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Preface

Current thinking about state-of-the-art infrastructure for computational science
is dominated by two concepts: computing clusters and computational grids. Clus-
ter architectures consistently hold the majority of slots on the list of Top 500
supercomputer sites, and computational Grids, in both experimental and produc-
tion deployments, have become common in academic, government and industrial
research communities around the world. The message passing is the dominant
programming paradigm for high-performance scientific computing on these archi-
tectures. MPI and PVM have emerged as standard programming environments
in the message-passing paradigm. The EuroPVM/MPI conference series is the
premier research event for high-performance parallel programming in the message-
passing paradigm. Applications using parallel message-passing programming, pi-
oneered in this research community, are having significant impact in the areas of
computational science, such as bioinformatics, atmospheric sciences, chemistry,
physics, astronomy, medicine, banking and finance, energy, etc.

EuroPVM/MPI is a flagship conference for this community, established as the
premier international forum for researchers, users and vendors to present their
latest advances in MPI and PVM. EuroPVM/MPI is the forum where funda-
mental aspects of message passing, implementations, standards, benchmarking,
performance and new techniques are presented and discussed by researchers,
developers and users from academia and industry.

EuroPVM/MPI 2008 was organized by the UCD School of Computer Sci-
ence and Informatics in Dublin, September 7–10, 2008. This was the 15th issue
of the conference, which takes place each year at a different European location.
Previous meetings were held in Paris (2007), Bonn (2006), Sorrento (2005), Bu-
dapest (2004), Venice (2003), Linz (2002), Santorini (2001), Balatonfured (2000),
Barcelona (1999), Liverpool (1998), Krakow (1997), Munich (1996), Lyon (1995),
and Rome (1994).

The main topics of the meeting were formal verification of message passing
programs, collective operations, parallel applications using the message passing
paradigm, one-sided and point-to-point communication, MPI standard exten-
sions or evolution, tools for performance evaluation and optimization, MPI-I/O,
mutli-core and multithreaded architectures, and heterogeneous platforms.

For this year’s conference, the Program Committee Co-chairs invited seven
outstanding researchers to present lectures on different aspects of the message-
passing and multithreaded paradigms: George Bosilca, one of the leading mem-
bers of OpenMPI, presented “The Next Frontier,” Franck Cappello, one of the
leading experts in the fault-tolerant message passing, presented “Fault Toler-
ance for PetaScale Systems: Current Knowledge, Challenges and Opportunities,”
Barbara Chapman, the leader of the OpenMP community, presented “Manag-
ing Multi-core with OpenMP,” Al Geist, one of the authors of PVM, presented
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“MPI Must Evolve or Die,” William Gropp, one of the leaders of MPICH, pre-
sented “MPI and Hybrid Programming Models for Petascale Computing,” Rolf
Rabenseifner, one of the leading experts in optimization of collective operations,
presented “Some Aspects of Message Passing on Future Hybrid Systems,” and
Vaidy Sunderam, one of the authors of PVM, presented “From Parallel Virtual
Machine to Virtual Parallel Machine: The Unibus System.”

In addition to the conference main track, the meeting featured the seventh
edition of the special session “ParSim 2008 - Current Trends in Numerical Sim-
ulation for Parallel Engineering Environments.” The conference also included a
full-day tutorial on “Using MPI-2: A Problem-Based Approach” by Ewing Rusty
Lusk and William Gropp.

The response to the call for papers was very good: we received 55 full papers
submitted to EuroPVM/MPI from 22 countries including Italy, Thailand, China,
Germany, India, Greece, Spain, Japan, Switzerland, Ireland, Canada, Poland,
Russia, Brazil, Denmark, Belgium, Mexico, Austria, Israel, Iran, France, and
USA. Out of the 55 papers, 29 were selected for presentation at the conference.
Each submitted paper was assigned to four members of the Program Committee
(PC) for evaluation. The PC members either reviewed the papers themselves,
or solicited external reviewers. The reviewing process went quite smoothly, and
almost all reviews were returned, providing a solid basis for the Program Chairs
to make the final selection for the conference program. The result was a well-
balanced, focused and high-quality program. Out of the accepted 29 papers,
four were selected as outstanding contributions to EuroPVM/MPI 2008, and
were presented at special, plenary sessions:

– “Non-Data-Communication Overheads in MPI: Analysis on Blue Gene/P”
by Pavan Balaji, Anthony Chan, William Gropp, Rajeev Thakur and Ewing
Lusk

– “Architecture of the Component Collective Messaging Interface” by Sameer
Kumar, Gabor Dozsa, Jeremy Berg, Bob Cernohous, Douglas Miller, Joseph
Ratterman, Brian Smith and Philip Heidelberger

– “X-SRQ - Improving Scalability and Performance of Multi-Core InfiniBand
Clusters” by Galen Shipman, Stephen Poole, Pavel Shamis and Ishai
Rabinovitz

– “A Software Tool for Accurate Estimation of Parameters of Heterogeneous
Communication Models” by Alexey Lastovetsky, Maureen O’Flynn and
Vladimir Rychkov

Information about the conference can be found at the conference website:
http://pvmmpi08.ucd.ie, which will be kept available.

The EuroPVM/MPI 2008 logo was designed by Alexander Kourinniy.
The Program and General Chairs would like to thank all who contributed

to making EuroPVM/MPI 2008 a fruitful and stimulating meeting, be they
technical paper or poster authors, PC members, external referees, participants
or sponsors. We would like to express our gratitude to all the members of the PC
and the additional reviewers, who ensured the high quality of Euro PVM/MPI
2008 with their careful work.
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Finally, we would like to thank the University College Dublin and the UCD
School of Computer Science and Informatics for their support and efforts in
organizing this event. In particular, we would like to thank Vladimir Rychkov
(UCD), Alexander Ufimtsev (UCD), Angela Logue (UCD), An Nhien LeKhac
(UCD) and Clare Comerford (UCD). Special thanks go to all the School of
Computer Science and Informatics PhD students who helped in the logistics of
the conference.

September 2008 Alexey Lastovetsky
Tahar Kechadi
Jack Dongarra
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The Next Frontier

George Bosilca

Innovative Computing Laboratory
Electrical Engineering and Computer Science Department,

University of Tennessee, Knoxville, TN, USA
bosilca@eecs.utk.edu

Today, multi/many core systems have become prevalent, with architectures more
or less exotic and heterogeneous. The overall theoretical computational power of
the new generation processors has thus greatly increased, but their programmabil-
ity still lacks certainty. The many changes in the newest architectures have come
so rapidly that we are still deficient in taking advantage of all the new features, in
terms of high performance libraries and applications. Simultaneously, application
requirements growat least at the samepace.Obviously,more computations require
more data in order to feed the deepest processor pipelines. More data means either
faster access to the memory or faster access to the network. But the improvement
in access speed to all types of memory (network included) lags behind the increase
in computational power. As a result, while extracting the right performance of the
current and next generation architectures is still a challenge, it is compulsory to
increase the efficiency of the current parallel programming paradigms.

Simultaneously, increasing the size of parallel machines triggers an increase in
fault tolerance requirements. While the fault management and recovery topic has
been thoughtfully studied over the last decade, recent changes in the number and
distribution of the processor’s cores have raised some interesting questions. Which
fault tolerant approachfits best to the peta-scale environments is still debated, but
few of these approaches show interesting performances at scale or a low degree of
intrusion in the application code. Eventually, the right answer might be some-
where in between, a dynamic combination of several of these methods, strictly
based on the application’s properties and the hardware environment.

As expected, all these changes guarantee a highly dynamic (and exciting from
a research point of view), high performance arena over the next few years. New
mathematical algorithms will have to emerge in order to take advantage of these
unbalanced architectures, new programming approaches will have to be estab-
lished to help these algorithms, and the next generations of computer scientists
will have to be fluent in understanding these architectures and competent in
understanding the best programming paradigm that fits them.

How MPI will adapt to fit into this conflicting environment is still an open
question. Over the last few years, MPI has been a very successful parallel pro-
gramming paradigm, partially due to its apparent simplicity to express basic
message exchange patterns and partially to the fact that it increases the pro-
ductivity of the programmers and the parallel machines. Whatever the future of
MPI will be, these two features should remain an indispensable part of its new
direction of development.
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Abstract. The emergence of PetaScale systems reinvigorates the com-
munity interest about how to manage failures in such systems and ensure
that large applications successfully complete. Existing results for several
key mechanisms associated with fault tolerance in HPC platforms will
be presented during this talk. Most of these key mechanisms come from
the distributed system theory. Over the last decade, they have received
a lot of attention from the community and there is probably little to
gain by trying to optimize them again. We will describe some of the
latest findings in this domain. Unfortunately, despite their high degree
of optimization, existing approaches do not fit well with the challenging
evolutions of large scale systems. There is room and even a need for new
approaches. Opportunities may come from different origins like adding
hardware dedicated to fault tolerance or relaxing some of the constraints
inherited from the pure distributed system theory. We will sketch some
of these opportunities and their associated limitations.
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High end distributed and distributed shared memory platforms with many thou-
sands of cores will be deployed in the coming years to solve the toughest technical
problems. Their individual nodes will be heterogeneous multithreading, multi-
core systems, capable of executing many threads of control, and with a deep
memory hierarchy. For example, the petascale architecture to be put in produc-
tion at the US National Center for Supercomputing Applications (NCSA) in
2011 is based on the IBM Power7 chip which uses multicore processor technol-
ogy. Thousands of compute nodes with over 200,000 cores are envisioned. The
Roadrunner system that will be deployed at the Los Alamos National Labora-
tory (LANL) is expected to have heterogneous nodes, with both AMD Opterons
and IBM Cells configured, and a similar number of cores.

This brave new multicore world presents application developers with many
challenges. First, the continued growth in the number of system nodes will ex-
cacerbate existing scalability problems and may introduce new ones. Second, the
number of threads of control that may execute simultaneously within a node will
be significantly greater than in the past. The code will need to expose a sufficient
amount of parallelism. Third, the hierarchical parallelism present in the archi-
tecture will be even more pronounced than in the past, with additional resource
sharing (and contention) between threads that run on the same core. There is
likely to be a smaller amount of cache per thread and low bandwidth to main
memory, since this is a shared resource. Last but not least, the heterogeneity
within a node will need to be addressed.

Whereas MPI has proved to be an excellent means of expressing program
parallelism when nodes have a small number of cores, future architectures may
make this a tough proposition. In particular, MPI does not give the applica-
tion developer the means to conserve memory or to directly modify the code to
benefit from resource sharing and to avoid its negative implications. One possi-
ble way forward is to systematically combine MPI with OpenMP. OpenMP is a
widely-supported high-level shared memory programming model that provides
ease of use and maintenance simplicity. Version 3.0 of OpenMP [1] has consider-
ably extended the scope of this API. It allows multilevel loop nest parallelism,
enhances support for nested parallelism and introduces tasks, which are con-
ceptually placed into a pool of tasks for subsequent execution by an arbitrary
thread.
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4 B. Chapman

In this presentation, we discuss this approach and its potential. We describe
a typical implementation strategy for OpenMP (see e.g. [2]), and some imme-
diate implications for program performance. As a pure shared memory model,
OpenMP does not address the locality of data with respect to the executing
threads or the system. Nor does it permit mappings of threads to the hardware
resources. Yet the performance impact of these is well documented (e.g. [3]).
We recently proposed a small set of extensions that enable the restriction of
OpenMP’s worksharing directives to a subset of the threads in a team [4].
Such a feature might make it easier to map threads to the system by mak-
ing a single level of parallelism more expressive. It might also facilitate the ex-
pression of code that overlaps OpenMP computation and MPI communication.
Other work has proposed enhancements to nested parallelism (e.g. [5]) and loop
schedules. Industry is working to support OpenMP on heterogeneous platforms
(e.g. [6,7,8,9]. We consider how these and other efforts might lead to an improved
hybrid programming model.
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Abstract. Multicore and hybrid architecture designs dominate the
landscape for systems that are 1 to 20 petaflops peak performance. As
such the MPI software must evolve to effectively use these types of ar-
chitectures or it will die just like the vector programming models died.
While applications may continue to use MPI, it is not business as usual in
how communication libraries are being changed to effectively exploit the
new petascale systems. This talk presents some key research in petascale
communication libraries going on in the ”Harness” project, which is the
follow-on to the PVM research project.

The talk will cover a number of areas being explored, including hier-
archical algorithm designs, hybrid algorithm designs, dynamic algorithm
selection, and fault tolerance inside next generation message passing li-
braries. Hierarchical algorithm designs seek to consolidate information
at different levels of the architecture to reduce the number of messages
and contention on the interconnect. Natural places for such consolidation
include the socket level, the node level, the cabinet level, and multiple-
cabinet level. Hybrid algorithm designs use different algorithms at dif-
ferent levels of the architecture, for example, an ALL GATHER may
use a shared memory algorithm across the node and a message passing
algorithm between nodes, in order to better exploit the different data
movement capabilities. An adaptive communication library may dynam-
ically select from a set of collective communication algorithms based on
the number of nodes being sent to, where they are located in the sys-
tem, the size of the message being sent, and the physical topology of
the computer.

This talk will also describe how ORNLs Leadership computing fa-
cility (LCF) has been proactive in getting science teams to adopt the
latest communication and IO techniques. This includes assigning com-
putational science liaisons to each science team. The liaison has knowl-
edge of both the systems and the science, providing a bridge to improved
communication patterns. The LCF also has a Cray Center of Excellence
and a SUN Lustre Center of Excellence on site. These centers provide
Cray and SUN engineers who work directly with the science teams to
improve the MPI and MPI-IO performance of their applications.

Finally this talk will take a peek at exascale architectures and the need
for new approaches to software development that integrates arcitecture
design and algorithm development to facilitate the synergistic evolution
of both.
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Abstract. In 2011, the National Center for Supercomputing Applica-
tions at the University of Illinois will begin operation of the Blue Wa-
ters petascale computing system. This system, funded by the National
Science Foundation, will deliver a sustained performance of one to two
petaflops for many applications in science and engineering.

Blue Waters will support a variety of programming models, including
the “MPI everywhere” model that is the most common among today’s
MPI applications. In addition, it will support a variety of other program-
ming models. The programming models may be used instead of MPI or
they may be used in combination with MPI. Such a combined program-
ming model is often called a hybrid model. The most familiar of the
models used in combination with MPI is OpenMP, which is designed for
shared-memory systems and is based on the use of multiple threads in
each MPI process. This programming model has found mixed success
to date, with many experiments showing little benefit while others show
promise. The reason for this is related to the use of OpenMP within MPI
programs—where OpenMP is used to complement MPI, for example, by
providing better support for load-balancing adaptive computations or
sharing large data tables, it can provide a significant benefit. Where it is
used as an alternative to MPI, OpenMP often has difficulty achieving the
performance of MPI (MPI’s much-criticized requirement that the user
directly manage data motion ensures that the programmer does in fact
manage that memory motion, leading to improved performance). This
suggests that other programming models can be productively combined
with MPI as long as they complement, rather than replace, MPI.

One class of languages of great current interest are the Partitioned
Global Address Space (PGAS) languages. These languages distinguish
between local and remote memory (thus keeping the user aware of the
performance consequences of remote memory access) but provide simpler
and more efficient mechanisms for accessing or updating remote memory
than are available in MPI. While some applications will undoubtedly be
written entirely in these newer programming models, most applications
that will run on petascale systems such as Blue Waters have already
been written; at the most, some performance-critical software compo-
nents may be replaced with components that are implemented using a
different programming model.
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In all of these hybrid programming models, how will the different com-
ponents interact? How should the different models coordinate their use of
the underlying processor resources? Can these programming models share
low-level infrastructure on systems such as Blue Waters? This talk will dis-
cuss some of the alternatives and suggest directions for investigation.

Future high-end systems are likely to contain hybrid computing ele-
ments. The Roadrunner system at the Los Alamos National Laboratory,
which was the the first computer to exceed 1 petaflop on the HP Lin-
pack benchmark, is an example of such a system. It combines conven-
tional processors with a processor optimized for operations encountered
in graphics processing, the Cell Broadband Engine. Like the preceding
examples of programming models, such systems offer the greatest advan-
tages when the different components complement each other. Should the
programming model for such systems try to hide the differences, provid-
ing a simple, uniform view of the system, or should the programming
model reflect, at an abstract level, the different strengths of the different
components? This talk will look at some of the issues of using MPI in
combination with other software and hardware models and discuss how
MPI can remain effective at the petascale and beyond.
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In the future, most systems in high-performance computing (HPC) will have a
hierarchical hardware design, e.g., a cluster of ccNUMA or shared memory nodes
with each node having several multi-core CPUs. Parallel programming must
combine the distributed memory parallelization on the node inter-connect with
the shared memory parallelization inside each node. There are many mismatch
problems between hybrid hardware topology and the hybrid or homogeneous
parallel programming models on such hardware. Hybrid programming with a
combination of MPI and OpenMP is often slower than pure MPI programming.
Major chances arise from the load balancing features of OpenMP and from a
smaller memory footprint if the application duplicates some data on all MPI
processes [1,2,3].

The master-only MPI&OpenMP style is the simplest hybrid programming
paradigm style. The application only communicates outside parallel OpenMP
regions. All other threads will sleep on each SMP node while the master thread
is communicating. This obvious drawback can be overcome by overlapping com-
munication and computation, e.g., the master thread communicates while all
other threads are executing application code. OpenMP worksharing directives
are not designed for this programming paradigm. Barbara Chapman et al. de-
veloped the idea of subteams to allow worksharing directives on a subset of
threads [4].

Optimization of hybrid (and non-hybrid) parallel applications normally re-
quires knowledge about the hardware. For example, in a torus network, the lo-
cality of MPI processes with respect to the topology of the application’s domain
decomposition can be an important factor in minimizing communication over-
head. Knowledge about a hierarchical memory and network structure is desirable
for optimizing within the application and inside the communication library. Ex-
amples are a multi-level domain decomposition inside the application to benefit
from cheaper local communication, or hardware-aware optimization of collective
MPI routines. Often, optimization decisions are not portable. This isn’t a con-
tradiction to MPI’s goals of portability and efficiency. Already eleven years ago,
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the MPI Forum discussed cluster attributes to enable portable optimizations of
applications on hybrid hardware [5]. Today, new challenges emerge from signifi-
cant bandwidth differences between local memories (on the chip, between cores),
communication through the shared memory, and between SMP nodes. It will be
important not to use the memory when data is available through caches or lo-
cal memories. Not only the MPI-3 standardization, but also the evolving PGAS
languages (e.g., Co-Array Fortran [6,8], UPC [7,8], Chapel [9], Titanium [10,11],
X10 [12]) are working to find efficient answers and programming environments
for future hardware.

There is also an impact of software and benchmark standards on the future
hardware development and market. In particular, micro benchmarks may exclude
important aspects and focus only on special topics. For this reason, the Linpack
benchmark [13] was complemented by the HPC Challenge Benchmark Suite
[14,15]. With parallel I/O, benchmarks with micro-kernels tend to measure only
wellformed I/O, i.e., using chunk sizes that are a multiple of some power-of-
two. In contrast, real application mainly use non-wellformed I/O. For example,
the b eff io benchmark can show significant differences between wellformed and
non-wellformed junk sizes [16,17]. And as a third example, the MPI-2 Forum
decided in 1997 to define a one-sided communication interface that does not
really benefit from physical remote direct memory access (RDMA) although the
SHMEM library [18] was already available, but only on specific hardware. Has
this decision slowed down a broad development of RDMA capabilities in cluster
networks? Can a new RDMA-based one-sided MPI interface help to efficiently
use clusters of multi-core SMP nodes? Is it a must if mixed-model programming,
like MPI & OpenMP or MPI & Co-Array Fortran, should be used? The MPI-3
Forum currently tries to address such questions.
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Network-based concurrent computing frameworks have matured over two
decades. However, in the realm of multi-domain geographically distributed com-
puting, their true potential is yet to be realized. Popularly termed “grids”, these
metacomputing systems have yet to see widespread adoption and use, partly due
to challenges resulting from heterogeneity, deployment issues, and dynamicity.
The Unibus project proposes novel strategies for unifying and dynamically con-
ditioning shared heterogeneous resources located within multiple administrative
domains. Our approach is based on client-centric overlay software that provides
unified interfaces to diverse resources, complemented by runtime systems that
substantially automate setup and configuration. The overlay unifies heteroge-
neous resources through service drivers or mediators that operate analogously to
device drivers. New resources and variations in availability are handled through
self-deployment of mediators and their service daemon counterparts, enabling the
overlay to adaptively present applications with coherent aggregated projections
of the underlying resources. Dynamic incorporation of new resources is facili-
tated via automated environment conditioning that uses deployment descriptors
in conjunction with site-specific data to prepare platforms for execution. We will
discuss the motivations and rationale behind the Unibus approach, describe the
design of the framework, and present preliminary results and experiences.
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Abstract. MPI-2 introduced many new capabilities, including dynamic
process management, one-sided communication, and parallel I/O. Im-
plementations of these features are becoming widespread. This tutorial
shows how to use these features by showing all of the steps involved in
designing, coding, and tuning solutions to specific problems. The prob-
lems are chosen for their practical use in applications as well as for their
ability to illustrate specific MPI-2 topics. Complete examples that illus-
trate the use of MPI one-sided communication, MPI parallel I/O, and
hybrid programming with MPI and threads will be discussed and full
source code will be made available to the attendees. Each example will
include a hands-on lab session; these sessions will also introduce the use
of performance and correctness debugging tools that are available for the
MPI environment. Guidance on tuning MPI programs will be included,
with examples and data from MPI implementations on a variety of par-
allel systems, including Sun, IBM, SGI, and clusters. Examples in C,
Fortran, and C++ will be included. Familiarity with basic MPI usage
will be assumed.

� This work was supported by the U.S. Dept. of Energy under Contract DE-AC02-
06CH11357.
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Abstract. Modern HEC systems, such as Blue Gene/P, rely on achiev-
ing high-performance by using the parallelism of a massive number of
low-frequency/low-power processing cores. This means that the local pre-
and post-communication processing required by the MPI stack might
not be very fast, owing to the slow processing cores. Similarly, small
amounts of serialization within the MPI stack that were acceptable on
small/medium systems can be brutal on massively parallel systems. In
this paper, we study different non-data-communication overheads within
the MPI implementation on the IBM Blue Gene/P system.

1 Introduction

As we move closer to the petaflop era, modern high-end computing (HEC) sys-
tems are undergoing a drastic change in their fundamental architectural model.
With processor speeds no longer doubling every 18-24 months owing to the
exponential increase in power consumption and heat dissipation, modern HEC
systems tend to rely lesser on the performance of single processing units. Instead,
they try to extract parallelism out of a massive number of low-frequency/low-
power processing cores. IBM Blue Gene/L [1] was one of the early supercom-
puters to follow this architectural model, soon followed by other systems such
as Blue Gene/P (BG/P) [5] and SiCortex [2].

While such an architecture provides the necessary ingredients for building
petaflop and larger systems, the actual performance perceived by users heavily
depends on the capabilities of the systems-software stack used, such as the MPI
implementation. While the network itself is quite fast and scalable on these
systems, the local pre- and post-data-communication processing required by the
MPI stack might not be as fast, owing to the slow processing cores. For example,
local processing tasks within MPI that were considered quick on a 3.6 GHz Intel
processor, might form a significant fraction of the overall MPI processing time
on the modestly fast 850 MHz cores of a BG/P. Similarly, small amounts of
serialization within the MPI stack which were considered acceptable on a system
with a few hundred processors, can be brutal when running on massively parallel
systems with hundreds of thousands of cores.

In this paper, we study the non-data-communication overheads in MPI on
BG/P. We identify various bottleneck possibilities within the MPI stack, with
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respect to the slow pre- and post-data-communication processing as well as seri-
alization points, stress these overheads using different benchmarks, analyze the
reasons behind such overheads and describe potential solutions for solving them.

2 BG/P Software and Hardware Stacks

BG/P has five different networks [6]. Two of them (10G and 1G Ethernet with
JTAG interface) are used for file I/O and system management. The other three
(3-D Torus, Global Collective and Global Interrupt) are used for MPI commu-
nication. The 3-D torus network is used for MPI point-to-point and multicast
operations and connects all compute nodes to form a 3-D torus. Thus, each
node has six nearest-neighbors. Each link provides a bandwidth of 425 MBps
per direction (total 5.1 GBps). The global collective network is a one-to-all net-
work for compute and I/O nodes used for MPI collective communication and
I/O services. Each node has three links to this network (total 5.1 GBps bidirec-
tional). The global interrupt network is an extremely low-latency network for
global barriers and interrupts, e.g., the global barrier latency of a 72K-node par-
tition is approximately 1.3μs. On BG/P, compute cores do not handle packets
on the torus network; a DMA engine on each node offloads most of the network
packet injecting and receiving work, enabling better overlap of computation and
communication. However, the cores handle sending/receiving packets from the
collective network.

BG/P is designed for multiple programming models. The Deep Computing
Messaging Framework (DCMF) and the Component Collective Messaging Inter-
face (CCMI) are used as general purpose libraries to support different program-
ming models [9]. DCMF implements point-to-point and multisend protocols. The
multisend protocol connects the abstract implementation of collective operations
in CCMI to targeted communication networks.

IBM’s MPI on BG/P is based on MPICH2 and is implemented on top of
DCMF. Specifically, it borrows most of the upper-level code from MPICH2,
including MPI-IO and the MPE profiler, while implementing BG/P specific de-
tails within a device implementation called dcmfd. The DCMF library provides
low-level communication support. All advanced communication features such as
allocation and handling of MPI requests, dealing with tags and unexpected mes-
sages, multi-request operations such as MPI Waitany or MPI Waitall, derived-
datatype processing and thread synchronization are not handled by the DCMF
library and have to be taken care of by the MPI implementation.

3 Experiments and Analysis

Here, we study the non-data-communication overheads in MPI on BG/P.

3.1 Basic MPI Stack Overhead

An MPI implementation can be no faster than the underlying communication
system. On BG/P, this is DCMF. Our first measurements (Figure 1) compare
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Fig. 1. MPI stack overhead

the communication performance of MPI (on DCMF) with the communication
performance of DCMF. For MPI, we used the OSU MPI suite [10] to evaluate
the performance. For DCMF, we used our own benchmarks on top of the DCMF
API, that imitate the OSU MPI suite. The latency test uses blocking commu-
nication operations while the bandwidth test uses non-blocking communication
operations for maximum performance in each case.

The difference in performance of the two stacks is the overhead introduced by
the MPI implementation on BG/P. We observe that the MPI stack adds close
to 1.1μs overhead for small messages; that is, close to 1000 cycles are spent for
pre- and post-data-communication processing within the MPI stack. We also
notice that for message sizes larger than 1KB, this overhead is much higher
(closer to 4μs or 3400 cycles). This additional overhead is because the MPI
stack uses a protocol switch from eager to rendezvous for message sizes larger
than 1200 bytes. Though DCMF itself performs the actual rendezvous-based
data communication, the MPI stack performs additional book-keeping in this
mode which causes this additional overhead. In several cases, such redundant
book-keeping is unnecessary and can be avoided.

3.2 Request Allocation and Queueing Overhead

MPI provides non-blocking communication routines that enable concurrent com-
putation and communication where the hardware can support it. However, from
the MPI implementation’s perspective, such routines require managing MPI
Request handles that are needed to wait on completion for each non-blocking
operation. These requests have to be allocated, initialized and queued/dequeued
within the MPI implementation for each send or receive operation, thus adding
overhead, especially on low-frequency cores.

In this experiment, we measure this overhead by running two versions of the
typical ping-pong latency test—one using MPI Send and MPI Recv and the other
using MPI Isend, MPI Irecv, and MPI Waitall. The latter incurs the overhead of
allocating, initializing, and queuing/dequeuing request handles. Figure 2 shows
that this overhead is roughly 0.4 μs or a little more than 300 clock cycles.1 While
1 This overhead is more than the entire point-to-point MPI-level shared-memory com-

munication latency on typical commodity Intel/AMD processors [7].
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Fig. 2. Request allocation and queuing: (a) Overall performance; (b) Overhead

this overhead is expected due to the number of request management operations,
carefully redesigning them can potentially bring this down significantly.

3.3 Overheads in Tag and Source Matching

MPI allows applications to classify different messages into different categories
using tags. Each sent message carries a tag. Each receive request contains a
tag and information about which source the message is expected from. When a
message arrives, the receiver searches the queue of posted receive requests to find
the one that matches the arrived message (both tag and source information) and
places the incoming data in the buffer described by this request. Most current
MPI implementations use a single queue for all receive requests, i.e., for all tags
and all source ranks. This has a potential scalability problem when the length
of this queue becomes large.

To demonstrate this problem, we designed an experiment that measures the
overhead of receiving a message with increasing request-queue size. In this ex-
periment, process P0 posts M receive requests for each of N peer processes with
tag T0, and finally one request of tag T1 for P1. Once all the requests are posted
(ensured through a low-level hardware barrier that does not use MPI), P1 sends
a message with tag T1 to P0. P0 measures the time to receive this message not
including the network communication time. That is, the time is only measured
for the post-data-communication phase to receive the data after it has arrived
in its local temporary buffer.

Figure 3 shows the time taken by the MPI stack to receive the data after it
has arrived in the local buffer. Figures 3(a) and 3(b) show two different versions
of the test—the first version keeps the number of peers to one (N = 1) but
increases the number of requests per peer (M), while the second version keeps
the number of requests per peer to one (M = 1) but increases the number of
peers (N). For both versions, the time taken increases rapidly with increasing
number of total requests (M × N). In fact, for 4096 peers, which is modest
considering the size BG/P can scale to, we notice that even just one request per
peer can result in a queue parsing time of about 140000μs.
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Request Matching Overhead vs. Number of Requests
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Fig. 3. Request matching overhead: (a) requests-per-peer, (b) number of peers
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Fig. 4. Matching overhead per request

Another interesting observation in
the graph is that the time increase
with the number of peers is not lin-
ear. To demonstrate this, we present
the average time taken per request in
Figure 4—the average time per re-
quest increases as the number of re-
quests increases! Note that parsing
through the request queue should take
linear time; thus the time per re-
quest should be constant, not in-
crease. There are several reasons for
such a counter-intuitive behavior; we
believe the primary cause for this is

the limited number of pre-allocated requests that are reused during the life-time
of the application. If there are too many pending requests, the MPI implemen-
tation runs out of these pre-allocated requests and more requests are allocated
dynamically.

3.4 Algorithmic Complexity of Multi-request Operations

MPI provides operations such as MPI Waitany, MPI Waitsome and MPI Waitall
that allow the user to provide multiple requests at once and wait for the com-
pletion of one or more of them. In this experiment, we measure the MPI stack’s
capability to efficiently handle such requests. Specifically, the receiver posts sev-
eral receive requests (MPI Irecv) and once all the requests are posted (ensured
through a low-level hardware barrier) the sender sends just one message that
matches the first receive request. We measure the time taken to receive the mes-
sage, not including the network communication time, and present it in Figure 5.

We notice that the time taken by MPI Waitany increases linearly with the
number of requests passed to it. We expect this time to be constant since the
incoming message matches the first request itself. The reason for this behav-
ior is the algorithmic complexity of the MPI Waitany implementation. While
MPI Waitany would have a worst-case complexity of O(N), where N is the number
of requests, its best-case complexity should be constant (when the first request is
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Fig. 5. MPI Waitany Time

already complete when the call is
made). However, the current imple-
mentation performs this in two steps.
In the first step, it gathers the in-
ternal request handles for each re-
quest (takes O(N) time) and in the
second step does the actual check for
whether any of the requests have com-
pleted. Thus, overall, even in the best
case, where the completion is con-
stant time, acquiring of internal re-
quest handlers can increase the time
taken linearly with the number of
requests.

3.5 Overheads in Derived Datatype Processing

MPI allows non-contiguous messages to be sent and received using derived
datatypes to describe the message. Implementing these efficiently can be chal-
lenging and has been a topic of significant research [8,11,3]. Depending on
how densely the message buffers are aligned, most MPI implementations pack
sparse datatypes into contiguous temporary buffers before performing the actual
communication. This stresses both the processing power and the memory/cache
bandwidth of the system. To explore the efficiency of derived datatype commu-
nication on BG/P, we looked only at the simple case of a single stride (vector)
type with a stride of two. Thus, every other data item is skipped, but the total
amount of data packed and communicated is kept uniform across the different
datatypes (equal number of bytes). The results are shown in Figure 6.
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Fig. 6. Derived datatype latency: (a) long messages and (b) short messages

These results show a significant gap in performance between sending a contigu-
ous messages and a non-contiguous message (with the same number of bytes).
The situation is particularly serious for a vector of individual bytes (MPI CHAR).
It is also interesting to look at the behavior for shorter messages (Figure 6(b)).



Non-data-communication Overheads in MPI: Analysis on Blue Gene/P 19

This shows, roughly, a 2 μs gap in performance between contiguous send and a
send of short, integer or double precision data with a stride of two.

3.6 Buffer Alignment Overhead

For operations that involve touching the data that is being communicated (such
as datatype packing), the alignment of the buffers that are being processed can
play a role in overall performance if the hardware is optimized for specific buffer
alignments (such as word or double-word alignments), which is common in most
hardware today.

In this experiment (Figure 7), we measure the communication latency of a
vector of integers (4 bytes) with a stride of 2 (that is, every alternate integer
is packed and communicated). We perform the test for different alignment of
these integers—“0” refers to perfect alignment to a double-word boundary, “1”
refers to an misalignment of 1-byte. We notice that as long as the integers are
within the same double-word (0-4 byte misalignment) the performance is better
as compared to when the integers span two different double-words (5-7 byte
misalignment), the performance difference being about 10%. This difference is
expected as integers crossing the double-word boundary require both the double-
words to be fetched before any operation can be performed on them.
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Fig. 7. Buffer alignment overhead

3.7 Unexpected Message Overhead

MPI does not require any synchronization between the sender and receiver pro-
cesses before the sender can send its data out. So, a sender can send multiple
messages which are not immediately requested for by the receiver. When the re-
ceiver tries to receive the message it needs, all the previously sent messages are
considered unexpected, and are queued within the MPI stack for later requests to
handle. Consider the sender first sending multiple messages of tag T0 and finally
one message of tag T1. If the receiver is first looking for the message with tag
T1, it considers all the previous messages of tag T0 as unexpected and queues
them in the unexpected queue. Such queueing and dequeuing of requests (and
potentially copying data corresponding to the requests) can add overhead.
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Unexpected Message Overhead vs. Number of Requests
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Fig. 8. Unexpected message overhead: (a) Increasing number of messages per peer,
with only one peer; (b) Increasing number of peers, with only one message per peer

To illustrate this, we designed an experiment that is a symmetric-opposite of
the tag-matching test described in Section 3.3. Specifically, in the tag-matching
test, we queue multiple receive requests and receive one message that matches
the last queued request. In the unexpected message test, we receive multiple mes-
sages, but post only one receive request for the last received message. Specifically,
process P0 first receives M messages of tag T0 from each of N peer processes
and finally receives one extra message of tag T1 from P1. The time taken to
receive the final message (tag T1) is measured, not including the network com-
munication time, and shown in Figure 8 as two cases: (a) when there is only
one peer, but the number of unexpected messages per peer increases (x-axis),
and (b) the number of unexpected messages per peer is one, but the number of
peers increases. We see that the time taken to receive the last message increases
linearly with the number of unexpected messages.

3.8 Overhead of Thread Communication

To support flexible hybrid programming model such as OpenMP plus MPI,
MPI allows applications to perform independent communication calls from each
thread by requesting for MPI THREAD MULTIPLE level of thread concurrency from
the MPI implementation. In this case, the MPI implementation has to perform
appropriate locks within shared regions of the stack to protect conflicts caused
due to concurrent communication by all threads. Obviously, such locking has
two drawbacks: (i) they add overhead and (ii) they can serialize communication.

We performed two tests to measure the overhead and serialization caused
by such locking. In the first test, we use four processes on the different cores
which send 0-byte messages to MPI PROC NULL (these messages incur all the
overhead of the MPI stack, except that they are never sent out over the net-
work, thus imitating an infinitely fast network). In the second test, we use four
threads with MPI THREAD MULTIPLE thread concurrency to send 0-byte messages
to MPI PROC NULL. In the threads case, we expect the locks to add overheads and
serialization, so the performance to be lesser than in the processes case.

Figure 9 shows the performance of the two tests described above. The differ-
ence between the one-process and one-thread cases is that the one-thread case
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requests for the MPI THREAD MULTIPLE level of thread concurrency, while the
one-process case requests for no concurrency, so there are no locks. As expected,
in the process case, since there are no locks, we notice a linear increase in per-
formance with increasing number of cores used. In the threads case, however,
we observe two issues: (a) the performance of one thread is significantly lower
than the performance of one process and (b) the performance of threads does
not increase at all as we increase the number of cores used.
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Fig. 9. Threads vs. Processes

The first observation (difference in one-
process and one-thread performance) points
out the overhead in maintaining locks. Note
that there is no contention on the locks in
this case as there is only one thread access-
ing them. The second observation (constant
performance with increasing cores) reflects
the inefficiency in the concurrency model
used by the MPI implementation. Specifi-
cally, most MPI implementations perform
a global lock for each MPI operation thus
allowing only one thread to perform com-
munication at any given time. This results
in virtually zero effective concurrency in the communication of the different
threads. Addressing this issue is the subject of a separate paper [4].

4 Conclusions and Future Work

In this paper, we studied the non-data-communication overheads within MPI
implementations and demonstrated their impact on the IBM BlueGene/P sys-
tem. We identified several bottlenecks in the MPI stack including request han-
dling, tag matching and unexpected messages, multi-request operations (such
as MPI Waitany), derived-datatype processing, buffer alignment overheads and
thread synchronization, that are aggravated by the low processing capabilities
of the individual processing cores on the system as well as scalability issues trig-
gered by the massive scale of the machine. Together with demonstrating and
analyzing these issues, we also described potential solutions for solving these
issues in future implementations.
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Abstract. Different programming paradigms utilize a variety of collective
communication operations, often with different semantics. We present the com-
ponent collective messaging interface (CCMI), that can support asynchronous
non-blocking collectives and is extensible to different programming paradigms
and architectures. CCMI is designed with components written in the C++ pro-
gramming language, allowing it to have reuse and extendability. Collective algo-
rithms are embodied in topological schedules and executors that execute them.
Portability across architectures is enabled by the multisend data movement com-
ponent. CCMI includes a programming language adaptor used to implement dif-
ferent APIs with different semantics for different paradigms. We study the effec-
tiveness of CCMI on Blue Gene/P and evaluate its performance for the barrier,
broadcast, and allreduce collective operations. We also present the performance
of the barrier collective on the Abe Infiniband cluster.

1 Introduction

Most scientific applications use collective communication calls to optimize data ex-
change between processors. Performance of collective communication is critical to ap-
plication scaling on large processor partitions.

Programming paradigms define different semantics for the collective operations.
These collective operations can be blocking or non-blocking. In a blocking collective
operation, the processor core is blocked until the collective operation is completed. Col-
lective operations can also be synchronous or asynchronous. We define a synchronous
collective as a collective communication call where progress starts only when all pro-
cessors have entered the collective call. An asynchronous collective can make progress
in the background as soon as one or more processors has initiated the collective call.
The collective operations can be on pre-defined persistent groups called communicators
or may be dynamic where they are constructed on-the-fly.

One common programming paradigm, the Message Passing Interface (MPI-2 [1])
standard defines all collective operations as blocking operations. However, non-blocking
collective operations and their advantages have been explored in the LibNBC runtime [2].
MPI also defines collective operations on static pre-defined communicators. The Unified
Parallel C [3] language defines non-blocking collectives on dynamic sub-groups, while
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the Charm++ programming language [4] defines non-blocking asynchronous collectives
on dynamic groups called chare-array sections [5].

In this paper, we present the design of the component collective messaging interface
(CCMI). We explore blocking vs non-blocking, asynchronous vs synchronous, com-
municator based and on-the-fly collectives. Our framework is component driven with
basic building blocks written in C++. Collective operations are built using these build-
ing blocks. This approach enables most components to be reused across different archi-
tectures and parallel programming paradigms. Only the data mover component needs
to be redesigned across architectures and the components specific to the semantics in
a programming language for a different paradigm. We describe this approach in detail
with performance results on the Blue Gene/P machine [6]. Performance is also shown
for the Abe Infiniband cluster [7].

2 Architecture

The CCMI stack has four primary components that interact to define collective
operations.

2.1 Multisend

Multisend is the basic data movement operation on top of which CCMI collectives are
built. In CCMI, a collective is essentially a collection of multisend calls. We define three
classes of data movement in our multisend call: multicast, combine, and many-to-many.

– In multicast, each processor sends the same data to several destinations. The multi-
send multicast also takes op-codes to specify additional hints for each destination.
On architectures that provide network broadcast, the hints can provide additional
information on the virtual channels and tags of the hardware multicast. On Blue
Gene/P, this API allows the application to do a line broadcast in a specific direction
via deposit bit packets. The deposit bit in the packet header enables the packet to
be deposited on all intermediate nodes from the source to the destination.

– In a combine operation, processors participate in a global reduction. The combine
operation can take advantage of networks that support reductions on the network. A
combine operation specifies the arithmetic operation, datatype and hints to provide
additional information.

– The many-to-many is a generalization of the all-to-all collective operation. Here
each processor sends different data to many other processors.

For example, a point-to-point message is a multicast to one destination. Spanning
tree broadcast can be built with a multisend multicast at each level of the spanning tree.
All-to-all and scatter can be built using the many-to-many calls. The combine opera-
tion can be used to represent fast network combines supported in architectures such as
Blue Gene/L [8], Blue Gene/P [6] and the Quadrics clustering interconnect [9]. Typi-
cally, each processor is involved only once in each multisend operation. So, a variety of
different collective operations can be built from a collection of optimized multisends.
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The multisend multicast and multisend many-to-many calls are ideally suited for
low-frequency architectures such as the Blue Gene machines, as they can amortize soft-
ware stack overheads across the different destinations.

As the CCMI framework supports several overlapping, non-blocking collectives,
there will be several multisend messages being sent and received at the same time
on each node. The different multisend messages are identified by connection ids. The
sender of the multisend message chooses a connection id based on the global properties
of the collective operation.

The connection-manager component in CCMI chooses connection identifiers for
each collective operation. The number of connections may determine the maximum
number of simultaneous collectives on each node. For example, a connection manger
could set the connection id to be the rank of the source node. For MPI collectives, the
connection manager could also use the communicator as the connection id of the collec-
tive, allowing one collective per communicator to support an optimized multi-threaded
MPI environment.

2.2 Schedules

Collective operations require processors to interact in a graph topology in several
phases. The schedule component (similar to schedules in LibNBC [2]) defines a topo-
logical graph and phases in which the processors exchange messages to accomplish a
collective operation. For each phase of the collective, the schedule defines the source
and destination processors and opcodes for the multisend calls to be executed.

One schedule used in CCMI is the binomial schedule that uses the recursive doubling
algorithm [10,11] to provide tasklists for the barrier, broadcast and allreduce operations.
Binomial barrier can be designed by processors exchanging messages with their neigh-
bors in Log2(N) phases. A binomial broadcast can be designed with the root sending
data to its first level neighbors in the first phase and this is propagated along the span-
ning tree with intermediate nodes sending data in the later phases. In the reduce op-
eration, data moves in a direction opposite to the broadcast from the leaf nodes to the
root. Allreduce can be designed either as a reduce followed by a broadcast or a direct
exchange among the neighbors (we chose the latter approach). Figure 1 illustrates the
phases in a binomial broadcast schedule.

As the binomial algorithm is not topology optimized, we explored rectangle sched-
ules to optimize collectives on torus networks such as Blue Gene/L, Blue Gene/P and

Fig. 1. Binomial schedule in CCMI
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Fig. 2. Rectangle Schedules in CCMI

the Cray interconnect. On the BG/L and BG/P torus networks, each node can send
packets with the deposit-bit set to deposit the packet along all the nodes in a line of the
torus. The rectangle schedule takes advantage of this feature to optimize broadcast and
allreduce operations.

Figure 2 shows the rectangle schedule with two independent paths on a 2-D mesh,
that we have explored in CCMI. On a 2-D mesh, an X-color rectangle broadcast [12,13]
(blue in figure 2) can be achieved via deposit bit broadcasts along the X+, Y+, X- dimen-
sions in 3 phases. On a 3-D mesh, the X-color broadcast would require the broadcast
messages to be sent along the X+,Y+,Z+, X- directions in four phases. When the root is
in the corner on a 3-D mesh (or from any root on a 3-D torus), we can also design Y and
Z color broadcasts that do not share links with each other or with the X-color broadcast.

The reduce operation traverses the schedule topology in a direction opposite to the
broadcast. An allreduce operation can be supported by a reduce followed by a broad-
cast. For example, an X-color rectangle schedule allreduce can be designed by a reduce
along the X+,Z-,Y-,X- direction followed by an X-color broadcast. Unlike broadcast,
the rectangle allreduce has many more phases than the binomial scheme and is hence a
throughput optimization.

We also take advantage of network accelerated global collective optimizations. For
example, a fast global barrier is available on the Blue Gene/L and Blue Gene/P networks
through the global interrupt network. Low-latency broadcasts and allreduce operations
take advantage of the collective tree network. Each node on Blue Gene/P is a multi-core
node. However, network acceleration of collectives is only available across the different
nodes and local communication has to be performed in software. We have developed
hybrid schedules to optimize allreduce and broadcast operations on such hybrid archi-
tectures. In this paper, we limit our exploration to network accelerated collectives.

2.3 Executors

The tasks listed in the schedule are executed by an executor that initiates the multisend
operations for each phase of the collective. At the end of each phase, all the multisend
messages sent and received are finished before moving to the next phase. For collective
operations such as allreduce, the executor can also do pre-processing arithmetic to com-
bine incoming messages with local state and initiate the message sends for the next phase.

There is a different executor for each collective operation to allow specific opti-
mizations for each collective. For example, in a spanning tree broadcast there are no
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Fig. 3. CCMI Components

dependencies between phases as they all send the same data. So the broadcast executor
waits for incoming data and makes a single multicast call to send the data to the next
level of the spanning tree.

The spanning tree broadcast/allreduce executors can also pipeline the data to keep all
the compute and network resources busy. For each chunk in the pipeline, all the phases
in the schedule can be executed.

2.4 Programming Language Adaptor

The language adaptor component interfaces the CCMI stack to a programming lan-
guage. The language adaptor can define an API suitable for that programming language.
For example, the API for UPC collectives is likely to be different from MPI collectives.
The implementation of the API calls will instantiate the different components in the
collective operation with the specific semantics of the paradigm. A language adaptor
may also define new internal components. For example, an MPI adaptor may have
a communicator component which contains the pre-determined list of process ranks
that participate in the collective operation. The schedules and executors can be shared
across different paradigms, leaving only the language adaptor to be different for each
programming paradigm. In this paper, we present performance results on two adaptors,
the DCMF Adaptor and the Generic Adaptor.

The DCMF [14,15] (Deep Computing Messaging Framework) adaptor (Figure 4(a))
provides a non-blocking collective API in the C programming language. Optimized
MPI collectives on Blue Gene/P are implemented on top of this API. It uses a multisend
built on top of the DCMF messaging API. The generic adaptor (Figure 4(b)) enables
C++ applications to directly construct and access C++ components of CCMI such as
schedules and executors. A smart compiler can inline the C++ interface functions of
schedules and executors resulting in good performance. The generic adaptor provides an
implementation of multisend that uses MPI operations, allowing CCMI to be portable
across different architectures.

3 Collective Operations and Algorithms

We have explored several collective operations in the CCMI framework, such as barrier,
broadcast, allreduce and all-to-all. For each collective operation, we have designed one
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(a) DCMF Adaptor (b) Generic Adaptor

Fig. 4. Stack views of CCMI adaptors

or more schedules typically reusing the same executor. For example, the barrier execu-
tor with the binomial schedule can provide an implementation of the binomial barrier
algorithm.

Barrier: The barrier executor keeps a vector of counters with one slot for each of the
phases returned from the schedule. For each message received the phase-counter is
incremented. When messages have been sent and received in all the phases the barrier
is complete and the counters are reset.

The barrier executor can read the schedule during construction and cache the list of
sources and destinations to communicate with to optimize performance. In program-
ming paradigms where the communicator is static and does not change often, subse-
quent barrier calls will only look at the schedule cache to do the message passing.
During each message passing operation, the multisend interface is invoked to send mes-
sages to one or more destinations.

Broadcast: The broadcast executor is asynchronous, non-blocking, and supports on-
the-fly group creation. This means the broadcast payload data can move on the network
in the background and context information is saved to ensure all nodes eventually make
progress. Groups can be created as the multisend propagates down the spanning tree.
The broadcast executor on the root immediately sends data to the intermediate nodes
on the spanning tree using the multisend interface.

The DCMF adaptor has two interfaces for asynchronous broadcast, (i) an active mes-
sage based callback interface with callbacks to allocate space for the broadcast message
and the schedule-executor and (ii) a non-blocking broadcast interface where each par-
ticipating process posts a broadcast with the communicator object. The DCMF adaptor
registers a callback to process the first packet from the multisend interface. In case (i),
the adaptor delegates the buffer allocation to an application callback. In case (ii), the
DCMF adaptor keeps a queue of posted broadcasts and unexpected broadcasts. The
first incoming packet is matched with the local posted broadcast and remaining packets
are copied into the posted buffer. If the broadcast has not been posted, when the first
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packet arrives, the adaptor will allocate a buffer for the broadcast data and construct a
schedule/executor pair for that collective operation. In both cases the executor will read
the schedule and perform the remaining phases of the broadcast.

Allreduce: The allreduce executor can execute schedules that define an allreduce oper-
ation based on the gossiping algorithm or the reduce followed by broadcast algorithm.
In the gossiping scheme, all participating processors communicate with atleast log2(P )
processors, after which every processor has the final result. In the reduce followed by
broadcast scheme, the data is reduced over a spanning tree to a root processor where it
is then broadcast via the spanning tree. This means that the allreduce executor can even
execute a broadcast schedule.

4 Performance Results

We measured the the latency of a 1 byte multicast with the DCMF runtime (on the
BG/P torus via the DMA) to be 2μs for a single destination, but only 0.34μs for each
additional destination, showing the effectiveness of the multisend interface. The perfor-
mance of MPI Barrier with the binomial and global-interrupt schedules in SMP mode
is presented in Figure 5(a). The figure also shows the portability of the CCMI stack
with results on the Abe Infiniband cluster [7], with the generic adaptor and a multisend
implementation developed on top of MPI. From the results, CCMI has a similar barrier
latency as the MVAPICH library [16].
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Fig. 5. Performance of collective operations on BG/P and Infiniband

Figure 5(b) shows the average latency of a 1 byte broadcast operation using different
optimizations on Blue Gene/P. This benchmark measures the latency of several broad-
cast operations from the same root, allowing successive broadcast calls to pipeline each
other. These runs were performed on a booted partition with 512 nodes, and hence the
collective network latency is unchanged for smaller configurations. The CCMI rectan-
gle optimization, (a software optimization), has comparable performance to the collec-
tive network. This is mainly due to the multicast operation that supports deposit bit
broadcasts and allows the payload to be multicast to many destinations with low over-
heads. The rectangle broadcast latency also does not increase much with partition size.
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Fig. 6. BG/P collectives throughput on 512 nodes in SMP mode

Figure 6(a) shows the throughput of the broadcast operation on 512 nodes of BG/P in
SMP mode. The collective network achieves 96% of peak throughput. Rectangle torus
broadcast uses three colors allowing the broadcast message to be sent simultaneously
on three different routes. For messages larger than 2MB its performance is better than
the collective network.

On Blue Gene/P, the collective network can only perform integer and fixed point allre-
duce operations. The throughput of allreduce floating point double sum on 512 nodes of
BG/P in SMP mode is shown by Figure 6(b). For short messages, the collective network
double sum operation uses a 1-pass scheme that expands a 64 bit floating number into
a 2048 bit integer [17]. For messages larger than 1 double, it uses a 2-pass scheme that
first finds the maximum exponent, shifts all the mantissas, adds the mantissas and then
normalizes the result. The double sum therefore requires several arithmetic operations
that lowers its throughput. We use a helper thread to allow sending and receiving of tree
packets on different cores, and this scheme achieves a throughput of 120MB/s.

The rectangle allreduce scheme uses the DCMF DMA multicast to inject packets on
the torus and the PowerPC 450 core to reduce the incoming messages. Our current im-
plementation uses a one color scheme, that may limit its throughput to about 128MB/s.
We are exploring multi-color schemes.

5 Summary and Future Work

We presented the architecture of the CCMI stack that defines reusable components to
support asynchronous non-blocking collectives. This software stack is the open-source
production runtime on the Blue Gene/P machine. We showed the effectiveness of the
multisend component that allows software overheads of message passing to be amor-
tized across all the processors the data is sent to. The performance gain is demonstrated
by the rectangle broadcast optimization on BG/P. To extend CCMI to a new architecture
only the multisend component needs to be designed and implemented, and the remain-
ing components can be reused. We showed the performance of CCMI with the generic
adaptor on an Infiniband cluster.

To extend CCMI to a new programming language, only a new language adaptor may
need to be designed. This adaptor will provide an API with semantics suitable for that
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programming language. In this paper, we only presented performance results for MPI
collectives, but we plan to explore other adaptors for other programming paradigms
such as Charm++ and UPC. We also plan to explore higher dimensional multinomial
schedules that can take advantage of relatively low overhead for each additional desti-
nation in a multisend multicast operation on BG/P.
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Abstract. To improve the scalability of InfiniBand on large scale clus-
ters Open MPI introduced a protocol known as B-SRQ [2]. This protocol
was shown to provide much better memory utilization of send and receive
buffers for a wide variety of benchmarks and real-world applications.

Unfortunately B-SRQ increases the number of connections between
communicating peers. While addressing one scalability problem of In-
finiBand the protocol introduced another. To alleviate the connection
scalability problem of the B-SRQ protocol a small enhancement to the
reliable connection transport was requested which would allow multiple
shared receive queues to be attached to a single reliable connection. This
modified reliable connection transport is now known as the extended
reliable connection transport.

X-SRQ is a new transport protocol in Open MPI based on B-SRQ
which takes advantage of this improvement in connection scalability.
This paper introduces the X-SRQ protocol and details the significantly
improved scalability of the protocol over B-SRQ and its reduction of the
memory footprint of connection state by as much as 2 orders of magni-
tude on large scale multi-core systems. In addition to improving scalabil-
ity, performance of latency-sensitive collective operations are improved
by up to 38% while significantly decreasing the variability of results.
A detailed analysis of the improved memory scalability as well as the
improved performance are discussed.

1 Introduction

The widespread availability of commodity multi-core CPUs from both Intel and
AMD is changing the landscape of near-commodity clusters. Compute nodes
with 8 cores (2 quad core CPUs) and even 16 cores (4 quad core CPUs) are
becoming more common and 8 or more cores in a single socket are expected in
the next 12-18 months. A number of these multi-core clusters are connected with
InfiniBand (IB), thereby increasing the need to examine the scalability of MPI
in such environments.
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Open MPI [1] supports the IB interconnect using the reliable connected (RC)
transport layer. RC in IB currently requires a connection to be established be-
tween each communicating pair of processes and consumes one page (commonly
4KB) of system memory for each connection. Multi-core systems increase the
number of dedicated processes per node and therefore increase the number of
connections per node. This additional memory consumed on the node may be
substantial in a large scale multi-core system. Furthermore, maintaining a fixed
amount of memory per core is becoming increasingly difficult as memory prices
remain high relative to the falling price of a CPU core. Pressure on memory will
increase as applications are migrated to multi-core machines.

This paper describes Open MPI’s use of the extended reliable connection
(XRC) which alleviates some of the memory pressure in multi-core environments.
In addition to reducing overall memory consumption in Open MPI, the use of
XRC in conjunction with B-SRQ improves performance. This conjunction will be
referred to as X-SRQ throughout this paper.

The rest of this paper is organized as follows. Section 2 provides a brief discus-
sion of previous work in this area as well as an overview of the XRC architecture.
Section 3 describes the new protocol, including necessary modifications to our
on-demand connection wire-up scheme. Section 4 describes the test platform
followed by performance analysis of the results. Section 5 summarizes relevant
results and concludes with a discussion of areas of possible future work.

2 Background

The InfiniBand specification details 5 transport layers:

1) Reliable Connection (RC): connection-oriented and acknowledged
2) Reliable Datagram (RD): multiplexed and acknowledged
3) Unreliable Connection (UC): connection-oriented and unacknowledged
4) Unreliable Datagram (UD): connectionless and unacknowledged
5) Raw Datagram: connectionless and unacknowledged

RC provides a connection-oriented transport between two queue pairs (QPs).
Work requests posted to a QP are implicitly addressed to the remote peer. The
scalability limitations of connection-oriented transports are well known [2], [3]
requiring

(
N
2

)
connections for N peers.

Fig. 1 illustrates two nodes, each with two cores connected via RC. In this
example each core is running a single process and is connected to each of the
remote processes. If we assume that shared memory is used for intra-node MPI
communication then the total number of QPs is 4 per node.

RD allows using a single QP to send and receive from any other addressable
RD QP. RD was designed to provide a number of desirable scalability features but
in practice RD has proven difficult to implement with no manufacturer currently
supporting this transport layer.

While some are examining the use of UD to enhance scalability [4], the addi-
tional costs of user-level reliability and implementation complexity are still being
examined.
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Fig. 1. RC - 2 Nodes

Fig. 2. XRC - 2 Nodes

To improve the scalability of InfiniBand in multi-core environments Mellanox
has introduced XRC - the new transport layer. Requiring changes both in the
HCA and in the software stack; XRC allows a single receive QP to be shared
by multiple shared receive queues (SRQs) across one or more processes. Note
that these SRQs can exist in any process which shares the same XRC domain
as the receive QP. The SRQ “destination” is specified in the work queue entry
(WQE) at the send QP. The receive QP consumes a buffer from the specified
SRQ and enques a WQE to the completion queue (CQ) connected to this SRQ.
This mechanism allows each process to maintain a single send QP to each host
rather than to each remote process. A receive QP is established per remote send
QP. These receive QPs can be shared among all the processes on the host.

Fig. 2 illustrates two nodes with two processes per node (PPN) using XRC
for communication. Note that each receive QP is a machine resource and exists
within an XRC domain. SRQs are setup in each process and are connected to one
or more receive QPs. Send QPs are a per process resource (as in RC), however
each process can use a single send QP to communicate with any process on the
remote machine by specifying the SRQ of the target process. If we assume that
shared memory is used for intra-node MPI communication, then each node uses
4 QPs. In general, XRC can be used to reduce the number of QPs by a factor of
PPN −1. Thus for applications running P processes on N nodes, XRC decreases
the number of required transport connections from P 2∗(N −1) to P ∗2∗(N −1).
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Note that the QPs in Fig. 2 are used either as send only QPs or as receive only
QPs although they are currently implemented as bidirectional send/receive QPs.
Work is ongoing within the OpenFabrics community to trim the QP size for the
new XRC usage model.

To support the XRC hardware feature the OpenFabrics API defines two new
APIs to create an XRC QP. The first API creates an XRC QP in userspace (just
as in RC). This QP may be used for both send and receive operations. When
using the QP for receive, a single process creates the QP and others share this
by attaching SRQs to the QP. The same process which creates the QP must
eventually destroy the QP, but it must defer the destruction of the QP until
after all other processes have finished using the QP.

The second API creates a receive XRC QP at the kernel level. This allows
a process to open the XRC QP and later exit without coordinating with other
consumers of the QP. Each process wanting to use the XRC receive QP simply
registers with the QP number which increments the internal reference count of
the QP. When finished with the QP each process unregisters with the QP number
which decrements the internal reference count. When the reference count drops
to zero the QP is reclaimed. This method is used by Open MPI in order to
support XRC with dynamic processes.

In previous work [5] Open MPI was enhanced to emulate the behavior of re-
ceive buffer pools [6] when using IB. “Buckets” of receive buffers of different
sizes, with each bucket using a single SRQ, are created in each process. Each
SRQ is then associated with a single QP. The sender can achieve better memory
utilization on both sender and receiver sides by simply sending data on the QP
with the minimum buffer of adequate size. This protocol was shown to signifi-
cantly enhance memory utilization across a wide variety of applications and in
some cases it enhance performance.

As part of this work a generic mechanism was created to allow the user or
system administrator to specify any number of QPs (up to system limits) with
various size buffers associated with them. Each QP can be specified to use either
an SRQ or per-peer receive buffers posted to the QP directly. This mechanism
allows for greater flexibility in tuning and experimentation.

Our current work involves modifying this generic mechanism to allow XRC
QPs to be used in a similar fashion. Multiple SRQs can then be used to increase
memory utilization without the need for creating a separate QP for each SRQ.

3 Protocol Description

One substantial drawback to the B-SRQ protocol is that each SRQ requires a
separate QP. This limits the overall scalability of the protocol as node and core
counts continue to increase. The X-SRQ protocol removes this limitation. Fig. 3
illustrates two nodes with two PPN using X-SRQ for communication. Note that
each process maintains a number of SRQs each with a different buffer size. These
SRQs are then attached to a single node level receive QP per remote process.
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Fig. 3. X-SRQ - 2 Nodes

A number of changes in Open MPI were required in order to make use of XRC.
Instead of addressing processes by simply using the implicit addressing of an RC
QP, XRC requires specifying the remote SRQ number in the work request prior
to enqueuing a send on an XRC QP. A few other minor changes were required
such as extending our QP specification syntax to allow specifying XRC QPs via
Open MPI’s Modular Component Architecture parameter system [7].

Of special interest is the connection establishment mechanism within Open
MPI which supports XRC. The XRC QP establishment is considerably different
from the usual RC QP wireup [3]. During process initialization, all processes
perform the following:

1. exchange Local Identifiers (LIDs)
2. create an XRC domain
3. create SRQ entries

After the initialization phase each process keeps a table of LIDs for all remote
processes and the connection status to the remote process. Fig. 4(a) illustrates
a unidirectional connection establishment from process 0 to process 2. When
process 0 initiates a send to process 2, process 0 checks the connection status to
process 2. If the connection is closed then process 0 will create an XRC send QP
(user level), and will send a connection request to process 0 (step 1 in Fig. 4(a)).
Process 2 will create all the SRQ receive buffers as specified by the configuration
(step 2 in Fig. 4(a)). Process 2 will then open an XRC receive QP (kernel level)
and respond with an SRQ number for each SRQ as well as the XRC receive QP
number (step 3 in Fig. 4(a)). Process 0 will receive the remote QP number and
SRQ numbers and will connect the send QP to process 2 (step 4 in Fig. 4(a)).
Process 0 will then update the connection status (both IB and MPI) of process
2 to “connected”. Process 3’s table entry is updated as well, but the MPI con-
nection status remains “disconnected”. At the end of the handshake there will
be a unidirectional QP from process 0 on node 0 to process 2 on node 1.

Fig. 4(b) illustrates process 0 initiating a unidirectional connection to process
3 on node 1. Process 0 first checks the IB status and sees that process 0 already
has an XRC send QP to node 1 (process 3). Process 0 then sends a connection
request with an XRC receive QP number on node 1 to process 3 (step 1 in
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(a) Process 0 to Process 2

(b) Process 0 to Process 3

Fig. 4. XSRQ Connection Establishment

Fig. 4(b)). Process 3 creates all the SRQ receive buffers as specified by the
configuration (step 2 in Fig. 4(b)). Process 3 will increase a reference counter
on the XRC receive QP with the requested QP number (step 3 in Fig. 4(b))
and respond to process 0 with the SRQ numbers (step 4 in Fig. 4(b)). Process
0 receives the SRQ numbers and changes the connection status of process 3 to
MPI “connected”.

Other aspects of the X-SRQ protocol remain similar to that of the B-SRQ
protocol. As previously discussed, Open MPI supports mixing QPs with receive
buffers posted directly (per-peer) on the QP with QPs using SRQs . This flex-
ibility allows using flow-control mechanisms over the per-peer QP while using
SRQs for scalability. Currently Open MPI does not support mixing XRC QPs
with non-XRC QPs; this is left for future work.

4 Results

All experiments were conducted on a 32 node cluster located at Mellanox Tech-
nologies, USA. Each node consisted of dual quad-core Intel Xeon X5355 CPUs
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running at 2.66GHz with 8GB memory and a Mellanox ConnectX HCA running
firmware 2.3.0. Each node ran Redhat Enterprise Linux with the 2.6.9-42 SMP
kernel, OFED version 1.3 (release candidate 5) and Open MPI trunk subversion
r17144. All nodes were connected via a DDR switch.

The most notable result was the significant reduction in the memory footprint
of the Open MPI library when using multiple SRQs per process. X-SRQ has
much better memory scaling characteristics than B-SRQ as the number of QPs is
significantly smaller. The number of QPs for B-SRQ is governed by the following:
PPN - number of processes per node; N - number of nodes; NSRQ - number
of SRQs; and NQP - number of QPs.

For B-SRQ, the number of QPs created is
NQP = PPN2 ∗ NSRQ ∗ (N − 1)

For X-SRQ, the number of QPs created is
NQP = PPN ∗ 2 ∗ (N − 1)

Note that for X-SRQ the NSRQ parameter is dropped. Instead of squaring
PPN , we multiplied it by 2 to account for the separate send QP and receive
QP. Fig. 5(a),5(b) illustrate the impact of increasing the number of processes
per node - as is often the case for multi-core clusters. At 1024 nodes and 8 PPN,
QP memory resources peak at 256MB when using RC as opposed to only 64MB
for XRC .

Fig. 6(a),6(b) illustrate the impact of increasing the number of SRQs per
process at 8 PPN. At 1024 nodes and 8 SRQs per process, QP memory resources
peak at 2GB as opposed to only 64MB for XRC

In addition to significant memory savings, XRC improves performance. As the
number of QPs is decreased, the HCA needs to manage fewer interconnect con-
text resources. Consequently, the HCA is better able to cache context resource
data and thereby to avoid a lookup on host memory. To evaluate the perfor-
mance improvements of XRC, the SkaMPI collectives benchmarks [8] were used.
MPI BARRIER, MPI REDUCE (8 bytes), MPI ALLREDUCE (8 bytes) and
MPI ALLGATHER (8 bytes) collectives where chosen in order to evaluate the
performance of X-SRQ. Overall performance of X-SRQ was better than that of B-
SRQ . Fig. 7(a),7(b) illustrate that X-SRQ performance improvements reach up
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to 42% on the MPI BARRIER benchmark and up to 38% on the MPI REDUCE
benchmark. The standard deviation of the results was also much lower for X-SRQ
when compared to B-SRQ.
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Fig. 8(a), 8(b) also show some improvement of MPI ALLREDUCE and
MPI ALLGATHER benchmarks at larger process counts, although not as signif-
icant as that of MPI BARRIER and MPI REDUCE benchmarks. Larger over-
heads for these collectives may minimize the overall performance improvement.
The standard deviation of the results was again lower for X-SRQ compared to
B-SRQ.

5 Conclusions

Through a novel use of the XRC transport layer, both the scalability and per-
formance of Open MPI have improved. The X-SRQ protocol improves both send
and receive buffer utilization while significantly improving the scalability of QP
connections. While not limited to multi-core systems, these scalability improve-
ments are significant in larger multi-core environments. Current trends point
towards increased core counts for the foreseeable future thereby making these
scalability enhancements a necessity for clusters using IB.

In addition to improved scalability, X-SRQ improves performance on latency-
sensitive operations due to more efficient use of network resources. These perfor-
mance improvements are consistent with the HCA architecture and are relevant
not only for larger clusters, but for any multi-core cluster (as small as 32 nodes)
using InfiniBand.

Open MPI does not currently support the use of XRC QPs and RC QPs con-
currently. Future work will involve allowing these different QP “types” to be
used concurrently within a single Open MPI job.
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Abstract. Analytical communication performance models play an im-
portant role in prediction of the execution time of parallel applications
on computational clusters, especially on heterogeneous ones. Accurate
estimation of the parameters of the models designed for heterogeneous
clusters is a particularly challenging task due to the large number of pa-
rameters. In this paper, we present a set of communication experiments
that allows us to get the accurate estimation of the parameters with min-
imal total execution time, and software that implements this solution.
The experiments on heterogeneous cluster demonstrate the accuracy and
efficiency of the proposed solution.

Keywords: Heterogeneous cluster, heterogeneous communication per-
formance model, MPI, communication model estimation.

1 Introduction

Heterogeneous computational clusters have become a popular platform for paral-
lel computing with MPI as their principle programming system. Unfortunately,
many MPI-based applications that were originally designed for homogeneous
platforms do not have the same performance on heterogeneous platforms and
require optimization. The optimization process is typically based on the per-
formance models of heterogeneous clusters, which are used for prediction of the
execution time of different configurations of the application, including its compu-
tation and communication costs. The accuracy of the performance models is very
influential in determining the efficiency of parallel applications. The optimization
of communications is an important aspect of the optimization of parallel appli-
cations. The performance of MPI collective operations, the main constituent of
MPI, may degrade on heterogeneous clusters. The implementation of MPI col-
lective operations can be significantly improved, by taking the communication
performance model of the executing platform into account.

Traditionally, communication performance models for high performance com-
puting are analytical and built for homogeneous clusters. The basis of these
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models is a point-to-point communication model characterized by a set of inte-
gral parameters, having the same value for each pair of processors. Collective
operations are expressed as a combination of the point-to-point parameters, and
the collective communication execution time is analytically predicted for differ-
ent message sizes and numbers of processors. The core of this approach is the
choice of such a point-to-point model that is the most appropriate to the targeted
platform, allowing for easy and natural expression of different algorithms of col-
lective operations. For homogeneous clusters, the point-to-point parameters are
found statistically from the measurements of the execution time of communi-
cations between any two processors. When such a homogeneous communication
model is applied to a cluster of heterogeneous processors, its point-to-point pa-
rameters are found by averaging values obtained for every pair of processors.
Thus, in this case, the heterogeneous cluster will be treated as homogeneous in
terms of the performance of communication operations.

When some processors or links in the heterogeneous cluster significantly dif-
fer in performance, predictions based on the homogeneous communication model
may become inaccurate. More accurate performance models would not average
the point-to-point communication parameters. On the other hand, the taking
into account the parameters for each pair of processors will make the total num-
ber of point-to-point parameters and the amount of time required to estimate
them significantly larger. In [1], [2], we proposed an analytical heterogeneous
communication model designed for prediction of the execution time of MPI
communications on heterogeneous clusters based on a switched network. The
model includes the parameters that reflect the contributions of both links and
processors to the communication execution time, and allows us to represent the
aspects of heterogeneity for both links and processors. At the same time, the
design of communication experiments for accurate and efficient estimation of
the parameters of this model is not a trivial task.

Usually, to estimate the point-to-point parameters, different variations of
sending/receiving messages between two processors are used. As regards the
heterogeneous model proposed in [1], [2], with point-to-point communications
only, we cannot collect enough data to estimate the parameters, and therefore
must conduct some additional independent experiments. We design these addi-
tional communication experiments as a combination of scatter and gather. The
observation of scatter and gather on the clusters based on a switched network
show that the execution time may be non-linear and non-deterministic, especially
if the MPI software stack includes the TCP/IP layer. Therefore, in our design
we take into account all the irregularities, which might make the estimation
inaccurate, and carefully select the message size.

The statistical methods of finding the point-to-point parameters, normally
used in the case of homogeneous communication models, will result in unaccept-
ably large number of measurements if applied as they are to the heterogeneous
communication model. Therefore, another issue that has to be addressed is the
minimization of the number of measurements necessary to accurately find the
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point-to-point parameters. We managed to reduce the number of measurements
with the same accuracy as the exhaustive statistical analysis.

To the best of the authors’ knowledge, there are no other publications describ-
ing heterogeneous communication performance models of computational clusters
and the accurate estimation of the parameters of such models. In this paper, we
present the software tool that automates the estimation of the heterogeneous
communication performance model of clusters based on a switched network.
The software tool can also be used in the high-level model-based optimization
of MPI collective operations. This is particularly important for heterogeneous
platforms where the users typically have neither authority nor knowledge for
making changes in hardware or basic software settings.

This paper is organized as follows. In Section 2, related work on estimation
of the parameters of communication performance models is discussed. In Sec-
tion 3, we describe the point-to-point model of heterogeneous clusters based on
a switched network and the design of communication experiments required to
estimate its parameters. Section 4 presents the software tool for the estimation
of the parameters of the heterogeneous communication performance model and
the experimental results that demonstrate the accuracy and efficiency of the
proposed solution.

2 Related Work

In this section, we discuss how the parameters of existing communication per-
formance models are estimated. As all these models are built for homogeneous
platforms, their parameters are the same for all processors and links. Therefore,
to estimate them, it is sufficient to perform a set of communication experiments
between any two processors.

The Hockney model [3] of the execution time of point-to-point communication
is α+βm, where α is the latency, β is the bandwidth and m is the message size.
There are two ways to obtain a statistically reliable estimation of the Hockney
parameters:

– To perform two series of roundtrips with empty messages (to get the latency
parameter from the average execution time), and with non-empty ones (to
get the bandwidth), or

– To perform a series of roundtrips with messages of different sizes and use
results in a linear regression which fits the execution time into a linear com-
bination of the Hockney parameters and a message size.

The LogP model [4] predicts the time of network communication for small
fixed-sized messages in terms of the latency, L, the overhead, o, the gap per
message, g, and the number of processors, P . The gap, g, is the minimum time
between consecutive transmissions or receptions; it is the reciprocal value of
the end-to-end bandwidth between two processors, so that the network band-
width can be expressed as L/g. According to LogP, the time of point-to-point
communication can be estimated by L + 2o. In [5], the estimation of the LogP
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parameters is presented, with the sending, os, and receiving, or, overheads being
distinguished. The set of communication experiments used for estimation of the
LogP parameters is as follows:

– To estimate the sending overhead parameter, os, a small number of messages
are sent consecutively in one direction. The averaged sending time measured
on the sender side will approximate os.

– The receiving overhead, or, is found directly from the time of receiving a
message in the roundtrip. In this experiment, after completion of the send
operation, the sending processor waits for some time, sufficient for the reply
to reach the receiving processor, and only then posts a receive operation.
The execution time of the receive operation is assumed to approximate or.

– The latency is found from the execution time of the roundtrip with small
message L = RTT/2 − os − or.

– To estimate the gap parameter, g, a large number of messages are sent con-
secutively in one direction. The gap is estimated as g = Tn/n, where n is a
number of messages and Tn is the total execution time of this communication
experiment measured on the sender processor. The number of messages is
chosen to be large to ensure that the point-to-point communication time is
dominated by the factor of bandwidth rather than latency. This experiment,
also known as a saturation, reflects the nature of the gap parameter but
takes a long time.

