-domain, per-schema column basis, which is essential
for robust performance across a wide variety of domains and sites.

Motivation for the Model. One might question why we did not use a model
for each schema column that learned a classifier over a feature vector that held all
of the features that describe a data field. The key reason is that each annotated
training site yields only as many training examples as there are data fields on
that site. For example, with 5 training sites and an average of 20 data fields
detected per site (typical values in our setting), we would have 100 examples,
most of which would be negative examples. With the various character n-gram
features and token features that we need in order to robustly recognize variations
of data values and contexts, the dimensionality of the feature vectors would reach
tens of thousands of features. It is difficult to train a reliable classifier in such
a setting. Even with appropriate feature selection and regularization methods,
with so few training examples and so many features, overfitting seems inevitable.

We instead chose a stacked model that combines a small number of similarity
scores. Our choice was motivated by several reasons. First, a similar model de-
sign that combined a set of base learners with a regression-based classifier has
been shown to be useful for a related problem, matching database schemas [10].
Second, such a model has to learn only k + 1 parameters for each schema col-
umn, where k is the number of base learners to combine. In our setting, where
k = 4, we can expect to obtain sensible estimates of these parameters. Third,
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similarity measures like Skew Divergence are effective ways to compare distrib-
utions of values and summarize them with a score. Finally, we desired a model
that could be easily extended with additional sources of information, which our
model facilitates. The new information can be simply added to the regression
model.

In our evaluation, we compare these two approaches, using a regularized lo-
gistic regression classifier as a baseline approach that uses all features at once.
Our results suggest that overfitting is a significant issue for the baseline method,
and that our model yields superior performance.

3.3 Labeling the Target Site

After we have computed a score for each possible mapping of a data field on the
target site to a schema column, we must output a labeling of the target site. The
output of our method depends on the application setting. If we are operating in
a fully-automated setting, the system chooses the data field f which maximizes
the score LRc(f) for each schema column c, and annotates all pages on which
those data fields occur with the appropriate labels (a data field does not always
occur on every page). Not all schema columns occur on every target site, so we
choose no data field if the maximum linear regression score is below a threshold
θ for a schema column5.

If we are aiding a human annotator, we recommend the top N data fields on
the target site for each schema column. This dramatically reduces the annotation
effort required, as the annotator only has to look at a handful of data fields.

We consider both scenarios in our evaluation.

4 Evaluation

The evaluation of our method was designed to measure the accuracy of au-
tomatically labeling new sites, and also to measure how well we could make
recommendations to human annotators. Given a collection of annotated sites for
a domain, we performed our evaluation in a cross-validated fashion, training the
system on all but one of the sites, and testing on the held-out site. We used as
our gold standard the nearly-perfect machine annotations from our supervised
extraction system (hand-checking a large sample of annotations failed to find any
errors in many dozens of pages, implying that they were over 99% accurate). In
the results below, we refer to our method as the ‘Stacked Skews Model.’

4.1 Baseline Method

As discussed in Sect. 3.2, an obvious approach to the problem we consider is to
extract a feature vector describing each schema column from each training site,
and train a multiclass classifier to classify data fields with which schema column
they match (and to decide which data fields are irrelevant). To evaluate the
5 We used θ = 0.1 in this work, selected based on the development data.
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performance of our system relative to this baseline, we implemented a regularized
logistic regression classifier as our baseline method. The output of the classifier is
used just as the output of the linear regression model is in our system, with the
highest scoring data field for each schema column being mapped to that schema
column. We hand-tuned the threshold below which the baseline decides that a
schema column is not present on a target web site (we used a value of 0.2, which
optimized the test results for the baseline). In the remainder of this section, we
refer to this baseline method as ‘Logistic Regression.’

4.2 Metrics

The metrics we used to evaluate our system are:

– Accuracy: On each page of the test site, we create an annotation for each schema
column in the domain schema, or assert that the schema column is not present on
the page. We measure the accuracy of these decisions6.

– Recall in Top 3: For a test site, we select the top 3 data fields for each schema
column. On each page of that test site, we check to see if each correct annotation
on that page is in the top 3 ranked data fields for its label.

4.3 Domains

We evaluated our system using two different domains: vacation rentals and job
sites. Vacation rental sites list properties offered for rent, with attributes such
as number of bedrooms, maximum occupancy, and a text description of the
property. Job listing sites describe open job positions, and include attributes
like the company offering the job, the date it was posted, and the location of
the job. Refer to Fig. 6 for the complete list of schema columns for each domain
schema. We developed our methods using other sites in the vacation rentals
domain than the ones we ultimately trained and tested on. The vacation rental
sites used in our evaluation were not seen until the system development was
finished, nor were any sites in the jobs domain.

4.4 Web Sites

We selected web sites for each domain that had most of the schema columns
listed in Fig. 6 present and that were amenable to tree alignment. We were
unable to find publicly available data suitable for our evaluation; while there
was limited annotated data available publicly for job sites, our method needed
at least 5 different sites in a domain annotated with a similar schema. Job sites
had 240 pages and 17 detected data fields on average. Vacation rental sites had
151 pages and 25 detected data fields on average.

6 Some schema columns appear on pages in multiple locations. Any correct location
is acceptable.
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Fig. 5. Results for Logistic Regression and Stacked Skews Model when holding out
each site from the training data and testing on it, averaged across schema columns.
The ‘Average’ columns give results averaged across sites and columns. (Top and Bottom
Left) Accuracy and Recall in Top 3, respectively, for each site in the jobs domain. (Top
and Bottom Right) Accuracy and Recall in Top 3 for the vacation rentals domain.
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Fig. 6. Results for Logistic Regression and Stacked Skews Model by schema column,
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results averaged across sites and schema columns. (Top and Bottom Left) Accuracy
and Recall in Top 3, respectively, for each schema column in the jobs domain. (Top
and Bottom Right) Accuracy and Recall in Top 3 for the vacation rentals domain.
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Table 1. Results from feature type ablation experiments with the Stacked Skews
Model. The top 4 rows give results for leaving out one feature type, and the rows
below those give results with just one feature type.

Jobs Vacation Rentals
Features Accuracy Top 3 Accuracy Top 3
Excl. Context n-grams 85.3 95.1 54.4 86.5
Excl. Value n-grams 75.1 89.7 91.1 99.9
Excl. Value Token Types 83.8 95.1 91.1 99.8
Excl. Value Tokens 73.7 89.7 85.4 99.9

Only Context n-grams 41.8 61.1 77.0 89.9
Only Value n-grams 68.0 97.8 62.8 99.8
Only Value Token Types 30.2 48.2 31.3 46.5
Only Value Tokens 71.4 81.6 54.3 89.9

All 83.8 95.1 91.1 99.9

4.5 Results

Results by Site. Figure 5 shows results for each site, averaged across the
different schema columns in the domain, for both the Logistic Regression baseline
and our Stacked Skews Model. Averaged across all sites and schema columns
(indicated by the ’All’ column in the figure), our method achieved an accuracy of
91.1% for vacation rental sites, and 83.8% for job sites, significantly higher than
the baseline accuracies of 65.8% and 61.8%. The results are reasonably consistent
across different sites. Additionally, the correct data fields for vacation rental sites
were present in the top 3 recommendations 99.9% of the time, and 95.1% for job
sites. The baseline classifications of data fields had the correct answers in the
top 3 only 80.3% and 86.5% of the time. As an additional comparison, random
assignment of data fields to schema columns would have an expected accuracy
of 5.9% for job sites, and 4.0% for vacation rentals, and an expected top 3
performance of 17.6% for job sites, and 12.0% for vacation rentals.

Results by Schema Column. Figure 6 gives results for each schema column
for our methods, averaged across web sites. We see that our method is generally
accurate for a wide range of data types, and nearly always exceeds the baseline
results. Our method is particularly better suited to schema columns which tend
to have free text (for example, the description and title schema columns for
vacation rentals, and the company and ID schema columns for jobs). We believe
that this is due to the logistic regression’s tendency to overfit when many different
features can perfectly classify the training data. The baseline method fares much
better for schema columns with more limited vocabularies.

Referring to the Stacked Skews Model results for individual schema columns,
most of the schema columns have high accuracy. The cases where performance
suffered were the job type schema column, which has high variation in both
contexts and values (some sites even use special codes as values for this schema
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column), bathrooms, which had trouble when there was also a ‘Half Bathrooms’
item on a site, and property type, where one site incorrectly labeled a data field
as property type because it was preceded by the text ‘Property Type’ on the site,
but it was a different sense of property type from the intended meaning from
our domain schema7.

Identifying Missing Schema Columns. Most of the schema columns in each
domain were present on our evaluation sites. In the case where a column was
not present on a site, the accuracy metric required us to correctly identify that
column as missing, or else it was considered an incorrect answer. Identification
of such missing columns was described in Sect. 3.3. We evaluated the accuracy
of our model for these cases, to see if they were a significant source of error
in our evaluation. For each domain, there were 5 cases where a schema column
was missing from a site. The Stacked Skews Model identified missing schema
columns for vacation rentals with an accuracy of 80.0%, and a lower accuracy of
49.3% for job sites. This is because most job listing sites had some unstructured
text describing the job, in addition to well-formatted sections which typically
held our extraction targets. Often when a schema column was not present in the
semi-structured text of a site, one of the data fields corresponding to the free
text was chosen.

Feature Type Ablation Study. To assess the contributions and relative im-
portance of each of the feature types, we ran ablation experiments where we used
subsets of the four feature types. We considered combinations where we held out
each feature type, and also where we used each feature type alone. Table 1 gives
results for these experiments. We see that context features are very informative
for the vacation rentals domain, but not informative for the jobs domain (in fact,
excluding them improves average accuracy). The value token type features do
not appear to be useful for either domain. In general, we see that using multi-
ple feature types in combination allows the system to achieve higher accuracies
than any single feature type, indicating that the different feature types provide
complementary information, and that our stacking method effectively combines
these sources of information.

5 Conclusions

This work addressed the problem of extracting structured records from semi-
structured web pages. The system we described demonstrated a way to learn
high-quality automated extraction systems for large numbers of semi-structured
web sites, by exploiting a tiny, fixed amount of human effort per domain of
interest. Starting from manual annotation of 2–5 pages each on 4–6 sites in
a domain, we bootstrapped a system that achieves high accuracies even on a
domain, jobs, that was not considered during development of our model. This
7 Our domain schema included a notion of property type as a house, townhouse,

condominium, etc. The site’s notion of property type was beachfront vs. not.



210 A. Carlson and C. Schafer

performance is encouraging for use either as a standalone extraction system
for certain applications, or as an aid to human annotators. The performance
significantly exceeds the performance of a competitive baseline method.
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Abstract. The traditional agenda in Multiagent Learning (MAL) has
been to develop learners that guarantee convergence to an equilibrium
in self-play or that converge to playing the best response against an op-
ponent using one of a fixed set of known targeted strategies. This paper
introduces an algorithm called Learn or Exploit for Adversary Induced
Markov Decision Process (LoE-AIM) that targets optimality against any
learning opponent that can be treated as a memory bounded adver-
sary. LoE-AIM makes no prior assumptions about the opponent and
is tailored to optimally exploit any adversary which induces a Markov
decision process in the state space of joint histories. LoE-AIM either ex-
plores and gathers new information about the opponent or converges to
the best response to the partially learned opponent strategy in repeated
play. We further extend LoE-AIM to account for online repeated interac-
tions against the same adversary with plays against other adversaries in-
terleaved in between. LoE-AIM-repeated stores learned knowledge about
an adversary, identifies the adversary in case of repeated interaction,
and reuses the stored knowledge about the behavior of the adversary
to enhance learning in the current epoch of play. LoE-AIM and LoE-
AIM-repeated are fully implemented, with results demonstrating their
superiority over other existing MAL algorithms.

1 Introduction

The aim of many adversarial strategic interactions is to learn a model of the
opponent(s) and to respond accordingly [1,3,13]. If the opponents execute static
policies, then the learning agent is faced with a stationary environment, thus re-
ducing the problem to effectively a single-agent decision problem. However when
in the presence of other learning agents, there is an inherent non-stationarity in
the environment which makes the learning problem for an individual agent much
harder [11]. The most popular solution concept in such multiagent settings has
been the Nash equilibrium [12] and most multiagent learning (MAL) algorithms
proposed to date aim at convergence to such an equilibrium in self-play [5,8,14].

Their popularity notwithstanding, the ability to find Nash equilibria does
not solve all multiagent problems. For one thing, there can be multiple Nash
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equilibria in general sum games: MAL algorithms provide no guarantee that
the Nash equilibrium attained at convergence will be the one maximizing social
welfare. Furthermore, an algorithm that converges to such an equilibrium in self-
play may perform poorly when faced with an adversary that behaves differently.

Motivated in part by this observation, Powers and Shoham recently proposed
an alternate set of evaluation criteria for MAL algorithms, focusing on Targeted
Optimality, Auto Compatibility and Safety [13]. In their setting, the goal is to
converge to within ε of the best response if the opponent uses one of a set of
known targeted strategies, to within ε of a Pareto-dominant Nash equilibrium
in self-play, and to within ε of the safety value against any unknown opponent.
The authors further proposed an algorithm that meets these criteria against a
set of target opponents [13,16]. The optimal responses to the stored set of target
strategies are pre-computed, such that when an opponent is recognized to be
using such a strategy, the matching response can be played. While their approach
is effective for a fixed set of opponents, no prior learning algorithm guarantees
outcomes greater than the safety value against arbitrary opponents. This paper
introduces the first algorithm capable of meeting the Powers and Shoham criteria
against adversaries of a finite memory size. We show that a large class of existing
algorithms are actually memory bounded and can be exploited by our approach.
To the best of our knowledge, this learning algorithm is the first that targets
optimality against a mixture of opponents with different properties and goals.
Rather than fixing the set of target opponents, we instead focus our algorithm
on any adversary that induces a Markov Decision Process (MDP) according to
the Adversary Induced MDP (AIM) model [1]. By this model, it can be shown
that for a large class of opponents, the learner finds itself in an MDP whose
states are determined by bounded histories of joint actions and whose transition
function is determined by the opponent’s strategy. Specifically, we introduce an
algorithm Learn or Exploit for AIM (LoE-AIM) that either explores and gathers
new information about the opponent or converges to the best response to the
partially learned opponent strategy.

To demonstrate LoE-AIM’s effectiveness, we first test it against opponents
(both deterministic and stochastic) drawn from the literature of MAL research.
Our results show that in most cases, LoE-AIM converges to playing the optimal
policy against the opponent without knowing the opponent’s identity.

Unfortunately it is infeasible to develop a learning algorithm that plays opti-
mally against every possible memory bounded opponent of a fixed memory size
without the ability to restart play (i.e. erase the history and start over), e.g., con-
sider the following opponents in the Prisoner’s Dilemma (PD) game (Table 1(a)):
(1) one which always plays cooperate, (2) one which starts playing cooperate,
but defects forever if the opponent ever defects once (known as “grim-trigger”).
It is not possible to develop a learner which can learn to play optimally against
both the opponents without having a restart. Just to differentiate between them,
the learner must play defect, and once it does so, it loses the chance of attaining
the (cooperate, cooperate) payoff against the grim-trigger opponent.
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On the other hand, in online learning it is not uncommon to face the same
type of adversary in multiple well-defined “epochs” of several plays, possibly with
epochs against other types of adversaries interleaved in between. In such situa-
tions an effective restart is possible: each time a new opponent of the same type
appears, the history starts over, but the experience from past epochs remains.
Specifically, we consider the case in which the learning agent plays against multi-
ple adversaries that it knows are drawn from the same population and therefore
use the same (or similar) strategy. It plays against each individual for a finite
time before playing against the next. This scenario is representative of common
cases such as online auctions in which an auctioneer repeatedly sells goods to
a pool of bidders. Bids in each auction are irrevocable, but the process restarts
when the next good is introduced to the market. In such a setting, we propose a
mechanism LoE-AIM-repeated that leverages such repeated interactions to learn
a model of the opponent and store it in its repository of learned models. When
playing a new adversary, it tries to map the model of the new adversary to one of
the stored models and uses the knowledge it gathered before about the adversary
to further enhance learning in the current epoch.

The remainder of this paper is organized as follows. Section 2 presents the
background necessary for our work. Section 3 summarizes possible adversaries
in the existing MAL literature and introduces the class of opponents targeted
by LoE-AIM. Sections 4 and 5 introduce the LoE-AIM algorithm and LoE-
AIM-repeated respectively, including results achieved against memory bounded
adversaries, and Section 6 concludes.

2 Background and Definitions

In this section we introduce the definitions and concepts necessary for our work.
We focus on bimatrix stage games because they are general enough to fully
explore the concepts we propose and simple enough to implement, study and
relate to the existing MAL literature.

Definition 1 (Bimatrix Game:). A bimatrix game is defined by a pair of
matrices {Mi,Mo} where each Mx|x∈{i,o}) is of size |Ai| × |Ao| and Mx : Ai ×
Ao "→ # maps every possible joint-action to a reward received by agent x. Ai and
Ao are the sets of actions available to agents i and o respectively.

For the rest of the paper we consider agent i to be the learner under our control
and agent o to be the opponent.

Definition 2 (History(hk):). A history hk = (ai, ao)k where ai ∈ Ai, ao ∈ Ao

is the sequence of the last k joint actions played by the agents. In other words, a
history is a vector of length k consisting of the past k joint actions played by the
agents. Often k is referred to as the window size or length of the history. hk(j) is
the jth joint-action in the sequence hk where 0 ≤ j < k, k ∈ N with hk(0) being
the most recent joint action. Similarly hk

o(j) is the jth action played by agent
o in the sequence hk with hk

o(0) being the most recent action played by o. The
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history at time t is denoted hk,t; thus the action played by agent o, j steps before
time t is denoted hk,t

o (j).

For the rest of the paper, we refer to the memory size of the adversary as k.

Definition 3 (Policy (πo):). A policy πo of o maps the history to a probability
distribution over o’s action set, i.e., πo : hk "→ ΔAo where k is the memory size
of agent o. The probability of playing action j following the policy πo(·) is given
by πo(·)(j).

Definition 4 (Memory Bounded Opponent:). An opponent is said to be
memory bounded if it follows a policy as specified above.

Now we briefly review some definitions related to Markov Decision Processes
(MDPs).

Definition 5 (Markov Decision Process (MDP) :). An MDP M on a set
of states S and with action set A = {a1, . . . , ak, . . . , a|A|} consists of

Transition Probabilities: For each state-action pair (s, a), a next-state dis-
tribution Ps,a(s′) gives the probability of moving to state s′ when action a
is taken in state s.

Reward Distribution: For each state-action pair (s, a), a reward distribution
R(s, a) specifies the probability distribution on a set of real numbers that
can be achieved as reward given action a is taken in state s.

2.1 Adversary Induced Markov Decision Process (AIM)

The key insight enabling this research is that in the setting of a repeated game
where the adversary is a memory bounded opponent, the dynamics of the system
can be modeled as a MDP whose transition probabilities and reward functions
are determined by the model of the opponent. For a history of play (a “state”)
hk,t, the next state hk,t+1 and the reward received are determined by the current
state hk,t, the adversary’s policy in that state πo(hk,t), and the action ai chosen
by agent i.

Definition 6 (Adversary Induced Markov Decision Process:). An Ad-
versary Induced MDP (AIM) M is defined as follows,

State Space (S): The state space S of M is given by ak where a ∈ Ai × Ao,
i.e, set of all possible joint histories of length k. From now onwards we will
use the word state and history interchangeably.

Action Space (A): The action space A of M is given by Ai. The action space
is just the set of actions available to agent i.

Transition Probabilities (P): Intuitively, the history is updated as a sliding
window. Transitioning from a history hk,t to a history hk,t+1 is just keeping
the last k − 1 joint actions (each shifted one time step backwards) and in-
cluding the latest pair at index 0 of the vector. The transition probability of
transitioning from a history hk,t to a history hk,t+1 given the action taken
being ai is,
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Phk,t,ai
(hk,t+1) = πo(hk,t)(hk,t+1

o (0)) where hk,t+1
i (0) = ai.

= 0 o.w

Note that, there is a non-zero probability to transitioning to only those
histories which end in action ai as they are the possible histories for this
transition. For all other histories, the transition probability is 0. If πo(hk,t)
is stochastic, then Phk,t,ai

is stochastic as well. Whether the AIM is ergodic 1

depends on πo. For example, against an opponent playing grim-trigger in PD,
once learner play a defect action, it can never transition to a state where the
opponent has recently played cooperate.

Reward Function (R): The reward function R ofM is given by R(hk,t, ai) =
Eao∼πo(hk,t)Mi(ai, ao).

3 A Taxonomy of Possible Adversaries

The algorithms introduced in this paper target adversaries whose action at time
t depend on at most the past k joint actions (hk,t). In this section, we show that
this apparently restrictive class of adversaries actually captures a large class
of opponents from the literature. In order to do so, we present a taxonomy of
possible adversaries, along with how several existing strategies can be classified
within it. This taxonomy is summarized in Figure 1.

Adversaries

based based
Joint−Action Joint−Strategy

Dependent on entire
history

1. FP
2. Grim Opponent

Entire history of
joint strategies

3. WoLF−PHC
1. No regret Learners

k−Markov 
1. BR
2. Godfather
3. Bully

Previous step
joint strategy
1. IGA
2. WoLFIGA
3. ReDVaLer

Fig. 1. A taxonomy of possible adversaries

First, an adversary can be broadly classified as either joint-action based or
joint-strategy based. A joint-action based adversary bases its current action on
the joint-actions played in the past. They can be further classified as k-Markov
opponents whose policies depend only on the past k joint-actions, or opponents
whose current action depend on the entire history of play. Examples of k-Markov
opponents include Bully, Godfather [15] and Best Response (BR), while Ficti-
tious Play (FP) [9], Joint-action learner (JAL) [7], and the family of Q-learners
(e.g, PHC and WoLF-PHC [5]) depend on the entire history. A BR opponent
plays the best reponse to the empirical distribution of the opponent’s play cap-
tured by the current history. If memory size is unbounded, BR is equivalent to
FP.
1 A MDP is ergodic if there is a non-zero probability of eventually transiting from

every state to every other state (possibly via some number of intermediate states).
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In contrast to a joint-action based adversary, a joint-strategy based adver-
sary bases its current step strategy on the past history of joint strategies: not
just the actual plays, but the probability distributions from which they were
drawn. In practice, it is unnatural to assume that the opponent strategy is ever
known. Thus in this paper, the past step opponent strategy is estimated based
on the recent history. In this paper we estimate the opponent strategy by the
frequency of each action played by the opponent in the captured history at that
time instant. As a result, joint-strategy opponents are in effect also joint-action
opponents. Nonetheless, we classify them differently since in the literature they
are presented and analyzed as acting based on past joint-startegies.

Similar to the joint-action case, joint-strategy based adversaries can be further
classified based on whether the current step strategy depends either on just the
past step joint strategy or the entire history of joint strategies. Examples of the
former are MAL algorithms which converge to a single stage Nash Equilibrium
in a repeated setting (e.g. IGA [14], WoLF-IGA [4] and ReDVaLer [2]) while
examples of the latter are no-regret learners which attempt to minimze the cost
of online learning [10].

As our targeted opponents in this paper, we consider the k-Markov joint-
action opponents and single-step joint-strategy adversaries. Though our results
are against a sample of such opponents drawn from the literature, our claims
hold for any opponent which induces an AIM in a joint-action space of bounded
length.

4 LoE-AIM

This section introduces the LoE-AIM algorithm which is the heart of our overall
learning mechanism. We present two versions of this algorithm, one for oppo-
nents which play deterministically (e.g. Bully, Godfather, and BR) and another
for opponents who play stochastic stratgies (e.g. MAL algorithms). We start by
assuming that the player2 knows whether the opponent is playing deterministi-
cally or stochastically. In Section 5 we present a more general framework which
enables the player to learn this attribute of the opponent well.

Algorithm 1 presents the version of the learning algorithm for deterministic
opponents. Due to space constraints, we only present the high level algorithm
and for all called methods, we give a textual explanation. The algorithm takes
as input the current opponent-model (π̂o), the current start state (history) and
the number of episodes for which it should continue learning. Note π̂o refers to
some partially learned model if it exists. If the algorithm has no prior informa-
tion about the opponent it is playing, opponent-model is null. All the results
presented in this section assume that there exists no such partial model and the
learner learns from scratch. In Section 5 when we talk about repeated interac-
tions with an opponent, then the π̂o fed as input can be a partially learned model
from past interaction(s) with the same opponent. The algorithm outputs the fi-
nal π̂o and the solved AIM strategy (πi) governing the model. πi is explained
2 From this point onwards we will refer to the learner as the player.
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Algorithm 1. LoE-AIM-DETERMINISTIC
begin

input : episodes, π̂o, history
output: π̂o, πi

episode ← 01

πi ← solve-aim-model(π̂o)2

for episode++ < episodes do3

opponent-action ← action taken by opponent4

player-action ← action as per πi5

if {history, opponent-action} /∈ π̂o then6

π̂o ← π̂o ∪ {history, opponent-action}7

πi ← solve-aim-model(π̂o)8

history ← update-history(history, {player-action, opponent-action})

end

below. Since the opponent is deterministic, just one visit is needed to a state
to know what the opponent’s policy is for that state. The solve-aim-model

function finds a control policy (πi) for the underlying AIM by assuming that for
all known histories ht of play, the opponent plays π̂o and for all unknown histo-
ries, the opponent plays the maximax strategy for the player (the strategy that
maximizes the maximum pay-off for the player). The assumption for unknown
histories causes πi to explore towards histories of play not visited before. The
update-history method updates the history by prepending the most recent
joint action and removing the oldest joint-action.

Algorithm 2 is similar to Algorithm 1 except now that opponent can play
stochastic strategies. In this case, the player maintains a stochastic model of
the opponent. upadate-opponent-model updates π̂o with the latest decision
taken by the opponent. Note, “updating” here means updating the percentage
of times an action has been played for that state and then normalizing over all
possible actions. The has-changed-opponent-model? returns true if for any
state the probability of taking an action is η gretear than that of the same action
in the previous solved model and the number of visits to that state is at least
κ. All results in this paper use values for η and κ that led to the best results in
informal preliminary testing, namely η = 0.1 and κ = 20.

Lemma 1. In repeated infinite play LoE-AIM either converges to the optimal
policy for the partially learned opponent model or keeps expanding the learned
model.

Proof. Let π̄o be the remainder of πo that needs to be learnt at a particular
time instant. π̂o refers to the part of the opponent strategy that the player
knows while π̄o being the part that still needs to be explored. By solving for
a control policy for π̂o where for every state in π̄o the player believes that it
could get the best possible reward (since it assumes that the opponent playes
the maximax strategy for the player at those states and the value of maximum
possible achievable reward is known), the algorithm generates πi that will always
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Algorithm 2. LoE-AIM-STOCHASTIC
begin

input : episodes, π̂o, history
output: π̂o,πi

episode ← 01

πi ← solve-aim-model(π̂o)2

for episode++ < episodes do3

opponent-action ← action taken by opponent4

player-action ← action as per πi5

π̂o ← upadate-opponent-model(π̂o, {history, opponent-action})6

if has-changed-opponent-model?(π̂o) then7

πi ← solve-aim-model(π̂o)8

history ← update-history(history, {player-action, opponent-action})

end

promote exploring states in π̄o. However if π̂o is non-ergodic, then there are
chances that the current state may prohibit transition to newer states, i.e, the
strategy of the opponent is such that it prevents further expanding of the model.
Then the algorithm converges to the optimal policy given the partially learned
model.

Corollary 1. If πo is ergodic, then LoE-AIM converges to the optimal policy in
infinite repeated play.

Note that this exploratory aspect of LoE-AIM is motivated in part by the R-Max
algorithm [6] which also deliberately balances exploitation with exploration of
unvisited states. The main difference is that R-Max is designed for single agent
MDP’s and hence the exploration depends only on the action of the agent,
whereas in AIMs, the agent and its adversary jointly determine the state space
explored.

4.1 Results against Deterministic Opponents

This section presents the results achieved by LoE-AIM against the determin-
istic opponents mentioned in Section 3, namely k-Markov adversaries such as
Godfather, BR and Bully.

Figure 2 shows the results achieved by LoE-AIM in the game of Prisoner’s
Dilemma (PD) (Table 1(a)) against a couple of variations of the Godfather,
Bully [15] and BR strategies.

Godfather is a finite-state strategy that makes its opponent an offer that
it cannot refuse. Godfather chooses a targetable pair 3. From then on, if the
opponent keeps playing its half of targetable pair in one stage, Godfather plays
its half in the next stage. Otherwise it plays a strategy (threat) that forces the

3 A pair of deterministic policies is a targetable pair if playing them results in each
player getting more than the safety value and plays its half of the pair.
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Table 1. Payoff matrices

(a) Prisoner’s Dilemma

cooperate defect

cooperate (3,3) (1,4)

defect (4,1) (2,2)

(b) Chicken
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Fig. 2. Results against Godfather opponents in PD

opponent to achieve at most its safety value. Hence Godfather is a memory-
bounded adversary with k = 1. We now introduce a couple of variations of the
Godfather strategy that are tailored for k > 1.

– Godfather-lenient plays its part of a targetable pair if the opponent at least
once played its own half of the pair (within the last k actions). Otherwise
Godfather-lenient punishes its opponent by playing the threat strategy that
reduces the opponent’s best outcome to its safety value.

– Godfather-strict is a stricter version that always punishes its opponent if
the opponent ever deviated from the targetable pair during the observable
history.

Note that in case of PD, the Godfather players target the {cooperate, cooperate}
pair and use defect as the threat strategy.

Bully is a deterministic strategy given by argmaxao∈Ao
Mo(a∗i , ao) where a∗i =

argmaxai∈Ai
Mi(ai, ao). The opponent optimizes its payoff by assuming that the

Bully remains fixed while the Bully optimzes its payoff by assumimg that the
opponent is the follower and would adapt accordingly.

Now we present results which show that LoE-AIM exploits all of the above
opponents without knowing their identity. For benchmarking purposes we also
present results had the player chosen any of the deterministic strategies as its
strategy instead of LoE-AIM. The results presented in Figure 2 are for k = 3
and averaged over 10 random instantiations of the start state (e.g. the assumed
“history” of the opponent when it makes its first decision). However, each run
is independent and the learner starts learning from scratch with each restart. In
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the spirit of online learning, LoE-AIM converges to the optimal policy in each
of the occasions without requiring a restart. Against Godfather-strict, the LoE-
AIM algorithm eventually learns (after about 55 episodes of learning) that it
should play cooperate (its half of the targetable pair) and hence converges to
a payoff of 3 (Figure 2(a)). The results show that none except the Godfather-
strict 4 strategy converge to the optimal payoff. For Godfather-lenient, LoE-AIM
learns to optimally exploit by playing cooperate frequently enough so that the
history always contains one cooperate action for the player. At convergence, the
LoE-AIM player plays defect twice followed by a cooperate ensuring two consec-
utive payoffs of 4 followed by a payoff of 3 (Figure 2(b) shows that the average
converged payoff (after about 10 episodes) oscillates between 3 and 4). In case of
PD, both the Bully strategy and BR strategy is to play defect deterministically.
Against both of these opponents, the learner eventually learns to play defect and
converges to a payoff of 2 (for space constraints, we omit the graphs).

4.2 Results against Stochastic Opponents

We now present results of LoE-AIM learning against popular MAL algorithms
that converge to single-stage Nash equilibrium in repeated play. Due to space
constraints we only present results against IGA [14] and WoLF-IGA [3], but
the algorithm also works against all other MAL algorithms that decide their
next step strategy based on the past step joint-strategy (e.g. ReDVaLer [2]). We
assume that the opponent cannot observe the player’s past step strategy and
hence approximates it by the proportion of each action played by the player in
the current state (history). A point to note is that the opponent knows its own
strategy for sure and uses it to compute its next step strategy. This makes the
process non-Markovian in the space of the k-history. However if k is large enough,
the proportion of each action played by the opponent will be close to its real
strategy and hence will make the process approximately Markovian. Though it
seems that larger the value of k the better, our results show that even for k = 4,
LoE-AIM can efficiently model the opponent and exploit it to the optimum.
Once again all our results are averaged over 10 different instantiations of the
start state and learning at each restart starts from scratch. The learning rate
used for IGA is 0.1 and the learning rates for WoLF-IGA are 0.1 and 0.2. Figure 3
gives evidence that the LoE-AIM learner was successful in reaching its optimal
payoff in the game of chicken(Table 1(b)) by exploiting the MAL opponents on
both the occasions. The reason we choose Chicken game is because the game
has three Nash equilibria: two in pure strategies, sustaining the outcomes (4,2)
and (2,4), and one in mixed strategies where the players play each of their
actions with equal probability with the corresponding expected payoff of 2.5 for
each agent. Neither IGA, nor WoLF-IGA guarantees the possible final converged
Nash pay-off in self-play, e.g, in both Figure 3(a) and Figure 3(b), self-play
generates outcomes much less than 4 showing that on numerous occasions the
final converged Nash payoff was not (4,2), the one most coveted by the player.
In contrast, in all of its runs, LoE-AIM converged to the outcome (4,2).
4 Note, Godfather-strict strategy in self play always converge to the targetable pair.
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Fig. 3. Results against MAL opponents in Chicken game
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Fig. 4. Payoff matrices of 6 games with multiple Nash Equilibria. ((1,1) (0,0) (0.25,0.5))
means that the game has 3 Nash equilibria where the probabilities of playing action
A1 by both players are respectively (1,1), (0,0) and (0.25,0.5).)

Figure 5 gives a summary of a head to head comparison among the various
opponents discussed in this section together with results achieved by LoE-AIM.
There are 78 structurally distinct 2 × 2 strict ordinal games in which the two
players can strictly rank the four payoffs from best to worst. Of the 78 games,
only 6 games (shown in Figure 4) have multiple Nash equilibria with each player
favoring a different one. We present results from these games because in self-
play none of the MAL algorithms guarantee the final converged Nash pay-off
(the algorithms can converge to any one of the Nash equilibria depending on the
learning rates and start states). Each point in the plot has been averaged over
results achieved from all the 6 games, with the results in each game first averaged
over 10 runs with different initial start states. For benchmark comparisons, we
show head to head results achieved by various other algorithms that the player
could have used as its default strategy instead of LoE-AIM. Figure 5 shows that
against the MAL algorithms (IGA, WoLF-IGA) and BR, LoE-AIM successfully
converged to its best outcome of 4 on all occasions thereby demonstrating its
ability to exploit its opponent to the optimum. All the benchmarks generate
lower average payoffs when played against these opponents. Against the other
opponents, LoE-AIM still did better than all other benchmarks though the aver-
age outcome was lower than 4 in these cases. Note, that against certain opponents
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it is never possible to achieve the 4 outcome because the opponent won’t allow
that, e.g, against Godfather-strict in PD (see Figure 2(a)).

5 LoE-AIM-Repeated

In online learning, repeated interaction with multiple opponents is quite com-
mon. For example, the player may plays opponent 1 for 10 rounds, opponent 2
for the next 10 rounds, and then again opponent 1 for another 10 rounds. One
such scenario is a market with multiple sellers where the buyer is interested in
learning an optimal negotiation strategy for buying items. The buyer negotiates
in turn with different sellers and learns from these experiences.

Figure 6 presents LoE-AIM-repeated, which such a buyer can employ to max-
imize her return. We assume that the buyer has a fixed set of interactions
(episodes) with an opponent in one run (epoch). For the first store-episodes

number of plays, the buyer tries to build an approximate model of the opponent.
The LoE-AIM method called with opponent-model set to null, outputs an ap-
proximate model and an AIM-strategy for that model. In these store-episodes

number of plays, if ever the opponent took different actions for the same state,
H0 is set as stochastic, else H0 is set as deterministic. Once the model has
been built, the framework searches for the closest-model in the pool of stored
models. The method Get-Closest-Model takes as arguments the pool of stored
models and model, and returns the closest model that matches the model. In
the deterministic case, closest-model is computed by iterating over all the stored
deterministic models and returning the one which has the maximum number
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Fig. 6. LoE-AIM-repeated

of states such that the same decision would be taken. In the stochastic case,
closest-model is selected by iterating over all the stored stochastic models and
returning the one which has the minimum Max Norm distance from model. If a
convincing closest-model exists (if the distance is smaller than a fixed threshold
for the stochastic case), the model is updated with the closest-model. The player
then calls the LoE-AIM method with the updated opponent model and runs it
for play-episodes.

Next, the framework recomputes the closest-model (H3) based on the newly
updated model returned by the earlier call to the LoE-AIM method. In these
play-episodes number of plays, if ever the opponent took different actions for
the same state, H2 is set as stochastic, else H2 is set as deterministic. Finally
the framework makes a conservative check to see whether the assumptions it
made after the first store-episodes number of plays also hold after the next
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Fig. 7. LoE-AIM-repeated Results

play-episodes number of plays. If the assumptions hold, it stores (replaces, if
it updated a former stored model) the newly generated model in the pool. The
whole process repeats with every new epoch of play.

For experimental evalauation of LoE-AIM-repeated, we restrict the set of op-
ponents to the two versions of the Godfather together with IGA and WoLF-IGA.
The opponents we choose give a fair representative mix of the targeted class that
LoE-AIM-repeated is designed to exploit. Figure 7 provides a comparative pic-
ture of the results achieved by the LoE-AIM-repeated in the game of PD and
Chicken respectively. As base case results, we also provide the results achieved
by each of the opponent approaches had they been the approach employed by
the player. We break the results in each game in two individual plots for clarity
of expression, one comparing the performance of LoE-AIM-repeated with the de-
terministic opponents (two versions of Godfather) and the other comparing the
same with the MAL opponents (IGA nd WoLF-IGA). We tested our approach
for different values of store-episodes and play-episodes, and finally decided
to fix them at 20 and 80 respectively. As part of our future work, we would
like to have a theoritical bound on the number of episodes we need to explore
(store-episodes) to get a reasonable approximation of the model. The simu-
lation has been run for 20 epochs thereby resulting in a run of 2000 episodes
in total. After every epoch a new opponent is chosen randomly. The results
have been averaged over 10 instantiations of the start state. In both the plots,
LoE-AIM does better than the benchmark opponents. An interesting thing to
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note is that the LoE-AIM learning plot has spikes after every 100 episodes. After
every 100 episodes, the learner explores for 20 episodes to build an approximate
model of the new opponent. But once it builds the model, it matches it with a
stored model and starts using the knowledge it learned from past interactions
with the opponent.

6 Conclusion

In this paper we introduced a general mechanism for learning against memory-
bounded adversaries. Our algorithm LoE-AIM either explores to gather new
information about the opponent or converges to the best response to the par-
tially learned opponent strategy. We showed detailed results in the games of PD
and Chicken and further backed our claims with results averaged over 6 games
with ordinal payoffs and multiple Nash equilibria and each player favoring a
different Nash equilibrium. Our results show that LoE-AIM generates higher av-
erage rewards than existing MAL approaches against the same set of opponents.
We then introduced a mechanism that enables online learning based on epochs
of play against similar opponents by mining of learned knowledge about the op-
ponent and using it to seed learning when faced against the same opponent in
future interactions.

This research suggests several possible directions for future work. First, the
algorithms presented are limited to targeting opponents with bounded memory.
It would be natural to try to extend the results to opponents that fall in other
parts of the taxonomy shown in Figure 1. For example, it would be interesting to
see how LoE-AIM can be generalized to account for opponents whose next step
strategy depends on the entire history of play (not just k-Markov as assumed
in this paper). An important challenge in that direction would be to devise a
compact finite state representation that captures the history of play.

Acknowledgement. This research was supported in part by NSF CAREER
award IIS-0237699.
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Abstract. Scalable feature selection algorithms should remove irrele-
vant and redundant features and scale well on very large datasets. We
identify that the currently best state-of-art methods perform well on
binary classification tasks but often underperform on multi-class tasks.
We suggest that they suffer from the so-called accumulative effect which
becomes more visible with the growing number of classes and results in
removing relevant and unredundant features. To remedy the problem, we
propose two new feature filtering methods which are both scalable and
well adapted for the multi-class cases. We report the evaluation results
on 17 different datasets which include both binary and multi-class cases.

1 Introduction

Feature selection is the technique of selecting a subset of relevant features for
building robust learning models[1,4,5,7,8,10]. The feature selection targets re-
moving most irrelevant and redundant features from the data, by which it helps
improve the performance of learning models by

1. alleviating the effect of the curse of dimensionality,
2. enhancing generalization capability,
3. speeding up learning process and
4. improving model interpretability. 1

Existing supervised feature selection algorithms fall into one of the three fol-
lowing groups: filter models, wrapper models or hybrid models [1,7,9,10]. The
filter model relies on general characteristics of the training data to select some
features without involving any learning or mining algorithm, therefore it does
not inherit any bias of a learning algorithm. The wrapper model requires one
predetermined learning algorithm and uses its performance to determine which
features to select. The wrapper model needs to learn a classifier and may suffer
from the bias problem [13]. It tends to give superior performance as it finds
features better suited to the predetermined learning algorithm, but it also tends
to be more computationally expensive. When the number of features becomes
very large, the filter model is usually a choice due to its computational effi-
ciency. Algorithms in a hybrid model try to combine the advantages of both
models [11,1,14].
1 http://en.wikipedia.org/wiki/Feature selection
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In this work we focus on the filter model and propose new feature selec-
tion algorithms which effectively remove irrelevant and redundant features and
are computationally efficient. The entropy-based algorithms we propose are well
suited for a variety of problems in different domains where data instances are
characterized by a mixture of nominal, categorical and numeric features. More-
over, they play the central role in the automatic feature extraction from massive
datasets where the automatic analyzer can generate thousands or billions of fea-
tures. A part of the generated features is irrelevant to the classification task;
even a larger part of features is redundant.

Our work is motivated by the automatic feature extraction from the image,
OCR- and layout-oriented documents where a very large number of features are
produced in order to capture different characteristics of visual and textual data
elements. The problem we face is the selection from the very large feature set to
build robust and accurate learning models.

Within the filter model, one can distinguish between feature weighting al-
gorithms and subset selection algorithms, based on whether they evaluate the
goodness of features individually or through feature subsets. Feature weighting
algorithms assign weights to features individually and rank them using their
relevance to the target concept. There are a number of different definitions on
feature relevance in machine learning literature [7]. A feature is good and thus
will be selected if its weight of relevance is greater than a threshold value. Re-
lief [6] is one of the well known algorithms relying on relevance evaluation. Its key
idea is to estimate the relevance of features according to how well their values
distinguish between the instances of the same and different classes.

Subset selection algorithms search through candidate feature subsets guided
by a certain evaluation measure which captures the goodness of each subset.
An optimal (or near optimal) subset is selected when the search stops. Evalu-
ation measures that have been shown effective in removing both irrelevant and
redundant features include the consistency measure [2] and the correlation mea-
sure [5]. Combined with different search strategies, such as exhaustive, heuristic,
and random search these evaluation measures form different algorithms [2,5,10].
The time complexity is exponential in terms of data dimensionality for exhaus-
tive search and polynomial for heuristic search. However, with the quadratic
or higher time complexity in terms of dimensionality, existing subset selection
algorithms do not scale well when dealing with very large datasets.

To overcome the problems and to meet the demand for feature selection
for high dimensional data, a novel class of scalable algorithms has recently ap-
peared [11,10,15]; these algorithms can effectively identify both irrelevant and
redundant features with less time complexity than subset selection algorithms.
The scalability requires that the feature filtering algorithm allows a little over-
head beyond the minimal cost of scanning the dataset with N features and M
data items. Since a dataset may be very large in both N and M , scalable algo-
rithms have a complexity sub-quadratic in NM .

Existing scalable algorithms show up a good performance in binary classifica-
tion tasks but may cause the performance loss when the classification problem
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addresses multiple classes. In the following sections, we try to analyze the reasons
of this loss and propose two new methods for the scalable feature selection. The
algorithms allow us to achieve the two goals: they keep the algorithms scalable
and perform well on both binary and multi-class tasks.

2 Scalable Feature Selection

One common approach to measure the correlation between two random variables
is based on the linear correlation coefficients. However, linear measures are unable
to capture correlations that are not linear in nature; such is the case of categor-
ical and nominal features. Another limitation is that the calculation requires all
features contain numerical values. To overcome these shortcomings, the other ap-
proach is to use entropy-based measures of the uncertainty of a random variable,
where the entropy of a variable Y is defined as H(Y ) = −

∑
y P (y) log2 P (y).

Given two random variables Y and X , we are interested in measuring the
information that one variable has about another. The so-called mutual informa-
tion I(Y ;X) is given by the Kullback-Leibler (KL) divergence between a joint
distribution P (Y,X) and the product of its marginal distributions P (Y )P (X):

I(Y ;X) = DKL(P (Y,X)||P (Y )P (X))
=
∑

x,y P (y, x) log2
P (y,x)

P (y)P (x)

=
∑

x,y P (y, x) log2 P (y|x)−
∑

x,y P (y, x) log2 P (y)
=
∑

x,y P (y|x)P (x) log2 P (y|x)−
∑

y P (y) log2 P (y)
= H(Y )−H(Y |X),

(1)

where P (x) is the prior probabilities for x ∈ X values, P (y|x) is the posterior
probabilities of y ∈ Y given the values of x ∈ X and the conditional entropy
H(Y |X) is the entropy of Y after observing values of X :

H(Y |X) =
∑

x

P (x)
∑

y

P (y|x) log2 P (y|x). (2)

When applied to the feature selection, the mutual information is the amount
by which the entropy of one variable decreases from the knowledge of another
variable. The mutual information (called also information gain [8]) is symmet-
rical for two variables Y and X . Since it is often biased in favor of features with
more values, the values have to be normalized to ensure they are comparable
and have the same affect. Therefore, symmetrical uncertainty is used instead.
Defined as

SU(Y,X) =
2 I(Y ;X)

H(Y ) + H(X)
, (3)

it does compensate for the bias and normalizes its values to the range [0, 1],
where the value 0 indicates that Y and X are independent and the value 1
indicates that the value of either one completely predicts the value of the other.
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2.1 Markov Blankets for Redundant Features

An efficient feature selection method should cope with irrelevant and redundant
features. After years of intensive research, a consensus has been achieved on
determining irrelevant features [7,3,8,15]. Instead, the major difficulty remains
around the redundant features. Indeed, unlike irrelevant features, not all of them
should be removed while keeping all of them often causes the accuracy loss and
overfitting. Therefore, this poses the problem of selecting an optimal subset
among redundant features.

Let we dispose a dataset S with feature set F and class set Y . A relevant
feature Fi ∈ F is redundant if it has a Markov blanket in F [15], where a Markov
blanket for feature Fi is a feature subsetMi ∈ F which subsumes the information
feature Fi has about target Y and all other features in F −Mi − {Fi} :

P (F −Mi − {Fi}, Y |Fi,Mi) = P (F −Mi − {Fi}, Y |Mi). (4)

The Markov blanket filtering [3] is a backward elimination procedure, which at
any step removes Fi if there exists a Markov blanket for Fi among the features
remaining in F . The process guarantees that a feature removed at previous steps
will be still redundant later and removing a feature at later steps will not render
the previously removed features necessarily to be included in the optimal subset
Fopt. Finding the exact Markov blanket for a feature requires an exhaustive
enumeration of feature subsets which makes the exact Markov blanket filtering
computationally unacceptable for any important feature set.

Scalable filtering algorithms do approximate the Markov blanket filtering.
Similarly to the exact feature subset selection, where only relevant features hav-
ing no Markov blanket are selected, in the approximate feature subset selection,
one selects the relevant features having no approximate Markov blanket.

The scalable algorithms essentially include two steps where the first step deter-
mines and removes irrelevant features and the second step copes with redundant
features. Below, we present a generic filtering-based feature selection algorithm.
Without loss of generality, we assume using SU measures for removing irrele-
vant features in F . All methods discussed in this section and developed in the
following sections are instances of Algorithm 1.

The algorithm initially calculates SU values for each feature Fi ∈ F , then
selects those which are superior to the irrelevance threshold δ and ranks the
selected ones in the decreasing order. Steps (4)-(10) take O(N M + N logN)
time, where N is the number of features, N = |F |, and M is the number of data
items.

In the algorithm, the goodness criteria GOOD() guides the (greedy) process of
selecting redundant features among relevant ones. Different algorithms may use
different goodness criteria which in turn may results in different computational
complexities. The complexity of the second part (steps (11)-(21)) depends on the
number of feature pairs the GOOD () criteria is applied on. In the worst case,
the criteria removes no features from Fcand which leads to the O(N2 G) worst
case complexity, where G is the complexity of the GOOD criteria for a feature
pair, which is O(M) in the general case. Moreover, if, at each iteration (12)-(19)
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Algorithm 1. Scalable Feature Filtering Algorithm
1: INPUT: training dataset S with class set Y and feature set F = {Fi}, i = 1, . . . , N ,

irrelevance threshold δ, goodness criteria GOOD()
2: OUTPUT: optimal feature subset Fopt

3: for i = 1, . . . , N do
4: calculate SU(Y, Fi)
5: if SU(Y, Fi) > δ then
6: append Fi to Frel

7: end if
8: end for
9: Order features Fi in Frel in the decreasing order of SU(Y, Fi)

10: Fpivot = getFirst (Frel)
11: while Fpivot is not null do
12: add Fpivot to Fopt

13: Fcand = getNext (Frel,Fpivot)
14: while Fcand is not null do
15: if not GOOD(Fpivot, Fcand) then
16: remove Fcand from Frel

17: end if
18: end while
19: Fpivot = getNext (Frel,Fpivot)
20: end while
21: return Fopt

of Algorithm 1, Fpivot removes αN features Fcand where 0 < α < 1, then it can
be shown that the expected complexity is O(MGN logN) [15].

2.2 FCBF and Accumulation Effect

The Fast Correlation-Based Filtering (FCBF) is currently the best scalable al-
gorithm for feature selection [15,10]. Among various methods for approximated
Markov blankets developed so far, the FCBF offers the best trade-off between
the efficiently and effectiveness. The FCBF is based on the following Markov
blanket approximation rule:

Definition 1. Feature F1 is an approximate Markov blanket for feature F2 if
SU(Y, F1) ≥ SU(Y, F2) and SU(F1, F2) ≥ SU(Y, F1).

The FCBF is an instance of Algorithm 1 where the GOOD () verifies the ap-
proximation condition given by Definition 1. Since GOOD () takes O(1) time for
a feature pair, the FCBF expected complexity is O(MN logN) which ensures
its high scalability.

When we deployed the FCBF algorithm on a number of various datasets, we
empirically identified that the FCBF works often poorly in multi-class cases.
Indeed, for all datasets (presented in detail in Section 5), we evaluated the im-
pact of FCBF on the classification accuracy. In each case, we trained (using the
cross validation with 5 folds) a classifier, first with the initial feature set F , and
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Fig. 1. The FCBF for different class numbers

then with the feature subset Fopt selected by the FCBF. For all datasets, we
measured the accuracy gain as the difference between the second and first mea-
sures. Figure 1 plots the accuracy gain against the number of classes, denoted
as |Y |, as well as the linear least squares fitting. The figure shows a statistically
important correlation between the accuracy loss and the class number. All cases
where FCBF does improve the accuracy correspond to small |Y |, with 2, 3 or 4
classes. And vice versa, for the large |Y | cases (5 and more), the accuracy loss
may achieve 10%.

We have carefully analyzed all cases where the FCBF causes the accuracy loss.
Table 1 presents an artificial example which is abstracted from our analysis. The
dataset includes 10 items with two features, F1 and F2, and three classes, y0,
y1 and y2. Feature F1 correlates with class value y1; F2 correlates with y2 and
none correlates with y0. It is easy to verify that both F1 and F2 are relevant to
Y and moreover SU(Y, F1) = SU(Y, F2). None of the two features is a Markov
blanket of another because the information subsumption holds for some y and
not for entire Y in (4). However, FCBF approximation rule given by Definition
1 would mistakenly eliminate one of the two features as redundant one.

The problem seems to be in the way the FCBF approximates the Markov
blankets. The uncertainty reduction may vary from one class to another, but
the FCBF uses the uncertainty value for entire class set Y to make a selection
decision. Actually, our hypothesis is the FCBF suffers from the accumulation
effect when the uncertainty reduction for different classes are summed up when
verifying the Markov blanket condition. The effect is hardly visible for binary
classification cases, but it becomes important for multi-class cases where the
FCBF tends to remove features which are not redundant at all.

This analysis does suggest that the redundancy of one feature Fi with respect
to another feature Fj should be verified for each class y ∈ Y and we should con-
sider the redundancy correlation on the per-class basis. In the following section,
we propose two new methods to remedy the problem, without compromising the
efficiency and scalability of the filtering algorithm.
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Table 1. Artificial example where the FCBF fails

Y F1 F2

y0 0 0
y0 0 0
y0 0 0
y0 1 1
y0 1 1
y0 1 1

y1 0 0
y1 0 1

y2 0 0
y2 1 0

3 Fast Targeted Correlation-Based Filter

In order to keep low the computational complexity and to take into account
the per-class uncertainty, we first propose the Fast Targeted Correlation Based
Filtering (FtCBF) method. It modifies the FCBF algorithm by adding an extra
condition to the goodness criteria in order to avoid, or at least to minimize, the
accumulation effect.

Class y ∈ Y is called targeted by a feature Fi if there exist at least two items
in S with different values of Fi with the class y. In terms of the conditional
probability, y is targeted by feature Fi ∈ F if H(Fi|Y = y) > 0. The set of classes
y ∈ Y targeted by feature Fi is denoted SY (Fi), SY (Fi) = {y|H(Fi|Y = y) > 0}.

We modify the FCBF in order accommodate it to the multi-class cases. We
relax the too strong condition imposed by FCBF, by verifying that the target
set of the pivot feature subsumes the target set of the candidate, SY (Fpivot) ⊇
SY (Fcand). Thus the FtCBF applies on the following Markov blanket approxi-
mation rule:

Definition 2. (FtCBF rule). Feature F1 is an approximate Markov blanket for
feature F2 if SU(Y, F1) ≥ SU(Y, F2), SU(F1, F2) ≥ SU(Y, F1) and SY (F1) ⊇
SY (F2).

In the artificial example in Table 1, we have SY (F1) = {y0, y1} and SY (F2) =
{y0, y2}. Since none of the two target sets subsumes another, the new approx-
imation rule would retain both features. We will see in the evaluation section,
how this modification allows to resist to the accumulation effect and to filter out
redundant features without the accuracy loss.

The algorithm for FtCBF is obtained by setting accordingly the GOOD () cri-
teria in Algorithm 1. Since the first term of the FtCBF rule is explicitly realized
by the first part of the algorithm, the criteria for FtCBF includes the second
and third terms, GOOD(Fpivot, Fcand) =SU(Fpivot, Fcand) ≥ SU(Y, Fcand) and
SY (Fpivot) ⊇ SY (Fcand).
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4 Fast Class Correlation Filter

Another method to avoid the accumulation effect is to analyze the contribution
of each class to the conditional entropy H(Y |X) and the symmetric uncertainty
SU(Y,X) and to take them in consideration when building the Markov blanket
approximation. Here we propose the Fast Class Correlation Filtering (FCCF)
method which use both per-class uncertainty and feature correlation to build
the Markov blanket approximation. We first rewrite the information gain in (1)
on the per-class basis as follows:

I(Y ;X) = H(Y )−H(Y |X)
=
∑

y

∑
x P (x)P (y|x) log2 P (y|x)−

∑
y P (y) log2 P (y)

=
∑

y∈Y I(Y = y;X),
(5)

where I(Y = y;X) is the contribution of class y ∈ Y to the aggregated informa-
tion gain I(Y ;X), I(Y = y;X) =

∑
x P (x)P (y|x) log2 P (y|x)−P (y) log2 P (y).

After the normalization, the symmetric uncertainty SU may be equally decom-
posed on the per-class principle. For two random variables Y and X , we have
SU(y,X) = H(Y =y)−I(Y =y;X)

H(Y )+H(X) where H(Y = y) = p(y) log2(y) and therefore

SU(Y,X) =
∑

y∈Y SU(y,X). (6)
A relevant feature Fi strictly subsumes a relevant feature Fj if SU(y, Fi) ≥

SU(y, Fj), for all y ∈ Y . By adding the constraint on the feature correlation
SU(Fi, Fj), we obtain the following Markov blanket approximation rule:

Definition 3. (FCCF rule). Feature F1 is an approximate Markov blanket for
feature F2 if for any y ∈ Y , SU(Y = y, F1) ≥ SU(Y = y, F2) and SU(F1, F2) ≥
SU(Y, F1).

To apply the FCCF approximation rule and to preserve the scalability, we have
to make some minor changes in Algorithm 1. In step (4)-(8), we extend the calcu-
lation of SU(Y, Fi) by calculation of per-class uncertainty vector [SU(y1, Fi), . . . ,
SU(y|Y |, Fi)]. The ordering of values in step (9) would be then done by the de-
creasing values of one class, say y1. The second part of Algorithm 1 is modified ac-
cordingly, in order to compare uncertainty vectors [SU(y1, Fi), . . . , SU(y|Y |, Fi)]
and [SU(y1, Fj), . . . , SU(y|Y |, Fj)] for a pair of features Fi, Fj ∈ F . This need to
compare uncertainty vectors leads to the change in the method complexities with
respect to FCBF. The FCCF worst case becomes O(M |Y |N2) and the average
case is O(M |Y |N logN).

This class-by-class uncertainty comparison is naive and quite satisfactory for
dozens and hundreds of classes. If the number of classes |Y | accounts for thou-
sands, some sophisticated structures might implemented to reduce the average
case to O(M log |Y |N logN) [12].

5 Evaluation Results

In this section we report results of evaluation tests aimed at verifying how good
new feature selection methods are in cases of large numbers of features, instances
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and classes. All evaluations are performed in terms of classification accuracy and
dimensionality degree.

For evaluation tests, 17 different datasets have been proposed. First, we se-
lected 15 datasets available from UCI Machine Learning repository 2. Among
existing UCI datasets, we prefered ones covering different application domains
and, importantly, representing a high variability of class numbers. Since the UCI
Machine Learning repository is essentially dominated by 2- and 3-class datasets,
we additionally included two multi-class datasets from another source. These two
datasets have been created in the framework of the VIKEF European Integrated
Project 3 for enabling the integrated development of semantic-based informa-
tion, content, and knowledge management systems. The first, CPO dataset is a
collection of data items extracted from PDF documents and annotated with 8
metadata classes, including title, author, organization and address. The
second, bizCard dataset is composed of data items extracted from personal
business cards where each paper-based business card was scanned, OCR-ed
and annotated with different metadata classes. For all 17 datasets included
in the evaluation tests, Table 2 reports the number of data items, classes and
features.

Table 2. Feature selection results for 17 test datasets

Collection Initial Set FCBF FtCBF FCCF
UCI |Y | M F ME DT Fopt ME DT Fopt ME DT Fopt ME DT
breast 2 699 9 94.7 94.98 8 95.28 94.85 8 95.28 94.85 8 95.28 94.85
credit-a 2 690 15 83.48 85.55 3 82.61 83.51 10 83.91 85 11 84.57 85.51
heart-c 2 303 13 74.97 76.24 5 82.51 80.37 10 79.89 80.37 11 81.11 80.37
hepatitis 2 155 19 79.35 78.52 3 83.87 80.52 8 80.64 80.52 8 82.45 80.52
labor 2 57 16 94.54 80.53 3 86.01 77.48 9 94.54 77.48 9 94.71 77.48
mushroom 2 8124 22 100 100 5 99.03 99.02 5 99.03 99.02 5 99.03 99.02
balance-sc 3 625 4 88.32 78.11 4 88.32 77.78 4 88.32 77.78 4 88.32 77.78
iris 3 150 4 91.33 94.53 1 94 94.67 4 91.33 94.33 4 91.33 94.67
splice 3 3190 61 92.98 93.88 22 95.52 94.21 28 93.98 94.16 31 94.13 93.26
waveform 3 5000 40 76.12 75.24 1 54.33 57.01 4 73.86 74.1 5 76.44 76.19
lymph 4 148 18 77.76 76.11 8 81.21 75.01 13 85.28 76.43 13 84.8 76.43
anneal 5 898 38 98.55 98.62 5 87.97 98.62 19 99.00 98.33 20 97.66 98.48
autos 6 205 25 58.05 79.66 3 58.05 70.59 24 55.12 69.82 22 59.13 72.59
glass 6 214 9 48.79 67.45 1 39.56 54.44 8 47.31 64.11 9 48.79 64.58
zoo 7 101 17 95.0 93.29 7 93.0 91.39 10 95.0 94.96 10 95.0 94.96
soybean 19 683 35 85.35 90.57 9 77.46 80.13 21 86.09 87.92 22 85.87 89.91
audiology 24 226 69 78.22 77.57 24 73.77 75.9 27 77.12 78.68 27 77.12 78.68
letter 26 20000 16 82.58 87.25 10 80.16 86.77 10 80.16 86.77 11 80.21 87.66
CPO 8 7612 42 93.83 90.54 11 91.43 92.04 19 94.18 93.45 23 95.2 93.22
Bizcard 17 3620 135 71.48 71.65 21 65.85 62.42 45 68.29 69.63 38 71.24 69.97
Average 6.3 31.1 83.31 84.37 7.6 81.57 81.05 14.5 83.57 83.79 14.7 84.32 84.02

2 http://mlearn.ics.uci.edu/MLRepository.html
3 http://www.vikef.net/
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We evaluated the performance of different filter-based feature selection meth-
ods by using two well-known classification methods, C4.5 decision tree (DT)
and maximum entropy (ME) ones. For the former, we used the Weka package 4

which has its version of C4.5 known as weka.classifiers.trees.J48. In all
tests, the C4.5 confidence factor was set by default to 0.25. For the maximum
entropy classifier, we used the Maximum Entropy modeling toolkit for Python
language 5.

Feature selection evaluation. In the first series of tests, we compare the accuracy of
classification models trained with initial feature set F , as well as with the feature
subsets selected by three methods, FCBF, FtCBF and FCCF. All tests are run us-
ing the cross validation protocol. We used 5 folds for all selected datasets. For each
folding, a feature selection method is applied to the training set; it returns a feature
subset which is used to train a model from the training set. 6 The average over all
foldings is reported as the model accuracy for the dataset.

Fig. 2. Accuracy gain versus the class number: FtCBF and FCCF methods

Table 2 reports the evaluation results for the initial feature sets and the fea-
ture subsets selected by FCBF, FtCBF and FCCF. For each dataset 7 and
each method, the table reports the size of optimal feature subset |Fopt| and
the accuracy for both C4.5 and maximum entropy classification models. Both

4 http://www.cs.waikato.ac.nz/m̃l/weka/
5 http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.html
6 Using the same training data in both feature selection and classifier training may cause

the so-called feature selection bias [9]. We initially intended to avoid this bias. Unfor-
tunately, a further split of training data would severely penalize the small datasets.
Thus we accepted the proposed schema as far as all feature selection algorithms are
evaluated in the same conditions.

7 The UCI datasets are ordered by the increasing number of classes |Y |.
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Fig. 3. Relative accuracy gain: FCCF versus FCBF

FtCBF and FCCF behave well on all the datasets, using either of two classifica-
tion methods. They both appear less sensible to the number of classes and show
no significant difference between collections with 2, 3, 4 and more classes.

By analogy with Figure 1, Figure 2 plots the accuracy gain and the linear min-
imar square fitting for all datasets, using FtCBF and FCCF methods 8. First,
the performance of new methods are comparable to the FCBF on 2- and 3-class
datasets. Instead, they take an advantage over the FCBF on multi-class datasets.

To show it explicitly, Figure 3 combines the results presented in Figures 1
and 2. It shows the relative accuracy gain against the class number. Here, the
relative gain is given by the difference in accuracy between FCCF and FCBF.
The advantage of FCCF over FCBF grows as the class number increases.

Finally, we mention another aspect of test results reported in Table 2. Figure
4 plots the accuracy gain against the feature reduction ratio given by the fraction
of features from the initial feature set F selected by a given method, |Fopt|/N . As
one can observe, the FCBF conducts an aggressive policy of redundant feature
removal which might be not justified and thus leading to the accuracy loss on
some datasets, in particular, the multi-class ones. Instead, FtCBF and FCCF
impose additional conditions for removing a feature as redundant one. As result,
they are more modest at removing features from the initial set, this however
permits to avoid the accuracy loss.

Class shrinkage. In order to extend the comparison of feature selection methods
in multi-class tasks, we have undertaken the second series of experiments. The
class shrinkage procedure was invented in order to test the feature selection
methods over the varying number of classes.

The class shrinkage is implemented in the following way. In a dataset with
|Y | classes, a pair of distinct classes is randomly selected and all items of one
8 The plot shows the accuracy values obtained with the maximum entropy models. Re-

sults for C4.5 models are not presented here but have a very similar shape.
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Fig. 4. Accuracy gain versus the feature reduction ratio

class are relabeled with another one. This step reduces the class number by one.
The random shrinkage step is repeated |Y | − 2 more times, thus producing a
sequence of datasets with diminishing number of classes, k = |Y |, |Y | − 1, . . . , 2.
For each value k in the sequence, we run all feature selection methods and
measure the accuracy of classification models with the initial (Basic) feature
set and feature subsets selected by FCBF, FtCBF and FCCF. The shrinkage
experiment is repeated 10 times and the average values over all runs are reported
as the model accuracy together with the standard deviation.

Below we present results of class shrinkage experiments for multi-class datasets
in Table 2. Figures 5 shows Basic, FCBF, FtCBF and FCCF plots for the
soybean dataset. The right extreme of all plots corresponds to the initial dataset;
it was analyzed in Table 2. All three feature selection methods get close to the Ba-
sic accuracy on the left extreme, when k = 2. Among the three feature selection

Fig. 5. Class shrinkage with the soybean dataset
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Fig. 6. Class shrinkage with the a) audiology and b) bizcard datasets

methods, both FtCBF and FCCF outperform FCBF. We note very important
standard deviation values for all plots, in particular for intermediate class num-
bers. This is explained by the randomness of class replacement and a large variety
of datasets obtained by such a replacement.

Figure 5 reports the audiology and bizcard for the initial feature set and
FCBF and FCCF methods 9. Both new methods tend to behave well in class
shrinkage experiments on other multi-class datasets. The only exception is the
letter dataset, where all feature selection methods show no significant difference.

6 Conclusion

We have proposed two new scalable feature selection methods which guarantee a
good tradoff between efficiency and effectiveness for multi-class cases. Both new
methods outperform the state-of-art FCBF method which may suffer from the
accumulation effect. Either method proposes an approximate Markov blanket
rule which relaxes the FCBF’s aggressive criteria for removing redundant fea-
tures. The evaluation on 17 datasets demonstrate that this relaxation pays off
when the number of classes becomes important.

All scalable filtering algorithms remove as irrelevant any feature whose uncer-
tainty value with respect to the class variable falls under the irrelevance thresh-
old. This unfortunately ignores all possible interactions between the features [16].
Improving the filtering algorithms that takes into consideration the feature in-
teraction but does not hurt the scalability represents a challenging problem.
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Abstract. Learning from unbalanced datasets presents a convoluted
problem in which traditional learning algorithms may perform poorly.
The objective functions used for learning the classifiers typically tend
to favor the larger, less important classes in such problems. This paper
compares the performance of several popular decision tree splitting cri-
teria – information gain, Gini measure, and DKM – and identifies a new
skew insensitive measure in Hellinger distance. We outline the strengths
of Hellinger distance in class imbalance, proposes its application in form-
ing decision trees, and performs a comprehensive comparative analysis
between each decision tree construction method. In addition, we consider
the performance of each tree within a powerful sampling wrapper frame-
work to capture the interaction of the splitting metric and sampling. We
evaluate over this wide range of datasets and determine which operate
best under class imbalance.

1 Introduction

Data sets in which one class is particularly rare, but more important – termed
unbalanced or unbalanced datasets – continue to be a pervasive problem in a
large variety of supervised learning applications, ranging from telecommunica-
tions to finance to medicine to web categorization to biology. Typically sampling
methods [1,2,3,4,5] are used for countering class imbalance.

Decision trees, particularly C4.5 [6], have been among the more popular algo-
rithms that have been significantly helped by sampling methods for countering
the high imbalance in class distributions [3,4,7]. In fact, the vast majority of
papers in the ICML’03 Workshop on unbalanced Data included C4.5 as the
base classifier. While it is understood that sampling generally improves deci-
sion tree induction, what is undetermined is the interaction between sampling
and how those decision trees are formed. C4.5 [6] and CART [8] are two popu-
lar algorithms for decision tree induction; however, their corresponding splitting
criteria — information gain and the Gini measure — are considered to be skew
sensitive [9]. It is because of this specific sensitivity to class imbalance that use
of sampling methods prior to decision tree induction has become a de facto stan-
dard in the literature. The sampling methods alter the original class distribution,
driving the bias towards the minority or positive class1. Dietterich, Kearns, and
1 Without loss of generality, we will assume that positive and minority class is the

same.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 241–256, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Mansour [10] suggested an improved splitting criterion for a top down decision
tree induction, now known as DKM. Various authors have implemented DKM
as a decision tree splitting criterion and shown its improved performance on un-
balanced datasets [9,11,12]. However, DKM has also been shown to be (weakly)
skew-insensitive [9,11].

We posit that class imbalance is also a characteristic of sparseness in feature
space, in addition to the skewed class distributions. Thus, it becomes impor-
tant to design a decision tree splitting criterion that captures the divergence in
distributions without being dominated by the class priors. To that end, we con-
sider the Hellinger distance [13,14] as a decision tree splitting criterion, which
we show to be skew-insensitive. We also demonstrate similarities between DKM
and Hellinger distance, albeit Hellinger distance offers a stronger skew insensitiv-
ity. Finally, we consider the popular sampling methods and study their impact
on the decision tree splitting criteria. Does having a skew insensitive splitting
criterion mitigate the need of sampling?

Contributions: Our key contributions include the following: 1) Characteriza-
tion of the Hellinger distance metric in data mining context as a skew insensitive
decision tree splitting metric. 2) Analytical demonstration of the utility of pro-
posed formulation of Hellinger distance using isometrics graphs. 3) A theoretical
comparison between Hellinger distance and DKM. 4) A decision tree algorithm
called HDDT incorporating the Hellinger distance as the tree splitting criterion.
5) Comparison of the effect of sampling on the decision tree splitting meth-
ods. We have used a total of 19 datasets, from UCI and real-world domains,
with varying properties and skew in this study. We have also used statistical
measures suggested by Demsar [15] to robustly compare the classifiers across
multiple datasets. Note that we only used unpruned decision trees for all our
experiments, irrespective of the splitting criterion used, as the previous work
has pointed to the limitations of pruning for unbalanced datasets [16,17].

2 Hellinger Distance

Hellinger distance is a measure of distributional divergence [13,14]. Let (Θ, λ)
denote a measurable space with P and Q as two continuous distributions with
respect to the parameter λ. Let p and q be the densities of the measures P and
Q with respect to λ. The definition of Hellinger distance can be given as:

dH(P, Q) =

��
Ω

(
√

P −
�

Q)2dλ (1)

This is equivalent to:

dH(P,Q) =

√
2(1−

∫
Ω

√
PQdλ) (2)

where
∫

Ω

√
pqdλ is the Hellinger integral. Note the Hellinger distance does not

depend on the choice of the dominating parameter λ. It can also be defined for
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a countable space Φ, as dH(P,Q) =
√

Σφ∈Φ(
√

P (φ) −
√

Q(φ))2. The Hellinger

distance carries the following properties: 1) dH(P,Q) is in [0,
√

2]. 2) dH is sym-
metric and non-negative, implying dH(P,Q) = dH(Q,P ). Moreover, squared
Hellinger distance is the lower bound of KL divergence.

In this paper, the P and Q in Equations 1 & 2 are assumed to be the normal-
ized frequencies of feature values across classes. This allows us to capture the
notion of “affinity” between the probability measures on a finite event space. If P
= Q, then distance = 0 (maximal affinity) and if P and Q are completely disjoint
then distance =

√
(2) (zero affinity). This dictates the decision tree splitting cri-

terion for separability between classes. We want to select a feature that carries
the minimal affinity between the classes. Thus, the Hellinger distance can be
used to capture the propensity of a feature to separate class distributions.

For application as a decision tree splitting criterion, we assume a countable
space, so we discretize all continuous features into p partitions or bins. Assuming
a two-class problem (class + and class −), let X+ be class + and X− be class −.
Then, we are essentially interested in calculating the “distance” in the normalized
frequencies aggregated over all the partitions of the two class distributions X+

and X−. The Hellinger distance between X+ and X− is:

dH(X+, X−) =

����� p�
j=1

��
|X+j |
|X+| −

�
|X−j |
|X−|

	2

(3)

We postulate that this formulation is strongly skew insensitive as the prior does
not influence the distance calculation. It essentially captures the divergence be-
tween the feature value distributions given the two different classes. There is no
factor of class prior. We will show the effectiveness of this enumeration isometric
plots.

2.1 Comparing Isometrics

Vilalta & Oblinger [18] proposed the use of isometric lines to define the bias of
an evaluation metric by plotting contours for a given metric over the range of
possible values. They presented a case study on information gain. While they did
not produce isometrics under class skew, they note that “A highly skewed distri-
bution may lead to the conclusion that two metrics yield similar generalization
effects, when in fact a significant difference could be detected under equal class
distribution. [18]” Subsequently, Flach [9] connected the isometric plots to ROC
analysis, demonstrating the effects of true and false positives on several common
evaluation metrics: accuracy, precision, and f-measure. In addition, he also pre-
sented isometrics for three major decision tree splitting criteria: entropy (used
in information gain) [6], Gini index [8], and DKM [10]. Flach also established
the effect on class skew on the shape of these isometrics [9].

We adopted the formulation of Flach in this paper, where the isometric plots
show the contour lines in 2D ROC space, representative of the performance
of different decision tree splitting criteria with respect to their estimated true
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Fig. 1. Information gain isometrics for (+:-)=(1:1) in (a) and (+:-)=(1:10) in (b)
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Fig. 2. DKM isometrics for (+:-)=(1:1) in (a) and (+:-)=(1:10) in (b)

and false positive rates, conditioned on the skew ratio (c = neg
pos ). A decision

tree split, for a binary class problem, can be defined by a confusion matrix
as follows. A parent node will have POS positive examples and NEG negative
examples. Assuming a binary split, one child will carry the true and false positive
instances, and the other child will carry the true and false negative instances.
The different decision tree splitting criteria, as considered in this paper, can
then be modeled after this impurity (distribution of positives and negatives).
Thus, in the isometric plots, each contour represents the combinations of true
positives and false negatives that will generate a particular value for a given
decision tree splitting criterion. For example, the 0.1 contour in Figure 1 (a)
indicates that the value of information gain is 0.1 at (fpr, tpr) of approximately
(0%, 20%), (20%, 60%), (80%, 100%), (20%, 0%), (60%, 20%), (100%, 80%), and
all other combinations along the contour. In Figures 1 (a) & (b), information gain
is observed as contours formed in ROC space under a (+ : −) skew of (1 : 1) and
(1 : 10), respectively. As the skewness increases, the isometrics become flatter
and information gain will operate more poorly as a splitting criterion. Vilalta &
Oblinger [18] and Flach [9] observed similar trends. Additionally, Flach [9] notes
that DKM is (weakly) skew-insensitive. It is affected like information gain (and
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Fig. 3. Gini isometrics for (+:-)=(1:1) in (a) and (+:-)=(1:10) in (b)
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Fig. 4. Hellinger distance isometric for any (+:-)

therefore C4.5) and Gini (and therefore CART) which are highly skew dependent,
but not to the same degree. Additionally, its contours do not “twist” – there is
some a for which each contour intersects (0, a) and (1 − a, 0) – under skew.
Gini is by far the most skew sensitive metric of this group. We only considered
two class proportions of (1 : 1) and (1 : 10) to highlight the impact of even a
marginal class skew. We point the interested reader to the paper by Flach for a
more elaborate analysis of class skew using isometrics on these three metrics [9].

On the other hand, an important observation may be drawn from an isometric
of Hellinger distance. First, using Flach’s model of relative impurity, we derive
the following for Hellinger distance:

√
(
√
tpr−

√
fpr)2+(

√
1− tpr−

√
1− fpr)2.

Figure 4 contains Hellinger distance contours. The Hellinger distance isometrics
will not deviate from the contours with varying class skew (c), as there is no factor
of c in the relative impurity formulation. This result follows from the previous
section and the independence of the Hellinger distance to the parameter λ, which
in our case is the respective class priors. The isometric contours for Hellinger
distance are unaffected by an increase in the class skew rate.

2.2 Comparing DKM and Hellinger Distance

We posit that DKM and Hellinger distance have similar properties, albeit
Hellinger distance has stronger skew insensitivity than DKM. We consider both
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DKM and Hellinger distance within the canonical two class, binary split problem.
P (L) and P (R) designate the weight of examples falling under the left and right
branches respectively. P (+) and P (−) represent the probability of belonging to
class + and −. In these terms, we may state DKM as follows.

dDKM = 2
�

P (+)P (−) − 2P (L)
�

P (L|+)P (L|−) − 2P (R)
�

P (R|+)P (R|−) (4)

Applying these terms to Equation 3, the same terms, Hellinger distance maybe
be stated as follows.

dH =


��
P (L|+) −

�
P (L|−)

�2
+
��

P (R|+) −
�

P (R|−)
�2

(5)

dH =


2 − 2

�
P (L|+)P (L|−) − 2

�
P (R|+)P (R|−) (6)

Representing the equations in this form demonstrate a clear similarity between
Hellinger and DKM. Both are capturing the divergence in conditionals at a
split point, albeit with some differences. DKM places the notion of “branch
strength” in terms of P (L) and P (R) for each of the corresponding left and right
branch conditionals. Moreover, DKM also takes into account the class priors as
2
√

P (+)P (−), which can also be considered as the upper bound for pure splits.
On the other hand, Hellinger is upper bounded by

√
2, and does not take into

account the notion of class skew in the calculation. It is simply capturing the
deviation between P (x|y) at a split node, without factoring in the relative class
distributions at the parent node, which DKM does. This also highlights why
DKM may be less skew insensitive than Hellinger distance.

Hellinger distance aims for “more pure” leaves as it aims for partitioning the
space by capturing the deviations in the class conditionals at the node. However,
this can result in smaller coverage, which may be damaging for more balanced
class rates, but could prove helpful for highly unbalanced datasets as it tries to
form purer leaves that are minority class specific. Nevertheless, it depends on
the relative distribution of features with respect to the classes. DKM, on the
other hand, may not be as greedy and stop the splitting for the sake of larger
coverage.

We demonstrate this property using value surfaces in Figure 5, which display
the full range of possible split values for both metrics. Figure 5(a) shows the
Hellinger distance throughout all possible class skew ratios, while Figure 5(b),(c),
& (d) display DKM values for the (+ : −) class ratios of (1:1), (1:10), & (1:100),
respectively. As skew increases, the DKM surface flattens and potentially reduces
the set of usable values, as it gets dominated by the skew factor in the favor of
majority class. We do note that in a vast number of data sets such a scenario
may not arise, and Hellinger and DKM may converge to similar performances.
Nevertheless, it is important to consider this difference as we may want to grow
a completely unpruned tree for unbalanced datasets, and at lower nodes in the
tree the class skew may get to the very extreme. This is obviously conditioned on
the property of the data, but theoretically it is possible. At this point, Hellinger
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Fig. 5. Full value surfaces for the total range of Hellinger distances and DKM. (a) The
Hellinger distance remains unchanged over all possible class skews. The range of DKM
values vary with class skew: we note the (+:-) ratios of (b) (1:1), (c) (1:10), & (d)
(1:100).

distance may prove more amenable. Thus, we suggest use of Hellinger over DKM
given its stronger skew insensitivity, albeit with the caveat that at the general
case both Hellinger and DKM will converge to similar performances. But, we
want to be prepared for the worst case.

2.3 HDDT: Hellinger Distance Decision Tree

The following algorithm outlines the approach to incorporating Hellinger dis-
tance in learning decision trees. We will refer to Hellinger distance and Hellinger
distance based decision trees as HDDT for the rest of the paper. In our algo-
rithm, Ty=i indicates the subset of training set T that has class i, Txk=j specifies
the subset with value j for feature k, and Txk=j,y=i identifies the subset with
class i and has value j for feature k .

Algorithm 1. Calc Hellinger

Input: Training set T , Feature f
1: for each value v of f do
2: Hellinger+ = (


|Txf=v,y=+|/|Ty=+| −


|Txf=v,y=+|/|Ty=+|)2

3: end for
4: return

√
Hellinger

In the case that a given feature is continuous, a slight variant to
Algorithm 1 is used in which Calc Hellinger sorts based on the feature value,
finds all meaningful splits, calculates the binary Hellinger distance at each split,
and returns the highest distance. This is identical to the methodology used by
C4.5. With this practical distance calculator, Algorithm 2 outlines the procedure
for inducing HDDT trees.

We do not consider any pruning with HDDT and smoothed the leaf frequen-
cies by the Laplace estimate. This was primarily motivated by the observations
of Provost & Domingos [16]. We likewise considered only the unpruned deci-
sion trees for C4.5, CART, and DKM, and smoothed the leaf frequencies by the
Laplace estimate.
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Algorithm 2. HDDT

Input: Training set T , Cut-off size C
1: if |T | < C then
2: return
3: end if
4: for each feature f of T do
5: Hf = Calc Hellinger(T, f)
6: end for
7: b = max(H)
8: for each value v of b do
9: HDDT (Txb=v, C)

10: end for

3 Sampling Methods

Treatment of class imbalance by under- and/or over-sampling, including variants
of the same, has resulted in improvement in true positives without significantly
increasing false positives [3,19]. However, we believe it is important to under-
stand the interaction of the sampling methods with different decision tree split-
ting metrics with different skew sensitivities. This study examines combining
two samplings methods: random undersampling and SMOTE [5]. While seem-
ingly primitive, randomly removing majority class examples has been shown to
improve performance in class imbalance problems. Some training information is
lost, but this is counterbalanced by the improvement in minority class accuracy
and rank-order. SMOTE is an advanced oversampling method which generates
synthetic examples at random intervals between known positive examples.

Elkan discusses the interaction of cost and class imbalance [20], proposing
a simple method to calculate optimal sampling levels. However, our evaluation
occurs without explicit costs. In this case, Elkan’s calculation simply indicates
sampling the classes to a balanced proportion. In addition, this approach leaves
open much to interpretation: should the negative class be undersampled, the
positive class be oversampled, or should a combination be used to reach the bal-
ance point? To address this, we search a larger sampling space (which includes
several potential balance points) via wrapper to determine optimal class propor-
tions [19]. Testing for each pair of undersampling and SMOTE percentages will
result in an intractable search space. The wrapper framework first explores the
amounts of undersampling that result in an improvement in performance over
the baseline, where baseline is defined as the decision tree classifier learned on
the original distribution of data. Subsequently, once the majority class is un-
dersampled to the point where the performance does not deteriorate anymore,
the wrapper searches for the appropriate levels of SMOTE. This strategy re-
moves the “excess” negative examples, thereby reducing the size of the training
dataset and making learning time more tractable. Then SMOTE adds synthetic
positive examples and generalizes performance of the classifier over the positive
class. AUROC is the primary metric for considering performance in unbalanced
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datasets, so it will be used both as a wrapper objective function and the final
performance metric. We point the reader to the paper by Chawla et al. [19] for
further details on the wrapper framework.

We perform experiments using each base decision tree classifier in combination
with the sampling wrapper. We note that both undersampling and SMOTE
contain elements of randomization. Therefore, we first constructed an exhaustive
sets of sampled datasets at different amounts of undersampling and different
amounts of SMOTE. We let the wrapper search only on these prior constructed
undersampled datasets and SMOTE datasets to determine the appropriate levels
of sampling for different splitting criteria. For example, each splitting metric
considers the removal of exactly the same majority class examples in the first
comparison to the baseline. Of course, each splitting criterion may converge to
different amounts of undersampling. But this ensures uniformity of results and
that the potential performance differences stem from the bias of the decision
tree metrics themselves, rather than possible variance due to randomness in the
applied sampling methods.

4 Experimental Evaluation

In this section, we provide experimental results to determine performance com-
pares the characteristics of HDDT, C4.5, CART, and DKM and the combination
of each with the sampling wrapper. We use a variety of unbalanced, binary-class,
mixed feature type real-world and UCI datasets. Such a wide variety should com-
prehensively outline the strengths and weaknesses of using more skew insensitive
metrics such as DKM or Hellinger versus information gain and Gini. We used
the 5x2-fold cross-validation (cv) over 10-fold cv as that is more appropriate for
unbalanced data sets, as the latter can result in an elevated Type 1 error [21],
which is particularly punishing for unbalanced datasets because of the trade-off
between false positives and false negatives. Demsar [15] also encourages use of
5x2 cross-validation for statistical comparisons among classifiers across datasets.
We statistically evaluate and compare classifiers using the Holm procedure of the
Friedman test – a procedure to determine the statistical significance of perfor-
mance rankings across multiple datasets [15].

4.1 Datasets

Table 1 describes the characteristics of the datasets used in our experiments.
We have a number of real-world and UCI datasets. We will briefly describe
the real-world datasets used in this paper. E-state contains electrotopological
state descriptors for a series of compounds from the National Cancer Institute’s
Yeast AntiCancer drug screen. Mammography is highly unbalanced and records
information on calcification in a mammogram. Oil dataset contains informa-
tion about oil spills; it is relatively small and very noisy [22]. The Phoneme
dataset originates from the ELENA project and is used to distinguish between
nasal and oral sounds. Boundary, Calmodoulin, and PhosS are various biological
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Table 1. All the datasets used in this paper

No. Dataset Examples Features MinClass %

1 Boundary 3,505 174 4%
2 Breast-W 569 32 37%
3 Calmodoulin 18,916 131 5%
4 E-State 5,322 12 12%
5 Forest Cover 38,500 10 7.1%
6 FourClass 862 2 36%
7 German.Numer 1,000 24 30%
8 Letter 20,000 16 19%
9 Mammography 11,183 6 2%
10 Oil 937 49 4%
11 Page 5,473 10 10%
12 Pendigits 10,992 16 10%
13 Phoneme 5,404 5 21%
14 PhosS 11,411 479 5%
15 Pima 768 8 35%
16 Satimage 6,435 36 10%
17 Segment 2,310 19 14%
18 Splice 1,000 60 4.8%
19 SVMGuide1 3,089 4 35%

datasets [23]. FourClass, German.Numer, Splice, and SVMGuide1 all are avail-
able from LIBSVM [24]. The remaining datasets all originate from the UCI
repository [25]. Some of these are originally multiple class datasets and were
converted into 2-class problems by keeping the smallest class as minority and
the rest as majority. The exception is Letter, for which each vowel became a
member of the minority class, against all of the consonants as the majority
class. Aside from stated modifications, each dataset is used “as is.”

4.2 Experimental Results

Baseline Comparisons. We first compare all the baseline decision tree algo-
rithms. In Table 2, we report the average AUROC over the 5x2 cv experimental
framework. The relative ranking for each classifier is indicated parenthetically.
Using the Holm procedure of the Friedman test [15] for comparing the ranking
across all the 19 datasets and 4 classifiers, we determine HDDT and DKM are
statistically significantly better than C4.5 and CART decision trees at 95% confi-
dence interval. Thus, when applying decision trees to unbalanced data, selecting
HDDT or DKM will typically yield a significant edge over C4.5 and CART. In
general, DKM and HDDT converge towards similar trees and therefore the final
performance. This is reflected by ties on 15 of the 19 datasets, with a marginal
improvement in HDDT average ranks over DKM. Thus, these empirical obser-
vations agree with the isometric analyses and discussion in the previous Section
that as the splitting criterion becomes relatively more skew-insensitive, decision
trees tend to perform more strongly on unbalanced data.

Interaction with Sampling. We now consider the effect of sampling on each of
the decision tree splitting criterion. We used a wrapper approach, as described
in Section 3, to determine the potentially optimal levels of sampling for each
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Table 2. Baseline decision tree AUROC results with relative ranks in parentheses,
with the average rank applied for all ties. HDDT achieves the best over-all ranking.
We use the Friedman test to compare the ranks at 95% confidence interval as per
the recommendation of Demsar [15] that it is more appropriate to compare classifiers’
ranks when using multiple classifiers and multiple datasets. A � in the bottom row
indicates that HDDT statistically significantly improved over that classifier.

Dataset C4.5 DKM CART HDDT
Boundary 0.554 ± 0.037 (4) 0.606 ± 0.044 (1) 0.558 ± 0.029 (3) 0.594 ± 0.039 (2)
Breast-w 0.948 ± 0.011 (3) 0.952 ± 0.010 (1.5) 0.937 ± 0.017 (4) 0.952 ± 0.010 (1.5)

Calmodoulin 0.668 ± 0.009 (3) 0.670 ± 0.012 (2) 0.621 ± 0.012 (4) 0.680 ± 0.010 (1)
E-State 0.554 ± 0.035 (3) 0.579 ± 0.014 (2) 0.547 ± 0.020 (4) 0.580 ± 0.014 (1)

Forest Cover 0.978 ± 0.002 (3) 0.982 ± 0.002 (1.5) 0.963 ± 0.004 (4) 0.982 ± 0.002 (1.5)
Fourclass 0.969 ± 0.011 (3) 0.975 ± 0.013 (1.5) 0.946 ± 0.023 (4) 0.975 ± 0.013 (1.5)

German.numer 0.705 ± 0.016 (1) 0.692 ± 0.028 (2.5) 0.629 ± 0.027 (4) 0.692 ± 0.028 (2.5)
Letter 0.990 ± 0.004 (2) 0.990 ± 0.004 (2) 0.962 ± 0.006 (4) 0.990 ± 0.004 (2)

Mammography 0.889 ± 0.008 (3) 0.912 ± 0.013 (1.5) 0.858 ± 0.017 (4) 0.912 ± 0.013 (1.5)
Oil 0.787 ± 0.074 (4) 0.799 ± 0.042 (2.5) 0.815 ± 0.052 (1) 0.799 ± 0.042 (2.5)

Page 0.971 ± 0.004 (3) 0.974 ± 0.005 (1.5) 0.964 ± 0.010 (4) 0.974 ± 0.005 (1.5)
Pendigits 0.985 ± 0.005 (3) 0.992 ± 0.002 (1.5) 0.976 ± 0.007 (4) 0.992 ± 0.002 (1.5)
Phoneme 0.892 ± 0.010 (3) 0.905 ± 0.006 (2) 0.887 ± 0.007 (4) 0.906 ± 0.005 (1)
PhosS 0.638 ± 0.025 (4) 0.677 ± 0.009 (1.5) 0.648 ± 0.017 (3) 0.677 ± 0.009 (1.5)
Pima 0.753 ± 0.013 (3) 0.760 ± 0.019 (1.5) 0.724 ± 0.019 (4) 0.760 ± 0.019 (1.5)

Satimage 0.906 ± 0.009 (3) 0.911 ± 0.008 (1.5) 0.862 ± 0.011 (4) 0.911 ± 0.007 (1.5)
Segment 0.982 ± 0.006 (3) 0.984 ± 0.007 (1.5) 0.977 ± 0.007 (4) 0.984 ± 0.007 (1.5)
Splice 0.954 ± 0.016 (1) 0.950 ± 0.014 (2.5) 0.806 ± 0.035 (4) 0.950 ± 0.014 (2.5)

SVMguide1 0.985 ± 0.005 (3.5) 0.989 ± 0.002 (1.5) 0.985 ± 0.002 (3.5) 0.989 ± 0.002 (1.5)
Avg. Rank 2.92 1.74 3.71 1.63

Friedman α = .05 � � —

of the decision tree algorithms. The wrapper optimized on AUROC. Note that
the wrapper uses a separate validation framework to determine the sampling
levels. Each decision tree algorithm used 5-fold cross-validation on the training
set of the 5x2 cv to determine the optimal sampling levels by optimizing on
AUROC. Once these were determined, the entire training set was resampled
by that amount and evaluated on the corresponding 5x2 cv testing set. This
approach is outlined in the paper by Chawla et al. [19]. The performances that
we report are on the testing set of the 5x2 cv.

The results on the 5x2 cv are shown in Table 3. These results show a com-
pelling trend. The benefits of DKM and HDDT over C4.5 are clearly eroded.
CART still remains the worst performing classifier, and statistically significantly
so. However, there are a couple of exceptions, such as Breast-w and Oil, in which
CART and sampling produces the best classifier. We note that these datasets
are very small (Breast-w being the smallest and Oil being the fourth smallest)
and have the lowest feature-to-example ratio, suggestive of the curse of dimen-
sionality. Moreover, Oil is also very noisy.

One question at this stage is: how much do the different decision trees benefit
from sampling when compared to their respective baseline performances? Figure
6 depicts the percentage improvement in AUROC across all the datasets after
applying sampling for each of the different decision tree splitting criteria. This
figure shows a very compelling trend: C4.5 and CART are the biggest gainers
from sampling, while DKM and HDDT, being skew insensitive, do not achieve
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Table 3. AUROC values produced by each decision tree in combination with the
sampling wrapper. Relative ranking is noted parenthetically. A � in the bottom row
indicates a 95% significant improvement over CART. There was no statistically sig-
nificant difference among the other three decision tree classifiers – C4.5, HDDT, and
DKM.

Dataset C4.5 DKM CART HDDT
Boundary 0.616 ± 0.033 (1) 0.602 ± 0.023 (3) 0.582 ± 0.026 (4) 0.604 ± 0.029 (2)
Breast-w 0.953 ± 0.008 (3) 0.953 ± 0.008 (3) 0.955 ± 0.007 (1) 0.953 ± 0.008 (3)

Calmodoulin 0.676 ± 0.007 (1) 0.660 ± 0.011 (3.5) 0.660 ± 0.007 (3.5) 0.669 ± 0.010 (2)
E-State 0.580 ± 0.016 (1) 0.575 ± 0.013 (2.5) 0.560 ± 0.012 (4) 0.575 ± 0.013 (2.5)

Forest Cover 0.980 ± 0.002 (3) 0.983 ± 0.001 (1.5) 0.974 ± 0.001 (4) 0.983 ± 0.001 (1.5)
Fourclass 0.965 ± 0.012 (3) 0.971 ± 0.009 (1.5) 0.943 ± 0.010 (4) 0.971 ± 0.009 (1.5)

German.numer 0.690 ± 0.015 (1) 0.687 ± 0.015 (3) 0.668 ± 0.016 (4) 0.688 ± 0.014 (2)
Letter 0.989 ± 0.002 (2) 0.989 ± 0.003 (2) 0.977 ± 0.004 (4) 0.989 ± 0.003 (2)

Mammography 0.909 ± 0.011 (1) 0.906 ± 0.013 (2.5) 0.905 ± 0.008 (4) 0.906 ± 0.013 (2.5)
Oil 0.789 ± 0.029 (4) 0.803 ± 0.028 (3) 0.806 ± 0.041 (1) 0.804 ± 0.029 (2)

Page 0.978 ± 0.004 (1) 0.976 ± 0.004 (2.5) 0.970 ± 0.006 (4) 0.976 ± 0.004 (2.5)
Pendigits 0.987 ± 0.003 (3) 0.991 ± 0.002 (1.5) 0.982 ± 0.003 (4) 0.991 ± 0.002 (1.5)
Phoneme 0.894 ± 0.005 (3) 0.902 ± 0.006 (1.5) 0.890 ± 0.006 (4) 0.902 ± 0.006 (1.5)
PhosS 0.670 ± 0.013 (1) 0.666 ± 0.015 (2) 0.665 ± 0.019 (3.5) 0.665 ± 0.015 (3.5)
Pima 0.755 ± 0.013 (3) 0.759 ± 0.014 (1) 0.742 ± 0.014 (4) 0.758 ± 0.013 (2)

Satimage 0.904 ± 0.004 (3) 0.910 ± 0.005 (1.5) 0.887 ± 0.006 (4) 0.910 ± 0.005 (1.5)
Segment 0.982 ± 0.006 (3) 0.984 ± 0.007 (1.5) 0.980 ± 0.006 (4) 0.984 ± 0.007 (1.5)
Splice 0.942 ± 0.013 (1) 0.933 ± 0.010 (2) 0.829 ± 0.015 (4) 0.932 ± 0.009 (3)

SVMguide1 0.987 ± 0.002 (3) 0.988 ± 0.001 (1.5) 0.985 ± 0.001 (4) 0.988 ± 0.001 (1.5)
Avg. Rank 2.16 2.13 3.71 2.08

Friedman α = .05 � � — �

significant gains from sampling. In fact, we note that DKM and HDDT often
experience a reduction in performance when sampling is applied. 14 out of 19
datasets show a reduction in AUROC for HDDT, and 15 out of the 19 datasets
show a reduction in AUROC for DKM. This also points out that the wrapper
overfits on the sampling amounts over the validation set, and diminishes gener-
alization capability of HDDT or DKM. Thus, using the natural distribution and
letting one of the skew insensitive splitting criteria work the way through the
data can be potentially more beneficial over using the computationally expensive
step of sampling with DKM and HDDT.

We consider a comparison of all eight potential classifiers: each baseline deci-
sion tree and its wrapper-enhanced counterpart. We re-ranked all the 8 classifiers
across the 19 datasets. Note that exactly the same training and testing sets were
used for all decision tree classifiers, albeit the training sets were modified by
sampling when used with the wrapper. These comparative rankings across each
dataset are presented in Table 4. There are some interesting observations from
this table. The baseline HDDT still achieves the best rank. Wrapper has a pos-
itive effect on C4.5 and CART, as pointed out earlier, but a negative effect on
both DKM and HDDT. Thus, there is merit to using skew insensitive metrics
over sampling. The statistical significance test establishes that HDDT is better
than C4.5, CART, and Wrapper + CART.

Finally, we point out that the amounts of sampling determined for each of the
decision trees varied. We elucidate that we had first generated the various levels
of samplings and then let the wrapper search from that space for each decision
tree metric. This ensured that the differences were not due to randomness in
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Table 4. Comparative AUROC ranks across the entire set of tested classifiers. A
� in the bottom row indicates that using the Friedman test HDDT is statistically
significantly better (at 95%) than the respective classifier.

Baseline Wrapper
Dataset C4.5 DKM CART HDDT C4.5 DKM CART HDDT

Boundary 8 2 7 5 1 4 6 3
Breast-w 7 5.5 8 5.5 3 3 1 3

Cam 5 3 8 1 2 6.5 6.5 4
Covtype 6 3.5 8 3.5 5 1.5 7 1.5
Estate 7 3 8 1.5 1.5 4.5 6 4.5

Fourclass 5 1.5 7 1.5 6 3.5 8 3.5
German.numer 1 2.5 8 2.5 4 5 6.5 6.5

ism 7 1.5 8 1.5 3 4.5 6 4.5
Letter 2 2 8 2 4 4 7 4

Oil 8 5.5 1 5.5 7 4 2 3
Page 6 4.5 8 4.5 1 2.5 7 2.5

Pendigits 6 1.5 8 1.5 5 3.5 7 3.5
Phoneme 6 2 8 1 5 3.5 7 3.5
PhosS 8 1.5 7 1.5 3 4 5.5 5.5
Pima 6 1.5 8 1.5 5 3 7 4

Satimage 5 1.5 8 1.5 6 3.5 7 3.5
Segment 5.5 2.5 8 2.5 5.5 2.5 7 2.5
Splice 1 2.5 8 2.5 4 5 7 6

SVMguide1 7 1.5 7 1.5 5 3.5 7 3.5

Avg. Rank 5.61 2.58 7.42 2.5 4 3.76 6.13 3.79

Friedman α = .05 � � — �
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Fig. 6. Percent improvement in AUROC from sampling for each decision tree type,
with relative rankings. We note that CART generally exhibits the highest improvement
yielded from the wrapper. Position on the x-axis corresponds to the dataset number in
Table 1.
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sampling, and were more intrinsic to the base decision tree splitting metric.
Table 5 in the Appendix shows the different sampling levels. HDDT and DKM
continued to share similarities in the amounts of sampling level as well. C4.5
and CART generally required higher sampling levels than DKM and HDDT.
While there were variations in the amounts of sampling, Friedman test’s Holm
procedure shows that there is no statistically significant difference in the ranks
of levels of sampling for each decision tree.

5 Conclusions

The primary focus of this paper is learning decision trees on unbalanced datasets.
We first propose Hellinger distance as a decision tree splitting criterion. We then
thoroughly compare four different decision tree splitting criteria with different
reactions to the skew in data distribution. We also considered an evaluation of
the effect of sampling and how it impacts the different metrics differently. We
draw the following conclusions.

Hellinger distance and DKM share similar properties. The isometric in
Section 2.1 show Hellinger distance to be skew-invariant while the isometric
plot for DKM varies with class skew ratio. However, in Section 2.2, we go on to
demonstrate that although there are divergent components of both metrics.This
carries over into our experimental results where we note frequent convergence to
identical performance.

HDDT and DKM produce superior decision trees under class imbalance. With-
out using any sampling, both DKM and HDDT statistically significantly out-
performed C4.5 and CART.

Sampling generally benefits C4.5 and CART, and hurts DKM and HDDT.
We believe this is a compelling observation of this study. We can avoid the
use of sampling when using more appropriate decision tree splitting criteria,
as those remain superior even after considering sampling. In general, we can
recommend the use of HDDT as a decision tree methodology given its skew
insensitive properties and the best ranks (no statistical significance over DKM).

As part of future work, we are expanding this study to include balanced
and multi-class datasets. We also want to explore the effect of pruning and what
pruning methods may be more appropriate for DKM and HDDT. While the focus
of this study has been largely on decision trees, we believe rule-based classifiers
can also consider Hellinger distance to separate and conquer the instance space.
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A Appendix: Wrapper Selected Sampling Levels

Table 5. Optimized (Undersample, SMOTE) levels for each respective splitting met-
ric, along with relative ranking for sampling level among all classifiers. The noted
undersample level reflects the percentage of negative class examples removed while the
SMOTE level represents the percent of synthetic examples added to the training data
relative to the original positive class size.

Dataset C4.5 DKM CART HDDT
Boundary (76,320) (1,1) (44,160) (4,4) (54,210) (3,3) (59,230) (2,2)
Breast-w (7,270) (4,4) (26,350) (2.5,2.5) (28,280) (1,1) (26,350) (2.5,2.5)

Calmodoulin (35,210) (2,1) (29,90) (4,3) (57,170) (1,2) (33,40) (3,4)
E-State (44,280) (2,1) (41,120) (3.5,3.5) (57,250) (1,2) (41,120) (3.5,3.5)

Forest Cover (11,440) (3,1.5) (6,420) (3.5,3.5) (13,440) (1,1.5) (6,420) (3.5,3.5)
Fourclass (14,270) (2.5,3) (14,320) (2.5,1.5) (14,100) (2.5,4) (14,320) (2.5,1.5)

German.numer (41,250) (1,4) (39,280) (2.5,3) (32,330) (4,1) (39,300) (2.5,2)
Letter (45,200) (2,4) (38,210) (3.5,2.5) (54,410) (1,1) (38,210) (3.5,2.5)

Mammography (32,370) (4,2) (62,360) (1.5,3.5) (58,420) (3,1) (62,360) (1.5,3.5)
Oil (44,330) (1,1) (39,280) (3,3) (38,180) (4,4) (41,310) (2,2)

Page (9,350) (4,4) (19,370) (2,2.5) (19,430) (2,1) (19,370) (2,2.5)
Pendigits (38,420) (1,1.5) (33,320) (2.5,3.5) (28,420) (4,1.5) (33,320) (2.5,3.5)
Phoneme (5,340) (2,4) (4,370) (2.5,1.5) (9,350) (1,3) (4,370) (2.5,1.5)
PhosS (64,180) (1,1) (21,0) (3,3.5) (32,50) (2,2) (20,0) (4,3.5)
Pima (15,180) (4,4) (38,220) (2.5,3) (40,360) (1,1) (38,270) (2.5,2)

Satimage (32,280) (2,2) (22,240) (3.5,3.5) (56,370) (1,1) (22,240) (3.5,3.5)
Segment (34,260) (1,1) (23,140) (3.5,3.5) (30,250) (2,2) (23,140) (3.5,3.5)
Splice (10,80) (4,3) (12,100) (3,1.5) (25,20) (1,4) (13,100) (2,1.5)

SVMguide1 (18,300) (1,1) (12,210) (2.5,2.5) (5,140) (4,4) (12,210) (2.5,2.5)
Avg. Undersample Rank 2.24 2.97 2.08 2.76

Avg. SMOTE Rank 2.32 2.89 2.11 2.68

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Abstract. We deal with the arbitrariness in the choice of the prior
over the models in Bayesian model averaging (BMA), by modelling prior
knowledge by a set of priors (i.e., a prior credal set). We consider Dash
and Cooper’s BMA applied to naive Bayesian networks, replacing the
single prior over the naive models by a credal set; this models a con-
dition close to prior ignorance about the models, which leads to credal
model averaging (CMA). CMA returns an indeterminate classification,
i.e., multiple classes, on the instances for which the learning set is not
informative enough to smooth the effect of the choice of the prior. We
give an algorithm to compute exact credal model averaging for naive
networks. Extensive experiments show that indeterminate classifications
preserve the reliability of CMA on the instances which are classified in
a prior-dependent way by BMA.
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1 Introduction

In the last ten years, data mining and statistical research has been paying in-
creasing attention to the question of model uncertainty. Loosely speaking, model
uncertainty refers to a situation where more than one model is consistent with
the available data. Many researchers have argued, both theoretically and em-
pirically, that taking such an uncertainty into account leads to improved infer-
ence (see [1] for a recent overview). In this context, Bayesian model averaging
(BMA) [2] has proven to be an effective way to deal with model uncertainty.

BMA is based on a very simple observation: that the posterior probability for
an event of interest given the data, say P (X = x|d), can be re-written (in the
case of finitely many models) as

P (X = x|d) =
l∑

j=1

P (X = x|Mj ,d)P (Mj |d), (1)

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 257–271, 2008.
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thus making explicit its dependency on the possible model Mj ; in particular,
P (Mj |d) = P (d|Mj)P (Mj)/P (d) formalizes how much one should trust each
model after having observed the data if the prior beliefs were P (Mj).1

Another important issue concerns the arbitrariness inherent in the choice of
the prior over the models; in fact, the results produced by BMA can be sensitive
to such a choice. Traditionally, a very common choice is to adopt a uniform prior
over the models; this, however, can be criticized from different standpoints (see
for instance the discussions in the rejoinder of [2]). Alternatively, in [3] a prior
is adopted which favors simple models over complex ones. Although all these
choices are reasonable in some situation, it is more difficult to justify their use
in general. The problem is that the specification of any single prior implies some
arbitrariness, which entails the risk of drawing prior-dependent conclusions that
may be fragile. In fact, the way the prior over the models should be specified is
a serious open problem of BMA.

In this paper we focus in particular on pattern classification, where BMA is
often related to feature selection. In fact, given a set of N feature variables, one
can design 2N different subsets of feature variables; feature selection is indeed
concerned with selecting the supposedly best subset of the feature variables,
which corresponds to a supposedly best classifier. An appealing alternative to
the selection of a single classifier is to use BMA to average over all the 2N

classifiers.
This avenue has been taken by Dash and Cooper, who focused in particular on

Bayesian networks [4]. In case of naive networks, in particular, their approach
allows one to compute BMA exactly and efficiently, as their algorithm does not
introduce any approximation and has complexity O(N). Moreover, Dash and
Cooper show that exact BMA over the 2N naive networks can be implemented
by a single summary naive network. Yet, they do not discuss the problem of
the sensitivity to the prior, nor does so a subsequent approach that implements
another form of averaging for naive nets [3].

Our standpoint is that solving the problem of the prior in BMA may require
to drop the idea of specifying a unique, precise prior, and to model instead
prior knowledge by a set of priors; such a set is referred to as the credal set.
In Section 2.3 we extend Dash and Cooper’s BMA to imprecise probability [5],
substituting the single prior by a credal set. We call the resulting approach
credal model averaging (CMA). While traditional non-informative priors model
a condition of indifference between the different models, the prior that we define
for CMA models a condition close to prior ignorance by expressing very weak
beliefs a priori about the relative credibility of the 2N naive nets. Then we use
Dash and Cooper’s algorithm to efficiently turn each precise prior in the credal
set into a posterior. The set of posteriors obtained in this way is referred to as
the posterior credal set.

Having multiple posteriors instead of one leads to a generalized form of clas-
sification that we have called credal classification in some previous work [6,7]. In

1 The more traditional approach to inference that considers only one model Mj̄ as
possible is indeed recovered when P (Mj̄) = 1.
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particular, CMA returns a determinate classification, i.e, a single class, only if
the probability of such a class is larger than that of any other for all the precise
posteriors in the posterior credal set. Otherwise, if different classes are found to
be the most probable, depending on the specific posterior considered from the
posterior credal set, CMA returns an indeterminate classification, i.e., multiple
classes. We call ‘hard to classify’ the instances in the test set that give rise to
indeterminate classifications, meaning that the learning set is not informative
enough about them (in order to smooth the effect of all the priors in the credal
set in favor of a single class). We expect Dash and Cooper’s BMA to behave
unreliably on the instances recognized as hard by CMA, as their classification is
prior-dependent indeed.

In Section 3 we investigate this point empirically using 31 data sets from the
UCI repository. We split the test instances according to whether they are deemed
to be hard or not by CMA. Then we evaluate the predictive performance of BMA
separately on the two types of instances. What we observe is indeed a striking
drop in the predictive accuracy of BMA moving from the instances that are not
hard to the others. The drop is observed on every data set we consider, with no
exception. Moreover, we show indeterminate classification to be valuable, as they
are informative (they return on average only a minority of the classes, not all of
them) and reliable (they do contain the actual class with very high frequency).
Summing up, extensive experiments show that CMA is a more robust approach
than BMA.

Moreover, CMA implements an idea of model averaging that overcomes the
arbitrariness in the choice of the prior in a novel way, which could be used more
generally than what we do here. In fact, CMA leads very naturally to classifi-
cation robustness. This is achieved, in particular, by relying on the paradigm
of credal classification, which has already proven to be suitable for data mining
purposes: in a recent work [7], we have extended naive Bayes to imprecise prob-
abilities, in order to deal robustly with the specification of the prior density over
the parameters of the model and with the treatment of missing data, achieving
a remarkable reliability improvement compared to naive Bayes. Hence, in our
view, allowing classifiers to give weaker answers than the determinate ones we
are used to in classification may enhance the overall classification reliability.

2 Credal Model Averaging

In the following section we show how we extend the BMA framework of Dash and
Cooper [4] to manage a set of priors over the models. Our setting is in fact charac-
terized by the same assumptions of Dash and Cooper and by a similar notation.

2.1 Setup

We consider a supervised classification problem; there is a vector of N feature
variables F := (F1, F2, . . . , FN ) and a set of Nc classes C := {c1, c2, . . . , cNc}. The
i-th instance of the data set d is the pair (fi, ci), where fi := (f1i, f2i, . . . , fNi)
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is the instance of the feature variables in the instance under consideration. The
data set contains n instances, generated by an independently and identically
distributed mechanism.

We consider a Bayesian network with N +1 nodes, i.e., a single class node and
N feature nodes; we assume the network to be naive, i.e., a feature node is either
linked to the class or it is isolated. We denote by X the collection of nodes of
the network; they are indexed by i so that X0 := C, while, for i �= 0, Xi := Fi.
Moreover, the class node has no parent. A certain layout of the network, in
which certain feature nodes are linked to the network and the remaining ones
are isolated, is referred to as a graph. Given the N feature variables, we can
hence design 2N different graphs.

All feature variables are assumed to be categorical ; i.e., each node Xi rep-
resents a categorical random variable with ri possible states. In practice, this
requires to discretize the numerical features before inducing the classifier.

We denote by θijk the physical probability (or chance), about which we are
uncertain, of Xi to be in state k when the parent node is in state j. The vector
θij (made of ri elements) contains hence the chances of the states of node i
conditional on the j-th state of the parent; finally, θ collects all the vectors θij ,
i.e., it contains all the parameters of the network.

We take a Dirichlet density Dir(αij1 , αij2, . . . , αijri) as prior over each vector
θij , with α(·) > 0. We adopt the following setting: for the i-th feature node, we
set αijk = 1/(Nc · ri). For the class node, we set2 α = 1/Nc.

As usual with Bayesian networks, we assume moreover parameter independence
and moreover we assume the data set to be complete, i.e., without missing data.

2.2 Overview of Dash and Cooper’s BMA

In this section we briefly recall Dash and Cooper’s approach to BMA. Let us
denote by G the set of the 2N graphs which can be designed given the N feature
variables, and by g a generic graph in G. BMA computes a weighted average of
the probabilities produced by all the graphs as follows:

P (X = x|d) =
∑
g∈G

P (X = x|g,d)P (g|d) ∝
∑
g∈G

P (X = x|g,d)P (d|g)P (g), (2)

where P (X = x|g,d) is the posterior probability of the instance to classify
assuming that the underlying graph is g (in which some feature variables are
linked to the class and some others are isolated), P (d|g) represents the (so-
called marginal) likelihood of graph g and P (g) represents the prior probability
of graph g. The last relation in Eq. (2) is due to Bayes’ rule.

Let us give the explicit form for the first term in the sum:

P (X = x|g,d) =
N∏

i=0

θ̂iJK :=
N∏

i=0

αiJK + niJK

αiJ + niJ
. (3)

2 To be more precise, the parameter referring to the class node should be denoted as
α00k.
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Here the coefficients nijk are counts collected from the data set that report how
many times feature variable i is in state k when its parent is in state j; coefficients
αijk refer instead to the Dirichlet densities introduced in Section 2.1. Moreover,
nij :=

∑
k nijk and αij :=

∑
k αijk. The uppercase letters J and K denote the

specific states of nodes and parents which have been read off from vector x.
In practice, the coefficients nijk are computed differently depending on

whether they refer to the class, to a feature node linked to the class or to an
isolated feature node. In particular:

– for the class node, n0jk has the meaning of class frequency, i.e., it indicates
how many times class k occurs in the training set; at the denominator, n0j

corresponds to the data set size n. Note that the value of θ̂0jk is the same
for all graphs;

– for feature nodes linked to the class, nijk represents a conditional frequency,
i.e., it indicates how many times in the training set feature variable i assumes
value k while the class has value j; at the denominator, nij represents the
total occurrences of class j in the training set. Given a feature Xi (i �= 0),
θ̂ijk has the same value for all graphs in which Xi is linked to the class node;
let us denote this quantity by θ̂C

ijk;
– for isolated feature nodes, nijk represents an unconditional frequency, i.e., it

indicates how many times feature variable i assumes value k in the training
set; at the denominator, nij corresponds to the data set size n. Given a
feature Xi (i �= 0), θ̂ijk has the same value for all graphs in which node Xi

is isolated; let us denote this quantity by θ̂∅ijk.

The coefficients α(·) can be interpreted in the same way of coefficients n(·),
provided that they are regarded as referring to the so-called hypothetical sample
rather than to the actual data set.

Let us now consider the marginal likelihood. We have:

P (d|g) =
N∏

i=0

Mi :=
N∏

i=0

⎛
⎝ qi∏

j=1

Γ (αij)
Γ (αij + nij)

ri∏
k=1

Γ (αijk + nijk)
Γ (αijk)

⎞
⎠ , (4)

where the coefficients α(·) and n(·) have the meaning already discussed. Hence,
M0 is a fixed value for all the graphs, while Mi (i �= 0) is a fixed value MC

i for all
the graphs in whichXi is linked to the class, and another fixed value M∅

i for all the
graphs in which Xi is isolated. Let iC and as i∅ denote the set of indexes to feature
variables which in graph g are respectively linked to the class node and isolated.
We can eventually express Eqs. (3) and (4) in a more compact way as

P (X = x|g,d) = θ̂0

∏
i∈iC

θ̂C
iJK

∏
i∈i∅

θ̂∅iJK , (5)

P (d|g) = M0

∏
i∈iC

MC
i

∏
i∈i∅

M∅
i . (6)

(7)
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Concerning the prior over the graphs, corresponding to the term p(g) in Eq. (2),
Dash and Cooper require it to be a modular prior, which means it should also
factorize into a product of N +1 terms, each one corresponding to a node. Then
they do not detail the prior any further, much probably because they use a flat
prior that cancels out of the calculations. Since this will not be our case, we give
here a few more details about the prior. Call pi the probability that node i is
connected to a parent.We design a modular prior by simply requiring that

P (g) =
∏
i∈iC

pi

∏
i∈i∅

(1− pi), (8)

and in addition that p0 = 0, because we know that the class variable has always
no parents. Note that to recover the flat prior over the graphs, it would be
sufficient to set pi := 0.5 for all i = 1, . . . , N .

We are finally in the condition to write an explicit formula for P (X = x|d).
Let us introduce the following quantities (which are all positive):

ρ0K := θ0JKM0,

ρC
iJK := θC

iJKMC
i ,

ρ∅iK := θ∅iJKM∅
i , (9)

where we have dropped index J in the definition of ρ0K and ρ∅iK ; in fact, these
quantities refer to the class node and to the isolated feature nodes, which have
no parents. It turns out then that

P (X = x|d) ∝ ρ0K ·
N∏

i=1

[
(1 − pi)ρ∅iK + piρ

C
iJK

]
. (10)

This way of expressing P (X = x|d) is an achievement from Dash and Cooper
that is particularly important for computations: in fact, it means that once
the ρ(·) coefficients have been computed, Eq. (10) is computed in O(N) time,
without the need for implementing the 2N models and without introducing any
approximation. Dash and Cooper also show that computing BMA according to
Eq. (2) is equivalent to implementing a single summary network characterized
by a new vector θ̂∗; assuming to adopt a uniform prior over the graphs, it holds
that for i = 0, θ̂∗0JK ∝ ρ0K and, for i �= 0, θ̂∗iJK ∝ (ρC

iJK + ρ∅iK).

2.3 Extension of BMA to Imprecise Probabilities

We extend BMA to imprecise probabilities by considering a set P of priors over
the graphs, instead of a single prior; P is referred to as prior credal set. Before
detailing the construction of the prior credal set, let us consider the motivations
behind such a choice and some of its consequences.

A major motivation behind using a credal set rather than a single prior is
related to modeling prior ignorance. The point is that by a single prior it is
possible to model indifference; in order to model ignorance, one should use a
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Fig. 1. Identification of non-dominated classes via pairwise comparisons

credal set.3 Therefore credal sets allow us to express more satisfactorily the
fact that initially we do not know about the relative credibility of the models;
this naturally makes the resulting classifier more robust than BMA. Indeed,
especially when the learning set is small, the class returned by BMA may well
vary depending on the specification of the prior over the graphs; in this case, the
classification is defined as prior-dependent and its reliability is questionable. On
the other hand, since CMA considers a set of priors as possible, it is aware by
construction that some classifications may change with the choice of the prior
in the credal set, and this enables it to keep reliability. The way this is done in
practice is related to the definition of the optimality criterion for the classes in
the imprecise setting.

Let us recall that a Bayesian classifier returns as optimal prediction the class
with the highest probability (in the case of 0-1 loss function), identified on the
basis of a uniquely computed posterior, derived from a unique prior. In the im-
precise probability setting, one specifies a set of priors that is turned into a set of
posteriors by element-wise application of Bayes’ rule. According to Section 3.9.2
of [5], the optimality criterion in this case is to return all the non-dominated
classes.

The definition of dominance is as follows: class c1 dominates c2 if for all the
computed posteriors, the probability of c1 is greater than that of c2; hence, c2 is
non-dominated if no class dominates c2.

A key point is that there can be several non-dominated classes; in this case, the
classifier returns an indeterminate (or set-valued) classification. Classifiers that
issue set-valued classifications are called credal classifiers in [6]. Summing up, a
credal classifier will become indeterminate on the instances whose classification
would be prior-dependent when a single prior is used; on these instances, it
will return all the non-dominated classes as a way to maintain reliability. It is
important to realize that non-dominated classes are incomparable; this means
3 Yet, complete prior ignorance is not compatible with learning, see Section 7.3.7

of [5]. This issue is re-considered later in this section when we define the credal set.
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that there is no information in the model that allows us to rank them. In other
words, credal classifiers are models that allow us to drop the dominated classes,
as sub-optimal, and to express our indecision about the optimal class by yielding
the remaining set of non-dominated classes.

Let us focus now in particular on the test of dominance; let x1 := (f , c1) and
x2 := (f , c2). We say that class c2 is dominated by c1 if and only if

P (x1|d) > P (x2|d) ∀P ∈ P ,

or, equivalently,4 if and only if

P (x1|d)
P (x2|d)

=
P (x1,d)
P (x2,d)

> 1 ∀P ∈ P ,

which, taking Eq. (2) into consideration, can be finally re-written as

inf
P∈P

∑
g∈G P (x1|g,d)P (d|g)P (g)∑
g∈G P (x2|g,d)P (d|g)P (g)

> 1. (11)

A procedure to determine all the non-dominated classes via pairwise comparisons
is shown in Figure 1.

Prior Credal Set. We are finally ready to define the prior credal set. Let us
focus on pi, that is, the probability that feature variable i is connected to the
class. Remember that we want to model a condition of prior ignorance about the
actual graph, among the 2N possible ones, giving rise to the data. Since we are
ignorant a priori, this means that for each feature variable, we ignore whether it
is linked or not to the class. In turn, this means that our probability pi for the
related arc should lie in [0, 1]. We can therefore construct the credal set P by
considering the set of all the mass functions defined as in (8) that are obtained
when each pi, i = 1, . . . , N , is subject to the constraint 0 < pi < 1 (and, as
before, p0 = 0). However, it can be checked that this choice does not allow us to
learn from data about the relative credibility of the models. Broadly speaking,
this is a relatively well-known phenomenon (e.g., something similar was noticed
in [8, Section 3] in the case of feature selection); the intuition here is that the
modeled condition is of such deep ignorance a priori that no amount of data
would be able to make us get out of such a state. For this reason, we need to
consider a slightly smaller credal set as defined by the following constraints:

pi = 0 if i = 0,
ε ≤ pi ≤ 1− ε if i �= 0, (12)

where ε is a small number in (0, 0.5), which we will set to 10−5 in our experi-
ments.5 By this simple consideration, we model a condition that is still close to
ignorance but that at the same time enables us to learn.
4 If the denominator is positive, which is always the case in this paper.
5 We have not tried to optimize this parameter, we have chosen it very small once for

all just to create a credal set close to that modeling ignorance.
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Two final remarks are worth making. One is that when CMA is determinate,
it returns the same class as BMA. This is the consequence of two facts: that
(a) CMA returns a determinate output when a certain class dominates all the
remaining ones, under all the priors of the credal set; and that (b), the credal
set includes the flat prior adopted by BMA (remember that it is actually char-
acterized by pi = 0.5 for all the feature variables). Therefore, BMA and CMA
achieve the same accuracy on the subset of instances determinately classified by
CMA, and whose classification is prior-independent.

