
A Tool for Optimizing Runtime Parameters of
Open MPI

Mohamad Chaarawi1,2, Jeffrey M. Squyres2, Edgar Gabriel1, and Saber Feki1

1 Parallel Software Technologies Laboratory,
Department of Computer Science, University of Houston

{mschaara,gabriel,sfeki}@cs.uh.edu
2 Cisco Systems, San Jose, CA USA

jsquyres@cisco.com

Abstract. Clustered computing environments, although becoming the
predominant high-performance computing platform of choice, continue
to grow in complexity. It is relatively easy to achieve good performance
with real-world MPI applications on such platforms, but obtaining the
best possible MPI performance is still an extremely difficult task, requir-
ing painstaking tuning of all levels of the hardware and software in the
system. The Open Tool for Parameter Optimization (OTPO) is a new
framework designed to aid in the optimization of one of the key software
layers in high performance computing: Open MPI. OTPO systematically
tests large numbers of combinations of Open MPI’s run-time tunable pa-
rameters for common communication patterns and performance metrics
to determine the “best” set for a given platform. This paper presents the
concept, some implementation details and the current status of the tool,
as well as an example optimizing InfiniBand message passing latency by
Open MPI.

1 Introduction

In the current top 500 list [10], clustered high performance computing systems
clearly dominate from the architectural perspective. Off-the-shelf components
make clusters attractive for low-end budgets as well as for large scale instal-
lations, since they offer the opportunity to customize the equipment according
to their needs and financial constraints. However, the flexibility comes at the
price: the performance that end-users experience with real-world applications
deviates significantly from the theoretical peak performance of the cluster. This
is mainly due to the fact, that each system represents a nearly unique execution
environment. Typically, neither software nor hardware components have been
hand-tuned to that particular combination of processors, network interconnects
and software environment.

In order to optimize the performance of a particular system, research groups
have turned to extensive pre-execution tuning. As an example, the ATLAS
project [12] evaluates in a configure step a large number of implementation pos-
sibilities for the core loops of the BLAS routines. Similarly, the Automatically

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 210–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Tool for Optimizing Runtime Parameters of Open MPI 211

Tuned Collective Communication project [8] incorporates an exhaustive search
in order to determine the best performing algorithms for a wide range of mes-
sage lengths for MPI’s collective operations. The FFTW library [1] tunes fast
fourier transform operations (FFT) in a so-called planner step before executing
the FFT operations of the actual application.

One critical piece of software has however not been systematically approached
in any of these projects. MPI libraries represent the interface between most par-
allel applications and the hardware today. Libraries such as MPICH [4] and Open
MPI [2] provide flexible and tunable implementations, which can be adapted ei-
ther at compile or at runtime to a particular environment. In this paper, we in-
troduce OTPO (Open Tool for Parameter Optimization), a new tool developed
in partnership between Cisco Systems and the University of Houston. OTPO is
an Open MPI specific tool aiming at optimizing parameters of the runtime envi-
ronment exposed through the MPI library to the end-user application. These pa-
rameters might expose explicit or implicit dependencies among each other, some of
them possibly even unknown to the module developers. A long term goal of OTPO
is therefore to systematically discover those hidden dependencies and the effect
they have on overall performance, such as the point-to-point latency or band-
width. We present the current status of OTPO and the ongoing work.

The rest of the paper is organized as follows: Sec. 2 presents the concept
and the architecture of OTPO. Sec. 3 discusses some implementation details of
OTPO. In Sec. 4, we show how OTPO is used to explore the parameter space of
Open MPI’s short message protocol in order to minimize latency on InfiniBand
networks. Finally, Sec. 5 summarizes the paper and discusses ongoing work.

2 Concept

Open MPI [2] is an open source implementation of the MPI-1 [6] and MPI-2 [7]
specifications. The code is developed and maintained by a consortium consisting
of 14 institutions1 from academia and industry. The Open MPI design is centered
around the Modular Component Architecture (MCA), which is the software layer
providing management services for Open MPI frameworks. A framework is ded-
icated to a single task, such as providing collective operations (i.e., the COLL
framework) or providing data transfer primitives for a particular network inter-
connect (i.e., the Byte Transfer Layer framework – BTL). Each framework will
typically have multiple implementations available in the form of modules (“plu-
gins”) that can be loaded on-demand at run time. For example, BTL modules
include support for TCP, InfiniBand, Myrinet, shared memory, and others.

Among the management services provided by the MCA is the ability to ac-
cept run-time parameters from higher level abstractions (e.g., mpirun) and pass
them down to the according frameworks. MCA runtime parameters give system
administrators, end-users and developers the possibility to tune the performance
of their applications and systems without having to recompile the MPI library.
Examples for MCA runtime parameters include the values of cross-over points
1 As of January, 2008.