In contrast to the Hockney model, LogP is not designed for the communi-
cations with arbitrary messages, but there are some derivatives, such as the
LogGP model [6], which takes into account the message size by introducing the
gap per byte parameter, G. The point-to-point communication time is estimated
by L + 2o + (m − 1)G. The gap per byte, G, can be assessed in the same way as
the gap parameter of the LogP model, saturating the link with large messages
M , G = g/M .

In the PLogP (parameterized LogP) model [10], all parameters except for la-
tency are piecewise linear functions of the message size, and the meaning of pa-
rameters slightly differs from LogP. The meaning of latency, L, is not intuitive;
rather it is a constant that combines all fixed contribution factors such as copy-
ing to/from the network interfaces and the transfer over the network. The send,
os(m), and receive, or(m), overheads are the times that the source and destination
processors are busy for the duration of communication. They can be overlapped
for sufficiently large messages. The gap, g(m), is the minimum time between con-
secutive transmissions or receptions; it is the reciprocal value of the end-to-end
bandwidth between two processors for messages of a given size m. The gap is as-
sumed to cover the overheads: g(m) ≥ os(m) and g(m) ≥ or(m). According to
the PLogP model, the point-to-point execution time is equal to L + g(m) for the
message of m bytes. The estimation of the PLogP parameters includes the exper-
iments which are similar to the LogP ones but performed for different message
sizes. Although this model is adaptive in nature, because of the number and lo-
cation of breaks of piecewise linear functions are determined while the model is
being built, the total number of parameters may become too large.
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There are two main approaches to modeling the performance of communica-
tion operations for heterogeneous clusters. The first one is to apply traditional
homogeneous communication performance models to heterogeneous clusters. In
this case, the parameters of the models are estimated for each pair of proces-
sors and the average values for all pairs are then used in modelling. The second
approach is to use dedicated heterogeneous models, where different pairs of het-
erogeneous processors are characterized by different parameters. While simpler
in use, the homogeneous models are less accurate. When some processors or
links in the heterogeneous cluster significantly differ in performance, predictions
based on the homogeneous models may become quite inaccurate. The number
of communication experiments required for the accurate estimation of both ho-
mogeneous and heterogeneous models will be of the same order, O(n2).

The traditional models use a small number of parameters to describe commu-
nication between any two processors. The price to pay is that such a traditional
point-to-point communication model is not intuitive. The meaning of its param-
eters is not clear. Different sources of the contribution into the execution time
are artificially and non-intuitively mixed and spread over a smaller number of
parameters. This makes the models difficult to use for accurate modelling of
collective communications. For example, the Hockney model uses only two pa-
rameters to describe communication between two processors. The parameters
accumulate contributions of the participating processors and the communica-
tion layer into the constant and variable delays respectively. In order to model,
say, the scatter operation on a switched cluster in an intuitive way, we need
separate expressions for the contribution of the root processor, the communi-
cation layer and each of the receiving processors. Otherwise, we cannot express
the serialization of outgoing messages on the root processor followed by their
parallel transmission over the communication layer and parallel processing on
the receiving processors. The use of the Hockney model as it is results in either
ignoring the serialization or ignoring the parallelization. In the former case, the
predictions will be too optimistic. In the latter case, the predictions will be too
pessimistic. In both cases, they are not accurate. While using more parameters,
the LogGP model faces the same problem because it does not separate the con-
tribution of the processors and the communication layer into the variable delay.
The traditional way to cope with this problem is to use an additional (and non-
intuitive) fitting parameter, which will make the overall model even less clear.
While this approach can somehow work for homogeneous models, it becomes
hardly applicable to heterogeneous models. The point is that a heterogeneous
model would need multiple fitting parameters making it fully impractical.

The alternative approach is to use original point-to-point heterogeneous mod-
els that allow for easy and intuitive expression of the execution time of collective
communication operations such as the LOM model [1], [2] designed for switched
heterogeneous clusters. While easy and intuitive in use, these models encounter a
new challenging problem. The problem is that the number of point-to-point pa-
rameters describing communication between a pair of processors becomes larger
than the number of independent point-to-point communication experiments
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traditionally used for estimation of the parameters. In this paper, we describe
the set of communication experiments sufficient for the accurate and efficient es-
timation of the parameters and present the software tool that implements this
approach.

3 Heterogeneous Communication Performance Model
and Its Estimation

The LOM model [1] includes both link-specific and processor-specific parameters.
Like most of point-to-point communication models, its point-to-point parameters
represent the communication time by a linear function of the message size. The
execution time of sending a message of M bytes from processor i to processor j

in a heterogeneous cluster i
M−−→ j is estimated by Ci + tiM + Cj + tjM + M

βij
,

where Ci, Cj are the fixed processing delays; ti, tj are the delays of processing of
a byte; βij is the transmission rate. The delay parameters, which are attributed
to each processor, reflect the heterogeneity of the processors. The transmission
rates correspond to each link and reflect the heterogeneity of communications;
for networks with a single switch, it is realistic to assume βij = βji.

To estimate the parameters of such a model, an approach with roundtrip
point-to-point experiments is not enough. For a network consisting of n proces-
sors, there will be 2n + C2

n unknowns: n fixed processing delays, n variable pro-
cessing delays, and C2

n transmission rates. The execution time of the roundtrip,
namely sending M1 bytes and receiving M2 bytes between nodes i

M2←−−→
M1

j, is

equal to Tij(M1, M2) = (Ci +tiM1+Cj +tjM1+ M1
βij

)+(Ci +tiM2+Cj +tjM2+
M2
βij

). The roundtrip experiments will give us only C2
n equations. Therefore, the

first challenge we face is to find a set of experiments that gives a sufficient number
of linearly independent linear equations, whose variables represent the unknown
point-to-point parameters.

First, we measure the execution time of the roundtrips with empty messages
between each pair of processors i < j (C2

n experiments). The fixed processing
delays can be found from Tij(0) = 2Ci + 2Cj solved for every three roundtrips
i

0←−−→
0

j, j
0←−−→
0

k, k
0←−−→
0

i (i < j < k): {Tij(0) = 2Ci + 2Cj , Tjk(0) =

2Cj + 2Ck, Tki(0) = 2Ck + 2Ci}.
In order to find the rest n+C2

n parameters, we might use the roundtrips with
non-empty message, but it would give us only C2

n linearly independent equations.
Instead, we use the additional experiments, which include communications from
one processor to two others and backward, and express the execution time of
the communication experiments in terms of the heterogeneous point-to-point
communication performance model. As will be shown below, the set of point-to-
point and point-to-two communication experiments is enough to find the fixed
processing delay and transmission rates, but there is one more important issue
to be addressed. The point-to-two experiments are actually a particular combi-
nation of scatter and gather. The scatter and gather operations may have some
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irregular behaviour on the clusters based on a switched network, especially if
the MPI software stack includes the TCP/IP layer. Therefore, the message
sizes for the additional experiments have to be carefully selected to avoid these
irregularities.

We observed the leap in the execution time of scatter for large messages and
the non-deterministic escalations of the execution time of gather for medium-
sized messages (see Fig. 1). It prompted us introduce the particular threshold
parameters to categorize the message size ranges where distinctly different be-
haviour of the collective MPI operations is observed, and to apply different
formula for these regions to express the execution time with the heterogeneous
point-to-point parameters.
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Fig. 1. The execution time of collective communications against the message size

The estimated time of scattering messages of size M from node 0 to nodes
1, ..., n is given by n(C0 + t0M) + max1≤i≤n{Ci + tiM + M

β0i
}, if M ≤ S, and

n(C0 + t0M) +
∑

1≤i≤n{Ci + tiM + M
β0i

}, if M > S, where C0, t0, Ci, ti are
the fixed and variable processing delays on the source node and destinations.
This reflects the parallel communication for small messages and the serialized
communication for large messages. The threshold parameter S corresponds to
the leap in the execution time, separating small and large messages. It may vary
for different combinations of clusters and MPI implementations.

For the gather operation, we separate small, medium and large messages by
introducing parameters M1 and M2. For small messages, M < M1, the execution
time has a linear response to the increase of message size. Thus, the execution
time for the many-to-one communication involving n processors (n ≤ N , where
N is the cluster size) is estimated by n(C0 +t0M)+max1≤i≤n{Ci +tiM + M

β0i
}+

κ1M , where κ1 = const is a fitting parameter for correction of the slope. For
large messages, M > M2, the execution time resumes a linear predictability with
increasing message size. Hence, this part is similar in design but has a different
slope of linearity that indicates greater values due to overheads: n(C0 + t0M) +∑

1≤i≤n{Ci+tiM + M
β0i

}+κ2M . The additional parameter κ2 = const is a fitting
constant for correction of the slope. For medium messages, M1 ≤ M ≤ M2, we
observed a small number of discrete levels of escalation, that remain constant as
the message size increases.

Thus, following the model of scatter and gather, in our experiments we gather
zero-sized messages in order to avoid the non-deterministic escalations. For
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scatter, the message size M is taken less than the value of the threshold param-
eter S. The wrong selection of the message size can make the estimation of the
point-to-point parameters inaccurate, which is shown in Fig. 1. c In order to find
variable processing delays ti and transmission rates βij , we measure the execution

time of the C2
n experiments i

M←−−→
0

j (i < j), the roundtrips with empty replies,

and the C3
n experiments i

M←−−→
0

j, k (i < j < k), where the source processor sends
the messages of the same size to two processors and receives zero-sized messages
from them. The execution time Ti(M) of one-to-two communications with root i
can be expressed by Ti(M) = 4Ci+2tiM+max(2Cj+tjM+ M

βij
, 2Ck+tkM+ M

βik
).

The execution times of these experiments are used in the following formula to get
the values of the variable processing delays and then the values of transmission
rates:

ti =

{
Ti(M)−Tij(M)−2Ci

M , Tij(M) > Tik(M)
Ti(M)−Tik(M)−2Ci

M , Tik(M) > Tij(M)
1

βij
=

Tij(M) − 2Ci − 2Cj

M
−ti−tj

As the parameters of our point-to-point model are found in a small number of
experiments, they can be sensitive to the inaccuracies of measurement. Therefore,
it makes sense to perform a series of the measurements for one-to-one and one-
to-two experiments and to use the averaged execution times in the corresponding
linear equations. Minimization of the total execution time of the experiments is
another issue that we address. The advantage of the proposed design is that
these series do not have to be lengthy (typically, up to ten in a series) because
all the parameters have been already averaged with the process of their finding.

The procedure of the estimation of the point-to-point parameters is preceded
by the estimation of the threshold parameters. To estimate the threshold param-
eters, we use the scatter and gather benchmarks for different message sizes. The
data rows for scatter and gather consist of the message sizes taken with some
stride and the measured execution time {M i, T i}, M i+1 = M i + stride. Typical
data rows for heterogeneous clusters based on a switched network are shown in
Fig. 1. One can see that:

– the execution time of scatter can be approximated by the piecewise linear
function with one break that correspond to the threshold parameter S to be
found;

– the execution time of gather has the regions of linearity for small, M < M1,
and large, M > M2, messages and can also be approximated by the two
linear functions.

To find the threshold parameters, we use the algorithm proposed in [8]. It con-
siders the statistical linear models with multiple structural changes and uses
dynamic programming to identify optimal partitions with different numbers of
segments. The algorithm allows us to locate the break in the execution time of
scatter, S, and the range of large messages for gather, M2.

Then we perform the linear regression of the execution time of gather on
this range to estimate the slope correction parameter κ2, that is used to adjust
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the prediction of many-to-one execution time for large messages. The linear
regression gives us two values c0 and c1: T ≈ c0 + c1M , M > M2. The slope
correction parameter κ2 is found as follows: κ2 = c1 −

∑n
i=1(ti + 1

β0i
). We find

M1 as M1 ≈ Mk, k = min{i : T i+1/T 1 > 10}. The linear regression on the data
row {M i, T i}, i = 1, ..., k is performed to obtain the linear parameters for the
small messages, T ≈ c0 + c1M , M > M1, and to calculate the slope correction
parameter κ1 = c1 − max1≤i≤n{ti + 1

β0i
}.

4 The Software Design and Experimental Results

To the best of the authors’ knowledge, there are no available software tools for the
estimation of heterogeneous communication models of computational clusters. In
this section, we present such a software tool, and describe its features and design.

We design the software tool in the form of a library implemented on top
of MPI. In addition to the library, the software tool provides a command line
utility that can be used for one-time estimations. The utility uses the library
to estimate the parameters of the heterogeneous communication performance
model with the given accuracy and saves the data in a file that can be used
later. One-estimation may be done during the installation of the software tool,
or each time the parallel platform or MPI implementation has been changed.
The estimation can also be performed in the user application at runtime, with
the invocation of the library functions. The library consists of three modules:

1. The Measurement module is responsible for the measurement of the ex-
ecution time of the communication experiments required to estimate the
parameters of the heterogeneous model. It uses the MPIBlib benchmarking
library [7], namely, the point-to-point, scatter and gather benchmarks. In
addition, the Measurement module includes the function for measuring the
execution time of the point-to-two communication experiments, i

M←−−→
0

j, k,
required to find the variable processing delays and transmission rates. The
point-to-point and point-to-two experiments are optimized for clusters with a
single switch. As network switches are capable of forwarding packets between
sources and destinations appropriately, several point-to-point or point-to-two
communications can be run in parallel, with each process being involved in
no more than one communication. This decreases the execution time the
benchmark takes, giving quite accurate results.

2. The Model module provides the API, which allows the user to estimate the
parameters of the heterogeneous communication performance model inside
their application. This module uses the results of benchmarks provided by
the Measurement module and the MPIBlib library, builds and solves the
systems of equations described in the previous section. For estimation of
the threshold parameters required to select the message size for point-to-
two experiments, the strucchange library of the R statistical package is
used [9]. It automates the detection of the structural changes in the linear
regression models. The statistical analysis is performed with help of GSL
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(GNU scientific library). More specifically, the parameters of the heteroge-
neous communication performance model are estimated within a confidence
interval that indicates the reliability of estimation, which is implemented
with help of GSL. For linear regression, the software tool uses GSL routines
for performing least squares fits to experimental data.

3. The Optimization module provides a set of the optimized implementations
of collective operations, such as scatter and gather, which use the parameters
of the heterogeneous model [10].

To demonstrate the accuracy provided by the software tool, we compare the ex-
ecution time of a single point-to-point communication observed for different mes-
sage sizes with the predictions provided by the logp mpi package [6] and by our
software tool (Fig. 2). The logp mpi package was used for the predictions of the
PLogP and LogGP models. The experiments were carried out between two proces-
sors of the 16-node heterogeneous cluster, which has the following characteristics:
11 x Intel Xeon 2.8/3.4/3.6, 2 x P4 3.2/3.4, 1 x Celeron 2.9, 2 x AMD Opteron 1.8,
Gigabit Ethernet, LAM 7.1.3. The PLogP model is more accurate but much more
costly. The accuracy is due to the use of the functional parameters, each of which
is approximated by a large number of scalar parameters. The linear predictions of
LogGP and our point-to-point models are practically the same.
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Fig. 2. The observed and predicted execution times of the point-to-point communica-
tion on the 16-node heterogeneous cluster

The point-to-point parameters estimated by the software tool are used in the
analytical models of collective communication operations for prediction of their
execution time. Therefore, the accuracy of estimation of these parameters can be
validated by the comparison of the observed execution time of the collectives and
the one predicted by the analytical models using the values of the point-to-point
parameters estimated by the software tool. For the experiment, we use the linear
scatter and gather, the analytical models of which are presented in Section 3.
Fig. 3 shows the results of this experiment. One can see that the execution time
of scatter is predicted with high accuracy. The same is true for gather, given
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Fig. 3. The observed and predicted execution time of scatter and gather on the 16-node
heterogeneous cluster

that the analytical model is not supposed to predict irregular escalations of the
execution time for medium-sized messages.

Usually, the statistically reliable estimation is achieved by averaging the re-
sults of numerous repetitions of the same experiment. The software tool has an
addition level of the averaging of the experimental results. Namely, each individ-
ual experiment produces multiple estimates of the same parameter that are also
averaged. Consider, for example, the experiment estimating the fixed processing
delays. When the execution time of the empty roundtrips between all pairs of
processors has been measured, the fixed processing delay of a processor can be
found in an identical manner from C2

n−1 systems of equations, one for each of the
C2

n−1 triplets of the processors that include this processor. Therefore, the first
approximation of the fixed processing delay will be calculated by averaging these
C2

n−1 values. For more accurate estimation, this communication experiment can
be then repeated several times, giving several estimates of the fixed processing
delay which can be further averaged. As a result, the number of the repetitions
will be much smaller.

In total, the following series of repetitions are performed:

– a series of thek0 repetitions for the experiment including C2
nempty roundtrips,

– a series of the k1 repetitions for the experiment including C2
n one-to-one

communications, and
– a series of the k2 repetitions for the experiment including 3C3

n one-to-two
communications.

In our experiments on the 16-node heterogeneous cluster, no more than ten
repetitions in a series were needed to achieve the acceptable accuracy. The esti-
mation of the parameters took just fractions of a second, which allows us to use
the library for the runtime estimation in user applications.

5 Conclusion

This paper has described the software tool for accurate estimation of parame-
ters of the heterogeneous communication performance model. The software tool
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implements the efficient technique that requires a relatively small number of
measurements of the execution time of one-to-one and one-to-two roundtrip
communications for some particular message sizes, and the solution of simple
systems of linear equations. The accuracy of estimation is achieved by averaging
the values of the parameters, and careful selection of message sizes. The fast
and reliable MPI benchmarking of point-to-point and collective operations also
support efficiency and accuracy of the software tool. The software tool is freely
available at http://hcl.ucd.ie/project/CPM
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Abstract. For generality, MPI collective operations support arbitrary
dense communication patterns. However, in many applications where col-
lective operations would be beneficial, only sparse communication pat-
terns are required. This paper presents one such application: Octopus,
a production-quality quantum mechanical simulation. We introduce new
sparse collective operations defined on graph communicators and com-
pare their performance to MPI Alltoallv. Besides the scalability improve-
ments to the collective operations due to sparsity, communication over-
head in the application was reduced by overlapping communication and
computation. We also discuss the significant improvement to program-
mability offered by sparse collectives.

1 Introduction

Ab-initio quantum mechanical simulations play an important role in nano and
material sciences as well as many other scientific areas, e. g., the understanding of
biological or chemical processes. Solving the underlying Schrödinger equation for
systems of hundreds or thousands of atoms requires a tremendous computational
effort that can only be mastered by highly parallel systems and algorithms.

Density functional theory (DFT) [10,11] is a computationally feasible method
to calculate properties of quantum mechanical systems like molecules, clusters,
or solids. The basic equations of DFT are the static and time-dependent Kohn-
Sham equations:1

Hϕj = εjϕj i
∂

∂t
ϕj(t) = H(t)ϕj(t) (1)

The electronic system is described by the Hamiltonian operator

H = −1
2
∇2 + V , (2)

where the derivative accounts for kinetic energy and V for the atomic potentials
and electron-electron interaction. The vectors ϕj , j = 1, . . . , N , are the Kohn-
Sham orbitals each describing one of N electrons.
1 i denotes the imaginary unit i =

√
−1 and t is the time parameter.

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 55–63, 2008.
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The scientific application octopus [3] solves the eigenvalue problem of Eq.
(1, left) by iterative diagonalization for the lowest N eigenpairs (εj , ϕj) and Eq.
(1, right) by explicitly evolving the Kohn-Sham orbitals ϕj(t) in time. The essen-
tial ingredient of iterative eigensolvers as well as of most real-time propagators
[2] is the multiplication of the Hamiltonian with an orbital Hϕj . Since octopus
relies on finite-difference grids to represent the orbitals, this operation can be
parallelized by dividing the real-space mesh and assigning a certain partition
(domain) to each node as shown in Fig. 1(a).

The potential V is a diagonal matrix, so the product V ϕj can be calculated
locally on each node. The Laplacian operator of (2) is implemented by a finite-
difference stencil as shown in Fig. 1(b). This technique requires to send values
close to the boundary (gray shading in Fig. 1(b)) from one partition (orange) to
a neighboring one (green).

(a) A benzene ring dis-
tributed on six nodes.

(b) Boundary values for a third or-
der stencil.

Fig. 1. Partitions of octopus’ real-space finite-difference mesh

The original implementation of Hϕj is:

1. Exchange boundary values between partitions
2. ϕj ← − 1

2∇2ϕj (apply kinetic energy operator)
3. ϕj ← ϕj + V ϕj (apply potential)

In this article, we describe a simplified and efficient way to implement and
optimize the neighbor exchange with non-blocking collective operations that are
defined on topology communicators.

2 Parallel Implementation

This section gives a detailed analysis of the communication and computation
behavior of the domain parallelization and presents alternative implementations
using non-blocking and topology-aware colletives that provide higher perfor-
mance and better programmability.

2.1 Domain Parallelization

The application of the Hamiltonian to an orbital Hϕj can be parallelized by
a partitioning of the real-space grid. The best decomposition depends on the
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distribution of grid-points in real-space which depends on the atomic geometry
of the system under study. We use the library METIS [9] to obtain partitions
that are well balanced in the number of points per node.

(a) An area V enlarged by d. (b) Rhombic dodecahedrons, consisting of
twelve rhombic faces, stacked to fill up space.

Fig. 2. Message sizes and number of neighbors

The communication overhead of calculating Hϕj is dominated by the neigh-
bor exchange operation on the grid. To determine a model to assess the scaling
of the communication time which can be used to predict the application’s run-
ning time and scalability, we need to assess the message-sizes, and the average
number of neighbors of every processor. Both parameters are influenced by the
discretization order d that affects how far the stencil leaks into neighbouring do-
mains, and by the number of points in each partition. Assuming a nearly optimal
domain decomposition, NP points in total, and P processors we can consider the
ratio V = NP/P as “volume” per node. The number of communicated points is
p(P ) = Vd −V with Vd being the volume V increased by the discretization order
d and reads

p(P ) = αd3 + βd2
√

V (P ) + γd 3
√

V (P )2 (3)

with coefficients α, β, γ depending on the actual shape of the partitions. The
derivation of (3) is sketched schematically in Fig. 2(a) for a 2D situation: an
area V is increased by d in each direction. The enlargement is proportional to d2

(green) and d
√

V (red). In 3D, the additional dimension causes these terms to
be multiplied by d and leads to one more term proportional to d

3
√

V 2. Fig. 3(a)
shows the number of exchanged points measured for a cylindrical grid of 1.2
million points and the analytical expression (3) fitted to the data-points.

Since the average number of neighbors (ν) depends on the structure of the
input system, we cannot derive a generic formula for this quantity but instead
give the following estimate: METIS minimizes edge-cut which is equivalent to
minimization of surfaces. This can be seen in Fig. 1(a) where the partition bor-
ders are almost between the gray Carbon atoms, the optimum in this case. In
general, the minimal surface a volume can take on is spherical. Assuming the
partitions to be stacked rhombic dodecahedrons as approximation to spheres,
shown in Fig. 2(b), we conclude that, for larger P , ν is clearly below P because
each dodecahedron has at maximum twelve neighbors. This consideration, of
course, assumes truly minimum surfaces that METIS can only approximate. In
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Fig. 3. Communicated points and neighbor-count for different numbers of processors

practice, we observe an increasing number of neighbors for larger P , see Fig. 3(b).
Nevertheless, the number of neighbors is an order of magnitude lower than the
number of processors.

Applying the well-know LogGP model [4] to our estimations of the scaling of
the message sizes and the number of neighbors ν, we can derive the following
model of the communication overhead (each point is represented by an 8 byte
double value):

tcomm = L + oν + g(ν − 1) + G(ν · 8 p(P )) (4)

We assume a constant number of neighbors ν at large scale. Thus, the com-
munication overhead scales with O

(√
NP/P

)
in P . The computational cost of

steps 2 and 3 that determines the potential to overlap computation and com-
munication scales with NP/P for the potential term and αd3 + βd2

√
NP/P +

γd 3
√

(NP/P )2 +δNP/P for the kinetic term.2 We observe that our computation
has a similar scaling behaviour as the communication overhead, cf. Eq. (4). We
therefore conclude that overlapping the neighbor exchange communication with
steps 2 and 3 should show a reasonable performance benefit at any scale.

Overlapping this kind of communication has been successfully demonstrated
on a regular grid in [1]. We expect the irregular grid to achieve similar perfor-
mance improvements which could result in a reduction of the communication
overhead.

Practical benchmarks show that there are two calls that dominate the commu-
nication overhead of octopus. On 16 processors, about 13% of the application
time is spent in many 1 real or complex value MPI Allreduce calls caused by
dot-products and the calculation of the atomic potentials. This communication
can not be optimized or overlapped easily and is thus out of the scope of this
article. The second biggest source of communication overhead is the neighbor

2 The derivation of this expression is similar to (3) except that we shrink the volume
by the discretzation order d.
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communication which causes about 8.2% of the communication overhead. Our
work aims at efficiently implementing the neighbor exchange and reducing its
communication overhead with new non-blocking collective operations that act
on a process topology.

2.2 Optimization with Non-blocking Collective Operations

Non-blocking collective operations that would support efficient overlap for this
kind of communication are not available in the current MPI standard. We used
the open-source implementation LibNBC [6] that offers a non-blocking interface
for all MPI-defined collective operations.

Implementation with NBC Ialltoallv. The original implementation used
MPI Alltoallv for the neighbor exchange. The transition to the use of non-blocking
collective operations is a simple replacing of MPI Alltoall with NBC Ialltoallv and
the addition of a handle. Furthermore, the operation has to be finished with a call
to NBC Wait before the communicated data is accessed.

However, to achieve the best performance improvement, several additional
steps have to be performed. The first step is to maximize the time to overlap, i. e.,
to move the NBC Wait as far behind the respective NBC Ialltoallv as possible in
order to give the communication more time to proceed in the background. Thus,
to overlap communication and computation we change the original algorithm to:

1. Initiate neighbor exchange (NBC Ialltoallv)
2. ϕj ← vϕj (apply potential)
3. ϕj ← ϕj − 1

2∇2ϕinner
j (apply kinetic energy operator to inner points)

4. Wait for the neighbor exchange to finish (NBC Wait)
5. ϕj ← ϕj − 1

2∇2ϕ
edge
j (apply kinetic energy operator to edge points)

We initiate the exchange of neighboring points (step 1) and overlap it with
the calculation of the potential term (step 2) and the inner part of the kinetic
energy, which is the derivative of all points that can be calculated solely by
local points (step 3). The last step is waiting for the neighbor-exchange to finish
(step 4) and calculation of the derivatives for the edge points (step 5).

A usual second step to optimize for overlap is to introduce NBC Test() calls
that give LibNBC the chance to progress outstanding requests. This is not nec-
essary if the threaded version of LibNBC is running on the system. We have
shown in [5] that the a naively threaded version performs worse, due to the loss
of a computational core. However, for this work, we use the InfiniBand optimized
version of LibNBC [7] which does not need explicit progression with NBC Test()
if there is only a single communication round (which is true for all non-blocking
operations used in octopus).

As shown in Sec. 2.1, the maximum number of neighbors is limited. Thus, the
resulting communication pattern for large-scale runs is sparse. The MPI Alltoallv
function, however, is not suitable for large-scale sparse communication patterns
because it is not scalable due to the four index arrays which have to be filled for
every process in the communicator regardless of the communication pattern. This



60 T. Hoefler, F. Lorenzen, and A. Lumsdaine

results in arrays mostly filled with zeros that still have to be generated, stored
and processed in the MPI call and is thus a performance bottleneck at large-scale.
Filling those arrays correctly is also complicated for the programmer and a source
of common programming errors. To tackle the scalability and implementation
problems, we propose new collective operations [8] that are defined on the well
known MPI process topologies. The following section describes the application
of one of the proposed collective operations to the problem described above.

Topological Collective Operations. We define a new class of collective oper-
ations defined on topology communicators. The new collective operation defines
a neighbor exchange where the neighbors are defined by the topology. MPI offers
a regular (cartesian) topology as well as a graph topology that can be used to
reflect arbitrary neighbor relations. We use the graph communicator to repre-
sent the neighborship of partitions generated by METIS for the particular input
system. MPI Graph create is used to create the graph communicator. We im-
plemented our proposal in LibNBC, the functions NBC Get neighbors count and
NBC Comm neighbors return the neighbor count and the order of ranks for the
send/receive buffers respectively. The operation NBC Ineighbor xchg performs a
non-blocking neighbor exchange in a single step.

Programmability. It seems more natural to the programmer to map the out-
put of a graph partitioner (e. g., an adjacency list that represents topological
neighbors) to the creation of a graph communicator and simply perform collec-
tive communication on this communicator rather than performing the Alltoallv
communication. To emphasize this, we demonstrate pseudocodes that perform
a similar communication operation to all graph neighbors indicated in an undi-
rected graph (list[i][0] represents the source and list[i][1] the destination
vertex of edge i and is sorted by source node).

Listing 1. NBC Ialltoall Implementation

1 rdpls = malloc(p*sizeof(int)); sdpls = malloc(p*sizeof(int));

rcnts = malloc(p*sizeof(int)); scnts = malloc(p*sizeof(int));

for(i=0; i<p; i++) { scnts[i] = rcnts[i] = 0; }

for(i=0; i<len(list); i++) if(list[i][0] == rank)

scnts[list[i][1]] = count; rcnts[list[i][1]] = count;

6 sdispls[0] = rdispls[0] = 0;

for(i=1; i<p; i++) {

sdpls[i] = sdpls[i-1] + scnts[i];

rdpls[i] = rdpls[i-1] + rcnts[i]; }

NBC_Ialltoallv(sbuf, scnts, sdpls, dt, rcnts, rdpls, dt, comm, req);

11 /* computation goes here */

NBC_Wait(req, stat);

Listing 1 shows the NBC Ialltoall implementation which uses four different ar-
rays to store the adjacency information. The programmer is fully responsible
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for administering those arrays. Listing 2 shows the implementation with our
newly proposed operations that acquire the same information from the MPI li-
brary (topology communicator layout). The processes mapping in the created
graph communicator might be rearranged by the MPI library to place tightly
coupled processes on close processors (e. g. on the same SMP system). The col-
lective neighbor exchange operation allows other optimizations (e. g. starting
off-node communication first to overlap local memory copies of on-node commu-
nication). Due to the potentially irregular grid (depending on the input system),
the number of points communicated with each neighbor might vary. Thus, we
used the vector variant NBC Ineighbor xchgv to implement the neighbor exchange
for octopus.

Listing 2. NBC Ineighbor xchg Implementation

last = list[0][0]; counter = 0; // list is sorted by source

for(i=0; i<len(list); i++) {

3 if(list[i][0] != last) index[list[i][0]] = counter;

edges[counter++] = list[i][1];

}

MPI_Graph_create(comm, nnodes, index, edges, 1, topocomm);

NBC_Ineighbor_xchg(sbuf, count, dt, rbuf, count, dt, topocomm, req);

8 /* computation goes here */

NBC_Wait(req, stat);

3 Performance Analysis

We benchmarked our implementation on the CHiC supercomputer system, a
cluster computer consisting of nodes equipped with dual socket dual-core AMD
2218 2.6 GHz CPUs, connected with SDR InfiniBand and 4 GB memory per
node. We use the InfiniBand-optimized version of LibNBC [7] to achieve highest
performance and overlap. Each configuration was ran three times on all four
cores per node (4-16 nodes were used) and the average values are reported.

Fig. 4(a) shows the microbenchmark results for the overhead of NBC Ialltoallv
and NBC Ineigbor xchgv of NBCBench [6] with 10 neighbors under th assumption
that the whole communication time can be overlapped. The overhead of the new
neighbor exchange operation is slightly lower than the NBC Ialltoallv overhead
because the implementation does not evaluate arrays of size P . Fig. 4(b) shows
the communication overhead of a fixed-size ground state calculation of a chain of
Lithium and Hydrogene atoms. The overhead varies (depending on the technique
used) between 22% and 25% on 16 processes. The bars in Fig. 4(b) show the total
communication overhead and the tackled neighbor exchange overhead (lower
part). We analyze only the overhead-reduction and easier implementation of
the neighbor exchange in this work. The application of non-blocking neighbor
collective operations efficiently halves the neighbor exchange overhead and thus
improves the performance of octopus by about 2%. The improvement is smaller
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on 64 processes because the time to overlap is due to the strong scaling problem
much smaller than in the 32 or 16 process case. The gain of using the nearest
neighbor exchange collective is marginal at this small scale. Memory restrictions
prevented bigger strong-scaling runs.

4 Conclusions and Future Work

We proposed a new class of collective operations that enable collective communi-
cation on a processor topology defined by an MPI graph communicator and thus
simplify the implementation significantly. We showed the application of the new
operations to the quantum mechanical simulation program octopus. The com-
munication overhead of the neighbor exchange operation was efficiently halved
by overlapping of communication and computation improved the application
performance.
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Abstract. Parallel computing in heterogeneous environments is draw-
ing considerable attention due to the growing number of these kind of
systems. Adapting existing code and libraries to such systems is a fun-
damental problem. The performance of this code is affected by the large
interdependence between the code and these parallel architectures. We
have developed a dynamic load balancing library that allows parallel code
to be adapted to heterogeneous systems for a wide variety of problems.
The overhead introduced by our system is minimal and the cost to the
programmer negligible. The strategy was validated on several problems
to confirm the soundness of our proposal.

1 Introduction

The spread of heterogeneous architectures is likely to increase in the coming
years due to the growing trend toward the institutional use of multiple comput-
ing resources (usually heterogeneous) as the sole computing resource [1]. The
performance of this kind of system is very conditioned by the strong dependence
that exists between parallel code and architecture [2]. Specifically, the process
of allocating tasks to processors often becomes a problem requiring considerable
programmer effort [3].

We have devised a library that allows dynamic task balancing within a par-
allel program running on a dedicated heterogeneous system, while adapting to
system conditions during execution. This library facilitates the programmer the
task of tailoring parallel code developed for homogeneous systems to heteroge-
neous ones [4]. The library has been implemented in a way that does not require
changing any line of code in existing programs, thus minimizing code intrusion.
All that is required is to use three new functions:

– Library start: ULL_MPI_init_calibratelib()

– Library end: ULL_MPI_shutdown_calibratelib()

– Balancing function: ULL_MPI_calibrate (...)
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We validated our proposal on three test problems: matrix product [5], the Jacobi
method for solving linear systems [5] and resource allocation optimization via
dynamic programming algorithms [6]. The computational results show that the
benefits yielded by using our balancing library offer substantial time reductions
in every case. The efficiency level obtained, considering the minimum code intru-
sion, makes this library a useful tool in the context of heterogeneous platforms.

This paper is structured as follows: in Section 2 we introduce some of the issues
that motivated this research and the main goals to achieve. Section 3 shows
how to use our library and the advantages our approach yields. In Section 4
we describe the balancing algorithm used by the library and Section 5 shows the
validation performed on the selected problems. We close with some conclusions
and future research directions.

2 Background and Objectives

Programming on heterogeneous parallel systems is obviously architecture de-
pendent and the performance obtained is strongly conditioned by the set of
machines performing the computation. This means that, in most cases, the tech-
niques used on homogeneous parallel systems must be reworked to be applied to
systems which are not necessarily homogeneous [3,7].

Specifically, we set out to solve the problem of synchronizing parallel programs
in heterogeneous architectures. Given a program developed for a homogeneous
system, we hope to obtain a version that makes use of the system’s hetero-
geneous abilities by allocating tasks according to the computational ability of
each processing element. The simplest way to approach the problem consists on
manually adapting the code as required by the architectural characteristics[8].
This approach usually implies at least a knowledge of said characteristics, such
that the parallel program’s tasks can be allocated according to the computa-
tional capacity of each processor. A more general approach can be obtained in
the context of self-optimization strategies based on a run time model [4,9]. In
this approach, an analytical model that parametrizes the architecture and the
algorithm is instantiated for each specific case so as to optimize program execu-
tion. This strategy is considerably more general than the previous one, though
more difficult to apply since the modeling process is not trivial [10,11], nor is
its subsequent instantiation and minimization for each case. A search of the lit-
erature yields some generic tools such as mpC [12,13] and HeteroMPI [14,15]
which provide the mechanisms that allow algorithms to be adapted to hetero-
geneous architectures, but which also require more input from the user and are
more code intrusive. Adaptive strategies have been also proposed in AMPI [16]
and Dyn-MPI [17]. AMPI is built on Charm++ [18] and allows automatic load
balancing based on process virtualization. Although it is an interesting generic
tool, it involves a complex runtime environment.

Our objective is to develop a simple and efficient dynamic adaptation strategy
of the code for heterogeneous systems that minimizes code intrusion, so that the
program can be adapted without any prior knowledge of the architecture and
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// procs = Number o f p roc e s so r s ; miid = Process ID ; n = Problem s i z e
. . .
despl = ( in t ∗) malloc ( nprocs ∗ s i z e o f ( i n t ) ) ;
count = ( in t ∗) malloc ( nprocs ∗ s i z e o f ( i n t ) ) ;
nrows = n/ nprocs ; despl [ 0 ] = 0 ;
f o r ( i = 0; i < nprocs ; i++) {

count [ i ] = nrows ;
i f ( i ) despl [ i ] = despl [ i−1] + count [ i−1] ;

}
whi l e ( it < maxit ) {

fin = despl [ miid ] + count [ miid ] ;
resi_local = 0 . 0 ;
f o r ( i = despl [ miid ] ; i < fin ; i++) {

sum = 0 . 0 ;
f o r ( j = 0; j < n ; j++)

sum += a [ i ] [ j ] ∗ x [ j ] ;
resi_local += fabs ( sum − b [ i ] ) ;
sum += −a [ i ] [ i ] ∗ x [ i ] ;
new_x [ i ] = ( b [ i ] − sum ) / a [ i ] [ i ] ;

}
MPI_Allgatherv (&new_x [ despl [ miid ] ] , count [ miid ] , MPI_DOUBLE ,

x , count , despl , MPI_DOUBLE , new_com ) ;
it++;

}

Listing 1.1. Basic algorithm of an iterative scheme

without the need to develop analytical models. We intend to apply the technique
to a wide variety of problems, specifically to parallel programs which can be
expressed as a series of synchronous iterations. To accomplish this, we have
developed a library with which to instrument specific sections in the code. The
instrumentation required is minimal, as it is the resulting overhead. Using this
instrumentation, the program will dynamically adapt itself to the destination
architecture. This approach is particularly effective in SPMD applications with
replicated data. DynMPI is perhaps a tool closer to our library in terms of
the objectives but it is focussed on non dedicated clusters. DynMPI has been
implemented as a MPI extension and has a wider range of applicability. However,
is more code intrusive since data structures, code sections and communication
calls must be instrumented. It uses daemons to monitor the system, what means
extra overhead, and the standard MPI execution script must be replaced by the
extended version.

Our library’s design is directed at solving the time differences obtained when
executing the parallel code without the necessity of extra monitoring daemons.
It is based on an iterative scheme, such as that appearing in Listing 1.1, which
shows a parallel version of the iterative Jacobi algorithm to solve linear systems.
The code involves a main loop that executes maxit iterations where a calculation
operation is performed for each iteration. Each processor performs calculations
in accordance with the size of the task allocated, n/nprocs . Following this
calculation, a collective communication operation is carried out during which all
the processors synchronize by gathering collecting data before proceeding to the
next iteration.
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(a) homogeneous allocation (b) dynamic load balancing

Fig. 1. Time diagrams on heterogeneous systems. Each bar corresponds to the execu-
tion time of a processor on an iteration.

f o r ( i = 0; i <= N ; i++) {
f o r ( j = 0; j <= M ; j++) { // i r r e g u l a r loop . I t e r a t i o n j i s O( j )

G [ i ] [ j ] = (∗ f ) ( i , 0 ) ;
f o r ( x = 0; x <= j ; x++) {

fij = G [ i − 1 ] [ j − x ] + (∗ f ) ( i , x ) ;
i f ( G [ i ] [ j ] < fij )

G [ i ] [ j ] = fij ;
}

}
}

Listing 1.2. Sequential algorithm for the resource allocation problem

Let’s suppose that a code like that showed in Listing 1.1 is executed on a
heterogeneous cluster made up of, for example, 3 processors, such that processor
2 is twice as fast as processor 1, and processor 2 is four times as fast as processor
0. Then, implementing a homogeneous task allocation, where the same problem
size is assigned to each node results in an execution time which is directly de-
pendent on that of the slowest processor. Figure 1(a) shows the results with a
problem size 1500 and with subproblems of size 500. In this case the slowest
processor that determines the execution time is processor 0.

A typical solution to this problem consists of allocating on each processor
a static load proportional to the its computational capacity. However, several
reasons brought us to consider the dynamic strategy. The allocation of tasks
according to the computational power of the processors depends on the pro-
cessors and also on the application. This fact involves some benchmarking to
determine the computational power of the processors and usually it is highly
code intrusive. On the other hand, when facing the parallelization of codes with
non-regular loops (see code of the resource allocation in Listing 1.2), the static
proportional allocation is not a trivial task and if performed at runtime, the
overhead introduced may not be negligible.

The next section details the strategy used for balancing task allocation with
a low overhead for the execution time of each processor.
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// procs = Number o f p roc e s so r s ; miid = Process ID ; n = Problem s i z e
. . .
despl = ( in t ∗) malloc ( nprocs ∗ s i z e o f ( i n t ) ) ;
count = ( in t ∗) malloc ( nprocs ∗ s i z e o f ( i n t ) ) ;
nrows = n/ nprocs ; despl [ 0 ] = 0 ;
f o r ( i=0; i< nprocs ; i++) {

count [ i ] = nrows ;
i f ( i ) despl [ i ] = despl [ i−1] + count [ i−1] ;

}
whi l e ( it < maxit ) {

fin = despl [ miid ] + count [ miid ] ;
resi_local = 0 . 0 ;
f o r ( i = despl [ miid ] ; i < fin ; i++) {

ULL_MPI_calibrate ( ULL_MPI_INIT , it , &count , &despl , threshold , 1 , n )
sum = 0 . 0 ;
f o r ( j = 0; j < n ; j++)

sum += a [ i ] [ j ] ∗ x [ j ] ;
resi_local += fabs ( sum − b [ i ] ) ;
sum += −a [ i ] [ i ] ∗ x [ i ] ;
new_x [ i ] = ( b [ i ] − sum ) / a [ i ] [ i ] ;

}
ULL_MPI_calibrate ( ULL_MPI_END , it , &count , &despl , threshold , 1 , n )
MPI_Allgatherv (&new_x [ despl [ miid ] ] , count [ miid ] , MPI_DOUBLE ,

x , count , despl , MPI_DOUBLE , new_com ) ;
it++;

}

Listing 1.3. Calibrated version of the basic algorithm of an iterative scheme

3 Dynamic Task Allocation

The library we developed allows for dynamic balancing with the introduction of
just two calls to the ULL_MPI_calibrate() function in the section of code that
is to be balanced, as shown by the code in Listing 1.3. A call is introduced at
the beginning and end of the section to be balanced, so that each processor can
know on runtime how long it will take to execute the assigned task. The balanced
load results from a comparison of this execution time for each processor and the
subsequent task redistribution.

Listing 1.4 shows the interface of the calibrating function. The following ar-
guments are input to the balancing function:

– section: The section is used to determine the entry point where the routine
is used. It can take the following two values:

• ULL MPI INIT: Beginning of section to balance.
• ULL MPI END: End of section to balance.

i n t ULL_MPI_calibrate ( ULL_MPI_Section section , i n t iteration ,
i n t ∗∗ counts , i n t ∗∗ displs ,
i n t threshold ,
i n t size_object , i n t size_problem ) ;

Listing 1.4. Prototype of the ULL calibrating function
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– iteration: Indicates the iteration to be balanced. A 0 value indicates whether
the program is on its first or subsequent iterations. The first iteration has a
particular treatment.

– counts[], displs[]: Indicates the task size to be computed by each processor.
counts[] is an integer array containing the amount of work that is processed
by each processor. displs[] specifies the distance (relative to the work data
vector) at which to place the data processed by each processor.

– threshold: Corresponds to a number of microseconds that indicate wheather
to balance or not. The behaviour per iteration is as follows:

• Let Ti be the time processor i takes to execute the task assigned.
• Tmax = Maximum(Ti)
• Tmin = Minimum(Ti)
• If (Tmax−Tmin) > threshold then balance. If not, the system has already

balanced the workload.
– size objects: The size of the data type manipulated during computation

expressed as the number of elements to be communicated in the communi-
cation routine, i.e, in the example of Listing 1.3, size objects is 1, since the
elements of the matrix are double and in the communication routine they
are communicated as MPI DOUBLE data types.

– size problem: Corresponds to the total problem size to be computed in
parallel, so the calculations of the new task sizes are consistent with the
tasks allocated to each processor counts[], displs[].

Running the synthetic code again on the previous three-processor cluster with a
problem size equal to 1500 and a 100-microsecond threshold yields the following
values for problem size (counts[]) and execution times (Ti):

– Iteration i = 0. The algorithm begins with a homogeneous task allocation:
• counts[proc0] = 500, T0 = 400 us

• counts[proc1] = 500, T1 = 200 us

• counts[proc2] = 500, T2 = 100 us

• if ((Tmax = 400) − (Tmin = 100)) > (threshold = 100) then bal-
ance(counts[])

– Iteration i = 1. A balancing operation is performed automatically:
• counts[proc0] = 214, T0 = 171 us

• counts[proc1] = 428, T1 = 171 us

• counts[proc2] = 858, T2 = 171 us

Figure 1(b) shows a diagram of the iterations required to correct the load im-
balance. For this synthetic code the load distribution is exactly proportional to
the hypothetical loads, but this is not necesarily true in practice.

Note the library’s ease of use and the minimum code intrusion. The only
change necessary is to add calls to the functions at the beginning and end of
the code to initialize and clear the memory (ULL_MPI_init_calibratelib(),
ULL_MPI_shutdown_calibratelib()).
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Table 1. Heterogenous platform used for the tests. All the processors are Intel (R)
Xeon (TM).

Cluster 1 Cluster 2 Cluster 3
Processor Frequency Processor Frecuency Processor Frecuency

0 3.20 GHz 0, 1 3.20 GHz 0, 1 3.20 GHz
1 2.66 GHz 2, 3 2.66 GHz 2, 3, 4, 5 2.66 GHz
2 1.40 GHz 4, 5 1.40 GHz 6, 7 1.40 GHz
3 3.00 GHz 6, 7 3.00 GHz 8, 9, 10, 11 3.00 GHz

4 The Balancing Algorithm

The call to the ULL_MPI_calibrate(...) function must be made by all the pro-
cessors and implements the balancing algorithm. Although a large number of
balancing algorithms can be found in the literature [19], we opted for a simple
and efficient strategy that yielded satisfactory results. The methodology chosen,
however, allows for the implementation of balancing algorithms which may be
more efficient. All processors perform the same balancing operations as follows:

– The time required by each processor to carry out the computation in each
iteration has to be given to the algorithm. A collective operation is performed
to share these times among all processors.

• T [] = vector where each processor gathers all the times (Ti).
• size problem = the size of the problem to be computed in parallel.
• counts[] = holds the sizes of the tasks to be computed on each processor.

– The first step is to verify that the threshold is not being exceeded
if (MAX(T []) - MIN(T [])) > THRESHOLD then, BALANCE

– The relative power RP [] is calculated for each processor and corresponds to
the relationship between the time T [i] invested in performing the computa-
tion for a size counts[i] versus the time taken for a computational unit as a
function of the problem size, size problem:
RP [i] = counts[i]

T [i] , 0 ≤ i ≤ Num procs − 1; SRP =
∑Num procs−1

i=0 RP [i]
– Finally, the sizes of the new counts are calculated for each processor:

counts[i] = size problem ∗ RP [i]
SRT

Once the counts vector is computed, the displs vector is also updated. Using this
method, each processor fits the size of the task allocated according to its own

Table 2. Overhead of the calibration running on an homogeneous system with 8 pro-
cessors Intel (R) Xeon (TM) 3.2 GHz

Matrix Product Jacobi Resource Allocation Problem
Size Problem Parallel Calibrated Parallel Calibrated Parallel Calibrated

1152 4.15 4.16 5.68 6.18 2 1.77
2304 96.11 93.44 19.23 19.76 14.23 9.19
4608 782.56 757.56 72.09 72.75 112.72 65.17



Dynamic Load Balancing on Dedicated Heterogeneous Systems 71

computational capacity. The system could be extended to run on heterogeneous
non dedicated systems and on systems with dynamic load. For that purpose, the
array T [] must be fed not only with the execution times but with the loading
factor on each processor.

To test the overhead introduced by our tool, we have executed classical parallel
codes and the calibrated instrumented versions on an homogeneous system with
8 Intel 3.20 GHz processors. The parallel codes perform block assignments of
the tasks with blocks of the same size for each processor. Since we are dealing
with an homogeneous system, no performance improvement should be achieved
and the differences in running times represent the overhead introduced. Table
2 shows the running times in each case. The overhead introduced by the tool
is negligible. Note that in the resource allocation problem, the performance is
improved by the code using the calibration tool. This is due to the fact that an
homogeneous block data distribution is not the best choice in this case.

5 Computational Results

To check the advantages of the proposed method, we carried out a compre-
hensive computational experiment where the three aforementioned applications
were balanced on different heterogeneous systems. The tests were run on three
clusters (Table 1) to check the library’s response to an increase in the number of
processors with varying computational capacities. For the sake of the simplicity,
the clock frecuency is the indicator of the level of heterogeneity, however it is a
well known fact that better adjustments can be done by executing representative
samples of the applications to determine the speeds of the processors. We will
first analyze the performance of the resource allocation problem. Four algorithms
were implemented: sequential and parallel homogeneous, heterogenous and cal-
ibrated. All parallel versions of the algorithm were run on the three clusters,
giving the following results:

– Tseq: Time in seconds of the sequential version.
– Tpar: Time in seconds of the parallel version, homogeneous data distribution.
– Thet: Time in seconds of the parallel version, static heterogeneous data dis-

tribution proportional to the computational load.

Table 3. Results for the Resource Allocation Problem

Cluster Size Tsec Tpar Thet Tcal GRpar GRhet

1152 7.59 7.04 4.41 3.38 51.98 23.31
1 2304 60.44 55.36 33.35 22.62 59.14 32.18

4608 483.72 430.37 257.98 168.22 60.91 34.79

1152 7.59 4.35 6.1 3.92 9.68 35.7
2 2304 60.54 30.70 20.64 23.94 22.01 -15,97

4608 483.72 237.75 139.06 121.77 48.19 12,43

1152 7.59 5.32 4,68 4.30 19.17 8,18
3 2304 60.54 24.81 20.41 18.90 23.82 7.38

4608 483.72 167.04 113.54 95.89 42.59 15.55
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Fig. 2. Execution time per iteration for the Resource Allocation Problem on cluster 1
(four processors) with a size of 2304

– Tcal: Time in seconds of the balanced parallel version.
– GRpar = Tpar−Tcal

Tpar
∗ 100: Gain relative to the homogeneous version.

– GRhet = Thet−Tcal

Thet
∗ 100: Gain relative to the heterogeneous version.

In the calibrated version, the calibrating function was only added where appro-
priate, without altering the code from the parallel version. The sequential version
was executed on the fastest processor within each cluster. The threshold is prob-
lem dependent and for testing purposes has been stated experimentally. The
results are shown in Table 3 and are expressed in seconds. A 100-microsecond
threshold was used for the calibrating algorithm. We observe important per-
formance gains when using our tool. Only in one case our tool worsened the
performance, and that is likely due to the threshold used in this case.

Figure 2 shows the results obtained after each iteration on cluster 1 (four
processors) with a problem size of 2304. Each bar represents the execution time
for each processor. Note that the times in iteration 0 of processors 2 and 3 are
much higher than the rest due to the unbalanced execution. The calibration
redistributes the workload, placing a higher load on processors 0 and 1 and de-
creasing the load on processors 2 and 3. The problem gets calibrated at iteration
4 when using a 1000–milliseconds threshold.

Table 4. Results for the matrix product and for the Jacobi method

Matrix Multiplication Jacobi Method
Cluster Size Tsec Tpar Tcal GR Size Tsec Tpar Tcal GR

1152 30.98 47.21 18.94 59.8 1152 34.76 30.26 14.77 51.18
1 2304 720.81 400.49 248.46 37.9 2304 138.74 116.44 50.71 56.44

4608 5840.44 3344.19 2035.84 39.1 4608 553.46 463.89 190.74 58.88

1152 30.98 29.92 15.36 48.6 1152 34.76 17.54 17.05 2.79
2 2304 720.81 247.98 184.62 25.5 2304 138.74 63.43 53.44 15.74

4608 5840.44 2239.31 1639.96 26.7 4608 553.46 256.80 220.49 14.13

1152 30.98 20.009 15.42 22.9 1152 34.76 19.79 14.37 27.38
3 2304 720.81 165.40 134.15 18.8 2304 138.74 54.02 39.38 27.10

4608 5840.44 1487.51 1093.37 26.5 4608 553.46 178.81 162.53 9.10
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For the matrix product and Jacobi cases the tests used square matrices of
size Size ∗ Size. A threshold of 2000 microseconds was chosen for the balancing
algorithm. Problem size used was a multiple of the number of processors selected.
The results are shown in Table 4. Note the significant gain resulting from the
dynamic balancing, which in some cases exceeds 50%. For the Jacobi method a
100-microsecond threshold was chosen for the calibrating algorithm.

6 Conclusions and Future Research

We have developed a library to perform dynamic load balancing in heterogeneous
systems. The library can be applied to a wide range of problems and the effort
required by the programmer is minimal, since the approach taken involves min-
imum intrusion in the user’s code. In future work we plan to widen the library’s
applicability to other types of programs and systems.
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Abstract. This paper presents experiences and results obtained in opti-
mizing the parallel communication performance of a production-quality
medical image reconstruction application. The fundamental communi-
cation operations in the application’s principal algorithm are collective
reductions. The overhead of these operations was reduced by transform-
ing the algorithm to overlap its computation and communication. Sev-
eral different approaches to communication progress were studied, both
user-directed and asynchronous. Experimental results comparing the new
approach to the previous implementation show overall application per-
formance improvements of up to 8%, when run on 32 nodes.

1 Introduction

Modern medical methods for diagnosis and treatment require very accurate,
high-resolution 3D images of the inside of a human body. In order to pro-
vide the required accuracy and resolution, reconstruction algorithms in med-
ical imaging are becoming more complex and time-consuming. In this paper, we
study Positron Emission Tomography (PET ) reconstruction, where one of the
most popular, but also most time-consuming algorithms—the list-mode OSEM
algorithm—requires several hours on a common PC in order to compute a 3D
reconstruction. With advanced algorithms that incorporate more physical as-
pects of the PET process, computation times are rising even further [1]. This
motivates the parallelization of the algorithm on multiprocessor machines [2].

Our current parallel implementation uses Message Passing Interface (MPI) [3]
collective operations and OpenMP. Collective operations allow the programmer
to express high-level communication patterns in a portable way, such that im-
plementers of communication libraries provide machine-optimized algorithms for
those complex communications. Our earlier work showed that many parallel al-
gorithms can be implemented with exclusive use of collective communications
and that portability, readability, programmability, code maintenance and per-
formance are often improved in this case [4].

In this paper, we use non-blocking collective operations to reduce the com-
munication overhead of the parallel list-mode OSEM algorithm. Non-blocking
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collective operations are a new class of collective operations that combines all
benefits of collective operations with the ability to overlap communication and
computation [5]. They also relax the tight bond between computation and com-
munication by performing communication tasks in the background. In our case
study, the scalability for the fixed problem size (strong scaling) is limited by
a collective data reduction operation in which the message size is independent
of the number of MPI processes (in our example 48 MiB). To reduce the com-
munication overhead, we transform our code to leverage non-blocking collective
operations offered by LibNBC [6], which provide—additionally to the overlap-
ping of communication with computation— high-level communication offload
using the InfiniBand network. We analyze the code transformations and provide
an analytical runtime model that identifies the overlap potential of our approach.

The rest of the paper is organized as follows: we start with an introduction
to the list-mode OSEM algorithm in Section 1.1 and describe its current par-
allelization in Section 1.2. In Section 2, we show the necessary changes to our
implementation that allow overlapping of communication and computation, and
in Section 3, we discuss the optimization of LibNBC to maximize overlap. Con-
clusions are presented in Section 4.

1.1 List-Mode OSEM Algorithm

PETisamedical imaging technique thatdisplaysmetabolicprocesses inahumanor
animal body. PET acquisition proceeds as follows:A slightly radioactive substance
which emits positrons when decaying is applied to the patient who is then placed
inside a scanner. The detectors of the scanner measure so-called events: When the
emitted positrons of the radioactive substance collide with an electron residing in
the surrounding tissuenear thedecaying spot (up to 3 mmfromthe emissionpoint),
they are annihilated. During annihilation two gamma rays emit from the annihila-
tion spot in opposite directions and form a line, see Fig. 1. These gamma rays are
registered by the involved detectors; one such registration is called event.

During one investigation, typically 107 to 5 · 108 events are registered, from
which a reconstruction algorithm computes a 3D image of the substance’s dis-
tribution in the body.

Fig. 1. Detectors register an event
in a PET-scanner with 6 detector
rings

f o r each ( i t e r a t i o n k ){
f o r each ( s u b i t e r a t i o n l ){
f o r ( event i ∈ Sl ){

compute Ai

compute cl+ = (Ai)
t 1

Aifk
l

}

fk
l+1 = fk

l cl}
fk+1
0 = fk

l+1}
Listing 1. Sequential list-mode
OSEM algorithm



Communication Optimization for Medical Image Reconstruction Algorithms 77

In this work, we focus on the very accurate, but also quite time-consuming
list-mode OSEM (Ordered Subset Expectation Maximization) reconstruction
algorithm [7] which computes the image f from the m events saved in a list.

The algorithm works block-iteratively: in order to speed up convergence, a
complete iteration over all events is divided into s subiterations (see Listing 1).
Each subiteration processes one block of events, the so-called subset. The starting
image vector is f0 = (1, ..., 1) ∈ RN , where N is the number of voxels in the image
being reconstructed. For each subiteration l ∈ 0, ..., s−1, the events in subset
l are processed in order to compute a new, more precise reconstruction image
fl+1, which is used again for the next subiteration as follows:

fl+1 =
1

At
norm1︸ ︷︷ ︸
:=a

flcl; cl =
∑
i∈Sl

(Ai)t 1
Aifl

, (1)

where Sl are the indices of events in subset l, 1 = (1, ..., 1). For the i-th row Ai of
the so-called system-matrix A ∈ Rm×N , element aik denotes the length of inter-
section of the line between the two detectors of event i with voxel k. The so-called
normalization vector a =

1
At

norm1
is independent of the current subiteration and

can thus be precalculated. In the computation of fl+1 the multiplication of aflcl

is performed element by element.
After one iteration over all subsets, the reconstruction process can either be

stopped, or the result can be improved with further iterations over all subsets
(see pseudocode in Listing 1). Note that the optimal number of events per subset
ms = m/s only depends on the scanner geometry and is thus fixed (for our
scanner [8], it is ms = 106).

1.2 Algorithm Parallelization Concept

Two strategies to parallelize the list-mode OSEM algorithm exist: PSD (Pro-
jection Space Decomposition) and ISD (Image Space Decomposition). In [2] we
showed that PSD outperforms ISD in almost all cases and we therefore chose the
PSD strategy that distributes the events among the processes for our paralleliza-
tion: Since fl+1 depends on fl we parallelize the computations within one subset.
We decompose the input data, i.e., the events of one subset into P (=number of
nodes) blocks and process each block simultaneously. The calculations for one
subset includes four steps on every node j (∀ j = 1, . . . , P ) (cf. Fig. 2):
1. read ms/P events

2. compute cl,j =
∑

i∈Sl,j
(Ai)

t 1
Aifl

. This includes the on-the-fly computation

of Ai for each event in Sl,j .
3. sum up cl,j ∈ RN (

∑
j cl,j = cl) with MPI Allreduce

4. compute fl+1 = flcl

We implemented steps 1 and 3 (i.e., the reading of data and the actual communi-
cation of the parallel algorithm) using MPI File Read and blocking MPI Allreduce.
We start one process per node and use the SMP node in a cluster by additionally
parallelizing steps 2 and 4 using OpenMP.
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Fig. 2. Parallel list-modeOSEMalgorithmon fournodeswith theblockingMPI Allreduce
using four OpenMP threads per node

2 Parallel Algorithm with Non-blocking Collectives

In order to optimize the parallel algorithm, we reduce the overhead arising from
the allreduce step by overlapping its communication with computations that
are independent of the communicated data. We use LibNBC’s [6] non-blocking
version of MPI Allreduce called NBC Iallreduce, and the MPI Wait counterpart
NBC Wait.

We overlap the reading of events for subset l and the computation of the
corresponding sub-matrix Al (which is composed of rows i ∈ Sl) with the com-
munication of cl−1 of the preceding subset (see Fig. 3). Hence, the non-blocking
parallel algorithm on nodes j (∀ j = 1, . . . , P ) reads as follows:

1. read ms/P events in the first subset

2. compute cl,j =
∑

i∈Sl,j
(Ai)

t 1
Aifl

. This includes the on-the-fly computation

of Ai for each event in Sl,j in the first subset. Beginning from the second
subset, rows Ai have already been computed in parallel with NBC Iallreduce

3. start NBC Iallreduce for cl,j (
∑

j cl,j = cl)
4. in every but the last subset, each node reads the ms/P events for subset

l + 1 and computes Ai for subset l + 1
5. perform NBC Wait to finish NBC Iallreduce
6. compute fl+1 = flcl

Note that in this approach, Al has to be kept in memory. If not enough memory
is available, one part Al can be computed as in the original version in step 2
and the other part in step 4. Also, since Ai is precomputed, the computation of

cl+ = (Ai)
t 1
Aifl

could cause CPU cache misses that influence the performance.

2.1 Analyzing the Overlap Potential

In order to identify the overlap potential of our approach, we develop an analyt-
ical runtime model for the overlappable computations. We denote the sequential
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Fig. 3. Parallel list-mode OSEM algorithm on four nodes with the non-blocking
NBC Iallreduce using four OpenMP threads per node

time to compute the ms rows of Al by t1Al
(ms) and the time to read each node’s

ms/P events by tPread(ms/P ). If we assume that tPread(ms/P ) ≈ tPread(ms)/P ,
we obtain a computational overlap time per subset with one thread on each of
the P nodes of

tPCompOver = tPread(ms/P ) + t1Al(ms)/P ≈ (tPread(ms) + t1Al(ms))/P (2)

We will verify our model (2) with experiments in Section 3.2.
On q cores per node, the ideal parallel efficiency with our OpenMP paral-

lelization would be β(q) = t1Ai
/(tqAi

·q) = 1. However, with an increasing number
of threads sharing the cache, cache misses increase considerably and thus our
OpenMP implementation scales worse than ideally on multi-core machines. For
example, on a quad-core processor, efficiency is β(4) = 0.5.

Note that on systems where file I/O and MPI communication share the same
network, the overlapping of reading of data and communication might be limited
due to the network’s bandwidth. Hence, in the worst case, with the network fully
loaded by MPI communication, tPCompOver = t1Al(ms)/P .

3 Optimization of Non-blocking Collectives

In this section, we explain the optimized implementation of non-blocking collective
operations for the needs of the parallel list-mode OSEM reconstruction algorithm.

3.1 Implementation with LibNBC

We used the InfiniBand optimized version of LibNBC for this work. This ver-
sion uses an overlap-optimized InfiniBand transport layer which achieves better
computation/communication overlap than open source MPI implementations [9].
The algorithm that is used to all-reduce large messages in LibNBC uses a
pipelined communication scheme to maximize overlap and to use the network
bandwidth as efficiently as possible. On P processes, it divides the data into P
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chunks. Every process receives a chunk from its left neighbor, computes it and
passes it on to the next neighbor in a ring-like fashion. This algorithm finishes
the reduction in 2 · P − 2 communication/computation cycles.

Fig. 4(a) shows a comparison of the “blocking performance”1 of LibNBC 0.9.3
with the “tuned” collective module of Open MPI 1.2.6rc2. The measurements
were done with NBCBench [10] on the odin cluster at Indiana University. Odin
consists of 128 dual core dual socket 2 GHz AMD Opteron 270 processors con-
nected with SDR InfiniBand, uses NFSv3 over Gigabit Ethernet as file system
and the Intel compiler suite version 9.1. LibNBC’s allreduce uses multiple com-
munication rounds (cf. [6]). This requires the user to ensure progress manually
by calling NBC Test or run a separate thread that manages the progression of
LibNBC (i.e., progress thread). Fig. 4(b) shows the communication overhead
with and without a progress thread under the assumption that the whole com-
munication latency can be overlapped with computation (i.e., the overhead is
a lower bound) and the progress thread runs on a spare CPU core (the over-
head with a progress thread is constantly 3μs, due to the fully asynchronous
processing, and thus at the very bottom of Fig. 4(b)).
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3.2 Benchmark Results

In our benchmarks, we study the reconstruction of data collected by the quadHI-
DAC small-animal PET scanner [8]. We used 107 events divided into 10 subsets
and performed one iteration over all events. The reconstruction image has the size
N = (150 × 150× 280) voxels. We ran a set of different benchmarks on the odin
system. We compared the non-threaded and threaded versions of LibNBC us-
ing the InfiniBand optimized transport. We progressed the non-threaded version
with 4 × P calls to NBC Test that are equally distributed over the overlapped
time. The threaded version of LibNBC is implemented by using InfiniBand’s
blocking semantics and the application did not call NBC Test at all. We bench-
marked all configurations of LibNBC and the original MPI implementation on
1 NBC Iallreduce immediately followed by NBC Wait.
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8, 16 and 32 nodes with 1, 2, 3 or 4 OpenMP threads per node three times and
report the average times across all runs and processes (the variance between the
runs was very low).

Computational Overlap. The computational overlap time per subset tPCompOver

decreases—as expected from our model—linearly with increasing number of
processes P . The average time was 833.5 ms on 8, 469.9 ms on 16 and 241.8 ms
on 32 nodes. With reading time tPread ranging from 55.4 ms on 8 to 11.2 ms on 32
nodes and computation time tPAl

ranging from 778.1 ms to 230.6 ms on 8 and 32
nodes, respectively, we are able to verify our model (2) with an error of about 6%.

Fig. 5(a) shows the application running time on 32 nodes with different num-
bers of OpenMP threads per node. We see that the non-threaded version of
LibNBC is able to improve the running time in every configuration. However,
the threaded version is only able to improve the performance if it has a spare core
available because of scheduler congestion on the fully loaded system. The perfor-
mance gain also decreases with the number of OpenMP threads. This is because
we studied a strong scaling problem and the overlappable computation time gets
shorter with more threads computing the static workload and is eventually not
enough to overlap the full communication. Another issue for smaller node-counts
is that our transformed implementation is, as described in Section 2.1, slightly
less cache-friendly which limits the application speedup at smaller scale.

 0

 5

 10

 15

 20

 25

T
im

e 
to

 S
ol

ut
io

n 
(s

)

1 thread 2 threads 3 threads 4 threads

MPI_Allreduce()
NBC_Iallreduce()

NBC_Iallreduce() (thread)

(a) Runtime on 32 Nodes with Different
Number of OpenMP Threads

 0

 1

 2

 3

 4

 5

 6

 7

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d 
(s

)

8 nodes 16 nodes 32 nodes

MPI_Allreduce()
NBC_Iallreduce()

NBC_Iallreduce() (thread)

(b) Communication Overhead for Differ-
ent Node Counts and a single Thread

Fig. 5. Application Benchmark for different number of OpenMP threads and nodes

Fig. 5(b) shows the communication overhead for different node counts with
one thread per node2. Our implementation achieves significantly smaller com-
munication overhead for all configurations. However, the workload per node that
can be overlapped decreases, as described above, with the number of nodes, while
the communication time of the 48 MiB Allreduce remains nearly constant. Thus,
the time to overlap shrinks with the number of nodes and limits the performance
gain of the non-blocking collectives.

2 The lower part of the bars denotes the Allreduce overhead.
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4 Conclusions

We applied non-blocking collective operations to the mixed MPI/OpenMP par-
allel implementation of the list-mode OSEM algorithm and analyzed the perfor-
mance gain for a fixed problem size (strong scaling) on different setups of MPI
processes and OpenMP threads.

The conducted study demonstrates that the overlap optimization potential
of non-blocking collectives depends heavily on the time to overlap (amount of
work to do while communicating) which usually decreases while scaling to larger
process counts. However, even in the worst case (smallest workload) of our ex-
ample, running 128 threads on 32 nodes, LibNBC was able to reduce the com-
munication overhead from 40.31% to 37.3%. In the best case, with one thread
on 8 nodes (highest workload per process), the communication overhead could
be efficiently halved from 12.0% to 5.6%.
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Abstract. We present and evaluate a new, simple, pipelined algorithm
for large, irregular all-gather problems, useful for the implementation of
the MPI Allgatherv collective operation of MPI. The algorithm can be
viewed as an adaptation of a linear ring algorithm for regular all-gather
problems for single-ported, clustered multiprocessors to the irregular
problem. Compared to the standard ring algorithm, whose performance
is dominated by the largest data size broadcast by a process (times the
number of processes), the performance of the new algorithm depends
only on the total amount of data over all processes. The new algorithm
has been implemented within different MPI libraries. Benchmark results
on NEC SX-8, Linux clusters with InfiniBand and Gigabit Ethernet, Blue
Gene/P, and SiCortex systems show huge performance gains in accor-
dance with the expected behavior.

1 Introduction

The all-gather problem is a basic collective communication operation, in which
each participant of a predefined group wants to broadcast personal data to
all other group members. In the MPI standard, this functionality is embodied
in the regular MPI Allgather collective, in which each process contributes the
same amount of data, and in the irregular MPI Allgatherv collective, where the
amount of data can be freely chosen for the different processes [8]. For both MPI
collectives, all participating processes know the sizes of the data to be broadcast
by all other processes. The irregular all-gather operation is used for instance in
linear algebra kernels for matrix multiplication and LU factorization [1].

The regular all-gather problem has been intensively studied (theoretically un-
der the term gossiping, but is also known as broadcast-to-all, all-to-all-broadcast,
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tional Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.
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as well as many other names) [5,6], and many algorithms have been proposed
and/or implemented as part of MPI libraries for various systems and communi-
cation models [1,2,3,7,9,10]. The more challenging, irregular all-gather problem
has received much less attention, and MPI libraries typically use the same al-
gorithm for both MPI Allgather and MPI Allgatherv. For irregular problems
with considerable differences between the amount of data contributed by the
processes, this can have huge performance drawbacks. For extreme cases, the
resulting performance loss can amount to orders of magnitude (cf. Section 3).

In this paper, we present an algorithm for large, irregular all-gather problems.
The underlying idea is quite simple and can be viewed as an adaptation to the
irregular problem of a ring-based algorithm for regular all-gather problems for
single-ported, clustered multiprocessors. The algorithm has been implemented
for several MPI libraries, and evaluated on diverse systems, namely NEC SX-8,
two Linux clusters, IBM Blue Gene/P, and SiCortex 5832. We demonstrate sig-
nificant performance improvements over a standard MPI Allgatherv algorithm,
depending on the amount of irregularity in the benchmark scenarios.

2 Algorithm and Implementation(s)

In the following, p is the number of participating (MPI) processes, numbered
consecutively from 0 to p − 1. We let mi denote the size of the data contributed
by process i, and m =

∑p−1
i=0 mi the total amount of data that eventually has

to be gathered by all processes. For large data, we assume that the time for
transmitting a message of size m′ is simply O(m′). For most of the following
discussion, a detailed communication cost model is unnecessary.

2.1 Standard, Linear Ring Algorithm

A basic (folklore) algorithm for large, regular all-gather problems is the linear
ring. The algorithm performs p − 1 communication rounds. In each round pro-
cess i sends (starting with its own data) an already known block of data of size
m′ to process (i + 1) mod p and receives an unknown block of data from pro-
cess (i − 1) mod p. For regular problems where all blocks are of the same size
mi = m′, the completion time of the ring algorithm is O((p−1)m′) = O(m−m′).
The number of communication start-ups (latency) scales linearly with p. This is
unproblematic for large m′, but for small problems, an algorithm with a logarith-
mic number of start-ups is clearly preferable [1,3,10]. The linear ring algorithm
is straightforward to implement. For systems with single-ported, bidirectional
communication capabilities (where each process can at the same time send data
to another process and receive data from a possibly different process) it can use
the system communication bandwidth to full capacity. For irregular all-gather
problems, where the data sizes mi can vary arbitrarily over the processes, the
algorithm can however perform poorly. The running time is determined by the
largest amount of data m′ = maxp−1

i=0 mi, which has to be sent along the ring in
each round, and is therefore O((p − 1)m′). In particular, (p − 1)m′ can be much
larger than the total amount of data m.
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Node j + 1

Process i

Node jNode j − 1

Fig. 1. The linear ring algorithm on a cluster of SMP nodes with different number of
MPI processes per node. The processes are (virtually) ranked such that one process
at each node receives data from another node, and one process sends data to another
node in each round.

2.2 Pipelined (Blocked) Ring Algorithm

We first observe that the linear ring algorithm can also be used for the regular
all-gather problems on clustered multiprocessors (like clusters of SMP nodes)
with a single-ported communication network. In that case the ring is organized
such that exactly one process i per SMP node has its predecessor (i − 1) mod p
on another SMP node, and exactly one process j per SMP node has its successor
(j + 1) mod p on another node. To accomplish this, a (virtual) reranking of the
MPI processes might be necessary. The clustered, linear ring algorithm is now
communication-bandwidth optimal, because in each round one process on each
node receives a block of data and one process sends a block of data. This holds
also for the case where the number of MPI processes per cluster node is not
identical, and is illustrated in Figure 1.

In [11] it is observed that regular collective communication problems like the
all-gather problem induce corresponding irregular problems over a set of nodes
in a clustered system. Therefore, if the communication capabilities of processors
and nodes in a cluster are similar (for instance, single ported), an algorithm for
solving a regular problem on a clustered system (with possibly different number
of processes per cluster node) can be used to solve its irregular counterpart over
a set of processors. This observation can be exploited to convert the clustered
linear ring algorithm into an algorithm for the irregular all-gather problem.

