
Dynamic Load Balancing on Dedicated
Heterogeneous Systems�

Ismael Galindo1, Francisco Almeida1, and José Manuel Bad́ıa-Contelles2

1 Department of Statistics and Computer Science
La Laguna University Spain

2 Department of Computer Science and Engineering
Jaume I University Spain

Abstract. Parallel computing in heterogeneous environments is draw-
ing considerable attention due to the growing number of these kind of
systems. Adapting existing code and libraries to such systems is a fun-
damental problem. The performance of this code is affected by the large
interdependence between the code and these parallel architectures. We
have developed a dynamic load balancing library that allows parallel code
to be adapted to heterogeneous systems for a wide variety of problems.
The overhead introduced by our system is minimal and the cost to the
programmer negligible. The strategy was validated on several problems
to confirm the soundness of our proposal.

1 Introduction

The spread of heterogeneous architectures is likely to increase in the coming
years due to the growing trend toward the institutional use of multiple comput-
ing resources (usually heterogeneous) as the sole computing resource [1]. The
performance of this kind of system is very conditioned by the strong dependence
that exists between parallel code and architecture [2]. Specifically, the process
of allocating tasks to processors often becomes a problem requiring considerable
programmer effort [3].

We have devised a library that allows dynamic task balancing within a par-
allel program running on a dedicated heterogeneous system, while adapting to
system conditions during execution. This library facilitates the programmer the
task of tailoring parallel code developed for homogeneous systems to heteroge-
neous ones [4]. The library has been implemented in a way that does not require
changing any line of code in existing programs, thus minimizing code intrusion.
All that is required is to use three new functions:

– Library start: ULL_MPI_init_calibratelib()

– Library end: ULL_MPI_shutdown_calibratelib()

– Balancing function: ULL_MPI_calibrate (...)

� This work has been supported by the EC (FEDER) and the Spanish MEC with the
I+D+I contract number: TIN2005-09037-C02-01.

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 64–74, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Load Balancing on Dedicated Heterogeneous Systems 65

We validated our proposal on three test problems: matrix product [5], the Jacobi
method for solving linear systems [5] and resource allocation optimization via
dynamic programming algorithms [6]. The computational results show that the
benefits yielded by using our balancing library offer substantial time reductions
in every case. The efficiency level obtained, considering the minimum code intru-
sion, makes this library a useful tool in the context of heterogeneous platforms.

This paper is structured as follows: in Section 2 we introduce some of the issues
that motivated this research and the main goals to achieve. Section 3 shows
how to use our library and the advantages our approach yields. In Section 4
we describe the balancing algorithm used by the library and Section 5 shows the
validation performed on the selected problems. We close with some conclusions
and future research directions.

2 Background and Objectives

Programming on heterogeneous parallel systems is obviously architecture de-
pendent and the performance obtained is strongly conditioned by the set of
machines performing the computation. This means that, in most cases, the tech-
niques used on homogeneous parallel systems must be reworked to be applied to
systems which are not necessarily homogeneous [3,7].

Specifically, we set out to solve the problem of synchronizing parallel programs
in heterogeneous architectures. Given a program developed for a homogeneous
system, we hope to obtain a version that makes use of the system’s hetero-
geneous abilities by allocating tasks according to the computational ability of
each processing element. The simplest way to approach the problem consists on
manually adapting the code as required by the architectural characteristics[8].
This approach usually implies at least a knowledge of said characteristics, such
that the parallel program’s tasks can be allocated according to the computa-
tional capacity of each processor. A more general approach can be obtained in
the context of self-optimization strategies based on a run time model [4,9]. In
this approach, an analytical model that parametrizes the architecture and the
algorithm is instantiated for each specific case so as to optimize program execu-
tion. This strategy is considerably more general than the previous one, though
more difficult to apply since the modeling process is not trivial [10,11], nor is
its subsequent instantiation and minimization for each case. A search of the lit-
erature yields some generic tools such as mpC [12,13] and HeteroMPI [14,15]
which provide the mechanisms that allow algorithms to be adapted to hetero-
geneous architectures, but which also require more input from the user and are
more code intrusive. Adaptive strategies have been also proposed in AMPI [16]
and Dyn-MPI [17]. AMPI is built on Charm++ [18] and allows automatic load
balancing based on process virtualization. Although it is an interesting generic
tool, it involves a complex runtime environment.