212 M. Chaarawi et al.

between different algorithms in a collective module, or modifying some network
parameters such as internal buffer sizes in a BTL module. Due to its great flexi-
bility, Open MPI developers made extensively use of MCA runtime parameters.
The current development version of Open MPI has multiple hundred MCA run-
time parameters, depending on the set of modules compiled for a given platform.
While average end-users clearly depend on developers setting reasonable default
values for each parameter, some end-users and system administrators might ex-
plore the parameter space in order to find values leading to higher performance
for a given application or machine.

OTPO is a tool aiming at optimizing parameters of the runtime environment
exposed through the MPI library to the end-user application. OTPO is based
on a highly modular concept, giving end-user the possibility to provide or im-
plement their own benchmark for exploring the parameter space. Depending on
the purpose of the tuning procedure, most often only a subset of the runtime pa-
rameters of Open MPI will be tuned at a given time. As an example, users might
choose to tune the networking parameters for a cluster, optimizing the collective
operations in a subsequent run etc. Therefore, one of the goals of OTPO is to
provide a flexible and user friendly possibility to input the set of parameters to
be tuned. OTPO supports testing two general types of MCA parameters:

1. Single-value parameters: these parameters represent an individual value,
such as an integer.

2. Multiple-value parameters: these parameters are composed of one or more
sub-parameters, each of which can vary.

From a higher level perspective, the process of tuning runtime parameters is
an empirical search in a given parameter space. Depending on the number of
parameters, the number of possible values for each parameter, and dependen-
cies among the parameters themselves, the tuning process can in fact be very
time consuming and complex. Thus, OTPO is based on a library incorporating
various search algorithms, namely the Abstract Data and Communication Li-
brary (ADCL) [3]. ADCL is a runtime optimization library giving applications
the possibility to register alternative implementations for a given functionality.
Using various search algorithms, the library will evaluate the performance of
some/each implementation(s) provided, and choose the version leading to the
lowest execution time. Furthermore, the application has the possibility to char-
acterize each implementation using a set of attributes. These attributes are the
basis of some advanced search operations within ADCL in order to speed up
the tuning process. This mechanism has been used by OTPO for registering and
maintaining the status of different MCA parameters.

3 Implementation

Upon start of an optimization run, OTPO parses an input file and creates a global
structure that holds all the parameters and their options. OTPO then registers
a function for each possible combination of MCA parameters which satisfies the

A Tool for Optimizing Runtime Parameters of Open MPI 213

Reverse Polish Notations (RPNs) conditions specified in the parameter file with
ADCL. The function registered by OTPO first forks a child process. The child pro-
cess sets the parameters in the environment that need to be provided to the mpirun
command, such as the number of processes, the MCA parameters and values, and
the application/benchmark to run. Finally, the child launches mpirun with the
argument set. The parent process waits for the child to complete, and checks if
the test was successful. If the child succeeded, the parent will update the current
request with the value (e.g., latency) that the child measured for the current pa-
rameter values. If the child does not complete within a user specified timeout, the
parent process kills it, and updates the request with an invalid value.

When measurements for all combinations of parameter values have been up-
dated by ADCL, OTPO gathers the results and saves them to a file. Each run of
OTPO produces a file with a time stamp that contains the best attribute com-
binations. The result file contains the set of best measured values, the number
of combinations that produced these values, and the parameter value combina-
tions themselves. The result file might be large, having thousands of different
parameter combinations.

These results files produced by the first version of OTPO are intented to be
intermediate results. Currently ongoing work focuses on presenting the results
in an intuitive and visual manner.

3.1 OTPO Parameter File

The OTPO parameter file describes the MCA parameters and potential values
to be tested. In order to provide a maximum flexibility to the end-user, the
parameters can be described by various options, e.g. depending on whether a
parameter can have continues values, certain discrete values, or whether the
value consists of different strings. Each line in the parameter file specifies a
single parameter by giving the name of the parameter and some options, the
options being one of the following:

– d default value: specifies a default value for this parameter.
– p <list of possible values>: explicitly specify the list of possible values

for the parameter.
– r start value end value: specify the start and end value for the parame-

ter.
– t traversal method <arguments>: specifies the method to traverse the

range of variables for the parameter. The first version of OTPO only in-
cludes one method: “increment,” which takes the operator and the operand
as arguments.

– i rpn expression: RPN condition that the parameter combinations must
satisfy.

– v: specifies if the parameter is virtual, which means that it will not be set as
an environment variable, but will be part of another parameter.

– a format string: specifies that the parameter is an aggregate of other pa-
rameters in a certain format. Each sub parameter is surrounded by dollar
signs ($) in the format string.

214 M. Chaarawi et al.

4 Performance Evaluation

This section presents an example using OTPO to optimize some of the InfiniBand
parameters of Open MPI on a given platform. We therefore first describe Open
MPI’s InfiniBand support and some of its run-time tunable parameters, then
present the results of the optimization using OTPO.