To accomplish this the data of process i of size mi is associated with a virtual
cluster node, and divided into bi = max(1, �mi/B) blocks of size at most B.
Each block is associated with a virtual processor in the node. The total number
of blocks is b =

∑p−1
i=0 bi (note that b ≥ p). Every actual process with data size

mi will play the role of a cluster node with bi virtual processors. The linear ring
algorithm with regular blocks of size (at most) B now solves the problem in b−1
instead of p−1 communication rounds. The resulting, pipelined (or blocked) ring
algorithm is illustrated in Figure 2. Compared to the linear ring, the advantage
of the pipelined ring algorithm is that (more) regular blocks are sent and received
in each round, for a total time of O((b − 1)B). A small value for B increases
the number of start-ups, and a large value increases the possible round up error.
Therefore a proper balancing needs to be applied to find an optimal value for the
block size parameter. We note that for extremely irregular all-gather problems
where only one process has all the data, the pipelined ring algorithm is equivalent
to a linear broadcast pipeline. For regular problems where mi = m′ for all i, the
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Process i Process i + 1Process i − 1

j − 1 j j + 1 j + k − 1

Fig. 2. The clustered, linear ring algorithm viewed as a pipelined (blocked) algorithm
for solving the irregular all-gather problem. For each process, the data mi is divided
into blocks of some maximum block size B (partially full blocks are partially colored).
Process i starts sending block j + k − 1 and receiving block j − 1. After b − 1 rounds,
where b represents the total number of blocks, all processes have gathered all the data.

block size B can be set to m′, in which case the algorithm is identical to the
standard, linear ring. Thus, by choosing B properly, the pipelined ring algorithm
should never perform worse than the linear ring algorithm.

2.3 Determining an Optimal Block Size

We note that for partially full blocks, only the actual data are sent and received
(see again Figure 2). In particular, the empty blocks which arise for processes
with mi = 0 are neither sent nor received. Nevertheless, they contribute to the
total number of communication rounds. We estimate the optimal block size B
as follows, assuming that z denotes the number of processes with mi = 0:

– If z = 0 we take B = minp−1
i=0 mi (as long as this is not too small). This

ensures that all processes are both sending and receiving blocks in (almost)
all rounds.

– If z �= 0 we try to minimize the time needed for b−1 communication rounds.
Assuming that the remainders in the mi/B terms are equally distributed, we
get an average padding of B/2 for all partially full blocks. We can therefore
simplify b =

∑p−1
i=0 max(1, �mi/B) to b = m

B + p+z
2 . Assuming linear com-

munication costs, where sending and receiving messages of size m′ takes time
α + βm′, the estimated total running time is (b − 1)(α + βB). Minimizing
this term gives an (approximated) optimal block size of B =

√
2αm

β(p+z−2) .

3 Experimental Evaluation

We have benchmarked the new MPI Allgatherv implementations with the fol-
lowing distributions of contiguous data over the p MPI processes. A base count c
(which is varied over some interval) is used as seed for the following distributions:

1. Regular: all mi = c are identical, therefore m = pc.
2. Broadcast: m0 = c, all other mi = 0, therefore m = c.
3. Spike: similar to broadcast but all processes contribute some data, m0 = c/2

and mi = c 1
2(p−1) , therefore m = c.

4. Half full: m2�i/2� = 2c, and m2�i/2�+1 = 0, therefore m = pc.
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5. Linearly decreasing: mi = 2c (p−1−i)
p−1 , therefore m = pc.

6. Geometric curve: mi−1+j = c p
i log p for i = 1, 2, 4, . . . and j = {0, . . . , i−1},

therefore m = pc.

In distributions (2) and (3) the same total amount of data m = c is gathered
by all processes, so similar running times can be expected (comparable to the
regular distribution with p times smaller data size). The case for distributions (1),
(4), (5) and (6) is analogous, where the total amount of data is m = pc.

We compare our implementations of the new MPI Allgatherv algorithm with
implementations of the standard linear ring algorithm that is still used in many
MPI libraries [9]. The reported running times are minimum times for the last
process to finish over a (small) number of iterations [4].

3.1 Results on an NEC SX-8 Vector System

The pipelined ring has been implemented for MPI/SX for the NEC SX-series
of parallel vector computers. It has been benchmarked with the distributions
described above on 30 SX-8 nodes at HLRS in Stuttgart, with 1 and 8 MPI
processes per node, respectively. Selected results are shown in Figure 3.

For the extreme broadcast distribution (2) the pipelined ring outperforms the
standard linear ring by more than a factor of 10 on 30 SX-8 nodes. For 32 MBytes
with a fixed block size B of 1 MByte an improvement of a factor 32×29

29+31 ≈ 15
would have been best possible. Significant improvements can also be observed for
the other distributions. The performance of the standard ring and the pipelined
ring are similar for the regular (1) and the half full (4) distributions. Running
on a randomly permuted communicator instead of MPI COMM WORLD gives almost
identical results. This is a desirable property of an algorithm for a symmetric
(i.e. non-rooted) collective operation like MPI Allgatherv [12].

3.2 Results on a Linux Cluster with InfiniBand

To show the effect of the block size B, the algorithm has also been integrated into
NEC’s MPI/PC version and evaluated on an Intel Xeon based SMP cluster with
InfiniBand interconnect. The running time is compared to the standard, non-
pipelined algorithm for B = 32K, 64K, 128K, 512K, 1024K. Results are shown
in Figure 4. For the spike distribution (3) the pipelined algorithm is faster for
all block sizes. However, the best block size depends not only on the size of the
problem but also on the distribution of data over the processes. This can be seen
in the case of the decreasing distribution (5) where a too small block size makes
the pipelined algorithm perform worse than the standard ring.

3.3 Results on a Linux Cluster with Gigabit Ethernet

We ran the benchmarks on a Linux cluster at Argonne National Laboratory
with 24 nodes, each with two dual-core 2.8 GHz AMD Opteron CPUs (total
of 4 cores per node or 96 cores in the system), and Gigabit Ethernet. We used
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Fig. 3. Results (left to right, top to bottom) for distributions (2), (3), (5) and (6) on
an NEC SX-8 with 30 nodes and 1 MPI process per node, and distributions (2) and (3)
with 8 MPI processes per node. A fixed block size B = 1 MByte has been used. The
base data size is the base count c multiplied by the size of an MPI INT.

MPICH2 1.0.7 as the MPI implementation. Selected results are shown in Fig-
ures 5 and 6. For small problem sizes, the pipelined algorithm performs only
slightly better than the standard algorithm, but as problem size increases, the
difference in performance becomes considerable. Figure 6(right) shows the distri-
bution of communication and idle times for the two algorithms. As expected, the
standard algorithm suffers because many processes remain idle for a long time,
whereas in the pipelined algorithm, communication is more balanced. We also
collected traces of the program execution and plotted them using the Jumpshot
tool, as shown in Figure 7. The penalty due to idle time incurred by the standard
algorithm is clearly visible as the yellow bars.
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Fig. 7. Jumpshot plot of program trace on Linux cluster for several iterations of all-
gatherv with broadcast distribution: (left) Non-pipelined algorithm, (right) Pipelined
algorithm. Yellow (light) is idle time, purple (dark) is communication time.

3.4 Results on SiCortex

Benchmarks were also performed on the SiCortex 5832 system at Argonne. This
machine has 972 nodes, each with 6 cores, for a total of 5832 processors. The
nodes are connected by a Kautz graph network. In some of our experiments
the native SiCortex MPI implementation failed. We therefore implemented the
standard linear ring algorithm ourselves and compared it with the pipelined
algorithm. Figure 8 shows the results for a test run with a geometric curve dis-
tribution on 5784 processors. The pipelined algorithm significantly outperforms
the standard algorithm as the message size increases.

3.5 Results on IBM Blue Gene/P

Finally, we performed the tests on one rack of the IBM Blue Gene/P at Argonne
National Laboratory (4096 cores). The native implementation of MPI Allgatherv
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Fig. 8. Results for the geometric curve distribution: (left) with 5784 processes on the
SiCortex machine and a fixed block size of B = 1 MB, (right) with 4096 processes on
1 rack of the Blue Gene/P and a fixed block size of B = 64 KB
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in the Blue Gene/P’s MPI library uses a very fast hardware-supported algorithm,
which outperforms both standard ring and pipelined ring implementations. There-
fore, to fairly compare pipelined and non-pipelined algorithms, we implemented
both these algorithms. Figure 8 shows the results. The pipelined algorithm per-
forms even better on this machine.

4 Concluding Remarks

We described a simple, pipelined ring algorithm for large, irregular all-gather
problems. The algorithm was implemented within different MPI libraries and
benchmarked on various systems, and in all cases showed considerable improve-
ments over a commonly used linear ring algorithm for problems with signifi-
cant irregularity in the individual message sizes. Determining the best possible
pipeline block size for all distributions of input data still requires more (exper-
imental) work. On regular problem instances the pipelined algorithm performs
similarly to the linear ring, which is bandwidth optimal for that case. Ring
algorithms can likewise be implemented to be largely independent on process
placement in an SMP system. This is an important property for users expecting
(self-) consistent performance of their MPI library [12].
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Abstract. This paper presents a pipeline algorithm for MPI Reduce that
uses a Run Length Encoding (RLE) scheme to improve the global reduc-
tion of sparse floating-point data. The RLE scheme is directly incorpo-
rated into the reduction process and causes only low overheads in the
worst case. The high throughput of the RLE scheme allows performance
improvements when using high performance interconnects, too. Random
sample data and sparse vector data from a parallel FEM application is
used to demonstrate the performance of the new reduction algorithm for
an HPC Cluster with InfiniBand interconnects.

Keywords: MPI, performance optimization, pipelining, reduction oper-
ation, run length encoding.

1 Introduction

TheMessagePassing Interface (MPI) is the de facto standard for distributedmem-
ory parallel programming in the area of scientific high performance computing
and the optimization of MPI libraries and communication operations is still an ac-
tive field of research. Emerging high performance interconnects such as Quadrics,
Myrinet, SCI, or InfiniBand have led to continuing efforts for improving the per-
formance of MPI implementations, too. Especially for collective MPI operations,
there exists a variety of different algorithms. Automatic tuning as well as static
and dynamic optimizations are used to adapt to specific system architectures and
applications by selecting appropriate algorithms or algorithmic parameters [1,2].
Good overall performance of communication operations requires a transition from
latency-optimal algorithms for small messages to bandwidth-optimal algorithms
for largemessages. Pipelining techniques are used for achieving highbandwidth, es-
pecially with high performance interconnects [3,4]. Improved algorithms for global
reduction operations (e.g., MPI Allreduce) are presented in [5].

The contribution of this paper is to apply the well known Run Length Encod-
ing (RLE) to floating-point data and to incorporate it into a pipeline algorithm
for MPI Reduce. The RLE scheme reduces the amount of communication and
increases the performance, especially for sparse vector data. General purpose
compression algorithms and specific algorithms for floating-point data are used
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to improve the performance of MPI communication operations on clusters with
Fast Ethernet interconnects [6,7]. However, the throughputs of these algorithms
are unstable and too small for high performance interconnects. Our target plat-
form is the HPC Cluster CHiC [8] consisting of 530 compute nodes with Infini-
Band interconnects. MPI reduction operations are used, for instance in parallel
numerical methods for implementing global error control. We use random sample
data as well as sparse vector data from a parallel FEM application to investigate
the performance of the new reduction algorithm with RLE.

The rest of this paper is organized as follows. Section 2 investigates the feasi-
bility of applying data compression for optimizing communication operations and
introduces the RLE scheme for floating-point data. Section 3 describes a pipeline
algorithm for MPI Reduce and the application of the RLE scheme. Section 4
presents performance results and Section 5 concludes the paper.

2 Compression of Floating-Point Data

The communication time for large messages is mainly determined by the band-
width of the communication network. To achieve a benefit from transferring
compressed data instead of uncompressed data, the additional computational
time of the compression algorithm has to be lower than the time saved during
the communication. Under optimal conditions, the compression and decompres-
sion operations perfectly overlap and the message size is reduced so that the
communication time can be neglected. To benefit from the compression in that
case, the throughput of the compression/decompression operation has to be at
least as high as the bandwidth of the communication network.

A general purpose data compression library like zlib [9] achieves throughputs
of 0.5-22MB/s (depending on the specified compression level) using a 2.6GHz
AMD Opteron processor. The algorithm of Ratanaworabhan et al. for compress-
ing scientific floating-point data achieves throughputs of about 22-47MB/s using
a 3.0GHz Pentium 4 processor [10]. When using high performance interconnects
such as InfiniBand, the performance of these algorithms is insufficient. The HPC
cluster CHiC reaches bandwidths of about 970MB/s for unidirectional point-to-
point communication with MPI Send/MPI Recv.

This estimation about the required throughput assumes that compression and
decompression occur as additional tasks before and after the data transmission.
Nevertheless, it is also possible to incorporate the compression algorithm into
operations that are already existing. For example, the compression can be done
when the message is copied to communication buffers or when the reduction
operation of MPI Reduce is applied. In that case, a compression/decompression
throughput equal to the bandwidth of the communication network helps to pre-
vent a loss of performance even if the size of the message can not be reduced.

2.1 Run Length Encoding for Floating-Point Data

Run Length Encoding is a well known compression scheme that works by re-
placing repetitions of equal values with the information about the number of
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repetitions. Non-repeating values remain unchanged. The RLE scheme is useful
for data that contains long sequences of equal values, e.g. sparse vector data
with many zero values. The encoded repetition of a value requires a marker that
is distinguishable from the not-encoded values. We use Not a Number (NaN)
values in the IEEE 754 representation of floating point numbers as markers.
Considering 64-Bit floating-point numbers, NaN values have an arbitrary sign
bit, all 11 bits of the exponent set to one and a non-zero mantissa (52 bits). We
use the non-zero mantissa to save the number of repetitions as a 52-Bit integer.

This RLE scheme for floating-point data can be adapted to different use cases.
If only repetitions of one fixed value (e.g., zero) are considered, then every NaN
in the encoded data represents a sequence of at least two of these values. If
repetitions of arbitrary values are considered, then the specific value that is
repeated has to be saved together with the NaN. In this case, it is appropriate
to skip the encoding of sequences of size two, since their encoded size is the same
as their original size. This RLE scheme does not increase the size of the encoded
data. If NaN values are included in the original data, a distinction between
original and encoded NaNs is required. To preserves most of the information of
the original NaN, the arbitrary sign bit can be used for this distinction.

2.2 Throughputs of RLE for Sparse Floating-Point Data

The throughput of the RLE scheme is evaluated using an implementation for
repetitions of zeros. Compressible random sample data is used that consists
of floating-point vectors with randomly placed non-zero values. All operations
are written in C and compiled with the PathScale 3.1 compiler (optimization
-O3). The throughput values are calculated according to the size of one vector.
Throughputs with respect to the total amount of data read and written by the
operations (without RLE) can be obtained, by applying a factor of two for the
copy operation and a factor of three for the vector addition operations.

Figure 1 (left) shows throughputs of the compression and decompression op-
eration depending on the amount of non-zero values in the input data. The
throughputs of both operations strongly depend on the amount of non-zero val-
ues. The compression operation shows a significant loss of performance when
having more than 20% non-zero values. With 100% non-zero values the perfor-
mance of both operations is comparable to the copy operation.

Figure 1 (right) shows throughputs of vector addition operations with and
without RLE depending on the amount of non-zero values in the input data.
Operations aC+b → aC and aC+b → cC represent the addition of a compressed
vector aC and an uncompressed vector b where the result (in aC or cC) is
compressed, too. The compressed version using only two vector arrays (a and b)
reaches about 70-95% of the performance of the uncompressed version. Similar to
the compression operation, the results show a loss of performance if the amount
of non-zero values increases, but still good results with 100% non-zero values.

In comparison to these results, the memcpy operation of the PathScale compiler
achieved throughputs of about about 3 GB/s and the vector addition operation
(daxpy) of the AMD Core Math Library achieved throughputs of about 2GB/s.
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Fig. 1. Throughputs of RLE compression and decompression operations (left) and
vector addition operations with and without RLE (right)

The performance of these highly optimized operations shows, that there is still
room for improving the compiler optimized implementations. The addition op-
eration in conjunction with repetitions of zeros provides several characteristics
that ease the implementation of the corresponding vector operations. Neverthe-
less, the RLE scheme is not limited to repetitions of zeros (see Section 2.1) and
applicable to other operations, too. A general vector operation with RLE can
be achieved, by incorporating the corresponding compression operation into the
process of writing the resulting vector.

3 MPI Reduce with Run Length Encoding

As shown in Section 2, the throughput of data compression algorithms is insuffi-
cient in comparison to the bandwidth of high speed interconnects like InfiniBand.
Therefore, we incorporate the RLE scheme into the already existing process of
applying the reduction operation of MPI Reduce. We start with a pipeline algo-
rithm for MPI Reduce that is appropriate to achieve high bandwidths for large
messages. Each process Pi sends data only to process Pi+1. The last process Pp

is the root process of MPI Reduce. Process Pi performs operation a ⊗ bi → a
to apply the reduction operation ⊗ to the incoming data a and its local data
bi. The result is placed in a and send to process Pi+1. The data is divided
into equal blocks and the sending and receiving of blocks is overlapped using
MPI Sendrecv.

We incorporate the compression and the decompression with the RLE scheme
into the process of performing the reduction operation for floating-point data.
The regular operation a ⊗ bi → a is replaced by the compressed version aC ⊗
bi → aC . The reduction operation ⊗ is applied to the compressed incoming data
aC and the uncompressed data bi of process Pi. The compressed result is placed
in aC and is sent to process Pi+1. The first process P1 has no incoming data
and therefore no reduction operation to perform. We avoid the overhead of an
additional compression operation by sending uncompressed data from P1 to P2.
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The compression is initiated by process P2 using operation a ⊗ bi → aC . The
root process Pp uses the operation aC ⊗ bp → a to obtain the uncompressed
final result. The RLE scheme can be used together with predefined and user-
defined reduction operations. The entire compression and decompression process
is hidden in the MPI Reduce operation and requires no changes to the application.

4 Performance Results

Performance results are obtained using the HPC Cluster CHiC consisting of
530 compute nodes each with two 2.6GHz Dual-Core AMD Opteron processors,
4GiB main memory and InfiniBand interconnect. One process is used per node.
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Fig. 2. Performance improvement of the pipeline reduce algorithm in comparison to
the native MPI Reduce (left) and optimal block size (right)

The impact of the pipeline reduce algorithm is demonstrated first. Figure 2
(left) shows the relative improvement of the pipeline reduce algorithm in com-
parison to the native MPI Reduce of OpenMPI (version 1.2.4) depending on the
number of processes and the message size. The results show a decrease in per-
formance for message sizes up to 8 KiB in general and up to 256KiB for large
numbers of processes. For large message sizes, the pipeline reduce algorithm
achieves improvements up to a factor of about 1.8 (single peaks show improve-
ments up to about 2.9). Figure 2 (right) shows the corresponding block sizes of
the pipeline algorithm that achieve the best performance. The results show that
the block size increases with increasing message sizes and decreasing numbers of
processes.

Figure 3 (left) shows latency results for MPI Reduce and the pipeline reduce
with and without RLE depending on the amount of non-zero values in the input
data with 16MiB messages, and 128 processes. The RLE scheme is incorporated
into the vector addition operation to compress repetitions of zero values. Results
are shown for identical and non-identical random distributions of non-zero values
in the different messages of the processes. In contrast to the constant performance
of MPI Reduce and the pipeline reduce, RLE pipeline reduce shows a dependence
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Fig. 3. Latency of the native MPI Reduce and the pipeline reduce with and without
RLE using different distributions of non-zero values (left). Communication amount and
bandwidth of the different processes participating in the pipeline reduce (right).

on the amount of non-zero values. With 0.1% non-zero values the latency of RLE
pipeline reduce falls below 40ms. With 100% non-zero values, using the RLE
scheme causes no overhead and is as fast as pipeline reduce without RLE (about
65ms). The distribution of the non-zero values has a significant influence on
the performance of RLE pipeline reduce, too. With identical distributions on
all processes, improvements are achieved with up to 50% non-zero values while
with non-identical distributions the improvements vanish when using more than
10% non-zero values.

Figure 3 (right) shows the amount of data sent by the individual processes
using 1% and 10% non-identically distributed non-zero values, 16MiB messages,
and 32 processes. Bandwidths calculated from the latencies of the individual
processes are also shown. Since process P1 sends uncompressed data to P2, a
decreased amount of transferred data is first observed for P2. Because of the
non-identical distributions of the non-zero values, the number of non-zero values
increases when the data approaches the root process. This reduces the efficiency
of the RLE scheme and increases the amount of data transferred by the latter
processes in the pipeline. With 10% non-zero values, starting at process P11 over
90% of the original data is transferred. With 1 % non-zero values, the amount
of transferred data increases more slowly resulting in a higher improvement.

Next, we use data from a parallel adaptive FEM application. The elements of
the floating-point vectors correspond to the nodes of the mesh used by the FEM
application. Adaptive mesh refinement increases the number of mesh nodes and
therefore the size of the vectors, too. According to the distribution of the mesh
nodes to the different processes, each process contributes only to a subset of ele-
ments of the solution vector. The complete solution vector is obtained by a summa-
tion of all local contributions using MPI Reduce. Figure 4 (left) shows an example
for the sparse structure of the vectors supplied to MPI Reduce. The vectors consist
of 564 elements with about 6-11% non-identically distributed non-zero values.

Figure 4 (right) shows bandwidths of the root process for MPI Reduce and the
pipeline reduce with and without RLE using the data of the FEM application
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after different adaptive refinement steps. As previously seen in Figure 2, pipeline
reduce achieves performance improvements only for large messages while the na-
tive MPI Reduce is better for small messages. With 32 processes, improvements are
achieved after more than six refinement steps (≈ 42KiB messages) and with 128
processes after more than eight refinement steps (≈ 72KiB messages). Pipeline
reduce with RLE has always a higher performance than without RLE. However,
the improvements are most significant for large messages. In comparison to the
native MPI Reduce, the bandwidth of RLE pipeline reduce increases up to 228%
with 32 processes and up to 182% with 128 processes.

Instead of integrating this kind of optimization into the MPI operations, it
is also possible to utilize an appropriate sparse vector format inside the appli-
cation. However, these unconventional formats prevent the usage of operations
like MPI Reduce and require that optimized communication algorithms are im-
plemented on the application level, too. The RLE scheme is rather simple and
the high throughputs of the RLE operations prevent a loss of performance when
using incompressible input data. Integrated into an MPI library, the RLE com-
pression scheme could be enabled by default or optionally used with a new special
MPI datatype.

5 Conclusion

In this paper, we have shown that a fast RLE scheme can be used to improve
the performance of MPI Reduce even with high performance interconnects such
as InfiniBand. We have introduced an RLE scheme for floating-point data and
incorporated the compression and decompression process into the reduction op-
eration of MPI Reduce. Performance results show that the pipeline reduce al-
gorithm and the RLE scheme lead to significant performance improvements for
large messages. The improvements due to the RLE scheme strongly depend on
the input data. However, the marginal overhead of the RLE scheme prevents
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a decrease in performance when using incompressible input data. Results with
sparse floating-point data from a parallel FEM application show improvements
in bandwidth up to a factor of two.
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Abstract. Recently the Catamount lightweight kernel was extended to
support direct access shared memory between processes running on the
same compute node. This extension, called SMARTMAP, allows each
process read/write access to another process’ memory by extending the
virtual address mapping. Simple virtual address bit manipulation can
be used to access the same virtual address in a different process’ ad-
dress space. This paper describes a prototype implementation of MPI
that uses SMARTMAP for intra-node message passing. SMARTMAP
has several advantages over POSIX shared memory techniques for im-
plementing MPI. We present performance results comparing MPI using
SMARTMAP to the existing MPI transport layer on a quad-core Cray
XT platform.

1 Introduction

Catamount [1] is a third-generation lightweight kernel developed by Sandia
National Laboratories and Cray, Inc., as part of the Sandia/Cray Red Storm
project [2]. Red Storm is the prototype of the Cray XT series of massively
parallel machines. Recently, Catamount was enhanced using a technique called
SMARTMAP – Simple Memory of Address Region Tables for Multi-core Aware
Programming. SMARTMAP allows the processes running on a compute node as
part of the same parallel job to efficiently read and write each other’s memory.
Unlike POSIX shared memory, SMARTMAP allows a process to access another
process’ memory by simply manipulating a few bits in a virtual address. This
mechanism has several advantages for efficiently implementing MPI for intra-
node communication.

We have developed a prototype MPI implementation using Open MPI that
is able to use SMARTMAP for intra-node communication. Initial performance
results show that SMARTMAP is able to achieve significant improvement for

� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
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intra-node point-to-point and collective communication operations. The follow-
ing section describes the advantages of SMARTMAP compared to existing ap-
proaches for intra-node MPI. Section 3 provides a detailed description of the
implementation of MPI communication using SMARTMAP, which is followed
by a performance comparison between SMARTMAP and the existing transport
for Red Storm. Relevant conclusions and an outline of future work are presented
in Section 5.

2 Background

SMARTMAP takes advantage of the fact that Catamount only uses a single
entry in the top-level page table mapping structure (PML4) on each core of a
multi-core AMD Opteron processor. Each PML4 slot covers 39 bits of address
space, or 512 GB of memory. Normally, Catamount only uses the first entry
covering physical addresses in the range 0x0 to 0x007FFFFFFFFF. The Opteron
supports a 48-bit address space, so there are 512 entries in the PML4.

Each core writes the pointer to its PML4 table into an array at core 0 startup.
Each time the kernel enters the routine to start a new context, the kernel copies
all of the PML4 entries from every core into every other core. This allows every
process on a node to see every other process’ view of the virtual memory at an
easily computed offset in its own virtual address space. The following routine
can be used by a process to manipulate a “local” virtual address into a “remote”
virtual address on a different core:

static inline void *remote_address( unsigned core, void *vaddr )

{

uintptr_t addr = ((uintptr_t) vaddr) & ( (1UL<<39) - 1);

addr |= ((uintptr_t) (core+1)) << 39;

return (void*) addr;

}

SMARTMAP also takes advantage of Catamount’s physically contiguous ad-
dress space mapping and the fact that the address mappings are static. Unlike
traditional UNIX-based operating systems, Catamount determines the mapping
from virtual to physical addresses when a process is created and the mapping
is never changed. Because each process from the same executable will have the
same virtual address mapping, the location of variables with global scope will
be identical across all of the processes – both on node and off node.

There is much previous work on using shared memory for intra-node MPI com-
munications [3,4,5]. The traditional approach is to use a POSIX shared memory
to allocate a region of memory that is shared between communication processes
on a node. This memory is divided up among the processes and message queues
are built inside the region. In order to send a message, the sender copies data
into the shared region and the receiver copies it out. Other approaches that use
only a single copy have been implemented and studied. One such implementa-
tion is a Linux kernel module that handles re-mapping of user memory pages
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into kernel space so that the operating system can do a single memory copy
between processes [6]. Another approach is to have an intelligent or program-
mable network interface perform a single copy between processes on the same
node. A comprehensive analysis of the different approaches for intra-node MPI
communication was presented in [7].

Both of these approaches are currently used for the MPI implementation on Red
Storm using the Portals data movement layer [8]. There are two different imple-
mentations of Portals available on Red Storm. The default implementation inter-
rupts the operating system to service the network.For intra-node transfers, the op-
erating system simply copies data between the processes. This approach is much
like the Linux kernel module, except that Catamount’s static memory mapping
avoid having to do any re-mapping of pages. For larger messages, it is more effi-
cient for the OS to use the SeaStar [9] network interface to perform the copy. In
the second implementation of Portals, all network processing is performed on the
SeaStar. Therefore, all intra-node transfers must go through the network interface.

The simplified memory model of Catamount means that there is no regis-
tration overhead, no system call, and no setup or teardown time necessary for
one process to directly move data into another process. In addition, there is no
serialization of processes through the operating system. Processes are free to
move data without any OS involvement. Relative to using an intelligent network
adapter, there is no need to have data traverse a I/O bus and there is no seri-
alization of requests through the network interface. There is no synchronization
mechanism needed to transfer large messages. Our current implementation has
a single protocol for moving data. Since data only moves when both sender and
receiver have initiated communication, there are no unexpected messages and
no protocols needed to distinguish between the various MPI point-to-point send
modes. We are able to achieve low latency, high throughput, significantly in-
creased small message rate, overlap of computation and communication, and we
are able to support both the active and passive MPI-2 one-sided functionality.
Our approach is much simpler in term of resource allocation and management.
For example, we are not constrained by a shared resource, such as how to best
divide up shared memory regions between control and data.

In addition to these benefits, SMARTMAP allows for additional capabilities
that existing approaches do not. For example, non-contiguous data transfers can
simply be copied directly from sender to receiver with no intermediate copies or
packing/unpacking. Collective operations can operate directly on the buffers in-
volved in the communication. In particular, reduction operations can operate di-
rectly on the buffer in-place at the root of the operation. Using MPI IN PLACE,
copying can be avoided altogether.

3 Prototype Implementation

Catamount supports multiple cores by running in virtual node mode, where each
core is treated as a node that runs a process in the parallel job. The memory
on a single physical node is divided evenly among the available cores. When
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a process is started, the parallel runtime system is responsible for setting the
following values in the process’ address space:

– number of processes in the job ( my nnodes)
– global rank of the process ( my rank)
– number of active cores on the node ( my vnm degree)
– core rank on the node ( my core)

We then use these values to determine a global rank to core rank mapping and a
core rank to global rank mapping. First, we allocate an array for the global rank
to core rank mapping and initialize all entries to -1. We then allocate an array for
the core rank to global rank mapping. We take advantage of the SMARTMAP
capability to determine the core rank to global rank mapping. Each core loops
from 0 to my vnm degree. If the loop variable is equal to the local core’s rank,
it fills in the core rank to global rank mapping with its global rank. If the loop
variable is not the process’ core rank, it accesses the my rank value on the other
core and fills in the array with this value. At this point, we can use this array
to set the corresponding values in the global rank to core rank array to the
appropriate values.

Each process has a single queue for posted receives and a queue per core for
posted sends. These queues are doubly-linked lists. Each queue element contains:
buffer address, local source rank, buffer length, context id, tag, request address,
and completion flag.

In order to send a message to another core on the same node, we first check
the global rank to core rank mapping to discover whether the destination rank
is a local process. If it is, we check the destination core to see if the message
is being sent to the sending process. If so, we traverse the posted receive queue
looking for a match. If the message is destined for a different core on the same
node, we simply pop a queue element off of a stack, fill in the contents based on
the send request, and enqueue it on the send queue for that particular core. If
the send is blocking, we then call into the progress routine, which is described
in detail below.

When posting a receive, we check to see if the posted receive queue is currently
empty. If it is, we can check for a match right away. In order to check for a match,
we get the address of our core’s send queue in our address space. Because this
virtual address is identical across all of the processes on the node, we can easily
use SMARTMAP to get the address of this queue in the other process’ address
space. If the source of the receive is specified, we get the address of our send
queue in the other process’ address space and proceed to traverse this queue
looking for a matching send queue entry. Because the pointers are local to the
destination process, every next pointer needs to be converted to a remote pointer
to traverse the queue. When a match is found, the start address of the send
buffer is converted to a remote pointer and the send buffer is copied from the
sending process’ memory into the local receiving process’ memory. We then set
the completion flag of the send queue element in the sending process’ memory. If
the source of the receive is MPI ANY SOURCE, we simply traverse our send queue
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in all of the other process’ address space looking for match. If our posted receive
queue is not empty, we simply pop a queue element off of a stack, fill in the
contents, and enqueue it. We then call into the progress function to see if any
outstanding requests have been or can be completed. In order to probe for an
incoming messages, we do the same steps as posting a receive; however, when a
match is found, we simply fill in the appropriate status information.

The progress function first checks to see if any outstanding posted receives
can be completed. It does this in the same way as was just described in the
previous paragraph – traversing our send queue in the other process’ address
space looking for match. After traversing the posted receive queue, the progress
function traverses all of the send queues to see if any of the outstanding sends
have been marked as completed by the other cores. Any send queue elements
that have been marked as completed by the receiving core are dequeued and any
cleanup routine for the request is run.

In this strategy, all queues are managed by the local core, so there are no race
conditions with enqueueing and dequeueing elments. Receives are completed by
the local core, copying any data from the remote core. Sends are completed by
the remote core and dequeued by the local core.

4 Performance Evaluation

The platform used to gather our performance results is a Red Storm development
system that contains 2.2 GHz quad-core Opterons. Our prototype implementa-
tion was done using Open MPI. Open MPI already had support for Portals on
the Cray XT, using either a path that does matching inside the MPI library
(BTL) or one that does matching inside Portals (MTL). See [10] for a complete
discussion of these two approaches. We also compare results to the Cray MPI
implementation, which is an modified version of MPICH2.

We used the Intel MPI Benchmark Suite (IMB) version 2.3 to measure point-
to-point and collective communication performance. In order to characterize
small message rate, we used the Ohio State message rate benchmark that has
been modified by PathScale (now Qlogic).

Since we are interested in intra-node communication, all of our results are from
a single quad-core node. We limited our measurements to the interrupt-driven
version of Portals because it is more efficient at intra-node transfers. The ability
to have the operating system perform a copy between processes is more efficient
than having the SeaStar adapter perform the copy. Due to limitations of the
SeaStar, send operations must go through the OS, so in addition to serializing
requests through a slower network interface, requests must also be serialized
through the OS.

Figures 1(a) and 1(b) show ping-pong latency and bandwidth respectively.
SMARTMAP is able to achieve a zero-byte latency of 520 ns, while Cray’s MPI
achieves 2.98 μs. SMARTMAP’s bandwidth peaks at more than 9.3 GB/s, while
the MTL in Open MPI is able to achieve nearly 5.8 GB/s. This difference is
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Fig. 1. IMB Results
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likely due to the extra serialization through the OS and overhead incurred by
having the OS perform the memory copies.

Figures 1(c) and 1(d) show the performance of four-process exchange and
sendrecv operations respectively. These results again show that the impact of
serialization worsens as all four cores are attempting to exchange message simul-
taneously.

Figures 1(e) and 1(f) show the performance of four-process broadcast and
reduction collective operations. The SMARTMAP broadcast is less than 1 μs
out to a 1024-byte message size, at which point the others are all more than
12 μs. The reduce operation shows a similar performance differential.

We conclude IMB performance results with allreduce and alltoall performance
in Figures 1(g) and 1(h). These results again demonstrate the effectiveness of
using shared memory when all processes are communicating simultaneously. The
alltoall results are particularly dramatic, especially at larger message sizes.
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Fig. 2. Message Rate

Figures 2(a) and 2(b) show message rates for two process and four processes
respectively. SMARTMAP is able to achieve nearly 2 million messages per second
for two processes and over 3 million messages per second when two pairs of
processes are exchanging messages. Performance for the others actually decreases
when increasing from two to four processes.

5 Conclusion

The SMARTMAP capability in the Catamount lightweight kernel is able to de-
liver significant performance improvements for intra-node MPI point-to-point
and collective operations. It is able to dramatically outperform the current ap-
proaches for intra-node MPI data movement.

There is much work left to do to fully utilize the SMARTMAP capability
for MPI. First, because the Portals data movement layer encapsulates the MPI
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posted receive queue, the complexity of handling MPI ANY SOURCE receives
is significantly increased. In most other networks, the MPI posted receive queue
exists inside the MPI library, so the atomicity required to handle a non-specific
receive is straightforward. Because Portals contains the posted receive queue for
network transfers (either in the OS or in the network interface) and the MPI
library contains the posted receive queue for intra-node transfers, there is no
mechanism by which atomicity can be enforced. There are two possible choices
for handling MPI ANY SOURCE receives for communicators that are not either
completely on-node or completely off-node. If the request cannot be satisfied by
any current in-progress communication, all current shared memory transfers need
to queued as unexpected messages and the peer processes need to be informed
that all subsequent messages should use Portals rather than shared memory.
Alternatively, the implementation could modify the Portals implementation so
that all matching occurs inside the MPI library, rather than inside Portals. Cray’s
MPI and the Open MPI BTL already support this mode of operation. Either
way – by putting the MPI posted receive queue completely in the network or
completely inside MPI – great care must be taken to avoid race conditions and
to maintain MPI ordering semantics, both in order to satisfy the non-specific
receive and to possibly switch back after it has been completed. We are currently
adapting both the Open MPI Portals MTL and the shared memory BTL to be
able to use SMARTMAP. This will allow us to support both intra- and inter-node
communication and will allow for direct comparisons between SMARTMAP and
the POSIX shared memory approach.

From a complexity standpoint, it is much easier to enhance MPI collective
operations to use the SMARTMAP capability. It is not necessary to handle non-
specific receive operations or non-blocking operations. We can also make use of
direct shared memory for certain operations, like barrier, when incrementing a
shared counter may be more efficient than exchanging messages. We are currently
implementing a collective module in Open MPI to use SMARTMAP directly and
hope to take advantage of the existing hierarchical collective module to make
use of it.

We would also like to use SMARTMAP to handle on-node non-contiguous
data transfers with no intermediate buffering, and there is an opportunity to
enhance the on-node MPI-2 one-sided operations using SMARTMAP as well.
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Abstract. Remote Direct Memory Access (RDMA) technology allows data to
move from the memory of one system into another system’s memory without in-
volving either one’s CPU. This capability enables communication-computation
overlapping, which is highly desirable for addressing the costly communication
overhead in cluster computing. This paper describes the consumer-initiated and
producer-initiated protocols of a companion library for MPI called Gravel. Gravel
works in concert with MPI to achieve increased communication-computation
overlap by separating the meta-data exchange from the application data exchange,
thus allowing different communication protocols to be implemented at the appli-
cation layer. We demonstrate performance improvements using Gravel for a set
of communication patterns commonly found in MPI scientific applications.

1 Introduction

The communication overhead of cluster computing continues to challenge MPI pro-
grammers trying to maximize the performance of their applications. Remote Direct
Memory Access (RDMA) technology holds the promise of hiding these overheads by
facilitating the overlap of communication operations with computation. To exploit the
RDMA for communication-computation overlap, the communication library must pro-
vide support for one-sided communication and two-sided communication with low-
overhead rendezvous protocols, and the application must contain communication and
computation patterns that are amenable to overlap.

There already exist communication libraries that provide for asynchronous commu-
nication and have the goal of exploiting RDMA support; however, none provides the set
of features that the proposed library, Gravel, provides. MPI provides asynchronous com-
munication operations (e.g., Isend, Irecv, and Wait) and even one-sided communication
support, although it enforces strict rules regarding the use of the latter. The User Direct
Access Programming Library, uDAPL [1], provides functionality necessary to enable
RDMA from applications, with support for memory registration and connection estab-
lishment, but does not provide a “message” abstraction nor does it provide a high level and
intuitive interface for domain scientists and engineers to embrace. ARMCI [3] aims to be
a portable library for RDMA communication. However, it requires the use of a custom
memory allocator, which makes it unsuitable for substituting arbitrary MPI operations in
Fortran applications without major restructuring of the application buffers. GASNet [4]
provides similar capabilities and is intended to be used internally by a compiler or trans-
formation system, but as its name implies, is targeted to Global Address Space paral-
lel languages. Other communication libraries are provided by the hardware vendor as a
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means of implementing higher-level libraries, such as MPI, for the given interconnect
(e.g., VAPI [5], GM [2]), or are usable only on specific hardware interconnects (e.g.,
MX [6]). Additionally, most of these libraries require either C pointer manipulation, or
the use of memory returned by C library functions (i.e., lib specific malloc()),
both of which are not possible directly from within FORTRAN programs.

In contrast to these approaches, our goal was to design a communication library that
provided minimal messaging protocol, maximal overlap potential, support for Fortran
and support for further communication optimization through code motion and trans-
formation. Fortran support implies several requirements, most notably explicit memory
registration functionality rather than special memory allocation routines. This paper
describes a portable communication library, Gravel, which works in conjunction with
MPI and is designed to (1) replace only key data exchange calls in MPI programs (2)
separate the meta-data exchange from the application data exchange, and (3) improve
the potential of code motion to increase the communication-computation overlapping
and hide communication latency.

2 Communication Library

Gravel is a minimal library designed to be used in conjunction with MPI by replacing
only key data exchange calls in MPI programs to exploit the potential communication-
computation overlap in applications. It implements a simple messaging abstraction de-
signed for RDMA-capable networks. The Gravel system is currently built on top the
uDAPL [1] in the OpenFabrics software suite. However, it is not dependent on uDAPL,
therefore can be ported to additional network interconnects.

Gravel is neither aimed to be a replacement for MPI, nor a low level library that
one should use for implementing MPI. Rather, Gravel is designed to be used in MPI
applications to improve performance by replacing selected MPI calls. While systems
like ARMCI provide synchronization mechanisms, Gravel relies on those provided by
MPI. Gravel’s API is designed to be similar to that of MPI to facilitate automatic re-
placement (e.g., within a compiler) of performance-critical MPI calls with Gravel calls.
Gravel places a number of restrictions on when it can be used. Gravel never copies
messages, instead all message exchanges are “rendezvous” style, in MPI parlance. Fur-
ther, as is the case with all RDMA layers, memory must be registered to be a source or
destination for messages.

Gravel provides minimal RDMA-based messaging functionality that is decomposed
to maximize potential for overlapping communication with computation. In general, a
message can be seen as the exchange of message metadata (e.g., a message header)
and the exchange of the data itself, followed by some indication of completion. Gravel
separates this functionality into independent parts by providing distinct functions for
implementing explicit registration of memory, communication rendezvous (exchanging
message metadata), and performing the actual data transfer.

2.1 Rendezvous Protocols

Sur et al. [7] discuss the behavior and performance of the simple rendezvous found
in a typical MPI implementation. They present a more advanced alternative which they
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implemented within MVAPICH, the Ohio State University implementation of MPI. Both
rendezvous protocols are “sender initiated”. The legacy protocol uses RDMA-write
for the transfer, and the advanced protocol uses RDMA-read to eliminate unnecessary
round-trip delays. Shipman et al. [8] also discuss advanced protocols used in MPI, but
for the OpenMPI implementation of the MPI standard.

Gravel provides distinct functions for transferring data and metadata in order to allow
an automatic program transformation tool (e.g., a compiler) or programmer to use the
most efficient model given the constraints of the application. Efficiency in this case
comes from appropriate overlapping of orthogonal computation.

Unlike highly abstracted libraries such as MPI, Gravel does not provide fixed data
exchange protocols hidden inside calls such as MPI Isend. It rather provides the nec-
essary API and infrastructure for implementing any protocol at the application layer.
Details are hidden behind the library API, so that the application does not need to spec-
ify anything other than which task should do what and when. By doing so, Gravel enables
“function separation”, i.e., the handshake is separated from the data transfer. As a result,
each application can implement the appropriate exchange protocols that best fit the struc-
ture of each data exchange in that application. At the same time, the high-level, abstract
API enables programmers to easily implement highly efficient exchange protocols, even
in languages such as FORTRAN that does not support C pointers (pointers to arbitrary
memory locations, or pointers returned by C library functions). Four protocols that can
be implemented with Gravel are presented in Figure 1 and described below. In the fol-
lowing text, we use the term “producer” for the node that will send the application data
message, and “consumer” for the node that will receive the application data message.

Consumer Initiated RDMA-Write Protocol. In this case (shown in Figure 1(a)), the
consumer initiates the handshake (post receive buffer rdma()) by sending a
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send_FIN()

Sender / Producer

post_recv_buffer_rdma()

Receiver / Consumer

(a) Consumer Initiated RDMA write protocol
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Fig. 1. Timing schematics of RDMA write and RDMA read based rendezvous protocols
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metadata message to a predefined location in the producer’s memory (initialized by
gravel init()) referred to as the receive-info ledger. The details concerning the
ledger are hidden from the application and are automatically handled by Gravel. Thus,
the application does not need to allocate the ledger, register it, exchange its address be-
tween all the peers, etc. Furthermore, an application programmer, or compiler that uses
Gravel does not even need to know that there is such an entity as a ledger. With this
handshake message, the consumer passes to the producer the start of the local memory
where the data will be received (receive buffer), the size of the expected data, an ap-
plication defined tag, and a request handle to the call. After initiating the non-blocking
transfer of the handshake, the consumer can proceed with independent computation, but
it must assume that the receive buffer can be altered at any time between this call and
the return of the corresponding wait operation.

When the producer is ready to post a send, it reads the next metadata message from
its receive-info ledger (or blocks until the metadata message from the consumer ar-
rives). The producer then initiates a non-blocking RDMA-write (post os put())
operation to transfer the message data to the consumer, followed by an additional
non-blocking RDMA-write to send a small metadata message (into the RDMA-FIN
ledger)1. Then, the producer can proceed with independent computation. Finally, both
sides will wait for the completion of the transfer.

This protocol is well-suited for cases when the receive operation can be posted early
because the computation does not have data dependencies with the receive buffer. In
this scenario, the handshake overhead will be entirely overlapped with the independent
computation and the actual data transfer will be performed by an RDMA-write opera-
tion without any delays or copying, regardless of the size of the transfer, leading to an
efficient data exchange.

Producer Initiated RDMA-Write Protocol. Many MPI programs use the wildcard
MPI ANY SOURCE such that any peer could be the producer of the data. Supporting
this requires an extended version of the previous protocol, that is producer initiated, as
shown in Figure 1(b). In this case, the producer first sends an asynchronous metadata
message to the consumer notifying it of an upcoming data send operation. This message
is written into the predetermined send-info ledger in the consumer’s memory.

When the consumer is ready to post the receive, it will read the first “send request”
from its send-info ledger, (or block until at least one peer sends a “send request”). At
this point, the consumer can continue with the exact same steps taken by the consumer
initiated RDMA-write protocol.

Producer Initiated RDMA-Read Protocol. This protocol (shown in Figure 1(c)) is
very different from the previous two protocols. Here, the producer initiates the hand-
shake, but only after the data is ready to be sent to the consumer. The producer sends a
small metadata message to a predefined location in the consumer’s memory (send-info
ledger). This message contains the location of the application data in memory (send
buffer), the size of the data to be sent, and the tag. Then, the producer can proceed with
independent computation and then block, waiting for the completion of the transfer.

1 If the underlying network does not support message ordering, appropriate measures need to be
taken for the FIN to arrive at the consumer after the application data.
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On the other side, the consumer reads the next entry from the send-info ledger, or
blocks waiting for the arrival of a metadata message from the producer. At this point,
the consumer initiates the transfer with a non-blocking RDMA-read operation. This
provides the RDMA engine with the necessary information about the transfer and re-
turns immediately. Thus, the consumer can execute independent computation during the
data transfer. Before the consumer can notify the producer about the completion of the
transfer, the consumer must wait for the RDMA-read to complete. When the transfer
is completed, the consumer writes to the RDMA-FIN ledger of the producer, signaling
the completion of the data transfer. Clearly, the producer must assume that the data is
being used at any point between the initiation of the rendezvous and the corresponding
wait() function, and cannot alter the data.

This protocol is expected to perform less efficiently than the “consumer initiated”
protocol described earlier, but is necessary for cases that meet all the following criteria:
1) the communication is symmetric and every node is both consumer and producer, 2)
the send operation takes place before the receive operation, and 3) the data or control
dependencies prevent the receive operation from being hoisted above the send operation.

Fig. 2. Communication overlapping before and after splitting computation

Advanced RDMA-Write Based Protocol. Figure 2(a) shows an example of a parallel
program where every task computes, stores into an array V and transfers some data to
one or more neighbors. This simple case is common and does not provide an opportu-
nity for overlapping the communication generated by the send operation with useful
computation. However, if there are no dependencies on array V throughout the itera-
tion space of the loop, it can be transformed to enable overlapping. In Figure 2(b), we
see that the loop is split and therefore the mpi isend(V[1:M]) call that transfers
the first part of the array can be overlapped with the computation of the second part of
the array. Although this could lead to performance benefits, due to overlapping, it also
has two major drawbacks. Namely, smaller messages experience lower throughput and
every additional message adds contention and overhead through multiple handshakes.
The latter concern can be alleviated with Gravel through a more advanced rendezvous
scheme, specialized for pipelined transfers. In particular, only one handshake message
is necessary, even if the transfer takes place in multiple segments. Indeed as is shown in
Figure 2(c) only one call to the metadata transfer functions (post recv buffer(),
wait recv buffer(), send fin()) is performed, but the data is transferred in
two steps by calling post os put() twice, achieving overlap without the overhead of
additional control messages. Clearly, when post os put() is called multiple times,
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each call needs to be given an “offset” equal to the cumulative amount of data trans-
ferred by the previous calls. Figure 1(d) shows a schematic of a similar communication
pattern, where the data transfer takes place in three steps.

This example of an advanced protocol demonstrates the difference between MPI and
Gravel. MPI provides implicit protocols hidden behind calls such as MPI Isend and
MPI Irecv, designed without any knowledge of a particular application. In contrast,
Gravel provides the appropriate API and infrastructure for implementing the exchange
protocols at the application layer. This way, the particular characteristics of each appli-
cation can be exploited for maximizing communication-computation overlap.

3 Experimental Study

Experiment Design. For evaluation, we designed our experiments to explore how a
program’s performance is affected when key MPI calls are replaced by the equivalent
Gravel library calls and how the previously mentioned different Gravel protocols affect
performance.

We experimented with different communication libraries, message sizes, and strip-
mining to enable more overlapping. Our experiments were performed on an infiniband
cluster with 24 nodes running Linux 2.6.18. We used mvapich-1.0 and OpenMPI-1.2.52

implementations built on top of the infiniband layer provided by the OpenFabrics Al-
liance’s OFED-1.3. We also used our Gravel implementation on top of uDAPL-2.0
which is also provided by OFED-1.3. We experimented with different tuning param-
eters (mpi leave pinned=1 and btl openib use eager rdma for OpenMPI
and LAZY MEM UNREGISTER for mvapich) to achieve good performance with each
MPI implementation. Each benchmark is implemented such that it starts with 1,000
cold runs that are not timed, so that the MPI engine is warmed up and exhibits “steady
state” performance before the timing begins. After the timer is started the code segment
that performs the computation and communication is also executed 1,000 times so that
the timing errors are amortized and anomalous behavior is averaged out.

Fig. 3. 1-D Ring micro-benchmark critical part

2 We also experimented with the trunk version of OpenMPI-1.3 and found that it performs sig-
nificantly faster than OpenMPI-1.2.5, but compares with Gravel the same way. Since the trunk
does not constitute a stable version of the library that others can use to replicate our experi-
ments, we do not report those results.
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We compared the runtime performance of a set of MPI Fortran micro-benchmarks
which represent communication-computation patterns found in many scientific applica-
tions. We used two micro-benchmarks: (1) a 1D-ring pattern where every task receives
data from the previous one and sends data to the next one and (2) a 2D-wavefront
where the tasks are organized in a 2-D grid and every task receives data from “north”
and “west” and sends data to “south” and “east”. The 1D-ring pattern appears in well
known codes including SP, BT and LU in the NAS suite; the 2D-wavefront pattern ap-
pears in LU of the NAS suite and Sweep3D. The critical part of each micro-benchmark
performs some minimal computation (array to array copy) that fills the message buffer
to be sent, transfers the message and then performs some computation (copy) with the
message it received from its peer. Figure 3 demonstrates the critical part of the 1-D Ring
micro-benchmark in pseudocode.

Results. Figure 4(a) and Figure 4(b) show the performance results for the 1D-ring and
2D-wavefront micro-benchmarks, respectively. The Y axis of both graphs presents ex-
ecution time normalized to the ideal case, where communication is infinitely fast and

(a) 1-D Ring

(b) 2-D Wavefront

Fig. 4. Experimental evaluation of Gravel and MPI for 1-D Ring and 2-D Wavefront data ex-
changes
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causes no overhead. This case is simulated by a version of the benchmark that does
not perform any communication, just the computation loops. All values above 1 des-
ignate the slowdown factor caused by the communication. Each micro-benchmark was
run several times, and the graph plots the minimum execution time for each scenario.
We found very little variation across several runs of the same micro-benchmark using
the same configuration. Each graph shows three different clusters of bars corresponding
to the three different message sizes we evaluated. Within each cluster, there are three
subgroups using dark, medium and light shadings, respectively. For all subgroups, the
“computation” is a simple buffer to buffer copy.

The first subgroup to the left end of each bar cluster demonstrates the scenario where
the transmission of data is not overlapped with computation and only the recv oper-
ation has potential for overlapping. Here, we attempt to answer the question of how
the program’s performance is affected when MPI calls are simply replaced by equiva-
lent Gravel library calls. By looking at the bars within this subgroup and in particular
the bar with the vertical stripes representing the non-transformed code using Gravel’s
consumer initiated RDMA-write protocol, one can see that the execution time of this
version is lower than that achieved with either MPI version across sizes and data ex-
change patterns.

The second subgroup within a cluster demonstrates the scenario where the computa-
tion is strip-mined into a double nested loop where the inner loop operates on a section,
or tile, of the buffer and the outer loop iterates over the consecutive tiles. In this sce-
nario, the communication is broken into smaller messages and inserted into the outer
loop of the loop nest such that after each tile of the buffer is computed, the transfer
of that tile is initiated and overlapped with the computation of the next tile. Here, one
can see that the transformed versions of the application that use Gravel experienced
lower overhead than the transformed versions that use MPI for large message sizes and
comparable overhead for small message sizes.

The third subgroup within a cluster demonstrates the scenario where we compare the
same overlapped code as the second subgroup, but Gravel’s ability to perform several
data transfers with only one handshake is utilized, to minimize protocol overhead. This
corresponds to the advanced RDMA based protocol shown in Figure 1(d). By compar-
ing the bars of this subgroup with the corresponding medium shaded bars, the reader
can see that across message sizes and communication patterns, the advanced Gravel
protocols that use a single handshake for multiple data transfers perform better than the
MPI-like protocols where every data transfer requires a handshake. For small message
sizes, strip-mining to achieve overlapping might cause the application to run slower
than the original version (when either MPI or Gravel is used) due to increased protocol
overhead and significantly reduced throughput. For larger sizes, when either library is
used, overlapping through strip-mining benefits the communication performance.

The results show that for all but the very large sizes, the consumer-initiated RDMA-
write based protocol outperforms the producer-initiated RDMA-read based protocol.
The reason for the reversal of this behavior witnessed for large sizes will be further
investigated in the future. Also, by studying the graphs of Figures 4(a) and 4(b), one
can see that for every bar cluster, there is a trend going from more to less overhead as
we move from the left-most bar to the right-most bar. This is due to moving from a
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simpler form of the code to an optimized form as well as moving from pure MPI code,
to code that combines MPI and Gravel, and finally to code that combines MPI and an
advanced use of Gravel.

4 Conclusions and Future Work

In this paper we presented Gravel, a communication library designed to inter-operate
with MPI to fast-path key data transfers of parallel applications. We have described ren-
dezvous protocols that can be implemented at the application layer when using Gravel
as opposed to MPI’s exchange protocols that are fixed and do not exploit the structure
of each particular application. In addition, we have demonstrated the performance im-
provements that a parallel application can achieve with Gravel through communication-
computation overlapping. Currently, we are working on using Gravel with our compiler
transformation tool [9], to enable communication optimization of parallel applications
without the need for user intervention.

References

1. uDAPL: User Direct Access Programming Library,
http://www.datcollaborative.org/uDAPL doc 062102.pdf

2. GM reference manual, http://www.myri.com/scs/GM/doc/refman.pdf
3. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library for distributed

array libraries and compiler run-time systems. In: RTSPP IPPS/SDP 1999 (1999)
4. Bonachea, D.: GASNet specification. Technical Report CSD-02-1207, University of Califor-

nia, Berkeley (October 2002)
5. Mellanox Technologies Inc.: Mellanox IB-Verbs API (VAPI) (2001)
6. Myricom Inc.: Myrinet EXpress (MX): A High Performance, Low-level, Message-Passing

Interface for Myrinet (2003), http://www.myri.com/scs/
7. Sur, S., Jin, H.W., Chai, L., Panda, D.K.: RDMA read based rendezvous protocol for MPI

over InfiniBand: design alternatives and benefits. In: PPoPP 2006: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming, pp. 32–39
(2006)

8. Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High performance
RDMA protocols in HPC. In: Proceedings, 13th European PVM/MPI Users’ Group Meeting,
Bonn, Germany. LNCS. Springer, Heidelberg (2006)

9. Danalis, A., Pollock, L., Swany, M., Cavazos, J.: Implementing an open64-based tool for
improving the performance of mpi programs. In: Open64 Workshop in conjunction with
IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Boston,
MA (April 2008)

http://www.datcollaborative.org/uDAPL_doc_062102.pdf
http://www.myri.com/scs/GM/doc/refman.pdf
http://www.myri.com/scs/


Toward Efficient Support for Multithreaded

MPI Communication

Pavan Balaji1, Darius Buntinas1, David Goodell1,
William Gropp2, and Rajeev Thakur1

1 Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL 60439, USA

2 Department of Computer Science,
University of Illinois, Urbana, IL, 61801, USA

Abstract. To make the most effective use of parallel machines that are
being built out of increasingly large multicore chips, researchers are ex-
ploring the use of programming models comprising a mixture of MPI and
threads. Such hybrid models require efficient support from an MPI imple-
mentation for MPI messages sent from multiple threads simultaneously.
In this paper, we explore the issues involved in designing such an im-
plementation. We present four approaches to building a fully thread-safe
MPI implementation, with decreasing levels of critical-section granular-
ity (from coarse-grain locks to fine-grain locks to lock-free operations)
and correspondingly increasing levels of complexity. We describe how
we have structured our implementation to support all four approaches
and enable one to be selected at build time. We present performance
results with a message-rate benchmark to demonstrate the performance
implications of the different approaches.

1 Introduction

Processor development is clearly heading to an era where chips comprising mul-
tiple processor cores (tens or even hundreds) are ubiquitous. As a result, parallel
systems are increasingly being built with multiple CPU cores on a single node,
all sharing memory, and the nodes themselves are connected by some kind of
interconnection network. On such systems, it is of course possible to run appli-
cations as pure MPI processes, one per core. However, as the total number of
processes gets very large, the local problem size per process in some applications
may decrease to a level where the program does not scale any further. Also, on
some systems, running multiple MPI processes per node may restrict the amount
of resources, such as TLB space or memory, available to each process. To allevi-
ate these problems, researchers are evaluating other programming models that
involve fewer MPI processes per node and use threads to exploit loop-level and
other parallelism. Such a hybrid model can be achieved by either explicitly writ-
ing a multithreaded MPI program, using say POSIX threads (Pthreads), or by
augmenting an MPI program with OpenMP directives [15]. In either case, MPI
functions could be called from multiple threads of a process.

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 120–129, 2008.
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MPI implementations have traditionally not provided highly tuned support for
multithreaded MPI communication. In fact, many implementations do not even
support thread safety. For example, the versions of the following MPI implemen-
tations available at the time of this writing do not support thread safety: Microsoft
MPI, SiCortexMPI,NECMPI, IBMMPI forBlueGene/L,CrayMPI forXT4, and
Myricom’s MPICH2-MX. Other MPI implementations, such as MPICH2, Open
MPI, MVAPICH2, IBM MPI for Blue Gene/P and Power systems, and Intel, HP,
SGI, and SUN MPIs do support thread safety. With the increasing use of threads,
just supporting thread safety is not sufficient—efficient support for multithreaded
MPI is needed. Designing an efficient, thread-safe MPI implementation is a non-
trivial task. Several issues must be considered, as outlined in [6]. In this paper, we
describe our efforts at improving the multithreaded support in our MPI implemen-
tation, MPICH2 [10]. We present four approaches to building a fully thread-safe
MPI implementation, with decreasing levels of critical-section granularityand cor-
respondingly increasing levels of complexity. We describe how we have structured
our implementation to support all four approaches and enable one to be selected
at build time. We present performance results with a message-rate benchmark to
demonstrate the performance implications of the different approaches.

Related Work. The issue of efficiently supporting multithreaded MPI commu-
nication has received only limited attention in the literature. In [6], we described
and analyzed what the MPI Standard says about thread safety and what it implies
for an implementation. We also presented an efficient multithreaded algorithm
for generating new context ids, which is required for creating new communica-
tors. Protopopov and Skjellum discuss a number of issues related to threads and
MPI, including a design for a thread-safe version of MPICH-1 [12,13]. Plachetka
describes a mechanism for making a thread-unsafe PVM or MPI implementation
quasi-thread-safe by adding an interrupt mechanism and two functions to the im-
plementation [11]. Garćıa et al. present MiMPI, a thread-safe implementation of
MPI [5]. TOMPI [3] and TMPI [14] are thread-based MPI implementations, where
each MPI rank is actually a thread. (Our paper focuses on conventional MPI im-
plementations where each MPI rank is a process that itself may have multiple
threads, all having the same rank.) USFMPI is a multithreaded implementation
of MPI that internally uses a separate thread for communication [2]. A good dis-
cussion of the difficulty of programming with threads in general is given in [8].

2 Thread Safety in MPI

For performance reasons, MPI defines four “levels” of thread safety [9] and allows
the user to indicate the level desired—the idea being that the implementation
need not incur the cost for a higher level of thread safety than the user needs.
The four levels of thread safety are as follows:

1. MPI THREAD SINGLE. Each process has a single thread of execution.
2. MPI THREAD FUNNELED.A process may be multithreaded, but only the thread

that initialized MPI may make MPI calls.
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Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution

3. MPI THREAD SERIALIZED. A process may be multithreaded, but only one
thread at a time may make MPI calls.

4. MPI THREAD MULTIPLE.Aprocessmaybemultithreaded,andmultiple threads
may simultaneously call MPI functions (with a few restrictions mentioned
below).

MPI provides a function, MPI Init thread, by which the user can indicate the
level of thread support desired, and the implementation will return the level
supported. A portable program that does not call MPI Init thread should as-
sume that only MPI THREAD SINGLE is supported. This paper focuses on the
MPI THREAD MULTIPLE (fully multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPI calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. (The example in Figure 1 must not deadlock for any ordering of
thread execution.) MPI also says that it is the user’s responsibility to prevent
races when threads in the same application post conflicting MPI calls. For ex-
ample, the user cannot call MPI Info set and MPI Info free on the same info
object concurrently from two threads of the same process; the user must ensure
that the MPI Info free is called only after MPI Info set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

3 Choices of Critical-Section Granularity

To support multithreaded MPI communication, the implementation must pro-
tect certain data structures and portions of code from being accessed by multiple
threads simultaneously in order to avoid race conditions. A portion of code so
protected is called a critical section [4]. The granularity (size) of the critical sec-
tion and the exact mechanism used to implement the critical section can have
a significant impact on performance. In general, having smaller critical sections
allows more concurrency among threads but incurs the cost of frequently ac-
quiring and releasing the critical section. A critical section can be implemented
either by using mutex locks or in a lock-free manner by using assembly-level
atomic operations such as compare-and-swap or fetch-and-add [7]. Mutex locks
are comparatively expensive, whereas atomic operations are non-portable and
can make the code more complex.
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We describe four approaches to the selection of critical-section granularity in
a thread-safe MPI implementation.

Global. There is a single, global1 critical section that is held for the duration
of most MPI functions, except if the function is going to block on a network
operation. In that case, the critical section is released before blocking and
then reacquired after the network operation returns. A few MPI functions
have no thread-safety implications and hence have no critical section (e.g.,
MPI Wtime) [1,6]. This is the simplest approach and is used in the past few
releases of MPICH2.

Brief Global. There is a single, global critical section, but it is held only when
required. This approach permits concurrency between threads making MPI
calls, except when common internal data structures are being accessed. How-
ever, it is more difficult to implement than Global, because determining
where a critical section is needed, and where not, requires care.

Per Object. There are separate critical sections for different objects and classes
of objects. For example, there may be a separate critical section for com-
munication to a particular process. This approach permits even more con-
currency between threads making MPI calls, particularly if the underlying
communication system supports concurrent communication to different pro-
cesses. Correspondingly, it requires even more care in implementing.

Lock Free. Instead of critical sections, lock-free (or wait-free) synchronization
methods [7]are implementedbyusingatomicoperations thatexploitprocessor-
specific features. This approach offers the potential for improved performance
and greater concurrency. Complexity-wise, it is the hardest of the four.

To manage building and experimenting with these four options in MPICH2,
we have developed a set of abstractions built around named critical sections and
related concepts. These are implemented as compile-time macros, ensuring that
there is no extra overhead. Each section of code that requires atomic access to
shared data structures is enclosed in a begin/end of a named critical section. In
addition, the particular object (if relevant) is passed to the critical section. For
example,

MPIU_THREAD_CS_BEGIN(COMM,vc)
... code to access a virtual communication channel vc
MPIU_THREAD_CS_END(COMM,vc)

In the Global mode, there is an “ALLFUNC” (all functions) critical section, and
the other macros, such as the COMM one above, are defined to be empty so that
there is no extra overhead. In the Brief-Global mode, the ALLFUNC critical section
is defined to be empty, and others, such as the above COMM critical section, are
defined to acquire and release a common, global mutex. The vc argument to the
macro is ignored in that case. In the Per-Object mode, the situation is similar
to that in Brief Global, except that instead of using a common, global mutex,

1 Global here means global to all threads of a process.
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Process

Thread

(a) Threads (b) Processes

Fig. 2. Illustration of test programs. Multiple threads or processes send messages to a
different single-threaded receiving process.

the critical-section macro uses a mutex that is part of the object passed as the
second argument of the macro.

For Lock Free, a different code path must be followed. To help with this
case, we have implemented a portable library of atomic operations (such as
compare-and-swap, test-and-set, fetch-and-add) that are implemented separately
for different architectures by using assembly-language instructions. By using
these atomic operations, we can replace many of the critical sections with lock-
free code. (This part of the code is still under development.)

4 Performance Experiments

To assess the performance of each granularity option, we wrote a test that mea-
sures the message rate achieved by n threads of a process sending to n single-
threaded receiving processes, as shown in Figure 2(a). The receiving processes
prepost 128 receives using MPI Irecv, send an acknowledgment to the sending
threads, and then wait for the receives to complete. After receiving the acknowl-
edgment, the threads of the sending process send 128 messages using MPI Send.
This process is repeated for 100,000 iterations. The acknowledgment message in
each iteration ensures that the receives are posted before the sends arrive, so that
there are no unexpected messages. The sending process calls MPI Init thread
with the thread level set to MPI THREAD MULTIPLE (even for runs with only one
thread, in order to show the overhead of providing thread safety). The message
rate is calculated as n/avg latency, where n is the number of sending threads or
processes, and avg latency is avg looptime/(niters∗128), where avg looptime is
the execution time of the entire iteration loop averaged over the sending threads.

To provide a baseline message rate, we also measured the message rate achieved
with separate processes (instead of threads) for sending. For this purpose, we used
a modified version of the test that uses multiple single-threaded sending processes,
as shown in Figure 2(b). The sending processes simply call MPI Init, which sets
the thread level to MPI THREAD SINGLE.

We performed three sets of experiments to measure the impact of critical-
section granularity. The first set does not perform any actual communication
(send to MPI PROC NULL), the second does blocking communication, and the third
does nonblocking communication.
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The tests were run on a single Linux machine with two 2.6 GHz, quad-core
Intel Clovertown chips (total 8 cores), with our development version of MPICH2
in which the ch3:sock (TCP) channel was modified to incorporate the thread-
safety approaches described in this paper.

4.1 Performance with MPI PROC NULL

This test is intended to measure the threading overhead in the MPICH2 code in the
absence of any network communication. For this purpose, we use MPI PROC NULLas
thedestination inMPI Sendandasa source inMPI Irecv. InMPICH2,anMPI_Send
to MPI PROC NULL is handled at a layer above the device-specific code and does not
involve manipulation of any shared data structures.

Figure 3 shows the aggregate message rate of the sending threads or processes
as a function of the number of threads or processes. In the multiple-process case,
the message rate increases with the number of senders because there is no con-
tention for critical sections. In the multithreaded case with Brief Global, the per-
formance is almost identical to multiple processes because Brief Global acquires
critical sections only as needed, and in this case no critical section is needed as
there is no communication. With the Global mode, however, there is a significant
decline in message rate because, in this mode, a critical section is acquired on
entry to an MPI function, which serializes the accesses by different threads.
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Fig. 3. Message rate (in million messages per sec.) for a multithreaded process sending
to MPI PROC NULL with Global and Brief-Global granularities, compared to that with
multiple processes

4.2 Performance with Blocking Sends

This test measures the performance when the communication path is exercised,
which requires critical sections to be acquired. The test measures the message
rate for zero-byte blocking sends. (Even for zero-byte sends, the implementation
must send the message envelope to the destination because the receives could
have been posted for a larger size.)
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Fig. 4. Message rates with blocking sends for Global, Brief-Global, and Per-Object
granularities

Figure 4 shows the results. Notice that because of the cost of communication, the
overall message rate is considerably lower than with MPI PROC NULL. In this test,
even Brief Global performs as poorly as Global, because it acquires a large critical
section during communication, which dominates the overall time. We then tried
the Per-Object granularity, which demonstrated very good performance (compa-
rable to multiple processes), because the granularity of critical sections in this case
is per virtual channel (VC), rather than global. In MPICH2, a VC is a data struc-
ture that holds all the state and information required for a process to communicate
with another process. Since each thread sends to a different process, they use sep-
arate VCs, and there is no contention for the critical section.

4.3 Performance with Nonblocking Sends

When performing a blocking send for short messages, MPICH2 does not need
to allocate an MPI_Request object. For nonblocking sends, however, MPICH2
must allocate a request object to keep track of the progress of the communication
operation. Requests are allocated from a common pool of free requests, which
must be protected by a critical section. When a request is completed, it is freed
and returned to the common pool. As a result, the common request pool becomes
a source of critical-section contention.

Each request object also uses a reference count to determine when the opera-
tion is complete and when it is safe to free the object. Since any thread can cause
progress on communication, any thread can increment or decrement the reference
count. A critical section is therefore needed, which can become another source
of contention. All this makes it more difficult to minimize threading overhead in
nonblocking sends than blocking sends.

We modified the test program to use nonblocking sends and measured the mes-
sage rates. Figure 5 shows the results. Notice that the performance of Per-Object
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Fig. 5. Message rates with nonblocking sends. “Per Object tlp” is the thread-local
request-pool optimization and “Per Object tlp atom” is the update of reference counts
using atomic assembly instructions.

granularity is significantly affected by the contention on the request pool, and the
message rate does not increase beyond more than two threads.

To reduce the contention on the common request pool, we experimented with
providing a local free pool for each thread. These thread-local pools are initially
empty. When a thread needs to allocate a request and its local pool is empty,
it will get it from the common pool. But when a request is freed, it is returned
to the thread’s local pool. The next time the thread needs a request, it will
allocate it from its local pool and avoid acquiring the critical section for the
common request pool. The graph labeled “Per Object tlp” in Figure 5 shows
that by adding the thread-local request pool, the message rate improves, but
only slightly. The contention for the reference-count updates still hurts.

To alleviate the reference-count contention, we modified MPICH2 to use
atomic assembly instructions for updating reference counts (instead of using
a mutex). The graph labeled “Per Object tlp atom” in Figure 5 shows that the
message rate improves even further with this optimization, and increases with
the number of threads. It is still less than in the multiple-process case, but some
performance degradation is to be expected with multithreading because critical
sections cannot be completely avoided.

5 Conclusions and Future Work

We have studied the problem of improving the multithreaded performance of
MPI implementations and presented several approaches to reduce the critical-
section granularity, which can impact performance significantly. Such optimiza-
tions, however, require careful implementation.

While it is clear that atomic use and update of the communication engine is es-
sential, it is equally important to ensure that all shared data structures, including
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MPI datatypes, requests, and communicators, are updated in a thread-safe way.
For example, the reference-count updates used in most (if not all) MPI implemen-
tations must be thread atomic. This is not just a theoretical requirement: In some
early experiments, we did not atomically update the reference counts, assuming
that the very small race condition would not affect the results; but, by doing so, we
regularly encountered failures in our communication-intensive tests. This experi-
ence suggests that the quasi-thread-safe approach proposed by Plachetka [11], in
which only the access to the communication engine is serialized, is not sufficient.

The abstractions we have employed to control critical-section granularity are
similar to what is required for transactional memory. We plan to use these ab-
stractions to explore the use of transactional memory.
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Abstract. With local core counts on the rise, taking advantage of
shared-memory to optimize collective operations can improve perfor-
mance. We study several on-host shared memory optimized algorithms
for MPI Bcast, MPI Reduce, and MPI Allreduce, using tree-based, and
reduce-scatter algorithms. For small data operations with relatively large
synchronization costs fan-in/fan-out algorithms generally perform best.
For large messages data manipulation constitute the largest cost and
reduce-scatter algorithms are best for reductions. These optimization
improve performance by up to a factor of three. Memory and cache shar-
ing effect require deliberate process layout and careful radix selection for
tree-based methods.

Keywords: Collectives, Shared-Memory, MPI Bcast, MPI Reduce,
MPI Allreduce.

1 Introduction

As HPC systems continue to grow rapidly the scalability of many scientific appli-
cations are limited by the scalability of collective communication. These systems
are growing in both node counts and core counts per node. These multi-core
nodes provide a way to increase the scalability of collective communication for
applications which use more than a single MPI task per node. Implementing
these algorithms in terms of on-host and off-host phases reduces network traffic
improves their overall scalability. This paper will study in detail the options for
implementing the on-host, shared-memory collective algorithms and compare
these with Open MPI’s point-to-point implementations using shared-memory
merely as a transport layer. Memory traffic, cache conflicts and synchronization
are barriers to the scalability and performance of shared memory collectives.
These algorithms are aimed at reducing memory traffic by limiting the num-
ber of writers to a given memory segment and balancing synchronization and
memory access costs. In addition to reducing memory traffic on socket and bal-
ancing synchronization we also aim take advantage of shared caches and reduce
inter-socket memory traffic.
� Research sponsored by the Mathematical, Information, and Computational Sciences

Division, Office of Advanced Scientific Computing Research, U.S. Department of
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This paper describes the shared memory implementation of MPI Reduce,
MPI Allreduce, and MPI Bcast, and provides the results of benchmark stud-
ies of these collective algorithms. These are used by a large number of scientific
simulation codes with reductions frequently being the collective communications
pattern that hinders scalability the most. The range of reduction sizes used by
scientific codes varies from single word sizes used to determine the convergence
of iterative algorithms to many megabytes used to aggregate simulation results.
Broadcast collective communication is often used to initialize application data
structures.

The remainder of this paper is organized as follows; Section 2 provides an
overview of previous work on shared memory optimizations of collective opera-
tions. Section 3 describes the shared-memory MPI Reduce, MPI Allreduce, and
MPI Bcast algorithms implemented within the framework of Open MPI. Results
of numerical experiments are discussed in Section 5. Conclusions and future work
are then discussed in Section 6.

