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Preface 

The GIScience conference series was founded in 2000 with the goal of providing a 
forum for researchers interested in advancing the fundamental aspects of the produc-
tion, dissemination, and use of geographic information.  The conference is held bian-
nually and attracts people from academia, industry, and government across a host of 
disciplines including cognitive science, computer science, engineering, geography, 
information science, mathematics, philosophy, psychology, social science, and statis-
tics.  Following a very successful conference in Münster, Germany in 2006, this year’s 
conference was held in Park City, Utah, USA, the prior site of the 2002 Winter Olym-
pics and home to the annual Sundance Film Festival. 

There are two forms of submission to the conference: full papers of 6000 words or 
less and extended abstracts of 500-1000 words for either a presentation or poster. This 
format was originally designed to capture the cultural difference between researchers 
who prefer to publish a peer-reviewed conference paper and those who would rather 
submit an abstract covering work in progress. This year 77 full papers were submitted 
and reviewed by 3 Program Committee members, of which 24 were selected for pres-
entation and inclusion in this volume.  Of the 115 extended abstracts that were submit-
ted and reviewed by 2 Program Committee members, 47 were accepted for an oral 
presentation and 25 were accepted for presentation as a poster.  The abstracts were 
published in a second booklet and are available on the GIScience website 
(http://www.giscience.org). 

The breadth of new topics represented in this volume highlight the dynamic nature 
of GIScience.  While traditional topics such as spatial relations, geographic dynamics, 
and spatial data types are still actively being advanced, new topics including geo-
sensors, mobile computing, and Web mapping have come to the fore.  The topics of 
navigation, networks, and location-based services also continued to be well repre-
sented in this year’s submissions.  While spatial information query and retrieval con-
tinues to be a hot topic, work advancing geo-ontologies has settled into the realm of a 
more conventional topic following its peak in 2004.  Finally, in addition to the many 
sessions dedicated to presenting papers and works-in-progress, there were five key-
note talks, eight pre-conference workshops, and a poster and wine session. 

We would like to thank the many people that made GIScience 2008 possible.  
Thanks to the Program Committee for their enormous effort in reviewing the sub-
missions. Oscar Larson and Doug Richardson from the Association of American 
Geographers helped tremendously with all aspects of the event from securing the 
venue to managing the on-line registration.  Thanks also to the program sponsors 
who helped support both student and plenary speakers through travel grants. Fi-
nally, a special thanks to Melissa Warner in the Digitally Integrated Geographic 
Information Technologies (DIGIT) Lab, Department of Geography, University of 
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Utah for her webpage design and management and Laura Siebeneck who handled 
much of the outreach. 
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Query Responsive Index Structures

Ludger Becker1, Hannes Partzsch1, and Jan Vahrenhold2

1 Fachbereich Mathematik und Informatik, Institut für Informatik, Westfälische
Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Deutschland
2 Fakultät für Informatik, Informatik XI, Technische Universität Dortmund,

Otto-Hahn-Str. 14, 44227 Dortmund, Deutschland

Abstract. In this paper, we generalize the notion of self-adapting one-
dimensional index structures to a wide class of spatial index structures.
The resulting query responsive index structures can adapt their structure
to the users’ query pattern and thus have the potential to improve the
response time in practice. We outline two general approaches to providing
query responsiveness and present the results in terms of the well-known
R∗-tree. Our experiments show that depending on the query pattern
significant improvements can be obtained in practice.

1 Introduction

Accessing spatial databases, whether directly or indirectly, is no longer an op-
eration available to expert users only but has become an integral component
of many non-expert users’ routine. Prominent scenarios are using online nav-
igation systems, digital satellite imagery, or online encyclopedias that contain
geo-referenced data.

Depending on the type of database, the users’ queries may exhibit a strongly
local behavior that changes over time. For example, a geographic information
system linked to a news feed will receive most queries about those geographic
regions that appear in the headlines, and a traffic information system is likely
to receive a large number of queries about regions where traffic jams occur.
Also, other types of databases that use (high-dimensional) index structures may
exhibit this behavior, e.g. biological or multimedia databases. It is thus desirable
that spatial indexes adapt their structures to provide faster response times for
areas of current interest.

As spatial databases continue to increase both coverage and resolution, many
spatial index structures have reached a size so large that the only feasible up-
date mechanism is through bulk operations—see e.g. [6,12,19,31]. Thus, such
spatial index structures de facto can been considered static in between these up-
dates, and this rules out all restructuring approaches that reorganize the index
structure when triggered by an update operation.

In this paper, we introduce the notion of query responsive index structures
that adapt their structure to the users’ query pattern while answering queries.
To the best of our knowledge, this is the first approach to self-organizing spatial
index structures that is formulated and evaluated in a database setting.

T.J. Cova et al. (Eds.): GIScience 2008, LNCS 5266, pp. 1–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The remainder of this paper is structured as follows: After a review of the re-
lated work (Section 2), Section 3 presents two different approaches to providing
query responsiveness. In Section 3.1, we show how to integrate statistical infor-
mation into a spatial index structure, and in Section 3.2, we employ a secondary
data structure that can be attached to and detached from an index structure as
needed. The experimental evaluation of these structures and a comparison with
a benchmark structure is summarized in Section 4.

2 Self-organizing Index Structures

In this section, we give a brief account of related work on the design and analysis
of self-organizing index structures.

2.1 One-Dimensional Index Structures

Most one-dimensional index structures heavily build on the fact that a total
order on the data objects is known; an important exception are hash-based
data structures which are beyond the scope of this paper. Knuth [21] gave a
quadratic algorithm based on dynamic programming that, for a given set of
objects and a given query distribution, constructs an optimum binary search
tree that minimizes the overall query cost. The quality of faster heuristics was
later analyzed by Mehlhorn [24] and Bitner [11].

The investigation of the performance of self-organizing unordered lists and
(binary) search trees has received a considerable amount of attention, both from
a theoretical and a practical point of view—see, e.g, [3,9,11]. Perhaps the best-
known self-organizing binary search tree is the splay tree proposed by Sleator and
Tarjan [28]. Also, randomization has been shown to improve the performance of
splay trees both in practice and in expectation [2,14].

2.2 Higher-Dimensional Index Structures

The classic higher-dimensional index structure is the R-tree [17,23,30] which will
be described in more detail below. This structure is primarily used for data in
low-dimensional Euclidean spaces and served as a “role model” for a variety of
structures for data objects in high-dimensional and/or metric spaces—see the
recent book by Samet [26] for a comprehensive survey.

Almost all tree-based index structures belong to the class of so-called grow-
and-post-trees [22], that is they allow for an insertion at leaf level and grow and
shrink at the top of the tree. Many spatial index structures, including the R-tree
and its variants, also belong to a subclass of grow-and-post-trees referred to
as overlapping-predicate-trees [31]. In such trees, it is also permissible to insert
subtrees whose height is lower than the height of the original tree. This, however,
requires that all elements stored in any subtree fulfill the same predicate (e.g.
they are all contained in a certain area of the data space) and that the predicates
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Fig. 1. R-tree for data rectangles A, B, C, . . . , I [6]. The tree in this example has
maximum fanout B = 3.

valid for two different subtrees are allowed to be non-disjoint.1 While the tech-
niques described in this paper can be applied to any overlapping-predicate-tree,
we simplify the exposition by restricting ourselves to two-dimensional R-trees
and their variants.

Description of the R-Tree. The R-tree, originally proposed by Guttman [17],
is a height-balanced multiway tree similar to a B-tree. An R-tree stores
d-dimensional data objects approximated by their axis-parallel minimum bound-
ing rectangles. For ease of presentation, we restrict the exposition to the situa-
tion d = 2 and assume that each data object itself is an axis-parallel rectangle.

The leaf nodes in an R-tree contain Θ(B) data rectangles, where B is the
maximum fanout of the tree. Internal nodes contain Θ(B) entries of the form
(Ptr ,R), where Ptr is a pointer to a child node and R the minimum bounding
rectangle covering all rectangles which are stored in the subtree rooted in that
child. Each entry in a leaf stores a data object or, in the general setting, the
bounding rectangle of a data object and a pointer to the data object itself.
Fig. 1 shows an example of an R-tree for a set of two-dimensional rectangles.

Updates and Queries on R-Trees. To insert a new rectangle r into an already
existing R-tree with root v, we select the subtree rooted at v whose bounding
rectangle needs least enlargement to include the new rectangle. The insertion
process continues recursively until a leaf is reached, adjusting routing rectangles
as necessary. If a leaf overflows due to an insertion, a rebalancing process similar
to B-tree rebalancing is triggered, and therefore R-trees also grow and shrink
only at the top. The insertion path depends not only on the heuristic chosen for
breaking ties in case of non-unique subtrees for recursion, but also on the objects
already present in the R-tree. Hence, there is no unique R-tree for a given set of
rectangles, and different orders of insertion for the same set of rectangles usually
result in different R-trees.
1 An important class of grow-and-post-trees that does not belong to the subclass of

overlapping-predicate-trees is the class of B-trees; here the predicate is an interval
on the real line, and no two subtrees’ intervals are allowed to overlap.
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During the insertion process, a new rectangle r might overlap the routing rect-
angles of several subtrees of the node v currently visited. However, the rectangle
r is routed to exactly one such subtree. Since the routing rectangle of this sub-
tree is extended to include r, the routing rectangles stored within v can overlap.
This overlap directly affects the performance of R-tree query operations: When
querying an R-tree on N data objects to find all rectangles overlapping a given
query rectangle r, we have to branch at each internal node into all subtrees
whose minimum bounding rectangle overlaps r. In the worst case, the search
process has to branch at each internal node into all subtrees which results in
O(N/B) nodes being touched—even though the number of reported overlap-
ping data rectangles might be much smaller. Intuitively, it is thus desirable that
the routing rectangles stored within a node overlap as little as possible.

As mentioned above the insertion of a new rectangle can increase the overlap
between routing rectangles stored in the same internal node and thus can also in-
crease search time. To alleviate this effect, several heuristics have been proposed
for choosing the leaf into which a new rectangle is inserted, and for splitting
nodes during rebalancing [8,16,18,27]. Among these heuristics, the R∗-tree [8]
and the Hilbert R-tree [18] have emerged as especially successful variants, and
the R∗-tree is the most widely implemented data structure that also serves as a
canonical benchmark.

Related work. The R-tree and its variants, most notably the R∗-tree, attempt
to adjust their internal structure to dynamically changing data objects during
update operations. Whenever a node is split or merged as a result of an insert
or delete operation, the “best” way of doing this is determined according to one
of several heuristics [16]. One of the practically most efficient ways of updating
the internal structure after a delete operation is the forced reinsertion used in
the R∗-tree [8].

Adaptive R-trees (and B-trees) [29] aim at reducing the overall query time by
optimizing the layout and node size of the tree. Following the example of the X-
tree [10], they allow for “large” node sizes to reduce expensive seek operations.
Their approach is to maintain query histograms and to use this information
to compute an optimal (according to the predicted access pattern) page size
for nodes created during split or merge operations. Note that this approach
and all of the above approaches require split or merge operations to trigger the
restructuring process, i.e. they only work for dynamically changing data sets.

The Cost-based Unbalanced R-tree [25] assumes a given (global) query distri-
bution that is known to the data structure and tries to construct a tree that is
locally optimal with respect to this distribution. As a consequence, the resulting
tree may have both over- and underfull nodes and data objects stored at any
level of the tree. Unfortunately, no non-trivial bounds on the fanout and height
of the tree are given, and thus the authors recommend to use this structure in
an in-memory environment. Also, it remains to be investigated to which extent
of practical efficiency this structure can be used for answering other types of
queries, e.g. spatial join queries.
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To the best of our knowledge, the only spatial data structure that is able to
restructure itself according to an observed query pattern is the Spatial Splay
Tree [13]. This data structure essentially implements a linear quadtree using a
binary splay-tree. Since the maximal fanout of such a tree is two, the efficient
use of this data structure is restricted to in-memory environments.

3 Query-Responsive Index Structures

In this section, we present two approaches to setting up a spatial index structure
such that it is able to adapt to a specific access pattern. The proposed modi-
fications do not change the interface or the internal structure and thus do not
affect the use of the structure, e.g. for query or join operations. While we use an
R∗-tree to illustrate the concepts we point out that they can be applied to any
overlapping-predicate-tree.

3.1 Remembering the Past: The Matrix-R-Tree

The first of our approaches is based on the following difference between range
queries in B-trees and in higher-dimensional overlapping-predicate-trees (e.g.
R∗-trees): It is well-known that a range query in a B-tree cannot overlap more
than two leaves of the tree without reporting any data object. For the case of
a d-dimensional R∗-tree, or more generally, for any spatial index structure that
does not replicate data objects, a range query may overlap Θ((N/B)1−

1
d ) leaves

without reporting any data object [20] (here, N is the number of data objects
and B is the maximal fanout of the tree).

The worst-case scenarios for R∗-trees can easily be seen to exhibit one com-
mon feature: many bounding boxes overlap and thus there are many branchings
during the execution of a query. In general, such overlaps cannot be avoided com-
pletely simply because of the position of the data objects in space—see e.g. [1,5].
From a practical point of view, however, we would like as few branchings as pos-
sible to occur for regions that are frequently visited by queries.

Definition of the Matrix-R-Tree. Since for most practical applications the
queries (or their distribution) are not known in advance and/or may vary over
time, we need to establish other means of even detecting that frequent branchings
occur. We therefore propose to augment each node ν of an R∗-tree such that it
can record the number of queries that branched at ν. To allow for a meaningful
processing of these statistics, we also need to record to which nodes a query
branched.

Definition 1. A Matrix-R-Tree is an R∗-tree T that, for each non-leaf node
ν ∈ T , maintains information about how many queries branched to more than
one child of ν: for each pair (ai, aj) of children of ν, we record how many queries
branched to both ai and aj. For each pair (ai, aj) of data objects stored in a leaf
node, we record how many queries reported both ai and aj.
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The above definition allows us to store the counters in an upper triangular
matrix storing only the counters for (ai, aj) with i < j. Ideally, we would like
to maintain the above statistical information not only for pairs but for each
potential subset of children of ν. This, however, would result in a prohibitively
excessive space requirement of 2B counters where B is the maximal allowed
fanout for T : for B = 50 and one byte per counter, we would need to maintain
250 = 1024 · 1024 GB of statistical information per node. Instead, to record
multi-way branchings of queries, we decompose each branching to k children
(2 ≤ k ≤ B) into

(
k
2

)
pairs of children branched to and record these pairs.

If we can maintain the statistic for node ν in the same block as (the routing
information of) ν, we do not increase the number of disk accesses for answer-
ing a query. This, however, comes at the cost of a restricted space allowed for
the statistic. Assuming a page size of P bytes, four eight-byte coordinates and
one eight-byte identification per data rectangle, a two-byte counter per pair of
children, and twelve byte of other statistical information per node, the maximal
fanout B is given as follows:

B = max
n∈IN

{
40 · n + 2 · (n − 1)n

2
+ 12 ≤ P

}

Solving this for several values of P relevant in practice results in the following
table that, for a given P , compares the maximal fanout BM of a Matrix-R-Tree
with the maximal fanout B of a standard R∗-tree.

Page Size P 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB

Fanout BM 29 47 73 109 162 237
Fanout B 50 102 204 409 818 1638

Previous studies on the practical performance of R∗-tree, e.g. [5,6,8,17,15], have
noted that the most common values used for R-trees in practice are B = 50
and B = 100. This choice is mainly due to a trade-off between internal-memory
computation time (especially for node-splits and spatial join operations) and
height of the tree. The above table shows that, with current page sizes between
8 KB and 64 KB, we can easily store both the routing elements as well as
the statistics in one page, i.e. we can access both the routing elements and the
statistics using at most one page access.

Operations on a Matrix-R-Tree. All construction and update operations
in a Matrix-R-Tree are basically the same as in an R∗-tree with the obvious
modifications needed for maintaining the correctness of the statistics: Whenever
an entry ai is added to (deleted from) a non-leaf node ν, we have to add (delete)
the corresponding row and column to (from) the matrix storing the branching
counters. Since we can choose the maximal fanout of the tree such that all routing
information and the matrix fit into one page, these modifications do not cause
any extra page accesses.
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As stated above, the query operation keeps track of how many (and which)
nodes it branched to during its execution. In the base version of our data struc-
ture, we would increment the counter (ai, aj) by one whenever the query branches
to both the children ai and aj of the current node. In a modified version, called
IncrementIntersection, we also take into account how much the query re-
gion R overlaps the region Rν associated with the node ν and increment the
counter(s) not by one but by the percentage of the area of Rν overlapped by R,
that is by sRν (R) := area(Rν ∩ R)/area(Rν).

Reorganizing a Matrix-R-Tree. If, during a query operation, a counter
(ai, aj) overflows, i.e. becomes at least as large as a given threshold μ, we trigger
a reorganization of the tree. We present two different types of reorganization
approaches: split-based approaches and reinsertion-based approaches.

Split-Based Reorganization. The most natural way to react to a overflowing
counter (ai, aj) of a node ν would be to collect the entries stored in the nodes ai

and aj and to try to find a better distribution of these entries into two nodes a′
i

and a′
j . Such an approach would be advisable in a dynamic environment where

the original distribution found during the split that created ai and aj is no longer
valid due to interleaving insert and delete operations. One option for the newly
created nodes a′

i and a′
j is to replace the original children ai and aj in their

parent ν (we call this variant MSplitNodes-Parent), the other option would
be to use the reinsert operation of the R∗-tree to reinsert a′

i and a′
j into the tree

at the appropriate level making sure to handle a potential underflow in ν (we
call this variant MSplitNodes-Insert). Both variants can be combined with
the IncrementIntersection approach described above.

While the above approach is relatively easy to describe and implement, its
main drawback seems to be that we can “reset” only one counter per reorgani-
zation. The variant MSplitMultiplePairs tries to alleviate this effect: it uses
a greedy algorithm to find a collection of independent overflowing counters, i.e. a
collection of overflowing counters (ai, aj) such that each child of the current node
ν contributes to at most one such counter. For each of these counters, we then run
the above MSplitNodes-Parent algorithm (using the MSplitNodes-Insert
algorithm is likely to result in an underflow in μ’s parent).

If we replace the check for overflowing counters by a (biased) coin flip, we ob-
tain what we call the RandomSplit variant.2 In this variant, the query method
of the R∗-tree is augmented to also return a set A of nodes that should be used
for reorganizing. As long as no such set has been determined, the query method
flips a (biased) coin at each node visited. If the coin flip indicates so, the set A is
constructed by selecting all children of the current node ν whose bounding boxes
overlap the query rectangle R. After the query algorithm terminates, the set A
is either empty or contains a subset of the children of exactly one internal node,
and this set is then used for reorganization as described above. For the success

2 This variant uses the reorganization subroutines of the Matrix-R-Tree but is not a
Matrix-R-Tree in the strict sense since it does not need to maintain counters at all.
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Table 1. Name and short description of each of the split-based approaches

Name Description

MSplitNodes-Parent Split into two nodes, reinsert at parent.

MSplitNodes-Insert Split into two nodes, reinsert at root.

MSplitNodesII-Parent Split into two nodes, reinsert at parent (counters are
updated by IncrementIntersection).

MSplitNodesII-Insert Split into two nodes, reinsert at root (counters are
updated by IncrementIntersection).

MSplitMultiplePairs Collect independent pairs of nodes, split each pair
separately, reinsert at parent.

RandomSplit-Parent Trigger MSplitNodes-Parent by (biased) coin flip.

RandomSplit-Insert Trigger MSplitNodes-Insert by (biased) coin flip.

RandomSplit-Intersection Trigger MSplitNodes-Parent by (biased) coin flip
that takes into account SRν (R).

RandomSplitMultiplePairs Trigger MSplitMultiplePairs by (biased) coin flip.

probability p of the coin flip, we can either use a fixed probability p ∈ [0, 1] for
each node or an adaptive probability p := (p′ + sRν (R))/2 where p′ ∈ [0, 1] is a
(global) probability and sRν (R) is the relative area of the bounding rectangle Rν

of ν overlapped by the query rectangle R.
All split-based approaches are summarized in Table 1.

Reinsertion-Based Reorganization. Since most of the practical efficiency of the
R∗-tree is due to the forced reinsertion triggered by overfull nodes, we now
describe an approach to mimic this behavior for query operations.

The main subroutine used in all variants of this approach is the algorithm
FindRectangles (Algorithm 1). This subroutine recursively finds all data

Algorithm 1. FindRectangles(ν): Returns a set A = {a1, . . . , a�} of data
objects stored in the subtree rooted at ν such that one of the counters associated
with each ai overflows.
FR1: If ν is not a leaf node then do the following:

– For each child ai of ν do the following:
• If (ai, aj) ≥ μ for some child aj of ν then

set A ← A∪ FindRectangles(ai).
FR2: If ν is a leaf node then do the following:

– For each data object ai of ν do the following:

• [Report those data objects that contribute to overflowing counters.]
If (ai, aj) ≥ μ for some data object aj in ν then set A ← A ∪ {ai}.

FR3: Return the set A.
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Algorithm 2. ChooseGroup: For a given node ν with Bν children, this algo-
rithm returns a set A = {ai, aj1 , . . . , ajk

} of children of ν such that (ai, aj�
) ≥ μ

for 1 ≤ � ≤ k. Furthermore, all corresponding counters are reset to zero.
CG1: [Initialize the algorithm.] Set i← 0, j ← 1, and A ← ∅.
CG2: [Find a row i such that ai and some aj were branched to simultaneously at least

μ times.]
While (i < Bν and (ai, aj) < μ) do:

– [Advance to next column.] Set j ← j + 1.
– [Advance to next row.] If j > Bν then set i← i + 1 and j ← i + 1.

CG3: [Collect entries from row i (if it exists).]
If (i < Bν) then

– [Add ai to result set.] Set A← A ∪ {ai}.
– [Add aj to result set and iterate.] While (j < Bν) do:

If ((ai, aj) ≥ μ) then set A ← A∪ {aj} and j ← j + 1.

CG4: [Reset the counters of the elements collected.] Let I be the set of indices of the
elements in A. Set (ai, aj)← 0 for (i, j) ∈ I × I, i < j.

CG5: Return the set A.

objects ai (i.e. entries stored in leaves) of the current subtree that have at least
one overflowing counter (ai, aj).3

In the basis version (MBasis) of the reinsertion-based algorithm a counter
(ai, aj) is incremented by one if a query branches to both (ai, aj). Just as in
the above split-based approaches, there is a variant (MIntersection) of the
algorithm that takes into account how much the query rectangle R overlaps the
bounding box Rν of the current node ν and increments the counter accordingly,
that is by sRν (R) = area(Rν ∩ R)/area(Rν).

In any case, an overflowing counter first triggers a call to ChooseGroup
(Algorithm 2) to find a group A = {ai, aj1 , . . . , ajk

} of children that have a
common overlap and overflowing counters (ai, aj�

).
After all (recursive) queries initiated by a user running the standard query

algorithm have been answered and the group of nodes contributing to overflowing
counters is not empty, we process this group. For each child ai in the resulting
group, a call to FindRectangles(ai) produces all data objects in the tree
rooted at ai that contribute to one overflowing counter. These data objects then
are deleted from the tree and reinserted at the root.4

To possibly reduce the number of query operations needed to construct the set of
data objects tobe reinserted,wealso investigate the following approach:Wefirst in-
voke the algorithmChooseGroup to find a collection E of bounding boxes. Based

3 Recall that, since the relation “a query branches to ai and aj” is symmetric, we only
need to store and access counters of the form (ai, aj) where i < j.

4 Here, we see why it is important to have counters also in the leaves—otherwise
we would not be able to select only those data objects from any given leaf that
contribute to overflowing counters, i.e. have been touched by multiple queries that
branched “too much”; instead, we would delete and re-insert too many data objects.
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Table 2. Name and short description of each of the reinsertion-based approaches

Name Description

MBasis Reinsert all data objects that correspond to overflow-
ing counters.

MIntersection Reinsert all data objects that correspond to overflow-
ing counters and take into account sRν (R).

MBR(Group) Reinsert all data objects in the minimal bounding
rectangle of data objects that correspond to overflow-
ing counters.

MBR(Intersection) Reinsert all data objects in the minimal bounding
rectangle of the pairwise intersection of all data ob-
jects that correspond to overflowing counters.

MBR(FindRectangles) Reinsert all data objects in the minimal bounding
rectangle of the result of FindRectangles.

upon this collection, we construct a single rectangle R. We then delete all data
objects that overlap R from the index structure and reinsert them immediately af-
terwards.There are at least three possible variants of this approach: (1) the rectan-
gle R is constructed as the minimum bounding rectangle of E (MBR(Group)), (2)
the rectangle R is constructed as the minimum bounding rectangle of all pairwise
intersections of rectangles in E (MBR(Intersection)), and (3) the rectangle R
is constructed as the minimal bounding rectangle of all data objects that are stored
in the (subtrees rooted in the) nodes in E and that contribute to overfull counters
(MBR(FindRectangles)).

All reinsertion-based approaches are summarized in Table 2.

3.2 Recalling the Past: The Query R-Tree

The second of our approaches to providing query responsiveness is based upon
a recording strategy: We maintain a second index structure that keeps track
of which queries have been answered so far—and how often this was the case.
For our running example, the R∗-tree, it is particularly easy to see that we can
actually use another R∗-tree to record these queries. For the general case of
an overlapping-predicate-tree, we need to maintain an index structure that can
store the type of objects that define a query, and in many situations this will be
an instance of the same class of index structures.

Definition 2. A Query-R-Tree is an R∗-tree T (data tree) that is bundled with
a second index structure (query tree) that records the queries on T that have
been answered.

All update operations on the data tree are performed exactly as in an R∗-tree.

Reorganizing a Query-R-Tree. In the basis version of a Query-R-Tree, we
answer the query on the data tree and record it by inserting the query rectangle
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into the query tree; this data structure stores the queries (rectangles) augmented
by a counter. Initially, each counter is set to one, and whenever we find a rect-
angle that has been inserted before, we do not insert another copy but instead
increment the counter by one. As soon as a counter overflows, i.e. becomes larger
than a given threshold μ, we trigger a reorganization of the data tree.

If a counter overflow is detected for a rectangle R, we query the data tree
using R and obtain a set N of rectangles. We then bulk delete N from the data
tree and bulk (re-)insert them using the algorithm of Kamel et al. [19] that uses
the Hilbert space-filling curve to obtain a good packing of the data rectangles
into leaves.5 Finally, we reset the counter of R in the query tree.

This first approach is complemented by an approach which takes into account
that a query rectangle may intersect other query rectangles. This approach,
which is called QIntersection, handles a query as follows. After the query has
been answered, we perform a second query using the same query rectangle R: this
time, we query the query tree and report the set R of all “old” query rectangles
that overlap R. For each rectangle R′ ∈ R, we increment its counter by sR′(R) :=
area(R′ ∩ R)/area(R′). For each rectangle whose counter overflows, we trigger a
reorganization of the data tree as described above. In a variant of this approach,
we do not reorganize with each such rectangle but with the minimal bounding
rectangle of all such rectangles—this variant is called QIntersectionMBR.

Finally, we also describe a randomized version of the query-based reorgani-
zation approach (called QRandom). Similar to the randomized version of the
Matrix-R-Tree, this approach does not store statistical information at all (thus,
there is only one index structure, namely the data tree). Instead, this method
simply starts a reorganization using the current query rectangle (as described
above) based upon a (biased) coin flip.

All query-based approaches are summarized in Table 3.

Comparison of Both Approaches From a Database Perspective. The
main difference between the two proposed methods is that the Matrix-R-Tree
augments the internal nodes of the index structure whereas the Query-R-Tree
maintains a secondary index structure for the statistics. As a consequence, the
“Query” approach considers the primary index structure as a black box and thus
provides a “cleaner” separation between statistics and data. Furthermore, the
secondary index structure can be attached to resp. detached from the primary
structure at any time without affecting the integrity of the former structure, i.e.
without the need to obtain a lock.

The “Matrix” approach, on the other hand, can maintain the statistics on-the-
fly: statistical information is updated only in nodes that are currently accessed
by the algorithm. This means there is no additional overhead in terms of node
accesses, and the complexity of obtaining locks during the query process is exactly
the same as it would be for the primary structure without statistical information.