Our objective is to develop a simple and efficient dynamic adaptation strategy
of the code for heterogeneous systems that minimizes code intrusion, so that the
program can be adapted without any prior knowledge of the architecture and

66 I. Galindo, F. Almeida, and J.M. Bad́ıa-Contelles

// procs = Number o f p roc e s so r s ; miid = Process ID ; n = Problem s i z e
. . .
despl = (in t ∗) malloc (nprocs ∗ s i z e o f (i n t)) ;
count = (in t ∗) malloc (nprocs ∗ s i z e o f (i n t)) ;
nrows = n/ nprocs ; despl [0] = 0 ;
f o r (i = 0; i < nprocs ; i++) {

count [i] = nrows ;
i f (i) despl [i] = despl [i−1] + count [i−1] ;

}
whi l e (it < maxit) {

fin = despl [miid] + count [miid] ;
resi_local = 0 . 0 ;
f o r (i = despl [miid] ; i < fin ; i++) {

sum = 0 . 0 ;
f o r (j = 0; j < n ; j++)

sum += a [i] [j] ∗ x [j] ;
resi_local += fabs (sum − b [i]) ;
sum += −a [i] [i] ∗ x [i] ;
new_x [i] = (b [i] − sum) / a [i] [i] ;

}
MPI_Allgatherv (&new_x [despl [miid]] , count [miid] , MPI_DOUBLE ,

x , count , despl , MPI_DOUBLE , new_com) ;
it++;

}

Listing 1.1. Basic algorithm of an iterative scheme

without the need to develop analytical models. We intend to apply the technique
to a wide variety of problems, specifically to parallel programs which can be
expressed as a series of synchronous iterations. To accomplish this, we have
developed a library with which to instrument specific sections in the code. The
instrumentation required is minimal, as it is the resulting overhead. Using this
instrumentation, the program will dynamically adapt itself to the destination
architecture. This approach is particularly effective in SPMD applications with
replicated data. DynMPI is perhaps a tool closer to our library in terms of
the objectives but it is focussed on non dedicated clusters. DynMPI has been
implemented as a MPI extension and has a wider range of applicability. However,
is more code intrusive since data structures, code sections and communication
calls must be instrumented. It uses daemons to monitor the system, what means
extra overhead, and the standard MPI execution script must be replaced by the
extended version.

Our library’s design is directed at solving the time differences obtained when
executing the parallel code without the necessity of extra monitoring daemons.
It is based on an iterative scheme, such as that appearing in Listing 1.1, which
shows a parallel version of the iterative Jacobi algorithm to solve linear systems.
The code involves a main loop that executes maxit iterations where a calculation
operation is performed for each iteration. Each processor performs calculations
in accordance with the size of the task allocated, n/nprocs . Following this
calculation, a collective communication operation is carried out during which all
the processors synchronize by gathering collecting data before proceeding to the
next iteration.