2 Background

The recent interest in shared memory communications optimizations has come
primarily from the desire to take advantage of the performance gain opportuni-
ties this gives in the context of hierarchical collectives on systems with a non-
uniform memory hierarchy, such as clusters of Shared Memory nodes. As such,
the main goal of these studies has been to show collective communications perfor-
mance improvements of these hierarchical collectives, over standard implemen-
tations. Typical collective cost models [1, 2] include a network communications
term and, for operations such as reductions, a local processing term. On shared
memory systems where one MPI process can directly access another’s memory
or a copy of this memory reduction operations can avoid the data transfer step
by directly operating on another processes data. Operations such as broadcast
can reduce the number of memory transfers with multiple consumers accessing
a shared buffer. This paper studies the benefits of such optimizations over tra-
ditional point-to-point based collective communications with shared-memory as
a mere transport mechanism.

Several MPI implementations have provided support for shared memory op-
timized collectives. These include but are not limited to LA-MPI [3], Sun MPI
[4], and NEC’s MPI [5].

Mamidala et al. [6] have studied the performance of shared-memoryMPI Bcast,
MPI Allgather, MPI Allreduce, and MPI Alltoall on a four core Intel Clovertown
system. Their focus was on the interaction with the underlying hardware rather
than the characteristics of the algorithms. Mamidala et al. [7], also developed a
shared memory MPI Allgather algorithm for use in a hierarchical implementation
of this algorithm.

Tipparaju et al. [8] studied the effect of taking the shared memory hierarchies
for several collective algorithms. They focused on the hierarchical collectives, and
the performance gains from exploiting the memory hierarchies.
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Wu et al. [9] proposed a general approach for optimizing shared memory col-
lective operations using several communications primitives. They implemented
MPI Bcast and MPI Scatter using these primitives showing performance im-
provements for these collective algorithms over point-to-point based mechanisms.

Unpublished work on shared-memory collective operations in the context of
LA-MPI [10] on the 128 processor SGI Origin2000 machines showed that as
the process count increases, read and write contention for the shared memory
segments can greatly affect the performance of these operations. As a result,
in this paper we describe collective algorithms designed to take advantage of
the ability to directly access another processes shared memory segment with
carefully controlled memory access. We study these algorithms to examine the
characteristics of MPI collective operations on the emerging multi-core systems.

3 Algorithms

The ability of multiple processes to directly access common memory brings with
it several opportunities for collective communications optimization with memory
operations being the means of inter-process communications. However, factors
such as process affinity and cache and memory access have a substantial impact
on the performance of these algorithms. Cache thrashing causes severe perfor-
mance penalties, shared caches reduce the access times to volatile memory, and
memory bus contention reduces the memory bandwidth available to each MPI
process. We proceed to develop algorithms that selectively eliminate extra mem-
ory traffic by taking into account cache and memory characteristics.

The approach we use in all these algorithms is to assign a fixed size segment
of shared memory to each MPI communicator for use by all the MPI collective
algorithms. This segment is contiguous in virtual memory, is memory-mapped at
communicator creation, and is freed at communicator destruction. This provides
a means of allocating the resources only when they are needed and for adjusting
to the changing needs of an application. This shared memory has a control region
for managing the working memory and a scratch (or working) memory region used
by the collective communication routines. The scratch region is divided into two
banks of memory with each bank having several segments of memory. The number
of banks and segments is determined at run-time with the default values being two
and eight. A bank is either available for use, or not, and once available, the buffers
are used in-order without any additional availability checks. The control region is
used to manage the availability of these memory banks and a non-blocking barrier
structure is associated with each memory bank. When the last segment in the bank
is used, a non-blocking barrier is initiated, and if not complete when an attempt
to re-use the first segment is made then the process blocks completing this bar-
rier. Multiple banks are used to allow the non-blocking barrier to complete while
another block is in use reducing the synchronization costs.

The memory segments used by the collective algorithms are also divided into
a control region and data regions. The control region consists of a flag the algo-
rithms use for signaling other processes and the data region is where each process
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puts its data. There is one control region and one data region per process in the
communicator. Each of these regions is page aligned with the size of the con-
trol region being fixed and the size of the data region being set at run-time. By
default a single page is allocated for each process’s data region. First touch is
used to ensure memory locality (if process affinity has been enabled) and a given
process only ever writes to it’s own control and data region within the memory
segment but may read other processes’ control and data regions.

The memory cost is constant on a per-process basis with the overall segment
sizes scaling linearly with the number of processes in the shared memory commu-
nicator. Memory costs also scale linearly with the number of pages used in the
data segment. The overall cost of the memory bank control region per process
and per bank is the cost for the data structure (a 64 bit field) for the non-
blocking barrier. For two memory banks this amounts to one page per process
as these data structures share pages on a per process basis.

The shared memory scratch space provides all processes in the communicator
access to common data. Since the size of these data segments is fixed and the
number of data segments is limited all algorithms process the user data a segment
at a time. The reduction routines described in this paper can only be applied to
data types that fit within the per-process data segment.

Communication patterns are pre-computed and cached at communicator cre-
ation time. The nodes in partial leaf levels of a tree are assigned a parent by
distributing these uniformly across the parent layer. Process affinity is used to
control process locality taking into account memory and cache hierarchies.

3.1 MPI Allreduce

Three different algorithms are implemented for MPI Allreduce, recursive dou-
bling, reduce-scatter followed by an all-gather and fan-in/fan-out.

The recursive-doubling algorithm is useful for large data reductions in which
data manipulation tends to dominate reduction time. Each process uses it’s data-
control flag to signal when it’s data is ready for use. To allow both processes
involved in a pair to process their data simultaneously the data segment is di-
vided into to two sections. One section is the read section for both processes
and other is the write section for the process owning that memory. The roles
of these regions are reversed at each step in the reduction so that data can be
used in place. For non-power of two communicators with M processes, if N is
the largest power of two less than M , rank N + K is paired with rank K, where
K = 0, 1, .., M − N . Before the recursive doubling algorithm is used each pair
reduces it’s data, with each process reducing half the data, and the lower rank
copying the higher rank’s reduced data. After the recursive doubling phase ranks
N and higher copy the results from their partner directly into the user’s buffer.
A single segment is used for all sections of a large single reduction. The only
parameter that can be varied is the size of the data segment.

The reduce-scatter algorithm followed by an all-gather is efficient for large
data reductions. It typically performs better than the recursive-doubling algo-
rithm. At each step of the reduce scatter each process in the pair reduces it’s
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portion of the data into it’s temporary buffer and then reads the data directly
from its partner’s shared-memory buffer. The all-gather step is a simple data
read from the scratch space of the other processes. Data readiness is signaled
using the data-control flags and for non-powers of two are handled in a manner
similar to that used in the recursive doubling algorithm. A single segment is used
for all sections of a single reduction. The only parameter that can be varied is
the size of the data segment.

The fan-in/fan-out algorithm is aimed at minimizing synchronization between
processes participating in the reduction operation and is suited well for small
data reductions where synchronization costs are prominent. We implement the
fan-in and fan-out with different radixes. The fan-in phase involves synchro-
nization of n+1 process in a tree of radix-n, as a single process, the parent
process, serially reduces the data from the other n processes onto it’s own data.
In the fan-out phase the parent process signals M processes in a tree of radix-m
that the data is ready to be read and these m processes can attempt to read
this data simultaneously. To keep the synchronization cost down we use a new
shared memory segment for each section of the user data to amortize the cost of
”freeing” these buffers. The size of the data segments can also be varied.

3.2 MPI Reduce

Two different algorithms are implemented for MPI Reduce a fan-in algorithm
and a reduce-scatter followed by a gather to the root. These are implemented in
a manner similar to that of the MPI Allreduce algorithms. The fan-in algorithm
is just the first half of the MPI Allreduce. For a given communicator we cache
the fan-out tree for rank zero as the root and translate the nodes of the tree by
n (with wrap around) for root n. The reduce-scatter algorithm differs from the
MPI Allreduce in that the results of the reduce-scatter are gathered back only
to the root of the operation.

3.3 MPI Bcast

The MPI Bcast is implemented as a fan-out tree of radix-m which can be spec-
ified at run-time. For a given communicator we cache the fan-out tree for rank
zero as the root and translate the nodes of the tree by n (with wrap around) for
root n.

4 Experimental Setup

The shared-memory collective routines are implemented within the Open MPI
code base [11] as a separate collective component. The working code is revision
18489 of the trunk. We take advantage of Open MPI’s process affinity to control
process locality and control memory locality using a first-touch approach.

The performance measurements were all taken on a 16 processor quad-socket,
quad-core, 2 Gigahertz (GHz) Barcelona Opteron system with 512 kilobytes
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(KB) secondary cache and 2 megabytes (MB) shared tertiary cache per socket.
The system is running Linux version 2.6.18-53.1.13ccs.el5.

The performance measurements were taken using simple benchmark codes
with an outer loop wrapped around an inner loop of calls to the collective routine.
A barrier is called right before and right after the inner loop with the time
being measured between the ends of both barrier calls. For rooted collectives
an inner-most loop is added which rotates the root of the operation with all
processes being the root an equal number of times in a particular measurement.
We use integer data in all the measurements and we use the MPI SUM reduction
operations in the reduction operations. We report the latency of the collective
operation as the average time per call.

5 Results and Discussion

Experiments were performed to study the shared-memory optimized MPI Bcast,
MPI Reduce, and MPI Allreduce. The following sections summarize the results
of these experiments. To help keep the discussion brief we will discuss the results
in two classes; short data in the range of eight to 1024 bytes; and large data in
the range of 1 to 16 MB. These ranges of data sizes were selected as they are
the most relevant to applications with which we are familiar. We also restrict
the discussion to sixteen process MPI jobs as our experimental hardware was
limited to 16 cores per node.

5.1 Memory Hierarchies

The memory layout of the quad-core Barcelona shared-memory nodes offers
several opportunities. The tertiary cache shared between cores on a single socket
offer an improved multi-process memory access for volatile data. When going off
socket, multi-process volatile data access must go to main memory, with the
cores on a given socket all sharing that socket’s bandwidth. To get an idea on
the order of magnitude of these effects we measured the latency of an eight
byte and sixteen MB MPI Allreduce operation laying out the MPI processes in
several different configurations. For two process reductions we found that sharing
the socket improved the small data operation by about 15% and the large data
operation by 10%. For an eight process reduction, using all the cores on two
sockets improved the small data operation by about 10% over spreading the
eight processes across all four sockets. However the increased memory contention
with only two sockets in the large data case reduces it’s performance by about
28% relative to the four socket case. While these affects are not as large as those
going between hosts, they are significant, and need to be taken into account. In
the current set of experiments we used this information as a guide to setting
up the communication patterns by using the Linux process affinity capability
to lay out the MPI processes in a manner that results in the desired memory
traffic patterns. Different layouts are used for different collective routines and
different data sizes. Planned future work will explicitly include these hierarchies
in algorithm implementation.
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Fig. 1. MPI Bcast as a function of fan-in radix for sixteen process communicators

5.2 MPI Bcast

Experiments were carried out on small and large data while varying the radix
of the fan-out tree. We choose radix values of 2–8,12,16 and a fragment size of
32KB. Figure 1 shows the best set of results from these experiments carried
out with 16 processes and compares this data with the point-to-point based
MPI bcast algorithm on the same machine configuration.

For small data the shared memory broadcast using a radix-2 broadcast tree
gives the best performance over the range of 8 bytes to 1KB, but the data val-
ues using radix-3 and 5 have similar performance. The radix-4 tree also gives
similar performance but the data is omitted so as not to clutter the figure. The
worst performance is obtained using a radix-12 tree. In all cases the shared mem-
ory broadcast performs better than the point-to-point algorithm using shared-
memory communications with the radix-2 shared memory optimized broadcast
algorithm being about two microseconds more efficient over the range of small
data; a factor of three faster at eight bytes. Synchronization for the shared
memory optimized routine is far simpler and amounts to reading a flag at a
pre-computed address whereas the synchronization in the point-to-point based
method occurs via the MPI general-purpose send/receive matching logic.

The large data shared memory broadcast using a radix-4 broadcast tree per-
forms noticeably better than with other reduction trees with a tree of radix-3
being about 25% slower at a message size of four MB. It should come as no sur-
prise that the worst performance is obtained when using a tree of radix-16, with
all processes trying to read one buffer thereby creating a large amount of memory
contention. The radix-16 algorithm performs even worse than the point-to-point
based method. The latter performs about 60% worse than radix-3 broadcast al-
gorithm which is not surprising, given the reduced number of memory copies in
the shared-memory optimized algorithm.

5.3 MPI Reduce

Experiments were carried out using both small and large data varying the radix
of the fan-in tree. We chose radix values of 2–8,12,16. As expected, for small
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Fig. 2. Left: MPI Reduce as a function of Fragment size for a sixteen process
communicator

data fan-in reduction tree algorithms are the algorithm of choice. For large data
a reduce-scatter followed by a gather to the root is the most suitable algorithm
of those used. We limit our discussion to these combinations of data-size and
algorithm and compare them with point-to-point based implementations of the
MPI Reduce algorithm. Figure 2 shows a select set of results from these experi-
ments carried out at a sixteen process count.

For small data the best results are obtained with a radix 5 fan-in tree which
gives virtually identical performance to that of a radix-4 tree. The results using
a tree of radix-8 and radix-3 are slightly worse. Using a tree of radix-12 results in
much worse performance and at the upper end of the size range this performance
is even worse than that of the point-to-point based method. The point-to-point
reduction routine performs quite a bit worse than the radix-5 fan-in tree based
shared memory reduction. At eight bytes the shared memory version is about a
factor of three faster than the point-to-point based method and at 968 bytes it
is about a factor of 1.8 times faster with the slope of the point-to-point based
method being steeper than that of the shared-memory based method.

For large data, communications time is reported as a function of shared memory
segment data size. The best performance in this case is obtained with segments
of size 64KB, with comparable performance using fragments of size 128KB and
32KB. The best shared memory results are about 23% better than the point-to-
point based method for a 4 MB transfer size. However, if a segment size of 4KB is
used, the shared memory implementation is slower than the point-to-point based
method. At this message size the dominant factor in the overall time are the mem-
ory operations and the shared memory algorithm with 4KB segments can not use
the memory subsystem as well as the 32KB sized point-to-point shared memory
segments used by the point-to-point communications layer.

5.4 MPI Allreduce

The experiments performed for the MPI Allreduce function are very similar to
those of the MPI Reduce. These results are reported in Figure 3. In addition, a
recursive doubling algorithm was implemented, but this is not competitive with
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Fig. 3. MPI Allreduce for a sixteen process communicator. Left: short message fanin/-
fanout. Right: Reduce-scatter, followed by Allgather.

the reduce-scatter/allgather algorithm used for large data and therefore we do
not report these results.

For small data, the results from a small set of algorithms using fan-in/fan-out
tree algorithms are reported. Overall, a fan-in and fan-out radix of five and five,
respectively, give the best performance, but values of four and five, respectively,
give virtually identical results. The all-reduce algorithms with fan-in/fan-out
radix pairs of 4:3, 4:4, and 4:3 have slightly worse performance at this range of
sizes. At eight bytes the performance of all these methods is virtually identical
as they are dominated by synchronization but at 968 bytes where memory oper-
ations take a larger portion of time the first set of methods are about 8% more
efficient than the second group of shared memory optimized methods. Similar to
the MPI Reduce case, the shared memory algorithms perform better than the
point-to-point based algorithms. The method using a fan-in radix of five and a
fan-out radix of five performs about 89% better than the point-to-point based
algorithm at eight bytes and about 29% better at 968 bytes. In addition to im-
proved latency, the slope of the point-to-point based method is higher than that
of the shared-memory optimized method.

For large data, the best performance is obtained when using memory segments
of 32KB with the reduce-scatter/allgather algorithm which is only marginally
better performance than that obtained using both 64KB and 128KB segments
and slightly worse at 16KB segment size. With the reduced memory traffic of
the shared-memory optimized algorithms relative to the point-to-point based
algorithm it is not surprising that these perform better than the point-to-point
based method. At 4MB, the 32KB reduce-scatter/allgather method is about 38%
more efficient than the point-to-point based method and at 16MB it is about
71% more efficient.

6 Conclusions

Taking advantage of memory hierarchies in the implementation of hierarchical
collective operations is a good way to improve overall collectives performance.
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In this paper we have examined the benefits of creating shared memory opti-
mized collectives for on-node operations. We have presented optimizations of the
MP Bcast, MPI Reduce, and MPI Allreduce routines aimed at taking advantage
of shared memory architectures. We use instance specific control regions to set
flags indicating when data is ready to be used, bypass the point-to-point match-
ing logic, read other processes data directly out of their shared memory buffers
reducing memory accesses and write only to one’s ”own” shared memory region.
These algorithms also take into account cache and memory layout in assigning
process affinity.

Shared memory optimization improve the performance of the local collective
operations over point-to-point based methods. Performance improvement of 3
fold have been demonstrated for small data operations such as eight byte broad-
casts and reductions across 16 processes. Improvements on the order of tens of
percent were measured across a wider size of messages. In terms of absolute time
per collective call the difference in performance between the shared-memory op-
timized and the point-to-point based algorithms increases with data size. These
performance improvements require careful attention to memory layout as care
must be taken not to overwhelm the memory subsystem. By varying the arity
of tree based algorithms and varying the size of shared memory data regions
performance can be improved dramatically.

This paper has described approaches to improve the performance of collective
operations on-node. Future work will include exploring the use of these shared
memory based collectives in conjunction with the hierarchical collectives frame-
work within Open MPI or weather a tightly coupled approach in which the
shared memory based collectives are integrated with point-to-point approaches
for off-node communication are in order.

References

[1] Thakur, R., Gropp, W.: Improving the performance of collective operations in
mpich. In: Lecture Notes In Computer Science, pp. 257–267 (2006)

[2] Rabenseifner, R.: Optimization of collective reduction operations. In: Lecture
Notes In Computer Science, pp. 1–9 (2004)

[3] LA-MPI, http://public.lanl.gov/lampi
[4] Sistare, S., van de Vaart, R., Loh, E.: Optimization of mpi collectives on clusters

of large-scale smp’s. In: Proceedings of SC 1999: High Performance Networking
and Computing (1999)

[5] NEC web page, http://www.nec.de
[6] Mamidala, A.R., et al.: Mpi collectives on modern multicore clusters: Performance

optimizations and communication characteristics. In: CCGRID 2008 (accepted for
publication, 2008)

[7] Mamidala, A.R., Vishnu, A., Panda, D.K.: Efficient shared memory and rdma
based design for mpi allgather over infiniband. In: Lecture Notes In Computer
Science

[8] Tipparaju, V., Nieplocha, J., Panda, D.: Fast collective operations using shared
and remote memory access protocols on clusters. In: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium (2003)

http://public.lanl.gov/lampi
http://www.nec.de


140 R.L. Graham and G. Shipman

[9] Wu, M.S., Kendall, R.A., Aluru, S.: Exploring collective communications on a
cluster of smps. In: Proceedings, HPCAsia2004, pp. 114–117 (2004)

[10] Graham, R.L., Choi, S.E., Daniel, D.J., Desai, N.N., Minnich, R.G., Rasmussen,
C.E., Risinger, L.D., Sukalksi, M.W.: A network-failure-tolerant message-passing
system for terascale clusters. International Journal of Parallel Programming 31(4)
(2003)

[11] Open MPI, http://www.open-mpi.org

http://www.open-mpi.org


Constructing MPI Input-output Datatypes for

Efficient Transpacking

Faisal Ghias Mir and Jesper Larsson Träff
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Abstract. Communication and file I/O buffers in MPI can contain con-
tiguous as well as non-contiguous, structured data. To describe non-
consecutive data layouts compactly, MPI provides a powerful concept
of derived or user-defined datatypes. Especially for MPI-IO, where data
are transferred between file and memory buffers, the need for copying
between differently typed MPI buffers arise. A straightforward solution
to this typed copy problem consists in packing and unpacking the dif-
ferently structured data via an intermediate buffer. For a maximally
efficient MPI(-IO) implementation, means of copying directly (without
intermediate buffers) between differently typed MPI buffers are needed.

We present a new approach to the typed copy problem. For any two
given MPI datatypes describing the layout of input and output buffer,
respectively, we show how to efficiently construct an input-output type
that subsumes both. This type is used to copy directly from input to
output buffer by means of a special transpack function. By completely
eliminating the need for intermediate buffering, the typed copy perfor-
mance can in theory be improved by up to a factor of two, with only
a modest overhead for constructing the input-output type. An experi-
mental evaluation shows that even more significant improvements can
be achieved in practice.

1 Introduction

The MPI derived datatype mechanism [4, Chapter 3] is an extremely powerful
mechanism for concise description of structured, non-contiguous data layouts,
which allows for the use of structured, non-contiguous data in all communication
and file I/O operations of MPI. Especially for parallel I/O, the need for copying
between two structured data buffers described by different derived datatypes
arises. MPI itself provides no functionality for this, and as far as we are aware,
the problem of how to do this efficiently has never been seriously addressed in
the MPI community. We do so in this paper.

We address the typed copy problem as follows. Given an input type T i de-
scribing the data in the source buffer, and an output type To describing the
data in the destination buffer, we first construct an input-output type T i

o giving
a direct map from source to target type. Known techniques for efficient packing
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and unpacking of structured data, like flattening on the fly [5] and related meth-
ods [1,2,3,6], can then readily be utilized to implement a transpack function that
copies directly from input to output buffer.

Compared to the straightforward solution to the typed copy problem, in which
input data are first packed into a contiguous, intermediate buffer and then un-
packed into the output buffer, the use of the input-output type in combination
with an efficient transpack function can in theory (leaving cache and memory
effects aside) improve the performance by up to a factor of two by completely
eliminating the intermediate copy.

In this paper we concentrate on the input-output type construction. To show
the potential performance benefits of transpacking, we compare the achieved
transpacking time to the time of a straightforward pack-unpack solution for a
set of increasingly complex examples. Benchmarking is done on an NEC SX-8
vector processor. Even for complex examples where the construction gives rise to
relatively complex input-output types, we demonstrate (more than) the expected
factor of two performance improvements.

2 Problem and Properties

A derived datatype T in MPI is a compact description of a type map which
is a sequence of basic types (like integers, bytes, floating point numbers) and
relative offsets. The type map is an explicit (but inefficient, both in terms of
space and handling, see eg. [7]) description of a data layout in memory. An
MPI derived datatype is built from basic types (MPI INT, MPI FLOAT, . . . )
by invoking constructor functions (MPI Type contiguous, MPI Type vector, MPI -
Type indexed, MPI Type create struct, . . . ) and can be represented as a rooted,
labeled DAG (Directed Acyclic Graph). Each node of the DAG represents a
datatype with child nodes as subtypes. Edges in the DAG are labeled with
the number of times a subtype is to be repeated in the type map. Children are
ordered from left to right, such that the type map can be constructed by ordered
depth-first search traversal of the DAG. DAG nodes also have an associated offset
and extent.

An input-output type is a DAG representation of an input-output type map: a
sequence of basic types and corresponding input and output offsets. The input-
output type construction problem is to construct an input-output type T i

o from
input type T i and output type To (with the same type signature, ie. describing
the same sequence of basic types), such that for each basic type in the input-
output type map the input offset comes from T i and the output offset from To.

A trivial solution to the problem is to construct the input and output type
maps explicitly from T i and To, following the rules for the MPI type construc-
tors (amounting to DFS traversal of the ordered, labeled DAG), and use the two
lists of basic types and offsets as the input-output type. Obviously, this is not
the desired solution to the problem. As mentioned, the explicit list representa-
tion of the type map is not efficient for copying, and because of the repetition
counts in the DAG, the type maps can be much larger than T i and To. A
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significant improvement to the trivial solution would be to reconstruct a more
compact input-output type DAG from the two type maps. This would still be
more expensive than constructing the input-output type directly from T i and
To. Furthermore the complexity of type reconstruction, ie. finding the most com-
pact DAG representation of a given type map, is not known to the authors (and
constitutes an interesting, open problem).

We want to devise a function IOtype that takes input and output types
T i and To (with the same type signature) and returns an input-output type
T i

o. The input-output type should be a DAG subsuming both T i and To, while
retaining as much of the common structure as possible. The running time should
be proportional to the size of the resulting input-output type DAG. This restricts
algorithms from traversing type DAGs unboundedly.

In the following we ignore the handling of offsets and extents in both input,
output and resulting input-output types. Although not trivial, the details can be
filled in by the interested reader. We say that two types T i and To are structurally
equivalent, denoted T i ≡ To, if they have the same DAG (ignoring offsets and
extents).

The IOtype function should have the following properties.

– IOtype(T i, Co) ≡ T i where Co is a type representing a contiguous segment
of basic types in memory.

– IOtype(Ci, To) ≡ To where Ci is a type representing a contiguous segment
of basic types in memory.

– IOtype(T i, To) ≡ T i ≡ To if T i ≡ To.

This should also hold for proper subtypes, ie. subtypes T̂ i and T̂o with the same
signature describing parts of input and output type maps, respectively, with
other, proper subtypes describing the parts of the type maps before and after
T̂ i and T̂o.

We represent (input-output) datatype DAGs by linked structures with only
two pointers per node. A type node has a child pointer to its subtype, and a
repetition count for the number of times the subtype is repeated in the type map.
If the subtype is a basic type, the child pointer is null, and only the repetition
count is significant. For types that are part of a structured or indexed type, a
sibling pointer points to the next type in the structure. The MPI type map is
determined by DFS traversal of this DAG, with children traversed before siblings.
Examples of MPI vector and indexed types are shown in Figure 1.

3 Constructing Input-Output Datatypes

We now give the algorithm for construction of input-output type T i
o from in-

put and output types T i and To. The idea is to explore simultaneously paths
from leaves of each of the two DAGs representing the same position in the type
map toward the roots. Traversing these paths upwards toward the roots, a corre-
sponding part of the input-output type DAG can be created that retain common
parts of the two paths. We first handle the special case where the type DAGs
are paths, and then briefly describe how to extend this to all MPI datatypes.
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Fig. 1. Memory layout (with relative offsets) of an input vector T i of 4 blocks of 3
MPI INT against an output vector To of 3 blocks of 4 MPI INT. The DAG representing
the resulting input-output indexed type with blocks of lengths 3, 1, 2, 2, 1, 3 is also
shown.

.

3.1 Types That Are Paths (MPI Vector and Contiguous Types)

We first show how to handle input and output type DAGs consisting of a single
path from root to basic type. This may seem trivial, but covers already arbitrarily
nested MPI vector and contiguous types. Figure 1 shows that the input-output
type for two single path types (e.g. MPI vectors) with blocks of different sizes is
not necessarily itself a single-path type, but can be a structured type.

We first define a function StackBuild(e, T, S) that implicitly constructs the
type map of type T and locates the leaf corresponding to the eth basic type in
the type map. This can be done simply by a DFS traversal of T . A stack S of the
traversed type nodes is built. Each stack frame contains the repetition count for
its child type, the total number of basic elements of the type node, and a number
of consumed basic elements that will be used later in the input-output type
construction (and is initialized to zero). For single-path types it holds for stack
level t, t < top(S) − 1 that S[t].elements = S[t].count× S[t + 1].elements, ie.
that the number of elements at level t is equal to the count times the number of
elements on the next level. Trivially, StackBuild(e, T, S) can be implemented
to take time O(T ), independently of e.

The input-output type construction itself is done by the Match function that
simultaneously traverses the two stacks for input and output type:

IOtype(T i, To):
StackBuild(0, T i, Si)
StackBuild(0, To, So)
return Match(Si, So, ⊥)
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last(Si) last(So)
ci co eoei

Fig. 2. Snapshot of the state of the Match function before an iteration of the loop. On
both stacks the black portions have been consumed, and a corresponding input-output
type created. Since the number of consumed elements is the same, a multiple of this
type can be constructed, corresponding to the black and gray part. The remaining
white parts will give rise to sibling types and are handled by the recursive Match call
in the next iteration.

Starting from the top of the two stacks, Match first determines the common
number of basic elements (corresponding to leaves of the type DAGs, which by
assumption have the same basic type), creates a subtype input-output node for
this number of elements, and consumes these elements by a call to the StackInc

function (given below). This function traverses the stack upwards and resets
the consumed elements at each level until a level is found where the number
of consumed elements is less than the total number of elements. This level is
recorded as last(S). The last(S) level is initialized to 0 by StackBuild. After
StackInc the number of consumed elements on all levels above last(S) is zero.

StackInc(e, S):
last(S) ← top(S)
while S[last(S)].consumed+ e = S[last(S)].elements do

S[last(S)].consumed ← 0
last(S) ← last(S) − 1
if last(S) < 0 return
e ← S[last(S)].elements

S[last(S)].consumed ← S[last(S)].consumed+ e

After the number of basic elements at the leaves have been found, the Match

function checks whether the created subtype node can be repeated. This is done
by comparing the number of consumed elements to the total number of elements
on the last frames of the two stacks. Repetition of the created input-output sub-
type node is possible if the number of consumed elements on the two stack frames
is the same and smaller than the remaining elements− consumed elements on
both frames. If there is no room for repetition, either because the number of con-
sumed elements on the frames differ, or because the remaining elements on either
frame are not sufficient, it becomes necessary to create additional input-output
types by calling Match recursively. The situation before the next iteration is
illustrated in Figure 2.

Match(Si, So, B): /* Si, So: stacks constructed by StackBuild, B: base type */

li, lo ← last(Si), last(So) /* remember old state */
/* match basic elements at leaves, B pointer to element type (unless basic) */
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ei, eo ← top(Si).elements, top(So).elements
e ← min(ei, eo)
StackInc(e, Si)
StackInc(e, So)
T i

o ← MakeTypeNode(e, B) /* make leaf of input-output type */
while last(Si) ≥ li ∧ last(So) ≥ lo do

ti, to ← last(Si), last(So)
/* test for repetition of subtypes */
ci, ei ← Si[ti].consumed, Si[ti].elements
co, eo ← So[to].consumed, So[to].elements
if ci = co ∧ ci ≤ ei − ci ∧ co ≤ eo − co then

/* subtype can be repeated */
e ← min(ci�(ei − ci)/ci�, co�(eo − co)/co�)
T i

o ← MakeTypeNode(e, T i
o)

if e = ei ∧ e = eo then
/* both input and output subtypes fully consumed, pop stacks */
Si, So ← Si[0 . . . ti − 1], So[0 . . . to − 1]
B ← T i

o /* input-output element type at leaves */
StackInc(e, Si)
StackInc(e, So)

else
/* no room for repetition, “normalize” stack frame */
Si[ti].consumed, Si[ti].elements ← 0, ei − ci

So[to].consumed, So[to].elements ← 0, eo − co

T ← Match(Si, So, B) /* recurse to find match in remainder */
AddSibling(T i

o, T )
/* restore stack frame */
Si[ti].consumed, Si[ti].elements ← Si[ti].consumed+ ci, ei

So[to].consumed, So[to].elements ← So[to].consumed+ co, eo

return T i
o

The algorithm maintains the invariant that the total number of consumed ele-
ments on Si and So is the same before each loop iteration. When the Match

function terminates, all elements on either input or output stack have been
fully consumed, ie. either Si[0].elements = Si[0].consumed or So[0].elements =
So[0].consumed (or both). When the Match function is called recursively, the
stack is “normalized” by subtracting the consumed elements at the last level.
This is necessary for determining correctly in the recursive invocation whether
the type node for this level can be repeated. When repetition consumes all
elements at both stack frames, the created repetition type becomes the new
base type for the next iteration of the loop. Both stacks are therefore popped
accordingly.

Since each Match call goes through both its stacks (possibly causing recursive
Match calls), the complexity is proportional to the sum of the stack depths of
all recursive calls. This is also the number of nodes in the input-output DAG,
and therefore O(T i

o).
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Fig. 3. Input-output types resulting from structured input and output types. Left:
input index(3,4,5;MPI DOUBLE), output vector(3,4;MPI DOUBLE), input-output in-
dex(3,1,3,1,4;MPI DOUBLE). Right: input index(5,4,3;MPI DOUBLE), output con-
tig(2,struct(1,2,3;MPI DOUBLE)), input-output index(1,2,2,1,1,2,3;MPI DOUBLE).

The algorithm can also be viewed as a method for finding a representation
of two factorizations of the total number of elements i0i1i2 · · · ix = o0o1o2 · · · oy

of the form c0c1 · · · (cz0 + cz1 + . . . + czz′) (each czz′ recursively of the same
form).

3.2 Full Type DAGs (MPI Indexed and Structured Types)

We now extend the Match function to deal with structured and indexed types.
The problem is that when all elements of a child in a structured type at level t+1
have been consumed, Matching will have to be continued with the next child of
the type at level t. For structured types it generally holds that S[t].elements >
S[t].count× S[t + 1].elements.

We handle this by modifying the StackInc function accordingly. Stack frames
corresponding to structured types are extended with additional fields for effi-
ciently finding the next child. If last(S) moves to level t, that is the elements
of the child at level t + 1 have been consumed, the next child of the struc-
ture has to be matched with what remains on the other stack. The part of
the stack S above level t is scrapped, and replaced with the stack of types
on the path to the first leaf of the next child. This is accomplished by calling
StackBuild(0, S[t].T [i + 1], S + t), where T [i + 1] is the next child datatype
and S + t the point from which S has to be replaced. When a structured type
has been fully consumed (that is, when last(S) moves below t), a repetition type
node is created, also when the number of repetitions is only one. This prevents
the Match function from exploring the same structures repeatedly.

Two examples of input-output type for structured input and output types are
shown in Figure 3.

4 Experimental Evaluation

To assess the performance of transpacking with input-output type construction
we compare our new approach to a straightforward transpack implementation
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Table 1. The combinations of input and output types used for performance evaluation.
Construction Time for the input-output type is in microseconds. BE is the break even
point in number of repetitions of the input-output type. Base type is in all cases
MPI DOUBLE. The number of leaves in the last input-output type is 71.

Input type Output type Input-output type Time BE

contig(12;) contig(12;) contig(12;) 24.45
contig(12;) vector(3,4;) vector(3,4;) 27.77
contig(12;) struct(3,4,5;) struct(3,4,5;) 54.14
vector(3,4;) vector(3,4;) vector(3,4;) 29.71 2500
vector(3,4;) vector(4,3;) struct(3,1,2,2,1,3;) 44.17 4000

struct(3,4,5;) vector(3,4;) struct(3,1,3,1,4;) 46.15 4000
vector(4,3;) struct(3,4,5;) struct(3,3,1,2,3;) 48.05 4000

contig(2;struct(1,2,3;)) vector(3,4) struct(1,2,1,2,1,1,1,3;) 61.02 5500
vector(4,3;) contig(2;struct(1,2,3;)) contig(2;struct(1,2,3;)) 44.07 4500

struct(5,4,3;) contig(2,struct(1,2,3;)) struct(1,2,2,1,1,2,3;) 55.16 6000
vector(3,4;struct(3,4,5;)) vector(8,3,struct(4,2;)) struct(3,. . . ;) 374.23 750

that packs the input into a contiguous buffer and unpacks the output from there.
The straightforward solution uses direct memory copy if both types are contigu-
ous, packs directly into the output buffer if the output type is contiguous, and
unpacks directly from the input buffer if the input type is contiguous. Mea-
surements have been performed on an NEC SX-8 vector architecture because
of the high uniform bandwidth and absence of cache effects. We have used the
increasingly complex combinations of input and output types shown in Table 1.
In all cases the base is the 8-Byte MPI DOUBLE entity, and structures were set
up such that all subtypes are aligned on 8-Byte boundaries. This alleviates the
effects of different alignment boundaries, which on the SX-architecture can be
considerable. The table also gives the time in microseconds for the input-output
type construction, as well as the break even point (in number of repetitions of
input-output type) for transpacking with input-output type construction to be
faster than the straightforward solution.

Results are given in Figure 4 with transpacking times in milliseconds for counts
up to 1,000,000. For these large counts, input-output type construction time
is completely negligible. We see that in all cases, even for the last two com-
binations of input and output types which give rise to quite large, structured
input-output types, transpacking with input-output types achieves (often consid-
erably more than) the theoretically best possible factor of two improvement. This
still holds for even more complex type combinations that are not documented
here.

5 Conclusion

We have presented a new solution to the typed copy problem for MPI, based
on efficiently constructing input-output types from the given input and output
types. We gave an algorithm for constructing input-output types that retains
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structure from input and output types as far as possible. The algorithm has
been fully implemented and covers all MPI types and type constructors. Bench-
marks shows that a performance gain of a factor of (often considerably more
than) two can be achieved (bar effects of alignment changes that can be consid-
erable on the SX-8 vector architecture, and take the results in both directions).
Possible improvements to the algorithm for creating even more compact input-
output types include memoization on constructed subtypes to save on recursive
Match calls. In addition, we would like to determine the complexity of the type
reconstruction problem.

In a follow-up paper we will detail and discuss the application of transpacking
to non-contiguous memory/file I/O in MPI-IO.
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Abstract. Heterogeneous parallel systems integrate machines with dif-
ferent architectural characteristics, such as endianess and word size. To
use message-passing in these environments, the data must be translated
by the communication layer. Message-passing standards like the Mes-
sage Passing Interface (MPI) require the user to specify the type of the
data sent, such that the communication layer can effect the necessary
conversions.

We present an object-oriented message-passing library for C++,
TPO++, which is capable to communicate in heterogeneous environ-
ments. Its functionality includes the MPI 1.2 standard, but it allows the
user to communicate any data like objects or Standard Template Library
(STL) containers in a type-safe way. It does not require the user to build
a type representation explicitly.

We compare the performance of heterogeneous TPO++ with
Boost.MPI and the C interface of OpenMPI. Our findings are that
heterogeneous communication in TPO++ is possible with a very
small overhead in latency compared to pure MPI. The performance
of TPO++ is considerably better than that of other object-oriented
communication libraries.

Keywords: Parallel computing; message-passing; object-oriented com-
munication; heterogeneous communication.

1 Introduction

Heterogeneous architectures in parallel computing arise naturally in different
contexts. Farming models, for example, allow to use existing infrastructure in
organizations, which is usually heterogeneous, for parallel applications. Other
contexts are meta-computing, i.e. coupling large parallel machines, and grid
computing.

For a parallel application to work correctly in such environments, the message-
passing layer must take care of architectural differences. The most common archi-
tectural differences are byte orders, such as little endian (e.g. x86) or big endian
(e.g. PowerPC) and word size, which is usually 32 or 64 bit. To send a message
from one machine to another with a different architecture, the data has to be
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translated to be interpreted correctly at receiver. To do this, the message-passing
environment has to know the type of the data sent.

Message-passing standards like MPI [1,2] or PVM [3] provide mechanism to
specify the type of the sent messages. For basic datatypes (e.g. integers) it is
sufficient to pass the type of the data item in a send or packing primitive on
the sender and receiver side. For complex datatypes, such as vectors or vectors
of structures, the user has to rebuild the datatypes used in his application by
calling functions from the message-passing API. This puts an extra burden on
the user, and is an error-prone and tedious task. Any change of the applications’
data structures must be reflected in the constructed data types of the message-
passing layer. A common alternative on homogeneous architectures is to ignore
this issue completely, and send untyped blocks of data. This, however, leads to
non-portable applications and can cause subtle errors.

For parallel programming in C++, an object-oriented abstraction of the
message-passing interface is desirable. In the last years, there have been a couple
of approaches to accomplish this [4,5,6,7,8,9,10,11]. Any solution should satisfy
some basic requirements. Most importantly, in parallel application, we do not
want to sacrifice performance, so the overhead of the object-oriented layer should
be as small as possible. At the same time, we want to make use of object-oriented
features. An object-oriented message-passing library should be able to communi-
cate objects, and in particular support inheritance. Ideally, the communication
concept should be type-safe, i.e. not require the user to specify the type signature
of the datatypes twice, as is done in MPI, but be able to infer it automatically. In
C++, support for the communication of containers from the Standard Template
Library is also indispensable.

The remainder of this article is organized as follows. In the next section, we
present our approach to a type-safe, object-oriented communication in heteroge-
neous environments. Section 4 compares the performance of this approach with
communication libraries. In section 3 we discuss some of the most recent object-
oriented message-passing libraries and compare it to our approach. We conclude
in section 5.

2 Type-Safe Communication in Heterogeneous
Environments

TPO++ is a communication library, which provides an object-oriented interface
to the functionality of the MPI 1.2 standard and the parallel I/O API from
MPI 2 in C++. It supports communication of user-defined objects and STL
containers, in arbitrary combinations and nesting. In a typical application, the
user defines serialization methods for his objects and calls any communication
method with two iterators defining the data to be sent. Similarly, the receiver
provides space and defines by two iterators where he expects the data to be
received. An unknown number of data can be received using network-aware
inserters. Figure 1 shows how to send a vector of user-defined objects in TPO++.
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1 struct Complex {
2 double re , im ;
3 void s e r i a l i z e (Data& md) {
4 md. i n s e r t ( re ) ;
5 md. i n s e r t ( im ) ;
6 }
7 void d e s e r i a l i z e (Data& md){
8 md. ex t rac t ( re ) ;
9 md. ex t ra c t ( im ) ;

10 }
11 }
12 TPO MARSHALL(Complex)

13 vector<Complex> v1 (10 ) , v2 ;
14

15 i f (comm . rank ( ) == 0)
16 {
17 comm . send ( v1 . begin ( ) , v1 . end ( ) , 1 ) ;
18 comm . send ( v2 . begin ( ) , v2 . end ( ) , 1 ) ;
19 } else
20 {
21 comm . r e cv ( v1 . begin ( ) , v1 . end ( ) , 0 ) ;
22 comm . r e cv ( n e t b a c k i n s e r t e r ( v2 ) , 0 ) ;
23 }

Fig. 1. Example of two point-to-point communications. On the left, an object with its
serialization methods is implemented. On the right, two point-to-point messages are
sent. The first transmits a vector of 10 objects, with the receiver allocating space to
hold the received elements. The second transmits a dynamic number of objects which
are received using a network-aware back inserter.

More details about the functionality of TPO++ and its implementation on
homogeneous architectures can be found in [8,12,13]. In the following we focus
on the communication on heterogeneous architectures.

To map object-oriented data types to MPI, TPO++ uses a serialization class,
which recursively decomposes complex data structures into a stream of blocks
of basic datatypes. The serializer differentiates between basic datatypes, arrays,
STL containers, structures and objects. It is based on generic programming and
uses traits to categorize the data, with respect to the necessary operations for
communicating them. For most used data structures, this categorization can be
done at compile-time, which results in a low overhead of the C++ layer. For
example, when sending an array of basic datatypes, the serialization class can
recognize a random access iterator over a basic datatype and therefore has not
to iterate over all contained elements. To communicate structures or objects, the
user has to equip them with serialization and deserialization methods. (In C++
this cannot be avoided, since the language provides no means to introspect data
types.) When sending objects, the serializer calls these methods to determine
the members to communicate. The homogeneous version of TPO++ contains
an optimization, which avoids the serialization calls for POD (plain old data)
types [14]. Figure 2 shows the serialization steps starting from the send call down
to the serialization class (Message data service).

To achieve type-safe heterogeneous communication, the serialization class
records the type of the data to be sent along with its layout. When the mes-
sage is completely decomposed, TPO++ can decide the most effective way to
transmit the data. If it consists of a basic datatype or a simple sequence of basic
datatypes, this information can be passed directly to the corresponding MPI
call, therefore generating no communication overhead. If, on the other hand, the
data has some complex structure or layout, the information of the serialization
class creates a corresponding MPI datatype and passes it on to MPI.

The advantage of this approach is that TPO++ builds the MPI datatypes
for the user automatically as needed. It is also not necessary to copy the data
before transmission, because TPO++ passes the structural information directly
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Fig. 2. Mapping of a communication call in TPO++ to MPI. The figure shows the
methods invoked (inv) in different layers of TPO++.

to MPI. This allows MPI to choose the best transmission mode, and allows for
zero-copy transfers. Observe that the mapping of TPO++ communication calls
to MPI is one-to-one. In particular, we do not separately transmit the datatypes
to the receiver. Both sides built the type information independently based on
local information. To transmit data of unknown size, the receiver provides in-
formation about the underlying element data type and TPO++ determines the
message size using MPI Probe.

3 Related Work

Boost.MPI Boost.MPI is a recent addition to the Boost collection of C++ li-
braries [11], providing an object-oriented interface to message-passing. It supports
the functionality of the MPI 1.2 standard, except sending modes, combined send
and receive and a reduce-scatter operation. It can communicate basic and struc-
tureddatatype like objects andSTL containers. Sending of structureddata is based
on serialization, i.e. the user has to implement a method, which declares the mem-
bers to send. The serialization engine, Boost.Serialize, also is part of Boost. Serial-
ization of structured data results in a stream of pack and unpack calls for the basic
datatypes contained in it, and therefore needs an extra buffer space for holding the
packed data. A serialized message is transmitted with two communication calls,
one for transmitting the buffer size and another for transmitting the data.

Boost. MPI provides optimized communication for special cases. On homoge-
neous architectures, user-defined objects can be declared “simple” or bit-wise
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serializable to avoid the overhead of packing and unpacking and datatype con-
version. For repeatedly sending data of a fixed structure, Boost.MPI allows the
user to extract the so-called “skeleton” of the data, i.e. its MPI typemap. This
skeleton can be sent once to the receiver and afterwards the objects contents can
be sent repeatedly without the overhead of packing and unpacking the data.

OOMPI. OOMPI introduces the concept of communication endpoints, called
ports, which encapsulate the MPI communicator, and messages, which repre-
sent the data to be sent or received. OOMPI can transmit basic datatypes and
user-defined objects, but has no STL-compatible interface and no support for
the transmission of STL containers. User-defined objects can be transmitted
only completely, as the serialization concept of OOMPI permits no selection of
individual members. To make objects transmittable, they have to inherit from
an user-type class, which makes it impossible to communicate existing classes.

MPI2 C++ bindings. The current MPI-2 standard contains bindings for C++.
Unfortunately there is no significant gain of features achieved with this enhance-
ment. It consists of some wrapper classes of the MPI C bindings. Especially an
easy and comfortable way for sending and receiving STL containers is missing.

4 Performance Results

We made a series of performance measurements to compare TPO++ with other
implementations and to determine the communication overhead of the object-
oriented layer. For a comparison with another object-oriented approach, we chose
Boost.MPI (Version 1.35.0), since it is one of the most recent and mature libraries
available. To determine the overhead of the object-oriented layer, we compare
the performance also with the C interface of MPI.

The measurements have been done on the two systems described in Table 1.
We measured performance in two configurations. A loopback test on the AMD
Opteron machine with two processes quantifies the pure message-passing over-
head, since there is no need for a datatype conversion. To validate the hetero-
geneous communication we did measurements between the two machines with
different architectures.

To compare the performance with different types of data layout, we sent arrays
of basic datatypes, vectors of basic datatypes, and vectors of user-defined objects,
all of increasing size from 1 byte to 4 MB in the heterogeneous case and to 8 MB in
the homogeneous case. Each measurement consists of awarmup phase, and 20mea-
surement iterations. The results reported are the minimum, averageand maximum
transmission times for a completemessage round-tripdividedby2 (ping-pong test).

Observe thatwehavebeenable to compareour approachwithBoost.MPIonly in
the homogeneous configuration.Whenwe performed the tests in the heterogeneous
configuration, Boost.MPI failed, reporting truncated messages, when transmitting
arrays, vectors or lists. Boost.MPI transmits first the size of the communication
buffer in a separate message. We believe that this fails in heterogeneous configura-
tions, since the message size on the sender and receiver side can be different.
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Table 1. Architectural details of machines used in the performance measurements

SUN X4100 Server PowerMac G4
CPU Dual Core AMD Opteron

2.2GHz x 2
7410 (Nitro) 533MHz

Memory 4 GB 1 GB
Network GigaBit Ethernet 100 MBit Ethernet
OS Debian Linux (2.6.22-14-server

SMP)
Debian Linux (2.6.18-5-
powerpc)

Compiler g++ (GCC) 4.1.3 g++ (GCC) 4.1.2
MPI OpenMPI v1.2.4 OpenMPI v1.2.4
Endianess Big-Endian Little-Endian
Word size 8 Byte 4 Byte
Float format IEEE 754 32-bit IEEE 754 32-bit
Double format IEEE 754 64-bit IEEE 754 64-bit
Long double format not standard conform IEEE 754 64-bit
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Fig. 3. Comparison of latency (left) and throughput (right) of Average latency and
throughput of OpenMPI and TPO++ in the heterogeneous configuration. The error
bars are indicating the maximum and minimum values.

Figure 3 shows the results of OpenMPI and TPO++ in the heterogeneous con-
figuration. The difference between the transmission of an array of chars in MPI
and a STL vector of chars in TPO++ is negligible, considering latency as well as
throughput. This is a results of the optimizations, which are possible, when the data
is a simple sequence of basic datatypes, such that it is not necessary to iterate over
the data or to create MPI datatypes. In comparison, to send a vector of structures,
both, sender and receiver have to serialize and deserialize the structures individu-
ally. Therefore the transmission takes considerably more time. For small message
sizes, the latency is almost the same, but the throughput drops significantly.

Figure 4 compares transmission of an array of chars and a STL vector of chars
in TPO++, Boost.MPI and native OpenMPI in the homogeneous configuration.
We can see, that there is almost no difference in latency or throughput between
TPO++ and MPI, for both data structures. The same holds for Boost.MPI,
when transmitting an array. On the other hand, when sending a STL vector,
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the latency of Boost.MPI is about 4μs higher, and the maximum throughput
achieved is only 40 instead of 200 MB/s. This is due to the fact that Boost.MPI
uses the MPI packing and unpacking mechanism, which results in an extra data
copy. TPO++ can send multiple basic datatypes with a single call to MPI Send,
without creating a MPI datatype.

5 Conclusions and Future Work

We have shown that an object-oriented, type-safe interface to message-passing in
C++ is possible, without sacrificing performance for commonly used datatypes.
Our interface makes use of object-oriented concepts to simplify the implementa-
tion, and, specifically, remove the burden from the user of specifying explicitly
the types of the data sent. Techniques from generic programming can be used
to reduce the overhead of the abstraction.

On the other hand, the transmission of user-defined objects is considerably
less efficient. In object-oriented communication tuned for homogeneous architec-
tures, we can avoid this by sending POD without invoking serialization methods.
To record and translate the datatypes, serialization cannot be avoided on het-
erogeneous architectures. We plan to investigate, how to reduce this overhead
by caching frequently used typemaps.

Also, if the data sent has very irregular layout, the cost of recording and
creating a typemap can be larger than copying the data. Therefore, another
performance improvement could be to automatically switch between these two
methods.
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and Thomas Großmann2

1 University Carlos III, Spain
{fjblas,florin,jcarrete}@arcos.inf.uc3m.es

2 High Performance Computing Center Stuttgart (HLRS)
grossmann@hlrs.de

Abstract. This paper presents an implementation of the MPI-IO in-
terface for GPFS inside ROMIO distribution. The experimental section
presents a performance comparison among three collective I/O imple-
mentations: two-phase I/O, the default file system independent method
of ROMIO, view-based I/O, a file system-independent method we
developed in a previous work and a GPFS specific collective I/O imple-
mentation based on data-shipping. The results show that data shipping-
based collective I/O performs better for writing, while view-based I/O
for reading.

Keywords: Parallel file system, parallel programming, parallel I/O.

1 Introduction

The last years have shown a substantial increase in the amount of data produced
by the parallel scientific applications and stored persistently. Parallel file systems
(PFS) such as PVFS [1], Lustre [2] and General Parallel File System (GPFS) [3]
offer scalable solutions to this ever increasing demand.

The large majority of large scale scientific parallel applications are written in
Message Passing Interface (MPI) [4], which has become the de-facto standard for
programming scalable distributed memory machines. MPI parallel applications
may access parallel file system, through the MPI-IO interface [5]. The most
popular MPI-IO implementation is ROMIO.

The goal of this paper is to present an implementation and evaluation of
an MPI-IO interface for GPFS. A previous work [6] has presented an MPI-
IO implementation for GPFS inside the IBM MPI. This implementation was
proprietary and, to the best of our knowledge, has never been released to the
public domain. This work targets to fill this gap and, additionally, to present an
evaluation of the new implementation for two well-known benchmarks.

The remainder of the paper is organized as follows. Section 2 discusses some
related work. Section 3 summarizes basic concepts of MPI-IO and the GPFS
parallel file system, necessary for understanding the design and implementation
our solution. Implementation details are discussed in Section 4. The experimental
results are presented in Section 5. Section 6 contains our conclusions and our
future plans.
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2 Related Work

A large number of researchers have contributed through the years with parallel
I/O optimizations. The collective I/O techniques merge small requests into larger
ones before issuing then to the file system. If the requests are merged at the
I/O nodes the method is called disk-directed I/O [7]. If the merging occurs at
intermediary nodes or at compute nodes the method is called two-phase I/O [8].
MPI-IO/GPFS collective I/O [6] leverages GPFS data shipping mode by defining
at file open a map of file blocks onto I/O agents. A heuristic allowsMPI-IO/GPFS
to optimize GPFS block prefetching through the use of GPFS multiple access
range (MAR) hints. In order to mitigate striping overhead and benefit from the
collective I/O accesses on Lustre [9], the authors propose two techniques: split
writing and hierarchical striping.

Several researchers have contributed with optimizations of MPI-IO data op-
erations: data sieving, non-contiguous access [10], collective caching [11], coop-
erative write-behind buffering [12], integrated collective I/O and cooperative
caching [13]. Packing and sending MPI data types has been presented in [14].

3 Background

This section gives a short overview of GPFS and ROMIO.

3.1 Overview of GPFS File System

GPFS is a PFS for supercomputers or clusters. Its architecture is based on the
Virtual Shared Disks (VSD), which are mounted at all client nodes. The data
and metadata reside on VSDs and might be cached in clients cache. In order to
guarantee data coherency, GPFS relies on a distributed locking manager. Locks
are acquired and kept by clients while caching data. The granularity of locking
in GPFS is at the byte-range level, consequently, writes to non-overlapping data
blocks of the same file can proceed concurrently.

GPFS is highly optimized for large-chunk I/O operations with regular ac-
cess patterns (contiguous or regularly strided). However, its performance for
small-chunk, non-contiguous I/O operations with irregular access patterns (non-
constant strided) is not sufficiently addressed. GPFS provides as an access al-
ternative data-shipping. This technique binds each GPFS file block to a single
I/O agent, which will be responsible for all accesses to this block. For write op-
erations, each task sends the data to be written to the responsible I/O agents.
I/O agents in turn issue the write calls to GPFS. For reads, the I/O agents read
the file first, and ship the data read to the appropriate tasks.

This approach is similar to the two-phase I/O,described inSection3.2). It ismore
effective than the default locking approach, when fine-grained sharing is present.

3.2 ROMIO

ROMIO is a freely available, high-performance, portable implementation of MPI-
IO. The architecture of ROMIO allows the virtualization of MPI-IO routines on
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Fig. 1. Parallel I/O Software Architecture

top of concrete file systems through the abstract I/O interface ADIO [15], as
shown in the lower part of Figure 1. ADIO consists of a file-system independent
layer, where optimizations such as collective I/O or efficient non-contiguous I/O
(data sieving) are implemented, and a file-system specific part, whose interface
is a small set of basic functions for performing file I/O, such as open, close, write,
read, fcntl, etc. It is this interface that a developer has to implement in order to
add support for a new file system.

The collective I/O operations are typically implemented in the file-system in-
dependent layer. In this paper we will compare the collective I/O for GPFS with
two collective I/O implemented at this layer: two-phase I/O, the original opti-
mization of ROMIO and view-based I/O [16], an optimization we have described
in the previous work.

Two-phase I/O [8] consists of an I/O phase and a shuffle phase. Data is gath-
ered or scattered at a subset of compute nodes, called aggregators in the shuffle
phase. The file system access is performed in the I/O phase in contiguous chunks
by aggregators. View-based I/O is a collective I/O optimization that leverages
the MPI-IO file view mechanism, for transferring view description information
to aggregators at view declaration. In this way, view-based I/O avoids the ne-
cessity of transferring large lists of offset-length pairs at file access time as the
present implementation of two-phase I/O. Additionally, this approach reduces
the cost of scatter/gather operations at application compute nodes.

4 ADIO for GPFS

In this Section we describe details of the implementation of the ADIO interface
of GPFS, data-shipping I/O. The whole implementation was done in the file
system dependent layer. This includes the collective I/O optimization, due to
the fact that it is based on data-shipping (described in Subsection 3.1), a GPFS-
specific hint. Some of the file operations map on the GPFS POSIX interface
in the same way as for a local POSIX-based UNIX file system. Therefore, we
describe here only the file access operations, which differ, namely the collective
operations.

The data-shipping mode is activated in GPFS through a blocking collective
operation offered by the GPFS library. This call is issued inside ADIO if the
corresponding user hint is passed when the file is opened. Subsequently, GPFS
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assigns each file block to one I/O agent (by default round-robin), and all file
I/O goes through these agents. Therefore, no read-modify-write operations are
needed at the client (for instance for incomplete written blocks).

The user can control other parameters of data-shipping through hints: the num-
ber of I/O agents, the file block assignment to I/O agents, the sizes of file blocks.

Another interesting GPFS hint is Multiple Access Range (MAR). This hint
is used for enforcing a user-defined client cache policy for both prefetching and
write-behind. The user can define the file ranges that are to be used for prefetch-
ing. Unlike data-shipping, which is helpful for collective access operations, MAR
is more suitable to the independent read or write operations. Inside GPFS-
specific ADIO calls for read and writes, the access MPI data type is converted
into a list of offset-lengths, which is passed as a hint to GPFS. The evaluation
of this functionality is subject of future work.

5 Evaluation

The evaluation of our implementation was performed on NEC Cacau Xeon
EM64T cluster at HLRS Stuttgart. This cluster has the following character-
istics: 200 biprocessor Intel Xeon EM64T CPU’s (3.2GHz) compute nodes with
2 GBytes of RAM memory interconnected by Infiniband network. The file system
uses the fast Infiniband network infrastructure. IBM GPFS parallel file system
version 3.1.0 was configured with 8 I/O servers and 512 KBytes file block size.
The MPICH2 distribution was MPICH2 1.0.5. The communication protocol of
MPICH2 was TCP/IP on top of the native Infiniband communication library.
We ran all tests with one process per compute node.

5.1 GpfsPerf Benchmark

First, we have used an IBM benchmark called gpfsPerf in order to evaluate the
GPFS library outside ROMIO. GpfsPerf writes and reads a collection of fixed-
size records to/from a file with three different types of access patterns: sequential,
strided, and random. Here we show the results for strided access pattern. The
benchmark uses the POSIX standard I/O interfaces in order to accomplish this.
In all cases the size of the produced file was 250 MBytes per execution.

Figure 2 shows a comparison between aggregate throughputs for data-shipping
and POSIX write and read operations. We show results for two representa-
tive cases: stride sizes of 256K and 512K and record sizes of 8K and 128K.
Data-shipping is expected to achieve the highest throughput rate because of the
absence of locking overhead. For write, we observe that data-shipping version
outperforms POSIX in most of the cases. Additionally, the improvement in-
creases with the number of compute nodes. Data-shipping shows the largest
performance benefit for strided writes and small record sizes. For small records
(8K), the reads show better results with data-shipping than for large records
(128K). We expect that in these cases the MAR approach works better. How-
ever, for the scope of this paper we have chosen data-shipping, due to the fact
that the two benchmarks issue small granularity accesses.
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Fig. 2. Gpfsperf performance for strided pattern access

5.2 BTIO Benchmark

NASA’s BTIO benchmark [17] solves the Block-Tridiagonal (BT) problem, which
employs a complex domain decomposition across a square number of compute
nodes. Each compute node is responsible for multiple Cartesian subsets of the
entire data set. BTIO class B issues 40 collective MPI collective writes followed
by 40 collective reads. We use 16 to 64 processes and a class of data set sizes
B (1697.93 MBytes). For class B, the access pattern of BTIO is nested-strided
with a nesting depth of 2 with a granularity of 2040 bytes.
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Fig. 3. BTIO performance for class B

Figure 3 compares the time results of two-phase I/O, view-based I/O and
data-shipping I/O. We can see that data-shipping I/O was more effective for
write operations. View-based I/O writes were between 3% to 33% slower and 40%
to 69% slower for two-phase I/O. The main reason for this behavior is the fact
that both view-based I/O and two-phase I/O used the POSIX interface for access
to the final storage, and, therefore, they paid the overhead of locking. However,
when we use a small set of clients, view-based I/O writes were between 21%
to 32% faster than data-shipping I/O. Data-shipping I/O reads were between
13% to 47% faster than two-phase I/O for a large number of compute nodes.
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Additionally, data-shipping I/O reads were between 9% to 30% slower than
view-based I/O.

BTIO only reports a total time including the write and file close time (the
read time is not included). However, if we add the read time to the overall
execution time, view-based reduced its execution time by 7% to 36% compared
to two-phase I/O and 2% to 13% compared to data-shipping I/O. View-based
I/O outperforms the other approaches in most of the cases. However, the best
approach for writes was data-shipping I/O.

5.3 FLASH I/O Benchmark

The FLASH code is an adaptive mesh refinement application that solves fully
compressible, reactive hydrodynamic equations. The FLASH I/O benchmark
simulates the I/O pattern of FLASH. The benchmark recreates the primary
data structures in the FLASH code and produces a checkpoint file, a plot-file for
centered data, and a plot-file for corner data, using parallel HDF5. The access
pattern is non-contiguous both in memory and in file, making it a challenging
application for parallel I/O systems.
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Fig. 4. FLASH I/O performance

Figure 4 plots the aggregate throughput for writing the checkpoint file. We use
1 to 64 processes and two classes of data set sizes: the 8x8x8 case each processor
outputs approximately 8 MB and the 16x16x16 case approximately 60 MB per
compute node.

As shown in the graph, we compared two-phase I/O, data-shipping I/O and
view-based I/O. The graph on the left shows that, for a small problem size,
the benchmark reaches file write throughputs of up to 83 MBytes/sec for data
shipping I/O. Additionally, it is important to note that from 16 processes, the
difference between data-shipping I/O and view-based I/O grows significantly.
When compared to view-based I/O, data-shipping I/O improves FLASH I/O
write time between 3% and 44%. Also, when compared to two-phase I/O, data-
shipping I/O improves write time between 63% and 82%.

For the 16x16x16 case, we note that the view-based I/O performs better for
large files. The 16x16x16 write performance results for 64 compute nodes show
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that view-based I/O attains a 92% improvement compared to two-phase I/O
and a 94% for data-shipping I/O. This is due to the fact that all the data fit in
the cache and are flushed to the file system at close time.

6 Conclusions

In this paper we presented an implementation and evaluation of a MPI-IO in-
terface for the GPFS parallel file system. Our experimental results show that
data-shipping I/O can significantly reduce the total run time of a data inten-
sive parallel application by reducing I/O cost. For example, data shipping I/O
reduced the BTIO overall execution time by 25%. The FLASH IO performance
results prove that data-shipping I/O outperforms two-phase I/O significantly.
In addition, we show that our previous work outperforms two-phase I/O using
GPFS. Finally, the benchmarks show that our approaches bring satisfactory re-
sults for large files. Unlike indicated in [6], we showed that certain performance
enhancement can be obtained for both write and read operations when data-
shipping is enabled.

In the future, we plan to further evaluate the file access performance of the
MPI/IO interface based on additional factors: prefetching and write-back policy,
number of data-shipping agents, file block size and file block mappings.
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1 Computer Science Department, University of Illinois
at Urbana-Champaign Urbana, IL 61801, USA

wgropp@uiuc.edu
2 Scientific Computing Research Group, K. U. Leuven

Celestijnenlaan 200A, B-3001 Leuven, Belgium
dries.kimpe@cs.kuleuven.be

3 Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439, USA

{rross,thakur}@mcs.anl.gov
4 NEC Laboratories Europe, NEC Europe Ltd.

Rathausallee 10, D-53757 Sankt Augustin, Germany
traff@it.neclab.eu

Abstract. We recently introduced the idea of self-consistent perfor-
mance requirements for MPI communication. Such requirements provide
a means to ensure consistent behavior of an MPI library, thereby ensur-
ing a degree of performance portability by making it unnecessary for a
user to perform implementation-dependent optimizations by hand. For
the collective operations in particular, a large number of such rules could
sensibly be formulated, without making hidden assumptions about the
underlying communication system or otherwise constraining the MPI im-
plementation. In this paper, we extend this idea to the realm of parallel
I/O (MPI-IO), where the issues are far more subtle. In particular, it is
not always possible to specify performance requirements without making
assumptions about the implementation or without a priori knowledge
of the I/O access pattern. For such cases, we introduce the notion of
performance expectations, which specify the desired behavior for good
implementations of MPI-IO. I/O performance requirements as well as
expectations could be automatically checked by an appropriate bench-
marking tool.

1 Introduction

In [7], we introduced the notion of self-consistent performance requirements for
MPI implementations. Such requirements relate various aspects of the seman-
tically strongly interrelated MPI standard to each other. The requirements are
based on meta-rules, stating for instance that no MPI function should perform
worse than a combination of other MPI functions that implement the same func-
tionality, that no specialized function should perform worse than a more general
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function that can implement the same functionality, and that no function with
weak semantic guarantees should perform worse than a similar function with
stronger semantics. In other words, the library-internal implementation of any
arbitrary MPI function in a given MPI library should not perform any worse
than an external (user) implementation of the same functionality in terms of (a
set of) other MPI functions. Otherwise, the performance of the library-internal
MPI implementation could trivially be improved by replacing it with an im-
plementation based on the external user implementation. Such requirements,
when fulfilled, would ensure consistent performance of interrelated parts of MPI
and liberate the user from having to perform awkward and non-portable op-
timizations to cope with deficiencies of a particular implementation. For the
MPI implementer, self-consistent performance requirements serve as a sanity
check.

In this paper, we extend this idea to the MPI-IO part of MPI [1, Chapter 7].
The I/O model of MPI is considerably more complex than the communication
model, with performance being dependent to a much larger extent on external
factors beyond the control of both the application and the MPI library. Also,
the I/O access patterns of different processes are not known beforehand. As
a result, in some instances, we can only formulate performance expectations
instead of performance requirements. Performance expectations are properties
that are expected to hold most of the time and would be desirable for an MPI
implementation to fulfill (from the perspective of the user and for performance
portability).

We use the following notation in the rest of this paper. The performance rela-
tionship that MPI function MPI A(n) should perform no worse than function(s)
MPI B(n) for total I/O volume n is expressed semi-formally by MPI A(n) �
MPI B(n). To distinguish between requirements and expectations, we use the
notation MPI A(n) ⊆ MPI B(n) to indicate the performance relationship that
MPI function MPI A(n) is expected to perform no worse than function MPI B(n)
for total I/O volume n.

One value in defining expectations more formally is that they can suggest
the need for additional hints to help an MPI implementation achieve the user’s
expectation of performance. In Section 5, we illustrate this point by describing
some situations where achieving performance expectations may require addi-
tional information and suggest new standard hints that could be adopted in
revisions of the MPI standard. Furthermore, this approach to defining standard
hints is arguably a better approach than attempting to standardize common
practice, as was done for the I/O hints in MPI 2.0. The formal definitions also
help guide the development of tests to ensure that implementations meet user
expectations.

As with the set of self-consistent performance requirements for MPI
communication, the MPI-IO requirements and expectations can, in principle,
be automatically checked with an appropriate, configurable benchmark and
experiment-management and mining tool. We have not developed such a tool
so far.
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2 MPI-IO

MPI-IO [1] is an interface for parallel file I/O defined in the spirit of MPI and
building on the same key concepts. Access patterns and data layouts in files are
described by (derived) datatypes, and data is then sent (written) from memory
into a region or regions in file, or received (read) from file into memory.

The MPI-IO model can be analyzed along different dimensions [1, Chapter 7,
page 204]. File I/O operations can be classified as

1. independent vs. collective,
2. blocking vs. nonblocking, and
3. blocking collective vs. split collective

Positioning within a file can be done via

1. explicit offsets,
2. individual file pointers, or
3. shared file pointers.

These different classes of file I/O operations and positioning mechanisms have
different semantics and performance characteristics. In addition to these I/O
modes, we must also consider the side effects of other MPI-IO calls, such as
those that change the bytes of a file that a process may access (by defining file
views) or supply (implementation- and system-dependent) hints that may im-
pact underlying behavior. For example, a call to MPI File set info that changes
the cb nodes hint for a file could have a dramatic impact on subsequent collective
I/O on that same file by limiting the number of processes that actually perform
I/O. This example also helps explain the difficulty in defining performance re-
quirements for MPI-IO.

Further details about MPI-IO can be found in [1,2].

3 Requirements Versus Expectations

We define both requirements and expectations for MPI-IO performance. Perfor-
mance requirements are conditions that a good MPI-IO implementation should
be able to fulfill. In some cases, however, it is not possible to specify requirements
for a variety of reasons discussed below. For such cases, we define performance
expectations, which would be desirable for an implementation to fulfill.

For example, it is tempting to specify that collective I/O should perform no
worse than independent I/O. However, the I/O access pattern specified by the
collective I/O function is not known unless the implementation analyzes the
request, which may require communication among processes. If, after analysis,
the implementation determines that collective I/O optimization is not beneficial
for this request, and uses independent I/O instead, the cost of the analysis is
still incurred, and the collective I/O function is slower than if the user had
directly called the equivalent independent I/O function. Also, I/O performance
is influenced by characteristics of the (parallel) file system, only some of which
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can be controlled by (or are even visible to) the MPI implementation. This fact
also makes it difficult to specify requirements in some cases.

The situation is further complicated by hints. In the MPI-IO model, the in-
teraction with the file system can be influenced through hints that are supplied
to MPI File open, MPI File set info, or MPI File set view calls. The MPI standard
defines a number of such hints that can deeply affect performance. It is the user’s
responsibility to use these hints sensibly, which often requires knowledge of the
underlying file system. It is easy to supply hints that have a negative effect on
performance. For example, Figure 1 shows the effect of an unfortunate choice
for the standard-defined cb buffer size hint (buffer size for collective buffering)
on the performance of the noncontig benchmark [8]. This benchmark generates
a regular, strided, nonoverlapping access pattern perfectly suited for collective
buffering. However, the optimal value for cb buffer size is hard to determine,
and depends on many factors such as the number of processes involved and the
characteristics of the file system and communication network. In this graph we
see that there is a small range of values for which optimal read performance is
achieved. In fact, the default value of 4 MB used by the MPI-IO implementation,
ROMIO [3,5], does not happen to fall into that range on this system. Selection
of an appropriate cb buffer size can be further complicated by the potential for
interaction between alignment of these buffers during collective I/O and the
granularity of locks in the (parallel) file system, if the file system uses locks.
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Fig. 1. Effect of the hint cb buffer size on the noncontig benchmark

Two features further complicate the matter. First, MPI implementations are
allowed to support their own hints in addition to the ones described in the stan-
dard. We, of course, cannot say anything about the impact of such hints here.
Second, a conforming MPI implementation is allowed to ignore all hints (in-
cluding standard-defined hints), and their effect may therefore be void. In all,
hints are a nonportable feature (performance wise). We therefore cannot formu-
late strict performance requirements, but by making assumptions about how an
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implementation could (or should) sensibly use hint information, we can neverthe-
less formulate reasonable performance expectations. Similar to the performance
requirements, such expectations can be stated as rules that can be checked by a
suitable tool.

4 Performance Requirements

Where an MPI-IO operation can, in an obvious way, be implemented by other,
possibly more general MPI-IO operations, a self-consistent performance require-
ment states that this alternative implementation should not be faster than the
original operation. A comprehensive, but not exhaustive set of such requirements
is presented in the following.

An I/O operation with an explicit offset should be no slower than implement-
ing it with a call to MPI File seek followed by the corresponding individual file
pointer operation.

MPI File {read|write} at � MPI File seek + MPI File {read|write} (1)

A collective I/O operation should be no slower than the equivalent split col-
lective operation.

MPI File {read|write} all � (2)
MPI File {read|write} all begin + MPI File {read|write} all end (3)

A blocking I/O operation should be no slower than the corresponding non-
blocking operation followed by a wait.

MPI File {read|write} � MPI File {iread|iwrite} + MPI Wait (4)

By the assumption that an operation with weaker semantic guarantees should
be no slower (presumably faster) than a similar operation with stronger guaran-
tees, we can formulate the following requirement

Write with default consistency semantics � write with atomic mode (5)

Preallocating disk space for a file by using MPI File preallocate should be no
slower than explicitly allocating space with MPI File write.

MPI File preallocate � MPI File write ∗ (6)

I/O access using an individual file pointer should be no slower than I/O
access using the shared file pointer (because accessing the shared file pointer
may require synchronization).

MPI File write � MPI File write shared (7)

Similarly, collective I/O using an individual file pointer should be no slower
than collective I/O using the shared file pointer.

MPI File write all � MPI File write ordered (8)
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I/O operations in native file format should be no slower than I/O operations
in external32 format, since external32may require conversion, and it provides
stronger semantics guarantees (on portability). An MPI implementation where
external32 is faster than native format could be “fixed” by using the same
approach to native I/O as in the external32 implementation, only without
performing any data conversion.

I/O in native format � I/O in external32 format (9)

5 Performance Expectations

We describe some examples of performance expectations, which for various rea-
sons cannot be mandated as performance requirements.

5.1 Noncontiguous Accesses

MPI-IO allows the user to access noncontiguous data (in both memory and file)
with a single I/O function call. The user can specify the noncontiguity by using
derived datatypes. A reasonable performance expectation would be that a read
or write with a noncontiguous datatype T (n) that specifies t contiguous regions
of size n in memory or file is no slower than if the user achieved the same effect
by t individual, contiguous reads or writes. Ideally, an implementation should
do better.

MPI File {read|write} at(T (n)) ⊆ t × MPI File {read|write} at(n) (10)

We cannot state this as a requirement because the performance in such cases
can be highly dependent on the access pattern, which must be determined from
the memory and file layouts specified. This analysis can itself take some time. If
after the analysis it is determined that no optimization is beneficial, and instead
multiple contiguous reads/writes should be performed, the above relation will
not hold. A good implementation should perform the analysis as efficiently as
possible to minimize the overhead.

Figure 2 shows an example where this expectation is not met. Here, for small,
sparse accesses (described in Figure 3[a]), multiple contiguous writes perform
better than a single noncontiguous write. In this case, the MPI library mistakenly
decided to apply the data-sieving optimization [6] to the file access, when in fact
multiple contiguous accesses perform better because of the sparsity of the access
pattern.

5.2 Implications for Hints

These considerations suggest several possible hints that would aid an MPI imple-
mentation in achieving the performance expectations. General hints that could
be used with any MPI implementation (because they describe general features
of the program and data) include:
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write density. A measure of the ratio between the extent and size of datatypes
used for writing to a file. Implementations may want to use independent I/O
if the density is low and collective I/O if the density is high.

read density. Similar to write density, but for reading.