5 While in general this bulk insertion can lead to highly overlapping leaf nodes [6], it
is well suited for our situation: the data tree to be inserted into cannot contain any

rectangle since all these rectangles are in the set N .
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Table 3. Name and short description of each of the query-based approaches

Name Description

QBasis Increment the counter for an exact match of the query
rectangle. Delete and bulk (re-)insert all data objects
inside any rectangle R′ whose counter overflows.

QIntersection Increment the counter for each query rectangle R′

that overlaps the query rectangle by sR′(R). Trigger
QBasis for all rectangles whose counters overflow.

QIntersectionMBR Increment the counter for each query rectangle R′

that overlaps the query rectangle by sR′(R). Trig-
ger QBasis for the minimal bounding rectangle of all
rectangles whose counters overflow.

QRandom Trigger QBasis by (biased) coin flip.

Furthermore, no extra main memory, e.g. for the secondary structure as a whole
or pinned parts of it, is needed.

The above differences seem to be merely a matter of personal preference and
some of them are relevant only in concurrent environments. What is of much
more practical importance is the actual query performance of both structures,
and this is discussed in the next section.

4 Experimental Evaluation

In this section, we report on an experimental study undertaken to evaluate the
practical efficiency of the proposed methods. We note that, to the best of our
knowledge, this is the first experimental study on self-adjusting spatial index
structures (Cobb et al. [13] do not report any experimental results).

Setup. The implementation of all data structures was done in C++ using the
TPIE library [4] for interfacing accesses to external memory. The base imple-
mentation for the R∗-tree was also taken from TPIE, in particular, we used the
implementation that served as the reference implementation in previous stud-
ies [5,6,7]. The measure of performance was the number of page accesses, and
we did not employ any pinning or buffering strategies.

Query Types. In our experiments, we investigated three classes of queries
representative of three application scenarios where users’ queries may exhibit a
strongly local behavior that changes over time.

Identical queries: In this scenario, a small set of disjoint queries is asked mul-
tiple times. This scenario models a situation where many users use a pre-
defined set of query ranges. An example of such a situation is a geographic
information system linked to a news feed, where selecting a text-based rep-
resentation of a geographic region translates to issuing a pre-defined query
operation on the database.
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Greece

(23,268 objects)
Germany

(30,674 objects)
California

(98,451 objects)
TIGER/Stream

(194,971 objects)

Fig. 2. Some of the data sets used for the experimental evaluation

Pairs of queries: In this scenario, a small set of pairs of queries is asked mul-
tiple times; the overlap between the elements of each pair is between 13%
and 75%, in one pair, one query is contained in the other. This extends the
above situation by zoom-and-pan operations, e.g. by refining a query region.
Also, this type of queries is well-suited to investigate the effect of possibly
counteracting reorganizations.

Similar queries: In this scenario, many highly overlapping non-identical
queries are asked. This scenario models a geographic information system that
allows for web-based access and thus interacts with users who ask queries by
drawing query rectangles using a graphical front-end to the database.

We deliberately decided not to use randomly generated queries; such queries do
not exhibit any coherence representative of the application scenarios that could
benefit from query responsive data structures.

Data Sets. The data sets for our experimental evaluation were taken from the
“RTreePortal” [30]. We used data sets from the complete range available, i.e.
data sets having between 23,000 and 560,000 data objects. Some of data sets
representative of different sizes and distributions are shown in Fig. 2.

For the experiments discussed in the next sections, we averaged the query
performance across all data sets. To obtain index structures of non-trivial height,
we chose the maximal fanout of the structures as B = 10 (in Section 4.3, we also
report on experiments with higher fanouts).

4.1 Evaluation of the Matrix-R-Tree

In this section, we report on the performance of the Matrix-R-Trees relative to
the R∗-tree. For “identical queries”, we repeated the same query 1000 times, for
“pairs of queries”, we alternatingly repeated the same two queries 500 times each,
and for “similar queries” we used 200 manually entered queries. The threshold
was set to μ := 5, and for the randomized versions, we used p := 1/μ = 0.2 resp.
p′ := 1/4 = 0.25 (for RandomSplit-Intersection).

Split-Based Matrix-R-Trees. The experiments for split-based Matrix-R-
Trees, summarized in Fig. 3, consistently show an improvement of 3–12% over
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Fig. 3. Performance of split-based Matrix-R-Trees

the R∗-tree across all tested variants and types of queries. Not surprisingly, the
IncrementIntersection-variant outperform (on average) the variants that
do not take into account the similarity measure sRν (R). The best performance
across all data sets with an average improvement of 10–12% is obtained by the
two variants MSplitMultiplePairs and RandomSplitMultiplePairs that
try to perform multiple splits at a node where a counter overflow is detected. A
large percentage of the reorganizations triggered in the other variants did not
lead to any structural change (see also Section 4.3).

We also investigated the performance for mixed query sets, i.e. set of queries
that contain “identical queries”, “pairs of queries”, and “similar queries”. In this
experiment, we constructed a query set of 200 queries that was repeated 20 times.
The data structures used in this experiment were representative of the structures
that do not perform multiple splits at once (such that we could actually see the ef-
fects of a single reorganization). Even though the different types of queries seem to
counteract each other, Fig. 4 shows that the reorganization continuously results in
improved query performance. This also indicates that performing multiple splits
is indeed beneficial for the query performance—see also Fig. 3.

Reinsertion-Based Matrix-R-Trees. The results for reinsertion-based
Matrix-R-Trees (see Fig. 5) clearly demonstrate the potential of query-respon-
sive index structures: For the “best-case” scenario of identical queries, the basis
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version obtains a speed-up of roughly 35%, and over all scenarios, the Incre-
mentIntersection-variant leads to an improvement of 12–25%. On the other
hand, the variants that try to reduce the work by using minimal bounding rect-
angles resulted in inferior query performance and were excluded from further
studies.

4.2 Evaluation of the Query-R-Tree

The results for Query-R-Trees show an even better performance for this type of
query responsiveness. Depending on the type of query, these structures’ query
performance (including the cost for accessing the query tree) is 20–40% better
than the performance of an R∗-tree—see Fig. 6.

4.3 Influence of Fanout and Query Area

Fanout. In the initial experiments, we used a maximal fanout of B = 10 to
obtain trees with non-trivial height and a threshold of μ = 5 which, as discussed
above, led to many effectless reorganizations. Thus, in a repetition of these ex-
periments we used fanouts relevant in practice, i.e. B = 50 and B = 100, and
increased the threshold to μ = 20 for all other structures except for MSplitMul-
tiplePairs and RandomSplitMultiplePairs (these structure should per-
form as many reorganizations as possible). The results of this set of experiments
(Fig. 7) showed that there is a very moderate decrease in query performance
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Fig. 7. Performance of Matrix-R-Trees and Query-R-Trees

for higher fanouts (i.e. shallower trees). Overall, the relative performance of the
different variants stays the same, and they still outperform the R∗-tree.

Query Area. To investigate a possible correlation of the query performance
with the area covered by the query rectangle (relative to the area covered by the
root of the tree), we ran a small set of experiments on the “TIGER/Streams”
data set [30]. The query rectangle was centered in the data set and its relative
size varied between 0.5% and 45%. Fig. 8 shows that the query performance
does not seem to correlate with the size of the query unless the query area is so
small that only a very small number of nodes is affected at all. If the relative
size of the query area, however, is larger than 2%, the Query-R-Tree performs
significantly better than both its opponents.

4.4 Reorganisation Cost

Any index structure that performs reorganizations has to spend extra page ac-
cesses for this task. Usually, these accesses can be performed off-line and are not
immediately visible to the user. If needed, the database designer can also decide
to maintain two copies of the index structure: one copy that is used for answering
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Fig. 9. Reorganization cost for Matrix-R-Trees and Query-R-Trees relative to the query
cost of the R∗-tree

the queries and one (shadow) copy on which reorganizations are performed. Af-
ter a reorganization on the shadow copy has finished, the two structures switch
roles, i.e. the reorganized structure is used for answering queries.

Nevertheless, we ran a preliminary set of experiments to examine the cost
for reorganizations for the variants identified as the best structures. Note that
we did not tune the reorganization parameters to the data set or query type
at hand; this is beyond the scope of this paper. Fig. 9 shows that the cost
for reorganization significantly depends on both the way reorganizations are
handled and the type of queries. For identical queries, Query-R-Trees have a
relatively low reorganizational overhead, but (especially in the non-randomized
version) exhibit an extremely high reorganizational overhead for similar queries.
For similar queries, on the other hand, Matrix-R-Trees perform very well, but
they have inferior performance for identical queries.

5 Conclusions

Summing up the concept of query responsive index structure and the experiments
presented in the previous section, we identify three main contributions of our
study: Firstly, the concepts discussed in this paper describe the first type of self-
organizing spatial index structures that are adapted to a database context and
are general enough to be applied to a wide class of index structures. Secondly,
the predominant type of queries performed using a particular index structure
influences the choice of query responsiveness, especially if reorganization costs
are taken into account. Finally, the experiments show that the concept of query
responsive index structures is beneficial to the query performance of spatial
databases and can lead to notable improvements in practice. It remains open to
examine the quality of other query responsive index structures and to further
investigate the exact relation between the application, the data, and the best
variant of providing query responsiveness.
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Abstract. Topological relations are sometimes insufficient for differentiating 
spatial configurations of two objects with critical difference in their connection 
styles. In this paper, we present the projective 9+-intersection model, which re-
fines topological relations into projective binary relations by considering projec-
tive properties of the objects’ shapes. This is indeed a reformulation of projective 
concepts of the Dimensional Model within the framework of the 9+-intersection. 
Thirty projective binary relations are established between two regions in R2, one 
of which has a multi-order boundary (region+mob). These relations are identified 
computationally by applying to all theoretical relations the existing constraints 
for topological region-region relations and seven new specific constraints. After 
defining the concept of continuous neighbours between two projective binary re-
lations, a conceptual neighbourhood graph of the 30 projective region+mob-region 
relations is developed.  

1   Introduction 

Topological relations for categorising spatial configurations of objects have been 
studied extensively over the last two decades [1-15]. Especially, binary topological 
relations between spatial objects (point, line, regions and, to a smaller extend, bodies) 
are well-studied and frequently used. Several models of binary topological relations 
have been proposed and some of them have been adopted as OGC standards [16]. 
Other types of relations have also been introduced [17-20] and lots of work has still to 
be done to tackle the diversity and insufficiency of the representation of spatial rela-
tions. Indeed, even binary topological relations can be pushed further; for instance by 
considering dimension and number of topological intersections [7, 8]. However, the 
existing approaches cannot differentiate some spatial configurations of two objects, 
despite of their significant qualitative difference. For instance, Fig. 1a shows a set of 
spatial configurations between two bodies, which are all categorised into the same 
topological relation “touch” with a two-dimensional intersection. Similarly, Fig. 1b 
shows another set of configurations between a body and a line, which are all catego-
rised into the same topological relation “touch” with a zero-dimensional intersection. 
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Distinction of such configurations is useful to perform more sophisticated spatial 
analyses, to perform more specific consistency checks, and so on. Such distinction 
based on the difference of connection styles seems particularly important when con-
sidering 3D large-scale applications; for example when categorising the spatial con-
figurations of indoor objects (object arrangements in a room) or relationships between 
the components of objects (between the walls and roof of a building, between elec-
tronic components inside a computer, etc.). In such cases, considering topology only 
is not enough. Such applications go beyond “traditional” 2D GIS domain and could 
be seen closer to 3D CAD world. However, with 3D urban modelling and 3D urban 
GIS development, we strongly believe that the types of spatial relationships currently 
modelled must be extended. 

Categorising further binary spatial relations implies to consider another mathe-
matical framework. For instance, projective geometry has been adopted to categorise 
spatial relations in a model called the Dimensional Model (DM) [21, 22]. The motiva-
tion behind DM was to identify spatial relations between 3D objects more precisely. 
Although formally defined, DM suffers from a lack of standardisation and strong 
algebra associated with the model. DM’s formal definition of spatial relations differs 
from the standard definition of spatial relations (e.g., the 9-intersection [2] and RCC-
calculus [3]), even though DM may distinguish the same set of relations as the  
9-intersection and RCC-calculus do. Thus, it has been a hard step to adopt DM in 
addition to other models. Furthermore, neither conceptual neighbourhood graphs nor 
composition tables are currently available for DM relations. This is an obstacle to 
performing qualitative spatial reasoning. 

A recent development in the modelling methods of topological relations, the 9+-
intersection [15] has given an opportunity to reformulate DM projective concepts 
within a well-standardized framework of topological relations. The new combined 
model keeps all descriptive power of DM projective concepts and takes advantage of 
existing development in the 9-intersection [2] and the 9+-intersection [15], especially 
in terms of qualitative spatial reasoning.  

In this article, we propose a new model of refined topological relations based on 
projective properties of objects’ shapes. First, we explain fundamental concepts of 
DM, such as the order of points of a spatial object (Section 2). Then, we reformulate 
DM with the 9+-intersection (Section 3). We then identify all possible relations be-
tween two regions embedded in R², one of which has a “projective” shape (Section 4). 
Then, we schematize these relations into a conceptual neighbourhood graph, whose 
analysis reveals some interesting properties of the relations (Section 5). And finally 
we conclude (Section 6). 
 

 
 

(a) (b) 

Fig. 1. Topological equivalence of (a) spatial configurations of two bodies with two-
dimensional intersection and (b) those of a body and a line in zero-dimensional intersection 
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2   Dimensional Model (DM) 

The Dimensional Model (DM) was formally defined according to affine geometry 
[21, 22]. It was shown later that its definition satisfies projective geometry rules [23]. 
This model introduced the concept of “order of each point of a convex set” to conduct 
the segmentation of spatial objects. New binary spatial relations between two spatial 
objects, called dimensional relations, were defined based on the connectivity of the 
objects’ dimensional elements.  

2.1   Order of Point of a Spatial Object 

Every point of a closed convex set has an order [24]. Let C be a convex set in d-
dimensional Euclidean space Rd. The order of a point x in C, denoted o(x,C), is the 
dimension of the intersection of all the supporting hyperplanes of C passing through 
x. If there is no supporting hyperplane containing x, then x is of order d. One can 
prove that the set of points of order d correspond exactly to the points of C’s interior 
in the sense of Euclidean topology (not equivalent to the interior in point-set topol-
ogy, as we will see later). For example, suppose a triangle in R². In R², an infinite 
number of supporting hyperplanes (in this case, lines) can pass through a vertex of the 
triangle (Fig. 2a). Their intersection is a subspace of dimension 0 (a point correspond-
ing to the given vertex). Thus, this vertex is of order 0. If we take a point being  
located on the edge of the triangle, there is only one supporting hyperplane. This 
subspace is of dimension 1 and thus the order of this point is 1 (like all points of the 
edge other than the two vertices). Lastly, for an interior point of the triangle, there is 
no supporting hyperplane and thus the order of this interior point is 2 (the dimension 
of the embedding space). Other examples (a drop-shaped region in R² and a line seg-
ment in R²) are presented in Figs. 2b-c. 

This order concept has been extended from convex sets to topological manifolds 
with boundary1, such that we can consider a wide variety of spatial objects. The defi-
nition of the extended concept is beyond the scope of this article; see [21] or [22] for a 
comprehensive development. 

 

   
(a) (b) (c) 

Fig. 2. Order of points of various spatial objects in R² 

                                                           
1 Let n be a positive integer. We denote by Rn

+ the subset of tuples (α1,...,αn) with αn ≥ 0. A 
subset A of Rd is a topological n-manifold with boundary if each point x∈A has neighbour-
hood which is homeomorphic to an open subset of Rn

+. 
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Strictly speaking, the object’s “interior” concept in Euclidean topology, on which 
the original DM stands, is different from that in point-set topology [25], on which the 
9-intersection stands. This difference appears when considering an n-dimensional 
object embedded in Rd (n < d). In this case, Euclidean topology considers that the 
object has only a boundary (Fig. 3a), while point-set topology considers that the ob-
ject consists of a boundary (the set of two endpoints) and an interior (Fig. 3b). 

 

  
(a) (b) 

Fig. 3. Differences between Euclidean topology and point-set topology for n-dimensional ob-
ject embedded in Rd (n<d) 

To make DM consistent with the models based on point-set topology, the defini-
tion of point order has been extended [21], such that the previous definition of order is 
applied only to the points on the object’s boundary (in the sense of point-set topol-
ogy), while we consider that the points in object’s interior (in the sense of point-set 
topology) has the same order with the object’s dimension. In the previous definition 
of point order, for example, points on a line can be of order 0 or 1 and the points  
of order 0 are not only line extremities (Fig. 4a). In the extended definition of point  
order, the line’s “extremities” has order 0 while the line’s “interior” has order 1 
(Fig. 4b). 

 

 

 
(a)  (b) 

Fig. 4. The extension of point order concept for point-set objects 

Another issue occurs when applying the previous order definition to the inflexion 
points. In this case, point’s order is higher than our intuition; i.e. equal to the order of 
interior points (Fig. 5a). Thus, in the extended definition of point order, if an object of 
dimension d has a boundary point of order d, the order of this point is reduced to d-1 
(Fig. 5b). 
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 (a)  (b)  

Fig. 5. Modification of inflexion points’ order 

This extended point order concept enables us to consider the segmentation of object’s 
boundary and consequently to refine binary relationships between objects by consider-
ing the connectivity of objects “topological” primitives. It has given birth to the DM 
model through the concepts of dimensional elements and dimensional relationships. 

2.2   Dimensional Elements and Dimensional Relationships  

Based on the point order concept, we can consider the subsets of spatial objects, 
called dimensional elements. Dimensional elements are formally defined as follow: 

• The n-dimensional element (called nD-element) of a d-dimensional spatial object C 
(n ≤ d) corresponds to the set of all of C’s points (or parts) of order 0 to n. 

• The nD-element of a spatial object C has an extension and may have a limit. The 
extension is the subset of C formed by its points of order n, and the limit is the sub-
set of C formed by its points of order 0 to order (n-1).  

Thus, if the nD-element has a limit, this limit corresponds to (n-1)D-element. The 0D-
element does not have a limit by definition. For instance, let us consider a polygon in 
Fig. 6a. This polygon is composed by points of order 0, 1, and 2. Thus, we can con-
sider 0D-, 1D-, and 2D-elements for this convex. The different extension and limits are 
presented in the Figs. 6b-d. It should be noted that each object has one and only one 
nD-element. Thus, nD-element may be disconnected (e.g., a polygon’s 0D element)  

 

   
(a) (b) (c) (d) 

Fig. 6. (a) Order of points and (b-d) dimensional elements of a polygon 

Dimensional relationships between two spatial objects are spatial relationships de-
termined by the connectivity of their dimensional elements. We consider three con-
nection styles, namely total relation, partial relation and no relation (non-existent), 
instead of presence or absence of intersections (Fig. 7). 
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• A dimensional element is in total relation with another dimensional element if 
their intersection is equal to the first element, and if the intersection between their 
extensions is not empty.  

• A dimensional element is in partial relation with another dimensional element if 
their intersection is not equal to the first element, and if the intersection between 
their extensions is not empty. 

• A dimensional element is in no relation (non-existent) with another dimensional 
element if the intersection between their extensions is empty. 

 

   
Total relation Partial relation No relation (non-existent) 

Fig. 7. Three types of connection styles between two 2D-elements (from black element to grey 
element) 

2.3   Categorising Spatial Relationships Using Dimensional Relationships 

The spatial relationship between two objects can be expressed by the set of connec-
tion styles between pairs of dimensional elements of these two objects. For example, 
let us consider a triangle A (with 2D-, 1D-, and 0D-elements) and an ellipse B (with 
2D- and 1D-elements, but no 0D-element) (Fig. 8). The dimensional relationships 
between two objects A and B are determined in the following sequence: first, check 
the dimensional relationship between A’s 2D-element and each of B’s dimensional 
elements; then, check the dimensional relationship between A’s 1D-element and each 
of B’s dimensional elements, and so on. The dimensional relationships between B and 
A can be determined by the same approach. A dimensional relationship is coded as 
RnDm, where R stands for relation, nD for the dimension of the element of the first 
object, and m for the dimension of the element of the second object. For instance, 
R2D1 represents the dimensional relationships between the 2D-element of the first 
object and the 1D-element of the second object. 

 

  

 

 

 

 

 R2D2=non-existent R2D1=non-existent  R2D2=non-existent R2D1=non-existent  
 R1D2=non-existent R1D1=non-existent  R1D2=non-existent R1D1=partial  
 R0D2=non-existent R0D1=partial  R0D2=non-existent R0D1=partial  

Fig. 8. Two examples of categorization of spatial relationships using dimensional relationships 
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3   Reformulating the Dimensional Model with the 9+-Intersection 

The Dimensional Model (DM) presented in the previous section has a strong corre-
spondence with the 9-intersection [2]. The 9-intersection and its extensions have been 
frequently adopted in the studies of topological relations (e.g., [2, 10-13, 15]). Based 
on point-set topology [25], this model distinguishes the interior, boundary, and exte-
rior of each spatial object, which are also called the object’s topological parts. The 
topological relation between two spatial objects A and B is characterized by the inter-
sections of A’s three topological parts and B’s three topological parts, which are  
concisely represented by the 9-intersection matrix in Eqn. 1. °A , A∂ , and −A  are A’s 
interior, boundary, and exterior, while °B , B∂ , and −B  are B’s interior, boundary, and 
exterior, respectively. Normally, topological relations are distinguished by the pres-
ence or absence of these nine types of intersections.  
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In DM, as presented in Section 2, the points that form a spatial object are distin-
guished by their orders. Among the points that form an n-dimensional spatial object, 
the points of order n form the object’s interior, while the points of order 0 to n-1 form 
the object’s boundary. This implies the presence of a certain correspondence between 
DM and the 9-intersection. Meanwhile, if n ≥ 2, DM considers n subsets of the 
boundary, whereas the 9-intersection cannot distinguish these subsets of the bound-
ary. Instead, the 9+-intersection [15] enables such distinction of boundary subsets 
within the framework of the 9-intersection. 

The 9+-intersection supports the subdivision of objects’ topological parts by nest-
ing the 9-intersection matrix. For instance, the topological relation between a directed 
line segment D and a simple region R is captured by the 9+-intersection matrix in 
Eqn. 2, as D’s boundary consists of two subparts (start point Ds∂  and end point 

De∂ ). The support of such subdivision is useful when a certain topological parts con-

sist of multiple subsets that are qualitatively different. In our case, the boundaries of 
two spatial objects A and B can be distinguished into multiple subsets, each of which 
consists of the points of a specific order. Therefore, the relation between two spatial 
objects A and B is captured by the 9+-intersection matrix in Eqn. 3, where nA is A’s 
dimension, and nB is B’s dimension, Ai∂  is the set of points of order i in A 

(0 ≤ i ≤ nA–1), and Bj∂  is the set of points of order j in B (0 ≤ j ≤ nB–1). Similarly, if 

we distinguish A’s boundary subset, but not B’s boundary subset, then the relation 
between A and B is captured by the 9+-intersection in Eqn. 4.  
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Precisely speaking, the captured relations are no longer topological relations when 
n ≥ 2, but their refinements, because the order of a point is not invariant under topo-
logical transformation. Therefore, the relations distinguished by the 9+-intersection 
matrix in Eqn. 3 or 4 are named binary projective relations. In addition, the model of 
spatial relations based on the 9+-intersection matrix in Eqn. 3 or 4 is called the projec-
tive 9+-intersection. As examples, Fig. 9 shows how the projective 9+-intersection 
captures projective relations between a triangle and an eclipse. We also call an object 
whose boundary consists of points of different orders (e.g., polygons) the object with 
a multi-order boundary, or in short, objects+mob. 
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Fig. 9. Two examples of categorization of spatial relations using the projective 9+-intersection 

The projective 9+-intersection is upward compatible with DM, because, given a 9+-
intersection matrix in Eqn. 3, we can uniquely determine the dimensional relation in DM 
(i.e., a complete set of RnDm expressions) through the conversion formula in Eqn. 5 
(compare Figs. 8-9). Meanwhile, the new model and DM has the following differences: 

• DM considers the intersections with respect to k-dimensional element (i.e., the set 
of points of order 1 to k), while the new model considers the intersections with re-
spect to the extension of k-dimensional element (i.e., the set of points of order k).  
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• The new model also considers the intersections with respect to the objects’ exteriors. 
• DM distinguishes three styles of intersections (i.e., partial, total, and non-existent), 

while the new model distinguishes only two styles (i.e., X intersects with Y or not). 
This change does not reduce the model’s representation capability, because it be-
comes possible to determine whether X overlaps with Y (partial relation), X is  
included in Y (total relation), or else (no relation), considering the intersections 
concerning the objects’ exteriors. 
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(5) 

The projective 9+-intersection serves as a refinement of the 9-intersection, as easily 
expected from the shape of the underlying matrix. This means that spatial relations 
under the new model can be systematically categorized based on the sets of topologi-
cal relations identified in the previous studies (e.g., [2]), as well as that the spatial 
arrangement of two objects that falls into the same topological relations in the previ-
ous relation set may be distinguished by the new model. The next sections discuss 
such characteristics of the new model as a refinement of the 9-intersection.  

4   Projective Relations between a Region with Multi-order 
Boundary and a Region 

There are in theory 24×3 = 4096 projective relations between a region with multi-order 
boundary and a region in R2, because the relations are represented by the 9+-
intersection matrix with 4×3 two-valued elements (e.g., Fig. 9). However, only a 
small subset of these relations can be realized in a particular space. As a refinement of 
the 9-intersection, all the constraints of the 9-intersection for topological region-
region relations, identified in [2], can be applied to the projective 9+-intersection. In 
addition, due to the subdivision of the region’s boundary, the following seven specific 
constraints are additionally applied, where the set of points of order n in the boundary 
of a spatial object X is called X’s order n boundary:  

• Constraint 1. If A’s order 0 boundary intersects with B’s interior, then A’s order 1 
boundary must intersect with B’s interior 

• Constraint 2. If A’s order 0 boundary intersects with B’s exterior, then A’s order 1 
boundary must intersect with B’s exterior 

• Constraint 3. If A’s order 0 boundary intersects with B’s interior and B’s exterior, 
then A’s boundary must intersect with B’s boundary 

• Constraint 4. If A’s order 1 boundary intersects only with B’s exterior, then A’s 
order 0 boundary must not intersect with B’s interior 

• Constraint 5. If A’s order 1 boundary intersects only with B’s interior, then A’s 
order 0 boundary must not intersect with B’s exterior 
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• Constraint 6. A’s order 1 boundary intersects with at least one part of B 
• Constraint 7. A’s order 0 boundary intersects with at least one part of B 

Fig. 10 illustrates these constraints using the 9+-intersection matrix.  
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Fig. 10. New constraints applied to the matrix of the projective 9+-intersection 

By applying these constraints, the number of relations is reduced from 4096 to 30 
(Figs. 11-12). All of these 30 relations normally have geometric realization in R2. 
Exceptionally, when A’s order 0 boundary consist of three distinctive subparts (i.e., 
when A is a triangle), the relation “overlap-11” is impossible. These 30 relationships 
are indeed a refinement of eight topological relations between regions. Consequently, 
we have decided to keep the same names (i.e. overlap, contains, inside, covers, cov-
eredBy, equal, meet, and disjoint [4]) and just added a number to them which reflects 
the number of refined cases.  