The second remark is that CMA will converge to BMA with increasing sizes of
the learning set. This follows because all the precise priors in the prior credal set
will converge towards a single posterior with more and more data. Therefore in
the limit, CMA will yield a traditional classifier that always issues determinate
classifications.

2.4 CMA Computation

Recalling Eqs. (10) and (11), and letting p := (p1, . . . , pN), the CMA test of
dominance for classes c1 and c2 can be written as follows:

min
P∈P

∑
g∈G P (x1|g,d)P (d|g)P (g)∑
g∈G P (x2|g,d)P (d|g)P (g)

= min
p

ρ01

ρ02

N∏
i=1

[
(1− pi) ρ∅iK + piρ

C
i1K

]
[
(1− pi) ρ∅iK + piρC

i2K

] . (13)

Note that the function in (13) can be globally minimized by minimizing inde-
pendently each term of the product, i.e., by minimizing independently over each
pi. The minimization problem to be solved for a single pi is

min
pi

[
(1− pi) ρ∅iK + piρ

C
i1K

]
[
(1− pi) ρ∅iK + piρC

i2K

] = min
pi

pim1 + a

pim2 + a
= min

pi

f(pi), (14)

where
a := ρ∅iK , m1 := ρC

i1K − ρ∅iK , m2 := ρC
i2K − ρ∅iK (15)

and subject to the constraint ε ≤ pi ≤ 1 − ε. This is an easy problem because
the derivative of the function in (14), which is

∂f

∂pi
=

a(m1 −m2)
(pim2 + a)2

,

is a ratio with positive denominator, as it follows from Eqs. (9) and (12). It
follows that:

– if m1 > m2, the derivative is positive over the interval (ε, 1− ε); the function
is minimized by setting pi := ε;

– if m1 < m2, the derivative is negative over the interval (ε, 1−ε); the function
is minimized by letting pi := 1− ε;

– if m1 = m2, the function is constant.
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These three rules define the graph over which CMA will concentrate the prior
probability when testing whether c1 dominates c2; hence, if P (c1|d)/P (c2|d) > 1
under this prior, the same will happen under all the remaining priors of the credal
set, and hence class c2 can be safely dropped.

As a side remark, let us note that (m1 − m2) = (θ∗i1K − θ∗i2K). Hence, the
architecture over which CMA concentrates the mass when testing whether c1
dominates c2 can be defined also in an alternate way, i.e., feature Xi is linked
to the class node if and only if its addition decreases the ratio P (c1|d)/P (c2|d)
computed by the BMA summary network. It also interesting to note that CMA
has the freedom to change architecture depending on the specific pair of classes
that are compared.

Software Availability. The software implementing CMA has been realized in
Java; we plan to release the package soon under the GNU GPL license. Sources,
binaries and documentation (both user manual and sources documentation in
javadoc format) will be available from the website http://www.idsia.ch/
~giorgio/jncc2.html. Meanwhile, it is possible to obtain the software by con-
tacting the authors by e-mail.

3 Experiments

We present the results obtained on 31 data sets from the UCI repository. The
data sets cover a wide spectrum of conditions in terms of number of instances
(min: 57, labor; max: 4601, spambase), number of feature variables (min: 3,
haberman; max: 69, audiology) and number of classes (up to 24, audiology).
On each data set, the classifiers have been evaluated via 10 runs of 10 folds
cross-validation. Numerical features have been discretized via MDL-based dis-
cretization [9]; in each training/test experiment, the discretization intervals have
been computed on the training set and then applied unchanged on the test set.

Some questions of interest are then: is CMA truly able to isolate instances
which are hard to classify for BMA? How does BMA behave on the instances
which are classified determinately and indeterminately by CMA? Are indeter-
minate classifications informative and reliable?

We start our analysis by measuring the accuracy of BMA on the instances
classified determinately and indeterminately by CMA; these two indicators are
denoted respectively by BMA(CMA D) and BMA(CMA I). If CMA is able to
recognize instances that are hard to classify, we should observe a significant drop
of BMA accuracy between the former and the latter set of instances.

These results are shown in Table 1, which also reports, to complement the
information, the average accuracy of BMA. On average, there is a drop of 32
points between BMA(CMA D) and BMA(CMA I); moreover, on every data set
we clearly observe that BMA(CMA D) is strictly larger that BMA(CMA I);
hence, we can safely state that CMA isolates instances that are hard to classify
and where, as a consequence, BMA becomes less reliable.

On the other hand, CMA reacts to the hard instances by returning indetermi-
nate classifications. Another point of interest is hence to evaluate the informative

http://www.idsia.ch/
~giorgio/jncc2.html
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Table 1. Comparison of BMA and CMA on 31 UCI data sets. Note that the indicator
BMA(CMA I) is not available for those data on which CMA achieves 100% determinacy.

Dataset Accuracies
BMA BMA BMA CMA
(Avg.) (Cma D) (Cma I) Determ.

anneal 97.9% 98.7% 71.2% 97.3%
audiology 73.5% 99.5% 63.7% 27.0%
autos 66.7% 81.3% 31.7% 70.8%
balance-scale 72.8% 72.8% n.a 100.0%
breast-cancer 74.9% 83.4% 68.0% 44.9%
c-14-heart-disease 83.0% 85.8% 60.9% 88.3%
cmc 50.3% 58.5% 39.4% 57.7%
credit-rating 85.5% 90.1% 51.8% 88.0%
german_credit 73.7% 87.1% 61.7% 46.9%
glass 71.1% 71.4% 60.3% 98.8%
haberman 71.8% 77.2% 50.8% 81.4%
heart-statlog 83.1% 85.1% 53.0% 93.6%
hepatitis 84.3% 95.6% 72.3% 51.4%
horse-colic 81.2% 86.2% 58.2% 82.1%
h-14-heart-disease 84.3% 85.6% 64.9% 94.2%
ionosphere 89.9% 89.9% n.a 100.0%
iris 93.7% 93.7% n.a 100.0%
kr-vs-kp 88.0% 93.7% 60.5% 82.9%
labor 86.9% 98.6% 82.3% 32.2%
liver-disorders 57.4% 60.0% 48.9% 80.1%
lymphography 81.1% 96.1% 73.5% 33.3%
pima_diabetes 75.7% 77.3% 37.2% 95.8%
segment 92.5% 92.5% 60.0% 99.9%
soybean 91.9% 95.8% 26.3% 94.2%
spambase 89.8% 89.8% n.a. 100.0%
vote 90.2% 90.2% 75.0% 99.8%
wisc-breast-cancer 97.1% 97.1% n.a 100.0%
yeast 57.2% 57.2% 29.5% 99.9%
zoo 96.4% 98.1% 65.1% 94.2%
primary-tumor 36.8% 83.4% 25.9% 19.0%
contact-lenses 87.3% 100.0% 85.7% 22.2%
average 79.6% 86.2% 54.7% 75.9%

content of the indeterminate classification; this can be properly assessed only on
data sets with at least three classes, since, on data sets with two classes, in-
determinate classifications contain all the classes.6 Excluding hence data sets
with two classes from the analysis, we have measured on average that set-valued
classifications return 35% of the classes of the data set, dropping hence 65% of

6 Nevertheless, we deem set-valued classifications to be valuable also in the case of data
sets with two classes only, as they highlight that a certain classification is doubtful,
thus preventing an over-confident use of the output of the model.
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them; therefore, they convey significant information. Moreover, set-valued clas-
sifications are very reliable; in fact, they contain the actual class in 90% of cases.
Summing up, CMA is able to detect hard instances where the accuracy of BMA
drops indeed; on these instances, indeterminate classifications preserve the relia-
bility of CMA, by conveying reliable information, without however drawing too
strong conclusions.

A further important indicator of performance is the determinacy of CMA,
i.e., the percentage of instances over which CMA returns a single class; on av-
erage, CMA achieves 77% determinacy, i.e., it yields set-valued classification
on 23% of instances. The data sets which lead to the largest indeterminacy are
characterized by a small number of instances and a relatively high number of fea-
ture variables/classes; see for instance: primary-tumor (339 instances, 17 feature
variables, 22 classes, determinacy: 19%), contact-lenses (24 instances, 4 feature
variables, 3 classes, determinacy: 22%), audiology (226 instances, 69 feature vari-
ables, 24 classes, determinacy: 27%). However, the caution of CMA on these data
sets is justified, as the drop between BMA(CMA D) and BMA(CMA I) is re-
spectively of 57.5, 14.3 and 35.9 points. On the other hand, the determinacy of
CMA quickly increases on data sets which contain more instances or less features
variables.

3.1 BMA Probabilities vs. CMA Set-Valued Classifications

We have shown that, thanks to imprecise probabilities, CMA delivers set-valued
classifications on hard-to-classify instances, over which the accuracy of BMA
clearly drops. In the following, we analyze the association between the posterior
probabilities computed by BMA and the set-valued classifications returned by
CMA. To this purpose, we focus on the example of the German credit data
set, which is made of 2 classes, 20 feature variables and 1000 instances. As the
data set has two classes, it is easy to spot instances that are deemed doubtful
according to BMA (they are classified with probability lower than, say, 55%)
and to CMA (indeterminate classifications).

To perform our analysis, we consider four pieces of information for each in-
stance: (i) the actual class, (ii) the class returned by BMA, (iii) its probability,
and (iv) whether the instance has been classified determinately or indetermi-
nately by CMA. The instances are then partitioned into subsets, according to
the probability estimated by BMA for the returned class, i.e., instances for which
BMA estimates a probability in the range 50–55%, 55–60%, and so on (i.e., we
use a step of 5% in probability to define the subsets). On each subset of in-
stances, we measure: (a) the determinacy of CMA; (b) BMA(CMA D) and (c)
BMA(CMA I).

The results are reported in Figure 2. There is a positive association between
higher posterior probabilities computed by BMA and higher determinacy; in-
deed the choice of the prior over the graphs is less likely to change the classi-
fication outcome when the probability computed by BMA for the most prob-
able class increases. The output of CMA is indeterminate for all the instances
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Fig. 2. Relationship between the posterior probabilities computed by BMA and the
output of CMA

as long as the probability estimated by BMA for the returned class is lower
than 55%. Hence, on the instances classified with probability less that 55% by
BMA, BMA and CMA convey a similar message, i.e., that of a doubtful classi-
fication: BMA by returning a low probability for the class, CMA by becoming
indeterminate.

Moving on to greater probabilities, the determinacy of CMA rises progres-
sively; however, CMA keeps returning a mix of determinate and indeterminate
classifications, even on instances classified very confidently by BMA (for instance,
with probability higher than 80%). The point is that the behavior of CMA is
justified, since at any level of posterior probability estimated by BMA there is
a clear drop of accuracy between BMA(CMA D) and BMA(CMA I).

Similar patterns have been observed on most of the data sets with two classes
included in our list; we report for instance in Figure 2 also the results obtained
on the credit approval data set.7

From Figure 2, one can also appreciate that the behavior of CMA cannot be
mimicked by a BMA with threshold, i.e., a BMA which returns two classes unless
the probability for the most probable class exceeds a fixed threshold t. In fact, a
BMA with threshold would assume all instances classified with probability less
than t to be hard; instead CMA identifies in a sensible way a mix of easy and
hard instances between both the instances classified with probability greater or
smaller than the threshold. Moreover, CMA is able to detect hard instances also
among those classified with very high probability from BMA, something which
would not be possible to accomplish with a BMA with threshold.

7 To prevent ambiguities, we point out that German-credit and credit approval are
two distinct data sets; the former has been donated by Prof. Hofmann, and contains
20 feature variables; the latter has been donated by Prof. Quinlan, and contains 15
feature variables.
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4 Conclusions

In this paper we have proposed an extension of Bayesian model averaging to
imprecise probabilities that we have called credal model averaging. By CMA, we
have tried to tackle one of the more serious challenges of BMA, which is related
to the choice of the prior over the models: both the difficulty in defining such a
prior, and the unavoidable arbitrariness that any choice entails. In our approach,
prior beliefs model a condition close to ignorance about the models, thus trying
to implement an objective-minded approach to model averaging. This naturally
leads to a new form of averaging whose conclusions are robust to the definition
of prior beliefs.

We have applied CMA in particular to problems of classification based on
naive Bayes nets. Our empirical experiments over many data sets have confirmed
that CMA leads to reliable inference. It leads, in particular, to create classifiers
that can suspend the judgment when the conditions do not justify strong con-
clusions, and that we have called credal classifiers. What we have seen clearly
from the experiments is that suspending judgment has been well motivated: the
attempt of BMA-based classifiers to produce a determinate classification when
CMA leads to suspend judgment, yields fragile classifications that heavily dete-
riorate the predictive performance of the former.

In summary, CMA approaches in an original way the controversial problem
of setting the prior over the models for BMA; moreover, it performs well and
reliably in classification problems.

CMA has been derived assuming to have a complete data set; it would be how-
ever interesting to extend CMA to deal also with missing data. If one assumes
the missing data to be generated by a missing-at-random (MAR) process, realiz-
ing such an extension would be straightforward. However, the MAR assumption
is not always met; therefore, a more sophisticated treatment of missing data
should be developed, able to deal with missing data differently, depending on
whether they are generated by a MAR or non-MAR missingness process. We
have followed a similar avenue in [7]; however, incorporating such a treatment
of missing data into CMA could be technically quite involved and therefore it
needs careful investigation.

Acknowledgments. Work for this paper has been partially supported by the
Swiss NSF grants 200021-113820/1 and 200020-116674/1, and by the Hasler
Foundation (Hasler Stiftung) grant 2233.
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Abstract. We propose a new algorithm for training a linear Support
Vector Machine in the primal. The algorithm mixes ideas from non
smooth optimization, subgradient methods, and cutting planes meth-
ods. This yields a fast algorithm that compares well to state of the art
algorithms. It is proved to require O(1/λε) iterations to converge to a
solution with accuracy ε. Additionally we provide an exact shrinking
method in the primal that allows reducing the complexity of an iteration
to much less than O(N) where N is the number of training samples.

1 Introduction

Support Vector Machines (SVMs) are a very popular method for supervised
learning tasks such as classification and regression. The standard way for solv-
ing the SVM learning problem is to introduce Lagrange multipliers, one for each
constraint, and to optimize the equivalent dual problem which is an instance
of quadratic programming. Since direct optimization of this quadratic problem
becomes uneasy when the training set size (N) increases, some solutions have
focused on efficient optimization of the dual through decomposition of the learn-
ing problem [1]. Decomposition methods like Sequential Minimal Optimization
(SMO) [2], SVM-light [3], LIBSVM [4] can handle larger problems. However,
their super-linear scaling behavior with N makes them intractable for very large
datasets. To overcome this limitation some techniques have been investigated
that mainly rely on an approximation of the dual [5,6]. However, as suggested
in [7], optimizing an approximation of the dual might not be a good idea when
one actually wants to optimize the primal.

Consequently, a number of recent works tackled the learning of SVM through
direct optimization of the primal. By introducing the hinge loss function
(hinge(z) = max(0, z)), the constrained optimization problem is transformed
into an unconstrained convex one. The main difficulty for optimizing this ob-
jective function lies in the non-differentiability of the hinge loss function at 0.
Two main solutions have been proposed. The first one is to use a differentiable
approximation of the loss (e.g. by smoothing) in which case standard optimiza-
tion methods can be applied (e.g. [8,7]). [8] proposes a efficient method to solve
the primal linear SVM which can be very fast if the number of features d is
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small, scaling roughly as O(Nd2). The second solution is to rely on sub-gradient
methods for direct optimization of the objective function [9]. The advantage of
this latter approach is its simplicity, but its rate of convergence is usually much
dependent on the setting of the stepsize. An exception is the Pegasos algorithm
[10] which is the only one of this family that does not require the setting of this
hyperparameter. Yet, note that most of those algorithms in primal [9,10] have
been proposed for linear SVM.

Lastly, recent works proposed to use the cutting planes technique to build
an approximated problem (i.e. a lower bound to be maximized) which is refined
every iteration [11,12]. Generally speaking, the approximated problem is repre-
sented as an optimization problem with linear constraints. At each iteration, a
new constraint is added to the problem and the approximated problem is solved
in its dual form (it is somehow a semi dual method). Besides, one advantage of
this method is that one can gain information of the approximation quality every
iteration, which provides a meaningful stopping criterion.

In this paper, we propose a new algorithm for solving the SVM learning
unconstrained optimization problem in the primal form (with hinge loss). Our
work is a mix of subgradient methods, non smooth optimization, and cutting
planes method. Our algorithm relies on the following ideas:

Simple approximation. We use the cutting planes method to iteratively build
a lower bound of the primal objective function. We use a simple lower
bound which can be solved very quickly. Despite its simplicity, we prove
that the number of iterations required to reach the solution with accuracy ε
is O(1/λε).

Efficient linesearch in the primal. Unlike many previous works, we deal
with the particular shape of the objective function to derive an efficient
optimal line search in a given direction from the current solution.

Shrinking in Primal. Our iterative algorithm approaches the solution itera-
tively. If the current solution doesn’t move too far from a given iteration
to the next, many constraints can be ignored in the optimization step. We
propose a shrinking method that reduces the number of terms actually used
in the simplified objective function to much less than N .

Section 2 presents the context and discusses related works, Section 3 recall non
smooth optimization results applied to the primal objective function. Section 4
details our algorithm, the building of the lower bound, the optimal linesearch,
convergence analysis, and the shrinking method. Section 5 compares experimen-
tally our algorithm with state of the art techniques.

2 Preliminaries and Related Work

Given a training set S = {(x1, y1), ..., (xN , yN )}, where xi ∈ Rd and y ∈
{−1,+1}, we are interested in learning a linear classifier: hw(x) = sign(〈x,w〉)
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where w ∈ Rd is the model parameter set to be learned. The optimization
problem can be written as follows:

minw
λ
2 ‖w‖

2 + 1
N

∑
i=1..N ξi

subject to yi〈xi, w〉 ≥ 1− ξi ∀i
ξi ≥ 0 ∀i

(1)

where λ is the regularization parameter of the SVM, ξi are non-negative variables
which represent the loss for the case where the margin constraint is violated for
example xi. Introducing the hinge loss function hinge(z) = max(0, z), we obtain
the equivalent unconstrained problem:

min
w

f(w)withf(w) =
λ

2
‖w‖2 +

1
N

∑
i=1..N

max(0, 1− yi〈xi, w〉) (2)

where the second term, denoted Remp(w) = 1
N

∑
i=1..N max(0, 1 − yi〈xi, w〉) is

a upper bound of the empirical risk.
A simple approach to solve this problem is to use the sub-gradient method,

which is proved to converge to the global minimum [13]. Pegasos [10] is an exam-
ple of this type of algorithm which requires a number of iterations, independent
of N , that scales with O(1/λε) to reach a given ε accuracy. However, this algo-
rithm lacks a good stopping criterion as we observed in our experiments that
the primal value may oscillate during training.

The idea of using cutting planes method for SVM-like problem was first in-
troduced in [14,11], where the authors proposed to approximate the original
problem with many linear constraints sharing a slack variable by another one
with much less constraints. Their algorithm builds an approximated problem by
iteratively adding the most violated constraint every iteration, until the solu-
tion of the approximate problem does not violate any constraint in the original
problem more than ε, which means that the two problems are close enough.

Recently, [12] proposed to use a variant of bundle methods for minimizing a
convex regularized risk. It is equivalent to the cutting planes method of [11] in our
particular case of linear SVM learning, however its simplicity is much appealing,
and our work is inspired by this one. Actually, the objective function in (2)
can be lower bounded by a quadratic function with a cutting planes technique.
Every iteration, one adds a new lower bound built with the (sub)gradient of the
Remp(w) at the current solution. The approximate problem at iteration t is then:

min
w

λ

2
‖w‖2 + max {〈aj+1, w〉+ bj+1} ∀j = 1..t− 1 (3)

where every term 〈aj+1, w〉+ bj+1 is a cutting plane lower bound of Remp com-
puted at the solution at iteration j, wj . This problem can be solved in its dual
form, and its solution wt is used for computing at+1 and bt+1. Note that the
minimum of the lower bound increases every iteration so that the gap between
the minimum observed value of the primal and the minimum of the lower bound
decreases. In [12] the number of iterations required for reaching a gap less than
ε is proved to be O(1/λε).
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3 Primal Subgradient and Subdifferential

We present now useful properties of the primal objective that we want to min-
imize and discuss what the subgradient and the subdifferential of f(w) (which
will be used in Sect. 4) look like. Properties of interest of f(w) are its convexity,
its piecewise quadratic form, and its non differentiability which prevents the use
of a number of smooth optimization methods.

Actually, f(w) is differentiable everywhere but on hyperplanes Hi : 1 −
yi〈xi, w〉 = 0. Every hyperplane Hi divides the parameter space into two
half-spaces: Hi

0 : {w|1 − yi 〈xi, w〉 ≤ 0} and Hi
1 : {w|1 − yi 〈xi, w〉 ≥ 0}.

Hence, the N hyperplanes divide the parameter space into many polytopes:
Ck =

⋂
i=1..N Hi

σk
i

where σk
i ∈ {0, 1}. We note Ik = {i|σk

i = 1} the set of

active hyperplanes in Ck. Within any polytope Ck f(w) is quadratic.
In order to optimize f(w) one has to rely on the notions of subgradient and of

subdifferential. Let h : Rd → R be a convex function. A vector u ∈ Rd is called
a subgradient of h at x0 if:

h(x) ≥ h(x0) + 〈x− x0, u〉 ∀x ∈ Rd (4)

The set of all subgradients of h at x0 is called the subdifferential at x0, and is
noted ∂h(x0). The subdifferential is a nonempty, convex and compact set. The
subdifferential of the objective f(w) has a particular form, as we show now.

Theorem 1. The subdifferential of the primal objective at w is defined as:

∂f(w) =

{
λw +

∑
i:yi〈xi,w〉<1

−yixi

N

+
∑

i:yi〈xi,w〉=1(−βi
yixi

N )
∣∣∣ ∀iβi ∈ [0, 1]

}
(5)

where every vector β = β1, ..., βN corresponds to a particular subgradient of f(w).

Proof. We base our proof on the two following results, both from [15].

Theorem 2. Let {fj : Rd → R, j = 1, ...,m} be a set of convex and differen-
tiable functions, then the subdifferential of f = maxj=1..m fj is

∂f(x) = conv {∇fj(x)|j ∈ I(x)} (6)

where I(x) = {i|fi(x) = maxj fj(x)}, ∇fj(x) stands for the gradient of fj(x) at
x, and conv(.) stands for the convex hull of a vector set.

Proposition 1. Let {fj : Rd → R, j = 1, ...,m} be a set of convex functions
and let f =

∑
j=1..m fj , then

∂f(x) =

⎧⎨
⎩u =

m∑
j=1

uj

∣∣∣(u1, .., um) ∈ ∂f1(x) × ...× ∂fm(x)

⎫⎬
⎭ (7)
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Algorithm 1. Global
1: Input: S = {(x1, y1), ..., (xN , yN )}, λ, ε
2: t ← 0, w0 ← 0, w̃ ← 0 , v0 ← 0
3: repeat
4: t ← t + 1
5: gt(w) ← LowerBound(wt−1, w̃t−1, vt−1)
6: w̃t ← argminwgt(w) and vt ← minwgt(w) = gt(w̃t)
7: wt ← linesearch(f, Δt) where Δt ← w̃t − wt−1

8: γt ← f(wt) − vt

9: until γt < ε

We begin with the definition of the subdifferential of an elementary function
max(0, 1−yi〈xi,w〉

N ), which is differentiable except for w such that yi〈xi, w〉 = 1.
For w such that yi 〈xi, w〉 �= 1, the function is differentiable and its subdifferential
resumes to its gradient. In other cases using Theorem 2, we get:

∂

(
max(0,

1− yi 〈xi, w〉
N

)
)

= conv
{
0,−yixi

N

}
=
{
−βi

yixi

N

∣∣∣βi ∈ [0, 1]
}

(8)

Then the subdifferential of an elementary function is given by:

∂

(
max(0,

1− yi 〈xi, w〉
N

)
)

=

⎧⎨
⎩

0 if yi 〈xi, w〉 > 1{
−βi

yixi

N /βi ∈ [0, 1]
}
if yi 〈xi, w〉 = 1

− yixi

N if yi 〈xi, w〉 < 1
(9)

Next, applying Proposition 1 to f(w) which is the sum of convex functions
(Cf. (2)), together with the result of (9), we get the expected result. ��

4 Algorithm

The pseudo-code is given in Algorithm 1. Iteration t begins with the building of
a simple lower bound gt(w) which is built based on the cutting plane method.
Then the solution w̃t minimizing this lower bound, and the minimum value vt,
are found by quadratic programming. Finally a linesearch is performed along the
line from the solution in previous iteration, wt−1, to w̃t, yielding the new current
solution at the tth iteration, wt. The algorithm stops once the gap γt = f(wt)−vt

is less than ε, which means that an ε-solution has been reached. The key point is
that the minimum of the lower bound increases every iteration and approaches
the minimum of the objective function f(w). Consequently, the gap between the
current value of the primal and the minimum of the lower bound decreases every
iteration. The way the lower bound is built guarantees the convergence, while
the linesearch procedure guarantees the decrease of f(wt).

4.1 Building a Lower Bound

In this section, we describe how we build, at the tth iteration, a lower bound
gt(w) of f(w). Then, we describe its minimization.
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Our lower bound is inspired by the recent work [12] which is based on the
cutting plane method which we present first. As proposed in [12], we approximate
Remp(w) only and let the quadratic term λ

2 ‖w‖2 aside (Cf. (2)). This is a key
issue of the technique which provides a fast rate of convergence.

Cutting Plane Technique: Whatever w0, the convex function Remp(w) can
be lower bounded by using the inequality Remp(w) ≥ 〈aw0 , w〉+bw0 where aw0 is
the (sub)gradient of Remp(w) at w0, bw0 is the offset which can be obtained from
the equality at w0: 〈aw0 , w〉 + bw0 = Remp(w0). Then, the function gw0

cp (w) =
λ
2 ‖w‖2 + 〈aw0 , w0〉+ bw0 may be seen as a cutting plane approximation of f(w)
(with equality at w0) which is accurate for w lying in the vicinity of w0. Figure
1-a shows the cutting plane approximation of Remp(w) at a particular w0 and
Fig. 1-d shows the corresponding quadratic lower bound gw0

cp (w) of f(w). If
Remp(w) is not differentiable at w0, one can use any (e.g. random) subgradient
(Fig. 1-b). However the quality of the approximation may be poor since equality
gw0

cp (w) = f(w) holds for w0 only (Fig. 1-e).

Fig. 1. Building a Lower Bound (LB, in red) of Remp(w) (top) and of f(w) (bottom)
based on cutting planes. Left ((a) and (d)): LB of the risk, 〈aw0 , w0〉 + bw0 , and of the
objective, gw0

cp (w), using the gradient in the differentiable case. Middle ((b) and (e)):
Same as left where gw0

cp (w) is defined using one subgradient, in the non differentiable
case. Right ((c) and (f)): LB of Remp(w) using the maximum over all cutting planes
built from all subgradients (c) and corresponding lower bound of f(w) using (12) (f).

The lower bound built from one cutting plane only gw0
cp (w) is not a good

approximation of f(w). A solution is to build iteratively an increasingly accurate
lower bound by adding, every iteration, a new cutting plane at the current
solution [12] (Cf. (3)). At iteration t one uses the lower bound:

gt(w) =
λ

2
‖w‖2 + maxj=1..t−1

{
〈awj , w〉+ bwj

}
(10)

where wj stands for the solution at iteration j.
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Lower Bound: The main difference between our lower bound and the one in
(10) is that we build the lower bound from only three elementary lower bounds
gt(w) = max(g1

t (w), g2
t (w), g3

t (w)). Hence we get an optimization problem that
is very fast to solve. We detail now these three lower bounds.

The first lower bound is a cutting plane approximation at w̃t−1, the minimum
of the lower bound in previous iteration:

g1
t (w) = gw̃t−1

cp (w) not=
λ

2
‖w‖2 + 〈a1

t , w〉+ b1t (11)

where, as before, a1
t is a (sub)gradient of Remp(w) at w̃t−1, and b1t =

Remp(w̃t−1) − 〈a1
t , w̃t−1〉. The idea behind this is that we want to improve the

approximation quality around w̃t−1 (In particular: g1
t (w̃t−1) = f(w̃t−1)).

The second lower bound is a simplification of the lower bound gt−1(w) of
the previous iteration. The role of this lower bound, together with g1

t (w), is to
guarantee a minimum improvement of the lower bound, thus providing a fast
convergence rate of the algorithm (as we will see in Section 4.3). For this, We use
a quadratic function g2

t (w) = λ
2 ‖w‖2 + 〈a2

t , w〉+ b2t , which is minimized at w̃t−1,
and takes the same minimum value than vt−1 = gt−1(w̃t−1). These conditions
determine uniquely a2

t and b2t . Note that by doing so g2
t (w) ≤ gt−1(w)∀w, so

that g2
t (w) is also a lower bound of f(w).

The third lower bound is an approximation of f(w) at the solution in previous
iteration, wt−1. The way this solution is found (it is the result of the line search
step described in the next section) makes it very often that Remp(w) (hence
f(w)) is not differentiable at wt−1. In theory, we could use a cutting plane ap-
proximation with any subgradient (e.g. steepest descent subgradient). However,
we observed experimentally that this strategy may fail when dealing with high
dimensional data (it may happen that the linesearch direction is not a descent
direction of f(w)). To get a better approximation that equals f(w) on a neigh-
bourhood of wt−1, we rather exploit the whole subdifferential. The idea is to
use the maximum of all cutting plane approximations 〈a,w〉+ ba (note that the
offset ba depends on a) built from all subgradients in the subdifferential. One
then gets the following lower bound:

g3
t (w) =

λ

2
‖w‖2 + max

a∈∂Remp(wt−1)
(〈a,w〉 + ba) (12)

This is a better lower bound of f(w) as shown in Figure 1 where a pair
of (extreme) cutting plane approximations of Remp(w) are shown in Figure 1-c
while the lower bound found by exploiting all cutting plane approximations built
with all subgradients is shown in Fig. 1-f. We exploit this idea but we use a faster
way to build the above approximation. The idea is to split the non-differentiable
and differentiable parts of Remp(w) at wt−1. Let LA = {i|〈yixi, wt−1〉 = 1}
denote the set of index of non-differentiable terms in Remp(w) at wt−1 (note
that we omit the dependency of LA on wt−1 for clarity). Then:

Remp(w) =
∑

i/∈LA

max(0,
1− 〈yixi, wt−1〉

N
) +
∑

i∈LA

max(0,
1− 〈yixi, wt−1〉

N
) (13)
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Let consider the cutting plane lower bound of the differentiable part of
Remp(w) at wt−1, 〈a3

t , w〉 + b3t , with a3
t = 1

N

∑
i:〈yixi,wt−1〉<1(−yixi) being the

gradient of the differentiable part, and b3t = 1
N

∑
i:〈yixi,wt−1〉<1 1. Then our third

lower bound is defined as:

g3
t (w) =

λ

2
‖w‖2 + 〈a3

t , w〉+ b3t +
∑

i∈LA

max(0,
1− 〈yixi, wt−1〉

N
) (14)

Putting all together, our lower bound in iteration t, gt(w) is defined as:

gt(w) = λ
2 ‖w‖2 + max(〈a1

t , w〉+ b1t , 〈a2
t , w〉+ b2t ,

〈a3
t , w〉+ b3t +

∑
i∈LA max(0, 1−〈yixi,wt−1〉

N ))
(15)

Minimizing the Lower Bound: To minimize gt(w), we rewrite the problem
in a constrained form with slack variables then we solve this constrained mini-
mization problem in its dual form by quadratic programming. The size of this
dual problem is very small with respect to the original problem, there are only
K + 3 variables where K is the number of hyperplanes that cross wt−1.

The constrained minimization problem of gt(w) can be written as:

minw,ξ,ξi

λ
2 ‖w‖2 + ξ

s.t. 〈a1, w〉+ b1 ≤ ξ
〈a2, w〉+ b2 ≤ ξ
〈a3, w〉+ b2 + 1

N

∑
i∈′LA′ ξi ≤ ξ

1− 〈yixi, wt−1〉 ≤ ξi ∀i ∈ LA
ξi ≥ 0 ∀i ∈ LA
ξ ≥ 0

(16)

Following standard derivation, this optimization problem can be solved by writ-
ing the Lagrangian then noticing that the solution is given by a saddle point of
the Lagrangian, that must be minimized wrt. parameters w, ξ, ξi and maximized
wrt. Lagrange multipliers. Omitting details, one can get the dual form:

minα
1
2λβ

TAT
t Atβ + βTB

s.t. αi ≥ 0 ∀i ∈ LA
γi ≥ 0
γ1 + γ2 + γ3 ≤ 1
αi ≤ γ3

N ∀i ∈ LA

(17)

where A = [...(xiyi)...,−a1,−a2,−a3], B = [...1...,−b1,−b2,−b3] and β =
[...αi..., γ1, γ2, γ3] is the vector of Lagrange multipliers. Solving this optimiza-
tion problem resumes to a quadratic programming problem of limited size
(K + 3) (usually K is less than 20). Once the problem is solved in dual,
the primal solution may be obtained by using the equality at saddle point:
w̃t =

�
i∈LA αixiyi−γ1a1−γ2a2−γ3a3

λ .
It is straightforward to see that if wt−1 is not the optimum of f(w) then

the search direction given by the solution w̃t minimizing the lower bound is a
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descent direction of f(w) at wt−1. Actually, because gt(w) is convex, the direction
from any non optimum point (for instance wt−1) to w̃t is a descent direction.
Furthermore, since gt(w) matches exactly f(w) on a neighbourhood of wt−1 the
direction is also a descent direction of f(w).

4.2 Optimal Line Search

The line search procedure (line 7 in Algorithm 1) is used to find an optimum
solution along a line from the solution in previous iteration, wt−1, to the mini-
mum w̃t−1 of the current lower bound gt(w). To improve readability we consider
the line search when starting from a point ws and along a particular direction
Δ. This yields the one-dimensional minimization problem:

η∗ = arg min
η

g(η) (18)

where g(η) = f(ws + ηΔ). Let imagine that we examine w = ws + ηΔ for
increasing η, then w will successively cross hyperplanes Hi that are at frontiers
between polytopes. Without loss of generality (by renumbering hyperplanes)
assume that w crosses successively hyperplanes H1, H2, H3... (see Fig. 2). The
intersection with hyperplane Hi : 1 − yi 〈xi, w〉 = 0 occurs (if it exists) for a
particular value of η, denoted ηi, which may be computed according to:

1− yi

〈
xi, (ws + ηiΔ)

〉
= 0

⇐⇒ ηi = 1−yi〈xi,ws〉
yi〈xi,Δ〉

(19)

g(η) is a piecewise quadratic function (see figure 2), which is not differentiable
at ηn. Within any segment

[
ηn, ηn+1

]
, g(η) is quadratic and equals:

gn(η) =
λ

2
‖ws + ηΔ‖2 +

1
N

∑
i∈Ik(n)

(1− yi 〈xi, (ws + ηΔ)〉) (20)

where k(n) stands for the index of the polytope corresponding to the nth segment
(and Ik(n) is defined as in Section 3). To determine η∗, one sets ∂gn(η)

∂η = 0 . In
the nth segment this yields an optimal stepsize ηn

opt:

ηn
opt =

∑
i∈Ik(n)

yi〈xi,Δ〉
N − λ 〈ws, Δ〉

λ 〈Δ,Δ〉 (21)

Two cases may arise. Either g(η) is differentiable at η∗ or it is not. In the first
case, there exists one particular n such that ηn ≤ ηn

opt ≤ ηn+1 and ηn
opt is the

solution of (18). Otherwise,η∗ = ηn̂ and whatever n, ηn
opt does not belong to the

nth segment. In this case it is easy to show that the solution of (18) satisfies ηn
opt ≤

ηn̂ ≤ ηn−1
opt . With this discussion in mind, our algorithm examines successively

the existence of η∗ in segments [0, η1), [η1, η2), ..., [ηL−1, ηL), [ηL,+∞) until the
solution (i.e. one of the two cases arises) is found.
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Fig. 2. Line search

4.3 Convergence Analysis

In this section, we analyse the convergence rate of the proposed algorithm based
on the improvement of the lower bound.

Theorem 3. Let G be an upper bound of the norm of the subgradient then the
Algorithm 1 reaches a gap of at most ε after

[
log2

(
λ

4G2

)
+ 8G2

λε −
8G2

λ

]
iterations.

Let γt = f(wt) − vt be the gap between the current objective value and the
minimum of the lower bound at iteration t. We want to find the maximum
number of iterations to reach a gap γt less than ε. For simplicity, we consider
g∗t (w) = max(g1

t (w), g2
t (w)) (hence vt = minw gt(w) ≥ minw g∗t (w)) and study

how the minimum of the lower bound vt behaves w.r.t. minw g∗t (w). Note that
by construction g1

t (w) and g2
t (w) have the same quadratic component, and that

g1
t (w̃t−1) > g2

t (w̃t−1).
Let note w∗ = argmin(g∗t (w)). By definition of our lower bounds only

two cases may happen: either w∗ minimizes g1
t (w) (cf. Fig. 3a), or g1

t (w∗) =
g2

t (w∗) (cf Fig. 3c), the limit case is illustrated in Fig. 3b where min g1
t (w) =

g1
t (w̃t−1)+g2

t (w̃t−1)
2 . We examine now the two cases in more details.

In the first case, w∗ minimizes g1
t (w) then minw g1

t (w) ≥ g1
t (w̃t−1)+ge

t (w̃t−1)
2 ,

and:
vt ≥ min g1

t (w) ≥ g1
t (w̃t−1)+g2

t (w̃t−1)
2

≥ vt−1 + g1
t (w̃t−1)−vt−1

2 ≥ vt−1 + f(w̃t−1)−vt−1
2

(22)

where we have used the equality g1
t (w̃t−1) = f(w̃t−1) by construction of g1

t , and
that vt−1 = g2

t (w̃t−1) by construction of g2
t .

Furthermore, the linesearch at iteration t makes that f(wt) ≤ f(wt−1), and
the one at iteration t− 1 makes that f(wt−1) ≤ f(w̃t−1), and hence:

γt = f(wt)− vt ≤ f(wt)− vt−1 − f(w̃t−1)−vt−1
2

≤ f(wt−1)− vt−1 − f(wt−1)−vt−1
2

≤ γt−1 − γt−1
2

(23)
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Fig. 3. Minimizing g∗
t

Let examine briefly the second case now. We do not provide the full proof
since it is simple but long. We rather give hints. We know that w∗ satisfies
g1

t (w∗) = g2
t (w∗), which defines a hyperplane 〈a1

t , w〉 + b1t = 〈a2
t , w〉 + b2t (since

g1
t (w) and g2

t (w) have the same quadratic component). Furthermore, one can
easily show that w∗ must lie on the segment line delimited by the two minimum
points, −a1

t

λ and −a2
t

λ , of g1
t (w) and g2

t (w). After simple manipulations, one gets

that the minimum g∗t (w) is given by g∗t (w∗) = g2
t (w̃t−1)+ λ

2
(g1

t (w̃t−1)−g2
t (w̃t−1))2

(a1−a2)2 =

vt−1 + (f(w̃t−1)−vt−1)2

(a1−a2)2 . This may be used to build a upper bound on γt since:

γt = f(wt)− vt ≤ f(wt)− vt−1 − λ
2

(f(w̃t−1)−vt−1)
2

(a2−a3)2

≤ f(wt−1)− vt−1 − λ
2

(f(wt−1)−vt−1)
2

(a2−a3)2

≤ γt−1 − λ
8G2 γ

2
t−1

(24)

where G is an upper bound on the norm of gradient.
Putting all together, we get γt ≤ γt−1

2 min(1, λ
4G2 γt−1). We see that if γt−1 ≥

4G2

λ then the inequality shows that γt ≤ γt−1
2 and the gap is at least divided

by two. Then the condition γt−1 ≥ 4G2

λ happens for at most T0 = log2

(
λ

4G2

)
steps because γ0 = 1. Then, we have γt ≤ λ

8G2 γ
2
t−1. To estimate the number

of iterations required to reach γt ≤ ε, we introduce a function γ(t) which is its
upper bound. Solving differential equation γ′(t) = − λ

8G2 γ
2(t) with boundary

condition γ(T0) = 1 gives us γ(t) = 8G2

λ(t+ 8G2
λ −T0)

is an upper bound of γt. Since

γ(t) ≤ ε ⇐⇒ t ≥ 8G2

λε +T0− 8G2

λ , the solution is reached with accuracy ε within[
log2

(
λ

4G2

)
+ 8G2

λε −
8G2

λ

]
iterations.

4.4 Complexity and Shrinking

The algorithmic complexity of our algorithm has three main components, the
computation of the subdifferential (5), the quadratic programming problem, and
the linesearch procedure (Sect. 4.2). However, the complexity of the quadratic
programming problem is rather small, and the subdifferential is iteratively up-
dated along the linesearch (whenever a hyperplane is crossed). Finally, the algo-
rithmic complexity is dominated by the complexity of the linesearch. Estimation
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of ηn requires 2 dot products, and sorting positive ηn is upper bounded by
N log2 N . Then the overall algorithm cost is about 2Nd + N log2 N , where d is
the dimension of the data. In case of sparse data the complexity is related to the
average number of non null components rather than to d.

In practice, wt−1 , wt and w̃t are usually close so that the set of active hyper-
planes may be expected not to change much between two iterations. The idea of
shrinking is to take this into account to design a more efficient algorithm by con-
sidering a limited number of hyperplanes only. Let consider a convex region Q
around wt−1 (e.g. a ball) and let HI denote the set of inactive hyperplanes with
respect to Q (i.e. hyperplanes that don’t cross Q), and let HA = {1, .., N}\HI

the set of active hyperplanes. Then f(w) coincides with fQ(w) on Q, where:

fQ(w) =
λ

2
w2 +

∑
i∈HA

max(0, 1− 〈yixi, w〉)− 〈AHI , w〉+ CHI (25)

where AHI =
∑

i∈HI ,yixiwt<1 yixi and CHI =
∑

i∈HI ,yixiwt<1 1. We may con-
sider the simplified line search problem minη f

Q(wt + ηΔt) which can be solved
with the algorithm in Sect. 4.2. If the solution wopt ∈ Q then wopt is a lo-
cal minimum of f because the approximation is correct within Q. Hence wopt

is a global minimum of f since it is convex. A simple method for implement-
ing these ideas consists in starting with a ball centered at wt−1 and with a
small radius so that number of active hyperplanes is small enough (e.g 10).
If the obtained solution wopt belongs to the ball then we have our solution
wt = wopt. Otherwise, we increase the radius of the ball (i.e. the number of
active hyperplanes) and start a new linesearch until we find a solution which is
correct with respect to the ball considered. This approach is described in Al-
gorithm 2. To simplify the presentation, we assume that all the distances from
wt−1 to all hyperplanes are precomputed and sorted in ascending order so that:
dist(wt−1, Hh1) ≤ dist(wt−1, Hh2) ≤ ... ≤ dist(wt−1, HhN ). Also we consider
here that N is a power of 2 and that we use log(N) balls, the kth one corre-
sponding to 2k active hyperplanes.

Algorithm 2 outputs wt+1 without considering all hyperplanes in the line-
search, but it requires to compute the distance from the current solution wt to the
N hyperplanes. The number of dot products to be calculated is then still linear
with N , while the complexity of the linesearch (M log2 M) now depends of the
average number of active hyperplanes M (possibly N). It is possible to go further
by maintaining balls with different centers. Imagine that at iteration t, we define
a ball Bk = Ball(wt, Rk) that is large enough to include all forthcoming solutions
wt+1, wt+2, ..., wfinal. Then all hyperplanes that are inactive with respects to Bk

could be completely ignored in the following iterations. This means we may avoid
computing all distances each iteration and instead reuse balls from previous
iterations up to a certain extent. We do not detail this algorithm here because
we lack room for that, we only give the idea. The main difference with the
previous simpler shrinking algorithm is that the balls that are maintained during
linesearch are not all centered on wt−1, but may be centered on wt−2, wt−3,
... Once a solution of the reduced line search is found (with the set of active
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Algorithm 2. line search one center
1: Input: w, Δ, H1, ..., HN

2: NB = log2N
3: Compute distances from w to all hyperplanes and renumber hyperplanes with in-

creasing distance.
4: for k=1:NB do
5: Set Rk = distance to hyperplane number 2k.
6: Set L = number of active hyperplanes in Ball(w, Rk).
7: Compute η1, ..., ηL, g1, ..., gL+1 with active hyperplanes H1, ..., H2k .
8: ηopt = LineSearch(η1, ..., ηL, g1, ..., gL+1)
9: wopt = w + ηoptΔ

10: if wopt ∈ Ball(w, Rk) return wopt

11: end for

hyperplanes of a ball Bj), one has to check if this solution is valid, that is
wopt ∈ ∩NB

k=jBk. If this is not the case, one has to recompute distances with
hyperplanes in the smallest ball including the solution and restart the procedure.

5 Experimental Results

We performed binary classification experiments on 6 datasets (Table 1) to com-
pare our algorithm (named Hyperpass) with two reference methods, the sub-
gradient algorithm Pegasos (on-line version) of [10] and the Cutting Planes al-
gorithm svmperf of [11]. We used our own implementation of Pegasos where
we set the parameter K (number of examples uses to compute sub-gradients)
to 1000 whereas we used the available code for svmperf1. Cross validation
over the full datasets is used to determine the parameter λ for each dataset
(λ = 10−3, 10−4, .., 10−8). To fairly compare the behaviour of the three algo-
rithms w.r.t. the number of learning iterations, one iteration of Pegasos stands
for N

K subiterations (using K examples). The complexity of an iteration is O(N)
whatever the algorithm.

Figure 4 shows the evolution of the Primal objective as a function of the
number of iterations. Actually, it plots the gap obtained for the current solution
gap(w) = f(w) − v∗ where v∗ stands for the best lower bound value observed
during training (in Hyperpass and Cutting Plane runs). On the one hand, on
low-dimensional datasets (first row of plots), one can see that Hyperpass both re-
quires much less iterations than Pegasos and svmperf to reach a good ε-solution
for all these datasets and that it converges to a more accurate solution. On the
other hand, for high-dimensional datasets, Hyperpass may be slower than Pe-
gasos in the first 20 to 100 iterations, then its convergence is faster and more
accurate. Whatever the dataset Hyperpass is much faster and accurate than
svmperf. Similar to these above situations, we observed that Hyperpass attends
the minimum error rate faster than Pegasos in low-dimensional settings (roughly

1 http://svmlight.joachims.org/svm perf.html
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Table 1. Datasets

Dataset Adult9 Covertype Web8 CCAT C11 RealSim

#examples 48842 581012 64700 804414 697641 72309

dimension 123 54 300 47236 47236 20958

Fig. 4. Evolution of the gap (Primal-v*) as a function of the number of iterations

when the gap is about 1% of the primal value); for high-dimentional data, Pega-
sos achieves the minimal error rate with less iterations. The three methods reach
same performance after convergence (svmperf being the slowest one in any case).

Furthermore the complexity of an iteration in Hyperpass may be drastically
reduced using shrinking as shown experimentally. Figures 5-a,b plot the same
quantity as in Figure 4 but as a function of the number of dot products normal-
ized by N (it is a number equivalent to a number of iterations without shrinking)
for two low dimensional datasets 2. The curves do not change for Pegasos and
svmperf while we see that the total number of operations actually required by
Hyperpass is actually much reduced. For instance with the web dataset, there are
less than 250 ∗N dot product computations in about 1500 iterations. Figure 5-c
gives more insight about the efficiency of the shrinking method by plotting the
number of dot products actually computed every iteration. For visibility reason,
we only present the result for three datasets adult, web8 and covtype. As can be
seen the number of operations in one iteration may be up to 50 times lower than
N . It is interesting to note that although covtype is 10 times larger than web8
the complexity of an iteration of covtype may be less than the one of web8.

2 These plots compare the computational complexity of the three algorithms. Please
note that a comparison based on CPU time would be unfair because the implemen-
tations might not be equally optimized.
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Fig. 5. Evolution of the gap (Primal-v*) as a function of the number of #dot products
N

Fig. 6. Evolution of the gap (Primal-v*) as a function of #dot products
N

For some high dimensional datasets as we said previously, Pegasos may con-
verge faster at the beginning of the learning. But then, it requires a larger num-
ber of iterations than Hyperpass, to reach a solution that is less accurate. While
Hyperpass may be seen to outperform Pegasos in the long run (i.e. to reach a
very accurate solution) it may benefit from initialization, i.e. a bootstrap, using
Pegasos. We investigate the use of Pegasos as a smart starter for Hyperpass for
high dimensional datasets in Fig. 6. This Figures plot the evolution of the gap
as a function of the number of dot products for four methods, the three already
compared and a fourth one which is based on Hyperpass with an initialization
given by Pegasos after 10 iterations. As may be seen on these plots, this com-
bined Pegasos-Hyperpass algorithm performs much better than any of the three
others, and converges at the same rate (the fastest one) than Hyperpass.

6 Conclusion

We presented an original algorithm for training SVM in the primal, for which we
provided convergence rate analysis. We proposed an efficient shrinking technique
and showed experimentally that our algorithm converges much faster than state
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of the art algorithms on number of benchmark datasets, wrt. to the number of
iterations and to the number of operations.
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On the Equivalence of the SMO and MDM

Algorithms for SVM Training
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Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. SVMtraining is usually discussed under twodifferent algorith-
mic points of view. The first one is provided by decomposition methods
such as SMO and SVMLight while the second one encompasses geometric
methods that try to solve a Nearest Point Problem (NPP), the Gilbert–
Schlesinger–Kozinec (GSK) and Mitchell–Demyanov–Malozemov (MDM)
algorithms being the most representative ones. In this work we will show
that, indeed, both approaches are essentially coincident.More precisely, we
will show that a slight modification of SMO in which at each iteration both
updating multipliers correspond to patterns in the same class solves NPP
and, moreover, that this modification coincides with an extended MDM
algorithm. Besides this, we also propose a new way to apply the MDM al-
gorithm for NPP problems over reduced convex hulls.

1 Introduction

Given a sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, the standard
formulation of SVM for linearly separable problems seeks [1,2] to maximize the
margin of a separating hyperplane by solving the problem

min
1
2
‖W‖2 with yi(W ·Xi + b) ≥ 1, i = 1, . . . , N. (1)

Any pair (W, b) verifying the restrictions in (1) is said to be in canonical form.
In practice, however, the problem actually solved is the simpler dual problem of
minimizing

W (α) =
1
2

∑
i,j

αiαjyiyjXi ·Xj −
∑

i

αi with αi ≥ 0,
∑

i

αiyi = 0. (2)

The optimal weight W o can be then written as W o =
∑

αo
i yiXi and patterns for

which αo
i > 0 are called support vectors (SV). There are quite a few proposals

of algorithms to solve (2); many of them can be broadly classified into two
categories that usually are discussed as independent procedures, decomposition
� All authors have been partially supported by Spain’s TIN 2007–66862. The second

author is kindly supported by the FPU–MEC grant reference AP2006–02285.
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algorithms and geometrically inspired methods. Many decomposition algorithms
can be traced to Platt’s SMO [3] or Joachims’s SVM–Light [4] algorithms. SMO,
one of the most popular methods, proceeds iteratively, working at each step with
a reduced set of only two multipliers, αi1 , αi2 and solving problem (2) exactly
for them while keeping fixed all others. To stop training, SMO looks at the
KKT conditions for the dual of (2). At the optimal W o =

∑
αo

i yiXi, they imply
αo

i yi(W o ·Xi + bo − yi) = 0 and, thus, we have

αo
i > 0 ⇒ yi(W o ·Xi + bo − yi) = 0,

αo
i = 0 ⇒ yi(W o ·Xi + bo − yi) ≥ 0. (3)

Hence, during training there might be two kinds of violations of these KKT
conditions. The first one happens when αi > 0 but yi(W ·Xi + b− yi) �= 0. The
second one takes place if αi = 0 but yi(W ·Xi+b−yi) < 0. Platt’s SMO algorithm
essentially tries to choose i2 as the index of the pattern Xi that somehow most
violates these conditions for the current W and i1 as the index that gives then
a maximum decrease in W (α). However, and as pointed out in [5], this may
lead to some difficulties as the KKT conditions only hold approximately during
training. To avoid this Keerthi et al. propose in [5] two modifications to SMO
and recommend the second one, Modification 2, as the most effective (see also
[6], where it is shown to be equivalent to 2–vector SVM–Light); we will briefly
describe it in section 2.

Turning our attention to geometric algorithms, they are usually motivated
through another way of setting up SVM training, the Nearest Point Problem
(NPP; see [7]) in which we want to find the nearest points W ∗

+ and W ∗
− of the

convex hulls C(S±) of the positive S+ = {Xi : yi = 1} and negative S− =
{Xi : yi = −1} sample subsets. The maximum margin hyperplane is then W ∗ =
W ∗

+−W ∗
− and the optimal margin is given by ‖W ∗‖/2. If we write a W+ ∈ C(S+)

as W+ =
∑

αpXp, with
∑

αp = 1 and a W− ∈ C(S−) as W− =
∑

αqXq, with∑
αq = 1 we have W = W+ −W− =

∑
αiyiXi with Xi ∈ S = S+

⋃
S−. We

can thus state the NPP problem as follows:

min
1
2
‖W‖2 =

1
2

∑
i,j

αiαjyiyjXi ·Xj , with αi ≥ 0,
∑

i

αiyi = 0,
∑

i

αi = 2,

(4)
where we assume again a linearly separable training sample. In [8,9] specific algo-
rithms have been proposed for NPP that originate in the more classical Gilbert–
Schlesinger–Kozinec (GSK; [10,11]) and Mitchell–Demyanov–Malozemov (MDM;
[12]) algorithms to find the minimum norm vector of a convex set. While the GSK
algorithm can be very slow, the MDM algorithm and some improvements (see [8])
are quite efficient.

While, as mentioned before, decomposition and geometric algorithms are usu-
ally discussed as independent procedures, we shall give in section 2 a new deriva-
tion of the MDM algorithm and show that for linearly separable problems, it
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essentially coincides with a slight variant of SMO in which we require that both
updating vectors belong to the same class. Although SVM algorithms for lin-
early separable problems extend immediately to non separable ones if square
penalties C

∑
ξ2
i are applied to margin slacks ξi [13], a different set up has to be

pursued if linear penalties C
∑

ξi are considered. For SVM training this implies
a restriction αi ≤ C for the multipliers αi while NPP has to be solved over
the so–called μ–Reduced Convex Hulls, where an extra restriction αi ≤ μ has
to be added to those in (4). It is well known that both problems are equiva-
lent [7], but in the Appendix we will give a new, short proof of this fact. In
section 3 we will extend to these settings the equivalence between SMO and
MDM already proved for linearly separable problems in section 2. We will briefly
compare numerically the performance of basic versions of the SMO and MDM
algorithms in section 4 and show that, for square penalties, the final models they
arrive at are essentially the same, as they have similar test accuracies and num-
bers of support vectors. SMO, however, needs less iterations than MDM, some-
thing to be expected, as it has to meet less restrictions when iteratively looking
for maximum gains. The comparison for linear penalties is somewhat more in-
volved, but the faster convergence of SMO still holds. A brief discussion ends the
paper.

2 The SMO–MDM Equivalence for Linearly Separable
Problems

2.1 Keerthi et al.’s Modification 2

Writing F o
i = W o ·Xi − yi, the KKT conditions (3) at the optimal W o, bo can

be expressed as

yi(F o
i + bo) = 0 if αo

i > 0, yi(F o
i + bo) ≥ 0 if αo

i = 0. (5)

Thus, if we define first the index sets I+ = {i : yi = 1}, I− = {i : yi = −1}
and then InSV = {i : αi = 0}, ISV = {i : αi > 0} (I0 in the notation of [5]),
I+
nSV = I+

⋂
InSV (I1 in Keerthi’s notation), I−nSV = I−

⋂
InSV (I4 in Keerthi’s

notation), the preceding conditions can be written as

F o
i + bo ≥ 0 for i ∈ ISV

⋃
I+
nSV , F o

i + bo ≤ 0 for i ∈ ISV

⋃
I−nSV .

In particular, we will have F o
i ≥ −bo for i ∈ ISV

⋃
I+
nSV and −bo ≥ F o

j for
j ∈ ISV

⋃
I−nSV . Thus, if we write Fi = W ·Xi − yi and define

blow = max{Fj : j ∈ ISV

⋃
I−nSV }, bup = min{Fi : i ∈ ISV

⋃
I+
nSV },

we must have blow ≤ −bo ≤ bup at the optimum. In practice one has to relax these
conditions to blow − ε/2 ≤ −bo ≤ bup + ε/2 for some ε > 0. These observations
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motivate Keerthi et al.’s Modification 2 in [5]. More precisely, they define at each
step two indices

ilow = arg max {Fj : j ∈ ISV

⋃
I−nSV },

iup = arg min {Fi : i ∈ ISV

⋃
I+
nSV }, (6)

and propose to take i2 = ilow and i1 = iup in SMO. We then have blow = Filow
,

bup = Fiup and training will continue while blow > bup+ε or, in other words, while
the i2, i1 indices violate the KKT conditions. As the experiments reported in [5]
illustrate, these choices can significantly speed up Platt’s original algorithm.

2.2 An Alternative Motivation for Choosing i2 and i1

Keerthi’s heuristics are motivated by an attempt to simplify Platt’s original ones
but we will show next how they also arise if we try to choose directly the updating
indices i2, i1 so that they maximize the gain in the dual cost function W (α) (see
also the Appendix A in [6] for another way to arrive at these selections). Notice
first that for any such pair (i2, i1) the new multipliers α′ to be considered are
α′

i1
= αi1 +δi1 , α′

i2
= αi2 +δi2 while α′

j = αj for all others. The new W ′ has thus
the form W ′ = W + δi1yi1Xi1 + δi2yi2Xi2 . Taking into account the restriction∑

i αiyi = 0, we must have yi1δi1 + yi2δi2 = 0 and, therefore, δi1 = −yi1yi2δi2

and

W ′ = W + δi2yi2(Xi2 −Xi1) = W + δi2yi2Zi2,i1 ,

where Zj,k = Xj −Xk. Thus, W (α′) = 1
2‖W ′‖2 −

∑
α′

i is just a function Φ(δi2)
of δi2 , and we have

Φ(δi2 ) =
1
2
‖W‖2 + δi2yi2W · Zi2,i1 +

δ2
i2

2
‖Zi2,i1‖2 −

∑
αi − δi1 − δi2

= W (α) + δi2yi2W · Zi2,i1 +
δ2
i2

2
‖Zi2,i1‖2 − δi2y

2
i2 + yi1yi2δi2

= W (α) + δi2yi2 (W · Zi2,i1 − (yi2 − yi1)) +
δ2
i2

2
‖Zi2,i1‖2. (7)

Solving Φ′(δ∗i2 ) = 0 to obtain the optimal δ∗i2 yields

δ∗i2 = −yi2 (W · Zi2,i1 − (yi2 − yi1))
‖Zi2,i1‖2

= −yi2

Δ

‖Zi2,i1‖2
, (8)

where Δ = W · Zi2,i1 − (yi2 − yi1), and, in turn, δ∗i1 = −yi1yi2δ
∗
i2

= yi1
Δ

‖Zi2,i1‖2 .
Moreover, we have

Φ(δ∗i2 ) = W (α)− 1
2

[yi2 (W · Zi2,i1 − (yi2 − yi1))]
2

‖Zi2,i1‖2
= W (α) − 1

2
Δ2

‖Zi2,i1‖2
.
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Now, to maximize the decrease in W (α′) we should choose (i2, i1) so that

(i2, i1) = arg maxi,j

{
(W · Zi,j − (yi − yj))

2

‖Zi,j‖2

}
.

Such a choice of i2, i1 is sometimes called a second order working set selection
[14]. If we simply ignore the ‖Zi,j‖2 denominator, we can choose instead

(i2, i1) = arg maxi,j{|W · Zi,j − (yi − yj)|}. (9)

It is clear that the maximum in (9) is attained at

max
i
{W ·Xi − yi} −min

j
{W ·Xj − yj},

which tells us to choose in principle (i2, i1) as

i2 = arg maxj{W ·Xj − yj}, i1 = arg mini{W ·Xi − yi}. (10)

These choices imply Δ ≥ 0 and we note in passing that there is a gain in W (α)
whenever Δ > 0 or, stated equivalently, whenever there is a violating pair; this
gives a new and simple derivation of a well known result of Hush and Scovel (see
Theorem 3 in [15]). Now, notice that if yi2 = 1, δi2 < 0 and, hence, we must
have αi2 > 0. On the other hand, if yi1 = −1, δi1 < 0 and, hence, we must have
αi1 > 0. As a consequence, we must refine our previous choices of i2 and i1 in
(10) to

i1 = arg mini{Fi : i ∈ I+
⋃

I−SV }, i2 = arg maxj{Fi : i ∈ I−
⋃

I+
SV }. (11)

with I±SV = I±
⋂

ISV and Fi = W · Xj − yj again. Now it can be easily seen
that I+

⋃
I−SV = ISV

⋃
I+
nSV and, similarly, I−

⋃
I+
SV = ISV

⋃
I−nSV . It is thus

clear that these are the same selections done in Modification 2 of [5] as given
in (6).

2.3 Solving NPP a la SMO

As discussed in section 1 there are several procedures for the NPP problem
that have their origin in the MDM algorithm. In its original formulation as
a minimum norm problem, the MDM algorithm selects at each step updating
indices i2 = arg minj{W · Xj}, i1 = arg maxi{W · Xi : αi > 0}. While the
algorithm’s objective is to update the current weight W with the one in the line
segment between W and W + αi2 (Xi2 −Xi1) with minimum norm, it is clear
that the i2 and i1 choices also maximize Δ2 = (W · (Xi −Xj))

2 (the condition
αi > 0 for i1 candidates is needed, as the W update will decrease αi1). While
the approach in [8] to NPP is closer to the original MDM one as given in [12],
the one in [9] does in fact try to maximize Δ2.
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In any case the above index choices are clearly related to the previous discus-
sion for SMO and their minimization of Δ suggests to solve NPP as just done
in the preceding section, that is, to work at each step with just two multipliers
αi1 and αi2 and update a given W =

∑
αiyiXi to another one of the form

W ′ = W + δi1yi1Xi1 + δi2yi2Xi2 so that the minimization in the norm ‖W ′‖2 is
largest. The restrictions in (4) imply 2 =

∑
α′

i =
∑

αi + δi1 + δi2 = 2+ δi1 + δi2

and 0 =
∑

yiα
′
i =
∑

yiαi+yi1δi1+yi2δi2 = yi1δi1+yi2δi2 . The second one implies
that yi1δi1 = −yi2δi2 and, since the first one gives δi1 = −δi2 , we must also have
yi1 = yi2 . As a consequence, W ′ = W + δi2yi2 (Xi2 −Xi1) = W + δi2yi2Zi2,i1 ,
where again Zi,j = Xi −Xj ; thus, ‖W ′‖2 is a function of δi2 and we have

Φ(δi2 ) = ‖W ′‖2 = ‖W‖2 + 2δi2yi2W · Zi2,i1 + δ2
i2‖Zi2,i1‖2.

As done before, solving Φ′(δ∗i2 ) = 0 gives

δ∗i2 = −yi2

Δ

‖Zi2,i1‖2
, δ∗i1 = yi2

Δ

‖Zi2,i1‖2
,

where now Δ = W · Zi2,i1 and, in turn,

Φ(δ∗i2 ) = ‖W‖2 − Δ2

‖Zi2,i1‖2
. (12)

Thus, just as before, if we ignore the ‖Zi2,i1‖2 denominator, we can maximize
the gain in Φ by selecting i1 and i2 so that Δ is maximized. We do so setting
first

i+2 = arg maxi{W ·Xi : yi = 1}, i+1 = arg minj{W ·Xj : yj = 1},
i−2 = arg maxi{W ·Xi : yi = −1}, i−1 = arg minj{W ·Xj : yj = −1}, (13)

and deciding next which one of the pairs (i±2 , i
±
1 ) to choose, for which we compute

Δ+ = W ·
(
Xi+2

−Xi+1

)
, Δ− = W ·

(
Xi−

2
−Xi−

1

)
,

(notice that both are positive) and take i2 = i+2 , i1 = i+1 if Δ+ > Δ− and
i2 = i−2 , i1 = i−1 otherwise. We observe that the corresponding index choices in
the extension of MDM to NPP are

i+2 = arg maxi{W · (Xi −W−) : yi = 1},
i+1 = arg minj{W · (Xj −W−) : yj = 1},
i−2 = arg maxi{W · (Xi −W+) : yi = −1},
i−1 = arg minj{W · (Xj −W+) : yj = −1},

which are obviously equivalent to the previous ones.
In any case, and just as it was done for SMO, we must make sure that the

updated coefficients remain positive. Just as before we have Δ± > 0. Thus, if
yi2 = 1, δi+2

< 0 and, hence, we must have αi+2
> 0. On the other hand, if
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yi1 = −1, δi−
1

< 0 and, hence, we must have αi−
1

> 0. As a consequence, we
refine our previous choices of i+2 and i−1 in (13) to

i−1 = arg mini{W ·Xi : i ∈ I−SV }, i+2 = arg maxj{W ·Xi : i ∈ I+
SV }. (14)

As we show next, these choices coincide with those made in a slight variant of
SMO.

2.4 Enforcing yi1 = yi2 in SMO

Although in standard SMO the yi1 and yi2 values do not have to be equal, let
us discuss SMO’s formulation when at each iteration we force yi1 = yi2 (the
use of updates where all patterns used belong to the same class has also been
proposed for ν–SV training [16]). We then have δi1 = −yi1yi2δi2 = −δi2 and
W ′ = W + δi2yi2Xi2 − δi2yi2Xi1 = W + δi2yi2Zi2,i1 . Furthermore, (7) becomes
now

Φ(δi2 ) = W (α′) = W (α) + yi2W · Zi2,i1δi2 +
δ2
i2

2
‖Zi2,i1‖2, (15)

equation (8) for the optimum δ∗i2 becomes

δ∗i2 = −yi2

W · Zi2,i1

‖Zi2,i1‖2
= −yi2

Δ

‖Zi2,i1‖2
,

where here Δ = W · Zi2,i1 , and, again, we have

Φ(δ∗i2) = W (α) − 1
2

Δ2

‖Zi2,i1‖2
,

which has the same form that (12). Ignoring once more the denominator ‖Zi2,i1‖2,
this also suggests to take i2, i1 so as to maximize |Δ|, which leads to the same index
choices as done for MDM in the previous section.

Moreover, enforcing yi2 = yi1 implies that δi1 = −δi2 and also that, after ini-
tialization, the multipliers’ sum

∑
αi remains constant at each iteration. Thus,

in this setting, minimizing the dual criterion W (α) = ‖W‖2/2−
∑

αi reduces to
minimize just ‖W‖2 and if the αi are initialized so that

∑
αi = 2, the problem

that this SMO variant solves coincides with NPP. Moreover, since the updating
indices’ choices are the same in both cases, we can conclude that after a proper
initialization, enforcing yi2 = yi1 in SMO is equivalent to using MDM to solve
NPP.

3 SMO and MDM for Non–linearly Separable Problems

In the preceding discussion we have assumed that the original sample classes
were linearly separable. This assumption must be relaxed in practice allowing
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for margin slacks that are penalized using either a linear or a quadratic cost func-
tion. The theory for the linearly separable case extends easily to the quadratic
cost setting [13], but for a linear penalty we want to solve now the quadratic
minimization problem

min
W,b,ξ

1
2
‖W‖2 + C

∑
i

ξi, (16)

subject to the linear restrictions yi(W ·Xi + b) + ξi ≥ 1, i = 1, . . . , N . Its Wolfe
dual is now

W (α) =
1
2

∑
i,j

αiαjyiyjXi ·Xj −
∑

i

αi, (17)

where 0 ≤ αi ≤ C,
∑

i αiyi = 0. If NPP is to be considered, the alternative to
(16) would be to consider it for the so–called μ–Reduced Convex Hulls, defined
as Cμ(S±) = {

∑
αiXi : Xi ∈ S±,

∑
αi = 1, 0 ≤ αi ≤ μ}. We shall refer to this

new problem as RCHμ–NPP (see [7] for more details).
Considering first SMO, the only difference with respect the discussion in sec-

tion 2 is the restriction αi ≤ C, which forces the δi increments to be positive
only when αi < C. Thus, if yi2 = −1 we must have αi2 < C and if yi1 = 1 we
must have αi1 < C. As a consequence, in the non–linearly separable setting we
must refine the i2 and i1 choices in (11) to

i1 = arg mini{Fi : i ∈ I+
nBC

⋃
I−SV }, i2 = arg maxj{Fi : i ∈ I−nBC

⋃
I+
SV }.(18)

where now I±nBC
= {i : yi = ±1, αi < C}. It can be easily checked that these are

the same selections done in Modification 2 of [5]. Turning our attention to the
MDM algorithm for RCHμ–NPP, the situation is quite similar to the one just
discussed for SMO, as we have to make sure that when α = μ, decrementing
α is then the only option. As a consequence, we must now refine our previous
choices of i−2 and i+1 in (13) to

i+1 = arg mini{W ·Xi : i ∈ I+
nBμ

}, i−2 = arg maxj{W ·Xi : i ∈ I−nBμ
}, (19)

where now I±nBμ
= {i : yi = ±1, αi < μ}. Arguing as before, initializing the αi

and scaling C adequately, enforcing yi1 = yi2 results in SMO solving RCHμ–
NPP. We finally note that MDM–type algorithms for RCHμ–NPP have been
recently proposed [17] but they are conceptually more involved and computa-
tionally costlier than our just explained proposal.

4 Numerical Experiments

We shall compare the performance of the most basic versions of the SMO and
NPP algorithms over 10 of the datasets provided in G. Rätsch’s Benchmark
Repository [18]. We employed the same experimental set–up described in the
data site; in particular we used the provided 100 partitions (with about 40%
training and 60% test patterns) to compute the test accuracies and the num-
ber of final SVs and training iterations, as well as the corresponding standard
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Table 1. Average test accuracies, number of support vectors and number of iterations
given by the CH-MDM and 2-SMO algorithms, with ε = 10−8

Test err. # SVs # iters.
Dataset SMO MDM SMO MDM SMO MDM

Titanic 22.8±1.2 22.8±1.2 150.0±0.0 150.0±0.0 363.1±20.2 402.1±16.7

Heart 15.7±3.2 15.7±3.2 163.3±2.4 163.3±2.4 338.9±13.0 399.1±14.9

Diabetes 23.1±1.6 23.1±1.6 412.7±7.7 412.7±7.7 1565.7±45.1 1666.1±38.2

Cancer 26.5±4.8 26.5±4.8 179.3±5.9 179.3±5.9 1140.6±52.0 1226.2±54.3

Thyroid 4.3±1.9 4.3±1.9 87.4±3.0 87.4±3.0 226.7±10.3 243.6±9.9

Flare 33.5±1.7 33.5±1.7 664.5±0.7 664.5±0.7 1398.4±53.1 1652.6±51.2

Splice 10.6±0.7 10.6±0.7 728.6±12.7 728.7±12.8 4402.3±635.8 4835.6±667.7

Image 2.9±0.5 2.9±0.5 215.5±11.5 215.3±11.5 34447.9±2117.9 39560.6±3203.9

German 23.56±2.0 23.5±2.0 590.22±12.4 590.0±12.4 19099.1±971.7 20441.6±711.3

Banana 10.4±0.4 10.4±0.4 230.9±14.0 230.9±14.0 1313.0±83.1 1364.6±91.3

deviations. Before giving the concrete results, we briefly comment on some imple-
mentation details. First, and as usual, all algorithms only involve dot products,
that can be replaced through an appropriate positive definite kernel K. Next, we
notice that many improvements have been made to the basic SMO and MDM al-
gorithms, such as Platt’s type I and type II updates or support vector shrinking.
We will not consider them in our experiments as they are more or less applicable
to both procedures and likely to have similar effects. We also point out that we
must make sure that, for instance, 0 ≤ αi + δi ≤ C for linear penalties’ SMO
and that 0 ≤ αi + δi ≤ μ for RCHμ–NPP. This means that the δi will have to
be adequately bounded from above and below as necessary. Finally, the bo and
b∗ bias values are also different in SMO and MDM. For SMO we will take, as
usual,

bo =
1

NSV

∑
i∈ISV

(yi −W o ·Xi) =
1

NSV

⎛
⎝ ∑

i∈ISV

yi −
∑

i,j∈ISV

αjyjXj ·Xi

⎞
⎠

=
1

NSV

⎛
⎝ ∑

i∈ISV

yi −
∑

i,j∈ISV

αjyjK
′(xj , xi)

⎞
⎠ ,

with NSV the number of support vectors. For quadratic penalties we will use
K ′(xj , xi) = K(xj , xi)+ δij/C as the square penalty–adjusted version of a stan-
dard positive definite kernel K while we just take K ′ = K for linear penalties.
A simple geometric reasoning implies that the MDM bias will be

b∗ = −W ∗ ·
(
W ∗

+ + W ∗
−
)

2
= −1

2

∑
i,j∈ISV

αiαjyiK
′(xi, xj).
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Table 2. Average test accuracies, number of support vectors and number of iterations
given by the RCH-MDM and 1-SMO algorithms, with ε = 10−8. For test errors a ∗

stands for a statistically significant difference in a Wilcoxon rank test.

Test err. # SVs # iters.
Dataset SMO MDM SMO MDM SMO MDM

Titanic 24.1±8.0 24.0±7.4 67.2±11.3 113.9±8.8 156.6±32.7 164.2±28.7

Heart 15.8±3.2 16.0±3.1 82.4±5.4 82.4±5.4 217.1±63.6 306.2±59.6

Diabetes 23.4±1.6∗ 23.7±1.8 264.9±7.2 264.8±7.2 464.7±91.5 741.4±81.9

Cancer 27.3±5.9∗ 28.9±4.8 113.6±6.5 113.8±6.3 1705.3±897.4 3352.7±3841.2

Thyroid 4.4±2.1 4.2±2.0 25.3±5.7 25.3±5.7 328.2±124.4 398.9±117.1

Flare 32.7±1.6∗ 32.8±1.6 477.1±12.2 508.9±9.9 862.2±391.0 1401.4±881.5

Splice 10.7±0.6 10.8±0.6 620.2±14.2 629.2±13.6 2569.6±177.4 2797.4±290.5

Image 3.0±0.4 3.0±0.5 167.6±9.2 172.0±8.8 47972.5±11219.0 56169.9±10309.4

German 23.62±2.1∗ 24.0±2.1 407.6±10.7 407.7±10.8 1660.6±149.2 1884.5±144.8

Banana 11.5±0.6∗ 11.6±0.6 89.6±10.1 89.5±10.0 38236.0±14307.7 43449.9±25339.9

4.1 Quadratic Penalties

It is well known that SVM algorithms for linearly separable problems extends
immediately to non separable ones if square penalties C

∑
ξ2
i are applied to

margin slacks ξi [13]. We shall use a common initialization for both SMO and
MDM choosing a single vector from each class and setting αi1 = αi2 = 1. As
mentioned in section 2, the usual SMO stopping condition is blow ≤ bup + ε;
for the MDM algorithm one might use either Δ ≤ ε or also Δ ≤ ε‖W‖2/2.
While these conditions look similar, the norms of the SMO and MDM W vec-
tors involved are very different. Thus, in order to make more homogeneous
performance comparisons, we will use in both cases a similar relative preci-
sion criterion, stopping SMO when W (α) −W (α′) ≤ εW (α) and MDM when
‖W‖2 − ‖W ′‖2 ≤ ε‖W‖2.

We will compare the performance of the basic SMO and MDM implementa-
tion over three values: the number of training iterations they need, the number of
support vectors the final SVMs have and the test accuracies of the final models.
We will do so for a relative ε = 10−8 precision and the results of each method are
shown in table 1. In all cases we have used Gaussian kernels exp

(
−‖x‖2/2σ2

)
and optimal σ and C have been estimated by cross–validation. It can be seen in
the table that SMO is faster, as it needs less iterations to achieve the desired pre-
cisions. This is quite natural, as it has greater freedom when choosing at each
iteration the maximum gain multipliers. On the other hand, the final models
obtained seem to be very similar, as they essentially have the same accuracies
and support vector numbers; moreover, after the appropriate scaling, the corre-
sponding optimal dual function values were essentially the same. A ∗ superscript
for the test errors indicates a significant difference in a Wilcoxon rank test at
the 10% level; the final test error values are similar to those in [18].
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4.2 Linear Penalties

While for square penalties SMO and MDM use the same C parameter, the
situation for linear penalty SMO and RCH–MDM is more complex. In fact, and
as shown in the Appendix, the relationship between the C and μ parameters is
now μ = 2C/ρo, with ρo = ‖W o‖2+C

∑
ξo
i . Hence C and μ are not independent,

and they should be chosen differently depending on which algorithm is to be used.
In our experiments we have chosen for C the values proposed in [18] and once
SMO finishes for each training–test pair, we have subsequently trained RCH–
MDM using a μ value computed as just explained. Moreover, while the previous
two vector initialization for SMO is still possible, this is not so for RCH–MDM
and in this case we have chosen each sample barycenters as the initial W±
vectors. All this makes final model comparisons somewhat less homogeneous
than the square penalty ones, as shown in table 2, where now final accuracies
are similar for both methods (but less so than in the square penalty case) and
SMO models clearly have less support vectors. This last fact is due, however, to
the different initializations used: if SMO is trained starting from the barycenters
(not a good idea anyway), its final models have more SVs, implying that RCH–
MDM is better at removing wrong initial SV choices (the algorithm is in some
sense designed for that to be true). In any case, and for the initializations used,
SMO is again faster than RCH–MDM.

5 Discussion

The SMO algorithm for SVM construction and, on the other hand, the geo-
metrically inspired NPP solving algorithms such as extended MDM are usually
discussed as different, independent methods. We have shown in this note that,
however, these two methods are in fact very closely related, as they can be seen
as maximum gain algorithms for working sets of 2 multipliers. More precisely,
the extended MDM algorithm typically used to solve NPP essentially coincides
with a restricted form of SMO in which the working set multipliers correspond
to sample patterns in the same class. As we have numerically illustrated for
quadratic penalties, the basic SMO and MDM algorithms seem to arrive at the
same models when a moderately high precision is imposed in their final minima.
However, SMO seems to be faster, something quite natural, as it has greater
freedom when choosing at each iteration the maximum gain multipliers. While
the linear penalty comparison is more involved, it seems clear that SMO is again
faster. Another contribution of the present work is a proposal of an MDM algo-
rithm for RCHμ–NPP considerably simpler than previous ones.

While this would seem to imply that there will not be great advantages from
the consideration of geometric algorithms for SVM construction, we point out
that the usual speed enhancements for SMO, such as shrinking, can also be
applied to the MDM algorithm. On the other hand, there has been a considerable
amount of work in efficient solutions of the Minimum Norm Problem (MNP) for
convex sets, the question that lies at the heart of the MDM algorithm. Given
the close relationship shown here between the SMO and MDM methods, it is
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thus conceivable that insights gained for MNP algorithms can provide new ways
of accelerating SMO and other algorithms derived from it.
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conditions for SVM imply that at the optimum W o =
∑

αo
i yiXi we have αo

i = C
if ξo

i > 0, and also

αo
i (yi (W o ·Xi + bo)− 1 + ξo

i ) = 0,

that is, αo
i = αo

i (yi (W o ·Xi + bo) + ξo
i ). Summing over i gives

∑
αo

i =
∑

αo
i yiW

o ·Xi + bo
∑

αo
i yi +

∑
αo

i ξ
o
i

= ‖W o‖2 + C
∑

ξo
i ,

since
∑

αo
i yi = 0. If we write ρo = ‖W o‖2 + C

∑
ξo
i and define now

W ′ =
2
ρo

W o =
∑

i

2αo
i

ρo
yiXi =

∑
i

α′
iyiXi,

with α′
i = 2αo

i /ρ
o, we shall show that W ′ coincides with the optimal solution W ∗

to the RCHμ problem, with μ = 2C/ρo To prove it, notice first that
∑

i α
′
iyi = 0,∑

i α
′
i = 2 and α′

i ≤ μ. Thus, W ′ is a feasible solution of the RCHμ problem.
For any other RCHμ feasible W =

∑
αiyiXi, we have

W ·W ′ =
∑

i

αiyiW
′ ·Xi =

2
ρo

∑
i

αiyiW
o ·Xi =

2
ρo

∑
i

αiyi (W o ·Xi + bo)

≥ 2
ρo

∑
i

αi (1− ξo
i ) ≥ 2

ρo

(∑
i

αi −
2C
ρo

∑
i

ξo
i

)

=
2
ρo

(
2− 2C

ρo

∑
i

ξo
i

)
=

4
(ρo)2

(
ρo − C

∑
i

ξo
i

)

=
4

(ρo)2
‖W o‖2 = ‖W ′‖2.

By Schwarz’s inequality this implies ‖W‖ ≥ ‖W ′‖ and, in particular ‖W ∗‖ ≥
‖W ′‖, which by the uniqueness of the NPP solution implies W ′ = W ∗.
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Abstract. In many application areas of machine learning, prior knowledge con-
cerning the monotonicity of relations between the response variable and predictor
variables is readily available. Monotonicity may also be an important model re-
quirement with a view toward explaining and justifying decisions, such as accep-
tance/rejection decisions. We propose a modified nearest neighbour algorithm for
the construction of monotone classifiers from data. We start by making the train-
ing data monotone with as few label changes as possible. The relabeled data set
can be viewed as a monotone classifier that has the lowest possible error-rate on
the training data. The relabeled data is subsequently used as the training sample
by a modified nearest neighbour algorithm. This modified nearest neighbour rule
produces predictions that are guaranteed to satisfy the monotonicity constraints.
Hence, it is much more likely to be accepted by the intended users. Our exper-
iments show that monotone kNN often outperforms standard kNN in problems
where the monotonicity constraints are applicable.

1 Introduction

Monotonicity of relations between a response variable and predictor variables is a form
of prior knowledge that is available in many application areas of machine learning.
For example, in house pricing, the price of a house typically increases with the lot
size, and decreases with the distance to the city center. Other examples of monotonicity
constraints can be found in medicine [8,25], finance [16], and law [18].

Monotonicity may also be an important model requirement with a view toward
explaining and justifying decisions, such as acceptance/rejection decisions. Pazzani
et al.[21], report on an application of rule induction algorithms to early detection of
dementia, and prediction of mild mental retardation. They show that the rules learned
with monotonicity constraints were significantly more acceptable to medical experts
than rules learned without the monotonicity restrictions.

While human experts tend to feel uncomfortable expressing their knowledge and ex-
perience in terms of numeric assessments, they typically are able to state their knowl-
edge in a semi-numerical or qualitative form with relative conviction and clarity, and
with less cognitive effort [10]. Experts, for example, can often easily indicate which of
two probabilities is smallest. In addition to requiring less cognitive effort, such relative
judgements tend to be more reliable than direct numerical assessments [19].

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 301–316, 2008.
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Hence, monotonicity constraints occur frequently in machine learning problems and
such constraints can be elicited from subject area experts with relative ease and reliabil-
ity. This has motivated the development of learning algorithms that are able to enforce
such constraints in a justified manner. Several machine learning techniques have been
adapted to be able to handle monotonicity constraints in one form or another. Exam-
ples are: classification trees [7,12,22], neural networks [3,26], and Bayesian networks
[1,13].

In this paper we present an algorithm for nonparametric monotone classification.
Our approach consists of two steps. In the first step, the training data is made monotone
by relabeling as few cases as possible. This relabeled data set may be viewed as the
monotone classifier with the smallest error rate on the training data. In the second step,
we use a modified nearest neighbour rule to predict the class labels of new data in such
a way that the monotonicity constraints are satisfied.

The paper is organized as follows. In the next section, we establish some notation and
definitions that will be used throughout the paper. In section 3, we discuss the problem
of relabeling a non-monotone data set, and give an algorithm to make it monotone with
as few label changes as possible. Subsequently, we present in section 4 a monotone
variant of the k-nearest neighbour rule to predict the class labels of new data points.
Related work on nonparametric monotone classification is discussed in section 5. In
section 6 we present the results of experiments in which we compare the monotone
nearest neighbour rule with standard nearest neigbour prediction. Finally, we draw con-
clusions in section 7.

2 Notation and Preliminaries

Let X denote the vector of predictors (attributes), which takes values x in a p-
dimensional input space X = ×Xi, and let Y denote the class variable which takes val-
ues y in a one-dimensional space Y . Let D = {(xi, yi)}N

i=1 denote the set of observed
data points inX ×Y . We also use the alternative representation U = {(xi, yi)}n

i=1, of n
distinct points inX×Y together with a vector of weightswi = n(xi, yi), i = 1, . . . , n,
where n(xi, yi) denotes the number of observations in D with X = xi and Y = yi.
Clearly, we have N =

∑n
i=1 wi. Furthermore, we assume a partial order on X and a

total order on Y = {1, 2, . . . , c}, where c is the number of class labels. Typically, the
partial order on X is the product order induced by total orders on Xi, that is

x ≤ x′ ⇔ xi ≤ x′
i ∀i = 1, . . . , p,

but at no point do we require this to be the case. The objective is to learn from data an
allocation rule f : X → Y such that ∀x,x′ ∈ X :

x ≤ x′ ⇒ f(x) ≤ f(x′), (1)

that is, a lower ordered input is not allowed to have a higher class label. A pair of points
(xi, yi) and (xj , yj) from U (or D) is called non-monotone if

xi ≤ xj and yi > yj (2)
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We define the monotonicity violation graph (MVG) to be the directed graph G =
(V,E), with V = {1, 2, . . . , n} and (i, j) ∈ E if xi ≤ xj and yi > yj . We note
that the monotonicity violation graph is the graph of a strict partial order, since it is

1. Anti-symmetric: (i, j) ∈ E ⇒ (j, i) �∈ E.
2. Transitive: (i, j) ∈ E and (j, k) ∈ E ⇒ (i, k) ∈ E.

These properties follow immediately from the order on the class labels. We associate
with each node i ∈ V the weight wi. Finally, we define the downset ↓(i,S) and the upset
↑(i,S) for any S ⊆ V and i ∈ V :

↓(i,S)= {j ∈ S|xj ≤ xi} and ↑(i,S)= {j ∈ S|xi ≤ xj}.

3 Relabeling Non-monotone Data

The first step in our approach is to relabel the training data in order to remove all
monotonicity violations, using as few label changes as possible. The relabeled data
set can be viewed as a monotone classifier that minimizes the error rate on the training
data.

A subset of the vertices of a graph is an independent set if no two vertices in the sub-
set are adjacent. As Rademaker et al. [23] observe, a maximum weight independent set
in the monotonicity violation graph, corresponds to a maximum size monotone subset
of the data. Relabeling the complement of the maximum independent set results in a
monotone data set with as few label changes as possible; it is important to note that it
is always possible to find a consistent relabeling. Although finding a maximum inde-
pendent set in an arbitrary graph is known to be NP-hard [17], we make use of the fact
that this is not the case for comparability graphs (the graph of a partial order). For such
graphs, a maximum independent set corresponds to a maximum antichain in the corre-
sponding partial order, and can be computed in O(n3) time by solving a minimum flow
problem on a transportation network that is easily constructed from the comparability
graph, see [20,14]. As we noted, the monotonicity violation graph is a comparability
graph, so we have an O(n3) algorithm that minimizes

N∑
i=1

I(yi �= f(xi)),

subject to
xi ≤ xj ⇒ f(xi) ≤ f(xj), (3)

for an arbitrary partial order on X , and for an arbitrary number of linearly ordered class
labels.

We next describe the transformation of the monotonicity violation graphG = (V,E)
to the corresponding transportation network G′ = (V ′, E′). Let V − denote the set of
nodes in V with non-zero degree. Because the monotonicity violation graph has weights
associated with the vertices rather than the edges (as is assumed by standard network
flow algorithms), we transform vertices to edges, by so-called vertex splitting:
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V ′ =
⋃

i∈V −

{ia, ib} ∪ {s, t},

where s is the source, and t is the sink of the transportation network. The edge set
E′ contains edges (ia, ib) for all i ∈ V −, and edges (ib, ja) for all (i, j) ∈ E. Fur-
thermore, E′ contains edges (s, ia) for all minimal points xi, and edges (jb, t) for all
maximal points xj . The edges (ia, ib) ∈ E′ are assigned lower capacities wi and upper
capacities +∞. All remaining edges of E′ are assigned lower capacities of zero and up-
per capacities of +∞. The problem of finding the maximum weight independent set in
G can now be solved by finding the minimum flow value fmin

val in G′. Furthermore, by
the min-flow max-cut theorem [15], fmin

val equals the maximum capacity of an s, t-cut
(or maximum cut) in G′, that is,

fmin
val = max

S,T

⎡
⎢⎢⎣ ∑

(v,w)∈E′

v∈S,w∈T

lc(v, w)−
∑

(v,w)∈E′

v∈T,w∈S

uc(v, w)

⎤
⎥⎥⎦ ,

where S, T is an s, t-cut of G′ = (V ′, E′), that is, V ′ = S ∪ T , S ∩ T = ∅, s ∈ S,
t ∈ T , and where lc(v, w) and uc(v, w) denote the lower and upper capacity of edge
(v, w) ∈ E′.

Obviously, fmin
val must be positive, and therefore an optimal cut S, T contains no

edges (v, w) ∈ E′ with v ∈ T and w ∈ S, since uc(v, w) = +∞ for each such edge.
This implies that the set of vertices

A = {i ∈ V | (ia, ib) ∈ E′, ia ∈ S, ib ∈ T } (4)

corresponding to an optimal cut, is an antichain of G. To see this, suppose that A is not
an antichain, that is, it contains comparable points i and j. Then, by the definition of A,
we have ia and ja ∈ S, and ib and jb ∈ T . Since i and j are comparable, we have either
(ib, ja) ∈ E′ or (jb, ia) ∈ E′ which means we would have an edge from T to S in E′.
But this contradicts our observation that fmin

val must be positive.
Furthermore, since each antichain A in G induces an S, T cut in G′ by putting

S = {v ∈ V ′ | there is a directed path in G′ from v to ib for some i ∈ A}

we have that the minimum flow value in G′ equals the maximum weight of an antichain
in G [20].

Although in the worst case, the run time of the algorithm is cubic in the number of
distinct observations, it may be quite fast in practice because of two reasons. First, all
points that are not involved in any monotonicity violations can be disregarded, because
they will never be relabeled. Since they are not connected to any other point in the
MVG, they will belong to every maximum independent set. Hence the restriction to
nodes in V − in the transportation network. If the data generating process is indeed
monotonic, and any monotonicity violation is caused by noise, then it is reasonable to
assume that most points are not involved in a monotonicity violation. Secondly, we can
apply a divide-and-conquer strategy by finding a maximum independent set for each
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Fig. 1. Example Monotonicity Violation Graph

connected component of the MVG separately. The union of these sets will then be a
maximum independent set for the complete graph.

The relabeling algorithm is summarized in Algorithm 1. It takes the training set and
its monotonicity violation graph as inputs, and returns the relabeled training set. In line
6 the actual relabeling takes place. The function select picks a value from the interval
of allowed class labels [ymin, ymax]; this interval always contains at least one element,
since the set of points with index in M is always consistent. Which element it picks is
arbitrary from the viewpoint of error-rate minimization.

Algorithm 1. relabel(U,G = (V,E))
1: M ← maximum independent set(G)
2: R ← V \ M
3: for all j ∈ R do
4: ymin ← max{yi|i ∈↓(j,M)}
5: ymax ← min{yi|i ∈↑(j,M)}
6: yj ← select(ymin,ymax)
7: M ← M ∪ {j}
8: end for
9: return U

As an example, consider the data set with monotonicity violation graph depicted in
Figure 1. Here x1, . . . ,x7 are plotted as points in the plane, and their observed class la-
bels are given inside the points. If both x1 and x2 are known to have a positive influence
on y, then the appropriate ordering on the input points is given by

x ≤ x′ ⇔ x1 ≤ x′
1 ∧ x2 ≤ x′

2

So, for example, we have x1 ≤ x2, but x2 and x3 are incomparable points. The cor-
responding monotonicity violation graph is G = (V,E) with V = {1, 2, 3, 4, 5, 6, 7},



306 W. Duivesteijn and A. Feelders

s t

x1a

x2a

x1b

x2b

x3a x3b

x5a x5b

x6a x6b

x7a x7b

0

0

0

0

0 0

0

00

01

1

1

1

1

1

Fig. 2. Transportation network based on the Monotonicity Violation Graph in Figure 1

E = {(1, 2), (1, 3), (1, 7), (5, 7), (6, 7)}, and V − = V \{4}. Figure 2 depicts the trans-
portation network associated with G. Each of the points in V − is represented by an
edge with a lower capacity of one (all data points happen to be unique in this example),
and an upper capacity of +∞. The connections to the source and the sink, and the edges
representing the monotonicity violations are assigned lower capacities of zero and up-
per capacities of +∞. For the network flow in Figure 2, we find fmin

val = 4, that is, the
weight of the maximum weight antichain A is 4. This set is obtained by the S, T -cut,
where S = {s,x1a,x1b,x2a,x3a,x5a,x6a}, T = V ′\S. Using equation (4), we find
A = {2, 3, 5, 6}. Adding x4 gives M = {2, 3, 4, 5, 6}. Finally, the set complement to
the maximum weight independent set is the set of points that need to be relabeled to get
monotone data. Hence, we find that the set of points that need to be relabeled to make
D monotone is R = V \M = {1, 7}.

Because the class label is binary, there is only one alternative label for each point,
so relabeling is automatic. For binary classification problems, we can also accomodate
different misclassification (relabeling) costs. Let C(j, k) denote the cost of relabeling
an example from class j to class k. Define weights

wi =
{
n(xi, yi)C(1, 2) if yi = 1
n(xi, yi)C(2, 1) if yi = 2

We now obtain a minimum cost relabeling by finding a maximum weight independent
set in the MVG, and relabeling its complement. To illustrate, consider the case where
C(1, 2) = 1 and C(2, 1) = 3. Hence, all points in Figure 1 with class label 1 receive a
weight of 1, and all points with class label 2 receive a weight of 3. The reader can verify
that the maximum weight independent set is M = {1, 4, 5, 6} and hence R = {2, 3, 7}:
it has become cheaper to relabel both 2 and 3, instead of relabeling 1. Unfortunately,
this straightforward approach can not be extended to the non-binary case, because we
then have more than one relabeling option, and we can therefore not associate a unique
weight with each node.

The relabeled data set can be viewed as a monotone classifier that minimizes the
error-rate on the training data. This classifier is however only defined on the observed
data points. In case we have just a few discrete input variables, these might cover the
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entire input space, but in general this will not be the case. Hence, the classifier has to
be extended to the entire input space in such a way that the monotonicity constraints
are satisfied, and the information contained in the observed data points is used to its full
extent to classify new cases. This problem is discussed in the next section.

4 Monotone kNN

In order to satisfy the monotonicity restrictions, it is clear that the class label assigned
to a new data point x0 is constrained to lie in the the interval [ymin, ymax], where

ymin = max{y|(x, y) ∈ D ∧ x ≤ x0},

and
ymax = min{y|(x, y) ∈ D ∧ x0 ≤ x},

where D is the relabeled data set. The choice of a value from this interval is however
free, and hence it makes sense to make further use of the observed data to guide this
choice. We consider two variants on the standard nearest neighbour rule:

1. Take the k nearest neighbours of x0 from D and predict the label from [ymin, ymax]
that occurs most often among these k points. If none of the k labels are allowed,
choose at random from [ymin, ymax].

2. Take the k nearest neighbours of x0 from D with label in [ymin, ymax] and predict
the label by majority voting.

Variant 1 uses at most k neighbours in the majority voting, variant 2 always uses exactly
k neighbours. The two variants are equivalent if the class label is binary, since in that
case there is a choice of label only when both labels are allowed, but then both variants
are the same as the standard nearest neighbour rule.

If we want predictions to be consistent among themselves as well (and not just with
the training sample), then we should store the points with their predicted class labels
to be used in subsequent predictions. It is clear that in this case, the order of arrival of
points to be predicted makes a difference.

To visually illustrate the difference between standard nearest neighbour and
monotone nearest neighbour, we consider a small example. Suppose the training data
consists of the three points plotted in Figure 3. Next to each data point, its (x1, x2) coor-
dinates and class label are given. The figure also gives the partitioning of the input space
according to the 1-nearest neighbour rule, the so-called Voronoi diagram. It is clear that
the resulting allocation rule is not monotone. In Figure 4 we have given the allocation
rule for the next prediction of the monotone 1-nearest neighbour rule. Since all points
smaller than (4,8) can not get a class label bigger than 1, the allocation rule has been
adjusted accordingly. Note that this allocation rule is not monotone in general, but it is
monotone with respect to the three points in the training sample. If predictions do not
have to be monotone among themselves, then Figure 4 gives the monotone 1-nearest
neighbour allocation rule. Otherwise, it may have to be updated after each prediction.
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Fig. 3. Allocation rule of 1 nearest neighbour. For each data point its (x1, x2) coordinates and
class label are given.

5 Related Work

As mentioned in the introduction, several machine learning methods have been adapted
to incorporate monotonicity constraints. In this section, we restrict our attention to work
that is relevant specifically to the nonparametric monotone classification problem that
we are considering in this paper.

The earliest work in this area known to us is the Ordinal Learning Model (OLM) of
Ben-David [5,6]. They construct a so-called rule base from a set of training examples.
The rule-base R is a subset of the training examples, and is composed of consistent
and irredundant examples. Consistency here refers to the monotonicity requirement.
The algorithm sequentially adds examples from the training set to the rule-base, but if
an example violates the monotonicity restriction with one or more examples already
present in R, then it is discarded. Due to the prediction rule of OLM, examples may
also be redundant with respect to the current rule base. OLM allocates a new case x0 to
the largest class among the points in R that precede it:

fOLM(x0) = max{y | (x, y) ∈ R ∧ x ≤ x0} (5)

As a consequence, if (x, y) ∈ R then any (x′, y) with x ≤ x′ does not affect the
labeling of new instances. Hence (x′, y) is redundant with respect to (x, y). If there is
no (x, y) ∈ R with x ≤ x0, then x0 is allocated to the class of the point in R nearest
to it, that is, according to the 1-nearest neighbor rule. We note that the composition of
the final rule-base critically depends on the order in which the examples are processed.
In particular, when an unfortunate choice is made for the first example, then many of
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Fig. 4. Allocation rule of monotone 1-nearest neighbour. For each data point its (x1, x2) coordi-
nates and class label are given.

the training samples will have to be discarded. Furthermore, as pointed out in [9], non-
monotone prediction results are possible due to the 1-nearest neighbor rule used in case
no points smaller than x0 are contained in the rule-base. The most important difference
between OLM’s prediction rule and ours, is that OLM does not make use of the class
labels of nearby points in making its predictions: as shown in equation (5) it simply
takes the maximum label of all points that are smaller than the point to be predicted.

Cao-Van [9] presents an algorithm called Ordinal Stochastic Dominance Learner
(OSDL), which learns a collection of probability distributions over the class variable,
under the restriction that

x ≤ x′ ⇒
i∑

j=1

Pr(y = j | x) ≥
i∑

j=1

Pr(y = j | x′), (6)

for i = 1, 2, . . . , k − 1. In words, if x precedes x′ in the ordering, then the distribution
of Y in x′ must be stochastically larger than the distribution of Y in x. Although the
interpretation of the monotonicity constraint in terms of stochastic dominance is a use-
ful one for probabilistic classifiers, an allocation rule that assigns an input point to the
mode of this distribution will not in general be monotone, unless the class variable is
binary. In case an outright assignment to a class is required, OSDL therefore takes the
median class value according to P̂r(Y |x). This could be interpreted as an attempt to
minimize L1 loss, although this is not stated explicitely. The conditional probabilities
Pr(Y |x) are estimated in a nonparametric way; for details we refer to [9].
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Dykstra et al.[11] propose a nonparametric monotonic classification procedure that
minimizes L1 loss

N∑
i=1

|yi − f(xi)|,

subject to
xi ≤ xj ⇒ f(xi) ≤ f(xj),

where the class labels are numbered {1, 2, . . . , c}. Their algorithm requires the perfor-
mance of c− 1 isotonic regressions [24] to find an optimal solution. They also provide
an algorithm that minimizes L2 loss that requires the performance of a single isotonic
regression. Note that in the important special case of binary classification, minimizing
either of these loss functions results in minimal 0/1 loss as well. This is however not the
case if there are more than two class labels. The use of squared error loss or absolute
error loss presupposes more than an ordering of the class values. Even though these val-
ues may be numbered 1, 2, . . . , c for convenience, this does not imply that performance
of numerical operations on them is meaningful. On the other hand, it does make sense
to presume that classifying a class 1 observation as class 5, is worse than classifying it
as class 2.

Dykstra et al.[11] indicate possibilities to extend the relabeled training data to a
monotone prediction rule for the entire input space, but like OLM without using any
information in the training data beyond the ordering of data points.

6 Experiments

In order to test the proposed classification algorithm, we conducted a number of exper-
iments. In all these experiments, we compared the performance of monotone kNN with
that of standard kNN, in order to make sure we are not obtaining monotone models at
the expense of predictive accuracy. If a monotone model is really required, then a small
increase of the error might be acceptable, but clearly this should be within reasonable
limits. On the other hand, if the problem really is monotone, then we might even expect
an improvement of the accuracy.

We selected a number of data sets for which the presence of an increasing (or de-
creasing) relation between the attributes and the response variable was a priori plausi-
ble. Table 1 gives an overview of the data sets we used. All data sets have been taken
from the UCI machine learning repository [4], except for Windsor Housing1 [2], and
Employee Selection 2 [6].

As an example, in Table 2 we give the signs of the relations between the attributes
and the response that we use for the AutoMpg data set.

For the Australian credit approval data, we only used columns 7, 8, 9 and 10 of
the attributes from the original data set. For the Boston housing data, we excluded the

1 Available from the Journal of Applied Econometrics Data Archive at http://econ.
queensu.ca/jae/

2 Available at http://www.cs.waikato.ac.nz/ml/weka/index datasets.
html

http://econ.
queensu.ca/jae/
html
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Table 1. Data sets used in the experiments. The number of attributes given is after preprocessing.
The column labeled Comparability gives the fraction of all pairs of data points x,x′ for which
x ≤ x′, or x′ ≤ x.

Data set # points # attributes Target Comparability
Australian credit approval 690 4 Binary 0.7162
AutoMpg 392 7 Numeric 0.4009
Boston housing 506 12 Numeric 0.1910
Employee Selection 488 4 9 Classes 0.7065
Haberman survival 306 3 Binary 0.3123
Machine (cpu performance) 209 6 Numeric 0.4950
Pima indians diabetes 768 8 Binary 0.0732
Windsor housing 546 11 Numeric 0.2737
Wisconsin breastcancer 683 9 Binary 0.2710

Table 2. Signs used between the target Miles per gallon and the different attributes in the Auto-
Mpg data set

Attribute Type Sign
mpg continuous target
cylinders multi-valued discrete −
displacement continuous −
horsepower continuous −
weight continuous −
acceleration continuous +
model year multi-valued discrete +
origin multi-valued discrete +

Charles River dummy variable. In the experiments we used a number of data sets with
a binary target, one with 9 class values (Employee Selection) and some with a numeric
target (see Table 1). The numeric targets have been discretized into two and four in-
tervals; the intervals were chosen so that each one contained approximately the same
number of cases. In order to check whether our a priori ideas about monotonicity are
confirmed by the data, we compared the number of non-monotone pairs present in a data
set of size N , to the average number of non-monotone pairs of that same data set, but
with the N class labels randomly permuted. The idea is that such a random permutation
of class labels represents a non-monotone process, and hence the distribution obtained
by computing the number of non-monotone pairs for a great number of such random
permutations, can be loosely interpreted as its distribution under the null-hypothesis of
a non-monotone process. Table 3 shows the result of these computations for the data
sets with binary class label. The last column gives the ratio of the observed number of
non-monotone pairs (as given in the first column) to its average for 1000 permuted data
sets (as given in the second column). Note that the Haberman data set has by far the
highest ratio, and so perhaps the monotonicity assumption is dubious in this case. We
don’t have a clearcut criterion to decide on that however. Table 4 provides the same
information for the data sets with non-binary classes.
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Table 3. Monotonicity test results: two classes

Data set # pairs Mean Std.dev. Ratio
Australian 8087 42649.0 2258.1 0.190
AutoMpg 21 7716.5 733.3 0.003
Boston 309 6113.0 612.5 0.051
Haberman 1784 2848.2 379.4 0.626
Machine 86 2714.0 311.4 0.032
Pima 482 4923.9 569.2 0.098
Windsor 429 10187.0 875.1 0.042
Wisconsin 9 14472.0 1357.4 0.001

Table 4. Monotonicity test results: non-binary classes

Data set # pairs Mean Std.dev. Ratio
AutoMpg 74 11557.0 816.4 0.006
Boston 691 9175.8 739.4 0.075
Employee 1125 34236.0 1600.1 0.033
Machine 167 4070.2 359.2 0.041
Windsor 1328 15302.0 970.2 0.087

The experiments were performed with 10-fold cross-validation. For monotone near-
est neighbour this was done as follows. For each fold, we

1. relabeled the observations in 9 parts of the data to remove any monotonicity
violations;

2. used the relabeled data to predict the class labels of the remaining part with the
monotone nearest neighbour rule.

For prediction we considered the quasi-monotone prediction rule (predictions have
to be consistent only with the training data) as well as the monotone prediction rule
(predictions also have to be consistent among themselves). For the monotone prediction
rule, the points predicted thus far were used only to determine the interval of allowed
class labels for a new point; they were not used in voting for the class label of the new
point.

The results for the quasi monotone prediction rule for problems with two classes are
given in Table 6, and for problems with more than two classes in Table 7. They were
computed with prediction rule variant 1 as discussed in Section 4. Preliminary experi-
ments showed the results of the two variants were virtually the same, and
variant 1 is easier to compute. Likewise, the results for the monotone prediction rule
were virtually identical to those for the quasi monotone rule, and are therefore not re-
ported separately. The results have been summarized in Table 6 and Table 7 as follows.
We took the best result of kNN for k = 1, 3, 5 and compared its error with the error of
monotone kNN for that same value of k (usually they had their lowest error rate for the
same value of k). The last column indicates what value of k that was. The p-values were
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Table 5. Cross-table for comparison of classifiers. For example, b is the number of cases classified
incorrectly by kNN but correctly by monotone kNN.

ImkNN CmkNN

IkNN a b
CkNN c d

Table 6. Comparison of error rates of kNN and monotone kNN with quasi-monotone prediction
rule for two-class problems

data set kNN mkNN Winner p-value k

Australian 18.3% 16.4% mkNN 0.0984 5
AutoMPG 8.7% 7.9% mkNN 0.6476 1
Boston 20.6% 18.8% mkNN 0.1996 1
Haberman 26.5% 28.4% kNN 0.4050 3
Machine 15.3% 14.8% mkNN 1 1
Pima 25.7% 25.9% kNN 0.9050 3
Windsor 26.4% 20.9% mkNN 0.0001 5
Wisconsin 3.7% 3.5% mkNN 1 5

computed using an exact binomial test. We computed a cross-table as given in Table 5
and performed a binomial test of b successes on b + c trials under

H0 : π = 1
2 Ha : π �= 1

2

where π denotes the probability of success. The p-value was computed with the function
binom.test in the R system3.

Comparing the error rates for the two-class problems (see Table 6), monotone kNN
performs better in all cases, except for the Haberman and Pima data sets. The result
for Haberman is not surprising, given the relatively high number of nonmonotone pairs
we found in our preliminary calculations. For the Pima data, this ratio is also relativey
high, but not as high as for the Australian data, and there we did find a substantial
improvement of monotone kNN over standard kNN. Hence, the computed ratio by itself
is not a perfect indicator for the success of the monotone model.

Looking at the problems with more than two classes (see Table 7), the advantage of
enforcing the monotonicity constraint appears even more prominent. Monotone kNN
has the lower estimated error rate in all cases, and in two cases significantly so. The
effect of the monotonicity constraint can be appreciated clearly by looking at the per-
formance for k = 1 (see Table 8): it appears to reduce if not prevent the overfitting
of standard kNN. The Employee Selection data set is a good example: standard kNN
breaks down, whereas monotone kNN isn’t performing much worse than for higher
values of k.

3 See www.r-project.org
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Table 7. Comparison of error rates of kNN and monotone kNN with quasi-monotone prediction
rule for problems with more than two classes

data set kNN mkNN Winner p-value k

AutoMPG 22.2% 21.9% mkNN 1 1
Boston 49.8% 42.1% mkNN 7.2 × 10−6 5
ESL 30.1% 29.7% mkNN 0.890 5
Machine 37.8% 34.5% mkNN 0.324 3
Windsor 51.8% 46.5% mkNN 0.009 3

Table 8. Comparison of error rates of kNN and monotone kNN for problems with more than two
classes and k = 1

data set kNN mkNN Winner p-value
AutoMPG 22.2% 21.9% mkNN 1
Boston 50.0% 44.5% mkNN 0.0015
ESL 45.1% 30.5% mkNN 2.231 × 10−11

Machine 39.7% 33.5% mkNN 0.066
Windsor 52.4% 46.2% mkNN 0.0017

We conclude on the basis of these experiments that enforcing the monotonicity con-
straint does not lead to a deterioration of predictive accuracy, on the contrary, we have
found it usually leads to an improvement. In addition, the monotone models are much
more likely to be accepted by their intended users, since its predictions are in accor-
dance with their qualitative domain knowledge.

7 Conclusion

We have proposed an adaptation of the k-nearest neighbour rule, to allow for the inclu-
sion of monotonicity constraints. Such constraints can often be elicited reliably from
subject area experts. We have shown that the use of monotonicity constraints can give
substantial improvements in predictive performance over the standard k-nearest neigh-
bour classifier. More importantly, the resulting models are much more likely to be ac-
cepted by their intended users, because their predictions are in accordance with their
qualitative domain knowledge.

The results we obtained encourage us to explore further possibilities in this direction.
One could, for example, investigate how minimization of L1 or L2 loss in the relabeling
phase (as proposed by Dykstra et al. [11]) would influence the predictive performance
of the monotone nearest neighbour rule. Minimization of the error rate on the training
sample (as performed by the current relabeling algorithm) does after all not necessarily
lead to the lowest error on a test sample. Another possibilty is to look for improvements
in the relabelling phase. Currently, points are relabelled to arbitrary values from their
allowed intervals. More sophisticated alternatives could be considered here.
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2. Anglin, P.M., Gençay, R.: Semiparametric estimation of a hedonic price function. Journal of
Applied Econometrics 11(6), 633–648 (1996)

3. Archer, N.P., Wang, S.: Application of the backpropagation neural network algorithm with
monotonicity constraints for two-group classification problems. Decision Sciences 24(1),
60–75 (1993)

4. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
5. Ben-David, A.: Automatic generation of symbolic multiattribute ordinal knowledgebased

DSS: methodology and applications. Decision Sciences 23, 1357–1372 (1992)
6. Ben-David, A., Sterling, L., Pao, Y.: Learning and classification of monotonic ordinal con-

cepts. Computational Intelligence 5, 45–49 (1989)
7. Ben-David, A.: Monotonicity maintenance in information-theoretic machine learning algo-

rithms. Machine Learning 19, 29–43 (1995)
8. Bloch, D.A., Silverman, B.W.: Monotone discriminant functions and their applications in

rheumatology. Journal of the American Statistical Association 92(437), 144–153 (1997)
9. Cao-Van, K.: Supervised ranking, from semantics to algorithms. PhD thesis, Universiteit

Gent (2003)
10. Druzdzel, M.J., van der Gaag, L.C.: Elicitation of probabilities for belief networks: combin-

ing qualitative and quantitative information. In: Besnard, P., Hanks, S. (eds.) Proceedings
of the 11th Conference on Uncertainty in Artificial Intelligence (UAI 1995), pp. 141–148.
Morgan Kaufmann, San Francisco (1995)

11. Dykstra, R., Hewett, J., Robertson, T.: Nonparametric, isotonic discriminant procedures. Bio-
metrika 86(2), 429–438 (1999)

12. Feelders, A., Pardoel, M.: Pruning for monotone classification trees. In: Berthold, M.R.,
Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 1–12.
Springer, Heidelberg (2003)

13. Feelders, A., van der Gaag, L.: Learning Bayesian network parameters with prior knowledge
about context-specific qualitative influences. In: Bacchus, F., Jaakkola, T. (eds.) Proceedings
of the 21st Conference on Uncertainty in Artificial Intelligence (UAI 2005), pp. 193–200.
AUAI Press (2005)

14. Feelders, A., Velikova, M., Daniels, H.: Two polynomial algorithms for relabeling non-
monotone data. Technical Report UU-CS-2006-046, Department of Information and Com-
puting Sciences, Utrecht University (2006)

15. Ford, L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press, Princeton (1962)
16. Gamarnik, D.: Efficient learning of monotone concepts via quadratic optimization. In: Pro-

ceedings of the eleventh annual conference on computational learning theory, pp. 134–143.
ACM Press, New York (1998)

17. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of NP-
completeness. Freeman, New York (1979)

18. Karpf, J.: Inductive modelling in law: example based expert systems in administrative law.
In: Proceedings of the third international conference on artificial intelligence in law, pp. 297–
306. ACM Press, New York (1991)

19. Meyer, M.A., Booker, J.M.: Eliciting and Analyzing Expert Judgment: A Practical Guide.
Statistics and Applied Probability. ASA-SIAM, Philadelphia (2001)
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Abstract. In this paper, we propose a novel graph-based method for
knowledge transfer. We model the transfer relationships between source
tasks by embedding the set of learned source models in a graph using
transferability as the metric. Transfer to a new problem proceeds by
mapping the problem into the graph, then learning a function on this
graph that automatically determines the parameters to transfer to the
new learning task. This method is analogous to inductive transfer along a
manifold that captures the transfer relationships between the tasks. We
demonstrate improved transfer performance using this method against
existing approaches in several real-world domains.

1 Introduction

Knowledge transfer from previously learned tasks to a new task is a fundamental
component of human learning. Transfer enables us to learn complex tasks quickly
by automatically building on our previous knowledge. Recent research efforts
have shown that transfer can also improve machine learning, enabling more
rapid learning or higher levels of performance.

Most machine learning methods for transfer rely on an explicit set of source
tasks to identify a set of model parameters that can be transferred to a new target
task. In many cases, these source tasks are hand-selected by an expert in advance.
Methods for transfer may combine information from all source tasks [1,2] or
may use information from only a few tasks chosen by an automated process [3].
Accidentally transferring from irrelevant source tasks may inhibit learning and
decrease performance—a phenomenon known as negative transfer. Our approach
to transfer explicitly models the transfer relationships between the source tasks
to automatically avoid this problem and transfer only relevant information.

Given a set of source tasks and a target task, our method attempts to auto-
matically determine the knowledge to transfer in learning the target task. In our
formulation, this knowledge is a vector of model parameters. We estimate the
transfer relationships between the source tasks and embed them into a graph, us-
ing a notion of transferability to determine the edge weights. This model transfer
graph corresponds to a discrete approximation of a high-dimensional manifold
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that captures the transfer relationships between the source tasks. Tasks that are
close on this manifold have high transferability; tasks that are far apart have
low transferability. Each task has an associated vector of model parameters that
represents the knowledge at its location.

Intuitively, each location on the transfer manifold has an ideal parameter
vector that should be transferred in learning a task at that location. Therefore,
we can determine the knowledge to transfer to a target task by approximating
the parameter vector at the target task’s location on the manifold. Given a new
target task, we first extend the the graph to include the new task. We define
a function on the graph that determines the parameters to transfer to each
location in the graph. By its construction, this transfer function respects the
local geometry of the graph and, therefore, the transfer relationships among the
source tasks. We learn the transfer function using the source tasks’ parameters as
samples of the function at various locations on the transfer manifold. Then, we
evaluate the function at the new task’s location to yield the parameter vector to
transfer in learning the new task. We also define a reusable form of the transfer
function that can be used for multiple transfer scenarios without relearning.

2 Related Work

Parameter-based transfer has been used by Marx et al. [1] to learn logistic re-
gression models. They fit logistic regression models independently to each source
task, and then estimate the prior distribution for the target model’s weights a
posteriori from the source tasks’ models. Kienzle & Chellapilla [2] use a weight
vector for transfer in SVMs, biasing the regularization term toward the weight
vector, instead of the zero vector as in standard SVM training. The biased logis-
tic regression method we propose in Sect. 3 is based on a combination of biased
regularization and Marx et al.’s logistic regression transfer.

In contrast to the approaches of Marx et al. and Kienzle & Chellapilla, which
combine knowledge from all given source tasks for transfer, Thrun & O’Sullivan’s
Task Clustering (TC) algorithm [3,4] groups tasks for more selective transfer.
Their method also transfers parameter vectors, sharing weighted Euclidean dis-
tance metrics between k-nearest-neighbor classifiers. Transfer occurs by having
one k-nearest-neighbor model use the distance metric from another model. Their
approach optimizes a single distance metric for each cluster, effectively deter-
mining an average parameter vector for each cluster of tasks. Upon receiving a
new task, the TC algorithm matches the new task to a cluster, then transfers
that cluster’s distance metric to the new task. Our approach is similar to Thrun
& O’Sullivan’s in determining the transfer relationships between tasks. How-
ever, the TC algorithm transfers only a single parameter vector to all tasks in a
cluster, while our flexible transfer function allows each location on the transfer
surface to have a different parameter vector based on the local geometry.

Bakker & Heskes [5] take a Bayesian approach to clustering tasks, using EM
to optimize the clusters. They also use a gating network, similar to that used in
the mixture-of-experts model [6], on top of the Bayesian EM framework to allow
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the priors to vary depending on the task’s features. Pratt’s Discriminability-
Based Transfer method [7] for neural networks selectively transfers weights from
a learned network, modifying them as needed to enable learning on a target task.
Explanation-Based Neural Networks [8] use a more indirect approach to para-
meter transfer, using extracted invariances about a domain to bias the learning
of model parameters. These approaches allow some of the model parameters to
be dependent on the source tasks, while others are fit to the target task’s data.
In our approach, we allow all of the transferred model parameters to be modified
in the final learned model, if the target task’s data warrants such an adjustment.

3 Transfer Using Biased Logistic Regression

We define a task as a mapping from an instance space X ⊂ Rd to a set of labels
Y ∈ N. All tasks map from the same X to the same Y. The goal for learning the
model for a task is to recover the true mapping X → Y from the labeled training
data. Each learned model can be characterized as a vector of parameters, which
can be transferred in learning a model for another task.

Our approach requires a base transfer learning algorithm to learn the models
for each task. We use a biased form of logistic regression as the base learning
algorithm in the experiments. Biased logistic regression penalizes deviations from
a given parameter vector in Rd, effectively biasing the learned model toward the
transferred parameters. While we focus on this transfer learning algorithm, our
method can utilize other parameter-based transfer learning algorithms.

The well-known logistic regression model gives the probability of an instance
x having a binary label y as:

P (y = 1|x) =
exp(xβ)

1 + exp(xβ)
, (1)

P (y = 0|x) = 1− P (y = 1|x) , (2)

where x ∈ Rd and β ∈ Rd. The parameter vector β is obtained by maximizing
the log-likelihood of the labeled training data {(xi, yi)}q

i=1:

l(β) =
q∑

i=1

[yi logP (yi = 1|xi) + (1− yi) logP (yi = 0|xi)] . (3)

Combining ridge estimation with logistic regression1 [10,11] adds a penalty on
the norm of β, and involves choosing β to maximize the penalized log-likelihood
lλ(β) = l(β)−λ‖β‖2, where λ is the ridge parameter that controls the shrinkage
of the norm ‖β‖ =

√∑
j β

2
j .

To use logistic regression for transfer, we penalize deviations of β from a given
transferred vector β0:

lλ(β) = l(β)− λ‖β − β0‖2 . (4)

1 We use the Weka machine learning toolkit’s implementation of this method [9].
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This approach is inspired by biased regularization of support vector machines
[2,12] and the logistic regression transfer method of Marx et al. [1].

Standard (non-biased) logistic regression corresponds to β0 as the zero vector.
This bias vector β0 can be transferred from the learned β of another logistic
regression model, allowing one logistic regression model to be biased toward
the parameters of another model. In practice, x and β are often augmented
to include a constant term for the intercept. Note that we do not transfer the
constant term, allowing it to be fit individually to each problem. When λ = 0,
the bias term disappears and does not affect the learned weights; as λ→∞, the
logistic regression learned weights approach the bias weights.

We use the Bayesian-optimal λ = σ2

τ2 [13], where σ2 is the variance of the
model’s log-likelihood errors {− logP (y = yi|xi)}q

i=1, and τ2 is the variance of
the elements of (β−β0). Viewed from the perspective of transfer, this assumption
implies a normal probability distribution over the transfer from β0 to β.

The logistic regression transfer method of Marx et al. [1] uses a similar con-
struction, in which they penalize deviations of the model parameters from a
given set of normal distributions, considering both means and variances derived
from the transferred parameter vectors. The method we use here (based on ridge
regression) corresponds to their method using a constant variance for all para-
meters, which is absorbed into λ. The major problem with using their method
in this application is that it is dependent on having a set of source tasks from
which to estimate the parameter variances and thereby the regularization; in
this application, we have only one source parameter vector and, therefore, no
variance.