Dynamic Load Balancing on Dedicated Heterogeneous Systems 67

(a) homogeneous allocation (b) dynamic load balancing

Fig. 1. Time diagrams on heterogeneous systems. Each bar corresponds to the execu-
tion time of a processor on an iteration.

f o r (i = 0; i <= N ; i++) {
f o r (j = 0; j <= M ; j++) { // i r r e g u l a r loop . I t e r a t i o n j i s O(j)

G [i] [j] = (∗ f) (i , 0) ;
f o r (x = 0; x <= j ; x++) {

fij = G [i − 1] [j − x] + (∗ f) (i , x) ;
i f (G [i] [j] < fij)

G [i] [j] = fij ;
}

}
}

Listing 1.2. Sequential algorithm for the resource allocation problem

Let’s suppose that a code like that showed in Listing 1.1 is executed on a
heterogeneous cluster made up of, for example, 3 processors, such that processor
2 is twice as fast as processor 1, and processor 2 is four times as fast as processor
0. Then, implementing a homogeneous task allocation, where the same problem
size is assigned to each node results in an execution time which is directly de-
pendent on that of the slowest processor. Figure 1(a) shows the results with a
problem size 1500 and with subproblems of size 500. In this case the slowest
processor that determines the execution time is processor 0.

A typical solution to this problem consists of allocating on each processor
a static load proportional to the its computational capacity. However, several
reasons brought us to consider the dynamic strategy. The allocation of tasks
according to the computational power of the processors depends on the pro-
cessors and also on the application. This fact involves some benchmarking to
determine the computational power of the processors and usually it is highly
code intrusive. On the other hand, when facing the parallelization of codes with
non-regular loops (see code of the resource allocation in Listing 1.2), the static
proportional allocation is not a trivial task and if performed at runtime, the
overhead introduced may not be negligible.

The next section details the strategy used for balancing task allocation with
a low overhead for the execution time of each processor.

68 I. Galindo, F. Almeida, and J.M. Bad́ıa-Contelles

// procs = Number o f p roc e s so r s ; miid = Process ID ; n = Problem s i z e
. . .
despl = (in t ∗) malloc (nprocs ∗ s i z e o f (i n t)) ;
count = (in t ∗) malloc (nprocs ∗ s i z e o f (i n t)) ;
nrows = n/ nprocs ; despl [0] = 0 ;
f o r (i=0; i< nprocs ; i++) {

count [i] = nrows ;
i f (i) despl [i] = despl [i−1] + count [i−1] ;

}
whi l e (it < maxit) {

fin = despl [miid] + count [miid] ;
resi_local = 0 . 0 ;
f o r (i = despl [miid] ; i < fin ; i++) {

ULL_MPI_calibrate (ULL_MPI_INIT , it , &count , &despl , threshold , 1 , n)
sum = 0 . 0 ;
f o r (j = 0; j < n ; j++)

sum += a [i] [j] ∗ x [j] ;
resi_local += fabs (sum − b [i]) ;
sum += −a [i] [i] ∗ x [i] ;
new_x [i] = (b [i] − sum) / a [i] [i] ;

}
ULL_MPI_calibrate (ULL_MPI_END , it , &count , &despl , threshold , 1 , n)
MPI_Allgatherv (&new_x [despl [miid]] , count [miid] , MPI_DOUBLE ,

x , count , despl , MPI_DOUBLE , new_com) ;
it++;

}

Listing 1.3. Calibrated version of the basic algorithm of an iterative scheme

3 Dynamic Task Allocation

The library we developed allows for dynamic balancing with the introduction of
just two calls to the ULL_MPI_calibrate() function in the section of code that
is to be balanced, as shown by the code in Listing 1.3. A call is introduced at
the beginning and end of the section to be balanced, so that each processor can
know on runtime how long it will take to execute the assigned task. The balanced
load results from a comparison of this execution time for each processor and the
subsequent task redistribution.

Listing 1.4 shows the interface of the calibrating function. The following ar-
guments are input to the balancing function:

– section: The section is used to determine the entry point where the routine
is used. It can take the following two values:

• ULL MPI INIT: Beginning of section to balance.
• ULL MPI END: End of section to balance.

i n t ULL_MPI_calibrate (ULL_MPI_Section section , i n t iteration ,
i n t ∗∗ counts , i n t ∗∗ displs ,
i n t threshold ,
i n t size_object , i n t size_problem) ;

Listing 1.4. Prototype of the ULL calibrating function

Dynamic Load Balancing on Dedicated Heterogeneous Systems 69

– iteration: Indicates the iteration to be balanced. A 0 value indicates whether
the program is on its first or subsequent iterations. The first iteration has a
particular treatment.