5   Conceptual Neighbourhood Graph 

The 30 projective relations derived in the previous section are organized into a simi-
larity-based schema, called a conceptual neighbourhood graph [26]. Conceptual 
neighbourhood graphs are frequently used for schematizing, analyzing, and visualiz-
ing a set of spatial relations [4, 9, 11, 14, 15, 19, 26-30]. In a conceptual neighbour-
hood graph, each node corresponds to a spatial relation, and two nodes are linked if 
their corresponding relations are conceptual neighbours. Different definitions of con-
ceptual neighbours lead to different graph shapes for the same set of relations [26, 
28]. This paper considers that two projective relations between a region with a multi-
order boundary (region+mob) A and a region B are conceptual neighbours if there is a 
configuration of one relation that can switch to a configuration of another relation by 
transforming A continuously, such that one vertex or edge loses/gains one intersection 
with B’s interior, boundary, or exterior. Accordingly, the transformation in Fig. 13a 
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Fig. 11. Thirty possible projective relations between a region with a multi-order boundary and a 
region in R² – Part 1 
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Fig. 12. Thirty possible projective relations between a region with a multi-order boundary and a 
region in R² – Part 2 
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establishes continuous neighbours, but that in Fig. 13b, which yields the generation of 
three intersections ( °∩∂ BA0

, °∩∂ BA1
, and BA ∂∩∂1

) and loss of one intersection 

( BA ∂∩∂0
), is not accepted. Acceptable continuous transformation always results in 

the change of one of six elements in the middle two rows of the matrix 
(i.e., °∩∂ BA0

, BA ∂∩∂0
, −∩∂ BA0

, °∩∂ BA1
, BA ∂∩∂1

, and −∩∂ BA1
). Thus, all 

candidates for conceptual neighbours are derived computationally from the patterns of 
the 9+-intersection matrix that correspond to the 30 projective relations.  
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Fig. 13. (a) A continuous transformation that establishes conceptual neighbours and (b) another 
continuous transformation that does not establish conceptual neighbours 

overlap-3

overlap-7overlap-8

disjoint

meet-3

meet-2

meet-5

meet-1

meet-4

contains

covers-4

covers-3

covers-1

covers-2inside

coverdBy-5

coverdBy-3

coverdBy-1

coverdBy-2

overlap-9overlap-2

equal

overlap-6

coverdBy-4 covers-5

overlap-4 overlap-10 overlap-1

overlap-5

100

111

100

110

110

110

010

110

011

101

001

111

010

010

101

111

111

111

100

110

110

110

010

110

010

001

011

001

001

001

110

101

overlap-11

111

101

010

111

010

101

100

100

110

100

010

100

100

100

110

100

010

100

010

011

011

011

001

011

011

111

110

111

 

Fig. 14. Conceptual neighbourhood graphs of the 30 projective relations between a region with 
a multi-order boundary and a region in R², together with the six elements in the matrix’s middle 
two rows 
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Based on the previous definition of conceptual neighbours, we developed the con-
ceptual neighbourhood graph of the 30 projective region+mob-region relations (Fig. 14). 
Basically, the developed graph has both horizontal and vertical symmetry axes, even 
though the upper-left part is missing and overlap-refinements do not follow the hori-
zontal symmetric axis. The spatial arrangement of the 30 projective region+mob-region 
relations in this conceptual neighbourhood graph corresponds to the arrangement of 
topological region-region relations in their conceptual neighbourhood graph [4] 
(Fig. 15a). This highlights the characteristics of these 30 projective region+mob-region 
relations as the refinement of topological region-region relations. The comparison of 
two graphs shows that the number of steps from one relation to another relation is 
larger in our graph, except those from disjoint to contains and vice versa (Fig. 15b).  

disjoint
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coveredBy

inside

covers

equal contains

disjoint

meet

overlap

coveredBy
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cover

equal contain

4 
st

ep
s

4 steps 4 steps
(a) (b)  

Fig. 15. (a) Conceptual neighbourhood graphs of eight topological region-region relations [4] 
and (b) numbers of steps between nodes in the corresponding conceptual neighbourhood graph 
of projective region+mob-region relations in Fig. 14 

Through the analysis of the developed conceptual neighbourhood graph, we found 
the following facts: 

• The pairs of relations with one difference in the matrices’ middle two rows, where 
one has ( )φφφ ¬¬  and another has ( )φφφ ¬  or ( )φφφ¬  with respect to 
one of these two rows (e.g., overlap-3 and overlap-9), are not conceptual 
neighbours, because the shift between these two relations require that one vertex or 
one edge of the triangle skips over the region’s boundary (Fig. 16).  

• The matrices’ middle two rows of the relations on the graph’s vertical centre line 
(i.e., overlap-3, -5, -6, -10, -11, and equal) are left-right symmetric.  

• In each pair of relations located symmetrically with respect to the graph’s vertical 
centre line (e.g., inside and contain), the matrix of one relation is derived from the 
matrix of another relation by exchanging the matrix’s elements with respect to 

°B  and −B . This means that one relation is derived from another relation by re-
versing B’s interior and exterior, assuming a spherical surface that embeds the con-
figurations of the relations. 
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Fig. 16. Non-continuous transformation, even though that yields only one change in the middle 
two rows in the 9+-intersection matrix 
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Fig. 17. Virtual symmetry of the conceptual neighbourhood graph in Fig. 3 with respect to 
overlap refinements. Overlap-1' to overlap-10' have no geometric realization, however. 

• Similarly, in each pair of relations located symmetrically with respect to the 
graph’s horizontal centre line (e.g., disjoint and contain), the matrix of one relation 
is derived from the matrix of another relation by exchanging the matrix’s elements 
with respect to °A  and −A . This means that one relation is derived from another 
relation by reversing A’s interior and exterior, assuming a spherical surface that 
embeds the configurations of the relations. 

• Overlap-1 to overlap-11 follow the vertical symmetric axis only. We can consider 
a virtual graph that is horizontally and vertically symmetric (Fig. 17), considering 
the patterns of their projective 9+-intersection matrices. In this graph, however, 
overlap-1' to overlap-10' have no geometric realization. 
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From the third and fourth findings, we can expect that the upper-left empty part of the 
conceptual neighbourhood graph in Fig. 14 potentially domiciles the relations that appear 
in a spherical surface, but not in a plane. This is analogous to Egenhofer’s [11] finding of 
three additional region-region relations on a spherical surface, namely attaches, embraces, 
and entwined. Thus, it is expected that the relations at the graph’s upper-left empty part 
neighbour should be the refinements of attaches, embraces, and entwined relations. 

6   Conclusions 

This paper developed a new model of projective relations based on the Dimensional 
Model [22] and the 9+-intersection [15]. As a first step, this paper identified 30 projec-
tive relations between a region with a multi-order boundary and a region (i.e., projec-
tive region+mob-region relations) in R2, and schematized these 30 relations into a  
conceptual neighbourhood graph. Naturally, the next target is the relations between 
two regions, both with a multi-order boundary (i.e., projective region+mob- region+mob 
relations). By replacing regions by regions with multi-order boundaries, the number 
of projective relations will increase, and the conceptual neighbourhood graph will 
become more complicated (probably more high-dimensional). It is also expected that 
the shapes of regions with multi-order boundaries influence the realizability of some 
projective relations. For instance, a triangle and a quadrilateral cannot have an equal 
relation. 

Another challenge is to identify and analyze projective relations in a three dimen-
sional space. Systematic analyses of three-dimensional topological relations were 
conducted in [10, 21], identifying many relations that cannot be realized in R2. Simi-
lar analysis should be possible for projective relations. 

An interesting and promising topic is the composition of projective relations. The 
composition of spatial relations is an operation that derives possible relations between 
two spatial objects from the knowledge of the relations between each of these objects 
and the common third object. Such compositions of spatial relations have been fre-
quently discussed as a foundation of qualitative spatial reasoning [6, 11, 14, 18, 27-
29, 31, 32]. It is an interesting question whether the compositions of projective  
relations become crisper than those of topological relations, as the projective relations 
consider the dimensional characteristics of the regions’ boundaries. 
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Abstract. Let N and M be two road networks represented in vector
form and covering rectangular areas R and R′, respectively, not neces-
sarily parallel to each other, but with R′ ⊂ R. We assume that N andM
use different coordinate systems at (possibly) different, but known scales.
Let B and A denote sets of ”prominent” road points (e.g., intersections)
associated with N andM, respectively. The positions of road points on
both sets may contain a certain amount of ”noise” due to errors and the
finite precision of measurements. We propose an algorithm for determin-
ing approximate matches, in terms of the bottleneck distance, between A
and a subset B′ of B. We consider the characteristics of the problem in
order to achieve a high degree of efficiency. At the same time, so as not
to compromise the usability of the algorithm, we keep the complexity
required for the data as low as possible. As the algorithm that guaran-
tees to find a possible match is expensive due to the inherent complexity
of the problem, we propose a lossless filtering algorithm that yields a
collection of candidate regions that contain a subset S of B such that A
may match a subset B′ of S. Then we find possible approximate match-
ings between A and subsets of S using the matching algorithm. We have
implemented the proposed algorithm and report results that show the
efficiency of our approach.

1 Introduction

Spatial analysis of GIS data often requires relating data obtained from two or more
different sources. The process of aligning the geometry of two data sets, usually
with the purpose of transferring the attributes from one set to the other, is an
example of this, referred to as conflation. This type of operation may be needed,
for instance, in order to relate a TIGER R© file [15] of city streets with a digitized
legacy map or with a non-georeferenced map developed in-house. Under such cir-
cumstances, it is possible that the two data sets are based on two different coor-
dinate systems, one or both of which are not known precisely or at all.

We consider here the problem of matching a vector data set M to a subset
of another vector data set N , where N and M are specified using different
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and unknown coordinate systems at different but known scales (map scale is
basic information, usually known, even in legacy maps). Here, N and M cover
rectangular areas R and R′, respectively, with R′ ⊂ R, and the goal is to find an
affine transformation (a sequence of rotations, scalings, translations) that locates
R′ within R. The data sets may contain small imprecisions in geometry, where
each true point lies within a circle of radius ε from its specified coordinates. We
refer to this problem as noisy road network matching and define it formally
at the end of this section. Note that even though the algorithms are described in
terms of road network data, they can be easily extended to other vector formats
such as coverages.

While there is a growing body of literature for the problem of relating two
data sets with the same coordinate system (see [11,12,14], for example) or, equiv-
alently, with different but known coordinate systems, [3] is the only work we are
aware of capable of matching data originating from two different and partially un-
known coordinate systems. In [3], the authors assume that R and R′ are parallel
to each other, thus the target transformation consists of scaling and translation
only, and cannot accommodate rotations. In our work, we assume that the map
scales are known (as is usually the case for most maps), but the rectangular areas
may be arbitrarily rotated and translated with respect to each other. Thus, our
work and that of [3] tackle different but, in a sense, complementary aspects of a
similar problem.

An example of the type of data we are dealing with is illustrated in Figure 1.

Fig. 1. A road network N and subnetworkM with bounding box R′

In this paper we present an algorithm for the case of Road Network Matching
using the results of [5] as a starting point. One of the specific characteristics
of this problem is the presence of ”additional” information such as adjacency
relationships between intersections or road types. Our algorithm benefits from
this auxiliary information. However, in order to keep the algorithm independent
of our data sources, we have only used information that can be considered as
“evident” to observers.

Our algorithm first examines the line segments of N and M in order to extract
the endpoints of the input segments. For each such endpoint p, we store a list
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Adj(p) of its neighbors. For road networks, it is reasonable to assume that the
degree of every point is bounded by a small constant, representing the maximum
number of roads that may meet at any intersection. This process results in sets A
and B of road points from M and N respectively, each of which may either be an
intersection point (a point of degree bigger than two), a segment interior point
(a point of degree two) or a segment endpoint (a point of degree one). Here, we
assume that the shape of the map is well described by the positions of intersection
points, as this information tends to be stable across maps of the same region.
Accordingly, from now on we will only consider intersections whenever we refer
to (road) points. Also, since the map scales are known, it is easy to represent both
point sets using the same normalized scale. Additionally, we also associate with
every road point a list of the type of roads that converge on it (such as highway,
presence of tunnel, one-way street, etc.). The road categories are defined in terms
of the Census Feature class codes (CFCC) present in TIGER/line R© files.

We assume that the position of points in both sets A and B may contain a
certain amount of noise due to the measurement errors or the finite precision
of input devices. This is modelled by assuming that the actual position of the
points involved may vary by a distance up to a fixed quantity ε.

We are now ready to formally define our problem.
Let A and B be two road point sets of the same cardinality, expressed using the

same normalized scale (i.e., a unit of distance means the same thing in both sets).
An adjacency-degree preserving bijective mapping f : A → B maps each point

a ∈ A to a distinct and unique point f(a) = b ∈ B so that |Adj(a)| = |Adj(b)| .
Let F be the set of all adjacency-degree preserving bijective mappings between

A and B. The bottleneck distance between A and B is defined as:

db(A,B) = min
f∈F

max
a∈A

d(a, f(a)) .

The Noisy Road Network Matching (NRNM) problem can now be for-
mulated as follows. Given two road point sets A, B, |A| = n, |B| = m, n ≤ m,
and ε ≥ 0, determine a rigid motion (translations plus rotations) τ for which
there exists a subset B′ of B, |B′| = n, such that db(τ(A),B′) ≤ ε.

If τ is a solution to the NRNM problem, every road point of τ(A) approx-
imately matches a distinct and unique point of B′ of the same degree, and we
say that A and the subset B′ of B approximately match or are noisy congruent.

We now discuss the main differences between our paper and the similar prob-
lem described in [3]. We then briefly address the results upon which our approach
is based.

– In choosing intersections, our goal is to use ”prominent” geographical loca-
tions, such as main road intersections, landmark places, etc, that are reason-
ably expected to appear in any map. Under this assumption, it is important
that points in A be mapped uniquely to points in B. In this context, we use
the bottleneck distance because we believe it is more realistic than the Haus-
dorff distance used in [3]. The reason for this is that Hausdorff distance does
not require that points in the two sets to be matched one-to-one. However,
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for our problem it seems reasonable to require that no two road points in
one map be matched to the same road point in the other. This could lead
to an input set A matching a set B with fewer points, a situation that is
undesirable given our goals. Figure 2 illustrates this problem. A possible set
B (indicated by dots) matches a ”smaller” set (indicated by squares) under
the Hausdorff distance, but not under bottleneck distance.

� �

Fig. 2. Two sets of road points that match under Hausdorff distance (for a suitable ε)
even though they should not match in the NRNM problem

– We allow rotations and translations only. Scaling is possible only by assuming
that the map scales are known, as is usually the case in practice.

– Another important difference is that the algorithm in [3] computes candidate
matchings by finding the transformation T (scaling plus translation) that
exactly matches a pair of points from A to a pair from B. It is not hard to
find examples where this type of transformation would miss a correct match
between A and a subset of B. For example, Figure 3 contains two sets (one
indicated by squares and the other by dots) of three points each. Part (a) of
the figure shows that a match is possible (for a suitable ε). After computing
T using the leftmost two points of each set (illustrated in part (b)), the two
leftmost pairs coincide but we have increased the distance for the third pair
to a value bigger than ε, wrongly concluding that no match can occur. The
same happens if we choose any other pair.

– Finally, depending on the values considered for parameter ε the practical
complexity of the problem changes dramatically. In [3] only very small values
of ε are considered (the resulting problem is called Nearly Exact Matching
in the reference). Our algorithm works for any value of ε and, in Section 4,
we present further discussion of the role of ε.

The algorithm presented in this paper uses ideas from Noisy Point Set Match-
ing (NPSM) algorithms. The study of this problem was initiated by Alt et al

b) � �

� �

�

a) �

Fig. 3. a) Three pairs of points, where the pair on the left overlaps and the distances
between the two points of each other pair is the same and less than ε. The two sets
match in the position presented. b) If we force two pairs to overlap (by scaling one of
the sets), no match occurs.
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[1] who presented an exact O(n8) time algorithm for finding the transforma-
tion that produces the best match between two sets of the same cardinality n.
Combining [1] with the techniques proposed by Efrat et al [6] the time can be
reduced to O(n7 log n). Both algorithms suffer from high computational cost due
to the inherent complexity of the problem and both use complex data structures
that are difficult to implement. The running time is improved here by a lossless
filtering preprocess similar to the one proposed in [5] for the problem of colored
point set matching. For the choice of practical values of parameter ε we also use
concepts from pattern matching, as presented in [13].

Finally, as this paper tackles a practical problem, we believe that the evaluation
of its efficiency must be done with the greatest rigor. With this goal , we follow the
ideas presented in [10] in order to make our experiments as meaningful as possible.

2 NRNM Algorithm

In this section we present a nontrivial adaptation of the algorithm in [5] to the
NRNM problem. We focus on the aspects that are directly relevant to our
problem and only briefly sketch the previous algorithm.

The NRNM algorithm consists on two phases: enumeration and testing. The
enumeration phase makes the problem finite by partitioning all possible rigid
motions of A into equivalence classes and choosing a representative motion τ for
each class. The testing phase runs a matching algorithm between every set τ(A)
and set B. To speed up calculations during this phase, additional information
about road points is considered. The information used should be evident to any
observer and, thus, largely independent from the source of the data. Examples of
this type of information include the type of road considered and the connectivity
of each road point. This will be further discussed in Section 3.

2.1 Enumeration

Generating every possible rigid motion that brings set A onto a subset of B is
infeasible due to the continuous nature of movement. Following the algorithm
presented in [1] and also used in [6,5], we partition the set of all rigid motions
into equivalence classes in order to make their handling possible.

This is achieved by realizing that, for any motion that is a solution of the
NRNM problem, there exists another that is also a solution with the property
that two points in A lie in the boundaries of the noise disks of the two points in
B to which they are matched.

Consequently, O(n2m2) 4-tuples of points are considered. For each 4-tuple, we
need to work with O(nm) pairs of points in order not to miss any possible match-
ing, obtaining O(nm) critical events. The computation of the critical events re-
quires working with high degree algebraic curves known as coupler curves of
four bar linkages [9]. Summed over all tuples the total number of critical events
encountered in the course of the algorithm is O(n3m3). For each of these critical
events we will need to run the testing algorithm presented in Section 2.2.
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The O(n2m2) 4-tuples and O(n3m3) critical events express the intrinsic com-
plexity of the problem we are dealing with. They also represent the source of
most of the computational effort needed to solve the problem. We will provide
experiments to support this statement in Section 4. In general, this cost can-
not be decreased as there exist situations where the maximum costs are met.
However, in the case of the NRNM problems there are ways to reduce it.

Approaches to reduce the cost can be divided into two main types: a) Cutting
the computational time needed for every critical event, and b) Reducing the num-
ber of 4-tuples and, thus, critical events to be examined. In the first group we find
the use of efficient data structures and the “fine tuning” of their implementations.
In the second we consider two main strategies. The first one aims at dividing the
road points in finer categories and is achieved by considering more information as-
sociated to each of them. This information includes adjacency and other evident
information, such asCFCC codes.These codes are described in theTIGER/lines R©
technical documentation as “codes that describe the most noticeable characteris-
tics of a feature”. More details on this can be found in Section 3.

2.2 Testing

For each 4-tuple we consider every critical event resulting from the enumeration
part. These critical events are represented as a series of subintervals of [0, 2π).
We consider a value φ in each of these subintervals and its corresponding motion
τφ. We need to test if there exists a perfect matching between τ(A) and some
subset of B. Whenever the testing part determines a matching of cardinality n
we record τφ and proceed.

We provide Algorithm 1 as a summary of the enumeration and testing sections.
The testing algorithm uses ideas from graph theory to look for perfect match-

ings between τ(A) and some subset of B. The algorithm uses two main operations
that need to be performed efficiently: a) neighbor (D(T ), q): for a query point
q, use data structure D(T ) which stores a point set T , to return a point in T
whose distance to q is at most ε, or ∅, if no such element exists; b) delete(D(T ), s):
deletes point s from D(T ). For our implementation we use the skip quadtree, a
data structure that combines the best features of a quadtree and a skip list [7].
This data structure allows us to achieve an amortized time cost of O(n log m)
to test every critical event. This yields a total cost of O(n4m3 log m) for the
whole of the algorithm which is a cost analogous to the one obtained in [6] but
using simpler data structures. For more details on the computational costs of
our algorithm, see [5].

3 Lossless Filtering Preprocess

Most of the computational cost of the NRNM algorithm arises from having
to consider all possible n2m2 quadruples of points described in Section 2.1. Al-
though in some cases it will be necessary to examine all 4-tuples (for example
when both sets have the same cardinality), in others there will be subsets of B
that cannot possibly contain matches (for example because they do not contain
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Algorithm 1. Search for noisy matching (A,B)

{Generate all possible equivalence classes:
ENUMERATION}
for all 4-tuples ai, aj , bk, bl do

for every couple (am, bp) do
Calculate curve σijklm

Im,p ← Intersection((bp)
ε, σijklm(x))

{Critical Events} = {Critical Events} ∪ Im,p

end for
end for

{Search for possible matching in every equivalence class: TESTING}
x=0
while x < 2Π do

x← next critical event
τ ← associated rigid motion(x)
if (matching(τ (A),B)) then
{Use algorithm in the ”testing” section }
Record((τ ))

end if
end while

enough points) and we will be able to avoid looking at the 4-tuples that con-
tain points in these regions. We adapt the lossless filtering preprocess presented
in [5]. This preprocess discards subsets of B according to a series of geometric
parameters that are invariant under rigid motion. These parameters help us to
describe and compare the shapes of A and the different subsets of B that we
explore. This ability to discard parts of B amounts to a pruning of the search
space which results in a reduction of the total computational time.

The lossless filtering preprocess yields a collection of candidate zones which
are regions that contain a subset S of B such that A may approximately match
one or more subsets B′ of S. By doing this we transform the initial problem in
a number of smaller and independent subproblems and discard those parts of
the search space that do not meet the requirements imposed by the geometric
parameters. After this preprocessing, we solve the NRNM problem between A
and every S with the algorithm we have already presented.

Figure 4 describes the structure of our solution.

3.1 Lossless Filtering Algorithm

The lossless filtering preprocess consists of two algorithms: quadtree construction
and search. The quadtree construction algorithm also consists of two subparts:
A compressed quadtree building algorithm that uses the points in B as sites
(without considering their degree), and an algorithm that adds the information
related to the geometric parameters being used at each node. The search algo-
rithm traverses the quadtree looking for candidate zones. Below, we provide a
more detailed explanation of our solution.
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Fig. 4. Overview of all the algorithms used

The subdivision of R
2 induced by a certain level of the quadtree consists of axis-

parallel squares. At first this does not seem to help because of the requirement to
allow set A to undergo rotations, but we can easily avoid this problem by just
searching for a certain axis-parallel square in the quadtree big enough to contain
set A even if it appears rotated. As stated before, we will also require that the
square we are looking contains a portion of B similar to A, in terms of some (rota-
tion invariant) geometric parameters. By doing this, we will be able to temporarily
forget about all the possible motions that set A may undergo and concentrate on
those zones of the quadtree where they may actually appear by performing a type
of search that is much better suited to the quadtree data structure.

The geometric parameters we use are divided into two main groups:

– General parameters. In this first group we find all parameters that can be
considered in point set matching problems where categories are considered. In
our cases the categories depend on the degree of adjacency of the (road) points:
a) Parameters based on the fact that we are working with (road) point sets:

number of points and histogram of degrees present in the point set.
b) Parameters based on distances between (road) points: maximum and

minimum distance between points of every different degree.
– Road network specific parameters. c) Histogram of the CFCC codes

present in the point set.

For every geometric parameter we will define a parameter compatibility crite-
rion that will allow us to discard zones that cannot possibly contain a subset B′

of B that approximately matches A. See Figure 5 for an example.
We have chosen these parameters, amongst many others, because they are

easy to obtain and fairly independent from the data source. In our experiments
we have worked mainly with TIGER/lines R© data files. These files contain much
information that may have been of great help for our algorithm, such as a unique
id number for every road intersection point present in the database. Even when
this information would have greatly reduced the time of our calculations, one
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B

A

Fig. 5. There cannot be any B′ that approximately matches A within the four top-left
squares of B because A contains six disks (representing points) and the squares contain
only five

of our goals was to ensure the usability of our algorithm in different situations,
so we have restricted our attention to parameters “evident to any observer”.
With this in mind, we have used the degree of every road point and also the
CFCC codes, as they describe the most noticeable characteristics of a feature.
Furthermore, both degree and CFCC codes must be present in all records of a
TIGER/lines R© file.

The time cost of adding these geometric parameters to the quadtree of set B
is in O(m2).

It is important to stress that ours is a conservative algorithm, so we do not
so much look for candidate zones as rule out those regions where no candidate
zones may appear. A technical issue that arises at this point is that, although

Fig. 6. Position of the candidate zones in the grid. Overlapping: (a) a single grid-square
(corresponding to a single quadtree node), (b) two (vertically or horizontally) neigh-
boring nodes, or (c) four neighboring nodes. In this example we observe occurrences of
set A in zones of the first two types and an ellipse showing where occurrences of the
third type (not present) would appear.
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our intention was to describe our candidate zones as squares of size s, this will
not always be possible, and we will also have to consider groups of two or four
squares of size s. Notice that the earlier the discards are made, the bigger the
subsets of B that are discarded.

Search Algorithm

The search algorithm identifies all squares that cover a subset of B where can-
didate zones, compatible with A, may be located. This results in three different
kinds of candidate zones associated to, respectively one, two or four nodes (see
Figure 6) of the tree. The subsets B′ that we are looking for may lie anywhere
inside those zones.

Consequently, the zones considered throughout the search are easily described
in terms of the nodes of QB and gradually decrease in size, until they reach s,
following the descent of the quadtree. Given that two or four nodes defining a
candidate zone need not be in the same branch of QB, at some point we may
need to explore two or four branches simultaneously. Algorithm 2 outlines the
main search function.

The Search algorithm runs in O(m) time. The total cost of the lossless filtering
algorithm is O(m2).

3.2 Overall Computational Costs

Combining the costs of the lossless filtering preprocess and the Enumerating and
testing algorithms it can be seen that the total cost of the matching algorithm
is O(n4m3 log m). This bound is tight. This shows that from a formal point
of view, our process takes, at its worst, the same computational time as the
algorithm that does not use the lossless filtering step. Consequently we benefit
from any reduction of the computational time that the filtering achieves without
any increase in the asymptotic costs.

The cost is high mainly because of the inherent geometric complexity of the
problem. In Section 4 we quantify the important improvement in computational
costs achieved by using the lossless filtering algorithm, and also by discarding
the maximum number of 4-tuples, as described in Section 2.2.

4 Implementation and Results

In this section we present experiments that show the degree of efficiency of our
algorithms. We have worked with TIGER/lines R© files for the counties of Denver
(files TGR08031), Adams (TGR08001) and Arapahoe (TGR08005). As we have
only used information concerning the position of road points, their connectivity
and their associated CFCC codes, it was enough to work with .RT1 files. These
files can be found at [15] and the corresponding documentation at [16].

We have implemented all our algorithms in C++ under a Linux environment.
We used the g++ compiler without compiler optimizations. All tests were run
on a Pentium D machine with a 3 GHz processor.
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Algorithm 2. Search 1(node N)
for all children S of N do

if (S is parameter compatible with A ) then
if ( We have not reached the node size to stop the search) then

Call Search 1(S)
else {We have found a candidate node}

Report candidate zone
end if

end if
end for
{Continue in pairs of nodes if necessary (four possibilities)}
for all S1, S2 pairs of neighboring children of N do

if (The couple (S1, S2) is parameter compatible with A) then
if ( We have not reached the node size to stop the search) then

Call Search 2(S1, S2)
else {We have found a candidate pair}

Report candidate zone
end if

end if
end for
{Finally, continue in the quartet formed by the four children if necessary}
(S1, S2, S3, S4): Quartet formed by the children of N .
if ((S1, S2, S3, S4) are parameter compatible with A ) then

if ( We have not reached the node size to stop the search) then
Call Search 4 (S1, S2, S3, S4)

else {We have found a candidate quartet}
Report candidate zone

end if
end if

We consider the set obtained from this data as our set B. To obtain set A,
we choose a subset of set B. To choose this subset we randomly choose a point
p in B, consider an axis-parallel rectangle that has p lower-left vertex. Then we
rotate it a random angle obtaining a set as depicted in Figure 1. Once we have
chosen our set A, we apply a random transformation to it that includes:

– Random rotation around one of its points.
– A translation of random vector whose components are bounded by the di-

mensions of set B.
– A small perturbation applied independently to each of its points in order to

simulate noise in data. The modulus of this perturbation is bounded by ε.

Unless stated otherwise, set B is fixed and sets A of varying sizes are chosen
as described above.

The amount of noise ε allowed in the data impacts the practical complexity of
the problem and, consequently, the computational times obtained. We illustrate
this statement with the two extreme cases.
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1. ε = 0. In this case, the problem would most likely, in practice, not have a
solution. As the calculations made to build set A introduce a certain amount
of error (due to rounding, truncation and changes over time in the underlying
data) if we required ε to be exactly 0, then there would be no exact match
to be found. This behavior can also apply to very small values of ε.

2. ε = ∞. In this case we consider a value of ε too big (meaning, at least bigger
than the diameter of set B). In this case, any rigid motion that brings set A
inside a circle of radius ε that contains B would be a solution to our problem.
This behavior is clearly undesirable. Such a big value of ε stands for knowing
very little about the real positions of the points in set B and any solution
found based on this type of data is meaningless.