4 Modeling the Transferability Between Source Tasks

Given a set of source tasks {ti}n
i=1, our approach is composed of three steps:

– Learn the base models {mi}n
i=1 for the source tasks {ti}n

i=1 (Sect. 4.1).
– Construct the model transfer graph to model the transfer relationships

between the source tasks (Sect. 4.2).
– Transfer to a new task tn+1 by extending the model transfer graph to

include tn+1, and then learning the transfer function f to determine the
parameter vector vn+1 to transfer to tn+1 (Sect. 5).

4.1 Learning the Base Models

Given the set of source tasks {ti}n
i=1, our first step is to learn the set of base

models {mi}n
i=1 for the source tasks. For a task ti, we learn the corresponding

model mi using biased logistic regression without transfer, biasing the model
parameters toward zero. We assume that sufficient training examples are given
for each source task to learn base models that have a high degree of performance.

Each trained model mi has an associated parameter vector vi ∈ Rθ, which can
be transferred in learning models for other tasks. For biased logistic regression
models, θ = d, with vi corresponding to the learned β vector.
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4.2 Constructing the Model Transfer Graph

Given the set of source tasks {ti}n
i=1 and their corresponding learned models

{mi}n
i=1, we embed these tasks in a space that captures the transfer relationships

between the tasks. Two tasks that have high transferability should be close in
the space; tasks that have low or negative transferability should be far apart.

We define transferability from task ti to tj as the change in performance on
task tj between learning with and without transfer from ti’s model. Although
we focus on this definition of transferability, our approach is general enough
to use other measures. This definition is very similar to the approach used by
Thrun and O’Sullivan [3]. While their task clustering method simply looks at
the change in performance for a specific number of training instances, we also
consider the average transferability over the entire learning curve.

We model the space of transfer using a model transfer graph, with each task
as a vertex in the graph. A pair of vertices are connected via an edge if they have
positive transferability; this edge is weighted based on the amount of positive
transferability between the tasks, which is in (0, 1].

We could directly plot the models in Rθ, since each model can be characterized
by its transferable parameter vector. However, this embedding ignores that the
transferred knowledge must improve performance on the target task. Similarity
between two parameter vectors does not imply that models using those vectors
will have similar performance on a task. Therefore, it is important to measure
similarity in the transfer space based on transferability.

The model transfer graph corresponds to a discrete approximation of the
continuous transfer manifold, using transferability as the metric. The source
tasks are known samples of various locations on the manifold, with each task ti
having an associated parameter vector vi. Transfer to a new task, as described in
Sect. 5, occurs by approximating the location of the new task on the manifold,
then using the transfer function to determine the parameter vector to transfer.

Measuring Transferability
We measure transferability from task ti to tj as the direct change in performance
between learning with and without transfer. For a task tj , we can generate two
learning curves for the task’s model: one for learning tj ’s model with trans-
fer from ti, and one for learning the model without transfer. For learning with
transfer, we use logistic regression biased toward the parameter vector vi that
characterizes ti’s base model mi. For learning without transfer, we use standard
regularized logistic regression, which is biased toward the zero vector. Any perfor-
mance measure that evaluates to a real number in [0, 1] can be used to compute
the performance (e.g., predictive accuracy, f-measure). In our experiments, we
use predictive accuracy on the held-out test set.

Let performancej(q) be the performance on task tj without transfer given q
training instances, and let performance i→j(q) be the performance on task tj with
transfer from ti given q training instances from task tj . Then, the transferability
from task ti to tj is given by

transfer i→j(q) = performance i→j(q) − performancej(q) . (5)
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Fig. 1. The transferability measure: transfer (q) = A

Note that transfer i→j ∈ [−1, 1], with positive transfer falling in (0, 1].
This definition of transferability for a given amount of training data lends

itself to a definition of overall transferability from task ti to tj . Specifically, we
can average Eqn. 5 over a range of values for q, yielding a measure of the overall
transferability from ti to tj . By considering transfer i→j across the entire learning
curve, we compute the expected amount of transfer for an arbitrary amount of
training data. This computation assumes a uniform probability distribution over
the amount of training data that will be available for a new task; it is a simple
matter to scale this computation for a non-uniform probability distribution.

Defining the Model Transfer Graph
The spectral graph analysis techniques we use to analyze the transfer surface
(Sect. 5.2) rely on the model transfer graph being undirected. A symmetric affin-
ity measure is the most natural representation for the transfer surface. However,
transfer by its nature is directed from source knowledge to a target task. There-
fore, transfer i→j is not guaranteed to be the same as transfer j→i.

We define the symmetric undirected transferability between tasks ti and tj to
be the minimum of the two directed transferabilities:

transfer i,j(q) = min
(
transfer i→j(q), transfer j→i(q)

)
. (6)

The largest potential problem is overestimating the amount of transfer between
two tasks, and using the minimum of the directed transferabilites ensures that
our estimate of the transfer is as large as possible without being a potential over-
estimation. Using other forms of symmetrization, such as taking the average or
maximum, could lead to overestimation. While this construction underestimates
the amount of transfer, we show empirically that it performs well in Sect. 6.

We define the vertices of the model transfer graph to be the source tasks
V = {ti}n

i=1, and the symmetric adjacency matrix A for q training instances as

Ai,j(q) =
{

0 if i = j,
max

(
0, transfer i,j(q)

)
otherwise. (7)

Since we need only model the positive transfer, this construction eliminates all
negative edges from A(q). We store multiple snapshots of the graph’s adjacency
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matrix {A(qi)}qk
q1

at various numbers of training instances. In the experiments, we
sampled the learning curve every five percent of the training data, so k = 20 with
successive qi’s in 5% increments. To transfer to a new task, we select the current
picture of the transferability space for the given number q̂ of target task training
instances, and use that version of the model transfer graph G(q̂) = (V,A(q̂)).

5 Transfer to a New Task

From Sect. 4, we can construct a model transfer graph to represent the transfer
relationships among the source tasks. In this section, we describe a procedure
for using the graph to determine the parameters to transfer to a new task.

Given q̂ training instances of a new target task tn+1, we can extend the model
transfer graph G(q̂) to include tn+1. We then learn a transfer function on the
extended graph to determine the parameter vector to transfer to the new task.
This process is equivalent to interpolating the position of tn+1 on the transfer
manifold, and then determining the transfer function’s value at that point.

5.1 Extending the Model Transfer Graph

Given a small sample (q̂ instances) of the data from tn+1 (much less data
than was given for any other task t1 . . . tn), we approximate task tn+1’s loca-
tion in the graph by computing its transferability from every other task ti:
{transfer i→n+1(q̂)}n

i=1. This yields a set of weighted edges2 between tn+1 and
all other tasks t1 . . . tn, allowing us to localize tn+1 in the transfer graph. Let
these weights be ŵ1 . . . ŵn, where ŵi = transfer i→n+1(q̂).

The extended model transfer graph that includes task tn+1 can now be defined
by Ĝ = (V̂ , Â), where V̂ = V

⋃
{tn+1} and Â is the (n + 1)× (n + 1) extended

adjacency matrix given by

Â =
[
A(q̂) ŵT

ŵ 0

]
. (8)

5.2 Learning the Transfer Function

Once the graph G(q̂) has been extended to include the new target task, the next
step is to learn the transfer function on Ĝ and use it to determine the knowledge
to transfer in learning tn+1. Each vertex i in the extended model transfer graph
Ĝ has some associated transfer knowledge given by its parameter vector vi. For
the new target task tn+1, this transfer knowledge is unknown, and the transfer
function can estimate it automatically from the source tasks’ parameter vectors.

The source tasks represent a known sample of the transfer surface, with the
parameter vectors {vi}n

i=1 representing the transfer knowledge at these sample
locations on the manifold. Each parameter vector vi is in Rθ. We assume that
there is some function that determines the transfer knowledge for a task based on
2 We ignore the directionality of the edges, since the transfer is one-way only.
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that task’s location on the transfer surface. This transfer function f̂ : V̂ → Rθ

is able to assign a parameter vector to each task located on the transfer surface.
The source tasks’ parameter vectors {vi}n

i=1 represent known values of the
transfer function f̂ at various locations (given by the source tasks) on the trans-
fer surface. Therefore, the source tasks’ locations coupled with their parameter
vectors provide training data for learning the transfer function f̂ . To transfer to
a new task tn+1, we can evaluate the learned transfer function at tn+1’s location
on the transfer surface to yield a parameter vector for tn+1.

In order to ensure that the learned transfer function respects the transfer
relationships between the tasks, we must model the transfer function in a manner
that respects the model transfer graph’s geometry. To do this, we define f̂ using
a set of basis functions for the graph determined by spectral graph theory.

Determining the Basis Functions
This section describes the spectral graph theory [14] techniques we use to derive
the basis functions, which allow us to define a transfer function that will respect
the geometry of the model transfer graph.

Let G = (V,A) be the model transfer graph, which is an undirected connected
weighted graph with a set of n vertices V and a weighted n × n adjacency
matrix A. Recall that Au,v �= 0 implies that there is an edge depicting positive
transferability between vertices u and v. We can denote the degree of vertex v
by dv =

∑n
u=1 Au,v. Let T be the diagonal matrix where Tv,v = dv.

Spectral graph theory allows us to define a set of basis functions for G based
on the graph Laplacian, an operator defined by the Laplacian matrix. The com-
binatorial Laplacian matrix L for the graph is given by L = T −A [14].

We can also define the normalized Laplacian L = I − T− 1
2AT− 1

2 , where I is
the identity matrix [14]. While both forms of the Laplacian are applicable to our
work, we found that the combinatorial Laplacian (hereafter referred to as just
the Laplacian) worked better in our experiments and so we focus on it.

The Laplacian L is symmetric; therefore, its eigenvalues are all real and non-
negative. The eigendecomposition of L yields L = QΛQT , where Λ is the diagonal
matrix of eigenvalues [λ1 . . . λn] and the columns of Q are the eigenvectors
[q1 . . . qn]. Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues, and let eigenvector
qi correspond to λi. Spectral graph theory tells us that the smallest eigenvalue
λ1 is always 0 (with multiplicity 1, since G is connected) and q1 is constant over
all vertices. The eigenvectors in Q form an orthonormal basis for L.

Spectral graph theory has connections to Riemannian manifolds, which we
use to define the surface on which transfer occurs. The model transfer graph G
represents a sample of the continuous transfer manifold M, with the vertices as
points on the manifold and the edges connecting points that are close to each
other on the manifold (i.e., tasks that have high transferability).

Let g be a smooth function g :M→ Rθ representing the transfer function on
the Riemannian transfer manifold M with Riemannian transferability metric ψ.
The Laplace-Beltrami operator Δ is defined to be the divergence of the gradient
of M, and can act on g. Hodge theory [15] implies that g has a unique spectrum
based on the eigenfunctions of the Laplace-Beltrami operator on M.
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Since we have only a sample of the transfer manifold given by the source
tasks, we work with a discrete form f of the true transfer function g. The graph
Laplacian is a discrete form of the continuous Laplace-Beltrami operator that
acts on a function f : V → Rθ defined on G. Like the continuous g, f can also
be characterized by the eigenfunctions of the Laplacian; therefore, Q forms a set
of basis functions which we can use to define the transfer function f .

While this analysis has focused on the original model transfer graph G, we can
similarly analyze the extended graph Ĝ. As with G, we can take the eigenvectors
Q̂ of Ĝ’s graph Laplacian L̂ to form a set of basis functions that can characterize
the extended transfer function f̂ on Ĝ.

Modeling the Transfer Function
Using the basis functions for Ĝ, we can model the transfer function f̂ : V̂ → Rθ.
The eigenvectors Q̂ form an orthonormal basis for the set of all functions on Ĝ;
therefore, f̂ = Q̂W for some (n + 1)× θ matrix W .

We use the known parameter vectors {vi}n
i=1 as samples of the function values

on the graph, defining f = [v1 . . . vn]T , where the vi’s are column vectors. We can
similarly define the basis vectors for these sample points as the corresponding
rows of Q̂: Q = Q̂1...n,∗ . The matrix Q is n× (n + 1), and f is n× θ.

We fit each column of W separately using regularized least-squares by solving:

W∗,i = argw min ||f∗,i −Qw||2 +
∣∣∣∣∣∣√Λ̂w

∣∣∣∣∣∣2 , (9)

where
√

Λ̂ serves as the regularization operator in this Tikhonov regularization
problem. The operator acts as a weighted penalty on the function’s average
second-derivative, enforcing smoothness by scaling each eigenvector’s weight by
its corresponding eigenvalue λi, thereby increasing the regularization on higher-
order eigenvectors to prevent overfitting with the high-frequency components.

We derive this expression by constraining the smoothness of f̂—i.e., the L2
norm of the gradient of f̂ , given by 〈∇ f̂ ,∇ f̂〉:

〈∇ f̂ ,∇ f̂〉 = 〈f̂ , L̂f̂〉
= (Q̂w)T (L̂Q̂w)

= wT Q̂T (Q̂Λ̂Q̂T Q̂w)

= wT IΛ̂Iw

= wT Λ̂w .

Therefore, we can constrain the smoothness of f̂ by penalizing the least-squares
problem with wT Λ̂w, which is equivalent to the penalty ||

√
Λ̂w||2 in Eqn. 9. The

solution to this least-squares problem is given by

W =
(
QTQ + Λ̂

)−1

QT f . (10)

This process yields an (n+ 1)× θ matrix for W , which can be used unaltered
to form the extended transfer function f̂ = Q̂W that assigns a parameter vector
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to each vertex in Ĝ. The extended transfer function f̂ approximates the known
parameter vectors {vi}n

i=1 at the source task vertices. At the new target task
tn+1, f̂ acts as a smoothed interpolent of the source tasks’ knowledge at tn+1’s
location, respecting the graph geometry and transferability relationships.

By the f̂ transfer function, the transferred parameters for the target task are
given by vn+1 = Q̂n+1,∗W , where Q̂n+1,∗ is the (n + 1)th row of Q̂. We then
transfer vn+1 in learning tn+1’s model.

5.3 Creating a Reusable Transfer Function

In the procedure we defined in Sect. 5.2, the transfer function must be relearned
for each new target task based on the geometry of the extended model transfer
graph. The transfer graphs used in the experiments were small enough that we
could directly compute the eigendecomposition of L̂. However, for very large
transfer graphs or for repeated transfer scenarios, this process of recomputing
the transfer function becomes a source of inefficiency. In this section, we describe
a method for creating a reusable form of the transfer function.

First, we construct the model transfer graph G using the source tasks as
described in Sect. 4. For G, we can construct the transfer function f : V → Rθ for
the source tasks by solving the least-squares problem f = QW for an n×θ matrix
W , where f = [v1 . . . vn]T and Q is the matrix of eigenvectors with eigenvalues
Λ of G’s graph Laplacian. The solution is given by W =

(
QTQ + Λ

)−1
QT f .

While this f operates on G, applying it directly to the extended graph Ĝ
would not work, because there would be more than n eigenvectors. However, we
can use the Nyström method to extend G’s eigenvectors to new vertices without
increasing the number of eigenvectors, thereby allowing us to reuse the learned
transfer function f for multiple transfer scenarios.

The Nyström method [16,17,18] allows us to efficiently extend a graph’s eigen-
vectors to include a new vertex. Let {ŵi}n

i=1 be the transferability edge weights
between a new task tn+1 and all the vertices V of the original model transfer
graph G. The Nyström extension allows us to extend the eigenvectors Q of G’s
graph Laplacian to approximate the eigenvector values at the new task tn+1 as

qi(tn+1) =
1
λi

n∑
j=1

ŵj qi(tj) , (11)

where qi(tj) is the ith eigenvector applied to task tj .
Using these extended eigenvectors, we can form an approximation to the true

eigenvectors Q̂ of Ĝ, the extended model transfer graph that includes tn+1.
The Nyström approximation to the eigenvectors is given by Q̃, an (n + 1) × n
matrix. Since Q̃ and Q both contain n eigenvectors (recall that Q̂ contained n+1
eigenvectors), we can approximate the transfer function f̂ on Ĝ by f̃ = Q̃W using
the same weight matrix W without relearning. Then, for the new task tn+1, the
transferred parameter vectors are given by vn+1 = Q̃n+1,∗W .
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6 Evaluation

Our experiments examine transfer in two domains: letter and newsgroup recogni-
tion. The Letters data set [19] characterizes various fonts of each character using
16 features normalized to lie in [0, 1]. The Newsgroup experiments use the 20
newsgroups data [20], characterized by a binary vector of the 100 most discrim-
inating words, as determined by Weka’s string-to-wordvector filter [9]. Transfer
is often not useful given large amounts of data, since there would be enough data
to learn a model with high performance. Both original data sets are very large,
so we randomly selected five percent of each to use in the experiments.

For Letters, we took the first 13 letters (A–M) and generated 13 binary tasks
of each of these letters against the last 13 letters (N–Z), ensuring that each task
had unique negative examples and equal class proportions. For example, the task
of recognizing the letter C used 35 “C”s as positive examples and 35 random
letters N–Z as negative examples. We chose this construction to yield tasks that
would interfere as little as possible with each other. For example, if instead we
had converted this data set into 26 one-versus-rest classification problems, there
would be interference between the tasks, since one task’s positive examples would
appear as other tasks’ negative examples, diminishing the possibility of transfer.
The Newsgroups tasks are constructed similarly, using the first newsgroup3 in
each major category as negative examples for the tasks given by the 13 remaining
newsgroups.

The base models for each task were learned from all available data. We then
constructed model transfer graphs for both Letters and Newsgroups over 10
trials of 10-fold cross-validation over all available data on the source tasks, ex-
cluding the target task from the computations. The held-out fold was used for
performance evaluation to generate the baseline and transfer learning curves.

For each target task, we used the task’s training data to extend the transfer
graph (again, computing the transfer over 10 trials of 10-fold cross-validation
on the training data), learned the transfer function on the extended graph, and
then used it to estimate the parameter vector for the target task. We evaluated
the learned classifier with transfer on the task’s held-out test data. This pro-
cedure was repeated and averaged over 20 trials of 10-fold cross-validation to
generate the learning curves. Table 1 summarizes each transfer scenario used in
the experiments.

Figures 2 and 3 compare the performance of our “graph transfer” approach
against “hand-selected” transfer, an “average” transfer method, and the baseline
of learning without transfer. The “hand-selected” transfer computes the average
parameter vector over each target task’s related source tasks given in Table 1.
For Newsgroups, these related tasks were chosen as the other newsgroups with
the same top-level category; the related Letters tasks were chosen based on vi-
sual similarity between the letters. The average transfer method simply averages
the parameter vectors from all source tasks (including irrelevant tasks), corre-
sponding to several current transfer approaches [1,2].
3 The negative newsgroups are alt.atheism, comp.graphics, misc.forsale, rec.autos,

sci.crypt, soc.religion.christian, and talk.politics.guns.
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Table 1. Summary of transfer scenarios

20 Newsgroups
Target task # instances “Hand-selected” source tasks

comp.windows.x 100 comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,

comp.sys.mac.hardware

rec.sport.baseball 100 rec.motorcycles, rec.sport.hockey

sci.space 100 sci.electronics, sci.med

talk.politics.mideast 94 talk.politics.misc, talk.religion.misc

Letters
Target task # instances “Hand-selected” source tasks

C 70 E, G

E 88 B, F

G 70 C

H 70 K, M

J 72 I, L

L 68 I, J

All of the Newsgroup transfer scenarios contain a mix of both relevant and
irrelevant source tasks. The comp.windows.x task (Fig. 2(a)) has a higher pro-
portion of relevant source tasks than the other Newsgroup scenarios, due both
to the larger proportion of computer-related newsgroups and the broad applica-
bility of computers to other subjects.

Our graph transfer method shows statistically significant improvement (with
at least 95% confidence) over the average parameter vector on the Newsgroup
tasks, demonstrating its ability to focus on information from relevant source
tasks. The inclusion of irrelevant source tasks in computing the average parame-
ter vector sometimes results in negative transfer, which our graph transfer avoids.
These results support the use of localized estimates for the transfer parameters
instead of averaging information from all source tasks without regard to trans-
ferability. It also shows that our approach can achieve performance near that of
expensive “hand-selected” source tasks; in many cases, the performance of the
graph transfer and hand-selected transfer are statistically indistinguishable.

Results on the letter transfer scenarios in Figs. 3(a)–(c) mirror the successes of
our approach on the Newsgroup tasks. The letter-L transfer scenario (Fig. 3(d))
shows one case where we were unable to obtain clear improvement over the
average parameter vector, although in many cases its increased performance
over graph transfer is not statistically significant. This scenario also shows the
pitfalls of hand-selecting source tasks, in this case based on visual similarities
between the letters, in that these hand-selected tasks can unexpectedly result in
negative transfer.

Figures 3(e)–(f) depict two extreme transfer scenarios that demonstrate the
versatility of our approach. The complete model transfer graph for the letters
domain showed that all letters had positive transfer (on average) to the letter-
H task, with the exception of the letter-B task showing very slight negative
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Fig. 2. Results of the Newsgroups transfer scenarios. The bottom portion of each graph
depicts the range where our graph transfer approach’s performance is statistically dif-
ferent at 95% confidence from each of the other three methods as measured by a
pairwise t-test.

transfer. For the letter-H scenario with all relevant source tasks (Fig. 3(e)),
graph transfer achieves performance that is statistically indistinguishable from
the average parameter transfer, correctly combining information from all source
tasks. The transfer scenario in Fig. 3(f) depicts the opposite transfer scenario,
with only one source task showing very slight positive transfer to the letter-
J task. In this case, it is clear that any transfer would decrease performance,
and our graph transfer method shows the best performance of all the transfer
methods.

In working with our graph transfer approach, we did observe a few cases where
learning without transfer outperformed learning with transfer when given very
little training data. However, these situations disappeared when averaged over
many trials and folds, as shown in our results. Biased logistic regression relies
on the training data to determine the amount of regularization from the given
parameter vector. When given very little training data, the learning algorithm’s
estimation of the ideal amount of transfer may be inaccurate, so it could be
outperformed by learning without transfer. It may also be the case that the graph
transfer method was occasionally unable to accurately localize the target task
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Fig. 3. Results of the Letter transfer scenarios. Figures (e) and (f) depict extreme
transfer scenarios: (e) all relevant source tasks on a difficult problem, and (f) no relevant
source tasks. For explanation of the lower significance graphs, see the caption to Fig. 2.

in the model transfer graph given very little data. In any case, these hindrances
disappeared with the addition of slightly more training data.

We also explored a second transferability measure that was a normalized
form of Eqn. 5. This measure defined transferability as the percentage improve-
ment due to transfer against the best possible improvement. In an ideal transfer
situation, the learned model’s performance would immediately increase to the
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maximum possible performance, which may be less than 1 due to noise in the
data. The percentage improvement due to transfer would then be the ratio of
Eqn. 5 to the maximum possible improvement. Using this normalized transfer-
ability measure yielded similar results to those we report here, so we omit these
results due to space limitations. In some cases, the normalized transferability
measure performed slightly worse than the unnormalized measure. However, a
more thorough analysis involving other transfer scenarios is required to conclude
whether the unnormalized measure we use in this paper is truly better.

7 Conclusion and Future Work

This paper describes a novel method for inductive transfer based on modeling
the transfer relationships between the source tasks. As shown by our results,
using localized estimates of the transfer values results in superior performance
on most problems. The shortcut of always using the average parameter vector
works well when all of the source tasks are relevant for transfer to the target
task, but this involves expensive hand-selection of the source tasks. Additionally,
hand-selection relies on qualitative (and sometimes incorrect) judgments that the
selected tasks will transfer well to the target task.

We are exploring several extensions to our approach. In this paper, we required
transferability to be symmetric between two tasks. However, it has been our
experience that often transfer i→j is much greater than transfer j→i, showing that
transfer is not always symmetrical in practice. We plan to extend our method
to support directed edges in the transfer graph. Techniques for spectral analysis
of directed graphs have only been recently developed [21,22] and using them in
this transfer framework presents significant technical challenges that we leave to
future work. Additionally, we are conducting a more extensive evaluation of this
method, including applying this method to other domains.
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Abstract. An important problem in software engineering is the auto-
mated discovery of noncrashing occasional bugs. In this work we address
this problem and show that mining of weighted call graphs of program
executions is a promising technique. We mine weighted graphs with a
combination of structural and numerical techniques. More specifically,
we propose a novel reduction technique for call graphs which introduces
edge weights. Then we present an analysis technique for such weighted
call graphs based on graph mining and on traditional feature selection
schemes. The technique generalises previous graph mining approaches
as it allows for an analysis of weights. Our evaluation shows that our
approach finds bugs which previous approaches cannot detect so far.
Our technique also doubles the precision of finding bugs which existing
techniques can already localise in principle.

1 Introduction

Software quality is a big concern in industry. Almost any software displays at
least some minor bugs after being released. Such bugs incur significant costs.
A class of bugs which is particularly hard to handle is noncrashing occasional
bugs, i.e., failures which lead to faulty results with some but not with any input
data. Noncrashing bugs in general are already hard to find. This is because no
stack trace of the failure is available. With occasional bugs, the situation is even
more difficult, as they are harder to reproduce. Developers usually try to find
and fix bugs by doing an in-depth code review along with testing and classical
debugging. Since such reviews are very expensive, there is a need for tools which
localise pieces of code that are more likely to contain a bug.

Research in the field of software reliability has been extensive, and various
techniques have been developed for locating bugs. Static techniques require a
large bug and version history database, which is not always available. Dynamic
techniques using instrumentation often have a poor runtime behaviour. Another
dynamic technique is the analysis of call graphs. Such a graph reflects the invoca-
tion structure of a particular program execution. Without any further treatment,
a call graph is a rooted ordered tree. The main() method1 of a program usually

1 In this paper, we use method interchangeably with function.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 333–348, 2008.
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is its root, and all methods invoked directly are its children. Figure 1(a) is an
abstract example of such a call graph. Recent work [1, 2] deploys graph min-
ing techniques on call graphs for bug localisation. [2] then derives a ranking of
methods which are most probable to contain a bug. Generating such a ranking
is not trivial. For instance, follow up bugs need to be identified. [2] does not
identify follow up bugs at all, and [1] only generates a backtrace-like structure
which helps the programmer to find follow up bugs.

Graph mining is a relatively new discipline in data mining, and innovative
algorithms have been developed in recent years [3, 4, 5, 6]. Various algorithms
deal with the problem of mining frequent subgraphs, i.e., discovering all sub-
graphs which are frequent in a set of graphs. A difficulty with graph mining
on raw call graphs is that the algorithms do not scale. Therefore, reduction
techniques are developed and applied first. Such techniques are not obvious:
They involve a trade-off between loss of information and the size of the resulting
graphs. An important piece of information included in the raw call graphs is the
call frequency of all methods. The reduction techniques in [1, 2] loose this infor-
mation. But it eases detection of bugs which affect the number of invocations
of a method, call frequency affecting bugs. Various reasons for such bugs exist,
e.g., wrongly specified conditions. Note that it is not only loop conditions which
cause these bugs, but any wrongly specified condition leading to method calls
within in a loop. This is because branches taken within a loop or not affect the
frequency of a certain method call. As iterations are elementary in programming
languages, a wide range of bugs is call frequency affecting. To find such bugs,
we take call frequencies into account and analyse their differences in correct and
failing executions.

Graph mining research has focused on structural and categorical techniques,
and the various graph miners available target at different kinds of graphs. Al-
most all algorithms handle categorical data in node and edge labels. However,
little attention has gone into the analysis of quantitative information, and no
algorithm is available for mining weighted graphs. Since we want to analyse call
graphs where weighted edges represent call frequencies, we must come up with a
solution. Further, finding a suitable combination of call graph reduction, graph
mining and the analysis of call frequencies is challenging.

In this work, we use conventional mining techniques for unweighted graphs in
conjunction with feature selection algorithms to analyse numerical edge weights.
More specifically, we first trace program executions and classify them as correct
or failing using a test oracle. We for our part do this by comparing execution
results to a fault-free reference. These correct results are typically available, as
test suites providing such information are widely used in quality assurance [7].
We represent the program traces as call graphs and reduce these graphs by
deleting multiple method calls caused by iterations and introducing edge weights
representing call frequencies. We then mine the reduced graphs before taking
the edge weights into account: By applying an entropy based feature selection
algorithm to the weights of the different edges, we calculate the likelihood of both
every method invocation as well as of every method containing a bug. For a final
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ranking, we combine these likelihoods with another score based on structural
properties of the graph mining results. The rationale is that this ranking is given
to a software developer who can do a code review of the suspicious methods.

In other words, solving the problems mentioned so far requires innovations at
different levels of analysis. Our contributions are as follows:

Reduction of software call graphs. We propose using a new variant of reduced
call graphs and present a technique to accomplish this reduction. The reduced
graphs keep much information, while they are relatively small. For example, [2]
would reduce one call graph from our evaluation from 9,946 to 50 edges. With
our technique, there are just 31 edges, while keeping more information and,
ultimately, giving way to better results.

Mining weighted graphs. We present an approach which combines numerical
analysis of edge weights with conventional graph mining. Our approach dis-
tinguishes between occurrences of edges which appear more than once within
a subgraph. This allows for a detailed analysis. To our knowledge, a technique
which analyses weights in the postprocessing of graph mining has not been de-
scribed before. This particular contribution is not limited to call graph analysis,
but can be transferred to any domain where weighted graphs are present.

Combination of numerical and structural techniques. There exist frequent sub-
graphs which occur both in call graphs of correct and of failing executions, as well
as frequent subgraphs occurring in failing executions only. We analyse the edge
weights for subgraphs from the first class, whereas we generate purely structural
evidence from subgraphs from the second class. Our approach then combines
these different kinds of evidence, and we demonstrate its usefulness.

Evaluation. We show that our approach is particularly well suited to discover
call frequency affecting bugs. Unlike previous techniques, it also detects follow
up bugs. With regard to bugs existing techniques can already localise, our ap-
proach doubles the precision of finding them. Furthermore, it finds bugs on the
granularity of method invocations instead of the level of methods.

In this work, we do not reduce recursive calls and concentrate on iterations.
The reduction of recursions is not obvious and is beyond the scope of this study.

Paper outline: Section 2 reviews related work. Section 3 presents an overview
of graph mining with call graphs. Section 4 discusses graph reduction techniques.
Section 5 describes how to calculate probabilities of containing bugs based on
reduced graphs. Section 6 features an evaluation. Section 7 concludes.

2 Related Work

A lot of research has been done in the field of software reliability. Approaches
range from static code analysis and mining of software repositories and bug
databases [8, 9, 10] to dynamic program verification. The latter focus on the data
flow [11, 12] or, like all call graph based techniques, on the control flow [13, 14].
In the following, we will first discuss the application of data mining techniques
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in this context – bug localisation is just one application. Then we concentrate on
two graph mining based approaches [1, 2] which are most related to our work.
Finally, we describe some related work in the area of mining weighted structures.

2.1 Mining Software Metrics and Invariants

[8] maps post-release failures from a bug database to defects in static source code.
Using standard complexity measures from software engineering, the source code
is mined with regression models, which can then predict post-release failures
for new software entities. A similar study uses decision trees to predict failure
probabilities [9]. [10] uses regression techniques to predict the likelihood of bugs
based on static usage relationships between software components. All approaches
mentioned require a large collection of bugs and version history.

Dynamic program slicing [11] gives hints which parts of a program might have
contributed to a faulty execution, without ranking the locations in question. This
is done by discovering all statements that actually affect the variables involved.
Advanced techniques like [12] perform dynamic data flow focused analysis by
instrumenting the source code to gain program invariants. These are used as
features of correct and failing executions which are analysed with regression
techniques. This leads to potentially faulty pieces of code. A similar approach,
but with a focus on the control flow, is [13]. It instruments condition statements
and calculates a ranking based on its evaluation frequencies. The instrumentation
based approaches mentioned either suffer from poor runtime behaviour or miss
bugs if only sampled parts of the software are instrumented.

[14] is a technique which uses tracing and visualisation. It relies on a simple
ranking of program components based on the information which components are
executed more often in failing program executions. This ranking serves as a basis
for more sophisticated rankings in [2] as well as in our approach.

2.2 Call Graph Based Fault Detection

The approach from Liu et al. [1]: This first study which applies graph mining
techniques to dynamic call graphs considers so called software behaviour graphs.
These are reduced call graphs, augmented with some temporal information. Sec-
tion 4 will provide more information on these graphs. The behaviour graphs
representing correct and failing program executions are mined with a variant of
the CloseGraph algorithm [5]. This step results in frequent subgraphs which are
used as binary features characterising a program execution: A boolean feature
vector represents every execution. In this vector, every element indicates if a
certain subgraph is included in the corresponding behaviour graph. Using those
feature vectors, a support vector machine is learned which decides if a program
execution is correct or failing. More precisely, for every method, two classifiers
are learned: one based on behaviour graphs including the respective method,
one based on graphs without it. If the precision rises significantly when adding
graphs containing a certain method, this method is deemed more likely to contain
a bug. Experiments with five out of 130 bugs from the Siemens Programs [15]



Mining Edge-Weighted Call Graphs to Localise Software Bugs 337

demonstrate good classification performance, but do not evaluate the precision
of the bug localisation. Furthermore, the authors do not generate a ranking of
methods suspected to contain a bug. As we do so, our approach can not be
compared directly. However, in Sect. 6, we compare the reduction techniques.

The approach from Di Fatta et al. [2]: In this work, a reduction technique is
again applied to the raw call trees first (see Sect. 4 for details). The next step
is similar to the one described before: A collection of reduced call graphs rep-
resenting correct and failing program executions is analysed with graph mining.
The authors use the tree miner FREQT [16] to find all frequent subtrees. The
call trees analysed are large and lead to scalability problems of the algorithm.
Hence the authors limit the size of the subtrees searched to values up to 4. Then
the authors identify which resulting subgraphs are frequent in the set of fail-
ing program executions, but not frequent in the set of correct ones. This set of
subgraphs is called specific neighbourhood. For all methods invoked within sub-
graphs which are part of the specific neighbourhood, a probability of containing
a bug is calculated based on support values. Like [1], [2] does not put attention
on call frequencies.

2.3 Subsumption

Frequent subgraph mining is a generalisation of previous structural knowledge
discovery techniques such as mining of itemsets, sequences and trees [17]. Early
work [18] in the area of itemsets has introduced the problem of weighted struc-
ture mining. Itemsets can be seen as graphs consisting of nodes only. In [18],
these nodes are weighted and are discretised during preprocessing. Correspond-
ing techniques are applied to graphs in transportation networks [19] and image
analysis [20]. Such discretisation leads to a loss of information, as we will discuss
in Sect. 5.2. In [21], we have already analysed tuples of weights of sequences as a
postprocessing step of sequence mining. This allows for a more detailed analysis
of weights in different structural contexts. This current work is in the field of
weighted structure mining as well – it analyses edge weights subsequent to a
graph mining step.

[22] is a preliminary and much shorter version of this paper. It directly com-
bines its results with those of [2] in order to find a wider range of bugs. It requires
two costly graph mining steps. This current work avoids this.

3 Call Graph Mining Overview

Before we focus on reduction and ranking techniques in Sections 4 and 5, we now
give an overview of the procedure of localising bugs with graph mining. Note
that [2] follows this general procedure as well. Algorithm 1 first assigns a class
(correct, failing) to every program trace (Line 4), using a test oracle. Then every
trace is reduced (Line 5), which leads to smaller call graphs. Techniques to do
so are discussed in Sect. 4. Now frequent subgraphs are mined (Line 7). For this
step, several algorithms, e.g., tree mining or graph mining in different variants,
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Algorithm 1. Generic graph mining based bug localisation procedure
1: Input: a collection of program traces t ∈ T
2: G = ∅ // initialise a collection of reduced graphs
3: for all traces t ∈ T do
4: assign a class ∈ {correct , failing} to t
5: G = G ∪ {reduce(t)}
6: end for
7: SG = frequent subgraph mining(G)
8: calculate P (m) for all methods m; based on SG

can be used. The last step is calculating a likelihood of containing a bug. This
can either be fine granular for every method invocation or, more coarse grained,
for every method (as shown in Line 8). The calculation of the likelihood is based
on the frequent subgraphs mined and facilitates a ranking of the methods, which
can then be given to the software developer.

4 Call Graph Reduction

In the related work on call graph mining (see Sect. 2.2), two different approaches
exist which lead to reduced call graphs (as specified in Line 5 of Algorithm 1).
The reduction technique used in [1] projects every node representing the same
method in the call graph to a single node in the reduced graph. We call this
technique total reduction. Note that this may give way to the existence of loops
and limits the size of the graph (in terms of nodes) to the total number of
methods in the program analysed. As an example, the raw ordered call tree in
Fig. 1(a) would result in the reduced graph displayed in Fig. 1(b). In addition to
the reduction, so called temporal edges are inserted between all methods which
are executed consecutively and are invoked by the same method. This technique
integrates the temporal order from the raw ordered call trees into the graph
representations. Technically, temporal edges are directed edges having another
label, e.g., “temporal”, compared to other edges which are labelled, say, “call”.
Figure 1(c) serves as an example of a graph using the reduction technique and
temporal edges (dotted), called software behaviour graph. This reduction is rather
severe, e.g., from several millions of nodes to several hundreds. It allows graph
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mining based bug localisation even with larger software projects. In contrast,
much information about the program execution is lost. This concerns frequen-
cies of the execution of methods as well as information on different structural
patterns within the graphs. In particular, the information in which context a
certain substructure is executed is lost (see Sect. 5.2). Furthermore, the tempo-
ral edges increase the size of the graphs significantly. An increased precision of
fault detection by using temporal edges has not been evaluated.

The approach in [2] keeps more information. It omits substructures of sub-
sequent executions, which are invoked more than twice in a row from the same
node. See Fig. 1(d) for an example. This reduction ensures that many equal
substructures called within a loop do not lead to call graphs of an extreme size.
In contrast, the information that some substructure is executed several times is
still encoded in the graph structure, but without exact numbers. Compared to
[1], much more information about a program execution is kept, compromised by
a call graph which is generally much larger. For example, graphs are reduced
from several millions of nodes to several ten thousand nodes.

In our approach, we try to overcome the shortcomings of both approaches and
try to keep most of the information available. We reduce subtrees executed iter-
atively by deleting all but the first one and inserting the call frequencies as edge
weights. This makes the graphs relatively small and keeps a lot of information.
An example is given in Fig. 1(e). The introduction of edge weights allows for a
detailed analysis. If, e.g., a bug is hidden in a loop condition, this might lead to
hundreds of iterations of the loop, compared to just a few in correct program
executions. Note that, with both previous graph representations, the graph of
the correct and of the failing execution is reduced to exactly the same structure
in this case. In our approach, the edge weights would be significantly different.
Analysis techniques can then discover this.
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Fig. 2. A raw call tree, its first and second transformation step

For our graph reduction approach, which implements the functionality speci-
fied in Line 5 of Algorithm 1, we organise the call tree into n horizontal levels.
The root node is in level 1, all other nodes are in subsequent levels, increasing
with the distance to the root. See Fig. 2(a). A näıve approach to reduce our
example call tree in Fig. 2(a) would be to start at level 1 with Node a. There,
one would find two child subtrees having a different structure – one could not
merge anything. Therefore, we work level by level, starting from level n− 1, as
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Algorithm 2. Subtree reduction algorithm
1: Input: a call tree organised in n levels
2: for level = n − 1 to 1 do
3: for each node in level do
4: merge all identical child-subtrees of node, sum up corresponding edge weights
5: end for
6: end for

described in Algorithm 2. In our example in Fig. 2(a), we have to start in level 2.
The left node b has two different children. Thus, nothing can be merged there.
In the right b, the two children c are merged by adding the edge weights of the
merged edges, yielding the tree in Fig. 2(b). In the next level, level 1, we process
the root node a. Here, the structure of the two succeeding subtrees is the same.
We merge them, resulting in the tree in Fig. 2(c).

Our reduction technique obviously is not lossless. The size of the resulting
graphs would be prohibitive. With large pieces of software, graph mining may
not scale with the size of the call graphs, even if the reduction technique applied
is effective. To deal with this problem, it seems promising to use graphs of coarser
granularity: Instead of using methods as nodes in call graphs, it is possible to,
say, use classes as a coarser abstraction. Such call graphs would have classes as
nodes and inter class method calls as edges. Obviously, such a coarser abstraction
would lead to less detailed bug localisation as well.

5 The Ranking Framework

So far, we have discussed how to reduce call graphs. Now we will describe
our framework for deriving a ranking of potentially buggy method invocations
(edges) and methods (nodes) from such graphs. Before we focus on the individual
components in the following subsections, we give an overview of our framework.
At first, we apply frequent subgraph mining to the reduced call graphs, with-
out considering the weights for now (Sect. 5.1). This corresponds to Line 7 in
Algorithm 1. We then partition the set of frequent subgraphs just mined and
consider two sets separately: (1) the set of subgraphs which occur in both correct
and failing executions SGcf and (2) the set of subgraphs which only occur in
failing executions SGf

2. We use SGcf to build a ranking based on the differ-
ences in edge weights in correct and failing executions (Sect. 5.2). This ranking
can be based on method invocations or on individual methods. As subgraphs
in SGf are never contained in correct executions, it is not possible to analyse
differences based on SGf . In contrast, SGf provides crucial information about
the graph structures in failing executions. Therefore, we derive a score based on
the support in SGf (Sect. 5.3) and combine it with the edge weight based one
mentioned above (Sect. 5.4). This combination is in Line 8 in Algorithm 1.
2 In preliminary experiments, we have also evaluated the influence of subgraphs which

occur in correct executions only. It has turned out that such graphs do not help to
localise bugs.
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5.1 Graph Mining Step

After having reduced the call graphs gained from correct and failing program
executions, we search for frequent closed subgraphs SG in the graph dataset
G using the CloseGraph algorithm [5]. For this step, we employ the ParSeMiS
graph mining suite3. Closed mining reduces the number of graphs in the result
set significantly and increases the performance of the mining algorithm (studying
its effects on result quality is beyond the scope of this article). Furthermore, the
usage of a general graph mining algorithm instead of a tree miner allows for
comparative experiments with other graph reduction techniques (see Sect. 6).
After the graph mining step, we partition SG and derive the set of subgraphs
which occur in correct and failing executions SGcf and the set of subgraphs
which occur in failing executions only SGf .

5.2 Entropy Based Scoring

We now focus on frequent subgraphs which occur in both correct and failing
executions (SGcf ). Our goal is to develop an approach which discovers which
edge weights of call graphs from a program are most significant to discriminate
between correct and failing. To do so, one possibility is to consider different
edge types, e.g., edges having the same calling method ms (start) and the same
method called me (end). However, edges of one type can appear more than once
within one subgraph and, of course, in several different subgraphs. Therefore,
we analyse every edge in every such location, which we refer to as a context. To
specify the exact location of an edge in its context within a certain subgraph, we
do not use the method names, as they may occur more than once. Instead, we
use a unique id for the calling node (ids ) and another one for the method called
(ide). All ids are valid within its subgraph. To sum up, we reference an edge in its
context in a certain subgraph sg with the following tuple: (sg, ids , ide). A certain
bug does not affect all method calls (edges) of the same type, but method calls of
the same type in the same context. Therefore, we assemble a feature table with
every edge in every context as columns and all program executions (represented
by their reduced call graphs) as rows. The table cells contain the respective edge
weights. The following table serves as an example:

a→ b a→ b a→ c
(sg1 , id1 , id2 ) (sg1 , id1 , id3 ) (sg2 , id1 , id2 ) · · · Class

g1 445 21 7 · · · failing
g2 0 0 4 · · · correct
· · · · · · · · · · · · · · · · · ·

The first column corresponds to the first subgraph (sg1 ) and the edge from
id1 (method a) to id2 (method b). The second column corresponds to the same
subgraph (sg1 ) but to the edge from id1 (method a) to id3 (method b). The third
column represents an edge from id1 to id2 in the second subgraph (sg2 ). Note

3 http://www2.informatik.uni-erlangen.de/Forschung/Projekte/ParSeMiS/

http://www2.informatik.uni-erlangen.de/Forschung/Projekte/ParSeMiS/
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that method b occurs twice in sg1 and that ids have different meanings in sg1 and
sg2 . The last column contains the class correct or failing . The rows correspond
to all reduced call graphs g1, ..., gn ∈ G available. If a certain subgraph is not
contained in a call graph, the corresponding cells have value 0, like g2 which does
not contain sg1 . Graphs (rows) can contain a certain subgraph not just once,
but several times at different locations. In this case, we use aggregates in the
corresponding cells of the table. As minimum values would ignore bugs resulting
in increased numbers and maximum values would ignore bugs leading to reduced
numbers, we use the average. In the example, sg2 is embedded at two locations
in g1 . In one location the edge from id1 to id2 has the weight 6, in the other
one weight 8.

The table structure described allows for a detailed analysis of edge weights in
different contexts within a subgraph. All following steps in this subsection are
described in Algorithm 3. After assembling the table, we employ a standard fea-
ture selection algorithm to score the columns of the table and thus the different
edges. We use an entropy based algorithm from the Weka data mining suite [23]
which calculates the information gain InfoGain [24] (with respect to the class of
the executions, correct or failing) for every column (Line 2 in Algorithm 3). The
information gain is a value between 0 and 1 which we interpret as a likelihood
of being responsible for bugs. Columns with an information gain of 0, e.g., the
edges always have the same weights in both classes, are discarded immediately
(Line 3 in Algorithm 3).
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Fig. 3. Follow up bugs

Call graphs of failing executions frequently contain bug-like patterns which are
caused by a preceding bug. We call such patterns follow up bugs and remove them
from our ranked list of features. Figure 3 illustrates a follow up bug: (a) represents
a bug free version, (b) contains a bug in method a where it calls method d.
Here, this method is called 20 times instead of twice. Following our reduction
technique, this leads to the same (or a proportional) increase in the number of
calls in method d. In our entropy based ranking, the edges d → e and d → f
inherit the score from a→ d if the scaling of the weights is proportional. Thus, we
interpret these two edges as follow up bugs and remove them from our ranking.
More formally, we remove edges if the edge leading to its direct parent within
the same subgraph has the same entropy score (Line 4 in Algorithm 3). In case
of more than one bug in a program, this way of follow up bug detection might
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Algorithm 3. Procedure to calculate Pe(ms,me) and Pe(m)
1: Input: a set of edges e ∈ E representing edges in their context, e = (sg , ids , ide)
2: assign every e ∈ E its information gain InfoGain
3: E = E \ {e | e.InfoGain = 0}
4: // remove follow up bugs:

E = E \ {e | ∃p : p ∈ E, p.sg = e.sg , p.ide = e.ids , p.InfoGain = e.InfoGain}
5: E(ms,me) = {e | e ∈ E ∧ e.ids .label = ms ∧ e.ide .label = me}
6: Pe(ms, me) = max

e∈E(ms,me)
(e.InfoGain)

7: Em = {e | e ∈ E ∧ e.ids .label = m}
8: Pe(m) = max

e∈Em

(e.InfoGain)

not find all such bugs, but preliminary experiments have shown that it does
detect common cases efficiently. We leave aside the pathological case that this
technique classifies a real bug as follow up bug. This is acceptable, since the
probability of a certain entropy value is the same for every bug. Therefore, it is
very unlikely that two unrelated bugs lead to exactly the same entropy value,
which would lead to a ‘false positive’ classification.

Now we calculate likelihoods of containing a bug for every method invocation
(described by a calling method ms and a method called me). We call this score
Pe(ms,me) as it is based on entropy. To do so, we first determine sets E(ms,me)

of edges e ∈ E for every method invocation in Line 5 of Algorithm 3. In Line 6,
we use the max() function to calculate Pe(ms,me), the maximum of all edges
(method invocations) in E(ms,me). This is necessary, as in general there are many
edges in E with the same method invocation. This is because an invocation can
occur in different contexts. With the max() function, we assign every invocation
the score from the context ranked highest. Lower scores for the same invocation
are less important, and we ignore them.

At this point, the ranking does not only provide the score for a method invo-
cation, but also the subgraphs where it occurs and the locations within it. This
information might be important for a software developer. We report this infor-
mation additionally. As we also want to compare our results to those of [2] which
does not provide information on the invocation level, we also calculate Pe(m)
for every calling method m in Lines 7 and 8 of Algorithm 3. The explanation is
analogous to the one of the calculation of Pe(ms,me) in Lines 5 and 6.

This subsection has presented a technique relying on the analysis of edge
weights in different contexts. As we will see in the evaluation (Sect. 6), the
consideration of different contexts is key for good results. As contexts are defined
based on the subgraphs mined, such a differentiated analysis is only possible
subsequent to graph mining, but not during preprocessing (see Sect. 2.3).

5.3 Structural Scoring

Our entropy based scoring (Sect. 5.2) cannot detect bugs which are not call
frequency affecting, as it analyses call frequencies only. At the same time, it
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does not consider subgraphs which occur in failing executions only (SGf ). As
some bugs result in such subgraphs, these are essential to detect bugs as well.
Therefore, we calculate the score Ps(m) for individual methods based on the
support in SGf . This score is another likelihood of containing a bug, as it refers
to the frequency of method invocations in failing executions.

Ps(m) = supp(m,SGf ) (1)

where supp(m,SGf ) is the fraction of graphs in SGf containing a node m.

5.4 Combination

Now we calculate the overall likelihood P (m) of containing a bug for every
method m, based on the average of the normalised values for Pe(m) (see Sect. 5.2)
and Ps(m) (see Sect. 5.3). Normalisation is necessary: While both values are in
the [0, 1]-range, their maximum can be very different. Normalisation keeps us
from overemphasising one of the two rankings. P (m) is the basis for the ranking
of all methods m, which is used to locate bugs:

P (m) =
Pe(m)

2 max
n∈t∈T

(Pe(n))
+

Ps(m)
2 max

n∈t∈T
(Ps(n))

(2)

where n is a method in a program trace t in the collection of all traces T .

6 Evaluation

To evaluate bug localisation techniques, the Siemens Programs [15] are often
used [1, 2, 13] as a reference suite of C programs artificially instrumented with
different bugs. More specifically, it usually is just a small subset of this bench-
mark which is used. For example, [2] just considers three of the seven Siemens
Programs, [1] only five different bugs out of 130 available in total. As most bug
detection techniques are limited to certain classes of bugs, these techniques can-
not find every element of a standard suite of bugs. Our approach, as well as the
two most related ones [1, 2], focus on noncrashing occasional bugs.

As we rely on Java software, we use a well known Java diff tool (taken from
[25]) and instrument it with fourteen different bugs4. To do so, we have examined
the Siemens Programs and have identified five types of bugs which are most
frequent within them. Our programs contain these bugs and also the kinds of
bugs used in [1]. Most of these bugs are call frequency affecting. The Siemens
Programs mostly contain bugs in single lines and just a few programs with more
than one bug. To mimic the Siemens Programs as close as possible, we have
instrumented only two out of fourteen versions (Bugs 7 and 8) with more than
one bug. We give an overview of the kinds of bugs used in the following table:
4 We provide the software versions containing the bugs used at
http://www.ipd.uka.de/∼eichi/papers/eichinger08mining/

http://www.ipd.uka.de/~eichi/papers/eichinger08mining/
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Version Description
Bug 1, Bug 10 Wrong variable used
Bug 2, Bug 11 Additional or-condition
Bug 3 >= instead of !=
Bug 4, Bug 12 i+1 instead of i in array access
Bug 5, Bug 13 >= instead of >
Bug 6 > instead of <
Bug 7 A combination of Bug 2 and Bug 4 (in the same line)
Bug 8 i+1 instead of i in array access + additional or condition
Bug 9, Bug 14 Missing condition

Every version has been executed exactly 100 times with different input data.
The results have been classified as correct or failing executions with a test oracle
based on a bug free reference version. Based on this data, we carry out four
experiments:

1. The conventional method ranking, following [2], including its graph reduction
technique, using the same method scoring and the same mining parameters
for support and maximum subgraph size.

2. The total reduction method ranking, the total reduction from [1] with edge
weights representing call frequencies (see Fig. 1(f)) together with the com-
bined scoring (Sect. 5.4).

3. The entropy-based method ranking, our reduction technique (Sect. 4) together
with the entropy based scoring (Sect. 5.2) but without the combination.

4. The combined method ranking (Sect. 5.4), our reduction technique (Sect. 4)
together with the entropy based scoring (Sect. 5.2) and the structural scoring
(Sect. 5.3).

To keep the comparison focused, we leave aside the temporal order inside the
call graphs. We have found graphs with temporal edges as used in [1] too large
(in terms of edges) to be mined efficiently. Nevertheless, our study is fair since
we leave aside that temporal information with all alternatives.

All experiments produce ordered lists of methods. A software developer doing
a code review would start with the top ranked method in such a list. The maxi-
mum number of methods which have to be checked to find the bug is, therefore,
the line number of the faulty method in the ranked list. Sometimes two or more
subsequent lines have the same score. As the intuition is to count the maximum
number of methods which have to be checked, all lines with the same score have
the number of the last line with this score.

In order to evaluate the accuracy of the results, the line of the ranking where
the first instrumented bug is found needs to be identified. If the first instrumented
bug is, e.g., reported in the third line, this is a fairly good result. A software
developer only has to do a code review of maximally three out of 25 methods
from our target program. Furthermore, in the entropy-based and the combined
method ranking, there usually is more information available where a bug is
located within a method and in which context it appears. Thus, our comparison
is conservative, i.e., it does not demonstrate the full capabilities of our approach.
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We present the results (the number of the first line in which a bug is found)
of the four experiments for all fourteen bugs in the following table. For versions
with two bugs, we concentrate on finding the first of the two bugs contained.
Value 25 refers to a bug which is not discovered with the respective approach.

Experiment \ Bug Version Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Conventional method ranking (1) 3 25 1 4 6 4 3 3 1 6 4 4 25 4
Total reduction method ranking (2) 1 5 1 4 3 5 5 2 25 2 5 4 6 3
Entropy-based method ranking (3) 3 3 1 1 1 3 3 1 25 2 3 3 3 3
Combined method ranking (4) 3 2 1 1 1 2 2 1 8 2 2 3 3 3

Comparing the results from (1) and (3), the entropy-based approach almost
always performs as good or better than the conventional one. This shows that
analysing numerical call frequencies is adequate to locate bugs. Bugs 2, 9 and 13
illustrate that both approaches alone cannot find certain bugs. Bug 9 can not
be found by comparing call frequencies (3), as a condition has been modified
which now always leads to the invocation of a certain method. Therefore, the call
frequency is always the same (not call frequency affecting). Bugs 2 and 13 are not
found with the purely structural conventional approach (1). Both are typical call
frequency affecting bugs: Bug 2 is in a condition inside a loop and leads to more
invocations of a certain method. In Bug 13, a modified for-condition slightly
changes the call frequency of a method inside the loop. With the reduction
technique used in (1), this leads in Bug 2 and Bug 13 to the same graph structure
both with correct and with failing executions. Thus, it is not possible to identify
structural differences.

To ease presentation, we first describe the combined approach (4) before we
discuss (2). Experiment (4) is intended to take important structural information
into account as well and therefore to improve the results from (3). We do achieve
this goal: We retain the already good results from (3) in nine cases and improve
them in five. In particular, (4) finds Bug 9, which is not possible with (3) alone.
Therefore, the combination of numerical and structural techniques turns out to
be superior. When calculating averages of the improvement of certain approaches
in the following, we leave aside Bugs 2, 9 and 13. This is because high values
would have a too strong influence on the results. Note that this lets our approach
look somewhat worse, as it does find all three bugs. Bugs 7 and 8 illustrate that
our approach analyses versions with more than one bug successfully as well. In
(4), both bugs are ranked at Position 1 and 2. This is not worse than versions
with one bug only.

Experiment (2) is intended to evaluate the graph reduction technique in [1].
Except for the graph reduction technique, the approach is identical to the one in
(4). In almost all cases, (2) performs worse than (4). This confirms that our graph
reduction technique is reasonable and that it is worth to keep more structural
information than the total reduction does.

Summing up, our experiments show that weighted graph mining on call graphs
reduced with our method is appropriate for precise software bug localisation.
Even if previous approaches are able to detect call frequency affecting bugs, our
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approach can detect them with a much higher degree of precision. This is because
it explicitly analyses call frequencies. Furthermore, our approach finds bugs in
settings with more than one bug and doubles the precision of [2] on average.

7 Conclusions

In this work we have addressed the problem of localising noncrashing occasional
software bugs. This localisation is important as such bugs are hard to detect
manually and cause significant costs. Our approach is dynamic and control flow
centred as it relies on call graphs of program executions. We have presented a
novel technique to reduce such graphs. It keeps the size of the resulting graphs
relatively small while keeping more important information. In particular, it in-
troduces edge weights representing call frequencies. As none of the recently de-
veloped graph mining algorithms analyse weighted graphs, we have developed a
combined approach which does so. It consists of conventional frequent subgraph
mining and subsequently scoring of numerical edge weights using an entropy
based algorithm. Our experiments do not just show a doubled precision of bug
localisation. They also show that our approach detects bugs which previous
approaches can not find in principle. We demonstrate that the numerical in-
formation kept with our call graph reduction technique is important for good
results. We have shown that our combination of structural and numerical mining
techniques is key for precise localisations.

Future work will address recursive method invocations. Another direction is
mining of call graphs with constraint based and approximative techniques.

References

[1] Liu, C., Yan, X., Yu, H., Han, J., Yu, P.S.: Mining Behavior Graphs for “Back-
trace” of Noncrashing Bugs. In: Proc. of the 5th Int. Conf. on Data Mining (SDM)
(2005)

[2] Di Fatta, G., Leue, S., Stegantova, E.: Discriminative Pattern Mining in Software
Fault Detection. In: Proc. of the 3rd Int. Workshop on Software Quality Assurance
(SOQUA) (2006)

[3] Borgelt, C., Berthold, M.R.: Mining Molecular Fragments: Finding Relevant Sub-
structures of Molecules. In: Proc. of the 2nd Int. Conf. on Data Mining (ICDM)
(2002)

[4] Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proc. of
the 2nd Int. Conf. on Data Mining (ICDM) (2002)

[5] Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proc.
of the 9th Int. Conf. on Knowledge Discovery and Data Mining (KDD) (2003)

[6] Nijssen, S., Kok, J.N.: A Quickstart in Frequent Structure Mining Can Make a
Difference. In: Proc. of the 10th Int. Conf. on Knowledge Discovery and Data
Mining (KDD) (2004)

[7] Harrold, M.J., Gupta, R., Soffa, M.L.: A Methodology for Controlling the Size
of a Test Suite. ACM Transactions on Software Engineering and Methodology
(TOSEM) 2(3), 270–285 (1993)



348 F. Eichinger, K. Böhm, and M. Huber
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[22] Eichinger, F., Böhm, K., Huber, M.: Improved Software Fault Detection with
Graph Mining. In: Proceedings of the 6th Int.Workshop on Mining and Learning
with Graphs (MLG) at ICML (2008)

[23] Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, San Francisco (2005)

[24] Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco (1993)

[25] Darwin, I.F.: Java Cookbook. O’Reilly, Sebastopol (2004)



W. Daelemans et al.  (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 349–364, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Hierarchical Distance-Based Conceptual Clustering* 

A. Funes1,2, C. Ferri2, J. Hernández-Orallo2, and M. J. Ramírez-Quintana2 

1 Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina  
afunes@unsl.edu.ar 

2 DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, España 
{cferri,jorallo,mramirez}@dsic.upv.es 

Abstract. In this work we analyse the relation between hierarchical distance-
based clustering and the concepts that can be obtained from the hierarchy by 
generalisation. Many inconsistencies may arise, because the distance and the 
conceptual generalisation operator are usually incompatible. To overcome this, 
we propose an algorithm which integrates distance-based and conceptual clus-
tering. The new dendrograms can show when an element has been integrated to 
the cluster because it is near in the metric space or because it is covered by the 
concept. In this way, the new clustering can differ from the original one but the 
metric traceability is clear. We introduce three different levels of agreement be-
tween the clustering hierarchy obtained from the linkage distance and the new 
hierarchy, and we define properties these generalisation operators should satisfy 
in order to produce distance-consistent dendrograms. 

Keywords: conceptual clustering, hierarchical clustering, generalisation,  
distances.  

1   Introduction 

Distances and generalisations are the underlying concepts to two different approaches 
for machine learning. Similarity, which is a broader concept than distance, is the basis 
for many inductive inference techniques, since similar elements are expected to be-
have similarly. Distances do not only formalise the notion of similarity between cases 
or individuals, but provide the additional properties of metric spaces, which are ad-
vantageously exploited by many techniques, known as distance-based. 

Generalisation is also another key concept in machine learning. Any inductive 
learning involves some kind of generalisation. Unlike distance-based methods, some 
approaches are based on the idea that a generalisation or pattern discovered from old 
data can be used to describe new data covered by this pattern. These techniques are 
known as model-based. 

Distance-based techniques are quite intuitive and flexible, in the sense that we only 
need to define a distance function for the data we are working with. However, distance-
based methods do not provide a pattern or explanation which justifies the decision made 
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for a given individual. In particular, distance-based clustering systems arrange elements 
into groups based on a numerical measure of similarity between elements. Therefore, 
the resulting clusters lack conceptual descriptions making them difficult to interpret. For 
instance, it is helpful to know that a given molecule belongs to a cluster because it is 
similar to the elements of the cluster according to a certain distance measure, but it 
would even be more interesting to know what chemical properties are shared by all the 
molecules in the cluster. 

A well-known approach for distance-based clustering is hierarchical clustering [1, 2]. 
In hierarchical distance-based clustering, data are split into clusters during several parti-
tion steps forming a hierarchy of clusters from a single cluster containing all the ele-
ments to n clusters containing just one element. Depending on how the hierarchy is 
built, hierarchical clustering can be classified as agglomerative (bottom-up) or divisive 
(top-down).  

A different approach to clustering is conceptual clustering defined by Michalski [3, 4]. 
Conceptual clustering overcomes the cluster interpretation problem by forming clusters 
that can be described by properties involving relations on a selected set of attributes. A 
conceptual clustering system accepts a set of object descriptions and produces a partition 
over the observations. These descriptions can be viewed as cluster generalisations, which 
are expressed as patterns common to all the elements of the cluster. 

In this work we present a general approach for clustering in such a way that we use 
a distance to construct the cluster hierarchy while also producing patterns. The core of 
the approach is an algorithm for Hierarchical Distance-based Conceptual Clustering 
(HDCC). The key issue here, which has been neglected by other conceptual clustering 
methods that use distances, is whether the hierarchy induced by a distance and the 
discovered patterns are consistent, i.e. are all the elements covered by a pattern close 
with respect to the underlying distance? To answer the question, first we need to 
clearly show when this happens. This has led to a new graphical representation of the 
resulting dendrogram (that we have named conceptual dendrogram). We also need to 
analyse a priori whether the inconsistencies will appear or not. This has given rise to 
the development of three levels of consistency between distances and generalisations 
and the corresponding properties which ensure (in a higher or lower degree) that the 
conceptual clustering also reflects the distribution of examples in the metric space. 
This means that if for a given problem we are able to prove these properties, we will 
know beforehand that the resulting hierarchy of patterns is at the same time consistent 
with the distance and the concepts expressed by each pattern in the hierarchy.  

The main contribution of this work is a practical and general way to integrate hier-
archical distance-based and conceptual clustering smoothly. Additionally, the algo-
rithm is also a general way to construct an n-ary generalisation operator from binary 
generalisation operators in a metric space. Our approach is general in the sense that it 
can be applied to any distance, pattern language and generalisation operator. Conse-
quently, this idea is directly applicable to structured data. One possible instantiation 
would provide us with the descriptions or generalisations for clusters of first order 
atoms obtained by the application of Plotkin´s least general generalisation operator 
(lgg) at the same time that the process of clustering uses a distance for atoms, e.g. the 
distance defined in [5]. Another direct instantiation would be for example the cluster-
ing of lists using regular patterns and the edit distance. 
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The work is organised as follows. In Section 2 some necessary previous concepts 
are summarized. Our proposal (HDCC) is presented in Section 3. In Section 4 we 
show theoretical results about some generalisation operator properties. In section 5 we 
present some experiments which compare our method to traditional conceptual clus-
tering. Finally, Section 6 closes the paper with the conclusions and future work. 

2   Preliminaries 

Intuitively, the generalisation of a finite set of elements E in a metric space (X, d) 
could be extensionally defined as a set that contains E. However, this kind of exten-
sional definition gives no insight on the concept or pattern that the elements in the 
generalisation share. We say that a pattern p ∈ L, where L is the pattern language, is 
an intensional way of representing a set of elements of X, which are denoted by 
Set(p).  

First we introduce the definition of binary generalisation operators over a metric 
space and then we extend this concept to patterns in Definition 2. 

Definition 1. Let (X, d) be a metric space and L a pattern language. A binary 
generalisation operator is a function Δ: X × X→ L such that given x1 ∈ X, x2 ∈ X, Δ(x1, 
x2) = p, where p ∈ L and x1 ∈ Set(p) and x2 ∈ Set(p). 

Fig. 1 (Left) shows five possible generalisations of two points in the metric space (ℜ2, 
d), where d is the Euclidean distance. 
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  p1

 p2

Δ*(p1, p2) 

 

Fig. 1. (Left) Five possible generalisations of two points in ℜ2. (Right) A generalisation of two 
patterns p1 and p2 in ℜ2. 

Definition 2. Let (X, d) be a metric space and L a pattern language. A pattern binary 
generalisation operator is a function Δ*: L × L → L such that given p1 ∈ L and p2 ∈ L, 
Δ*(p1, p2) = p, where p ∈ L and Set(pi) ⊆ Set(p) (i ∈ {1,2}). 

Definition 2 establishes that a generalisation of two patterns must describe at least all 
the elements described by both patterns. In Fig. 1 (Right) we show a possible generali-
sation for two patterns p1 and p2 in L, where L is the set of all axis-parallel rectangles. 

Note that when L = X, as it happens, e.g. with lgg for atoms, the operator Δ* and Δ 
can be the same. 

3   Hierarchical Distance-Based Conceptual Clustering Algorithm 

The approach to clustering we propose is based on one of the most known and simple 
bottom-up distance-based algorithms, the agglomerative hierarchical clustering. It 
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builds a hierarchy of clusters from individual elements by progressively merging 
clusters. Clusters are joined based on the distance between them, referred as the link-
age distance. Usually, the linkage distance is determined by the maximum distance 
between elements of each cluster (i.e. complete linkage distance, dc

L), by the mini-
mum distance between elements of each cluster (i.e. single linkage distance, ds

L), by 
the mean distance between elements of each cluster (i.e. average linkage distance, 
da

L), or by the minimum distance between the cluster prototypes (i.e. prototype link-
age distance, dp

L), among others. In the rest of the paper we will only consider these 
four functions, dc

L, ds
L, da

L, and dp
L. We use dL to refer any of them. 

In traditional agglomerative hierarchical clustering, the process of clustering starts 
at the leaves of the tree where each leaf corresponds to a one-element cluster. Then it 
joins the two closest clusters into a new cluster that becomes the parent of the formers 
into the hierarchy. Now the new cluster and the rest minus the two closest ones com-
pose the new set of clusters. This process is repeated until eventually the set of clus-
ters is formed by only one cluster containing all the elements.  

A problem appears if we want a pattern or description for each cluster. Since the 
clustering process is driven by the underlying distance, a discovered pattern obtained 
by generalisation may describe the elements of a cluster but it might describe other 
elements of the metric space that are not included into the cluster. This can lead to an 
inconsistency between the clusters described by the patterns and those resulting from 
the hierarchical algorithm. To illustrate the problem let us consider the example for 
lists of symbols given in Fig. 2 (Left). The elements belong to the metric space (X, d) 
where X is the set of all the finite list of symbols on the alphabet Σ = {a, b} and d is 
the edit distance or Levenshtein distance [6] considering the cost of a replacement as 
the cost of a supression plus an insertion. The figure shows four elements (aa, aab, 
abb, aabbbbbb) and the distances between them. 
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Fig. 2. (Left) Four examples of lists in (Σ*, d). (Right) The coverage of pattern p = aa∗. 

According to the hierarchical clustering algorithm with single linkage and taking 
into account the distances between the examples, the resulting clusters are those 
shown in Fig. 3 (Left). Let us suppose that the chosen generalisation operator pro-
duces the pattern aa∗ for the cluster {aa, aab}. Clearly, there is a metric inconsistency 
between the elements described by aa∗ (aa, aab, aaa, aaba, aabb,…) and the clusters 
induced by the distance, since aa∗ covers aabbbbbb but it does not cover abb, which 
is closer (see Fig. 2 (Right)). 

With this idea, the proposed approach to hierarchical distance-based conceptual 
clustering (HDCC) makes a generalisation operator and a distance work together by 
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achieving a simple adaptation to the hierarchical base algorithm. This adaptation con-
sists in merging to each new cluster all those clusters covered by its generalisation. In 
this way, the final patterns provide a description common to all the elements that are 
close according to the underlying distance but also of those that although not close 
enough to be part of the cluster are covered by the pattern. To represent the resulting 
clustering we use an extended dendrogram that we have named conceptual dendro-
gram. A conceptual dendrogram provides not only with the traditional information 
about what elements are in each cluster but it also gives a description of the common 
properties of their elements in the form of a pattern. A solid line links the clusters 
merged by the distance, while a dashed line links those merged by a pattern. Fig. 3 
(Right) shows the conceptual dendrogram for the current example. The pattern p = aa∗ 
covers the cluster {aa, aab, aabbbbbb}, which has been formed considering in first 
place the distance between the clusters and in second place the coverage of the result-
ing pattern aa∗.  

 

Fig. 3. (Left) Traditional dendrogram. (Right) Conceptual dendrogram. 

To overcome the inconsistency problem between the distance and the generalisa-
tion operator mentioned above, HDCC performs a coverage-reorganisation process 
that consists in merging to the new cluster C with pattern p all those clusters in the 
hierarchy that are included in Set(p). Hence these conceptually-added clusters can 
play a very different role in the construction of the hierarchy. Note that this process is 
performed during the construction of the hierarchy, and not as a post-process. A post-
processing over the original dendrogram would not yield a distance-consistent expla-
nation of the hierarchy and it would imply a much more complex, costly and thorough 
reorganization of the hierarchy. 

Table 1 shows a pseudo code for HDCC. The output is a tree T where each node is 
a cluster with its corresponding pattern and linkage distance (shown on the Y-axis). 
The HDCC is in fact a n-ary generalisation operator. 

The following simple example illustrates how the HDCC algorithm works under 
single linkage. Let us suppose the evidence is the set of points in ℜ2 shown in Fig. 4  
(Left) while the generalisation operator and the pattern language are the same used in 
the example shown in Fig. 1 (Right). 

Fig. 4 (Right) shows the resulting conceptual dendrogram. The clusters {a, b}, {a, 
b, c}, {a, b, c, d} and {a, b, c, d, e} have been formed driven by the distance. How-
ever, as we can see in Fig. 4 (Center) the cluster {i} has been merged to {a, b, c, d, e} 
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Table 1. Hierarchical distance-based conceptual clustering 

Input: E={e1, e2,…, en} ⊆ X and a distance d, with (X, d) a metric space; Δ*: 
L × L → L a pattern binary generalisation operator; Δ: X × X → L a bi-
nary generalisation operator; dL: 2X × 2X × (X × X → ℜ) → ℜ a linkage dis-
tance.  

Output: A tree T of clusters and generalisations.  

1. S ← {{ e1 }, { e2 }, …, { en }}. 
2. Insert tuple ({ei}, Δ(ei, ei), 0) as a leaf of T, for all {ei} in S. 
3. While S ≠ {E} do 
 3.1. Compute dL(Ci, Cj, d) between each pair of clusters Ci, Cj ∈ S 
 with i< j, using the distance d.  
 3.2. Compute the pattern pCxy of cluster Cxy as Δ*(pCx, pCy), where 
 Cxy = Cx ∪ Cy, pCx, pCy are the patterns of Cx and Cy, respectively,  
 and Cx and Cy are the closest clusters in S according to dL. 
 3.3. S ← S ∪{Cxyz} and Cxyz = Cxy ∪ Cz and Cz = { e | e ∈ C i ∧ C i ∈ S ∧ Ci ⊆ Set(pCxy) } 
 3.4. Insert (Cxyz, pCxy, dLCxy) in T as the parent node of (Cx, pCx, dLCx), 
 (Cy, pCy, dLCy) and of nodes (Ci, pCi, dLCi) where Ci ∈ S and Ci ⊆ Set(pCxy).  
 3.5. S ← S – {Ci} for all Ci s.t. Ci ⊆ Set(pCxy).  
4. Return T.  

 

 

Fig. 4. (Left) A set of points in ℜ2. (Center) The discovered patterns p1,…, p7. The shadowed 
area shows the evidence covered by p4. (Right) Conceptual dendrogram. 

by the pattern p4 that covers both. Note that {i} would have been the last merged 
cluster by ds

L in the traditional dendrogram. 

4   Consistency Between Distances and Generalisation Operators 

The exact shape of the conceptual dendrogram and whether it has dashed links de-
pends not only on the distance d and the generalisation operators used but also on the 
linkage distance dL. We can talk of several degrees of consistency between distances 
and generalisations on the basis of the similarity between a conceptual dendrogram 
and the traditional one. The more similar the dendrograms are the more consistent the 
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distance is wrt. the generalisation operator. Next we present three different conditions 
to ensure that the generalisation operator produces distance-consistent dendrograms. 

4.1   Equivalent Dendrograms 

In some cases, the conceptual dendrogram is isomorphic to the traditional dendro-
gram. This happens when the discovered patterns do not cover any other cluster be-
sides those linked by the distance, i.e. each new cluster is formed only by merging the 
closest clusters or it is composed of only one element (i.e. it is a leaf cluster). There-
fore, we say that a conceptual dendrogram is equivalent to a traditional dendrogram 
if for each cluster C which is not a leaf all its children are linked at the same distance 
l. This is formalised in Definition 3. 

Definition 3. Let T be the tree resulting from HDCC. T is equivalent to a traditional 
dendrogram iff ∀ (C, p, l) ∈ T : (|C| = 1 ∨ (∀ (Ci, pi, li) child of (C, p, l), ∃ (Cj, pj, lj) 
child of (C, p, l) in T  such that dL(Ci, Cj, d) = l)). 

If we want equivalent dendrograms, each time HDCC determines the two closest clus-
ters C1 and C2 with linkage distance l, the corresponding pattern p should not cover any 
other cluster C whose distances l1 and l2 to C1 and C2 respectively are greater than l. 
Note that l1 and l2 can not be lower than l since in this case HDCC would have merged 
this cluster to C1 or C2 before. We say that generalisation operators that generate pat-
terns whose coverage satisfies this condition are strongly bounded by dL. Intuitively, a 
pattern binary generalisation operator is strongly bounded by dL when for any pair of 
patterns p1, p2, and any pair of sets C1 and C2 covered by each, the linkage distances 
from the new elements covered by the generalisation of p1 and p2 to C1 and C2 are equal 
or lower than the linkage distance between C1 and C2, i.e. the new elements covered by 
the generalisation of p1 and p2 fall into the balls of radius dL(C1, C2, d) and centre in the 
linkage points of C1 and C2. The linkage points are, in the case of ds

L, the two closest 
elements in C1 and C2; the two most distant elements in dc

L; the prototypes in the case 
dp

L and the centroids in the case of da
L (assuming the metric space is continuous). This 

concept is formalised in Definition 4. 

Definition 4. Let (X, d) be a metric space, L a pattern language and dL a linkage 
distance. A pattern binary generalisation operator Δ* is strongly bounded by dL iff ∀ 
p1, p2 ∈ L, C1 ⊆ Set(p1), C2 ⊆ Set(p2), C ⊆ Set(Δ*(p1, p2)) – (Set(p1) ∪ Set(p2)) : dL(C, 
C1, d) ≤ dL(C1, C2, d) ∨ dL(C, C2, d) ≤ dL(C1, C2, d). 

Fig. 5 (Left) shows clusters {a, b, c} and {d, e, f} formed under single linkage. The 
patterns used are unions of axis-parallel rectangles. A is the generalisation of {d, e}, A 
∪ C of {d, e, f}, B of {a, b}; B ∪ D of {a, b, c} and A ∪ C ∪ B ∪ D ∪ E of {a, b, c, 
d, e, f}. The union of the circles determines the area where the new elements in the 
generalisation of A ∪ C and B ∪ D should be if Δ* is strongly bounded by ds

L. 
Definition 5 gives the same property for a binary generalisation operator. A binary 

generalisation operator is strongly bounded by dL when for any pair of elements e1 
and e2, the linkage distances from {e1} and {e2} to any cluster {e} covered by the 
generalisation of e1 and e2 is lower than the linkage distance between {e1} and {e2}, 
i.e. e must fall into the balls of radius dL({e1}, {e2}, d) and centre in e1 and e2.  
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Fig. 5. (Left) The union of the circles shows the region where the new elements in the generali-
sation of A ∪ C and B ∪ D should be. (Right) Maximum coverage of a binary generalisation 
operator Δ strongly bounded by dL. 

Definition 5. Let (X, d) be a metric space, L a pattern language and dL a linkage 
distance. A binary generalisation operator Δ is strongly bounded by dL iff ∀ e, e1, e2 ∈ 
X: if e ∈ Set(Δ(e1, e2)) then dL({e}, {e1}, d) ≤ dL({e1}, {e2}, d) ∨ dL({e}, {e2}, d) ≤ 
dL({e1}, {e2}, d). 

Fig. 5 (Right) shows the area in ℜ2
 that a pattern p is allowed to cover when Δ is 

strongly bounded by dL. Note that when we generalise only two elements the linkage 
distance dL is equal to the distance d between the elements for any dL.  

The linkage distance dL used by HDCC affects the boundedness property of gener-
alisation operators. Given a distance d, a generalisation operator could be strongly 
bounded under a given dL but not under a different one. For example, the pattern gen-
eralisation operator Δ* shown in Fig. 4 (Center) is not strongly bounded by ds

L but it is 
strongly bounded by dc

L. We can easily see that it is not strongly bounded by ds
L be-

cause, for instance, the point i covered by the pattern p4 is outside the balls with centre 
in d and e and radius ds

L({a, b, c, d,}, {e}, d). Note that ds
L({a, b, c, d}, {e}, d) = d(d, e). 

However, Δ* is strongly bounded by dc
L since each pattern covers a rectangle that is 

determined by the two most distant points e1 and e2 in C1 and C2, and this rectangle is 
always in the intersection of the two balls B(e1, l) and B(e2, l), where l = dc

L(C1, C2 , 
d) = d(e1, e2) and e1, e2 are the linkage points in C1 and C2. 

Proposition 1. Let (X, d) be a metric space, L a pattern language for X, Δ a binary 
generalisation operator, Δ* a pattern binary generalisation operator and dL a linkage 
distance. For any evidence E ⊆ X, the conceptual dendrogram T resulting from 
HDCC(E, X, d, Δ*, Δ, dL) is equivalent to the traditional dendrogram if the 
generalisation operators Δ and Δ* are strongly bounded by dL. 

Proof. There are two different cases to consider in T: (a) the leaves and (b) the 
internal nodes. 

Case (a): In the first step HDCC builds n clusters {e} and their corresponding gener-
alisations as Δ(e, e). Since Δ is strongly bounded by dL we have by Definition 5 ∀ e’, 
e ∈ E: if e’ ∈ Set(Δ(e, e)) then dL({e’}, {e}, d) ≤ dL({e}, {e}, d). Since dL({e}, {e}, d) 
= 0 and dL is positive, then dL({e’}, {e}, d) = 0. The only element e’ that satisfies this 
is e’ = e. Therefore, after a pattern is computed no other element can be added to the 
cluster by HDCC. Therefore, in this case, T is equivalent to the traditional dendro-
gram by Definition 3. 
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Case (b): In the following steps, each new node (C, p, l) in T is formed by merging in 
first place the two clusters (C1, p1, l1), (C2, p2, l2) whose linkage distance l is the low-
est and p is computed as Δ*(p1, p2). Since Δ*

 and Δ are generalisation operators we 
have that C ⊆ Set(p) and C1 ⊆ Set(p1) and C2 ⊆ Set(p2). 

− If Δ*(p1, p2) does not cover any other cluster in addition to C1 and C2, we have C = 
C1 ∪ C2 and dL(C1, C2, d) = l. 

− Let us suppose there is another child (C3, p3, l3) of (C, p, l) such that C3 ⊆ Set(Δ*(p1, 
p2))–(Set(p1) ∪ Set(p2)). Since Δ* is strongly bounded, by Definition 4 we have 
dL(C3, C1, d) ≤ dL(C1, C2, d) ∨ dL(C3, C2, d) ≤ dL(C1, C2, d). However, dL(C3, C1, d) 
must be equal to dL(C1, C2, d) and dL(C3, C2, d) must be equal to dL(C1, C2, d) oth-
erwise HDCC should have merged before C1 and C3 or C2 and C3 than C1 and C2. 

 Therefore, dL(Ci, Cj, d) = l for any child (Ci, pi, li), (Cj, pj, lj) of (C, p, l) and conse-
quently, in both cases, T is equivalent to the traditional dendrogram by Definition 3.
                              □ 

 

Fig. 6. An equivalent conceptual dendrogram 

Fig. 6 shows a simple example of a conceptual dendrogram that is equivalent to the 
traditional dendrogram under single linkage. L is the set of the finite closed intervals 
in ℜ, and d the absolute difference. Δ*(p1, p2) is the interval [min, max], where min is 
the minimum value of the lower bounds of p1 and p2, and max is the maximum of the 
upper bounds. Δ(e1, e2) is [min(e1, e2), max(e1, e2)]. It is easy to see that (a) Δ*and (b) 
Δ are strongly bounded by ds

L: 

− (a) Each generalisation of two patterns p1 and p2 is a new interval p that only cov-
ers the elements covered by p1 and p2 and those that are in between of them. If e1 
and e2 are the linkage points in C1 and C2 that have determined the single linkage 
distance l = d s

L(C1, C2, d), the new elements in the interval p must be included into 
the two balls B(e1, l) or B(e2, l), i.e. the intervals [e1 – l, e1 + l] or [e2 – l, e2 + l ]. 
Since e1 and e2 are the closest elements in C1 and C2, we have that p1 = [a, e1] and 
p2 = [e2, b] and p = [a, b]. Clearly the new elements in p, i.e. the elements in the in-
terval ]e1, e2[, are included in [e1 – l, e1 + l] and also in [e2 – l, e2 + l ] because l = | 
e2 – e1 |. 

− (b) Δ is strongly bounded by ds
L too because any element in Set(Δ(e1, e2)) will be 

always in between of e1, e2. Note that (a) and (b) holds for any dL here considered. 

The condition for having equivalent dendrograms, however, is too strong for many 
datatypes and generalisation operators given that it forces to minimal generalisations. 
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In fact a pattern generalisation operator Δ*(p1, p2) whose coverage Set(Δ*(p1, p2)) is 
equal to Set(p1) ∪ Set(p2) is strongly bounded because there is no new elements in 
Δ*(p1, p2), so the only set C which must satisfy (dL(C, C1, d) ≤ dL(C1, C2, d) ∨ dL(C, 
C2, d) ≤ dL(C1, C2, d)) is C = ∅ and since the dL from a cluster to ∅ is zero, the condi-
tion holds for any p1, p2 ∈ L, C1 ⊆ Set(p1), C2 ⊆ Set(p2). The same happens with Δ 
when Δ(e1, e2) is defined as {e1, e2}. 

4.2   Order-Preserving Dendrograms 

Sometimes for a given pair of generalisation operators Δ and Δ*, a distance d and a 
linkage distance dL, the conceptual dendrogram –although not equivalent to the tradi-
tional one– can just preserve the order in which clusters are merged by dL, i.e. a dis-
covered pattern will never cover a farther cluster leaving out a closer one. In that case, 
we say that the conceptual dendrogram is order-preserving.  

More specifically, an order-preserving conceptual dendrogram is one where for any 
node (C, p, l) in the hierarchy, its children are linked at the same distance l or they are 
linked by the pattern at a linkage distance lower than the linkage distance from any 
other cluster in the hierarchy not covered by the pattern. This concept is formalised by 
Definition 6. 

Definition 6. Let (X, d) be a metric space and T the tree resulting from HDCC. T is 
order-preserving iff ∀ (C, p, l), (Ci, pi, li) ∈ T, ∃ (Cj, pj, lj) ∈ T with (Ci, pi, li) and (Cj, 
pj, lj) children of (C, p, l)  such that  dL(Ci, Cj, d) = l ∨ (dL(Ci, Cj, d) < dL(C’, Ci, d) ∧ 
dL(Ci, Cj, d) < dL(C’, Cj, d)), for all (C’, p’, l’) ∈ T , C’ ⊄ Set(p). 

To obtain an order-preserving conceptual dendrogram, any time HDCC merges two 
clusters C1 and C2 with patterns p1 and p2, any other cluster C covered by the gener-
alisation of p1 and p2 that has not been linked by the distance dL must have lower 
linkage distances to C1 and C2 than the linkage distances to C1 and C2 from any other 
cluster C’ not covered by the pattern. This is formalized by the property we call weak 
boundedness and that is given by Definition 7. Analogously, Definition 8 establishes 
the same property for binary generalisation operators. 

Definition 7. Let (X, d) be a metric space, L a pattern language and dL a linkage 
distance. A pattern binary generalisation operator Δ* is weakly bounded by dL iff ∀ 
p1, p2 ∈ L, C1 ⊆ Set(p1), C2 ⊆ Set(p2), C ⊆ Set(Δ*(p1, p2)) – (Set(p1) ∪ Set(p2)), C’ ⊄ 
Set(Δ*(p1, p2)) : (dL(C, C1, d) ≤ dL(C1, C2, d) ∨ dL(C, C2, d) ≤ dL(C1, C2, d)) ∨ (dL(C, 
C1, d) < dL(C’, C1, d) ∧ dL(C, C2, d) < dL(C’, C2, d)). 

Definition 8. Let (X, d) be a metric space, L a pattern language and dL a linkage 
distance. A binary generalisation operator Δ is weakly bounded by dL iff ∀ e, e’, e1, e2 
∈ X: if e ∈ Set(Δ(e1, e2)) and e’ ∉ Set(Δ(e1, e2)) then dL({e}, {e1}, d) ≤ dL({e1},{e2}, d) 
∨ dL({e}, {e2}, d) ≤ dL({e1},{e2}, d) ∨ ((dL({e}, {e1}, d) < dL({e’},{e1}, d) ∧ dL({e}, {e2}, 
d) < dL({e’},{e2}, d)). 

Proposition 2. Let (X, d) be a metric space, L a pattern language, dL a linkage 
distance, Δ a binary generalisation operator, and Δ* a pattern binary generalisation 
operator. 
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(a) If Δ* is strongly bounded by dL then Δ* is weakly bounded by dL.  
(b) If Δ is strongly bounded by dL then Δ is weakly bounded by dL. 

Proof. Part (a) of Proposition 2 follows immediately from definitions of strongly and 
weakly bounded operators. Any pattern generalisation operator that is strongly 
bounded by the linkage distance is also weakly bounded given that Definition 7 
relaxes the condition in Definition 4. The same holds for part (b) since Definition 8 
relaxes the condition in Definition 5.             □ 

As before, we want to show that the weakly bounded property is a sufficient condition 
to preserve the order. 

Proposition 3. Let (X, d) be a metric space, L a pattern language, Δ a binary 
generalisation operator, Δ* a pattern binary generalisation operator and dL a linkage 
distance. For any evidence E ⊆ X, the conceptual dendrogram T resulting from 
HDCC(E, X, d, Δ*, Δ, dL) is order-preserving if the generalisation operators Δ and Δ* 
are weakly bounded by dL. 

Proof. There are two different cases to consider in T: (a) the leaves and (b) the 
internal nodes. 

Case (a): In the first step HDCC builds n nodes ({e}, Δ(e, e), l) with l = 0. If Δ(e, e) 
covers any other element this is merged to {e}.  

Since Δ is weakly bounded by dL we have by Definition 8 ∀ e, e’, e1 ∈ E: if e ∈ 
Set(Δ(e1, e1)) and e’ ∉ Set(Δ(e1, e1)) then dL({e}, {e1}, d) ≤ dL({e1},{e1}, d) ∨ (dL({e}, 
{e1}, d) < dL({e’},{e1}, d). Since dL({e1}, { e1}, d) = 0 and dL is positive we have ∀ e, 
e’, e1 ∈ E: if e ∈ Set(Δ(e1, e1)) and e’ ∉ Set(Δ(e1, e1)) then dL({e},{e1}, d) = 0 ∨ 
dL({e},{e1}, d) < dL({e’},{e1}, d).  Therefore, T is order-preserving by Definition 6. 
Case (b): In the following steps, each node (C, p, l) in T is formed by merging (in first 
place) the two clusters (C1, p1, l1), (C2, p2, l2) whose linkage distance l is the lowest 
and p is computed as Δ*(p1, p2). Since Δ*

 and Δ are generalisation operators we have 
that C ⊆ Set(p) and C1 ⊆ Set(p1) and C2 ⊆ Set(p2).  

− If Δ*(p1, p2) does not cover any other cluster different to C1 and C2, we have C = C1 
∪ C2 and dL(C1, C2, d) = l. 

− Let us suppose there is another child (C3, p3, l3) of (C, p, l) such that C3 ⊆ 
Set(Δ*(p1, p2)) – (Set(p1) ∪ Set(p2)). Since Δ* is weakly bounded, by Definition 7 
we have dL(C3, C1, d) ≤ dL(C1, C2, d) ∨ dL(C3, C2, d) ≤ dL(C1, C2, d) ∨ (dL(C3, C1, d) 
< dL(C’, C1, d) ∧ dL(C3, C2, d) < dL(C’, C2, d)) for all C’ ⊄ Set(Δ*(p1, p2)). By rea-
soning as in Proposition 1 we have, dL(C3, C1, d) = dL(C3, C2, d) = dL(C1, C2, d) = l 

∨ (dL(C3, C1, d) < dL(C’, C1, d) ∧ dL(C3, C2, d) < dL(C’, C2, d)). 

Therefore, in both cases, T is order-preserving by Definition 6.          □ 

The conceptual dendrogram of Fig. 3 (Right) is not order-preserving under the single 
linkage. Δ* is not weakly bounded by ds

L since the pattern aa* has linked first the 
cluster {aabbbbbb}, which is farther from {aa} and {aab} than {abb}. 
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Fig. 7 shows an example of an order-preserving dendrogram for nominal data 
using ds

L. We have used a distance similar to the one defined in [14], a distance 
induced by a relationship R, where R is a partial order. R is defined as xRy if x is a y. 
Fig. 7 (Left) shows part of a relationship R as a tree hierarchy. The distance between 
two elements is the sum of costs associated to each edge of the shortest path 
connecting them. The cost of an edge of level i is wi = 1/2i. Δ(e1,e2) is defined as the 
minimun ancestor of e1 and e2 if e1 ≠ e2 otherwise is equal to e1, and Δ*(p1, p2) is 
defined anlogously. In Fig. 7 (Top right) we can see the traditional dendrogram, and 
the corresponding conceptual dendrogram in Fig. 7 (Bottom right). The evidence is 
formed only by elements in the leaves of R. The internal nodes are generalisations. 
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Fig. 7. (Left) Relationship R as a tree. (Top right) Traditional dendrogram. (Bottom right) 
Not equivalent but order-preserving conceptual dendrogram. 

Note that a pattern generalisation operator that covers all the space (the maximal 
operator Δ*(p1, p2) = p where Set(p) = X) is trivially weakly bounded because we 
cannot find a cluster C such that C ⊄ Set(Δ*(p1, p2)).  

4.3   Acceptable Generalisation Operators 

There are some generalisation operators that although not (weakly) bounded lead to 
dendrograms which are consistent with the distance in a broader sense. The idea is 
that a pattern should not cover new elements whose distance to the old elements is 
greater than the greatest distance between the old elements. We refer to the operators 
that produce this kind of patterns as acceptable. In this case, the dendrograms can 
differ significantly. 

Definition 9. Let (X, d) be a metric space, L a pattern language and dc
L( . , . , . ) the 

complete linkage distance. A pattern binary generalisation operator Δ* is acceptable 
iff ∀ p1, p2 ∈ L, e ∈ Set(Δ*(p1, p2)), ∃ e’ ∈ Set(p1) ∪ Set(p2) : d(e, e’) ≤ 
d c

L(Set(p1),Set(p2), d). 

In Fig. 8 (Left) the union of the circles whose centres are in Set(p1)∪Set(p2) and ra-
dius equal to dc

L(Set(p1), Set(p2), d) determines the maximum coverage for a pattern 
produced by an acceptable generalisation operator for the evidence {a, b, c, d} in ℜ2. 

Note that a pattern generalisation operator is acceptable independently of the link-
age distance used. It only depends on the distance d between the two most distant 
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elements in the clusters. We use dc
L in the definition to simplify the notation. Defini-

tion 10 gives the same concept applied to binary generalisation operators. 

Definition 10. Let (X, d) be a metric space, L a pattern language. A binary 
generalisation operator Δ is acceptable iff ∀ e, e1, e2 ∈ X : if e ∈ Set(Δ(e1, e2)) then 
d(e, e1) ≤ d(e1, e2) or d(e, e2) ≤ d(e1, e2). 

We can see from Definition 10 and Definition 5 that any binary generalisation opera-
tor Δ is acceptable if and only if it is strongly bounded by the linkage distance since 
the linkage distance dL is equal to d when applied to single sets for any of the linkage 
distances here considered. 

The pattern binary generalisation operator Δ* used in Fig. 6 is acceptable, since all 
the elements in p will always fall between the bounds of p1 and p2 and consequently at 
a distance lower than the two most distant elements in p1 and p2. Δ is also acceptable 
because, as we showed for the example of Fig. 6, it is strongly bounded by the linkage 
distance. 

The good thing is that Δ(e, e) = {e} is strongly bounded, and hence acceptable. 
This operator can usually be expressed in most L. So, only Δ* must be analysed in 
most cases and, additionally, it is independent from dL. Results obtained for accept-
ability will be then extensible to whatever linkage function. 
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c d
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L 

   

Fig. 8. (Left) The coverage of an acceptable Δ* for the evidence {a, b, c, d} in ℜ2. (Center) 
Traditional dendrogram. (Right) Conceptual dendrogram. 

Fig. 8 (Center) shows the traditional dendrogram for the evidence {baaa, aaaa, ba, 
bbb, cacc} and Fig. 8 (Right) the corresponding conceptual dendrogram, both using 
ds

L. The metric space is (Σ*, d), where Σ* is the space of states of lists formed from Σ 
included the empty list λ, Σ = {a, b, c} and d is the edit distance. The pattern language 
L is given by all the finite lists from the alphabet Σ’ = Σ ∪ V ∪ {λ} where V = {V1, 
V2, …, Vn} is a set of variables. The variables are used to generalise symbols in Σ ∪ 
{λ}. The generalisation of two lists is given by Δ(l1, l2) = p where p is formed by the 
patterns given by the optimal alignments of l1 and l2 and whose length is given by the 
length of the longest pattern l1 or l2. Variables represent the symbols that do not 
match. For instance, Δ(aabaaa, ababaa) = aV1V2V3aa. Δ*(p1, p2) is computed analo-
gously, e.g. Δ*(aV1V2V3aa, baa) = V1V2V3V4aa. Although Δ and Δ* are not bounded 
under the single linkage distance, they are acceptable given that each pattern covers 
elements whose distances are at most the number of variables in the pattern and this is 
precisely the maximum distance possible between two elements in Set(p), in particu-
lar to the elements in Set(p1) ∪ Set(p2).  
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5   Experimental Results 

One question that arises from the previous proposal is whether the new conceptual 
clustering, coming from the on-line re-arrangement of the dendrogram might under-
mine cluster quality (in the cases where the dendrograms are not equivalent, natu-
rally). In order to bring some light on this, the experiments below compare HDCC 
against the traditional version of the hierarchical clustering algorithm. We constructed 
100 artificial datasets by drawing points from a finite mixture of k Gaussian distribu-
tions in ℜ2 whose means are randomly located in [0, 100]2 with a standard deviation 
of 1. Although k represents the actual number of gaussians in a dataset, note that there 
might be overlapping between gaussians, so having fewer clusters. We set k = 3, and 
each dataset was formed by 600 points (200 points were drawn from each of the 3 
Gaussian distributions). The experiments were conducted under single and complete 
linkage and using two different language patterns L1 and L2. L1 is the language of axis-
parallel rectangles and L2 is the language of circles. 

Fig. 9 shows the discovered patterns in L1 and L2 for one dataset with 600 points 
drawn from three Gaussian distributions, one using ds

L (Left) and the other using dc
L 

(Right). Note that the rectangles obtained incrementally by HDCC fit the points as 
well as an n-ary operator. This is not the case in L2 where the discovered patterns are 
more general than using an n-ary operator. However, as we can see in Table 2, it does 
not affect the clustering quality because they are built incrementally and HDCC in 
each step only merges those clusters that are completely covered by the pattern. 

To assess the quality of the clustering we employed a measure, S, that reflects the 
mean scattering over the k clusters (see eq. (1)). The lower S is the better the clustering 
is. Table 2 shows S averaged over n different experiments. Note that n can take values 
less than 100 in HDCC since the resulting hierarchies do not always have a clustering of 
k clusters (several clusters may be joined by a discovered cluster pattern in one step).  
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The experiments show that not only quality is not degraded, but for L2 HDCC 
sometimes outperforms the traditional algorithm under single linkage. Similar results 
were obtained with points in [0, 10] 2. Logically, different results might be obtained 
using non-convex or complex-shaped patterns. 
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Fig. 9. Discovered patterns in L1 and L2  using d s
L (Left) and using d c

L (Right) 
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Table 2. Values of S for traditional and conceptual dendrograms for k =3 

 Traditional 
S           n 

Conceptual 
S           n 

Dendrogram 
Relation 

Single 292,293  (100) 292,295  (100) Not equivalent L1 
Complete 281,393  (100) 281,393  (100) Equivalent 
Single 292,293  (100) 281,549   (98) Not equivalent L2 
Complete 281,393  (100) 281,727  (100) Not equivalent 

6   Conclusions 

We have presented a general approach for hierarchical conceptual clustering based on 
distances and generalisation operators. It puts together the flexibility of hierarchical 
distance-based clustering and the interpretability of conceptual clustering. For in-
stance, a user can choose any part of a dendrogram, get a description also learning 
whether all the covered elements are close wrt. the underlying metric. 

Several clustering algorithms that generate concept descriptions can be found in 
the literature. On the one hand we have those coming from traditional conceptual 
clustering such as CLUSTER/2 [4], COBWEB [7] and GCF [8]. On the other hand 
we have those that, using a subset of first-order logic as representation language, 
apply traditional distance-based clustering algorithms. In this second group we can 
find KBG [9], C 0.5 [10], COLA-2 [11], and TIC [12, 13] among others. Our proposal 
is different to all the conceptual clustering methods which also use a distance in the 
way that it is general to any datatype (any generalisation operator and distance can be 
used). Moreover, we present graphical extensions to see the divergence between the 
distance and the generalisation operator a posteriori, but also conditions that can be 
checked a priori to ensure that the resulting conceptual dendrograms are consistent 
with the underlying distance. Our work is related to [14] where the author analyses 
the relationship between distances and generalisations and proposes a framework 
where these two paradigms can be integrated in a consistent way. In [14] the analysis 
is achieved on generalisation operators defined on a metric space and not over a lan-
guage of patterns as it is done here. 

Additionally, as we have said, HDCC can be seen as an n-ary operator constructed 
over binary operators by only applying the binary operators at most n times, where n 
is the number of examples. This is an interesting property for machine learning areas 
which have well-established binary generalisations operators, such as ILP. 

The instantiation of HDCC to propositional clustering is direct, when datatypes are 
nominal or numerical. We have shown in [15] that the common generalisation opera-
tors for nominal data (extensional set) and numerical data (intervals) are strongly 
bounded in the metric spaces defined by the distance functions commonly used for 
these datatypes (discrete distance and difference distance). Hence in this case the 
distance-based conceptual dendrograms are equivalent to classical distance-based 
dendrograms, independently of the linkage distance. The problem is also analysed 
when the tuple is composed of both nominal and numerical data, and the generalisa-
tion operators are extended accordingly. Examples of this have been shown in the 
experiments section in this paper. 
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Things are more diverse (and interesting) when applying the proposal to structured 
datatypes. We have seen several examples in this paper when the conditions hold for 
the complete linkage but not for the single linkage, or only one of the degrees (the 
weakest one, acceptability) is met. We are currently working on the establishment of 
operative combinations of distances and generalisation operators for lists and sets.  
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1 Data Mining Departament,
Advanced Technologies Application Center (CENATAV),

7a � 21812 e/ 218 y 222, Rpto. Siboney, Playa, CP: 12200, La Habana, Cuba
{agago,jmedina}@cenatav.co.cu

2 National Institute of Astrophysics, Optics and Electronics (INAOE),
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Abstract. In this paper, a new algorithm for mining frequent connected
subgraphs called gRed (graph Candidate Reduction Miner) is presented.
This algorithm is based on the gSpan algorithm proposed by Yan and
Jan. In this method, the mining process is optimized introducing new
heuristics to reduce the number of candidates. The performance of gRed
is compared against two of the most popular and efficient algorithms
available in the literature (gSpan and Gaston). The experimentation on
real world databases shows the performance of our proposal overcoming
gSpan, and achieving better performance than Gaston for low minimal
support when databases are large.

1 Introduction

Nowadays, due to the rapid scientific and technological advances, there are great
creation, storage and data distribution capacities. This situation has boosted
the necessity of new tools to transform this big amount of data into useful
information or knowledge for decision makers. When these data are complex
and structured, this transformation requires techniques that usually have high
time and memory requirements. Examples of these techniques are those related
to frequent subgraph mining; i.e., the process of finding subgraphs that occur
frequently in a collection of graphs.

Frequent subgraph mining has become an important topic in data mining re-
searches with wide applications [3], including mining substructures from chemical
compound databases, XML documents, citation networks, biological networks,
etc. As consequence several algorithms have been proposed to find all frequent
connected subgraphs in collections of labeled graphs [6,7,11,2,4,8].

Labeled graphs can be used to model relations among data in the aforemen-
tioned applications because labels can represent attributes of entities and rela-
tions among themselves. For example in chemistry, the different kinds of atoms

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 365–376, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



366 A. Gago Alonso et al.

and bonds in a chemical compound can be modeled by vertex and edge labels
respectively.

The first frequent subgraph miner called AGM was introduced by Inokuchi
et al. for unconnected graphs [5]. This algorithm was followed by the FSG
algorithm [7] and AcGM [6] (an adaptation of AGM), for mining frequent con-
nected subgraphs. These algorithms have the same setup as the original Apriori
algorithm for mining frequent itemsets [1].

To avoid supposed overheads incurred in the earlier algorithms, new pattern
growth based algorithms such as gSpan [11], MoFa [2], FFSM [4] and Gaston [8]
were developed. In [10] these algorithms were compared in a common framework.
In this experimentation, the four algorithms were competitive among themselves,
although Gaston and MoFa were the fastest and slowest algorithms respectively,
in almost all tests. On the other hand, gSpan was the best algorithm regarding
its memory requirements. The embedding structures used by MoFa, FFSM and
Gaston could cause problems if not enough memory is available or if the memory
throughput is not high enough.

In this paper, a new pattern growth algorithm called gRed (graph Candidate
Reduction Miner) is introduced. This algorithm is based on the gSpan scheme;
but using novel properties of the DFS code that allows to reduce the number of
candidates for optimizing the mining process.

The basic outline of this paper is as follows. Section 2 is dedicated to the
related work, it includes the basic concepts introduced by gSpan algorithm.
The details of gRed algorithm are discussed in the section 3. The experimental
results are presented in section 4. Conclusions of the research and some ideas
about future directions are exposed in section 5.

2 Preliminaries

In gRed, each candidate graph is represented by its minimum DFS (Depth First
Search) code. This kind of canonical representation, based on DFS graph traver-
sal, was introduced in gSpan [11]. Some concepts introduced in gSpan are required
for understanding our algorithm; therefore, we include them in section 2.1.

2.1 Basic gSpan Concepts

The basic concepts we will use in this paper are the following.

DFS Tree. A DFS tree T is constructed when a DFS traversal in a graph
G = 〈V,E〉 is performed. G can have different DFS trees because there are more
than one DFS traversal. Each DFS traversal (DFS tree) defines a unique order
among all the vertices; therefore, we can number each vertex according to this
DFS order. The root and the right most vertex in T are v0 and vn respectively.
The right most path is the straight path from v0 to vn in T . The forward edge
set F (T ) contains all the edges in T , and the backward edge set B(T ) contains
the edges which are not in T .
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Procedure MainLoop(D, δ, S)
Input: D - database, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← S1 ← all frequent 1-edge codes2

forall code s ∈ S1 do3

Initialize the TID list s.L by the graphs which contains the edge of s;4

SubgraphMining(D,s,δ,S);5

D ← D \ e;6

if |D| < δ then break;7

end8

Procedure SubgraphMining(D, s, δ, S)
if not isMin(s) then return;1

S ← S ∪ {s};2

Enumerate(D, s, RE);3

forall edge extension e ∈ RE do4

if s � e.support ≥ δ then SubgraphMining(D, s � e, δ, S);5

end6

Procedure Enumerate(D, s, RE)

forall graph g ∈ s.L do1

Enumerate the next occurrence of s in g;2

forall right most extension e of s do3

s � e.L ← s � e.L ∪ {g};4

RE ← RE ∪ {e};5

end6

if any occurrence of s in g are not covered then goto line 2;7

end8

Fig. 1. General description of gSpan algorithm

DFS Code. The DFS code is a sequence of edges built from the DFS Tree.
This sequence is obtained considering the destination vertices in F (T ) according
to the DFS order. The backward edges from a vertex are inserted just before
its forward edges; if the vertex has several backward edges, these are included
in the DFS order of their destination vertices. Multiple edges between same
vertices are ordered according to the lexicographic order (≺l) of its labels. These
considerations for building the sequence define the following linear order (≺e)
between two edges.

DFS lexicographic order. For simplicity, each edge can be represented by
a 5-tuple, (i, j, li, l(i,j), lj) where i and j are the subindices of the vertices (vi

and vj), li and lj are the labels of these vertices respectively, and l(i,j) is the
label of the edge. If i < j it is a forward edge; otherwise it is a backward edge.
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In summary, the inequality e1 ≺e e2 holds (assume that e1 = (i1, j1, . . .) and
e2 = (i2, j2, . . .)) if and only if one of the following statements is true:

– e1, e2 ∈ F (T ) and j1 < j2 or i1 > i2 ∧ j1 = j2;
– e1, e2 ∈ B(T ) and i1 < i2 or i1 = i2 ∧ j1 < j2;
– e1 ∈ B(T ), e2 ∈ F (T ) and i1 < j2;
– e1 ∈ F (T ), e2 ∈ B(T ) and j1 ≤ i2;
– i1 = i2, j1 = j2 and e1 ≺l e2.

The lexicographic order ≺l compares the edges e1 and e2 regarding the last three
components in each 5-tuple. The vertex label li gets first priority, the edge label
l(i,j) gets the second, and the vertex label lj gets the third to determine the
order between two edges.

The order ≺e can be also extended to a lexicographic order (≺s) to com-
pare two edge sequences (two DFS codes). Let s1 = (a1, a2, . . . , am) and s2 =
(b1, b2, . . . , bn) be two DFS codes. We say that s1 ≺s s2 if one of the following
conditions is true:

∃t, ∀k < t, ak = bk, and at ≺e bt ; (1)
m < n and ∀k ≤ m, ak = bk . (2)

Minimum DFS Code. It is defined as the minimum sequence according to the
order ≺s among all DFS codes of the same graph.

Rightmost path extension. Given a DFS code s and an edge e, e is a rightmost
path extension of s if e connects the rightmost vertex with another vertex in the
rightmost path (backward extension); or it introduces a new vertex connected
from a vertex of the rightmost path (forward extension). In such cases, the DFS
code s′ = s + e is the code obtained extending s by e; s′ is called a child of s or
s is called a parent of s′.

gSpan guarantees the completeness of mining results only working with the
minimum DFS codes, pruning non minimal children in the solution space. Fig. 1
describes the pseudo-code of gSpan. This pseudo-code is an integration of the
algorithm descriptions presented in [11,12].

All pattern growth algorithms generate duplicated candidates during the enu-
meration process. In gSpan, the duplicated candidates are non-minimal codes.
Instead of calculating the minimum DFS code of s from all possible DFS codes,
picking up the smallest one and comparing it against s, gSpan defines a more
efficient function isMin(s) in line 1 of SubgraphMining. A heuristic search was
designed using the DFS lexicographic order. Whenever some prefix of a DFS is
generated and it is less than s, then s is not minimal and the search concludes.

For support calculation and candidate enumeration, gSpan uses a TID list.
The TID list (Transaction ID list) contains the ID of each graph in the data-
base that holds the corresponding subgraph. In the procedure Enumerate, s.L
is used to determine the possible extension set for s, performing subgraph iso-
morphism tests to find all the embeddings of s in each graph in s.L. In line 5 of
SubgraphMining, the support of s + e is the length of s + e.L.
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3 The gRed Algorithm

The gRed algorithm can also be described using the pseudo-code of Fig. 1. Only
the procedures SubgraphMining and Enumerate are changed by new procedures
gRed-SubgraphMining and gRed-Enumerate respectively. Novel properties of
the DFS codes introduced in the following section are used by the new procedures
for optimizing the mining process.

3.1 DFS Codes

Suppose that s = e0, e1, . . . , em is a minimum DFS code. The set RE(s) of all
rightmost path extensions (see section 2.1) of s can be partitioned into three
sets B(s) (backward extensions), FV (s) (forward extensions from the rightmost
vertex) and FN(s) (forward extensions from a non rightmost vertex in the right
most path), RE(s) = B(s) ∪ FV (s) ∪ FN(s) (see Fig. 2). Thus, the forward
extensions can be represented by F (s) = FV (s) ∪ FN(s).

Let vi be a vertex in the right most path, let vn be the right most vertex
in s and let Fi(s) be the forward extension set from vertex vi. If vi �= vn we
can use FNi(s) to refer to Fi(s). Similarly, we use Bi(s) to denote the set that
contains the backward extensions to the destination vertex vi. For example, in
Fig. 2 the right most path is (v0, v4, v6); therefore, we have FV (s) = F6(s),
FN(s) = F0(s) ∪ F4(s) and B(s) = B0(s) ∪B4(s).

If vi �= vn, we denote fi as the forward edge from vi lying in the right most
path. For each edge e, we use e−1 to refer to the reverse edge of e. For example
in Fig. 2, we have f4 = (4, 6, B, , C) and f−1

4 = (6, 4, C, , B).

Fig. 2. Partitions in the rightmost path extensions, (A) example of a DFS tree, (B)
the forward extensions FV (s) ∪ FN(s) and (C) the backward extensions B(s)

The following two results are sufficient conditions for a child to be non min-
imal. Both statements can be used by the procedure gRed-Enumerate to filter
the possible extensions from a DFS code s.

Proposition 1. Let s be a minimal DFS code. If e ∈ FNi(s) and e ≺l fi, then
s′ = s + e is a non-minimal child of s.
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Proof. Let h be an integer number such that eh = fi. The edges eh and e
start from vi and they are forward edges in s′. Therefore, we can perform a
DFS traversal visiting first e and then eh or vice versa. If e is visited im-
mediately before than eh, the resulting DFS code has the following format
s′1 = e0, . . . , eh−1, e, e

′
h, . . . , e

′
m, where e′j is ej with another subindices for each

j ≥ h. The codes s′ and s′1 have the same prefix e0, . . . , eh−1 and we are consid-
ering that e ≺l eh; therefore, by the condition (1), s′1 ≺s s′. Thus, we conclude
that s′ is a non-minimal child of s. ��

The proposition 1 allows to characterize the non-minimality of certain forward
extensions. Similar results for backward extensions are showed in proposition 2.

Proposition 2. Let s be a minimal DFS code. If e ∈ Bi(s) and e−1 ≺l fi, then
s′ = s + e is a non-minimal child of s.

Proof. Similarly to the proof of the proposition 1, h is the integer number such
that eh = fi. We can perform a DFS traversal visiting first e−1 and then eh or
vice versa. If e−1 is visited immediately before than eh, the resulting DFS code
have the following format s′1 = e0, . . . , eh−1, e

−1, e′h, . . . , e
′
m. The codes s′ and

s′1 have the same prefix e0, . . . , eh−1 and we assume that e−1 ≺l eh; therefore,
s′1 ≺s s′. Thus, we conclude that s′ is a non-minimal child of s. ��

In gSpan, a duplicate test (minimality test) is performed for each frequent child
of s, i.e. the number of such tests is |RE(s)|. Let RE0(s) be the extension
set obtained from RE(s) by removing the extensions whose non-minimality is
guaranteed according to the propositions 1 and 2. The algorithm gRed only
considers the extensions in RE0(s).

It is not always necessary to perform the duplicate test for each child of s
in RE0(s). The following propositions allow to avoid some minimality tests in
the context of the DFS codes. The procedure gRed-SubgraphMining uses this
properties to speedup the mining process.

Proposition 3. Let s be a minimal DFS code and let e, e′ ∈ Fi(s) be two forward
extensions of s by the same vertex vi. Then, the following statements are true:

1. if s + e is a minimal child and e ,l e
′, then s + e′ is a minimal child;

2. if s+e is a non-minimal child and e′ ,l e, then s+e′ is a non-minimal child.

Proof. Let us proof separately each case. We assume that s is the edge sequence
e0, e1, . . . , em.

In the first case, we have that s+e is a minimal child and e ,s e′. Suppose that
s+e′ is a non-minimal child, then there is at least one code s1 = a0, a1, . . . , am+1

such that s1 ≺s s + e′. Using the definition of ≺s (see section 2.1), there is an
integer t, 0 ≤ t ≤ m such that ak = ek for all k < t, and at ≺e et. As it can be
noticed, t < m+1 because s is a minimal DFS code. Thus, by the condition (1),
s1 ≺s s.

Since e and e′ start from the same vertex, we can replace the edge representing
e′ in s1 by the edge e. Assume s1 as the code obtained when replacing of e′ by e in
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s1; this code is a valid one for the graph coded by s+e and we have s′1 ≺s s1 ≺s s.
Using the condition (2), s′1 ≺s s ≺s s + e. Then, s + e is a non-minimal child of
s, representing a contradiction. Therefore, the initial assumption (s + e′ is a
non-minimal child) must be false. Thus, we conclude the proof for the first case.

In the second case, we have that s + e is a non-minimal child and e′ ,s e.
Then, there is at least one code s1 = a0, a1, . . . , am+1 such that s1 ≺s s + e′. Let
t be the integer such that 0 ≤ t ≤ m, ak = ek for all k < t, and at ≺e et. Thus,
by the condition (1), we have s1 ≺s s. Since e and e′ start from the same vertex,
we can replace the edge representing e in s1 by the edge e′. The resulting code
(assume it is s′1) is a valid DFS code for the graph coded by s + e′ and we have
s′1 ≺s s1 ≺s s ≺s s + e′. Therefore, s + e′ is a non-minimal child. ��

Proposition 4. Let s be a minimal DFS code and let e, e′ ∈ Bi(s) be two back-
ward extensions of s with destination vertex vi. Then, the following statements
are true:

1. if s + e is a minimal child and e ,l e
′, then s + e′ is a minimal child;

2. if s+e is a non-minimal child and e′ ,l e, then s+e′ is a non-minimal child.

Proof. The proof is similar to that given for proposition 3. ��

The last two propositions state that the minimality tests are not required in
some elements of Bi(s) or Fi(s). The extensions in RE0(s) are sorted according
to the aforementioned order ≺e, firstly the elements in B0(s), . . . , Bn(s), and
finally the elements in Fn(s), . . . , F0(s). Each set Bi(s) or Fi(s) is ordered inter-
nally by the lexicographic order ≺l. Under the proposition 3, we only need to
find the minimal extension e ∈ Fi(s) such that its corresponding predecessor ex-
tensions in Fi(s) are non-minimal. The successors of e in Fi(s) are also minimal
extensions; therefore, the minimality tests are not required. Similar observations
might be indicated for each Bi(s) using the proposition 4.

These four propositions were not used in the original gSpan algorithm de-
scribed in [11,12]. In the following section we illustrate how the aforementioned
properties are used to design the gRed algorithm.

3.2 The Algorithm

The Fig. 3 outlines the pseudo-code of the gRed algorithm. Note that D repre-
sents the graph database, δ is the minimum support threshold and S contains
the mining result.

gRed-MainLoop is quite similar to the procedure MainLoop of gSpan. It starts
by removing all infrequent vertices and edges. Next, for each frequent edge its
TID list is initialized before the gRed-SubgraphMining is invoked. At the end
of each iteration the edge is dropped from the database, i.e. it will not be used
as possible extensions in the next iterations.

The procedure gRed-SubgraphMiningrecursively generates all candidate codes
(graphs), this process is done while the generated code is frequent. Firstly, for
each minimum DFS code s its extension set ER0(s) is calculated using the proce-
dure gRed-Enumerate.The propositions 3 and 4 are used in gRed SubgraphMining
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Procedure gRed-MainLoop(D, δ, S)
Input: D - database, δ - support threshold
Output: S - mining results

Remove infrequent vertices and edges;1

S ← S1 ← all frequent 1-edge codes2

forall code s ∈ S1 do3

Initialize the TID list s.L by the graphs which contains the edge of s;4

gRed-SubgraphMining(D,s,δ,S);5

D ← D \ e;6

if |D| < δ then break;7

end8

Procedure gRed-SubgraphMining(D, s, δ, S)
S ← S ∪ {s};1

gRed-Enumerate(D, s, RE);2

forall extensions set E, might be RE.Bi or RE.Fi do3

Scan the first elements in E according to the order ≺e, removing the4

non-minimal extensions;
forall extension e ∈ E do5

if s � e.support ≥ δ then gRed-SubgraphMining(D, s � e, δ, S);6

end7

end8

Procedure gRed-Enumerate(D, s, RE)

forall graph g ∈ s.L do1

Enumerate the next occurrence of s in g;2

forall right most extension e of s do3

i ← e.i;4

fi ← the forward edge starting in i and lies in the right most path;5

if e is a forward edge and e ≥l fi then /* See proposition 1 */6

s � e.L ← s � e.L ∪ {g};7

RE.Fi ← RE.Fi ∪ {e};8

end9

if e is a backward edge and e−1 ≥l fi then /* See proposition 2 */10

s � e.L ← s � e.L ∪ {g};11

RE.Bi ← RE.Bi ∪ {e};12

end13

end14

if any occurrence of s in g are not covered then goto line 2;15

end16

Fig. 3. General description of gRed algorithm

for reducing the number of expensive minimality tests regarding gSpan and guar-
anteeing the completeness in the mining result. The minimality test in line 4 is
performed using the same isMin(s) function used in gSpan (see section 2.1). In
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gRed the isMin(s) function is used only for the first extensions of each Bi(s) or
Fi(s) while in gSpan the test is performed for every child of s.

In the procedure gRed-Enumerate, all occurrences of s in each graph of the
TID list s.L are enumerated. Thus, all the possible extensions of s in the database
are generated. Using the propositions 1 and 2, some non-minimum extensions
are filtered. For the specific sub-graph isomorphism testing procedure of line 2,
we use the same enumerating engine proposed by gSpan in [12].

4 Experimental Results

All the experiments were done using an Intel Core 2 Duo PC at 2.2 GHz with
2 GB of RAM. We compare gRed only against gSpan and Gaston; both were
implemented in a common Java framework [10] which is distributed under GNU
license. Our implementation of gRed is compatible with this framework. The
SUN Java Virtual Machine (JVM) 1.5.0 was used to run the algorithms.

Fig. 4. Runtime with datasets PTE, CAN2DA99, HIV and NCI varying the minimum
support

First of all, in order to show that the algorithm implementations get approx-
imately the same results as those published in [8,10] we retested the algorithms
as in those works. The performance was retested using PTE [9] and CAN2DA991

datasets. The results in both datasets are included adding the performance of
gRed.

1 http://dtp.nci.nih.gov/docs/cancer/cancer data.html



374 A. Gago Alonso et al.

Fig. 5. The number of duplicated candidates found in datasets PTE, CAN2DA99, HIV
and NCI varying the minimum support

The NCI2 and HIV3 datasets are used to determine how the algorithms scale
when the database size increases. Commonly, these four datasets have been used
in different works for performance evaluations [10].

The runtime for the algorithms was recorded varying the support threshold
for the four datasets. A comparison of gRed, gSpan and Gaston regarding its
execution times are showed in Fig. 4. In order to illustrate how the algorithms
scale with a lot of candidates, only low support thresholds were considered.
The runtime rises for Gaston on large databases (CAN2DA99, HIV and NCI)
for these minimal supports. Besides, Gaston was unable to complete the exe-
cution for low minimal supports (less than 3% in CAN2DA99, 5% in HIV and
6% in NCI) due to memory requirements. Gaston needed much more memory
than the other tested algorithms (see Fig. 6). However, in the smallest data-
base (PTE), the best results were achieved by Gaston. The best runtimes on
the large databases were obtained by gRed and gSpan for the evaluated support
thresholds.

As we can see, gRed beats gSpan in all tests. It is known that much of the
time consumption in gSpan is used by subgraph isomorphism tests during the
candidate enumeration process. Since gRed also uses this kind of tests, it has
similar behavior. However, gRed shows significant improvements when the data-
base is large. In PTE the improvement achieved by gRed is even greater since
the number of duplicate candidates declines considerably (see Fig. 5).