Specific hints to control a particular MPI implementation can be used when the
implementation is unable to meet a performance expectation without additional
knowledge. These might include:

use only contig io. Only use contiguous I/O.

The advantage of such a hint is that the MPI program is more performance
portable: Rather than replacing one set of MPI calls with a different set ev-
erywhere they occur, the hint can allow the MPI implementation to avoid the
analysis and simply choose the appropriate method. This places most of the
performance tuning at the point where the hint is provided, rather than at each
location where file I/O is performed. Currently, ROMIO implements the hints
romio ds read and romio ds write to allow users to selectively disable the use of
noncontiguous I/O optimizations, overriding the default behavior. Use of these
hints could obtain desired performance in the example shown in Figure 2 without
reverting to the use of multiple I/O calls.
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5.3 Collective I/O

Collective I/O faces a similar problem. MPI File write all can choose to make use of
the collective nature of the function call to merge the file accesses among all partic-
ipating ranks in order to optimize file access. Most I/O systems perform relatively
well on large contiguous requests (compared to small fragmented ones), and, as a
result, merging accesses from different processes usually pays off. Auser may there-
fore expect better performance with MPI File write all than with MPI File write.

However, merging access patterns will not always be possible (for example,
when accesses are not interleaved). When this happens, the implementation of
MPI File write all will usually fall back to calling MPI File write. Because of the
additional synchronization and communication performed in determining the
global access pattern, MPI File write all will actually have performed worse com-
pared with directly calling its independent counterpart. In ROMIO, users have
the option of using the romio cb read and romio cb write hints to disable collec-
tive I/O optimizations when they know these optimizations aren’t beneficial.

Of course, merging access patterns is just one possible optimization. Given the
diverse hardware and software encountered in I/O systems, we do not want users
to call the independent functions because they happen to perform better on a cer-
tain system. This would take awayglobal optimization opportunities from the MPI
library, possibly reducing performance on other systems or different MPI imple-
mentations. Instead, using suitable hints, the application should be able to provide
the MPI-IO implementation with enough information to make sure the collective
version does not perform worse than the corresponding independent call.

Therefore, we can only state the following as an expectation.

MPI File {read all|write all} ⊆ MPI File {read|write} (11)
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Figure 4 shows an example where this expectation does not hold. The corre-
sponding access pattern is shown in Figure 3[b]. Here, independent reads and
writes are faster than collective reads and writes. The access pattern was spe-
cially crafted to trigger bad performance with the two-phase algorithm [4] imple-
mented in ROMIO. This algorithm, which is only enabled if interleaved access
is detected, first analyzes the collective access pattern to determine the first
and last offset of the access region. Next, this region is divided among a con-
figurable subset of processes, and each process is responsible for all I/O for its
portion of the file. In this example, most of the data that each process accesses
is destined for another process, resulting in most data passing over the network
twice.

Another performance expectation is that an MPI-IO operation for which a
“sensible” hint has previously been supplied should perform no worse than the
operation without the hint.

6 Conclusions

Codifying performance requirements and expectations provides users and imple-
menters with a common set of assumptions (and goals) for working with MPI-IO.
From the user’s perspective, these requirements and expectations encourage the
use of collective I/O and file views to combine I/O operations whenever possi-
ble, to use default consistency semantics when appropriate, to avoid shared file
pointers when independent file pointers are adequate, and to use hints for tun-
ing rather than breaking from “best practice.” Implementers must strive to meet
these expectations wherever possible without the use of additional hints, and also
support hints that enable users to correct the implementation’s behavior when
it goes astray. Implementers and users should strive to improve and standardize
the hints used for this purpose across multiple MPI-IO implementations.

At present, some MPI-IO hints are inherently nonportable. The lack of porta-
bility is not because conforming implementations are allowed to ignore them, but
because setting them meaningfully requires intimate knowledge of the I/O lay-
ers below the MPI implementation. As demonstrated in Section 3, setting such
hints carelessly can damage performance. Portable hints only give additional in-
formation about the application itself. As an example, consider a hint describing
how much data is interleaved in collective accesses. Without this information, an
implementation is forced to do additional calculation and communication, possi-
bly making the collective access functions perform worse than their independent
counterparts. At the same time, the availability of this information (assuming it
is correct) should not degrade performance.

We have shown that some of the performance problems with the MPI-IO
functions can be attributed to lack of information—the MPI implementation
does not possess enough information to determine the optimal algorithm. How-
ever, many problems should be solvable by implementing smarter MPI-IO opti-
mization algorithms. Much work still remains to be done in optimizing MPI-IO
functionality!
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Abstract. The efficient implementation of one-sided communication for cluster
environments is a challenging task. Here, we present and discuss performance
issues which are inherently created by the design of the MPI-2 API specification.

Based on our investigations, we propose an one-sided communication API
called NEON. The presented measurements with a real application demonstrate
the benefits of the NEON approach.

1 Introduction and Related Work

The message passing interface (MPI) standard is a state of the art programming inter-
face for parallel applications in cluster computing. One-sided communication (OSC) is
an extension specified in the MPI-2 standard [5]. It enables parallel applications to use
remote memory access (RMA).

MPI-2-OSC defines so-called access epochs. An arbitrary number of communication
calls can be synchronized within a single epoch. This bundling reduces the need to make
synchronization calls for each transfer. MPI-2 provides several API calls to open and
close such an epoch. Figure 1 shows some pseudo code of the typical use of one sided
communication. The depicted post-start-complete-wait synchronization scheme is used
in our experiments, later.

Recently, different implementation options were analysed in the literature [1,3,4,9].
While one would expect inefficiencies of OSC over transports without support for re-
mote direct memory access (RDMA), interconnects like InfiniBand are expected to of-
fer similar or better performance for OSC than for two-sided communication. However,

Node A: Node B:
- - - - - - - - - - - - - - - - - - - - - - - -
MPI_Win_Create MPI_Win_Create

MPI_Win_Start MPI_Win_Post
<computation> <computation>

MPI_Put
<computation>

MPI_Win_Complete MPI_Win_Wait

Fig. 1. Pseudo code example of unidirectional asynchronous data exchange via one-sided com-
munication from node A to node B

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 177–184, 2008.
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measurements in the literature and our own measurements show a different picture.
Asynchronous two-sided communication still offers the best performance if only a few
number of communications are synchronised with one epoch [1,3,7].

One reason is the inefficient support of the pipeline model [7,8] which festlegt? to fill
the bottleneck step as early as possible. The API forces the implementation to either vi-
olate the pipeline model or to send an extra synchronisation message. This is inefficient
at least on networks like Gigabit Ethernet.

Also the so called early sender problem can occur: At the time of the put call, the
sender has not received a buffer announcement (MPI_Win_post) from the target. This
is a major issue for asynchronous operations, since the capability to overlap commu-
nication and computation is reduced. If there is no processor available to progress on
these blocked operations, the communication has to be deferred and the communication
pipeline is again inefficiently used.

In our earlier work, we focussed on the pipeline model and the comparison of two-
and one-sided communication over Gigabit Ethernet [7]. In this paper we investigate
the efficient synchronization in cluster environments over InfiniBand.

2 Synchronisation of Communication

This section discusses two major issues of synchronization of one-sided communication.

2.1 Separation of Notification and Completion

The predominant interaction between parts of parallel applications is assumed to be
similar to the classical producer-consumer scheme known from synchronisation in op-
erating systems. This is because each process has to know about two situations:

1. The origin of the communication has to know about the availability of the destina-
tion buffer.

2. The target has to know when the access epoch is completed.

To inform a remote process of these situations, two notifications have to be done by the
application:

1. The target has to signal or announce an available buffer (announcement).
2. The origin has to notify the target when an access epoch is completed (notification).

Thus 4 API calls are required for both one-sided and two-sided communication. The
only difference is that one-sided communication is able to synchronise more than one
communication operation with a single notification signal. The announcement is always
an explicit operation. Therefore, an API can not be improved here. Thus, we focus on
the notification of the target process.

For the remainder of this paper, notification means the notification of the target
process described above. By completion we mean the operation to wait for the ini-
tiated communication operations to finish. After the completion of the operation, the
application can reuse the local buffers that were used for communication.

In the OSC-API of MPI-2, notification and completion of one-sided communication
is included in a single API-call (MPI_Win_complete or MPI_Win_fence). This
introduces a performance penalty because of two requirements:
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1. To allow a maximum overlapping of computation and communication, the com-
pletion of local operations should happen as late as possible. This is a well known
technique for asynchronous two-sided communication. It also increases the ability
of the application to tolerate process skew.

2. The notification message has to be sent as early as possible in order to let the target
continue as early as possible to work with the new data in the destination buffer
(e. g. in case of process skew).

Both requirements can not be met with a single API call.
This is not a problem for two-sided communication since the notification is implicitly

included in the MPI_Isend-communication call and the completion is done by an
MPI_Wait or MPI_Test. Notification and completion are separated, and both of the
above requirements are met.

2.2 Implicit Barriers

Another problem of combined notification and completion is that programmers create
an implicit barrier between processes with bidirectional communication. We call this
barrier implicit, because it is not obvious to the programmer.

The problem is depicted in Figure 2. It represents one iteration of a bulk synchronous
application with asynchronous one-sided communication. It shows the bi-directional
interaction of two processes (proc A and B) based on the post-start-complete-wait syn-
chronisation (pscw) in MPI-2 (see Figure 1). Since an MPI_Win_fence-call includes
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the synchronisation of local and remote operations, the pscw-synchronisation is used to
illustrate the issue.

The dashed lines show the data flow from A to B via the communication system (cs)
and the network. For simplicity, the reverse flow is not always marked with dashed lines.
First, both processes announce a buffer and start the access epoch (see 1 in Figure 2)
and an asynchronous write operation to the remote process is initiated (2). Then some
calculation is done. The put can not immediately start because the buffer announcement
has not arrived yet. The operation is deferred until step (3). This overlap can only hap-
pen if the communication subsystem (cs) independently progresses in the background.
Otherwise, the data is transferred only in the synchronization phase.

At the end, the synchronisation is a combination of notifying the remote process
and completion of put (4) and the completion of post (5). This is the critical issue if
both processes use explicit synchronisation together with the corresponding comple-
tion of post (closing the epoch). This barrier can introduce several major performance
penalties. Both operations do not indicate any barrier-like behaviour in a single process
unlike an MPI_Win_fence call would do.

– Increased synchronisation time is the result if two processes wait for a signal from
each other. If the notification and completion is the last step of an iteration, the
completion has to wait for a full traversal of the communication pipeline.

– If the beginning of an iteration consists of the announcement of the buffers (1) and
a following initiation of a data transfer (2), more early sender problems will occur.
If the traversal of the announcement takes more time than any calculation between
the post and the put, the data transfer has to be deferred. This results in inefficient
usage of the communication pipeline.

– The barrier itself reduces the overall process skew tolerance of the asynchronous
one-sided communication. Any delay in a process results in a delayed notification
message and, thus, in increased synchronisation time. This results in increased it-
eration time of both processes.

3 Proposed Solution

To solve the above issues, we propose to separate notification from completion. Com-
pletion has to be a separate call since it has to be called as late as possible.

Since the separation will result in skewed processes, a leading process can announce
the buffer and avoid an early sender problem at slower processes. Then, the slower
process can make full use of communication overlap to potentially catch up the other
process. Further, a process delay at the leading process will have less impact on the
overall runtime. The implicit barrier is removed or better stretched out to be asynchro-
nous and can be overlapped with computation.

The notification can be done in two ways: either the parameters of communication
operations can be extended by a flag to mark this operation to be the last in this epoch
(implicit notification), or by extending the API by a new routine to explicitly notify the
remote process (explicit notification).

Some communication systems can handle implicit notification more efficiently. E. g.
Gigabit Ethernet is less efficient if two messages have to be transmitted. With other
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transports like InfiniBand it is faster to send two messages via RDMA instead of us-
ing one message with notification of completion by events. Since implicit notification
can be implemented on top of InfiniBand using two explicit messages (see Section 4),
implicit notification is more efficient for different network capabilities.

Our proposal is implicit notification using a flag for one-sided communication oper-
ations. If the flag is not used by the programmer, the synchronisation can still work as
long as notification is done at the completion call at the latest.

4 NEON

We designed an OSC-API called NEw ONe sided communication interface (NEON)
which is intended to show that the performance of OSC can be improved by the design of
the synchronisation calls. Therefore, only the basic synchronisation and completion calls
are implemented together with a NEON_Put operation to transfer data. The main con-
cepts are based on the producer-consumer synchronisation. These concepts are presented
in more detail in [7]. All available routines are listed and shortly described in Table 1.

Table 1. Routines of the NEON-API

NEON_Init Initialisation of the NEON environment
NEON_Exit Cleanup
NEON_Post Assign tags to a buffer and announce it
NEON_Repost Reannounce a buffer if it is reused
NEON_Unpost Tell the library that this buffer will not be reused
NEON_Put Write data to a remote buffer, depending on

parameters it includes synchronisation
NEON_Wait Local completion of announcements and communication
NEON_Register Registering memory in advance if the transport requires it
NEON_Unregister De-registering memory.

A so called non-final flag is the important parameter of NEON_Put concerning the
implicit notification. Usually, each put is taken as a final operation that allows the com-
munication library to notify the remote process. If the programmer wants to put further
data into the remote buffer, this flag has to be set.

5 Performance Measurements

In this section we compare our NEON prototype on top of InfiniBand with MVA-
PICH2 [6]. We use an application called cellular automaton [2] to evaluate the per-
formance. It performs a 2D-stencil calculation similar to the popular game of life by
John Horton Conway. We use a 1D-partitioning where each process calculates the same
number of lines (10, 100, or 1000) and communicates the topmost and undermost line
to its neighbors. Each line contains 1024 bytes of data.

We use MVAPICH2 (version 0.98) and NEON on 8 nodes of a cluster with 2.33 GHz
Intel CPUs and Mellanox InfiniHost III. The latency and the bandwidth of NEON are
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Table 2. Latency and Bandwidth

API Latency Bandwidth at 1KB Bandwidth at 1MB
(μs) (MiB/s) (MiB/s)

MPI 4.04 127.3 942.2
NEON 12.55 69.97 954.9

Table 3. Cellular automaton (iteration time) with NEON and MPI-2 over InfiniBand

API CA10 CA100 CA1000
(ms)

MPI 0.0484 0.177 1.46
NEON 0.0309 0.147 1.43

worse than the results of MVAPICH2 (shown in Table 2). Especially, at the message size
of the used cellular automaton (≈ 1024 B), NEON achieves only 55 % of the bandwidth
of MVAPICH2. We figured out that one major reason is the use of the immediate-
data-feature of InfiniBand to notify the remote process in our implementation. The
required event handling at the destination significantly increases the latency. This can
be improved in future versions.

But the cellular automaton on top of NEON outperforms the MPI-2 version (see
Table 3). The table shows the comparison with 3 different communication-computation
ratios. Table 3 (CA10 means 10 lines per process). This shows the benefit of the NEON
API.

We conducted two further experiments with the cellular automaton to show the weak-
nesses of the MPI-2 API. First, we move the MPI_Put towards the middle of the it-
eration by calculating an increasing number of lines before putting data. An iteration
consists of 1000 lines to calculate. The results are shown in Figure 3 (delay put). It
shows that the further the put is moved away from the announcement of the remote
buffer at the beginning of the iteration, the better performance can be achieved.

The reason is the non-available buffer announcement of the target that occurs too
short in advance of the communication. This is a problem that all RDMA-based im-
plementations will have because they require the remote buffer to be announced1. In
those cases, any implementation has to defer the transfer to the completion call. This is
an appropriate solution if there’s no network processor to progress on pending commu-
nication in the background. But, this increases the time for the implicit barrier and no
communication overlap can happen at all. Due to the two-way interdependency between
neighbouring processes, the same situation will occur in the next iteration.

The impact of the implicit barrier and the possibility to tolerate process skew is
shown by a second experiment. The MPI_Win_complete call is gradually shifted
from the beginning2 to the end of the iteration. The results show that the best results are
achieved if the completion is done in the middle of the iteration.

1 Using intermediate buffers can solve this too, but introduces further issues that are out of focus
of this paper.

2 Right after the MPI_Put-call.
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Moving the completion too close to the communication call makes the communi-
cation more and more synchronous. The reason is that communication is enforced at
the completion and the calculation afterwards can not overlap communication. Moving
the completion too close to the end of the iteration will increase the negative impact of
the barrier.

This experiment shows the benefits of the proposed separation of notification and
completion in Section 3.

6 Conclusion

There are two important factors that hamper the performance of the MPI-2-OSC. First,
the API forces the implementer to either violate the pipeline model or to send a late and
explicit synchronisation message. Second, gluing together completion and remote noti-
fication of the target reduces the capability to overlap communication and computation.

Further, if the application uses bi-directional communication, it creates an implicit
barrier. This is not obvious to the programmer as well as it reduces the tolerance to
process skew.

The discovered issues can be solved by using an API that separates local completion
and remote notification. We propose the use of a flag inside communication operations
to increase portability. If an underlying transport performs better with implicit synchro-
nisation, this way of notification is more efficiently implementable.

Based on this knowledge we designed NEON, a one-sided communication API that
uses implicit notification. The presented measurements with a prototype implementa-
tion of NEON on top of InfiniBand prove our ideas. The benefits of NEON over Gigabit
Ethenet are presented in our earlier work [7].

With a slight modification, the separation of notification and completion can also
be built into the MPI-2 API. This can be done by extending the existing one-sided
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communication calls by a final-flag. The flag can make a call final to allow the commu-
nication system to notify the remote process as early as possible.
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Abstract. Message Passing Interface (MPI) is the most commonly used method
for programming distributed-memory systems. Most MPI implementations use
a rendezvous protocol for transmitting large messages. One of the features de-
sired in a MPI implementation is the ability to asynchronously progress the ren-
dezvous protocol. This is important to provide potential for good computation
and communication overlap to applications. There are several designs that have
been proposed in previous work to provide asynchronous progress. These designs
typically use progress helper threads with support from the network hardware to
make progress on the communication. However, most of these designs use lock-
ing to protect the shared data structures in the critical communication path. Sec-
ondly, multiple interrupts may be necessary to make progress. Further, there is
no mechanism to selectively ignore the events generated during communication.
In this paper, we propose an enhanced asynchronous rendezvous protocol which
overcomes these limitations. Specifically, our design does not require locks in
the communication path. In our approach, the main application thread makes
progress on the rendezvous transfer with the help of an additional thread. The
communication between the two threads occurs via system signals. The new de-
sign can achieve near total overlap of communication with computation. Further,
our design does not degrade the performance of non-overlapped communication.
We have also experimented with different thread scheduling policies of Linux
kernel and found out that the round robin policy provides the best performance.
With the new design we have been able to achieve 20% reduction in time for a
matrix multiplication kernel with MPI+OpenMP paradigm on 256 cores.

1 Introduction

Cluster based computing is becoming quite popular for scientific applications due to its
cost effectiveness. The Message Passing Interface (MPI) is the most commonly used
method for programming distributed memory systems. Many applications use MPI
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point-to-point primitives to send large messages. Typical MPI implementations use a
rendezvous protocol for transmitting large messages. The rendezvous protocol involves
a handshake to negotiate buffer availability and then the message transfer takes place.
The message transfer usually occurs in a zero-copy fashion.

One of the features desired in a quality MPI implementation is the ability to asyn-
chronously progress the rendezvous protocol. This is important to provide potential for
good computation and communication overlap to the applications. Many modern net-
work interfaces offload network processing to the NIC and thus are capable of handling
communication without the intervention of CPU. MPI provides non-blocking seman-
tics so that the application can benefit from computation and communication overlap.
The benefits of non-blocking semantics depend on the ability to achieve asynchronous
progress. Thus, it is important to address this issue in the MPI implementation.

There are several designs that have been proposed previously to provide asynchro-
nous progress. These designs typically use an additional thread to handle incoming ren-
dezvous requests. For example, in [1], a RDMA Read based threaded design is proposed
to provide asynchronous progress. Though the basic approach has been proven to achieve
good computation and communication overlap, there are several overheads associated
with the implementation of the design. First, the existing design uses locking to protect
the shared data structures in the critical communication path. Second, it uses multiple in-
terrupts to make progress. Third, there is no mechanism to selectively ignore the events
generated. In this paper, we propose an enhanced asynchronous rendezvous protocol
which overcomes these limitations. Specifically, our design does not require locks in the
communication path. In our approach, the main application thread makes progress on the
rendezvous transfer with the help of an additional thread. The communication between
the two threads occurs via system signals.

We have incorporated our design in MVAPICH [2], a popular MPI implementation
over InfiniBand. The new design can achieve almost total overlap of communication with
computation. Further, our design does not reduce the performance of non-overlapped
communication. We have also experimented with different thread scheduling policies
of Linux kernel and found out that round robin policy provides the best performance.
With the new design we have been able to achieve 20% reduction in time for a matrix
multiplication kernel with MPI+OpenMP paradigm on 256 cores.

2 Background

2.1 InfiniBand Overview

The InfiniBand Architecture [3] (IBA) defines a switched network fabric for intercon-
necting compute and I/O nodes. InfiniBand supports two types of communication se-
mantics. They are called Channel and Memory semantics. In channel semantics, the
sender and the receiver both explicitly place work requests to their Queue Pair (QP).
After the sender places the send work request, the hardware transfers the data in the
corresponding memory area to the receiver end. In memory semantics, Remote Direct
Memory Access (RDMA) operations are used instead of send/receive operations.

InfiniBand supports event handling mechanisms in addition to polling. In InfiniBand,
the Completion Queue (CQ) provides an efficient and scalable mechanism to report
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completion events to the application.The CQ can provide completion notifications for
both send and receive events as well as many asynchronous events. In the polling mode,
the application uses an InfiniBand verb to poll the memory locations associated with the
completion queue. In the asynchronous mode, the application does not need to contin-
uously poll the CQ to look for completions. The CQ will generate an interrupt when
a completion event is generated. Further, IBA provides a mechanism by which only
“solicited events” may cause interrupts. In this mode, the application can poll the CQ,
however on selected types of completions, an interrupt is generated. This mechanism
allows interrupt suppression and thus avoid unnecessary costs (like context-switch) as-
sociated with interrupts.

2.2 Overview of MVAPICH Communication Protocols

MPI communication is often implemented using two general protocols:

Eager protocol: In this protocol, the sender process sends the message eagerly to the
receiver. The receiver needs to provide buffers in advance for the incoming messages.
This protocol has low startup overhead and is used for small messages.

Rendezvous protocol: The rendezvous protocol involves a handshake during which the
buffer availability is negotiated. The message transfer occurs after the handshake. This
protocol is used for transferring large messages. In the rendezvous protocol, the actual
data can be transferred using RDMA write or RDMA read over InfiniBand. Both these
approaches can achieve zero copy message transfer. MVAPICH [2] currently has both
these modes for transferring data in the rendezvous protocol.

3 Existing Asynchronous Rendezvous Protocol

In this Section, we first explain the existing implementation for achieving asynchronous
progress in the rendezvous protocol. The basic design was proposed in [1] and used In-
finiBand’s RDMA read capability together with IBA’s event notification mechanism.
Figure 1 (left) provides an overview of the approach. As shown in the figure, the main
idea in achieving asynchronous progress is to trigger an event once a control message
arrives at a process. This interrupt invokes a callback handler which processes the mes-
sage and makes progress on the rendezvous. The required control messages which trig-
gers the events in the existing scheme are: a) RNDV START and b) RNDV FINISH.
In addition, the RDMA read completion also triggers a local completion event. This
design provides good ability to overlap computation and communication via asynchro-
nous progress. For example, if an application is busy doing computation, the callback
handler can make progress via the interrupt mechanism. However, there are a couple of
important details that arise in implementing the approach.

One main issue in the existing approach is the overhead of interrupt generation. As
explained above, a total of three interrupts are generated for every rendezvous trans-
fer of data. This can potentially degrade the performance for medium messages using
this protocol. Further, it is not easy to provide for a mechanism to selectively ignore
the events generated by the control messages. This feature can be used whenever the
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Fig. 1. Asynchronous Rendezvous Protocol Implementations

main application thread is already making progress and is expecting the control mes-
sages. Another important issue which cannot be overlooked is the overhead of lock-
ing/unlocking shared data structures. In this paper, we take into account all these issues
and propose a new implementation alternative. Specifically, we aim to:

– Avoid using locks for shared data structures
– Reduce the number of events triggered by the control messages
– Provide for an ability for the process to selectively ignore the events generated

4 The Proposed Design

As explained above, the existing design has several limitations. In this Section, we ex-
plain our new approach of achieving asynchronous progress. Figure 1 (right) explains
the basic idea in the new implementation. In our approach, each process creates an
auxiliary thread at the beginning. The auxiliary thread waits for RNDV START con-
trol message. As seen from the figure, the RNDV START control message issued by
the sender interrupts the auxiliary thread. This thread in turn sends a signal to the
main thread to take the necessary action. This is different from the earlier approach
where the auxiliary thread made progress on the rendezvous communication. Since,
only one thread is involved with communication data structures, no locking mecha-
nism is required for the data structures. In the second step, the main thread issues the
RDMA READ for the data transfer. After issuing RDMA READ, the main thread re-
sumes to perform the computation. Unlike the existing approach, the RDMA READ
completion does not trigger any interrupt in our design. We believe this interrupt does
not help in overlap in Single Program Multiple Data (SPMD) programming model
where each process performs the same task and the load is equally balanced. This
was also observed in our experiments [4]. However, triggering of the interrupt on
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RDMA READ completion can be easily added to the protocol if required. In our de-
sign, the main thread sends the RNDV FINISH message soon after it discovers the
completion of RDMA READ.

There are several benefits of this new design. First, locks are avoided thus reduc-
ing contention for shared resources. Also, in our design the signal from the auxiliary
thread is disabled by the main thread when it is not expecting a message from any
process. By doing so, the main thread is not unnecessarily interrupted by an unexpected
message since it does not have the receive buffer address to make progress on the com-
munication. The main thread also disables signal if it is already inside the MPI library
and making communication progress. Since the main thread can disable the interrup-
tion from the auxiliary thread, the execution time of the application is unaffected if
rendezvous protocol is not used by the application. Also, the signal is enabled only if
a non-blocking receive has been posted and not for blocking receives. Also, at most of
the time the auxiliary thread is waiting for interrupts from the NIC and does not per-
form any communication processing. Therefore, as the auxiliary thread is I/O bound
the dynamic priority of the thread is very high which helps in scheduling it quickly.
Finally, the new design also cuts down the number of interrupts to one thus improving
the communication performance.

5 Experimental Evaluation

The experiments were conducted on 64 node InfiniBand Linux cluster. Each machine
has a dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for a total of eight
cores per node. Each node is connected by DDR network interface card MT25208 dual-
port Memfree HCA by Mellanox [5] through a switch. InfiniBand software support is
provided through OpenFabrics/Gen2 stack [6], OpenFabrics Enterprise Edition 1.2.

5.1 Comparison with Existing Design

Figure 2 shows the performance of basic bandwidth micro-benchmark. We used OSU
Benchmarks [7] for the experiment. The legend ‘no-async’ refers to the basic RDMA
read based rendezvous protocol without any enhancements for asynchronous progress,
‘existing-async’ refers to the existing asynchronous progress design proposed in [1]
and ‘new-async’ refers to the proposed design described in Section 4. Figure 2 shows
that the bandwidth of the proposed design closely matches with the base bandwidth
numbers, which matches our expectations. However, with the old design the bandwidth
is very low. In the bandwidth test, the receiver posts several requests and waits for
the completion of all the pending messages. As several rendezvous start messages are
received by the process, the auxiliary thread is continuously interrupted. Also, since the
main thread is not involved in computation, both the threads concurrently poll the MPI
library. The main thread cannot make any progress, however, it hinders the auxiliary
thread from being scheduled on the processor. Therefore, due to exhaustion of CPU
resources by the main thread the bandwidth performance is affected. The bandwidth
performance is also nondeterministic as it depends on the scheduler to schedule the
auxiliary process quickly. The effects of schedule is discussed in Section 5.3.
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The performance of the new design is very similar to the base bandwidth perfor-
mance since the main thread disables interrupts from the auxiliary thread when it is
already inside the MPI library.

The poor performance of the existing design can be seen not only on micro-
benchmarks but also in the performance of SP NAS Parallel Benchmark [8] applica-
tion as can be seen in Figure 3. It can be seen from the figure that with the old design
most of the execution time is wasted in MPI Wait. In the remaining evaluations we do
not show the performance of the old design. We found that the old design performs
well when using an extra-core, however, it performs poorly when a single processor is
assigned per process.

5.2 Overlap Performance

Figures 4 and 5 show the overlap performance of the proposed design. Sandia Bench-
mark [9] (SMB) has been used to evaluate the overlap capability of the implementation.
Overlap potential at the receiver and at the sender have been shown in Figures 4 and 5
respectively. Since the base design and the proposed design employ RDMA read, almost
total overlap is achieved at sender for both protocols. However, at the receiver the base
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RDMA read based protocol offers no overlap, as expected. The proposed design is able
to achieve increasing overlap with increasing message size and reaches almost 100%
overlap for messages greater than 1MB.

5.3 Effect of Scheduling Algorithm

Figures 6 and 7 show the effect of scheduling algorithm on the overlap performance of
the new design. Results for the default Linux scheduler, FIFO and Round robin have
been compared. For each of the executions with different scheduling algorithm, the
auxiliary thread is assigned the highest possible priority so that it is scheduled as soon as
it is interrupted. Figure 6 shows the results for different message sizes. We observe that
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with the default scheduling algorithm, the performance is not consistent for all message
sizes. At some message sizes the auxiliary thread is not scheduled on the processor on
being interrupted. However, with FIFO scheduling algorithm the performance improves
and is best for round-robin algorithm.

Figure 7 shows the overlap performance for 256KBytes message with increased
number of iterations in each execution. From the figure, it is observed that with the
default scheduling algorithm the performance of the design improves after a certain
time interval. We feel that the improved performance is due to the dynamic priority
scheme of Linux scheduling algorithm. Since the auxiliary thread hardly uses the CPU
and is mostly waiting for completion events it is assigned a high dynamic priority which
helps increase its performance. However, for FIFO and round robin the performance is
optimal even for low number of iterations.

5.4 Application Performance

In this Section we use a matrix multiplication kernel to evaluate the application perfor-
mance of the proposed design. The kernel uses Cannon’s algorithm [10] and employs
both MPI and OpenMP [11] programming models. In our experiment, we use only four
cores per node. OpenMP programming model is used within the node and MPI is used
for inter-node communication.
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Figure 8 shows the application performance with increasing system sizes for a square
matrix of dimensions 2048 elements. Each element of the matrix is a double datatype
occupying eight bytes. As can be seen from the figure, the MPI Wait time can be re-
duced by using the proposed design. Figure 9 shows the performance for increasing
problem size on four nodes and dividing the work of each node among four of its cores
using OpenMP. Reductions in MPI Wait time can also be seen with different problem
sizes. For matrix of 128X128 dimensions, no improvement is observed as the message
communication is of size 4K Bytes which does not employ rendezvous protocol. Addi-
tional results on application performance are included in [4].

6 Related Work

Several studies have been done to show the importance of overlap capability in MPI
library. Brightwell et al. [12] show the ability of applications to benefit from such fea-
tures. Eicken et al. [13] propose for hardware support for active messages to provide
communication and computation overlap. In our design we provide a mechanism to
achieve overlap with the current hardware capability. Schemes to achieve overlap in
one-sided communication have been proposed in [14]. Surs et al. [1] propose thread
based rendezvous protocol which employs locks for protection. However, in our design
we propose a lock free mechanism to achieve overlap.

7 Conclusions and Future Work

There are several designs that have been proposed in the past to provide asynchronous
progress. These designs typically use progress helper threads with support from the
network hardware to make progress on the communication. However, most of these
designs use locking to protect the shared data structures in the critical communication
path. Secondly, multiple interrupts may be necessary to make progress. Further, there is
no mechanism to selectively ignore the events generated during communication.
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In this paper, we proposed an enhanced asynchronous rendezvous protocol which
overcomes these limitations. Specifically, our design does not require locks in the com-
munication path. In our approach, the main application thread makes progress on the
rendezvous transfer with the help of an additional thread. The communication between
the two threads occurs via system signals. The new design achieves almost total overlap
of communication with computation. Further, our design does not reduce the perfor-
mance of non-overlapped communication. We have also experimented with different
thread scheduling policies of Linux kernel and found out that round robin policy pro-
vides the best performance. With the new design we have been able to achieve 20%
reduction in time for a matrix multiplication kernel with MPI+OpenMP paradigm on
256 cores. In future, we plan to carry out scalability studies of this new design for a
range of applications and system sizes.
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Abstract. Many tools, including performance analysis tools, tracing li-
braries and application level checkpointers, add piggyback data to mes-
sages. However, transparently implementing this functionality on top of
MPI is not trivial and can severely reduce application performance. We
study three transparent piggyback implementations on multiple produc-
tion platforms and demonstrate that all are inefficient for some applica-
tion scenarios. Overall, our results show that efficient piggyback support
requires mechanisms within the MPI implementation and, thus, the in-
terface should be extended to support them.

1 Motivation

Tools and support layers often must send additional information along with ev-
ery message initiated by the main application. In most cases, tools must uniquely
associate this additional information, often called piggyback data, with a spe-
cific message in order to capture the correct context and to avoid additional
communication paths. A wide range of software systems piggyback data onto
messages for diverse purposes; we detail a few here. Tracing libraries correlate
send and receive events by sending vector clock information [4]. Performance
analysis tools attach timing information to detect and analyze critical paths [2]
or to compensate for instrumentation perturbation [7]. Application level check-
point layers transmit epoch identifiers to synchronize global checkpoints [5].

Unfortunately, the MPI standard does not include a transparent piggyback
mechanism. Instead, each system must provide its own, often ad-hoc, implemen-
tation. While a generic piggyback service could be added to an infrastructure
like PNMPI [6], the optimal solution depends on the specific usage scenario.

In this paper, we study the overhead and tradeoffs of three methods to support
piggyback data:

– manual packing and unpacking the piggyback data and application payload
into the same buffer;

� This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344
(LLNL-CONF-402937).
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Fig. 1. Three different methods for transparent MPI piggyback messaging

– using datatypes with absolute addresses to attach piggyback data to the
application payload; and

– using separate messages for the piggyback data and application payload.

All three methods are implemented as transparent PMPI modules.
Using these three mechanisms we discuss the impact on message latency and

bandwidth, as well as application performance across three production platforms.
Our results show that piggyback mechanisms implemented on top of MPI signif-
icantly reduce performance. In particular, communication intensive applications
incur overhead that makes layered piggyback techniques inappropriate for per-
formance critical scenarios, which significantly impedes the implementation of
transparent tools. Thus, we need other mechanisms, potentially within the MPI
implementation, that support this critical functionality.

2 MPI Piggyback Techniques

In the following we present three approaches to associate piggyback data with
MPI messages transparently: explicitly packing piggyback data; using datatypes
with absolute addresses; and sending separate piggyback messages. We focus on
all combinations of MPI point-to-point messages including asynchronous and
combined send/receive calls. We do not explore associating piggyback data with
collective operations, which requires separate collectives tailored to the specific
piggyback semantics (e.g., whether or not the data must be aggregated).

2.1 Explicit Pack Operations

Our first approach, shown in Figure 1a, uses MPI Pack to pack the message
payload and the piggyback data into a newly allocated buffer and transfers this
buffer using the original send primitive. We receive the data into a local buffer
and unpack the piggyback data and the message payload into their destinations.
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This approach is the easiest to implement and does not alter the original commu-
nication pattern. However, we must create additional buffers of varying sizes on
both the send and the receiver side. Further, it adds a memory copy of the entire
message payload on both sides and prevents the use of scatter/gather hardware
available in many NICs.

2.2 Datatypes

Our second approach (Figure 1b) uses datatypes to combine the message con-
tents with the piggyback data. During each send and receive operation we create
a new datatype with MPI Type struct that combines a global pointer to the pig-
gyback data with the original, possibly user-defined, datatype description of the
message payload. We then communicate the payload that includes the piggyback
data through the new datatype with the original send/receive primitives. This
approach avoids additional explicit memory copies but must construct a special
datatype for each communication operation. While it is possible to reduce the
number of individual datatypes created, a new datatype must be defined for each
message buffer location since it must use absolute addresses. Further, many MPI
implementations do not provide efficient implementations of complex datatypes
and may lose the memory copy savings.

2.3 Separate Messages

Our third approach does not change the actual message. Instead, it transmits
the piggyback data in a separate message, as shown in Figure 1c. This approach
duplicates all send and receive calls, transmitting the original, unchanged mes-
sage in one message and the piggyback data in the other. “Wildcard” receives,
however, require special treatment. If the original receive operation does not
specify an explicit source node or tag but instead uses MPI ANY SOURCE and/or
MPI ANY TAG, we must first complete the receive with the wildcards, determine
all message parameters, including the sender ID and tag, and then post the sec-
ond receive without wildcards. In the case of asynchronous receives, this means
that we can not post the second receive until after the test or wait operation has
completed for the first receive.

3 Experimental Setup

For the following experiments we implement our three piggyback methods as
separate, application transparent modules, using the PMPI profiling layer and
we explore both sending or packing piggyback data before or after the message
payload. To reduce complexity, to enable code reuse, and to simplify experimen-
tation we use PNMPI [6] for common services (e.g., request tracking) and to
load the different modules dynamically. We use an additional driver module that
emulates a tool or library using the piggyback functionality. This driver requests
predefined piggyback sizes and produces and consumes the piggyback data.
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We use three different machines for our experiments: Thunder, a 1024 node
Linux cluster with 1.4 GHz 4-way Itianium-2 nodes and a Quadrics QSNetII
(elan4) network running Quadrics MPI; Atlas, a 1152 node Linux cluster with
2.4 GHz 4-way dual-core Opteron nodes and an Infiniband network running
MVAPICH; and uP, a 108 node AIX cluster with 1.9 GHz 8-way Power5 nodes
and a Federation Switch network running IBM’s MPI implementation.

4 Results

We first evaluate the impact of our piggyback methods on point-to-point band-
width and latency using a simple ping-pong test between two tasks on different
nodes sending arrays of integers. Figure 2 shows the results for varying message
sizes and a constant piggyback size of one four byte integer. This represents a
typical scenario since most tools use small piggyback messages.

The results show that explicit packing always leads to the worst performance
while sending two separate messages has the best. In particular, using separate
piggyback messages usually incurs only a negligible bandwidth reduction. The
other methods, packing or using datatypes, incur a similar, larger bandwidth
reduction on both commodity platforms (Thunder and Atlas), suggesting that
their respective datatype implementations perform internal packing similar to
our explicit packing approach. In contrast, it appears that IBM’s MPI imple-
mentation on uP optimizes the transfer of custom datatypes, resulting in higher
bandwidth compared to the packing approach. All approaches incur significant
latency penalties of up to 200%. On Thunder, all approaches show similar la-
tency overhead, while on Atlas and uP the datatype method has higher latency
overhead compared to the other two approaches, which suggests a higher relative
cost for the repeated creation and destruction of the custom datatypes. Sending
or packing the piggyback data before or after the actual payload has little or no
impact on raw latency and bandwidth in general.

The remainder of our analysis focuses on Thunder and uP since the Atlas and
Thunder results are similar. Figure 3 presents latency (using 4 byte messages)
and bandwidth (using 512 Kbyte messages) results with varying piggyback sizes.
We observe an almost constant bandwidth reduction independent of the size of
the piggyback data since performance is dominated by the significantly larger
message payload. Latency, on the other hand, directly depends on the piggyback
data size and is further influenced by changes in the underlying message protocol
triggered by the additional payload (as indicated by the changing slopes).

However, impact on bandwidth and latency does not necessarily translate
into application overhead. Thus, we study the performance of two scientific ap-
plications: Sweep3D, a computation-bound 3D neutron transport code from the
ASCI Blue benchmark suite [1], and SMG2000, a communication-intensive semi-
coarsening multigrid solver from the ASC Purple benchmark suite [3]. We exe-
cute both codes on 16 processors using a global working set size of 120x120x120
for Sweep3D and a local working set size of 70x70x70 for SMG2000. We run
each configuration five times and report the lowest execution time. We report on
two versions of each code: one that uses wildcard receives; and one that precisely
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Fig. 2. Point to point transfer time in μs (left) and bandwidth in MB/s (right) with 4
byte piggyback data for varying message sizes shown on the x-axis
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Fig. 3. Point to point latency in μs (left) and bandwidth in MB/s (right), varying
piggyback size from 4 bytes to 4 Kbyte, as shown on the x-axis

specifies all receive parameters. These versions allow us to investigate the impact
of the separate message method on wildcard receives, where the second receive
must be postponed, as described in Section 2.3. This can have a notable effect
on the performance of asynchronous wildcard communication.

The results, shown in Figure 4, reveal a negligible overhead for any piggyback
implementation for the computation-bound Sweep3D. On Thunder the overhead
is practically within the limits of measurement accuracy, while we see small over-
heads on uP (about 1% to 2%). The communication-bound SMG2000, on the
other hand, presents a different picture: the average overhead on Thunder is
around 10%, with the best performance being achieved by either packing the
piggyback data after the message or using datatypes that prepend the piggy-
back data. Since packing the piggyback data first or using a datatype to place
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Fig. 4. Application overheads, i.e., execution time relative to sending no piggyback,
for SMG2000 and Sweep3D on Thunder and uP using 4 and 4096 Bytes piggybacks

the piggyback after the message payload does not alter the overall message size
or communication, the differences are probably due to cache effects based on the
traversal direction of the MPI datatype and the corresponding data structures
in the MPI implementation. Further, separate piggyback messages lead to the
highest overhead for SMG2000, due to the added latency of the duplicated mes-
sage traffic and the complex completion semantics during MPI Waitall, which
SMG2000 uses extensively. Using wildcard receives (marked as WC in the figure)
further increases overhead to almost 20% for larger piggybacks.

We see even larger overheads on uP (20% for small piggybacks and 30% for
large) with explicit packing achieving the best performance. In contrast to Thun-
der, using separate messages does not have the highest overhead compared to
the other methods and using wildcard receives actually reduces overhead slightly.
The latter most likely stems from the smaller number of outstanding requests the
MPI implementation has to deal with since piggyback receives are postponed.
Using datatypes exhibits the worst performance, most likely due to SMG2000’s
extensive use of user defined datatypes, as opposed to the simple integer arrays
in the ping-pong test. Wrapping SMG200’s already complex datatypes into the
new piggyback datatypes prevents some of the previously observed optimizations
for datatypes under IBM’s MPI implementation.
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5 Conclusions

Associating extra data with individual messages is an essential parallel tool tech-
nique, with uses in performance analysis, debugging and checkpointing. In this
paper we have studied the performance of three different piggyback approaches
— packing piggyback data and the original message into a unified buffer, using
datatypes to transmit piggyback and message data in a single message, and us-
ing separate messages for piggyback and message data — and contrasted them
to uninstrumented baselines.

We show that the choice of piggyback method strongly depends on the target
application: simply examining the impact on bandwidth and latency can mispre-
dict the real impact. In addition, performance depends on the MPI implementa-
tion and its optimization of advanced mechanisms such as custom datatypes or
message coalescing. However, in communication intensive codes, like SMG2000,
the use of piggyback data, independent of the implementation choice, leads to
unacceptably high overhead for most tools.

In summary, our results show that we cannot layer a fully general piggyback
solution on top of MPI without significantly harming performance for some
application scenarios. However, efficient, low perturbation tools require exactly
such an implementation. We therefore advocate extending the MPI standard to
include a piggyback mechanism and are working with the MPI Forum towards
this goal. Such extensions would allow the MPI implementation to optimize
piggyback transfers, e.g., by including the data into a configurable header, and
provide a truly portable and generally efficient piggyback mechanism.
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Abstract. Performance analysis and optimization is an important part of the de-
velopment cycle of HPC applications. Among other prerequisites, it relies on
highly precise timers, that are commonly not sufficiently synchronized, espe-
cially on distributed systems. Therefore, this paper presents a novel timer syn-
chronization scheme especially adapted to parallel event tracing. It consists of
two parts. Firstly, recording synchronization information during run-time and,
secondly, subsequent correction, i.e. transformation of asynchronous local time
stamps to synchronous global time stamps.

Keywords: Event tracing, clock synchronization, performance analysis.

1 Introduction

Performance analysis and optimization is an important part of the development cycle of
HPC applications. With today’s complex and massively parallel hardware platforms it
is most essential in order to achieve even a tolerable share of the peak performance.

Profiling and event tracing are well known approaches for performance measurement
of parallel programs. For both there are many academic and commercial tools available
that allow application developers to focus on the important task of optimization instead
of the necessary task of performance measurement.

Both techniques rely on highly precise timers, usually CPU cycle counters, to evalu-
ate the speed of individual activities during execution. While profiling is accumulating
average run-time statistics for repeated activities, tracing records all repeated instances
together with precise timing information.

Distributed profiling and tracing always rely on multiple local timers. This is suf-
ficient to evaluate local run-time behavior, e.g. execution time of functions or waiting
time due to communication or I/O. Distributed activities are measured with respect to
multiple local timers. If they are not sufficiently synchronized, this will indicate incor-
rect performance values as measurement of speed is very sensitive to timing errors.

Even though some HPC platforms provide global high precision timers, on the ma-
jority of platforms additional synchronization is necessary, in particular on commodity
cluster platforms. Widely used synchronization of system timers, e.g. with NTP [9], is
no sufficient solution to this problem, because system timers are far to imprecise.

This paper presents a novel timer synchronization scheme for parallel event tracing.
It consists of two parts. Firstly, recording synchronization information during run-time
and, secondly, subsequent correction, i.e. transformation of local (asynchronous) time
stamps to global time stamps.

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 202–209, 2008.
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The rest of this paper is organized like following: After an examination of timer
fluctuations and their effects on tracing a new solution will be presented, including an
re-designed communication scheme and post-mortem timer correction. Next, the prac-
tical relevance is demonstrated with a real-world example. Finally there is an overview
on related work and conclusions together with an outlook to future development.

2 Effects of Insufficiently Synchronized Timers

Using inaccurately synchronized timers for performance analysis of message-passing
applications will result in an erroneous representation of the program trace data. The
errors can be classified into two groups:

Q1 Qualitative error: Violation of the logical order of distributed events, e.g. messages
that seem to be sent backwards in time because the receive event is situated before
the send event.

Q2 Quantitative error: Distorted time measurement of distributed activities. This leads
to skewed performance values, e.g. for message speed, when dividing by incorrect
duration values.

To avoid Q1, the synchronization error of all local timers must not exceed one half
of the minimum message latency. The presence of Q1 errors can always be detected by
checking logic constraints of message passing behavior. Unlike the previous, Q2 errors
are always present due to inevitable measurement errors. More accurate synchronization
will decrease the impact of Q2. However, Q2 errors are in general undetectable unless
Q1 is present at the same time or physical pre-conditions are violated.

A suitable timer synchronization algorithm needs to consider actual behavior of
timers, e.g. CPU clock cycle counters. Figure 1 shows the non-linear behavior of seven
separate timers Ci relative to one master timer C0. All timers have been synchronized at
begin and end, in between they are linearly interpolated. Even though the fluctuations
are as small as 10−7 (deviation per time) they are large enough to cause errors of type
Q1. This particular example was measured on a cluster of multi-core AMD Opteron
nodes with 2.6 GHz CPU speed (the timer resolution). It uses Infiniband interconnect
with minimum message latency of 3 μs for small messages.

3 Parallel Synchronization Scheme

To provide a low-overhead and well scalable tracing environment the underlying syn-
chronization scheme has to have the same properties. Timer synchronization with low
disturbance to concurrent and following events while tracing a message-passing appli-
cation is a complex issue. It requires several properties:

– balanced, low synchronization overhead,
– portable, scalable and robust synchronization algorithm,
– restore the relationship of concurrent events,
– accurate mapping of the event flow for an enhanced performance analysis.



204 J. Doleschal et al.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12  14

de
vi

at
io

n 
fr

om
 r

ef
er

en
ce

 ti
m

er
 [u

s]

run-time [min]

reference timer
timer 1
timer 2
timer 3
timer 4
timer 5
timer 7
timer 8

Fig. 1. Typical timer fluctuation for distributed CPU timers on a cluster platform with minimum
message latency of 3 μs. The deviation from the linear behavior (y-axis in μs) is 10−7, yet it is
sufficient to cause Q1 errors in the course of few minutes run-time.

The overhead of the synchronization scheme while tracing an application depends
on the number of exchanged messages and synchronization phases and can be reduced
to a minimum if only the synchronization data will be recorded at run-time and the time
stamps modified in a post-processing step. In the latter step, the actual timer parameters
are determined by a linear interpolation between synchronization points. Then the local
time stamps in the traces are corrected accordingly. Even though the timers are almost
linear and monoton, there are small fluctuations in the drift. Therefore synchronization
errors will accumulate over long intervals. This makes a linear begin-to-end correction
insufficient for long trace runs, compare Figure 1.

Therefore, it is necessary to synchronize the timers frequently and to piecewise in-
terpolate the timer parameters between the synchronization phases. The length of the
interval between two successive synchronization phases has to be chosen well suited.
Depending on the length, the overhead will be increased or the accuracy affected. The
determination of the synchronization frequency while using post-processing can only
be done by using the expectation of the clock drifts.

At appropriate points in the program flow the global synchronization with an ex-
plicit communication scheme will be inserted. This provides precise information about
concurrency of local timers at a specific moment. Collective functions with an ex-
plicit or implicit barrier (e.g. most of the MPI collective functions associated with
MPI_COMM_WORLD) are especially well suited for inserting global synchronization
points, because this reduces the disturbance of concurrent events.

3.1 Communication Patterns for Parallel Synchronization

Within each synchronization phase, a specially designed message pattern monitors pair-
wise clock alignment. In order to establish relationships between the local timers the ex-
plicit communication uses pairwise ping-pong messages to define concurrency with low
uncertainty. For a n-way parallel synchronization timer information have to distributed
to and from all participants.
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Fig. 2. Specially designed communication pattern with edge-coloring for odd and even number
of clocks

An appropriate communication scheme for a parallel synchronization is formulated
as a graph coloring problem with G = (V, E). The synchronization graph G has to
be a connected, valid edge-colored graph, i.e. all edges incident to the same node are
differently colored, G = (V, E) with n ≥ 3 and

Δ(G) ≤ k = �log2n, δ(G) ≥ 2,
|dG(v) − dG(w)| ≤ 1 ∀v, w ∈ V, v �= w.

With these properties the communication scheme guarantees that all processes with
local timers are involved in the process of synchronization. The restriction to the vertex
degrees is done to provide a load-balanced and robust communication scheme, i.e. a
timer can be estimated along different paths of the graph. The edge-coloring is used
to create a controlled communication scheme, such that the synchronization phase is
divided into k = �log2n time slots. Within each time slots every participant has at most
one communication partner. This avoids disturbances by other processes during the
critical process of exchanging synchronization messages, e.g. a single process cannot
be swamped by a number of synchronization messages.

Let the number of timers be even. A solution of the synchronization graph problem
can be given by using a bipartite graph. With the first two colors an alternately edge-
colored Hamilton cycle is constructed. With the remaining colors the graph is filled up
with edges, such that the graph remains valid edge-colored. The resulting graph is a
bipartite, k-regular graph colored with k colors and containing a Hamilton cycle. For
odd numbers of timers a solution can be derived from the solution with n+1 vertices by
deleting one vertex and all adjacent edges. The effort of this communication scheme uses
O(n ∗ logn) synchronization messages and requires O(log n) time for n participants.

The left graph in Figure 2 shows a solution of the synchronization graph problem.
By deleting vertex eight and all adjacent edges the left graph can be transformed into
the right graph, that is a valid solution for odd numbers of timers.

3.2 Time Stamp Correction

For a short synchronization phase the drift of a physical timer can be assumed to be
constant if the physical parameters (e.g. temperature) of the environment are constant.
Therefore a timer model has a linear dependency from offset ai and drift bi [8]:
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Ci(t) = ai + bi ∗ t + εi. (1)

To synchronize a system of n timers without a reference timer an unknown perfect
global timer T (t) is introduced:

T (t) = Fi(Ci(t)) = αi + βi ∗ Ci(t) + δi(t) (2)

Thereby, F is a linear mapping from the local timers to the global timer. The offsets
αi and drifts βi are unknown and have to be determined from the information achieved
from the synchronization messages.

Figure 3 shows the message exchange between two asynchronous timers within a
time slot of a synchronization phase. If there is no adequate correction of the time
stamps the red message leads to violate the clock condition (Q1) and the other messages
will offer skewed performance values (Q2). With the global timer (2) a comparison of
the logic constraints of message-passing events can be achieved (clock condition):

Fi(t
[k]
ij ) + d

[k]
ij = Fj(r

[k]
ij ) (3)
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[k]
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Fig. 3. Synchronization message exchange between two asynchronous clocks within a time slot.
If the time stamps will not be corrected the red message leads to violate the clock condition.

While the timers are not synchronized an exact determination of the message delays
d
[k]
ij and d

[k]
ji cannot be given. Therefore, the synchronization model uses a technique

introduced in [3, 4] to estimate the message delays. The solution corresponds to the
maximum likelihood estimator presented in [6].

Using the clock condition of message passing events (Equations (3), (4)) and the
estimated synchronization message delays d̂ij a global linear system for internal timer
synchronization can be achieved. The estimator for this linear system uses a least-square
regression analysis to estimate the offsets αi and drifts βi [2]. If the δi in (2) are inde-
pendent and identical distributed then the expectation of the error of the global linear
system δij = δj − δi + dij − d̂ij is equal zero.

4 Practical Experiments

The practical relevance of the synchronization scheme is demonstrated by tracing the
130.soccoro benchmark from the SPEC MPI suite. It was executed on an AMD Opteron
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Fig. 4. Apparently backward running message from process P0 to P30 after approx. 6 minutes of
run-time (top) and the same situation with frequent time re-synchronization (bottom).

cluster with 2.6 GHz clock rate connected via an Infiniband network with 3 μs latency
for small messages. The application runs approximately 16.5 minutes with 32 processes
distributed over 32 different cluster nodes.

Figure 4(top) shows a zoom of the timelines for the processes P0 and P30. The un-
derlying timers were synchronized only at the very begin and the very end of the trace
run [7]. A message from P0 to P30 is obviously running backwards in time, after about
6 minutes of run-time. Figure 4(bottom) shows the situation synchronized with the pre-
sented global synchronization scheme using re-synchronization after every 120 s. The
overhead of the ten inserted synchronization phases was approximately 6.5 s. The vi-
olation of the clock condition (Q1) was eliminated, and the performance values of the
message seem plausible (Q2).
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5 Related Work

There are many synchronization schemes for different purposes. The network time pro-
tocol (NTP) [9] is the commonly used application for clock synchronization with an
external time-server organized in a master-slave architecture. But the system timers
synchronized by NTP have only limited precision.

Hardware synchronization respectively hardware synchronization with software sup-
port like proposed in [5] uses special hardware for clock synchronization. These tech-
niques achieve accuracies of several ns, but are cost-intensive and not portable.

Another approach for time stamp correction is the controlled logical clock [10, 1]. It
uses message-passing events of the traced application and their relationships to correct
violations of the clock condition (Q1). The algorithm only corrects the time stamps if
the clock condition is violated. Therefore, distorted performance values (Q2) will not
be enhanced if there is no violation of the clock condition. Furthermore, the algorithm
cannot distinguish between short or long messages. To avoid this behavior a weak pre-
synchronization is advisable.

6 Conclusions and Future Work

The proposed parallel software synchronization scheme is especially adopted to the
requirements of a performance analysis with respect to portability, scalability and ro-
bustness. The overhead and the load-balancing of the synchronization scheme benefit
from the specially designed communication pattern. User applications that uses global
collective MPI functions can be automatically instrumented with the parallel synchro-
nization scheme.

For all other applications a suited mechanism for instrumentation has to be devel-
oped in the near future. Furthermore, the applicability of the synchronization scheme,
in terms of accuracy, error distribution in the linear system, overhead studies and syn-
chronization frequency, has to be investigated on various platforms in the near future.
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Abstract. Clustered computing environments, although becoming the
predominant high-performance computing platform of choice, continue
to grow in complexity. It is relatively easy to achieve good performance
with real-world MPI applications on such platforms, but obtaining the
best possible MPI performance is still an extremely difficult task, requir-
ing painstaking tuning of all levels of the hardware and software in the
system. The Open Tool for Parameter Optimization (OTPO) is a new
framework designed to aid in the optimization of one of the key software
layers in high performance computing: Open MPI. OTPO systematically
tests large numbers of combinations of Open MPI’s run-time tunable pa-
rameters for common communication patterns and performance metrics
to determine the “best” set for a given platform. This paper presents the
concept, some implementation details and the current status of the tool,
as well as an example optimizing InfiniBand message passing latency by
Open MPI.

1 Introduction

In the current top 500 list [10], clustered high performance computing systems
clearly dominate from the architectural perspective. Off-the-shelf components
make clusters attractive for low-end budgets as well as for large scale instal-
lations, since they offer the opportunity to customize the equipment according
to their needs and financial constraints. However, the flexibility comes at the
price: the performance that end-users experience with real-world applications
deviates significantly from the theoretical peak performance of the cluster. This
is mainly due to the fact, that each system represents a nearly unique execution
environment. Typically, neither software nor hardware components have been
hand-tuned to that particular combination of processors, network interconnects
and software environment.

In order to optimize the performance of a particular system, research groups
have turned to extensive pre-execution tuning. As an example, the ATLAS
project [12] evaluates in a configure step a large number of implementation pos-
sibilities for the core loops of the BLAS routines. Similarly, the Automatically
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Tuned Collective Communication project [8] incorporates an exhaustive search
in order to determine the best performing algorithms for a wide range of mes-
sage lengths for MPI’s collective operations. The FFTW library [1] tunes fast
fourier transform operations (FFT) in a so-called planner step before executing
the FFT operations of the actual application.

One critical piece of software has however not been systematically approached
in any of these projects. MPI libraries represent the interface between most par-
allel applications and the hardware today. Libraries such as MPICH [4] and Open
MPI [2] provide flexible and tunable implementations, which can be adapted ei-
ther at compile or at runtime to a particular environment. In this paper, we in-
troduce OTPO (Open Tool for Parameter Optimization), a new tool developed
in partnership between Cisco Systems and the University of Houston. OTPO is
an Open MPI specific tool aiming at optimizing parameters of the runtime envi-
ronment exposed through the MPI library to the end-user application. These pa-
rameters might expose explicit or implicit dependencies among each other, some of
them possibly even unknown to the module developers. A long term goal of OTPO
is therefore to systematically discover those hidden dependencies and the effect
they have on overall performance, such as the point-to-point latency or band-
width. We present the current status of OTPO and the ongoing work.

The rest of the paper is organized as follows: Sec. 2 presents the concept
and the architecture of OTPO. Sec. 3 discusses some implementation details of
OTPO. In Sec. 4, we show how OTPO is used to explore the parameter space of
Open MPI’s short message protocol in order to minimize latency on InfiniBand
networks. Finally, Sec. 5 summarizes the paper and discusses ongoing work.

2 Concept

Open MPI [2] is an open source implementation of the MPI-1 [6] and MPI-2 [7]
specifications. The code is developed and maintained by a consortium consisting
of 14 institutions1 from academia and industry. The Open MPI design is centered
around the Modular Component Architecture (MCA), which is the software layer
providing management services for Open MPI frameworks. A framework is ded-
icated to a single task, such as providing collective operations (i.e., the COLL
framework) or providing data transfer primitives for a particular network inter-
connect (i.e., the Byte Transfer Layer framework – BTL). Each framework will
typically have multiple implementations available in the form of modules (“plu-
gins”) that can be loaded on-demand at run time. For example, BTL modules
include support for TCP, InfiniBand, Myrinet, shared memory, and others.

Among the management services provided by the MCA is the ability to ac-
cept run-time parameters from higher level abstractions (e.g., mpirun) and pass
them down to the according frameworks. MCA runtime parameters give system
administrators, end-users and developers the possibility to tune the performance
of their applications and systems without having to recompile the MPI library.
Examples for MCA runtime parameters include the values of cross-over points
1 As of January, 2008.
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between different algorithms in a collective module, or modifying some network
parameters such as internal buffer sizes in a BTL module. Due to its great flexi-
bility, Open MPI developers made extensively use of MCA runtime parameters.
The current development version of Open MPI has multiple hundred MCA run-
time parameters, depending on the set of modules compiled for a given platform.
While average end-users clearly depend on developers setting reasonable default
values for each parameter, some end-users and system administrators might ex-
plore the parameter space in order to find values leading to higher performance
for a given application or machine.

OTPO is a tool aiming at optimizing parameters of the runtime environment
exposed through the MPI library to the end-user application. OTPO is based
on a highly modular concept, giving end-user the possibility to provide or im-
plement their own benchmark for exploring the parameter space. Depending on
the purpose of the tuning procedure, most often only a subset of the runtime pa-
rameters of Open MPI will be tuned at a given time. As an example, users might
choose to tune the networking parameters for a cluster, optimizing the collective
operations in a subsequent run etc. Therefore, one of the goals of OTPO is to
provide a flexible and user friendly possibility to input the set of parameters to
be tuned. OTPO supports testing two general types of MCA parameters:

1. Single-value parameters: these parameters represent an individual value,
such as an integer.

2. Multiple-value parameters: these parameters are composed of one or more
sub-parameters, each of which can vary.

From a higher level perspective, the process of tuning runtime parameters is
an empirical search in a given parameter space. Depending on the number of
parameters, the number of possible values for each parameter, and dependen-
cies among the parameters themselves, the tuning process can in fact be very
time consuming and complex. Thus, OTPO is based on a library incorporating
various search algorithms, namely the Abstract Data and Communication Li-
brary (ADCL) [3]. ADCL is a runtime optimization library giving applications
the possibility to register alternative implementations for a given functionality.
Using various search algorithms, the library will evaluate the performance of
some/each implementation(s) provided, and choose the version leading to the
lowest execution time. Furthermore, the application has the possibility to char-
acterize each implementation using a set of attributes. These attributes are the
basis of some advanced search operations within ADCL in order to speed up
the tuning process. This mechanism has been used by OTPO for registering and
maintaining the status of different MCA parameters.

3 Implementation

Upon start of an optimization run, OTPO parses an input file and creates a global
structure that holds all the parameters and their options. OTPO then registers
a function for each possible combination of MCA parameters which satisfies the
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Reverse Polish Notations (RPNs) conditions specified in the parameter file with
ADCL. The function registered by OTPO first forks a child process. The child pro-
cess sets the parameters in the environment that need to be provided to the mpirun
command, such as the number of processes, the MCA parameters and values, and
the application/benchmark to run. Finally, the child launches mpirun with the
argument set. The parent process waits for the child to complete, and checks if
the test was successful. If the child succeeded, the parent will update the current
request with the value (e.g., latency) that the child measured for the current pa-
rameter values. If the child does not complete within a user specified timeout, the
parent process kills it, and updates the request with an invalid value.

When measurements for all combinations of parameter values have been up-
dated by ADCL, OTPO gathers the results and saves them to a file. Each run of
OTPO produces a file with a time stamp that contains the best attribute com-
binations. The result file contains the set of best measured values, the number
of combinations that produced these values, and the parameter value combina-
tions themselves. The result file might be large, having thousands of different
parameter combinations.

These results files produced by the first version of OTPO are intented to be
intermediate results. Currently ongoing work focuses on presenting the results
in an intuitive and visual manner.

3.1 OTPO Parameter File

The OTPO parameter file describes the MCA parameters and potential values
to be tested. In order to provide a maximum flexibility to the end-user, the
parameters can be described by various options, e.g. depending on whether a
parameter can have continues values, certain discrete values, or whether the
value consists of different strings. Each line in the parameter file specifies a
single parameter by giving the name of the parameter and some options, the
options being one of the following:

– d default value: specifies a default value for this parameter.
– p <list of possible values>: explicitly specify the list of possible values

for the parameter.
– r start value end value: specify the start and end value for the parame-

ter.
– t traversal method <arguments>: specifies the method to traverse the

range of variables for the parameter. The first version of OTPO only in-
cludes one method: “increment,” which takes the operator and the operand
as arguments.

– i rpn expression: RPN condition that the parameter combinations must
satisfy.

– v: specifies if the parameter is virtual, which means that it will not be set as
an environment variable, but will be part of another parameter.

– a format string: specifies that the parameter is an aggregate of other pa-
rameters in a certain format. Each sub parameter is surrounded by dollar
signs ($) in the format string.
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4 Performance Evaluation

This section presents an example using OTPO to optimize some of the InfiniBand
parameters of Open MPI on a given platform. We therefore first describe Open
MPI’s InfiniBand support and some of its run-time tunable parameters, then
present the results of the optimization using OTPO.

4.1 InfiniBand Parameters in Open MPI

Open MPI supports InfiniBand networks through a Byte Transfer Layer (BTL)
plugin module named openib. BTL plugins are the lowest layer in the Open
MPI point-to-point communication stack and are responsible for actually moving
bytes from one MPI process to another. The openib BTL has both single- and
multiple-value parameters that can be adjusted at run-time.

There are more than 50 MCA parameters that are related to the openib
BTL module, all of which can be modified at runtime. Open MPI attempts to
provide reasonable default values for these parameters, but every application and
every platform is different: maximum performance can only be achieved through
tuning for a specific platform and application behavior.

MPI processes communicate on InfiniBand networks by setting up a pair of
queues to pass messages: one queue for sending and one queue for receiving.
InfiniBand queues have a large number of attributes and options that can be
used to tailor the behavior of how messages are passed. Starting with version
v1.3, Open MPI exposes the receive queue parameters for short messages through
the multiple-value parameter btl openib receive queues (long messages use
a different protocol and are governed by a different set of MCA parameters).
Specifically, this MCA parameter is used to specify one or more receive queues
that will be setup in each MPI process for InfiniBand communication. There
are two types of receive queues, each of which have multiple sub-parameters.
It is however outside of the scope of this paper to give detailed and precise
descriptions of the MCA parameters used. The parameters are:

1. “Per-peer” receive queues are dedicated to receiving messages from a sin-
gle peer MPI process. Per-peer queues have two mandatory sub-parameters
(size and num buffers) and three optional sub-parameters (low watermark,
window size, and reserve).

2. “Shared” receive queues are shared between all MPI sending processes.
Shared receive queues have the same mandatory sub-parameters as per-peer
receive queues, but have only two optional sub-parameters (low watermark
and max pending sends).

The btl openib receive queues value is a colon-delimited listed of queue
specifications specifying the queue type (“P” or “S”) and a comma-delimited
list of the mandatory and optional sub-parameters. For example:

P,128,256,192,128:S,65535,256,128,32
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will instantiate one per-peer receive queue for each inbound MPI connection for
messages that are ≤ 128 bytes, and will setup a single shared receive queue for
all messages that are > 128 bytes and ≤ 65, 535 bytes (messages longer than
65,535 bytes will be handled by the long message protocol).

Another good example for how to explore the parameter space by OTPO
are the tunable values controlling Open MPI’s use of RDMA for short messages.
Short message RDMA is a resource-intensive, non-scalable optimization for min-
imizing point-to-point short message latency. Finding a good balance between
the desired level of optimization and the resources consumed by this optimiza-
tion is exactly the kind of task that OTPO was designed for. Among the most
relevant parameters with regard to RDMA operations are btl openib ib max -
rdma dst opts, which limits the maximum number of outstanding RDMA op-
erations to a specific destination; btl openib use eager rdma, a logical value
specifying whether to use the RDMA protocol for eager messages; and btl -
openib eager rdma threshold, only use RDMA for short messages to a given
peer after this number of messages has been received from that peer. Due to
space limitations, we will not detail all RDMA parameters or present RDMA
results of the according OTPO runs.

4.2 Results

Tests were run on the shark cluster at the University of Houston. Shark consists
of 24 dual-core 2.2GHz AMD Opteron nodes connected by 4x InfiniBand and
Gigabit Ethernet network interconnects. The InfiniBand switch is connected to
a single HCAs on every node, with an active mtu of 2048 and an active speed
of 2.5 Gbps. OFED 1.1 is installed on the nodes. A pre-release version of Open
MPI v1.3 was used to generate these results, subversion trunk revision 17198.
A nightly snapshot of the trunk was used, and configured with debug disabled.
All the tests were run with mpi leave pinned MCA parameter set to one. The
benchmark used for tuning the parameters was NetPIPE [11].

OTPO was used to explore the parameter space of btl openib receive -
queues to find a set of values that yield the lowest half round trip short
message latency. Since receive queues is a multiple-value parameter, each sub-
parameter must be described to OTPO. The individual sub-parameters become
“virtual” parameters, each with a designated range to explore. OTPO was con-
figured to test both a per-peer and a shared receive queue with the ranges listed
in Table 1. Each sub-parameter spanned its range by doubling its value from the
minimum to the maximum (e.g., 1, 2, 4, 8, 16, ...).

The parameters that are used are explained as follows:

– The size of the receive buffers to be posted.
– The maximum number of buffers posted for incoming message fragments.
– The number of available buffers left on the queue before Open MPI reposts

buffers up to the maximum (previous parameter).
– The maximum number of outstanding sends that are allowed at a given time

(SRQ only).
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Table 1. InfiniBand receive queue search parameter ranges. The “max pending sends”
sub-parameter is only relevant for shared receive queues.

Sub-parameter Range Per-peer Shared

Buffer size (bytes) 65,536 → 1,048,576 √ √

Number of buffers 1 → 1024
√ √

Low watermark (buffers) 32 → 512
√ √

Max pending sends 1 → 32
√

Table 2. OTPO results of the best parameter combinations

Per Peer Queue Shared Receive Queue

Latency Number of Combinations Latency Number of Combinations

3.78μs 3 3.77μs 1

3.79μs 3 3.78μs 4

3.80μs 15 3.79μs 18

3.81μs 21 3.80μs 32

3.82μs 31 3.81μs 69

3.83μs 34 3.82μs 69

The parameter space from Table 1 yields, 275 for per peer queue and 825 for
shared queue valid combinations (after removing unnecessary combinations that
would lead to incorrect results). These combinations stressed buffer management
and flow control issues in the Open MPI short message protocol when sending
1 byte messages. It took OTPO 3 minutes to evaluate the first case by invoking
NetPIPE for each parameter combination and 9 minutes for the second case.
Note that NetPIPE runs several ping-pong tests and reports half the average
round-trip time. OTPO sought parameter sets that minimized this value.

The results are summarized in Table 2, and reveal a small number of parameter
sets that resulted in the lowest latency (3.78μs and 3.77μs). However, there were
more parameter combinations leading to results within 0.05μs of the best latency.
These results highlight, that typically, the optimization process using OTPO will
not deliver a single set of parameters leading to the best performance, but will
result in groups of parameter sets leading to similar performance.

5 Summary

In this paper we presented OTPO, a tool for optimizing Open MPI runtime pa-
rameters. The tool gives interested end-users and system administrators the pos-
sibility to “personalize” their Open MPI installation. OTPO has been successfully
used to optimize the network parameters of the openib InfiniBand communica-
tion module of Open MPI in order to minimize the communication latency.

The currently ongoing work on OTPO includes multiple areas. As of to-
day, OTPO only supports NetPIPE as the application benchmark. However,
we plan to add more benchmarks to be used with OTPO such as the IMB [5]and
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SKaMPI [9] benchmarks in order to optimize collective modules. Some of the
benchmarks will also require OTPO to support additional optimization metrics,
such as bandwidth or memory usage. The foremost goal however is to develop a
result gathering tool that takes the results file produced by OTPO and presents
it to the user in a more readable and interpretable manner.
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Abstract. A new class of algorithms is presented for efficiently carry-
ing out many-to-many parallel data redistribution in a memory-limited
environment. Key properties of these algorithms are explored, and their
performance is compared using idealized benchmark problems. These al-
gorithms form part of a newly developed MPI-based library MADRE
(Memory-Aware Data Redistribution Engine), an open source toolkit
designed for easy integration with application codes to improve their
performance, portability, and scalability.

1 Introduction

A large class of massively parallel scientific applications are memory-bound.
To achieve their scientific aims, considerable care must be taken to reduce their
memory footprint via careful programming techniques, e.g. avoiding unnecessary
data copies of main data structures, not storing global meta-data locally, and
so forth. The need for efficient many-to-many parallel data movement arises in
a wide variety of such scientific applications (e.g., [1]). Adaptive algorithms, for
example, require extensive load balancing to ensure an optimal distribution of
mesh elements across processors (both in terms of equal balance and spatial
locality) [2]. Time-dependent particle-tracking codes are another good example,
with frequent rebalancing of the main data structures as particles cross processor
boundaries [3].

Typically, such load balancing operations consist of two parts: 1) computing
the map that specifies the new destination for each block of data and 2) effi-
ciently carrying out the movement of data blocks to their new location without
exceeding the memory available to the application on any process. There has
been much research into the first problem, resulting, for example, in numerous
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MADRE_Object MADRE_create(void* data, char *strategy, int numBlocks,

int blockLength, MPI_Datatype datatype, MPI_Comm comm);

/* Redistributes the blocks based on the given map information.

* destRanks and destIndices are both integer arrays of the given

* length. We must have 0 <= length <= madre->numBlocks.

* destRanks[i] is the rank of the proc to which block i is to be

* moved, or -1 if block i is dead. destIndices[i] is the position to

* which block i is to be moved (this integer is ignored if

* destRanks[i] is -1). The blocks in positions length, length+1,

* ..., madre->numBlocks-1 are assumed to be dead. */

void MADRE_redistribute(MADRE_Object madre, int length,

int* destRanks, int* destIndices);

void MADRE_destroy(MADRE_Object madre);

void MADRE_setDataPointer(MADRE_Object madre, void* data);

/* Current number of bytes allocated by MADRE */

long MADRE_getMem();

Fig. 1. Excerpt of MADRE interface, file madre.h

efficient algorithms for computing space-filling curves [4]. The second problem,
though, has received little attention, especially in the critical case where memory
resources are severely limited and memory use must be completely transparent
to the application developer.

One of the few explorations into memory-efficient solutions to the data re-
distribution problem was undertaken by A. Pinar and B. Hendrickson [5]. They
formulated a “phase”-based framework for the problem, showed that the prob-
lem of finding a minimal-phase solution is NP-hard, and studied a family of
algorithms for approximating minimal solutions. Yet there are many very differ-
ent solutions to the redistribution problem that do not necessarily fit into the
phase-based framework and much experimentation will be necessary to compare
their performance and ascertain their various qualities.