These two extreme cases show that too small values of ε may result in the
algorithm missing the solution due to numerical problems, and too big ones may
result in meaningless solutions. It is thus very important to consider reasonable
values of ε. To do this, we followed the ideas presented in [13] and studied the
empirical values of the average shortest distance of set B, tB defined in the
reference as tB = rB

2|B| where rB is the radius of set B. We have tested different
values of ε and present results on ε = tB. We also provide some further discussion
on this subject on Section 4.4.

4.1 Additional Improvements

In addition to the strategies described until now to reduce the running times of
the algorithms (that do so from a theoretical point of view) we have also used
some practical strategies that we describe now.

– We observed that the number of road points of degree greater than 5 in
our data sets was much smaller than the number of points of degree less
than or equal to 5. Taking advantage of this, in every candidate zone we
performed an intermediate filtering step looking for a match but considering
only road points of degree greater than 5. If this matching was found, we
proceeded with the rest of the points and otherwise there was no need to
keep on searching in that zone.

– When working with a particular 4-tuple of points, all remaining points in A
and S have to be tested to decide if they may be matched. This decision is
affirmative if one of the points lies in the interior of a coupler curve described
by the other. This involves complex calculations, but points that are ”too
far away” from, for example, the point that we take as the initial point
of the coupler curve will never be matched. To reduce the number of pairs
considered, we approximated the diameter of the coupler curves by sampling
some points on them and calculating their discrete diameter. This resulted
in avoiding calculations for most of the points, improving the techniques
presented in [5].

Finally, we have to consider the fact that, as we are only looking for one
possible match, the computational costs of our experiments also depend on how
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”early” the algorithm visits the 4-tuple that leads to the solution. To minimize
the effect of this, in those discussions where the time spent by the algorithm is
the main subject (as is the case of Section 4.2) we will present average times
(spent to find a number of sets A of the same size, chosen randomly) instead of
results of just one experiment.

4.2 Effects of the Lossless Filtering Algorithm

The performance of the algorithm depends on the effectiveness of the lossless
filtering step and the parameters chosen but, in the worst case, it meets the best
(theoretical) running time up to date.

Focusing in our observations of our experiments we can say that in the best
case, the initial problem is transformed into a series of subproblems with car-
dinality n′ close to n = |A|, producing a great saving of computational effort.
To be fair, we also have to mention that in the worst case, when both sets have
similar cardinality, filtering doesn’t help. In fact, using the lossless filtering pre-
processing step may even increase the running time. In this section we try to
quantify this saving in computational time due to filtering. Figure 7 compares
the behavior of the matching algorithm with and without the lossless filtering
algorithm (represented by times T1 and T2 in the figure, both in seconds). We
fixed set B to be a subset of 5000 road intersections of the county of Denver and
tried sets A of different sizes. For every size, we present the mean of the times
spent by ten sets of the same size. This lossless filtering algorithm uses all the
parameters described earlier.

We must state that the sizes considered here are small given the huge com-
putational costs of the algorithm without lossless filtering. It is clear from the
figure that, even when the theoretical computational costs are still high due to
the complexity inherent to the problem, using the lossless filtering results in
significant computational savings.

Fig. 7. Running times not using lossless filtering step (T1) and using it (T2). X axis
represents the mean values of the cardinals of sets A in every test and axis Y represents
time in seconds.
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4.3 Discussion on Geometric Parameters

In this section we provide results that measure the effectiveness of the differ-
ent geometric parameters used during the lossless filtering algorithm. Table 1
presents the number of candidate zones and computational costs for the search
algorithm resulting from: 1) using only the ”number of points” (Num.) param-
eter; 2) using (1) plus the histogram of points degrees (Histo.); 3) using (1), (2)
plus the ”maximum and minimum distance between points of the same degree”
(Dist.) parameters; 4) adding to the previous three the CFCC codes associated
to each road intersection point.

For the tests we used two main data sets. The first one contains 12052 road
intersections in the county of Denver. The second contains, in addition, data
about road intersections in the counties of Adams and Arapahoe totaling 39950
road intersections. We run the lossless filtering algorithm for different sets A of
varying sizes. Table 1 presents the number of candidate zones obtained for every
filtering criteria and the time consumed in each case by the search algorithm, the
time needed to build the quadtree data structure was approximately 16 seconds
for the first data set, and approximately 150 seconds for the second.

Table 1. Effects of the different geometric parameters on the lossless filtering algorithm

|A| |B| Num. Num./Histo. Num./Histo./Dist. Num./Histo./Dist./CFCC
#zones Time(s) #zones Time(s) #zones Time(s) #zones Time(s)

25 12052 217 � 0.01 188 � 0.01 187 � 0.01 31 � 0.01
100 12052 194 � 0.01 61 � 0.01 52 0.19 52 0.19
250 12052 57 � 0.01 19 � 0.01 19 0.16 9 0.17
500 12052 21 � 0.01 17 � 0.01 16 � 0.01 10 � 0.01
750 12052 20 � 0.01 15 � 0.01 14 5.41 8 5.41
1000 12052 19 � 0.01 10 � 0.01 8 1.57 6 1.59
2000 39925 52 � 0.01 16 � 0.01 12 7.55 6 7.53
5000 39925 8 � 0.01 4 � 0.01 4 0.12 2 0.14
10000 39925 12 � 0.01 4 � 0.01 4 0.01 2 0.03
12500 39925 11 � 0.01 4 � 0.01 4 � 0.01 2 � 0.01

We observe that the number of candidate zones is always lower when we use
more ”elaborate” geometric parameters. The main reduction in the number of
candidate zones is usually obtained when the histogram of road intersection
degrees is considered, but in most cases this reduction continues when distances
between road intersections of the same degree and CFCC codes are considered.
We also want to highlight two special cases:

– We noticed that the number of candidate zones obtained for sets of pa-
rameters (2) and (3) differ more in the second data set. As this stands for
considering the distances of road intersections of the same degree or only
their histogram, this may be caused by a more regular distribution of road
intersections inside the city of Denver than in the other counties considered.

– In some cases, the number of candidate zones obtained for sets of parameters
(3) and (4) is the same. The difference in this case is whether we consider
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or not CFCC codes. In some of the test cases, all the roads that formed
the intersections of set A had the same code (A41 which, according to the
TIGER/lines R© documentation, stands for Local, neighborhood, and rural
road, city street, unseparated). We studied the distribution of road CFCC
codes for both data sets and found that more than 93.5% of the roads in
Denver and about 90% on Denver, Adams and Arapahoe fall in this category.

With respect to computational times, the time needed to perform the search
algorithm is bigger when we use more geometric parameters, but still much less
than the cost of the matching algorithm. In conclusion, the use of more geometric
parameters results in the output of less, and better, candidate zones. Moreover,
although the use of more geometric parameters slightly increases computational
time, the cost of the lossless filtering algorithm is still much smaller than that
of the matching algorithm.

4.4 Computational Performance

Here we seek to evaluate the performance of the whole algorithm, with all im-
provements, in some ”real life” situation. We ran tests where set B corresponds to
the road intersection points in the county of Denver (cardinality 12052) and used
different sets A chosen randomly inside rectangles of varying sizes. Table 2 shows:

– The cardinalities of the sets involved in the test.
– The average number of candidate zones examined before finding the solution.

This value is presented in order to provide an idea on how effective the
filtering step is in transforming the initial problem into a series of smaller
subproblems with similar cardinalities between B′ and A.

– Finally, we present data on the number of 4-tuples and pairs examined. This
data helps us to highlight where the main computational effort is, as it is
directly related to the time spent by the algorithm.

Concerning the mean value of n′, denoted n′, we observe that the filtering
algorithm manages to take away most of the complexity of the problem. This
works better for smaller sets, as the algorithm is able to locate candidate zones

Table 2. Performance of the complete algorithm

|A| |B| n′ #4-tuples #pairs Time(s)

10 12052 55 6 93 15.31
50 12052 111 7 218 31.84
75 12052 481 18 1381 73.17
100 12052 653 1 670 27.38
150 12052 1880 4 3484 243.97
200 12052 1089 5 7918 849.65
250 12052 1088 20 19856 2464.71
300 12052 1888 5 2697 404.56



Noisy Road Network Matching 53

built by smaller nodes in the quadtree. We can also observe that the total com-
putational cost of the algorithm is greatly influenced by the number of 4-tuples
or pairs examined, as tests for sets of similar sizes may need very different com-
putational effort (this is illustrated by the rows corresponding to |A| = 200 and
|A| = 250). Consequently, the main part of the computational effort can be at-
tributed to the complexity inherent to the problem. Finally the computational
time increases with |A|, although we believe that it is kept to reasonable levels
given the complexity of the calculations involved.

Other values of ε

To complement the discussion on the values of ε provided at the beginning of
this section, we present some tests for different values of ε.

Table 3. Compared performance for different values of ε

ε |A| |B| n′ #4-tuples #couples Time(s)

tB 10 12052 55 4 25 22.51
tB
2

10 12052 55 1 18 22.48

tB 31 12052 99 162 2892 79.87
tB
2

31 12052 99 1 135 19.23

tB 230 12052 540 13 9192 472.08
tB
2

230 12052 1089 14 22183 2114.26

As expected, as the value of ε decreases, so does the number of 4-tuples that
lead to a solution (arriving to zero in the limit case described previously). This
results in an increase of the total computational time due to having to ”search
more” before finding a solution. Also, smaller values of ε result in fewer 4-tuples
and pairs to be checked, or sometimes allow for better filtering and smaller can-
didate zones. Both of these considerations result in a decrease of computational
time. Which of the two tendencies is more important? Basically it depends on the
data set being searched, for most of our study cases, smaller values of ε required
higher computational time, but in some others (generally for bigger realizations
of set A) the opposite held. Table 3 shows examples of the two cases and even one
where both tendencies produce similar computational times for both values of ε.

5 Conclusions

In this paper we have presented, to the best of our knowledge, the first formal-
ization of the NRNM problem in terms of the bottleneck distance. We have
presented theoretical and practical discussions on this algorithm and obtained
running times that are fast, in light of the inherent complexity of the problem.
Experiments show how using the lossless filtering algorithm helps reduce the
running time. This reduction is bigger the more elaborate geometric parameters
are considered. We have, however, only used information that should be evident
to all observers. Finally, we have also provided some examples on how the degree
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of noise in data (ε) influences the performance of the algorithm. As part of our
future work, we intend to study other values of ε, such as those that arise directly
from the precision os measuring devices, and their relationship to the efficiency
of the proposed algorithms.
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Abstract. Dynamic geographic phenomena, such as forest fires and oil spills, 
can have dire environmental, sociopolitical, and economic consequences. Miti-
gating, if not preventing such events requires the use of advanced spatio-
temporal information systems. One such system that has gained widespread  
interest is the wireless sensor network (WSN), a deployment of sensor nodes – 
tiny untethered computing devices, which run on batteries and are equipped 
with one or more commercial off-the-shelf or custom-made sensors and a radio 
transceiver. This research deals with initial attempts to detect topological 
changes to geographic phenomena by an environmentally deployed wireless 
sensor network (WSN). After providing the mathematical and technical pre-
liminaries, we define topological change and present in-network algorithms to 
detect such changes and also, to manage the WSN’s resources efficiently. The 
algorithms are compared against a resource-heavy continuous monitoring ap-
proach via simulation. The results show that two topological changes, hole loss 
and hole formation, can be correctly detected in-network and that energy is 
greatly saved by our event-driven approach. In future work, we hope to test the 
algorithms over a broader range of topological changes and to relax some of the 
network assumptions. 

Keywords: Wireless sensor networks, distributed, algorithm, topological 
change, areal object. 

1   Introduction 

Dynamic geographic phenomena, such as forest fires and oil spills, can have dire 
environmental, sociopolitical, and economic consequences. Mitigating, if not prevent-
ing such events requires the use of advanced spatio-temporal information systems. 
One such system that has gained widespread interest is the wireless sensor network 
(WSN), a deployment of sensor nodes – tiny untethered computing devices, which 
run on batteries and are equipped with one or more commercial off-the-shelf or cus-
tom-made sensors and a radio transceiver. Beyond catastrophe management, it is 
expected that WSNs will play a key role in ubiquitous spatial computing, offering 
researchers and application domain specialists unprecedented opportunities in envi-
ronmental sensing, monitoring, and analysis. In contrast to other sensing technologies, 
e.g. LIDAR, a WSN is not restricted to particular types of phenomena: a WSN can 
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detect any measurand – a physical parameter, such as light intensity, temperature, or 
ozone – so long as the corresponding sensor has been developed, and the device can 
withstand the deployment region’s environmental conditions. Given a fixed deploy-
ment of sensor nodes over a geographic region, one of two monitoring paradigms can 
be adopted: continuous monitoring or event-driven monitoring. In the former, every 
sensor node in the network samples the environment at a constant rate. In the latter, a 
sensor node’s level of activity is affected by local changes in the measurand. While 
continuous monitoring offers the best responsiveness possible, it does so at the cost of 
network resources, i.e. power consumption, and temporal resolution of the environ-
mental data. In the case of event-driven monitoring, regions of low sensor activity 
demand less of the network’s processing, allowing resources to be dedicated to those 
regions of high activity. By shutting down nodes, however, resolution and respon-
siveness can decrease. Thus, either approach leads to a compromise in monitoring. 

In this paper, dynamic topological events with regard to continuous spatial phe-
nomena, events such as hole formation and merging, govern the activity of the net-
work. The motivation is three-fold: (1) to provide a framework for the classification 
of environmental phenomena by topological behavior, (2) to reduce the cost of data 
transmission and in-network information processing, and (3) to optimize the number 
of active nodes through a tiered network. To achieve these goals, nodes are assigned 
to clusters - geographic subsets that partition the region of deployment. For each 
cluster, one node is promoted to the rank of cluster head. By virtue of this hierarchy, 
updates can be coordinated via cluster heads, allowing the network to “keep up” with 
global topological changes.  

In summary, the contributions of this paper include the following: 

• Algorithms for topological event detection in WSNs. 
• Algorithms for dynamic resource management.  
• Evaluation of proposed algorithms in comparison with the continuous monitor-

ing approach. Events are detected correctly and network energy is saved. 

The remainder of the paper is organized as follows. Section 2 provides mathemati-
cal and technical preliminaries and summarizes related work. Section 3 describes our 
approach for event detection in dynamic sensor networks. In section 4, the algorithms 
for network management and event detection are described in detail. Section 5 out-
lines the simulation approach to test our algorithms and discusses the corresponding 
results. Finally, we conclude this paper and discuss future work. 

2   Mathematical Preliminaries and Related Work 

2.1   Mathematical Preliminaries 

A scalar field is a spatial domain R, such that for each point p∈R, there is a unique 
scalar value, sp, assigned to p. In this work, it is assumed that R is planar and that a 
sensor node associated with point p detects sp with complete precision. For example, 
in the case of forest fire monitoring, each point in the region of network deployment 
resides in a scalar field where temperature is the scalar value. In order to derive topo-
logical events from the scalar field, a threshold value is designated relative to the 
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sensor readings, invoking a Boolean response for each point in the spatial domain. 
Thus, the scalar field is discretized; rather than a continuous range of scalar values, 
there are precisely two values, 0 and 1. This discretized field is approximated by the 
network; the resolution depending upon the density of nodes in the WSN, and the 
proportion that are active. Figure 1 shows the progression from a scalar field to its 
discretized approximation. This particular example is derived from aerial images of 
an oil spill off the coast of Spain. 

 

Fig. 1. From scalar field to the discretized, WSN approximation 

Let us consider that part of the domain whose corresponding scalar values are 1. 
This is an areal object [1] and consists of one or more connected components (com-
ponents for simplicity) of R, i.e. regions in which any two points in one such region 
can be joined by a path, completely contained in the region. Each component has 
topological properties that can be determined. For the purpose of this investigation, 
the properties of greatest interest are connectedness and genus, which is a count of the 
number of holes in a component. The motivation is simple: by keeping track of these 
two properties over consecutive sensor samples, six atomic topological changes can 
be identified. A topological change is a change to an areal object such that there is no 
homeomorphism between the areal object in its initial state and its final state. Thus, a 
topological change occurs if an areal object, by virtue of the discretized scalar field’s 
evolution over time, changes status with regard to one or more topological properties. 
In this paper, “topological change” and “event” are synonymous. The atomic changes 
to be detected are: 

• Hole formation / hole loss 
• Self-split / self-merge 
• Split / merge 

As can be seen in Figure 2, the genus has changed for the cases: hole formation, 
hole loss, self-split, and self-merge. For the final two topological changes, split and 
merge, the property connected has changed but not the genus. Jiang and Worboys [1] 
have proved that any topological change resulting from changes only in genus and 
connectedness can be expressed as a composition of those above. Therefore, it will 
suffice to deal with atomic topological changes. 
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Fig. 2. The six primary topological changes 

An incremental change to a WSN is the change of sensor status, relative to thresh-
old, of a single node over the entire network at a time t. Such a change will result in 
zero or more topological changes. In order to capture the changes outlined above, the 
neighborhood ring is introduced. The neighborhood ring is a cyclic data structure 
stored at a node that maintains its nearest neighbor readings in counterclockwise order. 
In order to identify its neighbors, a node broadcasts a message at some user-defined 
fraction of the communication range of the node. Neighbors within this range will have 
a corresponding entry in their neighborhood ring. Let u be a node and v1, v2, …, vk be 
the k one-hop neighbors of u within a predefined distance, sequenced in counterclock-
wise cyclic order around u, where a starting node v1 is randomly assigned in advance. 
The neighborhood ring associated with u is a ring data structure [s1, s2, …, sk], starting 
from v1 where si is the sensor reading of vi, which are mapped to the Boolean values 0 
and 1 as previously described. Figure 3 shows a node u and its neighbors, the underly-
ing discretized scalar field in gray, and two equivalent neighborhood rings. A 
neighborhood ring - not unlike the connected components of the spatial domain – can 
be thought of as a collection of contiguous subsequences, i.e., sequences of the form 
[0,…1,1,…,1,…,0] or [1,…1,0,0,…0,1,…,1], since the neighborhood ring is cyclic, i.e. 
it can start at any neighboring node. Such a contiguous subsequence is called a 
neighborhood component, and indicates a region of similar sensing. Two neighborhood 
components are indicated in Figure 3 by dashed rectangles and each can be identified 
as a sequence of 1s in each neighborhood ring. In order to determine which topological 
change has occurred, a node that has changed status will initiate a series of tests based 
upon the neighborhood components of its neighborhood ring. 

 

Fig. 3. Two equivalent neighbor rings of node u 

2.2   Network Assumptions 

A distributed computing environment is one in which multiple computing devices or 
nodes (often) operate in parallel and achieve a common goal by processing available 
data (when appropriate) in a cooperative fashion, thereby passing the intermediate 
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result as a message to other nodes. Two interesting properties of a distributed WSN 
are: (i) there is no global clock, and (ii) only local data is stored at a node. The conse-
quences of (i) are that: classic synchronization can not be used to order computations 
and many events will be temporally incomparable, i.e. it will not be possible for any 
node to correctly determine the order of topological events, even if the events are 
temporally ordered in the environment. The consequence of (ii) is that no node has a 
global view of the network. This does not mean global properties cannot be com-
puted, but that no node has all of the raw data necessary to execute such a computa-
tion. While explicit reference to these properties will not be made, it is interesting to 
bear them in mind in the development that follows.   

In addition to the generic distributed system assumptions, we make five additional 
assumptions related to the operation of the WSN in this research. They are:   

1) Neighboring nodes of the same status belong to the same component. 
2) Non-neighboring nodes of the same status belong to the same component only 

if there is a node path between them, such that each node on the path has the 
same status.  

3) Each node knows its own location through either a GPS device or some GPS-
less techniques [2, 3], as well as the angle-of-arrival of packets. 

4) A node stores its previous and current sensor reading relative to threshold, its 
neighbor ring, as well as the ID. 

5) A node that has been promoted to cluster head stores all data noted above, as 
well as the genus, the node ID of each adjacent cluster head, and any tempo-
rary data structures (See Section 3.1.) needed to complete computations. 

The first two assumptions allow sensor data to infer properties of the underlying 
scalar field. It is easily proved that assumption (2) follows from assumption (1) but it 
is stated on its own for clarity. Assumption (3) ensures that each node can identify the 
cluster it belongs to and that a well-ordered neighbor ring can be constructed. As-
sumptions (4) and (5) ensure that correct topological event detection can be carried 
out. In particular, if a split or merge occurs, region IDs need to be updated at each 
node, while a genus update is required for the remaining four topological changes.   

2.3   Related Work 

2.3.1   Topology Discovery 
Current research in hole detection using WSNs has primarily focused on the charac-
terization of the communication graph within the network, i.e. a graph whose vertices 
are sensor nodes and edges are communication links between sensor nodes. In par-
ticular, research has been conducted in order to ensure the effective routing of mes-
sages, even in the presence of holes in the communication graph. In [4], the author 
presents a solution to the problem which requires more computational power than is 
typically assumed of sensor nodes, and therefore could not be implemented in a dis-
tributed setting. Clearly, for long-term unsupervised deployments, a more robust, 
decentralized solution is needed. In [5], hole detection is distributed and decentral-
ized. However, a ‘flat’ routing approach is applied in order to define and update each 
hole’s boundary. In other words, data is simply passed via nearest neighbors. While 
this may be feasible in maintaining the topology of a slowly changing communication 
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graph, the topology of the underlying scalar field is likely to evolve much more rap-
idly. Additionally, there are different algorithmic expectations: holes in the communi-
cation graph result in node failure and therefore, a loss of spatial resolution, while 
holes in spatial phenomena only result in a change in sensor value, but not the failure 
of the sensor node itself. Therefore, more efficient and appropriate update techniques 
are proposed in this work.   

The prerequisite for topological change detection is boundary detection in the net-
work. Chintalapudi and Govindan [6] discuss three boundary detection methods and 
return sufficient data so that the base station can construct an accurate boundary. They 
do not however, transmit boundary information back into the network, preventing the 
possibility of localized, in-network updates of the boundary shape and its location. 
Ding et al. [7] propose localized fault-tolerant boundary and faulty sensor detection 
using spatial data mining techniques. These techniques have to report all boundary 
node information to the base station: the topological changes can only be deduced at 
the base station, after it generates different field snapshots using received data. As in 
[1], such techniques are not tractable in the case of remote deployments. In this paper, 
region boundary detection is based on neighboring node value differences: a boundary 
exists between two nodes if their sensors detect different measurand concentrations, 
relative to the designated threshold. Based on the detected boundary, all changes are 
deduced in the network and then are reported back to the base station, on user demand. 

2.3.2   Resource Management 
In WSNs, particularly for long-term deployments, energy conservation is critical. If 
communication is not dealt with carefully, then network resources can be unnecessarily 
expended, which is the largest energy consumer in a sensor network. For example, 
even if a node broadcasts data intended for a few selected neighbors, every node within 
transmission range and operating on the same channel must receive and process each 
packet, whether the packet has computational importance or not. Chen et al. [8] show 
that the energy consumption ratio, idle:receive:transmit is 1: 2: 2.5. This observation 
motivates approaches that either reduce the number of active nodes or reduce node 
contention. Xu et al. [9] develop a geographic adaptive fidelity (GAF) algorithm, 
which can be implemented in conjunction with any ad-hoc routing algorithm. GAF 
identifies “equivalent nodes” from a routing perspective: two nodes are equivalent if 
the cost of routing messages through one is the same as the other. Thus, the network is 
partitioned into virtual grids. Within each grid, most nodes can be set to sleep, so long 
as they are not a source, sink or critical intermediate node within the routing chain. 
Simulation results demonstrate savings of 40-60% as compared with unmodified ad-
hoc routing protocol. Zhang and Cao propose DCTC [10] for target tracking in WSNs. 
A tree structure is constructed for moving target tracking. It uses a prediction-based 
schema for tree expansion and pruning. Only nodes near the target are activated. While 
effective for target tracking, this approach does not address topological changes to the 
discrete scalar field. In [11], an advanced sweep algorithm is implemented in order to 
activate sensor nodes in front of an event wavefront and to deactivate sensor nodes 
behind the wavefront. The algorithm is implemented in a small network consisting of 
Mica2 MOTES and demonstrates effective detection of the wavefront while conserv-
ing network resources. However, as the author states, the topological sweep algorithm 
does not admit a distributed approach.  Duckham et al. [12] describe a triangulation 
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approach for monitoring dynamic fields. The sensor network is triangulated and most 
sensors that are not in the event regions are deactivated. 

In this paper, a combination of traditional clustering is used in conjunction with 
GAF in order to ensure network energy conservation without compromising event 
detection. Specifically, sensors along the boundary of different regions are activated to 
detect the boundary’s evolution, while sensors that are in low activity regions and are 
not critical in terms of routing are deactivated. When coupled with our local topology 
discovery approach, the efficient reporting of topological change becomes feasible. 

3   Event Detection in Sensor Networks 

3.1   Event Detection 

The goal of this research is to efficiently detect the topological changes outlined in 
2.2, through distributed computations in a distributed WSN. Each of the topological 
changes implies that the corresponding phenomena’s boundary has undergone a dy-
namic change. The node set approximating the boundary will also change, so long as 
network resolution is sufficient. It follows that those incremental changes of impor-
tance occur at the boundary or create a new boundary. Thus, changes to boundaries 
allow each of the topological changes to be detected. For the sake of simplicity, only 
incremental changes will be tested via simulation. This can be justified since: (1) the 
change in sensor value (relative to threshold) of a single node can result in any of the 
six topological changes under investigation, and (2) methods to compute non-
incremental change as an extension of incremental change will be outlined.  

In Figure 4, two regions, R1 and R2, are illustrated, along with three nodes that 
have changed status and must compute if a topological change has occurred.  Assum-
ing that each node stores the ID of the region it belongs to, in the best case, the out-
come can be determined on the basis of the neighborhood ring and subsequent 
neighbor components. This is true for hole formation, hole loss, merging, and self-
merging. Consider node u, shown in Figure 4. As a hole forms in the region  
monitored by the node, its sensor detects this change, and hence node u uses its 
neighborhood ring to determine the kind of change. Since its neighborhood ring is of 
the form [1,1,…,1], even without region ID, node u identifies that the change is a hole 
formation. Hole loss is similar, except that node u proceeds from a sensor value of 1 
to 0. Node v illustrates a merge, which can be determined by the combined facts that: 
(1) the neighborhood ring consists of multiple neighborhood components (above 
threshold) and (2) the ID differs between two or more components. If region ID were 
the same, then the change would be a self-merge. In the case of splitting and self-
splitting, region ID and neighbor data is not sufficient. Consider node w as an exam-
ple. By observation, a self-split is taking place since node w’s sensor status change 
has not split the region into multiple components. Node w however, will not know 
this until it confers with the nodes of this region. In contrast to a merge or self-merge, 
prior to a split or self-split, all nodes belonging to the region will store the same re-
gion ID (R1 in this case) regardless of the event type. So, node w must pass a message 
through the region to determine if it has an irreducible cycle – a broadcast cycle pass-
ing through nodes of status 1, such that the cycle can’t be trivially reduced without 
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passing through a node of status 0. In particular, a cycle discovery message is passed 
to one node of each neighborhood component. Each receiving node in turn passes the 
message to a node in each of its neighborhood components.  If a node receives mes-
sages originating from different neighborhood components of the initiating node, then 
an irreducible cycle exists.  Part of this process is illustrated by the smaller, transpar-
ent circles in the figure.  In this case, Node x receives messages from different 
neighborhood components of Node w.  Thus, an irreducible cycle has been identified 
and therefore, the event is a self-split. Node x of course must relay this to Node w.  

 

Fig. 4. One topological change from each of the three categories 

This process is repeated until a node can no longer propagate the message, or a 
node has received multiple messages. If the latter occurs, as it would above, then an 
irreducible cycle exists. Thus, the topological change is a self-split. Otherwise, the 
change is a split. 