2 http://cactus.nci.nih.gov/ncidb2/download.html
3 http://dtp.nci.nih.gov/docs/aids/aids data.html



Mining Frequent Connected Subgraphs Reducing the Number of Candidates 375

Fig. 6. Memory usage on the HIV dataset varying the minimum support

The algorithms gRed and gSpan are also compared regarding the number of
duplicated candidates in Fig. 5. The pruning strategies used to minimize the
number of duplicates in Gaston is very different from those used by gRed and
gSpan. Gaston is not included in this comparison to highlight the differences
between gRed and gSpan. The number of duplicates in all cases were significantly
reduced by gRed; even in PTE for minimal support = 2, it reduces almost 60% of
the duplicates regarding gSpan. This improvement corresponds to the runtimes
of Fig. 4; nevertheless, the runtime improvement was not even greater because
subgraph isomorphism tests are time-consuming. This result suggests that, if
gRed is combined with the evaluation strategies of the other algorithms (for
example the embedding structures used in Gaston), we might achieve better
runtime scores.

The memory consumption was recorded varying the support threshold on the
HIV dataset (see Fig. 6). We choose HIV in order to show an example of the
memory problem of Gaston for low minimal support in correspondence to the
runtimes of Fig. 4. The improvement of gRed regarding memory requirement
can be appreciated in Fig. 6.

5 Conclusions

In this paper, a new algorithm called gRed, for frequent connected subgraph
mining, was introduced. Novel properties of the DFS code, that allow to reduce
the number of candidates during the mining process, were studied and imple-
mented. In this research, we show that the DFS code has not been sufficiently
studied and new properties can be found to improve the mining process.

We compared gRed against two reported algorithms. The experimentation
showed that our proposal overcome gSpan in every tests. In the experiments,
gRed and gSpan achieved better performance evaluations than Gaston for low
minimal support when databases are large.

As future work, we are going to develop hybrid approaches of gRed in combi-
nation with evaluation strategies of other algorithms like Gaston.
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Unsupervised Riemannian Clustering of Probability
Density Functions

Alvina Goh and René Vidal

Center for Imaging Science, Johns Hopkins University
3400 North Charles Street, Baltimore, MD 21218, USA

Abstract. We present an algorithm for grouping families of probability density
functions (pdfs). We exploit the fact that under the square-root re-parametrization,
the space of pdfs forms a Riemannian manifold, namely the unit Hilbert sphere.
An immediate consequence of this re-parametrization is that different families
of pdfs form different submanifolds of the unit Hilbert sphere. Therefore, the
problem of clustering pdfs reduces to the problem of clustering multiple sub-
manifolds on the unit Hilbert sphere. We solve this problem by first learning a
low-dimensional representation of the pdfs using generalizations of local nonlin-
ear dimensionality reduction algorithms from Euclidean to Riemannian spaces.
Then, by assuming that the pdfs from different groups are separated, we show
that the null space of a matrix built from the local representation gives the seg-
mentation of the pdfs. We also apply of our approach to the texture segmentation
problem in computer vision.

Keywords: Manifold learning, manifold clustering, probability density functions.

1 Introduction

Over the past few decades, there has been a huge explosion in the amount of readily
available information. In order to be able to efficiently process this abundance of data,
probability density functions (pdf) are often employed to model complex datasets. This
has led to the development of various metrics to measure the similarities between differ-
ent pdfs. Information geometry refers to the study of the intrinsic geometric structures in
the manifold of pdfs. The Riemannian structure of the space of pdfs was first introduced
in [1]. Since then, there have been major breakthroughs in the theory of information ge-
ometry [2], and also in the development of computational tools for clustering that utilize
the geometric structure of the Riemannian manifold [3,4,5].

An area in which probability density functions are commonly used in computer
vision is texture analysis. Segmentation of different textures remains important for
present-day applications and is the focus of considerable effort in the field. For ex-
ample, it is vital to be able to perform automatic segmentation of different land cover
from remotely sensed images in environmental management, as it is tedious for photo-
interpreters to classify landscape manually. It is well-known that by convolving the
image with a set of filters, it is possible to obtain a spectral pdf of the image which indi-
cates the texture characteristics. Therefore, given a set of images with different textures,
it is often desirable to be able to automatically segment the textures into similar classes

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 377–392, 2008.
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by clustering the pdfs into different families. For arbitrary textures, we do not neces-
sarily know the description of the pdfs, though it is reasonable to assume that similar
textures will have similar pdfs.

The question we address in this paper is the following. Given a set of pdfs, how do
we develop a computationally simple framework that allows us to group the pdfs into
similar families? Since these pdfs are determined from data, they are non-parametric in
nature. Therefore, in order to compute distances between two arbitrary pdfs, we impose
a Riemannian structure on the manifold of pdfs. Unlike traditional clustering methods,
we will not assume that the pdfs within each group are centered around a collection of
cluster centers in the manifold. Instead, we will assume that the different groups of pdfs
form different submanifolds in the Riemannian space. Therefore, we aim to develop a
framework that exploits the Riemannian structure of the space of pdfs to cluster a given
set of arbitrary pdfs into similar groups.

Our clustering framework makes use of nonlinear dimensionality reduction tech-
niques. Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a
low-dimensional representation for a set of points lying in a nonlinear manifold embed-
ded in a high-dimensional space. Existing NLDR techniques can be categorized into
two main groups: global and local techniques. Global techniques attempt to preserve
global properties of the data lying in a submanifold, similar to what Principal Compo-
nent Analysis (PCA) [6] attempts to preserve for data lying in a linear subspace. Two of
the best-known examples of this family of algorithms are ISOMAP [7] and Kernel PCA
(KPCA) [8]. Local techniques are however based on the preservation of local properties
which are obtained from the small neighborhoods around the datapoints. The key idea
of such techniques is that by preserving the local properties of the data, one can also
retain the global properties of the data. Locally linear embedding (LLE) [9], Laplacian
eigenmaps (LE) [10] and Hessian LLE [11] fall under this category of algorithms. In
this paper, we chose to use local NLDR techniques such as LLE, LE and HLLE. We
will show that the segmentation of the data can be obtained from the null space of a
matrix built from the local representation. This is a property that local NLDR methods
offer but global NLDR methods such as ISOMAP do not.

Paper contributions The main contribution of this paper is the development of a
framework for clustering different families of pdfs. By choosing the square-root rep-
resentation, we reduce the problem to one of clustering data lying in different submani-
folds of a unit sphere. As in our previous work [12], we learn a local representation of the
data using generalization of the three NLDR techniques, namely Laplacian Eigenmaps
(LE) [10], Locally Linear Embedding (LLE) [9], and Hessian LLE (HLLE) [11], from
Euclidean to Riemannian spaces. We show that the null space of a matrix built from the
local representation gives the segmentation of the pdfs. Our method is computationally
simple and performs automatic segmentation without requiring user interaction.

2 Review of Local Nonlinear Dimensionality Reduction Methods
in Euclidean Spaces

In this section, we review three local NLDR algorithms. LetX = {xi ∈ M}n
i=1 be a set

of n data points sampled from a d-dimensional manifoldM embedded in R
D, d- D.
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We assume that the n points are k-connected, i.e., for any two points xi,xj ∈ X there
is an ordered sequence of points in X having xi and xj as endpoints, such that any two
consecutive points in the sequence have at least one k-nearest neighbor in common.
The goal of dimensionality reduction is to find a set of vectors {yi ∈ R

d}n
i=1, such that

nearby points remain close and distant points remain far.
Locally Linear Embedding (LLE) [9] assumes that the local neighborhood of a

point in the manifold can be well approximated by the affine subspace spanned by the
k-nearest neighbors of the point, and finds a low-dimensional embedding of the data
based on these affine approximations. Laplacian Eigenmaps (LE) [10] are based on
computing the low dimensional representation that best preserves locality instead of
local linearity in LLE. Hessian LLE (HLLE) [11] bears substantial resemblance to
LLE and LE, with the main difference being that the local neighborhood is represented
by the tangent space at each point and the Laplacian matrix is replaced by the Hessian
matrix. The main steps of these local NLDR algorithms are as follows:

1. Nearest neighbor search: For each data point xi ∈ X , find its k nearest neighbors
(kNN) {xij}k

j=1 according to the Euclidean distance.
2. Construction of similarity matrix: Construct a weighted graph whose elements en-

code the local geometry of the data. Define a similarity matrix M based on these
weights. M is symmetric and positive semidefinite.

3. Sparse eigenvalue problem: Obtain the embedding coordinates, i.e., the columns of
Y = [y1, . . . ,yn]� ∈ R

n×d, from the d (generalized) eigenvectors of the matrix
M associated with its second to (d + 1)-th smallest (generalized) eigenvalues. The
vector of all ones, 1 ∈ R

n, is a eigenvector of M associated with eigenvalue 0.

We will now describe the construction of M for each NLDR algorithm in more detail.

Calculation of M in LLE

1. Weight matrix: Find a matrix of weights W ∈ R
n×n whose entries Wij minimize

the reconstruction error

ε(W ) =
n∑

i=1

‖
n∑

j=1

Wijxj − xi‖2 =
n∑

i=1

dist2(x̂i,xi) (1)

subject to the constraints (i) Wij = 0 if xj is not a k-nearest neighbor of xi and (ii)∑n
j=1 Wij = 1. In (1), x̂i = xi +

∑n
j=1 Wij

−−→xixj is the linear interpolation of xi

and its kNN. The solution to this problem can be computed as

[
Wi i1 Wi i2 · · · Wi ik

]
=

1�C−1
i

1�C−1
i 1

∈ R
1×k, (2)

where 1 ∈ R
n is the vector of all ones, and Ci ∈ R

k×k is the local Gram matrix at
xi, i.e., Ci(j, l) = (xj − xi) · (xl − xi).

2. Objective function: Find vectors {yi ∈ R
d}n

i=1 that minimize the error

φ(Y ) =
n∑

i=1

‖yi −
n∑

j=1

Wijyj‖2 = trace(Y �MY ), (3)
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subject to the constraints (i)
∑n

i=1 yi = 0 and (ii) 1
n

∑n
i=1 yiy�

i = I . The solution
to this optimization problem is given by the d eigenvectors of M = (I −W )�(I −
W ) associated with its second to (d + 1)-th smallest eigenvalues.

Calculation of M in LE

1. Weight matrix: Construct a matrix of weights W ∈ R
n×n

Wij = exp(−‖xi − xj‖2/σ2) (4)

subject to the constraint Wij = 0 if xj is not a k-nearest neighbor of xi. The entries
of W , Wij , measure the proximity between two points xi and xj .

2. Objective function: Find vectors {yi ∈ R
d}n

i=1 that minimize the error

φ(Y ) =
∑
i,j

‖yi − yj‖2Wij = trace(Y �MY ) (5)

subject to the constraints (i) Y �D1 =
∑n

i=1 Diiyi = 0 (weighted low-dimensional
coordinates centered at the origin) and (ii) Y �DY = I (weighted low-dimensional
coordinates having unit covariance). In Eq. (5), M = D−W is the graph Laplacian
matrix and D is a diagonal matrix whose entries are given by Dii =

∑
j Wij . The

solution to this optimization problem is given by the d generalized eigenvectors of
(M,D) associated with its second to (d + 1)-th smallest generalized eigenvalues.

Calculation of M in HLLE

1. Tangent coordinates: For each data point xi, let {xij}k
j=1 be its kNN. Form the D

by D covariance matrix cov(xi) = 1
k

∑k
j=1(xij − x̄i)(xij − x̄i)�, where x̄i is the

mean of the kNN. Perform an eigenanalysis of the matrix cov(xi) to obtain the d
eigenvectors {uq ∈ R

D}d
q=1. The tangent coordinates of the kNN are given by the

d columns of the k × d matrix V given below, where p = 1, . . . , k and q = 1, . . . , d

Vpq = (xip − x̄i)�uq = 〈xip − x̄i,uq〉. (6)

2. Objective function: The embedding vectors are obtained based on the null vectors
of a matrix M that indicates the Hessian quadratic cost. While we refer the reader
to [11] for details on the estimation of M , the basic principle is as follows. We first
locally estimate a Hessian operator hi at each point xi in the manifold in a least
squares sense. In particular, consider a smooth function f : M → R. We evaluate
the function at all kNN of a point xi in the manifold and stack these entries into a
vector fi. It can be shown that hifi approximates the entries of the Hessian, whose
(p, q)-th entry is given by ∂2f

∂VpδVq
. These local estimates are then used to obtain an

empirical estimate of the (i, j)-th entry of M as

Mi,j =
∑

l

∑
r

((hl)r,i(hl)r,j). (7)

The embedding coordinates are then found by selecting a basis for the space spanned
by d eigenvectors of M associated with its second to (d+1)-th smallest eigenvalues
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with the restriction that it provides an orthonormal basis to a specific fixed neigh-
borhoodN . Let U denote the n× d matrix associated with the second to (d + 1)-th
smallest eigenvectors where Ul,r is the l-th entry in the r-th eigenvector of M . The
embedding coordinates is obtained as UR− 1

2 , where Rr,s =
∑

j∈N Uj,rUj,s.

3 Clustering Submanifolds of a Riemannian Space

In this section, we present an algorithm for clustering and dimensionality reduction on
Riemannian manifolds. We first present a brief summary of the theory of Riemannian
manifolds in §3.1. For a more complete description, we refer the reader to [13]. We then
illustrate how to extend existing NLDR algorithms to Riemannian manifolds in §3.2 by
adopting the framework in [12]. Finally, in §3.3, we show that by making use of the
mappings generated by NLDR, the problem of manifold clustering reduces to a central
clustering problem, as proved in [12].

3.1 Review of Riemannian Manifolds

The NLDR techniques presented in §2 are applicable only in the presence of one man-
ifold with unknown structure. Every operation is approximated by the corresponding
Euclidean operation as the metric is unknown. However, for Riemannian manifolds
with well-studied geometries, closed-form formulae for Riemannian operations are of-
ten available. The question now is to extend NLDR techniques for Riemannian mani-
folds in a way that takes into consideration the appropriate Riemannian structure. For
this purpose, we adopt the framework developed in our previous work [12]. In this sec-
tion, we will give an overview of Riemannian theory and show how the various opera-
tions such as interpolation on the manifold and computation of the mean and principal
components are carried out.

A differentiable manifold M of dimension d is a topological space that is home-
omorphic to the Euclidean space R

d. Fig. 1 shows an example of a two-dimensional
manifold, a smooth surface living in R

3. The tangent space TxM at x is the vector
space that contains the tangent vectors to all 1-D curves on M passing through x. A
Riemannian metric on a manifold M is a bilinear form which associates to each point
x ∈ M, a differentiable varying inner product 〈·, ·〉x on the tangent space TxM at
x. The norm of a vector v ∈ TxM is denoted by ‖v‖2x = 〈v,v〉x. The Riemannian
distance dist(xi,xj) between two points xi and xj lying in the manifold is defined as
the minimum length over all possible smooth curves on the manifold between xi and
xj . The geodesic curve from xi to xj , γ, is the smooth curve with minimum length.

Given a tangent vector v ∈ TxM, locally there exists a unique geodesic γv(t)
starting at x with initial velocity v, and this geodesic has constant speed equal to
‖v‖x. The exponential map, expx : TxM → M maps a tangent vector v to the
point in the manifold that is reached at time 1 by the geodesic γv(t). The inverse of
expx is the logarithm map and denoted by logx : M → TxM. For two points xi

and xj in the manifold M, the tangent vector to the geodesic curve from xi to xj

is defined as v = −−→xixj = logxi
(xj), and the exponential map takes v to the point

xj = expxi
(logxi

(xj)). In addition, γv(0) = xi and γv(1) = xj . The Rieman-
nian distance between xi and xj is defined as dist(xi,xj) = ‖ logxi

(xj)‖xi . Linear
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Fig. 1. An example of a two-dimensional manifold. The tangent plane at xi, together with the
exponential and logarithm maps relating xi and xj , are also shown.

geodesic interpolation makes use of the exponential and logarithm maps and is given by
x̂ = expxi

(w−−→xixj), w ∈ [0, 1]. Finally, the Riemannian metric, exponential and loga-
rithm maps depend on the point x under consideration, hence the subscripts reflecting
this dependency.

We will now briefly summarize how to calculate the mean and principal components
of data points lying in a manifold. As defined by Fréchet in [14] and used in several
recent works [15,16], the intrinsic mean x is defined as the solution to the following
minimization problem

x = argmin
x∈M

n∑
i=1

dist(x,xi)2 = argmin
x∈M

n∑
i=1

‖ logx(xi)‖2x. (8)

Note that, unlike in the Euclidean case, in general there is no closed form for x. More-
over, there is no guarantee that x exists or is unique. However, one can show the exis-
tence and uniqueness of x [17] by assuming that the data lie in a small enough neighbor-
hood, i.e., the maximum distance between any xi and xj is small enough. Furthermore,
x can be computed as shown in Algorithm 1.

Algorithm 1. (Intrinsic Mean)
Given data points x1, . . . , xn ∈ M, a predefined threshold ε, maximum number of iterations T ,

1. Initialize t = 1, x1 = xi for a random i, v 
= 0 ∈ Tx1M.
2. While t ≤ T or ‖v‖x ≥ ε,

(a) Compute tangent vector v = 1
n

∑n
i=1 logxt

(xi).
(b) Set xt+1 = expxt

(v)

Given x, the calculation of principal components on a Riemannian manifold is not as
straightforward as in the Euclidean case. It involves projecting a point onto a geodesic
curve, which is also defined as a minimization problem for which existence and unique-
ness are not ensured [15]. Again, by making the assumptions that the data lie in a small
neighborhood, the projection can be shown to be unique. In [15], it is shown that finding
principal components boils down to doing PCA in the tangent vectors logx(xi) ∈ TxM
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Table 1. Comparison of Euclidean and Riemannian operations, where {xi}n
i=1, are data points

Operation Euclidean Riemannian
Subtraction −−→xixj xj − xi logxi

(xj)
Addition xj xi + −−→xixj expxi

(−−→xixj)

Distance dist(xi, xj) ‖−−→xixj‖ = ‖xj − xi‖ ‖ logxi
(xj)‖xi =

√
〈logxi

(xj), logxi
(xj)〉xi

Mean x
∑n

i=1
−−→
xxi = 0

∑n
i=1 logx(xi) = 0

Covariance cov(x) 1
n

∑n
i=1(

−−→
xxi)(

−−→
xxi)

� 1
n

∑n
i=1(logx(xi))(logx(xi))

�

Linear interpolation x̂ xi + w−−→xixj expxi
(w−−→xixj)

Algorithm 2. (Principal Geodesic Analysis)
Given data points x1, . . . , xn ∈ M,

1. Compute intrinsic mean x as in Algorithm 1.
2. Calculate the tangent vectors vi = logx(xi)about x.
3. Construct the sample covariance matrix cov(x) = 1

n

∑n
i=1 viv

�
i .

4. Perform eigenanalysis of the matrix cov(x), with the eigenvectors {ui}d
i=1 giving the princi-

pal directions. {ui}d
i=1 forms an orthonormal basis for TxM.

about the mean x. This algorithm, known as Principal Geodesic Analysis (PGA), is
summarized in Algorithm 2. Table 1 compares the standard operations in Euclidean
and Riemannian spaces.

3.2 Extending NLDR to Riemannian Manifolds

Notice that the information about the local geometry of the manifold is essential only in
the first two steps of each algorithm and therefore, modifications are made only to these
two stages. The key issues are how to select the kNN and how to compute the matrix M
representing the local geometry. As shown in [12], the former is straightforward, while
the latter requires some thought. Given M , calculating the low-dimensional representa-
tion remains the same as in the Euclidean case. We let X = {xi ∈ R

D}n
i=1 be a set of

n data points sampled from a known Riemannian manifold.

Selection of the Riemannian kNN The first step of any NLDR algorithm is the com-
putation of the kNN associated with each data point. We define the kNN of xi by
incorporating the Riemannian distance, i.e., the kNN of xi are the k data points xj that
minimize ‖ logxi

(xj)‖xi .

Riemannian Calculation of M for LLE The second step of LLE is to compute the
matrix of weights W ∈ R

n×n. In order to do so, we will answer two main questions:
1) how does one express a point as a linear combination of its neighbors? and 2) what
is the reconstruction cost? First of all, we know that from §3.1 that
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x̂Riem,i = expxi
(

n∑
j=1

Wij logxi
(xj)). (9)

is the geodesic linear interpolation of xi by {xj}n
j=1. Now, instead of minimizing the

Euclidean error, we rewrite (1) to minimize the Riemannian reconstruction error and
make use of the fact that exp and log are inverse mappings. Therefore, we have

εRiem(W ) =
n∑

i=1

∥∥ logxi
(x̂Riem,i)

∥∥2
xi

=
n∑

i=1

∥∥ n∑
j=1

Wij logxi
(xj)
∥∥2

xi
(10)

subject to Wij = 0 if xj is not a kNN of xi and
∑

j Wij = 1. Using similar manipula-
tions as in the Euclidean case, the optimal weights are obtained as in (2), with the local
Gram matrix Ci ∈ R

k×k defined as

Ci(j, l) = 〈logxi
(xj), logxi

(xl)〉xi . (11)

M is then (I −W )�(I −W ).

Riemannian Calculation of M for LE Here, instead of attempting to write each data
point as a linear combination of its kNN, we find a matrix of weights W ∈ R

n×n

whose entries Wij measure the proximity between two points xi and xj as in (4).
Therefore, modifying LE for Riemannian manifolds is less involved than in the case of
LLE. Instead of using exp(−‖xi − xj‖2/σ2) as in (4), we construct the weight matrix
W using the Riemannian distance as

Wij = exp
(
− distRiem(xi,xj)2

σ2

)
= exp

(
−
‖ logxi

(xj)‖2xi

σ2

)
(12)

subject to the constraint Wij = 0 if xj is not a k-nearest neighbor of xi. As before,
M = D −W and D is a diagonal matrix, where Dii =

∑
j Wij .

Riemannian Calculation of M for HLLE The second step of HLLE involves com-
puting the tangent coordinates for each xi by applying Euclidean PCA to its neighbors.
This implicitly assumes that these local points lie in a subspace. This assumption is no
longer valid if xi and its kNN lie in a Riemannian manifold. From §3.1, we know that in
this case, calculating the principal geodesic components and the projection coordinates
is not as simple as doing Euclidean PCA. There is a need to incorporate the correct
Riemannian metric, mean and covariance matrix.

Again, let {xi,j}k
j=1 denote the set of k-nearest neighbors of xi. First we calculate

the intrinsic mean x̄i of the kNN (Algorithm 1). Next, we find the tangent vectors
vj = logx̄i

(xi,j) about x̄i and the geodesic principal directions {uq}d
q=1 using PGA

(Algorithm 2). Since {uq ∈ R
D}d

q=1 is an orthonormal basis for Tx̄i
M, we will rewrite

the projection operator in (6) using the Riemannian metric. Thus the tangent coordinates
of the kNN are given by the k × d matrix V , where

Vpq = 〈logx̄i
(xi,p),uq〉x̄i

, p = 1, .., k, q = 1, .., d. (13)

Once the tangent coordinates are found, the estimation of the Hessian matrix M is the
same as in the Euclidean case (7).
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Calculation of the Embedding Coordinates The last step of NLDR is to find a Eu-
clidean low-dimensional representation of the data points. As this step is independent
of the Riemannian structure, one can find the embedding coordinates as described in
§2. That is, the embedding coordinates are obtained based on the d (generalized) eigen-
vectors of the matrix M associated with its second to (d + 1)-th smallest (generalized)
eigenvalues. Finally, notice that if the Riemannian operations are available in closed-
form, then extending NLDR to Riemannian manifolds do not require significant addi-
tional computational complexity.

3.3 Local Riemannian Manifold Clustering

In this section, we review the extension of NLDR algorithms for the purpose of clus-
tering data lying in m submanifolds of a Riemannian space proposed [12]. We assume
that the data is distributed in a k-disconnected union of m k-connected submanifolds of
M. Under this assumption, [12] shows that each of the m submanifolds will be mapped
to a different point in R

m. Proposition 1 states the main result of [12]. This proposition
shows that in the case of a disconnected union of m k-connected submanifolds, the
matrix M has at least m zero eigenvalues, whose eigenvectors give the clustering of
the data. This is a generalized result that is applicable to Riemannian LLE, Riemannian
LE and Riemannian HLLE. The interested reader is referred to [12] for the proof of
Proposition 1.

Proposition 1 Let {xi}n
i=1 be a set of points drawn from a disconnected union of m

k-connected d-dimensional submanifolds of a Riemannian manifold. Then, there exist
m eigenvectors {uj}m

j=1 in the null space of M such that uj corresponds to the j-th
group of points, i.e., uij = 1 if the i-th data point is in the j-th group, and uij = 0
otherwise.

With real data, the assumption that the submanifolds are separated will obviously be vi-
olated. Therefore, the matrix M will be a perturbed version of the ideal case. However,
it is well-known from perturbation theory [18] that if the perturbation is small or the
eigengap is big, the eigenvectors vj might not coincide completely with the indicator
vectors (0, .,1, .,0)� of the clusters, but do so up to a small error term. Hence, it is rea-
sonable to expect that instead of mapping data points on m submanifolds to m points,
the mapping will generate a collection of n points distributed around m cluster centers.

We see that there exists a mapping g : M → R
m that gives the membership of

each point to the m submanifolds. This mapping is given by the rows of any basis for
ker(M). However, notice that we do not necessarily obtain the set of membership vec-
tors {uj} when computing a basis for ker(M), but rather linear combinations of them,
including the vector 1. In general, linear combinations of segmentation eigenvectors
still contain the segmentation of the data. Hence, we can cluster the data into m groups
by applying k-means to the columns of a matrix whose rows are the m eigenvectors in
the null space of M . Algorithm 3 summarizes our dimensionality reduction and clus-
tering algorithm for m submanifolds of a Riemannian space.
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Algorithm 3. (Unsupervised Clustering and Dimensionality Reduction on Rieman-
nian Manifolds)
Given data points x1, . . . , xn ∈ M,

1. Nearest neighbors: Find the kNN of each data point xi according to the Riemannian distance.
2. Construction of M : For each NLDR algorithm, construct the appropriate M described in §3.2.
3. Clustering: Compute the m eigenvectors {uj}m

j=1 of M associated with its m smallest eigen-
values and apply k-means to the rows of [u1, · · · ,um] to cluster the data into m different
groups.

4. Low-dimensional embedding: Apply NLDR to each group to obtain a low-dimensional em-
bedding for each submanifold.

4 Riemannian Analysis of Probability Density Functions

In this section, we will show how to impose a Riemannian structure on the space of pdfs.
We will adopt the work of [5], which proposes a “spherical” version of the Fisher-Rao
metric that allows for closed-form expressions for the various Riemannian operations.

The class of constrained non-negative continuous functions under study here is the
set of pdfs defined below. Without loss of generality, we can assume that these functions
are defined on the interval [0, T ]. Therefore, the set P of pdfs is given by

P = {p : [0, T ]→ R|∀s,p(s) ≥ 0,
∫ T

0

p(s)ds = 1}. (14)

The question of how to regard the space of pdfs as a differential manifold endowed
with a Riemannian metric and a family of affine connections has a long history be-
hind it. Nevertheless, it remains an active and important research area. Treating sta-
tistical structures as geometric structures has the advantage that geometric structures
remain invariant under coordinate transforms. [1] first introduces the Riemannian struc-
ture formed by the statistical manifold where each point in the manifold denotes a pdf.
In addition, [1] also shows that the Fisher-Rao metric determines a Riemannian metric.
The Fisher-Rao metric is later shown to be the unique intrinsic metric on the statistical
manifold in [19]. This study of probability and information via differential geometry is
known as information geometry. The reader is referred to the seminal work of [2] for a
complete description.

We will consider the manifold P of pdfs on the interval [0, T ]. For any point pi ∈ P ,
the Fisher-Rao metric is defined as

〈qj , qk〉pi =
∫ T

0

qj(s)qk(s)
1

pi(s)
ds, (15)

where qj , qk ∈ Tpi(P) are tangent vectors and Tpi(P) is the set containing the func-
tions tangent to P at the point pi. This representation turns out to be extremely difficult
to work with as ensuring the geodesic between two elements lies on P is not easy [5].

Even though the space P turns out to be difficult to work with, we know that it
is not the only possible representation for pdfs and in addition, we also know that
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the Fisher-Rao metric is the only metric that is invariant to re-parameterizations (es-
sentially coordinate transforms) of the functions [19]. There are many different re-
parameterizations of pdfs that are equivalent representations. These include cumulative
distribution functions

∫ s

0
p(t)dt, log density functions log p(s) and square-root den-

sity functions
√

p(s). Each of these parameterizations will lead to a different resulting
manifold. Depending on the representation, the resulting Riemannian structure can have
varying degrees of complexity and numerical techniques may be required to compute
geodesics on the manifold. For example, [3] chooses the log density representation and
uses a shooting technique to find geodesics on this space. However, this space has a
complicated Riemannian structure and the numerical method used in [3] sometimes
leads to large errors. Therefore, the natural question to ask now is, is it possible to use a
re-parameterization such that the resulting manifold is simple and the Riemannian op-
erations are easy, preferably closed-form, to compute? Once an efficient representation
is found, the corresponding Fisher-Rao metric, which depends on the tangent vector,
will then be used as the Riemannian metric.

In a recent work [5], it is proved that by using the square-root representation, the re-
sulting manifold is a unit sphere in a Hilbert space with the Fisher-Rao metric being the
usual L

2 metric. Therefore, the various Riemannian operations such as geodesics, ex-
ponential maps, logarithmic maps are available in closed form. This is the most efficient
representation found to date. The square-root density function is defined as ψ =

√
p,

where ψ is assumed to be non-negative to ensure uniqueness. The space of such func-
tions is defined as:

Ψ = {ψ : [0, T ]→ R|∀s,ψ(s) ≥ 0,
∫ T

0

ψ2(s)ds = 1}. (16)

From (16), it is easy to see that the functions ψ lie on a unit sphere. In addition, Ψ forms
a convex subset of the unit sphere. The advantage of choosing the square-root density
becomes immediately obvious, as many of the Riemannian expressions for the unit
sphere are well-known and closed-form. By making use of the representation in (16),
we can rewrite (15) and obtain the Fisher-Rao metric as

〈vj ,vk〉ψi =
∫ T

0

vj(s)vk(s)ds, (17)

where vj ,vk ∈ TψiΨ are tangent vectors. Now, for any two functions ψi,ψj ∈ Ψ , the
geodesic distance between these two points on a unit sphere is simply the angle between
them, i.e.,

dist(ψi,ψj) = cos−1〈ψi,ψj〉 = cos−1
( ∫ T

0

ψi(s)ψj(s)ds
)
, (18)

where 〈·, ·〉 is the normal dot product between points in the sphere under the L
2 metric.

From the differential geometry of the sphere, the exponential map is defined as

expψi
(v) = cos(‖v‖ψi)ψi + sin(‖v‖ψi)

v

‖v‖ψi

, (19)
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Fig. 2. Illustration of how probability density functions are clustered using our algorithm. Each
point in the manifold denotes a pdf and different groups are mapped into different clusters.

where v∈Tψi(Ψ )is a tangent vector at ψi and ‖v‖ψi =
√
〈v,v〉ψi =(

∫ T

0 v(s)v(s)ds)
1
2 .

In order to ensure that the exponential map is a bijective function, we restrict ‖v‖ψi ∈
[0, π]. The logarithm map from ψi to ψj is then given by

−−−→
ψiψj = logψi

(ψj) =
u

(
∫ T

0 u(s)u(s)ds)
1
2

cos−1〈ψi,ψj〉, (20)

with u = ψj − 〈ψi,ψj〉ψi.
By substituting the closed-form formulae in this section into the respective operations

in Algorithm 3, it is immediately clear that we are able to perform unsupervised cluster-
ing of probability density functions. Fig. 2 illustrates the overall idea of our approach.

5 Experiments

In this section, we evaluate the performance of the proposed algorithm on both synthetic
and real data. Experiments on synthetic data are performed on mixtures of uniform pdfs,
while experiments on real data involve the segmentation of images based on texture.

5.1 Synthetic Examples

We will first evaluate the performance of Algorithm 3 for clustering two groups of
uniform pdfs with 50 pdfs in each group. Fig. 3(a) shows these two groups of pdfs,
with the first group f1 in blue and the second group f2 in green, defined on the interval
[0, 1000]. Each different shade of blue or green denotes a different element of its group.
Both groups are generated by shifting the intervals in which the probability is not zero
and increasing the bandwidths. Let U [α, β] be the uniform distribution on the interval
[α, β]. The pdfs in f1 are f1,i = U [ai, bi], i = 1, . . . , 50, where ai = 4(i − 1) + λ1,
bi = 195 + 5i + λ2. The pdfs in f2 are f2,j = U [cj , dj ], j = 1, . . . , 50, where cj =
805 − 5j − λ3, dj = 1004 − 4j − λ4. {λk}4k=1 are drawn from U [0, 4]. Figs. 3(b)-
3(c) show that when we apply Riemannian LLE, the two smallest eigenvectors indicate
the membership of each group whereas the next two eigenvectors are the embedding
vectors.

Next, we validate the performance of our algorithm on two groups of pdfs, one with
uniform distributions and the other one with mixtures of uniform distributions. The
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Fig. 3. Applying Riemannian LLE to clustering two groups of uniform pdfs shown in (a). Both
pdfs are uniform distributions with shifting centers and varying bandwidths.
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Fig. 4. Clustering two groups of pdfs g1 = f1 and g2 = λf1 + (1 − λ)f2. Figs. 4(a)-4(b) show
g2 when λ = 0.3, 0.7. Fig. 4(c) shows the misclustering rates of LLE and LE when λ varies.

Fig. 5. Schmid filter bank that we use to generate the textons and in turn the histograms

groups have 50 pdfs each and are constructed as follows. Let f1 be the first set of pdfs
in blue shown in Fig. 3(a) and f2 be the second set in green. We set the first group to
g1 = f1 and the second group to g2 = λf1 + (1 − λ)f2, where λ ∈ [0, 1]. Figs. 4(a)-
4(b) show g2 when λ is equal to 0.3 and 0.7. Since noise is introduced in the generation
of f1 and f2, we repeat this experiment over 500 trials. It is easy to see that when λ
approaches 1, the group g2 merges into g1. From Fig. 4(c), we see that when λ is small,
the misclustering rate is 0%. However, as λ approaches 1, the distance between g1 and
g2 decreases and the misclustering approaches 50%.
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Table 2. Misclustering rates in % for two-class segmentation

Algorithm Set 1 Set 2 Set 3 Set 4
Riemannian LLE 0 0 1.63 0
Riemannian LE 0 0 19.68 22.9

Set 1 Set 2
Rough Plastic Leather Painted Spheres Limestone

0 10 20 30
0

0.02

0.04

0.06

0.08

Histogram of Rough Plastic

0 10 20 30
0

0.05

0.1

0.15

Histogram of Leather

0 10 20 30
0

0.05

0.1

0.15

Histogram of Painted Spheres

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1
Histogram of Limestone

Set 3 Set 4
Ribbed Paper Human Skin Insulation Crumpled Paper

0 10 20 30
0

0.05

0.1

0.15

Histogram of Ribbed Paper

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Histogram of Human Skin

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Histogram of Insulation

0 10 20 30
0

0.02

0.04

0.06

0.08

Histogram of Crumpled Paper

Fig. 6. Textures and corresponding histograms used in the two-class clustering experiments

We test our algorithm on 4 sets of data containing 2 different textures each. There are
92 images in each texture class. In these experiments, the number of nearest neighbors is
set to 10. Fig. 6 shows these 4 sets with a typical example of the 2 different textures and
the corresponding histograms in each set. Table 2 shows the misclustering percentage
of LLE and LE for each set.
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5.2 Texture Clustering

We also test our proposed algorithm in the segmentation of different textures. From
the Columbia-Utrecht Reflectance and Texture Database (CUReT) found at http://
www1.cs.columbia.edu/CAVE//software/curet/ , we obtain samples of
different textures and each grayscale image contains only one texture. In order to con-
struct a histogram that reflects the texture statistics in an image, we will calculate what
is commonly known as textons [20]. This is done by first applying a filter bank to all
images in the training set. We use the Schmid [21] filter banks shown in Fig. 5. This will
provide us with a feature vector f(x, y) of dimension 13 at each pixel. Next, we apply
k-means to all the vectors in the entire dataset to get 30 cluster centers, also known as
the textons. For each image in the dataset, we then compute a histogram that contains
the number of pixels corresponding to each one of these 30 bins. This is done by as-
signing a pixel (x, y) to bin i if the feature vector f(x, y) is closest to cluster center
i = 1, . . . , 30, according to the Euclidean distance in R

13.
Finally, we test our algorithm on a set of data containing 3 different textures. Fig. 7

shows a typical example of the different textures and the corresponding histograms in
each set. The error produced by LLE in clustering is 5.43% whereas LE is significantly
higher at 30.07%.
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Fig. 7. Textures and corresponding histograms used in the three-class clustering experiment

6 Conclusion

We presented an algorithm to perform clustering of probability density functions. Our
method takes into consideration the Riemannian structure of the square-root represen-
tation. Results on synthetic and real data are encouraging.

http://www1.cs.columbia.edu/CAVE//software/curet/
http://www1.cs.columbia.edu/CAVE//software/curet/
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Abstract. We consider a novel “online semi-supervised learning” set-
ting where (mostly unlabeled) data arrives sequentially in large volume,
and it is impractical to store it all before learning. We propose an on-
line manifold regularization algorithm. It differs from standard online
learning in that it learns even when the input point is unlabeled. Our
algorithm is based on convex programming in kernel space with stochas-
tic gradient descent, and inherits the theoretical guarantees of standard
online algorithms. However, näıve implementation of our algorithm does
not scale well. This paper focuses on efficient, practical approximations;
we discuss two sparse approximations using buffering and online random
projection trees. Experiments show our algorithm achieves risk and gen-
eralization accuracy comparable to standard batch manifold regulariza-
tion, while each step runs quickly. Our online semi-supervised learning
setting is an interesting direction for further theoretical development,
paving the way for semi-supervised learning to work on real-world life-
long learning tasks.

1 Introduction

Consider a robot with a video camera. The robot continuously takes high frame-
rate video of its surroundings, and wants to learn the names of various objects
in the video. However, like a child learning in the real world, the robot receives
names from humans only very rarely. The robot is thus in a semi-supervised
learning situation: most objects are unlabeled, while only a few are labeled by
humans.

There are several challenges that distinguish this situation from standard
semi-supervised learning. The robot cannot afford to store the massive amount
of mostly unlabeled video before learning; it requires an “anytime classifier”
that is ready to use at all times, yet is continuously improving; training must
be cheap; and since the world is changing, it must adapt to non-stationarity in
classification.

These challenges are well-studied in online learning. However, our situation
is also different from standard online learning. Online learning (classification)

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 393–407, 2008.
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traditionally assumes that every input point is fully labeled; it cannot take ad-
vantage of unlabeled data. But in the robot case, the vast majority of the input
will be unlabeled. It seems wasteful to throw away the unlabeled input, as it
may contain useful information.

We address this situation by combining semi-supervised learning with online
learning. The resulting online semi-supervised learning algorithm is based on
convex programming with stochastic gradient descent in kernel space. This com-
bination is novel. To the best of our knowledge, the closest prior work is the
multiview hidden Markov perceptron ([1], Section 4), which heuristically com-
bines multiview learning with online perceptron. However, that work did not
enjoy the theoretical guarantees afforded by the online learning literature, nor
did it directly apply to other semi-supervised learning methods. In contrast,
our method can lift any batch semi-supervised learning methods with convex
regularized risks to the online setting. As a special case, we will discuss online
manifold regularization in detail.

The focus of the present work is to introduce a novel learning setting, and
to develop practical algorithms with experimental verification. It is important
to consider the efficiency issues, as we do in Section 3, for the algorithm to
be practically relevant. Our online semi-supervised learning algorithm inherits
no-regret bounds from online convex programming but does not provide new
bounds. It is our hope that the novel setting where most of the incoming data
stream is unlabeled will inspire future work on improved bounds. Some of the
future directions are laid out at the end of the paper.

2 Online Semi-supervised Learning

We build online semi-supervised learning with two main ingredients: online con-
vex programming [2] and regularized risk minimization for semi-supervised learn-
ing (see the overview in [3,4]). Although kernel-based online convex program-
ming is well-understood [5], we are not aware of prior application in the semi-
supervised learning setting.

Consider an input sequence x1 . . . xT , where xt ∈ R
d is the feature vector

of the t-th data point. Most (possibly even the vast majority) of the points are
unlabeled. Only occasionally is a point xt accompanied by its label yt ∈ Y. This
setting differs dramatically from traditional online learning where all points are
labeled. Let K be a kernel over x and HK the corresponding reproducing kernel
Hilbert space (RKHS) [6]. Our goal is to learn a good predictor f ∈ HK from
the sequence. Importantly, learning proceeds in an iterative fashion:

1. At time t an adversary picks xt and yt, not necessarily from any distribution
P (x, y) (although we will later assume iid for predicting future data). The
adversary presents xt to the learner.

2. The learner makes prediction ft(xt) using its current predictor ft.
3. With a small probability pl, the adversary reveals the label yt. Otherwise,

the adversary abstains, and xt remains unlabeled.
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4. The learner updates its predictor to ft+1 based on xt and the adversary’s
feedback yt, if any.

We hope the functions f1 . . . fT “do well” on the sequence, and on future input
if the data is indeed iid. The exact performance criteria is defined below.

2.1 Batch Semi-supervised Risks

Before introducing our online learning algorithm, we first review batch semi-
supervised learning, where the learner has access to the labeled and unlabeled
data all at once. A unifying framework for batch semi-supervised learning is risk
minimization with specialized “semi-supervised” regularizers. That is, one seeks
the solution f∗ = argminf∈HK

J(f), where the batch semi-supervised regularized
risk is

J(f) =
1
l

T∑
t=1

δ(yt)c(f(xt), yt) +
λ1

2
‖f‖2K + λ2Ω(f),

where l is the number of labeled points, δ(yt) is an indicator function equal to 1
if yt is present (labeled) and 0 otherwise, c is a convex loss function, λ1, λ2 are
regularizer weights, ‖f‖K is the RKHS norm of f , and Ω is the semi-supervised
regularizer which depends on f and x1 . . . xT . Specific choices of Ω lead to fa-
miliar semi-supervised learning methods:

i) Manifold regularization [7,8,9]:

Ω =
1

2T

T∑
s,t=1

(f(xs)− f(xt))2wst.

The edge weights wst define a graph over the T points, e.g., a fully connected
graph with Gaussian weights wst = e−‖xs−xt‖2/2σ2

. In this case, Ω is known as
the energy of f on the graph. It encourages label smoothness over the graph:
similar examples (large w) tend to have similar labels.

ii) Multiview learning [10,11,12] optimizes multiple functions f1 . . . fM simul-
taneously. The semi-supervised regularizer

Ω =
M∑

i,j=1

T∑
t=1

(fi(xt)− fj(xt))2

penalizes differences among the learners’ predictions for the same point.
iii) Semi-supervised support vector machines (S3VMs) [13,14,15]:

Ω =
1

T − l

T∑
t=1

(1− δ(yt))max(1− |f(xt)|, 0).

This is the average “hat loss” on unlabeled points. The hat loss is zero if f(x)
is outside (−1, 1), and is the largest when f(x) = 0. It encourages the deci-
sion boundary f(x) = 0 to be far away from any unlabeled points (outside the
margin), thus avoiding cutting through dense unlabeled data regions.
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2.2 From Batch to Online

A key observation is that for certain semi-supervised learning methods, the batch
risk J(f) is the sum of convex functions in f . These methods include mani-
fold regularization and multiview learning, but not S3VMs whose hat loss is
non-convex. For these convex semi-supervised learning methods, one can derive
a corresponding online semi-supervised learning algorithm using online convex
programming. The remainder of the paper will focus on manifold regularization,
with the understanding that online versions of multiview learning and other
convex semi-supervised learning methods can be derived similarly.

We follow the general approach in [2,5]. Recall the batch risk for our version
of manifold regularization in Section 2.1 is

J(f) =
1
l

T∑
t=1

δ(yt)c(f(xt), yt) +
λ1

2
‖f‖2K +

λ2

2T

T∑
s,t=1

(f(xs)− f(xt))2wst, (1)

and f∗ is the batch solution that minimizes J(f). In online learning, the learner
only has access to the input sequence up to the current time. We thus define the
instantaneous regularized risk Jt(f) at time t to be

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

t−1∑
i=1

(f(xi)− f(xt))2wit. (2)

The last term in Jt(f) involves the graph edges from xt to all previous points
up to time t. The astute reader might notice that this poses a computational
challenge—we will return to this issue in Section 3. While T appears in (2), Jt(f)
depends only on the ratio T/l. This is the empirical estimate of the inverse label
probability 1/pl, which we assume is given and easily determined based on the
rate at which humans can label the data at hand.

All the Jt’s are convex. They are intimately connected to the batch risk J :

Proposition 1. J(f) = 1
T

∑T
t=1 Jt(f).

Our online algorithm constructs a sequence of functions f1 . . . fT . Let f1 = 0.
The online algorithm simply performs a gradient descent step that aims to reduce
the instantaneous risk in each iteration:

ft+1 = ft − ηt
∂Jt(f)
∂f

∣∣∣∣
ft

. (3)

The step size ηt needs to decay at a certain rate, e.g., ηt = 1/
√
t. Under mild

conditions, this seemingly näıve online algorithm has a remarkable guarantee
that on any input sequence, there is asymptotically “no regret” compared to the
batch solution f∗. Specifically, let the average instantaneous risk incurred by
the online algorithm be Jair(T ) ≡ 1

T

∑T
t=1 Jt(ft). Note Jair involves a varying

sequence of functions f1 . . . fT . As a standard quality measure in online learning,
we compare Jair to the risk of the best fixed function in hindsight:
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Jair(T )−min
f

1
T

T∑
t=1

Jt(f)

= Jair(T )−min
f

J(f) = Jair(T )− J(f∗),

where we used Proposition 1. This difference is known as the average regret. Ap-
plying Theorem 1 in [2] results in the no-regret guarantee lim supT→∞ Jair(T )−
J(f∗) ≤ 0. It is in this sense that the online algorithm performs as well as the
batch algorithm on the sequence.

To compute (3) for manifold regularization, we first express the functions
f1 . . . fT using a common set of representers x1 . . . xT [16]

ft =
t−1∑
i=1

α
(t)
i K(xi, ·). (4)

The problem of finding ft+1 becomes computing the coefficients α(t+1)
1 ,. . .,α

(t+1)
t .

Again, this will be a computational issue when T is large, and will be addressed
in Section 3. We extend the kernel online supervised learning approach in [5] to
semi-supervised learning by writing the gradient ∂Jt(f)/∂f in (3) as

T

l
δ(yt)c′(f(xt), yt)K(xt, ·) + λ1f (5)

+2λ2

t−1∑
i=1

(f(xi)− f(xt))wit(K(xi, ·)−K(xt, ·)),

where we used the reproducing property of RKHS in computing the derivative:
∂f(x)/∂f = ∂〈f,K(x, ·)〉/∂f = K(x, ·). c′ is the (sub)gradient of the loss func-
tion c. For example, when c(f(x), y) is the hinge loss max(1− f(x)y, 0), we may
define c′(f(x), y) = −y if f(x)y ≤ 1, and 0 otherwise. Putting (5) back in (3),
and replacing ft with its kernel expansion (4), it can be shown that ft+1 has the
following coefficients:

α
(t+1)
i = (1 − ηtλ1)α

(t)
i − 2ηtλ2(ft(xi)− ft(xt))wit, i = 1 . . . t− 1

α
(t+1)
t = 2ηtλ2

t−1∑
i=1

(ft(xi)− ft(xt))wit − ηt
T

l
δ(yt)c′(f(xt), yt). (6)

We now have a basic online manifold regularization algorithm; see Algorithm 1.
When the data is iid, the generalization risk of the average function f̄ =

1/T
∑T

t=1 ft approaches that of f∗ [17]. The average function f̄ involves all
representers x1, . . . , xT . For basic online manifold regularization, it is possible
to incrementally maintain the exact f̄ as time increases. However, for the sparse
approximations introduced below, the basis changes over time. Therefore, in
those cases f̄ can be maintained only approximately using matching pursuit [18].
In our experiments, we compare the classification accuracy of f̄ vs. f∗ on a
separate test set, which is of practical interest.
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Algorithm 1. Online Manifold Regularization
Parameters: edge weight function w, kernel K, weights λ1, λ2, loss function c, label
ratio T/l, step sizes ηt

Initialize t = 1, f1 = 0
loop

receive xt, predict ft(xt) using (4)
(occasionally) receive yt

update ft to ft+1 using (6)
store xt, let t = t + 1

end loop

3 Sparse Approximations

Unfortunately, Algorithm 1 will not work in practice because it needs to store
every input point and soon runs out of memory; it also has time complexity
O(T 2). In particular, the instantaneous risk (2) and the kernel representation (4)
both involve the sequence up to the current time. To be useful, it is imperative
to sparsify both terms. In this section, we present two distinct approaches for
this purpose: i) using a small buffer of points, and ii) constructing a random
projection tree that represents the manifold structure.

3.1 Buffering

Buffering (e.g., [19] and the references therein) keeps a limited number of points.
Let the buffer size be τ . The simplest buffering strategy replaces the oldest point
xt−τ in the buffer with the incoming point xt. With buffering, the approximate
instantaneous risk is

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

t

τ

t−1∑
i=t−τ

(f(xi)− f(xt))2wit, (7)

where the scaling factor t/τ keeps the magnitude of the graph regularizer com-
parable to the unbuffered version. In terms of manifold regularization, buffering
corresponds to a dynamic graph on the points in the buffer. Similarly, the kernel
expansion now has τ terms:

ft =
t−1∑

i=t−τ

α
(t)
i K(xi, ·).

With buffering, the function update involves two steps. In the first step, we
update ft to an intermediate function f ′ represented by a basis of τ+1 elements,
consisting of the old buffer and the new point xt:

f ′ =
t−1∑

i=t−τ

α′
iK(xi, ·) + α′

tK(xt, ·)
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α′
i = (1− ηtλ1)α

(t)
i − 2ηtλ2(ft(xi)− ft(xt))wit, i = t− τ . . . t− 1

α′
t = 2ηtλ2

t

τ

t−1∑
i=t−τ

(ft(xi)− ft(xt))wit − ηt
T

l
δ(yt)c′(f(xt), yt). (8)

Second, we evict xt−τ from the buffer, add xt to the buffer, and approximate f ′

(which uses τ + 1 basis functions) with ft+1 (which uses τ basis functions):

min
α(t+1)

‖f ′ − ft+1‖2 s.t. ft+1 =
t∑

i=t−τ+1

α
(t+1)
i K(xi, ·). (9)

Intuitively, we “spread” α′
t−τK(xt−τ , ·) to the remaining points in the buffer, in

an attempt to minimize the change caused by truncation. We use kernel matching
pursuit [18] to efficiently find the approximate coefficients α(t+1) in (9). Matching
pursuit is a greedy function approximation scheme. It iteratively selects a basis
function on which to spread the residual in α′

t−τK(xt−τ , ·). The number of steps
(i.e., basis functions selected) can be controlled to trade-off approximation error
and speed. We run matching pursuit until the norm of the residue vector has
been sufficiently reduced. We call the above buffering strategy “buffer.” The
overall time complexity for buffering is O(T ).

An alternative buffering strategy, “buffer-U,” evicts the oldest unlabeled
points in the buffer while keeping labeled points. This is motivated by the fact
that the labeled points tend to have larger α coefficients and exert more influence
on our learned function. The oldest labeled point is evicted from the buffer only
when it is filled with labeled points. Note this is distinct from batch learning:
the labeled points only form a better basis, but learning is still done via gradient
descent.

3.2 Random Projection Tree

Another way to improve Algorithm 1 is to construct a sparse representation of
the manifold. While many embedding techniques exist, we require one that is fast
and can be incrementally modified. Recently random projection has been pro-
posed as an efficient means to preserve the manifold structure (see e.g., [20,21]).
We build our algorithm upon the online version of the Random Projection Tree
(RPtree [22], Appendix I). An RPtree is a tree data structure with desirable
theoretical properties that asymptotically traces the manifold. The basic idea is
simple: as points arrive sequentially, they are spatially sorted into the RPtree
leaves. When enough points fall into a leaf, the RPtree grows by splitting the
leaf along a hyperplane with random orientation. An RPtree can be regarded as
an efficient online clustering algorithm whose clusters grow over time and cover
the manifold, as shown in Figure 1. We refer the reader to [22] for details, while
presenting our extensions for semi-supervised learning below.

Let {Li}s
i=1, s - t denote the leaves in the RPtree at time t. To model the

data points that have fallen into each leaf, we maintain a Gaussian distribution
N (μi, Σi) at each leaf Li, where μi and Σi are estimated incrementally as the
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Fig. 1. A random projection tree on the Swiss roll data. Small dots represent data
points, line segments represent the random splits in the internal nodes of the RPtree,
polygons represent the regions governed by the leaves, and ellipses represent the Gaus-
sian distributions on the data points within each leaf. We exploit the fact that these
distributions follow the manifold structure of the data.

data points arrive. We also keep track of ni, the number of points in leaf Li. With
an RPtree, we approximate the kernel representation of ft (4) by the means of the
Gaussian distributions associated with the tree leaves: ft =

∑s
i=1 β

(t)
i K(μi, ·).

We approximate the instantaneous risk (2) by

Jt(f) =
T

l
δ(yt)c(f(xt), yt) +

λ1

2
‖f‖2K + λ2

s∑
i=1

ni(f(μi)− f(xt))2wμit. (10)

From a graph regularization point of view, this can be understood as having a
coarser graph over the RPtree leaves. We define the edge weight wμit between
incoming point xt and each leaf Li to be

wμit = Ex∼N (μi,Σi)

[
exp
(
−||x− xt||2

2σ2

)]
(11)

= (2π)−
d
2 |Σi|−

1
2 |Σ0|−

1
2 |Σ̃i|

1
2

exp
(
−1

2

(
μ�

i Σ−1
i μi + x�

t Σ−1
0 xt − μ̃�

i Σ̃iμ̃i

))
,

where Σ0 = σ2I, Σ̃i = (Σ−1
i + Σ−1

0 )−1, μ̃i = Σ−1
i μi + Σ−1

0 xt, and σ is the
bandwidth of the (original point to point) weight. We call this weight scheme
“RPtree PPK” for its similarity to the probability product kernel [23]. An
even simpler approximation is to ignore the covariance structure by defining
wμit = e−‖μi−xt‖2/2σ2

. It has computational advantages at the price of precision.
We call this weight scheme “RPtree.”

With an RPtree, the function update occurs in three steps. As space precludes
a detailed discussion, we present an outline here. In the first step, upon receiving
xt, we update ft to an intermediate function f ′ using a basis of s + 1 elements:
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μ1, . . . , μs and xt. This is similar to (8) in the buffering case. In the second step,
the RPtree itself is adjusted to account for the addition of xt. The adjustments
include updating the Gaussian parameters for the leaf xt falls into, and poten-
tially splitting the leaf. In the latter case, the number of leaves s will increase
to s′, and each new leaf’s mean and covariance statistics are established. In the
third step, we approximate f ′ by ft+1 using the s′ new basis elements μ1, . . . , μs′

(s′ = s if no split happened), similar to (9). The point xt is then discarded.

4 Experiments

We present a series of experimental results as empirical evidence that online
manifold regularization (MR) is a viable option for performing fast MR on large
data sets. We summarize our findings as follows:

1. Online MR scales better than batch MR in time and space. Although recent
advances in manifold regularization greatly improve the feasible problem size
(e.g., [24]), we believe that it takes online learning to handle unlimited input
sequences and achieve life-long learning.

2. Online MR achieves comparable performance to batch MR. This is measured
by two criteria:
(a) Jair(T ) approaches J(f∗), both for the basic online MR algorithm, as

well as for the buffering and RPtree approximations.
(b) Generalization error of f̄ approaches that of f∗ on test sets.

3. Online MR can handle concept drift (changes in P (x) and P (y|x)). The
online method (using a limited size buffer) can track a non-stationary distri-
bution and maintain good generalization accuracy, while the batch method
trained on all previous data fails to do so.

Our focus is on comparing online MR to batch MR, not semi-supervised
learning to supervised learning. It is known that semi-supervised learning does
not necessarily outperform supervised learning, depending on the correctness
of model assumptions. Thus, our experiments use tasks where batch MR has
proven beneficial in prior work, and we demonstrate that online MR provides a
useful alternative to batch MR on these tasks.

4.1 Data Sets and Protocol

We report results on three data sets. The first is a toy two-spirals data set. The
training sequences and test sets (of size 2000) are generated iid. The second is
the MNIST digit classification data set [25], and we focus on two binary tasks:
0 vs. 1 and 1 vs. 2. We scaled down the images to 16 x 16 pixels (256 features).
The training sequences are randomly shuffled subsets of the official training sets,
and we use the official test sets (of size 2115 for 0 vs. 1, and 2167 for 1 vs. 2). The
third is the 361-dimensional Extended MIT face vs. non-face image classification
data set (“Face”) [26]. We sampled a balanced subset of the data, and split this
into a training set and a test set. The same test set of size 2000 is used in all
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Fig. 2. Runtime growth curves. Batch MR and basic online MR scale quadratically,
while the sparse approximations of buffering and RPtree scale only linearly.

experiments, while different training runs use different randomly shuffled subsets
of the training set. The labeled rate pl is 0.02 in all experiments, with points
assigned to each class with equal probability.

Our experimental protocol is the following:

1. Generate randomly ordered training sequences and test sets (for MNIST and
Face, the test sets are already given).

2. For batch MR, train separate versions on increasing subsequences (i.e., T =
500, 1000, 2000, . . .).

3. For online MR, train once on the entire sequence.
4. For each T , compare the corresponding batch MR f∗ with the online classifier

trained up to T .

All results are the average of five such trials. The error bars are ±1 standard
deviation.

All experiments use hinge loss c and RBF kernel K. The kernel bandwidth
parameter σK , λ1, λ2, and the edge weight parameter σ were all tuned for batch
MR using T = 500. When using a limited size buffer, we set τ = 300, and only
require that matching pursuit reduce the residue norm by 50%. We use a step
size of ηt = γ/

√
t, where γ = 0.03 for the RPtree approximation, and 0.1 for all

other methods. We implemented all methods using MATLAB and CPLEX.

4.2 Online MR Scales Better than Batch MR

We illustrate this point by comparing runtime growth curves on the spirals and
MNIST 0 vs. 1 data sets. Figure 2(left) shows that, for the spirals data set, the
growth rates of batch MR and basic online MR are quadratic as expected (in fact,
online MR has more overhead in our MATLAB implementation). Batch MR runs
out of memory after T = 5000, and we stop basic online MR at T = 4000 because
the runtime becomes excessive. On the other hand, online MR (buffered) and
online RPtree are linear. Though not included in the plot, online RPtree PPK has
a curve nearly identical to online MR (buffered). Figure 2(right) demonstrates
similar trends for the higher dimensional MNIST 0 vs. 1 data set.
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Fig. 3. Online MR’s average instantaneous risk Jair(T ) approaches batch MR’s risk
J(f∗) as T increases

4.3 Online MR Achieves Comparable Risks

We compare online MR’s average instantaneous risk Jair(T ) vs. batch MR’s risk
J(f∗) on the training sequence. Our experiments support the theory that Jair(T )
converges to J(f∗) as T increases. 1 Figure 3 compares these measures for basic
online MR and batch MR on the spirals data set. The two curves approach each
other. Jair(T ) continues to decrease beyond T = 4000 (not pictured). Figure 3
also shows that online MR (buffer) and online RPtree are good approximations
to basic online MR in terms of Jair .

4.4 Generalization Error of Online MR

The experiments in this section compare the averaged function f̄ of online MR
and the batch solution f∗ in terms of generalization error on test sets. Figure 4
presents results for all the data sets. We observe that online MR buffer-U is the
best and consistently achieves test accuracy that is comparable to batch MR.

From Figure 4(a), we observe that, for the spirals data set, all the online meth-
ods perform nearly as well as batch MR. As is to be expected, batch MR makes
the most efficient use of the data and reaches 0 test error first, while the online
methods require only a little additional data to reach this level (after all, stan-
dard incremental learning usually needs multiple passes over the training set).
Buffering and RPtree perform as well as basic online MR, showing little sign of
approximation error. Panels (b), (c), and (d) in Figure 4 show that buffer-U can
be much better than buffer. This is understandable, since matching pursuit may

1 While the average regret approaches zero asymptotically, the step size of ηt = 1/
√

t
decays rapidly, potentially leading to slow convergence. Thus, it is possible that
long sequences (i.e., large T values) would be required for the online algorithm to
compete with the best batch algorithm. Nevertheless, our experiments show this is
not actually a problem in practice.
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Fig. 4. Generalization error of batch MR’s f∗ and online MR’s f̄ as T increases. Online
MR buffer-U consistently achieves test accuracy comparable to batch MR.

provide a poor approximation to the contributions of the discarded data point.
In high dimensional space, there may be few similar data points remaining in the
small buffer, so much of the weight assigned to discarded points is lost. Under
the buffer-U strategy, we alleviate this issue by preserving the larger weights on
labeled points, which approximate the function better. RPtree PPK on these
high dimensional data sets involves expensive inversion of (often singular) co-
variance matrices and is not included in the comparison. The performance of
RPtree is no better than buffer-U.

4.5 Online MR Handles Concept Drift

Lastly, we demonstrate that online MR can handle concept drift. When the
underlying distributions, both P (x) and P (y|x), change during the course of
learning, using buffered online MR is extremely advantageous. For this experi-
ment, we “spin” the two spirals data set so that the spirals smoothly rotate 360◦

in every 4000 points (Figure 5). All points in the space will thus change their
true labels during the sequence. We still provide only 2% of the labels to the
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Fig. 5. Online MR (buffer) has much better generalization error than batch MR when
faced with concept drift in the rotating spirals data set

algorithms. The test set for a given T consists of 2000 points drawn from the
current underlying distribution.

For this experiment, we show the generalization error of batch MR’s f∗ vs. on-
line MR (buffer)’s fT , since the latest function is expected to track the changes
in the data. Figure 5 illustrates that online MR (buffer) is able to adapt to
the changing sequence and maintain a small error rate. In contrast, batch MR
uses all data points, which now tend to conflict heavily (i.e., newer data from
one class overlaps with older data from the other class). As expected, the single
batch classifier f∗ is inadequate for predicting such changing data.

5 Conclusions

We presented an online semi-supervised learning algorithm that parallels man-
ifold regularization. Our algorithm is based on online convex programming in
RKHS. We proposed two sparse approximations using buffering and online ran-
dom projection trees to make online MR practical. The original batch manifold
regularization algorithm has time complexity at least O(T 2); so does the online
version without sparse approximation. In contrast, the RPtree approximation
has complexity O(T logT ), where each iteration requires O(log T ) leaf lookups
(the tree’s height is O(log T ) because each leaf contains a constant maximum
number of points). Buffering has complexity O(T ). Experiments show that our
online MR algorithm has risk and generalization error comparable to batch MR,
but scales much better. In particular, online MR (buffer-U) tends to have the
best performance.
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There are many interesting questions remaining in this online semi-supervised
learning setting. Future work will proceed along two directions. On the empiri-
cal side, we will further speed up online MR, for example by using fast neighbor
search to reduce the number of candidate basis elements in matching pursuit. We
also plan to study practical online algorithms for other semi-supervised learning
methods, in particular those with non-convex risks like S3VMs. On the theoreti-
cal side, we plan to investigate different regret notions that might be appropriate
for this setting, performance guarantees with concept drift, and models that do
not require all previous points.
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Abstract. Many networks possess a community structure, such that vertices 
form densely connected groups which are more sparsely linked to other groups. 
In some cases these groups overlap, with some vertices shared between two or 
more communities. Discovering communities in networks is a computationally 
challenging task, especially if they overlap. In previous work we proposed an 
algorithm, CONGA, that could detect overlapping communities using the new 
concept of split betweenness. Here we present an improved algorithm based on 
a local form of betweenness, which yields good results but is much faster. It is 
especially effective in discovering small-diameter communities in large net-
works, and has a time complexity of only O(n log n) for sparse networks. 

1   Introduction and Related Work 

In recent years, networks (graphs) have increasingly been used to represent various 
kinds of complex system in the real world. Many networks exhibit community struc-
ture: the tendency of vertices to form communities (or modules) such that intracom-
munity edges are denser than the edges between communities. Communities often  
reflect important relationships between individuals (vertices), so the automatic dis-
covery of communities has become one of the key tasks in network analysis. 

Even if we restrict our attention to unipartite networks with undirected, unweighted 
edges, as we do in this paper, there is already a wide choice of community detection 
algorithms. Many of these are described in the survey papers of [6, 14], and there are 
also many recent algorithms, including [3, 17, 21, 24, 27]. 

Unfortunately, there is no standard definition of community and no consensus 
about how a network should be divided into communities. The vast majority of exist-
ing algorithms partition a network into a flat set of disjoint sets (clusters) of vertices, 
though it is often possible, or necessary, to choose the number of clusters. However, 
in some networks the community structure is not flat: for example, a collaboration 
network may contain a community for each research area, each comprising a number 
of subcommunities corresponding to research groups. A few algorithms [5, 11] can 
detect such a hierarchical community structure. Moreover, in many networks, com-
munities are not disjoint: for example, some researchers work on more than one topic 
and therefore belong simultaneously to multiple research groups. Some algorithms [2, 
9, 20, 28] are able to detect these overlapping communities. 

In this paper we focus on the detection of overlapping communities. In previous 
work we designed an algorithm, CONGA (Cluster-Overlap Newman Girvan Algorithm) 
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[9], for this purpose. It extends Girvan and Newman’s [8, 18] algorithm (the “GN algo-
rithm”) with the ability to split vertices between clusters, based on the new concept of 
split betweenness. CONGA yields good results but is extremely slow, with approxi-
mately cubic time complexity, so it can only cope with networks containing at most a 
few thousand vertices and edges. Many real-world networks are far larger than this, so 
CONGA cannot be used. 

CONGA inherits its low speed from the GN algorithm. Both algorithms rely on be-
tweenness, which is a global centrality measure: at each step, it counts the number of 
shortest paths between all pairs of vertices in the network. For a fast, scalable, algo-
rithm we need a measure that can be computed locally. In this paper we show how 
CONGA can be made much faster using local betweenness [10, 23]. 

In the next section we outline CONGA, introduce the concept of local between-
ness, and then describe our new algorithm: the CONGO (CONGA Optimized) algo-
rithm. Section 3 presents the results of experiments with the new algorithm on both 
synthetic and real-world networks. We compare its performance and execution time 
with both CONGA and CFinder [20], another state-of-the-art algorithm for finding 
overlapping communities. Conclusions appear in Section 4. 

2   The CONGO Algorithm 

2.1   The CONGA Algorithm 

The CONGA algorithm [9] comprises a sequence of steps, each of which removes an 
edge from the network or splits a vertex into two vertices: 

1. Calculate edge betweenness of edges and split betweenness of vertices. 
2. Remove edge with maximum edge betweenness or split vertex with maximum split 

betweenness, if greater. 
3. Recalculate edge betweenness and split betweenness. 
4. Repeat from step 2 until no edges remain. 

Initially, the n-vertex network is treated as a single cluster, assuming it is con-
nected. Eventually, step 2 causes the cluster to split into two components (clusters). 
Clusters continue to be split into two until only singleton clusters remain. The binary 
splits can be represented as a dendrogram, which is used to reconstruct a partition of 
the network into any desired number of clusters. 

CONGA is the same as the GN algorithm [8, 18] except for the vertex splitting 
step, which allows overlapping clusters. Because of this, a vertex v may be split into i 
vertices (copies of v) distributed between j clusters (1≤j≤i). When reconstructing the 
partition, these copies of v are replaced by v itself in each of these j clusters. 

The edge betweenness of an edge e is the number of shortest paths, between all 
pairs of vertices, that pass along e. The split betweenness of a vertex v is the number 
of shortest paths that would pass between the two parts of v if it were split. Since there 
are many (2d(v)-1-1, where d(v) is the degree of v) ways to split v into two, we choose 
the best split: the one that maximizes the split betweenness. 
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In [9] we give an approximate algorithm for computing the split betweenness of a 
vertex from its pair betweennesses. The pair betweenness of v for {u,w}, where u and 
w are neighbours of v, is the number of shortest paths traversing both edges {u,v} and 
{v,w}. It is straightforward to compute this while computing edge betweenness. 

The GN algorithm has a worst-case time complexity of O(m2n), where m is the 
number of edges and n is the number of vertices. In CONGA, each vertex v can split 
into at most m/n vertices on average (i.e., d(v)/2), so the number of vertices after split-
ting is O(m) instead of n. This makes the time complexity O(m3) in the worst case: 
there are O(m) iterations, and both step 1 and step 3 are O(m2). 

In practice, the speed depends heavily on the number of vertices that are split 
(which increases the network size) and on how easily the network breaks into separate 
components. This is because, in step 3, betweenness need be calculated only for the 
component containing the removed edge or split vertex, or for both components if 
step 2 caused the component to split. 

2.2   Local Betweenness 

Betweenness is expensive to compute because it counts all shortest paths in the net-
work. One way to avoid this is to count only short shortest paths. We redefine the 
edge betweenness of edge e to be the number of shortest paths running along e whose 
length is less than or equal to h (a parameter of the algorithm). The pair betweenness 
of vertex v for {u,w} is the number of shortest paths traversing {u,v} and {v,w} whose 
length is less than or equal to h. Split betweenness is derived from pair betweennesses 
in the same way as in CONGA. 

Step 1 of the CONGA algorithm is performed by a breadth-first search from every 
vertex. Using local betweenness, the depth of this search (from each vertex) is limited 
to h, which is faster than traversing every edge in the network. 

Local betweenness has an even greater effect on the speed of step 3: betweenness 
need not be recalculated for the whole network, but only locally: in a small subgraph 
around the edge that was removed, or the vertex that was split, in step 2. In Figs. 1 
and 2 we illustrate how step 3 of CONGA can be optimized in this way, but first we 
need to define this small subgraph, which we call an h-region. 

The h-region of edge {u,v} ⎯ the region affected by the removal of {u,v} ⎯ is the 
smallest subgraph containing all shortest paths no longer than h that pass along {u,v}. 
This is an induced subgraph with vertex set 

Vu,v,h = {w : d(u,w) < h ∨ d(v,w) < h} (1) 

where d(u,w) denotes the shortest-path distance between u and v. The h-region of ver-
tex v ⎯ the region affected by splitting v ⎯ is the smallest subgraph containing all 
shortest paths no longer than h that pass through v or start/end at v. This is an induced 
subgraph with vertex set 

Vv,h = {w : d(v,w) ≤ h} (2) 

For example, Fig. 1(a) shows a small network with the 2-region of edge {h,i} 
shown shaded. Fig. 2(a) shows another network, highlighting the 2-region of  
vertex u. 
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(a) Edge {h,i} selected for removal. 
2-region of {h,i} is shaded. 

(b) Shortest paths within region are found 
and subtracted from betweenness. 

(c) {h,i} is removed. Shortest paths within 
region are found and added to be-
tweenness.
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Fig. 1. Local recalculation of betweenness after removing an edge 
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(a) Vertex u selected for splitting. 
2-region of u is shaded. 

(b) Shortest paths within region are found 
and subtracted from betweenness. 

(c) u is split. Shortest paths within region 
are found and added to betweenness. 

 

Fig. 2. Local recalculation of betweenness after splitting a vertex 
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In step 3, our new algorithm recalculates betweenness by a local method. It first 
“undoes” the betweenness of the h-region, by finding all shortest paths no longer than 
h that lie entirely within the region and subtracting their number from the (previously 
computed) edge betweenness of the edges they traverse and the pair betweennesses of 
the vertices they pass through. This has the effect of reducing the betweenness of the 
chosen edge (Fig. 1(b)) or vertex (Fig. 2(b)) to zero. After removing the edge or split-
ting the vertex, it again finds all shortest paths no longer than h within the region and 
adds their number to the edge betweenness of the edges they traverse and the pair be-
tweennesses of the vertices they pass through; see Figs. 1(c) and 2(c). 

2.3   The CONGO Algorithm 

The CONGO algorithm is the same as CONGA (Section 2.1) but using local be-
tweenness, explained in Section 2.2. The complete CONGO algorithm is as follows: 

1. Calculate edge betweenness of edges and split betweenness of vertices. 
2. Find edge with maximum edge betweenness or vertex with maximum split be-

tweenness, if greater. 
3. Recalculate edge betweenness and split betweenness: 

a) Subtract betweenness of h-region centred on the removed edge or split vertex. 
b) Remove the edge or split the vertex. 
c) Add betweenness for the same region. 

4. Repeat from step 2 until no edges remain. 

In practice, CONGO’s execution time depends strongly on the structure of the net-
work, but we can estimate its time complexity as follows. 

For step 1, the time complexity for h=∞ is O(mn); this would reduce to O(m) for 
h=1, which is of no practical use because the 1-betweenness of every edge is the 
same. For other small values of h, we make the simplifying assumption that all verti-
ces have about the same degree, 2m/n. Then, for each of the n vertices, the tree 
searched contains O((m/n)h) vertices. This makes the time complexity of step 1 ap-
proximately O(mh/nh-1), or O(n) for a sparse network. 

Making the same assumption for step 3, an h-region of an edge contains 
O((m/n)h-1) vertices and O((m/n)h) edges; an h-region of a vertex contains O((m/n)h) 
vertices and O((m/n)h+1) edges. Therefore, the time complexity of step 3 is approxi-
mately O((m/n)2h+1), or O(1) for a sparse network. 

Step 2 takes O(log m) time, and the loop containing steps 2 and 3 is repeated O(m) 
times. Therefore, the time complexity of the whole algorithm is O(m log m + 
m2h+2/n2h+1), or O(n log n) for a sparse network. 

3   Experiments 

3.1   Experiments on Synthetic Networks 

A common way to evaluate network clustering algorithm is by generating artificial net-
works based on a known community structure and comparing the known communities 
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with the clusters found by the algorithm. The comparison can be done in various ways, 
including the Mutual Information measure [7] and Rand Index [22]. We use the F-
measure, defined as the harmonic mean of recall and precision, where: 

• recall: the fraction of vertex pairs belonging to the same community that are also in 
the same cluster. 

• precision: the fraction of vertex pairs in the same cluster that also belong to the 
same community. 

(A pair of vertices are considered to “belong to the same community/cluster” if 
there exists at least one community/cluster that they both belong to. Because of over-
lap, there may be more than one of these.) 

We randomly generated a set of networks containing n vertices divided into c 
equally-sized communities, each containing nr/c vertices. Vertices are randomly and 
evenly distributed between communities such that each vertex is a member of r com-
munities on average. r is a measure of overlap, ranging from 1 (communities are dis-
joint) to c (communities each contain all vertices). The network is then constructed by 
placing edges between pairs of vertices randomly, with probability ipin if there are i 
(≥1) communities to which both vertices belong, and pout otherwise. All networks 
used in the experiments are connected, and results shown are the average of 10 runs. 

Below we compare our CONGO algorithm, for h=2 and h=3, with CONGA (which 
is equivalent to CONGO with h=∞). We also compare it with CFinder [1], based on 
the clique percolation algorithm of Palla et al. [20], one of the most efficient and best-
known algorithms for finding overlapping communities. For CONGO and CONGA, 
the number of clusters is a parameter of the algorithm, so we set this to c, the known 
number of communities. This is impossible with CFinder, whose only parameter is k 
(cluster density). For fairness, we show the results from CFinder for all values of k. 

Fig. 3 shows results for 256 vertices in 32 communities. The overlap is 2, meaning 
that each community contains 16 vertices. As pout increases, the community structure 
becomes less evident and so CONGO’s F-measure decreases, especially for h=2. In 
contrast, CFinder is relatively resilient to these intercommunity edges. 

Fig. 4 shows the effect of increasing the density of intracommunity edges. The 
CONGO results are good and improve as pin increases. Again, h=2 is worse than h=3, 
but only for small values of pin. CFinder, for each k, peaks at a different value of pin. 
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Fig. 3. F-measure for random networks with n=256, c=32, r=2, pin=0.5, various pout 
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Fig. 4. F-measure for random networks with n=256, c=32, r=2, pout=0, various pin 

In Fig. 5 we fix pin and pout and vary the overlap, r. CONGO’s results decline as r 
gets larger, especially for h=2, while CFinder’s results again peak at a different value 
of r for each k. 

Fig. 6 shows the effect of varying the network size while keeping the community 
size constant. As expected, the F-measure results are quite stable, except for very 
small networks, because these contain very few communities. 
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Fig. 5. F-measure for random networks with n=256, c=32, pin=0.5, pout=0, various r 
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Fig. 7. F-measure for random networks with n=256, r=2, pin=0.5, pout=0, various c 

In Fig. 7 we fix the size of the network but vary the number (and therefore size) of 
the communities. CONGO again performs well, but slightly less well for h=2. 

In summary, on synthetic networks, CONGO’s results are similar to those of 
CONGA: generally better than CFinder except where there are intercommunity edges. 
CONGO, like CONGA, treats an intercommunity edge as evidence that the two 
communities overlap. The difference between CONGO and CONGA is that a smaller 
value of h leads to slightly lower accuracy (F-measure). 

Figs. 8 and 9 show the effect of local betweenness on execution time. For CONGO 
and CONGA, the plots show the time taken to compute the entire dendrogram and ex-
tract the clustering from it, using the author’s implementation of the algorithms in 
Java, running on an AMD Opteron 250 CPU at 2.4GHz. For CFinder (v1.21), the 
times include the generation of solutions for all values of k, on the same machine. 

Fig. 8 shows the time to cluster networks of varying size containing fixed-size (16) 
overlapping communities. The figure shows the approximately cubic time complexity 
of CONGA, which can only handle 2000 vertices in 20 minutes. CFinder is faster, 
taking only 15 minutes to cluster a 30000-vertex network. However, CONGO can 
cope with 500000 vertices in about 10 (h=2) or 20 (h=3) minutes. The CONGO re-
sults seem to confirm the O(n log n) time complexity that we predicted. 

In Fig. 8 the community size is fixed and so the average degree is constant: about 5 
(shown by the dashed line). This is not always the case in real networks. Fig. 9 shows 
how the algorithms scale in the extreme case: where there is an increasing number of 
vertices divided into a fixed number (12) of communities. Now, CONGO’s execution 
time increases with the number of edges, but much more slowly than CFinder’s. 

3.2   Modularity 

Evaluating an algorithm on real-world networks is challenging, because there is usu-
ally no known “correct” solution. The quality of clusterings must be assessed in a dif-
ferent way: for example, by modularity [17, 18], which measures the relative number 
of intracluster and intercluster edges. A high modularity indicates that there are more 
intracluster edges than would be expected by chance. 
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Fig. 8. Execution time for random networks c=n/8, r=1.2, pin=0.5, pout=0, various n 
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Fig. 9. Execution time for random networks c=12, r=1.2, pin=0.5, pout=0, various n 
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The original modularity measure, Q, is defined only for disjoint communities, but 
Nicosia et al. [19] have recently proposed a new modularity measure, Qov, which is 
defined also for overlapping communities. The definition of Qov is too long to repro-
duce here, but its main features are: 

1. Qov = 0 when all vertices belong to the same community or all belong to singleton 
communities. 

2. Higher values of Qov show stronger community structure. 
3. Each vertex may belong to any number of communities with any belonging coeffi-

cient. For each vertex, the belonging coefficients for all communities sum to 1. 

Although both old and new measures are named “modularity”, they generally have 
different values even when applied to the same clustering and network. In the rest of 
this paper we use the term “modularity” to refer to Qov. We use it in this section to 
evaluate solutions on real-world networks. For our experiments we set the belonging 
coefficients of each vertex to 1/c, where c is the number of communities it is in; i.e., 
equal membership of all communities. 

It is sometimes assumed that the best clustering is the one that maximizes the value 
of modularity. The maximum value of modularity has even been used to compare 
clustering algorithms. However, as pointed out in [10], the peak value of modularity 
does not in general coincide with the correct, or best, clustering. This is true of both Q 
and Qov modularity measures. 

To illustrate this, Fig. 10 shows the modularities of the solutions found by CONGO 
and CFinder for a synthetic network with 250 overlapping communities. For 
CONGO, modularity peaks at 0.822 between 45 and 53 clusters, where the F-measure 
is below 0.1. At 250 clusters, the correct solution, with F-measure 0.977 (h=3) or 
0.891 (h=2), the modularity is only 0.701 (h=3) or 0.705 (h=2). CFinder finds a solu-
tion with 291 clusters with modularity 0.635 and F-measure 0.877. 
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Fig. 10. Modularity of clusterings of random network: n=2000, c=250, r=1.2, pin=0.5, pout=0 

Fig. 11 shows the results of a similar network with a larger overlap. CONGO’s Qov 
at 250 clusters is 0.25 for both h=3 and h=2, and the F-measure is 0.998 (h=3) or 
0.992 (h=2). Although Qov has a local maximum at 250 clusters, it is well below the 
global maximum between 63 and 79 clusters, where the F-measure is below 0.001. 
The closest CFinder solution is at 290 clusters, with Qov 0.142 and F-measure 0.842. 
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Fig. 11. Modularity of clusterings of random network: n=2000, c=250, r=2, pin=0.5, pout=0 

We conclude that there is at best a tenuous relationship between modularity and 
correctness. Nevertheless, because modularity is widely used to assess clustering al-
gorithms, we use it in the next section to evaluate the performance of CONGO (and 
CFinder) on some real-world networks. Because the peak value of modularity is 
meaningless, we plot the modularity of all solutions containing up to n/5 clusters. 

3.3   Experiments on Real-World Networks 

We have run the CONGO algorithm, and CFinder, on several real-world networks, 
listed in Table 1. The table shows the source of each network, its size, and the execu-
tion times for CONGO (to compute the entire dendrogram) and CFinder (v1.21) (to 
generate solutions for all values of k), running on an AMD Opteron 250 at 2.4GHz. 

Table 1. Results on real-world networks 

Runtime / s 

CONGO Name Ref. Fig. Vertices Edges 

h=3 h=2 
CF 

netscience [16] 12 379 914 1.4 1.3 0.3 
cond-mat-2003 [13] 13 27519 116181 45110 1111 1140 
blogs [26] 14 3982 6803 33.5 6.1 3.2 
blogs2 [26] 15 30557 82301 11702 286 405 
PGP [4] 16 10680 24316 636 82 35022 
word_association [12] 17 7205 31784 12026 172 97 
protein-protein [20] 18 2445 6265 94.5 8.2 2.9 

“netscience” (Fig. 12) and “cond-mat-2003” (Fig. 13) are collaboration networks of 
coauthorships, of different sizes. The first of these is small enough for CONGA to han-
dle, so its modularities are plotted along with those of CONGO. CONGA finds high-
modularity solutions for small numbers of clusters, but is otherwise similar to CONGO 
for h=2 and h=3. For both networks, the modularities of the h=2 and h=3 solutions are 
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quite similar. CFinder finds several solutions, one of which, for a relatively large num-
ber of clusters, has a higher modularity than CONGO’s. 

“blogs” (Fig. 14) and “blogs2” (Fig. 15) are networks of communication relation-
ships between owners of blogs on the MSN (Windows Live™) Spaces website. 
“blogs2”  is much larger than “blogs” and has a higher average degree. “PGP” (Fig. 
16) is yet another type of social network, representing PGP key signing. For all three 
networks, the modularities are quite similar to those of Figs. 12 and 13. 
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Fig. 12. Modularity of netscience network 
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Fig. 13. Modularity of cond-mat-2003 network 
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Fig. 14. Modularity of blogs network 
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Fig. 15. Modularity of blogs2 network 
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Fig. 16. Modularity of PGP network 

Figs. 17 and 18 show two non-social networks, from psychology and biology, re-
spectively. “word_association” is a word association network from [20], converted 
from an original directed, weighted version [12]. “protein-protein” is a yeast core pro-
tein-protein interaction graph provided by [20]. For the first of these, CFinder finds a 
higher modularity solution than CONGO for a small number of clusters. 
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Fig. 17. Modularity of word_association network 
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Fig. 18. Modularity of protein-protein network 

Finally, we present an experiment on a real-world example with a known solution. 
Wirz [25] has constructed an ego-graph of his “friends” on Facebook, the social net-
work website. An ego-graph of v is a network whose vertices are the “friends” of v 
and whose edges are the “friend” links between these vertices; v itself is excluded 
from the network in this experiment. The network has 84 vertices, in five compo-
nents, and 351 edges. Wirz has manually classified the 84 vertices into ten communi-
ties and three isolated vertices, based on personal judgement and without knowledge 
of the network structure. CONGA, CONGO, and CFinder were run on this network. 

Table 2 shows the results for ten clusters (the correct number), seven clusters (the 
clustering that maximizes modularity), and six clusters (at which CFinder found its 
highest-modularity solution, for k=3). CONGO, for h=3 or more, has higher F-
measure and modularity than CFinder; for h=2, CONGO performs slightly worse than 
CFinder, but has higher modularity for 11 or more clusters (not shown in the table). 

Table 2. Results on ego-graph network 

F-measure Modularity 
 c=10 c=7 c=6  c=10 c=7 c=6 
CONGA 0.353 0.310 0.225 CONGA 0.704 0.912 0.886 
h=3 0.345 0.310 0.225 h=3 0.722 0.912 0.886 
h=2 0.281 0.209 0.225 h=2 0.607 0.834 0.886 
CFinder   0.303 CFinder   0.858 

4   Conclusions 

The results presented in Section 3 show that CONGO can be an effective and fast al-
gorithm for detecting overlapping communities in networks. Compared with 
CONGA, it is substantially faster, especially for h=2. Indeed, almost all of the real-
world networks used in Section 3 are too large for CONGA to process in a reasonable 
time. CONGO is slightly less accurate than CONGA in most, but not all, cases. As 
discussed in [10], we believe this is because local betweenness is unable to correctly 
identify communities whose diameter is much larger than h. When communities have 
a small diameter, CONGO can be at least as accurate as CONGA. 
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Compared with CFinder, CONGO has similar execution time. CFinder is faster for 
small examples but CONGO, with h=2, is faster for larger networks. For synthetic 
networks, CONGO appears generally more accurate than CFinder. For real-world 
networks, modularity is usually better for CONGO, but CFinder often finds one solu-
tion with high modularity: this is for k=3 in all cases except the “jazz” network. Look-
ing at these high-modularity solutions in more detail reveals a few large clusters and 
many small (mostly 3-vertex) clusters; in addition, there are many vertices that appear 
in no clusters. The sizes of CONGO’s clusters are generally more balanced. It is hard 
to say which type of solution is best, except perhaps by comparing the computed clus-
terings with a “ground truth” solution, as in the “ego-graph” network of Section 3. 

In conclusion, we believe that CONGO with h=2 is ideally suited to finding over-
lapping communities in very large networks. For smaller networks, where a solution 
can be found quickly, h can be increased for more accurate results. 

Future work includes improving the CONGO algorithm. One issue is the value of 
the parameter. h=2 is fast and usually effective, but sometimes a larger value is re-
quired; h=3 is sometimes more effective, but too slow in general. The best value for h 
seems to depend on the diameter of communities, which might vary widely in real-
world networks. It may be better to allow the length of shortest paths to vary dynami-
cally in different parts of a network to suit the diameter of each community. 

Another possible improvement is to introduce “belonging coefficients”, showing 
how strongly each vertex belongs to each cluster. This should make solutions more 
informative than in the current algorithm, in which vertices belong equally to all their 
clusters. For example, partitioning a network into {1,2,3} and {1,2,3,4,5,6} seems 
meaningless, but if vertices 1, 2, and 3 belong more strongly to the first cluster than 
the second, the solution is more like two clusters {1,2,3} and {4,5,6} that overlap. 

Further information related to this paper, including the implementation, networks 
analysed, and results, can be found at http://www.cs.bris.ac.uk/~steve/networks/ . 
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Abstract. IT-operational risk management consists of identifying, as-
sessing, monitoring and mitigating the adverse risks of loss resulting
from hardware and software system failures. We present a case study in
IT-operational risk measurement in the context of a network of Private
Branch eXchanges (PBXs). The approach relies on preprocessing and
data mining tasks for the extraction of sequential patterns and their ex-
ploitation in the definition of a measure called expected risk.
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1 Introduction

According to the International Convergence of Capital Measurement and Capi-
tal Standards, known as Basel II [5], operational risk is “the risk of loss resulting
from inadequate or failed internal processes, people and systems, or from ex-
ternal events”. In the specific event of business disruption and system failures
(e.g., hardware and software failures), the term Information-Technology (IT)
operational risk is adopted.

Operational risk management consists of identifying, assessing, monitoring
and mitigating the most potentially adverse risks [2,4,7]. On the basis of the risk
management evaluation of an organization, the board of directors, regulations,
shareholders, or the highly competitive market may require the organization to
revise its internal processes, to set aside capital, to subscribe insurance policies,
or to make investments in order to cover the residual risk.

Risk identification and assessment is conducted at the level of business units
or processes by self-assessment against a checklist of potential vulnerabilities, or
by collecting a set of statistics or metrics called risk indicators, or – by increasing
the sophistication level – by formal risk quantification against measures of the
distributions of frequency and impact of losses. In this sense, the risk of an event
is formally defined as the “probability of the event” × “loss due to the event”.

Risk monitoring and mitigation consists of regularly monitoring operational
loss events, providing early warning indicators of an increased risk of future
losses, and promptly mitigating the risk by reducing the exposure to, or the
frequency and/or the impact of loss events.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 424–439, 2008.
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The literature on operational, financial and market risk assessment accounts
for contributions from statistics and simulation. Statistical models are based on
the characterization of loss distributions or, at least, of certain parameters such
as the expected loss and the tail loss. High frequency low impact risks (such as
transaction processing errors) are modelled by the expected loss and the standard
deviation of loss. Risk mitigation consists of acting on the organization processes,
infrastructure and personnel. Low frequency high impact risks (such as frauds
or earthquakes) are modelled by the tail of the loss distribution. Risk mitigation
consists of setting aside capital or to subscribe an insurance. Existing statistical
approaches consider mainly the low frequency high impact risks, such as in
the approaches of Value at Risk [8], coherent measures [3], and extreme value
theory [9]. Bayesian Networks have been adopted [2, Chapter 14] [6] as a powerful
tool to cope with shortage of data (as in rare events), to integrate qualitative
prior knowledge (such as expert opinions), and to make what-if scenario analyses.

In this paper, we concentrate on the high frequency low impact class of risk by
reporting a case study in IT-operational risk in the context of a network of Pri-
vate Branch eXchanges (PBX). We adopt sequential pattern mining on weighted
sequences for the purpose of defining and validating the notion of expected risk
as a predictive measure of the risk in managing the network of PBX’s. We report
the problems found and the solutions adopted both in the data preprocessing
task and in the sequential pattern extraction and deployment task. To the best
of our knowledge, this is the first paper reporting the implementation of a KDD
process in the IT-operational risk context.

2 Case Study Specification

2.1 Monitoring a Network of PBX’s

We introduce a case study concerning the management of a network of PBX’s
by a Communication Service Provider (CSP). The customers of the CSP are
small-medium enterprisers requiring both voice and data lines at their premises
at different contractually agreed quality of services. The customers externalize
to the CSP the maintenance of the PBX’s and the actual management of the
communication services. When a malfunctioning occurs, customers refer to the
CSP call center, which can act remotely on the PBX, e.g., to reboot the system.
If the problem is not recoverable remotely, as in the case of hardware failure, a
technician is sent on-site. Both call center contacts and technician reports are
logged in the CSP customer relationship management database.

A PBX is doubly redundant, i.e., it actually consists of two independent
communication apparatuses and a self-monitoring software. Automatic alarms
produced by the equipment are recorded in the PBX system log. Call center
operators can access the system log to control the status of the PBX. Also, a
centralized monitoring software collects on a regular basis system logs from all
the installed PBX’s.

Among the operational risk events, PBX malfunctioning may have different
impact on the CSP. At one extreme, the call center operator can immediately
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Table 1. [TECH-DB] Log of technician on-site interventions

Attribute Description
Date Problem opening date and time
PBX-ID Unique ID of the Private Branch eXchange
CType Customer line of business
Tech-ID Unique ID of technician’s intervention
Severity Problem severity recorded after problem solution
Prob-ID Problem type recorded after problem solution

solve the problem. At the other extreme, a technician intervention may be re-
quired, with the customer’s offices inoperative in the meantime, and the risk
that the agreed quality of service could not be guaranteed. To record the impact
of a malfunctioning, the severity level of the problem occurred is evaluated and
documented by the technician. In this context, our case study aims at:

– the Extraction, Transformation and Loading (ETL) into a merged database
of the available sources of data, including customer type information, call
center logs, technicians reports, and PBX system logs;

– the characterization of early warnings of problems in terms of typical se-
quences of alarms that lead to them;

– the exploitation of the sequential patterns extracted for automatic on-line
malfunctioning prediction and risk quantification.

2.2 Data Sources

Data has been provided by a leading regional CSP. The CSP’s customer re-
lationship management system records in the [TECH-DB] table the history of
technician interventions at the customer premises. For each problem, at least the
following attributes of information are available.

The Date attribute consists of the problem opening date and time, defined as
the time the call center receives a customer call reporting the notice of a mal-
functioning. The PBX-ID is a unique identifier of the involved PBX. If a customer
has installed more than one PBX, this is determined by the call center operator
based on the customer description of the problem and the available configura-
tion of PBX’s installed at the customer premise. CType is the customer line of
business, accordingly to a CRM categorization including: banks, health care, in-
dustry, insurance and telecommunication businesses. The Tech-ID attribute is a
unique identifier of the technician intervention: during a same intervention one
or more problems may be tackled. Severity is a measure of the impact of the
problem. It is defined on a scale from 1 to 3 as follows:

3 critical, service unavailable;
2 medium, intermittent service interruptions;
1 low level problem.

Finally, the Prob-ID attribute is a coding of the malfunctioning solved by the
technician. Two hundred problem descriptions are codified.
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Fig. 1. A hierarchy of problem types for PBX malfunctioning

Table 2. [ALARM-DB] Log of PBX alarms

Attribute Description
PBX-ID Unique ID of the Private Branch eXchange
TestDate Date and time log was downloaded
Alarms Sequence of alarms raised since last log download

The second data source is the collection of logs generated by PBX’s. Logs
are downloaded into a centralized repository, called [ALARM-DB], on a regular
round-robin basis.

For a given PBX identifier PBX-ID and date-time of log download TestDate,
[ALARM-DB] stores the set of alarms raised by the PBX since the previous log
download. Sixteen distinct alarms are available in the data. Unfortunately, the
precise time an alarm is raised is not stored in the PBX log.

3 Preprocessing IT-Operational Logs

PBX logs stored in the [ALARM-DB] table and technician’s reports stored in
the [TECH-DB] table are not directly suitable as an input for sequential pattern
mining. In this section, we report two main issues with pre-processing those data
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in order to yield a database of sequences. The first issue is concerned with the
granularity level in the analysis of PBX problem types. The second one with
the problem of building the sequences of alarms related to a PBX problem.
Preprocessing has been automated as a collection of ETL data flows developed
using the data integration module of the Pentaho suite [11]. A GUI written in
Java puts together the various data flows in a stand-alone application.

3.1 A Hierarchy of Problem Types

Since two hundred problem types it is too fine-grained detail, problem types
are organized in a three level hierarchy, which is partly shown in Figure 1.
The lowest level is the problem type. The highest level (EC1) consists of the
Basel II event categories for IT-operational risk: software, hardware, interface,
security and network communications. The middle level (EC2) is an intermediate
categorization left at the choice of the user during the preprocessing phase.

Every problem type readily falls in one of the five EC1 level members. How-
ever, the mapping cannot be automated for a new problem type, and then the
preprocessing GUI asks the user to provide the EC1 and EC2 levels for a pre-
viously unseen problem type. In the rest of this paper, we will concentrate our
attention at the level of EC1, but we point out that, if large volume of data is
available, the overall approach can be followed at finer levels of detail.

3.2 An Heuristics for Joining Alarm and Problem Logs

For a technician intervention, the sequence of alarms generated by the involved
PBX has to be reconstructed in order to relate a malfunctioning of the PBX with
the alarms raised by it. Unfortunately, the problem cannot be directly solved.
While a technician intervention records the timestamp it occurred, the alarm log
contains the timestamp an alarm is downloaded to the central repository, not
the timestamp the alarm is raised. Since alarm log collection may occur once
every a few days, this is an issue.

We adopt the following heuristics. Let Opening be the timestamp a problem
for a PBX is opened. This is available in the [TECH-DB] table. We leave the user
the choice to join the problem with the sequence of alarms collected in the time
interval [Opening-Diff1, Opening+Diff2], where Diff1 and Diff2 are parameters
of the preprocessing procedure.

3.3 A Database of Sequences

The preprocessing of available input produced a database of 1899 sequences,
spanning over a period of four months, of the form:
Date: 22/02/2007 8.36

CType: Bank

PBX-ID: 90333

Prob-ID: Hardware

Severity: 2
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AlarmSequence:

{CARD}:19/02/2007 18:34:01;

{}:20/02/2007 18:12:53;

{PCM TIME SLOT}:21/02/2007 17:15:21

--

Date: 21/02/2007 16.54

CType: Health

PBX-ID: 91993

Prob-ID: Security

Severity: 2

AlarmSequence:

{DIGITAL TRUNK CARD,DKT SUBUNIT}:19/02/2007 17:56:47;

{POWER SUPPLY}:21/02/2007 09:10:07

The attributes Date, CType, PBX-ID and Severity are directly taken from
[TECH-DB]. Prob-ID is obtained by lifting the problem description to its EC1
category in the hierarchy of Figure 1. Finally, the sequence of sets of alarms, la-
belled by the date each set is collected, is obtained by joining alarm and problem
logs. In the first sequence above, a CARD alarm is raised on 19/02/2007, then no
alarm on the next day, a PCM TIME SLOT alarm on the 21/02/2007, and finally a
malfunctioning is reported to the call center on 22/02/2007. As parameters for
the joining heuristics, we have set Diff1 to three months and Diff2 to one day.
Setting Diff1 as large as possible is desirable, but it is important not to overlap
with the time interval of a past problem for the same PBX. Concerning Diff2, it
should be set to the average period that alarms are collected into the centralized
repository. Assuming the period is one day, an alarm raised the same day of a
customer call could or could not be already processed by ETL flows at the time
of the call. Without any further information, and considering that such alarms
are the most valuable for prediction, we assume they have been processed.

4 Sequential Pattern Mining for Risk Assessment

4.1 Sequences and Sequential Patterns

Let us recall a few standard definitions [1,10]. Given a finite set I of items, an
itemset T is a subset of I. A sequence is an ordered list of itemsets 〈T1, . . . , Tn〉.
For brevity, we write 〈t1, . . . , tn〉 if for i = 1 . . . n, Ti = {ti}, i.e., all Ti’s are
singletons. A sequence s1 = 〈T1, . . . , Tn〉 is a sub-sequence of another sequence
s2 = 〈S1, . . . , Sm〉 (or s2 is a super-sequence of s1), denoted as s1 . s2, if
there exists 1 ≤ p1 < . . . < pn ≤ m such that for i = 1 . . . n, Ti ⊆ Spi . The
concatenation of two sequences s1 and s2 is denoted by s1 · s2. A sequence
database D is a collection of sequences. The (relative) support (w.r.t. D) of a
sequence s is defined as the fraction of sequences in D which are sub-sequences
of s, i.e., supp(s) = |{s′ ∈ D | s′ . s}|/|D|. A sequential pattern is a sequence
SP = 〈T1, . . . , Tn〉 such that supp(SP ) ≥ ξ, where ξ is a fixed minimum support
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threshold. For notational purposes, it is convenient to label sequential patterns
with their support, and to differentiate them from sequences. Therefore, we write
the sequential pattern SP in the form T1 → T2 → . . . Tn[s], where s = supp(SP ).
A sequence s ∈ D supports SP if SP . s. A sequential pattern is maximal if
there is no other sequential pattern that is a super-sequence of it. We denote
by Max S the set of maximal sequential patterns in S. Restricting to maximal
sequential patterns alleviates the problem of dealing with an exponential number
of extracted patterns. Several algorithms have been proposed in the literature
to extract (maximal) sequential patterns [10].

4.2 Adapting Sequences and Sequential Patterns

For the problem under consideration, we will make use of a variant of sequential
pattern mining, where sequences and sequential patterns are weighted.

In our context, we fix the set of items I to include alarms identifiers, problem
type items Prob-ID= β and business line items CType= α, where β is an EC1-
level problem type and α is the customer line of business. A sequence is now of
the form:

CType = α , AlarmSet1 , . . . AlarmSetk , Prob-ID = β [sev]

For an occurrence of a PBX problem recorded in the technician’s database,
a sequence models the temporal succession of alarms AlarmSeti raised by the
PBX. The heuristics described in Sect. 3.2 is adopted in order to join a problem
occurrence with the succession of alarms related to it.

A sequence starts with CType = α, ends with Prob-ID = β, and it is labelled
with the problem severity sev:

– Starting with CType = α is a work-around to differentiate the sequences
on the basis of the type of business of customers. This is motivated by the
requirement that risk management has to differentiate risk for line of busi-
ness or processes. Therefore, we are interested in modeling specific patterns
of problems due to the different usages of the PBX network by different
businesses.

– Similarly, ending the sequence with Prob-ID = β allows for isolating patterns
that lead to a specific problem from patterns that hold in general.

– Labelling the sequence with the problem severity is a weighting strategy,
based on the impact of the problem occurred. For a sequence s, we write
SEV (s) to denote its severity label.

As a result of the above definition of sequences, we are interested in extracting
from a database of sequences T S, which we call the training set, sequential
patterns SP of the form:

CType = α → AlarmSet1 → . . . AlarmSetn → Prob-ID = β [supp,sev] (�)
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where:

– the severity label sev is (Σs∈T S,SP�sSEV (s))/|{s ∈ T S | SP . s}|, i.e., the
average severity of sequences in the training set supporting the sequential
pattern;

– the support label supp is supp(SP )/supp(〈CType = α, Prob-ID= β〉), i.e.,
the relative support of the sequential pattern w.r.t. the number of sequences
starting with CType = α and ending with Prob-ID = β.

Sequential patterns of the form (�) can be extracted by the following proce-
dure. First, split the sequence database into one database for each distinct pair
(CType = α, Prob-ID = β); then run any sequential pattern extraction algorithm
from the literature on each sequence database and for a specified minimum sup-
port threshold; then remove extracted sequential patterns not including an item
Prob-ID as the last item; finally, calculate severity of a sequential pattern by
averaging severities of the sequences supporting it. Alternatively, multidimen-
sional [12] or context-based [13] approaches to sequential pattern mining could
be adapted.

4.3 Mean Risk

Consider an initial fragment s1 = 〈CType= α1, AlarmSet1 , . . . , AlarmSetk〉 of a
sequence. Assume for the moment that we do not or cannot exploit any sequential
pattern. How can we then define the risk that s is followed by Prob-ID = β?
Since the risk of an event is “probability of the event” × “loss due to the event”,
we approximate:

– the “probability of the event” as the ratio:

pα,β =
supp(〈CType = α, Prob-ID = β〉)

supp(〈CType = α〉) ,

i.e., the confidence that a sequence in the training set starting with CType =
α will be followed by Prob-ID = β;

– the “loss due to the event” as the average severity of sequences in the training
set starting with CType = α and ending with Prob-ID = β:

lα,β =
Σs∈T S,〈CType=α,Prob-ID=β〉�sSEV (s)

|{s ∈ T S | 〈CType = α, Prob-ID = β〉 . s}| .

We define the mean risk that the initial fragment s1 starting with CType = α
will end with Prob-ID = β as pα,β × lα,β . If s1 does not start with CType = α,
i.e. α1 �= α, then the mean risk is zero, as one could expect. Formally:

MRisk(α, β, s1) =
{
pα,β × lα,β if 〈CType = α〉 . s1

0 otherwise.

Summary mean risk for a line of business w.r.t. all problem types is defined as
the sum of the risk for individual problem types:

SMRisk(α, s1) = Σβ∈dom(Prob-ID)MRisk(α, β, s1).
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When α = α1, it can be rewritten as: 1× Σs∈T S,〈CType=α〉�sSEV (s)

|{s∈T S | 〈CType=α〉�s}| , namely “prob-
ability of any problem” × “average severity” for the line of business. Similarly,
we define the summary mean risk for a problem type w.r.t. all lines of business:

SMRisk(β, s1) = MRisk(α1, β, s1) = Σα∈dom(CType)MRisk(α, β, s1).

The three definitions above extend to a set S of initial fragments by summing
up the individual risk of each element in S.

4.4 From Sequential Patterns to Expected Risk

Consider now a specific initial fragment s = 〈CType=Bank, CARD , CARD SUBUNIT,
DIGITAL TRUNK CARD〉 of a sequence. We would like to adopt the sequential
patterns extracted from the training set to the purpose of enhancing the notion
of mean risk to a notion called expected risk. Intuitively, we start by looking at
the sequential patterns supported by s (with the exclusion of the last item in
the sequential pattern – i.e., of the Prob-ID item). Assume that the set SP of
such sequential patterns consists of:

SP0 CType=Bank→ CARD SUBUNIT → Prob-ID=Software [0.4, 3]
SP1 CType=Bank→ CARD → Prob-ID=Hardware [0.2, 2]
SP2 CType=Bank→ CARD SUBUNIT → Prob-ID=Hardware [0.3, 3]
SP3 CType=Bank→ CARD → CARD SUBUNIT → Prob-ID=Hardware [0.1, 3]
SP4 CType=Bank→ DIGITAL TRUNK CARD → Prob-ID=Hardware [0.2, 2]

For Prob-ID=Software, there is only one supported sequential pattern, namely
SP0. By recalling that the risk of an event is “probability of the event” × “loss
due to the event”, we set the expected risk (to have a problem with software) to
0.4× 3 = 1.2.

Consider now Prob-ID=Hardware. First, we observe that SP1 is a sub-sequence
of SP3, hence it is superseded by SP3, and similarly for SP2. Therefore, we restrict
to maximal sequential patterns in SP , namely to SP3 and SP4. We now define the
expected risk to have a hardware problem by averaging the severities of SP3 and
SP4 based on their support, i.e., as (0.1×3+0.2×2)/(0.1+0.2) = 0.7/0.3 = 2.33.
Notice that we scale the average severity by dividing by the sum of the supports
of the maximal sequential patterns. The motivation is twofold. On the one side,
two (maximal) sequential patterns may have some common supporting sequence,
hence the sum of their supports can be strictly greater than one. On the other side,
the set of maximal sequential patterns may not cover all possible sequences (rare
ones cannot be modeled by sequential patterns by definition), i.e., the sum of their
supports can be strictly lower than one.

Finally, let us consider Prob-ID=Interface. There is no sequential pattern
supported by s, at least for the fixed minimum support threshold. Therefore,
the reasoning followed so far cannot be applied. Intuitively, we fall in the case
that no sequential information is available, i.e., on the notion of mean risk, and
then we set the expected risk to the mean risk.

Let us introduce some notation. Let SP be the set of sequential patterns
extracted from the training set T S. For a given initial fragment s1 and problem



A Case Study in Sequential Pattern Mining for IT-Operational Risk 433

type β, we define the set of sequential patterns supported by s1 and that are
maximal as:

M(s1, β) = Max{SP ∈ SP | SP . s1 · 〈Prob-ID = β〉}.

The expected risk is then defined as:

ERisk(α, β, s1) =

⎧⎨
⎩

ΣSP∈M(s1,β)supp(SP )× sev(SP ) if M(s1, β) �= ∅
ΣSP∈M(s1,β)supp(SP )

MRisk(α, β, s1) otherwise.

The definition readily extends to a set S of initial fragments, to summaries for
line of business and problem type as follows:

ERisk(α, β, S) = Σs1∈SERisk(α, β, s1)
SERisk(α, S) = Σβ∈dom(Prob-ID)ERisk(α, β, S)
SERisk(β, S) = Σα∈dom(CType)ERisk(α, β, S).

Notice that in the special case that there is no sequential pattern, i.e. SP = ∅,
these definitions collapse to the ones for the mean risk.

One could consider removing non-maximal sequential patterns off-line when
sequential patterns are extracted, whilst now they are removed on-line when the
expected risk is calculated. Unfortunately, this approach does not lead to the
same results. In fact, consider an initial fragment s = 〈CType=Bank, ALARM1〉. If
non-maximal sequential patterns are removed off-line, then SP1 above could not
be taken into consideration. Moreover, no maximal sequential pattern SP3-SP4

is supported by s. Summarizing, we have no sequential pattern to exploit in
defining the expected risk of s.

4.5 Actual Risk

Once an initial fragment completes to a full sequence s, i.e., it is terminated
by a problem type item Prob-ID = β and labelled by severity SEV (s), it is
easy to calculate the involved risk. We define the actual risk of the sequence as
1× SEV (s), and this value contributes only to problem type β:

ARisk(α, β, s) =
{
SEV (s) if 〈CType = α, Prob-ID = β〉 . s
0 otherwise.

The measure readily extends to sets of sequences, and to summaries for lines of
business and problem types as done for mean risk and expected risk.

5 Deploying Sequential Patterns

5.1 Application Scenario

Consider a set of sequential patterns extracted from a training set of past se-
quences. How can the notion of expected risk be turned into practice for risk
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Mean Risk: Absolute error: 19,1 Relative error: 19,5%
Expected Risk: Absolute error: 9,1 Relative error: 9,3%
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Fig. 2. Expected risk vs actual risk: detail for the Bank customer line of business
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Fig. 3. Expected risk vs. actual risk: detail for Network problem type

assessment and mitigation? Of course, the analysis of the sequential patterns by
a domain expert might highlight previously unknown patterns of alarms leading
to malfunctioning with high average severity.

Besides this descriptive usage, we concentrate here on the deployment of ex-
tracted patterns in on-line risk assessment. Let us assume an application scenario
where a call center operator receives a call from a customer reporting a malfunc-
tioning. A ticket is open for dealing with the malfunctioning. At the time of
the call, the following information is known: the customer (line of business), the
involved PBX, the sequence of alarms of that PBX collected up to that time. In
other words, an initial fragment s1 is available, as assumed in Section 4.4.

A decision support system can then exploit the notion of expected risk to
estimate the overall risk of the currently open tickets. This information is useful
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to assess the current level of risk for the various customer lines of business and
problem types. Operatively, it can help in determining the needed effort in terms
of required expertise for technician’s interventions, e.g., how many software and
hardware technicians should be alerted.

When the tickets are closed and the technician reports are available, the actual
risk can be calculated. The comparison between the expected risk and the actual
risk provides a measure of the accuracy of the notion of expected risk. Also, since
expected risk is a refinement of mean risk, it is worth evaluating the improvement
of accuracy of expected risk over mean risk. The next two subsections report
experimental results on those two accuracy issues.

In particular, the experimental results are obtained by partitioning the avail-
able database of sequences (see Section 3.3) into temporally separated training
set T S and test set T E . The split date-time was set to obtain about a 75%-25%
partitioning1. Moreover, we set the minimum support threshold in the sequential
pattern extraction (see Section 4.2) to 5%.

5.2 Expected Risk vs Mean Risk vs Actual Risk

The overall expected risk for a business line α is represented as an histogram
chart with the distinct values β for problem type Prob-ID on the X-axis and the
value of ERisk(α, β, T E) on the Y-axis. The distributions of the mean risk and
of the actual risk measures are represented in the same manner. The difference
area between the expected and the actual risk histograms measures the error of
adopting expected risk for estimating actual risk. More formally, the absolute
error is defined as:

Σβ∈dom(Prob-ID)abs(ERisk(α, β, T E)−ARisk(α, β, T E))

and the relative error is its ratio over Σβ∈dom(Prob-ID)ARisk(α, β, T E). Similar
definitions can be stated for the mean risk.

Figure 2 shows the histogram charts of mean, expected and actual risks
for CType=Bank, namely for the bank subnetwork of PBX’s. Apart from the
Interface problem type, the expected risk measure provides a much better es-
timation of actual risk than the mean risk. The relative errors for the various
business lines are summarized in the following table:

Relative Error
CType No. Seq. Actual Risk Mean Risk Expected Risk
Bank 51 98 19.5% 9.3%
Health 185 306 17.0% 9.4%

Industry 159 289 6.8% 4.9%
Insurance 68 127 47.5% 25.0%

TelCo 47 91 31.6% 16.8%

1 We observe that, in a more realistic scenario, the number of open tickets at a certain
time is typically low, especially if compared to closed ones, since problems are usually
solved within 48 hours time.
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Mean Risk: Absolute error: 26,8 Relative error: 2,9%
Expected Risk: Absolute error: 28,9 Relative error: 3,2%
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Fig. 4. Expected risk vs. actual risk: summary for lines of business

As a general observation, the relative error of expected risk is near the half of
the error of the mean risk. Figure 3 shows the histogram charts of mean, expected
and actual risks for Prob-ID=Network, namely for the problem types related to
the communication network of PBX’s, and for the various customer business
lines. Expected risk turns out to improve over mean risk for all business lines.
Now the difference area between expected and actual risk charts is obtained as:

Σα∈dom(CType)abs(ERisk(α, β, T E)−ARisk(α, β, T E)).

The relative errors for the various problem types are summarized next:

Relative Error
Prob-ID Actual Risk Mean Risk Expected Risk
Hardware 35 20.6% 27.3%
Interface 24 42.6% 69.0%
Network 374 16.1% 4.5%
Security 241 28.2% 11.0%
Software 237 14.5% 12.5%

For the problem types Hardware and Interface there is a degradation of
performances of expected risk over mean risk, whilst for the other problem types
there is a gain. Notice, however, that there is a very low actual risk for Hardware
and Interface, and hence a low number of sequences.

Consider now the summary measure SERisk(α, T E), which provides for a
business line α the expected total risk w.r.t. all problem types. Figure 4 shows the
histogram charts of mean, expected and actual risks. By averaging over a whole
line of business, the predictive power of mean risk improves, and its refinement
to expected risk yields no additional benefit. As stated in the introduction, this
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Mean Risk: Absolute error: 112,9 Relative error: 12,4%
Expected Risk: Absolute error: 40,4 Relative error: 4,4%
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Fig. 5. Expected risk vs. actual risk: summary for problem types

confirms that simple statistics, such as mean and standard deviation, are enough
to deal with high-frequency (and necessarily low impact) loss events. As soon
as we go into the details of a specific line of business, frequency decreases, and
then sequential information leads to better predictive power.

Finally, Figure 5 shows the charts for the summary measure SERisk (β, T E),
which provides for a problem type β the expected total risk w.r.t. all business
lines. By averaging on the problem type, expected risk improves over mean risk
considerably.

5.3 Tuning the Parameters

Let us consider here a few issues concerning the choice of parameters in pattern
extraction and deployment. Figure 6 shows how the expected risk error is affected
by the minimum support threshold. The figure reports the relative error:

abs(ERisk(Health, β, T E)−ARisk(Health, β, T E))
ARisk(Health, β, T E)

for two sample β, and the total relative error:

Σβ∈dom(Prob-ID)abs(ERisk(Health, β, T E)−ARisk(Health, β, T E))
Σβ∈dom(Prob-ID)ARisk(Health, β, T E)

for various minimum support thresholds. It is immediate to observe that lower
minimum supports lead to lower errors. However, after reaching some minimum,
the error does not improve and it eventually starts increasing.

Another choice we made was to partition the training set based on pairs
(CType = α, Prob-ID = β), and to extract sequential patterns from each parti-
tion. An alternative choice is to partition with respect to CType = α only, i.e.,
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Fig. 6. Expected risk relative error by varying the minimum support

not forcing the extraction of sequential patterns for every problem type. This al-
ternative leads to extract sequential patterns where only frequent problem types
appear. We are more accurate for them, but less accurate for minority problem
types. As an example, the relative error of expected risk for the Bank line of
business in Figure 2 degrades to 23.2%.

Moreover, we have also conducted experiments on the maximum number of
sequential patterns to be considered for a pair (CType = α, Prob-ID = β) among
those having a minimum support. In the experiments reported so far, the number
was set to the top 5 (w.r.t. the support) for all pairs. Extensive experimentation
shows that, for a same minimum support threshold, a large number of sequential
patterns (> 20) leads to poorer performances, and that the optimal number
might vary for each pair (CType = α, Prob-ID = β). Therefore, a form of self-
tuning of parameters might improve the reported results.

6 Conclusions

Is data mining suitable for IT-operational risk management? We believe that
we provided an affirmative answer to the question – yet, preliminary and for a
specific case study. For high frequency - low impact loss events, the extraction of
frequent (sequential) patterns from past log of data can improve basic measures
of risk, which rely only on simple statistics, such as in the case of the mean
risk. The improvement consists of more accurate predictions for lower frequency
events, as in the case of a specific line of business or problem type. Nevertheless,
a frequent pattern approach, like the one proposed here, cannot deal with very
low frequency events, which have very few occurrences in databases or none at
all. Hence, our approach is complementary to the ones proposed in the statistical
and simulation literature for low frequency - high impact loss events.

A further work we intend to pursue is to enhance the basic statistics with
a classification based approach: all in all, the mean risk measure is a “decision
stump” classifier on the CType attribute. A better classifier could be trained
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by using additional predictive attributes, such as the PBX hardware/software
version, or, in order to evaluate the gain due to sequential information, the
presence/absence of alarms.
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Abstract. Subgroup discovery is the task of finding subgroups of a
population which exhibit both distributional unusualness and high gen-
erality. Due to the non monotonicity of the corresponding evaluation
functions, standard pruning techniques cannot be used for subgroup dis-
covery, requiring the use of optimistic estimate techniques instead. So
far, however, optimistic estimate pruning has only been considered for
the extremely simple case of a binary target attribute and up to now
no attempt was made to move beyond suboptimal heuristic optimistic
estimates. In this paper, we show that optimistic estimate pruning can
be developed into a sound and highly effective pruning approach for
subgroup discovery. Based on a precise definition of optimality we show
that previous estimates have been tight only in special cases. Thereafter,
we present tight optimistic estimates for the most popular binary and
multi-class quality functions, and present a family of increasingly efficient
approximations to these optimal functions. As we show in empirical ex-
periments, the use of our newly proposed optimistic estimates can lead
to a speed up of an order of magnitude compared to previous approaches.

1 Introduction

Subgroup discovery [Klö96, Wro97] is the task of finding subgroups of a pop-
ulation with high generality and distributional unusualness. It is a general ap-
proach that has shown to be useful in a variety of application scenarios, like
medical consultation systems [ABP06], spatial analysis [KM02], marketing cam-
paign planning [LCGF04], and also in contrast set mining tasks [KLGK07].

Unfortunately, if applied to real-world problems, subgroup discovery quickly
results in excessive computation, due to its exponential dependency on the num-
ber of attributes. Different approaches have proposed to cope with that problem:
While sampling based approaches [SW00] relax the task by allowing a certain
degree of departure from the optimal solution and a (controllable) error prob-
ability, other approaches make use of sophisticated data structures [AP06] or
heuristics [Klö02, LKFT04].

Another approach, proposed by Wrobel in [Wro97], is to prune the search
space using so-called optimistic estimates. An optimistic estimate is a function
that, given a subgroup s, provides a bound for the quality of every subgroup s′

that is a refinement of s. Surprisingly, the use of optimistic estimates for fast

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 440–456, 2008.
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subgroup discovery has not yet been developed into a mature technology: until
recently optimistic estimates have only been considered for the extremely simple
case of a binary target attribute, and even in this case no attempt was made to
move beyond suboptimal optimistic estimates.

In this paper, we investigate the question whether the optimistic estimates
considered so far provide bounds that are, in some sense, optimal. To this end
we provide a formal definition of tight optimistic estimates, that is optimistic
estimates that are as conservative as possible wrt. the information at hand,
namely the size of a subgroup and its distribution over different classes. Using
this definition, we show that the optimistic estimate proposed in [Wro97] is
not tight. Thereafter, we present new tight optimistic estimates for some of the
most common quality functions. We also present a family of increasingly efficient
approximations to these optimal functions. While these optimistic estimates are
not tight, they have the advantage that they are simpler to calculate.

Summarizing, the main contributions of this paper are thus (i) the formal
definition of tightness, (ii) new, tight optimistic estimates for some of the most
common quality functions, and (iii) a family of increasingly efficient approxima-
tions to these optimal functions. In an experimental section, we show that our
results are not only interesting from a theoretical point of view, but also have a
significant impact on the performance of subgroup discovery algorithms.

The paper is organized as follows: In section 2, we define the basics of the
subgroup discovery task. In section 3, we provide our definition of tight optimistic
estimates; thereafter, we present and prove new (tight) optimistic estimates.
Section 4 contains the experiments, while section 5 concludes.

2 Preliminaries

In this section, we will introduce our terminology, formally define the problem
of subgroup discovery, and motivate the concept of optimistic estimates.1

2.1 The Task of Subgroup Discovery

Let DB = {R1, ..., RN} be a database or dataset, consisting of N rows, each built
up from of l+ 1 values. We distinguish one attribute c, called the class attribute
with domain D(c) = {c1, ...cm}, from the l ordinary attributes {a1, a2, ...al}
with domains D(ai) = {vi,1, ..., vi,mi}. Every database row Rj is an n-tuple
(vj,1, ..., vj,l, cj), and we call cj its class.

A subgroup description sd is a set of terms {t1, ..., tk} where every term ti
is a constraint on an attribute, i.e. ti has the form (ai = vi), vi ∈ D(ai). The
length of the subgroup description is the number of terms it is built of. We call
a subgroup description sd′ = {t′1, ..., t′k′} a refinement of a subgroup description
sd = {t1, ..., tk}, denoted by sd′ / sd, if {t1, ..., tk} is a subset of {t′1, ..., t′k′}.
1 In the following presentation, we assume that a dataset is provided as a single ta-

ble. However, the concept of (tight) optimistic estimates also applies to the multi-
relational setting involving joins over relations as considered in [Wro97].
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Given a database DB and a subgroup description sd, the subgroup extension
of sd on DB is the set of rows Rj ∈ DB that satisfy all terms ti ∈ sd. Please
note that if sd′ is a refinement of sd, i.e. sd′ / sd, then for every database DB
the subgroup extension for DB and sd′ is a subset of the subgroup extension for
DB and sd.