– counts[], displs[]: Indicates the task size to be computed by each processor.
counts[] is an integer array containing the amount of work that is processed
by each processor. displs[] specifies the distance (relative to the work data
vector) at which to place the data processed by each processor.

– threshold: Corresponds to a number of microseconds that indicate wheather
to balance or not. The behaviour per iteration is as follows:

• Let Ti be the time processor i takes to execute the task assigned.
• Tmax = Maximum(Ti)
• Tmin = Minimum(Ti)
• If (Tmax−Tmin) > threshold then balance. If not, the system has already

balanced the workload.
– size objects: The size of the data type manipulated during computation

expressed as the number of elements to be communicated in the communi-
cation routine, i.e, in the example of Listing 1.3, size objects is 1, since the
elements of the matrix are double and in the communication routine they
are communicated as MPI DOUBLE data types.

– size problem: Corresponds to the total problem size to be computed in
parallel, so the calculations of the new task sizes are consistent with the
tasks allocated to each processor counts[], displs[].

Running the synthetic code again on the previous three-processor cluster with a
problem size equal to 1500 and a 100-microsecond threshold yields the following
values for problem size (counts[]) and execution times (Ti):

– Iteration i = 0. The algorithm begins with a homogeneous task allocation:
• counts[proc0] = 500, T0 = 400 us

• counts[proc1] = 500, T1 = 200 us

• counts[proc2] = 500, T2 = 100 us

• if ((Tmax = 400) − (Tmin = 100)) > (threshold = 100) then bal-
ance(counts[])

– Iteration i = 1. A balancing operation is performed automatically:
• counts[proc0] = 214, T0 = 171 us

• counts[proc1] = 428, T1 = 171 us

• counts[proc2] = 858, T2 = 171 us

Figure 1(b) shows a diagram of the iterations required to correct the load im-
balance. For this synthetic code the load distribution is exactly proportional to
the hypothetical loads, but this is not necesarily true in practice.

Note the library’s ease of use and the minimum code intrusion. The only
change necessary is to add calls to the functions at the beginning and end of
the code to initialize and clear the memory (ULL_MPI_init_calibratelib(),
ULL_MPI_shutdown_calibratelib()).

70 I. Galindo, F. Almeida, and J.M. Bad́ıa-Contelles

Table 1. Heterogenous platform used for the tests. All the processors are Intel (R)
Xeon (TM).

Cluster 1 Cluster 2 Cluster 3
Processor Frequency Processor Frecuency Processor Frecuency

0 3.20 GHz 0, 1 3.20 GHz 0, 1 3.20 GHz
1 2.66 GHz 2, 3 2.66 GHz 2, 3, 4, 5 2.66 GHz
2 1.40 GHz 4, 5 1.40 GHz 6, 7 1.40 GHz
3 3.00 GHz 6, 7 3.00 GHz 8, 9, 10, 11 3.00 GHz

4 The Balancing Algorithm

The call to the ULL_MPI_calibrate(...) function must be made by all the pro-
cessors and implements the balancing algorithm. Although a large number of
balancing algorithms can be found in the literature [19], we opted for a simple
and efficient strategy that yielded satisfactory results. The methodology chosen,
however, allows for the implementation of balancing algorithms which may be
more efficient. All processors perform the same balancing operations as follows:

– The time required by each processor to carry out the computation in each
iteration has to be given to the algorithm. A collective operation is performed
to share these times among all processors.

• T [] = vector where each processor gathers all the times (Ti).
• size problem = the size of the problem to be computed in parallel.
• counts[] = holds the sizes of the tasks to be computed on each processor.