In the case of non-incremental changes, the network is prone to non-scalable be-
havior and data conflict. To emphasize this, let us compare a non-incremental change 
without the use of assumption (5) to the same change with the use of assumption (5). 
We will refer to Figure 5, which displays nodes u and v that have changed status; 
cluster heads A, B, C ,and D; unnamed nodes; and communication links, labeled with 
the transmission round. A transmission round such as 2v indicates the second round of 
transmission relative to node v. If there is no subscript, it indicates that the order of 
transmission has been coordinated by the collaborating cluster heads. A network 
without cluster heads is illustrated in the left pane of Figure 5. Here, nodes u and v 
change status, compute any topological changes, and pass the update through the 
component. The first two rounds of message passing are shown. Two problems arise. 
The first is that the number of nodes requiring updated genus data is significant: all of 
the nodes in the grey region. The second problem is that intermediate nodes (lying 
between the rippled lines) will receive conflicting data regarding the topological state 
of the region: node v reports the loss of a hole while node u reports the gain of a hole. 
By admitting assumption (5), the network is clustered as in the right pane of Figure 
(5). Node u reports a change to its cluster head A, which in turn reports to the affected 
adjacent cluster heads B, C, and D. Node v senses a change and reports this to cluster 
head C. Cluster head C reports one required update to node A, while cluster heads B 
and D broadcast no such report.  Cluster head A orders the queue, first by cluster {A, 
C}, then by node – in this case {u, v} – and passes the data to node u in the third 
round. Node u makes a partial computation, passes it to cluster head A, which in turn 
passes the partial result to cluster head C. Cluster head C passes the computation to 
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node v, which completes the computation, and unicasts the final result to cluster head 
C. By the eighth round, cluster head C multicasts the updated genus to cluster heads 
A, B, and D. The first eight rounds of message passing are shown in the figure. In 
order to limit network noise, the multi-channel capability of the sensor nodes is ex-
ploited: in addition to the general broadcast channel, there is a cluster-head channel, a 
channel for each sensor value, and four channels assigned to clusters, so that no two 
adjacent clusters have to operate on the same bandwidth. As a result, unsolicited 
nodes do not receive broadcasts, and therefore, do not waste energy on processing 
packets. 

 

Fig. 5. A flat approach on the left and a tiered approach on the right 

Since each cluster in the tiered approach behaves like a node in the flat approach, a 
2-level network is “more scalable” but not truly scalable: cluster size, and the number 
of tiers are governed by the expected “size” of the topological events. This will be 
investigated in greater detail in future work in order to correlate event size with re-
quired level of network tiering. 

3.2   Resource Management 

Since the WSN’s nodes are battery powered and have limited processing capability, 
economizing network resources is key. However, such economization should not 
undermine the network’s key goal: topological event detection. To ensure a balance 
between event detection and resource economization, the network must be event-
driven, thereby allowing for increased data resolution in areas of topological activity. 
While a continuous-monitoring network cannot vary its resolution or consumption of 
network resources, it is capable of responding to changes rapidly, since all nodes are 
active. The challenge in an event-driven network is to find an acceptable level of 
responsiveness.   

In order to meet the needs outlined above, the network is tiered. We design a 2-
level hierarchy network, as in the right pane of Figure 5. The upper tier network con-
sists of cluster heads. The lower tier network is composed of all nodes in each cluster. 
If there are no events near a cluster, only the cluster head is active. All other nodes in 
the cluster can be in sleep mode, thereby conserving energy. Each pair of nodes in 
adjacent clusters is reachable to each other, ensured by transmission range setting.  
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We separate the whole network into uniform, rectangular clusters. The diagonal of 
each cluster is less than half the radio range in order to ensure each pair of nodes in 
adjacent clusters has the ability to communicate with each other. The clusters are 
fixed after network initialization. Assuming nodes are GPS-equipped, they can com-
pute their geographic position, and therefore, the cluster they lie in. Each cluster has a 
designated cluster head, which is responsible for node activation. A node can deacti-
vate itself if it does not detect any interesting activity. 

Each node in the network can be in three states. In the sleeping state, a node does 
not send or receive any messages from others. This brings the most power saving to 
the network. In the listening state, a node can receive its neighbors’ messages to de-
termine if it should turn itself to active state but does not transmit messages. In the 
active state, a node collaborates with other active neighbors to monitor physical 
events and changes. The state transition graph of a node is shown in Figure 6. In Fig-
ure 6: (0) A node boots up. (1) A node periodically changes from active to listening 
mode, if there is no reading difference between the node and its neighbors over a time 
t1. (2) A node periodically changes from listening to sleeping mode after a predefined 
time t2. (3) A node changes to active state after it receives an activate message. (4) A 
node goes to listening after sleeping for a time t3. More details about the node activa-
tion and deactivation will be explained in section 4.2. 

 

Fig. 6. State change graph 

4   Algorithms 

Three algorithms will be presented, covering: cluster head election, node manage-
ment, and topological event detection. 

4.1   Cluster Head Election 

We use a randomized algorithm to select cluster heads. Each node in a cluster  
randomizes a short timer [13]. After the time out, if the node does not receive a sup-
pression message from a cluster head, it becomes the cluster head and broadcasts a 
suppression message to inform all other nodes in the cluster. Since the cluster head is 
the only activated node in a cluster, its battery will discharge more quickly than other 
nodes’ batteries. Thus, we promote a new cluster head after the battery power is lower 
than a designated threshold. If a cluster head’s power drops below a threshold value, 
it periodically sends a request message with its residual energy information to all 
neighbors in the cluster. All nodes in listening state can receive this message. After 
receiving the message, a node that has more energy will randomize a short timer. 
After the time out, if it does not receive a new suppression message from other nodes, 
it becomes the new cluster head and broadcast a suppression message to all other 
nodes in the cluster.  
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4.2   Node Activation/Deactivation 

Each node in a cluster is activated by the cluster head and it is self-deactivated based 
on the reading difference. At initialization, all nodes are in active state. Each cluster 
head also receives readings from, and broadcasts readings to, neighboring cluster 
heads. If they are all above - or below - the threshold value, no change is detected and 
the corresponding cluster nodes will not be activated. If a neighboring cluster head 
has a different Boolean response relative to threshold, then an event boundary must 
exist between them. In this case, the cluster head broadcasts messages to activate all 
nodes in its cluster. Each node, after entering the listening mode, can receive the acti-
vation request and turn itself to active state. A node in the active state will periodi-
cally compare its reading to neighbors. If there are some differences between them, it 
remains active for event detection. Otherwise, if there is no difference (no change) 
after a user specified period, it enters to listening mode for a while. If it does not re-
ceive further activation messages, it proceeds to sleep state, and then periodically 
alternates between listen and sleep states. The algorithm for node activation and  
deactivation is shown in algorithm 1.  

While (1) 

{ 
if (in sleeping mode) 

After a short time T3, go to listening state;  
else if (in listening mode) 

    if (receives an active message) 
       Go to active state; 
    else  
       Go to sleeping state after a short time T2; 
  else if (in active mode) 

if (no reading differences between any neighbors) 
       Go to listening mode after a short time T1; 
} 

Algorithm 1. Non-cluster node activation and deactivation 

4.3   Event Detection 

In this section, we discuss the algorithm for event detection. If a node changes status 
with respect to threshold, it tests for the easiest topological changes first, and then 
proceeds in order of difficulty. If the neighborhood ring is uniform, then the topologi-
cal change is either hole loss or hole formation. If however, the neighborhood ring is 
not uniform, the node checks first for non-topological changes (not outlined in this 
paper), and then for the topological changes merge and self-merge. If neither event is 
possible, the node broadcasts a message in order to discover any irreducible cycles. If 
there are such cycles, the event is a self-split, and otherwise, the event is a split. It 
should be noted that the algorithm is written for nodes that do not lie on the boundary 
of the network. While the modifications necessary to include boundary nodes are 
reasonable, they are not included below. 
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While (1) 

{ 
if (sensor status changes) 

    Check neighborhood ring; 
    if (uniform) 

if (sensor status of node is 1) 
Event: hole loss 

   else 
Event: hole formation 

elseif (one neighborhood component) 
Non-topological event 

else 
Check neighborhood components’ region IDs 
if (multiple region IDs) 

Event: merge 
   else if (one region ID) 
     if (sensor status of node is 1) 

Event: self-merge 
else  

Check for irreducible cycles 
if (irreducible cycles) 

Event: self-split 
else 

Event: split   
} 

Algorithm 2. Event detection algorithm 

5   Simulation and Discussion of Results 

5.1   Simulation 

We evaluated our algorithms using NS2 [14], open source, network simulation soft-
ware. NS2 contains standard API that facilitates the development of a network model 
at the network level, the node level, and the process level. In addition, many research 
groups have made their custom node and network models available, thereby expedit-
ing the development of future work, such as ours. In the simulation, a 100m by 80m 
WSN that consists of 400 nodes with 20 clusters is constructed. Each cluster is a 20m 
by 20m grid and there are 20 evenly distributed nodes in each. As specified in  
section 3, we assume nodes in adjacent clusters can communicate directly. In order to 
achieve this assumption, the node communication radius is set to 57m. Each node 
saves its nearest 8 neighbors’ information around it in the neighborhood ring. The 
event-detection algorithm is applied in conjunction with both continuous and event-
driven monitoring approaches. In the case of continuous monitoring, each node is 
active throughout the entire simulation interval. As discussed in the related work, 
even an idle node consumes a good deal of energy. Hence, the greatest savings only 
result from deactivating nodes. Thus, to measure network savings, it suffices to de-
termine, and compare, the percentage of active nodes between the two approaches. 
Furthermore, the time taken to detect topological change is computed as a metric for 
network responsiveness. 
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Fig. 7. One cluster at t=10s, 20s, 30s, and 45s 

Table 1. Active node count at t=10s, 20s, 30s, and 45s 

 Continuous approach Event-driven approach 
T=10s 400 191 
T=20s 400 191 
T=30s 400 191 
T=45s 400 20 

 
Over the course of a single simulation run, the network is initialized at t=1s. An 

areal object forms in the middle of the field at t=2s and continues to grow. A hole 
emerges in the areal object at t = 20s, and grows until t=25s, when it begins to shrink.  
At t=30s, the hole disappears. Then, the areal object continues to shrink and 
disappears at t=44s. In this scenario, sensor nodes that are active sample the 
environment once per second. From the simulation results, the areal object which 
forms at t=2s is detected at t=4s, after it covers a cluster head. After detecting the 
areal object, the cluster head activates all nodes in its cluster and notifies adjacent 
cluster heads. Other topological changes, the hole formation at t=20s, the hole loss at 
t=30s, and the disappearance of the areal object at t=44s are all detected immediately. 
In the continuous approach, all topological changes are detected immediately after 
they happen. We also compare the number of active nodes between the continuous 
and event-driven approaches at some time snapshots t=10s, 20s, 30s, and 45s. The 
results are shown in Table 1. Clearly, the continuous monitoring approach keeps all 
nodes in active state, but the event-driven approach keeps only a few nodes in active 
state all the time, which means larger energy savings for the entire network. 

5.2   Discussion 

In the simulation, all topological changes are detected correctly in the network, which 
means our event detection algorithms works for both event-driven approach and con-
tinuous approach. Compared to previous base station based approaches [4, 11], such in-
network detection is one of the most significant contributions of our work. Node will 
report changes to the base station which need no future process at the base station side. 

By the event-driven approach, as indicated by the simulation results, the areal ob-
ject appears at t=2s, but it was not detected before t=4s when the areal object covers a 
cluster head, which means the event-driven approach may decrease the responsive-
ness of the network. In comparison, the continuous approach allows for instant detec-
tion at the cost of network resources. While an event-driven approach is necessary to 
handle lengthy, remote deployments, it is inevitable that energy conservation  
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sacrifices resolution and responsiveness to some degree. In particular, when a topo-
logical change occurs in a cluster that has been set to sleep, it will go unnoticed until 
the cluster head itself detects it. Clearly, as the cluster size decreases, responsiveness 
and resolution increase. However, network resources would be compromised, as in 
the continuous monitoring case. There should be a trade-off between responsiveness 
and the energy consumption. If we need better responsiveness, we can set small clus-
ter size. If the responsiveness is not very crucial, a larger cluster size could be used. 
Bounds on cluster size relative to event detection will be addressed more thoroughly 
in future work. 

6   Conclusion and Future Work 

This paper presents algorithms for topological change detection in a WSN using event 
driven approaches. Different from previous approaches, we focus on detecting topo-
logical changes of areal objects monitored by the WSN. A neighborhood ring data 
structure is proposed for in-network event detection. By our event detection algo-
rithms, topological changes can be detected directly in the network, other than com-
puted at the base station after receiving all reporting messages. Each node does not 
have to send readings to the base station for processing. This characteristic is one of 
the most significant differences compared to traditional approaches. By our event-
driven approach for network management, not all nodes are required to be in the ac-
tive mode all the time and then the network energy is saved greatly. The simulation 
results show that our event-driven approach deactivates some nodes in the network 
without decrease responsiveness significantly. The event detection algorithms pro-
posed also detect all topological changes correctly in the network.  

Our current simulation does not include split and self-split and the detection of 
such changes need global broadcasting using current algorithms via the irreducible 
cycles. In future work, the topological changes split and self-split will be addressed 
and we are trying to reduce such global broadcasting. Furthermore, non-incremental 
changes need to be simulated to confirm that a tiered approach effectively handles 
more complicated, non-atomic topological changes. This would include the correct 
assignment of a component’s ID, as well as passing off partial computations between 
clusters. 
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Abstract. Many spatial data mining and spatial modeling approaches use 
Euclidean distance in modeling spatial dependence. Although meaningful and 
convenient, Euclidean distance has weaknesses. These include providing an over 
simplified representation of spatial dependence, being limited to certain spatial 
pattern and symmetrical relationships, being unable to account for cross-class 
dependencies, and unable to work with categorical especially multinomial data. 
This paper introduces Hidden Markov Model (HMM) as an attractive approach 
to uncovering hidden spatial patterns. The HMM assumes that a hidden state 
(factor or process) generates observable symbols (indicators). This doubly 
embedded stochastic approach uncovers hidden states based on observed symbol 
sequences using two integrated sets of probabilities, transition probability and 
emission probability. As an alternative to Euclidean distance based approaches, 
the HMM measures spatial dependency by transition probabilities and cross-
class correlation better capturing geographic context. HMM works with data of 
any measurement scale and dimension. To demonstrate the method, we assume 
urban spatial structure as a hidden spatial factor underlying single family housing 
unit prices in Milwaukee, Wisconsin, we then use the HMM to uncover four 
hidden spatial states from home sale prices. 

Keywords: GIS, Hidden Markov Model, spatial modeling, data mining. 

1   Background 

Many spatial pattern discovering approaches use Euclidean distance in modeling 
spatial dependency. Spatial clustering, represented by k-means clustering [17][11][44] 
and its variations such as k-medoid [20] and Expectation Maximization (EM) 
algorithm [8] cluster objects based on the distance between them [17]. Clustering 
using Euclidean distance suffers from two difficulties. First, if attributes of spatial 
objects are not considered, Euclidean distance is the sole surrogate for spatial 
dependency. Such methods can find only spherical-shaped clusters and encounter 
difficulty discovering clusters of arbitrary shapes [17]. Second, if attributes are of 
concern, distance between objects is usually computed based on subjective weights of 
attributes. With multi-dimensional data, any subjective weighting system can be 
problematic. With categorical data, weighting distance becomes impossible. 
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The same issues exist in other clustering and hot spot detecting approaches that  
use Euclidean distance. For example, the dendrogram-based clustering methods 
including AGNES and DIANA [20] [17] and their variations split or merge objects 
also based on Euclidean distance. Furthermore, hot spot detection approaches such as 
G and G* autocorrelation statistics [14] [34] and spatial statistical approach including 
geographically-weighted regression [4] require some form of a distance weight  
matrix which is typically calculated from the Euclidean plane. A weight matrix  
carries with it the assumptions and limitations of the Euclidean model [30]. 

The first law of geography [47] has been exploited by spatial modeling techniques 
[29]. This is best illustrated by the Inverse Distance Weighted (IDW) method in 
which the influence of an event on a prediction location is inversely related to the 
distance between an observed location and the prediction location. Euclidean distance 
is the sole proxy of spatial interactions in this model. Although convenient and 
meaningful, Euclidean space is not the only representation of geographic space since 
some geographic processes can have non-Euclidean properties [30]. For example, 
human-made or natural networks often channel spatial interaction so that the shortest 
path between two locations may no longer correspond to a straight-line segment. In 
other instances such as the evolution of weather systems, geographic context (the 
initial conditions) is critical. Moreover, human systems tend to exhibit sensitivity to 
geographic context [30] and therefore cannot be completely accounted for by 
Euclidean distance. Cliff and Haggett [7] argue that the Euclidean plane is limited for 
analyzing spatial diffusion processes such as the spread of disease over geographic 
space. Based solely on Euclidean distance, the IDW usually produces circular patterns 
and even bull’s eyes in modeling results. In addition, this deterministic method does 
not provide estimate of uncertainty of output. 

Geostatistical modeling approaches represented by Kriging provide estimates of 
the uncertainties in results. Although spatial dependency is measured by more 
sophisticated indicators, including semivariogram or covariance, the predictor of 
Kriging also uses Euclidean distance. While Kriging models have been widely used in 
applications with continuous variables and with cases using discretized continuous 
variables in indicator Kriging [3][15][52], they have limitations in handling 
categorical variables [26]. Moreover, all conventional geostatistical methods have 
difficulties accounting for interclass dependencies which include not only cross-
correlations as measured by indicator cross-variograms but also the juxtaposition 
relationships in spatial distribution of multinomial classes and directional asymmetry 
[25][53]. Because of the intrinsic symmetric property of indicator cross-variograms, 
many variogram-based models are not effective in capturing the directional 
juxtaposition relationships. 

Unlike all the approaches discussed above, Markov cross transition probabilities 
have the capability of representing the interdependencies of classes [26] and avoiding 
the Euclidean pitfalls. Traditionally, a Markov chain is a discrete-time, stochastic 
process in which the next state depends on the present state. When applied to spatial 
problems, a one-dimensional Markov chain can be established on regularly spaced  
 



72 R. Huang and C. Kennedy 

sampling locations along a survey line. A one-dimensional Markov chain can be 
expanded to a Markov field by including an additional dimension of state transition 
probabilities [10][53].  

In spite of its strength in representing interdependencies between classes, 
capabilities of working with of both discrete and continuous variables, as well as 
convenience of handling multi-dimensional data, a traditional Markov model makes 
no inference about underlying processes that generate the observed phenomena. For 
many geographic problems, the controlling factors and processes can be hidden from 
direct observation. In this paper we introduce the Hidden Markov Model (HMM) as a 
new method for uncovering hidden spatial patterns based on observed indicators. We 
discuss key concepts and principles of HMM in section 2; develop solutions for 
applying the method to a spatial problem, to uncover urban spatial structure from 
home prices, in section 3; introduce the case study area in section 4 and present 
modeling results in section 5. Finally, we conclude the study in section 6. 

2   Hidden Markov Model 

The Hidden Markov Model (HMM) is a doubly embedded stochastic method based 
on probability theory. It was initially studied in statistics in the 1960s and early 1970s 
but has gained popularity with advancements in artificial intelligence (AI) since the 
1980s [42]. Following its great success in speech recognition, it has been applied to a 
wide range of pattern recognition and data mining applications such as gesture 
recognition [45], handwriting recognition [33], recognition by robots [1], vegetation 
dynamics analysis in remote sensing [49], precipitation occurrence pattern [18][43], 
and spatiotemporal pattern of land use change [28]. 

The principle of information retrieval from observed signals by HMM is best 
illustrated by speech recognition. A sentence consists of a sequence of words. Though 
the machine does not really understand spoken words since what it ‘hears’ are merely 
vibration signals, the words behind the signals can be discovered based on a doubly 
embedded stochastic process with one unobservable [42]. The first probability is that 
of guessing each individual word from a segment in a series of signals.  Since a piece 
of signal is pronounced from a word, the machine can be trained to guess a word 
based on the signals with a probability though a one-to-one relationship between 
words and signals is impossible due to uncertainties in homonyms, voices, tones, 
accents and so on. In turn, a piece of signal is only one of many possible 
manifestations or emissions of the word. The probability of emitting a particular 
signal from a word is known as emission probability. The second probability governs 
the word-to-word transition in a sentence. For example, a string of signals could be 
segmented and interpreted as words “I – love – you” or “eye – love – you” based on 
emission probabilities. However when transition probability is considered, the later 
interpretation can be rejected because, based on the training the computer has 
received, the probabilities of transitioning from “eye” to “love” is zero, but the former 
sentence can be accepted because the probability of transitioning from word to word 
is the greatest among all possible guesses (Figure 1). 
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I love you

Eye love you

Voice signals 

Interpretation 1 

Interpretation 2 

Emission prob 

Transition prob > 0 Transition prob > 0 

Transition prob = 0 Transition prob > 0 

Observed 

Hidden 

 

Fig. 1. An example of speech recognition by HMM 

In the above speech example, the hidden vocabularies are named states, and the 
observed signals are named observation symbols. 

Similarly, we posit that an HMM can be used to uncover the impact of relative 
location and urban spatial structure. We assume that location within the city is a 
hidden factor underlying the general trend of housing price while the intricate 
structural externalities add variations to actual home sale prices.  This hidden spatial 
factor can be discovered from home sale records by using Hidden Markov Models.  
The hidden factor is represented by spatial states which can be equated to 
vocabularies and the observed symbols (frequency distribution of house prices) are 
signals emitted by corresponding states.  The following will facilitate understanding 
specifics of how HMM functions. 

(1) Assuming there are N individual states in a Markov system, we denote the set of 
states as S = {S1, S2, …, SN}.  In an ergodic model any state may be reached from 
any other with a transition probability.  For example, if urban neighborhoods are 
the states in question, then there is a probability for one type of neighborhood to 
abut another type. 

(2) The probability of transitioning from state i at time t to state j at time t+1 is  

aij = P(qt+1 = Sj | qt = Si), 1 ≤ i, j ≤ N                                            (1) 

where qt+1 and qt are the state variable at time t+1 and t respectively.  In an HMM, 
all transition probabilities constitute a matrix A = {aij}. 

(3) Observation symbols such as acoustic signals are assumed to be emitted by hidden 
state.  The set of all observable discrete symbols in an HMM is denoted as V = {v1, 
v2, …, vM}. Discrete symbols can be derived from training processes.  Observations 
can also be continuous values.  

(4) With a discrete symbol system, the probability for symbol k to occur in state j at 
time t is 

bj(k) = P(vk at t | qt = Sj), 1 ≤ j ≤ N and 1 ≤ k ≤ M                      (2) 
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where vk is the observed symbol and qt is the state variable at time t. This 
probability is the emission probability or bias since an observation is regarded as a 
biased representation of a state. All emission probabilities in an HMM are denoted 
as B = {bj(k)}. Emission probabilities are also derived from training. 

With continuous observation values, the emission probability density of a value 
can be calculated by using a probability density function (pdf) established from a 
training dataset. In the speech recognition example, a probability density function 
can be a mixture of multiple kernel (usually Gaussian) functions. If a state 
(vocabulary) has M mixtures, the probability density of emitting observation ot in 
state j is 

∑
=

=
M

m
jmjmtjmtj Uofcob

1

),,()( μ                                               (3) 

where cjm is the coefficient of m-th mixture in state j such that 1
1

=∑
=

M

m
jmc , and f is 

the kernel density function with mean μjm and covariance matrix Ujm for the m-th 
mixture component in state j [42][32]. 

(5) Finally, an observation sequence (O) consisting of T observations is denoted as O = 
{o1, o2, …, oT}.  At the initial time (t = 1) every state has a probability of occurring 
– the initial probability.  For state i, the initial probability is denoted as πi = P(q1 = 
si).  The set of all initial probabilities in an HMM is denoted as π = {πi}. 

For convenience, a hidden Markov model is usually denoted as λ = {A, B, π}.  
Generally, hidden Markov models address the following problems [42]: 

Problem 1: given an HMM λ = {A, B, π} and an observation sequence O = 
{O1, O2, … OT}, what is the probability of the observation sequence P(O| λ)? 
Problem 2: given an HMM λ = {A, B, π} and an observation sequence O = 
{O1, O2, … OT}, what is the most probable sequence of states underlying O? 
Problem 3: given λ, adjust the parameters of the model λ = (A, B, π) to 
maximize P(O | λ). 

Problem 1 is a typical gambling problem. It evaluates how an HMM predicts 
outcomes. The forward-backward algorithm provides an efficient solution to this 
problem. Since predicting observations is not the focus of this paper interested readers 
are referred to [42] and [32] for details. Problem 2 is more interesting to us as it 
discovers the hidden states that generate the observations, so that we may use it to 
uncover the spatial states that underlie housing prices.  This problem can be solved by 
the Viterbi algorithm (Appendix A). The Viterbi algorithm is a dynamic programming 
algorithm for finding the most likely sequence of hidden states, called the Viterbi 
path, that produces a sequence of observed events given a hidden Markov model1. 

Problem 2 requires an HMM. This HMM can be provided by solving problem 3 
which trains HMMs based on observation data sets. Problem 3 is solved by a k-means 

                                                           
1 In Appendix A, formulas 10–13 transfer the problem of maximizing the probability of an 

observation sequence with a corresponding state sequence into a problem of minimizing the 
cost of an optimal state sequence.  By recursively solving the minimal cost of every step in 
the observation sequence by formulas 14–19, a Viterbi path, i.e. state sequence with minimal 
cost or maximal probability, can be retrieved by formula 20–21. 
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training algorithm. If the states in a training dataset are known, a supervised training 
is conducted to compute the three HMM probability sets. In preparing a training data 
set, for example, a training sentence can be read by different speakers. In this case, the 
words in the training sentence are known states. In most situations, such as training 
with acoustic signals recorded from conversations in a natural noisy environment, the 
words are unknown and are usually connected to one another in sentences.  Therefore 
unsupervised training is required.  K-means unsupervised clustering and training can 
achieve 98 to 99 percent of recognition string accuracies [41]. The existence of 
unsupervised training algorithms that allow for estimation of model parameters from a 
body of observations is a major advantage of HMM [28]. After clusters are identified 
in the training data set, they are used as estimates of states. Finally, HMM parameters 
are estimated by the following formulas [42]: 

π i = expected frequency (number of times) in state i at time (t = 1)          (4) 

i

ji
ij S

SS
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 state from ns transitioofnumber  expected

 state  to state from ns transitioofnumber  expected
=                  (5) 
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)( =     (6) 

3   Uncovering Urban Spatial Structure by HMM 

The HMM should be attractive to geographers. It was, however, first applied to spatial 
problems by computer scientists to discover spatiotemporal patterns of land use change 
from remotely sensed images [28]. In order to make the HMM more versatile and 
capable of working with various spatial data dimensions and measurement scales, several 
technical issues including symbolization, symbol sequencing, and data continuity 
handling need to be addressed. We explore these issues by applying the method to the 
discovery of spatial structure from observed housing prices in an urban space. 

Empirical research on housing prices using hedonic models has displayed 
contradictory and spurious results if locational externalities such as proximity to 
certain land uses are included [35]. While technical issues, such as the measurement of 
locational externalities (e.g. arbitrary thresholds for proximity) contribute to the 
controversy [5], the uncertain nature of locational variables on housing price may be 
regarded as the root of blame [35][6]. Instead of breaking the impact of location down 
into a number of externalities as do hedonic models, we assume that relative location in 
an urban space, as a whole, is a hidden factor controlling housing prices. By studying 
spatial characteristics of housing prices, we can learn the impact of location and then 
discover the spatial structure of an urban area. 

The above assumption is based on the following justifications: First, it is common 
knowledge that houses of similar size and quality can differ greatly in price for 
different locations. Second, relative location within an urban area, as represented by 
closeness or adjacency to amenities or unfavorable land uses, does have impact on 
housing price [6][16]. Third, features sharing a geographic space display similarities 
since they tend to be influenced by common external processes and spatial interactions 
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[36]. Common physical and socioeconomic processes in urban neighborhoods lead to 
the widely observed clustering and segregation in urban housing [38][19][50][13] as 
well as spatial autocorrelation in housing price [9][2]. 