Given a set of rows R = {R1, ...Rn} (a database or subgroup extension), we
call n its size and p = (p1, ..., pm), where pi is the fraction of the rows of R of
class i, its class distribution. Formally, p is defined as follows:

pi := 1/n× |{r|r ∈ R ∧ class(r) = i}|.

Cost Specialty Region
High Surgery Urban
Medium Internal Med Urban
Medium Psychiatry Urban
Medium Internal Med Rural
Low Surgery Rural
Low Surgery Rural

Fig. 1. Prescription example

Figure 1 shows an example with hypothet-
ical data, inspired from a medical domain.
The rows represent medical prescriptions
made by doctors. As class attribute, we con-
sider the cost of the prescription. Beside this
special attribute, the prescriptions contain
the doctor’s specialty and the information
whether the doctor’s practice is in an ur-
ban or a rural environment. In this example,
{Specialty = Surgery} and {Specialty =
Surgery,Region = Urban} are two subgroup descriptions, and the correspond-
ing subgroups consist of the rows that fulfill these conditions. The size of the
subgroup extension of {Specialty = Surgery} is 3 and its probability distribu-
tion is phigh = 0.33, pmedium = 0, plow = 0.66.

A quality function q is a mapping from DB × sd to the reals. Intuitively, a
quality function expresses how “interesting” a subgroup is. Almost all quality
functions considered in the literature only depend on some parameters of the
subgroup and the database, in particular on the size n of the subgroup, the
size N of the database, the class distribution p of the subgroup, and the class
distribution p0 of the database. Table 1 summarizes some of the most prominent
quality functions [Klö96, SW00]: the Piatetsky-Shapiro quality function dealing
with the two-class case, and the Split, Gini and Person χ2 quality functions for
n-ary class attributes.2

The problem of subgroup discovery is defined as follows: Given a database DB,
a quality function q, and a number k, determine the k subgroup descriptions with
maximum quality. Or, put more formally: return a set of k subgroup descriptions
G such that

∀ subgroup descriptions sd : sd �∈ G⇒ q(DB, sd) ≤ q∗,

where q∗ = minsd∈G q(DB, sd).
2 The notation and definitions used in other papers like [KLJ03, Wro97] sometimes

slightly differ from ours, but are (factor-) equivalent. For example, the Gini-Quality
is often expressed using the generality (i.e. n/N) of the subgroup. Other authors use
a notation like p(class| s) to denote the probability of a class in a subgroup.
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Table 1. Common quality functions for subgroups

Name Type Definition

Piatetsky-Shapiro 2 n(p − p0)
Split n n

�
i(pi − p0i)

2

Gini n
n

N−n

�
i(pi − p0i)

2

Pearson’s χ2
n n

�
i

(pi−p0i)
2

p0i

2.2 Optimistic Estimates and Their Use in Subgroup Discovery

Before we present the definition of optimistic estimates, we would like to moti-
vate this concept by taking a look at possible algorithmic approaches to subgroup
discovery. Given that the space of candidate subgroup descriptions can be consid-
ered as a tree with subgroup descriptions of length 1 at the first level, subgroup
descriptions of length 2 at the next level and so on, one obvious approach to
subgroup discovery is to perform some kind of search.

Of course, in this approach the size of the search space is exponential in
the number of attributes and hence it is desirable to use some kind of pruning
strategy. Unfortunately, unlike related tasks like frequent item mining where
state-of-the art algorithms like FpGrowth [HPYM04] exploit the property of
monotonicity, in subgroup discovery this property does not hold: Even if the
subgroup description a1 = x does not have a sufficient quality, it is still necessary
to consider its refinements. In fact, even if neither a1 = x nor a2 = y are
interesting subgroups, (a1 = x, a2 = y) might very well be interesting.

However, if we have already found k subgroups and we knew that all refine-
ments s′ of a subgroup s had a quality that is worse than that of all k subgroups
found so far, we could safely prune that branch. What is needed to do so is an
optimistic estimate for the refinements s′ of s [Wro97]:

Definition 1. An optimistic estimate oe(s) for a given quality function q is a
function that satisfies the following: ∀ subgroups s, s′. s′ / s =⇒ oe(s) ≥ q(s′).

3 Tight Optimistic Estimates

In this section, we will present our definition of tight optimistic estimates. There-
after, we will present new optimistic estimates for all quality functions in Table 1.

3.1 A Definition of Tightness with Respect to Probability and Size

The quality functions from Table 1 are all defined in terms of a few characteristics
of the subgroup and the dataset, namely

– the distributions over the classes in the subgroup, denoted by p;
– the size of the subgroup, denoted by n;
– the distributions over the classes in the dataset, denoted by p0; and
– the size of the dataset, denoted by N .
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We will call such quality functions “probability/size quality functions” or “p/n
quality functions”. Formally, a p/n quality function is a function q(p, n,p0, N)
from [0, 1]c×N× [0, 1]c×N to the reals (here, c is the number of classes). We call
p and n the parameters of the subgroup and p0 and N the parameters of the
overall population. Similarly, we will call optimistic estimates that only make
use of these parameters “p/n optimistic estimates”. Formally, a p/n optimistic
estimate is a function from [0, 1]c ×N × [0, 1]c ×N to the reals such that

∀ subgroups s, s′. s′ / s =⇒ oe(p(s), n(s),p0, N) ≥ q(p(s′), n(s′),p0, N).

Here, p(s) and n(s) denote the class distribution and the size for subgroup s.
In general, there are infinitely many optimistic estimates. We are interested in
optimistic estimates that are as conservative as possible in the following sense:

Definition 2. Given a quality function q and two optimistic estimates oe1 and
oe2, we call oe1 is more conservative than oe2 if ∀N,p0, n,p. oe1(p, n,p0, N) ≤
oe2(p, n,p0, N).

The more conservative an optimistic estimate, the larger part of the search space
can potentially be pruned: if we have already found k subgroups with a minimum
quality minQ, then we can prune the branch of subgroups below s if and only
if oe(s) < minQ. We will now formally define the notion of tight optimistic
estimates, i.e. optimistic estimates that are as conservative as possible:

Definition 3. An optimistic estimate oe for a quality function q is tight if for
any population DB and any subgroup description sd there is a subset s′ of the
extension of sd on DB such that the quality of s′ is equal to the optimistic
estimate for sd on DB. Formally: the optimistic estimate oe is tight iff

∀DB, sd . ∃n′,p′. [n′ ≤ n ∧ n′p′ , np ∧ oe(p, n,p0, N) = q(p′, n′,p0, N)].

Here, p0 and p denote the probability distribution in DB, respectively in the
extension of sd on DB, while N and n denote the size of DB respectively of
the subgroup extension (actually, p, n,p0 and N are functions of DB and s).
n′p′ , np means that for all i, n′p′i ≤ npi, i.e. the number of rows of class i in
the subset of sd must be no larger than the number of rows of class i in sd.

Please note that the above definition does only require that there is a subset of
the extension of sd on DB with quality oe(p, n,p0, N) – it does not require that
there actually is a subgroup description with that quality. That is, the definition
considers every subset of rows that is consistent with the restrictions provided
by the parameters p and n. It is obvious that if an optimistic estimate for q is
tight, then there is no optimistic estimate for q that is more conservative.

3.2 A Tight Estimate for Piatetsky-Shapiro

We will now apply our definition of tightness to the optimistic estimate published
in [Wro97] for the Piatetsky-Shapiro function, and show that it is not tight.
Thereafter, we will present a tight optimistic estimate for that quality function.
First, we remark that in this two-class case we use p resp. p0 to refer to the first
component of p resp. p0.
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Lemma 1. The optimistic estimate n(1 − p0) presented in [Wro97] for the
Piatetsky-Shapiro function n(p−p0) is not tight. The optimistic estimate oe∗ps :=
np(1− p0) is tight.

Proof. We first show that oe∗ps is tight. Suppose we are given a database DB and
an arbitrary subgroup extension s with probability p and size n. The case p = 0
is trivial, so let p > 0; The subgroup extension s contains np rows of the first
class. These rows are a subset of s with size np and a class distribution of p = 1;
thus, this subset has quality np(1 − p0). This construction did not make any
assumptions on DB or s, thus there is always a subset s′ with q(s′) = oe∗ps(s),
and oe∗ps is tight.

Finally, to see that n(1−p0) is not tight it is sufficient to note that np(1−p0) <
n(1− p0) for some n > 0, p0 < 1 and p < 1. �

3.3 Tight Estimates for the Multi-class Quality Functions Split,
Gini and Pearson’s χ2

Next, we turn to the multi-class quality functions. First, please note that all
multi-class quality functions q(p, n,p0, N) considered can be reformulated as
functions q(m,p0, N), where m = (m1, ...,mc) is a vector whose components
are the numbers of rows of the different classes 1, ..., c. The mi’s can be obtained
from p, n by taking the scalar product n · (p1, ..., pc)T , while p and n can be
obtained from the mi’s by calculating n =

∑
j mj and p = 1

n ·m. Using this
new representation, we can now present a scheme of tight optimistic estimates
for the multi-class quality functions in Table 1:

Lemma 2. The following is a tight optimistic estimate for every multi-class
quality function q in Table 1 (in fact, for any quality function that is convex in
p resp. m):

oe∗q(p1, ..., pc, n,p0, N) := max
m′

1,...,m′
c|m′

i∈{0,npi}
{q((m′

1, ...,m
′
c)

T ,p0, N)} (1)

The above is thus the maximum over the 2c possible combinations of values for
m′

1, ...,m
′
c, resulting from the constraint that every m′

i can either take the value
0 or npi. Please note that although not specified in Equation 1, the case m′

i = 0
for every i needs not be considered.

Proof. The proof that oe∗q is an optimistic estimate is based on the fact that all
the multi-class quality functions considered in Table 1 are convex in p resp. m.

First, we use the fact that by definition a tight optimistic estimate for the
refinements of a subgroup s is the maximum over the quality of every possible
subset of subgroup s. The subgroup s has np1 rows of class 1, np2 rows of class
2, and so on. Thus, every refinement s′ of s consists of at most npi rows of class
i. Hence, a tight optimistic estimate for a quality function q can be calculated
as follows:

max
m′

1,...,m′
c|∀i.m′

i∈N+∧0≤m′
i≤npi

{q((m′
1, ...,m

′
c)

T ,p0, N)} (2)
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Please note that unlike in Equation 1, the above considers the maximum over
every subset of rows of the subgroup s. The above expression is not only an opti-
mistic estimate, but it is tight, which follows directly from our definition of tight-
ness from Section 3.1.

It remains to show that Equations 1 and 2 are equivalent. This can be shown
using the fact that every quality function in Table 1 is convex in its parameters
m. In fact, for every c-dimensional convex function f the maximum over a
polyhedron P = [0,m1] × [0,m2] × ... × [0,mc] is an extreme point of P , also
called a vertex [Bre96, BV04]. Thus, the maximum over P can be calculated
by taking the maximum of the values at every extreme point. The proof is
completed by the fact that every quality function in Table 1 is convex, as shown
in Appendix A. Please note that although in the Appendix we consider the
extension of the quality functions to the real numbers, the extreme points are
nevertheless tuples of positive natural numbers. �

Let us now consider the computational complexity for the calculation of the tight
optimistic estimate. oe∗q involves taking the maximum of 2c values of q, where c
is the number of classes. All multi-class quality functions we considered can be
reformulated to the form q = φ1 + ... + φc (for the Split quality function, the
expressions φi summed up are n(pi − p0i)2, for Gini they are n

N−n (pi − p0i)2

and for Pearson’s they are n
p0i

(pi− p0i)
2). The calculation of such an expression

φi involves only a constant number of subtractions and multiplications, thus
the tight optimistic estimates oe∗q have a computational complexity of O(c 2c)
primitive (add/multiply) operations. Please note that the computational com-
plexity of oe∗q does not depend on the size of dataset, but only on the parameters
p, n,p0 and N , which have to be calculated anyway to compute the quality of
the subgroup.

3.4 A Family of Increasingly Conservative Optimistic Estimates

For large numbers of classes, c, the computational complexity, O(c 2c), of the
tight optimistic estimate oe∗q can become problematic, as will be confirmed by
the experiments in Section 4.

In this section, we present a scheme of optimistic estimates that are not tight,
but faster to calculate. The estimates are increasingly conservative and at the
same time increasingly complex to calculate. The idea is not to consider all
2c combinations as done in oe∗q , but instead to consider only combinations for d

classes at a time. That is, we consider 2d different combinations for the d selected
classes; for the other classes, we only consider the two extreme cases where either
every m′

i = mi or every m′
i = 0 (for classes i not within the d classes). Finally,

the sum over all these maximums is calculated and used as an estimate.3

Here is the definition of the scheme oed
q of optimistic estimates, where d de-

termines the number of classes considered at a time:

3 This scheme is a generalization of the optimistic estimate proposed in [GRSW08],
which considers just one class at a time (instead of d).
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oed
q(p, n,p0, N) :=

∑
j=1,d+1,2d+1,...

[
max

m′
j,...,m′

j+d−1|m′
j∈{0,npj}

(
max
{ j+d−1∑

i=j

φi(m′
−,p0, N),

j+d−1∑
i=j

φi(m′
+,p0, N)

})]
(3)

Here, the φi are summands of the quality functions as discussed in the pre-
vious section. The m′

− stands for the vector (0, 0, ...,m′
j, ...,m

′
j+d−1, 0, ..., 0)T

and m′
+ for the vector (np0, np1, ..., npj−1,m

′
j , ...,m

′
j+d−1, npj+d, ..., npc)T ; in-

tuitively m′
− stands for the case where the subset of s includes none of the rows

of the classes 1, ..., j − 1, j + d, ..., c of the subgroup s, while m′
+ stands for the

case where every row of these classes is present. Of course, if c is not a multiple
of d, the last summands might involve less than d classes.

Proof. Similar to the proof for oe∗q , the proof is based on the fact that every
quality function considered is convex, as shown in the Appendix. Additionally,
we use the fact all quality functions considered can be brought to the form
φ1(m,p0, N)+ ...+φc(m,p0, N), with φi being (

∑
j mj)( mi�

j mj
−p0i)

2 for Split,
(
�

j mj)

N−(
�

j mj)
( mi�

j mj
−p0i)

2 for Gini and
(
�

j mj)

p0i
( mi�

j mj
−p0i)

2 for Pearson’s. Now
the following holds:

max
m′

1,...,m′
c|∀i.m′

i∈N+∧0≤m′
i≤npi

{
c∑

i=1

φi(m′,p0, N)} =

max
m′

1,...,m′
c|∀i.m′

i∈{0,npi}
{

c∑
i=1

φi(m′,p0, N)} ≤

∑
j=1,d+1,2d+1,...,c

max
m′

1,...,m′
c|∀i.m′

i∈{0,npi}
{

j+d−1∑
i=j

φi(m′,p0, N)} ≤

∑
j=1,d+1,...,c

max
m′

j ,...,m′
j+d−1|m′

j∈{0,npj}

⎡
⎣ max

m′
1,...m′

j−1,mj+d,...m′
c|m′

i∈{0,npi}
{

j+d−1∑
i=j

...}

⎤
⎦

where ... stands for φi(m′,p0, N). Now we make use of the fact that φi is not
only convex in mi and mj , j �= i, but also in the sum of mj ’s with j �= i. That is,
for every set of indexes J = {j1, ...jn} not including i, φi is convex in

∑
k∈J mk.

This follows from the fact that in all definitions of φi (i.e. for the definition for
Split, Gini and χ2) the mj with j �= i only occur in the sum

∑
j mj . Thus, for

any set of indexes J that does not include i, φi could be considered as a function
of the new parameter (

∑
k∈J mk) and the remaining mk′ , i.e. those with index

k′ �∈ J . The resulting function is of the same form as φi (except that it takes
less parameters) and thus is convex in

∑
k∈J mk.



448 H. Grosskreutz, S. Rüping, and S. Wrobel

In particular, any φi with j ≤ i ≤ j+d−1 is convex in
∑

k∈{0,...,j−1,j+d,...c}mk.
Therefore, it is sufficient to consider the case where the sum is minimal or max-
imal, that is when either all these m′

k’s are zero or all have value npk. So the
above is bounded by

∑
j=1,d+1,...,c

⎡
⎣ max

m′
j,...,m′

j+d−1|m′
j∈{0,npj}

⎛
⎝ max

(∀k. m′
k=0),(∀k. m′

k=npk)

j+d−1∑
i=j

φi(m′,p0, N)

⎞
⎠
⎤
⎦

This is equivalent to oed
q and the proof is completed. �

Some Considerations on the new Optimistic Estimates. We will now consider
some properties of the optimistic estimates oed

q . As before, we use c to denote the
number of classes. The computation of oed

q involves the evaluation of O( c
d2dd) =

O(c2d) different expressions φi, meaning that the higher the number d of classes
considered at a time, the higher the computational cost. We remark that in an
implementation of the function oed

q , only those classes where mi > 0 have to be
considered, meaning that O(c2d) is only the worst case.

Lemma 3. oe2d
q is at least as conservative as oed

q . oed
q is tight if either d ≥ c,

or c = 2 and d ≥ 1.

Proof. It is easy to see that if c ≤ d, then oed
q = oe∗q , because the number of

classes d in oed
q for which every combination is considered is exactly c, as in oe∗q .

oe2d
q is at least as conservative as oed

q because oe2d
q considers every combination

of classes considered by oed
q (and some more combinations).

In the special case c = 2, oe1
q is tight because the set of indexes {0, ..., j−1, j+

d, ...c} considered in the second sum of Equation 3 actually involves only one class
index, and hence effectively every combination of the two classes is considered,
just as in oe∗q . To show that oed

q is not tight otherwise, it is sufficient to have
one example. The experiments in Section 4 have plenty of them, and the next
paragraph also presents one. Here is another one: consider p0 = (0.1, 0.45, 0.45)
(for c = 3) respectively p0 = (0.1, 0.3, 0.3

c−3 , ...,
0.3
c−3 , 0.3) (for c > 3). Furthermore,

consider a subgroup s with m = (10, 10, 0, 0, ...0, 10). It is easy to verify that of
all subsets of m, m′ = (10, 0, 0, ...0, 0) has the highest quality. However, the last
summand of oed

q would consider the values 10 and 0 for m′
c only in combination

with either both m′
1 = 10 and m′

2 = 10 or both m′
1 = 0 and m′

2 = 0. That
is, it would not consider the actual maximizing combination (10, 0, 0, ...0, 0), but
instead will provide an overoptimistic estimate. �

An Example. To illustrate the effect of different optimistic estimates, let us
reconsider the example from Figure 1. In particular, let us consider the subgroup
description {Region = Urban}. The corresponding subgroup consists of the first
three rows of the dataset and has a probability distribution of pHigh = 1/3,
pMed = 2/3, and pLow = 0.

For the Split quality function, we get a tight optimistic estimate of 0.176
for the quality of the refinements of {Region = Urban}. Using the suboptimal



Tight Optimistic Estimates for Fast Subgroup Discovery 449

estimate oe1
q, we only get the estimate 0.255. While both estimates can be used

by a subgroup discovery algorithm, if the minimal required quality is 0.195 only
the tight estimate of 0.176 would allow to prune all subgroups description below
{Region = Urban} (In fact, 0.195 is exactly the minimal required quality at
that point, if the algorithm sketched in Section 4 is used).

4 Experimental Evaluation

Sketch of a Subgroup Discovery Algorithm. To evaluate the impact of different
optimistic estimates, we used a branch and bound depth-first-search (DFS) algo-
rithm similar to OPUSO [Web95] (without optimistic reordering). The optimistic
estimates are used to prune as large a part of the search space as possible, and
furthermore determine the order in which the nodes are expanded during DFS.
Our implementation makes use of FP-Trees [HPY00] to speedup the calculation
of the parameters p and n of a subgroup, as first proposed in [AP06]. The overall
algorithm, called DpSubgroup, is described in more detail in [GRSW08].

Datasets and Results. We evaluated the impact of the different optimistic esti-
mates on five datasets: four datasets from the UCI Machine Learning Repository
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Fig. 2. Results for the Splice and Census dataset (with 3 resp. 5 classes) using the
Split resp. the Gini quality function. The curves show the number of nodes considered
(left images) resp. the runtime (right images) for different optimistic estimates.
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[AN07] and one real-worlddataset. In particular, we used the “Mushroom”dataset
with 8124 rows, 22 attributes and 2 classes; the “Soybean” dataset with 683 rows,
35 attributes and 19 classes; the “splice” dataset with 3190 rows, 62 attributes
and 3 classes; a sample of 30.000 rows of the UsCensus1990 database with 68 at-
tributes and 5 classes (we used “dIncome1” as class attribute); and finally a pre-
scription dataset with 29 attributes, 60488 rows and 11 classes from the iWebCare
project (http://iwebcare.iisa-innov.com/). In all experiments, we searched
for the top 100 groups on an Intel Core 2 Duo T7500 with 2 GB of RAM under
Windows XP.

Figure 2 shows the performance results on the datasets Census and Splice,
using different quality functions. The horizontal axis shows the depth limits for
the subgroup discovery, that is a maximum length of the subgroup descriptions
considered. The different curves show the results using different optimistic esti-
mates: “oe-d” stands for subgroup discovery with oed

q , “oe-*” shows the results
using the tight optimistic estimate oe∗q , and finally “no oe” shows the perfor-
mance without any optimistic estimate pruning. It is worthwhile to note that
“no oe” essentially corresponds to the algorithm SD-Map (which also makes
use of FP-Trees but does not use optimistic estimate pruning), because this
algorithms has been shown to outperform all other exhaustive algorithms like
Apriori-SD [KLJ03] by an order of magnitude [AP06].

The figure shows both the number of nodes explored during the subgroup
discovery and the overall runtime, using a logarithmic scale. As expected, the
number of nodes considered depends on the optimistic estimate used: The higher
the degree d in oed

q , the less nodes are considered. The use of the tight optimistic
estimate oe∗q results in a minimal number of considered nodes.4 Similar to the
number of nodes, the runtime is affected by the optimistic estimate used. Al-
though the performance ratio does not exactly correspond to the node ratio, the
ordering of the optimistic estimates is the same. The performance gain using
pruning can become as large as an order of magnitude and more.

Figure 3 shows the results for the Soybean and the Mushroom dataset. We
first consider the results for the Soybean dataset (subfigures (a)-(c)): Again, the
higher the degree d of the optimistic estimate oed

q , the less nodes are considered,
with oe∗q being optimal (Figure 3(a)). Regarding the runtime, however, the situ-
ation is different: Figure 3(b) shows that the runtime is minimal when a pruning
level d is between 1 and 4. The reason is that although the more conservative
optimistic estimates reduce the number of nodes considered, their calculation is
more expensive. This effect becomes apparent in the Soybean dataset because it
has much more classes than the earlier datasets.

The above experiment shows that for datasets with a large number of classes,
it can be appropriate to use a non-tight optimistic estimate. However, the best
pruning level depends on the ratio of the costs for the calculation of the optimistic

4 It is interesting to note that the number of nodes and the runtime sometimes de-
creases when the depth limit increases. The reason is that the algorithm quickly finds
subgroups with a very high quality at a higher level, which allows to prune a larger
part of the search space than possible if only shorter subgroups were considered.
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Fig. 3. Number of nodes (a) and runtime (b, c) on the Soybean dataset (using the
Gini quality function), and runtime on the mushroom dataset (d) (using the Piatetstky-
Shapiro quality function)

estimate, and the cost for the calculation of the parameters of a subgroup. So
far we used FP-Trees, which allowed a very fast calculation of n and p. However,
if the dataset is very large it might not be possible to keep the FP-Tree in main
memory. To see how the situation changes if the calculation of the parameters
n and p becomes more expensive, we have run some experiments using a per-
sistent FP-Tree, i.e. an implementation where the FP-Trees are stored on disk
[HPYM04]. Our prototypical implementation is based on the object database
db4o [PEHH06]. Figure 3(c) shows the resulting runtime: In this setting, the
use of conservative optimistic estimates pays off again, with oe∗q resulting in the
fastest calculation (the number of nodes is, of course, unaffected).

Finally, Figure 3(d) shows the runtime for the Mushroom dataset, using the
Piatetstky-Shapiro quality. As in the multi-class case, the use of optimistic esti-
mates results in a significant speedup in this two-class example. The results from
the prescriptions dataset do not significantly differ, so we merely used them in
the summarizing table in the next paragraph.

Summary. The above results show that the optimistic estimates presented in this
paper have a significant impact on the performance of the subgroup discovery.
The use of the (fastest to calculate) optimistic estimates oe1

q and oe∗ps never
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slows down the execution but instead results in a tremendous speedup. The
performance gain reaches an order of magnitude at relative small depth bounds
(about 2 to 4) and gets even larger when the depth limit continues to increase.

The use of more conservative optimistic estimates allow to further speedup
the subgroup discovery. The following table summarizes the performance gain
over oe1

q achieved using the optimistic estimates oed
q and oe∗q (with d > 1). For

different values of d (i.e. 2, 3, 4 and ∞), it compared the performance with that
achieved using oe1

q, aggregated over different quality functions and datasets. In
particular, it shows the relative runtime (the runtime using the more conservative
optimistic estimate, divided by the runtime using oe1

q) in the best experiment
(Minimal), the worst experiment (Maximal) and on average. The table is based
on a total of 248 experiments.

oe2
q oe3

q oe4
q oe∗q

Minimal relative runtime compared to oe1
q 62% 21% 3% 1%

Average relative runtime compared to oe1
q 93% 69% 63% 847%

Maximal relative runtime compared to oe1
q 113% 118% 135% 3640%

The table shows that the larger d, the more the runtime can decrease (due to
the stronger pruning) - but it can also increase (due to the computation time of
the optimistic estimate). Overall, the use of oe4

q (which is tight if the number of
classes is ≤ 4) is a safe choice in most situations. While in the worst example, it
was slower by 35% than oe1

q , on average it was faster, taking only 63% of oe1
q’s

runtime; In the best example, it even reduced the runtime to 3% of that of oe1
q .

5 Summary and Discussion

In this paper, we have pursued the investigation of optimistic estimates for fast
subgroup discovery, started in [Wro97]. In particular, we considered and formal-
ized the concept of tight optimistic estimates. We have shown that the opti-
mistic estimate proposed in [Wro97] is not tight, and have presented new tight
optimistic estimates, including tight optimistic estimates for several multi-class
quality functions.

While the use of tight optimistic estimates minimizes the number of subgroups
considered, their calculation sometimes becomes quite time consuming. To cope
with this difficulty, we have presented a family of increasingly efficient approxi-
mations of the tight optimistic estimates. While these estimates are (in general)
not tight, they allow to trade more conservative estimates for faster computation
and thereby provide a mean to select an optimistic estimate with the right ratio
of conservative-ness and computational cost.

The results are interesting both from a theoretic and a practical point of view.
On the theoretical side, the notions of conservative and tight optimistic estimates
allow to compare optimistic estimates. On the practical side, our experiments
show that the use of the new optimistic estimates oe∗ps, oed

q and oe∗q result in a
significant speedup compared to current state-of-the-art algorithms like SD-Map
[AP06]. While for problems with a relatively small number of classes oe∗q is the
estimate of choice, for datasets with a larger number of classes (more than 6 or
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so) the optimal choice depends on more factors. Overall, the use of oe4
q is a safe

choice in most situations.
The idea to perform pruning based on an optimistic evaluation of the search

space below a node was already investigated before the introduction of opti-
mistic estimate into subgroup discovery. In particular, Webb [Web95] considers
optimistic pruning for rule learning tasks in his OPUS search algorithm. The
concept is also applied in other pattern-mining tasks involving non-monotonic
objective functions, like tiling databases [GGM04]. Of course, the objective func-
tion considered in tasks like tiling are different than in subgroup discovery.

In future work, we plan to investigate optimistic estimates for other quality
function, and to extend the concept of tight optimistic estimates to numeric
target attributes. We would also like to investigate whether the optimistic es-
timates oed

q can be improved by some kind of heuristic grouping of the classes,
with the idea not just to build arbitrary groups of d attributes. It would also
be interesting to combine the optimistic estimates presented in this paper with
other approaches to subgroup discovery, in particular with sampling-based ap-
proaches [SW00]. Altogether, we believe that the definition of tight optimistic
estimates and the new optimistic estimates presented in this paper can be a
valuable instrument in a wide range of subgroup discovery algorithms.
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A Proof of Convexity of the Multi-class Quality
Functions

A.1 Split and Pearson’s χ2

Both the Split and Pearson’s χ2 quality functions are nonnegative weighted
sums. The nonnegative weighted sum of convex functions is convex ([BV04]),
hence it is sufficient to show that the summands are convex. The summand of
both quality functions can be brought to the following form

φi = ci(
∑

j

nj)(
ni∑
j nj

− p0i)
2

where in the case if Split ci = 1 and in the case of Pearson’s ci = 1
p0i

.
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We only need to consider the case where ci = 1, because the ci’s are merely
positive weights. The φi’s are twice differentiable, thus it is sufficient to show
that the Hessian or second derivative is positive semidefinite [BV04]. We only
consider the first summand φ1, as the other cases are analog. It is somewhat
laborious but straightforward to verify that

∇2φ1 =
2

(
∑

j nj)3

⎡
⎢⎢⎣

(
∑

j 
=1 nj)2 −n1(
∑

j 
=1 nj) ... −n1(
∑

j 
=1 nj)
−n1(

∑
j 
=1 nj) (n2

1) ... (n2
1)

... ... ... ...
−n1(

∑
j 
=1 nj) (n2

1) ... (n2
1)

⎤
⎥⎥⎦

The above matrix can be brought to the following form

GGT

with G = (
∑

j 
=1 nj,−n1, ...,−n1)T , that is there is a Cholesky decomposition
and hence the matrix is positive-definite [BV04].

A.2 Gini

The fact that the Gini quality function is convex can be derived from previous
work in the area of decision tree construction. This comes from the fact that the
Gini quality functions is based on the Gini index, used as a splitting criterion
in the construction of decision trees [Bre96, BFOS84]. The Gini index is defined
as G(p) =

∑
j pj(1 − pj) and measures the “impurity” of a distribution p. The

gain in impurity resulting from a split is defined as Θ(s) = G(p0)− PLG(pl)−
PRG(pr) and was used as a goodness of a split measure. Here, p0 denotes the
distribution over the classes in the overall population, pl and pr denote the
distribution in the left and the right subpopulation resulting from a split, PL

denotes the proportion of the population send to the left by the split and PR =
1− PL denotes the proportion send to the right.

This goodness of split was turned into the Gini quality function [Klö96]:

G(p0)− g ∗G(p)− (1− g) ∗G(p∗)

where p0 is (as before) the class distribution in the overall population, p the class
distribution in the subgroup, p∗ the probability distribution in the remainder,
i.e. in the examples from the overall population not in the subgroup, and finally
g the generality of the subgroup. It is easy to verify that the components of p∗

are defined by p∗i = Np0i−Ngpi

N(1−g) = p0i−gpi

1−g . By inserting this definition of p∗ we
obtain the following, more familiar-looking definition of the Gini quality,

g

1− g

∑
j

(pi − p0i)
2 =

n

N − n

∑
j

(pi − p0i)
2

[Bre96] shows that g ∗G(p)+ (1− g) ∗G(p∗) is concave in the proportion of the
probabilities that are sent to the left (which he calls α). We remark that Breiman
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uses the term convex in the meaning of “convex downward”; We use the term
convex in the opposite sense, as [BV04] (Breimans notation also differs from
ours in other respects). Now our vector m can be obtained from α by an affine
mapping, namely mi = Np0i αi, which implies that g ∗G(p)+ (1− g) ∗G(p∗) is
also concave in m, because affine mappings preserves concavity. Hence the Gini
quality function is convex in m.
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Abstract. Recognizing visual scenes and activities is challenging: often
visual cues alone are ambiguous, and it is expensive to obtain manually
labeled examples from which to learn. To cope with these constraints, we
propose to leverage the text that often accompanies visual data to learn
robust models of scenes and actions from partially labeled collections.
Our approach uses co-training, a semi-supervised learning method that
accommodates multi-modal views of data. To classify images, our method
learns from captioned images of natural scenes; and to recognize human
actions, it learns from videos of athletic events with commentary. We
show that by exploiting both multi-modal representations and unlabeled
data our approach learns more accurate image and video classifiers than
standard baseline algorithms.

1 Introduction

Systems able to automatically annotate and index visual content will be cru-
cial to managing the world’s ever-growing stores of digital images and videos.
However, learning to recognize objects and actions based on visual cues alone
remains quite difficult, due to factors ranging from unpredictable illumination
to the sheer variety in appearance exhibited by instances of the same class. Fur-
thermore, accurate results often depend on access to substantial labeled data,
which in practice can be cumbersome to obtain in adequate quantities.

We propose to facilitate the learning process in this domain by integrating
both visual and linguistic information, as well as unlabeled multi-modal data.
In particular, we consider the tasks of recognizing categories in natural scenes
from images with caption text, and recognizing human actions in sports videos
that are accompanied by an announcer’s commentary. Both are interesting data
sources given their ready availability, but are nonetheless challenging due to the
loose association between the dual cues as well as the frequent ambiguity of
either cue alone. We design an approach using co-training [6] that takes local
appearance and spatio-temporal descriptors together with text-based features to
learn the categories from a partially labeled collection of examples.
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The majority of state-of-the-art systems for image and video classification
use unimodal data – either visual or textual features alone [32,12,5,35,20,14,17].
Given the natural occurrence of both feature types together, researchers have
only recently begun to explore ways to learn from multi-modal image and lan-
guage data. Previous work has focused on learning the association between visual
and textual information [2,13,11], using supervised methods to improve text-
based video retrieval [15], improving audio-visual human-computer interfaces [8],
and designing unsupervised methods to cluster images [3] or strengthen image
features [30]. In contrast, we consider learning to classify images and videos from
labeled and unlabeled multi-modal examples, demonstrating that our approach
can improve the classification of novel instances by exploiting both cues—or even
the visual data alone. While co-training has previously been applied to learn from
two textual views [6] or two visual views [31,7], we present comprehensive results
on using visual and linguistic information as separate views, with the idea that
these distinct cues will complement each another well during training.

Our main contribution is a semi-supervised approach to recognizing scenes
and human actions from captioned images or commentated videos. We show that
by exploiting multi-modal data and unlabeled examples, our approach improves
accuracy on classification tasks relative to both unimodal and early/late fusion
baselines. In addition, it yields significantly better models than alternative semi-
supervised methods when only a limited amount of labeled data is available.

The remainder of the paper is organized as follows: in Section 2 we discuss
related work in more detail. In Section 3 we describe our approach for extracting
visual and textual features, and provide background on building a co-training
classifier. In Section 5.1 we present results for learning from captioned images,
while in Section 5.2 we present results for videos with commentary, and in Sec-
tions 6 and 7 we suggest future directions and present our conclusions.

2 Related Work

In previous work using captioned images, Barnard et al. [2] and Duygulu et
al. [10] generate models to annotate image regions with words. Bekkerman and
Jeon [3] exploit multi-modal information to cluster images with captions using
an unsupervised learning technique. Quattoni et al. [30] describe a method for
learning representations from large quantities of unlabeled images that have
associated captions to improve learning in future image classification problems
with no associated captions.

Many researchers have worked on activity recognition in videos using only
visual cues [32,12,35,20,5]. Everingham et al. [13] incorporate visual information
(facial and clothing matching), closed-captioned text, and movie scripts to auto-
matically annotate faces with names in a video. They utilize textual information
only for finding names of actors who are speaking at a particular time. Nitta
et al. [28] annotate sports video by associating text segments with the image
segments. Their approach is based on previous knowledge of the game and the
key phrases generally used in its commentary. Fleischman and Roy [15] use text
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commentary and motion description in baseball video games to retrieve relevant
video clips given a textual query. Duygulu and Hauptmann [11] associate news
videos with words and improve video retrieval performance. These papers focus
on video retrieval rather than classification. Our results provide a novel way to
incorporate text information when learning about visual human activity. Wang
et al. [34] use co-training to combine visual and textual ‘concepts’ to categorize
TV ads. They retrieved text from videos using OCR and used external sources
to expand the textual features. Our paper focuses on using visual and textual
features from explicitly captioned images and videos without exploiting external
sources.

Co-training has previously been shown to be useful for various applications
[21,8,31]. Levin et al. [23] use co-training to improve visual detectors by training
two disparate classifiers. Cheng and Wang [7] suggest a new SVM algorithm
called Co-SVM that uses a co-training approach and achieved better results
than a normal SVM on classifying images using color and texture as separate
views, and Nigam et al. [27] compares the effectiveness of co-training with semi-
supervised EM.

However, none of the prior work has explored using low-level visual cues and
text captions as two views for co-training. We present the first results showing
how to learn about human activities based on both visual cues and spoken
commentary, and provide a thorough evaluation of our co-training approach
relative to several other relevant methods. Since image and video classification
is a difficult problem and many videos and images have associated text, we
believe that our co-training approach is a novel contribution to two important
practical applications.

3 Approach

The main idea of our approach is to use image or video content together with its
textual annotation (captions, commentary) to learn scene and action categories.
To design such a system, the main components we must define are the feature
representations for linguistic and static or dynamic visual cues, and the learning
procedure. In this section we describe each of these elements in turn.

3.1 Visual Features

Static Image Features. To describe a captioned photograph, we want to cap-
ture the overall texture and color distributions in local regions. Following [3], we
compute region-based features as follows. Each image is broken into a 4-by-6 grid
of uniformly sized cells. For each region, we compute texture features using Gabor
filters with three scales and four orientations, and also record the mean, standard
deviation, and skewness of the per-channel RGB and Lab color pixel values. The
resulting 30-dimensional feature vectors for each of the 24 regions of all images are
then clustered using k-Means in order to define the prototypical region responses.
Each region of each image is then assigned one of k discrete values based on the
cluster centroid closest to its 30-dimensional image feature vector.
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The final “bag of visual words” representing an image consists of a vector of k
values, where the i’th element represents the number of regions in the image that
belong to the i’th cluster. While other descriptors are certainly possible (e.g.,
using scale and affine invariant interest point detectors [25]), we chose these
features based on their demonstrated suitability for the image-caption dataset
provided in [3], which we also use in our experiments.

Motion Descriptors from Videos. To represent video clips, we use features
that describe both salient spatial changes and interesting movements. In order
to capture non-constant movements that are interesting both spatially and tem-
porally, we use the spatio-temporal motion descriptors developed by Laptev [22].
We chose the spatio-temporal interest point approach over a dense optical flow-
based approach in order to provide a scale-invariant, compact representation of
activity in the scene.

To detect spatio-temporal events, Laptev builds on Harris and Forstner’s in-
terest point operators [18,16] and detects local structures where the image val-
ues have significant local variation in both space and time. They estimate the
spatio-temporal extent of the detected events by maximizing a normalized spatio-
temporal Laplacian operator over both spatial and temporal scales. Specifically,
the extended spatio-temporal “cornerness” H at a given point is computed as

μ = g(.;σ2
i , τ

2
i ) ∗

⎛
⎝ L2

x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

⎞
⎠ (1)

H = det(μ)− k trace3(μ), (2)

where ‘∗’ represents convolution, g(.;σ2
i , τ

2
i ) is a 3D Gaussian smoothing kernel

with a spatial scale σ and a temporal scale τ , and Lx, Ly, Lz, and Lt are the
gradient functions along the x, y, z, and t directions, respectively. In (1), μ repre-
sents a second order spatio-temporal matrix. The points that have a large value
of H are selected as interest points.

At each interest point, we extract a HOG (Histograms of Oriented Gradients)
feature [9] computed on the 3D video space-time volume. The patch is partitioned
into a grid with 3x3x2 spatio-temporal blocks, and four-bin HOG descriptors are
then computed for all blocks and concatenated into a 72-element descriptor. The
motion descriptors from all the video clips in the training pool are then clustered
to form a vocabulary. Finally, a video clip is represented as a histogram over this
vocabulary, just as a static image’s features are summarized by a histogram of
prototypical region descriptors.

3.2 Textual Features

The text features for the images or videos consist of a standard “bag of words”
representation of the captions or transcribed video commentary, respectively. We
pre-processed the captions to remove stop words and stemmed the remaining
words using the Porter stemmer [1]. The frequency of the resulting word stems
comprised the final textual features.
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Table 1. Co-training Algorithm

– Inputs: A set of labeled and unlabeled examples, each represented by two sets of
features, one for each view.

– Algorithm: Train a classifier for each view using the labeled data with just the
features for that view.

– Loop until there are no more unused unlabeled instances:

1. Compute predictions and confidences of both classifiers for all of the unlabeled
instances.

2. For each view, choose the m unlabeled instances for which its classifier has
the highest confidence. For each such instance, if the confidence value is less
than the threshold for this view, then ignore the instance and stop labeling
instances with this view, else label the instance and add it to the supervised
training set.

3. Retrain the classifiers for both views using the augmented labeled data.

– Outputs: Two classifiers whose predictions can be combined to classify new test
instances. A test instance is labeled with the category predicted by the classifier
with the highest confidence.

3.3 Building the Classifier Using Co-training

Blum and Mitchell introduced co-training, a semi-supervised learning algorithm
that requires two distinct “views” of the training data [6]. It assumes that each
example is described using two different feature sets that provide different, com-
plementary information about the instance. Ideally, the two views are condi-
tionally independent (i.e., the two feature sets of each instance are conditionally
independent given the class) and each view is sufficient (i.e., the class of an
instance can be accurately predicted from each view alone). Co-training first
learns a separate classifier for each view using any labeled examples. The most
confident predictions of each classifier on the unlabeled data are then used to
iteratively construct additional labeled training data.

Co-training was initially used to classify web-pages using the text on the page
as one view and the anchor text of hyperlinks on other pages that point to the
page as the other view. In this work, we use the extracted visual and textual
features as the two views for co-training classifiers to detect scenes and actions.

We followed the basic algorithm suggested by [6] with one additional constraint:
an unlabeled example is only labeled if a pre-specified confidence threshold for
that view is exceeded. The algorithm is outlined in Table 1. In each iteration, it
finds the m most confidently labeled unlabeled examples for each view. If such in-
stances pass the threshold test, they are added to the supervised training set with
the predicted label and both classifiers are retrained. The entire process continues
until there are no more unlabeled instances.
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4 Experimental Design

4.1 Baselines

In order to evaluate the relative strength of co-training with multi-modal data,
we compare co-training with several other supervised and semi-supervised tech-
niques that are reviewed in this section.

Early and Late Fusion. Besides co-training, multi-modal fusion methods are
an alternative way to utilize both sets of features. The visual and linguistic in-
formation can be ‘fused’ in two ways: early and late fusion [33]. In early fusion,
unimodal features are extracted and then combined into a single representation.
In our case, we extract visual and textual features and concatenate them into
a single vector. In contrast, late fusion learns separate unimodal classifiers di-
rectly from unimodal features and then combines their results when labeling test
instances. In particular, we combine the two unimodal classifiers by using the
decision of the classifier with the highest confidence.

Semi-supervised EM and Transductive SVMs. Semi-supervised Expecta-
tion Maximization (Semi-Sup EM) and transductive Support Vector Machines
(TSVM) are two other standard approaches to semi-supervised learning. These
methods can be applied to either of the two views individually, or employ both
feature sets using early or late fusion.

Although typically used for unsupervised learning, Expectation Maximiza-
tion (EM) can also be used in a semi-supervised setting [26]. First, Semi-Sup
EM learns an initial probabilistic classifier from the labeled training data. Next,
it performs EM iterations until convergence. In the E step, it uses the cur-
rently trained classifier to probabilistically label the unlabeled training exam-
ples. In the M step, it retrains the classifier on the union of the labeled data and
the probabilistically labeled unsupervised examples. Semi-sup EM has typically
been applied using Naive Bayes as its probabilistic classifier. For text learn-
ing, the multinomial version of Naive Bayes [24] is typically used [26]; however,
for our data we found that a standard multivariate model using Gaussian dis-
tributions for continuous features gave better results. Specifically, we used the
NaiveBayesSimple classifier in Weka [36].

Transductive SVMs [19] find the labeling of the test examples that results
in the maximum-margin hyperplane that separates the positive and negative
examples of both the training and the test data. This is achieved by including
variables in the SVM’s objective function representing the predicted labels of the
unlabeled test examples. Although TSVMs were originally designed to improve
performance on the test data by utilizing its availability during training, they
can also be directly used in a semi-supervised setting [4] where unlabeled data is
available during training that comes from the same distribution as the test data
but is not the actual data on which the classifier is eventually to be tested. In
our experiments we evaluate the strength of our co-training approach relative to
these other semi-supervised methods.
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4.2 Methodology

For co-training, we use a Support Vector Machine (SVM) as the base classifier for
both image and text views. We compare co-training with other supervised and
semi-supervised methods, and use the Weka [36] implementation of sequential
minimal optimization (SMO) [29] for SVMs (except for TSVMs as described be-
low). SMO is set to use an RBF kernel (γ=0.01) and a logistic model to produce
proper output probabilities; otherwise, default parameters are used throughout.
We use a batch size of m = 5 for co-training. For co-training on static images,
we use a confidence threshold of 0.65 for the image view and 0.98 for the text
view (determined empirically through cross-validation). For video classification
(where there are more classes) we use a threshold of 0.6 for the video view and
0.9 for the text view.

We evaluate all algorithms using ten iterations of ten-fold cross validation
to get smoother and more reliable results. For co-training and the other semi-
supervised algorithms, the test set is disjoint from both the labeled and unlabeled
training data.

To evaluate accuracy as the amount of labeled data increases, we generate
learning curves where at each point some fraction of the training data is labeled
and the remainder is used as unlabeled training data. Thus, for the last point on
the curve, all of the training data is labeled. With this methodology, we expect
to see an advantage for semi-supervised learning early in the learning curve when
there is little labeled data and significant unlabeled data. Once all of the data
is labeled, we expect the predictive accuracies of semi-supervised learning and
supervised learning to converge.

5 Results

This section presents our experimental results on image and video classifica-
tion. Some part of our datasets and full results are available on the web at
http://www.cs.utexas.edu/users/ml/co-training.

5.1 Learning to Categorize Captioned Images

In this section we provide results on classifying captioned static images.

Dataset. Our image data is taken from the Israel dataset1 introduced in [3],
which consists of images with short text captions. In order to evaluate the co-
training approach, we used two classes from this data, Desert and Trees. These
two classes were selected since they satisfy the sufficiency assumption of co-
training, which requires that both views be effective at discriminating the classes
(given sufficient labeled data). We refer to this set as the Desert-Trees dataset.
Some examples of each class are shown in Figure 1. The complete dataset con-
tains 362 instances. To create the vocabulary of visual words, we used k-means
with k=25 (see Section 3.1). The total number of textual features for this dataset
is 363.
1 http://www.israelimages.com

http://www.cs.utexas.edu/users/ml/co-training
http://www.israelimages.com
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(a) Caption: Ibex in Judean
Desert

(b) Caption: Bedouin Leads
His Donkey That Carries
Load Of Straw

(c) Caption: Nuns In Seclu-
sion Near Santa Catherina
In Sinai

(d) Caption: Ibex Eating In
The Nature

(e) Caption: Entrance To
Mikveh Israel Agricultural
School

(f) Caption: Olive Trees
At The Bell Garden In
Jerusalem

Fig. 1. Some images and their corresponding captions of the image dataset. Figures
1(a)-1(c) are of class ‘Desert’ and the rest are of class ‘Trees’.
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Fig. 2. Comparison of co-training with supervised classifiers on the Desert-Trees
dataset. Co-training performs the best, converging with late-fusion for larger amounts
of labeled data.

Results and Discussion. Our results comparing co-training with various other
classification methods are shown in Figures 2 to 4. In the figures, “Image View”
and “Text View” refers to using only the named view’s features. The significance
of the results were evaluated using a two-tailed paired t-test with a 95% con-
fidence level. Based on preliminary experiments, an RBF kernel (γ=0.01) was
used for the SVM in all experiments.



Watch, Listen & Learn: Co-training on Captioned Images and Videos 465

 70

 75

 80

 85

 90

 95

 0  20  40  60  80  100

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Percentage of Labeled Training Examples

Co-training
SemiSupEM Early Fusion
SemiSupEM Late Fusion
SemiSupEM Image View

SemiSupEM Text View

(a) Co-training v. Semi-Sup EM
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Fig. 3. Comparison of co-training with other semi-supervised techniques on the Desert-
Trees captioned images dataset. Co-training outperforms all other methods.

Comparison of Co-training to Supervised Learning. Figure 2 compares co-training
using anSVMas thebase classifier to supervised classificationusing anSVM,which
is known to often be one of the best performing methods for high-dimensional data
in practice. The results show that co-training is more accurate than a supervised
SVM using unimodal data and early fusion of multi-modal data, with statistically
significant differences at all points on the learning curve. With respect to the in-
dividual views, except at the start of the learning curve, the text view performs
better than the image view. This is reasonable given that the image cues are often
more indirect than the text features. The much smaller number of features in the
image view allows it to do a bit better than the text view when training data is
extremely limited. Both early and late fusion perform better than the unimodal
classifiers since they exploit both views. Co-training is more accurate than late fu-
sion, except for later in the learning curve where they converge. Once all the data
is labeled (the last point on the learning curve), co-training and late-fusion are ex-
actly the same since co-training has no unlabeled data to exploit.

Comparison of Co-training to other Semi-Supervised Methods. Many evaluations
of semi-supervised learning only show that the proposed method performs better
than supervised learning but do not compare to other semi-supervised methods
[6,19,30]. Here we present results comparing co-training with two other well-
known semi-supervised techniques: Semi-supervised EM [26] and transductive
SVMs [19]. Results are shown in Figures 3(a) and 3(b).

Figure 3(a) shows that co-training with SVM as the base classifier outperforms
Semi-Sup EM irrespective of the view it considers, with statistically significant
differences across the learning curve.

In order to compare with transductive SVM, we have used SVMlight [19], with
an RBF kernel (γ=0.01) and default values for all other parameters. The figure
shows that co-training performs better than transductive SVM irrespective of
the view it considers. The difference in accuracy is statistically significant across
the learning curve, except when compared to TSVM using late fusion. When
compared to TSVM using late fusion, the difference is statistically significant
when 40% or less of the training data is labeled.
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(a) Dancing: Her last spin is going to make her win.

(b) Spinning: A female skating player is revolving in the current position many times, with
her posture changing over time.

(c) Kicking: Jim uses stretches his arms outside to balance him and let goes a ferocious
drive.

(d) Dribbling: The kid keeps the ball in check by juggling it with his legs.

Fig. 4. Randomly selected consecutive frames of video with detected spatio-temporal
interest points. Interest points are displayed as yellow circles around the detected
points. One clip per each class of dancing, spinning, kicking, and dribbling is shown
above. In addition, the text commentary is also shown below each clip.

Our results are consistent with previous results on text data showing that in
domains with two independent and sufficient views, co-training is more effective
than Semi-Sup EM [27]. By directly exploiting the redundant nature of the
visual and linguistic information, our results indicate that co-training can classify
captioned images more accurately than than other semi-supervised methods.

5.2 Learning to Recognize Actions from Commentated Videos

Next we report results using our co-training approach to learn human action
categories from commentated videos of athletic events.

Dataset. For this experiment, we collected video clips of soccer and ice skating.
One set of video clips is from the DVD titled ‘1998 Olympic Winter Games:
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Figure Skating Exhibition Highlights’, which contains highlights of the figure
skating competition at the 1998 Nagano Olympics. Another set of video clips is
on soccer playing, acquired either from the DVD titled ’Strictly Soccer Individual
Skills’ or downloaded from YouTube. These videos mostly concentrate on the
player in the middle of the screen and usually the motions are repeated several
times with different viewpoints. The soccer clips are mainly about soccer specific
actions such as kicking and dribbling. There is significant variation in the size
of the person across the clips.

The video clips are resized to 240x360 resolution and then manually divided
into short clips. The clip length varies from 20 to 120 frames, though most are
between 20 and 40 frames. While segmenting activities in video is itself a dif-
ficult problem, in this work we specifically focus on classifying pre-segmented
clips. The clips are labeled according to one of four categories: kicking, drib-
bling, spinning and dancing. The first two are soccer activities and the last two
are skating activities. The number of clips in each category are, dancing: 59,
spinning: 47, dribbling: 55 and kicking: 60. Example frames from each class with
detected motion features and their captions are shown in Figure 4. The illus-
trated features are useful in discriminating between the classes and few features
are detected in the background. We used k=200 in the k-means algorithm to
create the vocabulary of video features (see Section 3.1).

As the video clips were not originally captioned, we recruited two colleagues
unaware of the goals of the project to supply the commentary for the soccer
videos. The skating commentary was provided by two of the authors. Additional
sample captions are shown in Figure 5. The total number of textual features is
381 for this dataset.

Results and Discussion. In Figure 6 (a), we compare co-training with a su-
pervised SVM using unimodal views and early/late fusion of multi-modal views.
Co-training performs better than all other methods early in the learning curve.
This demonstrates that utilizing unlabeled data and multi-modal views improves
accuracy when supervised data is limited, a valuable advantage. Both co-training
and late fusion exploit both views of the dataset, but co-training outperforms
late fusion since it also uses the unlabeled data to improve accuracy. It is inter-
esting that early fusion actually performs worse than supervised learning using
the text view; we attribute this to the higher-dimensional feature vector, which
increases the complexity of learning and impairs generalization.

In many real-life situations, we may not have textual commentary on the novel
test videos that we wish to classify. However, even in cases where commentary
is not available at test-time, we would still like to benefit from the commentary
that was available during training. Therefore, we also examine the case where
text is unavailable during testing and an instance must be classified using only
video input. Figure 6(b) compares co-training using only the motion view during
testing with a supervised SVM using the motion view. In this case, co-training
performs better than SVM when only a few labeled examples are available. We
also evaluated an analogous situation with the image dataset, but in that case
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Spin:
That was a very nice forward camel
Well I remember her performance last time
After gliding, she just starts to make many revolutions while maintaining her current
position with her head back.
Her angular movement seems so dizzy because he spins round with her head up and down
and also the movement is so fast.
Elizabeth is able to clear this one
Her beautiful performance of revolving herself makes the entire audience impressed due
to her perfect posture.
Dancing:
Wow those were some great steps
He has some delicate hand movement
She gave a small jump while gliding
He does slight spins and tries to express bird’s motion by dancing like it and goes forward
very fast.
The crowd is cheering him a lot
She is drawing a big circle with her arms very fast while moving her body backward and
shows lightweightness.
Kick:
His balance is a bit shaky but he manages to execute the kick in the end.
He runs in to chip the ball with his right foot.
He runs in to take the instep drive and executes it well.
He plants his ankle level with the ball and swings though to get the kick and makes sure
he has his eyes on the ball all the time.
He come from behind and hits the rolling ball with power just as it rolls in front of him.
He runs behind the ball and has to stretch himself to kick the ball with the inside of his
toes.
Dribbling:
Again the striker turns around effortlessly and kicks the ball away from the defender
making it look too easy.
At fast speed as the ball is juggled between the legs it becomes difficult to control it.
The small kid pushes the ball ahead with his tiny kicks.
He does the scissors over the ball quickly to move the ball ahead.
He takes the ball with him by alternately pushing the ball forward and swinging the leg
over it and using the other leg to distract the defender.
Ran uses the combination of right leg scissor and roll to take the ball ahead

Fig. 5. Captions of some video clips in the four classes

results were comparable to a supervised SVM. All the results are statistically
significant until 30% of the data is labeled.

6 Future Work

The image test corpus used in the current experiments is fairly small and re-
quires only binary classification. We would like to test multi-modal co-training
on a larger multi-class corpus of captioned images. We would also like to ex-
tend our approach to images that do not have explicit text captions but are
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Fig. 6. (a) Comparison of co-training with early fusion, late fusion, motion view and
text view on the commentated video dataset. Co-training performs better when only
a small fraction of labeled data is available. (b) Co-training compared with supervised
learning when text commentary is not available during testing. Co-training performs
better when few labeled examples are available.

surrounded by related text. In particular, images on the web rarely come with
explicit captions; however, it is natural to use surrounding text productively to
find relevant images. By automatically extracting the appropriate surrounding
text as a “pseudo-caption,” multi-modal co-training could be used to improve
the classification of web images. The video commentary in our experiments was
added specifically for this project, although we strove to make it natural. In
the future, we hope to expand our results to include video with existing closed-
captioned commentary and automate the segmentation of video into clips.

7 Conclusion

Recognizing scenes in images and actions in videos are important, challenging
problems. We have proposed a solution that uses co-training to exploit both
visual and textual features from labeled and unlabeled data to improve classifi-
cation accuracy. Our results show that such multi-modal co-training can outper-
form several other standard learning algorithms. By exploiting the redundant
information inherent in images or videos and their textual descriptions, we have
shown that the amount of supervision required to accurately classify images and
videos can be significantly reduced.
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Abstract. We introduce the problem of learning the parameters of the
probabilistic database ProbLog. Given the observed success probabilities
of a set of queries, we compute the probabilities attached to facts that
have a low approximation error on the training examples as well as on un-
seen examples. Assuming Gaussian error terms on the observed success
probabilities, this naturally leads to a least squares optimization prob-
lem. Our approach, called LeProbLog, is able to learn both from queries
and from proofs and even from both simultaneously. This makes it flexi-
ble and allows faster training in domains where the proofs are available.
Experiments on real world data show the usefulness and effectiveness of
this least squares calibration of probabilistic databases.

1 Introduction

Many real-world application today depend on managing enormous volumes of
uncertain data. Such ”dirty” databases arise for example when integrating data
from various sources, when analyzing social, biological, and chemical networks,
within privacy-preserving data mining where only aggregated data is available,
and within pervasive computing. These are only some of the many real-world
applications showing the abundance of uncertain data and the need for prob-
abilistic databases, i.e., generalizations of traditional relational databases that
can deal with uncertainty.

Over the last years, the statistical relational learning community has devoted
a lot of attention to learning both the structure and parameters of probabilistic
logics, cf. [1,2], but so far seems to have devoted little attention to the learning of
probabilistic database formalisms. Probabilistic databases [3,4] associate prob-
abilities to facts, indicating the probabilities with which these facts hold. This
information is then used to define and compute the success probability of queries
or derived facts or tuples, which are defined using background knowledge (in the
form of predicate definitions). As one example, imagine a life scientist mining
a large network of biological entities in an interactive querying session. The bi-
ological network is a probabilistic graph, in which the edges are represented
by probabilistic facts about the biological entities [4]. Interesting questions can

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 473–488, 2008.
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then be asked about the probability of the existence of a connection between
two nodes, or the most reliable path between them.

The key contribution of the present paper is the introduction of a novel setting
for learning the parameters of a probabilistic database from examples together
with their target probability. The task then is to find those parameters that
minimize the least squared error w.r.t. these examples. The examples themselves
can either be queries or proofs, where a proof is a conjunction of all facts in
the database needed to proof a query by SLD-resolution. This learning setting
is then incorporated in the probabilistic database ProbLog [4], though it can
easily be integrated in other probabilistic databases as well. This yields the
second key contribution of the paper, namely an effective learning algorithm
called LeProbLog1. It performs gradient-based optimization utilizing advanced
data-structures for efficiently computing the gradient. This efficient computation
of the gradient allows us to estimate a ProbLog program from a large real-world
network of biological entities in our experiments, which can then be used for
example by a life scientist in interactive querying sessions.

We proceed as follows. After reviewing related work in Section 2 and ProbLog
in Section 3, we will formally introduce the parameter estimation problem for
probabilistic databases in Section 4. Section 5 will then present our least-squares
approach LeProbLog for solving it. Before concluding, we will present the results
of an extensive set of experiments on a real-world data set.

2 Related Work

The probabilistic database setting differs from the usual statistical relational
learning approach in that there is no underlying generative model. Indeed, con-
sider for instance the learning of stochastic logic programs (SLPs) [5], PRISM
programs [6], probabilistic relational models (PRMs) [7] or Bayesian logic pro-
grams (BLPs) [8]. In all these approaches, a generative model is assumed. For
SLPs (and stochastic context-free grammars) as well as for PRISM, the learning
procedure assumes that ground atoms for a single predicate (or in the grammar
case, sentences belonging to the language) are sampled and that the sum of the
probabilities of all different atoms obtainable in this way is at most 1. Recently,
Chen et al. [9] also proposed a learning setting similar to ours. The probabilities
associated with examples, however, are viewed as specifying the degree of being
sampled from some distribution specified by a generative model, which does not
hold in our case. Furthermore, they only provide an algorithm for learning from
probabilistic facts and not queries and proofs as we do. PRMs and BLPs are
relational extensions of Bayesian networks using entity relationship models or
logic programming respectively. In both frameworks, possible worlds, i.e. inter-
pretations, are sampled, and the sum of the probabilities of such worlds is 1.
Consider now learning in the probabilistic network sketched above. It is unclear
how different paths could be sampled and, clearly, the sum of the probabilities

1 French for Least square estimation for ProbLog.
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of such paths need not be equal to 1. These difficulties explain – in part – why so
far only few learning techniques for probabilistic databases have been developed.

The learning setting, however, is in line with the general theory of probabilistic
logic learning [10] and inductive logic programming. From an inductive logic
programming perspective, a query corresponds to a formula that is entailed
by the database, and hence, queries correspond to well-known learning from
entailment setting. On the other hand, a proof does not only show what was
proven but also how this was realized. An analogy with a probabilistic context-
free grammar is useful here. One can learn the parameters of such a grammar
starting from sentences belonging to the grammar (learning from entailment
/ from queries), or alternatively, one could learn it from parse-trees (learning
from proofs), cf. the work on tree-bank grammars [11,12]. The former setting is
typically a lot harder than the later one because one query may have multiple
proofs, which introduces hidden parameters into the learning setting, which are
not present when learning from parse-trees. In the present paper, both types of
examples can be combined, and as far as the authors are aware, it is the first
time within relational learning and inductive logic programming that learning
from proofs is integrated with learning from entailment.

Within the probabilistic database community, parameter estimation has re-
ceived surprisingly few attention. Nottelmann and Fuhr [13] consider learning
probabilistic Datalog rules in a similar setting where the underlying distribution
semantics is similar to ProbLog. However, their setting and approach also signif-
icantly differ from ours. First, a single probabilistic target predicate only is esti-
mated whereas we consider estimating the probabilities attached to definitions
of multiple predicates. Second, their approach employs the training probabilities
only. Specifically, they generate training examples labeled with 0/1 randomly
according to the observed probabilities whereas we use the observed probabili-
ties directly. Finally, whereas LeProbLog follows a principled gradient approach
employing (in principle) all combinations of proofs or explanations, they fol-
low a two-steps bootstrapping approach first estimating parameters as empirical
frequencies among matching rules and then selecting the subset of rules with
the lowest expected quadratic loss on an hold-out validation set. Gupta and
Sarawagi [14] also consider a closely related learning setting but only extract
probabilistic facts from data.

Finally, the new setting and algorithm compromise a natural and interest-
ing addition to the existing learning algorithms for ProbLog. It is most closely
related to the theory compression setting of [15]. There the task was to re-
move all but the k best facts from the database (that is to set the probability
of such facts to 0), which realizes an elementary form of theory revision. The
present task extends the compression setting in that parameters of all facts
can now be tuned starting from evidence. This realizes a more general form of
theory revision [16], albeit that only the parameters are changed and not the
structure.
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(a) (b)

Fig. 1. (a) Example of a probabilistic graph, where edge labels indicate the probability
that the edge is part of the graph. (b) Binary Decision Diagram encoding the DNF
formula ac∨ (ab∧ bc), corresponding to the two proofs of query path(a,c) in the graph.
An internal node labeled xy represents the Boolean variable for the edge between x
and y, solid/dashed edges correspond to values true/false.

3 ProbLog

As one example of a probabilistic database, we employ ProbLog, a simple prob-
abilistic extension of Prolog introduced in [4]. Alternatively, the database for-
malism of [3] or [13] could be used. A ProbLog program consists – as Prolog –
of a set of definite clauses. However, in ProbLog every fact ci is labeled with
the probability pi that its instances ciθ are true. It is also assumed that the
probabilities of each ground instance ciθ (that is, each instance not containing
variables) are assumed to be mutually independent. In the following we repeat
the main ideas of ProbLog, see [4] for a more detailed explanation.

For easeof illustration,wewill considerprobabilistic graphsencoded inProbLog,
but the entire discussion carries over to arbitrary ProbLog programs. Figure 1(a)
shows a small example that can be encoded in ProbLog as follows:

0.8 : edge(a, c). 0.7 : edge(a, b). 0.8 : edge(c, e).
0.6 : edge(b, c). 0.9 : edge(c, d). 0.5 : edge(e, d).

It is straightforward to sample subgraphs of a probabilistic graph by tossing
a biased coin for each edge. The corresponding ProbLog program T = {p1 :
c1, · · · , pn : cn} therefore defines a probability distribution over subgraphs L ⊆
LT = {c1, · · · , cn} in the following way:

P (L|T ) =
∏

ci∈L
pi

∏
ci∈LT \L

(1 − pi).

It is straightforward to add background knowledge in the form of Prolog clauses,
say, the definition of a path by combining edges. We can then ask for the prob-
ability that there exists e.g. a path between nodes a and c in our probabilistic
graph, i.e. the probability that a randomly sampled subgraph contains the edge
from a to c, or the path from a to c via b (or both of them). Formally, the
success probability Ps(q|T ) of a query q in a ProbLog program T is defined as

Ps(q|T ) =
∑

L⊆LT

P (q|L) · P (L|T ) , (1)
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where P (q|L) = 1 if there exists a θ such that L |= qθ, and P (q|L) = 0 otherwise.
In other words, the success probability of query q corresponds to the probability
that the query q is provable in a randomly sampled logic program.

As a consequence, the probability of a specific proof, also called explanation,
corresponds to that of sampling a logic program L that contains all the facts
needed in that explanation or proof. The explanation probability Px(q|T ) is then
defined as the probability of the most likely explanation or proof of the query q:

Px(q|T ) = maxe∈E(q) P (e|T ) = maxe∈E(q)

∏
ci∈e

pi (2)

where E(q) is the set of all explanations for query q [17].
For our example graph and query path(a,c), the set of all explanations contains

the edge from a to c (with probability 0.8) as well as the path consisting of the
edges from a to b and from b to c (with probability 0.7 · 0.6 = 0.42). Thus,
Px(path(a, c)|T ) = 0.8.

Calculating the explanation probability can easily be realized using a best-first
search – guided by the probability of the current derivation – through standard
logic programming techniques based on the SLD-tree [18]. On the other hand,
evaluating the success probability of ProbLog queries is computationally hard,
as different proofs of a query are not independent in general. As shown in [4],
the problem can be tackled by reducing the problem to that of computing the
probability of a monotone DNF formula, an NP-complete problem.

Ps(q|T ) = P
(∨

e∈E(q)

∧
ai∈cl(e)

ai

)
(3)

This DNF formula describes each proof in E(q) as a conjunction of Boolean
variables, and the entire set as disjunction of these conjunctions. The formula
corresponding to our example query path(a,c) is ac∨ (ab∧ bc), where we use xy
as Boolean variable representing edge(x,y). To effectively calculate the proba-
bility of such a monotone DNF formula, we employ Binary Decision Diagrams
(BDDs) [19], an efficient graphical representation of a Boolean function over a
set of variables, see Section 6 for more details.

As the size of the DNF formula grows with the number of proofs, its evalua-
tion can become expensive. For instance, when searching for paths in graphs or
networks, even in small networks with a few dozen edges there are easily O(106)
possible paths between two nodes. In [4], an approximation algorithm is pro-
posed that computes both an upper and a lower bound on the probability of a
query and searches for more explanations until the difference between the upper
and the lower bound becomes sufficiently small.

When learning parameters, we will have to repeatedly evaluate BDDs for all
examples. In this context, using a fixed number of proofs allows better con-
trol of the overall complexity. We therefore introduce the k-probability Pk(q|T ),
which approximates the success probability by using the k best (that is, most
likely) explanations instead of all proofs when building the DNF formula used
in Equation 3:

Pk(q|T ) = P
(∨

e∈Ek(q)

∧
ai∈cl(e)

ai

)
(4)
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where Ek(q) = {e ∈ E(q)|Px(e) ≥ Px(ek)} with ek the kth element of E(q)
sorted by non-increasing probability. Setting k = ∞ and k = 1 leads to the
success and the explanation probability respectively. Using k = 1 in parameter
learning has also been called Viterbi learning. Finding the k best proofs can be
realized using a simple branch-and-bound approach (cf. also [20]).

To illustrate k-probability, we consider again our example graph, but this time
with query path(a,d). This query has four proofs, represented by the conjunctions
ac∧cd, ab∧bc∧cd, ac∧ce∧ed and ab∧bc∧ce∧ed, with probabilities 0.72, 0.378,
0.32 and 0.168 respectively. As P1 corresponds to the explanation probability Px,
we obtain P1(path(a, d)) = 0.72. For k = 2, overlap between the best two proofs
has to be taken into account: the second proof only adds information if the
first one is disconnected. As they share edge cd, this means that edge ac has to
be missing, leading to P2(path(a, d)) = P ((ac ∧ cd) ∨ (¬ac ∧ ab ∧ bc ∧ cd)) =
0.72 + (1 − 0.8) · 0.378 = 0.7956. Similarly, we obtain P3(path(a, d)) = 0.8276
and Pk(path(a, d)) = 0.83096 for k ≥ 4. For reasons of memory-efficiency, the
implementation used in our experiments below employs iterative deepening for
the calculation of lower and upper bounds as well as for Pk with finite k.

4 Parameter Learning in Probabilistic Databases

When new data is added to a database, there is often uncertainty about the data.
Text extraction algorithms return the confidence, experimental data is averaged
over several runs and so on. Consider for instance populating a probabilistic
database of genes from MEDLINE 2 abstracts using off-the-shelves information
extraction tools. For example, we could extract that gene a is located in region
b and interacting with c. State-of-the art extraction tools, however, often ad-
ditionally provide a sound probability distribution over the possible outcomes.
Hence, we should deal with weighted examples such as 0.6:locatedIn(a,b) and
0.7:interacting(a,c) as already argued e.g. by Gupta and Sarawagi [14] and Chen
et al. [9]. The situation fits the general learning setting stated in [21]:

Given is a set of examples E, a probabilistic coverage relation P (e|D)
that denotes the probability that the database D covers the example
e ∈ E, a theory T in a probabilistic logic, and a scoring function score.
The goal is to find parameters of T such that the score function yields
an optimal value.

Concretely instantiating this definition to ProbLog requires us to determine
what the examples will be, which probabilistic coverage relation shall be em-
ployed, and also determining the scoring function to be optimized. We shall
address each of these in turn.

In probabilistic inductive logic programming, examples can be available in
different forms. [21] show how one can learn from entailment, from proofs and
from interpretations. When learning from entailment, examples are atoms or

2 http://medline.cos.com/

http://medline.cos.com/
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clauses that are logically entailed by a theory, and in the case of a probabilistic
logic, assigned a non-zero probability value. Transforming this setting to ProbLog
leads to examples that are logical queries. When learning from proofs, examples
are proofs, which correspond to concrete explanations in the ProbLog setting.
Learning from interpretation in the ProbLog setting is less natural because it
requires interpretations containing all the facts that logically follow from the
theory. On the other hand, the former two settings can easily be incorporated
and actually integrated in ProbLog. The reason is that the logical form of the
example will be translated to the monotone DNF formula and it is this last form
that is employed by the learning algorithm anyway. The key difference between
learning from entailment and learning from proofs in ProbLog is that the DNF
formula is a conjunction when learning from proofs and a more general DNF
formula when learning from queries. So, using the query path(a,c) as example
results in ac ∨ (ab ∧ bc), whereas the explanation edge(a,b),edge(b,c) results in
ab∧bc only. To the best of our knowledge, this is the first time that an integrated
learning from proofs / entailment setting is considered within (probabilistic)
inductive logic programming.

Before determining the scoring function and learning setting, it is important
to realize that there is also a major difference between probabilistic databases
and alternative probabilistic logics, such as PRISM [6] and SLPs [5], even though
the probabilistic database semantics seems closely related at first sight. To see
this, assume that we now want to estimate the parameters of a ProbLog program
starting from example queries, possibly together with their target probability.
Continuing our illustration, assume that we are given a number of path queries
together with their true probabilities. It is important to observe that the prob-
abilistic database model does not provide a generative model for sampling such
queries because the sum of the probabilities of all path queries is not equal
to 1 (and in general will be a lot higher). Therefore, we cannot directly apply
standard maximum likelihood techniques for parameter estimation based on the
EM algorithm as is usually done for statistical relational learning models [1].
The learning mechanisms developed for both PRISM and SLPs assume that
there is a generative model from which the examples (ground atoms for a single
predicate) can be sampled and the probability mass associated to the set of all
examples is maximum 1. This observation explains also why we consider a dif-
ferent setting for probabilistic databases, in which parameter learning is viewed
as a function optimization problem. The problem then is that we seek a set of
parameters that approximates the actual query probabilities as close as possible,
which in turn explains why rather than maximizing the likelihood of the data,
we shall minimize the least squared error between the target probabilities of the
examples and the probability of the model, but see below.

Finally, let us remark that the choice of probabilistic coverage relation is open,
and that therefore, within ProbLog we choose the k-probability as this allows
for maximal flexibility. By now we can instantiate the above definition to obtain
the problem-setting tackled in this paper:
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Definition 1 (Parameter Learning in Probabilistic Databases). Given
a set of training examples {qi, p̃i}M

i=1, M > 0, where each qi ∈ H is a query or
proof and p̃i is the k-probability of qi, find a function h : H → [0, 1] with low
approximation error on the training examples as well as on unseen examples. H
comprises all parameter assignments for a given database T .

This framework allows to naturally combine learning from entailment and learn-
ing from proofs, two learning settings that so far have been considered separately.
In ProbLog, proofs correspond to conjunctions of probabilistic facts, and can be
seen as a conjunction of queries. Therefore, a learning algorithm can use examples
of both forms, (atomic) queries and proofs, at the same time. To realize learn-
ing from interpretations, probability estimates could be obtained using simple
counting. However, this is infeasible for domains where interpretations contain
high fractions of facts assigned value true. Finally, the error function that we
want to minimize is the mean squared error:

MSE(T ) =
1
M

∑
1≤i≤M

(
Ps(qi|T )− p̃i

)2
. (5)

It is easy to see that minimizing the squared error corresponds to finding
a maximum likelihood hypothesis, provided that each training example (qi, p̃i)
is disturbed by a Gaussian error p̃i, i.e. p̃i = p(qi) + ei, with p(qi) the actual
probability of query qi and ei drawn independently from a zero-mean Gaussian.
See [22, Chapter 6.4] for a detailed derivation.

Gradient descent is a standard way of minimizing a given error function. The
tunable parameters are initialized randomly. Then, as long as the error did not
converge, the gradient of the error function is calculated, scaled by the learning
rate η, and subtracted from the current parameters. In the following sections,
we derive the gradient of the MSE and show how it can be computed efficiently.

5 Gradient of the Mean Squared Error

Applying the sum and chain rule to Eq. (5) yields the partial derivative

∂MSE(T )
∂pj

=
2
M

∑
1≤i≤M

(
Ps(qi|T )− p̃i

)
︸ ︷︷ ︸

Part 1

· ∂ Ps(qi|T )
∂pj︸ ︷︷ ︸

Part 2

. (6)

Part 1 can be calculated by a ProbLog inference call computing (1). It does not
depend on j and has to be calculated only once in every iteration of a gradient
descent algorithm. Part 2 can be calculated as following

∂Ps(qi|T )
∂pj

=
∑

S⊆LT

S|=qi

δjS

∏
cx∈S
x 
=j

px

∏
cx∈LT \S

x 
=j

(1− px) , (7)

where δjS := 1 if cj ∈ S and δjS := −1 if cj ∈ LT \ S. It is derived by first
deriving the gradient ∂P (S|T )/∂pj for a fixed subset S ⊆ LT of facts, which is
straight-forward, and then summing over all subsets S where qi can be proven.
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Algorithm 1. Evaluating the gradient of a query efficiently by traversing the
corresponding BDD, calculating partial sums, and adding only relevant ones

function Gradient(BDD b, fact to derive for nj)
(val, seen) = GradientEval(root(b), nj)
If seen = 1 return val · σ(aj) · (1 − σ(aj))
Else return 0

function GradientEval(node n, target node nj)
If n is the 1-terminal return (1, 0)
If n is the 0-terminal return (0, 0)
Let h and l be the high and low children of n
(val(h), seen(h)) = GradientEval(h, nj)
(val(l), seen(l)) = GradientEval(l, nj)
If n = nj return (val(h) − val(l), 1)
ElseIf seen(h) = seen(l) return (σ(an) · val(h) + (1 − σ(an)) · val(l), seen(h)))
ElseIf seen(h) = 1 return (σ(an) · val(h), 1)
ElseIf seen(l) = 1 return ((1 − σ(an)) · val(l), 1)

To ensure that all pj stay probabilities during gradient descent, we reparam-
eterize the search space and express each pj ∈]0, 1[ in terms of the sigmoid
function3 pj = σ(aj) := 1/(1 + exp(−aj)) applied to aj ∈ R. This technique has
been used for Bayesian networks and in particular for sigmoid belief networks
[23]. We derive the partial derivative ∂Ps(qi|T )/∂aj in the same way as (7) but
we have to apply the chain rule one more time due to the σ function

σ(aj) · (1− σ(aj)) ·
∑

S⊆LT

L|=qi

δjS

∏
cx∈S
x 
=j

σ(ax)
∏

cx∈LT \S
x 
=j

(1 − σ(ax)).

We also have to replace every pj in Eq. (1) by σ(pj). Going over all subprograms
S in the last equation is infeasible. But there is an efficient algorithm to compute
Ps(qi|T ) relying on BDDs [4]. In the following section we update this towards the
gradient and introduce LeProbLog, the gradient descent algorithm for ProbLog.

6 LeProbLog

To compute the success probability P∞ for a query q efficiently, De Raedt et al. [4]
collect all proofs and compactly represent them in a Binary Decision Diagram
(BDD) [19]. BDDs are one of the best understood data structures today. They
have been used to solve a wide variety of computer science problems. Given a
fixed variable ordering, a Boolean function f can be represented as a full Boolean
decision tree where each node on the ith level is labeled with the ith variable
3 The sigmoid function can induce plateaus which might slow down a gradient-based

search. However, it is unlikely that a plateau will spread out over several dimensions
and we did not observe such a behavior in our experiments. If it happens though,
one can take standard counter measures like simulated annealing or random restarts.
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Algorithm 2. LeProbLog, the algorithm takes a program without probabilities
as input, minimizes the MSE on the training set by gradient descent and returns
a ProbLog program with probabilities
Require: a ProbLog program without probabilities LT

training set qj , p̃j 1 ≤ j ≤ M
learning rate η
k, the number of proofs used to generate the BDDs

Ensure: parameters pi 1 ≤ i ≤ n
initialize all aj randomly
while not converged do

Δa := 0
for 1 ≤ i ≤ M do

find k best proofs and generate BDDi for qi

y := 2
M

·
(
Ps(qi|T ) − p̃i

)
for 1 ≤ j ≤ n do

Δaj := Δaj + y · ∂Ps(qi|T )
∂aj

{call Gradient(BDDi, nodej)}
a := a − η · Δa

return T , that is {σ(aj) : cj | cj ∈ LT } {A ProbLog program with probabilities}

and has two children called low and high. Leaves are labeled by the outcome
of f for the variable assignment corresponding to the path to the leaf, where
in each node labeled x, the branch to the low (high) child is taken if variable
x is assigned 0 (1). Starting from such a tree, one obtains a BDD by merging
isomorphic subgraphs and deleting redundant nodes until no further reduction
is possible. A node is redundant if the subgraphs rooted at its children are
isomorphic. Figure 1(b) shows the BDD for the existence of a path between a
and c in our earlier example.

The algorithm of De Raedt et al. [4] calculates the probability of a Boolean
formula by traversing the BDD bottom-up, in each node summing the probability
of the high and low child, weighted by the probability of the node’s variable being
assigned true and false respectively. We extended this to the computation of the
gradient (7). Both algorithms have a time and space complexity of O(number of
node in the BDD) when intermediate results are cached.

Let us first consider a full decision tree instead of a BDD. Each branch in
the tree represents a product n1 · n2 · . . . · ni, where the ni are the probabilities
associated to the corresponding variable assignment of nodes on the branch. The
gradient of such a branch b with respect to nj is gb = n1 ·n2 · . . . nj−1 ·nj+1 · . . .·ni

if nj is true, and −gb if nj is false in b. As all branches in a full decision tree are
mutually exclusive, the gradient w.r.t. nj can be obtained by simply summing the
gradients of all branches ending in a leaf labeled 1. In BDDs however, isomorphic
sub-parts are merged, and obsolete parts are left out. This implies that some
paths from the root to the 1-terminal may not contain nj , therefore having a
gradient of 0. So, when calculating the gradient on the BDD, we have to keep
track of whether nj appeared on a path or not. Given that the variable order is
the same on all paths, we can easily propagate this information in our bottom-
up algorithm. This is exactly what is described in Algorithm 1. Specifically,
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GradientEval(n, nj) calculates the gradient w.r.t. nj in the sub-BDD rooted
at n. It returns two values: the gradient on the sub-BDD and a Boolean indicating
whether or not the target node nj appears in the sub-BDD. When at some node
n the indicator values for the two children differ, we know that nj does not
appear above the current node, and we can drop the partial result from the child
with indicator 0. The indicator variable is also used on the top level: Gradient

returns the value calculated by the bottom-up algorithm if nj occurred in the
BDD and 0 otherwise.

LeProbLog combines the BDD-based gradient calculation with a standard
gradient descent search. Starting from parameters a = a1, . . . , an initialized ran-
domly, the gradient Δa = Δa1, . . . , Δan is calculated, parameters are updated
by subtracting the gradient, and updating is repeated until convergence. When
using the k-probability with finite k, the set of k best proofs may change due to
parameter updates. After each update, we therefore recompute the set of proofs
and the corresponding BDD. Algorithm 2 shows the pseudocode of LeProbLog.

7 Experiments

We set up experiments to investigate the following questions:

Q1 Does our approach reduce the mean squared error on training and test data?
Q2 Is our approach able to recover the original parameters?

Answering these first questions will serve as a sanity check for the algorithm and
our implementation.

Q3 Is it necessary to update the set of k best proofs in each iteration?

As building BDDs for all examples is expensive, building BDDs once and using
them during the entire learning process can save significant amounts of resources
and time. We are therefore interested in the effects this strategy has on the
results.

Q4 Can we obtain good results approximating P∞ by Pk for finite (small) k?

Given that using BDDs to calculate P∞ is infeasible for huge sets of proofs,
as they occur in our application, where we easily get hundreds of thousands of
proofs, we are interested in fast, reliable approximations.

Q5 Do the results improve when parts of the training examples are given as
proof?

Here we are interested in exploring the effects of providing more information in
the form of proofs, which is one of the main distinguishing features of LeProbLog.

To answer these questions, we extracted graphs around both Alzheimer dis-
ease and asthma from a collection of databases. For each disease, we obtained
a set of related genes by searching Entrez for human genes with the relevant
annotation (AD or asthma); corresponding phenotypes for the diseases are from
OMIM. Most of the other information comes from EntrezGene, String, UniProt,
HomoloGene, Gene Ontology, and OMIM databases. Weights were assigned to
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Fig. 2.
√

MSETest for asthma and Alzheimer using the 5 best proofs (k = 5); when
the BDDs and proofs are not updated (left column); when they are updated every
iteration (right column) (Q2 and Q3)

edges as described in [24]. In the experiments below, we used a fixed number
of randomly chosen (Alzheimer disease or asthma) genes for graph extraction.
Subgraphs were extracted by taking all acyclic paths of no more than length 4,
with a probability of at least 0.01, between any given gene and the corresponding
phenotype. Some of the genes did not have any such paths to the phenotype and
are thus disconnected from the rest of the graph. The resulting graph around
Alzheimer contains 122 nodes and 259 edges, that around Asthma 127 nodes
and 241 edges. From these graphs we generated 3 sorts of training sets:

1. We sampled 500 random node pairs from the asthma and Alzheimer graph
and estimate the query probability for path(a,b) using P5, the probability of
the 5 best proofs. These two sets are used to answer Q1, Q2, and Q3.

2. We sampled 200 random node pairs from the asthma graph and estimated
P∞(path(a, b)) using the lower bound of the approximative inference algo-
rithm [4] with interval width δ = 0.01. This set is used to answer Q4.

3. We sampled 300 random node pairs and calculated P1 for path(a,b), the
probability of the best path between a and b. We then build several sets
where different fractions of the examples where given as proof, the edges of
the best path, instead of the path(a,b) query, and used them to answer Q5.

To assess results, we use the root mean squared error on the test data
√

MSEtest,
and the mean absolute difference MADfacts between learned pj and original fact
probabilities ptrue

j : MADfacts := n−1
∑n

j=1 |pj − ptrue
j |. We always sampled the

initial fact parameters uniformly in the interval [−0.5, 0.5]. Applying the sigmoid
function yields probability values with mean 0.5± 0.07. The datasets used, had
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Fig. 3. MADfacts for asthma and Alzheimer using the 5 best proofs (k = 5); when the
BDDs and proofs are not updated (left column); when they are updated every iteration
(right column) (Q2 and Q3)

fact probabilities in this range and we therefore got lower initial errors than by
completely random initialization. In general, one can utilize prior knowledge to
initialize the parameters. We perform 10-fold crossvalidation in all experiments.
The learning rate η was always set to the number of training examples. LeP-
robLog was implemented in Prolog (Yap-5.1.3) using CUDD for BDD operations.

Q1, Q2: Sanity Check. We attach probabilities to queries in the training set
based on the best k = 5 proofs. The same approximation is used in the gradient
descent algorithm, where the set of proofs to build the BDD is determined anew
in every iteration as stated in Algorithm 2. We repeated the experiment using a
total of 100, 300, and 500 examples, which we each split in ten folds for cross-
validation. We thus use 90, 270, and 450 training examples. The more training
examples are used, the more time each iteration takes. In the same amount of
time, the algorithm therefore performs less iterations when using more training
examples. The right column of Figure 2 shows the evolvement of the root mean
squared error on the test data during learning. The gradient descent algorithm
reduces the MSE on both training and test data, with significant differences in
all cases (two-tailed t-test, α = 0.05). These results affirmatively answer Q1.

The MADfacts error is reduced as can be seen in the right column of Figure 3.
Again, all differences are significant (two-tailed t-test, α = 0.05). Using more
training examples results in faster error reduction. This answers Q2 affirmatively.
It should be noted however that in other domains, especially with limited or noisy
training examples, minimizing the MSE might not reduce MADfacts, as the MSE
is a non-convex non-concave function with local minima.
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Q3: Error made when the best proofs are not updated. We repeated
the same series of experiments, but without updating the set of proofs used for
constructing the BDDs. The evolvement of

√
MSETest as well as of MADFacts

is plotted in the left column of Figures 2 and 3 respectively.
The plots for the asthma graph are hardly distinguishable and there is indeed

no significant difference (two-tailed t-test, α = 0.05). However, the runtime de-
creases by orders of magnitude, since searching for proofs and building BDDs are
expensive operations which had to be done only once in the current experiments.
Not updating the BDDs gave a speedup of 10 for the Alzheimer graph. For the
Alzheimer graph there is no significant difference for the MSEtest (two-tailed
t-test, α = 0.05), but MADfacts is reduced a little slower (in terms of iterations)
when the BDDs are kept constant. However, in terms of time this is not the
case. These results indicate that BDDs can safely be kept fixed during learning
in this domain which affirmatively answers Q3.

Q4: Less proofs, more speed, and still the right results?. In the next
experiment, we studied the influence of the number k of best proofs used dur-
ing learning on the results. We consider the asthma graph with the second
dataset, where training example probabilities are lower bounds obtained from
the approximation algorithm with interval width 0.01. During learning, Pk is
employed to approximate probabilities.

We ran LeProbLog on this dataset and used different values of k between
10 and 5000. We thus aim at learning parameters using an underestimate of
the true function, as k best proofs may ignore a potentially large number of
proofs used originally. Figure 4 shows the results for this experiment after 50
iterations of gradient descent. As can be seen, the average absolute error per
fact (MADfacts) goes down slightly with higher k. The difference is statistically
significant for k = 10 and k = 100 (two-tailed t-test, α = 0.05), but using more
than 200 proofs has no significant influence on the error. The MSE also decreases
significantly (two-tailed t-test, α = 0.05) comparing the values for k = 10 and
k = 200, but using more proofs has no significant influence. It takes more time
to search for more proofs and to build the corresponding BDDs. These results
indicate that using only 100 proofs is a sufficient approximation in this domain
and affirmatively answer Q4.
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Q5:Learning fromProofs andQueries. To investigate the effect of using both
proofs and queries as examples, we compute the best proof and its probability for
300 examples per graph.For each example,we either use the queryor thebest proof,
both with the probability of the best proof. Learning uses k = 1. We use proofs for
0, 50, . . . , 300 examples and queries for the remaining ones, and perform stratified
10-fold crossvalidation, that is the ratio of examples given as queries and as proofs
was the same in every fold. We updated BDDs in every iteration. Figure 5 shows
the results of this experiment. The curve on the left side indicates that the error
per fact (MADfacts) goes down faster in terms of iterations when increasing the
fraction of proofs. Furthermore, the plot on the right side shows that the root MSE
on the test set decreases. These results answer Q5 affirmatively.

8 Conclusions

We have introduced an approach to learning the parameters of the probabilis-
tic database ProbLog and successfully shown it at work on a real biological
application. Interesting directions for future research include conjugate gradient
techniques and regularization-based cost functions. Those enable domain experts
to successively refine probabilities of a database by stating training examples.
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Abstract. The k-nearest neighbour (k-NN) technique, due to its inter-
pretable nature, is a simple and very intuitively appealing method to ad-
dress classification problems. However, choosing an appropriate distance
function for k-NN can be challenging and an inferior choice can make the
classifier highly vulnerable to noise in the data. In this paper, we propose
a new method for determining a good distance function for k-NN. Our
method is based on consideration of the area under the Receiver Operating
Characteristics (ROC) curve, which is a well known method tomeasure the
quality of binary classifiers. It computes weights for the distance function,
based on ROC properties within an appropriate neighbourhood for the
instances whose distance is being computed. We experimentally compare
the effect of our scheme with a number of other well-known k-NN distance
metrics, as well as with a range of different classifiers. Experiments show
that our method can substantially boost the classification performance of
the k-NN algorithm. Furthermore, in a number of cases our technique is
even able to deliver better accuracy than state-of-the-art non k-NN clas-
sifiers, such as support vector machines.

Keywords: Receiver Operating Characteristics (ROC), k-Nearest Neigh-
bour, Feature Weighting, Classification, Gene Expression.

1 Introduction

The k-nearest neighbour (k-NN) technique is a classic, simple and appealing
method to address classification problems. It has a very intuitive interpretation
and its predictions are easily explained to domain experts. Although k-NN has
been applied for classification in many domains, it tends to suffer from poor
classification accuracy when i) there are very many features, ii) when there are
very few instances, or iii) the data is very noisy. These weaknesses make it
difficult to use k-NN for datasets such as gene expression data, which are very
noisy and typically have thousands of features, but only tens or at most hundreds
of instances. Indeed in the gene expression domain, k-NN has been adopted by
very few researchers (e.g. [1,2]), due to its generally inferior performance.
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Example 1. In the ALL-AML leukaemia gene expression dataset, k-NN has an
average accuracy of only 83.33±3.49% using 10×10-fold cross validation, whereas
Support Vector Machines (SVM) yield an average accuracy of 98.61±1.26%. This
lower accuracy of the k-NN classifier can discourage biologists to use it.

A wide range of proposals have been made to improve k-NN. These principally
propose alternative ways of computing the distance function, since using different
distance functions can yield vastly different classification performance. Indeed
ideally, the distance function used for k-NN should be adapted to the particular
problem being solved [3].

Our aim in the paper is to improve the classification performance of k-NN us-
ing a new type of distance function. It is based on a feature weighting scheme that
considers receiver operating characteristics that are appropriate to the points
whose distance is being computed.

In a nutshell, we present a method to derive a distance function for k-NN based
on feature weighting. The weight for each feature is calculated by considering
the area under the Receiver Operating Characteristics (ROC) curve [4]. This
value is equivalent to the Mann-Whitney U statistic normalized by the number
of possible pairings of positive and negative values, also known as the two sample
Wilcoxon rank-sum statistic [5]. The area under the ROC curve (AUC) actually
represents the probability that a randomly chosen positive example is correctly
ranked with greater suspicion than a randomly chosen negative example. More-
over, this probability of correct ranking is the same quantity estimated by the
non-parametric Wilcoxon statistic [6].

The intuitive outline of the technique is as follows:

For a given dataset D of n instances comprising m features: x1, x2, x3, . . . , xm,
each feature xi (where 1 � i � m) has some discriminative power, i.e., the
influence of each feature on the classification accuracy can be measured. The
ROC curve is plotted for a series of pairs which are each formed by a threshold
value for the “classifier” feature xi and the corresponding class label Yi. Then,
when calculating the distance of a new test instance from a training example, the
distance measure is modified using the AUC score as weight for that feature.

A crucial question faced by the technique is which values of a feature should
be used to help derive the ROC curve whose area corresponds to each weight.
We shall show that, surprisingly, using all values of a feature is not the best
strategy. Instead, considerably better performance can be obtained by selecting
from an appropriate neighborhood for each feature, specific to the instances
whose distance is being calculated.

Related Work. Since there exist many works related to k-NN, we can only
briefly cover a representative selection. Early works addressing the improvement
of k-NN include Kira and Rendell [7] and Salzberg [8], whose approaches rely on
an interactive system architecture in which users are asked to rate a given sim-
ilarity prediction, and then use reinforcement learning to enhance the distance
function based on the user feedback. Kononenko [9] proposed an extension to
this for updating feature weights based on intracluster weights.
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Klein et al. [10] proposed a shortest path algorithm to modify a Euclidean
distance function based on prior knowledge. Stein and Niggemann [11] used a
neural network approach to learn weights of distance functions based on training
examples.

Other approaches rely on an underlying class structure to evaluate distance
functions. Han et al. [12] employed a randomized hill-climbing approach to learn
weights of distance functions for classification tasks. In their approach, k-NN
queries were used to evaluate distance functions; the k-neighbourhood of each
object is analysed to determine to which extent the class labels agree with the
class label of each object. Zhang [13] suggested the use of kernel functions and
multidimensional scaling to learn Euclidean metrics. Hastie and Tibshirani [3]
proposed algorithms that learn adaptive rectangular neighborhoods (rather than
distance functions) to enhance nearest-neighbour classifiers.

Other types of approaches includes work by Hastie and Tibshirani [14] and
Domeniconi et al. [15], who considered schemes for locally adaptive distance
functions that vary throughout the input space. In particular, Domeniconi et
al. [15] suggested using the decision boundaries of SVMs to induce a locally
adaptive distance function for k-NN.

Driessens et al. [16] presented a two-stage classifier, YATSI, that improves
its predictive accuracy by making use of the available unlabeled data. It used a
weighted nearest neighbor classification algorithm using the combined example-
sets as a knowledge base.

Feature weighting schemes for k-NN have also been proposed. Im and Park [17]
proposed a hybrid expert system of case-based reasoning and neural network,
which uses a value difference metric as the distance function for symbolic fea-
tures. In another study, Vivencio et al. [18] proposed a feature weighting method
based on the χ-squared test for k-NN.

Receiver operating characteristics have previously been used to improve classi-
fiers. These include algorithms such as ROC-tree [19] and work by Ferri et al. [20],
which both propose using ROC information to build decision trees. A justifica-
tion for using ROC for feature evaluation, is given in Deng et al. [21], who
demonstrate that in the context of gene expression data, ROC is a superior
method to the t-test.

Contributions. Our main contributions in this paper are as follows:

– Development of a new feature weighting technique to derive a distance func-
tion for k-NN. This technique employs a range-wise feature weighting scheme
based on ROC, that can dynamically determine which weights are most ap-
propriate for the points whose distance is being measured.

– An experimental investigation which demonstrates that our new algorithm
(known as ROC-kNN) performs strongly compared to and often outper-
forms well-known techniques like C4.5 [22], Random Forest, Vivencio et
al.’s [18] χ2-FW weighted k-NN, YATSI [16], Ferri et al.’s [20] AUCsplit,
ROC-tree [19], and SVMs in terms of accuracy as well as overall AUC value.
Surprisingly, the predictive power of ROC-kNN is comparable to the “black
box” SVM approach, making it a very attractive tool for domain experts.
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Fig. 1. A typical ROC curve

2 The Receiver Operating Characteristic Curve (ROC):
Preliminaries

ROC curves were first used in signal detection theory [4]. In machine learning,
the ROC curve is used to evaluate the discriminative performance of binary
classifiers. This is obtained by plotting the curve of the true positive rate (Sen-
sitivity) versus the false positive rate (1 – Specificity) for a binary classifier by
varying the discrimination threshold. Figure 1 shows a typical ROC curve.

All the calculations of true positive rate and false positive rate are attained
when using a particular classifier threshold. By varying the threshold, a set of
values for these measurements is obtained. This set of values is plotted in a
two-dimensional Cartesian graph to yield the ROC curve. The ROC curve takes
into account all the possible solutions by varying the discriminative threshold.
The best performance would be produced, if the ROC curve matches with the
upper left corner of the ROC space (which yields 100% sensitivity and 100%
specificity). The closer the ROC curve is to the upper part of the ROC space,
the better the performance of the classifier.

An ROC curve is a two dimensional illustration of classifier performance.
Reducing ROC performance to a single scalar value to represent expected per-
formance helps compare classifiers. A popular method is to calculate the area
under the ROC curve (AUC) [5].

The AUC, being a part of the area of the unit square, has a value between
0 and 1. Since random guessing could produce the diagonal line between (0, 0)
and (1, 1) with an area of 0.5, a classifier with an AUC less than 0.5 is unde-
sirable [23]. An AUC value close to 1 indicates better performance for a binary
classifier. [24].
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3 ROC-kNN: A k-NN Algorithm Using ROC Information

We now describe the steps in our algorithm, which we call ROC-kNN.

3.1 ROC for Feature Weighting

Previous work [25, 19, 20] has established the use of an ROC curve for feature
ranking and selection, to identify the discriminative features in the context of
gene expression microarray data. First, the ROC curve is plotted for each of the
pairs formed by each of the features and the class label. This means treating
a single feature as a classifier and calculating the classification in terms of the
sensitivity and specificity by varying the operating point. We shall build on this
kind of idea to derive a feature weighting method to use in distance functions.
For each feature, the AUC is calculated.

Example 2. Let us consider a dataset D of N instances, where each instance
comprises m features: x1, x2, x3, . . . , xm. Each of the m features has a differing
discriminative power reflected by its respective AUC. To calculate the discrimi-
native power that is expressed in terms of AUC, we plot the ROC curve for each
feature paired with the class label, (i.e., {xi, Yi}, where 1 � i � m and Y is the
vector of class labels) and calculate the AUC of this ROC curve.

As alluded to earlier, there is a strong mathematical justification for using the
ROC to measure discriminative power. It is equivalent to the Mann-Whitney U
Test (also known as Wilcoxon Rank sum), a non-parametric statistical test. Not
employing any distributional assumptions makes it especially useful for small
sample size, noisy datasets [21], such as gene expression microarrays.

3.2 Weighted Distance Metrics

For calculating the distance of a new test instance from a training instance,
we modify the standard distance measure using the AUC score as a weight.
Example 3 describes how we employ the weight in Minkowski distance of order
p (�p-norm distance). Recall that Euclidean distance is �2 distance, rectilinear,
Manhattan or Hamming distances are �1 distance, and Chebyshev distance is
�∞ distance.

Example 3. Consider a training instance and a test instance each with m fea-
ture values: x1, x2, x3, . . . , xm and y1, y2, y3, . . . , ym, respectively. Then the

Minkowski distance between the instances is δ =

(
m∑

i=1

|xi − yi|p
) 1

p

. We can as-

sociate a weight for each feature based on its AUC score. The weighted distance

function is Δ =

(
m∑

i=1

(Ai · |xi − yi|)p

) 1
p

, where each Ai is the AUC value for

the i-th feature.
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Fig. 2. Widening [gα, gβ] so that it covers ε × N values of feature xi

3.3 Considering a Smaller Range of Feature Values to Calculate
AUC

Using all values of a feature to derive the ROC curve whose area will be cal-
culated, may not be the best way to measure the weight or “importance” of a
feature. Consider the following (somewhat artificial) example.

Example 4. Consider the power of the feature voice pitch for predicting the
class label sex (male/female). Suppose the voice pitch feature values for the
population range between 50Hz (low pitch) to 350Hz (high pitch). In general,
voice pitch is likely to be a good feature for discriminating between males and fe-
males. However, if we are only dealing with a sub-population of young children,
then voice pitch is likely to be a far less useful feature, since there is much less
variation for values of this feature across young children.

Thus, the power of a feature may need to be evaluated within some context
or sub-population. A natural way to form such a context or range for the ROC
calculation, is to consider the two points between which the distance is being
computed. Suppose we are computing the distance between two instances P1

and P2 with respect to feature xi an P1[xi] = gα and P2[xi] = gβ
1. Rather than

using all values that occur for feature xi in ROC calculation, we just use the
values that lie in the interval [gα, gβ ]. This range of values [gα, gβ] corresponds
to a sub-population that is more appropriate for computing the ROC of feature
xi, in the context of P1 and P2.

Now, it could be the case that the range [gα, gβ] is very small. This could
then to lead to low confidence in the resulting AUC calculation and estimate
of feature significance, since the sample size would be too small to be statisti-
cally significant. We, therefore, generalise this idea by employing a parameter,
ε, which can be thought of as a “coverage factor”. The interval [gα, gβ] covers
some number of values (say n) of the total number of values (say N) that in-
stances can have for feature xi

2. Thus, the number of values not covered by
[gα, gβ] on xi is N − n. Now, ε varies between 0% and 100% and it is a lower
bound on how much coverage we require for our interval. For example, suppose
ε = 50%, then we require at least half the values in xi to be covered by the
1 Where Pi[xi] denotes the value for the instance Pi on feature xi.
2 Of course different instances can share the same value on xi. Any such value will be

counted more than once when calculating n or N .



Improving k-Nearest Neighbour Classification with Distance Functions 495

Algorithm 1. CalculateROC

Input(s): C: A two column matrix of training examples with the first column being
the values for feature xi and the last column being values for the class label, ε: The
percentage of instance values to be covered, gα: Value of the training instance on xi,
gβ: Value of the test sample on xi

Output: A: The AUC of the attribute xi

1: Sort C in descending order of xi

2: if gα � gβ then
3: startPoint ← gα

4: endPoint ← gβ

5: else
6: startPoint ← gβ

7: endPoint ← gα

8: end if
9: N ← The number of instances

10: SamplesToUse ← ε × N
11: SamplesInRange ← The collection of all values for xi which are between

[startPoint, endPoint]
12: SizeSIR ← Calculate the size of SamplesInRange
13: while SizeSIR < SamplesToUse do
14: SamplesInRange ← SamplesInRange union one instance value that is

adjacent to it
15: Update startPoint and endPoint accordingly
16: if No more samples can be added to either startPoint or endPoint then
17: startPoint ← The last available sample’s on that side
18: endPoint ← The last available sample on that side
19: end if
20: SizeSIR ← Calculate the size of SamplesInRange
21: end while
22: RC ← The samples between the range [startPoint, endPoint]
23: A ← AuROC(RC)
24: return A
25: end

interval [gα, gβ]. Now, if [gα, gβ ] doesn’t cover 50% of N , then our strategy is to
widen it (symmetrically) just enough until it does achieve this level of coverage.
If ε = 0, then the interval [gα, gβ ] will never widened. If ε = 100%, then [gα, gβ ]
will always be widened to encompass the entire range of values for feature xi.
Figure 2 illustrates the general idea.

Intuitively, range adjustment using ε allows the interval to be widened suffi-
ciently so that enough feature values are available to ensure statistical signifi-
cance of the ROC calculation. However, we do not want to widen the interval
too much (by always choosing a high ε), since the resulting measure of feature
discriminative power may not be focused on an appropriate population for the
chosen instances P1 and P2 (recall Example 4). Hence, choosing a good ε is
important. In practice, this can be done by empirically comparing classification
performance for different choices of ε.
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Algorithm 2. ROC-kNN

Input(s): D = {(x1, Y1), . . . , (xn, Yn)}: The matrix of n training examples with the
last column being the class, τ = (τ1, . . . , τn): The test sample, k: The number of
neighbours, p: The order for Minkowski distance function, ε: The percentage of
training instances to be covered when weighting each feature
Output: C: The class label for the test sample τ

1: for each labelled instance (xi, Yi), (i = 1, . . . , n) do
2: for each feature aj , 1 < j < Number of features, m do
3: Aj = CalculateROC({xj , Y }, ε,xi, τ ) /* A is a vector of AUC scores for

all features */
4: end for

5: Calculate Δ(xi, τ ) =

�
m�

j=1

(Aj · |xi[aj ] − τ [aj ]|)p

� 1
p

6: end for
7: Sort Δ(xi, τ ) in ascending order
8: Dk

τ =k nearest instances to τ
9: C ← most frequent class in Dk

τ

10: return C
11: end

Example 5. Suppose the 15 instances of the training dataset have values {1, 2, 2,
3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12} for feature xi and P1[xi] = 8, P2[xi] = 9 and
ε = 40%. Then the interval [8, 9] must be widened so that it includes 0.4×15 = 6
of the values that occur for xi in training instances. This can be accomplished
by (symmetrically) widening it to be [6, 11]. So the discriminative power of xi in
this situation will be measured by the AUC of the ROC curve derived from when
xi takes values {6, 7, 8, 9, 10, 11}.
Definition 1. Given instances P1 and P2 from a dataset with m features x1,
. . . , xm and values for parameters ε and p. The weighted distance between P1

and P2 using range adjusted ROC is calculated as
(

m∑
i=1

(Ai · |P1[xi]− P2[xi]|)p

) 1
p

,

where each Ai measures the discriminative power using ROC of feature xi in the
interval r = [P1[xi]− α1, P2[xi] + α2] for some α1, α2. The interval r covers at
least ε% of the values taken by feature xi for instances in the training dataset.

Thus, the weighting of each feature xi is specific to the points whose
distance is being computed. Carrying out the weight calculation can be done
at either runtime (k-NN classification time) or during training. If the latter,
then one must assume test instances do not contain any feature values that are
not present in the training data. In that situation, one precomputes the ROC
for every contiguous interval of values for each feature xi and then selects the
appropriate ROC weight value at runtime, according to the values on xi of the
instances which are being compared.
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Table 1. Properties of the datasets used in this study

Dataset No. of No. of Collected from First used by
Attributes Instances

GE1 24,481 97 Integrated Tumor van ’t Veer et al. [26]
Transcriptome Array

and Clinical data
Analysis database [27]

GE2 3,226 22 National Human Genome Hedenfalk et al. [28]
Research Institute

GE3 12,533 181 Division of Thoracic Gordon et al. [29]
and Surgery [30],
Brigham Women’s
Hospital, Boston

GE4 12,600 21 Cancer Program [31], Singh et al. [32]
Broad Institute of MIT

and Harvard
GE5 12,600 136 Cancer Program [31], Singh et al. [32]

Broad Institute of MIT
and Harvard

GE6 7,129 72 Cancer Program [33], Golub et al. [34]
Broad Institute of MIT

and Harvard
Hepatitis 19 155 UCI ML Repository [35] –
Ionosphere 34 351 UCI ML Repository [35] –
Pima 8 768 UCI ML Repository [35] –
WBC 9 699 UCI ML Repository [35] –
WDBC 30 569 UCI ML Repository [35] –
WPBC 33 198 UCI ML Repository [35] –

Algorithm 1 presents the pseudocode for calculating the AUC for a specified
feature xi. It relies the existence on the function AuROC function provided
in [19]. The overall procedure is described in Algorithm 2 (which assumes weight
computation is done at runtime).

4 Experimental Design

k-NN is actually a family of techniques, according to k value and distance func-
tion used. In our evaluation, we tested using different values of k (1, 3 and 5)
and different choices of p for the Minkowswki �p-norm distance (1, 2 and ∞).
For our algorithm, ROC-kNN, we also needed to test using different values for
the parameter ε (100%, 95%, 90%, . . ., 0%).

Based on this testing, for k-NN and ROC-kNN on each dataset, we identified
the values of p, k and ε that produced the best classification performance and
this is what is reported in the result tables.

In addition to comparing against traditional k-NN, we compared ROC-kNN
against thirteen other techniques. These are: Vivencio et al.’s [18]χ2-FW weighted
k-NN, YATSI [16], ROC-tree [19], C5.0, its predecessor C4.5 [22], Random Forest,
Ferri et al.’s [20] AUCsplit technique for decision trees, Näıve Bayes and SVMs
using two different kernels: polynomial and radial basis function (RBF). Where
applicable, each of these classifiers was run multiple times on each dataset by vary-
ing its parameters. We report the best result of each such classifier on each dataset
across the variation of its parameters. Since the χ-squared test can only handle
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Table 2. Comparison of accuracy results from 10×10-fold cross validation on six gene
expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6
ROC-kNN 63.29 ± 3.13 71.07 ± 4.22 98.66 ± 0.39 61.49 ± 2.12 84.65 ± 1.22 90.33 ± 0.89
k-NN 58.45 ± 2.88 61.82 ± 6.14 94.64 ± 0.27 57.14 ± 3.89 82.35 ± 1.80 88.89 ± 0.93
χ2-FW 49.90 ± 3.64 50.00 ± 10.05 90.77 ± 0.45 58.57 ± 5.96 80.81 ± 1.78 89.72 ± 1.63
YATSI 56.70 ± 3.21 45.45 ± 4.19 93.92 ± 1.09 57.14 ± 1.93 72.06 ± 1.99 84.72 ± 1.57
ROC-tree 72.16± 4.32 77.27± 2.45 98.34 ± 0.89 38.10 ± 5.95 88.24 ± 2.33 94.44 ± 2.96
AUCsplit 63.58 ± 4.59 74.39 ± 1.63 96.14 ± 1.36 34.01 ± 2.87 82.47 ± 3.96 81.61 ± 3.28
C5.0 64.95 ± 6.21 59.09 ± 4.52 92.82 ± 1.21 23.81 ± 4.65 81.62 ± 4.12 80.55 ± 3.74
C4.5 62.89 ± 3.11 72.73 ± 1.36 95.03 ± 1.05 33.33 ± 4.59 79.42 ± 5.45 79.17 ± 4.87
ADTree 61.86 ± 4.28 68.18 ± 5.68 92.82 ± 2.19 32.86 ± 3.44 86.76 ± 2.63 86.11 ± 3.77
REPTree 52.18 ± 5.45 59.09 ± 3.92 95.03 ± 1.28 32.86 ± 3.46 80.88 ± 3.33 81.94 ± 4.26
Random Tree 55.67 ± 3.54 63.64 ± 2.58 79.56 ± 2.69 32.86 ± 3.12 62.50 ± 5.23 75.00 ± 3.90
Random Forest 62.89 ± 6.43 50.00 ± 5.33 93.92 ± 1.22 38.10 ± 5.27 80.88 ± 2.56 79.17 ± 2.36
Näıve Bayes 54.64 ± 3.38 59.09 ± 4.58 98.34 ± 0.03 33.33 ± 0.78 55.88 ± 4.76 98.61 ± 1.03
SVM (poly) 68.04 ± 2.14 59.09 ± 2.98 99.45± 0.11 47.62 ± 5.63 91.18± 3.12 98.61± 1.26
SVM (RBF) 67.01 ± 2.36 63.64 ± 0.94 98.34 ± 1.41 61.90± 1.39 69.12 ± 5.31 80.56 ± 2.18

discrete data, we used entropy-based discretization [36] to discretize the datasets
before applying χ2-FW.

Each of the classifiers was applied on 12 datasets, of which 6 were gene ex-
pression datasets and 6 are non-gene expression datasets having rather different
characteristics. The properties of the datasets are illustrated in Table 1. Recall
that gene expression datasets represent one of the most challenging scenarios for
k-NN algorithms. For each classifier and dataset, a 10-fold cross validation (CV)
scheme was used 10 times.

Using a fixed 10-fold cross validation scheme, we also conducted a win-draw-loss
analysis based on a paired t-test with 5% significance level, for six of the classifiers.

5 Results and Discussion

The classification results for all 14 techniques on the considered datasets are
presented in Table 2 and 3. The best performances among that of the reported
classifiers are marked in bold. Since for the non-gene expression datasets, dif-
ferent ε values yielded best classification accuracy on different datasets, we also
include a separate entry for ROC-kNN with ε = 100%. For the gene expression
datasets, ε = 100% always yielded the best result. We show the chosen ε values
for ROC-kNN in Table 4. We also show in that table the chosen values for k and
and p for both ROC-kNN and k-NN.

ROC-kNN versus k-NN Techniques. Looking at Table. 2 and 3, the clas-
sification performance of ROC-kNN shows considerable improvement over the
traditional k-NN technique. For all datasets and different k values, ROC-kNN
has improved accuracy over k-NN.

Results of statistical significance tests we conducted (Bonferroni-corrected t-
tests [37]) confirm that the improvement in accuracy is statistically significant.
For example, when comparing the best results of the ROC-kNN with that of the
k-NN, on 5 of the 6 non-gene expression datasets (hepatitis, ionosphere, WBC,
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Table 3. Comparison of accuracy results from 10 × 10-fold cross validation on six
non-gene expression datasets

Method Hepatitis Ionosphere WBC WDBC WPBC Pima
ROC-kNN 85.59± 0.55 90.56 ± 0.22 98.26± 0.23 98.49± 0.21 79.26 ± 0.51 88.51± 0.96
ROC-kNN 82.98 ± 0.87 88.60 ± 0.12 97.07 ± 0.14 97.47 ± 0.24 77.02 ± 0.68 86.60 ± 1.09
(ε = 100%)
k-NN 82.58 ± 0.80 87.35 ± 0.59 96.88 ± 0.39 97.24 ± 0.29 76.21 ± 1.31 85.28 ± 1.87
χ2-FW 78.84 ± 1.60 53.05 ± 13.27 95.55 ± 0.28 95.87 ± 0.59 70.76 ± 1.36 70.83 ± 0.61
YATSI 80.00 ± 2.12 83.48 ± 2.39 96.28 ± 1.01 94.73 ± 1.48 71.21 ± 2.76 73.70 ± 1.98
ROC-tree 78.71 ± 7.65 84.05 ± 9.87 92.56 ± 5.43 90.69 ± 6.78 69.67 ± 8.33 63.54 ± 8.65
AUCsplit 82.10 ± 3.43 86.00 ± 7.31 95.88 ± 1.94 93.75 ± 3.39 70.53 ± 9.67 73.82 ± 5.35
C5.0 76.13 ± 2.35 89.46 ± 1.23 93.64 ± 1.65 93.29 ± 2.23 70.70 ± 4.12 73.94 ± 2.76
C4.5 80.00 ± 4.45 91.45 ± 3.36 93.84 ± 2.63 93.15 ± 1.26 75.25 ± 3.32 73.83 ± 2.89
ADTree 76.13 ± 2.96 93.16± 1.65 95.14 ± 1.77 94.02 ± 1.06 77.78 ± 5.42 72.92 ± 3.23
REPTree 78.71 ± 4.23 89.46 ± 1.46 93.99 ± 2.14 92.44 ± 2.33 73.74 ± 4.85 75.39 ± 4.55
Random Tree 72.91 ± 9.21 87.75 ± 3.64 94.13 ± 2.85 89.46 ± 3.67 68.18 ± 5.45 67.97 ± 6.49
Random Forest 81.94 ± 1.26 92.59 ± 3.26 95.99 ± 1.45 95.25 ± 1.37 78.28 ± 3.47 73.70 ± 4.98
Näıve Bayes 83.87 ± 1.71 82.62 ± 3.48 95.99 ± 0.74 92.97 ± 2.58 67.68 ± 5.08 76.30 ± 3.49
SVM (poly) 76.77 ± 4.23 88.60 ± 2.43 96.85 ± 1.07 97.72 ± 1.04 76.26 ± 4.78 77.34 ± 5.01
SVM (RBF) 84.52 ± 4.02 91.74 ± 5.15 96.85 ± 1.29 96.07 ± 3.12 81.31± 2.36 77.47 ± 3.73

Table 4. The parameters of k-NN and ROC-kNN

Dataset
k-NN ROC-kNN
k p k p ε ε × N

GE1 3 ∞ 1 ∞ 100% 88 ± 0.0
GE2 1 2 1 2 100% 20 ± 0.0
GE3 1 2 3 ∞ 100% 163 ± 0.0
GE4 5 2 1 2 100% 19 ± 0.0
GE5 3 1 1 1 100% 123 ± 0.0
GE6 1 1 1 1 100% 65 ± 0.0
Hepatitis 3 2 5 2 65% 91 ± 1.8
Ionosphere 1 ∞ 5 ∞ 70% 221 ± 2.3
WBC 5 2 5 2 60% 378 ± 1.5
WDBC 3 1 3 1 75% 384 ± 2.75
WPBC 3 1 3 1 85% 152 ± 2.15
Pima Indians 3 2 3 2 55% 380 ± 2.6

WDBC and Pima Indians) the p-value is less than 0.05 (0.041533, 0.011329,
0.029657, 0.046574 and 0.034136, respectively). WPBC showed milder improve-
ment (p-value is 0.1056256). For gene expression data, Bonferroni-corrected t-
tests confirmed significant improvement of ROC-kNN over k-NN (p-values are
0.04123, 0.01298, 0.03192, 0.04871, 0.03907 and 0.04516 for GE1 to GE6 datasets,
respectively).

The results for the χ2-FW weighted k-NN technique show it mostly failed to
improve classification accuracy over k-NN. This is interesting, since both ROC-
kNN and χ2-FW use feature weighting to extend k-NN, yet each uses a rather
different method. The poor performance of the χ2-FW technique may be because
it is intended more for discrete data, rather than the continuous datasets used
in our evaluation (and thus it required an extra discretisation step).

ROC-kNN versus non k-NN Classifiers. Surprisingly and pleasingly, the
classification performance of ROC-kNN on the UCI ML repository datasets is
extremely strong. It outperforms all the other non k-NN classifiers, except on
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Fig. 3. The effect of ε on classification accuracy for GE1 dataset

100% 75% 50% 25% 0%

78

80

82

84

86

Epsilon

A
cc

ur
ac

y
(%

)

 

 

ROC-kNN
k-NN

(a) �2-norm distance

100% 75% 50% 25% 0%

76

78

80

82

84

86

Epsilon

A
cc

ur
ac

y
(%

)

 

 

ROC-kNN
k-NN

(b) �∞-norm distance

Fig. 4. The effect of ε on classification accuracy for the hepatitis dataset

Table 5. Comparison of AUC value from 10 × 10-fold cross validation on six gene
expression datasets

Method GE1 GE2 GE3 GE4 GE5 GE6
ROC-kNN 0.5992 ± 0.02 0.6721± 0.11 0.9665 ± 0.02 0.4812 ± 0.12 0.8386± 0.02 0.8743 ± 0.03
k-NN 0.5793 ± 0.04 0.5064 ± 0.14 0.8463 ± 0.04 0.4378 ± 0.13 0.8213 ± 0.02 0.8585 ± 0.03
χ2-FW 0.4986 ± 0.08 0.4958 ± 0.12 0.7418 ± 0.05 0.5174± 0.11 0.8015 ± 0.03 0.8682 ± 0.04
YATSI 0.6230± 0.00 0.4150 ± 0.02 0.9820± 0.00 0.4760 ± 0.01 0.8050 ± 0.00 0.905± 0.00

ionosphere and WPBC. This provides some evidence that ROC-kNN is a classi-
fier which is able to compete with and even surpass mainstream state-of-the-art
techniques in these circumstances. On the gene expression datasets, ROC-kNN
performs quite strongly compared to the non-k-NN classifiers, but it is not the
standout performer. This could be because for these datasets, the number of in-
stances is very small and thus the ROC measure of feature discriminative power
is less reliable.

Influence of the ε parameter: Figure 3 and 4 show the effect on classification
performance for varying ε on both the GE1 dataset and the hepatitis dataset
along with the improvement over k-NN, which is represented by a dotted line in
the figures. Table 4 also shows the best ε values for each dataset. Though the
effect of ε is not entirely the same on every dataset, there are some clear trends.
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Table 6. Comparison of AUC value from 10× 10-fold cross validation on six non-gene
expression datasets

Method Hepatitis Ionosphere WBC WDBC WPBC Pima
ROC-kNN 0.7491 ± 0.02 0.8790 ± 0.02 0.9816 ± 0.01 0.9799 ± 0.00 0.7815± 0.04 0.8728± 0.01
k-NN 0.7306 ± 0.03 0.8322 ± 0.02 0.9675 ± 0.00 0.9694 ± 0.01 0.6278 ± 0.03 0.7894 ± 0.03
χ2-FW 0.5928 ± 0.04 0.5139 ± 0.03 0.9530 ± 0.01 0.9499 ± 0.01 0.5228 ± 0.04 0.6508 ± 0.01
YATSI 0.7820± 0.00 0.9200± 0.00 0.9890± 0.00 0.9830± 0.00 0.575 ± 0.01 0.7600 ± 0.01

Table 7. Win-Draw-Loss results for the top six top classifiers using t-test on 72 test
combinations for each classifier

Method Win Draw Loss
ROC-kNN 46 20 6
k-NN 29 26 17
χ2-FW 8 20 44
YATSI 11 24 37
ROC-tree 22 28 22
SVM (poly) 19 38 15
SVM (RBF) 18 42 12

For gene expression data, ε = 100% is (unsurprisingly) always the best choice,
due to the small number of instances in this type of data and classification ac-
curacy falls monotonically with decreasing ε. However, in non-gene expression
data, the trend is quite different. Classification accuracy can increase and de-
crease according to varying ε and the best accuracy is achieved with different ε
values for each dataset. It is worth noting that for all datasets, the performance
of the classifier becomes constant once ε drops below a certain value (see Fig. 3
and 4). This is because, after a point, the ε constraint becomes too loose and
never forces any widening of a feature interval.