– The first step is to verify that the threshold is not being exceeded
if (MAX(T []) - MIN(T [])) > THRESHOLD then, BALANCE

– The relative power RP [] is calculated for each processor and corresponds to
the relationship between the time T [i] invested in performing the computa-
tion for a size counts[i] versus the time taken for a computational unit as a
function of the problem size, size problem:
RP [i] = counts[i]

T [i] , 0 ≤ i ≤ Num procs − 1; SRP =
∑Num procs−1

i=0 RP [i]
– Finally, the sizes of the new counts are calculated for each processor:

counts[i] = size problem ∗ RP [i]
SRT

Once the counts vector is computed, the displs vector is also updated. Using this
method, each processor fits the size of the task allocated according to its own

Table 2. Overhead of the calibration running on an homogeneous system with 8 pro-
cessors Intel (R) Xeon (TM) 3.2 GHz

Matrix Product Jacobi Resource Allocation Problem
Size Problem Parallel Calibrated Parallel Calibrated Parallel Calibrated

1152 4.15 4.16 5.68 6.18 2 1.77
2304 96.11 93.44 19.23 19.76 14.23 9.19
4608 782.56 757.56 72.09 72.75 112.72 65.17

Dynamic Load Balancing on Dedicated Heterogeneous Systems 71

computational capacity. The system could be extended to run on heterogeneous
non dedicated systems and on systems with dynamic load. For that purpose, the
array T [] must be fed not only with the execution times but with the loading
factor on each processor.

To test the overhead introduced by our tool, we have executed classical parallel
codes and the calibrated instrumented versions on an homogeneous system with
8 Intel 3.20 GHz processors. The parallel codes perform block assignments of
the tasks with blocks of the same size for each processor. Since we are dealing
with an homogeneous system, no performance improvement should be achieved
and the differences in running times represent the overhead introduced. Table
2 shows the running times in each case. The overhead introduced by the tool
is negligible. Note that in the resource allocation problem, the performance is
improved by the code using the calibration tool. This is due to the fact that an
homogeneous block data distribution is not the best choice in this case.

5 Computational Results

To check the advantages of the proposed method, we carried out a compre-
hensive computational experiment where the three aforementioned applications
were balanced on different heterogeneous systems. The tests were run on three
clusters (Table 1) to check the library’s response to an increase in the number of
processors with varying computational capacities. For the sake of the simplicity,
the clock frecuency is the indicator of the level of heterogeneity, however it is a
well known fact that better adjustments can be done by executing representative
samples of the applications to determine the speeds of the processors. We will
first analyze the performance of the resource allocation problem. Four algorithms
were implemented: sequential and parallel homogeneous, heterogenous and cal-
ibrated. All parallel versions of the algorithm were run on the three clusters,
giving the following results:

– Tseq: Time in seconds of the sequential version.
– Tpar: Time in seconds of the parallel version, homogeneous data distribution.
– Thet: Time in seconds of the parallel version, static heterogeneous data dis-

tribution proportional to the computational load.

Table 3. Results for the Resource Allocation Problem

Cluster Size Tsec Tpar Thet Tcal GRpar GRhet

1152 7.59 7.04 4.41 3.38 51.98 23.31
1 2304 60.44 55.36 33.35 22.62 59.14 32.18

4608 483.72 430.37 257.98 168.22 60.91 34.79
1152 7.59 4.35 6.1 3.92 9.68 35.7

2 2304 60.54 30.70 20.64 23.94 22.01 -15,97
4608 483.72 237.75 139.06 121.77 48.19 12,43
1152 7.59 5.32 4,68 4.30 19.17 8,18

3 2304 60.54 24.81 20.41 18.90 23.82 7.38
4608 483.72 167.04 113.54 95.89 42.59 15.55

72 I. Galindo, F. Almeida, and J.M. Bad́ıa-Contelles

1 2 3 4 5
iterations

0

1

2

3

4

5

ti
m

e
 (

m
s)

x1e+4 Execution time for calibrated RAP problem

2 3 4 5

1000

3000

5000

7000

9000 Threshold for calibration

Fig. 2. Execution time per iteration for the Resource Allocation Problem on cluster 1
(four processors) with a size of 2304

– Tcal: Time in seconds of the balanced parallel version.
– GRpar = Tpar−Tcal

Tpar
∗ 100: Gain relative to the homogeneous version.