Relative locations in an urban area are indicated by urban zones. However, the 
boundaries between urban zones are usually obscure and often are determined on 
subjective criteria. For example, in examining the evolution of the City of Milwaukee’s 
spatial structure, various distinctive sub-areas were subjectively defined based on the 
location, demographic composition, and socioeconomic status of aggregation of census 
tracts [37][48]. Moreover, a diversified array of criteria including subdivisions, major 
streets, physical and natural barriers, housing style and etc. were used to determine 
boundaries of the urban neighborhoods in Milwaukee [31]. The HMM provides an 
objective alternative to the discovery of urban spatial structure using observed housing 
prices within the City of Milwaukee as a case study. The overall process of spatial state 
discovery is illustrated in Figure 2. 
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Fig. 2. Workflow of spatial state discovery by HMM 

3.1   Observation Symbolization 

Defining observation symbols is the first step of HMM data processing. Instead of 
using individual home sale prices, we take the price frequency distribution of spatial 
units as observation symbols in this study. In doing so, we first define spatial units by 
partitioning the study area into grid cells. In order to meet sample size requirements, 
traditional quadrat analysis recommends a cell size of 2A/r [51], where A is the area 
of the study region and r is the total number of observation locations.  In this study, 
we adopted a cell size 2Ad/r for multi-dimensional symbols, where d is the symbol 
dimensions, so that sample size is satisfied for each symbol dimension as well.  With 
6048 data points falling within about 600 km2 of the study area and d = 5, a grid cell 
size of 1 km x 1 km is chosen in this study. This way, the 600 km2 study area is 
partitioned into 30 rows by 20 columns. 

We then symbolize each spatial unit by using a frequency distribution (e.g. 
histogram) of home sale prices within the unit expressed as a number of percentage 
values for various price classes. Suppose a spatial unit contains a number of home 
sale data points of which 5% falls in very low price category, 20% in low price, 50% 
in medium, 20% in high, and 5% in very high price category, the spatial unit is 
symbolized as a vector (5, 20, 50, 20, 5). In this example, each percentage value in the 
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symbol is referred to as a dimension. This symbol describes structure of the housing 
prices within the spatial unit. 

If a dataset consists of one continuous variable such as housing price, symbol 
dimensions can be defined by a data categorization approach. We chose a k-means 
clustering to create five house price categories, i.e. five symbol dimensions, in this 
study. As in ordinary thematic mapping, we use five categories because fewer may not 
capture enough detail of price structures; but, too many would require increasing the 
size of spatial units in order to satisfy sample size requirements and would increase 
computation complexity. K-means clustering is used because it is an efficient 
unsupervised method that produces tight classes by minimizing differences within 
classes and maximizing differences between classes. Since this k-means clustering is 
used simply to categorize the non-spatial house price data, the spherical spatial pattern 
constraint [17] does not affect results. However, because of the heuristic characteristic 
of k-means algorithms, initial means may affect the results of clustering. After 
comparing four popularly used initialization methods, Pena et al [39] conclude that 
both random and Kaufman initialization are effective methods and are more 
independent of initial clustering and instance order than Forgy and MacQueen. To 
ensure quick and consistent clustering, we first categorize the data set into quantiles, 
then randomly select a value as an initial cluster mean from each quantile. We find that 
this cluster initialization method can quickly converge clusters to stable conditions. 

3.2   Symbol Sequencing 

Symbol sequencing defines Markov chains of observation symbols. It is not an issue 
for time serial observations such as in speech recognition since a sequence is inherent 
in the observation process. Defining observation sequences in spatial data can be a 
challenge especially for random location observations. Common practices include 
regular-spacing sampling and space partitioning. For example, Zhang and Li [53] 
define Markov chains by sampling land cover type with a regularly spaced lattice over 
a vector map; Elfeki and Dekking [10] regularly sample a 200 km long and 50 m deep 
geologic cross-section and establish coupled Markov chains that integrate the 
horizontal and vertical transition probabilities; Tjelmeland and Besag [46] propose a 
hexagonal array to determine the first- and second-order neighborhood in studying 
Markov random fields; Lovell [27] defines a discrete concentric circular search space 
within images in feature recognition; and Mari and Le Ber [28] present a more 
complex sampling method, the fractal Hilbert-Peano curve sampling within satellite 
images, in a spatial land use change study. 

In this study, we partition the space into 30 x 20 grid cells of 1 x 1 kilometer in size. 
For efficiency, we define two observation sequences by serializing the grid by alternate 
advancing technique [26], one in horizontal and the other vertical direction. Once 
observation sequences are created for a training dataset, a k-means training procedure 
is performed to compute the probability sets of an HMM (π, A, B) from the sequences 
by using equations 4 through 6.  Prior to computation of the probability sets, an 
unsupervised k-meanings training algorithm defines states by k-means clustering of 
observation symbols. In order to uncover spatial states by the Viterbi algorithm, a test 
dataset consisting of observation sequences is prepared with the same procedure. 
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3.3   Hidden Spatial States to Uncover 

Hidden Markov Models allow the user to specify the number of hidden states to uncover. 
Since we define a spatial state as an indicator of the controlling effect of location on 
housing price, we specify four hidden spatial states to discover in accord with the four 
urban zones in the city: poor inner city, affluent suburbs, well-off transition zone between 
inner city and suburbs, and extremely wealthy lakefront. In addition, since the study area 
contains a significant number of no-data spatial units, a no-data spatial state is included. 
Thus, we have a total of five spatial states to be uncovered. 

3.4   Data Continuity 

An observation symbol can be either discrete or continuous depending on the data 
type of its dimensions. With HMM, a continuous symbol can be converted to a 
discrete symbol by categorizing dimension values into discrete classes. For example, 
we can treat each integer percentage value as a discrete value. Therefore, an 
observation consisting of five dimensions would have millions of possible unique 
symbols.  Because of the finite size of the training data set in practice, however, a 
manageable number of unique symbols can be derived from training. In this study, for 
example, we identified 620 unique symbols based on the 1999-2003 home sale data. 

With continuous data handling, each dimension of a symbol takes a real number. 
Since the number of unique symbol is, in fact, unlimited, emission probabilities cannot 
be calculated by formula (6). Instead, emission probabilities have to be calculated by 
probability density functions. If a normal distribution is assumed for every dimension 
of the training dataset, the general mixture probability density function formula (3) can 
be simplified as a single kernel density function. For state j to produce observation ot 
(with D dimensions) at time t, the probability density is computed as 

∏
=

=
D

d
jdjdtdtj ofoP

1

),,()( σμ                                                       (7) 

where f is the kernel function, otd is the d-th dimension of observation at time t, μjd is 
the mean and σjd is the standard deviation of the distribution. We adopt a standardized 
Gaussian function for the kernel probability densities, i.e.  
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where μjd and σjd are estimated by the sample mean and standard deviation of the 
training dataset. 

This study adopts both discrete and continuous data handling.  Results derived 
from both continuity handlings are compared in section 5. 

3.5   Discovering Hidden Spatial States 

The Viterbi algorithm is used to discover the hidden spatial state because of its 
successful use in a wide range of artificial intelligence applications. With a trained 
HMM for the study area, the Viterbi algorithm is conducted on a test dataset to 
uncover hidden state sequences.  Based on a selected data continuity handling, 
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emission probabilities bj(Ot) in formulas (14) and (16) are computed from the test 
dataset differently. 

With continuous data, the emission probability of any observation symbol can be 
computed by formula (7).  With discrete data, an emission probability is looked up in 
the trained HMM by given a state and an observation symbol.  However, a symbol in 
the test dataset may not find an identical match in the HMM because discrete symbols 
derived from the training process are not exhaustive.  We match an observed symbol 
to the closest trained symbol by the following formula. 
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where x is the index of the matched training symbol, od the d-th dimension of the 
observation in the test dataset, sid the d-th dimension of the i-th training symbol in the 
HMM, M the total number of all training symbols, and D the number of symbol 
dimensions. 

4   The Study Area 

We chose the City of Milwaukee in Wisconsin as our case study because the city 
presents strong social and economic stratification which is reflected by distinct urban 
zones. We assume that relative location within an urban space is the key variable 
affecting housing price.  We seek to uncover the underlying factor by the Hidden 
Markov Model and further to reveal the urban spatial structure. 

The Milwaukee metropolitan area is located in southeastern Wisconsin fronting the 
Lake Michigan. In 2000, the population of the metropolitan area was 1,500,741 of 
which the city of Milwaukee accounted for 593,920 (U.S. Census). According to the 
Center for Economic Development at the University of Wisconsin at Milwaukee, the 
metropolitan area has experienced significant ‘hollow-out’ [21][23], polarization [22], 
spatial mismatch [40], and racial segregation [24]. 

The metropolitan area displays an apparent modified concentric zone structure 
from the center to periphery: a prosperous Central Business District (CBD), two 
(north and south) poor inner city areas, and affluent suburbs. A well-off transition 
zone between the inner city and suburb is clearly observable. Additionally, an 
extremely wealthy lakefront neighborhood lies north of the CBD (Figure 3). The 
apparent spatial differentiation makes Milwaukee an ideal site for testing HMM as a 
method for identifying underlying spatial states in urban areas.  

The City of Milwaukee has an excellently maintained property database, the 
Milwaukee Master Property Database (MPROP), which has records of nearly 160,000 
properties within the city for the past thirty years.  Each property is described by more 
than eighty attributes covering many aspects of the land and construction upon it. 
Most importantly, the database maintains records of every property deed from which 
the transaction prices can be retrieved.  All property deeds of the previous year are 
documented in the data files of the current year.  Although the sale price of a home is 
not recorded directly, it can be derived from the documented convey fee that has 
remained constant at 0.3 percent of the sales price since 1983. 
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Fig. 3. Spatial structure of the City of Milwaukee (Based on [48]) 

This paper focuses on single family home sales since they directly reflect the 
market value of properties. The MPROP distinguishes 36 different types of property 
deeds. Since some deeds, such as court order, are not transacted through the free 
market, we chose to use only transactions of warranty deed (WD), trustee deed (TD) 
and personal representative deed (PR) in order to obtain accurate market prices of the 
properties. From the 2005 MPROP database, 6127 deeds of the above types 
completed in 2004 were extracted, of which 6048 properties are geocoded in GIS 
using x, y coordinates or addresses. 

5   Data and Result Analyses 

Six years (1999 to 2004) of single family home sale data were extracted from the 
MPROP database. Each year’s data is symbolized (clustered by price and grided) and 
serialized to make an observation sequence. The first five sequences (1999 to 2003) 
are used as a training dataset, and the 2004 sequence used as a test dataset for spatial 
state discovery. All computations, including symbolization, symbol sequencing, k-
means HMM training, and Viterbi algorithm, were completed by Visual Studio. NET 
programs. 
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5.1   Trained Hidden Markov Models 

By combining two symbol sequencing (horizontal and vertical) with two continuity 
data handling (continuous and discrete), four HMMs (A, B, π) are produced and four 
sequences of hidden spatial states are discovered.  All HMMs have the same initial 
probability set 

π = {1.0, 0.0, 0.0, 0.0, 0.0} 

Values in this set are sequentially the initial probability of spatial states 0 to 4.  The 
initial probabilities indicate that the first observation (top-left grid cell) is state 0 for 
all the training sequences. 

5.1.1   Transition Probabilities 
Transition probabilities between states are computed from observation-to-observation 
(cell-to-cell) transitions of the training dataset. Models with different data continuity 
handling (continuous / discrete) show no difference in transition probabilities since 
data continuity has no effect on state identification by k-means clustering in the 
training process. Although the effect is slight, the symbol sequencing method, 
however, does influence transition probabilities. The following are two transition 
probability matrices derived from the same training dataset. 

0.8876 0.0143 0.0320 0.0519 0.0114 

0.0728 0.6962 0.1772 0.0380 0.0158 
0.1170 0.1149 0.5872 0.1766 0.0043 
0.2432 0.0295 0.1794 0.5061 0.0417 
0.2727 0.0909 0.1636 0.2727 0.2000 

AH = 

 
0.8779 0.0131 0.0297 0.0616 0.0148 

0.0759 0.7373 0.1646 0.0158 0.0063 
0.1404 0.1149 0.5745 0.1702 0.0000 
0.2555 0.0147 0.2285 0.4816 0.0197 
0.2727 0.0000 0.0545 0.3273 0.3455 

AV = 

 

Where AH and AV correspond to horizontal and vertical data sequencing, in which, 
rows 1 to 5 represent spatial states 0 to 4 respectively; so do columns 1 through 5. 
Values in the matrices are state-to-state transitioning probabilities. As indicated by the 
high values on the main diagonal (from upper left to lower right) of the matrices, 
spatial autocorrelation in the training datasets is apparent. When two main diagonals 
are compared, a higher value indicates that the clustering of the corresponding spatial 
state is stronger in the direction of that sequencing (horizontal or vertical). For 
example, the transition probability from spatial state 1 to state 1 is significantly 
greater in AV (0.7373) than in AH (0.6962), which indicates the cluster of spatial state 
1 tends to be vertically oriented. State 4 has dispersed transition probabilities, which 
suggests that the spatial state tends to be dispersed with weak clustering. All these 
patterns can also be found in the resulting maps in Figure 4. 

5.1.2   Emission Probabilities 
An emission probability indicates the likelihood for a state to produce a certain 
observation symbol. Emission probabilities are not affected by symbol sequencing 
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methods but are calculated and presented differently for different data continuity 
handling. With continuous data handling, we use a Gaussian probability density 
function (pdf) for each symbol dimension of each state. Parameters of the Gaussian 
functions derived from the k-means training algorithm are shown in the matrices below. 

0.0000 0.0097 0.0188 0.0325 0.1672 

78.3101 17.5443 3.2405 0.4367 0.4715 
11.6617 69.4638 18.4043 0.4383 0.0213 
2.0491 17.5283 76.4791 3.7125 0.2703 
4.9455 3.3455 17.6727 63.3636 10.6545 

μjd = 

 
0.0000 0.4061 0.7884 0.6931 3.6708 

17.3252 15.6195 8.3650 2.7704 4.0335 
13.3069 17.0824 16.8705 2.4985 0.3258 
5.1320 15.0903 16.4037 7.7592 2.5989 
10.5820 7.4392 17.1605 22.5170 19.0499 

σjd = 

 

where μjd and σjd are mean and standard deviation matrices of emission probability 
density functions, rows indicate spatial states and columns indicate symbol 
dimensions. Spatial state 0 (the first row) is a “no data” state.  Theoretically, the mean 
and standard deviation of every dimension of state 0 (the first row of both matrices) 
should be zero. The non-zero values arise from the fact that some observations are 
randomly clustered into the state during the unsupervised k-means training. For 
spatial state 1 to 4, each state has a significant peak dimension in the mean matrix 
(μjd), and this peak progressively migrates towards high dimensions. Since a high 
dimension corresponds to a high house price class, a high state number therefore 
tends to coincide with high price locations. 

With discrete data handling, the k-means training algorithm computes emission 
probabilities for every spatial state to produce every unique observation symbol. 
Since 620 unique observation symbols are identified from the training dataset and five 
spatial states are discovered in this research, a total of 3100 (= 620 × 5) emission 
probability values are calculated. Because of space constraints in this paper, the 
unique symbols and corresponding emission probabilities are omitted. 

5.2   Spatial States Discovered by the Viterbi Algorithm 

Hidden spatial states discovered by the Viterbi algorithm are presented in Figure 4. 
The maps are results of different models based on various combinations of symbol 
sequencing and data continuity. Hidden spatial states are indications of the controlling 
effect of location on home prices. The four spatial states (1 to 4) agree well with the 
 

Table 1. Discrepancies between HMM models (number of different cells) 

Horizontal sequencing Vertical sequencing  
Continuous Discrete Continuous Discrete 

Continuous     Horizontal 
sequencing Discrete 10 (1.67%)    

Continuous 11 (1.83%) 6 (1.00%)   Vertical 
sequencing Discrete 10 (1.67%) 0 (0.00%) 6 (1.00%)  
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a. Horizontal sequencing continuous model 
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b. Horizontal sequencing discrete model 
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c. Vertical sequencing continuous model 
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d. Vertical sequencing discrete model 
 

Fig. 4. Hidden spatial states identified by hidden Markov models 
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traditional urban zones shown in Figure 3, with spatial state 1 coinciding with the 
poor inner city sub-areas, state 2 with a transitional zone, state 3 with the affluent 
suburbs, and spatial state 4 with the extremely wealthy lakefront neighborhoods. 

The great similarity in the resulting maps suggests stability in the Hidden Markov 
Model approach. Only by careful scrutiny may differences between the maps be 
distinguished. Table 1 discloses discrepancies between models by showing the 
number and percentage of cells differing in states. The table indicates that the overall 
difference between models is very small with an average inconsistence of 1.19%. 

5.3   Hidden States and Location Values 

To further discover the magnitude of the impact of spatial states on housing price, a 
traditional hedonic model is used, in which sixteen structural variables and the four 
spatial states derived from the horizontal sequencing discrete model are used for 
linear regression. Table 2 is a list of the variables considered. 

Table 2. Variables used in the hedonic housing price model 

Variables Description 
Dependent: 

Houseprice 
Independent: 

Lot_area 
Building_area 
Building_age 
Num_rooms 
Bedrooms 
Num_baths 
New_home 
Has_basement 
Has_attic 
Has_fileplace 
Has_airconditioning 
Has_powderroom 
One_story 
Two+_stories 
Attached_garage 
Detached_garage 
STATE1 
STATE2 
STATE3 
STATE4 

 
House price, in US dollars. 
 
Lot area, in square feet 
Building area, in square feet 
Building age, in years 
Number of rooms 
Number of bedrooms 
Number of bathrooms 
New home, dummy variable, 1 for house_age ≤ 1, 0 otherwise 
Has basement, dummy variable 
Has attic, dummy variable 
Has fireplace(s), dummy variable 
Has air conditioning, dummy variable 
Has powder room, dummy variable 
One story building, dummy variable 
Two or more story building, dummy variable 
Has attached garage, dummy variable 
Has detached garage, dummy variable 
Dummy variable 
Dummy variable 
Dummy variable 
Dummy variable 

 
The dataset provides 6039 valid cases for regression analysis. The overall regression 

is satisfactory with a coefficient of determination R2 = 0.646 (p-value = 0.0000). 
Coefficients indicate that, based on a constant coefficient $98,727, spatial state 1 incurs 
a reduction of $35,910 in housing price, spatial state 3 contributes an increase of 
$25,970,  and spatial state 4 contributes an increase of $142,577. Variable state 2 is 
removed in the regression since it does not significantly contribute to the variance of the 
house price given that constant. Standardized coefficients indicate that building area (β 
= 0.435), state 4 (β = 0.323) and state 1 (β = -0.239) are the three most influential 
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variables. However, t-tests of the coefficients indicate that the number of building 
stories (one_story: p-value = 0.177, two+_stories: p-value = 0.133) and garages 
(attached_garage: p-value = 0.533, detached garage: p-value = 0.839) are not 
significant. Moreover, these four variables show a much higher correlation to building 
area and number of rooms than to the dependent variable. 

After removing those less influential variables and rerunning the regression, the 
coefficient of determination R2 (0.643) is not significantly changed.  However, the 
most influential variables become building area (β = 0.424), state4 (β = 0.407), state3 
(β = 0.356) and state 2 (β = 0.275).  Variable “state1” is removed this time since the 
regression constant becomes $11,969.  Spatial state 2 now contributes +$37,614 to the 
house price, spatial state 3 contributes +$63,041, and state4 contributes +$179,835. 

Table 3. Regression coefficients of spatial states 

Regression 1 Regression 2  
Coefficient Difference Coefficient Difference 

Average 
Difference 

Constant 98,727 11,969    
State 1 -35,910 0 

35,910 37,614 36,762 
State 2 0 37,614 

25,970 25,427 25,699 
State 3 25,970 63,041 

State 4 142,577 116,607 179,835 116,794 116,701 

 
Both regression models agree well in differences in coefficients of spatial states or 

the impacts of states.  Table 3 is a summary of the spatial state coefficients and 
differences between them.  The last column in the table shows the impacts of location, 
indicated by spatial states, on housing values.  For example, the location represented 
by spatial state 4 is $116,701 more valuable than that of state 3. 

6   Conclusion 

We introduced the Hidden Markov Model and demonstrated that it can be an ideal 
approach for uncovering hidden spatial patterns.  The HMM is a reliable approach to 
spatial pattern identification since it takes into account both variation of observed 
values and spatial dependence in pattern recognition.  In other words, it captures both 
the local variability and regional trends – the geographic context.  Spatial dependence 
is accounted for by transition probability and cross-class correlation rather than 
Euclidean distance so that the method is not restricted to any particular spatial pattern 
and can handle directional asymmetry.  The HMM substantially differs from a 
traditional Markov chain in that it models Markov processes without known 
parameters.  In addition, it is capable of working with data of any measurement scale 
and dimension. 

The HMM was demonstrated in a case study that, using home sale price data, 
uncovered the urban spatial structure of the City of Milwaukee. House prices were 
assumed to be indicators of underlying spatial states and used to create symbols and 
observation sequences. These sequences then were used to build HMMs and uncover 
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the hidden spatial states. House prices were not the target of this research nor was the 
model intended for predicting home prices. Therefore, temporal processes of home sale 
prices, important factors reflecting market evolution, were not included in the study. 

Spatial data, especially random location point datasets, normally lack inherent 
sequences. To make HMM more sophisticated and versatile for geospatial problems, 
further research will be directed towards spatial data segmentation, symbolization and 
sequencing, Markov field definition, and data continuity handling. 
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Appendix A: Viterbi Algorithm 

Problem: Given an HMM λ = {A, B, π} and an observation sequence O = {O1, O2, … 
OT}, what is the most probable sequence of states underlying O? 

First, the probability of producing the observation sequence O and an underlying 
state sequence S given an HMM can be derived by 

)()...()()|()|()|,( ,1222,1111 TTTT ObaObaObSPSOPSOP −=⋅= πλλ                (10) 

Define a cost function U as 

∑
=

−+−=
N

t
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Thus 
),...,,( )21)|,( TsssUeSOP −=λ                                                  (12) 

Now, the problem of maximizing P(O, S | λ) becomes 

min U(s1, s2, …, sT)                                                       (13) 

Let’s define δt(i) as the accumulated cost at state Si at time t, and ψt(j) as a state 
immediately prior to state Sj at time t-1 via which the transition cost is the least, i.e. 
with the highest transition probability.  The problem can be resolved by the following 
iterations: 

1) Initialization, for 1 ≤ i ≤ N 

δ1(i) = -ln(πi) – ln(bi(O1))                                             (14) 

ψ1(i) = 0                                                                        (15) 

2) Recursion, for 1 ≤ t ≤ T, 1 ≤ j ≤ N 

δt(j) = min1 ≤ i ≤ N [δt-1(i) – ln(aij)] – ln(bj(Ot))                             (16) 

ψt(j) = arg min1 ≤ i ≤ N [δt-1(i) – ln(aij)]                                     (17) 

3) Termination 

p* = min1 ≤ i ≤ N [δT(i)]                                                 (18) 

q*T = arg min1 ≤ i ≤ N [δT(i)]                                               (19) 

4) Tracing back the optimal state sequence, for t = T-1, T-2, …, 1 

q*t = ψt+1(q*t+1)                                                       (20) 

Finally, the state-optimized probability is e-p*, and the optimized state sequence is 

Q* = {q*1, q*2, …, q*T}                                              (21) 
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Abstract. A trajectory is the time-stamped path of a moving entity
through space. Given a set of trajectories, this paper proposes new con-
ceptual definitions for a spatio-temporal pattern named Herd and four
types of herd evolvements: expand, join, shrink, and leave based on the
definition of a related term flock. Herd evolvements are identified through
measurements of Precision, Recall, and F-score. A graph-based repre-
sentation, Herd Interaction Graph, or Herding, for herd evolvements is
described and an algorithm to generate the graph is proposed and imple-
mented in a Geographic Information System (GIS) environment. A data
generator to simulate herd movements and their interactions is proposed
and implemented as well. The results suggest that herds and their inter-
actions can be effectively modeled through the proposed measurements
and the herd interaction graph from trajectory data.

Keywords: Spatio-temporal Data Mining, Spatial Patterns, Spatial
Evolvements, Herd Evolvements.

1 Introduction

Many moving objects exist in the air, on the ground, or in the ocean. The
detection and description of spatio-temporal patterns are essential for better
understanding of the behaviors of moving objects (animals, vehicles, and peo-
ple). For example, models of movements can be used to study the ecology of
animal behaviors, habitat preferences, and the dynamics of population densi-
ties [4]. Other application examples of the analysis of moving objects include
studies in socio-economic geography [8], transport analysis [19], defense, and
surveillance [18]. With increased accessibility to data collected by Global Po-
sitioning Systems (GPS), radio transmitters, and other location-aware devices,
the processing, storage, management, mining and analysis of data, information
and knowledge related to moving objects have been a research focus in the last
few years.

Trajectory analysis has been the focus of many research efforts recently and is
of particular interest in many fields. A trajectory is a sequence of time-stamped
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point locations describing the path of a moving object with identity e over a
period of time. Given a set of trajectories of a set of entities, the problem that
this paper deals with is to mine grouping dynamics of moving entities described
by their trajectories over time. Assuming the time used by an entity between any
two consecutive locations is the same (uniformed sampling), then a trajectory
can be represented by tj(e, τ) =< p1, p2, . . . , pτ >, where τ is the length of the
trajectory and tj(e, τ)[t] represents the point locations visited by the entity e at
time snapshot t(1 ≤ t ≤ τ).

Recently, algorithms to find flocks have been proposed to identify groups of
entities that travel together for an extended period of time [10]. Formally, given
the trajectories of a set of n entities, a time interval I of at least k consecutive
snapshots, and a distance r, a flock f(m, k, r) is a set of at least m entities
such that for every snapshot t in time interval I, there is a disk of radius r that
contains all the m entities [10].

The concept of flock is based on several parameters to be provided by a user:
the minimum number of entities m, the duration of a time interval k, and the
radius r. The focus of flock is more on query-based data exploration. However,
there are several limitations with a flock-based approach: (1) Entities, e.g. cari-
bous, do not always gather in circular shapes. Finding at least m entities in a
radius r, may not give an accurate picture of a flock, which most likely roams in
arbitrary shapes; (2) Given m, k, and r, the flocks found will have many over-
laps. For example, flock F1 may consist of m = 100 entities E traveling within
radius r for a time interval I of at least length k = 1000. For a query with
m = 50, k = 500, any subset of E will be qualified as a flock and be returned
as a result, which will lead to C50

100 flocks (choose 50 from 100 entities). Fur-
thermore, for each flock in the C50

100 flocks, any sub-interval of the I will result
in a flock, leading to C50

100 × (1000 − 500 + 1) flocks. Although algorithms for
discovering longest flocks have been proposed [10], the problem of combinatorial
explosion related to entities has not been addressed; (3) Flocks move and evolve
over time. Because of these limitations, there is a need to discover how flocks
interact with each other over time throughout the observations. In this paper we
focus on modeling group traveling patterns and the evolvements and interaction
of these groups.

The major contributions of this paper are: (1) A new concept herd is proposed
for spatio-temporal patterns along with four types of spatial evolvements: expand,
join, shrink, and leave; (2) Clustering-based methods are used to detect herd snap-
shots in trajectory data, and mathematical measurements of Precision, Recall, and
F-score are proposed to identify herd evolvements; (3) A graph-based representa-
tion for herd evolvement is designed and implemented as an extension to a Geo-
graphic Information System (GIS). A herd evolvement simulator is implemented.

2 Related Work

Time is an essential dimension for analyzing and interpreting real-world evolu-
tion. In paper [6], the authors presented a set of design patterns for modeling
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spatio-temporal processes expressed in an object-relationship data model. They
also claimed that describing geometric transformations of an independent spatial
entity implies changes on four orthogonal attributes: shape (form of its bound-
ary), size (area of its interior), orientation (compass direction of its major and
minor axes), and location (position of its gravity center measured with geo-
graphic or Euclidean coordinates). In order to integrate phenomena that change
over space and time in real-world phenomenon, a better understanding of the un-
derlying components of change and how people reason about change are needed.
In paper [12], the authors proposed a qualitative representation of changes. It
offers a classification of changes based on object identity and the set of opera-
tions that either preserve or change identity. These operations can be applied
to single or composite objects and combined to express the semantics of se-
quences of change. The authors also developed a visual language to represent
the various types of change, and provided examples to illustrate the application
of this language. Later, the authors used a temporal zooming approach to detect
and navigate the spatio-temporal changes [11,13]. These approaches do not deal
specifically with trajectory data.