Comparison of AUC Values: We also computed the overall AUC value of
selected k-NN style classifiers, shown in Table 5 and 6, resulting from the 10×10
cross validation over the gene expression and UCI ML repository datasets. The
AUC values of the four considered k-NN classifiers: ROC-kNN, k-NN, χ2-FW
weighted k-NN and YATSI reflect the much the same behaviour as seen for
classification accuracy, except for the YATSI classifier. Though its classification
accuracy is not as good as ROC-kNN or even traditional k-NN, YATSI performed
slightly better than ROC-kNN for 3 out of 6 gene expression datasets and 4 out
of 6 non-gene expression data in terms of AUC. ROC-kNN has improved AUC
compared to k-NN in both the gene expression and non-gene expression data.

Statistical significance tests: We also carried out win-draw-loss analysis
based on paired t-test with 5% significance level for the seven most promis-
ing classifiers (see Tab. 7). In this analysis, ROC-kNN arguably outperforms all
the other techniques, as it has a significant number of wins and only a few losses,
compared to the other classifiers. A more detailed look at ROC-kNN’s perfor-
mance against the other classifiers (see Tab. 8), also reveals that it has significant
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Table 8. Win-Draw-Loss result for ROC-kNN versus the top five classifiers using t-test

Method GE1 GE2 GE3 GE4 GE5 GE6 Hepatitis Ionosphere WBC WDBC WPBC Pima
k-NN Win Win Win Win Win Win Win Win Win Win Win Win
χ2-FW Win Win Win Win Win Win Win Win Win Win Win Win
YATSI Win Win Draw Win Win Win Win Win Draw Win Win Win
ROC-tree Loss Draw Draw Loss Draw Draw Win Win Win Win Win Win
SVM (poly) Draw Win Draw Win Loss Loss Win Draw Draw Draw Draw Win
SVM (RBF) Loss Draw Draw Loss Draw Draw Win Draw Draw Draw Draw Win

improvements over all other considered k-NN techniques. Against ROC-tree,
ROC-kNN significantly improves for the non-gene expression datasets, but per-
forms mostly the same on gene expression data. Against the two SVM classifiers,
ROC-kNN no worse and indeed actually improves for two of the six considered
non-gene expression datasets. However, on gene expression data, the improve-
ment is more marginal.

6 Conclusion

This paper has presented a new k-NN style algorithm for classification, based on
a new method for defining a weighted distance function. Our method is based
on considering the ROC characteristics of each feature, within a neighbourhood
appropriate to the instances whose distance is being computed.

Experimental analysis shows our technique, ROC-kNN, is able to substantially
improve over basic k-NN. Furthermore, it performs very strongly compared to
other state-of-the-art classifiers and is even able to deliver improved accuracy in
many cases.

For future work, we would like to consider extending our approach i) to incor-
porate pruning of irrelevant features and ii) to situations where there are three
or more classes in the data, a well known challenge for ROC computation.

Acknowledgements. This work is partially supported by National ICT Aus-
tralia. National ICT Australia is funded by the Australian Government’s Backing
Australia’s Ability initiative in part through the Australian Research Council.
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Abstract. One-class classification has important applications such as
outlier and novelty detection. It is commonly tackled using density es-
timation techniques or by adapting a standard classification algorithm
to the problem of carving out a decision boundary that describes the
location of the target data. In this paper we investigate a simple method
for one-class classification that combines the application of a density es-
timator, used to form a reference distribution, with the induction of a
standard model for class probability estimation. In this method, the ref-
erence distribution is used to generate artificial data that is employed
to form a second, artificial class. In conjunction with the target class,
this artificial class is the basis for a standard two-class learning problem.
We explain how the density function of the reference distribution can be
combined with the class probability estimates obtained in this way to
form an adjusted estimate of the density function of the target class. Us-
ing UCI datasets, and data from a typist recognition problem, we show
that the combined model, consisting of both a density estimator and a
class probability estimator, can improve on using either component tech-
nique alone when used for one-class classification. We also compare the
method to one-class classification using support vector machines.

1 Introduction

In most classification problems, training data is available for all classes of in-
stances that can occur at prediction time. In this case, the learning algorithm
can use the training data for the different classes to determine decision bound-
aries that discriminate between these classes. However, there are some problems
that are suited to machine learning, but exhibit only a single class of instances
at training time. At prediction time, new instances with unknown class labels
can either belong to this target class or a new class that was not available during
training. In this scenario, two different predictions are possible: target, meaning
an instance belongs to the class learned during training, and unknown, where
the instance does not appear to belong to the previously learned class. This type
of learning problem is known as one-class classification.

In many cases, it may seem sensible to suggest that one-class problems should
be reformulated into two-class ones because there is actually data from other
classes that can be used for training. However, there are genuine one-class appli-
cations where it is inappropriate to make use of negative data during training.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 505–519, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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For example, consider password hardening, which is a biometric system that
strengthens the login process on a computer by not only requiring the correct
password to be typed, but also requiring it to be typed with the correct rhythm.
Password hardening is clearly a one-class problem; a single user must be verified
and during training time only data from that user is available—we cannot ask
anyone else to provide data without supplying them with the password.

Even in applications where instances from multiple classes are available at
training time, it may be opportune to focus solely on the target class under con-
sideration and contemplate a one-class set-up. In these applications, new classes
may occur at prediction time that are different from all classes available during
the training process. This is the case in the continuous typist recognition problem
that motivated the work presented in this paper. Continuous typist recognition
is similar to password hardening, only the text underlying the patterns is not
fixed: the current typist is verified on a block of free text. In this situation we
rely on one-class classification because we need to be able to refuse an attacker
the system has never seen before.

One-class classification is often called outlier (or novelty) detection because
the learning algorithm is being used to differentiate between data that appears
normal and abnormal with respect to the distribution of the training data. A
common statistical approach to this view on one-class classification is to identify
outliers as instances that are greater than a distance, d, to a percentage, p, of the
training data [2,9]. Machine learning techniques that have been employed include
clustering the data and determining a suitable boundary that encloses all the
clusters [16], adapting kernel-based support vector machine classifiers [12], and
utilising densities to estimate target class membership [13].

In this paper we investigate a principled approach for applying two-class classi-
fication algorithms to one-class classification. The only requirement is that these
algorithms can produce class probability estimates at prediction time. This is
not an impediment in general because most algorithms either provide these es-
timates directly or can be modified to do so. The basic method we use to apply
a supervised approach to an unsupervised learning problem is not new: it is
described by Hastie et al. [6] in the context of association rule learning. They
also mention that “Although this approach... seems to have been part of the
statistics folklore for some time, it does not appear to have had much impact
despite its potential”.

The technique we explore is based on the generation of artificial data that
comes from a known reference distribution such as a multi-variate normal dis-
tribution, which can be estimated from the training data for the target class.
This artificial data takes the role of a second class in the construction of a two-
class classification model. Using Bayes’ rule, we show how the density function
of the reference distribution can be combined with the class probability esti-
mates of this classification model to yield a description of the target class. We
show that the combined model, which employs both the density function and the
classification model, can yield improved performance when compared to using
the density function alone for one-class classification; the latter being a standard
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technique that has been used for one-class classification in the past [13,14]. It also
improves on using the classification model alone. The resulting method yields
numeric membership scores that can be used to rank test instances according to
their predicted likelihood of belonging to the target class. This property can be
an advantage when compared to techniques that provide a single decision bound-
ary, because it makes it possible to adjust the trade-off between false positives
and false negatives at prediction time.

The next section discusses previous approaches to one-class classification. Fol-
lowing this, we explain the approach to one-class classification that we evaluate
in this paper. In Sections 4 and 5 we present the evaluation of this technique,
on both standard UCI datasets and our continuous typist recognition data, and
compare it to existing approaches. The final section concludes the paper and
proposes some future work.

2 Related Work

Existing models for one-class classification either extend current methods for
multi-class classification or are based on density estimation. In the latter ap-
proach, density estimation is performed by fitting a statistical distribution, such
as a Gaussian, to the target data; any instances with a low probability of ap-
pearing (more precisely, low density value) can be marked as outliers [9]. This
is a sensible approach in cases where the target data follows the selected dis-
tribution very closely. The challenge is to identify an appropriate distribution
for the data at hand. Alternatively one can use a non-parametric approach,
such as kernel density estimation, but this can be problematic because of the
curse-of-dimensionality and the resulting computational complexity.

Extensions of current multi-class classifiers to one-class classification involve
fitting a boundary around the target data, such that instances that fall out-
side the boundary are considered outliers. The boundary can be generated by
adapting the inner workings of an existing multi-class classifier [12], or by us-
ing artificial data as a second class, in conjunction with a standard multi-class
learning technique [1]. Methods in the former category generally rely heavily on
a parameter that defines how much of the target data is likely to be classified as
outlier [14]. This parameter defines how conservative the boundary around the
target class will be. If it is chosen too liberally, then the model will overfit and
we risk identifying too much legitimate target data as outliers. A drawback of
these techniques is that an appropriate parameter value needs to be manually
chosen at training time.

In contrast, when density estimation is used for one-class classification, a
threshold on the density can be adjusted at prediction time to obtain a suit-
able rate of outliers. In some situations, where parametric density estimation
fails, using classification-based methods may be favourable; these techniques are
generally able to define boundaries on data that cannot be tightly modelled by
a standard statistical distribution. In some cases there is a close link between
classification-based techniques and density estimators: for example, it has been
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shown that one-class kernel Fisher discriminant classifiers can be used to per-
form non-parametric density estimation [11]. However, this only applies to very
specific learning techniques.

The method presented in this paper is based on the generation of artificial data
from a reference distribution to form a two-class classification problem. However,
unlike earlier work on using artificial data for one-class classification (see [1]
and references therein), it is based on using a two-class probability estimator,
and combines the estimated reference density function with the resulting class
probability estimator to form an overall prediction.

The method is generic in the sense that it is applicable in conjunction with
an arbitrary density estimator and an arbitrary class probability estimation
technique. An alternative generic approach is ensemble learning, where the pre-
dictions of different one-class classifiers are combined in an ensemble [15]. In
contrast, we combine a density estimator and a class probability estimator to
form a single one-class classifier, along the lines of the generic approach to un-
supervised learning outlined in [6].

3 Combining Density Functions and Class Probability
Estimators

Given the large number of classification algorithms that have been developed,
it would be useful to be able to utilize them for one-class problems. A possible
approach for doing this is to generate artificial data to take the role of the sec-
ond class. The most straightforward method for implementing this is to generate
uniformly distributed data and learn a classifier that can discriminate this data
from the target. A problem with this method is that different decision boundaries
are obtained for different amounts of artificial data: if too much artificial data
is generated, then the target class will be overwhelmed by it, and, assuming the
learning algorithm aims to minimize classification error, it will learn to always
predict the artificial class. However, this problem can be avoided when the ob-
jective of learning is viewed as accurate class probability estimation rather than
minimization of classification error, and a suitable configuration of the learning
algorithm is chosen. An example of a suitable inductive approach is bagging of
unpruned decision trees, which has been shown to yield good class probability
estimators [10].

Once a class probability estimation model has been obtained in this fashion,
different thresholds on the resulting class probability estimates for the target
class correspond to different decision boundaries surrounding the instances of
the target class. This means that, as in the density estimation approach to one-
class classification, the rate of obtaining “outliers” can be adjusted at prediction
time to yield an outcome appropriate for the application at hand.

There is one significant problem with the approach that we have just de-
scribed: as the number of attributes in the learning problem increases (i.e. as
the dimensionality of the instance space grows), it quickly becomes infeasible to
generate enough artificial data to obtain sufficient coverage of the instance space,
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and the probability that a particular artificial instance occurs inside or close to
the target class diminishes to a point that makes any kind of discrimination
impossible.

The solution to this problem is to generate artificial data that is as close as
possible to the target class. In this case, because the data is no longer uniformly
distributed, it becomes necessary to take the distribution of this artificial data
into account when computing the membership scores for the resulting one-class
model. As in [6], we call the distribution that is used to generate the artificial
data the “reference” distribution. In the following we explain how the class
probability estimates of the two-class classifier are combined with the values of
the density function of this reference distribution to obtain membership scores
for the target class.

Let T denote the target class for which we want to build a one-class model.
We have training data for this class. Let A be the artificial class, for which we
generate artificial data using a known reference distribution. Let X denote an
instance and let P (X |A) denote the density function of the reference distribution.

What we would like to obtain is P (X |T ), the density function for the target
class. If we had this density function, we could use it for one-class classification
by imposing a threshold on its values. Let us assume for the moment that we
know the true class probability function P (T |X). In practice, we need to estimate
this function using a class probability estimator learned from the training data.

The following shows how we can compute the density function for T , namely
P (X |T ), given the class probability function P (T |X), the reference density
P (X |A), and P (T ), which is the prior probability of observing an instance of
the target class. We start with Bayes’ theorem:

P (T |X) =
P (X |T )P (T )

P (X)

For a two-class situation, the probability of X is the probability of seeing an
instance of X with either class label, so the equation becomes:

P (T |X) =
P (X |T )P (T )

P (X |T )P (T ) + P (X |A)P (A)

Now we solve for P (X |T ), the density function for the target class, which we
want to use for one-class classification. We first bring the denominator on the
right to the left:

(P (X |T )P (T ) + P (X |A)P (A))P (T |X) = P (X |T )P (T )

Now we expand the product on the left, and bring the term involving P (X |T )
to the right:

P (X |T )P (T )P (T |X) + P (X |A)P (A)P (T |X) = P (X |T )P (T )

P (X |A)P (A)P (T |X) = P (X |T )P (T ) − P (X |T )P (T )P (T |X)
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Then we extract out P (X |T ) and bring the remainder to the left:

P (X |A)P (A)P (T |X) = P (X |T )(P (T ) − P (T )P (T |X))

P (X |A)P (A)P (T |X)
P (T ) − P (T )P (T |X)

= P (X |T )

We swap the two sides and extract P (T ) in the denominator:

P (X |T ) =
P (X |A)P (A)P (T |X)

P (T )(1 − P (T |X)

Now we make use of the fact that P (A) = 1 − P (T ), because there are only two
classes, and rearrange:

P (X |T ) =
(1 − P (T ))P (T |X)
P (T )(1 − P (T |X))

P (X |A) (1)

This equation relates the density of the artificial class P (X |A) to the density of
the target class P (X |T ) via the class probability function P (T |X) and the prior
probability of the target class P (T ).

To use this equation in practice, we choose P (X |A) and generate a user-
specified amount of artificial data from it. Each instance in this data receives the
class label A. Each instance in the training set for the target class receives class
label T . Those two sets of labeled instances are then combined. The proportion
of instances belonging to T in this combined dataset is an estimate of P (T ),
and we can apply a learning algorithm to this two-class dataset to obtain a class
probability estimator that takes the role of P (T |X). Assuming we know how
to compute the value for P (X |A) given any particular instance X—and we can
make sure that this is the case by choosing an appropriate function—we then
have all the components to compute an estimate of the target density function
P̂ (X |T ) for any instance X .

Note that, because we are using estimates for P (T |X) and P (T ), the function
P̂ (X |T ) will not normally integrate to one and is thus not a proper density. How-
ever, this is not a problem for one-class classification because we can empirically
choose an appropriate threshold on P̂ (X |T ) to perform classification, and we can
adjust this threshold to tune the probability of an instance being identified as
an outlier. Obviously, we can also use this function to rank instances. Note that
this also means the prior odds ratio (1−P (T ))

P (T ) is irrelevant in practice, because
it corresponds to a constant factor, and it is sufficient to use an estimate of the
posterior odds P (T |X)

1−P (T |X) in conjunction with P (X |A).
It is instructive to relate this method to the simple approach discussed at the

beginning of this section, which was based on generating uniformly distributed
data for the artificial class. This corresponds to using the uniform distribution as
the reference distribution, i.e. using the uniform density for P (X |A). Based on
Equation 1, this means that P (X |T ) becomes proportional to the posterior odds
ratio P (T |X)/(1−P (T |X))—which is monotonic in P (T |X)—meaning that test
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cases can simply be ranked according to the class probability function P (T |X),
and classification can be performed based on an appropriately chosen threshold
for this function. This means the two-class classification model that is learned
from the target data and the uniformly distributed data can directly be used
for one-class classification; for the reason given above, this is only a worthwhile
option to consider for very low-dimensional learning problems.

One question remains, namely how to choose the reference density P (X |A).
Essential requirements for this function are that (a) we need to be able to gener-
ate artificial data from it and (b) we need to be able to compute its value for any
instance X . Another requirement, as indicated at the beginning of this section,
is that the data generated based on this distribution is close to the target class.
In fact, based on Equation 1 we now know that, ideally, the reference density is
identical to the target density, in which case P (T |X) becomes a constant func-
tion that any well-behaved learning algorithm should be able to induce (i.e. the
resulting two-class learning problem would become trivial). This is obviously not
realistic because it would essentially require us to know (or somehow obtain) the
density of the target class. However, this observation gives us a clue as to how we
can go about getting a useful density function P (X |A) for the problem at hand:
we can apply any density estimation technique to the target data for class T
and use the resulting density function to model the artificial class A. The more
accurately this initial density estimate models P (X |T ), i.e. the better the match
between P (X |A) and P (X |T ), the easier the resulting two-class class probability
estimation task should become. This discussion implies that Equation 1 can also
be viewed as a mechanism for improving an initial density estimate for a dataset
using a class probability estimation technique.

In practice, given the availability of powerful methods for class probability
estimation, and the relative lack of such techniques for density estimation, it
makes sense to apply a simple density estimation technique to the target data
first, to obtain P (X |A), and then employ a state-of-the-art class probability
estimation method to the two-class problem that is obtained by joining the
artificial data generated using P (X |A) and the data from the target class. This
is the strategy that we evaluate in this paper.

Because Equation 1 is used to estimate a density function for the target
class, the method presented here is most closely related to the standard density-
estimation-based approach to one-class classification. However, given that a class
probability estimation model is used as part of the estimation process, which is
obtained from a standard technique for classification learning, the method is also
related to approaches that adapt standard two-class learning techniques to the
one-class learning task: in a sense, it straddles the boundary between these two
groups of approaches to one-class classification.

4 Evaluation Method

Our primary motivation for exploring the one-class learning technique presented
in this paper was our interest in the domain of continuous typist recognition.
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In the next section we present empirical results on datasets from this domain.
However, we also present results for standard multi-class UCI datasets.

Evaluating one-class classifiers on datasets with multiple classes is straight-
forward. Each class in turn is treated as the target class and the other classes are
joined into an “outlier” class. In our experiments, we ran a standard stratified
10-fold cross-validation, repeated 10 times, to estimate the AUC for a particular
target class. The one-class learning methods simply ignore the data for the out-
lier class that occurs in the training sets. The instances in the test sets are ranked
according to their predicted density values so that the AUC can be computed.
In this fashion we obtain one AUC value for each class in a dataset. To sum-
marize performance for a particular UCI dataset, we report a weighted average
of these AUC values. For the weighted AUC, each two-class AUC is calculated,
then weighted by the prevalence of the target class and summed. The formula
for the weighted AUC is:

AUCweighted =
∑

∀ci∈C

AUC(ci) × p(ci) (2)

where C is the full set of classes in the dataset, p(ci) is the prevalence of the
target class ci in the full dataset, and AUC(ci) is the AUC value for target class
ci. Using a weighted average rather than an unweighted one prevents target
classes with smaller instance counts from adversely affecting the results.

The one-class method presented in this paper combines the output of a density
estimator with that of a class probability estimator. In our evaluation we used
bagged unpruned C4.5 decision trees with Laplace smoothing as the probability
estimator P (T |X). Ten bagging iterations were used throughout. We evaluated
two different simple density estimation models: a Gaussian density with a diago-
nal co-variance matrix containing the observed variance of each attribute in the
target class, and a product of mixture of Gaussian distributions with one mix-
ture per attribute. Each mixture is fitted to the target data for its corresponding
attribute using the EM algorithm. The amount of artificial data generated using
the reference distribution, which determines the estimate of P (T ) in Equation 1,
was set to the size of the target class. Hence the data used to build the bagged
unpruned decision trees was exactly balanced.

One of the main objectives of our empirical study was to ascertain that the
combined model can indeed improve on its components in terms of predictive
performance. Hence we also evaluated one-class classification using the Gaussian
density and the EM-based density directly, with the same cross-validation-based
experimental set-up described above. This means we use the reference density
P (X |A) from Equation 1 to rank test instances, rather than P̂ (X |T ). Addi-
tionally, we also measured the performance obtained when using only the class
probability estimator from Equation 1, i.e. the bagged unpruned decision trees
in our experiments. This means we only use the estimate for P (T |X) from
Equation 1 for ranking. Note that in this case the reference density is still used
to generate the data for the artificial second class.1

1 We also tried using uniformly distributed data as the artificial class, but the results
were poor, so they are not shown in what follows.
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As an optimistic baseline we also show the performance obtained on the UCI
datasets when treating the learning problem as a standard classification problem,
using the data for all classes at training time, by building a one-vs-rest model
using bagged decision trees.

For completeness, we also compare to the one-class support vector machine
described by [12], as it is implemented in libSVM [3]. We used RBF kernels and
set the value of ν to 0.1. The parameter ν determines how much of the target
data is likely to be classified as outlier. We adjusted the γ value for the RBF
kernel for each dataset to obtain a false alarm rate (FAR) as close as possible to
0.1. The false alarm rate is the number of legitimate target instances incorrectly
identified as outliers (also known as the false negative rate).

When comparing libSVM to the combined one-class classifier we cannot use
AUC because the one-class implementation in libSVM does not return member-
ship scores, just a yes/no decision. Hence our comparison is based on attempting
to achieve a fixed FAR, namely 0.1, for both techniques, by choosing an appro-
priate threshold for our model, and evaluating the corresponding impostor pass
rate (IPR). The impostor pass rate is the number of outlier instances that are
wrongly classified as belonging to the target class (also known as the false posi-
tive rate). FAR and IPR are often used in domains such as biometrics. A higher
FAR results in a lower IPR and vice versa. Note that, to calculate FAR and IPR
in our experiments, false negatives and false positives were simply accumulated
across all one-class learning problems that resulted from processing a multi-class
dataset. As in the case of AUC, 10-fold cross-validation, repeated 10 times, was
used for a single one-class learning problem.

5 Results

In the following we present the experimental results obtained using the methodol-
ogy described above. We first discuss the performance of the combined classifier,
its components, and the baseline multi-class classifier on standard multi-class
UCI datasets. In the second subsection we introduce the typist dataset, which
motivated this work, and use it to show the performance of the combined classi-
fier on individual classes. Finally, we present a comparison between the combined
one-class classifier and the one-class support vector machine [3,12].

5.1 UCI Datasets

Table 1 contains the results we obtained for the UCI datasets, comparing
weighted AUC values for the baseline multi-class classifier, in the left-most col-
umn, and the variants of one-class classifiers discussed above, excluding the
SVM. More specifically, there are two groups of three columns for the one-class
classifiers. The first group is based on using the Gaussian density as the refer-
ence density and the second one based on using the EM method. Each group of
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three columns has results for (a) the combined classifier, consisting of both the
reference density and the class probability estimation model (i.e. bagged trees),
(b) the reference density P (X |A) used directly, and (c) the class probability
estimator P (T |X) used directly.

From the results presented in Table 1 it is clear that the combined classi-
fier performs much better than its component probability estimator—i.e. the
estimate of P (T |X)—for all of the UCI datasets. Hence it is essential to take
the reference density into account when making a prediction. It is not sufficient
to simply generate artificial data based on the reference density, build a class
probability estimator, and then use that for prediction.

The picture is not so clear when comparing the combined classifier to the
reference density. Considering the Gaussian case, there are four datasets where
the latter produces better results: diabetes, ecoli, iris, and waveform-5000. This
indicates that the combined model is too complex in those cases; the simple
reference distribution is sufficient to model the distribution of the target class
for those datasets, and adding bagged trees into the model is detrimental. On the
other hand, there are six datasets where the combined model performs better:
heart-statlog, letter, mfeat-karhunen, pendigits, sonar, and vehicle. In the case
of the vehicle and letter datasets the difference is substantial—and is so even for
the AUC values of every individual class label occurring in these datasets (for
brevity these results are not shown here).

Considering the case of using the EM-based density estimate as the reference
density, the overall picture is similar, but there is only one tie in this case (sonar).
There are eight wins for the combined classifier (heart-statlog, letter, the three
mfeat datasets, pendigits, vehicle, and waveform-5000) and six losses (diabetes,
ecoli, glass, ionosphere, iris, and pendigits). The biggest wins in absolute terms
for the combined method occur again on the vehicle and letter datasets.

It is instructive to compare the performance of the two different combined
models. The EM-based model wins on nine datasets and loses on only five.
Hence the combined model often receives a boost when the more powerful EM-
based density estimator is used to obtain the reference density. Note also that
the EM-based density often has an edge compared to using the Gaussian density
when both are used in stand-alone mode: the former wins nine times and loses
six times.

Not surprisingly, standard bagged decision trees outperform all one-class clas-
sifier variants on all datasets, often by a significant margin. The reason for this
is that this learner actually gets to see data for the outlier class (i.e. the union
of the non-target classes) at training time. It can thus focus on discriminating
the target class against all those specific non-target classes, and its performance
can be considered an optimistic target for that of corresponding one-class classi-
fiers. We would like to emphasize here that in practical applications of one-class
classifiers this kind of data is not available. Even if there is some negative data
available at training time, the expectation is that completely new classes of data
will be encountered at prediction time.
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Table 1. Weighted AUC results on UCI data, for standard bagged decision trees, the
combined one-class classifier, and its components

Bagged One-class Classifier Gaussian One-class Classifier EM
Dataset Trees Combined P (X|A) P (T |X) Combined P (X|A) P (T |X)

diabetes 0.818 0.626 0.653 0.511 0.639 0.669 0.510
ecoli 0.953 0.928 0.930 0.516 0.928 0.931 0.542
glass 0.878 0.698 0.698 0.624 0.731 0.735 0.593
heart-statlog 0.880 0.796 0.790 0.671 0.768 0.751 0.629
ionosphere 0.965 0.697 0.697 0.587 0.726 0.727 0.580
iris 0.985 0.974 0.977 0.628 0.972 0.976 0.662
letter 0.996 0.904 0.887 0.701 0.931 0.921 0.783
mfeat-karhunen 0.984 0.957 0.955 0.524 0.960 0.959 0.577
mfeat-morphological 0.959 0.941 0.941 0.804 0.940 0.939 0.836
mfeat-zernike 0.959 0.898 0.898 0.418 0.904 0.902 0.622
optdigits 0.995 0.959 0.959 0.562 0.954 0.955 0.645
pendigits 0.998 0.958 0.953 0.845 0.938 0.933 0.821
sonar 0.867 0.588 0.587 0.484 0.612 0.612 0.501
vehicle 0.919 0.705 0.657 0.656 0.781 0.765 0.700
waveform-5000 0.951 0.863 0.864 0.415 0.864 0.863 0.466

5.2 Typist Dataset

The work in this paper was motivated by the need to find an appropriate clas-
sification method for a continuous typist recognition problem. As mentioned
previously, continuous typist recognition is akin to password hardening, only the
patterns presented to the system may contain any number of characters and
sample lengths may vary. During our search for a method for improving the
state-of-the-art in this research area, we investigated several different one-class
classifiers—all of which were customised to the task of typist recognition [4,5,7,8].
We felt that this problem would benefit from the extensive research performed
on multi-class classifiers and directed our efforts towards creating a dataset that
could be used by standard machine learning algorithms.

Unfortunately, with the ethical issues surrounding key logging data, and the
omission of key release events from one of the datasets we had access to, we
were unable to transform an existing dataset for use in our experiments. Instead,
we recorded 3000 emails from 19 people in the Computer Science Department
at the University of Waikato over a period of 3 months. After technical and
ethical issues were addressed, a dataset of 15 emails for each of 10 participants
was created. This dataset only contained the raw sequences of input from the
recordings. Each sample was broken down further into blocks of 400 events—a
size that roughly equates to a small paragraph of text and is similar in size to
other typist datasets [5]—resulting in between 24 and 75 samples per user. Every
400-event sample had a number of attributes calculated; these attributes formed
the dataset for use with a standard machine learning algorithm.
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Table 2. AUC results for the typist dataset, for standard bagged decision trees, the
combined one-class classifier, and its components

Bagged One-class Classifier Gaussian One-class Classifier EM
Participant Trees Combined P (X|A) P (T |X) Combined P (X|A) P (T |X)

A 0.938 0.924 0.932 0.312 0.923 0.931 0.326
B 0.970 0.934 0.931 0.365 0.929 0.930 0.433
C 0.915 0.707 0.665 0.677 0.786 0.788 0.594
D 0.958 0.924 0.928 0.335 0.902 0.916 0.456
E 0.994 0.973 0.974 0.795 0.971 0.971 0.793
F 0.913 0.852 0.843 0.619 0.867 0.862 0.636
G 0.962 0.942 0.943 0.367 0.952 0.951 0.418
H 0.892 0.909 0.909 0.613 0.914 0.913 0.618
I 0.939 0.956 0.958 0.591 0.950 0.949 0.449
J 0.975 1.000 1.000 0.792 1.000 1.000 0.747

Weighted Avg. 0.941 0.897 0.891 0.540 0.908 0.910 0.547

In total, there are 8 attributes in our typist dataset.2 Most of the attributes
are based around the typist speed (average words-per-minute (WPM) rate, peak
WPM, trough WPM) or error rate (backspaces, paired backspaces, average
backspace block length). There are also two attributes that relate to the slur-
ring of key press and release events (press/release ordering, press/release rate).
The final typist dataset used here contains these 8 attributes and 10 class labels
(Participants A–J).3

Table 2 shows the results obtained for the 10 different typist classes, in each
case treating one of these classes as the target class, and the union of the other
classes as the outlier class. Each row states AUC values for one particular target
class. The bottom row has the weighted AUC value, calculated according to
Equation 2.

The results from the typist dataset are similar to those from the UCI datasets:
using only the class probability estimator, P (T |X), results in poor performance,
whereas using just the reference density, P (X |A), sometimes performs better
than the combined model. More specifically, considering the case of the Gaussian
reference density, the win/loss ratio for the combined model vs. the reference
density is 3/5; considering the case of the EM-based density it is 4/4. According
to overall weighted AUC, the combined model has an edge in the Gaussian case,
but is outperformed slightly in the case of EM.

Considering performance relative to the baseline multi-class classifier, the
overall picture is similar as in the case of the UCI datasets: multi-class clas-
sification outperforms one-class classification. However, surprisingly, for three of
the user classes—H, I and J—the combined one-class classifier and the reference
densities have a higher AUC than the baseline classifier. This is not unusual;
we experienced similar results on individual class labels on many of the UCI
datasets. In the context of our target application, typist recognition, this is
2 This number is likely to change in future for the purposes of typist recognition.
3 Available for download at http://www.cs.waikato.ac.nz/ml/data/typist.arff
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Table 3. Results for one-class support vector machines (obtained with libSVM) versus
the combined one-class classifier (OCC)

libSVM OCC OCC
Gaussian EM

Dataset γ FAR IPR FAR IPR FAR IPR

diabetes 0.00005 0.111 0.514 0.098 0.857 0.109 0.779
ecoli 0.1 0.137 0.068 0.129 0.088 0.136 0.083
glass 0.005 0.154 0.412 0.147 0.434 0.180 0.331
heart-statlog 0.0001 0.122 0.624 0.140 0.507 0.141 0.504
ionosphere 0.00005 0.128 0.738 0.150 0.732 0.169 0.697
iris 0.0005 0.120 0.073 0.125 0.076 0.137 0.077
letter 0.000005 0.101 0.516 0.100 0.291 0.105 0.215
mfeat-karhunen 0.0001 0.131 0.034 0.094 0.114 0.105 0.092
mfeat-morphological 0.0000001 0.110 0.206 0.068 0.128 0.075 0.134
mfeat-zernike 0.000001 0.116 0.253 0.085 0.324 0.099 0.276
optdigits 0.00005 0.106 0.087 0.107 0.084 0.122 0.087
pendigits 0.000001 0.103 0.203 0.100 0.116 0.102 0.137
sonar 0.001 0.120 0.705 0.123 0.815 0.163 0.751
vehicle 0.00005 0.103 0.629 0.109 0.645 0.130 0.494
waveform-5000 0.001 0.103 0.307 0.075 0.411 0.110 0.354

typist 0.00005 0.113 0.331 0.113 0.204 0.147 0.157

exciting because it demonstrates that one-class classification can be a very sat-
isfactory substitute for multi-class classifiers, and one that is better suited to
solving the problem at hand because it does not require any training data from
the outlier classes in order to achieve good results: when using typist recognition
for computer security we simply do not have access to training data for new
classes of typists that correspond to impostors (or “attackers”).

5.3 LibSVM

To compare the method presented in this paper—again, using bagged unpruned
decision trees—to an established one-class classifier, we now discuss results ob-
tained in a comparison to the one-class classifier in libSVM [3]. The results are
shown in Table 3. As mentioned in Section 4, we could not use AUC for compar-
ison, and instead resort to reporting FAR and IPR. For each dataset, the table
reports the value of the γ parameter for the RBF kernel that was used to obtain
the results shown.

Although we were generally unable to match FAR exactly for the methods
compared, the results nevertheless enable us to make a qualitative statement
about their relative performance. In particular, we can consider cases where both
FAR and IPR are lower for one method in a pair of methods being compared.
Doing this for libSVM and the Gaussian-based combined classifier, we see that
there are two datasets where both FAR and IPR are lower for the latter method
(letter and pendigits) and two cases where they are both lower for libSVM (sonar
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and vehicle). Repeating this exercise for libSVM and the combined model with
the EM-based density, we find that there is one dataset where the latter method
is better for both statistics (pendigits) and three datasets where this is the case
for libSVM (iris, sonar, and waveform-5000). Overall, we can say that there are
datasets where the SVM appears to be the better approach and other datasets
where the combined method appears to perform better. Note that, in contrast to
the SVM, FAR and IPR can be adjusted at prediction time with the approach
presented here, and it does not require parameter tuning to return satisfactory
results.

6 Conclusion

In this paper we have combined density estimation with class probability esti-
mation for the purpose of one-class classification. We applied a density estimator
to build a reference density for the target class, then used this reference density
to generate artificial data for a two-class learning problem suitable for a class
probability estimation technique, and finally combined the predictions of the
reference density and the class probability model to form predictions for new
test cases.

Using experimental results obtained on UCI datasets and a continuous typist
recognition problem, and using bagged unpruned decision trees as the underlying
class probability estimator, we have shown that the combined model can indeed
improve on both component techniques: the density estimator used to obtain the
reference density and the class probability estimator trained on the semi-artificial
two-class learning problem.

We have also compared the combined model to a one-class support vector
machine with a RBF kernel. The results show that there are datasets where the
former method is superior and other datasets where the one-class SVM performs
better. The combined method has the advantage that—like in standard density
estimation techniques for one-class classification— there is no need to specify a
target rejection rate at training time.

A significant feature of the method explored here is that it is generic, and
hence can be used in conjunction with arbitrary density estimators and class
probability estimation techniques. We believe that this is the primary advantage
of this technique, given the availability of large collections of suitable candidate
base learners in machine learning workbenches (see also the relevant discussion
in [6]).

An interesting avenue for future work is the experimental comparison of vari-
ants of the combined technique that can be obtained by plugging in different
types of base learners. Another important question is how the quantity of ar-
tificial data that is generated using the reference distribution influences the re-
sult. There must clearly be diminishing returns, but one would expect that,
in general, more data leads to a more accurate combined model. On a more
fundamental level, it would be interesting to investigate whether it is possible to
avoid the artificial data generation step by adapting class probability estimators
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to take advantage of information in a reference distribution directly. However, it
is obvious that this cannot be achieved without changing the learning algorithm
involved; thus the generic aspect of the method would be lost.
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Tamás Horváth1,2 and Jan Ramon3

1 Dept. of Computer Science III, University of Bonn, Germany
2 Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany

tamas.horvath@iais.fraunhofer.de
3 Dept. of Computer Science, Katholieke Universiteit Leuven, Belgium

jan.ramon@cs.kuleuven.be

Abstract. The frequent connected subgraph mining problem, i.e., the
problem of listing all connected graphs that are subgraph isomorphic to
at least a certain number of transaction graphs of a database, cannot be
solved in output polynomial time in the general case. If, however, the
transaction graphs are restricted to forests then the problem becomes
tractable. In this paper we generalize the positive result on forests to
graphs of bounded treewidth. In particular, we show that for this class
of transaction graphs, frequent connected subgraphs can be listed in
incremental polynomial time. Since subgraph isomorphism remains NP-
complete for bounded treewidth graphs, the positive complexity result of
this paper shows that efficient frequent pattern mining is possible even
for computationally hard pattern matching operators.

1 Introduction

During the last decade, graph mining developed into a separate field of knowledge
discovery in databases, motivated by various practical applications for example
in bioinformatics, computational chemistry, and the WWW. A basic task in
this field is the frequent connected subgraph mining (FCSM) problem: Given a
database of labeled graphs, called transaction graphs, and some positive integer
threshold t, list all connected graphs that are subgraph isomorphic to at least
t transaction graphs. Such frequent connected patterns have successfully been
used, for example, in ligand-based virtual screening as features [6].

For arbitrary transaction graphs, the FCSM problem cannot be solved in
output-polynomial time (if P �= NP) [10]. While several heuristic methods have
been developed for this general problem that proved to be effective on various
graph datasets, surprisingly there are only few results about tractable graph
classes. To the best of our knowledge, the only positive (non-trivial) result to-
wards this direction is about forests; the FCSM problem can be solved in incre-
mental polynomial time for forest transaction graphs (see [5] for a survey on tree
mining). The exploration of the border between tractable and intractable graph
classes is an important theoretical challenge because it could provide useful in-
sights into the problem which could then be exploited in the design of practical
algorithms.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 520–535, 2008.
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In this paper we take a step towards this goal by generalizing the positive
result on forests to graphs of bounded treewidth. Treewidth [14] is a measure
of tree-likeness of graphs that proved to be a useful property in algorithmic
graph theory because several NP-hard problems on graphs become tractable for
the class of bounded treewidth graphs. This class is also of practical impor-
tance, as it includes many graph classes appearing in practical applications (see,
e.g., [2,4]). For example, the molecular graphs of the vast majority of pharma-
cological compounds have treewidth at most 3.

We present a levelwise search algorithm listing frequent connected subgraphs
in incremental polynomial time if the treewidth of the transaction graphs is
bounded by some constant. We make use of the fact that isomorphism between
graphs of bounded treewidth can be decided efficiently [2]. To calculate the
support count of candidate patterns, we use a modification of the subgraph iso-
morphism algorithm developed for graphs of bounded treewidth and log-bounded
fragmentation [9], where the class of log-bounded fragmentation graphs properly
contains the class of bounded degree graphs. This algorithm is based on a fun-
damental generic algorithm designed for deciding various morphisms between
graphs of bounded treewidth and bounded degree [13]. In a nutshell, the main
result of [13] is that several graph morphisms, including subgraph isomorphism,
can be decided efficiently by a dynamic programming algorithm computing poly-
nomially many, polynomial time computable properties if the treewidth and the
degree of the graphs are both bounded by some constant.

Since we do not assume any bound on the degree, the number of such proper-
ties can be exponentially large. We can show, however, that for a given candidate
pattern H , it is sufficient to compute only a polynomially large subset of these
properties; the rest, maybe exponentially large set, can be derived from those
of the frequent subgraphs listed before H . To show this result, we utilize the
levelwise generation of frequent patterns and the anti-monotonic property of
frequency. In this way, the delay can be exponential in the size of the input only
after the enumeration of exponentially many frequent patterns. This technique
might be of some independent interest and useful to design efficient algorithms
where straightforward dynamic programming would require exponential space.

We note that subgraph isomorphism remains NP-complete even for connected
graphs of bounded treewidth (see, e.g., [13]). The positive result of this paper
thus provides an example of the case when efficient frequent pattern mining is
possible even for NP-hard pattern matching operators. A significant consequence
of our result is thus immediate to the study of frequent pattern mining: Efficient
frequent pattern mining is possible even for NP-hard pattern matching operators.

The rest of the paper is organised as follows. In Section 2 we first collect
the necessary notions and fix the notations. In Section 3 we present a generic
levelwise frequent connected subgraph mining algorithm and analyse its com-
putational properties. In Section 4 we adapt this generic algorithm to graphs
of bounded treewidth and show that it lists frequent connected subgraphs in
incremental polynomial time. Finally, in Section 5, we conclude along with an
open problem. Due to space limitations, proofs are omitted in this short version.
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2 Preliminaries

In this section we first briefly review some basic concepts and fix the notations
used in this paper. We start with some standard definitions from graph theory.

Graphs. An undirected graph is a pair (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. A labeled undirected graph is a
triple (V,E, λ), where (V,E) is an undirected graph and λ : V ∪ E → IN is a
function assigning a label to every element of V ∪E. Unless otherwise stated, in
this paper by graphs we always mean labeled undirected graphs and denote the
set of vertices, the set of edges, and the labeling function of a graph G by V (G),
E(G), and λG, respectively.

Let G and G′ be graphs. Then G′ is a subgraph of G, if V (G′) ⊆ V (G),
E(G′) ⊆ E(G), and λG′(x) = λG(x) for every x ∈ V (G′) ∪ E(G′); it is an
induced subgraph of G if it is a subgraph of G satisfying {u, v} ∈ E(G′) iff
{u, v} ∈ E(G) for every u, v ∈ V (G′). For a subset S ⊆ V (G), G[S] denotes the
induced subgraph of G with vertex set S.

A path connecting the vertices v1, vk ∈ V (G) in a graph G is a sequence
{v1, v2}, {v2, v3}, . . . , {vk−1, vk} ∈ E(G) such that the vi’s are pairwise distinct.
A graph is connected if there is a path between any pair of its vertices. A con-
nected component of a graph G is a maximal subgraph of G that is connected.
The set of all connected components of a graph G is denoted by C(G).

Isomorphism and Subgraph Isomorphism. Let G1 and G2 be graphs. They
are isomorphic if there is a bijection ϕ : V (G1) → V (G2) satisfying (i) {u, v} ∈
E(G1) iff {ϕ(u), ϕ(v)} ∈ E(G2) for every u, v ∈ V (G1), (ii) λG1(u) = λG2(ϕ(u))
for every u ∈ V (G1), and (iii) λG1({u, v}) = λG2({ϕ(u), ϕ(v)}) for every {u, v} ∈
E(G1). In this paper, isomorphic graphs are regarded as identical graphs.

For G1 and G2 above we say that G1 is subgraph isomorphic to G2, denoted
G1 ≤ G2, if G1 is isomorphic to a subgraph of G2. Deciding whether a graph
is subgraph isomorphic to another graph is NP-complete, as it generalizes, e.g.,
the Hamiltonian path problem [7].

Treewidth. The notion of treewidth was reintroduced in [14]. It proved to be a
useful parameter of graphs in algorithmic graph theory. A tree-decomposition of
a graph G, denoted TD(G), is a pair (T,X ), where T is an unordered tree and
X = (Xz)z∈V (T ) is a family of subsets of V (G) satisfying (i) ∪z∈V (T )Xz = V (G),
(ii) for every {u, v} ∈ E(G), there is a z ∈ V (T ) such that u, v ∈ Xz, and (iii)
Xz1∩Xz3 ⊆ Xz2 for every z1, z2, z3 ∈ V (T ) such that z2 is on the path connecting
z1 with z3 in T . The set Xz associated with a node z of T is called the bag of z.
The nodes of T will often be referred to as the nodes of TD(G). The treewidth
of TD(G) is maxz∈V (T ) |Xz| − 1, and the treewidth of G, denoted tw(G), is the
minimum treewidth over all tree-decompositions of G. By graphs of bounded
treewidth we mean graphs of treewidth at most k, where k is some constant.

The following notation will be used many times in what follows. Let G be
a graph, TD(G) = (T,X ) be a tree-decomposition of G, and z ∈ V (T ). Then
G[z] denotes the induced subgraph of G defined by the union of the bags of z’s
descendants. (We note that z is considered also as a descendant of itself.)
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3 Mining Frequent Connected Subgraphs

In this section we first define the frequent connected subgraph mining problem,
present a generic listing algorithm based on levelwise search for this problem,
and provide sufficient conditions for the efficiency of this algorithm. Applying
these conditions, we then show that the frequent connected subgraph mining
problem can be solved in incremental polynomial time for forest transaction
graphs and for transaction graphs that have bounded treewidth and log-bounded
fragmentation. In the next section we will show how to adapt the generic al-
gorithm of this section to mining frequent connected subgraphs from graphs of
bounded treewidth that do not necessarily have log-bounded fragmentation. We
start with the definition of the general problem setting.

The Frequent Connected Subgraph Mining (FCSM) Problem: Given
a class G of graphs, a transaction database DB of graphs from G (i.e., a
multiset of graphs from G), and an integer threshold t > 0, list the set of
frequent connected subgraphs, that is, the set of connected graphs that are
subgraph isomorphic to at least t graphs in DB.

The parameter of the above problem is the size of DB. One can easily construct
examples when the number of frequent connected subgraphs is exponential in this
parameter. Thus, in general, the set of all frequent connected subgraphs cannot
be computed in time polynomial in the size of DB. Since this is a common feature
of listing problems, the following problem classes are usually considered in the
literature (see, e.g., [12]): Let S be a set of cardinality N . Then its elements, say
s1, . . . , sN , are listed with

polynomial delay if the time before printing s1, the time between printing si

and si+1 for every i = 1, . . . , N − 1, and the termination time after printing
sN is bounded by a polynomial of the size of the input,

incremental polynomial time if s1 is printed with polynomial delay, the time
between printing si and si+1 for every i = 1, . . . , N−1 (resp. the termination
time after printing sN ) is bounded by a polynomial of the combined size of
the input and the set {s1, . . . , si} (resp. S),

output polynomial time (or polynomial total time) if S is printed in the combined
size of the input and the entire set S.

Clearly, polynomial delay implies incremental polynomial time, which, in turn,
implies output polynomial time. Furthermore, in contrast to incremental polyno-
mial time, the delay of an output polynomial time algorithm may be exponential
in the size of the input even before printing the first element of the output.

Although several frequent connected subgraph mining algorithms have been
developed that proved to be effective in various practical applications, we note
that, unless P = NP, the FCSM problem cannot be solved in output polyno-
mial time for arbitrary transaction graphs [10]. It can be solved, however, in
incremental polynomial time if the transaction graphs are restricted to forests
(see, e.g., [5,11]). The main contribution of this work is to extend this positive
result to graphs of bounded treewidth. To achieve this goal, we first give a generic
levelwise mining algorithm designed for downward closed graph classes.
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Algorithm 1. Frequent Connected Subgraph Mining

Require: database DB of graphs from a downward closed class G and integer t > 0
Ensure: all frequent connected subgraphs
1: let S0 ⊆ G be the set of frequent graphs consisting of a single labeled vertex
2: print S0

3: for (l := 0; Sl 
= ∅; ++l) do
4: Cl+1 := Sl+1 := ∅
5: forall P ∈ Sl do
6: forall H ∈ ρ(P ) ∩ G satisfying (i) H 
∈ Cl+1 and (ii) ρ−1(H) ⊆ Sl do
7: add H to Cl+1

8: if SupportCount(H) ≥ t then
9: print H and add it to Sl+1

10: function SupportCount(H)
11: counter := 0
12: forall G in DB do
13: if H ≤ G then
14: counter++
15: return counter

3.1 A Generic Mining Algorithm

A generic algorithm listing frequent connected subgraphs with levelwise search
is given in Algorithm 1. It requires the class G of transaction graphs to be closed
downward, i.e., for every G ∈ G, G contains all subgraphs of G. In the algorithm
we first compute the set of frequent graphs from G that consist of a single vertex.
(We recall that by graphs we mean labeled graphs.) In the main loop we then
iteratively compute the set Sl+1 of frequent connected graphs containing l + 1
edges from those containing l edges for every l ≥ 0. In particular, for each
frequent pattern P ∈ Sl, we compute the set ρ(P ) ∩ G of graphs, where the
elements of ρ(P ) are obtained from P by either connecting two vertices with a
labeled edge or by adding a new labeled vertex to P and connecting it with an
old vertex by a labeled edge. Clearly, the graphs in ρ(P ) are all connected, as
P is connected. For each H ∈ ρ(P ) ∩ G, we check whether or not it has already
been generated during the current iteration step of the main loop (condition (i)
in line 6). If not, we also check for each graph in ρ−1(H) whether it is frequent,
where ρ−1(H) is the set of connected graphs obtained from H by removing
an edge (condition (ii) in line 6). Throughout this paper, candidate patterns
generated by levelwise search that satisfy conditions (i) and (ii) in line 6 are
called strong candidates. If H is a strong candidate, we add it to the set Cl+1 of
candidate graphs consisting of l + 1 edges and compute its support count. If it
is frequent, i.e., subgraph isomorphic to at least t graphs in DB, we print it and
add it to the set Sl+1 of frequent connected graphs containing l + 1 edges.

As mentioned earlier, without any further assumption on G, the FCSM prob-
lem cannot be solved in output polynomial time [10]. If, however, G satisfies the
conditions of the theorem below, one can obtain tractable problem classes.
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Theorem 1. Let G be a graph class satisfying the following properties:

(i) G is closed downward,
(ii) the membership problem in G, i.e., whether G ∈ G for any graph G can be

decided in polynomial time, and
(iii) for every H,G ∈ G such that H is connected, it can be decided in polynomial

time whether H is subgraph isomorphic to G (i.e., if H ≤ G).

If the transaction graphs in DB belong to G then Algorithm 1 lists the frequent
connected subgraphs in incremental polynomial time.

Notice that condition (i) above does not require the elements of G to be con-
nected. The proof of the theorem is straightforward by noting that the cardinality
and hence, the sizes of the sets ρ(H) ∩ G and ρ−1(H) in line 6 are bounded by
a polynomial of the size of DB, and both sets can be computed in polynomial
time. Thus, the size of Cl+1 is bounded by the combined size of DB and Sl.

Without proof, we now mention two immediate applications of the above
theorem. The first result on forests follows from several results (see, e.g., [5,11]).

Corollary 1. The FCSM problem can be solved in incremental polynomial time
for forest transaction graphs.

To state a second application of Theorem 1, we first need a definition. A graph
G has k-log-bounded (or simply, log-bounded) fragmentation [9] if

|C(G[V (G) \ S])| − |C(G)| = O (k log |V (G)|)
for every S ⊆ V (G) satisfying |S| ≤ k. In other words, G has log-bounded frag-
mentation if the removal of any set of at most k vertices and all adjacent edges
from G results in a graph with |C(G)|+O (k log |V (G)|) connected components.
As an obvious example, graphs with maximum degree bounded by some con-
stant have log-bounded fragmentation. Using Theorem 1, for graphs of bounded
treewidth and log-bounded fragmentation, the following result can be shown:

Corollary 2. The FCSM problem can be solved in incremental polynomial time
if the transaction graphs have bounded treewidth and log-bounded fragmentation.

Consider the NCI chemical database1 used as a benchmark graph dataset in
graph mining. Out of the 250251 molecular graphs in this dataset, 243638 (i.e.,
97,36%) compounds have treewidth at most 2, 250186 (i.e., 99,97%) treewidth
at most 3; there are only 65 (i.e., 0,03%) compounds with treewidth at least 4.
However, compounds of small treewidth have often relatively large degree.

Motivated by applications of frequent connected subgraphs in computational
drug design, in particular, in ligand-based virtual screening (see, e.g., [6]), it is
therefore natural to ask if the positive result of Corollary 2 can be extended to
arbitrary graphs of bounded treewidth. This raises the question whether condi-
tion (iii) of Theorem 1 is indeed necessary because subgraph isomorphism be-
tween graphs of bounded treewidth is NP-complete even for connected patterns
(see, e.g., [13]). In the rest of this paper we show that for graphs of bounded
treewidth, condition (iii) is unnecessary.
1 http://cactus.nci.nih.gov/
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4 Mining Frequent Connected Subgraphs in Graphs of
Bounded Treewidth

Consider again Theorem 1. It is easy to see that condition (i) holds for arbitrary
graphs of bounded treewidth. Regarding condition (ii), for any constant k, one
can decide in linear time whether a graph has treewidth at most k and if yes,
compute a tree-decomposition of treewidth at most k [3]. However, condition (iii)
on the efficiency of subgraph isomorphism does not hold for arbitrary connected
graphs of bounded treewidth. For graphs of bounded treewidth, this condition
has a side effect only in the support counting step (line 8) which is based on de-
ciding subgraph isomorphism (line 13). Thus, to show that the FCSM problem
can be solved in incremental polynomial time for graphs of bounded treewidth, it
is sufficient to show that subgraph isomorphism can be decided in time polyno-
mial in the combined size of the input and the set of frequent patterns computed
before the current candidate pattern.

The subgraph isomorphism problem remains NP-complete even when both the
pattern and transaction graphs have bounded treewidth and the pattern graph is
connected [13]. The NP-completeness of the subforest isomorphism problem [7]
implies that the connectivity of the pattern graph is necessary even for acyclic
graphs. For graphs of treewidth at most k, there is a clear demarcation between
tractable and intractable instances of the subgraph isomorphism problem: if the
pattern is not k-connected or has more than k vertices of unbounded degree
then the subgraph isomorphism is NP-complete; otherwise it can be decided
in polynomial time [8]. However, as we show below, for efficient mining of fre-
quent connected subgraphs, these conditions are unnecessary because the anti-
monotonicity of frequency allows the mining algorithm to utilise the information
computed earlier for the candidates’ frequent ancestors.

The rest of this section is organised as follows. In Section 4.1 we first overview
the subgraph isomorphism algorithm described in [9]. In Section 4.2 we then
state, without proof, that for every connected graphs H and G of bounded
treewidth, this algorithm computes only a polynomial number of new properties
needed to decide H ≤ G; any property from the rest, possibly exponentially
many properties, can be derived from the properties computed for the frequent
patterns in the previous steps. Finally, in Section 4.3, we show how to integrate
this modified subgraph isomorphism algorithm into Algorithm 1.

4.1 Subgraph Isomorphism between Graphs of Bounded Treewidth
and Log-Bounded Fragmentation

Throughout this section H and G denote connected graphs of treewidth at
most k, where k is some constant. In fact, we need only H to be connected.
Since any subgraph isomorphism maps a connected graph into a connected com-
ponent of a graph, we may assume without loss of generality that G is also
connected.

Following the dynamic-programming approach of [1], the algorithm described
in [9] first computes a nice tree-decomposition TD(G) = (T,X ) of G, where a
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nice tree-decomposition is a tree-decomposition such that T is a rooted binary
tree composed of three types of nodes: (i) a leaf node has no children, (ii) a
separator node z has a single child z′ with Xz ⊆ Xz′ , and (iii) a join node z
has two children z1 and z2 with Xz = Xz1 ∪ Xz2 . It follows from the results
in [4] that for graphs of treewidth at most k, such a nice tree-decomposition of
treewidth at most k always exists and can be constructed in linear time.

Given a nice tree-decomposition TD(G) of G, the algorithm in [9] computes
a set of tuples (properties) for each node in a bottom-up manner and decides
whether H ≤ G holds by checking a condition for the set computed for the root
of TD(G). To define this condition precisely, we need some notions. For a node
z in TD(G), a partial solution relative to z is a subgraph isomorphism from a
subgraph H ′ of H into G[z]. An iso-quadruple relative to a node z of TD(G) is
a quadruple (S,D,K, ψ), where

– S ⊆ V (H) satisfying |S| ≤ k + 1,
– D ⊆ C(H [V (H) \ S]),
– K = H [S ∪ V (D)], and
– ψ is an injective function mapping S to Xz.

We note that K is redundant in the above notation; we add it to the tuple only
for the reader’s convenience. The set of all iso-quadruples of H relative to a node
z of TD(G) is denoted by Γ (H, z).

We need some further definitions. A characteristic of a partial solution ϕ
relative to a node z in TD(G) is an iso-quadruple (S,D,K, ψ) ∈ Γ (H, z) such
that ϕ is a subgraph isomorphism from K to G[z] satisfying ϕ(u) = ψ(u) for
every u ∈ S and ϕ(v) �∈ Xz for every v ∈ V (D). The definitions imply that
ϕ(u) ∈ Xz for every u ∈ S. Finally, a z-characteristic is an iso-quadruple in
Γ (H, z) that is the characteristic of at least one partial solution relative to z.
The set of all z-characteristics of H relative to z is denoted by Γch(H, z). Clearly,
Γch(H, z) ⊆ Γ (H, z). The following lemma from [9] provides a characterization
of subgraph isomorphism in terms of r-characteristics for the root r of TD(G):

Lemma 1. Let r be the root of a nice tree-decomposition TD(G) of G. Then
H ≤ G iff there exists an iso-quadruple (S,D, H, ψ) in Γch(H, r).

Notice that by definition, S can be the empty set. Thus, by the above lemma, we
can decide H ≤ G by computing and testing the set of r-characteristics for the
root r of TD(G). This can be carried out by traversing TD(G) in a postorder
manner and computing the set of characteristics for each non-leaf node from
those of its children. Depending on the type of the current node z visited, we
perform one of the following steps (for more details on the method described
below, the reader is referred, e.g., to [9]):

Leaf Nodes: If z is a leaf in TD(G) then for all (S,D,K, ψ) ∈ Γch(H, z) it holds
that D = ∅ and K = H [S]. For this case, the following lemma holds.

Lemma 2. Let z be a leaf in TD(G) and ξ = (S, ∅, H [S], ψ) ∈ Γ (H, z). Then
ξ ∈ Γch(H, z) iff ψ is a subgraph isomorphism from H [S] to G[Xz ].
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Since S and Xz both have at most k + 1 vertices, |Γ (H, z)| is bounded by
(k + 1)! · |V (H)|k+1. Furthermore, using the above lemma, one can decide in
time (k + 1)2, whether an iso-quadruple in Γ (H, z) is a z-characteristic. Thus,
the set of characteristics for leaf nodes can be computed in polynomial time.

Separator Nodes: If z is a separator node then, by definition, it has a single
child z′ with Xz ⊆ Xz′ . For an iso-quadruple ξ = (S,D,K, ψ) ∈ Γ (H, z), let
Π(ξ) denote the set of iso-quadruples (S′,D′,K ′, ψ′) ∈ Γ (H, z′) satisfying

(i) S = {v ∈ S′ : ψ′(v) ∈ Xz},
(ii) D′ = {D′ ∈ C(H [V (H) \ S′]) : D′ is a subgraph of some D ∈ D }, and
(iii) ψ(v) = ψ′(v) for every v ∈ S.

Using this definition, the set of characteristics relative to a separator node can
be computed by the following lemma.

Lemma 3. Let z be a separator node in TD(G) with child z′ and ξ ∈ Γ (H, z)
be an iso-quadruple. Then ξ ∈ Γch(H, z) iff Γch(H, z′) ∩Π(ξ) �= ∅ .

For a separator node z with child z′ and ξ ∈ Γ (H, z), |Π(ξ)| is bounded by
(k + 1)! · |V (H)|k+1. Using some advanced data structure for storing the set
of characteristics of a node, one can decide in polynomial time whether an
iso-quadruple ξ′ ∈ Π(ξ) is a z′-characteristic. Thus, for an iso-quadruple ξ in
Γ (H, z), we can decide in polynomial time whether ξ is a z-characteristic if the
set of z′-characteristics has already been computed. However, |Γ (H, z)| can be
exponential in the size of H if only its treewidth is restricted.

Join Nodes: If z is a join node then it has two children z1 and z2 with bags
satisfying Xz = Xz1∪Xz2 . From the sets of characteristics relative to the children
of z, the set of z-characteristics can be computed by using the following lemma:

Lemma 4. Let z be a join node in TD(G) with children z1 and z2, and let
ξ = (S,D,K, ψ) ∈ Γ (H, z) be an iso-quadruple. Then ξ ∈ Γch(H, z) iff there
exist (S1,D1,K1, ψ1) ∈ Γch(H, z1) and (S2,D2,K2, ψ2) ∈ Γch(H, z2) such that

(i) Si = {v ∈ S : ψ(v) ∈ Xzi} for i = 1, 2,
(ii) the connected components of D are partitioned into D1 and D2,
(iii) for i = 1, 2, ψi(v) = ψ(v) for every v ∈ Si, and
(iv) ψ preserves the labels and the edges.

By condition (ii) above we have to take the set of all possible partitionings
of a set D of connected components, which is exponential in the number of
connected components of D. Thus, the situation is much worse for join nodes
than for separator nodes because not only the number of z-characteristics can
be exponential, but the computation of a particular z-characteristic may involve
exponentially many tests.

In case of log-bounded fragmentation graphs, the set of characteristics can be
computed in polynomial time for separator and join nodes as well [9]. If, how-
ever, we do not assume any further restrictions on connected graphs of bounded
treewidth, the above bottom-up evaluation may require exponential time.
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4.2 Subgraph Isomorphism between Graphs of Bounded Treewidth

In this section we show that the subgraph isomorphism algorithm described
above can be integrated into Algorithm 1 in such a way that for any strong
candidate pattern H (i.e., which satisfies conditions (i) and (ii) in line 6 of
Algorithm 1) and for any transaction graph G ∈ DB, H ≤ G can be decided in
time polynomial in the combined size of H , G, and the set of frequent patterns
listed before H . The key observation is that it is sufficient to compute only
polynomially many characteristics for H and to use the characteristics of the
frequent patterns computed before H . We recall that Algorithm 1 lists the set
of frequent patterns with levelwise search. Thus, all connected subgraphs H ′

of H have already been processed in the frequency counting step. One of the
changes in the algorithm is that for every transaction graph G, we compute a nice
tree-decomposition TD(G) in a preprocessing step and use this decomposition
during the entire mining process. This is necessary for the reutilisation of the
characteristics computed for the frequent patterns in earlier steps.

Non-Redundant Iso-Quadruples. We start with a definition that will be
used to determine the set of characteristics of a strong candidate pattern H
relative to a node, which cannot be recovered from the set of characteristics of the
frequent patterns computed before H . Let H1, H2, and G be connected graphs
of bounded treewidth, TD(G) be the nice tree-decomposition of G computed in
the preprocessing step, and z be a node in TD(G). Let ξ1 = (S1,D1,K1, ψ1) ∈
Γ (H1, z) and ξ2 = (S2,D2,K2, ψ2) ∈ Γ (H2, z) be iso-quadruples relative to z.
We say that ξ1 is equivalent to ξ2, denoted ξ1 ≡ ξ2, if there is an isomorphism π
between K1 and K2 such that π is a bijection between S1 and S2 and ψ1(v) =
ψ2(π(v)) for every v ∈ S1. The proof of the proposition below follows directly
from the definitions.

Proposition 1. Let ξ1 and ξ2 be equivalent iso-quadruples relative to a node z
of TD(G). Then ξ1 is a z-characteristic iff ξ2 is a z-characteristic.

In order to utilise the information computed previously, for each node z in
TD(G), we store the set of z-characteristics computed for the frequent patterns
listed earlier by the algorithm. Proposition 1 above implies that it is sufficient
to store only one representative z-characteristic from each equivalence class of
the set of z-characteristics. The following definition will be used many times in
what follows. An iso-quadruple ξ ∈ Γ (H, z) of a strong candidate pattern H is
redundant if there is an equivalent iso-quadruple in Γ (P, z) for some frequent
pattern P computed before H . The set of non-redundant iso-quadruples of a
pattern H relative to a node z in TD(G) is denoted by Γnr(H, z).

For a strong candidate pattern H and iso-quadruple ξ ∈ Γ (H, z), we have to
test whether ξ is a z-characteristic of TD(G) only when ξ is non-redundant; if ξ
is non-redundant, we add it to the set of characteristics stored for z only if it is a
z-characteristic. The number of iso-quadruples of a pattern relative to a node z
can be exponential. Theorem 2 below is of special importance for the main result
of this paper, as it implies that the number of non-redundant iso-quadruples of
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a strong candidate pattern is always bounded by a polynomial of the combined
size of the pattern and the largest graph in the transaction database. In the
following lemma we give an upper bound on the number of non-redundant iso-
quadruples of a pattern relative to a node. Due to space limitations, we omit the
proof which is based on combinatorial arguments.

Lemma 5. Let H be a strong candidate pattern generated by levelwise search
and let z be a node in TD(G) for some transaction graph G. Then |Γnr(H, z)|
is bounded by O

(
|V (H)|k+1

)
.

Using the above lemma, we can state the following result concerning non-
redundant iso-quadruples of a pattern.

Theorem 2. In order to decide H ≤ G, it is sufficient to check for at most
O
(
|V (G)| · |V (H)|k+1

)
iso-quadruples of H, whether they are characteristics rel-

ative to some node of TD(G).

Proof. To decide H ≤ G, it is sufficient to check non-redundant iso-quadruples.
The statement then follows directly from Lemma 5 by noting that the size of
TD(G) is linear in that of G [3]. ��

By Lemmas 3 and 4, for a node z in TD(G), the set of z-characteristics is
computed from the sets of z′-characteristics of the children z′ of z. Looking up
from the set of z′-characteristics, one can decide in time polynomial in the size
of H , whether an iso-quadruple ξ = (S,D,K, ψ) is a z′-characteristic. We omit
the details of this technical result from this short version. The key is that we
color each vertex u ∈ S of K by ψ(u) ∈ Xz′ and compute a canonical string
representation of this colored graph obtained from K. This canonical string
representation is unique modulo isomorphism and can be computed in time
polynomial in the size of K. Storing the canonical string representation of the
z′-characteristics in some advanced data structure, e.g., in prefix trees, we can
decide in linear time, whether there exists a characteristic equivalent to ξ among
the set of z′-characteristics computed so far for the frequent patterns.

Deciding Subgraph Isomorphism. We now turn to the question of how to
decide subgraph isomorphism using only non-redundant characteristics. Let H
be a strong candidate pattern generated by levelwise search. For a transaction
graph G and node z in TD(G), let Σ(z) and Γnr,ch(H, z) denote the set of all
non-redundant z-characteristics computed for the frequent patterns listed before
H and the set of non-redundant z-characteristics computed for H , respectively.
Let r be the root of TD(G). Then Lemma 1 and Proposition 1 together imply
that H ≤ G if and only if there are iso-quadruples ξ = (S,D, H, ψ) ∈ Γ (H, r)
and ξ′ ∈ Σ(r) ∪ Γnr,ch(H, r) such that ξ ≡ ξ′. This condition can be decided
efficiently, as (i) there are at most O

(
|V (H)|k+1

)
iso-quadruples of H relative

to r that have to be tested, (ii) |Σ(r)∪Γnr,ch(H, r)| is bounded by a polynomial of
the combined size of the input and the set of frequent patterns computed before
H , and (iii) equivalence between iso-quadruples can be decided in polynomial
time (see the remarks before this paragraph).
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Algorithm 2. Non-Redundant Characteristics

Require: connected graphs H,G of treewidth at most k, a nice tree-decomposition
TD(G) of G with nodes associated with Σ(w) for every node w in TD(G), and a
node z in TD(G)

Ensure: set Γnr,ch(H,z) of non-redundant z-characteristics
1: Γnr,ch(H,z) = ∅
2: compute the set Γnr(H,z) of non-redundant iso-quadruples of z
3: forall ξ = (S, D, K, ψ) ∈ Γnr(H,z) do
4: if z is a leaf node then
5: add ξ to Γnr,ch(H,z) if D = ∅ and ψ is a subgraph isom. from H [S] to G[Xz ]
6: else if z is a separator node with child z′

7: call the algorithm recursively with parameters H , G, TD(G), and z′

8: add ξ to Γnr,ch(H,z) if ∃ξ′ ∈ Π(ξ) and ξ′′ ∈ Σ(z′) ∪ Γnr,ch(H,z′) s.t. ξ′ ≡ ξ′′

9: else // z is a join node with children z1 and z2

10: Γnr,ch(H,z1) := Non-Redundant Characteristics(H,G, TD(G), z1)
11: Γnr,ch(H,z2) := Non-Redundant Characteristics(H,G, TD(G), z2)
12: add ξ to Γnr,ch(H,z) if ∃ξi ∈ Σ(zi) ∪ Γnr,ch(H,zi) for i = 1, 2 s.t. ξ ≡ ξ1 ⊕ ξ2

13: return Γnr,ch(H,z)

Thus, we only have to discuss the computation of the Γnr,ch(H, z)’s for the
nodes in TD(G). Before going into the details, we first note that if H is frequent
then Γnr,ch(H, z) must be added to Σ(z) after the frequency counting step in
Algorithm 1. A recursive algorithm computing Γnr,ch(H, z) for every node z in
TD(G) is given in Algorithm 2. For the current node z in TD(G), the algorithm
first sets Γnr,ch(H, z) to ∅ and then computes the set Γnr(H, z) of non-redundant
iso-quadruples relative to z. As shown earlier, Γnr(H, z) can be computed in time
polynomial in the combined size of H and G, as they have bounded treewidth.
Then, depending on the type of z, for every iso-quadruple ξ = (S,D,K, ψ) in
Γnr(H, z), one of the following steps is performed:

z is a Leaf Node: We can apply Lemma 2 for this case, but only for the ele-
ments in Γnr(H, z).

z is a Separator Node: The proof of the lemma stated below for this case
follows directly from Proposition 1 and Lemma 3. We recall that Π(ξ) de-
notes the set of iso-quadruples in Γ (H, z) satisfying the conditions before
Lemma 3.

Lemma 6. Let H be a strong candidate pattern generated by levelwise search,
z be a separator node in TD(G), z′ be the child of z, and ξ ∈ Γnr(H, z). Then ξ
is a z-characteristic iff there exist ξ′ ∈ Π(ξ) and ξ′′ ∈ Σ(z′)∪ Γnr,ch(H, z′) such
that ξ′ ≡ ξ′′.

Since Π(ξ) has at most (k + 1)! · |V (H)|k+1 elements and it can be computed
efficiently, we can decide in polynomial time whether it has an element equivalent
to an element of Σ(z′) ∪ Γnr,ch(H, z′), that is, whether ξ is a z-characteristic.
Combining this result with Lemma 5, we have that Γnr,ch(H, z) can be computed
in time polynomial in the size of H .
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z is a Join Node: Let z1 and z2 be the children of z and let ξ1 = (S1,D1,K1,
ψ1) and ξ2 = (S2,D2,K2, ψ2) be z1- and z2-characteristics, respectively. We
may assume w.l.o.g. that K1 and K2 are vertex disjoint. Then the join of ξ1
and ξ2, denoted ξ1 ⊕ ξ2, is an iso-quadruple ξ = (S,D,K, ψ), where

– S = {wu : u ∈ ψ1(S1) ∪ ψ2(S2)} is a set of new vertices,
– D = D1 ∪ D2,
– K is the graph obtained by adding to the set D of connected components (i)

the set S of vertices, (ii) the edge {wψi(u), wψi(v)} for all u, v ∈ Si such that
{u, v} ∈ E(Ki), and (iii) the edge {wψ(u), v} for every u ∈ Si and v ∈ V (Di)
such that {u, v} ∈ E(Ki) for i = 1, 2, and

– ψ : S → Xz is defined by ψ(wu) = u for every wu ∈ S.

Notice that |S| ≤ k + 1 because ψ1(S1) ∪ ψ2(S2) ⊆ Xz1 ∪Xz2 = Xz and |Xz| ≤
k + 1, as z is a join node. Using the above definition, we give a lemma char-
acterizing the set of z-characteristics of a candidate pattern H in terms of z1-
and z2-characteristics computed before H . Although the lemma is used only for
non-redundant iso-quadruples, we formulate it in a general form. The following
lemma follows from Proposition 1 and Lemma 4.
Lemma 7. Let H be a strong candidate pattern generated by levelwise search,
z be a join node in TD(G), and z1 and z2 be the children of z. Let ξ ∈ Γ (H, z).
Then ξ is a z-characteristic iff there exist ξ1 ∈ Σ(z1) ∪ Γnr,ch(H, z1) and ξ2 ∈
Σ(z2) ∪ Γnr,ch(H, z2) such that ξ1 ⊕ ξ2 ≡ ξ.
Using the arguments applied to separator nodes, we have that Γnr,ch(H, z) can be
computed in time polynomial in the combined size of H and the set of frequent
patterns computed before H ; the second term follows from the facts that (i)
the number of pairs (ξ1, ξ2) for which the join must be computed and tested
is at most |Σ(z1) ∪ Γnr,ch(H, z1)| · |Σ(z2) ∪ Γnr,ch(H, z2)|, and (ii) for i = 1, 2,
|Σ(zi) ∪ Γnr,ch(H, zi)| is bounded by the combined size of H and the set of
frequent patterns computed before H . Putting together Lemmas 6 and 7 with
the remarks above, we have the following lemma:
Lemma 8. For every strong candidate pattern H generated by levelwise search
and for every G in DB, both of bounded treewidth, Algorithm 2 is correct and
computes Γnr,ch(H, z) for every node z in TD(G) in time polynomial in the
combined size of H, G, and the set of frequent patterns computed before H.
The following theorem states that subgraph isomorphism between graphs of
bounded treewidth can be decided in incremental polynomial time.
Theorem 3. Let DB be a database of transaction graphs of treewidth at most
k and H be a strong candidate pattern of treewidth at most k which is generated
by a levelwise search algorithm mining frequent connected subgraphs from DB.
Let TD(G) be some fixed nice tree-decomposition used by the mining algorithm
and let r be the root of TD(G). Then H ≤ G iff

∃(S,D, H, ψ) ∈ Γ (H, r) equivalent to some ξ ∈ Σ(r) ∪ Γnr,ch(H, r) . (1)

Furthermore, condition (1) can be decided in time polynomial in the combined
size of H, G, and the set of frequent patterns computed before H.
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Algorithm 3. Frequent Connected Subgraph Mining in Graphs of

Bounded Treewidth

Require: database DB of graphs of treewidth at most k, integer t > 0
Ensure: all frequent connected subgraphs

// preprocessing of the transaction graphs
1: forall G in DB do
2: compute a nice tree-decomposition TD(G) of G
3: forall node z in TD(G) do Σ(z) := ∅

// computing frequent subgraphs
4: let S0 be the set of frequent graphs consisting of a single labeled vertex
5: print S0

6: for (l := 0; Sl 
= ∅; ++l) do
7: Cl+1 := Sl+1 := ∅
8: forall P ∈ Sl do
9: forall H ∈ ρ(P ) satisfying tw(H) ≤ k ∧ H 
∈ Cl+1 ∧ ρ−1(H) ⊆ Sl do

10: add H to Cl+1

11: if SupportCount Treewidth(H) ≥ t then // H is frequent
12: print H and add it to Sl+1

13: forall G in DB such that G is marked do
14: forall node z in TD(G) do Σ(z) := Σ(z) ∪ Γnr,ch(H,z)

15: function SupportCount Treewidth(H)
16: counter := 0
17: forall G in DB do
18: unmark G
19: r := root of TD(G)
20: Γnr,ch(H, r) := Non-Redundant Characteristics(H,G, TD(G), r)
21: if ∃(S,D, H,ψ) ∈ Γ (H,r) equiv. to some ξ ∈ Σ(r) ∪ Γnr,ch(H, r) then
22: counter++ // H ≤ G
23: mark G
24: return counter

Proof. The first part of the theorem holds by Lemma 1 and Proposition 1.
Regarding the second, i.e., complexity part, we first note that by Lemma 8,
Γnr,ch(H, r) can be computed in time polynomial in the combined size of H , G,
and the set of frequent patterns computed before H . Furthermore, the number of
iso-quadruples in Γ (H, r) to be checked in (1) is bounded by (k+1)! · |V (H)k+1|.
The statement then follows by noting that |Σ(r) ∪ Γnr,ch(H, r)| is bounded by
a polynomial of the combined size of H and the set of frequent patterns listed
before H and that it can be decided in time linear in the size of H whether an
iso-quadruple ξ ∈ Γ (H, r) is an element of Σ(r) ∪ Γnr,ch(H, r). ��

4.3 The Mining Algorithm

Combining the results of the previous sections, we now show that the FCSM
problem can be solved in incremental polynomial time from graphs of bounded
treewidth. A listing algorithm solving this problem is given in Algorithm 3.
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In the preprocessing step (lines 1–3 of Algorithm 3), we first compute a nice
tree decomposition TD(G) for every transaction graph G and initialize the set
variables Σ(z) for every node z in TD(G). Since a nice tree-decomposition of
treewidth k can be computed in linear time for graphs of treewidth at most k [3],
the preprocessing step can be performed in time linear in the size of DB.

Lines 4–14, the main part of Algorithm 3, is an adaptation of the generic
levelwise search Algorithm 1. One of the differences is that in lines 13–14 we
have to update the sets of non-redundant characteristics for frequent patterns.
Since G in Algorithm 1 is now the class of graphs of treewidth at most k, deciding
whether H is an element of G corresponds to checking whether tw(H) ≤ k (see
line 5 and line 9 in Algorithms 1 and 3, respectively). As mentioned above, for
constant k, this can be decided in linear time [3]. Since the sizes of ρ(H) and
ρ−1(H) are both bounded by the size of DB, the size of Cl+1 is bounded by a
polynomial of the combined size of the set of frequent patterns computed before
H , and isomorphism between graphs of bounded treewidth can be decided in
polynomial time [2], the conditions in line 9 of Algorithm 3 can be checked in
time polynomial in the combined size of DB and the set of frequent patterns
listed before H . Finally, by Theorem 3, the subgraph isomorphism (lines 20–21)
can be decided in time polynomial in the combined size of H , G, and the set
of frequent patterns computed before H . Putting all these together, we get the
main result of this paper:

Theorem 4. For graphs of bounded treewidth, the FCSM problem can be solved
in incremental polynomial time.

5 Concluding Remarks

The main result of this paper is formulated in Theorem 4 above. There are only
a few results concerning the complexity of the FCSM problem. In particular, for
arbitrary transaction graphs, this problem cannot be solved in output-polynomial
time, unless P = NP [10]. If, however, the transaction graphs are restricted to
trees then it can be solved in incremental polynomial time [5,11]. The positive
result on trees is generalized to outerplanar graphs in [11]. However, this result
is shown for a constrained subgraph isomorphism, called BBP subgraph iso-
morphism, that maps biconnected components to biconnected components and
bridges to bridges. Since trees have no biconnected components, BBP subgraph
isomorphism is equivalent to subgraph isomorphism between trees. As far as
we know, no non-trivial tractable graph classes beyond trees have so far been
identified for FCSM problem.

Since subgraph isomorphism remains NP-complete for connected graphs of
bounded treewidth, our result provides an example of a frequent pattern mining
problem, when the matching operator is NP-hard, but efficient mining is still
possible. To the best of our knowledge, existing pattern mining algorithms are
all resorted to problems with tractable matching operators. Our result shows
that efficient pattern mining is possible even for NP-hard matching operators.
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Deriving and implementing a practical algorithm from the algorithm described
in this paper is an interesting task for future work. This plan is motivated by
practical applications, e.g., in computational drug discovery where molecular
graphs mostly have treewidth at most 3.

We close the paper with an interesting problem: Can the FCSM problem be
solved with polynomial delay for graphs of bounded treewidth?
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Abstract. Model selection is an important and ubiquitous task in ma-
chine learning. To select models with the best future classification per-
formance measured by a goal metric, an evaluation metric is often used
to select the best classification model among the competing ones. A com-
mon practice is to use the same goal and evaluation metric. However, in
several recent studies, it is claimed that using an evaluation metric (such
as AUC) other than the goal metric (such as accuracy) results in better
selection of the correct models. In this paper, we point out a flaw in the
experimental design of those studies, and propose an improved method
to test the claim. Our extensive experiments show convincingly that only
the goal metric itself can most reliably select the correct classification
models.

1 Introduction

Model selection is an important task in machine learning and data mining. In
classification tasks model selection attempts to select the model with the best
future classification performance from (possibly a large number of) competing
models. For example, when we build artificial neural networks for face recogni-
tion, we may vary the number of hidden nodes and other parameters to build
many classification models, and select the best one. Other examples of model
selection include choosing the optimal parameter setting for the Support Vector
Machines, determining the most suitable amount of pruning in building decision
trees, and so on. Clearly, model selection is ubiquitous in machine learning and
machine learning applications.

A leading empirical approach for model selection in classification is to use the
holdout set, and proceeds as follows: to select the model with the best future
classification performance measured by a goal metric, competing models are
evaluated by an evaluation metric, possibly the same as the goal metric, on the
holdout set.1 A natural preference is to use the same metric for both the goal
and evaluation. For example, if the goal is to obtain a classification model with
1 Other empirical approaches are reviewed in Section 2. The goal metric is also called

performance metric, and the evaluation metric is called selection metric [1].
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the highest accuracy on the test sets, accuracy is used to select the most accurate
model on the holdout sets. The intuition is that if your child wants to achieve
the highest SAT score (the goal metric), you child should train to obtain high
SAT scores (the evaluation metric) on (previous) SAT tests (the holdout sets),
rather than train to obtain high scores on the GRE test (a different metric).

Rosset [2] recently conducted an empirical research on model selection for bi-
nary classification with two specific metrics: accuracy and AUC (Area Under the
ROC Curve; see Appendix). He compared the suitability of AUC and accuracy as
the model evaluation metrics when the goal metric is accuracy. He showed that
AUC can better select the correct models than accuracy even when the goal met-
ric is accuracy. The results are quite surprising and puzzling, and no convincing
explanations were given. Nevertheless, several other papers [1,3,4] have since con-
firmed his finding. For example, Huang and Ling [3] studied model selection with
many popular machine learning metrics and claimed that often an evaluation met-
ric different from the goal metric can better select the correct models. Skalak and
Caruana [1] used absolute loss to compare model selection abilities of various met-
rics, and drew similar conclusions. It now seems to be a well-regarded conclusion
in the machine learning community that a different metric can do a better job in
model selection.

In this paper we point out a potential flaw in the experimental design of these
model selection studies: the variance of these metrics when applied to randomly
sampleddatasetswasnot taken into consideration. Supposewehave two competing
models, X and Y , to be selected by an evaluation metric h. If we say X is better
than Y , it should really mean that E(h(X)) (E is the expected value or mean of a
randomvariable) is “reliablybetter” thanE(h(Y )) on the sampleddatasets, rather
than simply E(h(X)) > E(h(Y )), as in the previous studies.2 The same is true for
the goal metric g. This is because metrics have varianceswhen applied to randomly
sampled datasets, and thus, E(h(X)) > E(h(Y )) by a minute amount does not
really indicate that X is better than Y . Thus, a significance test must be employed
in comparison so that the conclusion on which model is indeed better is reliable.

We propose an improved method for proper model selection by incorporating
statistical significance tests in the comparison, and carefully re-implementing Ros-
set’s experiments with more datasets and algorithms. Not surprisingly, “AUC can
better selectmodelsmeasuredby accuracy” isno longer true.We then includemore
metrics and more model selection approaches, and show convincingly that, in all
cases, the goal metric itself is the best evaluation metric for model evaluation. We
hope that with the proper model selection method proposedhere, we can settle this
controversial issue once for all.

2 Review of Previous Works

Model selection has been extensively studied by researchers in the machine learn-
ing and statistics communities. Here we review several relevant approaches.

2 We normalize all metrics in this paper so that the larger the value, the better the model.
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Rosset [2] performed extensive experiments to study the suitability of AUC
and accuracy to select highly accurate models. He assumed that the training set
is very small (10% of the original dataset), and thus no data can be used as the
holdout sets in model selection. Therefore, he used “the test sets approach” in
his study of model selection.

Rosset’s experiments are conducted in the following way: First, the original
dataset is split randomly into the training set (10%) and the test set (90%). Second,
two competing modelsX and Y (they can be two decision trees with different prun-
ing levels) are built on the training set. Third, X and Y ’s performance on the test
set is estimated. This is done by splitting the test set into 100 equal-sized, stratified3

subsets, and applying X and Y on the 100 subsets by the goal metric g (i.e., accu-
racy).Theaverage (mean)g valueon the100 test subsets is denotedasE(g(X))and
E(g(Y )) respectively. If E(g(X)) > E(g(Y )), then model X is regarded as better
than model Y on the test set, in terms of the goal metric g. IfE(g(X)) = E(g(Y )),
then they are regarded as the same. Note that no significance test is performed for
the comparison, and thus, such conclusion may not be reliable.

In the next step, models X and Y are evaluated by the evaluation met-
ric h (AUC or accuracy) on each of the 100 test subsets. For each subset, if
h(X) and h(Y ) are consistent with E(g(X)) and E(g(Y )), then h selects the
model correctly. That is, if h(X) > h(Y ),4 and E(g(X)) > E(g(Y )), then h
selects the right model; otherwise h selects the wrong one. The number of times
(among 100) when h selects the correct model is noted, and this represents how
well h can select the correct model. The larger the number, the better the evalu-
ation metric in model selection. Using this method, Rosset showed that AUC can
better select the correct models than accuracy when the goal metric is accuracy.

Huang and Ling [3] explored the performance of model selection for classifi-
cation tasks for eight popular machine learning metrics of accuracy, AUC, lift,
break-even point, F-metric, average precision, RMS (Root Mean Square) error,
and MXE (Mean Cross Entropy) 5 by following Rosset’s method (without us-
ing the significance test). They showed that generally the metrics of RMS and
MXE are the best evaluation metrics, followed by AUC, average precision, and
F-metric, no matter what goal metrics are. That is, better model selection can
be achieved with a different evaluation metric from the goal metric.

Skalak and Caruana [1] studied the robustness of the evaluation metric when
the goal metric is unknown. They used the absolute loss for measuring the model
selection error but again no variance is calculated for the loss. They showed that
when the models are well calibrated for the probability outputs, and the available
holdout data is limited, MXE is the most robust one, while other metrics, such
as F-metric, lift and accuracy, performed poorly.

3 Stratified subsets refer to partitions of a dataset into equal-sized subsets with the same
class distribution.

4 Note that the significance test is not performed here because each subset is just one
dataset so there is no variance. But again, if h(X) > h(Y ) by a minute amount, it
is really not reliable to conclude that X is better than Y .

5 See Appendix for more details on some of these metrics.
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In addition to “the test sets approach” for model selection [2], another (more
popular) empirical approach is to use separate holdout sets to estimate model’s
future performance. We will study this approach extensively later in the paper.
Another empirical model selection approach is called complexity-penalization,
which assigns a complexity value to each model and chooses the best model
that minimizes a predefined trade-off function combining the model complexity
and empirical error. Many variants of this approach were proposed, including
structural risk minimization [5,6], the minimum description length principle [7],
and regularization [8]. Kearns and Mansour [9] theoretically and empirically
compared the above two approaches and demonstrated that in some cases the
holdout set approach has an advantage of small generalization errors over the
complexity-penalization method. In addition, the holdout set approach is very
robust and hard to beat compared to other approaches [10,11].

3 Selecting Models Properly with Significance Test

Rosset studied “the test sets approach” of model selection on accuracy and
AUC on the UCI dataset “adult” [12] with naive Bayes and k-nearest neigh-
bour (KNN) learning algorithms. In the following subsections, we first replicate
Rosset’s experiments (without the significance test) but we include more UCI
datasets and learning models. We use five UCI datasets: “adult” (included in
Rosset’s experiments), “letter”, “kr-vs-kp”, “page blocks”, and “pen digits”, in
our experiment. In the original datasets, only “adult” and “kr-vs-kp” are binary;
the rest are multiclass. All multiclass datasets are converted into binary datasets
by assigning some classes to the positive class and the rest to the negative class.
The properties of the datasets are shown in Table 1. The last column is the ratio
of the positive class in the original and converted binary datasets.

We choose three popular learning algorithms in our experiments: decision
tree, naive Bayes and k-nearest neighbour (the last two are included in Rosset’s
experiments). For each learning algorithm we build two competing models with
different parameter settings. For the decision tree, we build two trees with and
without pruning. For naive Bayes, we use different numbers of attributes in the
datasets to train two classifiers. More specifically, we use the first 8 and 10
attributes for the “adult” dataset, first 25 and 35 attributes for “kr-vs-kp”, first
10 and 11 attributes for “letter”, first 5 and 8 attributes for “page blocks”, and

Table 1. UCI datasets used in our experiments

Dataset Size Attribute # Class # Positive Class Ratio
Adult 30162 14 2 24.8%

Kr-vs-kp 28060 36 2 47.8%
Letter 20000 16 26 38.2%

Page blocks 5473 10 5 10.2%
Pen digits 10992 16 10 30%
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Table 2. Ratio of correct model selection with accuracy and AUC using Rosset’s
method

Dataset Decision tree KNN Naive Bayes
accuracy AUC accuracy AUC accuracy AUC

Adult 0.74 0.68 0.65 0.93 0.53 0.67
Kr-vs-kp 0.77 0.74 0.88 0.73 0.78 0.75

letter 0.54 0.57 1 1 0.57 0.41
Page blocks 0.72 0.71 0.96 0.51 0.59 0.5
Pen digits 0.65 0.63 0.99 0.88 0.54 0.7

first 8 and 10 attributes for “pen digits”. For the k-nearest neighbour, we build
two models with k = 5 and k = 50.

3.1 Model Selection Using Test Sets

We first replicate Rosset’s experiments (but with more datasets and learning
algorithms) to explore the suitability of accuracy and AUC in model selec-
tion when the goal metric is accuracy. (See Rosset’s experimental method in
Section 2). We report our experimental results in Table 2. Our results confirm
Rosset’s finding: the ratios measuring correct model selection are higher when
AUC is used as the evaluation metric than when accuracy is used, for the adult
dataset with KNN and naive Bayes. However, it is surprising that in almost all
other cases, accuracy can better select models than AUC. More specifically, in a
total of 15 cases (3 learning algorithms and 5 datasets), accuracy is better than
AUC in 10 cases, and the same in one case. As Rosset used limited datasets
and learning algorithms, his conclusion that AUC can better select models than
accuracy when the goal metric is accuracy seems to be unreliable.

Nevertheless, Rosset’s experimental design (as well as those in several other
studies of model selection [1,3,4]) may lead to unreliable conclusions. That is, it is
unreliable to conclude which model is better when a simple comparison is used on
two metrics or two means of metrics. To improve the experimental design, we use
the significance test (both the t-test and the sign test are studied) in comparison.
More specifically, following the notation in Section 2, when deciding which model
has a better performance on the 100 test subsets, instead of simply comparing
E(g(X)) and E(g(Y )), a paired t-test with 95% confidence level is performed to
see if one is larger, or if they are not statistically significant. To decide which
model is better using the evaluation metric h, Rosset simply compared h(X) and
h(Y ) on each of the 100 test subsets. For one test subset, the t-test cannot be
performed. We modify Rosset’s approach by re-partitioning randomly the test
set into 100 test subsets, and compare the average evaluation scores, E(h(x))
and E(h(Y )), with the same paired t-test to see if one model is better, or if they
are indifferent. If this outcome is the same as the one with the goal metric, then
h selects the right model. Notice that we use the same number of subsets (100
here) and the same t-test (both with 95% confidence level) on both evaluation
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Table 3. Ratio of correct model selection with t-test using the test sets

Dataset Decision tree KNN Naive Bayes
accuracy AUC accuracy AUC accuracy AUC

Adult 0.99 0.7 0.97 0.89 0.97 0.08
Kr-vs-kp 0.92 0.37 1 0.83 0.89 0.48

letter 0.97 0.42 1 1 0.93 0.18
Page blocks 0.98 0.62 1 0 0.98 0.19
Pen digits 0.93 0.53 1 0.94 0.93 0.59

and goal metrics. Thus, the “sensitivity” on the variance of the metrics is the
same. See more discussions in Section 4.

This process is repeated 100 times and we obtain the number of cases when
AUC and accuracy select the right model respectively. The results are shown
in Table 3. From the table, we can see that with all datasets and all learning
algorithms, accuracy always does better, and in most cases much better, than
AUC (except for one case they tie). Accuracy achieves a very high ratio of
correctness (≥ 0.89) while AUCs scores are much lower.6 For all 15 cases (3
learning algorithms and 5 datasets), AUC tends to choose the wrong model
more often (ratios of correctness < 0.5) in 7 cases. These experimental results
contradict the claim that AUC performs better than accuracy in model selection
using the test sets, after the t-test is employed in comparison.

So far we use the t-test as the significance test in comparing means of metrics
to draw reliable conclusion about model selection. Here we show that another
popular significance test, the sign test [13] 7, is equally effective in proper model
selection. Table 4 lists the outcome of correct model selection using the sign
test, instead of the t-test as in Table 3. The results are similar to Table 3: in all
cases, accuracy can better select more accurate models than AUC. We believe
that the choice of the significance test does not matter, as long as the same
significance test is applied on both the evaluation and goal metrics obtained
from the sampled datasets. In the rest of the paper, only results with the t-test
is reported.

3.2 Model Selection Using Holdout Sets

In this section we perform experiments using the holdout set approach of model
selection with the proper significance test. In this approach, the original dataset
is split randomly into three non-overlap sets: the training set (10%), the holdout
6 Note that due to sampling variations between training, holdout, and test sets, occa-

sionally accuracy may select the wrong model with the highest accuracy. Also, due
to the consistency between accuracy and AUC (see Section 4), AUC may sometimes
also choose the most accurate model. Accuracy is simply more likely than AUC in
selecting the most accurate models.

7 The sign test is a non-parametric test used to compare the distribution median with
a given pair of data. This test could be used as an alternative for one-sample Student
t-test. Unlike the t-test, the sign test can work with non-normal distributions.
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Table 4. Ratio of correct model selection with sign test using the test sets

Dataset Decision tree KNN Naive Bayes
accuracy AUC accuracy AUC accuracy AUC

Adult 0.96 0.64 0.94 0.77 0.92 0.19
Kr-vs-kp 0.93 0.42 1 0.78 0.93 0.52

letter 0.94 0.33 1 1 0.90 0.24
Page blocks 0.95 0.67 1 0 0.97 0.21
Pen digits 0.88 0.54 1 0.92 0.94 0.52

set (45%) and the test set (45%). The holdout set and the test set are further
partitioned into 50 subsets. Then two competing models are built on the training
set, and they are applied to the 50 test subsets by the goal metric g. Their
averages are compared with the paired t-test. The same is applied to the 50
holdout subsets by the evaluation metric h. If the two outcomes are the same,
then h selects the correct model. The process is repeated 100 times and the
number of cases of correct model selection is noted.

The results are shown in Table 5. We can see again that in all cases accuracy
better selects the correct models than AUC (except for one case when the two
tie). These results show that accuracy is again much better in selecting the
correct model than AUC if the goal metric is accuracy using the holdout set
approach.

We note that the numbers in Table 5 (using the holdout sets) are generally
smaller than the corresponding ones in Table 3 (using the test sets). We believe
that this is because in the holdout set approach, there is no overlap between
the holdout set and the test set. Thus, it is less likely to select the right models
determined by the test set using the holdout set.

3.3 Model Selection with More Metrics

In this section we explore the model selection ability of other popular metrics
used in machine learning. For example, Root Mean Squared error (RMS) is
widely used in regression to reflect the average deviation of the predicted values
from the true ones. F-measure combines precision and recall, often used in infor-
mation retrieval. Here we choose five commonly used metrics as both evaluation

Table 5. Ratio of correct model selection with t-test using the holdout sets

Dataset Decision tree KNN Naive Bayes
accuracy AUC accuracy AUC accuracy AUC

Adult 0.97 0.62 0.96 0.81 0.76 0.12
Kr-vs-kp 0.83 0.44 1 0.86 0.73 0.56

letter 0.74 0.47 1 1 0.65 0.19
Page blocks 0.88 0.61 1 0 0.78 0.13
Pen digits 0.88 0.56 1 0.9 0.55 0.54
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Table 6. Average ratio of correct model selection using test sets

Goal ⇓ Evaluation ⇒ accuracy AUC F RMS MXE Average
accuracy 0.96* 0.46 0.62 0.57 0.47 0.57
AUC 0.42 0.97* 0.32 0.77 0.74 0.7
F 0.6 0.31 0.97* 0.43 0.35 0.39
RMS 0.63 0.75 0.44 0.94* 0.77 0.78
MXE 0.49 0.74 0.34 0.78 0.98* 0.8
Average 0.6 0.68 0.37 0.78 0.81 0.96*

and goal metrics. The five metrics are: accuracy, AUC, F-measure, Root Mean
Squared error (RMS), and Mean Cross Entropy (MXE). Definitions of these
metrics can be found in Appendix.

Caruana and Niculescu-Mizil [14] suggested that when the goal metric is un-
known during model construction and model selection, one could use the average
of several different metrics as the goal metric. Here we use the average of the
five single metrics mentioned above, and use it as both the goal and evaluation
metrics. Thus, there is a total of six metrics in this experiment.

We perform the same model selection experiments with the t-test as in
Sections 3.1 and 3.2. Each of the six metrics is used for the goal metric as well
as for the evaluation metric. The results of the test set approach are shown in
Table 6, with the goal metrics in the row and evaluation metrics in the column.
Each number in the table is the average of 15 scores for that pair of metrics over
five datasets and three learning algorithms. For example, 0.96 in Table 6 for
accuracy to select accuracy is the average of 15 numbers in Table 3 for accuracy
to select accuracy over five datasets and three learning algorithms. We put a *
next to the largest number in each row to indicate that not only the average
(of the 15 scores) is the largest, but each individual score is also larger or the
same compared to another evaluation metric (as in the case for accuracy and
AUC in Table 3). We can see that numbers in the diagonal line are the largest
in each row, and each largest number has a * next to it. This suggests that in
general when the evaluation and goal metrics are the same, correct models can
always be more reliably selected. This is also true for the average of the five
single metrics: when the goal metric is the average of the five metrics, using the
same metric itself (the average) as the evaluation metric is best for model selec-
tion, compared to any other single metric. The results using the holdout sets are
similar, as seen in Table 7. These results generalize the conclusion we obtain in
the previous sections regarding accuracy and AUC. It shows convincingly that
we should always use the same metric for evaluation and goal in model selection.

Although we can use the average of several metrics as a robust goal metric
when the goal metric is unknown, sometimes we must choose a single metric for
model construction, optimization, and selection. Tables 6 and 7 can also tell us
which single metric is best if the goal metric is the average. From the bottom
row of the two tables, we can see that, for both the test set approach and the
holdout set approach, MXE has the largest ratio for correct model selection,
followed by RMS, AUC, accuracy, and last, F. This means that MXE is the
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Table 7. Average ratio of correct model selection using holdout sets

Goal ⇓ Evaluation ⇒ accuracy AUC F RMS MXE Average
accuracy 0.85* 0.52 0.66 0.61 0.47 0.63
AUC 0.51 0.87* 0.4 0.8 0.77 0.72
F 0.67 0.39 0.91* 0.52 0.54 0.48
RMS 0.58 0.76 0.49 0.89* 0.81 0.8
MXE 0.43 0.76 0.52 0.8 0.9* 0.83
Average 0.59 0.72 0.5 0.8 0.82 0.89*

most robust metric for model evaluation if the goal metric is the average. This
confirms with the conclusion of [1]. Only in this situation should we use a metric
(such as MXE) different from the goal metric (such as the average) in model
selection.

4 Discussion

In this section we investigate why contradicting conclusions on accuracy and
AUC can be drawn with and without the t-test. We provide a detailed analysis
for selecting the more accurate model by accuracy or AUC from two competing
decision trees on the “pen digits” dataset using the holdout sets (as discussed
in Section 3.2). We denote the two competing decision tree models as X and Y .
Among 100 repeated runs (cases) of model selection with the t-test, there are
13 cases when X is better than Y , 65 cases when X equals to Y , and 22 cases
when X is worse than Y , all evaluated by accuracy with the t-test on the test
sets. This is regarded as the “ground truth”. We depict this distribution roughly
in Figure 1(a).

We then count how each of the three outcomes (X > Y , X = Y , and X < Y )
is classified by the evaluation metrics of accuracy and AUC respectively with
the t-test. The results are depicted in Figure 1 (b) and (c) respectively. From

65 

13 

22 X=Y 

X<Y 

X>Y 

67 

11 

22 

4

2

3

3

X=Y 

X<Y 

X>Y 

52 

34 

14 

5

5

8
X=Y 

X<Y 

X>Y 21 

5
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Fig. 1. The distribution of cases that goal metric accuracy, evaluation metric accuracy
and AUC evaluate models X and Y
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Figure 1 (b), we can see clearly that when accuracy is used to select models,
there is a small number of confusing cases between X > Y and X = Y (6
cases), and between X < Y and X = Y (6 cases). This is again due to sampling
variations in the training, holdout, and test datasets. There is no confusing case
between X > Y and X < Y . However, when AUC is used as the evaluation
metric, we can see from Figure 1 (c) that there is a huge number of confusing
cases between X > Y and X = Y (26 cases), and the number of confusing cases
between X < Y and X = Y , and between X > Y and X < Y are also larger
(13 cases and 5 cases respectively).

The explanation is that AUC and accuracy are different metrics. As shown
in [15], although AUC and accuracy are largely consistent, there are cases when
accuracy and AUC contradict each other. Furthermore, AUC is more “sensitive”
(or discriminating) than accuracy [15]. That is, AUC often treats two objects
with the same accuracy as different. This implies that AUC is likely to be “too
sensitive” in comparing two objects when their accuracy values are statistically
indifferent. We can see this from Figure 1 (c): there is a large number of X = Y
cases (21 cases) being identified as X > Y .

One might argue that overly sensitive metric may not be a problem if we
only care about correctly identifying different models. That is, if two models are
statistically different, we must identify the better one; but if they are not, it will
not hurt if we say one of them is better. Under this assumption, if we calculate
the correct “recall” of the X > Y and X < Y cases (a total of 13 + 22 = 35
cases), we can see from Figure 1 (b) that the recall with accuracy is (13− 4) +
(22 − 3) = 28. On the other hand, from Figure 1 (c), the recall with AUC is
(13−5)+(22−8−5) = 17. Thus, under the assumption that we only care about
correctly identifying the statistically different models, accuracy is still better
than AUC for this dataset. If one assumes that correctly identifying if a model
is better or indifferent statistically is equally important in model selection, our
results in previous sections show that in all cases, the goal metric should be
used to select the right models, and such model selection outcomes (with the
significance test) are reliable.

From this analysis, we can conclude that different metrics may contradict each
other, and may have different sensitivity. Without the significance test in model
selection, it is not reliable to select better models, and such a study may lead
to the wrong conclusion that an evaluation metric different from the goal can
better select models. When the paired t-test or sign test is used in comparing
models’ performance, we conclude convincingly that we should always use the
goal metric to evaluate and select models.

5 Conclusion

In this paper we investigate model selection with different metrics. We first point
out a flaw in the experimental design in several previous studies which led to an
erroneous conclusion that a different evaluation metric can better select models.
The problem lies in the lack of significance test when comparing competing
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models. This may result in statistically indifferent models being regarded as
different, and vice versa. With the proper use of the significance test (such as
the t-test and the sign test) in model selection, we show convincingly that in all
cases (with six metrics, three learning algorithms, five UCI datasets, and using
the test sets approach or the holdout sets approach), the same goal metric is the
best evaluation metric for model selection.

Occasionally the goal metric and evaluation metric cannot be the same. For
example, the goal metric may be unknown during model selection. We will study
this problem further in our future work.
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Appendix: Metrics Used in This Paper

Accuracy: Accuracy is the most commonly used performance metric in Machine
Learning. For a classification task, accuracy is the percentage of the correctly
classified examples in all examples.

F-metric: F-metric combines precision and recall as a single metric. It is defined
as the harmonic mean of the precision and recall.

F =
2 ∗ precision ∗ recall
precision + recall

AUC: The Area Under the ROC Curve, or simply AUC, is a single-number met-
ric widely used in evaluating classification algorithms. AUC reflects the overall
ranking performance of a classifier. For a binary ranked list, Hand and Till [16]
present the following simple formula to calculating AUC

AUC =
S0 − n0(n0 + 1)/2

n0n1

where S0 is the sum of the ranked positions of all positive examples. n0 and n1

are the numbers of positive and negative examples.

RMS: Widely used in regression, RMS (Root Mean Square error) reflects the
average deviation of all predicted values from the true values. For K instances,
suppose that the true probability value and the predicted probability value for
an instance Ii are Tar(Ii) and Pred(Ii),

RMS =

√√√√ 1
K

K∑
i=1

[Tar(Ii)− Pred(Ii)]2

MXE: MXE (Mean Cross Entropy) is used to measure in average how close all
predicted probabilities are to the true probabilities. It can be shown that min-
imizing the cross entropy gives rise the maximum likelihood hypothesis. When
using the same notations as in RMS, MXE is defined as

MXE = − 1
K

K∑
i=1

{Tar(Ii) ∗ log[Pred(Ii)] + (1 − Tar(Ii)) ∗ log[1− Pred(Ii)]}
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Abstract. In this paper, we propose approaching the problem of clas-
sifier evaluation in terms of a projection from a high-dimensional space
to a visualizable two-dimensional one. Rather than collapsing confusion
matrices into a single measure the way traditional evaluation methods
do, we consider the vector composed of the entries of the confusion ma-
trix (or the confusion matrices in case several domains are considered
simultaneously) as the performance evaluation vector, and project it into
a two dimensional space using a recently proposed distance-preserving
projection method. This approach is shown to be particularly useful in
the case of comparison of several classifiers on many domains as well as
in the case of multiclass classification. Furthermore, by providing simul-
taneous multiple views of the same evaluation data, it allows for a quick
and accurate assessment of classifier performance.

1 Introduction

Performance evaluation in supervised classification is traditionally performed by
considering the confusion matrices obtained from test runs of several classifiers on
various domains, collapsing each matrix into a value (e.g., accuracy, F-measure),
and comparing these values to each other. One issue with this approach is that,
by the time the classifiers’ performances get compared to one another on a given
domain, the details of the confusion matrices have been lost. The comparison
only involves a single number, be it the accuracy or F-measure of the classifiers.
The problem is compounded if the comparison involves several domains, and,
when dealing with multi-class rather than binary domains.

In order to defray this problem, people sometimes use pairs of values on which
to base their comparisons. Precision/Recall and Sensitivity/Specificity are two
commonly used pairs. While this alleviates the problem, somewhat, by providing
additional information about the confusion matrix, it makes the comparison of
classifiers more complex since it creates cases where one classifier obtains good
results on one component and bad ones on the other, while the second classifier
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obtains opposite results. Furthermore, such pairs of values do not apply to multi-
class domains, and the problem of how to aggregate the results obtained on
various domains remains as well.

The purpose of this paper is to propose a different way to view the performance
evaluation problem with the hope of addressing these issues while offering a more
generalized vision of the overall problem. In particular, we can view classifier
evaluation as a problem of analyzing high-dimensional data, recognizing that
the performance measures currently used by the data mining community are
but one class of projections that could be applied to these data. If we think of
our current measures as specialized projection methods, we can then generalize
the procedure by considering the fact that any projection method (standard or
not) could be applied to our highly dimensional performance data, along with
any distance measure (once again, standard or not). Such an approach could
open up the field of classifier evaluation by allowing us to both organize and
classify the existing measures within this new framework and, more importantly,
to experiment with a variety of new approaches in a more systematic way. A
particular benefit of this framework is the fact that projection approaches are
typically intended for visualization, which is useful in that it permits both a
quick assessment of the results by a human-being and the compounding of more
information into the representation than in the case where a single or a pair
of values are issued. This, by the way, is in line with more recent evaluation
methods such as ROC Analysis [1] and cost-curves [2] which also suggest a move
towards visual approaches.

The research presented in this paper demonstrates the kind of classifier per-
formance evaluation strategies that can be derived from the consideration of
this generalized framework. This paper focuses on three particular advantages
brought on by this framework:

– An approach for aggregating the results of a classifier on several domains;
– An approach for dealing with multiclass domains;
– An approach for the quick generation of easily interpretable multiple views

of classifier performance

Please note that this paper restricts itself to a small number of options with
respect to the projection approaches, distance functions and result data rep-
resentation that could be used, with the understanding that future work will
explore these possibilities further. It is also important to note that although
we focus on the evaluation of supervised classification algorithms, here, our ap-
proach is universal and could be applied to any performance evaluation problem
domain.

The remainder of the paper is organized as follows: Section 2 details our
framework and its particular implementation we adopted in this paper. In par-
ticular, we discuss the kind of performance data we use as a starting point, the
distance measures considered, as well as the projection method we selected. The
purpose of Sections 3 and 4 is to demonstrate the aggregation properties of our
framework. In particular, Section 3 illustrates our approach in the case where
a number of classifiers are compared on several domains simultaneously while



550 N. Japkowicz, P. Sanghi, and P. Tischer

section 4 considers the case where these same classifiers are compared on a sin-
gle multi-class problem. In both sections, we highlight the particular advantages
of our technique. Section 5 offers a brief discussion of how our method can be
used as a multi-facetted approach to classifier performance evaluation. Section
6 concludes the paper, and discusses potential extensions for future work.

2 The Framework and Its Implementation

As discussed in the introduction, current evaluation methods can be viewed as
specialized projections from a high-dimensional to a 1-dimensional space, in the
case of Accuracy, F-Measure and AUC, and to a two-dimensional space, in the
case of Precision/Recall and Sensitivity/Specificity. In this work we generalize
this idea by suggesting that the techniques proposed in the field of visualization
can be put to the service of classifier evaluation as well. In particular, we propose
to use the projection techniques and distance measures in use in that field for our
purpose. We begin by discussing the general methodology we adopted, and then
move on to addressing the issue of choosing an appropriate projection method.

2.1 General Methodology

The visualization approach we propose works according to the following steps:

1. All the classifiers involved in the study are run on all the domains considered,
and the corresponding performance matrices (be they confusion matrices,
performance vectors of the outcome on each testing point, etc...) are saved.

2. The performance matrices associated with one classifier on each domain are
organized into a single vector. The process is repeated for each classifier such
that there is a pairwise correspondence of each vector component from one
classifier to the next one.

3. A distance measure is chosen to represent the distance between two vectors
in high-dimensional space.

4. A projection method is chosen to project the vectors into a two-dimensional
space.1

5. The distance measure and projection method are used on the vectors gener-
ated in Step 2.

The traditional approach to classifier performance evaluation is compared
to our new approach in Figure 1. As shown in that figure, in the traditional
approach, the performance value of a classifier is calculated on each domain, be
it binary or multiclass. These values are then aggregated together into an overall
performance value, that gets compared from classifier to classifier. In the new
approach, the data pertaining to a classifier is preserved into its original form
and simply concatenated into a vector. The transformation is delayed until the
projection is applied. This means that in our approach, information is lost in a

1 Three or four dimensions could also be used, if that could be helpful.
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Fig. 1. The Traditional and Proposed Approaches to Classifier Performance Evaluation

single spot: the projection phase. In the traditional approach information is lost
whenever any kind of aggregation occurs.2

If we consider the performance of several classifiers on a single binary domain,
there are two advantages provided by our new framework. First, it decomposes
the problem in a principled manner, separating the issue of projection from that
of choosing an appropriate distance measure along which to compare the data.
Secondly, by going from a projection to a one-dimensional space to a projection
to a two-dimensional one3, it allows for two rather than one relationships to
be established. In the traditional approach which, typically, projects the perfor-
mance data into a single dimension, the classifiers can only get ranked according

2 Note, however, that since, in both the traditional approaches and our approach,
as considered in this paper, we take as a starting point the confusion matrix—an
aggregated form of result—, information has been lost even before either performance
evaluation approach is used.

3 Even though the Precision/Recall and Specificity/Sensitivity approaches allow for
a two-dimensional projection, the projected data is typically treated as two 1-
dimensional projections rather than one 2-dimensional projection.
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to their similarity to the ideal classifier. In our evaluation framework, the addi-
tion of a dimension allows the classifiers not only to be ranked according to the
ideal classifier, but also, to be compared to one another.

A third key advantage over the traditional approach concerns the aggregation
of classifier results over different domains. It is common for researchers to simply
average the results obtained by a classifier over different domains. This is a
mistake when dealing with multi-class classification problems since the same
value has different meanings depending on the number of classes. Recognizing
this problem, researchers sometimes use a win/tie/loss approach, counting the
number of times each classifier won over all the others, tied with the best or
lost against one or more. This approach, however, loses any kind of information
pertaining to how close classifiers were to winning or tieing. Our approach does
not suffer from either of these problems since the entries of each performance
vector are compared, in a pairwise fashion, from classifier to classifier.

Please, note that if an unweighted distance measure is used in the projection
method, then each matrix entry is given the same importance, but this can be
changed by weighting the measure appropriately.

2.2 Implementation Details

Several points considering the implementation of our approach need to be clari-
fied. First, it is important to note that the vectors representing each classifier can
take different formats. They can, simply, be 4-dimensional vectors containing all
the entries of the confusion matrix on a single binary domain, 9 dimensional vec-
tors containing all the entries of the confusion matrix on a single 3-class domain,
and so on. As well, they can be formed by the confusion matrices obtained by a
single classifier on several domains, be they multi-class or binary domains. It is
also possible, rather than representing the confusion matrices, to represent the
classifiers’ outcome on each point of the testing set. The graph of Figure 2 in
the next subsection is an example where such a representation was used.

Second, we must specify what distance measure and projection approach we
selected for implementing the method. The distance measures can take several
forms, each with different properties. The Euclidean distance (L2 norm), for
example, considers all the performance data equally, though it penalizes more
for the presence of a few extreme differences than for the presence of several small
differences. The Manhattan distance (L1 norm) attaches less importance to large
differences. Other distance measures can weigh different components differently.
For example, true positives can be given more importance than true negatives
(similarly to Precision). In a multi-class domain, a distance measure can focus
on the performance of one class, grouping all the other classes, and so on. In fact
all the biases provided by the traditional measures (accuracy, precision, recall,
F-measure and so on) can be reproduced in our framework. In our particular
study, the main distance function we will consider is the Euclidean distance.
However, the Manhattan Distance will be discussed briefly in Section 5.

Third we must discuss our choice of a projection approach. In this work we con-
sidered two methods: Principal Component Analysis (PCA)/Multi-Dimensional
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Scaling (MDS)[3]4, a linear projection, and the Minimal Cost Spanning Tree Pro-
jection (MCST), a non-linear distance-preserving projection approach, recently
proposed by [4,5]. The second approach, in addition to being non-linear, has the
advantage of guaranteeing theoretically that the distance from each point to at
least one of its nearest neighbours is preserved. Having plotted a number of graphs
using PCA/MDS and MCST and compared their results, we found that in most
cases, the two projections yield similar information and that, therefore, this theo-
retical guarantee does not have much practical bearing on our study. There were a
few situations, however, where this was not the case. For example, when plotting
the PCA projection of the outcome of the classification by eight different classi-
fiers on all the data5 contained in three UCI [6] domains: Breast Cancer, Labour
and Liver, we found a disparity between PCA and MCST. This is shown in Fig-
ure 2 where the information provided in the plot produced by PCA, the top plot
in Figure 2, is misleading since classifier IBk ’s closeness to the ideal classifier is
not warranted (See Table 2, later on in the paper). This does not happen with
the MCST projection, whose graph is shown at the bottom of Figure 2, where the
ideal classifier is represented by label “1” and where no classifier in the graph is
close to ideal, as demonstrated by the long length of all the graph’s broken lines.6

To sum up, despite the fact that we could probably have used PCA/MDS for our
experiments quite safely, we decided to adopt MCST both because of its novelty
and greater theoretical soundness and because of the off-chance that we could run
into a situation of the kind depicted in Figure 2. The detailed description of the
MCST projection method follows in the next subsection. PCA and MDS are not
described since they were not adopted and since they are well-known projection
approaches.

2.3 A Distance-Preserving Projection Approach

Our approach is a slight variation on an approach by [4,5]. It is described as
follows:

Let d(x, y) represent the distance between x and y in the original higher
dimensional space; let P (x) and P (y) be the projections of x and y onto the
two-dimensional space; and let d2(P (x), P (y)) represent the distance between
the projected points in a two-dimensional space. In this case, we are projecting
the performance of the classifiers pi, where i = 1, 2, . . . n. We introduce the ideal
classifier as p0. p0 is mapped to the origin.

Find the classifier which is closest to ideal, p1, and put this on the y-axis at
(0, d(p0, p1)).

For the remaining classifiers, at each stage we find the classifier, pi, which is
nearest to the classifier which has just been plotted, pi−1. When plotting pi we
want to preserve two constraints:
4 PCA is equivalent to Multi-Dimensional Scaling (MDS)[3] in our setting since the use

of the Euclidean distance makes the results of the two approaches indistinguishable.
5 i.e., Not simply the confusion matrix, but the vector containing the outcome of each

and every instance contained in the testing set of each domain.
6 See Sections 2.3 and 3 for a more precise description of the MCST graphs.



554 N. Japkowicz, P. Sanghi, and P. Tischer

Fig. 2. Top: The PCA/MDS projection of three binary domains represented by the
outcome of the classifiers on each data point; Bottom: The MCST projection of the
same domains and classifiers

d2(P (pi), P (pi−1)) = d(pi, pi−1) (1)

i.e. we want the projections of pi and pi−1 to be the same distance apart as
pi and pi−1.

We also want to satisfy the second constraint:

d2(P (pi), P (p0)) = d(pi, p0) (2)

i.e. we want the projection of the ideal classifier and the projection of pi to be
the same distance apart as the classifiers are. This means that in the projected
space the distance from the origin is a measure of how close the classifier is to
ideal. The better the classifier, the closer its projection will be to the origin.

Most times there will be two possible positions for P (pi) which satisfy both
constraints. When there is a choice of solutions, the solution is chosen to satisfy
a third constraint as closely as possible:

d2(P (pi), P (pi−2)) = d(pi, pi−2) (3)

Whereas we choose pi to be the point which has not yet been projected which
is closest to the most recently projected point, the original algorithm by [4,5]
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chooses pi to be the point which has not yet been projected and which is closest
to any of the points which have already been projected. The original approach
projects the points in the same order as Prim’s algorithm would add the points
to a Minimal Cost Spanning Tree. Both approaches were tried, but we preferred
the results produced by the modified approach because it seemed to separate
clusters more.

Please, note that in our graphs we have found it useful to draw lines between
pairs of projected points to show that the distance between the projected points
is equal to the distance between the points in the original, higher dimensional
space. Dotted lines connect projected points to the original and indicate the exact
distance in the higher dimensional space from the classifier to the ideal classifier.
Unbroken lines connect a point to the point that was projected immediately
before it in the projection order. The distance between these projected points is
also identical to the distance between the points in the original space.

When looking at the projected points, it is useful to remember that the tri-
angle formed by P (p0), P (pi−1) and P (pi) is congruent to the one formed by p0,
pi−1, and pi.

3 Experiments on Multiple Binary Domains

In this part of the paper, we experiment with the use of our approach on multiple
domains. The three domains considered are all from the UCI Repository for
Machine Learning and are: Breast Cancer, Labour and Liver. This means that
we are projecting vectors of size 12 (3 confusion matrices of 4 entries each)
into a two dimensional domain. Eight different classifiers were compared in this
study: Naive Bayes (NB), C4.5 (J48), Nearest Neighbour (Ibk), Ripper (JRip),
Support Vector Machines (SMO), Bagging (Bagging), Adaboost (Adaboost) and
Random Forests (RandFor). All our experiments were conducted using Weka [7]
and these particular algorithms were chosen because they each represent simple
and well-used prototypes of their particular categories. The results we report
were obtained using 10-fold stratified cross-validation. It is worth noting that
since the purpose of all our experiments was to interpret the results produced
by our evaluation method and not to optimize performance, default settings
of Weka were used throughout the paper. The significance of this work, thus,
does not lie in the results we obtain, which should only be seen as illustrative
of the evaluation framework we propose, but rather on the introduction of the
evaluation framework, itself.

The results of our approach are presented in Figure 3 and its companion table,
Table 1.

The results show that all the methods, except for SMO (8) and NB (9), fall
within the same range. SMO and NB produce much worse results, since they
are further away from Ideal (1) than the other approaches; and are shown to
behave very differently from one another as well, since they are not clustered
together. To better understand the graph, we consider this result in view of the
results obtained by the traditional measures of performance that are displayed
in Table 2, for the three domains considered.
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Fig. 3. Projection of Three Binary Domains

Table 1. Legend for Figure 3

Three Binary Domains Projection Legend
Classifier Classifier Distance Distance from
number name from origin previous classifier

1 Ideal 0

2 RandFor 154

3 Ibk 173 26

4 JRip 167 37

5 Adaboost 160 16

6 Bagging 166 44

7 J48 170 26

8 SMO 232 126

9 NB 203 230

This comparison tells us something interesting: SMO fails quite miserably
according to all three measures (Accuracy, F-measure and AUC) on the Liver
data set. NB, on the other hand, only fails badly on this domain when accuracy
is considered. The F-Measure and AUC do not signal the presence of a problem.
This means that, unless accuracy were considered, we would not have detected a
difference in the behaviour of NB on the Liver data set. In contrast, our method
identified both the problems with NB and SMO and stated that they were of
a different nature. Our method seems to warn us that these two classifiers are
sometimes unreliable, whereas the other systems are more stable. Of course, if
we had used a different distance measure, the results would have been different.
The purpose of our discussion is not so much to compare Euclidean distance to
accuracy, F-measure and AUC. Instead, we wish to point out how differences
between classifiers are clearly and immediately noticeable from our graph.