– GRhet = Thet−Tcal

Thet
∗ 100: Gain relative to the heterogeneous version.

In the calibrated version, the calibrating function was only added where appro-
priate, without altering the code from the parallel version. The sequential version
was executed on the fastest processor within each cluster. The threshold is prob-
lem dependent and for testing purposes has been stated experimentally. The
results are shown in Table 3 and are expressed in seconds. A 100-microsecond
threshold was used for the calibrating algorithm. We observe important per-
formance gains when using our tool. Only in one case our tool worsened the
performance, and that is likely due to the threshold used in this case.

Figure 2 shows the results obtained after each iteration on cluster 1 (four
processors) with a problem size of 2304. Each bar represents the execution time
for each processor. Note that the times in iteration 0 of processors 2 and 3 are
much higher than the rest due to the unbalanced execution. The calibration
redistributes the workload, placing a higher load on processors 0 and 1 and de-
creasing the load on processors 2 and 3. The problem gets calibrated at iteration
4 when using a 1000–milliseconds threshold.

Table 4. Results for the matrix product and for the Jacobi method

Matrix Multiplication Jacobi Method
Cluster Size Tsec Tpar Tcal GR Size Tsec Tpar Tcal GR

1152 30.98 47.21 18.94 59.8 1152 34.76 30.26 14.77 51.18
1 2304 720.81 400.49 248.46 37.9 2304 138.74 116.44 50.71 56.44

4608 5840.44 3344.19 2035.84 39.1 4608 553.46 463.89 190.74 58.88
1152 30.98 29.92 15.36 48.6 1152 34.76 17.54 17.05 2.79

2 2304 720.81 247.98 184.62 25.5 2304 138.74 63.43 53.44 15.74
4608 5840.44 2239.31 1639.96 26.7 4608 553.46 256.80 220.49 14.13
1152 30.98 20.009 15.42 22.9 1152 34.76 19.79 14.37 27.38

3 2304 720.81 165.40 134.15 18.8 2304 138.74 54.02 39.38 27.10
4608 5840.44 1487.51 1093.37 26.5 4608 553.46 178.81 162.53 9.10

Dynamic Load Balancing on Dedicated Heterogeneous Systems 73

For the matrix product and Jacobi cases the tests used square matrices of
size Size ∗ Size. A threshold of 2000 microseconds was chosen for the balancing
algorithm. Problem size used was a multiple of the number of processors selected.
The results are shown in Table 4. Note the significant gain resulting from the
dynamic balancing, which in some cases exceeds 50%. For the Jacobi method a
100-microsecond threshold was chosen for the calibrating algorithm.

6 Conclusions and Future Research

We have developed a library to perform dynamic load balancing in heterogeneous
systems. The library can be applied to a wide range of problems and the effort
required by the programmer is minimal, since the approach taken involves min-
imum intrusion in the user’s code. In future work we plan to widen the library’s
applicability to other types of programs and systems.