Trajectory data analysis can be divided into two basic categories: single tra-
jectory and multiple trajectory analysis. Since single trajectory data normally
depicts one specific moving entity, single trajectory data analysis mainly focuses
on looking for individual spatial patterns, and creating predictive models for the
moving entity [2,20]. The predication models are useful for applications such as
providing real time traffic information if the next trip stops can be predicted.
In some applications, object movements obey periodic patterns or follow similar
routes over regular time intervals. Effective data mining algorithms have been
proposed to find spatio-temporal periodic patterns [5,17].

In recent years, there has been increased interest in analyzing spatial-temporal
patterns and moving paths of wild animals [1] using multiple-trajectory data
analysis. Geographic data mining approaches have been proposed to detect
generic spatial-temporal patterns such as flock, leadership, convergence, and
encounter in geospatial data [15,3,16]. A method to calculate the longest du-
ration of flocks and meetings in spatial-temporal data has been proposed [10].
Definition of moving clusters and efficient algorithms to identify them have been
proposed [14]. A recent work tries to find a set of individual trajectories that
share the property of visiting the same sequence of places with similar travel
times [9], which is related but not the focus of this paper.

Our work is related to and goes beyond finding moving clusters or identify-
ing flocks. We provide a clustering-based definition of herds and further model
quantitative changes and qualitative changes of the herds and their interactions.

Our work is also related to spatial clustering. For static datasets, clustering
analysis can be either used as a stand-alone tool to get insight into the distri-
bution of a dataset, to identify areas for further analysis, or as a preprocessing
step for other algorithms operating on detected clusters. Clustering algorithms
can be classified into partition based, hierarchical clustering, density based, and
model based methods. A density based clustering algorithm, e.g. DBSCAN [7], is
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attractive when one needs to identify arbitrary shaped clusters. In some applica-
tions, the location and content of spatial clusters may change over time, which
requires a formal definition for moving clusters and algorithms for automatic
discoveries [14].

3 Herd Evolvements

In this section, we introduce the ideas of herd and herd evolvements through
visual illustrations and formal definitions. Figure 1(a) illustrates six trajectories
(O1, O2, .., O6) over two time snapshots. From Figure 1(a), suppose we have A, B
clusters in snapshot ti and they will evolve into A, B, C clusters in snapshot ti+1,
where C is a new cluster formed in ti+1. Please note that between the two time
snapshots, the details of the trajectories are not perceivable due to the sampling
granularity. Also, a cluster should include more entities than those illustrated in
the figure.

(a) Trajectories and Herds (b) Illustration of Herd Evolvements

Fig. 1. The Spatial Evolvements

Thus, if we take a snapshot of the locations of n entities at time t, we can
spatially identify proximate groups of entities. We call each group consisting of a
set of entities at time t a herd snapshot. Several herd snapshots over time may be
related to each other and represent the movements and evolvements of herds over
time. The mobility of entities causes herd movement whereas the membership
change of entities causes herd evolvement.

The groups in each snapshot can be identified through various ways and we
propose to use clustering algorithms for this purpose. A spatial cluster is a group
of entities gathered in spatial proximity. Various clustering algorithms can be
used including partitioning based, hierarchical, model based, and density based.
We argue that a density-based clustering is more suitable in this application due
to its following properties: (1) the ability to construct non-spherical clusters of
arbitrary shapes; (2) the robustness with respect to noise in the data; (3) the
ability to discover an arbitrary number of clusters without the need of specifying
the number of clusters to find.
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Once the herd snapshot concept is established, we investigate how the mem-
bership changes of herd snapshots can result in the dynamics of formation and
deformation of new herds. For example, when a herd snapshot H(t) of 100 enti-
ties at time t is joined by a few other entities, e.g. 5 entities, in the next snapshot,
do we still have the same herd H? What about 2, 000 entities joined H(t)? Do
we still have the same herd H? To summarize, the research issue here is how to
characterize the herd evolvements using membership changes.

Let H(t) represent a herd snapshot at time t and the herd H itself was formed
at sometime t0 before t. H ’s changes in the subsequent time snapshots after
t0 can be classified into: quantitative and qualitative changes. In a quantitative
change, members leave H and new members may join H in small quantities.
However, the herd can still be “reasonably well” represented by the initial mem-
bers of H when H was formed, i.e. H(t0). In a qualitative change, members of H
change so much that H(t0) is not a “good” representative of the herd anymore.
Of course, the question is how to precisely define “reasonably well” and “good”.
We present the intuitive meaning of the four categories of qualitative changes
here and propose the formal definitions in section 4:

– Expand: A herd H formed at time t − i expands into a new herd H ′ at time
t if H ′(t) contains “many” of the members of H(t − i) but also contains
“substantial” new members.

– Join: A herd H1 formed at time snapshot t − i joins a herd H2 formed at at
time snapshot t − j to form a new herd H at time t, if H(t) is “similar” to
the herd H2 and contains majorities of the members from herd H1.

– Shrink: A herd H formed at time t − i shrinks into a new herd H ′ at time
t if H(t − i) contains “many” of the members of H ′(t) but also contains
“substantial” other members not in H ′(t).

– Leave: A herd H1 leaves a herd H formed at time snapshot t− i at snapshot
t if the majorities of members of H1(t) are also in H(t − i). Further more,
the herd formed by the remaining members, denoted by H2(t), is “similar”
to the herd H .

Figure 1(b) illustrates the four kinds of evolvements in three snapshots. In
the shrink case, herd A went through a quantitative change first and then a
qualitative change, to shrink into a new herd B; in the expand case, herd A went
through a quantitative change first and then a qualitative change, to expand into
a new herd B; in the join case, herd B joined herd A to form a new herd with
name A due to the dominance of A in the new herd (reasons for using label
A for the new herd will be discussed in section 4); in the leave case, herd A
went through a quantitative change first and then herd B leaves herd A and the
remaining herd is still labelled A (reasons for labeling one of the new herds as
A will be cleared after section 4).

4 Measurements of Herd Evolvements

The Precision(P), Recall(R) and F-Score(F) measurements have been tradition-
ally used for evaluating the performance of information retrieval systems. For a
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query Q and the collection of documents retrieved by Q, the measures assume a
ground truth notion of relevancy: every document is known to be either relevant
or non-relevant to Q. Intuitively, recall is the fraction of the documents that are
relevant to the query and are successfully retrieved; and precision is the fraction
of the documents retrieved that are relevant to what the user is querying for.
The formal definitions are presented as follows:

Recall =
|relevant documents|

⋂
|retrieved documents|

|relevant documents|

Precision =
|relevant documents|

⋂
|retrieved documents|

|retrieved documents|

With the definitions of precision and recall, we can expound the meaning of
F measure: the weighted harmonic mean of precision and recall. The formal
definition of the F-score or balanced F-score is:

F =
2 × Precision × Recall

Precision + Recall

If we treat moving entities in trajectory data as documents in retrieval system,
we can adopt the above measurements to the areas of spatio-temporal analysis.
Thus, let H(t) be a herd snapshot at time t, i.e. the members of herd H at time
t, and let H ′(t+ i) be another herd snapshot at time t+ i, we adopt the precision
(P), recall (R), and F-score (F) measurements to model the relationship between
H(t) and H ′(t + i) as follows:

R(H(t), H ′(t + i)) =
|H(t)

⋂
H ′(t + i)|

|H(t)|

Intuitively, R(H(t), H ′(t + i)) measures the percentage of H(t) that continue
to exist in H ′(t + i). Thus, the more the entities left between t and t + i from
H(t), the lower the value of R(H(t), H ′(t + i)) is.

P (H(t), H ′(t + i)) =
|H(t)

⋂
H ′(t + i)|

|H ′(t + i)|

Intuitively, P (H(t), H ′(t+ i)) measures the percentage of H ′(t+ i) that come
from H(t). Thus, the more the new entities joined in H(t) between t and t + i,
the lower the value of P (H(t), H ′(t + i)) is.

F (H(t), H ′(t + i)) =
2 × P (H(t), H ′(t + i)) × R(H(t), H ′(t + i))

P (H(t), H ′(t + i)) + R(H(t), H ′(t + i))

F (H(t), H ′(t + i)) represents the combined results of members left and new
members joined and it ranges from 0 to 1, where 0 indicates H(t) is completely
different from H ′(t+ i) and 1 indicates H(t) and H ′(t+ i) consist of exactly the
same members.
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r x

y
H’(t+i)

r

H(t)

x

Fig. 2. Generic Herd’s Evolvements from t to t+ i (all symbols, e.g. r, denote the areas
delineated by their closest boundaries)

4.1 Measuring Generic Herd Evolvements Using R, P, F

In this section, we describe the scenario and criteria to precisely define evolve-
ments of herds.

In Figure 2, let the |r ∪ x| represent the members of a herd snapshot H(t)
at time t. At time t + i, suppose we detect another herd snapshot H ′(t + i)
consisting of r∪, where x is the set of entities that escaped from H(t) between t
and t + i time snapshots, and y is the set of entities that joined in H(t) between
t and t + i time snapshots, then the P, R, and F can be formulated using r, x
and y. The recall is:

R(H(t), H ′(t + i)) =
|r|

|r| + |x|
and the precision is:

P (H(t), H ′(t + i)) =
|r|

|r| + |y|

And F-score will be(please note that r,x,y are disjoint):

F (H(t), H ′(t + i)) =
2 × P × R

P + R
=

2 × |r|
|r∪y|

|r|
|r∪x|

|r|
|r∪y| + |r|

|r∪x|
=

2 × |r|
2 × |r| + |x| + |y|

Thus, we propose the following criteria to define the quantitative and qualita-
tive evolvements of herd:

1. When the sum of the number of the escaped members (i.e. x) and the number
of the newly joined members (i.e. y) is less than the number of the remaining
members of H(t) in H ′(t + i) (i.e. r), we think that conceptually the herd
can still be reasonably represented by the original members of H and claim
that H(t) underwent a quantitative change to H ′(t + i) and H ′(t + i) is the
same herd as H(t). That is, given |x| + |y| < |r| or equivalently when:

F (H(t), H ′(t + i)) >
2
3

the change is quantitative;
2. When the sum of the number of the escaped members (i.e. x) and the num-

ber of the newly joined members (i.e. y) is no less than the number of the
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remaining members of H(t) in H ′(t + i)(i.e. r), conceptually, we think the
herd is NO longer the same herd and has undergone a qualitative change.
We say that H(t) underwent a qualitative change to H ′(t + i) and H ′(t + i)
is NOT the same herd as H(t).

That is, given |x| + |y| ≥ |r|, or equivalently when:

F (H(t), H ′(t + i)) ≤ 2
3

the change is qualitative. This case can be further divided into the following
scenarios:

(a) When |x| ≥ |r| and |y| < |r|, or equivalently,

R(H(t), H ′(t + i)) =
|r|

|r ∪ x| ≤ 1
2
, P (H(t), H ′(t + i)) =

|r|
|r ∪ y| >

1
2

we say that H(t) shrank or left by others into H ′(t + i). In this case,
the escaped members (i.e. x) outweigh the remaining members of H(t)
in H ′(t + i) (i.e. r) and the remaining members of H(t) in H ′(t + i) (i.e.
r) outweigh the newly joined members (i.e. y).

(b) When |y| ≥ |r| and |x| < |r| , or equivalently,

R(H(t), H ′(t + i)) =
|r|

|r ∪ x| >
1
2
, P (H(t), H ′(t + i)) =

|r|
|r ∪ y| ≤ 1

2

we say that H(t) expanded or be joined into H ′(t + i). In this case, the
newly joined members (i.e. y) outweigh the remaining members of H(t)
in H ′(t + i) (i.e. r) and the remaining members of H(t) in H ′(t + i)(i.e.
r) outweigh the escaped members (i.e. x).

(c) Otherwise, H(t) and H ′(t+i) do not have a relationship. If H(t) does not
find any other herd snapshot at t + i related to it, H simply disappears
at time t + i.

Please note that the threshold of 2
3 for the F-score and the threshold of 1

2
for the precision and recall are decided by the “majority rules” and may be
modified based on biological rules to fit specific application domains.

We summarize the conditions of various qualitative changes in Table 1.

Table 1. Qualitative Changes Based on P, R When F ≤ 2
3

F < 2
3

P > 1
2

P ≤ 1
2

R ≤ 1
2

Shrink or Split No Relationship

R > 1
2

No Relationship Expand or Merge
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Fig. 3. Herds Formed at t1 and t2 Merge at t( all symbols, e.g. r, denote the areas
delineated by their closest boundaries)

4.2 An Additional Concern in Labeling New Herds

If two or more herd snapshots are merged into a larger one at time t+ i, will more
than one of the merging herds claim that the newly formed herd is the same herd as
themselves (both changes are not qualitative)? If this happens, we have an identity
problem where we do not know how to call the newly formed herd.

In Figure 3, assume we have two herds H1 and H2 formed at t1 and t2 respec-
tively, where H1(t1) contains r1 ∪r∪x1 ∪x2 and H2(t2) contains r2 ∪r∪x2 ∪x3.
The two herds merged in the snapshot t into H(t). At the same time x1 ∪x2 ∪x3

escaped and did not participate in H(t). But y joined at the same time. So at
the end, the member set of H(t) consists of r1 ∪ r2 ∪ r ∪ y. To capture the in-
heritances among herds, we should name Herd H(t) either H1 or H2 if one of
F-scores is larger than 2

3 . If both herds H1(t1) and H2(t2) went through quan-
titative changes and became H(t), i.e. H(t) is both H1(t1) and H2(t2), we have
problems in labeling the descendant herds (e.g. H(t) in this case). Here, based on
conceptual definition of quantitative change, if both herds went through quanti-
tative changes, we have:

|x1 ∪ x2| + |r2 ∪ y| < |r1 ∪ r|
|x2 ∪ x3| + |r1 ∪ y| < |r2 ∪ r|

In fact, it is possible for the two equations above to hold. For example, when
x1, x2, x3, y are empty, r1 = r2, and r is not empty, it is obvious both equations
hold.

In order to preserve herds evolvements, we propose a ranking strategy to estab-
lish the inheritance relationship among Herds at different snapshots. Specifically,
if a herd at the current time snapshot has F-scores greater than 2

3 with several
herds formed previously, we rank the herds according to the F-scores and chose
the one with the highest F-score as the label for the current herd.

5 Herd Interaction Graph

Now we are ready to introduce the Herd Interaction Graph (or Herding) using
various herd evolvements defined in the previous sections. For a given starting
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time tstart that we start to observe the herds, we find the core member set CM
of a herd H . The core member set CM defines and represents the herd H until
the actual member set of H deviates qualitatively from CM . Then H disappears
and a new herd may emerge with a new CM ′. Formally, we define the concept
of a core member set as follows:

Definition 1 (Core Member Set). Given the trajectories of a set of n entities
of length τ and a clustering algorithm to cluster the locations of the entities at
each time snapshot: (1) When t = tstart, a cluster CM defines and initiates a
herd H and is called the core member set of the herd H and can be denoted
by H(t). H will continue to exist and be represented by H(t) until H ’s actual
member set H(t + i) at time t + i is qualitatively different from H(t) (where F-
score ≤ 2

3 ); (2) When t �= tstart, a cluster CM defines and initiates a herd H and
is called the core member set of the herd H and can be denoted by H(t) if and
only if: CM is qualitatively different from any existing core member set formed
in the previous time snapshots (where F-score ≤ 2

3 ); (3) A herd H together with
its core member set CM disappears at t when there is no clusters found at t is
a quantitative change of CM .

(a) Label Herds in snapshot ti+j (b) Update the Core Member set

Fig. 4. Core Member Set in Herds

In Figure 4(a), at the beginning time snapshot ti, we assume there are 6
herds each represented by its core member set. They are labeled as a, b, c, d, e, f .
After j time snapshots at snapshot ti+j , we found 6 clusters labeled as 1 to 6
respectively. We need to see if these clusters are just some quantitative change
of the earlier herds represented by their core member set or newly formed herds
using R, P and F-score. We calculate their relationships with the core member set
of a, b, c, d, e, f using R, P , and F-score. It turned out that 1, 2, 5 are quantitative
changes of a, b, d respectively, thus the herds a, b, d continue to exist and are still
represented by their core member set at ti. Furthermore, because cluster 5 is an
expansion of cluster e (cluster 5 is also herd d), cluster e joined cluster 5. In a
similar vein, cluster 3 (relabeled as g) is a shrinking of cluster b (cluster 2 is also
herd b), so herd 3 left herd b. In addition, herd f disappeared, herd 4 (relabeled
as h) is a shrinking of herd c, a new herd 6 (relabeled as i) appears. Figure 4(b)
shows that in two snapshots, some herds disappear, some are new and the core
member set of the common herds, e.g. b, d, will not change (although there are
lost members and newly joined members).
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5.1 Basic Algorithm to Generate Herd Interaction Graph

We are now ready to introduce our algorithm to generate the Herd Interaction
Graph by determining the quantitative changes and qualitative changes in Herds’
Evolvements.

H(n,t)=GetClusters(r,minPts,t)

F(b,i)= GetFScore(Hb,Hi)

If F(b,i)>2/3

If R<=1/2 and P>1/2
Label edge as Shrink

E(Hb,Hi)= Shrink

If R>1/2 and P<=1/2

t=t+1

i=i+1

yes

no
yes

If i=n

Label Hi as Hb
where F(b,i) is larger

E(Hb,Hi) =Same

yes
no

no

b=b+1

If b=m

For each b, loop every i, 
if exist E(Hb,Hi)=same,

then for other i,
reassign E(Hb,Hi)=Leave

For each i, loop every b, 
if exist E(Hb,Hi)=same,

then for other b,
reassign E(Hb,Hi)=Join

b=0, i=0

no

yes

yes

no

1

2

Label edge as Expand
E(Hb,Hi)= Expand

Fig. 5. Flow Chart of the Algorithm to Generate Herd Interaction Graph

In Figure 5, we first use procedure GetClusters(r, minPts, t) to find clusters
from the trajectory data at snapshot t via a clustering algorithm, e.g. DBSCAN,
with two parameters: radius (r) and minimum points (minPts), and return the
results in the array H(n, t) where n is the number of clusters found. Here we
assume we have m herds B formed previously represented by their Core Mem-
ber Sets. To decide if the change from a cluster Hi and a core member set Hb is
quantitative or qualitative, procedure GetFScore(Hb,Hi) calculates the F-score
between them. We use E(Hb, Hi) to represent the relationship, e.g. expand, be-
tween herd Hb and a cluster Hi.

In case of a quantitative change(F ≥ 2
3 ), we rank the F-scores, label Hi as Hb,

and assign E(Hb, Hi) = same, where F (b, i) is the largest for all b ∈ B if multi-
ancestors are found. In case of a qualitative change, based upon the criteria we
have discussed, we can determine that 1) herd Hb shrinks into herd Hi formed
in this snapshot if P > 1/2 and R ≤ 1/2; we then tentatively label the edge
between Hb and Hi as shrink(E(Hb, Hi) = shrink); 2) herd Hb expands into
herd Hi formed in this snapshot if P ≤ 1/2 and R > 1/2; We tentatively label
the edge between Hb and Hi as expand(E(Hb, Hi) = expand). After both loop 1
and loop 2 are over, we begin starting loop for b, i again and check if we need to
reassign edges with join or leave by using the numbers of incoming and outgoing
edges of herds.
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Furthermore, for each b, we loop every i, if there is no Hi as the quantitative
change of Hb, i.e.. E(Hb, Hi) = same, we can determine that H(b) disappeared.
Similarly, for each i, we loop every b, if there is no Hb as the quantitative change
of Hi, i.e. E(Hb, Hi) = same, we can also determine that H(i) is newly formed.

5.2 Intuitive Visualization of the Herd Interaction Graph

We are now able to produce the interaction graph (see Figure 6(a)) based upon
the scenarios and algorithm we have proposed so far. We pay close attention to
the intuitive meaning of the herd interaction graph to a user.

(a) Original Graph (b) Switch CM (c) Graph with Sub-herds

Fig. 6. Herd Interaction Graph

In Figure 6(a), for example, with herd E joining D, D will have to appear
at snapshot T2 although it does not have a qualitative change. Because the core
member set of a herd does NOT change unless the herd discontinues to exist,
new herds, e.g. F , will continue to compare with D(T0) which is the core member
set of D rather than with D(T2). However, when F either left or shrank from
D(T0), we need to draw a line from D at T2 to F at T3 as shown in Figure 6(b)
which can be easily interpret as F left (or shrank) from D(T2) (D at T2) instead
of D(T0) (D at time T0). As a result, there is a discrepancy between the actual
meaning of a node in the graph and the intuitive meaning a user may observe.

To represent their interactions, we have to change the mechanism of producing
interaction graphs by switching the core member set of a herd to status-based
core member set of a herd whenever a herd label appears more than one time (see
Figure 6(c)). Consequently, a herd will be labeled using the same herd name but
with subscriptions. For example, in Figure 6(c), D appears in multiple snapshots,
namely T0, T2, T3 and T5, and are labeled as D0, D1, and D2 where the D2 at
T5 is added to signify the ending of D.

Thus, in order to effectively symbolize and represent the evolvements and in-
teraction of herds through the herd interaction graph, we introduce the concept of
sub-herd to represent the core member set updates for more intuitive visualization.

Definition 2 (Sub-herd(H)). Given a herd H formed at time t0 whose core
member is represented by H(t0), the sequential appearance of H on the herd
interaction graph even without qualitative change are called sub-herds of H . Each
sub-herd is represented by their members at the time when they appear on the
graph (called status-based core member set) and is labeled as Hj where j is an
increasing integer.
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One more point that needs to be emphasized here is that, in Figure 6(b), a new
herd G forms in snapshot T4 calculated by using F, P, R, i.e. F (G(T4), A(T0)) ≤
2
3 . However, when we look backward to the herds formed in historical snapshots
and determine which herd is the most similar to this new herd (the greater the
F value is, the more similar the two herds are), we can detect that B in snapshot
T0 is actually not very different from G, and G should be labeled as B1. In
addition, using the core member set of A at T3, we conclude that B1 is a shrink
of A1. Combined with A2, we decide B1 left A1 as shown in Figure 6(c). The
situation for F in Figure 6(b) is similar. In addition, if herd A(t) disappears
in next snapshot t+1, this herd is forced to appear on graph to highlight its
completeness. For example E1 disappears at time T5 in Figure 6(c).

Overall in Figure 6(c), there are five herds A, B, C, DandE at the first snap-
shot. Then herds B joined B at snapshot T3 and then split into two herds similar
to the original herds A and B at T4; herd C stays the same throughout the entire
observation; The behaviors of D and E are similar to those of A and B.

6 Algorithm Validations

We describe a herd simulator to facilitate the validation of the proposed concepts
and algorithms for detecting herd and their interactions in this section. We also
discuss the algebraic cost of the algorithms. Both the simulator and herd graph
generation algorithms are implemented as an ArcGIS 9.x extension and source
codes and details are available at http://groucho.csci.unt.edu/herding/.

(a) Path (b) Spreading Angle (c) Joining a Herd

Fig. 7. Simulating Herds

6.1 Simulating Herds and Their Interactions

We have developed a herd simulator using VB.net to allow users to pre-define the
moving pattern for each herd through a mouse. A set of clusters will be initially
generated at time tstart. Then, as shown in Figure 7(a), a user can specify the
path for each cluster (herd) where each point represents a snapshot (from 0 to
5 in the graph). Furthermore, a user can specify a spreading angle of a herd so
that the core member of a herd will move randomly along the specified path and
within the spreading angle. For example, in Figure 7(b), the moving entity O can
randomly move to the territory within the area of PQO in the next snapshot.
Generally, the greater the spreading angle, the more likelihood for the herd to
split and disappear.
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(a) Working IDE (b) Attribute Table in ArcGIS

(c) Generation of the Herd Interaction Graph

Fig. 8. Screenshots

By specifying the paths of herds to intersect, merge, and disappear as well as
specifying the spreading speed of the herds, users can simulate the interaction
of herds, and then apply our proposed algorithm to identify the herd interaction
graph to verify their intended herd interactions.

To simulate the common effect of individuals joining an existing herd gradu-
ally over time, our simulator allows each entity not yet in a herd to randomly
choose a herd and try to catch up with that herd over time by following the path
of that herd using maximal speed. In Figure 7(c), the entity e chooses to follow
herd H and always heads to the path of H over time, i.e. N0 to N1 to N2 to N3.
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6.2 Generating the Herd Interaction Graph

The herd interaction graph representing the evolvements and movements of herds
is then produced. Figure 6(c) is a screenshot generated by our tool, which is
implemented as an ArcGIS 9.x extension. We used the Microsoft Visual Studio
2005 as our project IDE (see Figure 8(a)) and stored the trajectories into a
geodatabase (See Figure 8(b)).

Figure 8(c) shows a few more screen shots of our extension to ArcGIS 9.x. In this
run, we took a sample dataset with 500 moving entities stored as a geodatabase
in ArcGIS and imported into ArcGIS desktop for further data manipulation.

6.3 Algebraic Cost Model of the Algorithm

We present the algebraic cost model of the proposed algorithm in this section
and delay the optimization and performance evaluation to furture work due to
the space constraint. Suppose we have N entities in our trajectory data, the
running time of the clustering algorithm, i.e. DBSCAN, will be O(NlogN). If
we have T snapshots overall, the cost will be O(T × NlogN).

Let C represent the average number of clusters and k be the average number
of core members for each cluster in each snapshot, then the cost of processing one
snapshot will be O(k2 ×C2) in order to determine the membership relationships
of each pair of clusters using Precision, Recall and F-score measurements. Thus,
the overall cost is: O(T × NlogN × k2 × C2).

7 Conclusion and Future Work

In this paper, 1)we introducedherds and their quantitative and qualitative changes
during evolvements; 2) we defined quantitative and qualitative changes by lever-
aging measurements used in information retrieval, namely Recall, Precision and
F-score; 3) we defined fours types of qualitative evolvements: expand, join, shrink
and leave; 4) we introduced an effective method to identify these four types of spa-
tial evolvements; 5) we developed a herd simulator to produce trajectories data in
a Geographic Information System (GIS) environment; 6) we presented a graph-
based representation - Herd Interaction Graph to represent herd interactions. The
results suggest that herds and their interactions can be effectively modeled through
the proposed measurements and the herd interaction graph from trajectory data.
We also released the source code of the relevant implementations for public use. We
plan to look into further optimization heuristics to improve the performance of the
algorithm. We also plan to apply our algorithms to human mobility data to detect
social events and their patterns.
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Abstract. The volume of real-time streaming data produced by
geo-referenced sensors and sensor networks is staggeringly large and
growing rapidly. Queries on these geo-streams often require tracking
spatio-temporal extent (e.g. evolving region) continuously in real time.
The notion of real-time monitoring and notification requires support
from a database capable of tracking and querying dynamic and tran-
sient spatio-temporal events as well as static spatial objects and sending
out real-time notifications. In this paper, we leverage the work in data
type based spatio-temporal databases and propose new data types called
STREAM and their abstract semantics to support geo-stream applica-
tions. New operations on STREAM data types are defined and illustrated
by embedding them into SQL.

1 Introduction

The advent of technologies in sensors and sensor networks is increasing human
being’s ability to interact with physical spaces in real time. Software tools that
allow people to flexibly fuse, query, and make sense out of the data provided col-
lectively by sensors in real time are very useful in many applications such as nat-
ural hazard monitoring, transportation, environmental modeling, and weather
services.

Many sensors are geo-referenced and are excellent data sources for real-time
situation monitoring and notification. The notion of real-time situation moni-
toring and notification requires support from a database capable of tracking and
querying dynamic and transient spatio-temporal extents as well as static spatial
objects and sending out real-time notifications. However, databases today lack
this support.

In this paper, we deal with a special kind of data stream called geo-stream.
A geo-stream refers to the moving and changing geometry of an object that is
continuously fed into a geo-spatial data stream management system in real time.
For example, the real time location of a moving object is a point geo-stream and
the evolving spatial extent of a hurricane monitored in real time is a region
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geo-stream. We give motivating examples to illustrate the benefits of having a
geo-stream database management system.

Motivation Example (Hazard Weather Notification System). Hazard
weather warnings and watches such as flood watches and tornado warnings are
continuously produced by National Weather Services and posted to its website
using text messages as well as visual graphs to represent the spatial extents of
the warnings. These geo-streams can be combined with a static spatial database
to answer the following queries:

Q1. Notify me when my house is within 50 miles of the mandatory evacuation
area of a forest fire.

Q2. Continuously list the addresses of all the houses traversed by flood in the
past 2 days in Denton county.