We describe here a new class of memory-aware parallel redistribution algo-
rithms that extends the pioneering work of Pinar and Hendrickson. Properties of
these algorithms are explored, and some initial performance tests are carried out.
The algorithms presented form only a small part of the larger MADRE effort
(Memory-Aware Data Redistribution Engine) [6], an open source, C/MPI-based
toolkit that includes a wide range of strategies that allow the client to control
tradeoffs between buffer space, performance, and scalability. Moreover, MADRE
is architected as well to serve as a testbed for continued research in the area
of parallel data redistribution, where developers can easily integrate new tech-
niques/strategies within the framework. An excerpt of the MADRE interface is
shown in Fig. 1.
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2 Algorithms

In this section, we define the data redistribution problem precisely, and describe
two of the algorithms implemented in MADRE for solving it.

Assume we are given a distributed-memory parallel program consisting of n
processes. Each process maintains in its local memory a contiguous, fixed-sized
array of data blocks, each block comprising l bytes. Let mi be the number of
blocks maintained by process i (0 ≤ i < n). A block is specified by its address
(i, j), where i is the process rank and j (0 ≤ j < mi) is the array index. Let A
denote the set of all addresses. A redistribution problem is specified by a subset
B ⊆ A and an injective map f : B → A. A redistribution algorithm solves the
problem if for all b ∈ B, the contents of f(b) after redistribution equal the
contents of b before redistribution. The problem may be thought of as an “in-
place” version of MPI_ALLTOALLV. The blocks in A\B are said to be free; there
is no requirement that their data be preserved, so the algorithm is free to use
them as “scratch space.”

The algorithms implemented in MADRE are expected to satisfy certain re-
quirements. The first is that each should be a complete algorithmic solution to
the data redistribution problem, i.e., it should terminate in finite time with the
correct result on any redistribution problem, even one with no free blocks on
any process. Second, the additional memory required by the algorithm should
depend only linearly on the problem size. To be precise, there must be (rea-
sonably small) constants c1, c2, and c3 such that the memory required by the
algorithm on process i is at most c1n + c2mi + c3l. Algorithms with a quadratic
dependence on the problem size will not scale on current high-end machines. In
particular, no single process “knows” the global map; it is only given the des-
tination addresses for its own blocks. Finally, each algorithm should consume
other resources frugally; e.g., the number of outstanding MPI communication
requests on a process must stay within reasonably small bounds.

The MADRE library includes a module for the management of blocks on a
single process. This module maintains the destination addresses for each block
and provides a function to sort the blocks on a single process by increasing des-
tination rank (with all free spaces at the end). All of the MADRE redistribution
algorithms depend heavily on these services, in particular because it is often nec-
essary to create contiguous send and receive buffers. For the most part, however,
we will elide these details in our descriptions of the algorithms.

2.1 A Pinar-Hendrickson Parking Algorithm

Our first algorithm is an instance of the family of “parking” algorithms described
in [5]. We will briefly summarize the algorithm and refer the reader to [5] for
details.

The algorithm proceeds in a series of global phases. Within each phase, each
process receives as much data as possible into its free space while sending out as
much data as possible to other processes. When this communication completes,
the space occupied by the sent data is reclaimed as free, the blocks are re-sorted,
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and the next phase begins. This continues until all blocks have arrived at their
final destinations.

The protocol for determining how many blocks a process p will send and
receive to/from other processes in a phase proceeds as follows. First, p informs
each process q of the number of blocks it has to send to q. These can be thought
of as “requests to send” on the part of p. At the same time, p receives similar
requests from the processes that wish to send it data. If p does not have sufficient
free space to receive all the incoming data, it uses some heuristic to apportion its
free space among its sources. In any case, p sends each source a message stating
how much of the request will be granted, i.e., the number of blocks it will receive
from that source in the current phase. (Our implementation uses the first-fit
heuristic of [5].) At the same time, p receives similar granting messages from its
targets. At this point, p knows how many blocks it will send and receive to/from
each process. The data is then transferred by initiating nonblocking send and
receive operations for the specified quantities.

There are situations in which the basic algorithm described above does not ter-
minate. This can happen, for example, if a cyclic dependency occurs among a set
of processes with no free space. Moreover, when it does complete it may take many
more phases than necessary. For these reasons, Pinar and Hendrickson introduce
“parking.” The idea is that if p does not have enough free space to receive all of its
incoming data in the next phase it can temporarily “park” data on processes with
extra free space. The parked data will be moved to its final destination when space
becomes available. A root process is used in each phase to match processes with
data to park with those with extra free space. A parking algorithm will always
complete, as long as there is at least one free space on at least one process. (Our
implementation allocates a single free space if there are no free spaces at all so that
the algorithm will complete in all cases.) Parking can also significantly reduce the
number of phases, approximating to within a factor of 1.5 a minimal-phase solu-
tion, though this does not always reduce the run-time.

2.2 Cyclic Scheduler

The parking algorithm described above exhibits several potential weaknesses.
First, the total quantity of data moved is greater than necessary, because park-
ing blocks are moved more than once. Second, the division into phases, with
an effective barrier between each phase, may limit the possible overlap of com-
munication with communication. For example, if some processes require very
little time to complete their work in a phase, they will block, waiting for other
processes to complete the phase, when they could be working on the next phase.
Third, the number of phases may blow up as the total number of free spaces
decreases, and there is significant overhead required to execute each phase.

Like the parking algorithm, the cyclic scheduler algorithm uses a root process
to help schedule actions on other processes. However, it differs in several ways.
First, all blocks are moved directly to their final destinations. Second, the cyclic
algorithm separates the process of schedule creation from the process of schedule
execution. The schedule is created in the first stage of the algorithm, which relies
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heavily on the root. Once that stage completes, each process has the complete
sequence of instructions it must follow in order to complete the redistribution.
In the schedule execution stage, each process executes these instructions. In this
stage, the root plays no special role, there are no effective barriers, and minimal
overhead is required. Since the length of a schedule is bounded above by mi, the
memory overhead required to store the schedule is within our required limits. In
all of our experiments to date, the time required to complete the schedule creation
stage has been insignificant compared to the time required for the execution stage.

A schedule is a sequence of actions for a process to follow. There are three
types of actions. The first has the form “Send q blocks to process p1 in increments
of c blocks,” meaning that the process should send a message to p1 containing
c blocks, then another message of c blocks, and so on, until a total of q blocks
have been sent. (The final message will consist of q%c blocks if c does not divide
q.) The other action types are “Receive q blocks from p2 in increments of c” and
“Send q blocks to p1 and receive q blocks from p2 in increments of c.” The last
form requires that c blocks be sent and c received, and after those operations
have completed, another c are sent and received, and so on. The blocks must be
sorted once before an action begins, but do not have to be sorted again until the
next action is executed. This is an important point which reduces the overhead
associated to executing an action. To create the schedule, the root essentially
performs a depth-first search of the transmission graph. This is the weighted
directed graph in which the nodes are the process ranks, and there is an edge
from i to j of weight k > 0 if i has k blocks to send to j. It is not possible to
store the entire transmission graph on the root in linear memory. Instead, each
process p sends the root one outgoing edge, i.e., the rank r of a single process
to which p has data to send and the number of blocks p has to send to r. As
soon as the root has received an edge from each process, it begins scheduling
actions. This involves decrementing edge weights, and sending actions back to
the non-root processes. When the weight of an edge from p reaches 0, the root
requests a new edge from p. Hence edges are continually flowing in to the root
and actions are continually flowing out, in a pipelined manner, which is how
the memory required by the root is bounded by a constant times the number of
processes.

The main part of the scheduling algorithm on the root is shown in Fig. 2. The
root uses a stack to perform the search of the graph. The stack holds nodes in
the graph, i.e., process ranks. If p0 and p1 are two consecutive elements in the
stack then there is an edge from p0 to p1. The stack grows until either (a) a cycle
is reached, i.e., the destination rank of the edge departing from the last node
on the stack is already on the stack, or (b) a node is reached with no remaining
outgoing edges (i.e., no data to send). In case (a), an action is scheduled on each
process in the cycle, while in case (b), an action is scheduled on each process
in the stack. The algorithm for case (a) is shown. The functions for sending
actions and retrieving edges are not shown; these involve parameters, such as
the number of actions/edges to include in a single message, that provide some
control over the memory/time tradeoff.
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symbol meaning

degree[i] number of remaining edges departing from proc i in transmission graph

stack[i] ith element in DFS stack containing nodes of transmission graph
stackSize current size of DFS stack
weight[i] weight of current edge departing from proc i

dest[i] destination node for current edge departing from i
free[i] current number of free spaces on proc i

procedure main is1

for i ← 0 to n − 1 do2

while degree[i] > 0 do3

push(i);4

while stackSize > 0 do5

r ← peek();6

if degree[r] = 0 then7

scheduleShift();8

else9

d ← dest[r];10

p ← stackPos[d];11

if p < 0 then12

push(d)13

else14

scheduleCycle(p)15

procedure scheduleCycle(s) is16

q ← mini≥s{weight[stack[i]]};17

c ← min{q, max{1, mini≥s{free[stack[i]]}}};18

l ← peek();19

while stackSize > s do20

p1 ← pop();21

p2 ← dest[p1];22

if stackSize > s then23

p0 ← peek()24

else25

p0 ← l26

schedule send-recv on p1 with source27

p0, dest p2, quantity q, and
increment c;
weight[p1] ← weight[p1] − q;28

if weight[p1] = 0 then nextEdge(p1)29

Fig. 2. The cyclic scheduler root scheduling algorithm

In case (a), the number of blocks q to be sent and received by each process
is the minimum weight of an edge in the cycle. The increment is usually the
minimum number of free spaces for a process in the cycle. However, if there is
a process with no free space, the increment is set to 1: in this case an extra free
space reserved for this situation will be used to receive each incoming increment.
When the cycle has been executed the extra space will again be free. This is
the essential fact that guarantees the algorithm will always terminate, though it
does require the allocation of an additional block on each process. The actions
scheduled in case (b) are similar, though the first element in the stack performs
only a send and the last performs only a receive.

The algorithm is most effective when it finds many long cycles or shifts with
large quantities. The idea is that all of the actions comprising a single cycle/shift
can execute in parallel and should take approximately the same amount of time.
Moreover, as pointed out above, no local redistribution needs to take place during
the execution of an action.

3 Experiments

We report here on a few experiments comparing the performance of the different
algorithms. The experiments are designed to test the algorithms in situations
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Fig. 3. Time to redistribute data. In all cases, each process maintains 25,000 memory
blocks of 16,000 bytes each and the y-axis is the time in seconds to complete a data
redistribution. In (a), (c), and (d), the x-axis shows the number n of processes in
logarithmic scale. In (b), (c), and (d) the time is logarithmic.

of very high data movement and very limited memory. All experiments were
executed on the 1024-node IBM Blue Gene/L at Argonne National Laboratory.
In each experiment, each process maintains an array of 25,000 blocks, and each
block consists of 16,000 bytes. Thus 400 MB are consumed by data, which is a
significant portion of the 512 MB total RAM available on each node.

In the first experiment, each process has no free space, and wishes to send
all 25K blocks to the next process in the cyclic ordering i �→ (i + 1)%n. The
data redistribution was timed for various values of n. The second experiment
is similar, except that each process has 5K free spaces and sends 20K blocks.
The results of these two experiments are shown in graph (a) of Fig. 3. The time
for the parking algorithm to complete the first experiment is not shown because
it did not terminate after 30 minutes; the reasons for this will be explained
below. Otherwise, the times range from 2.5 to 5.5 seconds and remain relatively
constant as the number of processes is scaled in each case, suggesting near-perfect
parallelism in the data transfer.

The third experiment is similar to the two above, except that the number of
processes was fixed at 128 and the number of blocks to be transferred was scaled
from 12K to 25K. (Equivalently, the number of free spaces was decreased from
13K to 0.) The results are shown in graph (b) of Fig. 3, and illustrate how the
time of the parking algorithm blows up with the decreasing amount of free space,
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in contrast with the cyclic algorithm. Our performance analyses reveal that this
behavior is not due to the communication patterns, which are essentially the
same in both cases. Rather, the difference arises because the parking algorithm
requires that data be re-sorted at the end of each phase. In this experiment, the
distribution of the blocks on process n − 1 at the end of each phase presents
a worst case scenario for the sort: the entire array of blocks must be shifted,
requiring on the order of 25K calls to memcpy (of 16 KB) as the free space
approaches 0. Moreover, the number of phases approaches 25K as the free space
approaches 0, and so the time dedicated to sorting quickly blows up. For the
cyclic algorithm, each process need only execute a single send-receive action of
25K blocks with increment equal to the number of free spaces. Because a sort is
only required at the end of each action, the cyclic algorithm performs only one
sort for the entire execution.

In the fourth experiment, one process has 25K blocks of free space and all
others have no free space. Each of the processes with data wishes to send an
approximately equal portion of its data to all other processes. The times are
shown in Fig. 3(c). Both algorithms complete for every process count, though
the time clearly grows exponentially for both.

In the fifth experiment, each process has 5K free spaces and the map sends
block j of process i to position (mi+j)/n of process (mi+j)%n, where m = 20K.
(The map is essentially a global transpose of the data matrix.) The results are
shown in Fig. 3(d). In this case the cyclic algorithm blows up with process count,
and cannot scale beyond 128 nodes without exceeding our 30-minute limit. In
contrast, the parking algorithm scales reasonably well and completes the 1024-
node redistribution in only 28 seconds.

Further investigation revealed the reason for the discrepancy. For this redis-
tribution problem, the transmission graph is the complete graph in which all
edges have approximately equal weight. Moreover, in our implementation each
process orders its outgoing edges by increasing destination rank. The result is
that all of the actions scheduled by the root are cycles of length 2. These are
scheduled in the “dictionary order”

{0, 1}, {0, 2}, . . . , {0, n − 1}, {1, 2}, {1, 3}, . . . , {1, n − 1}, . . . , {n − 1, n}.

The execution of one of these pairs involves the complete exchange of data
between the two processes. If all exchanges take approximately the same time,
execution will proceed in 2n + 3 phases: in phase m, the exchanges for all pairs
{i, j}, where i + j = m and i �= j, will take place. This means that many
processes will block when they could be working. For example, in phase 1 only
processes 0 and 1 will exchange data, while all other processes wait. In contrast,
the parking algorithm completes in 4 stages for any n. Hence, in this case, the
parking algorithm achieves much greater overlap of communication.

4 Conclusion

For a certain class of scientific applications, the limited-memory data redistri-
bution problem will become an increasingly important component of overall
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performance and scalability as we move toward the petascale. Solutions to this
problem are difficult and subtle. Solution algorithms can behave in ways that
are difficult or impossible to predict using purely analytical means, so experi-
mentation is essential for ascertaining their qualities. We have implemented a
practical framework with multiple solutions to the problem, two of which are
explored in this paper. A series of simple experiments helped us identify some
potential weaknesses in a variant of the Pinar-Hendrickson parking algorithm.
We addressed these in a new algorithm, only to discover different situations in
which that algorithm also performs poorly.

We continue to refine the algorithms presented here and to explore entirely
new ones. In addition, we are exploring heuristics capable of predicting which
algorithm will perform well on a given problem. It may also be possible to com-
bine different algorithms, so that in certain states the algorithm will be switched
dynamically, in the middle of the redistribution. Finally, we are preparing an-
other set of experiments in which we integrate MADRE directly into scientific
applications, as opposed to the synthetic experiments reported on here.

Acknowledgements. We are grateful to Ali Pinar for answering questions about
the parking algorithm and making the code used in [5] available to us. We also
thank Anthony Chan for assistance with the Jumpshot performance visualization
tool [7].
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Abstract. In this paper, we analyze existing MPI benchmarking suites,
focusing on two restrictions that prevent them from a wider use in appli-
cations and programming systems. The first is a single method of mea-
surement of the execution time of MPI communications implemented by
each of the suites. The second one is the design of the suites in the form
of a standalone executable program that cannot be easily integrated into
applications or programming systems. We present a more flexible bench-
marking package, MPIBlib, that provides multiple methods of measure-
ment, both operation-independent and operation-specific. This package
can be used not only for benchmarking but also as a library in applica-
tions and programming systems for communication performance model-
ing and optimization of MPI operations.

Keywords: MPI, benchmark, parallel computing, computational clus-
ter, communication performance model.

1 Introduction

Accurate estimation of the execution time of MPI communication operations
plays an important role in optimization of parallel applications. A priori infor-
mation about the performance of each MPI operation allows a software devel-
oper to design a parallel application in such a way that it will have maximum
performance. This data can also be useful for tuning collective communication
operations and for the evaluation of different available implementations. The
choice of collective algorithms becomes even more important in heterogeneous
environments. In addition to general timing methods that are universally ap-
plicable to all communication operations, MPIBlib includes methods that can
only be used for measurement of some particular operations. Where applicable,
these operation-specific methods work faster than their universal counterparts
and can be used as time-efficient alternatives. The efficiency of timing methods
will be particularly important in self-adaptable parallel applications using run-
time benchmarking of communication operations to optimize their performance
on the executing platform.
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A typical MPI benchmarking suite uses only one timing method to estimate
the execution time of the MPI communications. The method provides a certain
accuracy and efficiency. The efficiency of the timing method is particularly im-
portant in self-adaptable parallel applications using runtime benchmarking of
communication operations to optimize their performance on the executing plat-
form. In this case, less accurate results can be acceptable in favor of a rapid
response from the benchmark. In this paper, we analyze different timing meth-
ods used in the benchmarking suites and compare their accuracy and efficiency
on homogeneous and heterogeneous clusters. Based on this analysis, we design a
new MPI benchmarking suite called MPIBlib that provides a variety of timing
methods. This suite supports both fast measurement of collective operations and
exhaustive benchmarking.

In addition to general timing methods that are universally applicable to all
communication operations, MPIBlib includes methods that can only be used
for measurement of one or more specific operations. Where applicable, these
operation-specific methods work faster than their universal counterparts and
can be used as their time-efficient alternatives.

Most of the MPI benchmarking suites are designed in the form of a standalone
executable program that takes the parameters of communication experiments
and produce a lot of output data for further analysis. As such, they cannot be
integrated easily and efficiently into application-level software. Therefore, there
is a need for a benchmarking library that can be used in parallel applications
or programming systems for communication performance modeling and tuning
communication operations. MPIBlib is such a library that can be linked to other
applications and used at runtime.

The rest of the paper is structured as follows. Section 2 outlines existing bench-
marking suites. We analyze different methods of measuring MPI communication
operations, which are implemented in the suites or described in work on MPI
benchmarking. Section 3 describes main features of MPIBlib, the benchmarking
library that provides a variety of operation-independent and operation-specific
methods of measurement. In Section 4, we discuss application of the library. The
results of experiments on homogeneous and heterogeneous clusters are presented
in Section 5. We compare the results and costs of different methods of measure-
ment and focus on measuring point-to-point, scatter and gather communication
operations as their results are used in the estimation of parameters of advanced
heterogeneous communication performance models.

2 Related Work

There are several commonly used MPI benchmarking suites [1]-[5]. The aim of all
these suites is to estimate the execution time of MPI communication operations
as accurate as possible. In order to evaluate the accuracy of the estimation
given by different suites, we need a unified definition of the execution time.
As not all of the suites explicitly define their understanding of the execution
time, we suggest the following as a natural definition. The execution time of a
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communication operation is defined as the real (wall clock) time elapsed from
the start of the operation, given all the participating processors have started
the operation simultaneously, until the successful completion of the operation
by the last participating processor. Mathematically, this time can be defined
as the minimum execution time of the operation, given that the participating
processors do not synchronize their start and are not participating in any other
communication operation. It is important to note that the definition assumes
that we estimate the execution time for a single isolated operation.

Practically, the execution time of the communication operation is estimated
from the results of an experiment that, in addition to the operation, includes
other communications and computations. As parallelism introduces an element of
non-determinism, there is a problem of reproducibility of such experiments. The
methodology of designing reproducible communication experiments is described
in [1]. It includes:

– Repeating the communication operation multiple times to obtain the reliable
estimation of its execution time,

– Selecting message sizes adaptively to eliminate artifacts in a graph of the
output of the communication operation, and

– Testing the communication operation in different conditions: cache effects,
communication and computation overlap, communication patterns, non-
blocking communication etc.

In the mpptest suite [1], these ideas were implemented and applied to bench-
marking point-to-point communications.

The execution time of communication operations depends on the MPI library,
native software, and hardware configurations. NetPIPE [2] provides benchmarks
for different layers in the communication stack. It is based on the ping-pong
communication experiments that are implemented over memcpy, TCP, MPI
etc. In addition to evaluation of communication performance, this suite helps us
identify where inefficiencies lie.

Regarding both the reproducibility of communication experiments and the de-
pendency on communication layers, we focus on benchmarking not only point-
to-point operations but also collective ones. We analyzed several MPI bench-
marking suites that include tests for collective operations. Despite the different
approaches to what and how to measure, they have several common features:

– computing an average, minimum, maximum execution time of a series of the
same communication experiments to get accurate results;

– measuring the communication time for different message sizes – the number
of measurements can be fixed or adaptively increased for messages when
time is fluctuating rapidly;

– performing simple statistical analysis by finding averages, variations, and
errors.

The MPI benchmarking suites are also very similar in terms of the software
design. Usually, they provide a single executable that takes a description of
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communication experiments to be measured and produces an output for plotting
utilities to obtain graphs.

As more than two processors are involved in collective communications and
connected in different ways (communication trees), there are two main issues
concerned with the estimation of execution time of MPI collective operations:
– measuring the execution time, and
– scheduling the communication experiments.

2.1 Measuring the Execution Time of MPI Collective Operations

Estimation of the execution time of the communication operation includes the se-
lection of two events marking the start and the end of the operation respectively
and measuring the time between these events. First of all, the benchmarking
suites differ in what they measure, which can be:
– The time between two events on a single designated processor,
– For each participating processor, the time between two events on the pro-

cessor, or
– The time between two events but on different processors.

The first two approaches are natural for clusters as there is no global time
in these environments where each processor has its own clock showing its own
local hour. The local clocks are not synchronized and can have different clock
rates, especially in heterogeneous clusters. The only way to measure the time
between two events on two different processors is to synchronize their local clocks
before performing the measurement. Therefore, the third approach assumes the
local clocks to be regularly synchronized. Unlike the first two, this approach
introduces a measurement error as it is impossible to keep the independent
clocks synchronized all the time with absolute accuracy.

In order to measure time, most of the packages rely on the MPI Wtime func-
tion. This function is used to measure the time between two events on the same
processor (the local time). For example, the execution time of a roundtrip can be
measured on one process and used as an indication of the point-to-point commu-
nication execution time [3], [5]. The execution time of a collective communication
operation can also be measured at a designated process. For collective operations
with a root, the root can be selected for the measurement. As for many collec-
tive operations the completion of the operation by the root does not mean its
completion by all participating processes, short or empty messages can be sent
by the processors to the root to confirm the completion. A barrier, reduce, or
empty point-to-point communications can be used for this purpose. The result
must be corrected by the average time of the confirmation. The drawback of this
approach is that the confirmation can be overlapped with the collective opera-
tion and hence it cannot simply be subtracted. As a result, this technique may
give negative values of the execution time for very small messages.

The accuracy of this approach (root timing) is strongly dependent on whether
all processes have started the execution of the operation simultaneously. To en-
sure the more or less accurate synchronization of the start, a barrier, reduce,
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or empty point-to-point communications can be used. They can be overlapped
with the collective operation to be measured and previous communications as
well. To achieve even better synchronization, multiple barriers are used in the
benchmarking suites [3]-[5].

The local times can be measured on all processes involved in the communi-
cation and the maximum can be taken as the communication execution time.
This approach (maximum timing) is also dependent on synchronization of the
processes before communication, e.g. with a barrier.

To measure the time between two events on different processors, the local
clocks of the processors have to be synchronized. Such synchronization can be
provided by the MPI global timer if the MPI WTIME IS GLOBAL attribute is
defined and true. Alternatively, local clocks of two processors A and B can be
synchronized by the following simple algorithm implemented in MPIBench [4].
Processor A sends a message to processor B, which contains the current time
plus a half of the previously observed minimum roundtrip time. Processor B
receives the message and returns it to A, which calculates the total time that
the roundtrip took to complete. If the roundtrip time is the fastest observed so
far, then the estimated time of arrival of the initial message is the most accurate
yet. If so, processor B calculates the current approximation of the time offset
as the message’s value received in the next iteration. The processors repeat this
procedure until a new minimum roundtrip time has not been observed for a
prearranged number of repetitions. Given A being a base processor, this syn-
chronization procedure is performed sequentially for all pairs (A, Bi). A similar
procedure is implemented in SKaMPI [5] to find offsets between local times of
the root and the other processes.

As local clocks can run at different speeds, especially in heterogeneous envi-
ronments, the synchronization has to be regularly repeated. The synchronization
procedures are quite costly and introduce a significant overhead in benchmark-
ing when used. As soon as the global time has been set up, the time between
two events on different processors can be measured [4], [5]. The accuracy of
this approach will depend on the accuracy of the clock synchronization and on
whether processors start the communication simultaneously. The global timing
usually gives a more accurate estimate because its design is closer to the natural
definition of the communication execution time given in the beginning of this
section. However, while being more time-efficient, the methods based on local
clocks can also provide quite accurate results for many popular platforms and
MPI implementations. Therefore, it makes sense to allow a choice of different
methods so the user may choose the most efficient for benchmarking with a re-
quired accuracy. This is especially important if the benchmarks are to be used
in the software that requires the runtime results of the benchmarking.

2.2 Scheduling the Communication Experiments

To obtain a statistically reliable estimate of the execution time, a series of the
same experiments are typically performed in the benchmarking suites. If the
communications are not separated from each other in this series, the successive
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Fig. 1. IMB benchmark on a 16-node heterogeneous cluster: single/multiple scat-
ter/gather measurements

executions may overlap, resulting in a so-called pipeline effect [6], when some
processes finish the current repetition earlier and start the next repetition of the
operation before the other processes have completed the previous operation. The
pipeline affects the overall performance of the series of the operations, result-
ing in inaccurate averaged execution time. This is the case for the IMB (former
PMB) benchmark [3], where the repetitions in a series are not isolated in the
attempt to prevent participation of the processes in third-party communications.
The IMB measures the communication execution times locally on each process,
and the minimum, maximum, and average times are then returned. Fig. 1 shows
the results returned by the IMB on a 16-node heterogeneous cluster for scatter
and gather operations when single and multiple repetitions are used in the exper-
iments. One can see that for the scatter experiments with a single repetition, the
minimum time represents the execution time of a non-blocking send on the root
and is therefore relatively small. In the gather experiments with a single repeti-
tion, the maximum time is observed on the root, reflecting the communication
congestion. The difference between the minimum and maximum times decreases
with an increase in the number of repetitions. In both cases, we observe a clear
impact of the pipeline effect on the measured execution time of the operation:

– Scatter: For small and large messages, the execution time of a repetition in
the series is smaller than that measured in a single experiment. For medium-
sized messages, escalations of the execution time are observed that do not
happen in single experiments.

– Gather: Escalations of the execution time for medium-sized messages, ob-
served for single experiments, disappear with the increase of the number of
repetitions due to the pipelining.

Thus, the pipeline effect can significantly distort the actual behavior of the
communication operation, given that we are interested in accurate estimation of
the time of its single and isolated execution.

In order to find the execution time of a communication operation that is
not distorted, it should be measured in isolation from other communications. A
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barrier, reduce, or point-to-point communications with short or empty messages
can be used between successive operations in the series. The approach with
isolation gives results that are more accurate.

Some particular collective operations and their implementations allow for the
use of more accurate and efficient methods that cannot be applied to other
collective operations. One example is the method of measurement of linear and
binomial implementations of the MPI broadcast on heterogeneous platforms pro-
posed in [7]. It is based on measuring individual tasks rather than the entire
broadcast and therefore it does not need the global time. An individual task is a
part of the broadcast communication between the root and the i-th process. In
each individual task, the pipelining effect is eliminated by sending an acknowl-
edgement message from the i-th process to the root. The execution time of the
task is then corrected by the value of the point-to-point execution time.

The acquisition of detailed knowledge of the implementation of collective oper-
ations can prove useful towards improving the efficiency of measurement method-
ologies. This becomes particularly important for benchmarking performed at
runtime with on-the-fly optimization of communication operations.

3 MPIBlib Benchmarking Suite

This work is motivated by the absence of an MPI benchmarking suite that would
satisfy the following requirements:

– The suite is implemented in the form of library allowing its integration into
application-level software.

– The suite provides a wide range of timing methods, both universal and op-
eration/implementation specific, allowing for the choice of the optimal (in
terms of accuracy and efficiency) method for different applications and exe-
cuting platforms.

We have developed such a benchmarking library, MPIBlib, the main goal of
which is to support accurate and efficient benchmarking of MPI communication
operations in parallel applications at runtime. The main features of MPIBlib can
be summarized as follows.

MPIBlib is implemented in the form of library and includes the
benchmarks for point-to-point and collective communication opera-
tions. The MPIBlib design was influenced by our work on development of the
software tool for automated estimation of parameters of the heterogeneous com-
munication performance model proposed in [8]. The software tool widely uses
MPIBlib at runtime for accurate and efficient estimation of the execution time
of point-to-point, scatter, and gather communications, which is required to find
the parameters of the model.

To provide reliable results, the communication experiments in each
benchmark are repeated either fixed or variable number of times. The
latter allows the user to control the accuracy of the obtained estima-
tion of the execution time. Namely, the definition of each benchmarking
function includes the following arguments:
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– Input: the minimum and maximum numbers of repetitions, min reps and
max reps (min reps ≤ max reps), and a maximum error, alpha (0 <
alpha < 1);

– Output: the actual number of repetitions, reps, and error, a.

Assigning to min reps and max reps the same values results in the fixed number
of repetitions of the communication operation, with the error arguments being
ignored. As communication operations in a series are isolated from each other,
we suppose that the measurement errors are distributed according to the nor-
mal law, which enables estimating within a confidence interval, (1 − alpha). If
min reps < max reps, the experiments are repeated until the sample satisfies
the Student’s t-test or the number of repetitions reaches its maximum. In this
case, the number of repetitions the benchmark has actually taken, reps, and the
final error, a, are returned. For statistical analysis, the GNU Scientific Library
[9] is used.

The point-to-point benchmarks can be run either sequentially or in
parallel on the communicator consisting of more than two processors.
The point-to-point benchmark estimates the execution time of the roundtrips
between all pairs of processes in the MPI communicator, i

M1←−−→
M2

j, i < j. It

returns three arrays, each of which contains C2
n values corresponding to each

pair: estimations of execution time, numbers of repetitions and errors. Several
point-to-point communications as well as statistical analysis can be performed in
parallel, with each process being involved in no more than one communication.
This allows us to significantly reduce the overall execution time of the point-to-
point benchmark code and gives us quite accurate results on the clusters based
on switched networks. Network switches are capable of inspecting data packets as
they are received, determining the source and destination device and forwarding
it appropriately. By delivering each message only to the original intended device,
a network switch conserves network bandwidth and offers a generally better
performance for simultaneous point-to-point communications.

The use of the results of the point-to-point benchmarks can be various. They
can be used for the estimation of parameters of the analytical communication
performance models, such as Hockney, LogGP. For example, the parameters of
the Hockney model can be found from the execution times of two roundtrips with
empty and non-empty messages. In practice, due to noises in measurements, they
are found from the execution times averaged in two series of such roundtrips.
MPIBlib point-to-point benchmark provides this accurate estimation.

The set of communication operations that can be benchmarked by
MPIBlib is open for extensions. The definition of operation-independent
benchmark functions includes a data structure argument that includes the func-
tion pointer referencing to an MPI collective operation. MPIBlib provides a
choice of different implementations of MPI collective operations (for example,
linear and binomial MPI Scatter/MPI Gather). Any of those functions as well as
user-defined versions of MPI collective operations can be passed as an argument
to the benchmarking subroutines.
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Three timing methods that are universally applicable to all MPI
communication operations are provided; these are global, maximum,
and root timings. MPIBlib provides API to all timing methods described in
Section 2. The user is responsible for building the MPI communicator and map-
ping the processes to processors. To use benchmarks on SMP/multicore pro-
cessors, an accurate MPI Wtime implementation is required, as intra-processor
communications may take very short time.

MPIBlib provides both operation-specific and implementation-
specific methods of measurement. One example is a method of measur-
ing the linear and binomial scatter, which is based on the method of measuring
broadcast proposed in [7].

4 Application

The results of benchmarking the collective operations can be used for evaluation
of their different implementations, for building of the communication perfor-
mance models, and for optimization of collective operations.

With help of MPIBlib, we managed to observe the escalations of the execution
time of linear scatter/gather on the clusters based on Ethernet switch [10]. It was
possible due to the isolation of collective operations and the use of the maximum
timing method for scatter and the root timing method for gather.

The library was also integrated into the software tool that automates the
estimation of parameters of an advanced heterogeneous communication perfor-
mance model [8]. The software tool calls the MPIBlib functions for estimation of
the execution time of the i

0←−−→
0

j and i
M←−−→
0

j roundtrips, scatter and gather
communications. We used this tool on a 16-node heterogeneous cluster with a
single switch, with parallel point-to-point benchmarking and the root timing of
collective operations, which proved efficient and quite accurate on heterogeneous
clusters with a single switch. To estimate the parameters of the heterogeneous
communication performance model, we carried out additional (neither point-
to-point, nor scatter/gather) communication experiments, namely, point-to-two
communications i

M←−−→
0

j, k [11]. The function measuring the execution time of
this communication experiment was implemented on the top of the MPIBlib li-
brary. In this function, the communication experiments between non-overlapping
triplets of processors were performed in parallel on the cluster.

The MPIBlib benchmarking library can also be used to tune MPI communi-
cations either upon installation of an application (or a programming system) or
at runtime. For example, the results of the scatter and gather benchmarks car-
ried out upon installation of HeteroMPI are used for optimization of collective
operations [10].

The following fragment shows an example of the use of MPIBlib for finding
the fastest scatter implementation. In the beginning of the program, MPIB -
measure scatter root function is used to find estimates of the execution time of
different scatter implementations for different message sizes. Then these results
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are used in the optimized scatter, Opt Scatter, in order to pick the fastest imple-
mentation for each particular message size. Opt Scatter calculates the message
size in bytes, compares the estimated execution times of all implementations for
this message size and invokes the fastest implementation.

//initialization, in the beginning of main()
for (i=0; i<N; i++)
MPIB_measure_scatter_root(comm, algs[i], n, M,
min_reps, max_reps, alpha, T[i], &reps, &a);

//globals
MPIB_Scatter* impls[N];//N scatter implementations
int M[n];//n message sizes
double T[N][n];//estimated times for each impl/msg

//optimized scatter, to be used instead of MPI_Scatter
int Opt_Scatter(list of MPI_Scatter arguments){
//calculate message size m
//find i such that M[i]<=m and M[i+1]>m
//find j such that T[j][i]=min(T[0..N-1][i])
return impls[j](list of MPI_Scatter arguments);

}

5 Experiments

In addition to the library, the MPIBlib suite provides a standalone application
for benchmarking point-to-point and collective MPI communications, and a set of
gnuplot scripts for visualization of the results of measurements. We performed
experiments with point-to-point, scatter and gather benchmarks on homogeneous
and heterogeneous clusters with different MPI implementations. In this paper, we
present the results for a heterogeneous 16-node cluster: 11 x Xeon 2.8/3.4/3.6,
2 x P4 3.2/3.4, 1 x Celeron 2.9, 2 x AMD Opteron 1.8, Gigabit Ethernet, LAM
7.1.3. They demonstrate the effects of pipelining (Section 2) and the importance of
benchmarking collective operations for different message sizes (in [10], we reported
on the escalations of the execution time of gather caused by the use of TCP/IP
layer in the communication stack with switched networks, see Fig. 1).

Table 1. The execution time of scatter and gather benchmarks with different timing
methods on 16 node heterogeneous cluster

Timing method Scatter, 0..100KB, Gather, 0..100KB,
1KB stride, 1 rep (sec) 1KB stride, 1 rep (sec)

Global 28.7 44.7
Maximum 0.8 15.6
Root 0.8 15.7
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Fig. 2. Comparison of different timing methods for native (linear) LAM scatter and
gather on 16 node heterogeneous cluster

We compared the results of sequential and parallel point-to-point benchmarks.
In the sequential mode, while two processes are communicating, a barrier blocks
all other processes. The experiment included 100 repetitions of 4KB ping-pong
and took 3.5 sec. In the case of parallel roundtrips, the benchmarking procedure
took significantly less time, 0.5 sec, with the same accuracy of estimation, which
was possible due to the nature of the experimental network.

In the next experiment, we use MPIBlib to compare the cost and accuracy
of different methods of the measurement of native MPI scatter and gather op-
erations on the target platform. Table 1 shows the overall execution time of the
benchmarks that use different timing methods and consist of one collective com-
munication for each message size from 0 to 100 KB, with 1 KB stride. One can
see that the global-time approach is very costly. The maximum and root meth-
ods are as accurate as that with global-time (see Fig. 2) but much more efficient.
The difference between overall scatter and gather execution times is caused by
escalations of the execution time of gather for messages of middle sizes.

In summary, the experimental results demonstrate that the use of MPIBlib
can significantly speed up the estimation of the execution time of MPI commu-
nication operations without the loss of its accuracy.

6 Conclusion

In the paper, we have analyzed the commonly used MPI benchmarking suites and
the methods of measurement of communication execution time. We have presented
MPIBlib, the new MPI benchmarking library, which provides various operation-
independent and operation-specific methods of measurement. MPIBlib is aimed
at accurate and efficient runtime benchmarking of MPI communication operations
in parallel applications. We have also presented an experimental demonstration
showing that the use of MPIBlib can significantly speed up the benchmarking of
MPI communication operations, not compromising the accuracy of the estimation.
The library is freely available at http://hcl.ucd.ie/project/MPIBlib.

http://hcl.ucd.ie/project/MPIBlib
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Abstract. We present the design and implementation of a debugging
tool that displays a message-passing graph of the execution of an MPI
application. Parts of the graph can be hidden or highlighted based on
the stack trace, calling process or communicator of MPI calls. The tool
incorporates several features enabling developers to explicitly control
the ordering of message-passing events during the execution, and test
that reordering these events does not compromise the correctness of the
computations. In particular, we describe an automated running mode
that detects competing sends matching the same wildcard receive and
enables the developer to choose which execution path should be followed
by the application.

1 Introduction

Parallel applications are subject to errors that do not occur in single-threaded
sequential applications. Such errors include deadlocks, when conflicts over re-
sources prevent the application from moving forward, and message races, when
changing the order of reception of messages changes the result of the compu-
tation. Parallel application debuggers should therefore enable explicitly testing
and analyzing such errors and provide multiple abstraction levels that filter and
aggregate the large amount of information displayed to the developer.

Several contributions, e.g. [4,6], focus on record and replay techniques to en-
able reproducing a race once it has been detected. For instance, Retrospect [4]
enables the deterministic replay of MPI applications, but the lack of control on
the application execution may force the developer to run its application many
times until an error is revealed. To our knowledge, ISP [11] is the only tool that
explicitly tests different orderings of events within MPI applications. While it
could produce a suitable trace for a replay tool, being able to replay an erroneous
execution deterministically is only a first step in identifying a bug. The ability
to visualize and to test slightly different executions often helps understanding
the origin of an error and correcting it.

Full-featured parallel debuggers such as TotalView [10] and DDT [1] support
the isolation of specific processes, the inspection of message queues and are able
to attach a sequential debugger to remote application instances. The debug-
ger for the Charm++ framework [7] takes advantage of its integration within
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the Charm++ parallel runtime to provide higher-level features such as setting
breakpoints on remote entry points. While these tools provide the developer with
detailed information about the running processes, none of them provides an in-
stantaneous high-level picture of the current state of the application execution.

In previous work, we described a debugger targeting applications developed
using the Dynamic Parallel Schedules (DPS) parallelization framework [2]. The
parallel structure of these applications is described as an acyclic directed graph
that specifies the dependencies between messages and computations. The de-
bugger may therefore display the current state of the graph very naturally and
provide the application developer with much information in a compact form.
Different event orderings can be explicitly tested by reordering messages in re-
ception queues or by setting high level breakpoints.

The present contribution applies the concepts presented in [2] to MPI applica-
tions, and introduces a few MPI specific features. A graphical user interface dis-
plays the message-passing graph of the application and provides a high-level view
of its communication patterns. Within the message-passing graph, we can hide
or highlight MPI calls based on various criteria such as the originating process,
the communicator on which the communication occurred, or the source code
file or function that generated the call. We propose various types of high-level
breakpoints to control the evolution of the participating processes. Execution
scenarios that occur only rarely in actual executions can thereby be explicitly
tested. Variants may be executed using an interactive replay functionality. Poten-
tial conflicts over MPI ANY SOURCE receives may be detected automatically.
Possible matches are then drawn on the message-passing graph, enabling the de-
veloper to decide which execution path must be followed by the application. The
debugger also integrates object visualization support for the autoserial library
[3], which provides MPI function wrappers that are able to send and receive
regular C++ objects.

The paper is organized as follows. Section 2 describes the general architecture
of the debugger and Section 3 describes features for controlling the application
execution. The debugger’s impact on applications is evaluated in Section 4 and
Section 5 draws the conclusions.

2 Architecture

The debugging functionality is provided via two independent components. The
first, the interception layer, is a library that intercepts the MPI function calls
performed by the application using the MPI Profiling Interface (PMPI [5]). When
the MPI initialization function MPI Init is intercepted, every process opens a
TCP connection to the debugger, a standalone Java program that receives and
displays information about the current state of the application.

Processes first identify themselves to the debugger by sending their rank and
their process identifier. During the application execution, the interception layer
then sends a notification to the debugger for every point-to-point and collective
MPI function called. Notifications are also generated for the various MPI Wait
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and MPI Test functions, as well as for functions creating new communicators.
With the exception of the message content, each notification contains a copy of
all the parameters of the called function. These parameters may be MPI defined
constants, such as MPI COMM WORLD, MPI INT or MPI ANY SOURCE,
whose actual value is specific to MPI implementations. The debugger therefore
also receives a copy of these constants when the application starts, so as to be
able to translate parameter values into human readable form when displaying
information to the developer.

Notifications are sent before calling the actual MPI function. Once it has sent
a notification, a process suspends its execution and waits for an acknowledgment
from the debugger. By withholding specific acknowledgments, the debugger may
thus delay the execution of the associated processes while letting the rest of the
application execute.

Receive calls that specify MPI ANY SOURCE as the source of the expected
message may potentially match send calls from multiple sources. In this pa-
per, we refer to such calls as wildcard receives. Since in the general case the
debugger cannot automatically determine which source is actually matched by
a wildcard receive, this information is provided separately by the interception
layer via a matched notification. If the wildcard receive is blocking, the matched
notification is sent immediately after the reception of the message by the re-
ceive function call. For non-blocking wildcard receives, the matched notification
is sent when an MPI Wait or MPI Test call successfully queries the status of
the non-blocking receive. In both cases, the rank of the matched source is read
from the MPI Status parameter of the querying call.

The user interface of the debugger consists of a single window that provides
control elements to influence the application execution, and displays the current
status of the application as a message-passing graph. The vertices of the graph
represent the MPI calls performed by the application. Unlike most tracing tools
that display time from left to right, our representation matches the one used
within the MPI standard, where time flows from top to bottom. Vertices associ-
ated to notifications from a same process are therefore displayed one below the
other, similarly to successive lines of code within a source file.

The debugger draws edges between successive vertices from a same process.
It also draws edges of a different color between vertices associated to matching
send and receive calls. For this purpose, the debugger maintains one unmatched
sends and one unmatched receives queue. Upon receiving a notification for a send
(resp. receive) call, the debugger looks for a matching receive (resp. send) call
within the unmatched receives (resp. unmatched sends) queue. If none is found,
the incoming notification is pushed at the end of the corresponding queue. When
looking for matches, the queues are explored in a FIFO manner in order to re-
spect the FIFO property of MPI communication channels. New vertices and
edges are dynamically added to the graph as the debugger receives new noti-
fications from the application. When the debugger receives a notification for a
wildcard receive from a process p, it stops matching send calls destined to p
until the reception of the corresponding matched notification. For non-blocking
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Fig. 1. Debugger window. The left panes contain the list of processes and the stack
trace tree. Tooltips display detailed information about MPI calls.

wildcard receives, graph updates are therefore delayed until the application suc-
cessfully queries the status of the receive call.

Single-threaded processes cannot send more than one notification at a time to
the debugger. The order in which the debugger receives notifications from a given
process therefore matches the order of occurrence of events within that process,
and the graph displays the temporal dependencies between these calls. In case
of multithreaded processes where multiple threads may simultaneously call MPI
functions (e.g. using MPI THREAD MULTIPLE ), the message-passing graph
no longer accurately represents the temporal dependencies between events. How-
ever, the interception layer makes sure that no two threads call MPI functions
simultaneously, and that the ordering of the calls matches the order in which
acknowledgments are received. The ordering of messages within communication
channels is therefore known to the debugger, which may accurately display send-
receive matches.

On Linux, the interception layer is able to determine the stack trace of every
MPI call. A panel in the debugger window displays a tree containing the files,
functions and line numbers from which the MPI functions were called. Selecting a
node of the tree then highlights all the associated vertices in the message-passing
graph, illustrating how and when the selected file or function is used within the
application. Another panel displays the list of processes involved in the com-
putation and enables hiding the graph vertices belonging to specific processes.
When the application uses multiple communicators, the list of processes be-
longing to each one of them appears in additional tabs. When switching to a
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given communicator tab, the developer may choose to display a partial message-
passing graph that includes only the vertices associated to MPI calls performing
communications on the selected communicator.

We provide the ability to zoom in and out of the graph in order to adapt
its level of detail to the needs of the developer. The label and color of every
vertex indicates the type of MPI operation executed, and tooltips display de-
tailed information about the parameters of the call, as well as its stack trace if
available. Collective operations are grouped into a single vertex and are repre-
sented as a rectangle that spans all participating processes. When the developer
double-clicks the graph vertex of a suspended MPI call, the debugger attaches
a user-specified sequential debugger to the calling application process, and uses
the stack trace information to set a breakpoint to the source code line that im-
mediately follows the MPI function call. The debugger then acknowledges the
notification, the process is resumed and the new breakpoint is hit, enabling the
developer to inspect the application code.

The autoserial [3] library allows sending and receiving complex C++ objects
instead of simple memory buffers. It does so by providing wrappers around the
MPI Send and MPI Recv functions. When the wrapper functions are used, the
interception layer sends the full serialized object to the debugger, which may then
display its content using a tree view similar to the ones found in traditional sequen-
tial debuggers. For objects to be understood by the debugger, the serialization is
performed by a specialized textual serializer which includes the necessary variable
name and type information within the serialized data. The interception layer also
provides functions for registering serializable objects representing the user-space
state of the running application. The developer may retrieve and display these ob-
jects when a process is suspended by the debugger. The request is piggybacked on
the acknowledgment for the pending notification of the selected process, causing
the interception layer to send a copy of the registered objects.

3 Controlling the Application Execution

A global breakpoint may be activated. It causes the debugger to withhold all ac-
knowledgments, thereby suspending all processes. Clicking a button then simul-
taneously acknowledges all pending notifications and resumes the execution of
all processes up to the next MPI call. The global breakpoint allows quickly step-
ping through the execution of all processes at the message-passing level rather
than at the instruction level, while maintaining the opportunity to take action
on every notification. Process breakpoints cause the debugger to systematically
withhold the notifications sent by particular processes. This feature may for in-
stance be used to arbitrarily delay specific processes in order to provoke message
races. The developer may also explicitly test different execution orderings by
breakpointing multiple processes and by resuming them in different orders. A
finer control is provided via conditional breakpoints. They enable withholding
acknowledgments for notifications matching one or several criteria such as the
rank of the calling process, the type of MPI call, the message size or data type,
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or the destination rank for send calls. Moreover, the developer can specify a hit
count to indicate how many times the breakpoint must be hit before it becomes
active.

The use of wildcard receives leads to non-determinism within the application
execution. It may be difficult to identify potential conflicts, and manually con-
trolling the application execution may be error prone. We therefore implemented
a procedure that detects potential ordering variations on wildcard receives and
allows the developer to choose the send call that matches a specific wildcard
receive. When this mode is active, the debugger automatically acknowledges all
notifications that are not associated to send calls. Upon receiving a notification
for a send call, the debugger checks whether it already received a notification
for a matching receive call. If not, it holds the send notification until it receives
a matching receive notification. If the matching receive explicitly specifies the
source of the expected receive, the debugger acknowledges the send notification,
thereby resuming the process execution. If the matching receive is a wildcard
receive, the debugger draws one large arrow between the graph vertices corre-
sponding to the potentially matching send and the wildcard receive. Since the
other processes keep running, more arrows may be added as the debugger re-
ceives other potentially matching send notifications. Clicking on a send vertex
then acknowledges the associated notification. The resumed process then sends
its message, which matches the wildcard receive under consideration.

Since this scheme makes no assumption about whether calls should be blocking
or not, it is able to reveal potential message races stemming from the buffering
of messages within MPI calls. In Fig. 2a, the debugger will acknowledge the
broadcast notification from process 0. If process 0 buffers the broadcasted mes-
sage, the debugger eventually receives a notification for the subsequent send call,
which may match the first wildcard receive of process 1 if process 2 is delayed.

On the other hand, some executions involving non-blocking or buffered sends
cannot be enforced. For instance, in Fig. 2b the debugger cannot detect that a
race could occur until the non-blocking send from process 0 is acknowledged.

Process 0

Bcast(0)

Send(1) 

Process 1

Bcast(0)

Recv(*)

Process 2

Send(1) 

Bcast(0)

Recv(*)

Process 0

Isend(0)

Process 1

Recv(*)

Send(0) Recv(*)

(b)(a)

Fig. 2. (a) Send calls from both process 0 and process 2 may match any of the wild-
card receives from process 1 if broadcast and send calls are buffered; (b) the debugger
cannot receive the notification for the first receive from process 0 without previously
acknowledging the non-blocking send from process 0. Numbers between brackets re-
spectively indicate the rank of the destination, source or root process depending on the
type of MPI call. A ’*’ denotes a wildcard receive.
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In such cases, reliably enforcing different orderings would require the ability to
reorder incoming messages within MPI reception queues. Automatically holding
all send calls may also suspend the execution of the debugger when non-blocking
sends are used. This is the case in Fig. 2b, where both processes are suspended
by the debugger and none of them has any receive to match. Such cases must
be manually resolved by clicking on one of the send vertices (in this example,
on the Isend call from process 0) to acknowledge the associated notification and
resume the execution.

At any moment, the developer has the possibility of generating a trace file.
When the application restarts, loading the trace file causes the debugger to set
internal breakpoints that will reproduce the traced (and potentially incorrect)
execution. During replay, the developer may set additional breakpoints to test
execution variants.

4 Impact on Applications

Running an application under the control of a scheduler may alter the ordering
of events within the application. Races appearing in regular executions may thus
disappear when running under control of the debugger. Nevertheless, any race
stemming from nondeterministic orderings of MPI calls can be explicitly induced
by appropriately setting breakpoints within the application.

A second concern is the application slow down. Since it must process all the
notifications sent by the processes, the debugger becomes a bottleneck when the
rate of incoming notifications increases. In order to evaluate that impact, we
performed measurements on the Pleiades cluster at EPFL, which consists of 132
single-processor nodes connected with a Fast Ethernet switch. We ran the High
Performance Linpack (HPL [8]) benchmark on four nodes, with one process per
node and a 100×100 matrix decomposed into 10×10 blocks. This run called 664
MPI communication functions during its running time of 0.03 seconds, leading
to a call rate of 22 thousand calls per second. Once connected to the debugger,
the same application ran in 30 seconds, or about 1000 times slower. For this test,
the debugger was therefore able to process and display about 22 notifications
per second. While such a display rate is sufficient to manually step through
the application execution, the developer often wants the application to execute
quickly up to the point where he wants to start his analysis.

The major portion of the slow down is due to the display of the events to the
application developer however. If we run the debugger without layouting and
displaying the graph, the running time falls to 0.16 seconds, reducing the over-
head compared to the original application running time to a factor of 5. Figure 3
presents the running time overheads as a function of the average number of MPI
calls per second performed by all processes during the execution. It displays re-
sults for HPL running on 4, 8 and 16 nodes with one process per node for various
matrix and block sizes (from 2000 to 8000 and from 25 to 500 respectively). For
a given number of nodes, the running time overhead can be approximated fairly
well using a linear function. The slope becomes less steep as the number of nodes
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Fig. 3. Debugger overhead when the display of the graph is disabled. The call rate
of MPI functions is computed when the application is not connected to the debugger.
Results for 4, 8 and 16 nodes are well approximated with a linear function.

increases, due to the fact that the debugger uses one thread per MPI process to
receive and acknowledge the notifications. Since the notifications are well bal-
anced between the processes, the multithreading improves the overlapping of
processing and communication within the debugger.

These results show that high notification rates may occur, and it is therefore
crucial that we optimize our layout and display code to achieve better perfor-
mance. The performance can currently be slightly improved by disabling the live
updating of the message-passing graph, which is then refreshed at once when a
breakpoint is hit and when the developer explicitly requests an update.

In addition to increasing the running time overhead, high notification rates
lead to large graphs that are difficult to analyze. The interception layer imple-
ments the MPI Pcontrol function to enable and disable the sending of notifica-
tions to the debugger. The developer may thus limit both the runtime overhead
and the size of the considered message-passing graph by enabling notifications
only during critical parts of the execution. The scheme could be extended in order
to provide a finer control over the types of MPI calls that should be transferred
to the debugger. The ability to collapse parts of the graph, e.g. between two
barrier synchronizations, would also facilitate the visualization of large graphs.

5 Conclusion and Future Work

We have presented a debugger for MPI applications that provides the devel-
oper with a graphical view of the current status of the application execution.
It dynamically draws the message-passing graph of the application, and graph
vertices can be highlighted according to specific criteria in order to ease the
analysis. Several types of breakpoints enable controlling the execution of the
parallel application. All breakpoints operate at the level of message-passing calls
rather than code instructions. They enable the developer to focus on the com-
munication patterns of the application, and provide entry points for attaching
a sequential debugger to individual processes. The debugger is also able to run
the application such that the developer is able to choose how send and receive
calls should be matched in the presence of wildcards.
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The ability to influence the application by suspending processes and reorder-
ing message matches provides the developer with full control over its execution.
This control can be used to execute cases that occur only rarely in practice,
for example for testing the presence of message races or deadlocks within the
parallel application.

It would be very interesting to integrate checkpoint/restart capabilities [4,9]
into the message-passing graph based debugger. Combined with the provided
control on the application execution, this feature would enable interactively test-
ing multiple execution scenarios without requiring reexecuting the application
from the beginning.
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Abstract. We examine the problem of formally verifying MPI programs
for safety properties through an efficient dynamic (runtime) method in
which the processes of a given MPI program are executed under the con-
trol of an interleaving scheduler. To ensure full coverage for given input
test data, the algorithm must take into consideration MPI’s out-of-order
completion semantics. The algorithm must also ensure that nondetermin-
istic constructs (e.g., MPI wildcard receive matches) are executed in all
possible ways. Our new algorithm rewrites wildcard receives to specific
receives, one for each sender that can potentially match with the receive.
It then recursively explores each case of the specific receives. The list of
potential senders matching a receive is determined through a runtime
algorithm that exploits MPI’s operation ordering semantics. Our verifi-
cation tool ISP that incorporates this algorithm efficiently verifies several
programs and finds bugs missed by existing informal verification tools.

1 Introduction

With the increasing use of MPI for the distributed programming of virtually
all high-performance computing clusters in the world, it is important that MPI
programs be verified to be free of bugs. With the need to re-verify MPI programs
after each optimization step, the process of verification must involve only modest
computing resources and limit manual tedium. As MPI programs can contain
many types of bugs, including deadlocks, resource leaks, and numerical inaccu-
racies, it is practically impossible for a single tool to guarantee the coverage of
bugs in all these classes. Therefore, approaches that focus on a limited bug class
and guarantee full coverage for that class are preferred.

In this paper, we present our C MPI program verification tool, named In-
situ Partial Order (ISP), that incorporates a novel scheduling algorithm called
POE (Partial Order reduction avoiding Elusive interleavings). ISP guarantees to
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detect all deadlocks and local assertion violations in MPI programs containing
24 of the most commonly used MPI functions. For these MPI programs, the ISP
tool will explore close to the minimal number of interleavings. Furthermore, ISP
does not require any modeling effort on part of users, allowing it to be easily re-
run during program development. ISP enjoys the same ease of use as the dynamic
verification tools Umpire [2], Marmot [3], ConTest [4], and Jitterbug [5] (to name
a few). However, the POE algorithm offers the formal guarantee of finding all
deadlocks. As shown by experiments on our web site [13], of the 69 Umpire tests,
30 contain deadlocks, and ISP detects all of them, while exploring a very small
number of interleavings. In contrast, Marmot fails to find deadlocks in eight of
these tests, despite being run multiple times. When these tests were run with
MPICH2 repeatedly, the deadlock detection success was unpredictable. Tools
that rely on perturbing schedules simply cannot guarantee coverage.

The main feature of POE is that it explores only relevant interleavings, using a
technique known as partial order reduction [6]. Without this idea, any exploration
method for MPI will go out of hand. For instance, consider the short MPI pro-
gram in Figure 1 that begins with two sends in P0 and P2, and a wildcard receive
in P1. The total number of interleavings of all these MPI calls is 210.1 However,
to trigger error1, we need to consider the interleavings in which the send of
P2 matches the wildcard receive. Testing-oriented tools may easily miss these
interleavings. Thanks to partial order reduction, ISP will: (i) pick an arbitrary
order for executing P0’s first send and P1’s first receive, (ii) pick an arbitrary
order to execute P2’s first send and P1’s second receive, and then (iii) consider
both the Send matches with the wildcard receive (shown by *). ISP has built-in

P0: MPI_Send(to P1...); MPI_Send(to P1, data = 22);

P1: MPI_Recv(from P0...); MPI_Recv(from P2...);

MPI_Recv(*, x); IF (x==22) THEN error1 ELSE MPI_Recv(*, x);

P2: MPI_Send(to P1...); MPI_Send(to P1, data = 33);

Fig. 1. A Simple MPI Example with Wildcard Receives

knowledge of the commuting properties of MPI functions. For example, consider
an MPI program in which MPI_Barrier is invoked by N processes. ISP would,
in general, explore only one of the N ! ways in which to have invoked the barrier
calls. In our implementation of the 24 MPI functions, alternate interleavings are
explored for wildcard receives, WAIT_ANY, and TEST_ANY.

Overview of ISP’s use of PMPI: We use the well-known PMPI mechanism,
normally used for performance studies, to support runtime model checking in
ISP. We introduce an extra process called the verification scheduler. ISP provides
its own version of “MPI f” for each MPI function f . Within MPI f , we arrange
for handshakes with the scheduler that realizes the POE algorithm. When the
scheduler finally gives permission to fire f , we invoke PMPI f from within our
version of MPI f . The MPI runtime only sees the PMPI f calls.
1 (7!)/((2!).(3!).(2!)).
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Related Work: Techniques for eliminating nondeterminacy for testing paral-
lel programs were studied in [14]. A dynamic verification approach for reactive
C programs was first proposed by Godefroid [7]. Flanagan and Godefroid [8]
extend this work, incorporating a more efficient dynamic partial order reduc-
tion (DPOR) algorithm. In [1], we presented the first DPOR-based verification
method for MPI programs that employ one-sided communication. In [9], we re-
ported a preliminary implementation of DPOR for MPI’s two-sided operations.
This algorithm did not address the full range of out-of-order behaviors of MPI. It
also proved incapable of controlling the MPI runtime to force the desired wild-
card receive matches (see Section 2). POE overcomes both these limitations,
and replaces DPOR – the former algorithm implemented within ISP. Exploiting
MPI’s semantics, POE employs a strategy of lookahead computation to discover
how sends and receives in an MPI program match. A formal presentation of the
POE algorithm is given in [10].

Roadmap: The remainder of this introduction presents in detail the three new
ideas used in POE: Forcing Wildcard Matches (Section 1.1), Handling Out-
of-order Completion (Section 1.2), and Discovering Match-Sets (Section 1.3).
Section 2 presents the POE algorithm in detail, focusing on sends, receives,
and barriers. Section 2.2 describes how many additional MPI commands are
smoothly handled by the extended POE algorithm implemented in ISP. We also
discuss how the user interface of a Visual Studio integration of POE works: we
strive to preserve the users’ view of their MPI program, despite the fact that our
POE algorithm changes the internal computation through dynamic rewriting.
Section 3 presents experimental results and Section 4 concludes.

1.1 Forcing Wildcard Matches

Consider the example in Figure 2, with line 2 containing a wildcard receive. A
match between the Isend on line 6 and Irecv on line 2 (wildcard) will enable
Recv on line 3 to match with the Isend on line 9. However, if the Isend on line
9 were to match the Irecv on line 2, a deadlock would result, with Recv (line 3)
no longer able to match Isend (line 6). Clearly, we cannot leave out this second
option (process interleaving) during testing.

The role of a dynamic verification tool for MPI is to determine, at runtime, the
specific matches possible, and explore all relevant ones - that is, a representative of
each equivalence class of equivalent interleavings.This method must be carried out
at runtime: (i) the outcomes of control branches through conditional statements
will be known only at runtime and (ii) the send/receive targets/sources, and other
details (communicator, tag, etc.) may be values that are computed at runtime.2

We now explain briefly why DPOR does not work for MPI. Suppose a DPOR-
based algorithm is able to determine that Isend (line 6) matched Irecv (line 2),
and that Isend (line 9) is also a potential alternate match for this Irecv. Accord-
ing to the algorithm of [8], the dynamic verification scheduler must now somehow
force this alternative match – say by firing the Isend (line 9) in real-time order
before firing Isend (line 6). However, we know from MPI’s semantics that the
2 In this paper, we suppress details pertaining to communicators and tags.
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MPI runtime environments do not guarantee that this alternative matching will
occur. We call these scenarios (potentially) elusive matches. Tricks such as in-
serting ‘padding’ delays that can perturb schedules may make elusive matches
more likely, but still provide no guarantees. Therefore, we need an algorithm
different from DPOR, and POE is our answer.

POE solves the problem of elusive 0 : // * means MPI_ANY_SOURCE

1 : if (rank == 0)

2 : { MPI_Irecv(buff1, *,

&req);

3 : MPI_Recv(buff2, from 2);

4 : MPI_Wait(&req) }

5 : else if (rank == 1)

6 : { MPI_Isend(buff1, to 0,

&req);

7 : MPI_Wait(&req); }

8 : else if (rank == 2)

9 : { MPI_Isend(buff2, to 0,

&req);

10: MPI_Wait(&req); }

Fig. 2. Relevant Interleavings and
Elusive Matches during Dynamic
Verification of MPI Programs

matches without requiring changes to the MPI
library and without adding padding delays. It
dynamically rewrites wildcard receives into
specific receives, one for each actual sender
that it computes to be a certain match. In
the context of the example in Figure 2, if
we can force two recursive explorations, with
MPI_Irecv(buffer, from 1, &req); and
MPI_Irecv(buffer, from 2, &req); used
successively in lieu of the existing line 2, we
would have force-matched both the sends.
The crucial fact is, of course, to never force-
match with a send that is not going to be
issued – this can cause a deadlock that does
not exist. POE employs a strategy to discover
all potential senders precisely, as outlined in
Section 1.2, and Section 2.

1.2 Handling Out-of-Order Completion

In MPI, (i) two Isends targeting two different processes may finish out of order
(with respect to issue order), while two Isends targeting the same process must
match in order. Likewise, (ii) two non-wildcard receives sourcing from the same
source process must also match sends in order. Similarly, (iii) if the first receive
or both receives are wildcards, even then they must match in issue order. As for
waits and tests, (iv) they must not complete before their corresponding send/re-
ceive operations. Finally, (v) operations appearing after MPI barriers and MPI
waits must not finish before the barrier or wait. Notice that we did not say that
operations before a barrier must finish before the barrier! Section 2 will show
that operations issued before a barrier can linger even after crossing the barrier.

1.3 Discovering Match-Sets

POE employs an approach to bound the scope of search for locating potential
matching sends for a wildcard receive. It relies on a formal notion of fences
to determine when two operations issued by a dynamic verification scheduler
through the PMPI layer will be carried out (i) by the MPI runtime, (ii) in that
order. We are not saying that MPI has “fence instructions” akin to how CPUs
have assembly instructions to order intra-core execution. However, there are still
conceptually equivalent ordering points defined by the MPI semantics! Based on
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a formulation of MPI fences, we can form match-sets – sets of MPI operations
that can be issued out of order by a dynamic verification scheduler. This is the
idea of POE’s lookahead computation alluded to earlier.

2 Basic POE Algorithm

Consider Figure 3. Note that although the Isend on line 8 is issued after the bar-
rier on line 7, it is a potential match for the Irecv(*) on line 2. This is precisely
because MPI’s Isend can linger across a Barrier. The only ordering that MPI
guarantees is that functions after a barrier will not be called until all functions be-
fore (and including) the barrier have been called on any process (rank). The follow-
ing steps describe how the dynamic verification scheduler implementing the POE
algorithmhandles this example. OurPOE scheduler will intercept everyMPI oper-
ation MPI_f issued from every MPI process. It will often not issue these operations
(through PMPI_f) immediately – but only make a note of it, and later issue them.
We employ a central scheduler process which helps issue MPI operations in a seri-
alized manner, and currently replays executions by re-execution from MPI Init.3

Illustration of POE on the example of Figure 3

• Collect Irecv (line 2), and do not issue.
• Collect Barrier (line 3), and do not issue.
• Since Barrier is a fence, do not collect anything more from rank 0; switch

to rank 1.
• Collect Barrier (line 7), and do not issue; switch to rank 2.
• Collect Isend (line 11), and do not issue. Then collect Barrier (line 12),

and do not issue.
• A fence has been reached in every rank. Now, form a match set in priority

order, with the following priority order followed: barriers first, then non
wildcard send/receives, and finally wildcard send/receives.

• In our current state, there is indeed a highest-priority match set formed by
the barriers. Now, POE sends these Barriers into the MPI runtime through
PMPI_Barrier calls.

• The next ordering points (fences) are attained at Wait.
• No match-sets of non wildcard receives exist. Skip this priority order.
• At this point, we know the full list of senders that can match the wildcard

receive.
• Dynamically rewrite Irecv(*) into Irecv(1) and Irecv(2), in two different

executions.
• Form the first match set of Irecv(1) and Isend() of line 8. Pursue this

interleaving.
• Form the second match set of Irecv(2) and Isend() of line 11. Pursue this

interleaving though re-execution of the MPI program.

Note that for MPI programs with no wildcards, POE will examine the entire
program under exactly one interleaving.
3 A distributed strategy allowing concurrent issues is slated for development; also a

more efficient re-execution method is reported in [9].
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2.1 Semi-formal Description of POE

The POE algorithm works by find-1: if (rank == 0)

2: { MPI_Irecv (&buf0, *, &req);

3: MPI_Barrier ();

4: MPI_Wait (&req);

5: MPI_Recv (&buf1, from 2); }

6: else if (rank == 1)

7: { MPI_Barrier ();

8: MPI_Isend(buf1, to 0, &req);

9: MPI_Wait (&req); }

10: else if (rank == 2)

11: { MPI_Isend(buf0, to 0, &req);

12: MPI_Barrier ();

13: MPI_Wait (&req); }

Fig. 3. Ordering Semantics and Operation
Lifetimes

ing match-sets of MPI operations and
issuing them (possibly out-of-order)
to the MPI runtime (using the PMPI
versions of these operations). An MPI
operation can essentially be in one of
the two states: issued and completed.
When an MPI operation is issued, it
means that the MPI runtime is aware
of the MPI operation. When an MPI
operation is completed, it means that
the operation has no presence in the
MPI runtime. For example, when we
say that an MPI receive operation is
complete, we mean that a matching
send has been found for that receive.

For simplicity, we only deal with the following MPI operations in this sec-
tion: MPI_Barrier, MPI_Isend, MPI_Wait, MPI_Irecv. We also assume that the
operations have the same tag and that the communicator is MPI_COMM_WORLD
for simplicity.

Since MPI semantics allow for nonblocking operations to linger across barriers,
POE needs to emulate this out-of-order completion behavior of the MPI runtime.
In addition, POE must also respect MPI’s send and receive ordering guarantees.
Therefore, rather than emulating the issue order of MPI operations, POE must
emulate the completion order of MPI operations. Before going into more detail,
we first define what we call fence MPI operations.

MPI Fence Operations: A fence is an MPI operation that must be completed
before any following MPI operations from the same process can be issued. Any
blocking MPI operation is a fence, as are MPI_Barrier, MPI_Wait, and MPI_Recv.

POE executes all C statements in program order; however, it issues MPI
operations to the MPI runtime only when they are guaranteed to complete im-
mediately. For example, an MPI receive (send) is issued only if a matching send
(receive) is found. This is the idea of POE forming match-sets as introduced in
Section 1.3. In order to correctly emulate the out-of-order completion inherent
within the MPI semantics (Section 1.2 presents it through examples; our web
page [13] has details), POE builds a graph data structure of completes-before
edges across MPI operations within the same process. We call these edges as
intra completes-before (IntraCB) edges.

In addition to IntraCB, POE also maintains a conditional completes before
(CCB) edge which is added as follows. The purpose of this edge is to model
how wildcard receives may trump non wildcard receives. For example, sup-
pose an MPI process P0 has the code sequence Recv(from 1); Recv(from *);
and MPI process P2 has code sequence Send(to 0);. Then this Send matches
Recv(from *) because the first offered match “from 1” requires a send from
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P1 which is not present. In this case, a CCB edge is not introduced between
the receives in P0. However, now if we consider the same P0 process, but a P1
process which is Send(to 0);, then this Send matches Recv(from 1);. In this
case, a CCB edge is introduced between the receives in P0.

If there is an IntraCB or CCB edge from i to j, then we call i as the ancestor of
j. The POE algorithm described on Page 252 guarantees that no PMPI operation
will be issued contrary to the IntraCB or CCB edges, thus guaranteeing the
correctness of message matches within the MPI runtime.

It must be observed that the code snippet in Figure 1 can be verified with DPOR
if the technique of dynamic rewriting of the wildcard receives is employed. How-
ever, the code snippet in Figure 3 cannot be verified with DPOR even with dy-
namic rewriting of wildcard receives employed. Due to the presence of the barrier,
the MPI_Isend at line 8 can never be executed before the MPI_Isend at line 11,
whereas in DPOR, we will need dependent actions to be replayable in both or-
ders. In any interleaving of this example, however the send at line 11 is always
issued before the send at line 8. The POE algorithm overcomes this problem by
executing the big-step move of MPI_Barrierof the three processes, and then form-
ing match-sets of the wildcard receive with MPI_Isends by recurively employing
dynamic rewriting for both the match-sets each in a different interleaving.

2.2 Implementing WAIT ANY and TEST ANY

ISP implements the POE algorithm that allows for executing MPI operations in
an order different from the actual program order. Hence, when ISP traps an MPI
request such as MPI_Irecv(buffer, count, datatype, source, mpi_request), ISP
stores the arguments for later issuance. Let op be an MPI operation.

When op is one of MPI_Wait, MPI_Waitall, MPI_Test, or MPI_Testall, the
out-of-order issuance does not cause any problems since the POE algorithm’s
IntraCB edges ensure that all ancestors, i.e, the MPI_Isends and MPI_Irecvs
corresponding to the requests are issued before op itself is actually issued. When
op is one of MPI_Testany or MPI_Waitany, all MPI_Irecv and MPI_Isend ances-
tors of op are not necessarily issued before op itself is issued. Hence, when ISP
invokes op, an error is thrown by the MPI runtime that the request structure is
invalid (since the MPI runtime is not aware of the as yet unissued MPI_Isend
or MPI_Irecv requests). In order to circumvent this problem, ISP issues op with
MPI_REQUEST_NULL for those send and receive requests that are not yet issued
and hence are ignored by the MPI runtime.

This allows the MPI_Testany and MPI_Waitany to work with POE’s out of
order issue when the MPI runtime does not know all the requests it is supposed
know as it would during an in-order execution.

3 Experimental Results

We have experimented with all 69 Umpire [2] test cases, and in all 30 tests
that have deadlocks, ISP finds the deadlocks, generating the fewest number of
interleavings. We have also run ISP on the Monte-Carlo calculation of Pi, and
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the Game of Life example used in the EuroPVM/MPI 2007 Tutorial [12]. In
all examples that do not employ wildcard receives, WAIT_ANY, or TEST_ANY, ISP
examines exactly one interleaving. Some of these examples were instrumented
to detect resource leaks (e.g., MPI_Isend or MPI_Irecv without an MPI_Wait,
MPI_Comm_create without an MPI_Comm_free, etc.). For these examples, a suc-
cessful verification run using ISP implies a complete absence of these types of
issues in the program (more discussions under ‘data dependent control’ below).

Since ISP works by re-executing the given MPI program, the restart time
of the MPI system can become a significant overhead. This price is being paid
because as opposed to existing model checkers which maintain state hash-tables,
we cannot easily maintain a hash-table of visited states including the state of
the MPI program as well as the MPI run-time system. (Note: In resorting to re-
execution, we are, in effect, banking on deterministic replay.) One very promising
approach to eliminate restart overheads is the following. At MPI_Finalize, one
can reasonably assume that the MPI run-time state is equivalent to the one just
after MPI_Init, and therefore simply reset user state variables and transition
each process to the label after MPI_Init. We are further looking into when it is
appropriate to use this technique (see [9] for details).

Data Independent Control Flow: In most MPI programs, control flows are
unaffected by ‘data’ variables. For such MPI programs, a successful verification
using ISP on a fixed input data set is tantamount to verifying the program for all
possible input data. Also, for such programs, one can eliminate data variables,
and their associated update functions, since they would not contribute either to
control flow decisions or to the truth of the local assertions being checked. A
preliminary implementation exists to detect and eliminate such data variables
from MPI programs.

A preliminary Microsoft Visual Studio integration of ISP has also been im-
plemented. A problem faced in this implementation was due to the fact that
the actual run that occurs under ISP does not ever send wildcard receives into
the MPI runtime. Visual Studio issued wildcard receives would not necessarily
match with the correct sends, and mask the deadlock ISP found. This problem
was solved through a novel technique that (i) obtains trace information from
ISP, and (ii) mimics the dynamic rewriting of wildcard receives while making
the Visual Studio debugger step through error traces. With this approach, the
user’s view of their program is preserved (more details on our web page [13]).