4.1 InfiniBand Parameters in Open MPI

Open MPI supports InfiniBand networks through a Byte Transfer Layer (BTL)
plugin module named openib. BTL plugins are the lowest layer in the Open
MPI point-to-point communication stack and are responsible for actually moving
bytes from one MPI process to another. The openib BTL has both single- and
multiple-value parameters that can be adjusted at run-time.

There are more than 50 MCA parameters that are related to the openib
BTL module, all of which can be modified at runtime. Open MPI attempts to
provide reasonable default values for these parameters, but every application and
every platform is different: maximum performance can only be achieved through
tuning for a specific platform and application behavior.

MPI processes communicate on InfiniBand networks by setting up a pair of
queues to pass messages: one queue for sending and one queue for receiving.
InfiniBand queues have a large number of attributes and options that can be
used to tailor the behavior of how messages are passed. Starting with version
v1.3, Open MPI exposes the receive queue parameters for short messages through
the multiple-value parameter btl openib receive queues (long messages use
a different protocol and are governed by a different set of MCA parameters).
Specifically, this MCA parameter is used to specify one or more receive queues
that will be setup in each MPI process for InfiniBand communication. There
are two types of receive queues, each of which have multiple sub-parameters.
It is however outside of the scope of this paper to give detailed and precise
descriptions of the MCA parameters used. The parameters are:

1. “Per-peer” receive queues are dedicated to receiving messages from a sin-
gle peer MPI process. Per-peer queues have two mandatory sub-parameters
(size and num buffers) and three optional sub-parameters (low watermark,
window size, and reserve).

2. “Shared” receive queues are shared between all MPI sending processes.
Shared receive queues have the same mandatory sub-parameters as per-peer
receive queues, but have only two optional sub-parameters (low watermark
and max pending sends).

The btl openib receive queues value is a colon-delimited listed of queue
specifications specifying the queue type (“P” or “S”) and a comma-delimited
list of the mandatory and optional sub-parameters. For example:

P,128,256,192,128:S,65535,256,128,32

A Tool for Optimizing Runtime Parameters of Open MPI 215

will instantiate one per-peer receive queue for each inbound MPI connection for
messages that are ≤ 128 bytes, and will setup a single shared receive queue for
all messages that are > 128 bytes and ≤ 65, 535 bytes (messages longer than
65,535 bytes will be handled by the long message protocol).

Another good example for how to explore the parameter space by OTPO
are the tunable values controlling Open MPI’s use of RDMA for short messages.
Short message RDMA is a resource-intensive, non-scalable optimization for min-
imizing point-to-point short message latency. Finding a good balance between
the desired level of optimization and the resources consumed by this optimiza-
tion is exactly the kind of task that OTPO was designed for. Among the most
relevant parameters with regard to RDMA operations are btl openib ib max -
rdma dst opts, which limits the maximum number of outstanding RDMA op-
erations to a specific destination; btl openib use eager rdma, a logical value
specifying whether to use the RDMA protocol for eager messages; and btl -
openib eager rdma threshold, only use RDMA for short messages to a given
peer after this number of messages has been received from that peer. Due to
space limitations, we will not detail all RDMA parameters or present RDMA
results of the according OTPO runs.

4.2 Results

Tests were run on the shark cluster at the University of Houston. Shark consists
of 24 dual-core 2.2GHz AMD Opteron nodes connected by 4x InfiniBand and
Gigabit Ethernet network interconnects. The InfiniBand switch is connected to
a single HCAs on every node, with an active mtu of 2048 and an active speed
of 2.5 Gbps. OFED 1.1 is installed on the nodes. A pre-release version of Open
MPI v1.3 was used to generate these results, subversion trunk revision 17198.
A nightly snapshot of the trunk was used, and configured with debug disabled.
All the tests were run with mpi leave pinned MCA parameter set to one. The
benchmark used for tuning the parameters was NetPIPE [11].

OTPO was used to explore the parameter space of btl openib receive -
queues to find a set of values that yield the lowest half round trip short
message latency. Since receive queues is a multiple-value parameter, each sub-
parameter must be described to OTPO. The individual sub-parameters become
“virtual” parameters, each with a designated range to explore. OTPO was con-
figured to test both a per-peer and a shared receive queue with the ranges listed
in Table 1. Each sub-parameter spanned its range by doubling its value from the
minimum to the maximum (e.g., 1, 2, 4, 8, 16, ...).

The parameters that are used are explained as follows:

– The size of the receive buffers to be posted.
– The maximum number of buffers posted for incoming message fragments.
– The number of available buffers left on the queue before Open MPI reposts

buffers up to the maximum (previous parameter).
– The maximum number of outstanding sends that are allowed at a given time

(SRQ only).