References

1. Top500 Org: Systems under development (2006),
http://www.top500.org/orsc/2006/comes.html

2. Dongarra, J., Bosilca, G., Chen, Z., Eijkhout, V., Fagg, G.E., Fuentes, E., Lan-
gou, J., Luszczek, P., Pjesivac-Grbovic, J., Seymour, K., You, H., Vadhiyar, S.S.:
Self-adapting numerical software (sans) effort. IBM Journal of Research and De-
velopment 50(2-3), 223–238 (2006)

3. Kalinov, A., Lastovetsky, A.L., Robert, Y.: Heterogeneous computing. Parallel
Computing 31(7), 649–652 (2005)

4. Cuenca, J., Giménez, D., Martinez, J.P.: Heuristics for work distribution of a homo-
geneous parallel dynamic programming scheme on heterogeneous systems. Parallel
Comput. 31(7), 711–735 (2005)

5. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Us-
ing Networked Workstations and Parallel Computers. Prentice Hall, Englewood
Cliffs (2004)

6. Alba, E., Almeida, F., Blesa, M.J., Cotta, C., Dı́az, M., Dorta, I., Gabarró, J., León,
C., Luque, G., Petit, J.: Efficient parallel lan/wan algorithms for optimization. The
mallba project. Parallel Computing 32(5-6), 415–440 (2006)

7. Kalinov, A.: Scalability of heterogeneous parallel systems. Programming and Com-
puter Software 32(1), 1–7 (2006)

8. Aliaga, J.I., Almeida, F., Bad́ıa-Contelles, J.M., Barrachina-Mir, S., Blanco, V.,
Castillo, M.I., Dorta, U., Mayo, R., Quintana-Ort́ı, E.S., Quintana-Ort́ı, G.,
Rodŕıguez, C., de Sande, F.: Parallelization of the gnu scientific library on het-
erogeneous systems. In: ISPDC/HeteroPar, pp. 338–345. IEEE Computer Society,
Los Alamitos (2004)

9. Almeida, F., González, D., Moreno, L.M.: The master-slave paradigm on hetero-
geneous systems: A dynamic programming approach for the optimal mapping.
Journal of Systems Architecture 52(2), 105–116 (2006)

10. Wu, X.: Performance Evaluation, Prediction and Visualization of Parallel Systems.
Kluwer Academic Publishers, Dordrecht (1999)

http://www.top500.org/orsc/2006/comes.html

74 I. Galindo, F. Almeida, and J.M. Bad́ıa-Contelles

11. Al-Jaroodi, J., Mohamed, N., Jiang, H., Swanson, D.R.: Modeling parallel applica-
tions performance on heterogeneous systems. In: IPDPS, p. 160. IEEE Computer
Society, Los Alamitos (2003)

12. Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with mpc.
Parallel computing 28, 1369–1407 (2002)

13. mpC: parallel programming language for heterogeneous networks of computers,
http://hcl.ucd.ie/Projects/mpC

14. Lastovetsky, A., Reddy, R.: Heterompi: Towards a message-passing library for het-
erogeneous networks of computers. Journal of Parallel and Distributed Comput-
ing 66, 197–220 (2006)

15. HeteroMPI: Mpi extension for heterogeneous networks of computers,
http://hcl.ucd.ie/Projects/HeteroMPI

16. Huang, C., Lawlor, O., Kale, L.: Adaptive mpi (2003)
17. Weatherly, D., Lowenthal, D., Lowenthal, F.: Dyn-mpi: Supporting mpi on non

dedicated clusters (2003)
18. charm++ System,

http://charm.cs.uiuc.edu/research/charm/index.shtml#Papers
19. Bosque, J.L., Marcos, D.G., Pastor, L.: Dynamic load balancing in heterogeneous

clusters. In: Hamza, M.H. (ed.) Parallel and Distributed Computing and Networks,
pp. 37–42. IASTED/ACTA Press (2004)

http://hcl.ucd.ie/Projects/mpC
http://hcl.ucd.ie/Projects/HeteroMPI
http://charm.cs.uiuc.edu/research/charm/index.shtml#Papers

	Dynamic Load Balancing on Dedicated Heterogeneous Systems
	Introduction
	Background and Objectives
	Dynamic Task Allocation
	The Balancing Algorithm
	Computational Results
	Conclusions and Future Research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