Please note that SMO ’s lower performance on the Liver data is something
that would not have been picked up (except possibly if the F-measure had been
considered) by an averaging of performance on all domains since SMO gets
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Table 2. Performance by Traditional Measures on the Breast Cancer (BC), Labour
(La) and Liver (Li) domains

Accuracy F-Measure AUC

NB BC: 71.70 0.48 0.70
La: 89.50 0.92 0.97
Li: 55.40 0.60 0.64

J48 BC: 77.50 0.40 0.59
La: 73.70 0.79 0.7
Li: 68.70 0.59 0.67

Ibk BC: 72.40 0.41 0.63
La: 82.50 0.86 0.82
Li: 62.90 0.56 0.63

JRip BC: 71 0.43 0.60
La: 77.20 0.83 0.78
Li: 64.60 0.53 0.65

SMO BC: 69.60 0.39 0.59
La: 89.50 0.92 0.87
Li: 58.30 0.014 0.50

Bagging BC: 67.8 .23 .63
La: 86 0.90 0.88
Li: 71 0.624 0.73

Adaboost BC: 70.30 0.46 0.70
La: 87.70 0.91 0.87
Li: 66.10 0.534 0.68

RandFor BC: 69.23 0.39 0.63
La: 87.70 0.91 0.90
Li: 69 0.64 0.74

averages of: 72.46% in accuracy, .44 in F-measure and .65 in AUC versus 74.7%
accuracy, .64 in F-measure and .75 in AUC, for Adaboost (5), quite a good
classifier on these domains. Once its performance results averaged, NB would not
have exhibited any problem whatsoever, no matter which traditional evaluation
method were considered. Indeed, it produced averages of: 72.2% for accuracy,
.67 for the F-measure, and .77 for the AUC, three results that are comparable to
those obtained by AdaBoost, our reference. Once again, what is remarkable about
our visualization approach is that the graph of Figure 3 tells us immediately that
an abnormal situation has been detected with respect to SMO and NB and that
this problem is of a different nature in each case. It does not tells us what the
problem is, but it warns us of that problem in a quite effective way. This is quite
useful given how tedious and mistake-bound the reading of large result tables
can be. Our approach can be used to filter out problem spots, that can then be
carefully analyzed, using only the portion of the result tables that focus on this
problem spot.

Though we only used binary domains in this example, we could have, instead,
mixed binary and multi-class domains using the same approach, thus finding a
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Table 3. Accuracies on the Anneal Data Set

NB J48 Ibk JRip SMO Bag AdaBoost RandFor

86.30 98.40 99.10 98.30 97.40 98.20 83.60 99.30

way to aggregate values that could not, otherwise, be aggregated together. The
next section discusses the case of multi-class domains in detail.

4 Experiments on Single MultiClass Domains Using
Confusion Matrices

In this section, we consider how our approach fares on multiclass domains. In
particular, we consider the Anneal domain from UCI. Anneal is a 6-class domain
(though one of the classes is represented by no data point). The data set is
quite imbalanced since the classes contain 684, 99, 67, 40, 8 and 0 instances,
respectively. The results obtained on this domain are displayed in Figure 4 along
with its companion table, Table 4. This time, the graph encourages us to beware
of NB (8) and Adaboost (9), though it also shows us that Adaboost and NB ’s
problems are not related. We compare the results of Figure 4 to the accuracy
results obtained on this domain, displayed in Table 3.

While the accuracies (one of the few simple compact measures that can be
used in multi-class domains) suggest that NB and Adaboost do not classify the
data as well as the other domains, it does not inform us of the fact that these two
classifiers approach the problem differently. Indeed, while it is true that NB ’s
accuracy of 86.3% is different from AdaBoost ’s accuracy of 83.6%, this 2.7%
difference is too small to be deemed significant. This is quite different from the
story painted in Figure 4 in which SMO and Adaboost are exaggeratedly far from
one another. On this graph, they are, in fact, slightly further from one another
than they are from the other classifiers (that each obtained over 10% accuracy
points more than they did).

In order to interpret the results, it is important to remember that the Anneal
problem is severely imbalanced. The effects of this imbalance are clearly seen in
the confusion matrices of Adaboost and NB in Tables 5 and 6.

As shown in Table 5, Adaboost only gets the points from the largest class and
the third largest class well-classified, ignoring all the other classes. From Table
6, we see that NB classifies all the classes accurately, except for the largest
class. We do not have enough space, here, to include the confusion matrices of
the other methods, but we can report that they all did quite a good job on all
classes. In effect this means that all the classifiers but NB and Adaboost are
able to deal with the class imbalance problem, and that NB and Adaboost both
behave badly on this domain, although they do so in different ways. This is
exactly what the graph of Figure 4 tells us. The accuracy results do suggest
that NB and Adaboost have problems, but they do not necessarily warn us of
the severity of these problems nor do they differentiate between the two kind of
problems.
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Fig. 4. Projection of the results on a MultiClass domain: Anneal

Table 4. Legend for Figure 4

Anneal Projection Legend
Classifier Classifier Distance Distance from
number name from origin previous classifier

1 Ideal 0

2 RandFor 5

3 Ibk 7 4

4 J48 12 6

5 JRip 12 6

6 Bagging 13 3

7 SMO 20 11

8 NB 148 139

9 Adaboost 151 211

Table 5. The confusion Matrix for AdaBoost

Predicted/ a b c d e f
True class

a 0 0 8 0 0 0

b 0 0 99 0 0 0

c 0 0 684 0 0 0

d 0 0 0 0 0 0

e 0 0 0 0 67 0

f 0 0 40 0 0 0

5 Multi-facetted Classifier Evaluation

The purpose of this section is to explore the kind of advantages our framework’s
flexibility can provide. We begin by pointing out that the visualizations we dis-
played in our previous graphs are only relative assessments. For example, in the
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Table 6. The confusion Matrix for NB

Predicted/ a b c d e f
True class

a 7 0 1 0 0 0

b 0 99 0 0 0 0

c 3 38 564 0 0 79

d 0 0 0 0 0 0

e 0 0 0 0 67 0

f 0 0 2 0 0 38

Fig. 5. Projection of the partial results on a MultiClass domain: Anneal

graph of Figure 4, we can see that all the classifiers, aside from NB (8) and
AdaBoost (9) are very close together. After viewing the entire graph, we may
want to zoom in on the tight cluster formed of classifiers 2 to 7, included. This
is done in Figure 5 (whose legend is the same as that of Figure 4, i.e., the legend
can be found in Table 4).

From this figure, we can see that SMO (7) does not perform as well as the
other classifiers (though a lot better than NB and AdaBoost in Figure 4), that
RandFor (2) and IBk (3) are the best classifiers on this problem, followed by J48
(4), JRip (5) , which are somewhat equivalent in performance (though somewhat
different from one another) and, finally, Bagging (6). An implementation that
would allow the user to zoom in and out of graphs in that fashion would, thus,
be quite a useful analytical tool.

Another issue we wish to investigate is the use of different distance measures.
All our experiments, thus far used the Euclidean distance (L2 Norm), we won-
dered what the outcome would be if we were to use the Manhattan distance (L1
Norm), as well. The results are shown in Figure 6 which comes accompanied by
table 7.

There is only one qualitative difference between the graphs produced by the
L1 and the L2 norms: NB (8) appears closer to ideal than Adaboost (9) in Figure
6, than it did in Figure 4. Since the L2 norm penalizes the presence of major
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Fig. 6. Projection of the results on a MultiClass domain, using the L1 Norm: Anneal

Table 7. Legend for Figure 6

Anneal L1 Norm Projection Legend
Classifier Classifier Distance Distance from
number name from origin previous classifier

1 Ideal 0

2 RandFor 12

3 IBk 16 10

4 J48 28 16

5 JRip 30 14

6 Bagging 32 8

7 SMO 46 26

8 NB 246 244

9 AdaBoost 294 528

concentrated misclassification errors more than the presence of small ones (since
each concentration of error gets squared), and the L1 norm simply counts the
number of misclassification errors present, we can reason that NB makes fewer
errors than Adaboost, altogether, but that the majority of its errors are con-
centrated in one or a few large spots. In contrast, we can reason that although
Adaboost makes more errors than NB altogether, its errors are more broadly
distributed and appear in large numbers of small clusters. Another look at the
confusion matrices of Tables 5 and 6 confirm this hypothesis. Indeed, we see that
Adaboost makes 147 mistakes versus 123 for NB, thus explaining NB ’s better
performance with the L1 norm. In addition, since we see that, inconsiderate of
class E, on which the two classifiers behave the same way, NB makes its major
mistakes on class C, the largest class, whereas Adaboost makes no mistake on
class C, but, instead, misclassifies all the other, smaller classes (except for class
E), we understand where the results obtained with the L2 norm, which equate
Adaboost and NB ’s performance, come from. Thus, we can see how, provided
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that we understand the meaning of the various distance measures we may use,
each of them used simultaneously can quickly give us some important insight
into the comparative performance of our classifiers.

6 Conclusion and Future Work

This paper presented a new evaluation method which, rather than aggregating
the entries of the confusion matrices pertaining to the performance of a clas-
sifier into a single measure, treats all the performance data pertaining to that
classifier as a high-dimensional vector. The vectors representing classifiers are
then projected into a 2-dimensional space by a distance-preserving projection
method. This approach presents several advantages, including the fact that it
offers a visualization method that allows data mining practitioners to spot im-
mediately any irregularity in the behaviour of their classifiers. It also indicates
whether the detected irregularities are similar to each other or not. This particu-
lar method is but one implementation of the general framework we advocate that
views the problem of classifier evaluation as one of analyzing high-dimensional
data.

As presented, our approach may appear limited to the comparison of single
classifier’s performance, thus precluding the evaluation of threshold-insensitive
classifiers and the computation of statistical guarantees in our results. This is
not the case, however, since we could compute the results obtained by the same
classifier using different thresholds and project a single point for each classifier
at each threshold level. Similarly, in order to establish statistical guarantees, we
could plot the results obtained at each fold of cross-validation for each classifier,
giving us, a cloud of points for each classifier that would, this time, offer a
visualization of the variance of that classifier. More formally, we could then
apply a statistical test to the results of this projection.

We are also planning to expand our understanding of our framework by exper-
imenting more thoroughly with different performance data representations (e.g.,
the outcome of classification on each test data point), different projection meth-
ods, as well as different distance measures. We believe that once it is carefully
studied, this framework could become an integral part of the classifier evaluation
process.

Finally, we are planning more experimentations on larger data sets, as well
as on larger numbers of domains and classifiers, to test whether our method can
scale up.
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Abstract. Nonlinear Dimensionality Reduction is an important issue
in many machine learning areas where essentially low-dimensional data
is nonlinearly embedded in some high-dimensional space. In this paper,
we show that the existing Laplacian Eigenmaps method suffers from the
distortion problem, and propose a new distortion-free dimensionality re-
duction method by adopting a local linear model to encode the local
information. We introduce a new loss function that can be seen as a dif-
ferent way to construct the Laplacian matrix, and a new way to impose
scaling constraints under the local linear model. Better low-dimensional
embeddings are obtained via constrained concave convex procedure. Em-
pirical studies and real-world applications have shown the effectiveness
of our method.

1 Introduction

Dimensionality reduction is an important issue in many pattern recognition and
machine learning areas, where essentially low dimensional data is often embedded
in some high dimensional space. Early works on dimensionality reduction are
mostly linear methods such as PCA [1] and MDS [2], and have been widely
applied and discussed. However, in recent years, researchers have realized that
in many situations the data lies on a low-dimensional manifold embedded in the
feature space, and the embedding is often difficult to be captured by the simple
linear model. Thus, nonlinear dimensionality reduction (NLDR) is believed to be
more powerful to preserve the low dimensional information under such situations.

Several NLDR methods have been proposed in the recent years, such as
ISOMAP [3], Locally Linear Embedding (LLE) [4], local tangent space align-
ment (LTSA) [5], maximum variance unfolding (MVU) [6], and so on. In this
paper, we will mainly focus on methods that rely on Laplacian matrices, the
most representative work of which is the Laplacian Eigenmaps [7]. It constructs
a Laplacian matrix by constructing a graph over the data set, and calculates
the low-dimensional coordinates via generalized eigenvalue decomposition. The
method has been simplified to a linear version called Locality Preserving Pro-
jections [8], which benefits from both the nonlinear graph structure and the
simplicity of the linearity.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 564–579, 2008.
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One of the key points for Laplacian Eigenmaps is how to construct the Lapla-
cian matrix. Most commonly, it is constructed based on K-nearest neighbor and
a Gaussian kernel to calculate the pairwise similarity between data points. Al-
though its theoretical foundations and relationship with the Laplacian-Beltrami
operator have been well studied (see e.g. [9]), it may not be universally the best
option. Specifically, we will discuss in this paper that it has a distortion prob-
lem: it tends to drive the data points far from the center of the low-dimensional
coordinate and may also expand the small “holes” in the intrinsic distribution
of the data.

In this paper, we propose a different way to construct the Laplacian matrix
by explicitly defining a linear model in each local area of the data. Next, we use
the local gradients obtained from the linear model to impose additional scaling
constraints to solve the distortion problem. We adopt the constrained concave
convex procedure (CCCP) to solve the optimization problem, and show the per-
formance of the new dimensionality reduction both visually and quantitatively.

The remainder of this paper is organized as follows: Section 2 introduces
the basic notations and the distortion problem of Laplacian Eigenmaps. Section
3 discusses the loss function of our method, leading to the construction of a
new Laplacian matrix, and the implementation of the scaling criterions. Section
4 shows experimental results comparing our method and the closely related
methods with discussions. Finally, Section 5 concludes the paper.

2 Laplacian Eigenmaps and the Distortion Problem

In this section, after defining necessary notations, we will discuss the distortion
problem of the Laplacian Eigenmaps.

2.1 Notations

Formally, in nonlinear dimensionality reduction problems, we are given a set of
D-dimensional data points X = {x1,x2, · · · ,xn} ⊂ R

D. The task of NLDR is
to find a corresponding set Y = {y1,y2, · · · ,yn} ⊂ R

d (d- D), where yi is the
low dimensional representation of xi. The coordinates of each low dimension can
also be seen as being calculated from a mapping function f i : R

D → R, where
i = 1, · · · , d. Thus, we define the dimension-wise set F = {f1, f2, · · · , fd} ⊂ R

n,
where the j-th element of f i is the i-th dimensional value of yj .

The Laplacian Eigenmaps [7] method finds the low-dimensional representation
by minimizing the weighted sum of the squared distances between neighboring
data points:

J (f1, f2, · · · , fd) =
d∑

k=1

(fk)�Lfk =
d∑

k=1

n∑
i,j=1

(fk
i − fk

j )2wij . (1)

L is the graph Laplacian matrix with its (i, j)-th element

Lij =
{

di − wii, if i = j
−wij , otherwise ,

(2)
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where di =
∑

j wij , and wij is the similarity between data point xi and xj . There
are several different ways to calculate the similarity, among which the weighted
exponential similarity is most often used: let dij be the distance between two
data points xi and xj , the weight is calculated as

wij = exp
[
−d2

ij/(2σ2)
]

, (3)

where σ is a parameter that controls the width of the Gaussian function. Usually,
a precedent K-nearest neighborhood is calculated to force wij = 0 if xi and xj

are not neighbors.
To recover the low-dimensional coordinates, Belkin et al. [7] proposed to solve

the following optimization problem:

min
d∑

k=1

(fk)�Lfk (4)

s.t. (f i)�Df j = δij , (f i)�D1 = 0, 1 ≤ i, j ≤ d ,

where δij is the kronecker delta function that takes value 1 if i = j and 0
otherwise. D is the diagonal degree matrix with the i-th diagonal element be
di. This is further solved by the following generalized eigenvalue decomposition
problem:

Lf = λDf , (5)

and the d eigenvectors corresponding to the smallest non-zero eigenvalue are the
low-dimensional coordinates (The eigenvector corresponding to eigenvalue 0 is
constant vector 1 and is discarded).

We note here that solving the eigenvalue decomposition problem Lf = λf is
also applicable. From a spectral clustering view [10], the former is equivalent to
minimizing the Normalized Cut [11] criterion on the corresponding graph defined
by the Laplacian matrix, and the latter is equivalent to minimizing the Ratio
Cut [12] criterion.

2.2 The Distortion Problem

To show the distortion problem, we construct a toy clover data shown in Fig.
1(a) and consider using Laplacian Eigenmaps to recover the 2-dimensional coor-
dinates1. From the recovered coordinates under different σ values shown in Fig.
1(b), we can see that Laplacian Eigenmaps may not recover the low-dimensional
data satisfactorily: the circlar structure of the data is expanded and the data
area with higher density (the blue dots) is driven far from the center of the
low-dimensional embedding. This is essentially different from the ground truth.
Another example is the recovered embedding of the Swiss roll, see Fig. 3. Lapla-
cian Eigenmaps tends to expand the “holes” in the intrinsic data distribution,
and squeeze the data points into lines of high-density areas, which produces
distorted results.
1 For details about constructing the toy data, see Section 4.
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(a) (b) (c)

Fig. 1. The distortion problem of Laplacian Eigenmaps. (a) The original toy clover
data; (b) recovered coordinates using Laplacian Eigenmaps with σ = 0.05, 0.1, 1, and
+∞ respectively; (c) example of a one-dimensional uniformly spaced data (blue points
on the left) showing that Laplacian Eigenmaps tend to drive the recovered coordinates
(red points on the right) to the two ends, very similar to performing clustering.

The distortion problem roots largely in two aspects. First, the loss function of
Laplacian Eigenmaps considers minimizing the pairwise distance between neigh-
boring data points only and does not consider any isometric information, thus it
may essentially neglect the intrinsic shape of the data. Second, Laplacian Eigen-
maps can be seen as minimizing f�L f and maximizing f�Df at the same time.
Although maximizing f�Df successfully removes the scaling factor and avoids
trivial solution f = 0, it also tends to give large function values for data points
in the dense area because they have large degree values di. Even for uniformly
distributed data, Laplacian Eigenmaps still tends to drive the data to the two
ends of the low-dimensional embedding, leaving a very low density area in the
middle, see Fig. 1(c) for example.

In other words, Laplacian Eigenmaps works more similar to clustering than
dimensionality reduction if we see the low-dimensional coordinates as class la-
bels: it tries to recover the labels as determinate as possible, and avoids the
central ambiguous area. Admittedly, this is in some cases desired and natural,
such as in spectral clustering (actually, Normalized Cuts [11] is equivalent to
Laplacian Eigenmaps plus discretization), it may not be an optimal choice for
dimensionality reduction since it produces unnecessary distortion that especially
affects data visualization.

In the next section, we aim to solve the distortion problem by both changing
the loss function and the constraints.

3 The Proposed Method

In this section, we will first propose a new approach to construct the Laplacian
matrix for dimensionality reduction, and then impose additional constraints to
solve the distortion problem.
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Table 1. A collection of the notations involving f , for better clarification

f : R
D →R, and fk the mapping function, the superscript is used if we specify

the function for the k-th dimension.
fi, and fk

i the (k-th dimensional) function value for the i-th data xi.

f , and fk the (k-th dimensional) vector for all the data points.

fi, and fk
i a (K +1)× 1 local column vector whose first K elements are

[fj ] for all xj ∈ Ni and the last element is fi. See Section
3.2.

f̃ an n(K + 1) × 1 concatenated label vector, f̃ =
[f�

1 , f�
2 , · · · , f�

n ]�.

3.1 The Local Linear Model and the Loss

To simplify the representation of symbols, we consider reducing the dimension-
ality to d = 1: let f = [f1, f2, · · · , fn] ∈ R

n be such a mapping that each fi is the
low-dimensional coordinate of xi. This can also be seen from a functional-view
as fi = f(xi) where f is the mapping functional. In most real-world applications,
we can assume f to be differentiable, i.e., if there are enough data points, then
in the small neighborhood Ni of xi (we use K-nearest neighbor to define the
neighborhood), we may use the first-order Taylor expansion to approximate the
function as:

fj ≈ fi +∇f(xi)�(xj − xi), ∀xj ∈ Ni . (6)

In other words, if we find a mapping f that represents the local coordinates well,
we expect the function values fj in the neighborhood of xi to behave linearly
with respect to xj−xi and fi. Thus, a direct criterion to evaluate the fitness of a
mapping f is to minimize the sum of the least-square loss in each neighborhood
of the data points:

J (f) =
n∑

i=1

∑
j∈Ni

[fj − fi −∇f(xi)�(xj − xi)]2 . (7)

The thought of the loss function is inspired by the two most related works,
namely Laplacian Eigenmaps [7] and Locally Linear Embedding (LLE) [4]. We
discuss the relationship and difference here.

LLE. One may think that our derivation is similar to LLE at first glance, which
assumes that each data point can be linearly reconstructed from its neighbor-
ing data points. In other words, for LLE, a reconstruction weight matrix W
is calculated from the data so that

∑
j Wijxj gives the least-square estimation

of xi under the constraint
∑

j Wij = 1. However, LLE focuses on the linear
relationship from the neighborhood points and considers little about the direct
relationship between the high and low coordinates, while in our model we explic-
itly adopt a function that generates the embedding from the high-dimensional
coordinates. Thus the two methods are conceptually different. Further, when
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the neighbor number K is larger than the dimensionality d, such reconstruction
may not be unique. Even when unique solution exists, eliminating the subopti-
mal reconstruction weights may still lose information, as has been pointed out
in [13]. Thus LLE may only be able to preserve comparatively weak information.
Instead, by defining a local linear model fj = wT

i (xj − xi) + fi, we may pre-
serve richer information than LLE: assume that the least-square estimations are
precise, then any weight {Wij} that satisfies xi =

∑
j Wijxj will automatically

satisfy fi =
∑

j Wijfj under the local linear model. Thus, we also expect our
method to perform better than LLE in utilizing the local information.

Laplacian Eigenmaps. The Laplacian Eigenmaps method uses a slightly dif-
ferent criterion, which attempts to minimize the distance between nearby points
with weight factor Wij , i.e., to minimize

∑
j Wij(fi − fj)2 in each local area.

However, this introduces an additional parameter σ in the heat kernel that needs
careful tuning, and may dilate the small holes in the intrinsic structure of the
data as we have indicated in Section 2, which can further be seen experimen-
tally in Fig. 3. We will experimentally show that our loss criterion empirically
works better in Section 4. Theoretically, our loss criterion and the one of Lapla-
cian Eigenmaps are essentially different: since the low-dimensional coordinates
of nearby data points are essentially different (otherwise they will collapse to
a constant value), we argue that it may not be optimal to impose penalty on
any changes of the low-dimensional coordinates in the local area. Instead, we
adopt a local linear model to allow reasonable changes, and only impose penalty
if the low-dimensional embedding does not follow the model. This may be more
reasonable than simply minimizing the distance of the neighbors.

3.2 Constructing the Laplacian Matrix

The above idea faces some difficulty to implement: there does not exist an ex-
plicit analytical representation of the gradient ∇f , since usually we only find
the mapping value on the n data points. Thus, we denote the gradient vector at
each data point xi by an additional hidden parameter wi ∈ R

D, and equivalently
rewrite the loss function as:

J (f ,w1, · · · ,wn) =
n∑

i=1

∑
j∈Ni

[fj − fi −w�
i (xj − xi)]2 . (8)

Then, the remaining problem is how to estimate each wi. Since wi is an ancillary
parameter and we want to find f ultimately, we consider using f to analytically
represent the gradient wi. That is, if given the function value f , how to estimate
the gradients {wi} at each data point xi?

A straightforward thought may be to adopt the least-square estimation of
the linear model at each neighborhood as wi. However, in most real-world ap-
plications, we often face a high dimensionality D (which may be significantly
larger than the neighbor number K) and a comparatively small number of data
points in the local area. This may cause the simple least-square estimation to be



570 Y. Jia, Z. Wang, and C. Zhang

unstable especially when there is noise in the data. Thus, we add an additional
regularizer ‖wi‖2 in a SVM-like way to perform structural risk minimization.
Mathematically, we aim to estimate wi to be the optimum solution to the fol-
lowing regularized least-square problem:

argmin
wi

[λ‖wi‖2 +
∑
j∈Ni

(fj − fi −w�
i (xj − xi))2] , (9)

where λ is a constant weight parameter. The thought is inspired by the super-
vised local learning algorithms [14] and semi-supervised Local Learning Regu-
larization [15]. However, instead of interpreting the local model as a “classifier”
and using the classification error as the loss function, we use the local model
to do linear regression, which is more reasonable for dimensionality reduction,
where the low-dimensional coordinates take continuous values.

Such estimation can further be written in a closed form. Define matrix Xi to
be the matrix [xj −xi] for all xj ∈ Ni, local vector fi to be a (K +1)×1 column
vector whose first K elements are [fj ] for all xj ∈ Ni and the last element is fi,
and a K×(K +1) ancillary matrix H = [IK×K ,−1K×1]. Then, the optimization
problem Eqn. (9) can be written as:

arg min
wi

λ‖wi‖2 + ‖Hfi −X�
i wi‖2 . (10)

Take the derivative with respect to wi and set it to be zero, we get

wi = Aifi, where Ai = (λI + XiX
�
i )−1XiH . (11)

Substitute (11) into (8), the loss function J can then be written in a closed form
of f as

J (f) =
n∑

i=1

f�i Mi fi , (12)

where the matrix Mi is

Mi = H�(I −X�
i Ai)�(I −X�

i Ai)H . (13)

Next, we define an n(K +1)×1 concatenated label vector f̃ = [f�1 , f�2 , · · · , f�n ]�,
an n(K + 1)× n(K + 1) concatenated block-diagonal matrix

M =

⎡
⎢⎢⎢⎣
M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn

⎤
⎥⎥⎥⎦ , (14)

and an n(K +1)×n selection matrix S whose elements take 0-1 values and there
is only one 1 in each row so that f̃ = Sf . Then, the loss function is written as

J (f) = f�L f , where L = S�MS . (15)

It is not difficult to prove the following property:
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Theorem 1. The matrix L is a Laplacian matrix, i.e., it is positive semi-
definite and satisfies L1 = 0 where 1 and 0 are n × 1 constant-value column
vectors.

Proof. See the Appendix.

3.3 Trivial Solution Elimination

Similar to Laplacian Eigenmaps, simply minimizing the loss function f�Lf leads
to a trivial solution f = 0. Thus, we add scaling constraints to eliminate such
trivial solutions. To eliminate the scaling factor, we make an isometric assump-
tion that the norm of the local gradient vector at each data point xi is 1, i.e.,
‖wi‖2 = 1, inspired by the idea of PCA. This leads to n quadratic constraints
f�i A�

i Aifi = 1, where i = 1, · · · , n. As a relaxation and also for faster optimiza-
tion, we may only place constraint on the sum of all the local gradients’ norms
as 1

n

∑n
i=1 ‖wi‖2 = 1, which further leads to f�Df = 1, where the scalar matrix

D is calculated as

D = S�

⎡
⎢⎢⎢⎣

A�
1 A1 0 · · · 0
0 A�

2 A2 · · · 0
...

...
. . .

...
0 0 · · · A�

n An

⎤
⎥⎥⎥⎦S . (16)

When the reduced dimensionality is larger than 1, we constraint each two low-
dimensional mappings fk1 and fk2 to be such that their local gradient vectors at
each point xi to be orthogonal to each other, i.e., wk1

i ⊥wk2
i , inspired by the idea

of PCA. This leads to the constraints (fk1
i )�A�

i Aifk2
i = 0, where i = 1, · · · , n.

Similar to the discussion above, we consider relaxing these constraints to the
sum over the n points as

∑n
i=1(f

k1
i )�A�

i Aifk2
i = 0. It is easy to see that this

leads to the constraint

(fk1)�Dfk2 = 0, for k1 �= k2 . (17)

Further, to remove the degree of translation freedom, we require the coordi-
nates to be centered in the origin, i.e., to require (fk)�1 = 0.

Note that although looking similar, our constraint is different from Laplacian
Eigenmaps, as the definitions of the matrix D in the two methods are different.
It is worth pointing out the following theorem:

Theorem 2. The matrix D is a Laplacian matrix.

Proof. See the Appendix.

This leads to a different optimization approach, which we will observe in the
next subsection.
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3.4 Optimization

We use the following way to recover the d low-dimensional coordinates sequen-
tially: for the i-th dimension (1 ≤ i ≤ d), we summarize the optimization task
as follows:

min
f i

(f i)�Lf i

s.t. (f i)�1 = 0, (f i)�Df i = 1
(f i)�Df j = 0, ∀1 ≤ j < i . (18)

This is a non-convex problem because of the constraint (f i)�Df i = 1. Note
that generalized eigenvalue decomposition Lf = λDf is not applicable to solve
this problem. We explain this in detail. In Laplacian Eigenmaps, the constraint
(f i)�1 = 0 will be automatically satisfied by eliminating the eigenvector 1 cor-
responding to generalized eigenvalue 0 (note that the degree matrix in Laplacian
Eigenmaps is positive definite). However, in our method, the matrix D is defined
differently and is also a Laplacian matrix. This leads to L1 ≡ D1 ≡ 0, which
means that 1 is a generalized eigenvector corresponding to any value in R. Most
GEVD solvers may suffer from severe numerical problems performing such tasks.

Instead, to get a stable and satisfying solution, we directly solve the problem
using Constrained Concave Convex Procedure (CCCP) [16]. CCCP works in
an iterative way: at each iteration, the 1-st order Taylor expansion is used to
approximate the non-convex constraints, and the problem is thus approximated
by a convex optimization subproblem. The optimum solution to the subproblem
is then used as the initial value of the next iteration. This procedure is repeated
until convergence, which has been theoretically guaranteed in [16]. Specifically,
we rewrite the constraint (f i)�Df i = 1 to a convex one (f i)�Df i ≤ 1 and a
concave one (f i)�Df i ≥ 1. At each iteration, assume that the initial value is
f i,old, the concave constraint is approximated as

2(f i)�Df i,old − (f i,old)�Df i,old ≥ 1 . (19)

Thus the subproblem given initial value f i,old is

min
f i

(f i)�Lf i

s.t. (f i)�1 = 0, (f i)�Df i ≤ 1
2(f i)�Df i,old − (f i,old)�Df i,old ≥ 1
(f i)�Df j = 0, ∀1 ≤ j < i . (20)

It is a standard quadratic programming (QP)problem that canbe solved efficiently.
Further, it is worth indicating that although CCCP only guarantees local op-

timum, in our experiments we have reached identical solutions from multiple
runs with different initial values, implying that the optimization procedure may
already be stable and good enough for real-world applications. Still, a theoret-
ical analysis on the optimization method is one of our further interests. One
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shortcoming using CCCP is that it may require some time to converge. In our
experiments, the method runs about half a minute for a 2000-point data set us-
ing Matlab code and Mosek to carry out the optimization on a P4 2G computer,
which is a time a bit longer than that spent by LE.

3.5 Extension for Out-of-sample Data

To predict the low-dimensional coordinates of a new data point x that does not
belong to the original data set X , we propose the following induction approach:
first find its neighborhood Nx in the original data set, and then find the low-
dimensional embedding f(x) that simultaneously fits the local linear models on
all its neighbor points well by minimizing the following criterion:

f(x) = arg min
fx

∑
xi∈Nx

[(fx − fi)−w�
i (x− xi)]2 . (21)

Take the derivative with respect to fx and set it to be zero, the result can be
written in a closed form as

f(x) =
1
K

∑
xi∈Nx

[fi + w�
i (x− xi)] , (22)

where K is the number of neighbor points.

4 Experiments

In this section, we perform dimensionality reduction for data visualization on toy
and real-world data sets. For all the experiments, the parameter σ in Laplacian
Eigenmaps is chosen via a line search from {1/16, 1/4, 1, 4, 16,∞} × σ0 where
σ0 is the squared root of the mean pairwise distance between data points; the
parameter λ in our method is chosen from {0.01, 0.1, 1, 10}.

4.1 Toy Data Sets

We generate a toy clover data set with two essential dimensions generated by
{x = (1+0.3 sin(3t)) cos(t), y = (1+0.3 sin(3t))sin(t)} where t takes 80 uniformly
spaced values from [0, 2π). The data is then mapped to a 20 dimensional space
with a randomly generated linear transform. We test our method against two
most related algorithms namely Laplacian Eigenmaps and LLE2 to recover the
true 2-dimensional embedding using neighbor number K = 10. The result of
Laplacian Eigenmaps has been shown in Fig. 1(b). The result of LLE and our
method are shown in Fig. 2. Although all three methods keep the neighboring
information well, our method clearly preserves better shape information, while
the other two methods show poorer reconstructions.

Next we experiment on four kinds of Swiss roll data sets that have ap-
peared in the previous literature. Swiss Roll is the classical Swiss roll data set;

2 The LLE code used here is from http://www.cs.toronto.edu/˜roweis/lle/code.html.
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(a) LLE (b) Our method (c) Gradient

Fig. 2. The result of LLE and our method on the toy clover data. Figure (c) shows the
local gradient vectors estimated by our method.

Swiss Roll Swiss Roll-H Swiss Roll-N Swiss Roll-Π
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Fig. 3. Experimental results on the Swiss roll data sets. In the first row, the first figure
shows a 3-dimensional roll structure and the other two shows the true 2-dimensional
coordinates of the corresponding data. The 2nd to the 4th rows are the results of LLE,
Laplacian Eigenmaps, and our method respectively.

Swiss Roll-H cuts a squared hole on the intrinsic data structure; Swiss Roll-
N has a narrow width and a comparatively long roll; Swiss Roll-Π embeds a
π-shaped set of data into the 3-dimensional space. The data and results are
shown in Fig. 3. We can observe visually that our method better preserves the
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low-dimensional structure under all conditions, while LLE may give globally
distorted recovery and Laplacian Eigenmaps tend to “squeeze” the data into
lines of high-density areas as we have analyzed in the previous part of the paper.

4.2 Quantitative Comparison

For the two data sets, since we have the true low-dimensional coordinates of the
data, we are able to calculate the procrustes measure (PM) [17] between the true
coordinates and the recovered ones for each method for quantitative comparison.
Procrustes measure between two sets of points determines a linear transforma-
tion (including translation, reflection, orthogonal rotation, and scaling) and uses
the sum of squared errors as a goodness-of-fit measure, which in our case shows
the accuracy of the dimensionality reduction algorithms. A smaller PM value
indicates more accurate recovery. We also calculate the local procrustes mea-
sure, which is the mean of the procrustes measures in each local neighborhood,
to compare the accuracy of the dimensionality reduction algorithms in the local
area. PCA is adopted as a baseline. Table 2 shows the results of different meth-
ods on the toy data sets (if one algorithm needs parameter tuning, the best result
is reported here). The result verifies the superiority of our method to preserve
the intrinsic data structure both locally and globally.

Table 2. The procrustes measure (PM) and local procrustes measure (LPM) on the
toy data sets. LE denotes Laplacian Eigenmaps and DFDR is our distortion-free di-
mensionality reduction method.

Data set
PM LPM

PCA LLE LE DFDR PCA LLE LE DFDR

clover 0.1464 0.0303 0.0637 1.006×10−4 0.0433 0.0167 0.0396 2.188×10−4

Swiss Roll 0.6891 0.1973 0.2090 0.0032 0.1078 0.4525 0.2726 0.0051
Swiss Roll-H 0.6791 0.1232 0.1678 0.0047 0.1136 0.1022 0.3519 0.0077
Swiss Roll-N 0.8988 0.4738 0.5116 0.0016 0.4255 0.2917 0.4434 0.0187
Swiss Roll-Π 0.6634 0.2066 0.2550 0.0054 0.1201 0.1316 0.3316 0.0068

4.3 Real-World Data

In this part, we perform dimensionality reduction on real-world data sets. We
randomly select 2000 digital TWOs from the MNIST database [18] for dimen-
sionality reduction and 1000 for out-of-sample test, and show the results in Fig. 4.
For computation speed consideration, a precedent PCA is adopted to save 95%
of the energy before NLDR is applied. It can be seen that both results reveal
the intrinsic structure of the low-dimensional embedding. Next, we adopt the
sequential smiling face data from [19] to test our method. The one-dimensional
embedding and the original images are shown in Fig. 5. Our method recovers
the low-dimensional coordinates well and is consistent with the original data.
This can be seen visually: in the recovered coordinates, a larger gap between
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(a) Dimensionality reduction result (b) Out-of-sample result

Fig. 4. The result of dimensionality reduction on the digital TWO images

b c

(a) The sequential images and the recovered coordinates

3.80 7.13 4.55

(b) Image 31–34 (left rectangle)

8.36 16.41 6.20

(c) Image 36–39 (right rectangle)

Fig. 5. Recovered coordinates from a sequential smiling face images. The images are
borrowed from [19]. The numbers in (b) and (c) shows the Euclidean distance between
related images.

data points such as in the rectangle marked “b” and “c” corresponds to a larger
distance between the corresponding images. It is comparatively difficult for us
to provide a quantitative evaluation (and comparison against other NLDR algo-
rithms) like we did on the toy data, as we do not know what low-dimensional
coordinates are “optimal”. However, the experiments have revealed that out
method does obtain good dimensionality reduction results visually and preserves
the local information well.
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5 Conclusion

Dimensionality reduction has been an important issue in the machine learning
field to reveal the low-dimensional structure of the data. The main contribution
of our paper lies in two aspects: (1) we discussed the distortion problem of
the classical Laplacian Eigenmaps method and proposed an alternative way to
construct the Laplacian matrix via a local linear model; (2) we proposed a new
way to reduce the dimensionality to obtain a better result both visually and
numerically, and avoid the distortion problem successfully. In the future, we will
explore the theoretical nature of the proposed method as well as developing more
efficient algorithms to solve the optimization task.
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Appendix: Proof to the Theorems

Proof to Theorem 1: To prove that L is positive semi-definite, we first write
L as L = P�P , where we define the ancillary matrix P as

P =

⎡
⎢⎢⎢⎣

(I −X�
1 A1)H 0 · · · 0
0 (I −X�

2 A2)H · · · 0
...

...
. . .

...
0 0 · · · (I −X�

n An)H

⎤
⎥⎥⎥⎦S , (23)

where the selection matrix S is defined in Section 3.2. For any arbitrary vector
f , we have

f�Lf = ‖P f‖2 ≥ 0 , (24)

thus L is positive semi-definite.
To prove L1 = 0, notice that the row sum of S is 1, i.e., S1 = 1 (with a slight

abuse of the notation, we use 1 to denote all the column vectors with proper
dimensions), so we have

L1 = S�MS1 = S�M1 . (25)

Thus we can prove L1 = 0 if we can prove M1 = 0. This is further equivalent
to proving Mi1 = 0, ∀i = 1, · · · , n. Define the symmetric matrix Bi = (I −
X�

i Ai)�(I −X�
i Ai), from Eqn. 13, we get

Mi1 = H�(I −X�
i Ai)�(I −X�

i Ai)H1

=
[

I
−1�

]
Bi

[
I −1

]
1

=
[

Bi −Bi1
−1�Bi 1�Bi1

]
1

= 0 . (26)

Thus, we have
L1 = S�M1 = S�0 = 0 , (27)

and the theorem is proved.

http://yann.lecun.com/exdb/mnist/index.html
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Proof to Theorem 2: the proof is similar to the proof to Theorem 1. To prove
that D is positive semi-definite, we use D = P̃�P̃ where P is defined as:

P =

⎡
⎢⎢⎢⎣
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

⎤
⎥⎥⎥⎦S . (28)

To prove D1 = 0, it is equivalent to prove A�
i Ai1 = 0, ∀i = 1, · · · , n. To see

this, we have

A�
i Ai1 = H�[(λI + XiX

�
i )−1Xi]�(λI + XiX

�
i )−1XiH

=
[

I
−1�

]
B̂i

[
I −1

]
1

=
[

B̂i −B̂i1
−1�B̂i 1�B̂i1

]
1

= 0 , (29)

where we define B̂i as B̂i = [(λI + XiX
�
i )−1Xi]�(λI + XiX

�
i )−1Xi. Thus, the

theorem is proved.
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Abstract. We study the use of fractional norms for regularisation in
supervised learning from high dimensional data, in conditions of a large
number of irrelevant features, focusing on logistic regression. We develop
a variational method for parameter estimation, and show an equivalence
between two approximations recently proposed in the statistics litera-
ture. Building on previous work by A.Ng, we show the fractional norm
regularised logistic regression enjoys a sample complexity that grows log-
arithmically with the data dimensions and polynomially with the number
of relevant dimensions. In addition, extensive empirical testing indicates
that fractional-norm regularisation is more suitable than L1 in cases
when the number of relevant features is very small, and works very well
despite a large number of irrelevant features.

1 Lq<1-Regularised Logistic Regression

Consider a training set of pairs z = {(xj , yj)}n
j=1 drawn i.i.d. from some unknown

distribution P . xj ∈ Rm are m-dimensional input points and yj ∈ {−1, 1} are
the associated target labels for these points. Given z, the aim in supervised
learning is to learn a mapping from inputs to targets that is then able to predict
the target values for previously unseen points that follow the same distribution
as the training data.

We are interested in problems with large number m of input features, of which
only a few r << m are relevant to the target. In particular, we focus on a form
of regularised logistic regression for this purpose:

max
w

n∑
j=1

log p(yj |xj ,w) (1)

subject to||w||q ≤ A (2)

or, in the Lagrangian formulation:

max
w

n∑
j=1

log p(yj|xj ,w)− α||w||qq (3)

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 580–596, 2008.
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where α is the Lagrange multiplier that balances between fitting the data well
and having small parameter values.

In the above, the likelihood of predicting y for some input x in logistic regres-
sion is

p(y|wT x) = 1/(1 + exp(−ywT x)),

parameterised by w ∈ R1×m. The norm that forms the regularisation term is
defined as

||w||q = (
m∑

i=1

wq
i )

1/q

Note, with q = 2 or q = 1, this is L2- or L1-regularised logistic regression respec-
tively. The generalisation ability and sample complexity of L2- vs. L1-regularised
logistic regression have been comprehensively studied in [10] — showing the im-
pressive superiority of the latter in problems with large m and small r. Here
we seek to extend their study to the case of q ∈ (0, 1), which we refer to as
Lq<1-regularisation or ’fractional norm’-regularisation.

The fractional norm is not strictly a norm in the mathematical sense, since
it does not satisfy the triangle inequality. In addition it is non-differentiable at
zero and non-convex, which make its use technically more challenging than that
of the more common L1 or L2 norms. Nevertheless, work in a number of disjoint
areas independently indicate added value to this norm, in terms of certain spe-
cific criteria. It may be interesting to note, the fractional norms were previously
studied in the databases and data engineering literature [5], for mitigating the
dimensionality curse. Work in statistics [3,16] have established the oracle prop-
erties of such and related [14] non-convex regularisation, despite the existence
of several local optima. Good empirical results were also reported in signal re-
construction [2] and in SVM classification [8,13]. Furthermore, using fractional
norm regularisation, consistently superior empirical results were reported on real
genomic data sets [7]. Related ideas of using non-convex (’zero-norm’) regulari-
sation [13] were found useful in many application settings, though this appeared
to be data dependent.

It is therefore of interest to know more exactly in what conditions fractional
norm regularisation would be superior to other commonly used norms for ma-
chine learning, in terms of its generalisation ability and sample complexity. The
work of [10] elucidated such issues for L1 vs. L2 regularisation, but to our best
of knowledge, there is no such systematic study assessing fractional norm regu-
larisation, and this is what we attempt in this paper.

2 Analysis

The analysis presented in this section follows standard techniques in statistical
learning theory, and in particular the techniques previously employed in [10] for
analysing the L1-regularised logistic regression. We give more details to show
that, their results extend straightforwardly to the Lq<1-regularised case, namely
that Lq<1-regularised logistic regression enjoys a logarithmic sample complexity
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w.r.t. the data dimensionality, and polynomial in the number of relevant features.
Thus, it can learn to generalise from data with exponentially many irrelevant
features. Recall that, a logarithmic sample complexity corresponds to the best
known bounds for feature selection (see e.g. [10] and references therein).

Denote by G = {g : g(x) = wT x,x ∈ Rm} the linear function class, and
H = {hg(x, y) = − log p(y|g(x)) : g ∈ G,x ∈ Rm, y ∈ {−1, 1}} is the function
class under study, i.e. the parameterised negative log likelihood of the logistic
regression model.

The learning algorithm we consider is the following. Divide the available la-
belled set z in two disjoint sets z1 and z2, with sizes |z1| = n1, |z2| = n− n1 re-
spectively, where z1 (the training set) is used for learning w by optimising (1)-(2)
or (3) with a fixed A (or α) – this outputs the function L(z1) = minh∈H êrz1(h)
– and z2 (the validation set) is used to select the optimal A (or equivalently α).

We startby considering theprobabilityof error1at the training stageof the above
learning algorithm. For a given h ∈ H , denote erP (h) = E(x,y)∼iidP [h(x, y)] the
true error of h w.r.t. the unknown data distribution P under the i.i.d. sampling
assumption. Further, êrz1(h) = 1

n1

∑n1
i=1 h(xi, yi) is the sample error achieved by

h on the training set z1, and optP (H) = infh∈H erP (h) is the approximation error
of our function class H . h∗ ∈ H will denote the function in H that is closest to the
one where this infimum is attained.

Theorem1. ∀ε > 0, ∀δ > 0, ∀m,n1 ≥ 1 and ∀A ≥ 0 fixed, in order to ensure
that

erP (L(z1)) ≤ optP (H) + ε (4)

with probability 1− δ, it is enough to have the following training set size:

n1(L, ε, δ) =
2048(A+ 1)2

ε2
[log

8(2m + 1)
δ

+
256A2

ε2
+ 1] (5)

Hence the sample complexity n1 = Ω((logm)×poly(A, 1/ε, log(1/δ)) is logarith-
mic in the data dimensionality m and polynomial in A and other quantities of
interest.

The proof is given in the Appendix.
In the above, the regularisation parameter A was fixed. Now the error from the

validation procedure for selecting A should be considered. We employ the same
hold-out validation scheme as [10], the implementation of which is to select A
from the pre-defined set of possible values {0, 1, 2, 4, 8, ..., C} such that the logloss
is minimised on the hold-out set. If r denotes the number of relevant features,
we have that |wij | ≤ K, j = 1, ..., r for some constant K and for all others the
entry in w is zero. So this gives us the following:

|wij |q ≤ Kq ⇒ ||w||qq ≤ rKq ⇒ ||w||q ≤ r1/qK (6)

Therefore, from the above set of possible values, the optimal choice of A is
r1/qK ≤ A ≤ 2r1/qK (which recovers in the q = 1 case the relationship between
1 Although the theory concerns the logloss error, an upper bound on the logloss also

implies an upper bound on the 0-1 misclassification error [10].
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A and r given in [10]). From (6), we see A grows polynomially with r, so with
this optimal choice, the previous result also implies the sample complexity is
polynomial in the number of relevant features r. Now, for the same standard
arguments as in [10], the hold-out validation procedure ensures that with prob-
ability 1− δ the selected parameter will have performance at most ε worse than
that with the best parameter. Adding this together with the previous result (eq
(42) in Appendix), we have that:

erP (L(z1)) ≤ optP (H) + 3ε (7)

with probability 1−2δ. We can replace δ with δ/2 and ε with ε/3, and the sample
complexity remains in the same complexity class.

Comments. It may be interesting to note, from the expression of the sample
complexity we can see this model is advantageous as long as the logm term is
dominant – i.e. when A is small, or equivalently, when the number of relevant
features is small. The sample complexity grows with the 4-th power of A. So when
the number of relevant features is large enough for this to become the dominant
term, we might expect to lose the benefits of a sparsity-inducing regularisation.
Also, from (6) we can see that, the smaller the q < 1, the faster A grows in r.
Hence we might expect a small exponent q to work the best in a setting where
the number of relevant features is very small.

3 Implementation

The likelihood function is not convex and is also non-differentiable at zero, which
makes the implementation non-trivial.

3.1 Method 1: Using a Smooth Approximation

The following smooth approximation to the regularisation term has been pro-
posed in [7]:

m∑
i=1

|wi|q ≈
m∑

i=1

(w2
i + γ)q/2 (8)

where γ is set to a small value. The approximate log likelihood is then differen-
tiable and any nonlinear optimisation method applies.

Although this approach seems practically convenient and easy to implement,
it has several drawbacks. The main difficulty is that there is no obvious or
principled way to set the smoothing parameter γ. Ideally, one would like it to be
as small as it can be without causing numerical instability problems — which
is not easy to determine. As one would expect, we observed in our experiments
that, the smaller the q is, the more likely the danger of running into numerical
instability when γ is chosen to be too small. On the other hand, a larger γ
tends to over-smooth the regularisation term, specially when q is further from
zero, and this causes it to lose its beneficial sparsity-inducing effect. In addition,
iterative optimisers applied to this approximation are not guaranteed to produce
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an increase in the likelihood of the model at each iteration. The next section
presents a more principled alternative that bypasses all of these limitations.

3.2 Method 2: Local Quadratic Variational Approximation

A local quadratic approximation was proposed in [3], which, as we shall see, is
actually a strict lower bound on the model likelihood. This becomes evident by
deriving it from convex duality [6].

With q < 1, the function |wi|q is concave, so we can write:

f(wi) = |wi|q = min
λi

{
λiw

2
i − f∗(λi)

}
(9)

f∗(λi) = min
ηi

{
λiη

2
i − f(ηi)

}
(10)

In convex analysis, the function f∗(.) is termed the conjugate (or dual) function
of f(.). Geometrically, f∗(λi) represents the amount of vertical shift applied
to λw2

i to obtain the quadratic upper bound with precision parameter λ, that
touches f(wi).

Denoting g(ηi) = λiη
2
i − f(ηi), the maximum occurs either at ηi = 0, g(ηi =

0) = 0 or at a solution of the stationary equation when ηi �= 0:

g′(ηi) = 2λiηi − f ′(ηi) = 0 ⇒ λi =
f ′(ηi)
2ηi

(11)

and f ′(ηi) = q|ηi|q−1sign(ηi). Replacing in (9) yields the variational bound:

|wi|q ≤ f ′(ηi)

2ηi
(w2

i − η2
i ) + f(ηi) =

1

2

�
q|ηi|q−2w2

i + (2 − q)|ηi|q
�

(12)

The new parameters ηi are called variational parameters, and the resulting
upper bound is tangent to |wi|q in ηi = ±|wi| — see Figure 1.
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Fig. 1. Examples: Left: q = 0.5, ηi = 1, so the quadratic upper bound is tangent in
±1. Right: q = 0.5, ηi = 3, so the quadratic upper bound is tangent in ±3.
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It is interesting to note that in the case of q = 1, the bound (12) recovers
exactly the bound proposed in [4] for deriving an exact estimation algorithm for
L1-regularised logistic regression.

Using the above local bounds, the log likelihood is lower-bounded:

L = −
n∑

j=1

log
{
1 + exp(−yjw

T xj)
}
− α

m∑
i=1

|wi|q

≥ −
n∑

j=1

log
{
1 + exp(−yjw

T xj)
}
− α

m∑
i=1

1
2
{
q|ηi|q−2w2

i + (2− q)|ηi|q
}

= L̃quad(w,η) (13)

Now, maximising the lower bound to the log likelihood can be done iteratively.
Each iteration will alternate between maximising w.r.t. w while keeping η fixed
and maximising w.r.t. the variational parameters η, i.e. tightening the variational
bound while keeping w fixed. Convergence to a local optimum is guaranteed,
convergence proofs for this kind of algorithms are detailed in e.g. [6] and [3], and
are essentially based on the fact that the sequence of log likelihood estimates is
non-decreasing and bounded from above (analogous to E-M algorithms).

Consider first the maximisation w.r.t. the variational parameters η =
(η1, η2, ..., ηn), with w being fixed to their current value. Solving the station-
ary equations w.r.t. ηi, i.e. ∂L̃quad

∂ηi
= 0 yields:

η = |w| (14)

This is indeed where we have seen the bound touches the function.
Now, the maximisation w.r.t. w, with fixed η is technically an L2-regularised

logistic regression problem, since (13) depends quadratically on w, which may
be carried out using existing methods. One convenient option, which we briefly
reproduce here for completeness, is to employ the local quadratic lower bound
to the log likelihood term as proposed in [6], based on the fact that the logistic
function is convex as a function of the square root of its argument. This is the
following,

− log
{
1 + exp(−yjw

T xj)
}
≥ − 1

4ξj
tanh(

ξj

2
)
{
(wT xj)2 − ξ2

j

}
+ (yjw

T xj − ξj)/2− log {1 + exp(ξj)} (15)

where ξj , j = 1, ..., n are new variational parameters that control the tightness
of the locally quadratic bound on the log likelihood. Replacing this into (13), we
obtain a lower bound expression on the log likelihood (parameterised by both η
and ξ) which we can maximise iteratively by solving for w and ξ in turn. These
optimisation problems now have closed form solutions, and we get:

w = [XΞXT + Λ]−1Xy/2

=
{

Λ−ΛX[XT ΛX + Ξ]−1XT Λ
}

Xy/2 (16)

ξ = |XT w| (17)
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where Λ = diag( |ηi|2−q

qα ) and Ξ = diag( 2ξj

tanh(ξj/2) ), and the form (16) is more
convenient in the m >> n case. This inner loop can then be interleaved with
the re-estimation of η and so the overall algorithm consists of performing (16)-
(17)-(14) in turn until convergence to a local optimum.

It should be noted that, although each step of the algorithm yields a unique
solution for the parameter being re-estimated, the overall solution is not unique
since the likelihood (and the bound on it) is not convex. There are multiple
local optima, and so the initialisation may be important. In the reported exper-
iments, we initialised all variational parameters to one. Then, cf. (16), w is a
deterministic function of these values and the training set. While this is just one
of several possible reasonable choices, it worked well, and as we shall see, even
the local optima obtained is able to produce more accurate classification (and
feature recovery) than the alternative convex approach of L1-regularised logistic
regression.

3.3 Method 3: Local Linear Variational Approximation

Now, convex duality [6] will be used to create a linear upper bound on the
regularisation term. The idea of creating local linear (rather than quadratic)
bounds for this problem was proposed in a recent statistics paper [16], and our
use of convex duality is just a convenient framework for deriving variational
bounds in a more systematic manner.

With q < 1, the function |wi|q is concave, so we can write:

f(wi) = |wi|q = min
λi

{λi|wi| − f∗(λi)} (18)

f∗(λi) = min
ηi

{λi|ηi| − f(ηi)} (19)

Again, the function f∗(.) is the conjugate (or dual) function of f(.), and f∗(λi)
represents the amount of vertical shift to be applied to λ|wi| in order to obtain
the linear upper bound with slope λ, that touches f(wi). For every ±|wi|, there
is an optimal slope λi from the family of upper bounds.

Denoting g(ηi) = λi|ηi| − f(ηi), the maximum occurs either at ηi = 0, g(ηi =
0) = 0 or at a solution of the stationary equation when ηi �= 0:

g′(ηi) = λisign(ηi)− f ′(ηi) = 0 ⇒ (20)

λi =
f ′(ηi)

sign(ηi)
= q|ηi|q−1 and (21)

f∗(λi) ≤ (q − 1)|ηi|q (22)

Replacing in (18) yields the variational bound:

|wi|q ≤ q|ηi|q−1|wi|+ (1 − q)|ηi|q (23)

The new parameters ηi are called variational parameters, and the resulting upper
bound is tangent to |wi|q in ηi = ±|wi| — see Figure 2.
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Fig. 2. Examples - Left: q = 0.5, ηi = 0.3, so the linear upper bound is tangent in
±0.3. Right: q = 0.5, ηi = 3, so the linear upper bound is tangent in ±3.

This variational approximation casts back the initial problem of fractional
regularisation to solving a number of L1-regularised problems instead.

L = −
n∑

j=1

log
{
1 + exp(−yjw

T xj)
}
− α

m∑
i=1

|wi|q

≥ −
n∑

j=1

log
{
1 + exp(−yjw

T xj)
}
− α

m∑
i=1

{
q|ηi|q−1|wi|+ (1 − q)|ηi|q

}
= L̃lin(w,η) (24)

As before, maximising the lower bound to the log likelihood can be done iter-
atively. Each iteration will alternate between maximising w.r.t. w — which is
now an L1-regularised version of the problem — and maximising w.r.t. the vari-
ational parameters η, i.e. tightening the bound. Convergence to a local optimum
is guaranteed, proofs are detailed in e.g. [6] and [16].

Maximising w.r.t. the variational parameters is straightforward, and after
some algebra we get the stationary equation,

∂L̃lin

∂ηi
= q(q − 1)|ηi|q−2sign(ηi)(|wi| − |ηi|) = 0 (25)

the solution of which is, as one would expect, |ηi| = |wi|. Due to symmetry, since
the objective is a function of |ηi|, it is enough to take:

η = |w| (26)

For maximising w.r.t. w, we can use any of the several existing efficient meth-
ods for solving an L1-regularised logistic regression. The algorithm is then to
iterate between these two steps till convergence, and we see this requires us to
solve an L1-regularised regression problem in each iteration. However, in the se-
quel we shall show instead, that — perhaps surprisingly — the method described
in this section is actually equivalent to the previous one.
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Equivalence of Local Linear and Local Quadratic Approximation. Of
course, the local linear approximation appears to be a tighter bound to the Lq<1-
term than the local quadratic one, which has been the main motivation for [16]
proposing it. However, we will show in fact they are both finding a local optimum
of the same objective. To see this, we develop a generalised E-M [9] estimation
algorithm for the local linear bound, which will turn out to be identical to the
iterative estimation algorithm we have developed for the local quadratic bound.

Let us start by rewriting the |wi| term as follows:

|wi| = − log
∫ ∞

0

1√
2πτi

exp
{
−w2

i + τ2
i

2τi

}
dτi (27)

= − log
{

2
∫ ∞

0

N(wi|0, τi)Exp(τi)dτi

}
(28)

where N(wi|0, τi) = 1√
2πτi

exp(−w2
i /(2τi)) is the Gaussian density with zero

men and variance τi and Exp(τi) = 1
2 exp(−τi/2) is the exponential density

with parameter 1.
In this rewriting, τ may be seen as a latent variable, so we could use the E-

M methodology for iterative estimation of w from (24) (in an inner-loop) while
keeping η fixed at its currently estimated value (from the outer loop). We should
emphasise, this is not a proposal for a practical algorithm, but serves to show
the equivalence relationship with the local quadratic approximation approach —
which is obviously more convenient to implement.

It is well known from the theory of E-M [9] that the expectation of the log
complete likelihood forms a so-called auxiliary function, meaning that an increase
in this function corresponds to an increase in the initial objective (in our case
L̃lin(w,η)), and a local optimum of the auxiliary function is also a local optimum
of the initial objective. For (24), the expected log complete likelihood is the
following:

Q(w, p(τ |wold), η) = −
n�

j=1

log{1 + exp(−yjw
T xj)} + αq

m�
i=1

|ηi|q−1
� ∞

0
p(τ |wold) ×

× {log N(wi|0, τi) + log Exp(τi)} + constw,τ (29)

where constw,τ is independent of both w and τ .
The E-step of this inner loop estimation procedure would then be to com-

pute the posterior p(τi|wold
i ) and the M-step would maximise Q with respect to

w. Observe, however, that the only posterior statistic required for the estima-
tion of w is the expectation E[1/τi|wold

i ] w.r.t. p(τi|wold
i ). Thus, computing this

completes the E-step:

E[1/τi|wold
i ] =

∫∞
0 1/τiN(wold

i |0, τi)Exp(τi)dτi∫∞
0 N(wold

i |0, τi)Exp(τi)dτi

=
1

|wold
i | (30)

Hence we have, in more compact notation:

E[τ−1|wold] = |wold|−1 (31)
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which, after one E-step, is identical to the inverse of the estimate of η that we
obtained previously (26).

The M-step is to compute:

w = argmax
w Q(w, E[τ −1|wold], η) (32)

= argmax
w −

n�
j=1

log
�
1 + exp(−yjw

T xj)
�

− αq
m�

i=1

1

2
|ηi|q−1E[1/τi|wold

i ]w2
i (33)

where we replaced (31) into the terms of Q that depend on w. Observe, in the
first M-step this is exactly the same as argmax

w L̃quad(w,η).

Now, rather than maximising L̃lin(w,η) w.r.t. w with η fixed, by iterating
the E and M steps to convergence in an inner-loop (and reestimate η in the
outer loop), it is sufficient, cf. the generalised E-M [9], to make an increase in
L̃lin(w,η) w.r.t. w before reestimating η. This leads to merging the inner and
outer loops in a single loop, while still having the guarantee of a monotonic
convergence to a local optimum of L̃lin(w,η) w.r.t. w. In particular, we have
the following convergent sequence, where t is the iteration index:

L̃lin(wt−1,ηt−1) ≤ L̃lin(wt−1,ηt) = Q(wt−1,E[τ−1|wt−1],ηt)
≤ Q(wt,E[τ−1|wt−1],ηt) = L̃quad(wt,ηt)
≤ Q(wt,E[τ−1|wt],ηt)
= L̃lin(wt,ηt) ≤ L̃lin(wt,ηt+1) = Q(wt,E[τ−1|wt],ηt+1)
≤ Q(wt+1,E[τ−1|wt],ηt+1) = L̃quad(wt+1,ηt+1) ≤ ...

Now, observe, this is in fact identical to the monotonic sequence produced
when optimising the local quadratic bound. Hence there is no advantage to the
extra sophistication brought by the local linear approximation. Because of this,
we implemented and used the former in the reported experiments.

4 Experiments

From the theoretical analysis we found they both enjoy a logarithmic sample
complexity w.r.t. the data dimension and so they can both learn with exponen-
tially many irrelevant features. We may also expect in the light of that analysis
that a smaller q should work best in a setting where the number of relevant
features is very small. However, to find out how Lq<1-regularisation compares
with L1 regularisation in such a setting, we conduct an empirical comparison in
this section.

We generated synthetic data sets as in [10] and followed the same experimen-
tal protocol in the first instance. In each experiment, 30% of the data was used
as a validation set to select the regularisation parameter. The training + valida-
tion set size was 70+30 and the performance was measured on an independent
test set of size 100. The number of features was varied between 100 and 1000, out
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Fig. 3. Results on synthetic data sets when varying q. The training set size was n1 = 70,
the validation set size=30, and the out-of-sample test set size=100. The statistics are
over 10 independent runs with overall feature size (dimensionality) ranging from 100
to 1000. The upper figures represent average ± standard error.

of which just a few are relevant, as follows. We created and studied the same
3 types of data sets as in [10]: (1) a single feature is relevant; (2) 3 features
are relevant; and (3) exponentially decaying relevance of the features. See [10]
for more details on the data generation procedure. Figure 3 summarises the
results, measured by three different criteria: the number of 0-1 errors on the
test set (out of 100), the logloss achieved on the test set and the number of
features retained vs. the true number of relevant features. We also plotted the
loglosses on validation set, to ascertain these are in good agreement with the
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Fig. 4. Varying the training + validation set size. q=0.5, m=3000. The box-plots sum-
marise 20 independent trials for each experiment.

other measures. For each q, the error bars represent averages and standard errors
of results obtained for all data dimensions tested. As we can see, the variation
w.r.t. this factor turns out to be much smaller than that w.r.t. varying q. It is
clear from the figure that small values of q work extremely well when only one
feature is relevant (column 1), despite of the large number of relevant dimensions.
The improvement achieved over the L1-regularised logistic regression is both
statistically and practically significant, w.r.t. all measures. The picture is very
similar when 3 features are relevant (column 2). Moreover, we notice that for
certain values of q, the fractional-norm regularisation is also able to improve over
L1 in the case of exponentially decaying feature relevance (column 3). However,
unsurprisingly, small values are not the best in this latter case — since in this
case all features have some degree of information about the target, a relatively
small but not too small number of them is needed for good prediction.

Next, noting that the theoretical guarantees assume a large number of
examples, and although the previous set of experiments considered a small but
fixed sample size throughout, we conducted an additional set of experiments
designed to test the variability of Lq-regularised logistic regression when varying
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the number of samples in both directions. Here q = 0.5 is fixed, as from the
previous experiments we observe this value tends to win over on average. Figure
4 presents these results for all three types of data sets previously considered.
The overall dimensionality is 3000 this time, so these data sets must be harder
than the previous ones. The size of the independent test set is 100 in all cases,
so the misclassifications reported are again out of 100.We see the results remain
reasonably good as long as the ratio of sample size vs. relevant dimensions is not
too small. The results with a single relevant feature in 3000 dimensions (column
1) are in fact excellent — even with very small sample sizes the median of the
0-1 missclassification error rate is still zero. In turn, as the number of relevant
features increases to 3 and the training + validation size is as small as 35+15, we
see in the leftmost box-plot (middle column) this is where the method reaches
its limits and ceases to work.

5 Conclusions

We studied fractional-norm regularisation for logistic regression both theoreti-
cally and empirically, for high dimensional data with many irrelevant features.
We developed a variational method for parameter estimation, and have shown
an equivalence between local quadratic and local linear approximations to the
regularisation term. Based on our results, fractional-norm regularisation is more
suitable than L1 in cases when the number of relevant features is very small,
and works very well despite a large number of irrelevant features.

A Word about a Bayesian Interpretation. Lq<1 regularisation may be in-
terpreted as the MAP estimate of a Generalised Laplacian Distribution prior.
Our variational approach makes it tractable to compute variational posterior dis-
tributions and hence to obtain uncertainty estimates. Whether those will keep
having such favourable sample complexity properties or not, remains to be elu-
cidated in the future.

Acknowledgments. RJD was supported by an EPSRC CTA studentship for
MSc in Natural Computation.
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Appendix

Proof of Theorem 1
First, it is useful to notice that

∀w, ||w||q<1 ≥ ||w||1 (34)

The plan is then the following. We show that h ∈ H is bounded, so we can
apply standard results to bound its error probability by a uniform covering
number. This will then be bounded further using (34) and an existing result of
[15] for regularised function classes, in the same manner as previously employed
in [10]. Finally, the sufficient sample complexity is computed by requiring the
error bound to be smaller or equal than the user-defined confidence parameter
δ.

To see (34), note first that the inequality ||w||q ≥ ||w||p, ∀w is well known for
1 < q < p from measure theory. Extending it to 0 < q < p < 1 is straightforward,
rewrite the required inequality as follows:
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where we denoted |ui| ≡ | wi

(
�

m
i=1 |wi|p)1/p |. Now, since

∑m
i=1 |ui|p = 1 ⇒ |ui|p ≤

1 ⇒ |ui| ≤ 1. In consequence, and since q ≤ p, we have |ui|q ≥ |ui|p. Summing
both sides w.r.t. i yields

∑m
i=1 |ui|q ≥

∑m
i=1 |ui|p. But we know the r.h.s. is one,

so
∑m

i=1 |ui|q ≥ 1. Finally, raising both sides to 1/q, the required result follows
(for any q > 0), i.e. (

∑m
i=1 |ui|q)1/q ≥ 1.

To see that h ∈ H is bounded, we write:

M = | − log p(y|wT x)| = | log(1 + exp(−ywT x))| ≤ 1 + |wT x| (35)
≤ 1 + ||w||1||x||∞ (by Hölder’s inequality) (36)
≤ 1 + ||w||q<1||x||∞ cf. (34) (37)
≤ 1 + A||x||∞ (38)

Therefore, the classical result due to Pollard [11] (pp. 492), combined with
standard results [10,1] applies, and we have the error probability bounded by a
uniform covering number of the linear function class G in the L2-norm:

P {∃h ∈ H : |erP (h)− êrz1(h)| > ε} ≤ 8N2(G,
ε

8L
, n1) exp

{
− n1ε

2

512M2

}
(39)

where M is the output bound that we previously computed and L is the Lipschitz
constant of h ∈ H as a function of g ∈ G. Since h is continuous on [0, 1] and
differentiable on (0, 1), and |h′(t)| = | d

dt log 1
1+e−t | = | e−t

1+e−t | ≤ 1, therefore h
satisfies the first order Lipschitz condition with Lipschitz constant L=1.

Now, in the above, it remains to approximate the uniform covering number2

N2(G, ε/8, n1). This is a combinatorial quantity that expresses the complexity of
a function class at the given scale, and as such, it is affected by the regularisation
constraints imposed. Similarly to the approach in [10], the following result by

2 The definition of uniform covering numbers is as follows (see e.g. [1]). B is called an
ε-cover for a real valued function class F of infinite cardinality (e.g. a parameterised
function class) w.r.t. a particular training set z of size n and a distance d, if B is a
finite set of functions, and ∀f ∈ F, ∃b ∈ B, such that d(f(x) − b(x)) < ε. The size
of the smallest such cover set B is the covering number of F w.r.t. z. The uniform
covering number is then the maximum of these w.r.t. all training sets of size n and
is denoted Nd(F, ε, n).
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Zhang [15], developed for regularised linear function classes, can be used to
bound this uniform covering number.

Lemma [15]. In a linear function class G = {g : g(x) = wT x,x ∈ Rm}, if
||x||p ≤ b and ||w||q ≤ a, where 1/p + 1/q = 1 and p ≥ 2, then

log2N (G, ε, n) ≤ ceil(
a2b2

ε2
) log2(2m + 1)

where n is the sample size and m is the data dimension.
Clearly, the lemma does not apply directly to our case, since 1/q > 1 already

when q < 1. However using again (34), it follows by transitivity that ||w||1 ≤ A.
Now applying the Lemma, we get:

log2N (G(q<1), ε, n) ≤ ceil(
A2b2

ε2
) log2(2m + 1)

where the Lq<1-regularised linear function class is denoted by G(q<1), and b =
maxi ||xi≥n||∞ and ||x||∞ ≡ maxj≥m |xj |.

Replacing these results into the generalisation bound (39) and assuming the
data is normalised such that ||xi||∞ ≤ 1, we get

P {∃h ∈ H : |erP (h) − êrz1(h)| > ε} ≤ 8 × 264A2/ε2+1(2m + 1) exp

�
− n1ε

2

512(1 + A)2

�

(40)

Since we want this to be small, we set the r.h.s. of (40) to be smaller or equal
to a desired (user-prescribed) confidence parameter δ, we seek to ensure that h
is uniformly ε-good with probability at least 1− δ. Then, with high probability,
i.e. with probability 1− δ, we have, from (40), that:

∀h ∈ H, |erP (h)− êrz1(h)| ≤ ε (41)

Now, it is a standard result to show that from (41) it follows that erP (L(z1))
is close to optP (H), which follows below for completeness. Indeed, if (41) holds
then it must hold also for our learning algorithm h = L(z1). Hence, applying
(41), the definition of L(z1), and the definition of optP (H), we get:

erP (L(z1)) ≤ êr(L(z1)) + ε = min
h∈H

êrz1(h) + ε

≤ êrz1(h∗) + ε ≤ erP (h∗) + 2ε = inf
h∈H

erP (h) + 2ε = optP (H) + 2ε

Thus,
erP (L(z1)) ≤ optP (H) + 2ε (42)

which is indeed of the form (4) if we replace ε by ε/2.
Finally, solving for n1 the r.h.s. of (40)= δ when ε is replaced by ε/2, yields

the sample complexity of L(z1), i.e. the amount of data required for good gen-
eralisation:

n1(L, ε, δ) =
2048(A+ 1)2

ε2
[log

8(2m + 1)
δ

+
256A2

ε2
+ 1] (43)
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We can now conclude that the sample complexity of fractional norm regularised
logistic regression with a given regularisation parameter A is n1 = Ω(log(m) ×
poly(A, 1/ε, log(1/δ))). Moreover, following the argument in [10] to express n1

as a linear function of n, i.e. n1 = (1 − ν)n where ν < 1 is a constant, the
sample complexity result obtained for n1 also extends to n, i.e. we have n =
Ω(log(m)× poly(A, 1/ε, log(1/δ))). Q.E.D.
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Abstract. Many problems require making sequential decisions. For these prob-
lems, the benefit of acquiring further information must be weighed against the
costs. In this paper, we describe the catenary support vector machine (catSVM),
a margin-based method to solve sequential stopping problems. We provide theo-
retical guarantees for catSVM on future testing examples. We evaluated the per-
formance of catSVM on UCI benchmark data and also applied it to the task of
face detection. The experimental results show that catSVM can achieve a better
cost tradeoff than single-stage SVM and chained boosting.

1 Introduction

Many problems require making sequential decisions. In product testing, parts are in-
spected throughout the manufacturing process. Humans or computers must decide
whether to continue manufacturing or whether to stop (in case the piece is not sal-
vageable). In medical diagnosis, doctors, patients, and insurers must decide whether
the current information is sufficient to make a decision or whether to conduct the next
of a bank of tests. In both of these cases, the benefit of further processing must be
weighed against the costs. The acquisition of new information is costly.

In object detection in images, a similar problem is faced. Scanning an image for an
object of interest takes processing time. If the image can be scanned more quickly or at a
lower resolution (reducing the number of pixels to be examined), the detection can be sped
up. In doing so, the speed of detection must be weighed against the accuracy of detection.

Most classification methods assume full information about testing examples and are
thus not suitable for sequential decision making scenarios. Recently, Shelton et al. [1]
proposed chained boosting to solve sequential stopping problem. They assume that the
relative costs of stopping at each stage are known and can be made explicit. Given
the stopping costs for each training example, the goal is to minimize the cost of the
decision rules applied to future examples. The difficulty of the problem lies in the fact
that the decisions in later stages depend on what happens in early stages. Motivated by
the success of support vector machines (SVMs) in many classification problems, this
paper presents the catenary support vector machine (catSVM), a margin-based method
to solve sequential stopping problems.

2 Related Work

We are interested in direct estimation of a sequence of decision rules. For this reason we
are not considering density estimation (like a hidden Markov model) followed by a cost

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 597–610, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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analysis to derive the decision rules. This rules out approaches like influence diagrams
[2] as we would like to skip the density estimation step.

Our formulation (see the next section) appears similar to cascade classification [3,4,5]
in that there are stages of classification. For applications like face detection, negative
examples are far more frequent than positive examples. Rejecting negative examples as
quickly as possible is crucial to the speed of the classification process. Viola and Jones [3]
propose an iterative approach to train the cascade. In each iteration, a new stage is added
to the cascade and a new stage classifier is trained to achieve a very low false negative
rate and an approximately 50% false positive rate using a modified AdaBoost algorithm.
Stages are added to the cascade until the number of false positives is reduced below a
small number on a validation set. Bi et al. [6] propose using 1-norm SVM as the stage
classifiers in the cascade. Like Viola and Jones, their approach trains the stage classifiers
sequentially from the first stage to the last stage. In every stage, an 1-norm SVM is trained
to minimize the sum of the weighted errors and the regularization term.

There are two major differences between our problem formulation and cascade clas-
sification. First, although classification speed is important, we are mainly concerned
about the costs of gathering information (i.e., the feature costs). Also, while cascade
classification requires the user to choose the desired false negative rate and false posi-
tive rate at every stage, we assume that the feature costs and the misclassification costs
are explicitly specified by the user and our algorithm automatically determines the best
tradeoff between the feature cost and the two types of errors.

Second, we optimize the stage classifiers as a group to maximize the overall per-
formance of the processing pipeline. The problem formulation allows the information
available to change at each stage. Thus, false-positive and false-negative rates at each
stage are not sufficient. It matters which positive examples are incorrectly rejected at a
stage, not just how many. In particular, examples for whom further processing would
still result in the incorrect classification should be rejected, while those for whom fur-
ther information would clarify their classification should be saved.

Cascade classification and catSVM are both “staged” classifiers, but they are more
complementary than competitive. The former attempts to speed up the computation of a
single classification task (fixed information) by exploiting the asymmetric distribution
of examples while the latter attempts to speed up a decision task by exploiting the
correlation between data sources gathered at different times. One could well imagine
using cascade classifiers at each stage within the framework shown here.

The prior algorithms that are closest to our work are two recent papers, [7] and [1].
Dundar and Bi [7] consider the problem of jointly optimizing cascaded SVM classi-
fiers. However, they ignore the difference of rejecting an example at different stages.
They formulate a non-convex and non-linear objective function and propose a cyclic
optimization algorithm to optimize it. Shelton et al. [1] consider using boosting to build
a classifier pipeline. They formulate a loss function in terms regular costs and propose
a upper bound of the conjunction of indicator functions using a product of exponen-
tial functions. The resulting upper bound of the loss function is convex and easy to
optimize, but it may be too loose to approximate the loss function well. We demon-
strate evidence to this effect in our experimental results.
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Fig. 1. An example of a three-stage processing pipeline

3 Sequential Stopping Problem

We follow the problem formulation in Shelton et al. [1]. There is no assumption about
the structure of the costs. Rather, we assume that each training example carries a cost
vector indicating the costs of stopping after each stage. These costs may increase, de-
crease, or have any other arbitrary relationship with the stage index. The costs might be
function of a “label” or might be different for each example.

Let S be the number of stages in the processing pipeline. Denote the feature vector
and the costs of an example by x and c, respectively. Let xj be the components of x that
are available at the j-th stage. Let cj be the total cost of rejecting the example at the j-th
stage and cS+1 be the total cost of accepting it (allowing it to “pass” at each decision).
We assume that c is drawn from a known set C. In the case of binary classification, C
might be of cardinality 2: one sequence of costs for positive examples, and one sequence
for negative examples. In general, C can be of any size. The only requirement is that the
maximum magnitude of the members of C be bounded. Figure 1(a) shows an example
of a three-stage processing pipeline.

Denote the classifier at the j-th stage by fj and the entire processing pipeline by f .
A positive value for fj indicates that processing should continue, while a negative value
indicates processing should stop. The loss for an example is therefore

L(f(x), c) =
S∑

j=1

(
cjI [fj(xj) < 0]

j−1∏
k=1

I [fk(xk) ≥ 0]

)
+ cS+1

S∏
k=1

I [fk(xk) ≥ 0] .

(1)
The goal is to find S classifiers, one for each stage, which together minimize
E[L(f(x), c)]. Although we do not know the true distribution of (x, c), we can use
the empirical loss as a surrogate. We let {(X1, C1), . . . , (XN , CN )} denote the training
set and Xij denote the features of Xi that are available at the j-th stage. Analogously,
we let Cij denote the cost associated with Xi at the j-th stage.

4 Catenary Support Vector Machines

We return to the formulation in Section 3 and derive an optimization procedure based
on a loss bound.
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4.1 Loss Bound

We start by re-writing the loss function (1) in terms of incremental costs.

L(f(x), c) = m1 +
S∑

j=1

(
j−1∏
k=1

I [fk(xk) ≥ 0]

)(
αjI [fj(xj) ≥ 0]

+ βjI [fj(xj) < 0]
)

(2)

where for j = 1, . . . , S,

mj =

{
min (mj+1, cj) if j < S,

min (cj+1, cj) if j = S;

αj =

{
mj+1 −mj if j < S,

cj+1 −mj if j = S;

βj = cj −mj .

In words, mj is the minimal cost at stage j or later. αj is the incremental increase in
the minimal cost by continuing processing and βj is the incremental cost of stopping
processing. Note that either αj or βj is positive but not both. We denote the incremental
costs associated with Xi at the j-th stage by mij , αij , and βij . Figure 1(b) shows a
three-stage processing pipeline with the incremental costs.

It is hard to minimize (2) directly. We define a upper bound for L(f(x), c) and min-
imize the upper bound instead.

L̂(f(x), c) = m1 +
S∑

j=1

[
αj

(
Uα

j (x) − V α
j (x)

)
+ βj

(
Uβ

j (x)− V β
j (x)

)]
(3)

where

U∗
j (xj) = max

(
1,M∗

j (x)
)

V ∗
j (xj) = max

(
0,M∗

j (x)
)

Mα
j (x) = max (−f1(x1), . . . ,−fj−1(xj−1),−fj(xj))

Mβ
j (x) = max (−f1(x1), . . . ,−fj−1(xj−1), fj(xj)) .

The wildcard ‘*’ represents either α or β. The key idea of deriving Equation (3) is
to use the difference of two max functions to upper bound the conjunction of indicator
functions. Figure 2(a) shows an example when the conjunction consists of two indicator
functions. Note that we simply bound the 0-1 function by the ramp function. Similar
ramp loss functions have been used before to approximate the classification error more
closely [8,9] and to improve the scalability of SVMs [10]. Figure 2(b) shows U∗

j and
V ∗

j as a function M∗
j .

We formulate the following optimization problem.

min
N∑

i=1

L̂(f(Xi), Ci) + λΩ(‖f1‖H1 , . . . , ‖fS‖HS) (4)
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Fig. 2. (a) Upper bound of I [f1 > 0] · I [f2 > 0], (b) U∗
j and V ∗

j as a function M∗
j

where Ω is some monotonically increasing function. The first term measures the em-
pirical loss and the second term is the regularization term, measured with respect to a
set of reproducing kernel Hilbert spaces {Hj}.

4.2 Catenary Support Vector Optimization

We begin with linear classifiers fj(xj) = wj · xj + bj and an �2 regularization term
Ω(‖f1‖H1 , . . . , ‖fS‖HS) =

∑S
j=1 ‖wj‖22. Note that U∗

j and V ∗
j are all convex func-

tions in {(w1, b1), . . . , (wS , bS)}. But the difference of two convex functions,U∗
j (xj)−

V ∗
j (xj), is non-convex. Thus, Problem (4) is not a convex optimization problem.

We re-formulate Problem (4) as the following constrained optimization problem.

min
∑N

i=1

∑S
j=1

(
αijξ

α
ij + βijξ

β
ij

)
+ λ
∑S

j=1 ‖wj‖22

s.t.

ξα
ij ≥ −wk ·Xij − bk − V α

j (Xi) ∀i, k ≤ j

ξβ
ij ≥ −wk ·Xij − bk − V β

j (Xi) ∀i, k < j

ξβ
ij ≥ wj ·Xij + bj − V β

j (Xi) ∀i, j
ξα
ij , ξ

β
ij ≥ 1 ∀i, j

(5)

Note that we have dropped the constant term,
∑N

i=1 mi,1, from the objective. In
principle, we can leave V ∗

j in the objective. But moving V ∗
j to the constraints appears

to give better empirical results. Also, it is possible to have different tradeoff parameters
for each classifier stage.

The Concave-Convex Procedure. The constraints of Program (5) can all be viewed
as the difference of two convex functions. We employ the concave-convex procedure
(CCCP), first introduced by Yuille and Rangarajan [11] to solve minimization problems
whose objective function can be expressed as the sum of a convex part and a concave
part. While Yuille and Rangarajan [11] considered only linear constraints, Smola et al.
[12] generalized the CCCP to handle concave-convex constraints. The CCCP is an iter-
ative procedure. In each iteration, it replaces the concave parts in the objective function
and the constraints by their first-order Taylor approximation. The resulting problem is
convex and can be solved using efficient convex minimization algorithms.
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Consider the following optimization problem:

min f0(x)− g0(x)
s.t. fi(x) − gi(x) ≤ ci ∀i

where fi and gi are real-valued convex and differentiable functions on #n for i ∈
{0, . . . ,m}, and ci ∈ # for i ∈ {1, . . . ,m}. The CCCP computes x(t+1) from x(t) by
solving the following convex optimization problem.

minf0(x)−
(
g0(x(t)) +∇g0(x(t))T (x − x(t))

)
s.t. fi(x) −

(
gi(x(t)) +∇gi(x(t))T (x− x(t))

)
≤ ci ∀i

It can be shown that the CCCP converges to a local minimum [12]. In case of non-
global minimum, one may restart the CCCP with a different x(0). However, the CCCP
can be considered as a special case of difference of convex functions (D.C.) program-
ming. Tao and An [13] state that the D.C. minimization algorithm (DCA) often con-
verges to a global minimum.

catSVM Program. To formulate Program (5) as a CCCP problem, let w =
(w1, . . . , wS) and b = (b1, . . . , bS). In each iteration, we need to replace V ∗

j in the
constraints by its first-order Taylor expansion at the current estimates of w and b. No-
tice that V ∗

j are non-smooth functions. When we calculate its Taylor expansion, we
use its subgradient. For the pointwise maximum function h(x) = max1≤i≤m hi(x),
its subdifferential at x, ∂h(x), is the convex hull of the subdifferentials of the “active”
functions at x, i.e., ∂h(x) = HConvex{∂hi(x)|hi(x) = h(x)}. Thus, by simple calcu-
lus, we obtain that, for j = 1, . . . , S,

∂V ∗
j (x;w,b)
∂w

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} if M∗
j (x) < 0,{

(−τ1x1, . . . ,−τj−1xj−1, στjxj ,0)∣∣∣τk ≥ 0,
∑j

k=1 τk ≤ 1
}

if M∗
j (x) = 0,{

(−τ1x1, . . . ,−τj−1xj−1, στjxj ,0)∣∣∣τk ≥ 0,
∑j

k=1 τk = 1
}

if M∗
j (x) > 0;

(6)

where

τk = 0
if k < j and M∗

j (x) �= −wk · xk − bk

or if k = j and M∗
j (x) �= σ(wk · xk + bk)

σ =

{
−1 if *= α,

+1 if *= β.

and 0 denotes padding zeroes of appropriate length.
Similarly, we can obtain ∂Vj∗(x;w,b)

∂b by replacing xk’s by 1 in Equation (6). In the
experiments, we pick the subgradient with
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τk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c if k is the largest index s.t.

either k < j and M∗
j (x) = −wk · xk − bk,

or k = j and M∗
j (x) = σ(wk · xk + bk),

0 otherwise,

where c = ρ
ρ+1 and ρ is the number of active functions if M∗

j (x) = 0, and c = 1 if
M∗

j (x) > 0.
Since only one of αij or βij is nonzero, we need only consider the constraints as-

sociated with one of ξα
ij or ξβ

ij . The number of constraints in Program (5) is quadratic
in the number of stages. We can re-write it so that the number of constraints depends
linearly on the number of stages.

min
∑N

i=1

∑S
j=1

(
αijξ

α
ij + βijξ

β
ij

)
+ λ
∑S

j=1 ‖wj‖22

s.t.

ξα
ij ≥ ηij − V α

j (Xi) ∀i, j
ξβ
ij ≥ ηi,j−1 − V β

j (Xi) ∀i, j
ξβ
ij ≥ wj ·Xij + bj − V β

j (Xi) ∀i, j
ξα
ij , ξ

β
ij ≥ 1 ∀i, j

ηij ≥ −wj ·Xij − bj ∀i, j
ηij ≥ ηi,j−1 ∀i, j

(7)

4.3 Extensions

One important advantage of SVM is that it can use kernels to handle data that are not
linearly separable. By the Representer Theorem [14], we can also kernelize the stage
classifiers. Denote the kernel matrix for the j-th stage by Kj and its i-th column by
Kj(·, i). The only changes to Program (7) are (i) replacing the regularization term in
the objective by λ

∑S
j w′

jKjwj , and (ii) replacing the feature vector Xij by Kj(·, i).
We are free to use different kernels for different stages. Also, instead of using a �2
regularization term, we may also use �1 regularization term to promote sparsity. If we
do so, in each iteration of the CCCP, we need to solve a linear program instead of a
quadratic program.

4.4 An Alternative Loss Bound

In the above derivation, we view the loss of an example as the sum of losses incurred
in each stage and then derive a upper bound using ramp functions. This is not the only
way to do it. Alternatively, we can view the loss of an example as the max of losses
incurred in each stage and obtain the following loss bound:

L̃(f(x), c) = d0 + max
({

dj(Uα
j (x) − V α

j (x))
}S

j=1
, dS+1(U

β
S+1(x) − V β

S+1(x))
)
(8)

where d0 = min (c1, . . . , cS+1) and dj = cj − d0.
Note that L̃ is no greater than L̂. It is not difficult to see that we can formulate a

constrained optimization problem with L̂ and employ the CCCP to solve it. Unfortu-
nately, our preliminary experimental results showed that the CCCP is not effective in
optimizing L̃. We leave the problem of optimizing L̃ as an open problem.
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5 Performance Bounds

We are able to provide theoretical bounds on how well catSVM will perform on new
testing data. In fact, Shelton et al. [1] gave a risk bound for chained boosting and a
similar bound holds for catSVM. We will state the theorem below. The proof is similar
to the one in [1] and is omitted. We need the following definition.

Definition 1. Let μ be a probability distribution on a set X and suppose that
X1, . . . , Xn are independent samples selected according to μ. Let F be a class of func-
tions mapping from X to #. Define the random variable

Ĝn(F ) = E

[
sup
f∈F

∣∣∣ 2
n

n∑
1

gif(Xi)
∣∣∣ ∣∣∣∣ X1, . . . , Xn

]
,

where g1, . . . , gn are independent Gaussian N(0, 1) random variables. The Gaussian
complexity of F is Gn(F ) = EĜn(F ).

We can now state the theorem, bounding the true risk by the empirical risk and the
Gaussian complexity of the classes of the stage classifiers:

Theorem 1. Let L and L̂ be as in Equations (1) and (3). Let γj = maxc∈C(αj + βj)
and Λ = maxf(x),c L̂(f(x), c). Let F1, . . . , FS be the sequence of the classes of the
stage classifiers. Let (Xi, Ci)N

i=1 be independently selected according to some fixed
probability measure P . Then, for any integer N and any 0 < δ < 1, with probability at
least 1− δ over samples of size N , every sequence f1, . . . , fS in F1× . . .×FS satisfies

E[L] ≤ ÊN [L̂] + κ

S∑
j=1

⎛
⎝ S∑

�=j

γ�

⎞
⎠GN (Fj) + Λ

√
8 ln 2

δ

N

for some constant κ.

Note that the second term in the bound does not depend on the regular costs cj’s directly,
and it does not depend on m1 at all. Quite often, the incremental costs αj’s and βj’s are
smaller than the cj’s. Additionally, for j < j′, the complexity of Fj has a larger weight
than that of Fj′ . This may suggest that it is advantageous to use simple stage classifiers
in early stages and use complex stage classifiers in later stages. We can further bound
the true risk in terms of kernel functions of the stage classifiers. We need the following
lemma which follows from McDiarmid’s inequality [15].

Lemma 1. Let F be a class of functions mapping to [−1, 1]. For any integer n,

P
{
|Gn(F )− Ĝn(F )| ≥ ε

}
≤ 2 exp

(
−nπε2

4

)
.

Theorem 1 and Lemma 1, combined with Lemma 22 in Bartlett and Mendelson [16],
imply the following theorem.
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Theorem 2. Let L and L̂ as in Equations (1) and (3). Let γj = maxc∈C(αj + βj)
and Λ = maxf(x),c L̂(f(x), c). Let F1, . . . , FS be the sequence of the classes of stage
classifiers. Let Xj be the feature space in the j-th stage. For j = 1, . . . , S, fix Bj , and
let Kj : Xj × Xj → # be a kernel with supx∈Xj

|Kj(x, x)| < ∞. Let X be the full

feature space, i.e., X =
⋃S

j=1 Xj . Suppose that {Xi, Ci}N
i=1 are selected at random

and independently according to some probability distribution P on X × C. Then with
probability at least 1− δ, every function sequence f1, . . . , fS of the form

fj(x) =
N∑

i=1

αiKj(xij , x)

with
∑

i1,i2
αi1αi2Kj(xi1,j , xi2,j) ≤ B2

j satisfies

E[L] ≤ ÊN [L̂]+
κ

N

S∑
j=1

⎛
⎝ S∑

�=j

γ�

⎞
⎠Bj

√√√√ N∑
i=1

Kj(xij , xij)

+

⎛
⎝Λ +

1√
2π

S∑
j=1

jγj

⎞
⎠
√

8 ln 2(S+1)
δ

N

for some constant κ.

6 Experimental Results

We tested catSVM on UCI benchmark data and the MIT face database. We compared
the performance of catSVM to chained boosting1 and single-stage SVM. For chained
boosting, we used decision stumps as weak classifiers and set the number of rounds before
the algorithm stops to 2000. For single-stage SVM and catSVM, we used the RBF kernel
and set the kernel width to the median of the pairwise distance in the training set. We set
the regularization parameter λ to be 1 and did not adjust it. Furthermore, for catSVM,
we initialized the SVM in every stage to be zero (i.e., for j = 1, . . . , S, wj = 0 and
bj = 0). We used Mosek to solve the quadratic programs generated by catSVM.

The single-stage SVM and our catSVM algorithms run on the same hypothesis space of
RBF kernels. We ran chained boosting on a different feature space. It was not possible to
use the same feature space. The boosting algorithm constructs a linear surface in the space
of features that are decision stumps. That does not correspond to any easily constructed
kernel. The feature space dimensions of the RBF kernel could be defined as the set of all
kernel functions with one point as a training point. However, those dimensions have real
values and the boosting algorithm is designed for thresholded features (or weak learners).
However, our experience with these datasets suggests that boosting decision stumps and
RBF kernels for SVMs have roughly the same performance on single-stage problems.

We did not compare to constructing three independent SVM classifiers and then
connecting them in a chain; this would have required selecting the false-positive and

1 The original chained boosting algorithm uses regular costs. We modified it to use incremental
costs as well, which improved its performance.
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Fig. 3. UCI heart tradeoffs: (a) False negative vs. False positive, (b) False negative vs. Average
feature cost

Table 1. For four different cost settings for the heart dataset, the distributions of the stages at
which the examples were rejected (or accepted for the final column) for boosting and catSVM,
for training and testing, and for positive and negative examples

fn: 9, fp: 18 fn: 18, fp: 18 fn: 36, fp: 18 fn: 72, fp: 18

bo
os

ti
ng tr
ai

n + 76 0 0 0 70 0 0 6 38 0 0 38 16 0 0 60
– 94 0 0 0 94 0 0 0 82 8 4 0 74 4 16 0

te
st + 43 0 0 1 39 0 0 5 24 2 0 18 18 2 1 23

– 56 0 0 0 52 1 2 1 45 5 4 2 42 7 4 3

ca
tS

V
M tr
ai

n + 76 0 0 0 6 2 6 62 2 1 1 72 0 0 2 74
– 94 0 0 0 68 3 19 4 54 8 20 12 25 20 34 15

te
st + 44 0 0 0 9 0 5 30 7 1 3 33 7 0 4 33

– 56 0 0 0 49 1 5 6 35 5 9 7 20 9 19 8

false-negative costs for each classifier. One of the main purposes of our approach is to
automatically adjust the classifier to achieve the desired cost results without having to
manually search over such trade-off parameters.

We construct the vectors of stage costs as follows. We assign a constant feature cost
to each stage that is the same for all examples (as specified in the problem set up below).
It represents the cost of collecting the features, regardless of the final outcome. If the
example is positive, we add an extra cost to ci for i ≤ s, representing an extra penalty if
a positive example is rejected at any stage. If the example is negative, we add an extra
cost to cs+1, that is we penalize the classifier if it allows the example to pass through
every stage (and therefore wrongly accepts it as a positive example).

6.1 UCI Data

We report the results on the heart disease dataset from the UCI machine learning repos-
itory. We assigned the 13 attributes to three stages in descending order according to
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Fig. 4. Face detection tradeoffs: (a) False negative vs. False positive, (b) False negative vs. Aver-
age feature cost

Table 2. For four different cost settings for the face detection dataset, the distributions of the
stages at which the examples were rejected (or accepted for the final column) for boosting and
catSVM, for training and testing, and for positive and negative examples

fn: 150, fp: 250 fn: 250, fp: 250 fn: 500, fp: 250 fn: 1000, fp: 250

bo
os

ti
ng tr
ai

n + 224 0 0 0 224 0 0 0 220 0 0 4 33 0 0 191
– 376 0 0 0 376 0 0 0 375 1 0 0 342 34 0 0

te
st + 341 0 0 1 341 0 0 1 342 4 0 36 143 32 1 166

– 654 1 3 0 653 1 3 1 646 4 4 4 533 88 19 18

ca
tS

V
M tr
ai

n + 224 0 0 0 35 8 0 181 0 0 1 223 0 0 0 224
– 376 0 0 0 278 86 10 2 104 233 36 3 96 240 37 3

te
st + 342 0 0 0 42 16 6 278 1 10 7 324 1 10 7 324

– 658 0 0 0 457 143 28 30 170 392 63 33 152 410 62 34

their correlation with the predicted output: four attributes to each of the first two stages
and five to the last stage. The single-stage SVM was trained and tested on all the 13
attributes. We set the feature cost of each stage to the number of attributes assigned to
that stage and all the preceding stages. Early rejections are treated as “normal” whereas
an example that passes all stages is treated as “disease.” Figure 3(a) shows the false
negatives and false positives as the misclassification penalties vary. The three methods
give very similar tradeoff between the two types of errors. Figure 3(b) shows the false
negative and the average feature cost as the misclassification penalties vary. The aver-
age feature cost is the average number of features that must be examined before the
classifier makes a decision. The feature cost of single-stage SVM is fixed at 13. We
observe that catSVM does a better job in trading false negative rate for feature cost than
chained boosting.

Table 1 shows at which stage the examples are rejected or accepted. The feature
costs are 4, 8, 13, and 13. ‘fn: 9, fp: 18’ means the penalties for false negative and false
positive are 9 and 18, respectively; therefore the cost vectors would be [13, 17, 22, 13]
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and [4, 8, 13, 31] for positive and negative examples, respectively. Note that for every
penalty setting, the first three columns are the number of examples rejected in the three
stages and the last column is the number of examples accepted. As the penalty of false
negative increases, both chained boosting and catSVM try to accept more and more
positive examples.

6.2 Face Detection

We also validated the catenary SVM by applying it to face detection. We tested on the
MIT face database [17] which contains 19-by-19 gray-scale images of faces and non-
faces. For face detection, the non-face is usually the majority. Therefore, our goal is to
produce a classifier that can identify non-face images by examining as low a resolution
patch as possible. We built a multi-stage detection system where any early rejection
is labeled as a non-face. The first stage looks at down-sampled versions of the images
at a resolution of 3-by-3. The next stages do the same, at resolutions of 6-by-6 and
12-by-12. We did not examine the full 19-by-19 resolution as it did not provide signifi-
cant improvement over the 12-by-12 resolution.

We assign a feature cost to each stage proportional to the total number of pixels at
that stage and all the preceding stages. There are three free parameters in the problem
formulation: the per pixel cost, the penalty for an incorrect face classification, and the
penalty for an incorrect non-face classification. Changing these quantities will control
the tradeoff between false negatives and false positives, and between classification error
and feature cost. In the experiments, we fix the per pixel cost and vary the other two
quantities.

We used 600 images as the training set and 1000 images as the testing set. The
single-stage SVM was trained and tested on image patches at the highest resolution,
12-by-12. Figure 4(a) shows the false negatives and false positives as the misclassifi-
cation penalties vary. Note that catSVM can achieve better tradeoff than single-stage
SVM and chained boosting. The processing pipeline successfully improves the ability
of SVM to tradeoff between the two types of errors. Figure 4(b) shows the false neg-
ative and the average feature cost as the misclassification penalties vary. The feature
cost of single-stage SVM is fixed at 144. Chained boosting and catSVM give higher
average feature costs for lower false negative rates. Note that catSVM requires a lower
average feature cost than chained boosting for most false negative rates. The advantage
of catSVM becomes more obvious when the false negative rate is small.

Table 2 shows at which stage the examples are rejected or accepted. The feature costs
are 9, 45, 189, and 189. ‘fn: 150, fp: 250’ means the penalties for false negative and false
positive are 150 and 250, respectively. As the penalty of false negative increases, both
chained boosting and catSVM try to accept more and more positive examples. It is clear
that catSVM is more effective in pushing the positive examples forward.

It is interesting to note that the performance of catSVM is superior to that of a single-
stage SVM (which is a regular SVM trained on the full set of features, varying the false-
positive and false-negative costs) in terms of testing error. We believe this is because the
hypothesis class of the earlier stages are simpler. Therefore, those decision rules have
less variance for a fixed number of samples. Our algorithm then has a natural bias that
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helps reduce the variance with few numbers of samples. Our generalization bounds also
point to this advantage.

7 Conclusion

We believe that for some decision-making problems, it is important to weigh the benefit
against the cost of acquiring more information. We present the catenary SVM to solve
one-sided early detection for binary classification. We formulate the problem as a con-
strained concave-convex optimization problem and solve it using CCCP. In addition,
we are able to provide data-dependent theoretical guarantee for catSVM. The experi-
mental results show that catSVM can tradeoff misclassification error and feature cost
more effectively than single-stage SVM and chained boosting.

The main drawback of catSVM is its scalability. Currently, we use a generic solver
to solve the linear or quadratic programs generated by CCCP. Although the number
of constraints is only linear in the number of stages, the generic solver runs out of
memory even for medium-size datasets. We are planning to explore other more scalable
algorithms (e.g., cutting-plane methods). Moreover, it would be interesting to extend
catSVM to two-sided early detection.
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Abstract. Training processes of structured prediction models such as
structural SVMs involve frequent computations of the maximum-a-
posteriori (MAP) prediction given a parameterized model. For specific
output structures such as sequences or trees, MAP estimates can be com-
puted efficiently by dynamic programming algorithms such as the Viterbi
algorithm and the CKY parser. However, when the output structures
can be arbitrary graphs, exact calculation of the MAP estimate is an
NP-complete problem. In this paper, we compare exact inference and
approximate inference for labeling graphs. We study the exact junction
tree and the approximate loopy belief propagation and sampling algo-
rithms in terms of performance and ressource requirements.

1 Introduction

Many problem settings which require the prediction of multiple dependent vari-
ables arise naturally. For instance, sequential input and output variables occur in
protein secondary structure prediction and tree-structured output is produced in
natural language parsing. Examples for general graphical output structures in-
clude classification of linked documents or webpages [11,8,10], and simultaneous
prediction of multiple dependent class labels [3].

Many classical learning algorithms have been lifted to deal with structured
variables. Generally, the learning task is phrased as finding a function f such
that

ŷ = argmax
y

f(x, y) (1)

is the desired output for a given input x. Conditional random fields [6] and
structural support vector machines [13,12] are parameter estimation techniques
that are wrapped around the collective inference machinery. However, inferring
the actual prediction acts as a bottleneck in the training process. Dynamic pro-
gramming approaches such as the Viterbi algorithm and the CKY algorithm
efficiently solve the inference problem for sequential and tree-structured output
variables.

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 611–623, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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When the structures involved can be arbitrary graphs, exact inference is not
tractable: For instance, there is no efficient analytic solution for discrete vari-
ables and dynamic programming for exact inference scales exponentially in the
size of the largest clique of the graph in terms of memory and computation
time requirements. Hence, practitioners usually resort to approximate inference
techniques. For instance, loopy belief propagation and Gibbs sampling are ap-
pealing and intuitive approaches that lead to efficient algorithms which alleviate
excessive computational requirements. Although these approximate variants are
not guaranteed to converge – let alone to find good optima – they seem to be
surprisingly well-suited for many practical applications [7,10,3].

In this paper, we present a substantial comparison of exact and approxi-
mate inference techniques for their use with structural support vector machines.
We address their implications on the SVM algorithm in terms of convergence,
resource requirements, and performance. Our experiments reveal that exact in-
ference is indispensable for the reliable learning of accurate prediction models.
According to our findings, a remedy to the computational costs of the junction
tree algorithm is to decompose large graphs into smaller subgraphs.

Our paper is structured as follows. We introduce the learning task formally in
Section 2 and review structural support vector machines in Section 3. Section 4
addresses exact and approximate inference algorithms and Section 5 reports
on our empirical results. We discuss our findings in Section 6 and Section 7
concludes.

2 Learning with Graphs

Let G = (V,E) be a graph such that the set of nodes decomposes into a set of
observed nodes X and a set of latent nodes Y the labeling of which remains to
be conjectured. The set of edges E ⊆ (X×Y )∪(Y ×Y ) introduces a dependency
structure between nodes V = X∪Y . That is, two variables are connected if they
directly depend on each other. A structured input x is a manifestation of a graph
together with a labeling of its observed nodes. A structured output is a labeling
y ∈ Σ|Y |, where Σ denotes the label alphabet.

The random variables X ∪ Y form a Markov random field with dependency
structure E. The conditional probability of Y given a partial realization (obser-
vation) x can be written as

p̂(y|x) = exp{〈λ, Φ(x, y)〉 − log g(λ|x)}, (2)

where g(λ|x) =
∑

ȳ exp{〈λ, Φ(x, ȳ)} < ∞ is called the partition function, Φ
is the sufficient statistics, and λ denotes the natural parameter. The sufficient
statistics factorizes according to the dependency structure into terms of the
maximal cliques C ∈ C of the graph,

Φ(x, y) =
∑
C∈C

φC(xC , yC).
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Functions φC may be interpreted as joint feature vectors, extracted from clique
C and therefore encode the dependency structure to allow the model to learn
about dependencies between input and output variables.

When dealing with arbitrary graphs, cliques may grow arbitrarily large and
employing feature functions for all possible cliques can become intractable. As a
remedy, one usually resorts to factorizing over all cliques that contain a pair of
nodes, rather than over all maximally large cliques. In this case, G is sometimes
called a Markov network and every edge in G is associated with a feature function
φ. That is, we have edges between label and observation pairs,

φ1(xi, yi) = (δk1,yi , . . . , δk|Σ|,yi)
T ⊗ ψ(xi),

and between neighboring labels,

φ2(yi, yj) =

⎛
⎜⎝

δk1,yi

...
δk|Σ|,yi

⎞
⎟⎠⊗

⎛
⎜⎝

δk1,yj

...
δk|Σ|,yj

⎞
⎟⎠ ,

where ψ is a feature vector solely drawn from the observation, k ∈ Σ enumer-
ates all possible labels, δi,j is the Kronecker product and ⊗ denotes the tensor
product. Equation 2 says that given parameters λ, the most likely labeling ŷ can
be computed using the generalized linear model

ŷ = argmaxȳ p̂(ȳ|x) = argmaxȳ f(x, ȳ),

with f(x, y) = 〈λ, Φ(x, y)〉. We thus seek to find a parameterization λ, such that
the model f generalizes well on new and unseen graphs.

The quality of f is measured by a task-dependent loss function Δ : (y, y′) "→
r ∈ R

+
0 . We require that Δ is decomposable in terms of the nodes of graph, for

instance, Δ may be a Hamming-like loss given by

Δ(y, y′) =
|y|∑

j=1

[[yj �= y′j ]]. (3)

The ultimate goal is to find f such as to minimize the true loss∑
y

∫
Δ(y, argmaxȳf(x, ȳ))p(x, y)dx. Being ignorant of the true distribution

p(x, y) of instances and labelings of the unobserved variables, one resorts
to declaring minimization of the regularized empirical loss on an iid sample
D = {(x(i), y(i))}�

i=1 to be the operational goal

R̂[f ] =
�∑

i=1

Δ(y(i), argmax
ȳ

f(x(i), ȳ)) +
1
η
‖f‖2.

3 Structural Support Vector Machines

Structural SVMs [12,13] adapt the parameters of ranking functions that are
defined over joint attributes of input and output:

f(x, y) = 〈λ, Φ(x, y)〉. (4)
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Given training data D = {(x(i), y(i))}�
i=1, SVMs aim at finding λ that minimizes

|λ|2 +
∑

i ξi subject to the constraint that, for all (x(i), y(i)), the desired output
y(i) exceeds any other output ȳ in its decision function values by at least 1− ξi:

∀�
i=1 f(x(i), y(i))−maxȳ 
=y(i)f(x(i), ȳ) ≥ 1− ξi.

Optimization Problem 1 is solved iteratively by column generation: If at least
one output violates the margin constraint for a given x, then the output ȳ that
violates it most strongly is inferred and added to a working set of explicitly rep-
resented constraints. Column generation is interleaved with optimization steps
in which the current hypothesis λ is refined according to the current working
set. Typically only a small fraction of conceivable constraints are represented in
the working set and structural SVMs provide sparse solutions.

Optimization Problem 1. Given data D, loss function Δ, and η > 0, the
structural SVM optimization problem is defined as:

min
λ,ξ≥0

|λ|2
2 + η〈ξ,�〉

subject to the constraints

〈λ, Φ(x(i), y(i))〉 ≥ max
ȳ 
=y(i)

[Δ(y(i), ȳ) + 〈λ, Φ(x(i) , ȳ)〉]− ξi

for all i = 1, . . . , �.

Provided that exact inference of large margin violators runs in polynomial time,
the solution to Optimization Problem 1 converges to the optimum in polynomial
time [13].

4 Inference Strategies

Intuitively, Equation 1 can be solved by explicitly computing the score for all pos-
sible assignments of the output variables and choosing the output ŷ that realizes
the highest score. However, there are exponentially many different assignments
in the size of the graph and explicit enumeration is prohibitive. In this section,
we briefly review the exact junction tree algorithm, the approximate loopy belief
propagation and an inference strategy based on Gibbs sampling.

4.1 Junction Tree Algorithm

Belief propagation [1] sends messages across edges of the graph that are used
to update actual beliefs about labelings. Belief propagation terminates and pro-
duces the exact joint probability of all unobserved variables when the graph
is free of cycles. Therefore, one transforms the graph into a junction tree
J = (C, EJ); nodes in the junction tree correspond to cliques in the underly-
ing graph.
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Message propagation consists of two phases. In the distribute evidence phase,
every node A ∈ C in the junction tree that receives a message from its parent,
sends a messages mAB to its children.

mAB(yA∩B) = argmax
yA�B

〈λ, φ(xA, yA)〉.

In the collect evidence phase, every node in the junction tree that received mes-
sages from all children, sends the messages mBA back to its parent.

After the two phases the junction tree is in equilibrium and further iterations
will not affect the actual beliefs. The Viterbi (for sequences) and inside-outside
algorithms (for trees) are special cases of message propagation. The most likely
labeling can be computed by dynamic programming [9] according to

ŷ = argmax
y

∑
C∈C

〈λ, φC(xC , yC)〉 −
∑

AB∈EJ

mBA(yA∩B)

The overall complexity is O(exp |V |) for building the junction tree and
O(|Σ|max|C|) for the message passing.

4.2 Loopy Belief Propagation

Similar to Section 4.1, loopy belief propagation propagates messages across the
graph. However, instead of using the computationally expensive junction tree,
messages are sent in the original graph. Messages encode beliefs about the la-
beling of direct neighbors in the graph and are passed simultaneously between
all nodes. The message from node i to j is computed according to

mij(yj) = max
yi

⎧⎨
⎩〈λ, φ1(xi, yi)〉 + 〈λ, φ2(yi, yj)〉+

∑
j:yij∈E

mji(yi)

⎫⎬
⎭ .

Although iteratively updating the marginals does not necessarily result in con-
vergence – let alone convergence to the global optimum – loopy belief propaga-
tion has been found to work well in practice [7]. After termination, the highest
scoring labeling can be computed by

ŷi = argmax
yi

⎡
⎣〈λ, φ1(xi, yi)〉+

∑
j:yij∈E

mji(yi)

⎤
⎦ .

The computational cost for each iteration is O(|E||Y |2).

4.3 Gibbs Sampling

Repeatedly iterating over the latent variables and drawing a value for each vari-
able yi according to the conditional probability p̂(yi|x, {yj : j �= i}) creates a
Markov chain of observations that converges to the joint probability p̂(y|x).
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This Gibbs sampling rule [4] can be used to approach the assignment of values
to y that maximizes the decision function f(x, y). The Gibbs decoder starts
with an initial random guess at y. In each iteration, a latent variable Yi is drawn
uniformly and labeled according to p̂(yi|x, {yj : j �= i}). The new labeling is kept
if it is more likely than the previous one. The conditional probability can be
derived from the score which the SVM assigns to the pair of input x and output
y; we will now describe this process. Parameters λ induce the joint probability
p(y) given by

p̂(y) ∝ exp

⎧⎨
⎩
∑
i∈V

〈λ, φ1(xi, yi)〉+
∑
ij∈E

〈λ, φ2(yi, yj)〉

⎫⎬
⎭ ,

which follows from the definition of the conditional probability. Inserting p(y) in
Equation 5 gives us Equation 6. Please note, that nominator and denominator
have many factors in common, that is, all factors that do not contain the variable
yi. It is easy to see that cancelling these factors gives Equation 7. This final
equation also shows that the full conditionals of yi only depend on parameters
λ and the given feature functions. Furthermore, we only need to consider the
neighborhood of the i-th node, i.e. it does not depend on the size of the graph.
Let ȳσ defined as ȳσ

i = yi for j �= i and ȳσ
j = σ in case i = j, we have,

p̂(yi|x, {yj : j �= i}) =
p(Yi = yi, x, {yj : j �= i})∑

σ∈Σ

p(Yi = σ, x, {yj : j �= i}) (5)

=
exp
{ ∑

k∈V

〈λ, φ1(xk, yk)〉+
∑

kl∈E

〈λ, φ2(yk, yl)〉
}

∑
σ∈Σ

exp
{ ∑

k∈V

〈λ, φ1(xk, ȳσ
k )〉+

∑
kl∈E

〈λ, φ2(ȳσ
k , ȳ

σ
l )〉
} (6)

=

exp

{
〈λ, φ1(xi, yi) +

∑
k∈N (i)

〈λ, φ2(yk, yi)〉
}

∑
σ∈Σ

exp

{
〈λ, φ1(xi, σ) +

∑
k∈N (i)

〈λ, φ2(yk, σ)〉
} (7)

A heuristic test for convergence can be implemented by testing whether the
highest-scoring values of the latent variables in several parallel sampling chains
remain constant over many iterations. Updating all |Y | variables once is in
O(|E||Y |2).

5 Empirical Evaluation

In this section, we evaluate SVMs with the exact and approximate inference
strategies described in Section 4 in terms of performance, convergence, and ex-
ecution time. We experiment on the WebKB, Cora, and the Reuters21578 data
sets.
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In order to evaluate the impact of the size of the graphs on execution time for
WebKB and Cora, we generate training instances as follows. Given a maximal
graph size m and a data set, we draw a node randomly without replacement
from the data. We iteratively add nodes from the neighborhood of the actual
graph until the maximal number of nodes is reached or there are no more nodes
that can be added. By doing so, we generate graphs of sizes between one and m.
We discard singleton graphs and draw training, parameter tuning, and holdout
sets randomly from the remaining instances. We employ m = 2, 4, . . . , 20. To
guarantee a fair comparison, we make sure that for every data set, all training,
tuning, and holdout sets contain on average the same number of documents.

As additional baselines, we include structural multi-class SVMs (mc) [2,13]
and a structural SVM that is deprived of all link information (näıve). The main
difference between multi-class and näıve SVM is that the former provides slack
variables for all documents while the latter relates documents within a graph
to the same slack variable [5]. The optimal SVM parameter C is determined
for all methods within the interval [10−4, 104]. When the optimal parameter is
at the border of the interval we extend the search appropriately. We report on
averages of 100 repetitions with randomly drawn training, tuning, and holdout
sets; errorbars indicate standard error.

Loopy belief propagation converges in all our experiments to a stationary
distribution. For Gibbs sampling, we employ three chains of length 10000 and
use a variance-based criterion to detect convergence.

5.1 WebKB

The WebKB data consist of 8282 web pages from five universities. Every page is
labeled with one out of 7 different labels, including course, department, student,
and others. We remove tokens with less than four occurrences and employ a
bag-of-words representation.

Figure 1 details the error rates for the WebKB data set, where training, tuning,
and holdout sets consist on average of 4500 documents, respectively. The two
baseline methods, multiclass and näıve, perform worst and almost constantly
in the size of the graphs. The exact junction tree together with loopy belief
propagation lead to the most accurate prediction models. However, the former
could not be computed for graph sizes larger than 8. For loopy belief propagation,
we further observe a negative correlation of graph size and error, that is, the
larger the graph, the more accurate is the prediction model with loopy belief
propagation. Gibbs sampling deteriorates with increasing graph sizes since the
number of iterations becomes too small. We will address this issue again in the
discussion.

5.2 Cora

The Cora data set consists of 25891 computer science articles of 11 areas includ-
ing artificial intelligence, machine learning, information retrieval, databases, and
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Fig. 1. Results for the WebKB data set

others. We remove stop words and tokens that occurred less than four times and
apply a bag-of-words representation of the input data.

Figure 2 details error rates for different graph sizes. The average number of
documents in the training, tuning, and holdout sets is 17300, respectively. SVMs
utilizing exact junction tree and approximate loopy belief progagation inference
perform nearly identical and lead to the most accurate prediction models. How-
ever, for the large Cora data set, junction tree inference is only computable up
to graph sizes of six. As expected, the multi-class and näıve baselines that do not
utilize link information are unaffected by varying sizes of the underlying graphs
and perform worst. The Gibbs sampling performs significantly worse than the
junction tree algorithm or loopy belief propagation.

5.3 Reuters21578

The Reuters data set consist of 21578 documents from the Reuters news archive.
Documents are classified according to their topic into 120 classes, including grain,
oil, and trade. Since the topics interdepend and co-occur frequently in a sin-
gle document, many documents are assigned with multiple labels. We employ
a bag-of-words representation for the documents. We represent the multi-class
multiple-label problem by a fully connected graph, consisting of a single obser-
vation node (the document) and a binary latent variable for every possible label.
A value of one indicates the presence of the corresponding topic in the observed
document and a value of zero its absence.

In order to quantify the performance of the methods in terms of the number
of labels, we organize the data as follows. We begin with the largest two classes
and increment the number of labels until we arrive at the twelve largest classes.
Since the underlying graphs are completely connected, the number of considered
classes is identical to the graph-size. For each graph size we utilize all 21578
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Fig. 3. Results for the Reuters data set

documents that are randomly divided into training, tuning, and holdout sets.
All sets are equally sized. We report on averages over 100 repetitions.

Figure 3 shows the results for inference based on näıve, Gibbs sampling, loopy
belief propagation, and the exact junction tree algorithm. First of all, every
tested method leads to more accurate prediction models when the size of the
graph is increased. Moreover, except for loopy belief propagation, all methods
perform equally well. As for the junction tree algorithm this is not surprising.
The task is also well suited for Gibbs sampling that copes with the small sized
graphs and leads to an almost identical performance.

Surprisingly, the näıve approach that does not contain any edge informa-
tion performs similarly for all numbers of labels. The reason lies in the reduced
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Fig. 4. Results of the parameter search

number of classes in our experimental setup. Focusing on only a subset of all
classes implies that the bulk of the documents correspond to discarded la-
bels which carry the dominant information: There are hardly significant co-
occurrences of large classes within documents; highly correlated labels involve
small classes in the majority of cases. As a consequence, transition probabilities
are discarded from the training process and cannot be exploited by the link-
based models. A similar observation has been made by Finley and Joachims [3].
In line with their findings is also the performance of loopy belief propagation
that is significantly worse compared to the other inference strategies. Loopy be-
lief propagation struggles with the fully connected graph and frequently ends up
in local maxima. This is also reflected by the large standard errors.

5.4 Parameter Optimization

The results for the parameter search are shown in Figure 4 that depicts holdout
errors across the search interval. For all data sets, the optimal values for the
trade-off parameters lie in the right half of the search spaces. For WebKB and
Reuters, all methods provide a large region in which an almost optimal value
can be found, that is, C∗ 3 1. The optimal parameters for the Cora data set
are found in a narrow interval around C∗ ≈ 10.
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Fig. 5. Execution time for Reuters (left), Cora (center), and WebKB (right)

5.5 Execution Time

Intuitively, the exact junction tree exhibits the worst execution time for all data
sets. The multiclass and näıve baselines that do not exploit link information
perform comparably fast across the data sets; both are unaffected by graph
sizes. Loopy belief propagation and Gibbs sampling differ significantly in their
execution time, although they are both in O(|E||Y |2). While loopy belief prop-
agation scales well for increasing graph sizes, Gibbs sampling turns out to be
computationally demanding.

For small graphs, the exact junction tree algorithm can be computed with
only little additional resources compared to loopy belief propagation. However,
the junction tree scales exponentially in the size of the graph and exhibits the
worst execution time for moderately sized graphs; exact inference is not feasible
for larger structures.

6 Discussion

For two out of three studied tasks, approximate inference with loopy belief prop-
agation is competitive to the exact junction tree and leads to comparable results.
We observe a positive correlation between the size of the graphs and the achieved
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accuracies. For these tasks, the impact of the approximate inference on the SVM
algorithm is negligible which can also be verified by monitoring the primal-dual
gap. However, loopy belief propagation performs poorly for the Reuters data set.

Support vector machines with approximate Gibbs sampling are well suited for
small graphs but the performance deteriorates quickly when the size of the graphs
is increased. Of course, the number of iterations could also be increased to cope
with increasing graph sizes but a look at the execution times of Gibbs sampling
indicates that it is already demanding in terms of computational time. Increasing
the number of iterations would clearly multiply the required ressources.

Inference with the junction tree algorithm consistently leads to the most ac-
curate prediction models but due to its computational complexity, junction tree
algorithms can only be applied to small graphs. However, the accuracies achieved
by the junction tree algorithm for small graphs is hardly beaten by other meth-
ods. Thus, to circumvent the computational dead end, our findings indicate that
it is often beneficial to split large graphs into smaller components for which the
junction tree algorithm can be computed. The support vector optimization al-
gorithm allows the inclusion of several training instances and thus balances the
discarded information.

7 Conclusion

In this paper, we compared exact and approximate inference strategies for la-
beling graphs with support vector machines. We studied the exact junction tree
algorithm and approximate inference with loopy belief propagation and Gibbs
sampling. Our findings showed that the exact junction tree inference leads to the
most reliable and to the most accurate prediction models in our discourse area.
By contrast, the tested approximate inference strategies performed throughout
inconsistently and led to poor predictions on some data sets.

To remedy the computational barrier of the junction tree, our results showed
that decomposing large graphs into smaller subgraphs is beneficial in several ways:
Including the subgraphs as additional training examples in the learning process not
only rendered exact inference feasible but also preserved reliable results.
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Abstract. Extracting knowledge from text has long been a goal of AI.
Initial approaches were purely logical and brittle. More recently, the
availability of large quantities of text on the Web has led to the develop-
ment of machine learning approaches. However, to date these have mainly
extracted ground facts, as opposed to general knowledge. Other learning
approaches can extract logical forms, but require supervision and do not
scale. In this paper we present an unsupervised approach to extracting
semantic networks from large volumes of text. We use the TextRunner
system [1] to extract tuples from text, and then induce general concepts
and relations from them by jointly clustering the objects and relational
strings in the tuples. Our approach is defined in Markov logic using four
simple rules. Experiments on a dataset of two million tuples show that
it outperforms three other relational clustering approaches, and extracts
meaningful semantic networks.

1 Introduction

A long-standing goal of AI is to build an autonomous agent that can read and un-
derstand text. The natural language processing (NLP) community attempted to
achieve this goal in the 1970’s and 1980’s by building systems for understanding
and answering questions about simple stories [3,13,23,6]. These systems parsed
text into a network of predefined concepts, and created a knowledge base from
which inferences can be made. However, they required a large amount of man-
ual engineering, only worked on small text sizes, and were not robust enough
to perform well on unrestricted naturally occurring text. Gradually, research in
this direction petered out.