216 M. Chaarawi et al.

Table 1. InfiniBand receive queue search parameter ranges. The “max pending sends”
sub-parameter is only relevant for shared receive queues.

Sub-parameter Range Per-peer Shared
Buffer size (bytes) 65,536 → 1,048,576 √ √

Number of buffers 1 → 1024 √ √

Low watermark (buffers) 32 → 512 √ √

Max pending sends 1 → 32 √

Table 2. OTPO results of the best parameter combinations

Per Peer Queue Shared Receive Queue
Latency Number of Combinations Latency Number of Combinations
3.78μs 3 3.77μs 1
3.79μs 3 3.78μs 4
3.80μs 15 3.79μs 18
3.81μs 21 3.80μs 32
3.82μs 31 3.81μs 69
3.83μs 34 3.82μs 69

The parameter space from Table 1 yields, 275 for per peer queue and 825 for
shared queue valid combinations (after removing unnecessary combinations that
would lead to incorrect results). These combinations stressed buffer management
and flow control issues in the Open MPI short message protocol when sending
1 byte messages. It took OTPO 3 minutes to evaluate the first case by invoking
NetPIPE for each parameter combination and 9 minutes for the second case.
Note that NetPIPE runs several ping-pong tests and reports half the average
round-trip time. OTPO sought parameter sets that minimized this value.

The results are summarized in Table 2, and reveal a small number of parameter
sets that resulted in the lowest latency (3.78μs and 3.77μs). However, there were
more parameter combinations leading to results within 0.05μs of the best latency.
These results highlight, that typically, the optimization process using OTPO will
not deliver a single set of parameters leading to the best performance, but will
result in groups of parameter sets leading to similar performance.

5 Summary

In this paper we presented OTPO, a tool for optimizing Open MPI runtime pa-
rameters. The tool gives interested end-users and system administrators the pos-
sibility to “personalize” their Open MPI installation. OTPO has been successfully
used to optimize the network parameters of the openib InfiniBand communica-
tion module of Open MPI in order to minimize the communication latency.

The currently ongoing work on OTPO includes multiple areas. As of to-
day, OTPO only supports NetPIPE as the application benchmark. However,
we plan to add more benchmarks to be used with OTPO such as the IMB [5]and

A Tool for Optimizing Runtime Parameters of Open MPI 217

SKaMPI [9] benchmarks in order to optimize collective modules. Some of the
benchmarks will also require OTPO to support additional optimization metrics,
such as bandwidth or memory usage. The foremost goal however is to develop a
result gathering tool that takes the results file produced by OTPO and presents
it to the user in a more readable and interpretable manner.

Acknowledgments. This research was funded in part by a gift from the Silicon
Valley Community Foundation, on behalf of the Cisco Collaborative Research
Initiative of Cisco Systems.

References

1. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of IEEE 93(2), 216–231 (2005)

2. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel,
D.J., Graham, R.L., Woodall, T.S.: Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004, pp. 97–104 (2004)

3. Gabriel, E., Huang, S.: Runtime optimization of application level communication
patterns. In: 12th International Workshop on High-Level Parallel Programming
Models and Supportive Environments, Long Beach, CA, USA (March 2007)

4. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

5. Intel MPI Benchmark,
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

6. Message Passing Interface Forum. MPI: A Message Passing Interface Standard
(June 1995), http://www.mpi-forum.org/

7. Message Passing Interface Forum. MPI-2: Extensions to the Message Passing In-
terface (July 1997), http://www.mpi-forum.org/

8. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Don-
garra, J.J.: Performance Analysis of MPI Collective Operations. Cluster Comput-
ing 10(2), 127–143 (2007)

9. Reussner, R., Sanders, P., Prechelt, L., Muller, M.: SKaMPI: A Detailed, Accu-
rate MPI Benchmark. In: Alexandrov, V.N., Dongarra, J. (eds.) PVM/MPI 1998.
LNCS, vol. 1497, pp. 52–59. Springer, Heidelberg (1998)

10. TOP 500 webpage (2007), http://www.top500.org/
11. Turner, D., Chen, X.: Protocol-dependent message-passing performance on linux

clusters. In: Cluster Computing, 2002. Proceedings. 2002 IEEE International Con-
ference on Linux Clusters, pp. 187–194. IEEE Computer Society Press, Los Alami-
tos (2002)

12. Whaley, R.C., Petite, A.: Minimizing development and maintenance costs in sup-
porting persistently optimized blas. Software: Practice and Experience 35(2), 101–
121 (2005)

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.top500.org/

	A Tool for Optimizing Runtime Parameters of Open MPI
	Introduction
	Concept
	Implementation
	OTPO Parameter File

	Performance Evaluation
	InfiniBand Parameters in Open MPI
	Results

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