4 Concluding Remarks

We described our dynamic verification approach for MPI C programs that in-
corporates partial order reduction and dynamic rewriting based scheduling of
MPI function call interleavings. ISP guarantees to detect all deadlocks and local
assertion violations in C MPI programs that fall within ISP’s range of supported
commands (the commands and our verification results are documented on our
website). MPI programs with additional calls may also be checked using ISP if
they do not interfere with the commands currently supported (these commands
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will directly issue into the MPI runtime, without going through the PMPI mech-
anism). We detailed how we solved special problems posed by WAIT_ANY and
TEST_ANY, and also how we reconcile a user-interface view with our dynamic
rewriting process. We plan to release the full sources of ISP for experimentation,
parallelize ISP itself using MPI, and make ISP widely available.
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Abstract. This work presents ValiPVM, a testing tool for C/PVM par-
allel programs. This tool implements structural coverage criteria, using
an architecture already employed for MPI programs. It supports gen-
eration and evaluation of test sets and considers the control, data and
communication flows of PVM programs. ValiPVM has a graphical user
interface, designed to facilitate the test execution, analysis of results and
to guide the user during the execution of the testing activity.

Keywords: testing tool, PVM, coverage testing.

1 Introduction

This paper presents a new graphical software tool for testing PVM parallel pro-
grams called ValiPVM. It is a test tool able to support test criteria specific
to message passing environments in the context of PVM programs. A test cri-
terion [1] is a predicate to be satisfied by a test case set and can be used as
guideline for generating test data, offering a coverage measure that indicates
whether enough test cases have been executed. The tool proposed is designed
to facilitate the test execution, analysis of results and to guide the user during
the execution of the testing activity. It supports a family of testing criteria for
control, data and communication flows [2].

ValiPVM automates the required elements generation and it provides facilities
for coverage analysis. These features are the major contributions of this tool,
allowing the application of the structural testing in PVM parallel programs.
ValiPVM can also be used to support the test data selection and to offer coverage
measures that can be used to evaluate quality of the test sets.

This work is related with a major-project called ValiPar. ValiPar introduces
new criteria, models and graphs for testing parallel programs in message passing
environments and shared memory [3, 4]. New parallel software testing tools have
been proposed in order to support these new criteria, including ValiMPI, a tool
for testing of MPI programs [5]. The goal is to increase the coverage obtained
on the source code and, consequently, also to increase the probability of finding
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faults. Experimental studies accomplished with ValiMPI demonstrated that the
coverage criteria are applicable and that typical source errors can be revealed [6].

ValiPVM tool, described in this paper, can be used through a graphical in-
terface or from command line. The graphical user interface has facilities to help
the test execution and the analysis of results. One important resource available
is the visualization of the Parallel Control Flow Graph with information about
required element covered and not covered by test execution. This information
also can be visualized in source code, faciliting on-the-fly the coverage analysis
and evolution of test activity.

ValiPVM also presents facilities to guide the user during the execution of the
testing activity. At each step the tester can know which information must be
provided, and so, he can better understand the execution sequence of this tool.

This paper is organized as follows. Section 2 presents previous work that
introduces the criteria implemented by ValiPVM. Section 3 describes ValiPVM
tool. Section 4 shows a use example of the tool. Section 5 contains the conclusion.

2 Previous Work

The literature describes several projects to extend testing criteria to test parallel
programs [7, 8, 9]. However, only [2] addresses message passing environments, in
spite of the increasing use and popularization of this kind of parallel software.
In addition to this, most works do not address supporting tools, although the
application of a testing criterion is only practical if a tool is available. Regarding
PVM and MPI, we identify some tools that aid the simulation and debugging,
but do not offer support for testing criterion and evaluation of test sets.

In [2, 6], we proposed a set of criteria specific to message passing environments
and an architecture, named ValiPar [3], to implement them. These criteria were
based on testing criteria for sequential programs. They are extensions that con-
sider communication, synchronization and nondeterminism. A test model based
on control, data and communication flows of the parallel program was defined
to extract the relevant information for test activity. This model considers that
the number of parallel processes is statically known.

A parallel program P is represented by a PCFG (Parallel Control Flow
Graph), which is composed by the CFGs (Control Flow Graphs) of each process.
The CFG is composed by a set of nodes and edges. Each node corresponds to a
statement of the program and an edge links a node to another one. A node i in
the process p is represented by np

i . A node can be associated to a communication
primitive: a send or receive. A synchronization edge (na

i , mb
j) links a send node in

a process a to a receive node in a process b. These edges represent the possibility
of communication and synchronization between processes. Based on PCFG, a set
of coverage testing criteria were defined [2]: (AN) All-Nodes ; (AE) All-Edges;
(AR) All-Nodes-R and (AS) All-Nodes-S related on nodes with receives and
sends respectively; and (AES) All-Edges-S related on possible synchronizations
edges. Other proposed data-flow based criteria are: (ACU) All-C-Uses ; (APU)
All-P-Uses ; (ASU) All-S-Uses ; (ASCU) All-S-C-Uses and (ASPU) All-S-P-Uses.
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They consider definitions and uses of variables. A variable x is defined when a
value is stored in the correspondent memory position (for instance, assignments
and input commands) and, when it is passed as an output parameter (reference)
to a function. In the message passing context, we must also consider the commu-
nication functions, such as receive, since it sets a variable with the value received
in the message. A use of x occurs when the value associated to x is referred. A
use can be: 1) a computational use (c-use), which occurs in a computational
statement related to a node in the CFG; 2) a predicative use (p-use), which
occurs in a condition (predicate) associated to a control flow statement, related
to an edge in the CFG; and 3) a communicational use (s-use), which occurs in
a synchronization statement, related to a synchronization edge in PCFG.

3 ValiPVM Tool

The ValiPVM tool (Figure 1) supports the testing coverage criteria mentioned
in last section. It implements the architecture of ValiPar [3] for PVM parallel
programs, written in C language.

The ValiInst module extracts control and data flow information and instru-
ments the program. These tasks are supported by IDeL (Instrumentation De-
scription Language) [10], a meta-language for program instrumentation. The
PCFG is generated in text files, one for each function, with information about
definitions and uses of variables in the nodes, as well as about occurrences of
send and receive commands. The instrumented program is obtained by inserting
check-point statements in the program being tested. These statements do not
change the program semantics; they only write necessary information in a trace

Fig. 1. ValiPVM architecture
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file, by registering the node and the process identifier of the send and receive
commands. The instrumented program will produce the paths executed in each
process, as well as the synchronization sequence produced within a test case.

The ValiElem module generates the elements required by the coverage test-
ing criteria. These elements are generated from the PCFG using the information
produced by ValiInst. Besides the PCFG, two other graphs are also used: (1) a
heirs reduced graph: to minimize the number of required edges; and (2) graph(i):
to establish associations of definitions and uses of variables, which are the re-
quired elements of the data-flow based testing criteria.

The ValiExec module executes the instrumented program by using the test
data provided by the tester. During the execution, the inputs and outputs of the
program, command lines, execution traces and synchronization sequences are
stored in separated files. The execution trace includes the path executed in each
process by the test input and it is used during the evaluation of test cases to
determine which required elements were covered. After the program execution,
the tester can visualize the outputs and also the execution trace to determine
whether the obtained output is the same as expected. If it is not, an error was
identified and must be corrected before continuing the test activity.

Fig. 2. ValiPVM - main options
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The ValiEval module evaluates the coverage achieved by test sets with re-
spect to a criterion selected by the tester. ValiEval uses the elements generated
by ValiElem and the paths executed by the test cases. The coverage score and
the list of covered elements for the selected test criterion are provided as output.

4 Using ValiPVM Tool

In this section we illustrate the functionalities of ValiPVM. This tool is guided
by test sessions. In each one, the tester can create a test for one program, inter-
rupt it and resume it later. The main functionalities are presented in Figure 2.
As the session test is created, the tool options (e.g., Test Session, Test Case,
Evaluation, Graphs and View Log) are enabled to the tester. The gcd (greatest
common divisor) application is used in this section to illustrate some functional-
ities available in ValiPVM. This program calculates the gcd from three numbers,
using four parallel processes: one master and three slaves. Our objective with
this simple program is to explain how the tool works.

ValiPVM tool can be applied following two basic procedures: (1) to guide the
selection of test cases to the program, and (2) to evaluate the test set quality,
in terms of code and communication coverage.

Fig. 3. ValiPVM - adding a test case
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Fig. 4. ValiPVM - code visualization

In Case 1, there is no an initial test set. The following steps should be con-
ducted: (a) choose a testing criterion to guide the test data selection; (b) identify
test data that exercise the elements required by the testing criterion; (c) for each
test case, analyse whether the output is correct; otherwise, the program must be
corrected; (d) while uncovered required elements exist, identify new test cases
that exercise each one of them; (e) proceeds with this method until the desired
coverage is obtained (ideally 100%). In addition, other testing criteria may be
selected to improve the quality of the generated test cases.

In Case 2, suppose that the tester has a test set T and he (or she) wants
to know how good it is to test a parallel program. For this, the steps are: (a)
execute the program with all test cases of T and analyse the output; (b) select
a testing criterion and evaluate the coverage of T ; (c) if the coverage is not the
expected, the tester can improve this coverage by generating new test data.

Notice that these procedures are not mutually exclusive. If an ad hoc test set
is available, it can be evaluated according to Case 2. If the obtained coverage is
not adequate, this set can be improved by using Case 1. The use of such initial
test set allows effort reduction in the application of the criteria. In this way,
our criteria can be considered complementary to ad hoc approaches. They can
improve the efficacy of the test cases generated by ad hoc strategies and offer a
coverage measure to evaluate them. This measure can be used to know whether
a program has been tested enough, as well as, to compare existing test sets.

During the insertion of a test case, the user is testing the parallel application.
For each test case inserted, the parallel application is executed, the output is
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presented (Figure 3) and the user can visualize which program statements were
executed (Figure 4 and 5). The highlighted lines in Figure 4 represent statements
already exercised by test cases. The Figure 5 presents the PCFG for two slaves
(processes 1 and 2) and master (process 0). In the same way, the filled nodes
represent statements already exercised. In this graph, dashed edges represent
synchronization edges (matches between a send and a receive primitive). So, it
is possible to observe which synchronizations occur after each execution. These
special visualizations contributes to the testing activity, by reducing testing effort
for using the criteria and, by easing the debugging activity. The tester can easily
to identify which statements were not executed yet and thus to improve the
coverage of the parallel program under testing.

Fig. 5. ValiPVM - PCFG

5 Conclusion

This paper presented ValiPVM, a new graphical software tool for testing C/PVM
parallel programs. It supports a family of testing criteria for control, data and
communication flows [2]. ValiPVM automates the required elements generation
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and it provides facilities for coverage analysis. These features are the major
contributions of this tool, allowing the application of the structural testing in
PVM programs. ValiPVM can also be used to support test data selection and
to offer coverage measures that can be used to evaluate quality of the test sets.

ValiPVM can be used through a graphical interface or from command line.
The first one has facilities to help the test execution and the analysis of re-
sults. One important resource is the visualization of the PCFG with information
about required element covered by test execution. This information also can be
visualized in source code, faciliting on-the-fly the coverage analysis.

Future work includes the development of the empirical studies to analyse the
applicability of the coverage criteria in the context of real parallel programs in
PVM. In these studies we also intend to evaluate the application cost and the
efficacy in terms of revealed faults of the testing criteria in this context.
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Abstract. We examine the unsolved problem of automatically and ef-
ficiently detecting functionally irrelevant barriers in MPI programs. A
functionally irrelevant barrier is a set of MPI_Barrier calls, one per MPI
process, such that their removal does not alter the overall MPI commu-
nication structure of the program. Static analysis methods are incapable
of solving this problem, as MPI programs can compute many quantities
at runtime, including send targets, receive sources, tags, and commu-
nicators, and also can have data-dependent control flows. We offer an
algorithm called Fib to solve this problem based on dynamic (runtime)
analysis. Fib applies to MPI programs that employ 24 widely used two-
sided MPI operations. We show that it is sufficient to detect barrier calls
whose removal causes a wildcard receive statement placed before or after
a barrier to now begin matching a send statement with which it did not
match before. Fib determines whether a barrier becomes relevant in any
interleaving of the MPI processes of a given MPI program. Since the
number of interleavings can grow exponentially with the number of pro-
cesses, Fib employs a sound method to drastically reduce this number,
by computing only the relevant interleavings. We show that many MPI
programs do not have data dependent control flows, thus making the
results of Fib applicable to all the input data the program can accept.

1 Introduction

The barrier construct (MPI_Barrier) is an important function in the MPI li-
brary. It is a collective call, meaning that all processes in the communicator
must call the barrier. We define such a collective call defined by a set of barrier
calls (one from each process) to be a collective barrier. A collective barrier is
functionally irrelevant (“irrelevant” for short) if its removal does not alter the
overall MPI communication structure of the program in terms of correctness
and matching of operations. To the best of our knowledge, this problem has not
� Supported in part by NSF CNS-00509379, Microsoft HPC Institutes Program, and
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been solved before. In this paper, we present an algorithm called Fib to solve
this problem based on dynamic (runtime) analysis for MPI programs employing
24 widely used two-sided MPI operations (detailed on our web page [1]).

The importance of detecting irrelevant barriers comes from a number of per-
spectives. Many MPI users are known to employ collective barriers for “good
measure;” they are unsure whether it is necessary. The authors of [2] narrate
the example of an MPI program where a barrier was considered irrelevant, and
removed. A year later, they were proven wrong, as a race condition was intro-
duced by its removal. In [3], it is shown that barriers can consume a significant
fraction of the total application time. Of course, users wanting to control per-
formance by avoiding network or I/O contention may insert collective barriers.
In this case, they are employing functionally irrelevant barriers for controlling
the non-functional aspects of their program. The Fib algorithm can help these
users by checking that these barriers are indeed functionally irrelevant.

Detecting irrelevant barriers by inspection is not straightforward, as we show
through a number of small examples in Section 2. While each example seems
to warrant a different justification, a nice feature of the Fib algorithm is that
it reduces all these justifications to a single mathematical relation called the
completes-before relation. This relation has two aspects: intra completes-before
(IntraCB), and inter completes-before (InterCB). In a nutshell, the Fib algorithm
detects a change in the set of communication possibilities by computing the
InterCB relation in the presence of a barrier, and checks whether the barrier
plays a role in ordering a send and a wildcard receive.

The examples given in Section 2 do not reflect the following additional difficul-
ties. In realistic MPI programs, a user may forget to use a collective barrier (i.e.
forget to place a barrier within a process), thus introducing a deadlock. Also,
realistic programs may compute many quantities at run time, including send tar-
gets, receive sources, tags, and communicators. They also have data-dependent
control flows which can determine the actual sends and receives issued. The Fib
algorithm works in the presence of all these realities:

• Since Fib is implemented as an extension to the dynamic formal verification
methodology employed in our tool ISP( [9,13,4]), it is capable of detecting dead-
locks, and then aborting its analysis. Here are some example deadlock scenarios
that ISP can detect: (i) deadlocks due to a collective barrier being incorrectly
placed, (ii) those introduced when the user forgets to issue the (supposed) col-
lective call from within some of the processes, (iii) the user employing the wrong
communicator for one of the barrier calls, or (iv) MPI messages not matching.

• Since Fib employs dynamic (runtime) analysis, all computed quantities would
be fully resolved, and become known. For the same reason, data-dependent control
flows are also not an issue for Fib, in so far as path coverage goes. It is clear that
in general, the behavior of an MPI program can change in response to the input
data being analyzed (addressing this issue is considered future research). However,
a preliminary static analyzer that we have implemented confirms that for many
examples (e.g., all our examples in [1]), control flow does not depend on data; for
such programs, the analysis results of Fib are good for all input data.
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Fib flags a barrier as functionally irrelevant if and only if it is functionally
irrelevant across all possible executions (process interleavings) of the program for
the given input data. Clearly, we cannot hope to examine all the interleavings
of any realistic MPI program näıvely, because this number grows exponentially
with the number of processes. Fortunately, the ISP tool actually generates only
a miniscule fraction of all possible interleavings, by computing only the relevant
interleavings of an MPI program using a formal verification method called partial
order reduction [11,12]. Without such a reduction algorithm, an algorithm similar
to Fib would be difficult to build.

Related Work: Fib is a significant extension of our POE algorithm imple-
mented in the ISP verification tool. The mathematical relation IntraCB is em-
ployed in POE (formally defined in [5], but summarized in this paper). The
relation InterCB builds on IntraCB, and is brand new to the Fib algorithm, and
this paper.

In [6], the authors provide a formal approach for arguing about the relevance
of barriers in MPI programs that do not employ wild-card receives. They prove
that for wild-card receive free MPI programs that are deadlock free, all barriers
are irrelevant. This justifies our criterion for relevant barrier detection, which is:
In a deadlock-free program, the removal of a barrier causes a wildcard receive
statement placed before or after a barrier to now begin matching a send state-
ment with which it did not match before. The examples in Section 2 provide
added insights into our criterion.

The work in [8] uses vector clocks [7], and provides a method for identifying the
racing messages in a single trace of an MPI program execution across “frontiers”
or consistent cuts [7]. While these ideas are somewhat related, the classical vector
clock formulation does not directly apply to MPI because of its out-of-order
completion semantics and barrier semantics, pointed out in Section 2.

Roadmap: Section 2 provides the intuition behind our Fib algorithm through
several examples. The Fib algorithm itself is detailed in Section 3, where we also
include sufficient background on the POE algorithm and our ISP tool. Section 4
provides experimental results, and Section 5 provides concluding remarks.

2 Overview of Fib, and the Completes-Before Relation

In this section, we present a number of examples, introducing the concepts of
IntraCB and InterCB in context. These relations can be assumed to be always
maintained in a transitively closed manner. Please note that we omit the prefix
MPI_ in most cases, and also suppress irrelevant arguments of MPI calls. Also for
immediate-mode operations, we show a corresponding Wait only in some cases.

Example 1: As our simplest example, consider the following single process
(rank) MPI pseudo-code program:

P0: Irecv(from P0, x, &h); Wait(&h); Barrier; Isend(to P0, 22);
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In this program, the collective barrier is a singleton set containing Barrier from
P0. Curiously, P0 is trying to send to itself, which is allowed in MPI. In this case,
Fib will report a deadlock whether there is a barrier or not. This is because of an
IntraCB edge from Wait to any following instruction. An IntraCB edge implies
the MPI guarantee of not issuing any instruction after a Wait until Wait has been
issued. In our example, there is an Isend after Wait, and unfortunately Wait
cannot finish unless Isend finishes—a circular dependency causing the deadlock.

In MPI, there is also an IntraCB edge from a Barrier to any following in-
struction. This means that instructions following the barrier cannot be issued
until the collective barrier can be crossed. Now, suppose we alter this example
by moving Wait to be after the Isend. In this altered example, Barrier can be
crossed after issuing Irecv, and this leads to Isend being issued. Thus, for this
altered example, the barrier is irrelevant.

Example 2: Here * indicates ANY_SOURCE (a wildcard receive)1:

P0: Irecv(*, x, &h); Barrier; Isend(to P0, 22); Wait(&h);

P1: Isend(to P0, 33); Barrier;

In this example, it is possible for x to attain the value 22, whether the collective
barrier is there or not! This is because even though there is an IntraCB edge
from Barrier to Isend in P0, there is no IntraCB edge from Irecv to Barrier
in P0, and similarly there is no IntraCB edge from Isend to Barrier in P1.
Therefore, for this program, Fib will flag the collective barrier as irrelevant.

Example 3: Consider the program:

P0: Irecv(*, x, &handle); Barrier; Wait(&handle);

P1: Isend(to P0, 33); Barrier; Isend(to P0, 22);

Here, the collective barrier is indeed irrelevant, and will be flagged as such by
the Fib algorithm, following this line of reasoning: (i) the first Isend of P1 and
the Irecv of P0 can be issued; (ii) the Barrier in the respective processes can be
crossed, as there is no IntraCB edge to these Barriers; (iii) before Irecv occurs,
Isend(to P0, 22); can also be issued; (iv) however, MPI’s message-matching
rules require process-to-process FIFO message ordering; in other words, there is
an IntraCB edge from the first Isend to the second Isend in P1. Therefore, x
can attain the value of 33 only.

Example 4: In contrast with Example 3, in this program, we move the second
send to process P2:

P0: Irecv(*, x, &handle); Barrier; Wait(&handle);

P1: Isend(to P0, 33); Barrier; ...rest of P1...

P2: ...some code... Barrier; Isend(to P0, 22);

1 Note all examples upto ex 5 are deadlock free hence assume count of sends and recvs
match in the program. For full code please refer [1].
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The Isends are in different processes. Therefore, there is no IntraCB ordering
between them. However, the Irecv of P0 as well as Isend of P1 also do not have
an IntraCB to their barriers. Therefore, the collective barrier is irrelevant.

Now consider an alternative example (call it Example 4(a)) in which the Wait
in P0 is moved to be before its Barrier. Now, the collective barrier becomes rel-
evant. This is because there would be an IntraCB edge from Wait to Barrier.
Hence, Barrier cannot be crossed until the Irecv finishes. Therefore the Isend
from P2 cannot issue. Therefore, Irecv has to finish based on the Isend from P1.

InterCB: The reasoning employed in this example highlights the need for the
notion of InterCB edges. Basically, the Isend of P2 “wishes to match” the Irecv
of P0. The only thing that prevents this is that the collective barrier orders
Irecv to be before it, and Isend to be after it. This is the ordering defined by
InterCB (detailed in Section 3). Furthermore, there is no alternative ordering
path starting from this Irecv to P2’s Isend that does not involve a barrier.
Hence the barrier is relevant.

Example 5: In all previous examples, the wildcard receive statement appeared
before a barrier. In this example, it appears afterwards:

P0: Barrier; Send(to P2);

P1: Send(to P2); Barrier;

P2: Irecv(from P1); Barrier; Recv(*, ..);

Here, the barrier is irrelevant because P2’s Irecv(from P1) is ordered before
Recv(*). The reasoning now relies on another fact about MPI. If there is a
specific-source nonblocking receive followed by a wildcard receive in an MPI
program, the wildcard receive can trump the specific receive (i.e. may match
before it), if there is no matching sender to the specific-source receive! In Exam-
ple 5, however, there is a matching Send(to P2) in P1, and so trumping does
not happen. Since there is no trumping, the IntraCB ordering is maintained
between Irecv(from P1) and Recv(*,..).

3 The Fib Algorithm

We now provide an overview of the POE algorithm used in our ISP tool (Sec-
tion 3.1), and then describe the Fib algorithm (Section 3.2).

3.1 POE Overview

The crucial idea embodied in POE is the notion of exploring only relevant
interleavings—a technique known in model checking as partial order reduc-
tion [11]. Without this idea, any exploration method for MPI will go out of hand.
For instance, consider Example 6 below (used to illustrate the POE algorithm,
and not used to illustrate Fib) that begins with two sends in P0 and P2, and a
wildcard receive in P1. The total number of interleavings of all these MPI calls is
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210.2 However, to trigger error1, we need to consider the interleavings in which
the send of P2 matches the wildcard receive. Testing oriented tools may easily
miss these interleavings. Thanks to partial order reduction, POE will: (i) pick
an arbitrary order for executing P0’s first send and P1’s first receive, (ii) pick
an arbitrary order to execute P2’s first send and P1’s second receive, and then
(iii) consider both the Send matches with the wildcard receive (shown by *). In
other words, POE will examine only two interleavings.

Example 6

P0: MPI_Send(to P1...); MPI_Send(to P1, data = 22);

P1: MPI_Recv(from P0...); MPI_Recv(from P2...);

MPI_Recv(*, x); IF (x==22) THEN error1 ELSE MPI_Recv(*, x);

P2: MPI_Send(to P1...); MPI_Send(to P1, data = 33);

POE has built-in knowledge of the commuting properties of MPI functions. As
another example, consider an MPI program in which MPI_Barrier is invoked by
N processes. POE would, in general, explore only one of the N ! ways in which to
have invoked the barrier calls. In our implementation of the 24 MPI functions, the
cases where alternate interleavings are to be explored include wildcard receives,
WAIT_ANY, and TEST_ANY.

Overview of POE’s use of PMPI: POE uses the well-known PMPI mecha-
nism. It introduces an extra process called the verification scheduler. POE pro-
vides its own version of “MPI f” for each MPI function f . Within MPI f , POE
arranges for handshakes with the scheduler that realizes the POE algorithm.
When the scheduler finally gives permission to fire f , POE invokes PMPI f .
The MPI runtime only sees the PMPI f calls.

Match Sets: Consider Example 6 above. If one repeatedly runs this example
under MPICH2 (for example), it is not guaranteed that error1 will be caught.
In other words, the matching of Send from P0 with the wildcard receive in P1
may prove elusive, as the MPI runtime may never schedule this match!

POE solves the problem of elusive matches without requiring changes to the
MPI library and without adding padding delays—these are expensive, and/or
brittle solutions. Instead, it dynamically rewrites wildcard receives into specific
receives, one for each actual sender that, it computes to be a certain match. In
the context of Example 6, if we can rewrite Recv(*) to Recv(from P0) and
Recv(from P1), in turn, and: (i) pair the first one with Send(to P1, data=22),
and (ii) pair the second one with Send(to P1, data=33), in turn, and (iii) issue
only these send/receive pairs into the MPI system, we can force these matches
to occur. Such groupings of sends and receives are called match sets in POE’s
parlance. In POE, in addition to match sets obtained by grouping dynamically
rewritten wildcard receives with their matching sends, (i) point to point sends
and their receives also form match sets, and (ii) a collective barrier also form
match sets.
2 (7!)/((2!).(3!).(2!)).
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3.2 Fib Algorithm

The Fib algorithm can be expressed through the following pseudocode:

List IBL initialized to Empty; // Irrelevant Barrier List
FIB () {

for each execution interleaving I {
AddInterCB (I);
for each (〈R, S〉 in each Match Set of I

where R is a Wildcard Recv and S is a Send)
CheckRelevant (R, S, I); }

Print IBL;
}
AddInterCB (Interleaving I) {

for each (Match Set M as 〈x1, x2, ..., xn〉 in I)
for (i = 1 to n)

for (j = 1 to n, j �= i)
Add InterCB edge from xj to IntraCBSuccessor (xi)

}
CheckRelevant (R, S, I) {

P = SetofPaths (R, S, I); // Set of all paths from R to S in I
if(� some barrier B in every pi in P)

return;
if(barrrier B in every pi in P && B in IBL){

Remove B and its match set barriers from IBL;
return; }

Add B to IBL;
Add all barriers that form Match Set with B to IBL;

}

Fig. 1. Pseudocode for Fib

Illustration: In Example 4, there is no InterCB ordering from Irecv to the
Isend of P2. Now in the alternate example called Example 4(a) discussed
earlier, the above procedure will end up creating an IntraCB path from Irecv
to Wait to Barrier in P0. Also, all of Barrier form a match set. Furthermore,
Isend of P2 is ordered to be after the Barrier. There is no alternate ordering
path – so the collective barrier is relevant. Figure 2 summarizes the above
explanation. The IntraCB edges depicted in Figure 2 for process P0 are easy
to reason. In process P1, Isend(to P0) has no IntraCB edge to the following
Barrier since Isend being a non blocking call has no obligation to finish
before the barrier. However, since Fib knows that Irecv(*) in P0 matches
this Isend, we add InterCB edges from Isend to operations that are bound to
complete after Irecv. This explains the InterCB edge between Isend( to P0) to
Wait(&handle). The same reasoning explains the InterCB edge from Irecv(*)
to Finalize of P1. After adding InterCB edges, the only path that reaches to
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InterCB edge

IntraCB edge

Irecv (*, x, &handle)

Wait (&handle)

Barrier

Isend(to P0, 33)

Barrier Barrier

Isend(to P0, 22)

FinalizeFinalizeFinalize

P1 P2

{ Isend(to P0), Irecv(from P1) }

Match Sets is:

(Note: Isend of P2 won’t match

  Irecv of P0 )

P0

Fig. 2. Example 4(a) in Section 2 with InterCB and IntraCB edges

Isend(to P0) of P2 from Irecv(*) of P0 involves a barrier. Thus the barrier
and all the barrier operations from other processes that formed the match set
are flagged to be relevant.

4 Implementation and Experimental Results

We automatically instrument the MPI user code where all MPI Barrier(comm)
calls are replaced by MPI Barrier new(comm, LINE , FILE ). The two new
arguments are system macros that keep the information of line number the
function call and the file name that contains it. Our instrumentation tool is
written using CIL [14] which offers a framework to create a custom source-to-
source program-instrumentation pass. We have run our Fib tool on several MPI
programs including: (i) the Monte-Carlo computation of Pi, (ii) 2D diffusion, and
(iii) all 69 tests that came along with UMPIRE tool [10]. As for runtimes, the ISP
algorithm introduces a slowdown because of its scheduler-mediated executions
(in [13], we provide ideas for improving the execution time). The added overhead
that Fib introduces over and above ISP is negligible. Our web page [1] provides
detailed results; here is a summary:

• Monte-Carlo: The code of Monte-Carlo, did not have any barrier calls. To
acid-test our implementation, we deliberately inserted an irrelevant collective
barrier, which our implementation flagged as such. The run times of the Fib
algorithm are as follows: (i) with 4 processes, it explored 6 interleavings
in 0.2 seconds, and with 5 processes, it explored 24 interleavings in 1.52
seconds.

• 2D Diffusion: This code had 2 irrelevant barriers which were caught by the
tool. In fact, this example does not employ wildcard receives, and so all its
barriers are irrelevant, and Fib finishes with one interleaving. The runtime
of Fib on this example was less than a second. This reinforces that without
wildcards we need only one interleaving.

• Umpire test suite: We ran our tool successfully on all the 69 tests that
came along with Umpire tool [10]. Of the 36 tests that had barriers, all were
flagged as irrelevant, with negligible runtimes.
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5 Concluding Remarks

Removing unnecessary barriers is important, because they needlessly add to the
program-execution time. This is particularly true for applications running on
petascale machines with thousands of processors. We presented an algorithm,
Fib, that is built as an extension to our verification tool ISP for MPI programs.
Fib works by detecting, for each barrier, whether its removal causes a wildcard
receive statement placed before or after a barrier to now begin matching a send
statement with which it did not match before. We report success in detecting
irrelevant barriers in a number of examples. Since all these examples have control
that does not depend on data, the analysis is good for all input data. Our
future plans include extending this analysis to cover interesting classes of data
dependent control, as well as aiming to cover all of MPI 2.0.
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Abstract. Model checking techniques are powerful tools for the analysis
and verification of concurrent systems. This paper reports on a case study
applying model checking techniques to a mature, MPI-based scientific
program consisting of approximately 10K lines of code. The program,
BlobFlow, implements a high order vortex method for solving the two-
dimensional Navier-Stokes equations. Despite the complexity of the code,
we verify properties including freedom from deadlock and the functional
equivalence of sequential and parallel versions of the program. This has
led to new insights into the technology that will be required to automate
the modeling and verification process for complex scientific software.

1 Introduction

Over the past several years, there has been increasing interest in using model
checking to debug and verify parallel scientific programs. Specific techniques
vary, but usually involve three tasks: (1) an abstract model of the program is
constructed, (2) correctness properties of the model are expressed in a formal
language, and (3) automated algorithmic techniques are used to exhaustively
explore all possible states of the model while checking that the properties hold.
The model checking tool will either report that the properties always hold, or
provide an explicit counterexample in the form of an execution trace of the
model, greatly facilitating debugging.

This approach has several advantages over traditional testing and debugging
techniques. The first is that it exhaustively explores all possible executions of
the model, examining all allowable interleavings of statements from different
processes, all choices available at a wildcard receive, and so on. These kinds of
choices are difficult to explore at all by testing, let alone exhaustively.

One of the alleged shortcomings of the model checking approach is that it
requires relatively small bounds on parameters such as the number of processes,
the size of the input, and so on. This is not as serious a limitation as it first
appears, because program defects almost always manifest themselves for rela-
tively small values of these parameters. This point is often misunderstood by
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Fig. 1. Left: A schematic diagram of the geometry of an elliptical Gaussian basis
function. Middle: a sample ECCSVM computation. Right: blowup of particles in the
boxed area.

developers, who have seen many problems that only occur for very large process
counts or inputs. A common example is an MPI program with the potential
to deadlock: the program may run normally on small configurations if the MPI
implementation chooses to buffer certain messages, but when the process count
or memory requirements exceed some threshold, the implementation may choose
to synchronize message delivery, revealing the deadlock. A model checker, how-
ever, will explore the possibility of forced synchronization in all states where it
is permitted by the MPI Standard, and the failure will be detected in even the
smallest configurations. Another example is an MPI program that may fail when
the number of outstanding communication requests generated by the program
exceeds some large bound. With model checking, the bound on the number of
allowable requests is a parameter which can be given a small value, so the same
failure will be detected for a small configuration of the program.

In fact, the ability of model checking to discover defects in small configurations
is one of its most significant advantages over traditional debugging techniques.
If one can only reproduce a failure using 1000 processes, and the resulting trace
involves thousands of execution steps, analyzing the trace with a standard de-
bugger can be difficult or impossible. The ability of model checkers to find small
(even minimal) counterexamples is an immense advantage for debugging.

To date, most of the applications of model checking to scientific comput-
ing have involved only small example programs (e.g., [1, 2, 3]). The goal of the
project reported on here was to determine whether model checking techniques
could be successfully applied to a production code used in actual scientific re-
search. The code we chose is L. Rossi’s computational fluid dynamics program
BlobFlow [4, 5, 6]. BlobFlow has been actively developed and used over the
past 7 years to explore fluid flow phenomena and novel simulation algorithms.
It consists of approximately 10K lines of C code and includes both a parallel
(MPI-based) version and a sequential version. To the best of our knowledge, it is
the largest parallel scientific application to have been successfully verified with
model checking techniques.

The model checker used in this study is Mpi-Spin [7, 8], an extension to the
standard model checker Spin [9]. Mpi-Spin adds to Spin’s input language a
large number of primitives corresponding to the types, constants, and func-
tions comprising MPI. It also incorporates a precise model of the semantics of the
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procedure ECCSVM(t0, tf , Δt: double; numElements: int; elements: Element[]) is1

vel : Vector[MaxElt];2

t ← t0;3

while t ≤ tf do4

for j ← 0 to numElements do computeVelocity(j, elements, vel);5

integrate(numElements, elements, vel);6

output(t,numElements, elements);7

t ← t + Δt;8

procedure computeVelocity(numElements: int; elements: Element[]; vel : out Vector[]) is9

mpcoef : double[MpSize]; i, j, p : int;10

for i ← 0 to MpSize − 1 do mpcoef [i] ← 0;11

for i ← 0 to numElements − 1 do12

for p ← 0 to PMax − 1 do13

j ← f1(i, p, elements);14

mpcoef [j] ← mpcoef [j] + f2(i, p, elements);15

for i ← 0 to numElements − 1 do vel [i] ← f3(i, elements,mpcoef );16

Fig. 2. ECCSVM algorithm, sequential version

MPI operations, based on the MPI Standards. Though there are no tools to
automatically translate MPI programs into the input language for Mpi-Spin,
this language support makes manual translation much more straightforward. We
used Mpi-Spin to verify two important properties of BlobFlow: (1) freedom
from deadlock, and (2) the functional equivalence of the sequential and parallel
versions.

2 ECCSVM and BlobFlow

The Elliptical Corrected Core Spreading Vortex Method (ECCSVM) [4, 5] is
an algorithm for computing the motions of incompressible gases and liquids
in two dimensions. The algorithm falls under the general category of vortex
methods [10]. Vortex methods represent vorticity as a sum of localized, moving
basis functions, referred to as elements or blobs. Each element is characterized
by the position of its center and other parameters (Fig. 1).

The high-level structure of the ECCSVM algorithm is shown in Fig. 2. The
algorithm takes as input the initial values of the elements as well as the initial and
final times and the length of each time step. At each iteration, the velocities (vel)
are computed from the current vorticity data. This is the most computationally
expensive part of the algorithm, but is necessary because the integration step,
which updates the positions and parameters of the elements, requires explicit
knowledge of the velocities.

The velocity is computed by evaluating a Biot-Savart integral [11, §2.3] over
the entire spatial domain of the fluid. This means that the computation of the
velocity at one element center requires knowledge of the vorticity at every ele-
ment. A näıve approach would thus require O(N2) operations, where N is the
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procedure slave (elements : Element[]; mpcoef : double[]; packsize : int) is1

packbuf : byte[PBSize]; databuf : double[DataSize × WorkSize];2

indexbuf : int[WorkSize]; i, pos : int;3

sendreq , recvreq : MPI_Request; status : MPI_Status;4

MPI_RECV_INIT(indexbuf , WorkSize, MPI_INT, 0, MPI_ANY_TAG, recvreq);5

MPI_SEND_INIT(packbuf , packsize , MPI_PACKED, 0, 0, sendreq);6

while true do7

MPI_START(recvreq);8

MPI_WAIT(recvreq , status);9

if status .tag = Done then break;10

for i ← 0 to WorkSize − 1 do11

if indexbuf [i] �= −1 then12

databuf [i] ← f3(indexbuf [i], elements ,mpcoef );

MPI_WAIT(sendreq , MPI_STATUS_IGNORE);13

pos ← 0;14

MPI_PACK(indexbuf , WorkSize, MPI_INT, packbuf , packsize , pos);15

MPI_PACK(databuf , DataSize × WorkSize,16

MPI_DOUBLE, packbuf , packsize , pos);
MPI_START(sendreq);17

MPI_REQUEST_FREE(recvreq);18

MPI_WAIT(sendreq , MPI_STATUS_IGNORE);19

MPI_REQUEST_FREE(sendreq);20

Fig. 3. Slave

number of elements, in order to compute the velocity field at all element cen-
ters. The ECCSVM uses a more technique known as the fast multipole method
(FMM) to approximate the integral in O(N) operations. The FMM requires a
decomposition of the domain into near and far elements, and therefore computa-
tional resources for evaluating the velocity will vary substantially from element
to element, so dynamic load balancing is crucial in the parallel version.

The parallel version of the algorithm changes only computeVelocity. The com-
putation of the FMM coefficients is distributed equally among the processes and
the results are summed onto each process with an MPI_ALLREDUCE. The com-
putation of the velocities from the FMM coefficients (the invocation of f3 on
line 16), on the other hand, uses a variation of the master-slave pattern. The
master sends to a slave a list of element indices and the slave performs the f3

computations on the specified elements and packs and sends the results back
to the master. The master unpacks the results and updates vel appropriately.
When all the velocity calculations are complete, the master broadcasts vel to
all processes. In the actual BlobFlow code, there are many variations on the
standard patterns, however. For example, the master initially sends two tasks to
every slave, persistent requests are used in sometimes complicated ways, there
is somewhat complex packing and unpacking of data. The slave code (which is
a small portion of the parallel computeVelocity code) is summarized in Fig. 3.
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3 Verification

The first goal was to verify freedom from deadlock, and we constructed an Mpi-

Spin model of the parallel version of BlobFlow for this purpose. We found that
a näıve translation, in which each variable in the original program is mapped to a
unique variable in the model, would never scale, due to the sheer number of vari-
ables in the program. The key idea to making a tractable model is conservative
abstraction. Conservative abstraction is a process by which we leave out some
information from the model, but we ensure that when there is a decision that
requires that information, the model checker will explore all possible outcomes
(and perhaps some that are not possible).

To be precise, if M is a model of a program P , then every execution e of P
maps to an execution f(e) of M . Many distinct program executions may map to
the same model execution; the extent to which this happens is a measure of the
abstraction of the model. There may also be model executions that are not in
the image of f ; these are called spurious executions. The model is conservative
for a property π if the following is true: for all e, π holds for f(e) iff π holds for
e. If the model checker verifies that π holds on all executions of a conservative
model, one can conclude π holds for P . If, on the other hand, the model checker
produces a counterexample e′, it is possible that π still holds for P because e′

is spurious. Hence one must examine e′, and if it is determined to be spurious,
the model is refined by adding sufficient information to eliminate the spurious
execution. One continues to refine the model in this way until either an actual
counterexample is produced or the property is verified successfully [12].

The natural starting point is a very abstract but conservative model that kept
just enough information to capture the rank and request arguments occurring
in the MPI function calls. An excerpt of this model is shown in Fig. 4(a) and
corresponds to the main slave loop of Fig. 3. The conditional statement of Fig. 3,
line 10, which controls when the slave breaks out of the loop, has been replaced
by a nondeterministic choice, which means that execution may or may not break
out of the loop—both possibilities are explored at each iteration. For this model,
Mpi-Spin found a counterexample, and examination quickly revealed that it was
spurious: one slave breaks out of the loop in its first iteration and the master ends

(a) do :: MPI_Start(Pslave,&Pslave->recvreq);

MPI_Wait(Pslave,&Pslave->recvreq, MPI_STATUS_IGNORE);

if :: 1 -> break :: 1 fi;

MPI_Wait(Pslave,&Pslave->sendreq, MPI_STATUS_IGNORE);

MPI_Start(Pslave,&Pslave->sendreq) od

(b) do :: MPI_Start(Pslave,&Pslave->recvreq);

MPI_Wait(Pslave,&Pslave->recvreq, &Pslave->status);

if :: status.tag == DONE -> break :: else fi;

MPI_Wait(Pslave,&Pslave->sendreq, MPI_STATUS_IGNORE);

MPI_Start(Pslave,&Pslave->sendreq) od

Fig. 4. (a) Abstract model of main slave loop. (b) Refined to include status.
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do :: MPI_Start(Pslave, &Pslave->recvreq);

MPI_Wait(Pslave, &Pslave->recvreq, &Pslave->status);

if :: status.tag == DONE -> break :: else fi;

do :: i < WorkSize -> c_code {

if (Pslave->indexbuf[Pslave->i] != (uchar)(-1))

Pslave->databuf[Pslave->i] =

SYM_cons(f_3_id,

SYM_cons(SYM_intConstant(Pslave->indexbuf[Pslave->i]),

SYM_cons(Pslave->elements,

SYM_cons(Pslave->mpcoef, SYM_NULL))));

}; i++

:: else -> i = 0; break od;

MPI_Wait(Pslave, &Pslave->sendreq, MPI_STATUS_IGNORE);

pos = 0;

MPI_Pack(Pslave->indexbuf, WorkSize, MPI_BYTE, Pslave->packbuf,

Pslave->packsize,&Pslave->pos);

MPI_Pack(Pslave->databuf,DataSize*WorkSize,

MPI_SYMBOLIC,Pslave->packbuf,Pslave->packsize,&Pslave->pos);

MPI_Start(Pslave,&Pslave->sendreq) od

Fig. 5. Symbolic model of main slave loop

up waiting forever for a result from that slave. We refined the model (manually)
by adding the status variable (Fig. 4(b)). This provided sufficient precision to
verify deadlock-freedom.

With the resulting model, which we call the communication skeleton, we were
able to verify deadlock-freedom for up to 5 processes. (Mpi-Spin actually checks
several other correctness properties automatically, such as (1) there are no al-
located request objects for a process when MPI_FINALIZE is called; and (2)
MPI_START is never invoked on an active request.) The execution time for the
5-process verification was 41 minutes on a Sun Ray with two dual-core 2.6 GHz
AMD Opteron processors. The verification consumed 7.7 GB of RAM and ex-
plored 3.5 × 107 states. The numbers for the 4-process run were 45 seconds, 163
MB, 1.5 × 106 states; for 3 processes, 1 second, 56 MB, 62, 798 states.

Verifying the functional correctness of BlobFlow is a much harder problem.
The goal is to verify that the sequential and parallel versions are functionally
equivalent, i.e., they produce the same output on any given input. A method for
this combining model checking and symbolic execution is described in [3] and
we review it briefly here.

To perform this verification, we must model the program data symbolically:
the input is represented as symbolic constants X1, X2, . . . and the output is
represented as symbolic expressions in the Xi. Floating-point operations are re-
placed by corresponding symbolic operations, which simply build new symbolic
expressions from their operands. These constructs are supported in Mpi-Spin

through a symbolic type and a set of symbolic operations. A model of this type
is made for both the sequential and parallel programs. Mpi-Spin is then used
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to explore all possible executions of the models and verify that in each case,
the symbolic expressions output by the two versions agree. Fig. 5 shows the
symbolic model of the main slave loop, which refines the abstract model used in
the communication skeleton.

Because floating-point arithmetic is only an approximation to real arithmetic,
we must clarify what is meant by functionally equivalent. Two programs that are
equivalent when the arithmetic operations are interpreted as taking place in the
set of real numbers may not be equivalent if those operations are implemented us-
ing IEEE754 floating-point arithmetic. Two programs that are equivalent with
IEEE754 arithmetic may not be equivalent if some other floating-point arith-
metic is used. Different notions of equivalence may be appropriate in different
circumstances. For example, a parallel program containing an MPI reduction
operation using floating-point addition may obtain different results when run
twice on the same input, because the sum may be computed in different orders.
Such a program cannot be floating-point equivalent to any sequential program,
but it may be real-equivalent to one. Mpi-Spin deals with this situation by of-
fering the user a choice of three successively stronger equivalence relations: real,
IEEE, and Herbrand, the last holding only if the two programs produce exactly
the same symbolic expressions.

A straightforward application of this method used in previous work would not
scale to BlobFlow. In the earlier work, the symbolic variables corresponded
one-to-one with the floating-point variables in the original program; the sheer
number of such variables in BlobFlow meant that the memory required to
store one state of the model would be prohibitive.

Our solution to this problem involved two related ideas. The first is that
groups of variables that tend to be manipulated together can often be represented
by a single symbolic variable in the model. The second is that sections of code
that are shared by the sequential and parallel versions can be represented by
a single abstract symbolic operation. An example is the function f3 that is
invoked in both Fig. 2, line 16, and Fig. 3, line 12. Since we are only trying
to prove the equivalence of the two versions, there is no need to know exactly
what f3 computes. Instead, we can just introduce a new symbolic operation for
f3, and use it wherever this function is invoked in the codes. We used both of
these techniques extensively to design a reasonably small, conservative symbolic
model.

Space does not permit us to describe the model in detail, but the source
for the model and all other artifacts used in this study are available at
http://vsl.cis.udel.edu. Using this model, we were able to verify functional
equivalence for up to 4 processes. Since the parallel version uses a floating-
point addition reduction operation (in the FMM computation), we used the
real-equivalence mode. The 4-process run lasted 21 minutes, consumed 1.2 GB,
explored 2.0 × 107 states, and generated 988 distinct symbolic expressions. The
numbers for the 3-process run were 19 seconds, 96 MB, 691, 837 states, and 731
expressions.

http://vsl.cis.udel.edu
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4 Conclusion

In this paper, we have reported on our investigation using the model checker
Mpi-Spin to verify correctness properties of a nontrivial parallel scientific pro-
gram. We were able to verify generic concurrency properties, such as freedom
from deadlock, for models of the program with up to 5 processes. We also verified
the functional equivalence of the parallel and sequential versions of the program,
for up to 4 processes and within specific bounds on certain parameters.

In carrying out this study, we have developed—at least in outline—a method-
ical way to construct the models. The method begins with a very abstract but
conservative model that encodes only the data necessary to represent the rank
and request arguments occurring in the MPI function calls of the program. The
model is then progressively refined until sufficient precision is achieved to either
verify or produce a valid counterexample to freedom from deadlock. This “com-
munication skeleton” model is then augmented by representing the program data
symbolically, and the resulting model is used to verify functional equivalence.

Several abstraction techniques proved useful in the construction of the sym-
bolic model. The most important requires one to locate units of code common to
the sequential and parallel versions of the program and abstract these segments
using uninterpreted symbolic operations. This process is made easier if the se-
quential and parallel versions share code. It also requires partitioning the data
of the programs and assigning a symbolic variable to each partition.

Further progress will require the development of a formal basis for these ab-
straction techniques. This would lay the groundwork for automating (at least in
part) the model construction process. Indeed, there are clearly some established
static analysis techniques that could be brought to bear on our method. These
include standard techniques to estimate the set of variables read or written to
by a program unit, and dependence analysis, which could be used to determine
that certain variables must be incorporated into the models. These techniques,
however, must be made aware of certain aspects of the semantics of the MPI
functions used in the programs. In other contexts, the counterexample-driven
refinement loop has been automated using theorem-proving techniques, and it
is possible that similar techniques could be adopted for MPI-based programs.

Finally, more work is needed to address the state-explosion problem for
master-slave style programs. In this study, we observed a very steep blowup
in the number of states with the process count. The reason for this appears to
be the combinatorial explosion inherent in the master-slave architecture, due
to the large number of ways tasks can be partitioned among slaves and the
differing orders in which results can be received by the master. Various reduc-
tion techniques have been devised for programs that avoid the nondeterminis-
tic constructs used in master-slave programs, such as MPI_ANY_SOURCE and
MPI_WAITANY (e.g., [13]). These techniques allow model checking to scale ef-
fectively for many types of programs, such as standard discrete grid simulations.
Other reduction strategies have been proposed to deal with wildcard receives
(e.g., [14, 15]). These have not been incorporated into Mpi-Spin, but it is not
clear they would make a substantial difference for master-slave programs in any
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case. It appears that some fundamental algorithmic advance must be made in
this area if model checking is to become practical for this important class of
parallel scientific programs.

These are some of the many avenues of future research.

Acknowledgments. We are grateful to the U.S. National Science Foundation
for funding under grant CCF-0733035 and to Samuel Moelius for assistance in
constructing the Mpi-Spin models.
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In today’s world, the use of parallel programming and architectures is essential
for simulating practical problems in engineering and related disciplines. Remar-
kable progress in CPU architecture (multi- and manycore, SMT, transactional
memory, virtualization support, etc.), system scalability, and interconnect tech-
nology continues to provide new opportunities, as well as new challenges for
both system architects and software developers. These trends are paralleled by
progress in parallel algorithms, simulation techniques, and software integration
from multiple disciplines.

In its 7th year ParSim continues to build a bridge between computer science
and the application disciplines and to help with fostering cooperations between
the different fields. In contrast to traditional conferences, emphasis is put on the
presentation of up-to-date results with a shorter turn-around time. This offers the
unique opportunity to present new aspects in this dynamic field and discuss them
with a wide, interdisciplinary audience. The EuroPVM/MPI conference series, as
one of the prime events in parallel computation, serves as an ideal surrounding
for ParSim. This combination enables the participants to present and discuss
their work within the scope of both the session and the host conference.

After a quick turn-around, yet thorough review process we again picked three
papers for publication and presentation during the ParSim session. These papers
cover a diverse set of topics in parallel simulation and their support infrastruc-
ture: the first paper describes a generic and high-level class hierarchy for the
parallelization of structured grid codes; the second paper demonstrates the sca-
ling behavior of an earthquake simulation code on up to 4096 processors; and the
� Part of this work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-404491).
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final paper addresses the efficient use of GPGPUs by providing fast data transfer
mechanisms to and from the accelerator hardware. We are confident that these
selections resulted in an attractive program and that ParSim will yet again be
an informal setting for lively discussions and for fostering new collaborations.

Several people contributed to this event. Thanks go to Jack Dongarra, the
EuroPVM/MPI general chair, and to Alexey Lastovetsky and Tahar Kechadi,
the PC chairs, for their support to continue the ParSim series at EuroPVM/MPI
2008. We would also like to thank the numerous reviewers, who provided us with
their reviews in such a short amount of time (in most cases in just a few days)
and thereby helped us to maintain the tight schedule. Last, but certainly not
least, we would like to thank all those who took the time to submit papers and
hence made this event possible in the first place.

We are confident that this session will fulfill its purpose to provide new in-
sights from both the engineering and the computer science side and encourages
interdisciplinary exchange of ideas and collaborations. We hope that this will
continue ParSim’s tradition at EuroPVM/MPI.
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Abstract. In this paper we present first results obtained with LibGeo-
Decomp, a work in progress library for scientific and engineering sim-
ulations on structured grids, geared at multi-cluster and grid systems.
Today’s parallel computers range from multi-core PCs to highly scaled,
heterogeneous grids. With the growing complexity of grid resources on
the one hand, and the increasing importance of computer based simula-
tions on the other, the agile development of highly efficient and adaptable
parallel applications is imperative. LibGeoDecomp is to our knowledge
the first library to support all state of the art features from dynamic
load balancing and exchangeable domain decomposition techniques to
ghost zones with arbitrary width and parallel IO, along with a hierarchi-
cal parallelization whose layers can be adapted to reflect the underlying
hierarchy of the grid system.

Keywords: Grid computing, self-adaptation, hierarchical parallelization.

1 Introduction

Fueled by the rise of computer based simulations and stagnating clock rates,
the trend towards highly parallel supercomputers puts scientists in the awk-
ward position of having to be experts in both, their actual subjects and parallel
computing. This problem is aggravated by the hierarchical structure of grid com-
puting resources, being comprised of heterogeneous networks and multi-socket or
multi-core machines. Achievement relies on the efficient usage of such systems,
but capable applications usually represent the outcome of expensive, multidisci-
plinary projects. Thus scientists and engineers require tools to reduce application
development time and complexity.

During the MuCluDent [1] (Multi-Cluster DendriTe) project, a simulation
software for cooling molten metal alloys based on a combination of cellular au-
tomaton and finite difference method, we were facing a number of challenges.
First, the program had to run on a variety of machines, ranging from notebooks
for model tests to multi-clusters for larger simulations. Manually adapting the
code to run most efficiently on each setup soon proved to be tedious and error
prone. Second, the model exhibited strong computational hot spots, making some
regions four times more expensive to update than others. And third, previous
parallelizations did not scale well on the multi-cluster setup we were using.

A. Lastovetsky et al. (Eds.): EuroPVM/MPI 2008, LNCS 5205, pp. 285–294, 2008.
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Similarly, a number of simulations can be modeled as time-discrete evolu-
tions on structured grids and can be parallelized by geometric decomposition.
This means that the simulation domain can be broken down into atomic cells,
arranged in a grid. While the geometry of the cells may vary, the grid’s topology
has to be equivalent to a cube of appropriate dimension. The cells encapsulate
the data on which the simulation operates, as well as how they are updated to
the next time step. For instance, a cell for Conway’s game of life will contain only
one bit as data (dead or alive) and its update method will set this bit depending
on the cell’s old state and the number of living neighbors.

Typically, implementations will store two grids at any given time: one con-
taining the cells from the past time step, and another one to store the newly
updated cells. This is to prevent cells referencing already updated neighbors dur-
ing the update process. A typical approach for parallelization is to decompose
the simulation grid into smaller regions and distribute them among the partic-
ipating processors. Since the cells require the states of their neighbors during
update, the nodes need to synchronize the rims of their regions. These rims are
also referred to as ghost zones. Section 5 deals with the crucial question of how
to subdivide the grid optimally. This process is known as domain decomposi-
tion, and the optimum depends on numerous factors, such as load balance and
fluctuation or communication costs.

Many frameworks aim to support developers with varying degrees of gener-
icness, ranging from domain specific libraries like COOLFluiD to fully fledged
problem solving environments like Cactus, but most of them target homogeneous
clusters and support only limited domain decomposition types. As an alterna-
tive, LibGeoDecomp focuses on the parallelization. While it does not provide
domain specific libraries (e.g. physical modules or numerical methods), the main
design goals were adaptability and scalability. Its hierarchical parallelization can
be tuned to reflect the characteristics of the underlying systems. On each level
the domain decomposition, the load balancing scheme and the ghost zone width
can be varied. This way wide ghost zones can be used on WAN connections
to hide latency while intra-cluster links may use smaller widths, thus increas-
ing efficiency. Small subsystems may use remapped load balancing while larger
systems may use diffusive algorithms. An additional layer can be added where
necessary to reflect multi-core CPUs. Using threads on that level can speed up
the simulation, for instance by reducing the number of MPI processes taking
part in collective operations.

The rest of the paper is organized as follows: Section 2 gives a brief overview
of the current state of the art. Section 3 outlines our design and Sections 4 and 5
yield in depth explanations of our parallelization and the domain decomposition.
Section 6 closes with initial benchmark results.

2 Related Work

Cactus [2] is a widely used framework for three-dimensional physical simulations,
written mainly in C. Cactus consists of two types of components: the Thorns
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provide functionality like IO or certain numerical methods. They communicate
via the Flesh. Cactus’ emphasis lies on a large library of ready to use modules.A
special type of Thorns, the Drivers, are used for parallelization. PUGH is Cactus’
default driver for regular grids, but it can only subdivide the dimensions of
the simulation grid in parts who are divisors of the number of processes. If
the number of processes is for instance not a power of two, this may yield a
sub-optimal surface to volume ratio. Carpet, the Driver for mesh-refinement
simulations, handles this case more gracefully, but cannot yet perform dynamic
load balancing. COOLFluiD [3] is a toolkit for computational fluid dynamics.
It can be extended for multiple numerical methods and complex geometries
(unstructured grids, hybrid meshes etc.), but is not targeted for grid systems. It
cannot yet perform dynamic load balancing.

3 LibGeoDecomp Overview

This sections contains a brief overview of LibGeoDecomp’s structure and user
interface. On the basis of our experiences with MuCluDent we started to de-
velop LibGeoDecomp as a generic library for time discrete simulation codes on
structured grids that can be parallelized by geometric decomposition, written in
C++. Figure 1(a) illustrates the basic structure of LibGeoDecomp: Objects of the
Simulator class conduct the parallel evolution, based on the user supplied model
Cell. At the begin of the simulation the grid is set up by the Initializer, while
Writer objects perform output for various formats (e.g. the PPMWriter for basic
graphical output). The MPIIO Writer and Initializer can be used for applica-
tion level checkpoint/restart functionality. LibGeoDecomp is based on template
classes, so that user supplied classes for initialization and cells can be integrated
with minimal overhead.

To solve the adaptation problem, we built LibGeoDecomp with the Pol-
larder [4] framework. Pollarder is a library that can perform an environment
discovery at application start-up time and can then select the most suitable user
provided components automatically, thereby freeing the user from doing this on
each system manually.

The following listing is a simple example how to use LibGeoDecomp with
a custom cellular automaton. All the user has to do is to specify his evolution
code (in this case it is Conway’s game of Life) and how the grid is initialized (via
the CellInitializer class). He can then request a Simulator object from Pol-
larder’s factory. For simplicity, this example does not use output. Usually the user
would add output objects to the factory by calling the factory’s addWriter()
method. The user does not have to worry about the environment, Pollarder will
automatically chose a suitable parallelization along with a load balancer and
compatible IO objects.
#inc lude <l ibgeodecomp . h>
us ing namespace LibGeoDecomp;

c l a s s Ce l l {
pub l i c :

s t a t i c i n l i n e unsigned nanoSteps ( ) { return 1 ; }
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Ce l l ( const bool& a l i v e = f a l s e ) : a l i v e ( a l i v e ) {}
void update (CoordMap<Cel l>& neighborhood , unsigned&) {

i n t l i v i n gNe i gbo r s = countLiv ingNeighbors ( ne ighborhood ) ;
i f ( ne ighborhood [ Coord (0 , 0 ) ] . a l i v e ) ;

a l i v e = (2 <= l i v i n gNe i gb o r s ) && ( l i v i n gNe i gbo r s <= 3) ;
e l s e

a l i v e = ( l i v i n gNe i gbo r s == 3 ) ;
}
i n t countLiv ingNeighbors ( const CoordMap<Cel l>& nhood ) { . . . }
bool a l i v e ;

} ;

c l a s s Ce l l I n i t : publ i c S i mp l e I n i t i a l i z e r <Cel l> { . . . } ;

i n t main ( i n t argc , char ∗argv [ ] )
{

MPI : : I n i t ( argc , argv ) ;
Simulator<Cel l> ∗ sim =

Po l l a rd e r : : Factory<Simulator >() . get<Cel l >(new C e l l I n i t ( ) ) ;
sim−>run ( ) ;
MPI : : F i na l i z e ( ) ;
return 0 ;

}

4 Parallelization Architecture

One of our goals was to develop a hierarchical parallelization which could be
adapted level-wise to the characteristics of a grid system. Thereby we could
handle the aspects of its subsystems individually, instead of having to worry
about every participating system simultaneously.

Pollarder’s Hierarchical Adaptive Parallelization (HAP) Pattern is a solution
intended for this use case. If a algorithm can be reformulated in a recursive
manner, then HAP enables the developer to create a number of parallelization
classes, each for a single type of system (e.g. SMP machines or for slow inter-
cluster links). These classes have to be registered with Pollarder.

Pollarder will then perform an environment discovery whose outcome is a
tree-shaped representation of the grid system. Depending on the system the top
level node might represent a multi-cluster, its children could be the head nodes
of the subordinate clusters and the leaves would be actual cluster nodes. SMP
machines would contain an extra level to reflect the parallelism offered by their
processors. All tree nodes will then be mapped path-wise to the processing cores.
Figure 1(b) illustrates this mapping for the example of a a dual-core head node
in a multi-cluster setup. The first core would receive a parallelization for inter-
cluster synchronization, one for intra-cluster communication and one OpenMP
parallelization. The second core would only get another one for OpenMP. Each
level would get its own balancer to drive the parallelizations parameters (e.g.
the ghost zone width).

The following pseudo code sketches out our hierarchical parallel algorithm.
Ghost zones are updated first and sent asynchronously before updating the in-
ner kernel in order to let communication and computation overlap. Upper level
parallelizations shield their lower levels by aggregating outer communication.
To allow for high latency on outwards connections, wider ghost zones on higher
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(a) Component Interaction (b) Hierarchical Parallelization

Fig. 1. Component Architecture. HiParSimulator is a subclass of Simulator. Associated
Balancers have been omitted in Fig. 1(b) for clarity.

levels are advantageous. The grid itself and the ghost zones are stored decentral-
ized. Upper level parallelizations delegate updates to their children. To perform
synchronization on their level, they collect the updated ghost zone fragments
from their children and send them back the parts they have received from their
peers. A major challenge during the implementation has been to manage the
different ghost zone widths, which influence the rhythm of the updates in sub-
sidiary components (see Section 5). Since nodes in each sub-system are shielded
by their head nodes from other sub-systems, they can perform load-balancing
independently, thus reducing the over all cost of local balancing.

de f update
async recv ( @oute r ghos t r e g i on )
i f ( ch i l d r en ) then ch i l d r en . update ( @ inne r ghos t r e g i on )
e l s e do update ( @ inne r ghos t r e g i on )
async send ( @ inne r ghos t r e g i on )
i f ( ch i l d r en ) ch i l d r en . update ( @kernel )
e l s e do update ( @kernel )
wai t for communicat ion

end

de f main
@oute r ghost reg ion , @inner ghost reg ion , @kernel =

i n i t i a l i z e s i m u l a t i o n
loop { update }

end

5 Domain Decomposition

The domain decomposition is one of the crucial parts of any parallel simulation.
It splits up the simulation grid into smaller chunks which are then assigned to
the processors. While its ultimate goal is to maximize performance, this can only
be achieved by a compromise between its sub-goals: minimum surface to volume
ratio (to minimize communication volume), high locality in neighborhood rela-
tionship (to minimize inter cluster communications), maximum overlap for two
decompositions with similar weight vectors (to minimize communication costs
for load balancing) and minimal computational overhead. The actual perfor-
mance of a technique depends on the simulation model, too. Models like the
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one from MuCluDent, which exhibit strong computational hot-spots, emphasize
load balancing, while the one used in Section 6 is more demanding in terms of
surface to volume ratio.

Weighted recursive bisection is good at minimizing communication volume.
But since sectors are always bisected along the longest axis, even small changes
to the weight sector can make sectors change their aspect ratio, leading to them
being split not vertically, but horizontally. This can make load balancing ex-
tremely expensive, since this requires some nodes to communicate their whole
grid region over the network [1]. On the other hand, space filling curves (SFCs)
are typically docile in terms of load balancing, and for instance H-Indexing [5]
is near optimal in terms of neighborhood locality, but less good in respect to
minimum node surfaces. All in all, SFCs are associated with high computational
overhead and for a given point on the curve it is hard find the curve coordinates
in spacial neighborhood. Basically this requires one to invert the curve, mapping
space coordinates back to curve coordinates.

To avoid both, the problems of SFCs and to keep our parallelization indepen-
dent from fixed decomposition schemes, we have devised an alternative repre-
sentation for the coordinate set allocated on a node. Figure 2(b) illustrates how
the Region data structure performs a run length compression of a stream of
coordinates provided for instance by the H-Indexing curve. Instead of having to
store all coordinates, we just store the starting point and length of consecutive
coordinate streaks. These streaks are then stored in an associative map. This
allows a much faster iteration in the stored section of the curve, but the original
order is lost.

Region objects support Boolean operators like and, or and and not. Addi-
tionally they can be modified to include all neighboring coordinates up to a
given distance n by the method expand(n). If two given nodes are to simulate
the parts of the grid described by the regions a and b and the ghost zone has
the width n, then the ghost zone to be sent by one node to the other can be
obtained by a.expand(n) & b.

The actual mesh data is stored in a DisplacedGrid which is basically a
boost::multi_array1, which is additionally able to transform absolute coor-
dinates into local ones by using a displacement and intercept out of bounds
accesses to route them to dedicated boundary cells. This way each node can use
the same coordinate system despite storing only a fraction of the whole simu-
lation grid (namely the bounding box of its region). These abstractions allow
us to test virtually any domain decomposition, ranging from simple striping to
SFCs. Even an adapter for ParMETIS [6] could be built.

Figures 2(c) to 2(e) illustrate a hierarchical decomposition with two levels
in a multi-cluster setup with the Z curve. Figure 2(c) depicts the cluster level
decomposition, which is further broken down on the node level and exemplary
documented for node 7 in Fig. 2(d). The inter-cluster ghost zone from Fig. 2(c)
is stored decentralized with each node on the boundary hosting the fragment
relevant to him (Fig. 2(e)). Besides his actual region from Fig. 2(d), node 7 has

1 http://www.boost.org

http://www.boost.org
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(a) H-Indexing (b) Run-length Coding

(c) Level 1: Cluster Ghost Zones (d) Level 2: Node Region

(e) Ghost Zone Fragment of Level 1,
Hosted on Node 7.

Fig. 2. Coordinate compression by the Region data structure and two-level hierarchical
domain decomposition

to update parts of its cluster’s inter cluster ghost zone. These update regions in
turn have ghost zones themselves which have to be filled from multiple sources.
During the update of the cluster ghost zone in Fig. 2(e), the node has to save
patches of certain time steps in order to paste them into the actual region’s ghost
zone (see Super-Level region in Fig 2(d)). On the other hand, the update for the
inter cluster ghost zone fragment requires patches from its own region, from its
neighbors and additionally from its master (in this case the head node which
aggregates inter-cluster communication).
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6 Evaluation

In this section we present initial benchmark results gathered with LibGeoDe-
comp. The tests were carried out on the Friedrich Schiller University’s omega
cluster2. Its nodes are each equipped with two quad core AMD Opteron 2350
processors, 16 GB RAM and Mellanox InfiniBand SDR 8Gbit/s controllers. To
reduce the influence of the model in our measurements, we did not use MuClu-
Dent’s model but a simple continuous automaton, whose cell state is represented
by a single precision float. The update routine simply averages their old state
with the cells in the von Neumann neighborhood. The relatively low computa-
tional overhead of five floating-point operations per update at a cell size of four
bytes makes the parallelization susceptible to communication delays (for com-
parison: the continuous automaton used in [2] takes 780 floating-point operations
per update at a cell size of eight bytes).

One could argue that the complex domain decomposition techniques proposed
in the previous section would inflict significant overhead, making their advan-
tages moot. Table 1 summarizes the results of a sequential benchmark we ran
to test the speed of different coordinate enumeration techniques. The times cor-
respond to the time taken to simulate 216 iterations on a 128 × 128 grid of the
aforementioned automaton. Obviously, the fastest method is to simply use two
nested for loops, but this would not be sufficient as the loops have to check if
a cell is lying on the border of the simulation grid. Those edge cells have to be
treated specially in order to satisfy boundary conditions for certain simulation
models (e.g. the one used for our metal alloy simulation software MuCluDent).
Implementing these checks costs about 3% performance. Using SFCs like the
Hilbert or the Z Curve [7] to directly traverse the square makes the simula-
tion run about 50% slower. However, packing them into a Region object greatly
improves iteration speed, resulting in an overhead of not quite 7%. For this over-
head, which equates on the testing machine to about five clock cycles per cell
update, we can move away from cuboid decompositions (such as striping and
recursive bisection and get all the benefits of arbitrary domain decompositions.
The overhead becomes negligible for more complex models, e.g. MuCluDent’s
cells take on average about 135 clock cycles on the test machine.

To evaluate the scalability of LibGeoDecomp, we ran weak and strong scaling
tests. All tests used the Z curve for domain decomposition (since it yields a good
surface to volume ratio) and a ghost zone width or 4. Figure 3(a) contains the
result of two speedup test. The test on a grid of 2048×2048 cells leads to a speedup
of 62.44 on 80 cores. This equates to a overhead of 21.95%, which is quite high,
but about half of it (11.46%) is caused by the additional updates required by the
employed ghost zone width of 4. The results are better for the larger grid of 8192×
8192 cells (speedup of 34.86, as opposed to 31.82, for 40 cores). The efficiency test
in Fig. 3(b) evaluates how well LibGeoDecomp scales for growing problem sizes.
In this case we have used for n cores a grid with the edge length 2048 · √n. For 32
cores we have achieved an efficiency of more than 95%.

2 http://www.uni-jena.de/omega.html

http://www.uni-jena.de/omega.html


LibGeoDecomp: A Grid-Enabled Library 293

1
8

16
24
32
40
48
56
64
72
80

1 8 16 24 32 40 48 56 64 72 80

Sp
ee

du
p

Cores

Opt.
20482

81922

(a) Speedup

0.7
0.75
0.8

0.85
0.9

0.95
1

1 4 8 12 16 20 24 28 32

E
ffi

ci
en

cy
Cores

Opt.
Efficiency

(b) Efficiency

Fig. 3. Speedup and weak scaling results

Table 1. Coordinate Enumeration Overhead for Domain Decomposition

Type Time (s) Overhead (%)

Nested loop 35.5
Nested loop with bounds checking 36.6 2.97
Hilbert curve enumeration 54.3 52.79
Z curve enumeration 56.8 59.76
Region 38.0 6.76

7 Summary and Future Plans

We have presented LibGeoDecomp, a library for scientific simulations in grid
and multi cluster environments. An environment discovery facility enables static
adaptation, while balancer objects can drive the parallelizations parameters to
achieve run time adaptation. A hierarchical parallelization can be automatically
tuned to match the supercomputer’s structure. Overlapping communication and
computation, ghost zones of arbitrary width and exchangeable domain decom-
position techniques improve performance and adaptability. Initial benchmarks
prove its scalability, although still numerous tests are missing and a lot optimiza-
tion has to be done. Especially the various domain decomposition techniques
have to be evaluated for different network setups and simulation models.

Currently LibGeoDecomp only has weak support for three-dimensional sim-
ulations, as all decompositions can only work on two spacial dimensions, which
can lead to sub-optimal surfaces. An extension of the Region class is meant to
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improve this issue. Also, OpenMP support is not yet implemented in the up-
date routine. An improved support for hierarchical communication as proposed
in [8] could both, simplify our code and improve performance for cases in which
inter-cluster links are not a bottleneck.
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Abstract. The popularity of parallel platforms, such as general
purpose graphics processing units (GPGPUs) for large-scale simulations
is rapidly increasing, however the I/O bandwidth and storage capacity
of these massively-parallel cards remain the major bottle necks. We
propose a novel approach for post-processing of simulation data directly
on GPGPUs by efficient data size reduction immediately after simulation
that can considerably reduce the influence of these bottlenecks on the
overall simulation performance, and present current performance results.

Keywords: HPC, GPGPU, I/O Bandwidth, Data Compression, Arith-
metic Coding.

1 Introduction

In general, simulations require not only high amount of computing power but
also the transfer and storage of large amounts of data. Due to high computa-
tional requirements, large-scale simulations are typically conducted on parallel
systems comprising of multiple computing nodes. With recent advances in de-
velopment of massively parallel graphics cards suitable for general purpose com-
putations (GPGPUs) and their general affordability, with prices as low as $400
per unit (2008) featuring up to 128 streaming processors, the computers used
in simulations are increasingly equipped with one or more GPGPUs integrated
as arithmetic co-processors that enable hundreds of GFLOPs of raw processing
power in addition to the CPU.

One of the major bottlenecks of such parallel computing systems, besides the
storage of large amount of data, is the I/O bandwidth required for run-time
communication and synchronization of numerous processing elements, as well as
the transfer of the resulting data from the arithmetic co-processors to the central
processing unit. As the time spent in data transfers between computational
nodes can significantly reduce observed speedups and thus severely influence
the performance benefit of using a parallel system for computations, there is a
demand for novel approaches to the storage and transfer of data.
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The study of data compression algorithms in the computer science has re-
sulted in efficient coding algorithms such as Huffman coding, Arithmetic/Range
coding, Lempel-Ziv family of dictionary compression methods and various trans-
forms such as Burrows-Wheeler Transform (BWT), that are now a part of widely
used compression utilities, such as Zip, RAR, etc as well as image and video
codecs. In this paper we explore use of entropy coding algorithms on high per-
formance computing systems containing massively parallel GPGPUs, such as
NVidia GeForce 8800 GT, for efficient stream reduction by processing of the re-
sulting simulation data in between the simulation steps, and prior to the transfer
and storage on the host computer.

The paper is structured as follows. In Section 2, the current approaches to data
size reduction on GPUs are reviewed. An overview of fundamental compression
methods is given in Sections 3 and 4. Section 5 presents design of a block-
parallel entropy coding algorithm. Sections 6 and 7 give current performance
results in compression of floating-point data from a light scattering simulation
on a GPGPU, and an overview of the future research.

2 Related Work

The popularity of parallel platforms, such as GPGPUs for large-scale simulations
is rapidly increasing, however the I/O bandwidth and storage capacity of GPG-
PUs remain a bottle neck. In simulations of large systems, a variety of approaches
has been used to reduce run-time size of simulation data set. Some common ap-
proaches include different methods for the storage of sparse matrices, use of
reduced precision for calculations, etc. Fast lossless compression approaches to
floating-point data, including the overviews of older approaches can be found in
[1,2]. As GPGPUs impose numerous constraints on the data types that could
be efficiently used for storage of the simulation data, it is worth exploring which
other approaches to the data size reduction are available and could be efficiently
used on GPGPUs. The most notable approaches for data reduction that used
on GPUs are stream reduction and texture compression of computer graphics:

Texture compression is driven by the need for reducing the amount of phys-
ical memory required for the storage of texture images that enhance gaming
experience. A distinctive characteristic of the texture compression is that it pro-
vides a fixed ratio compression coupled with single-memory data access, which
makes it ideally suited for computer graphics. Texture compression is a lossy
data compression scheme, with common implementations being S3TC family of
algorithms (DXT1-DXT5), and DXTC. For gaming purposes, the loss of fidelity
is acceptable and can even account for a perceptually better experience as the
decrease in data size enables the storage of higher-resolution textures in the
memory of a graphics card.