Interest in the goal has been recently rekindled [16][7] by the abundance of
easily accessible Web text, and by the substantial progress over the last few years
in machine learning and NLP. The confluence of these three developments led
to efforts to extract facts and knowledge bases from the Web [4]. Two recent
steps in this direction are a system by Pasca et. al [18] and TextRunner [1].
Both systems extract facts on a large scale from Web corpora in an unsuper-
vised manner. Pasca et. al’s system derives relation-specific extraction patterns
from a starting set of seed facts, acquires candidate facts using the patterns,
adds high-scoring facts to the seeds, and iterates until some convergence crite-
rion. TextRunner uses a domain-independent approach to extract a large set of

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 624–639, 2008.
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relational tuples of the form r(x, y) where x and y are strings denoting objects,
and r is a string denoting a relation between the objects. It uses a lightweight
noun phrase chunker to identify objects, and heuristically determines the text
between objects as relations. These are good first steps, but they still fall short
of the goal. While they can quickly acquire a large database of ground facts in
an unsupervised manner, they are not able to learn general knowledge that is
embedded in the facts.

Another line of recent research takes the opposite approach. Semantic parsing
[26,17,29] is the task of mapping a natural language sentence into logical form.
The logical statements constitute a knowledge base that can be used to perform
some task like answering questions. Semantic parsing systems require a training
corpus of sentences annotated with their associated logical forms (i.e., they are
supervised). These systems are then trained to induce a parser that can convert
novel sentences to their logical forms. Even though these systems can create
knowledge bases directly, their need for annotated training data prevents them
from scaling to large corpora like the Web.

In this paper, we present SNE, a scalable, unsupervised, and domain-
independent system that simultaneously extracts high-level relations and con-
cepts, and learns a semantic network [20] from text. It first uses TextRunner
to extract ground facts as triples from text, and then extract knowledge from
the triples. TextRunner’s triples are noisy, sparse, and contain many co-referent
objects and relations. Our system has to overcome these challenges in order
to extract meaningful high-level relations and concepts from the triples in an
unsupervised manner. It does so with a probabilistic model that clusters ob-
jects by the objects that they are related to, and that clusters relations by the
objects they relate. This allows information to propagate between clusters of
relations and clusters of objects as they are created. Each cluster represents a
high-level relation or concept. A concept cluster can be viewed as a node in a
graph, and a relation cluster can be viewed as links between the concept clus-
ters that it relates. Together the concept clusters and relation clusters define a
simple semantic network. Figure 1 illustrates part of a semantic network that
our approach learns. SNE is short for Semantic Network Extractor.

SNE is based on Markov logic [22], and is related to the Multiple Relational
Clusterings (MRC) model [12] we recently proposed. SNE is our first step to-
wards creating a system that can extract an arbitrary semantic network directly
from text. Ultimately, we want to tightly integrate the information extraction
TextRunner component and the knowledge learning SNE component to form
a self-contained knowledge extraction system. This tight integration will enable
information to flow between both tasks, allowing them to be solved jointly for
better performance [14].

We begin by briefly reviewing Markov logic in the next section. Then we de-
scribe our model in detail (Section 3). Next we describe related work
(Section 4). After that, we report our experiments comparing our model with
three alternative approaches (Section 5). We conclude with a discussion of future
work (Section 6).
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2 Markov Logic

Markov logic combines first-order logic with Markov networks.
In first-order logic [9], formulas are constructed using four types of sym-

bols: constants, variables, functions, and predicates. (In this paper we use only
function-free logic.) Constants represent objects in the domain of discourse (e.g.,
people: Anna, Bob, etc.). Variables (e.g., x, y) range over the objects in the do-
main. Predicates represent relations among objects (e.g., Friends), or attributes
of objects (e.g., Student). Variables and constants may be typed. An atom is
a predicate symbol applied to a list of arguments, which may be variables or
constants (e.g., Friends(Anna, x)). A ground atom is an atom all of whose ar-
guments are constants (e.g., Friends(Anna, Bob)). A world is an assignment of
truth values to all possible ground atoms. A database is a partial specification
of a world; each atom in it is true, false or (implicitly) unknown.

A Markov network or Markov random field [19] is a model for the joint dis-
tribution of a set of variables X = (X1, X2, . . . , Xn) ∈ X . It is composed of an
undirected graph G and a set of potential functions φk. The graph has a node
for each variable, and the model has a potential function for each clique in the
graph. A potential function is a non-negative real-valued function of the state
of the corresponding clique. The joint distribution represented by a Markov net-
work is given by P (X =x) = 1

Z

∏
k φk(x{k}) where x{k} is the state of the kth

clique (i.e., the state of the variables that appear in that clique). Z, known as
the partition function, is given by Z =

∑
x∈X
∏

k φk(x{k}). Markov networks
are often conveniently represented as log-linear models, with each clique poten-
tial replaced by an exponentiated weighted sum of features of the state, leading
to P (X = x) = 1

Z exp
(∑

j wjfj(x)
)
. A feature may be any real-valued func-

tion of the state. This paper will focus on binary features, fj(x) ∈ {0, 1}. In
the most direct translation from the potential-function form, there is one fea-
ture corresponding to each possible state x{k} of each clique, with its weight
being logφk(x{k}). This representation is exponential in the size of the cliques.
However, we are free to specify a much smaller number of features (e.g., logical
functions of the state of the clique), allowing for a more compact representation
than the potential-function form, particularly when large cliques are present.
Markov logic takes advantage of this.

A Markov logic network (MLN) is a set of weighted first-order formulas. To-
gether with a set of constants representing objects in the domain, it defines a
Markov network with one node per ground atom and one feature per ground
formula. The weight of a feature is the weight of the first-order formula that
originated it. The probability distribution over possible worlds x specified by the
ground Markov network is given by P (X =x) = 1

Z exp
(∑

i∈F

∑
j∈Gi

wigj(x)
)
,

where Z is the partition function, F is the set of all first-order formulas in the
MLN, Gi is the set of groundings of the ith first-order formula, and gj(x) = 1
if the jth ground formula is true and gj(x) = 0 otherwise. Markov logic en-
ables us to compactly represent complex models in non-i.i.d. domains. General
algorithms for inference and learning in Markov logic are discussed in [22].
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3 Semantic Network Extraction

We call our model SNE, for Semantic Network Extractor. SNE simultaneously
clusters objects and relations in an unsupervised manner, without requiring the
number of clusters to be specified in advance. The object clusters and relation
clusters respectively form the nodes and links of a semantic network. A link
exists between two nodes if and only if a true ground fact can be formed from
the symbols in the corresponding relation and object clusters. SNE can cluster
objects of different types, and relations of any arity.

When faced with the task of extracting knowledge from noisy and sparse data
like that used in our experiments, we have to glean every bit of useful information
from the data to form coherent clusters. SNE does this by jointly clustering ob-
jects and relations. In its algorithm, SNE allows information from object clusters
it has created at each step to be used in forming relation clusters, and vice versa.
As we shall see later in our experimental results, this joint clustering approach
does better than clustering objects and relations separately.

SNE is defined using a form of finite second-order Markov logic in which
variables can range over relations (predicates) as well as objects (constants).
Extending Markov logic to second order involves simply grounding atoms with
all possible predicate symbols as well as all constant symbols, and allows us to
represent some models much more compactly than first-order Markov logic.

For simplicity, we assume that relations are binary in our definition of SNE,
i.e., relations are of the form r(x, y) where r is a relation symbol, and x and
y are object symbols. (Extending the definition to an arbitrary number of n-
ary relations is straightforward.) We use γi and Γi to respectively denote a
cluster and clustering (i.e., a partitioning) of symbols of type i. If r, x, and y
are respectively in cluster γr, γx, and γy, we say that r(x, y) is in the cluster
combination (γr, γx, γy).

The learning problem in SNE consists of finding the cluster assignment
Γ = (Γr, Γx, Γy) that maximizes the posterior probability P (Γ |R) ∝ P (Γ,R) =
P (Γ )P (R|Γ ), where R is a vector of truth assignments to the observable r(x, y)
ground atoms.

We define one MLN for the likelihood P (R|Γ ) component, and one MLN for
the prior P (Γ ) component of the posterior probability with just four simple
rules.

The MLN for the likelihood component only contains one rule stating that
the truth value of an atom is determined by the cluster combination it belongs
to:

∀r, x, y,+γr,+γx,+γy r ∈ γr ∧ x ∈ γx ∧ y ∈ γy ⇒ r(x, y)

This rule is soft. The “+” notation is syntactic sugar that signifies that there
is an instance of this rule with a separate weight for each cluster combination
(γr, γx, γy). This rule predicts the probability of query atoms given the cluster
memberships of the symbols in them. This is known as the atom prediction rule.
As shown in [12], given a cluster assignment, the MAP weight wk of an instance
of the atom prediction rule is given by log(tk/fk), where tk is the empirical
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number of true atoms in cluster combination k, and fk is the number of false
atoms. Adding smoothing parameters α and β, we estimate the MAP weight as
log((tk + α)/(fk + β)).

Three rules are defined in the MLN for the prior component. The first rule
states that each symbol belongs to exactly one cluster:

∀x ∃1γ x ∈ γ

This rule is hard, i.e., it has infinite weight and cannot be violated.
The second rule imposes an exponential prior on the number of cluster com-

binations that contain at least one true ground atom. This rule combats the
proliferation of cluster combinations and consequent overfitting, and is repre-
sented by the formula

∀γr, γx, γy ∃r, x, y r ∈ γr ∧ x ∈ γx ∧ y ∈ γy ∧ r(x, y)

with negative weight −λ. The parameter λ is fixed during learning, and is the
penalty in log-posterior incurred by adding a cluster combination containing true
ground atoms to the model. Thus larger λs lead to fewer cluster combinations
being formed. This rule represents the complexity of the model in terms of the
number of instances of the atom prediction rule (which is equal to the number
of cluster combinations with true ground atoms).

The last rule encodes the belief that most symbols tend to be in different
clusters. It is represented by the formula

∀x, x′, γx, γ
′
x x ∈ γx ∧ x′ ∈ γ′

x ∧ x �= x′ ⇒ γx �= γ′
x

with positive weight μ. The parameter μ is also fixed during learning. We expect
there to be many concepts and high-level relations in a large heterogenous body
of text. The tuple extraction process samples instances of these concepts and
relations sparsely, and we expect each concept or relation to have only a few
instances sampled, in many cases only one. Thus we expect most pairs of symbols
to be in different concept and relation clusters.

The equation for the log-posterior, as defined by the two MLNs, can be written
in closed form as 1

log P (Γ |R) =
�
k∈K

�
tk log

�
tk + α

tk + fk + α + β

�
+ fk log

�
fk + β

tk + fk + α + β

��
− λmcc + μd + C (1)

where K is the set of cluster combinations, mcc is the number of cluster com-
binations containing at least one true ground atom, d is the number of pairs of
symbols that belong to different clusters, and C is a constant.

1 The derivation of the log-posterior is given in an online appendix at http://alchemy.
cs.washington.edu/papers/kok08.
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Rewriting the equation, the log-posterior can be expressed as

log P (Γ |R) =
�

k∈K+

�
tk log

�
tk + α

tk + fk + α + β

�
+ fk log

�
fk + β

tk + fk + α + β

��

+
�

k∈K−

�
fk log

�
fk + β

tk + fk + α + β

��
− λmcc + μd + C (2)

where K+ is the set of cluster combinations that contains at least one true
ground atom, and K− is the set of cluster combinations that does not contain
any true ground atoms. Observe that |K+|+ |K−| = |Γr||Γx||Γy|. Even though
it is tractable to compute the first summation over |K+| (which is at most the
number of true ground atoms), it may not be feasible to compute the second
summation over |K−| for large |Γi|s. Hence, for tractability, we assume that
all tuples in K− belong to a single ‘default’ cluster combination with the same
probability pfalse of being false. The log-posterior is simplified as

logP (Γ |R) =
∑

k∈K+

[
tk log

(
tk + α

tk + fk + α + β

)
+ fk log

(
fk + β

tk + fk + α + β

)]

+

(
|Sr||Sx||Sy| −

∑
k∈K+

(tk + fk)

)
log(pfalse)− λmcc + μd + C (3)

where Si is the set of symbols of type i, and (|Sr||Sx||Sy| −
∑

k∈K+(tk + fk)) is
the number of (false) tuples in K−.

SNE simplifies the learning problem by performing hard assignment of sym-
bols to clusters (i.e., instead of computing probabilities of cluster membership, a
symbol is simply assigned to its most likely cluster). Since, given a cluster assign-
ment, the MAP weights can be computed in closed form, SNE simply searches
over cluster assignments, evaluating each assignment by its posterior probability.

SNE uses a bottom-up agglomerative clustering algorithm to find the MAP
clustering (Table 1). The algorithm begins by assigning each symbol to its own
unit cluster. Next we try to merge pairs of clusters of each type. We create can-
didate pairs of clusters, and for each of them, we evaluate the change in posterior
probability (Equation 3) if the pair is merged. If the candidate pair improves
posterior probability, we store it in a sorted list. We then iterate through the
list, performing the best merges first, and ignoring those containing clusters that
have already been merged. In this manner, we incrementally merge clusters until
no merges can be performed to improve posterior probability.

To avoid creating all possible candidate pairs of clusters of each type (which is
quadratic in the number of clusters), we make use of canopies [15]. A canopy for
relation symbols is a set of clusters such that there exist object clusters γx and γy,
and for all clusters γr in the canopy, the cluster combination (γr, γx, γy) contains
at least one true ground atom r(x, y). We say that the clusters in the canopy
share the property (γx, γy). Canopies for object symbols x and y are similarly
defined. We only try to merge clusters in a canopy that is no larger than a



630 S. Kok and P. Domingos

Table 1. The SNE algorithm

function SNE(Sr, Sx, Sy, R)
inputs: Sr, set of relation symbols

Sx, set of object symbols that appear as first arguments
Sy , set of object symbols that appear as second arguments
R, ground r(x, y) atoms formed from the symbols in Sr, Sx, and Sy

output: a semantic network, {(γr , γx, γy) ∈ Γr × Γx × Γy : (γr , γx, γy) contains at
least one true ground atom}

for each i ∈ {r, x, y}
Γi ← unitClusters(Si)

mergeOccurred ← true
while mergeOccurred

mergeOccurred ← false
for each i ∈ {r, x, y}

CandidateMerges ← ∅
for each (γ, γ′) ∈ Γi × Γi

ΔP ← change in P ({Γr , Γx, Γy}|R) if γ, γ′ are merged
if ΔP > 0, CandidateMerges ← CandidateMerges ∪ {(γ, γ′)}

sort CandidateMerges in descending order of ΔP
MergedClusters ← ∅
for each (γ, γ′) ∈ CandidateMerges

if γ 
∈ MergedClusters and γ′ 
∈ MergedClusters
Γi ← (Γi \ {γ, γ′}) ∪ {γ ∪ γ′}
MergedClusters ← MergedClusters ∪ {γ} ∪ {γ′}
mergedOccurred ← true

return {(γr, γx, γy) ∈ Γr × Γx × Γy : (γr , γx, γy) contains at least one true ground atom}

parameter CanopyMax. This parameter limits the number of candidate cluster
pairs we consider for merges, making our algorithm more tractable. Furthermore,
by using canopies, we only try ‘good’ merges, because symbols in clusters that
share a property are more likely to belong to the same cluster than those in
clusters with no property in common.

Note that we can efficiently compute the change in posterior probability (ΔP
in Table 1) by only considering the cluster combinations with true ground atoms
that contain the merged clusters γ and γ′. Below we give the equation for
computing ΔP when we merge relation clusters γr and γ′

r to form γ′′
r . The

equations for merging object clusters are similar. Let TFk be a shorthand for
tk log( tk+α

tk+fk+α+β ) + fk log( fk+β
tk+fk+α+β ).

ΔP =
∑

(γ′′
r ,γ1,γ2)∈K+

γ
′′
r γ

′
rγr

[
TF(γ′′

r ,γ1,γ2)
− TF(γ′

r,γ1,γ2)
− TF(γr,γ1,γ2) + λ

]

+
∑

(γ′′
r ,γ1,γ2)∈K+

γ
′′
r ·γr

[
TF(γ′′

r ,γ1,γ2)
− f(γ′

r,γ1,γ2)
log(pfalse)− TF(γr,γ1,γ2)

]

+
∑

(γ′′
r ,γ1,γ2)∈K+

γ
′′
r γ

′
r ·

[
TF(γ′′

r ,γ1,γ2)
− TF(γ′

r,γ1,γ2)
− f(γr,γ1,γ2) log(pfalse)

]

−μ|γr
′||γr| (4)

where K+
γ′′

r γ′
rγr

is the set of cluster combinations with true ground atoms such

that each cluster combination (γ
′′

r , γ1, γ2) in the set has the property that
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(γ
′

r, γ1, γ2) and (γr, γ1, γ2) also contains true atoms. K+
γ′′

r ·γr
is the set of clus-

ter combinations with true ground atoms such that each cluster combination
(γ

′′

r , γ1, γ2) in the set has the property that (γr, γ1, γ2), but not (γ
′

r, γ1, γ2), con-
tains true ground atoms. K+

γ′′
r γ′

r·
is similarly defined. Observe that we only sum

over cluster combinations with true ground atoms that contains the affected clus-
ters γr, γ

′

r and γ
′′

r , rather than over all cluster combinations with true ground
atoms.

4 Related Work

Rajaraman and Tan [21] propose a system that learns a semantic network by
clustering objects but not relations. While it anecdotally shows a snippet of
its semantic network, an empirical evaluation of the network is not reported.
Hasegawa et. al [10] propose an unsupervised approach to discover relations
from text. They treat the short text segment between each pair of objects as a
relation, and cluster pairs of objects using the similarity between their relation
strings. Each cluster corresponds to a relation, and a pair of objects can appear
in at most one cluster (relation). In contract, SNE allows a pair of objects to par-
ticipate in multiple relations (semantic statements). Shinyama and Sekine [25]
form (possibly overlapping) clusters of tuples of objects (rather than just pairs
of objects). They use the words surrounding the objects in the same sentence to
form a pattern. Objects in sentences with the same pattern are deemed to be
related in the same way, and are clustered together. All three previous systems
are not domain-independent because they rely on name entity (NE) taggers to
identify objects in text. The concepts and relations that they learn are restricted
by the object types that can be identified with the NE taggers. All three sys-
tems also use ad-hoc techniques that do not give a probability distribution over
possible worlds, which we need in order to perform inference and answer queries.
By only forming clusters of (tuples of) objects, and not relations, they do not
explicitly learn high-level relations like SNE.

ALICE [2] is a system for lifelong knowledge extraction from a Web corpus.
Like SNE, it uses TextRunner’s triples as input. However, unlike SNE, it re-
quires background knowledge in the form of an existing domain-specific concept
taxonomy, and does not cluster relations into higher level ones.

RESOLVER [28] is a system that takes TextRunner’s triples as input, and
resolves references to the same object and relations by clustering the references
together (e.g., Red Planet and Mars are clustered together). In contrast, SNE
learns abstract concepts and relations (e.g., Mars, Venus, Earth, etc. are clus-
tered together to form the concept of ‘planet’). Unlike SNE, RESOLVER’s prob-
abilistic model clusters objects and relations separately rather than jointly. To
allow information to propagate between object clusters and relation clusters,
RESOLVER uses an ad-hoc approach. In its experiments, RESOLVER gives
similar results with or without the ad-hoc approach. In contrast, we show in our
experiments that SNE gives better performance with joint rather than separate
clustering (see Table 3). In a preliminary experiment where we adapt SNE to



632 S. Kok and P. Domingos

only use string similarities between objects (and relations), we find that SNE
performs better than RESOLVER on an entity resolution task on the dataset
described in Section 5.

5 Experiments

Our goal is to create a system that is capable of extracting semantic networks
from what is arguably the largest and most accessible text resource — the Web.
Thus in our experiments, we use a large Web corpus to evaluate the effectiveness
of SNE’s relational clustering approach in extracting a simple semantic network
from it. Since to date, no other system could do the same, we had to modify
three other relational clustering approaches so that they could run on our large
Web-scale dataset, and compared SNE to them. The three approaches are Multi-
ple Relational Clusterings [12], Information-Theoretic Co-clustering [5], and the
Infinite Relational Model [11].

5.1 Multiple Relational Clusterings

Like SNE, MRC is a model that simultaneously clusters objects and relations
without requiring the number of clusters to be specified in advance. However,
unlike SNE, MRC is able to find multiple clusterings, rather than just one.
MRC is also defined using finite second-order Markov logic. The main difference
between SNE and MRC is in the search algorithm used. MRC also differs from
SNE in having an exponential prior on the number of clusters rather than on
the number of cluster combinations with true ground atoms. MRC calls itself
recursively to find multiple clusterings. We can view MRC as growing a tree of
clusterings, and it returns the finest clusterings at the leaves. In each recursive
call, MRC uses a top-down generate-and-test greedy algorithm with restarts
to find the MAP clustering of the subset of relation and constant symbols it
received. While this ‘blind’ generate-and-test approach may work well for small
datasets, it will not be feasible for large Web-scale datasets like the one used in
our experiments. For such large datasets, the search space will be so enormous
that the top-down algorithm will generate too many candidate moves to be
tractable. In our experiments, we replaced MRC’s search algorithm with the
algorithm in Table 1. We use MRC1 to denote an MRC model that is restricted
to find a single clustering.

5.2 Information-Theoretic Co-clustering

The ITC model [5] clusters discrete data in a two-dimensional matrix along
both dimensions simultaneously. It greedily searches for the hard clusterings
that optimize the mutual information between the row and column clusters.
The model has been shown to perform well on noisy and sparse data. ITC’s
top-down search algorithm has the flavor of K-means, and requires the number
of row and column clusters to be specified in advance. At every step, ITC finds
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the best cluster for each row or column by iterating through all clusters. This
will not be tractable for large datasets like our Web dataset, which can contain
many clusters. Thus, we instead use the algorithm in Table 1 (ΔP in Table 1 is
set to the change in mutual information rather than the change in log-posterior
probability). Notice that, even if ITC’s search algorithm were tractable, we would
not be able to apply it to our problem because it only works on two-dimensional
data. We extend ITC to three dimensions by optimizing the mutual information
among the clusters of three dimensions. Furthermore, since we do not know the
exact number of clusters in our Web dataset a priori, we follow [5]’s suggestion of
using an information-theoretic prior (BIC [24]) to select the appropriate number
of clusters. We use ITC-C and ITC-CC to respectively denote the model with a
BIC prior on clusters, and the model with a BIC prior on cluster combinations
that contain at least one true ground atom. Note that, unlike SNE, ITC does
not give a probability distribution over possible worlds, which we need in order
to do inference and answer queries (although that is not the focus of this paper).

5.3 Infinite Relational Model

Like SNE, the IRM [11] is a model that simultaneously clusters objects and re-
lations without requiring the number of clusters to be specified in advance. It
defines a generative model for the predicates and cluster assignments. It assumes
that the predicates are conditionally independent given the cluster assignments,
and the cluster assignments for each type are independent. IRM uses a Chinese
restaurant process (CPR) prior on the cluster assignments. Under the CRP, each
new object is assigned to an existing cluster with probability proportional to the
cluster size. IRM assumes that the probability p of an atom being true con-
ditioned on cluster membership is generated according to a Beta distribution,
and that the truth values of atoms are then generated according to a Bernoulli
distribution with parameter p. IRM finds the MAP cluster assignment using a
top-down search similar to MRC, except that it also searches for the optimal
values of its CRP and Beta parameters. As mentioned earlier, top-down search
is not feasible for large Web-scale data, so we replace IRM’s search algorithm
with the one in Table 1. We also fixed the values of the CRP and Beta para-
meters. As in SNE, we assumed that the atoms in cluster combinations with
only false atoms belonged to a default cluster combination, and they had the
same probability pfalse of being false. We also experimented with a CRP prior
on cluster combinations that contain at least one true atom. We use IRM-C and
IRM-CC to respectively denote the IRM with a CRP prior on clusters, and the
IRM with a CRP prior on cluster combinations. Xu et al. [27] proposed a model
closely related to the IRM.

5.4 Dataset

We compared the various models on a dataset of about 2.1 million triples2 ex-
tracted in a Web crawl by TextRunner [1]. Each triple takes the form r(x, y)
2 Publicly available at http://knight.cis.temple.edu/∼yates/data/resolver data.tar.gz
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where r is a relation symbol, and x and y are object symbols. Some exam-
ple triples are: named after(Jupiter, Roman god) and upheld(Court, ruling).
There are 15,872 distinct r symbols, 700,781 distinct x symbols, and 665,378 dis-
tinct y symbols. Two characteristics of TextRunner’s extractions are that they
are sparse and noisy. To reduce the noise in the dataset, our search algorithm
(Table 1) only considered symbols that appeared at least 25 times. This leaves
10,214 r symbols, 8942 x symbols, and 7995 y symbols. There are 2,065,045
triples that contain at least one symbol that appears at least 25 times. In all ex-
periments, we set the CanopyMax parameter to 50. We make the closed-world
assumption for all models (i.e., all triples not in the dataset are assumed false).

5.5 SNE vs. MRC

We compared the performances of SNE and MRC1 in learning a single clustering
of symbols. We set the λ, μ and pfalse parameters in SNE to 100, 100 and 0.9999
respectively based on preliminary experiments. We set SNE’s α and β parameters
to 2.81 × 10−9 and 10 − α so that α

α+β is equal to the fraction of true triples
in the dataset. (A priori, we should predict the probability that a ground atom
is true to be this value.) We evaluated the clusterings learned by each model
against a gold standard manually created by the first author. The gold standard
assigns 2688 r symbols, 2568 x symbols, and 3058 y symbols to 874, 511, and
700 non-unit clusters respectively. We measured the pairwise precision, recall and
F1 of each model against the gold standard. Pairwise precision is the fraction of
symbol pairs in learned clusters that appear in the same gold clusters. Pairwise
recall is the fraction of symbol pairs in gold clusters that appear in the same
learned clusters. F1 is the harmonic mean of precision and recall. For the weight
of MRC1’s exponential prior on clusters, we tried the following values and pick
the best: 0, 1, 10–100 (in increments of 10), and 110–1000 (in increments of 100).
We report the precision, recall and F1 scores that are obtained with the best
value of 80. From Table 2, we see that SNE performs significantly better than
MRC1.

We also ran MRC to find multiple clusterings. Since the gold standard only
defines a single clustering, we cannot use it to evaluate the multiple clusterings.
We provide a qualitative evaluation instead. MRC returns 23,151 leaves that
contain non-unit clusters, and 99.8% of these only contain 3 or fewer clusters of
size 2. In contrast, SNE finds many clusters of varying sizes (see Table 6). The

Table 2. Comparison of SNE and MRC1 performances on gold standard. Object 1 and
Object 2 respectively refer to the object symbols that appear as the first and second
arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2
Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112
MRC1 0.054 0.044 0.049 0.031 0.007 0.012 0.059 0.011 0.018
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Table 3. Comparison of SNE performance when it clusters relation and object symbols
jointly and separately. SNE-Sep clusters relation and object symbols separately. Object
1 and Object 2 respectively refer to the object symbols that appear as the first and
second arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2
Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.460 0.061 0.108 0.558 0.062 0.112
SNE-Sep 0.597 0.116 0.194 0.519 0.045 0.083 0.551 0.047 0.086

poor performance of MRC in finding multiple clusterings is due to data sparsity.
In each recursive call to MRC, it only receives a small subset of the relation and
object symbols. Thus with each call the data becomes sparser, and there is not
enough signal to cluster the symbols.

5.6 Joint vs. Separate Clustering of Relations and Objects

We investigated the effect of having SNE only cluster relation symbols, first-
argument object symbols, or second-argument object symbols, e.g., if SNE clus-
ter relation symbols, then it does not cluster both kinds of object symbols. From
Table 3, we see that SNE obtains a significantly higher F1 when it clusters
relations and objects jointly than when it clusters them separately.

5.7 SNE vs. IRM and ITC

We compared IRM-C and IRM-CC with respect to the gold standard. We set
IRM’s Beta parameters to the values of SNE’s α and β, and set pfalse to the
same value as SNE’s. We tried the following values for the parameter of the
CRP priors: 0.25, 0.5, 0.75, 1–10 (in increments of 1), 20–100 (in increments of
10). We found that the graphs showing how precision, recall, and F1 vary with
the CRP value are essentially flat for both IRM-C and IRM-CC. Both system
perform about the same. The slightly higher precision, recall, and F1 scores
occur at the low end of the values we tried, and we use the best one of 0.25 for
the slightly better-performing IRM-CC system. Henceforth, we denote this IRM
as IRM-CC-0.25, and use it for other comparisons.

We also compared SNE, IRM-CC-0.25, ITC-C, and ITC-CC. From Table 4,
we see that ITC performs better with a BIC prior on cluster combinations than
a BIC prior on clusters. We also see that SNE performs the best in terms of F1.

We then evaluated SNE, IRM-CC-0.25 and ITC-CC in terms of the semantic
statements that they learned. A cluster combination that contains a true ground
atom corresponds to a semantic statement. SNE, IRM-CC-0.25 and ITC-CC
respectively learned 1,464,965, 1,254,995 and 82,609 semantic statements. We
manually inspected semantic statements containing 5 or more true ground atoms,
and counted the number that were correct. Table 5 shows the results. Even
though SNE’s accuracy is smaller than IRM-CC-0.25’s and ITC-CC’s by 11%
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Table 4. Comparison of SNE, IRM-CC-0.25, ITC-CC, and ITC-C performances on
gold standard. Object 1 and Object 2 respectively refer to the object symbols that
appear as the first and second arguments of relations. The best F1s are shown in bold.

Relation Object 1 Object 2
Model Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

SNE 0.452 0.187 0.265 0.461 0.061 0.108 0.558 0.062 0.112
IRM-CC-0.25 0.201 0.089 0.124 0.252 0.043 0.073 0.307 0.041 0.072
ITC-CC 0.773 0.003 0.006 0.470 0.047 0.085 0.764 0.002 0.004
ITC-C 0.000 0.000 0.000 0.571 0.000 0.000 0.333 0.000 0.000

Table 5. Evaluation of semantic statements learned by SNE, IRM-CC-0.25, and
ITC-CC

Total Num. Fract.
Model Statements Correct Correct
SNE 1241 965 0.778
IRM-CC-0.25 487 426 0.874
ITC-CC 310 259 0.835

and 7% respectively, SNE more than compensates for the lower accuracy by
learning 127% and 273% more correct statements respectively. Figure 1 shows
examples of correct semantic statements learned by SNE.

SNE, IRM-CC-0.25 and ITC-CC respectively ran for about 5.5 hours, 9.5
hours, and 3 days on identically configured machines. ITC-CC spent most of its
time computing the mutual information among three clusters. To compute the
mutual information, given any two clusters, we have to retrieve the number of
cluster combinations that contain the two clusters. Because of the large number
of cluster pairs, we choose to use a data structure (red-black tree) that is space-
efficient, but pays a time penalty when looking up the required values.

5.8 Comparison of SNE with WordNet

We also compared the object clusters that SNE learned with WordNet [8], a
hand-built semantic lexicon for the English language. WordNet organizes 117,798
distinct nouns into a taxonomy of 82,115 concepts. There are respectively 4883
first-argument, and 5076 second-argument object symbols that appear at least
25 times in our dataset, and also in WordNet. We converted each node (synset)
in WordNet’s taxonomy into a cluster containing its original concepts, and all its
children concepts. We then matched each SNE cluster to the WordNet cluster
that gave the best F1 score. We measured F1 as the harmonic mean of precision
and recall. Precision is the fraction of symbols in an SNE cluster that is also in
the matched WordNet cluster. Recall is the fraction of symbols in a WordNet
cluster that is also in the corresponding SNE cluster. Table 6 shows how pre-
cision, recall, and F1 vary with cluster sizes. (The scores are averaged over all
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Table 6. Comparison of SNE object clusters with WordNet

Cluster Num.
Size Clusters Level Prec. Recall F1
47 1 7.0±0.0 0.8±0.0 0.2±0.0 0.4±0.0
36 1 8.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0
24 1 6.0±0.0 0.2±0.0 0.3±0.0 0.2±0.0
19 1 7.0±0.0 0.2±0.0 0.3±0.0 0.2±0.0
16 1 7.0±0.0 0.3±0.0 0.3±0.0 0.3±0.0
12 3 7.0±0.7 0.5±0.1 0.7±0.1 0.5±0.2
11 1 6.0±0.0 0.9±0.0 0.7±0.0 0.8±0.0
10 2 5.5±0.7 0.6±0.1 0.9±0.1 0.5±0.1
8 5 7.0±0.9 0.4±0.2 0.7±0.4 0.3±0.1
7 4 6.0±1.4 0.7±0.3 0.8±0.2 0.9±0.1
6 12 6.6±1.7 0.4±0.2 0.6±0.2 0.6±0.2
5 12 7.2±1.6 0.4±0.2 0.5±0.3 0.7±0.1
4 84 7.2±1.7 0.4±0.1 0.7±0.2 0.6±0.2
3 185 7.3±1.8 0.5±0.2 0.7±0.2 0.7±0.2
2 1419 7.2±1.8 0.6±0.1 0.7±0.1 0.8±0.1

Fig. 1. Fragments of a semantic network learned by SNE. Nodes are concept clus-
ters, and the labels of links are relation clusters. More fragments are available at
http://alchemy.cs.washington.edu/papers/kok08.

object clusters of the same size). We see that the F1s are fairly good for object
clusters of size 7 or less. The table also shows how the level of the matched
cluster in WordNet’s taxonomy vary with cluster size. The higher the level, the
more specifc the concept represented by the matched WordNet cluster. For ex-
ample, clusters at level 7 correspond to specific concepts like ‘country’, ‘state’,
‘dwelling’, and ‘home’, while the single cluster at level 0 (i.e., at the root of the
taxonomy) corresponds to ‘all entities’. We see that the object clusters corre-
spond to fairly specifc concepts in WordNet. We did not compare the relation
clusters to WordNet’s verbs because the overlap between the relation symbols
and the verbs are too small.
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6 Conclusion and Future Work

We presented SNE, a scalable, unsupervised, domain-independent system for
extracting knowledge in the form of simple semantic networks from text. SNE is
based on second-order Markov logic. It uses a bottom-up agglomerative cluster-
ing algorithm to jointly cluster relation symbols and object symbols, and allows
information to propagate between the clusters as they are formed. Empirical
comparisons with three systems on a large real-world Web dataset show the
promise of our approach.

Directions for future work include: integrating tuple extraction into SNE’s
Markov logic framework so that information can flow between semantic network
learning and tuple extraction, potentially improving the performance of both;
extending the learning mechanism so as to learn richer semantic networks as well
as complex logical theories from text; etc.
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Abstract. We study the problem of finding the most uniform partition
of the class label distribution on an interval. This problem occurs, e.g., in
supervised discretization of continuous features, where evaluation heuris-
tics need to find the location of the best place to split the current feature.
The weighted average of empirical entropies of the interval label distrib-
utions is often used in this task. We observe that this rule is suboptimal,
because it prefers short intervals too much. Therefore, we proceed to
study alternative approaches. A solution that is based on compression
turns out to be the best in our empirical experiments. We also study
how these alternative methods affect the performance of classification
algorithms.

1 Introduction

We consider the problem of processing labeled and sequential data into inter-
vals— contiguous subsequences— that can be utilized in prediction. This task
is encountered, e.g., in the discretization of numerical attributes when learning
classifiers. Top-down greedy heuristics reduce this problem to a simpler one [1]:
How to rank and compare the uniformity of two adjacent intervals?

Arguably the most often used measure of uniformity of adjacent example in-
tervals is the weighted average entropy over the class label distributions [2]. Using
entropy is a well-founded approach that should in principle lead to good results.
We cannot, however, compute the true entropy underlying the label distribution.
Instead, we need samples to estimate it through the observed empirical entropy.

We will evaluate the suitability of the empirical entropy in finding the least
uniform intervals. Our empirical evaluation shows that the estimation of entropy
often fails in this task, because it prefers too short intervals.

A similar and related problem occurs in the top-down induction of decision
trees, where the tree-building algorithm searches for the most informative at-
tribute. It is known that criteria based on empirical entropy prefer too much
attributes with several values. On the other hand, in the interval selection prob-
lem we only have two values for the attribute— the left and the right interval.
Hence, the failure does not occur because of too many values for the attribute.
See the previous work discussed in [3] for more information on attribute selection
in decision trees.
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The reasons behind this suboptimal behavior of empirical entropy in deci-
sion trees and in splitting an interval are similar. First, the estimation error
of entropy is significant, and even more so when fewer samples are available. In
particular, this error is biased towards intervals with less data, and some interval
pairs always contain a short interval, because we consider all splits of a larger
interval. Second, perhaps a more minor reason is that minimizing entropy does
not necessarily coincide with minimum empirical error. Kohavi and Sahami [4]
discuss entropy-based and error-based discretization more generally.

In this paper we evaluate three simple approaches intended to rectify the
problems of the approach based on empirical entropy. The methods also take
into account the number of samples that is available to estimate the distrib-
ution. Previously, only the empirical frequencies have been used. We evaluate
these three approaches by generating synthetic data from known distributions
and observing the distributions of the resulting split points. Our empirical eval-
uation demonstrates that in terms of reducing the absolute error, the proposed
approaches are successful, but their utility in improving prediction error of Näıve
Bayes (nb) is smaller.

In the next section we introduce the required preliminaries for the rest of the
text; the nb classifier and the recursive entropy heuristic. Section 3 illustrates
the failure of average empirical entropy in always choosing the best split point.
We also provide a theoretical explanation for this shortcoming. In Section 4
three approaches that try to overcome the problems are put forward: The first
approach is based on choosing the split point that yields the best compression of
class labels. We can also consider it as maximizing a certain posterior likelihood.
In the second approach the maximum likelihood estimation of probability in en-
tropy calculation is replaced by a Bayesian estimate. The third approach replaces
entropy with another function with different concavity properties. Section 5 eval-
uates the proposed approaches empirically. The implications for classification of
the approaches studied in this paper are the topic of Section 6. In particular, we
consider nb and test the implications also empirically. Finally, we put forward
the concluding remarks of this work.

2 Preliminaries

Let us first introduce the nb classifier and then discuss how it relates to dis-
cretization and finding non-uniform intervals. Let y denote a variable that takes
a value of a class label, and let x denote a vector of d features 〈x1, . . . , xd〉.
We are given a set of n examples {(x1, y1), . . . , (xn, yn)}. In the nb classifier
we assume that the features are statistically independent given the class, which
results in the following probability for a label y given a vector x:

P(y | x) ∝ P(y)
d∏

i=1

P
(
xi | y

)
,

where xi are the independent features. The nb classifier then selects the label
with maximal probability. Note that although the statistical independence is
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Table 1. The emp-ent split point selection method and the recursive entropy heuristic

Function emp-ent

Input: An interval I .
Output: Two subintervals (I1, I2) which partition I .

Algorithm: For all class labels yj , j = 1, . . . , m, let �PI(yj) stand for the empirical
probability of observing label yj on interval I . In other words, it is the ratio of
labels yj to all labels in interval I . Now, the empirical entropy of the class label
distribution of I is

�H(I) = −
m�

j=1

�PI(yj) lg �PI(yj).

Let |I | denote the number of examples in interval I . The average empirical entropy
of a particular split (I ′

1, I
′
2) is

|I ′
1|

|I |
�H(I ′

1) +
|I ′

2|
|I |

�H(I ′
2).

Return the split that minimizes the average empirical entropy.

Function Recursive Entropy Heuristic

Input: An interval I .
Output: A contiguous sequence of subintervals (I1, . . . , Ik) which partitions I .
Algorithm: Out of all splits (I ′

1, I
′
2) select the one given by the emp-ent method. If

a stopping criterion, such as the mdl rule used by Fayyad and Irani [2] is satisfied,
then return only I . Otherwise, return a concatenation of outputs of recursive calls
to the recursive entropy heuristic with inputs I ′

1 and I ′
2.

used to derive the decision rule, the nb classifier does not necessarily fail if
features are correlated, because it works as long as the correct label has maximal
probability [5,6,7].

For discrete features the marginal probabilities P
(
xi | y

)
are easy to estimate

by counting from the training examples. One usually smooths the count e.g.,
with a Laplacian estimate, to prevent assigning the zero probability to some
events. Continuous features are more difficult to deal with, but there are several
solutions for handling them, none of which appear to dominate the other [8].

Discretization is a solution in which an interval is divided into discrete bins,
and the marginal probability is estimated by counting the items that fall into
these bins. This approach has attracted significant attention [9]. The best per-
forming methods are founded on recursive entropy heuristic [1,2]. Its aim is to
minimize the empirical entropy of the bins, while avoiding creating adjacent bins
that appear to come from the same underlying distribution. For k bins, the num-
ber of possible bin borders for n items is

(
n−1
k−1

)
, which scales in O

(
nk−1

)
(we

do not accept empty bins in this count). Hence, a brute force approach to the
combinatorial explosion is unattainable.
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Thus, the recursive entropy heuristic uses the greedy top-down approach. In it
one successively splits in two the interval yielding minimum entropy until some
stopping criterion is satisfied. This heuristic is detailed in Table 1.

3 How Minimizing Empirical Entropy Can Fail

We have observed empirically that the emp-ent rule often proposes using a very
short interval — from one to five items. This behavior appears to be a result of
random noise in the labels, rather than a correct decision. In this section we
first discuss the suitability of using the entropy in finding a location to split, and
then proceed to study how empirical estimation of entropy is difficult.

3.1 The Role of Entropy in Selecting Uniform Intervals

The 0/1-loss is the probability of predicting a wrong label. It gives a simple
method to select the split location: minimizing the 0/1-loss of the resulting
subintervals. In this case we predict the majority label on each subinterval.
However, 0/1-loss is blind to those differences in the label distribution that do
not change the majority label [9,10].

For example, if the most likely label remains the same on the whole interval,
then the 0/1-loss of all possible splits is the same constant. Naturally, if we use
these subintervals to predict labels under 0/1-loss, then it is not useful to split
the interval in this case. Nevertheless, if we combine the prediction from this and
another feature, then we would like the combined predictor to perform well. In
this case the interval should be split at the location where it provides the least
error for the combined predictor.

This is the motivation for minimizing the joint entropy of subintervals, it can
distinguish changes of the label distribution. For example, let p(x) denote the
probability of generating the label a at the position x on the interval, and let
1 − p(x) be the corresponding probability for the label b. Then the analysis of
the Lagrangian reveals that the entropy is minimized only in those locations in
which either the majority label changes or the derivative p′(x) is zero.

However, minimizing entropy does not necessarily minimize 0/1-loss, although
these two often coincide in practice. Figure 1 illustrates a situation in which the
entropy prefers to split at a location where the resulting subintervals are non-
uniform. The 0/1-loss, however, is minimized at another location. Hence, using
entropy is not justified if we, for example, have a single feature and want to
select a single split point on it for a further use in the nb classifier.

Note also that, although the first split point may minimize 0/1-loss, the sec-
ond does not necessarily give the minimum 0/1-loss for two split points. In the
situation of Figure 2 the entropy is minimized in the middle. However, the two
split points that minimize 0/1-loss are at the locations in which the most likely
label changes.

Therefore, both 0/1-loss and entropy fail in some sense. The loss is blind to
some differences in the label distribution, and the entropy fails to provide the
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Fig. 1. Entropy and 0/1-loss as functions of a split point on the interval [0, 1]. The
distribution that generates labels a and b is also shown. The probability of label a
changes from 0.6 to 0.35 at the location 0.33 and to 0.1 at the location 0.66. The
optimal split point is at the location 0.66 according to entropy, but at the location 0.33
according to 0/1-loss.

minimum 0/1-loss. However, in experiments the entropy usually performs better
than minimizing 0/1-loss [4]. Two facts could provide an explanation. First, the
problem domains have several features, so several features jointly interact in
prediction. Second, due to the recursive nature of the heuristic, the splitting
continues until 0/1-loss is minimized or nearly minimized. A small data size
might be a problem in this case.

3.2 Empirical Estimation of Entropy

Although entropy is an acceptable measure, we cannot use it directly, because it
depends on the hidden underlying distribution. Instead, we have a sample from
this distribution. It is known that entropy is difficult to estimate; for instance,
there is no unbiased estimate for it [11]. More information on the estimation of
the entropy is given, for example, in [11,12].

Let us first give a simple demonstration of using the empirical entropy in our
application of splitting an interval and, then, a reasoning behind the observation.
Figure 3 illustrates the distribution of the optimal split point according to emp-

ent rule of Table 1 on two separate class label distributions. In both cases thirty
class labels were drawn so that class label a initially has probability 1/3 and after
the change point probability 2/3. The change point in distribution A is located
in the middle and in distribution B after the fifth item. Ten thousand random
intervals were drawn from both distributions.

For both label distributions the correct change point is clearly the most often
identified split point location, but there are also noteworthy concentrations at
both ends of the interval. These concentrations have no particular justification,
they are just bogus local optima. In Section 5 we observe that this behavior
occurs, regardless of the interval length, if the optimal split point location of the
distribution is unclear.
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Fig. 2. Three Gaussians generate three labels. Both entropy and 0/1-loss are minimized
in the middle. For two split points the 0/1-loss is minimized at the locations, where
the most likely label changes.
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Fig. 3. The optimal split point distribution according to the emp-ent rule, for two
different distributions of the intervals. Ten thousand random intervals were generated.

Let us consider the reasons for the phenomenon illustrated in Figure 3. Let p
denote the real distribution on an interval under consideration and let p̂ denote
the empirical distribution of a draw from p. The empirical entropy Ĥ = H(p̂) is a
random variable of labels drawn from p. Two factors contribute to the difference
between H = H(p) and Ĥ [13,6,14]:

1. The bias, which we define as

H (p)−E(H (p̂)) .

2. The variance, which tells how much H(p̂) changes around its expectation:

E
(
(H (p̂)−E(H (p̂)))2

)
.
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Fig. 4. The concave binary entropy function. Note how the expectation (average) of
entropies at points P1 and P2 is less than the entropy of their expectation.

It is well known that the mean squared error (mse) of estimation is related
to these values [6]:

E
((

Ĥ −H
)2
)

︸ ︷︷ ︸
mse

=
(
E
(
Ĥ
)
−H︸ ︷︷ ︸

bias

)2

+ E
((

Ĥ −E
(
Ĥ
))2
)

︸ ︷︷ ︸
variance

.

Both the bias and variance are affected by the concavity of entropy H(p).
Jensen’s inequality [15] asserts that for any concave function f it holds that

E(f(X)) ≤ f (E(X)) .

An immediate consequence is that

E
(
Ĥ
)

= E(H (p̂)) ≤ H (E(p̂)) = H (p) = H.

For example, the empirical entropy of one sample is always zero.
Another complication is the variance of the empirical entropy. Let p̂

ml
be the

maximum likelihood estimate of p. The estimate is unbiased, but it naturally
has a high variance with small sample sizes. This variance can result in larger
than expected deviations in Ĥ for small values, because the entropy H grows
fast around a non-uniform distribution. For example, if we draw 30 labels from
a distribution over the labels {a, b} with P(a) equal to 1/5, then H = 0.72 and
E(Ĥ) = 0.7. Although these values are close to each other, the probability that
Ĥ > E(Ĥ) is 0.57. This implies that low values for Ĥ are further from E(Ĥ)
than high values for it.

Of course, both the bias and the variance tend to zero as the number of sam-
ples grows, because the maximum likelihood estimate p̂

ml
concentrates around a

point and the entropy is almost linear in the neighborhood of this point. Jensen’s
inequality is strict when the concave function f is linear and, in fact, the differ-
ence f(E(X)−E(f(X))) depends on the “curvature” of f . Figure 4 demonstrates
this graphically.
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4 Alternatives to Empirical Entropy

We now study three alternative solutions to the problem(s) identified in the
previous section. They differ in their justification and operation. We will study
their performance empirically in the next section.

4.1 COMPRESS: Compression

There is another potential justification for the empirical entropy, compression.
The mdl principle, roughly, advocates the selection of the model that compresses
the data the most [16].

If we know p̂, then H(p̂) is approximately the expected number of bits needed
to encode labels from the distribution p̂. However, this is not equal to compress-
ing the interval I, because we know the exact number of labels, not just their
probabilities. In addition, p̂ is unlikely to be close to the true distribution for
small sample sizes.

If we know the empirical frequencies of the labels on an interval I, then we
can compress it by identifying the permutation that transforms a known interval
to I. The number of permutations of the labels on I is

Perm (I) =
(

n

n1, . . . , nm

)
=

n!
n1! · · ·nm!

,

where n is the number of items on the interval I and ni is the number of items
with label i. Therefore, the interval I can be identified with lg Perm (I) bits, if we
know the original permutation that is being transformed to I. This permutation
depends on the label counts, which in turn depend on the location of the split
point. There are

(n+2(m−1)+1
2(m−1)+1

)
possible ways to assign these, because in addition

to one split point we select for both subintervals (m−1) dummy items that mark
the empirical counts of labels. Note that here we allow empty intervals. As the
above count is the same for both subintervals, we can ignore it.

Hence, the compress method, given in Table 2, selects the split point that
compresses the labels the most. Previously Kononenko [17] has suggested a sim-
ilar rule for decision trees. Note that compress has a relation to the entropy:

lg Perm (I) = lgn!−
m∑

i=1

lg ni!

H (p̂
ml

) = n lgn−
m∑

i=1

ni lg ni.

Stirling’s formula asserts that n! ≈
√

2πn(n/e)n, and so lg n! ≈ n lgn− n lg e.
compress also has a probabilistic justification. Generate p according to a

uniform prior distribution for the possible vectors and then generate I from p.
Then the probability of observing an interval I is

P(I) =
(
n + m− 1
m− 1

)−1(
n

n1, . . . , nm

)−1

, (1)



648 J. Kujala and T. Elomaa

Table 2. compress: Selection of the best split point

Input: An interval I .
Output: A splitted interval (I1, I2) that partitions I .
Algorithm: For each candidate split (I ′

1, I
′
2) calculate the following value

Perm
�
I ′
1
�

· Perm
�
I ′
2
�
,

and return the candidate with the smallest value.

which follows from the normalizing constant of the Dirichlet distribution [18].
The first part consists of the possible empirical frequencies, and is the same for
all frequencies. The second part depends on the empirical frequencies and it is
lgPerm (I). Therefore, if we set the prior probability of a split point to be

P(split at (I1, I2) | I) =

(|I1|+m−1
m−1

)(|I2|+m−1
m−1

)
(|I|+2(m−1)+1

2(m−1)+1

) ,

then we select the same decisions as compress. Note that P(split at (I1, I2) | I)
is a proper probability distribution, because it sums to one.

The numerator in the above equation is Θ(|I1||I2|)m−1, in which the depen-
dence on m and |I| is ignored. Hence, compress maximizes a posterior likelihood
that gives more prior probability to splits in the middle of the interval. This is
intuitive in the sense that we have more information available for these splits.

4.2 BAY-ENT: Bayesian Estimation of the Real Distribution

Another simple approach is to give an estimate p̂ of p and use it to estimate
the entropy. We already observed that the maximum likelihood estimate can
perform poorly, so let us evaluate a Bayesian estimate of p.

First, we note that a good estimate for entropy is not necessarily what we
want. For example, one correction, which takes into account part of the bias of
the empirical entropy, is the Miller-Madow estimate Ĥ(I) + (m − 1)/|I| [11].
However, using this estimate gives the same result as using only Ĥ(I), because
after averaging the entropy estimates we add the same constant to the value of
each split.

Let us study a Bayesian estimate for p, where we give a prior probability P(p)
for each p. Then, after observing our data I, we can update our beliefs on the
distribution of p:

P(p | I) ∝ P(I | p)P(p) .

We choose the uniform prior on p, which gives an equal likelihood to observ-
ing any combination of empirical frequencies, as a corollary to Equation (1).



Ranking the Uniformity of Interval Pairs 649

The posterior is a distribution over p, but for simplicity we want a single point
estimate. It is known, as Zhu and Lu [19] note, that the Dirichlet prior P(p) ∝∏m

i=1 p
xi−1
i gives a posterior with the expectation

p̂
bayes

=
(
x1 + n1

x + n
, . . . ,

xm + nm

x + m

)
.

Setting the xis to one we obtain our desired point estimate. Note that we can
interpret also this method as maximizing a likelihood, because the entropy H(p̂)
equals − lgP(p̂ | p̂).

If the real p is generated according to the prior that we use, then the estimated
posterior gives the true posterior distribution. Hence, in this case p̂

bayes
is a good

estimate. Unfortunately, often in practice the prior does not hold. Then, theoret-
ically, relatively little can be guaranteed, except that the posterior converges to
the real p with enough samples (if the prior is non-zero everywhere) [20]. In this
case Gelman [21] suggests trying several non-informative priors, and trusting the
results if they agree.

4.3 CONC: Preferring Non-uniform Intervals Less

Let us also study how changing the objective function from entropy to another
concave function affects the performance. Note that any symmetric concave func-
tion with a mode at the uniform distribution gives the same ranking for two
distributions. However, the decisions differ when pairs of distributions are com-
pared with each other, as is the case with possible splits of an interval. More
concave functions prefer a split point with more non-uniform intervals.

One problem that we identified with the empirical entropy was the suscepti-
bility to random noise in the labels. This was caused by the preference to the
non-uniform intervals. We suggest the following function, which is nearly linear
as a function of distance to the uniform distribution.

conc(p) =
(

1− ‖u− p‖2
Z

)1−ε

,

where u is the uniform distribution, Z is the normalizing value max ‖u− p‖2,
and ε is a small value, such as 0.99.

As this function resembles 0/1-loss, we expect it to fail in similar conditions.
On the other hand, it behaves better near a non-uniform distribution. Hence, it
is interesting to see its performance. Note that we use conc(p) instead of a linear
function, because it prefers non-uniform pairs. A linear function would give the
same rank for all splits, where the majority label does not change. This is often
the case when we empirically estimate the distribution, because the sample size
is restricted.

Kearns and Mansour [22] have analyzed in connection of decision trees top-
down algorithms that are related to discretization. In fact, these algorithms solve
the same problem when restricted to a continuous feature. The authors proved
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Fig. 5. A quick comparison of functions with different concavity. The distribution that
generates the labels and the majority label both change in the middle.

Table 3. Mean squared errors in the tests of Figure 6

EMP-ENT COMPRESS BAY-ENT CONC

b) 317.50 231.75 272.90 202.91

c) 48.49 44.59 50.60 56.64

d) 15.79 14.25 13.46 11.47

e) 43.89 41.46 41.38 40.51

f) 0.49 0.46 0.44 0.43

formal bounds in the PAC framework. Their analysis suggest using a function
that grows faster than the entropy around non-uniform distributions,

G(p) = 2
√

p(1− p).

However, as we have noted, using a concave function is dangerous with small
sample sizes. Figure 5 demonstrates this empirically.

5 Empirical Evaluation of the Suggested Solutions

The illustration in Figure 3 gave one example of the behavior of emp-ent

method, but it does not tell how often we observe, or suffer, from this behavior
in practice. We now give results for several different kinds of experiments, and
also compare emp-ent to the methods put forward in the previous section.

Figure 6 plots the results of six different tests and Table 3 gives the corre-
sponding mse values. In it mse is measured from the distance to the correct
split point, which is defined by the entropy of the generating distribution. We
use mse in order to penalize more for splitting significantly away from the true
location.
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b) Distribution changes slightly at the middle
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c) The majority label does not change.
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d) Distribution slides significantly
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e) Distribution slides from 0.3 to 0.7
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f) Three labels from overlapping Gaussians

Fig. 6. Comparison of the methods for six different distributions for the interval. In
a)-e) the dotted black line is the probability for label a, and in f) the dotted line gives
the generating Gaussians for three different labels.

In test a) the intervals are generated from a uniform distribution. Hence, there
is no correct place to split, because all subintervals are similar. In the figure we
see how emp-ent prefers short intervals, and how conc resists this behavior.

In test b) the generating distribution changes at the middle, first giving prob-
ability 0.47 and then 0.53 to the label a. The interval length is 1 000 items.
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Although b) has a long interval length, the fact that the distribution changes
only slightly, causes emp-ent to choose short intervals.

In test c) the distribution also changes at the middle point, but in contrast to
test b) the majority label does not. The probability of the label a is first 0.2 and
0.3 after the middle point. Note how conc fails in this case, although it otherwise
performs well. Interestingly, compress is the only approach to perform well.

In tests d) and e) the generating distribution changes as a linear function of
the interval position. In d) the change for the label a is from 0 to 1. In e) the
change is from 0.3 to 0.7. The correct split position is in the middle. We see that
the more difficult decision in e) causes emp-ent to choose also short intervals.

Finally, test f) demonstrates intervals generated from three overlapping Gaus-
sians. Each label — a, b, and c— is generated from a Gaussian distribution with
variance one on the unit line. The centers are at 1.5, 3, and 4.5. The correct split
position is at 3.

Of course, these results do not guarantee similar performance in a setting
that differs significantly from those introduced here. However, we chose these
tests to demonstrate the performance in as different circumstances as we could
find. They imply that failures with emp-ent tend to happen, if the decision
is not easy to begin with. Otherwise, the failure rate does not depend on the
parameters of the test, such as length of the interval.

6 Implications to Classification: Experimental Evaluation

In this section we study how the suggested solutions affect our motivating ap-
plication, the nb classifier. We evaluate the splitting methods on 16 commonly
used problems from the UCI machine learning repository. We carry out 100 iter-
ations for each problem. During each iteration two-thirds of the data is assigned
to a training set and the rest is assigned to a test set. The performances as a
probability of predicting the correct label for the test sets are given in Table 4.
We also give the number of generated bins for each problem, counted over all
features. The bay-ent method is omitted, because its performance was close to
that of compress.

We note that the performance difference between emp-ent and compress

is negligible. Either the problematic cases that we have discussed do not occur
in practice, or due to the nature of either mdl stopping rule or the recursive
heuristic the mistakes are not important. In the latter case it could be that mdl

is too conservative in its decisions to take advantage in a better splitting, because
it maximizes the split probability when using emp-ent, as we have noted in [23].
Another potential reason is the use of the recursive heuristic which could hide
the problematic decisions. By this we mean that, even if we erroneously split
few labels away from an interval, the recursive splitting guarantees that we will
also split at the correct place.

Also, conc performed well, expect in the Bupa domain. Hence, the behavior
depicted in test c) of Figure 6 appears not to happen frequently.
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Table 4. Performance of splitting methods on Näıve Bayes. The average classification
accuracy is over 100 repetitions of randomized training set selection for 16 UCI domains.
The average number of bins in each domain is also given.

Accuracy Number of bins

EMP-ENT COMP CONC EMP-ENT COMP CONC

Iris 94.0 94.0 93.9 6.6 6.6 6.7

Glass 67.8 66.4 67.4 14.4 14.6 13.6

Bupa 62.8 63.5 59.4 6.2 6.3 6.1

Pima 74.0 74.4 74.0 10.3 10.2 11.2

Ecoli 85.1 85.3 85.6 8.2 7.8 7.8

Segmentation 83.2 82.7 82.4 44.4 44.6 44.1

Wine 98.3 98.0 97.3 19.8 19.8 18.9

Australian 85.6 85.5 85.8 14.4 14.4 14.8

German 73.7 73.2 73.8 24.1 24.0 24.9

Iono 88.9 88.5 89.3 88.1 87.5 81.0

Sonar 75.9 76.5 75.9 60.9 59.8 60.5

Wisconsin 97.5 97.5 97.7 17.5 17.6 18.2

Letter 73.7 73.6 73.4 128.8 129.4 129.3

Abalone 58.5 58.5 58.5 41.3 40.9 37.6

Vehicle 59.4 59.1 59.2 44.1 42.6 42.6

Page 93.3 93.2 93.5 46.9 46.1 40.8

Average 79.5 79.4 79.2 36.0 35.8 34.9
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Fig. 7. Distribution of intervals with length less than 100 counted over all domains

We also investigated further what kind of intervals the splitting rules form.
The results are given in Figure 7. We see that the emp-ent indeed chooses
more short intervals than compress. On average, the number of intervals that
compress selects is slightly lower than for emp-ent. This is not surprising,
because emp-ent maximizes the likelihood of splitting with mdl stopping rule.
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7 Conclusions

We gave observations on the behavior of the empirical entropy and noted that
for small sample sizes its bias is significant. Then we suggested new methods
for choosing the best split point and we empirically evaluated them. A method
based on compression fared well in these tests, although the implications were
negligible when the splitting methods were applied in the nb classifier. One
reason for this behavior could be that the stopping rule and the split point
selection method interact in the recursive heuristic. Hence, one possible future
direction is to investigate these interactions further.
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Abstract. Since traffic jams are ubiquitous in the modern world, opti-
mizing the behavior of traffic lights for efficient traffic flow is a critically
important goal. Though most current traffic lights use simple heuristic
protocols, more efficient controllers can be discovered automatically via
multiagent reinforcement learning, where each agent controls a single
traffic light. However, in previous work on this approach, agents select
only locally optimal actions without coordinating their behavior. This
paper extends this approach to include explicit coordination between
neighboring traffic lights. Coordination is achieved using the max-plus
algorithm, which estimates the optimal joint action by sending locally
optimized messages among connected agents. This paper presents the
first application of max-plus to a large-scale problem and thus verifies
its efficacy in realistic settings. It also provides empirical evidence that
max-plus performs well on cyclic graphs, though it has been proven to
converge only for tree-structured graphs. Furthermore, it provides a new
understanding of the properties a traffic network must have for such coor-
dination to be beneficial and shows that max-plus outperforms previous
methods on networks that possess those properties.

Keywords: multiagent systems, reinforcement learning, coordination
graphs, max-plus, traffic control.

1 Introduction

Traffic jams are ubiquitous in the modern world and are getting worse, due to
rapidly increasing populations and vehicle usage rates. They commonly occur in
urban settings, where traffic lights are the most typical control mechanism. Ex-
isting road infrastructure is often strained to its limits and expansion is infeasible
due to spatial, environmental, and economic constraints. Therefore, optimizing
the behavior of traffic lights for efficient traffic flow is a critically important goal.

In practice, most traffic lights use very simple protocols that merely alternate
red and green lights for fixed intervals. The interval lengths may change dur-
ing peak hours but are not otherwise optimized. Since such controllers are far
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from optimal, several researchers have investigated the application of machine
learning to automatically discover more efficient controllers. The methods em-
ployed include fuzzy logic [5], neural networks [12] and evolutionary algorithms
[7]. These methods perform well but can only handle networks with a relatively
small number of controllers.

Since traffic control is fundamentally a problem of sequential decision making,
it is perhaps best suited to the framework of reinforcement learning, in which
an agent learns from trial and error via direct interaction with its environment.
Each action results in immediate rewards and new observations about the state
of the world. Over time, the agent learns a control policy that maximizes the
expected long-term reward it receives.

One way to apply reinforcement learning to traffic control is to train a single
agent to control the entire system, i.e. to determine how every traffic light in the
network is set at each timestep. However, such centralized controllers scale very
poorly, since the size of the agent’s action set is exponential in the number of
traffic lights.

An alternative approach is to view the problem as a multiagent system where
each agent controls a single traffic light [3,14]. Since each agent observes only its
local environment and selects only among actions related to one traffic light, this
approach can scale to large numbers of agents. The primary limitation is that
the individual agents do not coordinate their behavior. Consequently, agents
may select individual actions that are locally optimal but that together result in
global inefficiencies.

This paper extends the reinforcement learning approach to traffic control by
using cooperative learning and explicit coordination among agents. We make
the relaxing assumption that an agent is affected only by those agents with
a direct influence on its environment, i.e. its neighbors in the network. Under
this assumption, the global coordination problem may be decomposed into a set
of local coordination problems and can be solved with the use of coordination
graphs [9].

Since the system must perform under time constraints, an efficient method
for finding optimal joint actions in such graphs is required. For this reason we
apply max-plus [10], which estimates the optimal joint action by sending locally
optimized messages among connected agents. It also allows the agents to report
their current best action at any time (even if the action found so far may be
suboptimal).

This paper makes several contributions. First, it augments the existing frame-
work of reinforcement learning for traffic control by allowing scalable coordi-
nation of neighboring traffic lights. Second, it presents the first application of
max-plus to a large-scale problem and thus verifies its efficacy in realistic set-
tings. Third, it provides empirical evidence that max-plus performs well on cyclic
graphs, though it has been proven to converge only for tree-structured graphs.
Fourth, it provides a new understanding of the properties a traffic network must
have for such coordination to be beneficial and shows that max-plus outperforms
previous methods on networks that possess those properties.
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The remainder of this paper is organized as follows. Section 2 introduces
the traffic model used in our experiments. Section 3 describes the traffic control
problem as a reinforcement learning task. Section 4 describes coordination graphs
and the max-plus algorithm and Section 5 describes how max-plus is applied to
the traffic control problem. Section 6 presents experimental results and Section 7
discusses these results. Section 8 outlines directions for future work and Section
9 concludes.

2 Traffic Model

All experiments presented in this paper were conducted using The Green Light
District (GLD) traffic simulator1 [3,14]. GLD is a microscopic traffic model,
i.e. it simulates each vehicle individually, instead of simply modeling aggregate
properties of traffic flow. The dynamic variables of the model represent mi-
croscopic properties such as the position and velocity of each vehicle. Vehicles
move through the network according to their physical characteristics (e.g. length,
speed, etc.), fundamental rules of motion, and predefined rules of driver behav-
ior. GLD’s simulation is based on cellular automata, in which discrete, partially
connected cells can occupy various states. For example, a road cell can be occu-
pied by a vehicle or be empty. Local transition rules determine the dynamics of
the system and even simple rules can lead to a highly dynamic system.

The GLD infrastructure consists of roads and nodes. A road connects two
nodes, and can have several lanes in each direction. The length of each road
is expressed in cells. A node is either an intersection where traffic lights are
operational or an edge node. There are two types of agents that occupy such
an infrastructure: vehicles and traffic lights (or intersections). All agents act
autonomously and are updated every timestep. Vehicles enter the network at
edge nodes and each edge node has a certain probability of generating a vehicle
at each timestep. Each generated vehicle is assigned one of the other edge nodes
as a destination. The distribution of destinations for each edge node can be
adjusted.

There are several types of vehicles, defined by their speed, length, and number
of passengers. In this paper, all vehicles have equal length and an equal number
of passengers. The state of each vehicle is updated every timestep. It either
moves the distance determined by its speed and the state around it (e.g. vehicles
in front may limit how far it can travel) or remains in the same position (e.g.
the next position is occupied or a traffic light prevents its lane from moving).

When a vehicle crosses an intersection, its driving policy determines which
lane it goes to next. Once a lane is selected, the vehicle cannot switch to a differ-
ent lane. For each intersection, there are several light configurations that are safe.
At each timestep, the intersection must choose from among these configurations,
given the current state.

Figure 1 shows an example GLD intersection. It has four roads, each consisting
of four lanes (two in each direction). Vehicles occupy n cells of a lane, depending
1 Available at http://sourceforge.net/projects/stoplicht
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Fig. 1. An example GLD intersection

on their length. Traffic on a given lane can only travel in the directions allowed
on that lane. This determines the possible safe light configurations. For example,
the figure shows a lane where traffic is only allowed to travel straight or right.

The behavior of each vehicle depends on how it selects a path to its destination
node and how it adjusts its speed over time. In our experiments, the vehicles
always select the shortest path to their destination node. In previous work [3,14],
vehicles always traveled at constant speed and only a single vehicle could cross
an intersection at each timestep. We extend the simulator to allow more dynamic
behavior. Three speeds (2, 4, or 6 cells per timestep) are now possible. Vehicles
enter the network with a speed of 4 and at each timestep there is a 78% chance
the vehicle will keep its current speed when it is 4 and an 88% chance when it is
either 2 or 6. Furthermore, multiple vehicles from a single lane can now cross an
intersection during each timestep. The number depends on the vehicles’ speed
and on the state of the destination lanes.

3 Reinforcement Learning for Urban Traffic Control

Several techniques for learning traffic controllers with model-free reinforcement
learning methods like Sarsa [13] or Q-learning [1,11] have previously been de-
veloped. However, they all suffer from the same problem: they do not scale to
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large networks since the size of the state space grows rapidly. Hence, they are
either applied only to small networks or are used to train homogeneous con-
trollers (by training on a single isolated intersection and copying the result to
each intersection in the network).

A more tractable approach is to use model-based reinforcement learning, in
which the transition and reward functions are estimated from experience and
then used to find a policy via planning methods like dynamic programming [4].
A full transition function would have to map the location of every vehicle in the
system at one timestep to the location of every vehicle at the next timestep.
Doing so is clearly infeasible, but learning a model is nonetheless possible if a
vehicle-based representation [14] is used. In this approach, the global state is
decomposed into local states based on each individual vehicle. The transition
function maps one vehicle’s location at a given timestep to its location at the
next timestep. As a result, the number of states grows linearly in the number of
cells and can scale to much larger networks. Furthermore, the transition function
can generalize from experience gathered in different locations, rather than having
to learn separate mappings for each location.

To represent the model, we need only keep track of the number of times
each transition (s, a, s′) has occurred and each state-action pair (s, a) has been
reached. The transition model can then be estimated via the maximum likelihood
probability |(s,a,s′)|

|(s,a)| . Hence, each timestep produces new data which is used to
update the model. Every time the model changes, the value function computed
via dynamic programming must be updated too. However, rather than having to
update each state, we can update only the states most likely to be affected by the
new data, using an approach based on prioritized sweeping [2]. The remainder
of this section describes the process of learning the model in more detail.

Given a vehicle-based representation, the traffic control problem consists of
the following components:

– s ∈ S: the fully observable global state
– i ∈ I: an intersection controller
– a ∈ A: an action, which consists of setting to green a subset of the traffic

lights at the intersection; Ai ⊆ A is the subset of actions that are safe at
intersection i

– l ∈ L: a traffic lane; Li ⊆ L is the subset of incoming lanes for intersection i
– p ∈ P : a position; Pl ⊆ P is the subset of positions for lane l

The global transition model is P (s′|s, a) and the global state s decomposes
into a vector of local states, s = 〈spli

〉, with one for each position in the network.
The action-value function decomposes as:

Q(s, a) =
∑

i

Qi(si, ai) (1)

where
Qi(si, ai) =

∑
li

∑
pli

Qpli
(spli

, ai) (2)
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The vehicle-based update rule is then given by:

Qpli
(spli

, ai) :=
∑

s′
pli

∈S′

P (s′pli
|ai, spli

)[r(spli
, s′pli

) + γV (s′pli
)] (3)

where S′ are all possible states that can be reached from spli
given the current

traffic situation and the vehicle’s properties (e.g. its speed and length). Like
Wiering, we use a learning rate γ = 0.9. V (spli

) estimates the expected waiting
time at pli and is given by:

V (spli
) :=
∑
ai

P (ai|spli
)Q(spli

, ai) (4)

The transition model can be estimated using maximum likelihoods by counting
state transitions and corresponding actions. The update is given by:

P (s′pli
|spli

, ai) :=
C(spli

, ai, s
′
plij

)

C(spli
, ai)

(5)

where C(·) is a function that counts the number of times the event occurs. To
estimate V (spli

), we also need to estimate the probability that a certain action
will be taken given the state, which is done using the following update:

P (ai|spli
) :=

C(spli
, ai)

C(spli
)

(6)

The global reward function decomposes as:

r(s, s′) =
∑

i

∑
li

∑
pli

r(spli
, s′pli

) (7)

and

r(spli
, s′pli

) =
{

0 spli
�= s′pli

−1 otherwise
(8)

Given the current model, the optimal value function is estimated using dy-
namic programming with a fixed number of iterations. Wiering [14] performs
only one iteration per timestep and uses ε-greedy exploration to ensure the es-
timated model obtains sufficiently diverse data.

Bakker et al. [3] extend Wiering’s approach by including congestion informa-
tion in the state representation. The value function Qpli

(spli
, ai) is extended to

Qpli
(spli

, cdest, ai) where cdest ∈ {0, 1} is a single bit indicating the congestion
level at the next lane for the vehicle currently at pli . If the congestion at the
next lane exceeds some threshold then cdest = 1 and otherwise it is set to 0.
This extension allows the agents to learn different state transition probabilities
and value functions when the outbound lanes are congested. This method has
been shown to outperform Wiering’s approach on a saturated network. The cost
of including such congestion information is a larger state space and potentially
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slower learning. It also requires the vehicles to communicate with the controllers,
since the latter need to know the destination lanes of each vehicle.

4 Coordination Graphs

The primary limitation of the approaches developed by Wiering and Bakker et
al. is that the individual agents do not coordinate their behavior. Consequently,
agents may select individual actions that are locally optimal but that together
result in global inefficiencies. Coordinating actions can be difficult since the size
of the joint action space is exponential in the number of agents. However, in
many cases, the best action for a given agent may depend on only a small subset
of the other agents. If so, the global reward function can be decomposed into
local functions involving only subsets of agents. The optimal joint action can
then be estimated by finding the joint action that maximizes the sum of the
local rewards.

A coordination graph [9], which can be used to describe the dependencies
between agents, is an undirected graph G = (V,E) in which each node i ∈ V
represents an agent and each edge e(i, j) ∈ E between agents i and j indicates a
dependency between them. The global coordination problem is then decomposed
into a set of local coordination problems, each involving a subset of the agents.
Since any arbitrary graph can be converted to one with only pairwise dependen-
cies [16], the global action-value function can be decomposed into pairwise value
functions given by:

Q(s, a) =
∑

i,j∈E

Qij(s, ai, aj) (9)

where ai and aj are the corresponding actions of agents i and j, respectively.
Using such a decomposition, the variable elimination [9] algorithm can compute
the optimal joint action by iteratively eliminating agents and creating new con-
ditional functions that compute the maximal value the agent can achieve given
the actions of the other agents on which it depends. Although this algorithm
always finds the optimal joint action, it is computationally expensive, as the ex-
ecution time is exponential in the induced width of the graph [15]. Furthermore,
the actions are known only when the entire computation completes, which can
be a problem for systems that must perform under time constraints. In such
cases, it is desirable to have an anytime algorithm that improves its solution
gradually.

One such algorithm is max-plus [8,10], which approximates the optimal joint ac-
tion by iteratively sending locally optimized messages between connected nodes
in the graph. While in state s, a message from agent i to neighboring agent j de-
scribes a local reward function for agent j and is defined by:

μij(aj) = max
ai

{Qij(s, ai, aj) +
∑

k∈Γ (i)\j

μki(ai)} + cij (10)

where Γ (i)\j denotes all neighbors of i except for j and cij is either zero or can be
used to normalize the messages. The message approximates the maximum value
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agent i can achieve for each action of agent j based on the function defined
between them and incoming messages to agent i from other connected agents
(except j). Once the algorithm converges or time runs out, each agent i can
select the action

a∗i = arg max
ai

∑
j∈Γ (i)

μji(ai) (11)

Max-plus has been proven to converge to the optimal action in finite iterations,
but only for tree-structured graphs, not those with cycles. Nevertheless, the
algorithm has been successfully applied to such graphs [6,10,16].

5 Max-Plus for Urban Traffic Control

Max-plus enables agents to coordinate their actions and learn cooperatively.
Doing so can increase robustness, as the system can become unstable and in-
consistent when agents do not coordinate. By exploiting coordination graphs,
max-plus minimizes the expense of computing joint actions and allows them to
be approximated within time constraints.

In this paper, we combine max-plus with Wiering’s model-based approach to
traffic control. We use the vehicle-based representation defined in Section 3 but
add dependence relationships between certain agents. If i, j ∈ J are two inter-
sections connected by a road, then they become neighbors in the coordination
graph, i.e. i ∈ Γ (j) and j ∈ Γ (i). The local value functions are:

Qi(si, ai, aj) =
∑
li

∑
pli

Qpli
(spli

, ai, aj) (12)

Using the above, we can define the pairwise value functions used by max-plus:

Qij(s, ai, aj) =
∑
pli

Opli
Qpli

(spli
, ai, aj) +

∑
plj

Oplj
Qplj

(splj
, aj , ai) (13)

where Opli
is a binary operator which indicates occupancy at pli :

Opli
=
{

0 pli not occupied
1 otherwise (14)

These local functions are plugged directly into Equation 10 to implement
max-plus. Note that the functions are symmetric such that Qij(s, ai, aj) =
Qji(s, aj , ai). Thus, using Equation 13, the joint action can be estimated di-
rectly by the max-plus algorithm. Like Wiering, we use one iteration of dynamic
programming per timestep and ε-greedy exploration. We also limit max-plus to
3 iterations per timestep.

Note that there are two levels of value propagation among agents. On the lower
level, the vehicle-based representation enables estimated values to be propagated
between neighboring agents and eventually through the entire network, as in
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Wiering’s approach. On the higher level, agents use max-plus when computing
joint actions to inform their neighbors of the best value they can achieve, given
the current state and the values received from other agents.

Using this approach, agents can learn cooperative behavior, since they share
value functions with their neighbors. Furthermore, they can do so efficiently,
since the number of value functions is linear in the induced width of the graph.
Stronger dependence relationships could also be modeled, i.e. between intersec-
tions not directly connected by a road, but we make the simplifying assumption
that it is sufficient to model the dependencies between immediate neighbors in
the traffic network.

6 Results

In this section, we compare the novel approach described in Section 5 to the
TC-1 (Traffic Controller 1) developed by Wiering [14] and the TC-SBC (Traffic
Controller with State Bit for Congestion) extension of Bakker et al. [3]. Wiering
compared TC-1 to two heuristic strategies, one that always sets the lights at
each intersection to maximize throughput and another that always gives right-
of-way to the longest queue. These heuristics perform well in light traffic but
TC-1 substantially outperforms them in heavy traffic. Therefore, we focus our
experiments on comparisons between the novel method, TC-1, and TC-SBC in
highly saturated conditions.

These experiments are designed to test the hypothesis that, under highly sat-
urated conditions, coordination is beneficial when the amount of local traffic
is small. Local traffic consists of vehicles that cross a single intersection and
then exit the network, thereby interacting with just one learning agent. If this
hypothesis is correct, coordinated learning with max-plus should substantially
outperform TC-1 and TC-SBC when most vehicles pass through multiple inter-
sections.

In particular, we consider three different scenarios. In the baseline scenario,
the traffic network includes routes, i.e. paths from one edge node to another,
that cross only a single intersection. Since each vehicle’s destination is chosen
from a uniform distribution, there is a substantial amount of local traffic. In the
nonuniform destinations scenario, the same network is used but destinations are
selected to ensure that each vehicle crosses two or more intersections, thereby
eliminating local traffic. To ensure that any performance differences we observe
are due to the absence of local traffic and not just to a lack of uniform desti-
nations, we also consider the long routes scenario. In this case, destinations are
selected uniformly but the network is altered such that all routes contain at least
two intersections, again eliminating local traffic.

While a small amount of local traffic will occur in real-world scenarios, the
vast majority is likely to be non-local. Thus, the baseline scenario is used, not
for its realism, but to help isolate the effect of local traffic on each method’s
performance. The nonuniform destinations and long routes scenarios are more
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challenging and realistic, as they require the methods to cope with an abundance
of non-local traffic.

We present initial proof-of-concept results in small networks and then study
the same three scenarios in larger networks to show that the max-plus approach
scales well and that the qualitative differences between the methods are the same
in more realistic scenarios.

For each case, we consider three different metrics: 1) average trip waiting time
(ATWT): the total waiting time of all vehicles that have reached their destination
divided by the number of such vehicles, 2) ratio of stopped vehicles (RSV): the
fraction of all vehicles in the network that do not move in a given timestep, and
3) total queue length (TQL): the number of vehicles that have been generated
but are still waiting to enter the network because the outbound lane of their
edge node is full.

Due to lack of space, we present graphs only for ATWT. In most cases, ATWT
is sufficient to determine the methods’ relative performance, i.e. lower ATWT
implies lower RSV and TQL. Therefore, we mention the RSV and TQL results
only when they are qualitatively different from ATWT. All results are averaged
over 10 independent runs.

6.1 Small Networks

Fig. 2. The small network used in the baseline
and nonuniform destinations scenarios

Figure 2 shows the small net-
work used for the baseline and
nonuniform destinations scenar-
ios. Each intersection allows
traffic to cross from only one di-
rection at a time. All lanes have
equal length and all edge nodes
have equal spawning rates (ve-
hicles are generated with prob-
ability 0.2 per timestep). The
left side of Figure 3 shows re-
sults from the baseline scenario,
which have uniform destina-
tions. As a result, much of the
traffic is local and hence there is
no significant performance dif-
ference between TC-1 and max-
plus. TC-SBC performs worse
than the other methods, which
is likely due to slower learn-
ing as a result of a larger state
space.

The right side of Figure 3 shows results from the nonuniform destinations sce-
nario. In this case, all traffic from intersections 1 and 3 is directed to intersection
2. Traffic from the top edge node of intersection 2 is directed to intersection 1 and
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Fig. 3. Average ATWT per timestep for each method in the small network for the
baseline (left) and nonuniform destinations (right) scenarios

traffic from the left edge node is directed to intersection 3. Consequently, there
is no local traffic. This results in a dramatic performance difference between
max-plus and the other two methods.

This result is not surprising since the lack of uniform destinations creates a
clear incentive for the intersections to coordinate their actions. For example, the
lane from intersection 1 to 2 is likely to become saturated, as all traffic from edge
nodes connected to intersection 1 must travel through it. When such saturation
occurs, it is important for the two intersections to coordinate, since allowing
incoming traffic to cross intersection 1 is pointless unless intersection 2 allows
that same traffic to cross in a “green wave”.

Fig. 4. The small network used in the long routes scenario

To ensure that the performance difference between the baseline and nonuni-
form destinations scenarios is due to the removal of local traffic and not some
other effect of nonuniform destinations, we also consider the long routes scenario.
Destinations are kept uniform, but the network structure is altered such that all
routes involve at least two intersections. Figure 4 shows the new network, which
has a fourth intersection that makes local traffic impossible. Figure 5 shows the
results from this scenario.
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Fig. 5. Average ATWT per timestep in the
small network for the long routes scenario

As before, max-plus substantially
outperforms the other two methods,
suggesting its advantage is due to the
absence of local traffic rather than
other factors. TC-1 achieves a lower
ATWT than TC-SBC but actually
performs much worse. In fact, TC-1’s
joint actions are so poor that the out-
bound lanes of some edge nodes be-
come full and its TQL skyrockets. As
a result, the ATWT is not updated,
leading to an artificially low score. At
the end of each run, TC-1 had an av-
erage of TQL of 9259.7 while TC-SBC
had only 3966.9 and max-plus had 0.0.
The low quality of TC-1’s joint actions becomes clear when comparing the RSV:
0.92 for TC-1, 0.55 for TC-SBC, and 0.09 for max-plus.

6.2 Large Networks

We also consider the same three scenarios in larger networks to show that the
max-plus approach scales well and that the qualitative differences between the
methods are the same in more realistic scenarios. Figure 6 shows the network
used for the baseline and nonuniform destinations scenarios. It includes 15 agents
and roads with four lanes. The left side of Figure 7 shows results from the baseline
scenario, which has uniform destinations. As with the smaller network, max-plus
and TC-1 perform very similarly in this scenario, though max-plus’s coordination
results in slightly slower learning. However, TC-SBC no longer performs worse
than the other two methods, probably because the network is now large enough
to incur substantial congestion. TC-SBC, thanks to its congestion bit, can cope
with this occurrence better than TC-1.

The right side of Figure 7 shows results from the nonuniform destinations
scenario. In this case, traffic from the top edge nodes travel only to the bottom
edge nodes and vice versa. Similarly, traffic from the left edge nodes travel only
to right edge nodes and vice versa. As a result, all local traffic is eliminated and
max-plus performs much better than TC-1 and TC-SBC. TC-SBC performs
substantially better than TC-1, as the value of its congestion bit is even greater
in this scenario.

To implement the long routes scenario, we remove one edge node from the
two intersections that have two edge nodes (the top and bottom right nodes in
Figure 6). Traffic destinations are uniformly distributed but the new network
structure ensures that no local traffic occurs. The results of the long routes
scenario are shown in Figure 8. As before, max-plus substantially outperforms
the other two methods, confirming that its advantage is due to the absence of
local traffic rather than other factors.
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Fig. 6. The large network used in the baseline and nonuniform destinations scenarios
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Fig. 7. Average ATWT per timestep for each method in the large network for the
baseline (left) and nonuniform destinations (right) scenarios
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7 Discussion
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Fig. 8. Average ATWT per timestep for
each method in the long routes scenario

The experiments presented above
demonstrate a strong correlation be-
tween the amount of local traffic and
the value of coordinated learning. The
max-plus method consistently outper-
forms both non-coordinated methods
in each scenario where local traffic has
been eliminated. Hence, these results
help explain under what circumstances
coordinated methods can be expected
to perform better. More specifically,
they confirm the hypothesis that, un-
der highly saturated conditions, coor-
dination is beneficial when the amount
of local traffic is small.

Even when there is substantial local
traffic, the max-plus method achieves the same performance as the alternatives,
though it learns more slowly. Hence, this method appears to be substantially
more robust, as it can perform well in a much broader range of scenarios.

By testing both small and large networks, the results also demonstrate that
max-plus is practical in realistic settings. While max-plus has succeeded in small
applications before [10], this paper presents its first application to a large-scale
problem. In fact, in the scenarios without local traffic, the performance gap
between max-plus and the other methods was consistently larger in the big
networks than the small ones. In other words, as the number of agents in the
system grows, the need for coordination increases. This property makes the max-
plus approach particularly attractive for solving large problems with complex
networks and numerous agents.

Finally, these results also provide additional confirmation that max-plus can
perform well on cyclic graphs. The algorithm has been shown to converge only for
tree-structured graphs, though empirical evidence suggests it also excels on small
cyclic graphs [10]. The results presented in this paper show that this performance
also occurs in larger graphs, even if they are not tree-structured.

8 Future Work

There are several ways in which the work presented this paper could be extended
or improved. First, the algorithm could be augmented to automatically discover
the best coordination graph for the problem. We currently use fixed coordina-
tion graphs with dependencies only between intersections connected by a road.
In some cases, other coordination graphs could lead to better performance. Opti-
mization methods such as genetic algorithms could potentially be used to search
for the best coordination graph for a given problem.
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Second, max-plus could be implemented in a distributed fashion. The current
implementation is centralized and uses iterations. In each iteration, an agent
sends messages to its neighbors in a predefined order. The same functionality
could be achieved with a distributed implementation where each agent sends an
updated message as soon as it receives a new message from a neighbor. Since
messages would be sent in parallel, computational savings would occur. However,
such an implementation would require the development of protocols and other
functionality not presently supported by the simulator.

Third, vehicle route selection could be adapted on-line, i.e. traffic controllers
and vehicles could coordinate their behavior based on real-time traffic conditions.
This functionality could avoid bottlenecks by distributing traffic more wisely over
the network. Such an approachmay be difficult to implement in practice since it re-
quires vehicles to cooperate and communicatewith the traffic controllers. However,
previous work [14] has generated promising initial results for such an approach.

Fourth, several simplifying assumptions could be removed from the simulator.
The environment is currently fully observable and stationary. Communication
costs are not modeled. Many real-world factors such as weather, pedestrian be-
havior, vehicle accidents, illegal parking, etc. are not considered. Overall, the
current simulation does exhibit most of the crucial characteristics that make ur-
ban traffic control difficult. Nonetheless, future work should focus on construct-
ing even more realistic environments and developing the algorithmic extensions
necessary to tackle them.

9 Conclusions

This paper presents a novel method for learning efficient urban traffic controllers.
Previouswork used multiagent reinforcement learning but the agents selected only
locally optimal actions without coordinating their behavior. This paper extends
this approach to include explicit coordination between neighboring traffic lights.
Coordination is achieved using the max-plus algorithm, which estimates the opti-
mal joint action by sending locally optimized messages among connected agents.
This paper presents the first application of max-plus to a large-scale problem and
thus verifies its efficacy in realistic settings. Empirical results on both large and
small traffic networks demonstrate that max-plus performs well on cyclic graphs,
though it has been proven to converge only for tree-structured graphs. Further-
more, the results provide a new understanding of the properties a traffic network
must have for such coordination to be beneficial and show that max-plus outper-
forms previous methods on networks that possess those properties.
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Abstract. Data streams are ubiquitous. Examples range from sensor networks 
to financial transactions and website logs. In fact, even market basket data can 
be seen as a stream of sales. Detecting changes in the distribution a stream is 
sampled from is one of the most challenging problems in stream mining, as 
only limited storage can be used. In this paper we analyse this problem for 
streams of transaction data from an MDL perspective. Based on this analysis we 
introduce the STREAMKRIMP algorithm, which uses the KRIMP algorithm to 
characterise probability distributions with code tables. With these code tables, 
STREAMKRIMP partitions the stream into a sequence of substreams. Each switch 
of code table indicates a change in the underlying distribution. Experiments on 
both real and artificial streams show that STREAMKRIMP detects the changes 
while using only a very limited amount of data storage. 

1   Introduction 

Data streams are rapidly becoming a dominant data type or data source. Common ex-
amples of streams are sensor data, financial transactions, network traffic and website 
logs. Actually, it would also be appropriate to regard supermarket basket data as a 
stream, as this is often a – seemingly never-ending – flow of transactions. 

Detecting change in streams has traditionally attracted a lot of attention 
[1,7,10,13], both because it has many possible applications and because it is a hard 
problem. In the financial world, for example, quick reactions to changes in the market 
are paramount. Supermarkets and on-line stores have to respond quickly to changing 
interests of their customers. As a final example, web hosts have to respond to changes 
in the way users use their websites. 

The unbounded growth of a stream causes the biggest challenges in stream mining: 
after all, only limited storage and computational capacity is available. To address this, 
many existing algorithms use a sliding window [1,7,10]. The problem with this ap-
proach is that often a fixed window size has to be set in advance, which strongly in-
fluences the results. Some algorithms avoid this by using an adaptive window size 
[16]. Many current methods focus on single-dimensional item streams or multi-
dimensional real-valued streams [1,2,10,11,13]. 

In this paper, we address the problem of detecting change in what we call data 
streams, that is, streams of transactions. A change in such a stream of transactions is a 
change in the distribution the transactions are sampled from.  So, given a data stream, 
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we would like to identify, on-line, a series of consecutive substreams that have differ-
ent sampling distributions. 

Our approach to the problem is based on the MDL principle. We define pattern 
based models, called code tables, that compress the data stream. These code tables 
characterise the sampling distributions and allow the detection of shifts between such 
distributions. If we would have unbounded data storage, the MDL-optimal partition-
ing of the data stream would be that one that minimises the total compressed length. 
However, unbounded storage is clearly not realistic and we will have to resort to a so-
lution that is at best locally optimal. 

With bounded storage, the best approach is to first identify distribution P1 at the 
beginning of the stream and then look for a shift to distribution P2. When P2 has been 
identified, we look for the next shift, etc. We give MDL-based solutions for both of 
these sub-problems.  

We turn this MDL-based analysis of the problem into algorithms using our earlier 
KRIMP algorithm [12]. It induces code tables that characterise data distributions in de-
tail [14,15]. Here, we use the code tables given by this algorithm as foundation for the 
change detection algorithm STREAMKRIMP, which characterises streams on-the-fly. 

We empirically test STREAMKRIMP on a variety of data streams. Results on two 
types of artificial streams show that changes in distribution are detected at the right 
moment. Furthermore, the experiment on a real stream shows that large data streams 
pose no problem and changes are accurately spotted while noise is neglected. 

2   The Problem Assuming Unbounded Storage 

2.1   Preliminaries 

We assume that our data consists of a stream of transactions over a fixed set of items 
. That is, each transaction is simply a subset of  and a stream S is an unbounded 

ordered sequence of transactions, i.e.,  in which . The individual 
transactions in a stream are identified by an integer; without loss of generality we as-
sume that this index is consecutive. 

A finite stream T is a substream of S if T consists of consecutive elements of S. In 
particular S(i, j) is the substream that starts at the i-th element and stops at the j-th. 

2.2   The Problem in Distribution Terms 

We assume that S consists of a, possibly infinite, set of consecutive non-overlapping 
subsequences  such that 

-  is drawn i.i.d. from distribution  on . 
-  

So, informally, the problem is: 
 

Given such a sequence S, identify the subsequences Si. 
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The, somewhat loosely formulated, assumption underlying this problem is that the  
are big enough to identify. If the source of the stream would change the sample distri-
bution at every transaction it emits, identification would be impossible. 

2.3   From Distributions to MDL 

The two main ingredients of the problem are, of course: 

1. How do we identify the distributions ? 
2. How do we recognise the shift from  to ? 

 

If both these problems are solved, the identification of the  is trivial. 
If the  would belong to some well-known family of distributions, the first prob-

lem would be solvable by parameter estimation. Unfortunately, this is not a reason-
able assumption. 

Rather than trying to estimate the underlying distributions directly, we resort, 
again, to the Minimum Description Length principle (MDL) [9]. The MDL principle 
can be paraphrased as: Induction by Compression. Slightly more formal, this can be 
described as follows. 

Given a set of models , the best model  is the one that minimises 

 

in which 
-  is the length, in bits, of the description of , and 
-  is the length, in bits, of the description of the data when encoded with . 

 
In our earlier research on MDL for item set data we have shown that MDL captures 
the underlying distribution very well indeed [12,14]. In this paper, we employ MDL 
both to identify the  and to identify the shifts from  to . 

Streams of transactions are subtly different from transaction databases. The most 
important difference is that streams are unbounded. This means, e.g., that some care 
has to be taken to define the support of an item set in a stream.  

2.4   Item Sets in Streams 

An item set I is, as usual, a set of items. That is, I . An item set I occurs in a 
transaction si in stream S, iff . While streams may be infinite, at any point in 
time we will only have seen a finite substream. In other words, we only have to con-
sider the support of item sets on finite streams. The support of an item set I on a finite 
stream S is defined as usual: the number of transactions in S in which I occurs. 

2.5   Coding Finite Data Streams 

As in our previous work, we use code tables to compress data streams. Such a code 
table is defined as follows. 
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Definition 1. Let  be a set of items and  a set of code words. A code table CT for  
and  is a two column table such that: 

1. The first column contains item sets over , this column contains at least all sin-
gleton item sets and is ordered descending on item set 1) length and 2) support. 

2. The second column contains elements from , such that each element of   
occurs at most once. 

An item set  occurs in CT, denoted by , iff I occurs in the first col-
umn of CT, similarly for a code . For ,  denotes its code, i.e., 
the corresponding element in the second column.  

To encode a finite data stream S 
over  with code table CT, we 
use the COVER algorithm from 
[12] given in Algorithm 1. Its pa-
rameters are a code table CT and 
a transaction s, the result is a set 
of elements of CT that cover s. 
COVER is a well-defined function 
on any code table and any trans-
action s, since CT contains at 
least the singletons. 

To encode finite stream S, we simply replace each transaction  by the codes 
of the item sets in its cover. Note, to ensure that we can decode an encoded stream 
uniquely, we assume that  is a prefix code. 

Since MDL is concerned with the best compression, the codes in CT should be 
chosen such that the most often used code has the shortest length. That is, we should 
use an optimal prefix code, i.e., the Shannon code. To define this for our code tables, 
we need to know how often a code is used. We define the frequency of an item set I in 
CT as the number of transactions in S in which I occurs in its cover. Normalised, this 
frequency represents the probability that that code is used in the encoding of an arbi-
trary : 

 
The optimal code length is then  of this probability and the coding table is op-

timal if all its codes have their optimal length. That is, a code is optimal for S iff 

 

CT is code-optimal for S if all its codes  are optimal for S. From now on, 
we assume that code tables are code-optimal, unless we state differently. 

For any finite data stream S and any (code-optimal) code table CT, we can now 
compute L(S | CT). The encoded size of a transaction s, denoted , is simply the 
sum of the sizes of the codes of the item sets in its cover:  

 

 

ALGORITHM 1. COVER 

1
2
3
4
5
6

COVER(CT, s) 
T := first element c œ CT for which c Œ s 
if s \ T = « 

then Res := {T} 
else Res:= {T} » COVER(CT, s \ T) 

return Res 
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The size of a data stream S, denoted , is simply the sum of the sizes of its 
transactions: 

 
 
The remaining problem is, what is the size of a code table? For the second column 
this is clear as we know the size of each of the codes, but what about the first column? 
For this, we use the simplest code table, i.e, the code table that contains only the  
singleton elements. This code table, with optimal code lengths for a finite data stream 
S, is called the standard code table for S, denoted by ST. With this choice, the size of 
CT, denoted by , is given by: 

 

With these results, we know the total size of our encoded data stream. It is simply the 
sum of the size of the encoded data stream plus the size of the code table. That is, we 
have the following theorem. 

Theorem 1. Let S be a finite data stream over  and let CT be a code table that is 
code-optimal for S. The total size of the encoded data stream, denoted by , 
is given by: 

 

Clearly, two different code tables will yield a different encoded size, an optimal code 
table is one that minimises the total size. 

Definition 2. Let S be a finite data stream over  and let  be the set of code tables 
that are code-optimal for S.  is called optimal if 

 
The total size of the stream S encoded with an optimal code table  is called its 
optimal size and is denoted by : 

 

2.6   The Problem in MDL Terms 

Now that we know how to code finite data streams, we can formulise our problem in 
MDL terminology: 
 

Let S be a finite data stream, partition S into consecutive substreams 
, such that 
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3   The Problem Assuming Bounded Storage 

3.1   The Problem of Streams 

Let S, T and U be finite data streams, such that U is the concatenation of S and T. 
There is no guarantee that the optimal partition of U coincides with the optimal parti-
tion of S on the S-part of U. This observation points out two disadvantages of the 
problem as stated above. 

1. It assumes knowledge of the complete stream; this is a flagrant contradiction to 
the main idea of data streams: they are too big to store. 

2. It disregards the dynamic nature of data streams. Changes in the underlying dis-
tribution can only be detected after the whole stream has been observed. 
Clearly, such a posteriori results are not that useful. 

In other words, we will have to settle for a partitioning that is at best locally optimal. 

3.2   Too Large to Store: One Distribution 

If the stream S is sampled i.i.d. from one distribution only, the estimates of  
P(I | S(1,n)) get closer and closer to their true value. That is, we have the following 
lemma. 

Lemma 3. Let data stream S be drawn i.i.d from distribution Q on , then 

  
 

This well-known statistical result has an interesting result for code tables: code tables 
converge! To make this more precise, denote by CTn an optimal code table on Sn. 
Moreover, let CT(S(1, j)) be a shorthand for LCT(S(1,j)). 

Theorem 2. Let data stream S be drawn i.i.d from distribution Q on , then 

  

Proof. Let FCT be a code table in which only the left-hand column is specified. 
Lemma 3 implies that 

  

In other words, the optimal codes we assign to the item sets in FCT become the same 
in the limit. But this implies that an optimal code table on S(1, n + k) is, in the limit, 
also an optimal code table on S(1, n).                                                                            Ñ 
 
That is, if our stream comes from one distribution only, we do not need to store the 
complete stream to induce the optimal code table. A large enough sample suffices. 
Denote by CTapp(S) the optimal code table induced from a large enough “head” of the 
stream, i.e., after convergence has set in. This head of the stream is denoted by H(S). 

Note that, Theorem 2 also suggests a way to check that the sample is large enough. 
If for some reasonable sized k, 
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gets small, we may conclude convergence. Small is, of course, a relative notion: if 
L(S(1, n), CTn) is millions of bits, a difference of a few thousand bits can already be 
considered as small. Hence, it is better to look at a weighted version; which is our im-
provement rate, defined as follows.  

Definition 3. With the notations from above, the Improvement Rate IR is given by: 

  

 
When IR becomes small in an absolute sense, we may conclude convergence. We re-
turn to this observation later. 

3.3   Too Large to Store: Detecting Change 

So, for a data stream that comes from one distribution, the problem is easy. The opti-
mal code table can be computed from a large enough head of the stream. After this 
code table has been computed, no further data storage is necessary anymore. The 
problem is, however, that after a while the distribution changes. How can we detect 
that?  

Let the, finite, stream S = S1S2 such that Si is sampled from distribution Pi. More-
over, let CTi denote the optimal code table on Si. To detect the change in distribution, 
we need that: 

  
 
This equation translates to: 
 

   
 
Note that L(S, CT) translates to the sum of the two heads encoded with  be-
cause  has converged. That is, if there is no change in the underlying distribu-
tion,  is still the correct code table. The second summand has the bar |, since we 
count L( ) only once.  

Because S may be too big to store, we store H(S). To weigh both code tables 
equally, we approximate the inequality as follows in the definition of a split. 

Definition 4. Let the, finite, stream S = S1S2 such that Si is sampled from distribution 
Pi. Moreover, let  denote the approximated optimal code table for Si. The pair 
(S1, S2) is called a split of S if: 

  

A split is called minimal if there is no other split (T1, T2) of S such that T1 is a sub-
stream of S1. 

 
Note that this definition implies that we do not have to store H(S1) to detect a change 
in the underlying definition.  provides sufficient information. 
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3.4   The Problem for Data Streams with Bounded Storage 

We can now formalise our problem for data streams with bounded storage. 
 
Let S be a data stream, partition S into consecutive substreams 

, such that 

 

4   The Algorithm 

4.1   KRIMP Preliminaries 

In [12] we proposed a heuristic algorithm – later called KRIMP – to approximate the 
optimal code table from a database. For this, it needs a database and a set of candidate 
item sets. As candidates, all or closed frequent item sets up to a given minsup are 
used. The candidate set is ordered descending on support, item set length and lexico-
graphically. The algorithm starts with the standard code table ST. The code table is 
ordered descending on length and support. One by one, each pattern in the candidate 
set is added to the code table to see if it helps to improve database compression. If it 
does, it is kept in the code table, otherwise it is removed. After this decision, the next 
candidate is tested. Pruning is applied in all experiments reported in this paper, mean-
ing that each time an item set is kept in the code table, all other elements are tested to 
see whether they still contribute to compression. Elements that don’t are permanently 
removed. See [12] for further details.  

Furthermore, in [15] we introduced a method that can be used to generate data-
bases from a KRIMP code table. All statistics showed that the generated databases are 
very similar to the original databases from which the code tables were induced. We 
will use this method to generate synthetic streams in the experiment section. 

4.3   Finding the Right Code Table on a Stream 

We can now translate the formal scheme presented in Subsection 3.2 to a practical 
implementation: assume that the stream S is sampled i.i.d. from one distribution only 
and find  using KRIMP. 

The general idea of the algorithm presented in Algorithm 2 is simple: run KRIMP 
on the growing head of a stream S until the resulting code tables converge. As we 
know that individual transactions don’t make a large difference, we work with blocks 
of blockSize transactions. Start with one block and obtain a code table. For each block 
added to the head, a new code table is induced and the Improvement Rate is com-
puted. Whenever the IR drops below maxIR, the code table is good enough and  
returned.  

The other parameters are an offset that makes it possible to start anywhere within 
the stream and the minsup used for mining KRIMP candidates. 
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Moreover, a Laplace correction is applied to each code table returned by KRIMP; 
this to ensure that each code table can encode each possible transaction. 

4.4   Detecting Change in a Stream 

Given a code table induced on the head of a data stream, we would now like to detect 
change in the sampling distribution of the rest of the stream. More formally, we 
would like to detect the minimal split given . 

The minimal split can be found by inducing code tables on consecutive heads of 
the stream until a split is encountered. We would rather avoid building a code table 
for each and every consecutive head, but luckily we can speed things up in two differ-
ent ways. First of all, change does not come in a single transaction, so again we iterate 
over blocks instead. Secondly, we can skip each block that obviously belongs to 

.  
For this second optimisation, we apply a statistical test that tests whether the en-

coded size of the current block deviates from the expected size. If it does not, discard 
it and skip to the next block. Before discarding the head of a converged code table, 
this data is used to randomly sample encoded block sizes from. Both the lower and 
upper leaveOut percent samples are removed. If the encoded size of a new block falls 
within the range of the remaining samples, the block is considered to belong to the 
distribution of  and skipped. 

For each block that is not skipped, we have to test whether it marks a split or not. 
For this, we have to induce a code table . To be able to reject a code table that 
is only just better than the previous one, we introduce the Code Table Difference: 

Definition 5. Given a code table  and a code table  induced on H(S2), 
the Code Table Difference CTD is given by: 

  

 
Normalised the same way as the Improvement Rate, the CTD tells us how many per-
cent  compresses the new head better than . We can now define a mini-
mum CTD in the overall algorithm, which is presented next. 
 

ALGORITHM 2. FINDCODETABLEONSTREAM 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

FINDCODETABLEONSTREAM(S, offset, blockSize,  minsup, maxIR) 
numTransactions = blockSize 
CT = KRIMP(S(offset, offset+numTransactions), minsup) 
ir = Infinite 
while ir > maxIR 

numTransactions += blockSize 
newCT = KRIMP(S(offset, offset+numTransactions), minsup) 
ir = ComputeIR(CT, newCT) 
CT = newCT 

return CT 
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ALGORITHM 3: STREAMKRIMP

1
2
3
4
5
6
7
8
9

10
11
12
13
14

STREAMKRIMP(S, minsup, blockSize, maxIR, leaveOut, minCTD)
i = 1
CTi = FINDCODETABLEONSTREAM(S, 0, blockSize, minsup, maxIR)
pos =  CTi.endPos
while pos < sizeof(S)

pos = SkipBlocks(S, CTi , pos, blockSize, leaveOut)
candCT = FINDCODETABLEONSTREAM(S, pos, blockSize,  minsup, maxIR)
if ComputeCTD(S, CTi, candCT) >= minCTD

i++
CTi = candCT
pos = candCT.endPos

else 
pos += blockSize

return CT
 

4.5   STREAMKRIMP 

Putting together the algorithms of the previous subsections, we are able to partition a 
stream into consecutive substreams with minimal splits. The complete algorithm is 
shown in Algorithm 3. 

It starts with finding the code table on the head of the stream (line 3) and then iter-
ates over the rest of the stream. Each iteration starts with skipping as many blocks as 
possible (6). When a block cannot be skipped straightaway, it is used as starting posi-
tion for a new candidate code table (7). The Code Table Difference of this candidate 
to the current code table is computed (8) and the code table is either accepted (9-11) 
or rejected (13). When finished, the complete set of code tables is returned (14). Natu-
rally, these could be inspected and used while the algorithm is still running as well. 

4.6   How Large is Zero? 

Or: How should we set our parameters? We will here motivate the default values we 
suggest for the algorithm, which we will use throughout the rest of the paper. 

minsup – Lower minsup levels result in more candidate patterns and therefore bet-
ter compression and better quality code tables. Sensitivity of the change detection 
scheme is influenced through this parameter: lower values result in a higher sensitiv-
ity. To avoid overfitting on very small data segments, we use a minsup of 20 in the 
experiments presented in this paper. 

blockSize – The resolution at which STREAMKRIMP works should always be high 
enough. This will be the case if we choose the size of a block such that, on average, 
every possible item occurs once in every block. Therefore, we choose blockSize to be 
equal to | |. 

leaveOut – Set to 0.01: both the lower 1% and the upper 1% of the randomly sam-
pled blocksizes are discarded by SkipBlocks.  

maxIR – Set to 0.02: if a new code table compresses less than 2% better than its 
predecessor, we decide it has converged. 
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minCTD – Set to 0.10: a new code table is accepted only if it compresses at least 
10% better than the previous code table. 

The choices for maxIR and minCTD may seem arbitrary, but this is not the case. 
They are actually comparable to the dissimilarity values we reported before [15]. Dis-
similarity values between random samples from a single dataset range from 0.045 to 
0.177 on UCI datasets (also reported on in the next section). Therefore, 0.02 and 0.10 
are very conservative and may be considered zero for all practical purposes: with 
these thresholds, code tables converge and significant changes are detected. 

5   Experiments 

5.1   Artificial Streams – UCI Datasets 

The first series of experiments is done on a selection of the largest datasets from the 
well-known UCI repository [6], as shown in Table 1. These datasets are transaction 
databases and not streams, but they have the advantage that each of them consists of 
multiple known classes. This allows for easy validation of the identified splits. 

To transform a UCI dataset into a stream, each dataset is split on class label and the 
class labels are removed from all transactions. This results in a transaction database 
per class. The transactions within each database are ordered (randomly) to form a 
stream. The resulting streams are concatenated into one single stream (in random or-
der). Because of this randomisation, each dataset is turned into a stream 10 times. 

The main results are summarised in Table 2. The ‘#CTs’ column tells us how many 
code tables have been identified for each of the datasets. If we compare these numbers 
to the actual number of classes in Table 1, we see that STREAMKRIMP finds the right 
number of distributions in the stream. Only for Chess, the algorithm doesn’t find 
enough splits, but this is not surprising as there are quite many classes and some of 
them are rather small. Analysing the splits reveals that indeed the larger classes are 
identified and only the smallest ones go undetected. 

The next column, ‘Blocks per CT’, tells us that approximately 4 to 6 blocks are 
enough for code table construction on these datasets. For some datasets, such as 
Adult, Chess and Nursery, quite some code tables are rejected, as is shown under 
‘#CTs rejected’. However, also quite some blocks are skipped by SkipBlocks. These 
values vary quite a bit for the different datasets, telling us that the conservative statis-
tical skip test seems to work better for one dataset than for another. 

Actual split Found split

Adult

Mushroom

Nursery

Two splits  

Fig. 1. Actual and found splits for three of the datasets 
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The last columns show baseline and 
obtained purity values. Purity is the size 
of the majority class relative to the entire 
segment, averaged over all identified 
segments. Baseline purity is the size of 
the largest class. Although the transac-
tions of the classes are not interleaved and 
the task is therefore easier than clustering, 
the attained purity values are very high. 
This indicates that the algorithm correctly 
identifies the boundaries of the classes in 
the streams. This is supported by Figure 1, 
which depicts actual and found splits for 
three datasets. No expected splits are missed by STREAMKRIMP and the shift moments 
are accurately detected. (For each dataset, a single run with average performance is 
shown.) 

5.2   Artificial Streams – Synthetic 

The experiments in the previous subsection show that the proposed algorithm accu-
rately detects changes in a stream. The objective of the following experiments is sim-
ple: which elementary distribution changes are detected? 

We manually create simple code tables and use the KRIMP data generator [15] to 
generate a series of synthetic datasets. Each generated stream consists of two parts: 
5000 rows generated with one code table, followed by 5000 rows generated by a 
variation on this code table. In these experiments, | | is 10 and each item is in the 
code table with a count of 1 (i.e., all individual items are generated with equal prob-
ability). The databases have 5 two-valued attributes (resulting in a total of 10 possible 
items). So, each transaction consists of 5 items. 

Because the number of different items is very small (only 10) we manually set the 
blockSize for these experiments to 200. This way, we ensure that KRIMP gets enough 
data and candidate patterns to learn the structure that is in the data. 

Table 2. Results for 7 UCI datasets. For each dataset, the following is listed: the number of 
code tables found, the average number of blocks used for construction per CT, the number of 
code tables rejected, the number of blocks skipped and finally base and obtained purity. Aver-
ages over 10 randomisations (class order, transaction order within classes). 

Purity 
Dataset #CTs Blocks 

per CT 
#CTs 

rejected 
Blocks 

skipped Baseline Actual 
Adult 3.4 4.7 118 367 76.1% 99.7% 
Chess (kr-k) 13 4.2 165 264 17.8% 80.1% 
Led7 12 3.9 3.5 82 10.9% 95.2% 
LetRecog 27 5.9 0.2 32 4.1% 80.1% 
Mushroom* 2.7 6.2 6.2 44 51.7% 96.5% 
Nursery 6.2 5.7 140 228 33.3% 98.5% 
PenDigits 15 6.0 2.3 34 10.4% 87.2% 

* Closed frequent item sets used as candidates instead of all frequent item sets. 
 

Table 1. Properties of 7 UCI datasets: num-
ber of rows, classes and items 

Dataset #rows | | | | 

Adult 48842 2 97 
Chess (kr-k) 28056 18 58 
Led7 3200 10 24 
LetRecog 20000 26 102 
Mushroom 8124 2 119 
Nursery 12960 5 32 
PenDigits 10992 10 86 
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The basic distribution changes made 
halfway in the synthetic datasets 
(through changing the code tables) are 
depicted in Figure 2. Each rounded box 
represents an item set, with the individ-
ual items given as numbers. All counts 
are set to 5, except for those item sets 
where a multiplier is shown (x4 means 
5x4=20). As data generation is a sto-
chastic process, 10 streams were gener-
ated for each change and the main re-
sults shown in Table 3 are averaged 
over these. The last column indicates 
the number of times the algorithm 
found the optimal solution; two code 
tables and 100% purity (i.e., a split after 
5000 rows). From the results it is clear that STREAMKRIMP is very capable at detect-
ing 4 out of 6 of the tested types of change. Only detection of the subtle addition of a 
single (small) pattern and changing the frequency of an existing pattern turns out to be 
difficult occasionally. In these cases, change is often detected but this takes some 
blocks, resulting in lower purity values. 

5.3   A Real Stream – Accidents Dataset 

A more realistic dataset is taken from [8]. It contains data obtained from the National 
Institute of Statistics (NIS) for the region of Flanders (Belgium) for the period 1991-
2000. More specifically, the data are obtained from the Belgian 'Analysis Form for 
Traffic Accidents' that should be filled out by a police officer for each traffic accident 
that occurs with injured or deadly wounded casualties on a public road in Belgium. In 
total, 340,184 traffic accident records are included in the data set. 

No timestamps are available, but accidents are ordered on time and it is an interest-
ing question whether structural changes can be detected. With over 340,000 transac-
tions over a large number of items (| | = 468), running any regular pattern mining al-
gorithm on the entire dataset is a challenge. Therefore, it is a perfect target for finding 
‘good enough’ code tables and detecting change. As KRIMP candidates we use closed 
frequent item sets with minimum support 500 and we rounded the block size to 500. 

Table 3. Results for 6 synthetic streams. For each dataset, the following is listed: the number of 
code tables found, the number of code tables rejected, obtained purity and the number of opti-
mal solutions found. Averages over 10 generated streams (except for the last column). 

Change #CTs #CTs 
rejected 

Purity % Optimal
(out of 10)

Add pattern 1 1.8 79.8 0
Remove pattern 1.3 3.8 97.0 6
Combine patterns 1.3 2.8 98.6 6
Split pattern 1.1 2.6 98.8 8
Change pattern 1.1 1.8 98.6 7
Change frequency 1.9 15.6 75.2 1

Add pattern

2 4

0 2

2 4

0 2

6 8

Remove pattern

2 4

0 2

6 8

2 4

0 2

Combine patterns

2 4

0 2 0 2 4 x2

Change pattern

2 4

0 2

2 4

0 3

Split pattern

2 4

0 20 2 4 x2

Change frequency

2 4

0 2

2 4

0 2 x4

 

Fig. 2. Changes inflicted in the code tables 
used for stream generation 
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Fig. 3. Average encoded length per transaction (left) and improvement rates (right) for the code 
tables built on 15 consecutive blocks from the Accidents dataset  

An important question we have not yet addressed with the (much smaller) artificial 
streams is how well the FINDCODETABLEONSTREAM algorithm approximates the best 
possible code table on a stream. To assess this, the average encoded size per transac-
tion is plotted for a series of code tables in Figure 3 on the left. On the right, Figure 3 
shows the computed Improvement Rates for the same set of code tables. Each code 
table is built on a head of x blocks, where x is the number of blocks indicated on the 
x-axis. Average encoded size is computed on all transactions the code table is induced 
from. The graphs clearly show that the most gain in compression is obtained in the 
first few blocks. After that, the average size per transaction decreases only slowly and 
this is also reflected in the Improvement Rate. With maxIR set to 0.02, STREAMKRIMP 
would pick the code table built on 8 
blocks, which seems a good choice: af-
ter that, improvement is marginal. 

Running STREAMKRIMP on the en-
tire dataset resulted in only 14 code ta-
bles that characterise the entire stream 
of over 340,000 transactions. 140 
blocks were skipped, 429 code tables 
were built but rejected. On average, 
7.43 blocks of data were required for a 
code table to converge and the average 
Code Table Difference of accepted 
code tables was 0.14. This means that 
each consecutive distribution differs 
about 14% from its predecessor in 
terms of compression! 

To further illustrate the differences 
between the identified substreams, Fig-
ure 4 shows compressed block sizes 
over the entire dataset for three con-
secutive code tables. Substreams clear-
ly consist of blocks that are equally 
well compressed. The split the end of 
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Fig. 4. Encoded length per block for three con-
secutive substreams on Accidents. The blocks 
belonging to each of the code tables are indi-
cated with the grey blocks.
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the last substream shown seems to be a tad late, the rest is spot on. In other words, the 
change detection is both quick and accurate, also on large datasets. 

6   Related Work 

Stream mining has attracted a lot of attention lately, which is nicely illustrated by the 
recent book by Aggarwal et al. [3]. Here, we focus on change detection. 

In many cases, streams are considered to be sequences of single (real-valued) numbers 
or items. Kifer et al. [10] use two sliding windows to obtain two samples of which it is 
statistically determined whether they belong to different distributions. Papadimitriou et 
al. [13] use autoregressive modelling and wavelets, Muthukrishnan et al. [11] avoid a 
fixed window size by introducing a method based on sequential hypothesis testing. 

A second class of stream mining algorithms considers multi-dimensional, real-
valued streams. Aggarwal et al. [1] visualise evolving streams using velocity density 
estimation. The visualisation is inherently 2-dimensional and it is not possible to ac-
curately estimate densities with increasing dimensionality. In [2], Aggarwal et al. use 
a polynomial regression technique to compute statistically expected values. 

Dasu et al. [7] take an information-theoretic approach by using the Kullback-
Leibler distance to measure the difference between distributions. They experiment on 
multi-dimensional real-valued data, but claim the method can also be applied to cate-
gorical data. However, a fixed window size strongly influences the changes that can 
be detected and the method seems better suited for relatively few dimensions (<10). 

Widmer and Kubat [16] use an adaptive window size to do online learning in do-
mains with concept drift. Predictive accuracy is used to detect drift and adjust the 
window size heuristically. This does require (known) binary class labels though. 

The final class of algorithms considers streams of categorical transactions, as we 
do in this paper. Chen et al. [5] propose a method to visualise changes in the cluster-
ing structure of such streams. A disadvantage is that snapshots of these visualisations 
have to be manually analysed. Recently, Calders et al. [4] proposed an alternative 
‘minimum support’ measure for patterns in streams called max-frequency. This meas-
ure uses flexible windows to maintain the max-frequency on patterns in the stream.  

7   Discussion 

The results on both the artificial and realistic streams show that STREAMKRIMP is very 
capable at detecting changes in large data streams. No actual splits are missed and the 
results on the synthetic streams show that even small modifications in the distribution 
can be detected. 

The algorithm satisfies the general requirements for stream mining, as only very lim-
ited data storage is required and online mining is possible. Also, the resulting code tables 
are much smaller than the data itself and can therefore be stored for a much longer time. 
This means that it is possible to store a full characterisation of the entire stream. 

In many stream mining algorithms, a window size has to be defined. This window 
size determines what changes can and can not be found; nothing outside the window 
is seen. Contrary, the block size of our algorithm is only the resolution which deter-
mines how quickly a distribution is detected and characterised. 
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8   Conclusions 

We introduce STREAMKRIMP, an algorithm that detects changes in the sampling dis-
tribution of a stream of transactions. Based on an analysis from MDL perspective, it 
partitions a stream into a sequence of substreams. For each substream, it uses KRIMP 
to characterise its distribution with a code table and each subsequent code table indi-
cates a change in the underlying distribution. Only a very limited amount of data stor-
age is required and STREAMKRIMP facilitates online mining of streams. 

The results of experiments on both artificial and realistic streams show that 
STREAMKRIMP detects the changes that make a difference, no relevant changes are 
missed and noise is neglected. Finally, large streams with many attributes pose no 
problems. 

References 

1. Aggarwal, C.C.: A framework for diagnosing changes in evolving data streams. In: Pro-
ceedings of ACM SIGMOD 2003 (2003) 

2. Aggarwal, C.C.: On Abnormality Detection in Spuriously Populated Data Streams. In: 
Proceedings of SIAM Conference on Data Mining 2005 (2005) 

3. Aggarwal, C.C. (ed.): Data Streams: Models and Algorithms. Springer, Heidelberg (2007) 
4. Calders, T., Dexters, N., Goethals, G.: Mining Frequent Itemsets in a Stream. In: Proceed-

ings of IEEE ICDM 2007 (2007) 
5. Chen, K., Liu, L.: Detecting the Change of Clustering Structure in Categorical Data 

Streams. In: Proceedings of SIAM Conference on Data Mining 2006 (2006) 
6. Coenen, F. The LUCS-KDD Discretised/normalised ARM and CARM Data Library 

(2003), http://www.csc.liv.ac.uk/~frans/KDD/Software/  
7. Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K.: An Information-Theoretic Ap-

proach to Detecting Changes in Multi-Dimensional Data Streams. In: Proceedings of Inter-
face 2006 (2006) 

8. Geurts, K., Wets, G., Brijs, T., Vanhoof, K.: Profiling of high-frequency accident locations 
using association rules. In Transportation research record 1840 (2003) 

9. Grünwald, P.D.: Minimum description length tutorial. In: Grünwald, P.D., Myung, I.J., Pitt, 
M.A. (eds.) Advances in Minimum Description Length. MIT Press, Cambridge (2005) 

10. Kifer, D., Ben-David, S., Gehrke, J.: Detecting Change in Data Streams. In: Proceedings 
of VLDB 2004 (2004) 

11. Muthukrishnan, S., van den Berg, E., Wu, Y.: Sequential Change Detection on Data 
Streams. In: Proceedings of the ICDM Workshops 2007 (2007) 

12. Siebes, A., Vreeken, J., Van Leeuwen, M.: Item Sets That Compress. In: Proc. of the ACM 
SIAM Conference on Data Mining, pp. 393–404 (2006) 

13. Papadimitriou, S., Brockwell, A., Faloutsos, C.: Adaptive, unsupervised stream mining. 
The VLDB Journal 13(3), 222–239 (2004) 

14. Vreeken, J., Van Leeuwen, M., Siebes, A.: Characterising the Difference. In: Proceedings 
of ACM SIGKDD 2007 (2007) 

15. Vreeken, J., Van Leeuwen, M., Siebes, A.: Preserving Privacy through Generation. In: 
Proceedings of IEEE ICDM 2007 (2007) 

16. Widmer, G., Kubat, M.: Learning in the Presence of Concept Drift and Hidden Contexts. 
Machine Learning 23, 69–101 (1996) 



Author Index

Abeel, Thomas II-313
Ahmed, Rezwan I-23
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