The second notable approach on GPUs is stream reduction, which is the
process of removing elements that are not necessary from the output stream.
Stream reduction is frequently used in multi-pass GPU algorithms, where the
stream output of the first pass is used as the input for the next pass. An efficient
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implementation of the stream reduction on GPUs is given in [3], and achieves a
linear performance by using divide-and-conquer approach that is well applicable
to GPGPU block-oriented architectures.

3 Data Compression

Data compression deals with the data size reduction by removing redundancy
from the input data. The theoretical bound of the compression, i.e. the maxi-
mum theoretical compression ratio, is given by Claude Shannon’s Source Coding
Theorem, which establishes that the average number of bits required to represent
an uncertain event is given by its entropy (H). Data compression methods are
classified according to the information preservation to lossless and lossy. Lossless
compression algorithms are used in areas where absolutely accurate reconstruc-
tion of the original data is necessary, such as in compression of text, medical,
scientific data, etc. In the applications targeted toward human end-users, lossy
compression is applied to audio, video and image data in order to provide per-
ceptively (near) lossless or acceptably distorted representation of data by using
perceptual models of the human audio-visual system. We consider two fundamen-
tal lossless algorithms for the compression of the simulation data, which could
be easily combined with intermediate lossy steps, e.g. quantization, if further
increase of the compression ratio at the expense of accuracy is desired:

Huffman Coding: As a statistical lossless data compression algorithm, Huffamn
coding gives a reduction in the average code length used to represent the sym-
bols of an alphabet by assigning shorter codewords to more frequent symbols
and vice versa. The Huffman code is an optimal prefix code in the case where
exact symbols probabilities are known in advance and are integral powers of
1/2 [4]. In real-world scenarios, the exact distribution of symbol probabilities is
rarely known in advance, so this means either acceptance of lower compression
rates or use of adaptive Huffman algorithms that provide one-pass encoding and
adaptation to changing statistics of the input data. The major disadvantage of
the adaptive Huffman coding is relatively high cost of tree maintenance oper-
ations, especially in GPU environments, where non-aligned memory access are
penalized in terms of performance. When the symbol probabilities are highly
skewed, which is often in the case of the simulation data, Huffman coding does
not provide good compression rates as the generated codewords, being external
nodes of a binary tree, are always represented by an integral number of bits.

Arithmetic Coding: Arithmetic coding treats the whole input data stream as a
single unit that can be represented by one real number in the interval [0, 1).
As the input data stream becomes longer, the interval required to represent
it becomes smaller and smaller, and the number of bits needed to specify the
final interval increases. Successive symbols in the input data stream reduce this
interval in accordance with their probabilities. The more likely symbols reduce
the range by less, and thus add fewer bits to the coded data stream.

By allowing fractional bit codeword length, arithmetic coding attains the
theoretical entropy bound to compression efficiency, and thus provides better
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compression ratios than Huffman coding on input data with highly skewed sym-
bol probabilities. The arithmetic coding gives greater compression, is faster for
adaptive models, and clearly separates the model from the channel encoding [5].
As simulation data is usually biased to certain values (or could be transformed
into a set of biased data e.g. by some sort of predictive coding), we chose to
further experiment with arithmetic coding for simulation data compression on
GPGPUs.

4 Fundamental Principles of Arithmetic Coding

The central concept behind arithmetic coding with integer arithmetic is that
given a large-enough range of integers, and frequency estimates for the input
stream symbols, the initial range can be divided into sub-ranges whose sizes
are proportional to the probability of the symbol they represent[4,5]. Symbols
are encoded by reducing the current range of the coder to the sub-range that
corresponds to the symbol to be encoded. Finally, after all the symbols of the
input data stream have been encoded, transmitting the information on the final
sub-range is enough for completely accurate reconstruction of the input data
stream at the decoder. The fundamental sub-range computation equations are
given recursively as:

lown = lown−1 + (highn−1 − lown−1)Pl(xn) (1)

highn = lown−1 + (highn−1 − lown−1)Ph(xn) (2)

where Pl and Ph are the lower and higher cumulative probabilities of a given
symbol (or cumulative frequencies) respectively, and low and high represent the
sub-range boundaries after encoding of the n-th symbol from the input data
stream. As an illustration of the arithmetic coding concepts, a basic encoding to
a real number, for the input sequence ’bac’, with the given symbol distribution
is depicted in Fig. 1. The decoding algorithm works in an analogous way, and
must be synchronized with the encoder. The practical integer-implementation of
the arithmetic coder function according to the same principle as illustrated in
Fig. 1, but uses frequencies of occurrence instead of symbol probabilities and a
range of [0, N), where typically N is an integer value N >> 1.

To avoid arithmetic overflows on 32-bit architectures, a maximally 31-bit
integer range can be used to represent the full range of the coder. To avoid
underflows, which would happen if the current sub-range would become too
small to distinctively encode the symbol, i.e. when the upper and lower bound-
aries of the range converge, several methods have been proposed for range
renormalization[4,5,6].

For the range renormalization and generation of the compressed data bit
stream, we use a method of dividing the initial range into quarters described
in detail in [6] that works as follows: After the coder detects that the current
sub-range falls into a certain quarter, it is ensured that the leading bits of the
numbers representing the sub-range boundaries are set, and cannot be changed
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Fig. 1. Example of arithmetic encoding of the input sequence ’bac’. Symbols of the
alphabet A = a, b, c have probabilities of occurrence P = .2, .5, .3 Final range is
[0.27, 0.3). The sequence ’bac’ can be thus coded with 0.27.

by subsequent symbols. A series of scaling operations is conducted, and the set
bits are output one after the other, thus generating the compressed data output
stream. These operations result in the renormalization of the coder range back
to the full supported range, thus eliminating possibility of incorrect en/decoding
due to the range underflow.

5 Block-Parallel GPGPU Arithmetic Encoder

Simulations run on general purpose graphics hardware often produce large
amount of data that after a number of iterations hardly fits into the mem-
ory of a graphics card, thus imposing a need for a memory transfer so that free
space is made available for subsequent iterations. As the frequent data transfers
from the memory of a GPGPU to the host PC reduce the overall performance
of the simulation, it is our goal to lessen the frequency of these data transfers.
We propose processing of simulation data directly on the GPGPUs after each
simulation step to reduce the resulting data size, and thus resources required for
the storage and transfer of results.

First, the simulation data is partitioned into the data blocks as in [7,3], which
are then processed by a number of replicated coders running in parallel, as
depicted in Fig 2. Each block of simulation data is processed by an instance of the
encoder running in a separate thread. In the CUDA computational model threads
are executed in the thread blocks, each of which is scheduled and run on a single
multi-processor. Our block-parallel encoder implementation can be executed by
multiple blocks containing multitude of threads, where each thread executes the
CUDA-specific code that implements the arithmetic encoding process described
in Sect.4 (Fig.2,Step1). The data block size, as well as the number of blocks and
threads, is configurable as the compression kernel execution parameter. Based
on different block sizes, different compression ratios are obtained - typically
resulting in higher compression ratio for larger data block sizes.

After the complete input stream is encoded, the coded data blocks are pre-
pared for the storage at the adequate global memory locations, prior to the trans-
fer to the host computer. The first preparation step for storage in the parallel
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Fig. 2. Block-Parallel GPGPU Simulation Data Compression Process

implementation of encoder on GPGPU is alignment of the coded data bitstream
to the byte or word boundary (Fig.2,Step2). The padding to the boundary in-
creases the compressed data length. The decrease of the performance ratio due
to this operation is dependent on the initial data block length and its entropy
- the larger the resulting coded block is, the smaller difference those couple of
padded bits make.

To obtain highly biased data model, the floating-point numbers from the simu-
lation are processed on the byte level. Each of 256 possible byte values is assigned
a corresponding symbol. The model constructed in this manner exploits the sta-
tistical properties of data much better than if we would assign each different
floating-point value a single symbol, typically resulting in probabilities highly
biased to some symbol e.g. 0x00. Another advantage of this modeling approach
is that it can be without any modification applied to other data types, without a
loss of generality. After byte-level arithmetic encoding, the coded data is aligned
to the word boundary, e.g. 8-bit before transferring the results into the global
memory of device.

The compacted output stream is obtained by the concatenation of the code-
words at the block-level by stream compaction (Fig.2,Step3) that produces a
single continuous array containing the coded data. The concatenation process is
executed fully in parallel on the GPGPU, by creating an array of the coded data
block lengths from the resulting data of encoding process. After generation of
the codewords and alignment to desired word boundary length (i.e. 8-bits or 32
bits), the information on the coded block lengths is used to generate the array
of the pointers to the starting positions of the coded data coming from parallel
coders by using parallel prefix sum primitives.
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For correct functioning of the method, the stream compaction is not neces-
sary, as the data from each coded block can be transferred separately to the host
computer followed by storage into a continuous array. However, it is worth exam-
ining, as the burst mode for data transfer generally achieves better performance
than the iterative data transfer.

6 Performance Results and Discussion

The block-parallel implementation of integer-based arithmetic coder for GPGPU
was tested on data from the simulation of light scattering [8]. As the test data for
the compression were taken the results of finite-difference time-domain simula-
tion iterations on the grid of 512x512 cells. The distinctive characteristics of the
test data set were low values with highly biased symbol probability distribution,
resulting in very low entropy when using the model described in Sect. 5. The
output of parallel arithmetic encoder running on the GPGPU is decompressed
by sequential decoder runing on the host PC, and the results are verified by byte
comparison functions, as well as the external file comparison tool WinDiff.

Table 1. Performance results on test configuration: AMD Athlon 2.41GHz, 2GB RAM,
nVidia GeForce 8800GT 128SPs, 768MB RAM. CUDA 1.0. Total time corresponds to
the time required for compression and transfer of data including the overheads, such
as. alignment, stream compaction and block sizes array transfer.

The performance results in Table 1. show that the parallel implementation
of arithmetic encoder achieves compression ratios (CR) competitive with a se-
quential coder, but in a considerably shorter time, with the compression ratio
approaching the lower entropy bound as the data block size increases. The trans-
fer times for the compressed data (Col. 7) are significantly lower than those for
the direct transfer of data (Col. 6) without any compression; however as the
compression process inevitably introduces an overhead, the gains achieved so far
are mostly in the required space on the GPGPU for the storage of the tempo-
rary results, with more work on the speed optimization of the codec required
for making it a competitive method for reduction of the I/O bandwidth require-
ments. The storage savings are a significant achievement, as the frequency with
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which the simulation data needs to be transferred considerably influences over-
all simulation speed-up. If the storage of simulation results requires less space,
there is a more room for the new data, resulting in a lower number of required
memory transfers from the GPGPU to the host computer, and thus a better
overall simulation performance.

7 Conclusions and Future Work

The implementation of the block-parallel arithmetic encoder proved that use
of statistical coding methods for the compression of simulation data directly
on GPGPUs has a potential for the efficient reduction of simulation data size.
The compression ratios of the parallel coder approach entropy as the theoretical
boundary of compression ration with the increasing block sizes. Furthermore,
the parallel implementation exhibits a significant speed-up over the sequential
data compression algorithm, thus showing high potential to reduce influence of
the limited resources for storage and transfer on the simulation performance on
parallel systems. Our ongoing work focuses on optimization of computational
performance of entropy coders. Further work will examine strategies for pre-
processing of simulation data that could account for high compression efficiency
coupled with high processing speed.
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Abstract. Benchmark studies were carried out on a recently optimized parallel 
3D seismic wave propagation code that uses finite differences on a staggered 
grid with 2nd order operators in time and 4th order in space. Three dual-core 
supercomputer platforms were used to run the parallel program using MPI. 
Efficiencies of 0.91 and 0.48 with 1024 cores were obtained on HECToR (UK) 
and KanBalam (Mexico), and 0.66 with 8192 cores on HECToR. The 3D 
velocity field pattern from a simulation of the 1985 Mexico earthquake (that 
caused the loss of up to 30000 people and about 7 billion US dollars) which has 
reasonable agreement with the available observations, shows coherent, well 
developed surface waves propagating towards Mexico City.  

Keywords: Benchmark, modeling, finite difference, earthquakes, parallel 
computing. 

1   Introduction  

Realistic 3D modeling of the propagation of large subduction earthquakes, such as the 
1985 Mexico earthquake (Fig. 1), poses both a numerical and a computational chall-
enge, particularly because it requires enormous amounts of memory and storage, as 
well as an intensive use of computing resources. As the recurrence time estimated for 
this highly destructive type of event in Mexico is only a few decades, there is a 
seismological, engineering and socio-economical interest in modeling them by using 
parallel computing [1]. 

In this paper, we present the results from benchmark studies performed on a recently 
optimized parallel 3D wave propagation staggered-grid finite difference code, using the 
Message Passing Interface (MPI). The code was run on three dual-core platforms, i.e.: 
KanBalam (KB, Mexico, [2]), HPCx (UK, [3]) and HECToR (UK, [4]). Characteristics 
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of the three systems are shown in Table 1. In section 2, a synthesis of the 3D wave 
propagation problem and the code are presented; a description of the strategy followed 
for the data parallelism of the problem and the MPI implementation are discussed in 
section 3. The benchmark experiment performed on the code and its main conclusions 
are addressed in section 4 and in section 5, the results obtained for the modeling of the 
seismic wave propagation of the Mexico 1985 Ms 8.1 subduction earthquake are given.     

 

Fig. 1. A) Inner rectangle is the rupture area of the 19/09/1985 Ms 8.1 earthquake on surface 
projection of the 500x600x124 km earth crust volume 3DFD discretization; B) profile P-P´; C) 
Kinematic slip distribution of the rupture of the 1985 earthquake [1] 
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Table 1. Characteristics of the 3 Supercomputer platforms used in the benchmark study 

Platform HPCx KB HECToR 

Processor IBM PowerPC 5  
1.5GHz  dual core 

AMD Opteron 
2.6GHz dual core 

AMD Opteron 
2.8GHz dual core 

Cache L1 data 32KB and 
L1 instr  64KB per 
core 
L2 1.9MB shared 
L3 128 MB shared 

L1 instr and data 
64KB  per core 
L2 1MB shared 

L1 instr and data 
64KB  per core 
L2 1MB shared 

FPU’s 2 FMA 1Mult, 1Add 1Mult, 1Add 
Peak performance/core 6 GFlop/s 5.2 GFlop/s 5.6 GFlop/s 

Cores 2560 1368 11328 

Peak Perf 15.4 TFLOP/s 7.12 TFLOP/s 63.4 TFLOP/s 

Linpack 12.9 TFLOP/s 5.2  TFLOP/s 54.6 TFLOP/s 

Interconnect  IBM High 
performance switch 

Infiniband Voltaire 
switch 4x, fat tree 
topology 

Cray SeaStar2 3D 
toroidal topology 

Bandwidth 4GB/s 1.25 GB/s 7.6 GB/s 

latency 5.5 μs 13 μs 5.5 μs 

File system GPFS Lustre Lustre 

2   3D Wave Propagation Modeling and Its Algorithm 

The 3D velocity-stress form of the elastic wave equation, consists of nine coupled, 
first order partial differential hyperbolic equations for the three particle velocity 
vector components and the six independent stress tensor components [1, 5].        

The finite difference staggered algorithm applied to the mentioned equations is an 
explicit scheme which is second-order accurate in time and fourth-order accurate in 
space. Staggered grid storage allows the partial derivatives to be approximated by 
centered finite differences without doubling the spatial extent of the operators, thus 
providing more accuracy. The discretization of the 3D spatial grid is such that  
xi=x0+(i-1)hx, yj=y0+(j-1)hy, and zk=z0+(k-1)hz for i=1, 2, 3, … I, j= 1, 2, 3, … ,J, and 
k=1, 2, 3, … ,K, respectively. Here x0, y0, z0 are the minimum grid values and hx, hy, hz 
give the distance between points in the three coordinate directions. The time 
discretization is defined by tl=t0+(l-1)ht for l=1, 2, 3,…,L. Here t0 is the minimum 
time and ht is the time increment. 

3   Parallel Implementation of the 3DFD Algorithm 

We use 3D data parallelism for efficiency. The domain was decomposed into small 
subdomains and distributed among a number of processors, using simple partitioning 
to give an equal number of grid points to each processor [1]. This approach is 
appropriate for the 3DFD wave propagation code, as large problems are too big to fit 
on a single processor [1]. 
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The Message Passing Interface (MPI) was used to parallelize the 3DFD code [1]. In 
particular, MPI_Bcast, MPI_Cart_Shift and MPI_SendRecv instructions were used; the 
first two to communicate the geometry and physical properties of the problem, before 
starting the wave propagation loop, and the last to update the velocities and stresses 
calculated at each time step. The nature of the chosen 3DFD staggered scheme 
precluded the efficient application of overlapping MPI_Cart_Shift, MPI_SendRecv 
operations with computations.  

Parallel I/O from MPI-2 was used in the code to read the earth model data by all 
processors and to write the velocity seismograms by the processors corresponding to 
the free surface of the physical domain [1], which is only a small percentage of the 
total number of processors. As this type of parallel I/O is machine independent, it 
fitted the benchmark experiment performed on the three platforms.   

4   Benchmark Experiment 

As mentioned above the code was run on three dual-core platforms, i.e.: KanBalam 
(KB, Mexico, [2]), HPCx (UK, [3]) and HECToR (UK, [4]).  

The actual size of the problem is 500 x 600 x 124 km (Fig 1), and its physical 
properties are also shown in the Fig. We used spatial discretizations hx = hy = hz, of:  
1.0, 0.500, 0.250 and 0.125 km (to include thinner surficial geologic layers in the Z 
direction) and the associated time discretizations were 0.03, 0.02, 0.01 and 0.005 s, 
respectively (to comply with the Courant-Friedrich-Lewy condition). Therefore, 
Nx=500, 1000, 2000, 4000; Ny=600, 1200, 2400, 4800 and Nz=124, 248, 496, 992 
are, the model size in the X, Y and Z directions, respectively (notice that Nz is about 
0.25 of Nx and Ny).  The number of time steps, Nt, used for the experiment was 4000.  

Speedup, Sp, and efficiency, E, among others, are the most important metrics to 
characterize the performance of parallel programs. Theoretically, speedup is limited 
by Amdahl's law [6], however there are other factors to be taken into account, such as: 
communications costs, type of decomposition and its resultant load balance, I/O and 
others [1]. Sp and E, disregarding those factors, can be expressed by: 
 

           ( ) ( )mnTmnmTSp m1≡ , ( ) ( )nTmnTE m1≡                            (1) 
 
for a scaled-size problem n (weak scaling), and for a fixed-size problem (strong 
scaling)  

                               mTTETTSp mm 11 , ≡≡                      (2) 

where T1 is the serial time execution and Tm is the parallel time execution on m 
processors. 

If the communications costs and the 3D decomposition are taken into account, the 
expression for Sp is: 

                              ( )3/223
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where the cost of performing a finite difference calculation on mzmymx ×× , m, 

processors is mR /3ΑΓ ; Α is the number of floating operations in the finite 
difference scheme (velocity-stress consists of nine coupled variables); Γ is the 
computation time per flop; R is equal to Nx x Ny x Nz ; ι is the latency and β is the 
inverse of bandwidth [1]. This scheme requires the communication of two neigh-
bouring planes in the 3D decomposition [1]. 

This benchmark study consisted of both scaled-size (weak scaling) and fixed-size 
(strong scaling) problems. In the former, the number of processors (m) utilized for KB 
and HECToR varied from 1 - 8192 and for the latter, 64 and 128 processors were used 
on the three platforms. For both type of problems, and whenever it was possible, 
experiments with one or two cores were performed, for KB, HECToR, and HPCx 
platforms.  

The results of the two studies are synthesized in Table 2 and Fig. 2. From the 
results of the weak-scaling problems, it can be concluded that when large amounts of 
cores (1024 for KB) and (8192 for HECToR), with respect to the total number 
available in the tested platform, Sp and E decrease considerably, to 492 and 0.48 and 
5375 and 0.66, for KB and HECToR, respectively. We think that this behavior is due 
to the very large number of communications demanded among the processors by the 
3DFD algorithm [1]. This observation is more noticeable for the dual-core results, due 
to, among other factors, the fact that they are competing for the cache memory 
available and the links to the interconnect, and that this is stressed when thousands of 
them are used. The opposite behavior of Sp and E is observed when only tens, 
hundreds (for KB) or up to 1024 cores are used for HECToR, Table 2, Fig 2. 

From the results for the strong-scaling problem shown in Table 2, it can be 
concluded that for the three platforms, the observed Sp and E are very poor, 
particularly when the two cores were used,. The “best” results were obtained for 
HECToR, followed by KB and HPCx. Given that the mentioned observation is valid 
for the three platforms, we can conclude that the 3DFD code tested is ill suited for 
strong-scaling problems.   

5    Seismological Results for the 19/09/1985 Mexico's Ms 8.1 
Subduction Earthquake  

Herewith we present examples of the type of results that for the 1985 Mexico 
earthquake (Fig. 1) were obtained on the KB system with the parallel MPI 
implementation of the 3DFD code. At the top of Fig 3, the 3D low frequency velocity 
field patterns in the X direction, and the seismograms obtained at observational 
points, in the so-called near (Caleta) and far fields (Mexico City), of the wave 
propagation pattern for times equal to 49.2 and 136.8 s. The complexity of the 
propagation pattern at t = 49.2 s, when the seismic source is still rupturing, is 
contrasted by the one for t = 136.8 s, in which packages of coherent, well developed 
surface waves, are propagating towards Mexico City. Finally, at the bottom of Fig. 3 
we show the observed and synthetic (for a spatial discretization dh = 0.125 km) low  
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Table 2. Scaled and fixed –size* models: mi (i = x, y, z) processors used in each axis (mz was 
fixed to 4 because Nz is about one fourth of Nx and Ny), timings, speedup, efficiency and 
memory per subdomain (Mps) obtained for KB, HECToR and HPCx. The total run time of KB 
of 37600 s was used to compute Sp and E for the (*) cases  

Size model and spatial 
step (dh km) 

m mx my mz Cores per 
chip used 

Total run 
time (s) 

Speedup 
(Sp) 

Efficiency 
      (E) 

Mps 
(GB ) 

500x600x124 (1) KB 1 1 1 1 1 13002 1 1 1.9 

1000x1200x248 (0.5) 
KB 

16 1 4 4 1 6920 30 1.9 0.97 

1000x1200x248 (0.5) 
KB 

16 1 4 4 2 11362 18 1.14 0.97 

2000x2400x496 (0.25) 
KB 

128 4 8 4 2 15439 108 0.84 0.97 

4000x4800x992 (0.125) 
KB  

1024 16 16 4 2 27033 492 0.48 0.97 

500x600x124 (1) 
HECToR 

1 1 1 1 1 11022 1 1 1.9 

1000x1200x248 (0.5) 
 HECToR 

16 1 4 4 1 6404 28 1.7 0.97 

1000x1200x248 (0.5) 
 HECToR 

16 1 4 4 2 10583 17 1.04 0.97 

2000x2400x496 (0.25) 
 HECToR 

128 4 8 4 1 6840 207 1.6 0.97 

2000x2400x496 (0.25) 
 HECToR 

128 4 8 4 2 11083 127 0.99 0.97 

4000x4800x992 (0.125) 
HECToR 

1024 16 16 4 1 7200 1568 1.53 0.97 

4000x4800x992 (0.125) 
HECToR 

1024 16 16 4 2 12160 928 0.91 0.97 

8000x9600x1984 
(0.0625)  HECToR 

8192 32 32 8 2 16800 5375 0.66 0.97 

1000x1200x248 (0.5)  
KB* 

1 1 1 1 1 37600 1 1 14.3 

1000x1200x248 (0.5) 
KB* 

64 4 4 4 1 2699 13.9 0.22 0.242 

1000x1200x248 (0.5) 
KB* 

64 4 4 4 2 3597 10.5 0.16 0.242 

1000x1200x248 (0.5) 
KB* 

128 4 8 4 1 1681 22.4 0.18 0.121 

1000x1200x248 (0.5) 
KB* 

128 4 8 4 2 2236 16.8 0.13 0.121 

1000x1200x248 (0.5) 
 HECToR* 

64 4 4 4 1 1898 19.8 0.31 0.242 

1000x1200x248 (0.5) 
 HECToR* 

64 4 4 4 2 2910 12.9 0.20 0.242 

1000x1200x248 (0.5) 
 HECToR* 

128 4 8 4 1 878 42.8 0.33 0.121 

1000x1200x248 (0.5) 
 HECToR* 

128 4 8 4 2 1420 26.5 0.21 0.121 

1000x1200x248 (0.5) 
HPCx* 

64 4 4 4 2 4080 9.2 0.14 0.242 

1000x1200x248 (0.5) 
HPCx* 

128 4 8 4 2 2100 17.9 0.14 0.121 

 
frequency, north-south velocity seismograms of the 19/09/1985 Ms 8.1 Mexico 
earthquake, and  their corresponding Fourier amplitude spectra for the firm soil 
Tacubaya site in Mexico City, i.e. at a far field observational site. Notice in Fig. 3, 
that the agreement between the observed and the synthetic velocity seismogram is 
reasonable both in the time and in the frequency domain. 
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Fig. 2. Execution time vs number of processors for the three platforms for Scaled and fixed –
size* models of Table 2 
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Fig. 3.  Top) 3D Snapshots of the velocity wavefield in the X direction of propagation for t = 
49.2 and 136.8 s for the 1985 Mexico earthquake; Bottom) Left side observed and synthetic 
seismograms at Mexico City, right side Fourier amplitude spectra 

Conclusions 

Benchmark studies were carried out on a recently optimized seismic wave propa-gation 
3D, parallel MPI finite difference code that uses 2nd order operators in time and 4th order 
in space on a staggered grid, 3DFD. Three dual-core supercomputer platforms were 
used to test the program. Efficiencies of 0.91 and 0.48 with 1024 cores were obtained 
for the HECToR (UK) and KanBalam (Mexico) machines, respectively, and of 0.66 for 
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8192 cores for HECToR. In order to improve its performance, probably, Non-blocking 
MPI communications should be incorporated in a future version of the code. The 
agreement between the observed and the synthetic velocity seismograms obtained with 
3DFD and a dh = 0.125 km [1], is reasonable, both in time and in frequency domains. 
The 3D velocity field patterns from a simulation of the 1985 Mexico earthquake (which 
caused the loss of up to 30,000 people and about 7 billion US dollars), show large 
amplitude, coherent, well developed surface waves, propagating towards Mexico City.  
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Abstract. This work proposes a visual tool called , Vis-OOMPI, which targets  
to help  programmers to write parallel programs. The platform OOMPI is con-
sidered in the tool. Since MPI is one of popular APIs in C which are used in 
parallel programs for message passing, the object concept is incorporated and 
then becomes OOMPI [5]. The tool helps the beginners in message passing 
programming and includes some additional concepts with OO supports which is 
exhibited in OOMPI. 

Keywords: visual parallel programming, OOMPI, MPI, message-passing pro-
gramming interface. 

1   Introduction 

Parallel programs are becoming popular in many computational sciences. Many paral-
lel programs are developed based on C/Fortran and using MPI. However, it always 
takes time to learn the concept of parallel program development.   

In this paper, we are interested in the object paradigms. We focus on the visual tool 
that encapsulates object message passing scheme. The library is written based on MPI 
and uses a class concept from C++.  It has been shown in the literatures that the per-
formance of OOMPI is comparable to others.  The proposed  tool will be suitable for 
beginners in OOMPI/C++ and to demonstrate the object  message passing concept. 

There are many existing works in visual parallel tools. Brown et. al. also developed 
a framework called HeNCE [2]. The framework is graph-based and generated the 
code based on HeNCE compiler and PVM. MPI-Delphi [1] is another variation of 
MPI. It is a framework which is developed to imitate the object Pascal programming 
in Delphi. Also, there are many existing works on object-based message passing inter-
face such as JOPI, jmpi, etc[3,4]. These works rely on Java language.  

2   Vis-OOMPI IDE and Code Generation 

In Vis-OOMPI, the user specifies the processes and messages sent using a convention 
of UML (sequence diagram). A user specifies a model of communication on their 
owns. There is a support for group communication and communicator  in the tool.  
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There are two types of communications: peer-to-peer message and group message.  
The peer-to-peer message is generated by Send/Receive  APIs among processes. 
Processes with the matching send and receive models are both constrained by object 
message type, communicator, and tag.  In this way, the programmer errors due to the 
wrong send and receive parameters  are reduced. For the group communication, the 
examples are Bcast,Gather/Scatter,Reduce APIs.  For these, the users need to specify 
the communicator/group to use with. The generated code  inserted some necessary 
code in MPI for building communicator/group and then in OOMPI. Several complexi-
ties in the tool interface are : 1) to build a new data type as class. 2) to create  com-
municator and group. Since OOMPI sends a message as object, our object type is 
according to the OOMPI, primitive type, array, user-defined object. Since OOMPI 
uses a communicator as a port to communicate between processes,  a communicator is 
important. The default one is always the built-in, OOMPI_COMM_WORLD.  Since 
the rank of a process is based on a communicator, when a process uses many commu-
nicators, it may have many ranks. Then the user has an option to specify which com-
municator is used for each communication. Also, the case becomes complicated when 
the process is in many groups which use many communicators. For code generation,  
we insert an initialization part which is about OOMPI initialization as well as defining 
user variables and temporary variables from the tool. Then the code for building 
communicator/group is automatically generated. After that, the portion of the code is 
generated according to each process. For each process, we generate the code accord-
ing to the timeline based on the data property for each model for each communicator. 
Then the finalization of the code is generated. The code can be saved as text files for 
other modification. If the user changes the communication model, the code can be 
regenerated. 
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Abstract. In this contribution, we present a new library (that can be
used in addition to any MPI library) which allows writing optimized
applications for heterogeneous environments without the need of relying
on intrinsic adaptation features provided by a particular MPI implemen-
tation. This is achieved by giving the application programmer the ability
to introduce new self-predefined attributes and communicators whose
semantics can be adjusted to each respective environment. Furthermore,
we have also developed an additional tool set that form a framework
around this library in order to simplify such an adjustment for the user.

Keywords: MPI communicators/attributes, heterogeneity-aware MPI,
optimization features, topology analyzer, graphical user interface, XML.

1 Introduction

An important feature of the Message Passing Interface is the communicator
concept. This concept allows the application programmer to group the parallel
processes by assigning them to abstract objects called communicators. For that
purpose, the programmer can split the group of initial started processes into sub-
groups, each forming a new self-contained communication domain. This concept
usually follows a top-down approach where the process groups are built according
to the communication patterns required by the parallelized algorithm.

In contrast to common MPI implementations, heterogeneity-aware MPI li-
braries often provide special adaptation features which help the application pro-
grammer to adapt the algorithms’ communication patterns to the respective
heterogeneity of the physical communication topology (see, e.g., [1,2]). The im-
plementation of such optimization features normally follows a bottom-up method
where the topology information must be passed from the MPI runtime system
to the application in a more or less unconventional way. One possible way is to
provide this information to the application programmer in terms of additional
predefined MPI communicators with group affiliations that try to reflect the
respective heterogeneity. Another possible way is to pass the needed environ-
mental information to the application level by means of communicator-attached
attributes. In fact, even the standard defines a set of such predefined attributes
that describe the actual execution environment of an MPI job. Furthermore, the
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standard also suggests that vendors may add their own implementation specific
attributes to this set [3]. However, if the symbol names of those additional at-
tributes and/or communicators are already set at compile time of the respective
MPI implementation, an application gets tied to this library when using those
symbols and hence makes its source code less portable.

2 An Additional Library

For that reason, we have developed a new library (that can be used in addition to
any MPI library) which allows writing optimized applications without the need
of relying on intrinsic adaptation features provided by a particular MPI imple-
mentation. This is achieved by giving the application programmer the ability
to introduce new self-predefined attributes and communicators whose semantics
can be adjusted to each respective environment. For that purpose, the library
provides a special function that expect a reference to an uninitialized MPI com-
municator. By means of the respective communicator name, the function can
then look up a table containing the descriptions of all desired predefined com-
municators. If such an inquired communicator can be found in the table, each
calling process checks whether it takes part in this predefined communicator or
not. This identification can be done by means of comparing the own processor
name against a list of names associated with that communicator. Afterwards,
the included processes will build the inquired communicator and will attach
all related attributes stated in the description table, too. That way, the actual
hardware topology can become visible also at application level.

In order to supply the building function with the needed information stated
in the lookup table, an additional initialization function must firstly read the
desired communicator and attribute configurations from an XML file. For illus-
tration, consider the following example which may be written for a coupled-code
simulation on a hierarchical system consisting of two linked clusters:

<comm name="MPI_COMM_OCEAN">

<processor name="clusterA:[0-7]>

<attribute key="CPU_SPEED" value="2.2" />

</processor>

</comm>

<comm name="MPI_COMM_ATMOSPHERE">

<processor name="clusterB:[0-3]>

<attribute key="CPU_SPEED" value="2.0" />

</processor>

<processor name="clusterB:[4-7]>

<attribute key="CPU_SPEED" value="1.8" />

</processor>

</comm>

<intercomm name="MPI_COMM_INTER">

<first>MPI_COMM_OCEAN</first>

<second>MPI_COMM_ATMOSPHERE</second>

</intercomm>
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This example assumes that the node names on the two cluster sites are com-
posed in a simple cluster name:node number manner, so that the site affiliation
can then be determined by using regular expressions. As one can see, attribute
keys and values are stated as strings in the configuration file, whereas MPI uses
integers and void-pointers for that purpose. Therefore, it is a task of the pre-
sented library to assure a proper key allocation and assignment, while the return
value of MPI’s attribute-get function can then just be interpreted as a pointer to
a string. The displacement of these configurations into an external file offers sev-
eral advantages and opportunities: For example, the application does not need
to be recompiled if the desired grouping scheme or the attribute values have
changed. In addition, also the user can easily employ this mechanism in order to
pass job- or environment-dependent parameters to the application. Furthermore,
the configuration needs not necessarily be written by a user or an application
programmer. In fact, the XML file containing the communicator and attribute
definitions can rather be generated, for example, by a process scheduler, by a
topology analyzing tool or even by the MPI runtime environment itself.

3 The Framework

Actually, we have already developed such a topology analyzer being capable of
exploring a heterogeneous system and storing the required information in XML-
coded files. Although such an analyzer can gather information representing a
system’s hierarchy, the gap between this hardware topology description and the
logical communication patterns governed by the respective application must still
be closed by the user. Therefore, we have also developed a graphical frontend
tool that helps the user to adapt such automatic generated configurations to the
actual needs of an optimized application. For that purpose, the tool visualizes
the initially explored hardware topology and allows the user to map groups of
processes in terms of new MPI communicators onto the given hardware struc-
ture. This mapping and the attachment of additional attributes is supported by
the graphical frontend in a simple drag-and-drop manner. Afterwards, the tool
generates a suitable configuration file for the presented library. That way, this
tool chain can facilitate the deployment of such self-predefined MPI communi-
cators and attributes within optimized applications for heterogeneous systems.
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Abstract. We propose a technique for proving correctness of adjoint
message passing programs that relies on data dependences in partitioned
global address space. As an example we discuss asynchronous unbuffered
send/receive using MPI.

1 Adjoint Numerical Programs

Numerical simulation and optimization in computational science and engineer-
ing have gained significant importance over the past few decades. For example,
our ability to understand physical, chemical, and biological processes has im-
proved with the increased power of computational resources as well as with the
deepened insight into mathematical and algorithmic issues. Numerical simula-
tion programs map n independent inputs onto m dependent outputs (also referred
to as the objectives). Often n is very large in comparison to m. The classical
numerical approach to quantifying the sensitivities of those objectives with re-
spect to the inputs through finite-difference quotients yields a computational
complexity of O(n). Note that certain high-end applications such as the simu-
lation of ocean circulation [11] may have a runtime of several days to produce
physically relevant results on the latest high-performance computing platforms.
The number of independent inputs may reach values of the order of n = 109.
Hence, forward sensitivity analysis requiring n runs of the simulation program
is simply not feasible.

Adjoint methods and corresponding program transformation techniques have
been developed to replace the dependence on n with that on the number of
objectives m. If m = 1, then adjoint programs deliver the sensitivities of the
objective with respect to all independent inputs at O(1). Adjoint programs can
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be generated from a given numerical simulation program by a semantic program
transformation technique known as automatic differentiation (AD) [8]. A large
number of successful applications of AD to real-world problems in science and
engineering have been reported in the literature. Refer, for example, to [2].

Adjoint numerical programs consist of two parts. The augmented forward sec-
tion is an instrumented version of the original program containing statements
to memorize certain intermediate values that are required for the correct (and
efficient) evaluation of the adjoint program variables. The reverse section prop-
agates values of adjoint program variables in the opposite direction of the origi-
nal data flow. Optimal data-flow reversal is NP-complete [12,13]. It involves the
reversing of the flow of control (which implies reversing the order of the state-
ments within basic blocks) and generating the corresponding adjoint statements.
Proofs of correctness of sequential adjoint programs are based on the chain rule
of differential calculus and, in particular, on its associativity. Refer to [8] for a
comprehensive discussion of the mathematical foundations of adjoint programs.

This paper is motivated by the need for automatically generated adjoint ver-
sions of parallel programs that use message passing. Related work comprises
[3,4,7,9,10,16]. We describe a proof technique that allows us to show the correct-
ness equivalent adjoint versions can be generated for a given message-passing
program. As developers of adjoint code compilers, we consider the scenario of a
given transformation algorithm that needs to be proved right or wrong in the
sense that correct adjoints are computed for arbitrary inputs.

2 Correctness of Adjoint Communication Patterns

We consider the partitioned global address space (PGAS) [5] version Ps of a
message-passing program P involving n processes p1, . . . , pn. In order for Ps

to operate on the union of the n memory spaces all program variables are aug-
mented with an additional dimension of length n. Communications are translated
into x-assignments between augmented program variables belonging to disjoint
address spaces. Auxiliary variables are introduced for buffered communication.
Barriers in asynchronous communication yield a set of PGAS versions for a given
message-passing program.

2.1 Example

The program

s0

if (myrank == 1) isend(a, r); s1; if (myrank == 2) irecv(b, r); s2; wait(r)
s3

with unspecified sequences of statements si for i = 0, . . . , 3 yields the following
set of constraints for the placement of the x-assignment χ:

s1
0 < χ; s2

1 < χ; χ < s1
3; χ < s2

3.
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These constraints lead to the following six PGAS codes:

s0; s2
1; b2 = a1; s1

1; s2; s3

s0; s1; b2 = a1; s2; s3

s0; s1; s2
2; b2 = a1; s1

2; s3

s0; s1; s1
2; b2 = a1; s2

2; s3

s0; s2
1; s2

2; b2 = a1; s1
1; s1

2; s3

s0; s1; s2; b2 = a1; s3

The statements executed in section i by processor j are denoted by sj
i . In this

example we assume two processors. Note that (s1
i ; s2

i ) = (s2
i ; s1

i ) as a result of
the disjoint address spaces. Hence, the PGAS code si; si+1 yields the following
six semantically equivalent sequential codes:

s1
i ; s1

i+1; s2
i ; s2

i+1 s2
i ; s2

i+1; s1
i ; s1

i+1

s1
i ; s2

i ; s1
i+1; s2

i+1 s1
i ; s2

i ; s2
i+1; s1

i+1

s2
i ; s1

i ; s1
i+1; s2

i+1 s2
i ; s1

i ; s2
i+1; s1

i+1

The partial order of the statements is induced by sj
i < sj

i+1. Any two statements

from sj
i and sk

i+1 can be executed in arbitrary order for j �= k. Further combina-
tions resulting from feasible (wrt. data dependence) switches of the x-assignment
and statements in certain sj

i lead to an exponential number of possible actual
execution orders that need to be taken into account when proving properties of
PGAS programs. For this example we observe that the original program must
satisfy the restriction for isend that a1 is not written by s1 nor s2.1 Similarly,
for irecv it must satisfy that b2 is neither read nor written by s2.

To prove the correctness of an adjoint of a message-passing program, we need
to show that its adjoint PGAS versions are semantically equivalent to the PGAS
versions of its adjoint. We do so by looking at all possible actual execution
orders.

2.2 Case Study: Asynchronous Unbuffered Send/Receive

We present here a case study to illustrate the use of the proposed formalism.
Similar proofs are required for a large number of communication patterns. We
are analyzing all communication patterns used by our main target applications,
including MITgcm (mitgcm.org) as well as ICON (www.icon.enes.org).

Proposition: Let P be a message-passing program involving processes p1 and
p2, and let the integer variable myrank contain the respective process identifiers.
The communication pattern

1 a1 must not be written by s1
1 nor s1

2. It is not written by s2
1 nor s2

2 due to the separate
address spaces.
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si−1; if (myrank == 1) isend(a, r); si+1

. . .

sj−1; if (myrank == 2) irecv(b, r); sj+1

. . .

sk−1; wait(r); sk+1

in the forward section of the adjoint code yields

s̄k+1

if (myrank == 2) isend(b̄, r)
if (myrank == 1) irecv(t, r)
s̄k−1

. . .

s̄j+1; if (myrank == 2) wait(r); b̄ = 0; s̄j−1

. . .

s̄i+1; if (myrank == 1) wait(r); ā+=t; s̄i−1

in the reverse section, where s̄k are the adjoint statements corresponding to sk.

Proof. The forward PGAS codes are given as

si−1; si+1; . . . sj−1; s2
j+1; b2 = a1; s1

j+1; . . . sk−1; sk+1

si−1; si+1; . . . sj−1; sj+1; b2 = a1; . . . sk−1; sk+1

. . .

si−1; si+1; . . . sj−1; sj+1; . . . sk−1; b2 = a1; sk+1

The reverse sections of the adjoint PGAS codes become

s̄k+1; s̄k−1; . . . s̄1
j+1; ā1+=b̄2; b̄2 = 0; s̄2

j+1; s̄j−1; . . . s̄i+1; s̄i−1

s̄k+1; s̄k−1; . . . ā1+=b̄2; b̄2 = 0; s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

. . .

s̄k+1; ā1+=b̄2; b̄2 = 0; s̄k−1; . . . s̄j+1; s̄j−1; . . . s̄i+1; s̄i−1

The variable a1 is not written by any of the statements in si+1; ... sk−1 because
the original message-passing program is assumed to satisfy the restrictions on
isend. Similarly, b2 is neither read nor written by sj+1; ... sk−1. However, the
value of a1 may be read by statements in si+1; ... sk−1, implying that while ā1

may be incremented by s̄k−1; ... s̄i+1, it is not read or written otherwise. The
order of two successive increment operations can be switched if the incremented
variable is neither read nor written in between the two increment operations.2

2 For a given use of a variable we distinguish between reads, writes, and increment
operations as a special case of a read-write combination.
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Moreover, the placement of these increment operations is arbitrary as long as
the values of the increments do not change. The value of b̄2 is neither read
nor written by s̄k−1; ... s̄j+1. Hence, the statement ā1+=b̄2 can be inserted at
any position between s̄k+1 and s̄j−1. In other words, the adjoints of all PGAS
versions of the given message-passing program are equivalent.

The adjoint message passing program yields the following set of constraints
for the placement of the adjoint x-assignment χ̄ ≡ “t = b̄2” :

s̄1
k+1 < χ̄; s̄2

k+1 < χ̄; s̄2
j−1 > χ̄; s̄1

i−1 > χ̄ .

Hence, the PGAS versions of the adjoint message-passing program are the fol-
lowing:

s̄k+1; s̄k−1; . . . s̄j+1; t = b̄2; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

. . .

s̄k+1; t = b̄2; s̄k−1; . . . s̄j+1; b̄2 = 0; s̄j−1; . . . s̄i+1; ā1+=t; s̄i−1

As a compiler-generated auxiliary variable, t can be guaranteed not to be read or
written by any of the statements s̄k−1; ... s̄i+1. From our previous argument we
recall that ā1 may be incremented by s̄k−1; ... s̄i+1 but it is not read or written
otherwise. Hence, the increment operation of ā1 with t can be placed in between
s̄i+1 and s̄i−1. As the value of b̄2 is neither read nor written by s̄k−1; ... s̄j+1,
the fixed placement of b̄2 = 0 in between s̄j+1 and s̄j−1 does not change the
program’s semantics either. The auxiliary variable t can be removed as the result
of copy-propagation [1], yielding a possible replacement of the first assignment
in t = b̄2; . . . ā1+=t with ā1+=b̄2. Consequently, the adjoint PGAS versions of
the message-passing program are semantically equivalent to the PGAS versions
of the adjoint message-passing program. �

3 Conclusion and Outlook

A formalism for proving the correctness of adjoint message-passing programs
has been illustrated by means of an asynchronous unbuffered send/receive com-
munication between two processes. This method is applied to a large number
of transformation rules currently being implemented in OpenAD [17] and the
differentiation-enabled NAGWare Fortran compiler [14]. It is based on analyz-
ing the data dependences in the PGAS versions of the original message-passing
program. Rigorous proofs can thus be constructed that rely only on program
analysis techniques used in classical compiler construction. We intend to con-
sider ideas presented in [15] in order to investigate a potential automatization
of this proof technique.

One of our long-term goals is to build an adjoint message-passing library on
top of MPI. Such an extension is desirable for achieving satisfactory efficiency.
The ability to prove the correctness of given communication patterns is a fun-
damental ingredient of this ambitious research and development project.
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Windows Compute Cluster Server 2003 [1] (hereafter Windows CCS) has been
focused to build and utilize a PC cluster with high availability and a Windows
graphical user interface (GUI). The Windows CCS consists of an operating sys-
tem and an add-on software toolkit. The former is Windows Server 2003, Com-
pute Cluster Edition and the latter is Compute Cluster Pack. The Compute
Cluster Pack provides many useful software tools such as a well-tuned MPI [2]
library named MS-MPI [1] and a job scheduler.

Even in remote accesses to the Windows CCS system, the software tools are
available with a Windows GUI by using a Windows Remote Desktop. However,
most of the application users do not expect to encompass the expertises for the
Windows CCS system. As a result, such the users may face difficulties and make
failures in operations of their programs because of complexity in selecting and
utilizing essential functionalities of the system. It is also remarked that there
is not any support to check standard output/error of a running job in a GUI
menu named Compute Cluster Job Manager of the job scheduler. Furthermore,
normal users can not utilize Compute Cluster Administrator of the scheduler
to indicate, e.g., the number of available CPUs because it is available for only
administrative users. Instead, a command line interface is available for such the
users, however, it is too complicated for non-expert users.

To remove such the difficulties, we have focused into building a compact and
user-friendly computing environment which is available on a client PC. The
main objective of this system is to give hints for job creations and to assist job
executions on a remote Windows CCS system through a simple interface. To
provide a user-friendly interface for non-expert users, we consider that a GUI
interface is essential. It is also remarked that portability is an important issue.
We selected Java to develop the computing environment with regarding to these
requirements. In this implementation, we have adopted Java SE Development
Kit 6 [3]. This system hides complexity of job execution on a remote Windows
CCS system for the usability issues.
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Fig. 1. Organization of developed Java classes

The system consists of two parts; one is a server side part which runs on a
head node of a PC cluster and the other is a client side part which runs on a
client PC as shown in Figure 1. Data communications between server and client
parts are carried out by using Java’s Remote Method Invocation (RMI) over a
network in the current implementation. This system is available in a Windows
domain provided by an Active Directory server. Users are expected to have their
user accounts in the domain. Currently we do not have any user authentication
to establish the connections.

The client side has seven Java classes to provide GUI menus and realize coop-
erations with the server side. The Java classes are separated into two layers; one
is a user application layer and the other is a lower interface layer. The former has
GUI menus for job creation, job submission, and monitoring a PC cluster and
jobs. While the latter provides control methods which send Java RMI requests
to the server side on the Windows CCS.

On the other hand, the server side part has a role to receive Java RMI requests
for job submission and so on from a client side application. The RMI server
carries out operations for the Windows CCS by using Windows CCS command
line interface with the help of a Java’s Runtime class.

With this computing environment, users can easily submit their jobs and
monitor job status without deep understandings about the Windows CCS. As a
future work, we would like to rebuild this system to be independent of a Windows
CCS system in the client side by encapsulating its infrastructure-dependent parts
in the server side program code. We would like to also prepare a Java’s jar file
by collecting commonly used Java classes.
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Abstract. We present a support function for MPI derived datatypes on
an Enhancer of Memory and Network named DIMMnet-3 which is under
development. Semi-hardwired derived datatype communication based on
RDMA with hardwired gather and scatter is proposed. This mechanism
and MPI using it are implemented on DIMMnet-2 which is a former pro-
totype. The performance of gather or scatter transfer of 8byte elements
with large interval by using vector commands of DIMMnet-2 is 6.8 com-
pared with software on a host. Proprietary benchmark of MPI derived
datatype communication for transferring a submatrix corresponding to
a narrow HALO area is executed. Observed bandwidth on DIMMnet-2
is far higher than that for similar condition with VAPI based MPI im-
plementation on Infiniband, even though poorer CPU and motherboard
are used.

MPI provides a powerful mechanism for describing non-contiguous memory lo-
cations: derived datatypes. Because derived datatype communications generate
non-contiguous memory accesses, their performance has been far lower than that
of burst communications.

Acceleration method for derived datatype communications on a vector super-
computer was proposed [1]. However, vector supercomputers are very expensive.
Therefore, the acceleration of derived datatype communication on COTS PC
cluster is important.

In research at Argonne National Laboratory [2], the performance of derived
datatype communication has been improved by selecting optimal packing al-
gorithms with access patterns. However, some big performance degradations
remain in some communication patterns. Furthermore, when the packing and
unpacking of a message are performed manually or derived datatype commu-
nication is carried out by MPI system, a lot of data arranged discontinuously
are delivered via a cache on CPU, usually. Consequently, there is a danger that
pollution of a cache will have an adverse influence on the performance of the
following process.
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c© Springer-Verlag Berlin Heidelberg 2008



Introduction to Acceleration for MPI Derived Datatypes 325

On the other hand, a team at Ohio State University implements MPI based on
RDMA with Gather/Scatter functions of Infniband[3]. In this implementation,
some processing is offloaded to firmware processing on the Network Interface
Card (NIC). However, for the following three reasons, we think there is still a
good possibility of accelerating by employing new hardware. (1) The frequency
of CPU on the NIC is dozens of times slower than that of host CPU. (2) Since
CPU on the NIC is usually based on cache, when carrying out discontinuous
access, it wastes the bandwidth of a main memory and an I/O bus by the access
in a cache line unit. (3) In the case that the NIC accesses a main memory through
an I/O bus, access by short burst length cannot operate efficiently.

The goal of this research is acceleration of MPI derived datatype communi-
cation with hardware supports on the NIC. We investigate a hardware support
function for MPI on DIMMnet-3 which is an enhancer of memory and network
using DIMMnet-2 prototype[4].

In this poster presentation, we introduce overviews of the DIMMnet-2 and
DIMMnet-3 which is under development. We show the hardware supports for
MPI derived datatype communication implemented on these NICs. We propose a
new communication protocol named SDDC (Semi-hardwired Derived Datatype
Communication). MPI-2 over DIMMnet-2 is implemented with SDDC.

We also present performance evaluation with DIMMnet-2 employing our pro-
posed mechanisms. The performance gain of gather or scatter transfer of 8byte
elements with large interval by using vector commands of DIMMnet-2 is 6.8 com-
pared with software on a host. Proprietary benchmark of MPI derived datatype
communication for transferring a sub-matrix corresponding to a narrow HALO
area is executed. Observed bandwidth on DIMMnet-2 is far higher than that
for similar condition with VAPI based MPI implementation on Infniband, even
though poorer CPU and motherboard are used.
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Abstract. Most of the parallel strategies used for information extrac-
tion in remotely sensed hyperspectral imaging applications have been im-
plemented in the form of parallel algorithms on both homogeneous and
heterogeneous networks of computers. In this paper, we develop a study
on efficient collective communications based on the usage of HeteroMPI
for a parallel heterogeneous hyperspectral imaging algorithm which uses
concepts of mathematical morphology.

Keywords: Hyperspectral Imaging Algorithms, HeteroMPI.

1 Introduction

Hyperspectral imaging identifies materials and objects in the air, land and water
on the basis of the unique reflectance patterns that result from the interaction of
solar energy with the molecular structure of the material[1]. Most applications of
this technology require timely responses for swift decisions which depend upon
high computing performance of algorithm analysis. Examples include target de-
tection for military and defense/security deployment, urban planning and man-
agement, risk/hazard prevention and response including wild-land fire tracking,
biological threat detection, monitoring of oil spills and other types of chemical
contamination. These images are characterized by covering tens or even hundreds
of kilometers long, having hundreds of MB in size. Few consolidated parallel tech-
niques for analyzing this kind of data currently exist in the open literature, and
mainly all of them implemented on homogeneous networks of computers using
MPI. Although the standard MPI[3] has been widely used to implement paral-
lel algorithms for Heterogeneous Networks of Computers (HNOCs), it does not
provide specific means to address some additional challenges posed by these net-
works, including the distribution of computations and communications unevenly,
� Corresponding author.
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taking into account the computing power of the heterogeneous processors and
the bandwidth of the communications links. To achieve these goals, HeteroMPI
was developed as an extension of MPI which allows the programmer to describe
the performance model of a parallel algorithm in generic fashion[4], a very useful
feature for heterogeneous hyperspectral imaging applications to define distribu-
tion of workload and communications, which typically make intensive use of
scatter/gather communication operations).

In this paper, our main goal is to study on several approximations for efficient
collective communications adapted to the particularities of a heterogeneous hy-
perspectral image processing scenario already developed using HeteroMPI, basing
our developments on the communication model by Lastovetsky et al.[9]. The paper
is structured as follows. Section 2 first describes hyperspectral imaging algorithm
considered in this study and main features of HeteroMPI. Section 3 explore the
different paradigms studied. Finally, section 4 concludes with the experimental
results obtained and some remarks and hints at plausible future research.

2 Related Work

Several hyperspectral imaging algorithms have been implemented using MPI as a
standard development tool. Examples include the distributed spectral-screening
principal component transform algorithm (S-PCT)[6], D-ISODATA[7], a compu-
tationally efficient recursive hierarchical image segmentation algorithm hybrid
method (called RHSEG)[8], and a morphological approach for classification of
hyperspectral images called automated morphological classification (AMC)[10],
which takes into account both the spatial and the spectral information in the
analysis in a combined fashion. An MPI-based parallel version of AMC has been
developed and tested on NASA’s Thunderhead cluster[12], showing parallel per-
formance results superior to those achieved by other parallel hyperspectral al-
gorithms in the literature[2]. In particular, this algorithm is the one used in our
experiments because it is an exemplar algorithm with the main characteristics
of the different hyperspectral imaging existing in the literature. An important
limitation in the mentioned parallel techniques is that they assume that the
number and location of processing nodes are known and relatively fixed, allow-
ing the use of the standard MPI specification. This approach is feasible when
the application is run on a homogeneous distributed-memory computer system.
However, selection of a group for execution on HNOCs must take into account the
computing power of the heterogeneous processors and the speed/bandwidth of
communication links between each processor pair[5]. This feature is of particular
importance in applications dominated by large data volumes such as hyperspec-
tral image analysis, but is also quite difficult to accomplish from the viewpoint
of the programmer. The main idea of HeteroMPI is to automate and optimize
the selection of a group of processes that executes a heterogeneous algorithm
faster than any other possible group.

Particularly, HeteroMPI has been used to measure the processing power of each
processor in the moment the execution of the heterogeneous algorithm is to be
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made. To measure this, the directive HeteroMPI Recon has been used along
with a benchmark defined to reflect the most important features of the real algo-
rithm in terms of computational cost and to stress and activate the whole memory
hierarchy. Then, with directive Hetero Group create and performance model
defined through mpC[11], the best heterogeneous executing group is created, and
data is distributed based on the actual processing power available at each node.

3 Communication Patterns

Recently, Lastovetsky et al.[5][9] designed a new model for describing performance
of all collective communications that generally take place in parallel MPI applica-
tions and, in particular, in those applications executed on heterogeneous clusters
based on a switched Ethernet networks. The idea is to model a few simple parame-
terswith point-to-point communicationbetween eachpair ofnodes on thenetwork,
and then use these parameters to build an estimate for collective communications
based on a one-to-many and many-to-one pattern. In particular, in this paper we
have further studied different solutions to the problem of sending information with
different sizes located on the limits of partitions between processes (see Fig. 1(b)),
whose size is located on the congestion areapredictedby the communicationmodel.
The communication paradigms considered are: Chaotic Non-Blocking (CNB), Di-
videdChaoticNon-Blocking (DCNB)andSubgroup-Based (SB)Communications.
CNB is characterized as a naive approximation, with highly balanced computing
phase (thanks to the benchmark and directives of HeteroMPI) and the use of non-
blocking communication directives for overlapping. DCNB is developed with the
idea of coping with the problem of having communications located on the conges-
tion region. In order to evade the congestion region predicted by the model in the
network, it is necessary to introduce very complex control code to correctly retrieve
the data, also making it completely independent of the particular algorithm, thus
only dependent on the parameters of the network and the size of the message passed
to the communication framework, posing as a robust algorithm for subdivision of
messages and ordered reconstruction upon reception that evades the congestion
area. On the other hand, SB is developed with the idea of evade control code and
make use of divided messages. Introducing an ordered communication pattern by
means of subgroups of processes and collective communications we eliminate the
need of control code.

4 Experimental Results

In the present section, we describe the images and heterogeneous cluster used in
our studies, along with a comparison of the communication times obtained for
the different communication frameworks mentioned before.

4.1 Heterogeneous Cluster and Hyperspectral Image

The heterogeneous cluster used is located in the Heterogeneous Computing Lab-
oratory of the University College Dublin. It is formed by 16 different machines



Efficient Collective Communications for Hyperspectral Imaging Algorithms 329

(a) (b)

Fig. 1. (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agri-
cultural and forest features at Indian Pines, Indiana. (b) Communication of a shared
part of the hyperspectral image between neighboring processes.

interconnected by two level 5 Cisco switchs that allows hardware reconfigura-
tion of bandwidth between nodes. The processors are as follows: one IBM x306
3.0GHz AMD processor; two IBM x326 2.2GHz AMD processors; two Dell Pow-
erEdge SC1425 Xeon processors at 3.0GHz and 2.2GHz; 6 Dell PE750 Pen-
tium 3.4GHz processors; 3 HP DL140 Xeon Processors at 2.8GHz, 3.4GHz and
3.6GHz; two HP DL320 Celeron at 2.9GHz and 3.4GHz Pentium 4 Processors.
The cluster is connected via an Ethernet switch with adjustable bandwidth (from
few Kilobytes) on each link. In this research, we have only used 15 machines due
to a problem of disk space in node 2 during experiments.

The image used in the experiments is characterized by very high spectral reso-
lution (224 narrow spectral bands in the range 0.4-2.5 μm) and moderate spatial
resolution (614 samples, 512 lines and 20-meter pixels). It was gathered over the
Indian Pines test site in Northwestern Indiana, a mixed agricultural/forested area,
early in the growing season. Fig. 1(a) shows the Indian Pines AVIRIS hyperspec-
tral data set considered in experiments. The data set represents a very challenging
classification problem and it is a scene universal and extensively used as bench-
mark to validate classification accuracy of hyperspectral imaging algorithms.

4.2 Communication Times

Our experiments have focused on the measurements of the communication times
for each paradigm used on communicating the data located on the borders of
each partition assigned to the different processor on a processing power basis,
producing thus different number of messages and sizes. Each execution has been
made with the same group of processors, only varying the data assigned due
to particular processing load at each node, except in the case of SB, where
additional subgroups are created to scatter the data from the borders.
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Fig. 2. Mean communication time for each particular communication paradigm

In Fig. 2, we show the mean communication time of the 15 machines using
each one of the communication paradigms before mentioned. As can be seen,
before reaching 6972-9296 bytes the CNB method is similar to DCNB, as ex-
pected from the model (we are still before the congestion area in most of the
processors which is located around 3-4KB), thanks to small messages and no
overhead for control in this implementation. Once we reach 9296 bytes, all the
processes enter the congestion region, occurring then the effects of non-linearity
in the communications[9]. Now, the best results are obtained by the DCNB. This
is due to the use of division of the original message into several smaller messages
that will fall out of the congestion area. Even though the overhead introduced
with the control code, this implementation gives the best results, showing that
the division of messages poses as a key solution to the problem itself. Also from
the figure, we can see that the times of the SB are worst than those of the DCNB,
but still very close, specially when the size of messages reach the congestion area,
due to elimination of control overhead and ordered nature imposed by groups
and Scatter operations. This is a very promising solution to the communica-
tion problem studied in this paper, upon the inclusion of non-blocking divided
collective communications and overlapping groups.

In general, the best results are those of the DCNB, but all the paradigms
show a logarithmic scaling behavior and approximation between values due to
higher message sizes and overhead of the network, until the linearity is regained
when reaching 65KB (as predicted by the model).

5 Conclusion

The aim of this paper has been the study of different collective communication
paradigms for its use on the implementation of parallel hyperspectral imaging
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algorithms on heterogeneous networks of computers, using for it HeteroMPI li-
brary and communication models. The results obtained are very promising and
reveal different solutions and approaches varying in complexity. As future work,
we plan to integrate subgroups and collective nonblocking scatter/gather oper-
ations which may allow us to resolve the problem of excessive communications
in the congestion area
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Abstract. This article describes a system of MPI-tests that collects
statistics on delays during message transmitting through communica-
tions of multiprocessor or cluster and Graphic User Interface (GUI) to
visualize it. The system is capable to imitate communication activity
level and to count delays for targeted messages passing. A cluster with
940 multicore processors has been tested.

Communications in modern multiprocessors and clusters are rather complex.
It is difficult to predict duration of message transfer between two processors
for a message with a given length and an expected level of communications
loading. Difficulty is a result of many components that form multiprocessor or
cluster communications. The most popular technology of message passing in
multiprocessors and clusters is MPI. We expect several intelligent MPI-based
testing applications that will particularly solve the problem of time prediction of
interaction through communications to be developed. NetPIPE [2] is an example
of MPI-based test which performs testing by means of point-to-point messages.
There is another point of view on communication testing process. Often clusters
have thousands of processors. This forces the tests to generate a great amount
of data; it’s impossible to comprehend this data. So it is necessary to develop
visualization tools for it.

The goal of our research is to develop several MPI-based tests for extracting
statistics on communication delays and to develop an application for visualizing
information collected after testing MPI-application work.

The authors introduce MPI-application, a part of PARUS [1] project called
network tests, which implements six modes of communication testing. User de-
fines several parameters for testing application: interval of message length, step
of message length and number of repeats for each message length. The MPI-
application begins its work with the lowest message length in the interval, upon
each step it increases the message length by value of step parameter that has
been defined by the user. The algorithm finishes its work with the last message
length located in the interval. For each message length application performs data
transmissions trough communications. Type and volume of transmit tings de-
pends on mode that is chosen by user in application parameters. The number
of repeats parameter determines the number of independent iterations of data
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transmission. The testing results for all iterations constitute a sample which will
be used for searching minimum value, median and counting average and standard
deviation. All found values form a set of matrices, each matrix corresponds one
of the messages length. The i, j matrix cell corresponds transfer duration from
MPI-process with number i to process with number j. Duration is estimated by
MPI Wtime function. Data for median, average and so on is stored in different
text files. Let’s describe several available test modes:

• one to one – there is only one pair of MPI-processes that are involved simul-
taneously in message transmitting with MPI Send and MPI Recv functions.
MPI Recv duration is stored in the matrix.

• all to all – all MPI-processes are involved in message transmitting. An ap-
plication uses MPI Isend, MPI Irecv where time intervals from MPI Irecv
to MPI Waitany are stored in the matrix.

• async one to one – is similar to one to one mode but it uses unblocked
functions.

• test noise blocking – MPI-processes are divided in three groups: pair of target
processes, noise and idle processes. Noise processes are chosen randomly from
idle processes where number of them is defined by user. Target processes are
involved in message passing similar to one to one and durations of them are
stored in the matrix. Noise processes perform all to all transmissions with
fixed by application parameters message length, but their durations are not
stored in the matrix.

There is a Sun Java 1.5 GUI application developed to visualize results of
communications testing with three modes of data visualisation. In the first mode
a matrix of delays for fixed message length is drawn. This mode has two internal
modes of data normalization: local in one matrix and global in all results. The
intensity of black corresponds normalized duration of transmitting. Min value is
converted to white color and max value is converted to black color. In the second
mode the user chooses one row or column in matrix and the program draws this
for all messages length. This mode highlights delays for one fixed MPI-process.
In the third mode a plot for chosen pair of MPI-processes is built.

Both applications have been tested on mvs100k (cluster of 470 nodes with four
Intel Xeon 5160 processors which are connected through Infiniband network) and
IBM pSeries 690 (SMP system with 16 processors in our configuration). The code
for both applications is available from SourceForge PARUS project page.

References

1. Salnikov, A.N.: PARUS: A Parallel Programming Framework for Heterogeneous
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Abstract. This paper presents the possible usage of MPI in our Wireless
Sensor Networking software stack project.

1 Introduction

Wireless Sensor Networks (WSN) are built around systems on a board or on a
chip that gathers a micro-controller coupled with a radio chip and some memory
chips. These systems can embed a bunch of environmental sensors and relays
through there ADC/DAC interfaces. This is a booming technology [1,2] that
can be applied to numerous fields of our industrial societies that need fine grain
control and ubiquitous field knowledge.

We intentionally reduced our scope to home automation. And more precisely
in that particular domain, our primary interest is energy savings in buildings
with the help of WSN infrastructures. With this research in WSN platform, our
aim is to participate to the reduction of energy wastes: in OCDE societies, energy
spent in buildings represent more than 43% of the raw energy spent per year.

WSN allows for monitoring and control of appliances. Sensors monitor the
physical parameters of the building in several location of importance. From this
observation, actions can be computed to control the building equipment like the
heater, ventilation, cooler, shades, ... and this can help to simulate and predict
the building behavior [3] from the energy spending point of view. In the moni-
toring phase, the micro-controller acts as a network connection for the sensors
and in the reaction phase, as a network connection for the actuators relays.

Thus, the WSN is a networked communication platform and each node loaded
with a lightweight OS is able to do basic IO operations and data computation. We
are investigating MPI as an application communication middleware paradigm for
these wireless micro-controller networks embedding sensors.

2 Our WSN Model

Most of WSN communications are based on the IEEE802.15.4 radio and MAC lay-
ers with dedicated radio chips coupled to the micro-controllers. Usually, PC-based
� This work was made possible thanks to a BQR grant from ENS-Lyon and our re-

ception in the GRAAL team.
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gateways interface the WSN with the Internet world. Thus, the resulting network-
ing schema is hierarchical and, for the WSN layer, has the following properties :

– it is build with ”small” autonomous communication nodes
– it is based on ad-hoc wireless meshed network
– the position of nodes and gateways is fixed, moreover, the location of each

node will be important to the user
– the network connectivity is dense because of radio broadcast mean
– the network is faulty because of the radio mean, the battery life and other

field constraints
– the energy saving is the primary goal because the lifetime is expected in

years with as small as possible battery powered nodes
– in this micro-controller world, data communication cost is of the order of a

thousand times the local computation on this same nodes

Thus, in such an architecture, the communication system and middleware
should try to reduce the communication volume and choose the best commu-
nication paths to preserve and equilibrate battery loads. Moreover, distributed
operations may be preferred against data treatment in a remote server if this
reduces data communication number and volume, thus preserves the battery life.

3 WSN and Communication

3.1 Monitoring Measurements Requirements

Up to now, WSNs simply collect data through their meshed network. The moni-
toring data is obtained through mostly one sided communications from a remote
server acting as a database sending requests to the nodes when needed :

– interactive requests
– timed regular reporting

However, one can imagine from the WSN side that regular checking can be
done in order to provide alarms, local or global pre-computed function of the
whole WSN sensor data leading to :

– computed thresholds events
– locally computed transfer functions
– distributed functions compute in the WSN

Hence, from the communication middleware point of view, the needed commu-
nication functions include all the MPI spectrum[4] from send and receive, to
collective and one sided ones.

3.2 Existing Networking Protocols for Sensor Networks

Existing wired network protocols, like X10, CAN, BacNet, ... are the standards.
They were designed for home automation or industry processes without having
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in mind the Internet world developments. Numerous other industrial commu-
nication layers already exist for radio networks, but unfortunately almost one
per hardware provider ! A strong effort was made by the ZigBee consortium [5]
to discuss and formalize an industrial standard for networking automation. But
if its resulting stack is very satisfactory for the interface description of devices
needs at the network edges, its networking part is not in the same mature state
nor fully adapted to the Internet down to the WSN nodes.

3.3 Existing OS

Among the open source projects, theTinyOSproject fromBerkeley [6] is the lighter
memory footprint and most popular event driven OS dedicated for WSN. TinyDB,
its companionmodule is also very important for the remotemanagement of sensors.
As well its programming interface and associated compile tool is also dedicated to
WSN. On this TinyOS base, the ArchRock middleware includes a very practical
web server interface. FreeRTOS [7] is a more heavy weight tool with a larger mem-
ory footprint and a full IP stack. Contiki [8] brings several nice functionalities and
an IP stack with TCP for a remarkably small memory footprint. However, it is not
dedicated to WSN but to the generic embedded systems world.

Some of these OSes were ported to several micro controller platforms, see
TinyOS in the Table 1 for instance. Some others are very dependent on the
hardware they were developed on or simply need too large resources that pre-
cludes some very light WSN hardwares. Table 1 presents the main parameters of
a panel of WSN nodes along the, rather short, history of the field and involving
several hardware and software technologies.

Table 1. WSN hardware platforms and available OSes

Mica-x TelosB SensiNode SunSPOT

μ controller Atmega88-128 TI MSP430 TI 8051 (CC 2431) ARM 920T

Bus 8-bit 16-bit 8-bit 32-bit

RAM 128kB 10kB 8kB 512kB

Flash 512k 48k 128k 4M

Radio variable CC2420 CC2420 (CC 2431) CC2420

Onboard Sensors none humidity + temp. + 2xlight temp. + light temp. + light + accelero.

IO yes 16 (8 ADC) 21 (8 ADC) yes

Onboard Antenna no yes yes no

OS TinyOS TinyOS, Contiki FreeRTOS, TinyOS Java JMX

OS mem. footprint 0.4kB 0.4kB, 2kB 3kB , 0.4kB 80kB

4 The iWSN Project

The iWSN project aims to design an open source middleware for WSN micro-
controllers including an IPv6 communication stack following the 6lowPAN IETF
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RFC [9], and tools to provide an easy configuration and usage of the WSN plat-
forms in the building energy saving domain.

Implementing generic IP, distributed functions and tools while preserving the
advantages of a dedicated but very constrained WSN architecture is not that
easy. In a very modular structure based on TinyOS, we investigate the imple-
mentation of core functions in a software stack, see Figure 1, that will provide
enough flexibility for our building monitoring and control applications.

4.1 Mesh Routing Strategies

Several mesh-routing strategies are envisioned to answer the needs of the dif-
ferent applications on such a system. These strategies may be implemented in
different network layers to optimize their behavior for the end-user applications.

Also, the objective function will be often linked to resource consumption, espe-
cially battery power. Thus the routing and scheduling of the communication func-
tions may depend on the local states of the intermediate nodes in the mesh graph.

4.2 IPv6 over Low Power and Lossy Radio Networks

There are numerous reasons for the use of IPv6 [10] in such a system. On the
networking side is the inheritance of the IP addressing schema, the Internet
network architecture and tools for configuration, maintenance and security.

This open standard also gives provisions for a large adhesion of the rather diverse
communities involved in the research, the technical usage and business of WSNs.

The web interface might be the most important end-user reason for providing
IP to the WSN nodes. Such a simple remote way to control the data loggers and
relays is mandatory to open the domain to a large community.

The standardization activities are ongoing and summarized in the IETF 6low-
PAN working group. With the 6lowPAN charters, a few research teams and
start-ups started networking stack developments for WSN. Some stacks are pro-
prietary like ArchRock [11], which is based on an enhancement of TinyOS, some
other are open source like the NanoStack from SensiNode [12]. We are currently
developing such a 6lowPAN stack for TinyOS.

Furthermore, not taking into account the battery power spending, one could
also provide MPI over IPv6 like in [13] since the 6lowPAN stack should provide
a complete substitute of IPv6.

4.3 Active Message Implementation

The TinyOS communication stack is based on the Active Messages (AM)paradigm
developed at Berkeley in the nineties [14]. This should allows for an implementa-
tion of MPI over AM, like in clusters, see for instance [15], but with very different
optimization goals, namely power consumption, robustness or memory footprint.

Raw AM can be implemented very close to the hardware resources and thus
can provide high performance MPI communication libraries. However, with only
this communication layer, applications do not benefit from the easy web access
interface. So direct AM usage should be limited to the internal WSN distributed
functions calls.
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4.4 Distributed Communication and Computation Functions

Automation transfer functions as well as associative aggregation must be com-
puted on-line to increase batteries’ lives by decreasing the communication volume.

For instance, the associative functions, such as MAX, MIN, SUM, AVER-
AGE, can be computed along spanning trees routed by a gateway. More complex
transfer functions may needs dedicated communication graphs inside the WSN.
A communication middleware like MPI could help in the design, mapping and
scheduling of these complex algorithms inside the WSN architecture.

database server apps . . . web services




UDP TCP MPI/IP




6lowPAN . . . Distributed computation lib.




Mesh routing module 1 . . . Mesh routing module N MPI/AM



AM



802.15.4 MAC



hardware platform 1 . . . hardware platform M

Fig. 1. iWSN software stack

5 Conclusions

While Ad-hoc networking is a mature domain, WSN is still in its infancy. There
is a great deal of work to do to provide a communication system that will allow
to optimize the autonomy of the WSN platform and to fulfill the needs of each
WSN application domains.

A subset of MPI could be of great help to write distributed communication
and computation functions modules within the WSN and inherit of library style
programming in WSN component based applications. Moreover, even if this is
a difficult task regarding the constrained resources of WSN, our first implemen-
tation approach is optimistic and depends on the options chosen in the iWSN
software stack.

A complete IPv6 interface is mandatory for end-users and the WSN lightweight
nodes may not be able to accommodate two communication system programming
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layers. Thus, the introduction of the ability to choose the layer target in IP encap-
sulated packet may be a win-win approach.

We may end up with two communication layers, one MPI-like to code dis-
tributed functions embedded in the kernel core of each WSN node and one
IPv6-like for end user remote accesses during WSN operations.
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