Q3. Continuously list road segments that have been completely under flood-
water for the past 24 hours.

Without a geo-stream database management system, sophisticated program-
ing will be required to repeatedly issue queries to a spatial database and combine
the results to answer the above questions. There are several problems with this
approach: (1) it is difficult to decide how frequently the program should issue the
queries to the spatial databases; (2) it is computationally expensive to find the
latest data from all the historical data each time when the query is issued; (3)
an integrated query optimization can not be performed by the database system
and kept transparent from the user.

Modeling data streams collected by sensors in real time as a database system
has been proven to be successful over the past years [5,19,4,3,2]. Several data
stream management systems (DSMS) have been developed with some of them
leading to startup companies [18]. Similar to traditional database systems, a
DSMS system supports a declarative language which allows a user to express
queries in a statement like fashion. These queries are processed and results are
returned by the DSMS without exposing the details of the physical data organi-
zation to the user. A DSMS uses various query optimization techniques to ensure
the quality of service.

However, current DSMS systems only include very rudimentary support for
simple point locations [14]. Very little has been done to support moving and
evolving spatial objects in REAL time such as trajectories and evolving regions.
Spatio-temporal predicates such as traversed area and their implications to query
optimization have not been investigated. Furthermore, most DSMS systems em-
ploy a simple relational table based paradigm and treat an individual tuple as
the basic unit of operation. However, a data type based approach [8] where an
entity’s spatial extent over time can be managed as a data type and participate
in common spatio-temporal predicates may be semantically simple. The paper
makes the following contributions:

– We propose several new streaming data types to a spatio-temporal database
system to support geo-streaming applications;

– We propose to represent window semantics using data types as well;
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– Weinvestigate the semantics of commonspatio-temporal predicates andopera-
tions, and propose new ones meaningful on the proposed streaming data types;

– We illustrate the embedding of the new data types, operations, and predi-
cates to a common database query language, i.e. SQL.

2 Related Work

Related work can be classified into four categories: spatio-temporal databases,
moving object databases, streaming data management systems, and sensor net-
work databases.

Our work is closely related to spatio-temporal databases [8,11,17,12,9] and to a
data type based spatio-temporal database approach [8,11,12] in particular. This
approach focuses on designing spatio-temporal data types, operations, and predi-
cates and embedding them into a query language to support the storage and query
of spatio-temporal data. The design goal of this approach is to find a set of data
types and operations that are succinct, representative, consistent, and self-closed
to support many applications in spatio-temporal domains. Spatial data types, e.g.
points, lines, and polygons, their abstract semantics, and their discrete implemen-
tations in a computer system have been proposed. Spatial predicates and opera-
tions have been precisely defined. Together with non-spatial data types, e.g. string,
spatial data types have been associated with time and elevated into temporal data
types. Spatial predicates and operations have also been lifted. Spatio-temporal
query languages that have SQL-like syntax have also been developed to embed the
spatio-temporal data types and operations. However, to the best of our knowledge,
supporting geo-streams in real time has not been addressed in this line of work.
Instead, most assume a complete view of the spatio-temporal phenomena without
considering their streaming nature. Prototype spatio-temporal database systems,
such as Concert [17], Secondo [12], and Dedale [9], have been built with various
levels of support for spatio-temporal data.

Moving object databases handle streaming location updates and support
queries on them. They can be seen as streaming point data for now window
in our proposed framework in most cases. There is a large body of work on in-
dexing and query optimization on moving objects [13]. The indexing methods can
be classified into two groups: disk based and memory based [16,15]. For volatile
and dynamic objects, the maintenance cost of a disk based indexing could be
prohibitive and memory based kinetic data structures are a better choice. Many
query processing algorithms have been proposed for window queries and near-
est neighbor queries. However, little has been done to support a suite of spatial
streaming data types and their operations which is the focus of this work.

In a stream data management system, data arrives in the form of concurrent
and continuous data streams. Queries on these data streams are typically continu-
ous monitoring queries, involving both persistent relations and other time-varying
streams, and emitting streaming data in real time as results. Data stream manage-
ment systems have several significant characteristics different from those of tradi-
tional transactional and decision support systems. First, streams are generated on
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a regular, irregular, or bursty basis from many sources. A large number of streams
from multiple sources and large volumes of data emitted from each source chal-
lenge traditional persistent relation and input/output reduction-based query pro-
cessing paradigms. Second, stream-based applications require real-time response
from the query processing system in order to trigger further actions despite bursty
andunpredicted system loads.Third, queries on data streams involvenot only data
streams but also traditional relations. This requires an integrated model on both
relations anddata streams.Furthermore, queries ondata streams are typically con-
tinuous queries,which require an intuitive, and semantically simple and clear query
language/interface to specify queries and incorporate time window semantics. New
processing paradigms and methods have been proposed and implemented in sev-
eral stream processing systems [5,19,4,3,2] to achieve similar objectives. However,
they can only handle streaming point locations naively [14] and do not have ad-
equate support for evolving spatio-temporal extents. Efforts in developing data
stream query languages ignore the support for dynamic and evolving geo-spatial
objects from geo-streams.

Work in sensor (mote sized) databases [1,6,7] is focused more on reducing en-
ergy consumption and hiding the inherent heterogeneity and unreliability of sen-
sor networks. Data input is modelled as relations instead of data types. In terms of
spatio-temporal data and operation support, most sensors are static and location
queries are limited to temporal range queries, e.g. find the average temperature
in a given window. Some recent work addresses the in-network processing of spa-
tial join of readings from sensors in spatial proximity [20]. We argue that treating
individual and discrete sensor readings as the unit of operation is not sufficient.
We need to support construction of spatio-temporal phenomena from raw sensor
readings. For example, identifying soaked regions from distributed soil moisture
sensors; and monitoring and tracking of the regions would be more useful than ob-
taining individual sensor readings. While abstracting spatio-temporal phenomena
from raw sensor readings in real time is out of the scope of this paper and will be
addressed in our future work, supporting data types such as moving regions as
well as operations on them will be very useful.

In summary, current database systems DO NOT have a comprehensive set
of spatial streaming data types and operations to support continuous queries
involving both geo-streams and static geo-spatial objects.

Thus, the goal of this paper is to develop streaming data types, operations,
predicates, and their language embeddings that allow a user to express continu-
ous queries on both static and dynamic objects and monitor sensed phenomena
in real-time. Towards this goal, we resolve two important research issues: (1)
the definition of window semantics through a data type based approach; (2) the
design of streaming data types, operations, and predicates under the proposed
window semantics and the closure and consistency of the data types.

3 Streaming Data Types

For representing spatio-temporal objects and operations, many-typed algebra
has been developed to ensure the closure of the operations among data types.
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Because it also supports both static spatial and historical spatio-temporal data,
a geo-stream database system should also support the basic data types available
in these systems. We extend the work presented in [8,11,12] to represent the
data types and operations. The data types marked by a ◦ at the end represent
traditional data types in a non-streaming spatio-temporal database system:

→ BASE int, real, string, bool ◦
→ SPATIAL point, points, line, region ◦
→ TIME instant ◦
→ WINDOW now, unbounded, past *

BASE ∪ TIME → RANGE range ◦
BASE ∪ SPATIAL → TEMPORAL intime, moving ◦
(BASE ∪ SPATIAL ∪ RANGE) × WINDOW → STREAM streaming *

In this notation, the abstract semantics of each data type is defined by its
carrier set denoted by Aα where α is the data type. For example, the se-
mantics of a point is represented by Apoint ≡ {R

2} ∪ {⊥} where ⊥ repre-
sents the undefined value and the semantics of a point set is represented by
Apoints ≡ {P ⊆ R

2|P is finite}.
The detailed abstract semantics of BASE, SPATIAL, TIME, RANGE, and

TEMPORAL data types have been defined elsewhere [8,11,12]. Briefly, the line
data type is defined as a collection of simple curves (intersection of curves yields
a finite number of intersection points). The region type is a collection of faces
where a face is a set of points divided into interior, boundary, and exterior parts.
The instant type is used to represent time and is isomorphic to the real numbers.
Range is defined on BASE and TIME data types if a total order exists. A range
has a pair of starting and ending values and includes all the values in between.
The intime data type applied to a BASE or SPATIAL type α associates a time
stamp with α. The moving data type applied to a BASE or SPATIAL data type
α is a mapping from time to α. Please also note that all of the data types include
an undefined value represented by ⊥.

We assume that the abstract meaning of non-stream data types are properly
defined and will focus on the new types namely WINDOW and STREAM in
this paper.

3.1 WINDOW Types

In a data type based approach, the moving observation windows of a data stream
are represented as data types. These data types can later be applied to BASE,
SPATIAL, and RANGE data types to construct new streaming data types. We
first define the abstract semantics of a WINDOW type that includes now, un-
bounded, and past.

At any time, the carrier of the type constructor now only has one value ob-
tained from the system. Thus, Anow ≡ current system time. We use now to refer
to this value for simplicity.

At any time, an unbounded time window denotes the time interval starting
from the system initial time until now. Thus, Aunbounded ≡ (−∞, now].
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At any time, a past window specifies a time interval proceeding now and
the semantics is defined by: Apast ≡ {X ⊆ Ainstant|∀x ∈ X(x ≤ now) ∧ ∀y ∈
Ainstant(x < y ≤ now ⇒ y ∈ X)}.

3.2 STREAM Types

For a given BASE, SPATIAL, or RANGE type α and a WINDOW type ω,
the type constructor streaming yields a mapping: Astreaming(α,ω) ≡ {f c|f c :
Ainstant → Aα is a partial function that is undefined for instants not in the
window specified by ω and is continuously updated over time as the window
changes according to the semantics of window type ω}.

For the now window and the point data type, streaming(point, now) is a
streaming pair consisting of a point location and the current time. A new pair re-
places the old pair continuously over time. Thus, Astreaming(point,now) ≡ {f c|f c :
Anow → Apoint where ∀t �= now, f c is undefined }.

For the unbounded window and the point data type, streaming(point,
unbounded) is an ever increasing mapping from any time instant in the past to
some point in space. Specifically, Astreaming(point,unbounded) ≡ {f c|f c : Ainstant →
Apoint where ∀t ∈ (now,∞), f c is undefined }.

For the past window and the point data type, streaming(point, past) is a
“streaming” mapping from any time instant in the time interval (now − i, now]
to some point in space where i is a time interval that can be optionally specified
by the past data type. This is similar to the array data type in a programming
language where the size of the array can be either specified at data type construc-
tion or left to the system. Let us assign the current system time now to a constant
C at some time once. After time δ, the mapping for the interval (C − i, C − i+ δ]
becomes undefined and the mapping for (C, C+δ] is added (note that C+δ is the
current value of now). Thus, Astreaming(point,past) ≡ {f c|f c : Ainstant → Apoint

where ∀t /∈ (now − i, now], f c is undefined where i is a time interval}.
We also assume if a window is not provided in the type constructor, the default

is the now window. The abstract definitions for other streaming data types, e.g.
real or region, can be defined in the similar manner. For all streaming types,
we use the following naming convention: prefixing the BASIC or SPATIAL type
with an s to represent its streaming version, e.g. sint, sreal, sstring, sbool, spoint,
spoints, sline, srange and sregion.

4 Geo-stream Operations

Now the work boils down to the design of spatio-temporal operations and predi-
cates under the window semantics. The desired properties of the operations are:
meaningful so that they are useful, representative so that we do not have a clut-
tered predicate set, and general so that they can be used for many applications.

4.1 Windowing Operations on Streams

Streams can be formed from streams of different windows. For example, from
a stream of an unbounded window, a stream of now can be formed. From a
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stream of now, a stream of the past 2 hours can also be formed although ini-
tially the two hours window is not complete. Thus, the operation windowing:
streaming(α, ω) × ψ → streaming(α, ψ) maps one stream of window ω to a
stream of the same data type α of another window ψ. To be consistent with
window operations in general stream processing systems, we use the notion
streaming(α, ω)[ψ] → streaming(α, ψ) to represent the windowing operation
in our language embedding later.

4.2 Projection to Domain and Range

Operations that apply on TEMPORAL data types and yield domain and range
were provided in a spatio-temporal database. For example, the domain function
deftime: moving(α) → periods (periods is a shorthand of the range of time
range(instant)) returns the time intervals in which a function is defined. The
rangvalues:moving(α) → range(α) operation returns values assumed over time
as a set of intervals for a BASE type α in 1D space. Other operations in this
category include trajectory which projects a moving object into lines in space
and traversed which projects an evolving region into space and aggregates all
projected regions into a larger region.

The projection to domain and range for streaming data types and functions
have similar semantics except that the projection is continuously re-evaluated
over the moving windows and the result is of streaming data types.

For example, the semantics of projection of a streaming region with win-
dow unbounded is to restrict the time to the window unbounded and apply
the projection up-to now. This process is continuously applied as the window
moves over time. In 1D space, the operation rangevalues: streaming(α, ω) →
streaming(range(α), now) for a BASE type α and a WINDOW type ω re-
turns the values α assumed over streaming window ω for the current time
now. For 2D space, streaming version of the operations such as trajectory and
traversed can be defined. For example, the streaming operation trajectory:
streaming(α, ω) → streaming(α+, now) aggregates/elevates a set of streaming
points of window ω to a high level object lines to represent a trajectory for the
streaming window now.

Now suppose we are tracking caribous by satellite radio collars and the satel-
lite collars turn on for some hours every day. The locations of the caribous are
streamed back and modeled as caribou(name string, location spoint). Please be
reminded that by default, the location of type spoint is of now window. And
applying windowing operation on location is represented by location[ψ] where
ψ is a new window. The operation deftime(caribou.location[unbounded])
(note: now can be omitted since the default window of the location is now)
returns the times when the caribou is tracked and the result is updated contin-
uously. The operation deftime(caribou.location[now]) returns the current
time if the caribou is tracked now and ⊥ otherwise. The operation trajec-
tory(caribou.location[past 2 hours]) returns the trajectories (represented
by lines) of the locations of caribous projected to space in the past two hours
continuously.
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Table 1. Interaction of Streaming Values with Values in Domain and Range

Operations Signature

atinstant streaming(α,ω)× instant→ intime(α)
atperiods streaming(α,ω)× periods→ moving(α)
present streaming(α,ω)→ streaming(bool, ω)
at streaming(α,ω)× α→ streaming(α,ω)
at streaming(α,ω)× range(α)→ streaming(α,ω)
passes streaming(α,ω)× β → streaming(bool, now)

4.3 Intersection with Points and Point Sets in Domain and Range

Many queries need to use operations that relate the function values to their time
domain or range. For TEMPORAL types, operations such as initial and final
are useful to find the spatial extent at starting and ending times. For streaming
applications, the starting and ending time of an event are difficult to determine.
One solution is to ask users to explicitly associate each object of a streaming
spatio-temporal extent with an initialtime and finaltime. However, these two
attributes will not be part of the spatio-temporal or streaming data types and
do not participate in spatio-temporal or streaming operations.

The atinstant and atperiods operation for TEMPORAL data type returns
the spatial extent of the object for a given instant or a range of time. They may
be useful for streaming data types if one wants to “intercept” the function values
of a streaming data type at a specific time or time period. The result will be a
constant data type, not a stream.

The present operation for a streaming data type α of window ω checks if the
value of α exists during the time interval specified by the moving time window
and returns a sbool data type of the same window. The at operation restricts
the streaming data type’s range to specific values. When the value of ranges is
out of the given range, the operation returns an undefined value. For example,
we can restrict the streaming real to the times when its values is between 0 and
1. The operation passes checks if the streaming value ever assumed the given
values over the moving window. Table 4.3 summarizes the operations meaningful
for streaming data types.

For the sample table of caribou, if we want to track for once where the cari-
bous are for a given time t, we can use atinstant(caribou.location[now], t).
Once the time has passed t, this operation will not be useful anymore. The op-
eration present(caribou.location[past 3 days]) tells continuously at what
times in the past three days the caribous are tracked. Let city(name string,
location point) be a table storing the cities and their point locations. The oper-
ation at(caribou.location[past 7 days],city.location) returns continuously
the caribous who had passed a city in the past 7 days.

4.4 Lifting Operations to Streaming Operations

For a spatial predicate or operation, its streaming version can be defined by
converting one or more of the participating data types into its streaming version.
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The semantics of such a straightforward conversion will need to be investigated.
For example, the spatial predicate intersect with signature region × region →
bool can be first lifted into three streaming versions of intersect (we will discuss
time shifted streaming operation shortly):

1. streaming(region, ω) × region → streaming(bool, ω)
2. region × streaming(region, ω) → streaming(bool, ω)
3. streaming(region, ω) × streaming(region, ω) → streaming(bool, ω)

For intersect case 1, the predicate is to check if a streaming region intersects
with a static region for each possible time instant in the valid moving window
specified by ω and will produce a streaming bool as the result for the same moving
window. Please note that the result is a streaming bool instead of a single TRUE
or FALSE value. We further assume, when all the values in the given window ω
is TRUE, the value of the result is TRUE. Similarily, the result is FALSE when
all the values in the given window ω is FALSE. Otherwise, the result is unknown
and further operations such as at or duration will be needed if a TRUE or
FALSE is desired as the result which will be shown shortly using an example.

For intersect case 2, since intersect is a symmetric predicate, the semantics
will be the same as that of case 1. For asymmetric operations and predicates,
the semantics can be inferred straightforwardly from the static versions of the
predicates. For intersect case 3, it returns a streaming bool of window ω rep-
resenting the intersect results of two streaming regions of the same streaming
window ω at each instant in the window. The lifting of other spatial predicates
can be defined in the similar manner.

In addition, if we allow the time shifted (specified by an instant data type
representing the time shift) intersect, the predicate can be more meaningful.
For example, one may want to continuously see if the zones of high ozone intersect
with the zones of high ozone for the same time last year. A time shifted intersect
can be represented as:

streaming(region, ω) × moving(region) × instant → streaming(bool, ω)

where the moving region represents a moving and evolving region (usually in the
past). Similarily, operations between two streaming data types can be parame-
terized with a time shift as well.

However, instead of adding a time shift parameter to each operation, it would
be more flexible and elegant to introduce a separate time shift operator on win-
dows which means the WINDOW types need to be enhanced with time shifted
windows in addition to the three basic ones introduced in this paper. As a result,
all operations involving windows will need to be revisited to include time shifted
windows. We plan to explore this alternative in our work in the near future.

Now we give several examples to illustrate these streaming operations. Let
hurricane(name string, extent sregion) be a table of hurricanes with streaming
spatial extent. Let county(name string, extent region) be a table of counties.
Then the following statement continuously emits the names of the counties that
intersect with hurricane K any time during the past 2 hours:
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SELECT c.name

FROM hurricane h, county c

WHERE duration(at(intersect(h.extent[past 2 hours], c.extent), TRUE)) <> 0

AND h.name = K

Please note that the intersect operation returns a streaming bool type for
the past two hours and is continuously updated. The at operation returns the
time intervals where the value of intersect is TRUE. Then the duration (it is a
shorthand for rangevalues of time) returns the duration of the time when the
intersect operation is true. If this duration is not 0, then the county name is
returned as it intersects with hurricane K some time during the past 2 hours.

Now let us look at the lifting of another spatial predicate intersection which
returns the intersection part of two regions. The following statement returns the
county name together with the intersection of the extent of the county and the
current extent of the hurricane K continuously for all counties that intersect with
hurricane K:

SELECT c.name, intersection(h.extent[now], c.extent)

FROM hurricane h, county c

WHERE intersect(h.extent[now], c.extent) AND h.name = K

For a streaming data type and a temporal data type, the spatial predicate is
applied to a pair of spatial extents from the two data types respectively with
a time shift. For example, let hurricaneA(name string, extent mregion) be the
archived hurricane information for the past years where mregion represents a
moving region data type. The following statement is used to retrieve the names
of the hurricanes whose current spatial extent has at least 80% overlap with a
hurricane at the same time a year ago:

SELECT h.name

FROM hurricane h, hurricaneA ha

WHERE area(intersection(h.extent[now], ha.extent, 1 year))

>80% * area(h.extent[now])

The operation between two streaming data types with a time shift can be
illustrated by the following example. Let heavyRain(name string, extent sre-
gion) be a table representing the heavy rain regions monitored in real time.
Let flashFlood(name string, extent sregion) be a table representing flash flood.
Then we can use the following statement to find the flash floods with heavy rain
proceeding them two hours before:
SELECT ff.name

FROM flashFlood ff, heavyRain hr

WHERE duration(at(intersect(ff.extent[past 2 hours], hr.extent[past 4 hours], 2 hours)) <> 0

In the above statement, the intersect statement is applied between the extent
of a flash flood and the extent of a heavy rain two hours before.

5 Language Embedding of the Stream Data Type

We have already seen several examples of language embedding of the STREAM
data type and operations into SQL. To summarize, the stream data type is
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typically associated with an object. The object has static properties, e.g. name,
and is modeled as a tuple in a table. In the FROM clause of a SQL statement,
a table with streaming attribute can participate. The combination of stream
operations among streaming attributes of the tables that result in a boolean
TRUE or FALSE can appear in the WHERE clause. Objects that satisfy all
the predicates including the streaming predicates in the WHERE clause will be
returned as the results. All streaming operations and their combinations can
appear in the SELECT clause and the results are subject to the condition that
the associated objects satisfy the predicates in the WHERE clause. The following
statement summarizes this paragraph.

SELECT STREAM operation, ...

FROM table with streaming attribute, ...

WHERE STREAM predicate, ...

To answer the three queries introduced in the introduction of the paper, we
use the following static and dynamic spatial objects:

forestFire(firename: string, evaArea: sregion)
flood(floodname: string, extent: sregion)
house(owner: string, location: point)
road(roadname: string, extent: line)

The first query (Q1) regarding houses currently in the mandatory evacuation
area of a forest fire may be answered with the following statement:

SELECT h.address

FROM house h, forestFire ff

WHERE distance(h.location,ff.evaArea [now])<50;

The second query (Q2) regarding houses traversed by a flood in the past 2
days may be answered with the following statement:

SELECT h.address

FROM house h, flood f

WHERE inside(h.location,traversed(f.extent [past 2 days]))

The third query (Q3) regarding roads immersed in flood for more than the
past 24 hours may be answered by:

SELECT r.name

FROM road r, flood f

WHERE duration(deftime(at(inside(r.extent,f.extent [past 1 day]),TRUE)))=1 day

6 Conclusion and Future Work

In this paper, we proposed new data types and operations to support geo-
streaming applications. We discussed their semantics and their embedding into a
database language such as SQL. The proposed system is compatible with a data
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type based spatio-temporal database system. The system can be used to sup-
port continuous real-time queries on evolving spatio-temporal extents through
the combination of these new data types and operations with SQL. Many real
time monitoring applications will benefit from such a system.

This work is just the first step towards a full-fledged geo-stream database
management system. We plan to first investigate the discrete representations for
each new stream data type. For example, efficient data models and structures
are needed to represent a streaming point in the past two hours.

Work also needs to be done in choosing efficient data structures and algorithms
for query optimization. Please note that such queries may involve multiple geo-
streams or a combination of geo-streams and spatio-temporal data types. For
example, in streaming applications, indexing schemes are less sufficient since the
cost of building the indexes and maintaining them will be high. Kinetic data
structures deal with the fundamental geometric problems such as the mainte-
nance of a convex hull from dynamic data. Algorithms were proposed to maintain
geometrics and kinetic properties such as the closest pairs (to avoid collision)
and minimal spanning tree (to maintain connections among moving sensors). In
many cases, memory-based-kinetic data structures [10] will need to be consid-
ered for geo-stream applications instead.
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Abstract. This study examined how people use verbal route directions given in 
relative and absolute frames of reference in real-world navigation, particularly 
differences or similarities in cognitive load posed by the two frames of reference. 
Participants, Japanese speakers, walked the first set of five routes with relative 
(or absolute) directions and the second set of five routes with absolute (or rela-
tive) directions. For the first set of routes, participants performed equivalently on 
navigating the routes with relative and absolute directions, showing that they can 
somehow adapt to either way of thinking about space. But for the second set of 
routes, participants did better with relative directions than with absolute direc-
tions, showing that switching from a nonpreferred to a preferred frame of ref-
erence was easier than switching the other way around. In particular, participants 
with a poor sense of direction found the latter to be difficult. This asymmetric 
pattern of performance, depending on which frame of reference was used first, 
shows that the cognitive loads of processing information given in the two frames 
of reference are not the same. Concerning configurational understanding of the 
routes, participants did equally well with relative and absolute verbal directions, 
showing that they constructed equivalent mental images. These results were 
replicated in the second experiment of text comprehension, in which participants 
only read verbal directions and did spatial tasks. Implications of these results for 
the design of navigational aids were discussed.  

Keywords: Spatial language, Frames of reference, Verbal navigational direc-
tions; Wayfinding, Cognitive maps. 

1   Introduction 

It is a daily, common experience for people to ask or to be asked questions about places; 
for example, "Where should we meet tomorrow?" "Where is that place?" and "How can 
I go there?" Responses to these questions can take various forms. One can show a 
printed map or draw a sketch map. Also, one can answer verbally, by providing de-
scriptions such as "it is next to a tall brick building" or "the hotel is across from the post 
office" or even "you cannot miss it."  
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Thus information about space can be represented in different formats. Then, what is 
the characteristic of each presentation format and what effects does it have on the user's 
understanding and behavior? There is a body of literature about the understanding and 
use of maps and other spatial or visual representations, including 3-D visualizations, 
animations, and virtual environments (see Montello et al., 2004, for a review). Impor-
tantly, it has been shown that a significant portion of people, not only children but also 
adults, have difficulty using maps in the real world (Liben et al., 2002). Considering 
this fact, verbal descriptions, used on their own or supplementary to maps, could fa-
cilitate wayfinding and navigation. In fact, Streeter et al. (1985) found that their care-
fully constructed verbal directions were more effective than route maps for guiding 
drivers in an unfamiliar environment.  

With the recent advance in information technologies, many kinds of navigational 
aids, notably devices equipped with global positioning systems (GPS), have been de-
veloped (e.g., Hightower & Borriello, 2001; Loomis et al., 2001; Shoval & Isaacson, 
2006). On these navigation devices, speech guidance has been shown to be effective, as 
well as maps and other visual images (e.g., Goodman et al., 2004; Reagan & Baldwin, 
2006). And there is much literature on the structure and contents of effective verbal 
route directions (e.g., Bradley & Dunlop, 2005; Denis et al., 1999, 2006; Hine et al., 
2000; Klippel & Winter, 2005; Raubal & Winter, 2002).  

Spatial language has attracted attention of researchers from many fields, including 
linguistics, psychology, and computer science. One of the most extensively discussed 
topics in spatial language is how the locations of objects in space are described and 
conveyed, namely the issue of frames of reference. Researchers have discussed dif-
ferent kinds of frames of reference, for example, egocentric and allocentric frames of 
reference (Klatzky, 1998), viewer-centered and object-centered frames of reference 
(Marr, 1982), and gaze, route, and survey frames of reference (Taylor & Tversky, 
1996). On the basis of these discussions, Levinson (1996) proposed three kinds of 
frames of reference: intrinsic, relative, and absolute. An intrinsic frame of reference 
uses a coordinate system that is centered on an object, and the coordinates are deter-
mined by "inherent features" of the object, such as its shape or characteristic motion 
(e.g., the front of a car). A relative frame of reference uses a coordinate system fixed on 
a viewer, and describes the relations of figure and ground objects (e.g., 
left-right-front-back). An absolute frame of reference uses a coordinate system with a 
fixed origin on the ground (e.g., cardinal directions).  

Research has shown that a specific language favors a specific kind of frame of ref-
erence in spatial description and spatial thinking. Levinson (2003) writes that "the 
frames of reference appropriately used in a language to describe specific situations are 
likely to correlate with the use of the same frames of reference in the nonlinguistic 
coding of the same scenes for memory and reasoning" (p. 171). For example, speakers 
of English, Dutch, or Japanese tend to use a relative frame of reference in spatial de-
scription and spatial thinking, and speakers of Tzeltal (a Mayan language spoken in 
highland Chiapas, Mexico) tend to use an absolute frame of reference in spatial de-
scription and spatial thinking. Thus, there seems to be a preferred frame of reference 
that speakers of a specific language find easy to use and a nonpreferred frame of ref-
erence that they find difficult.  
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On the other hand, there is also a research finding that people can construct 
equivalent mental images from both route and survey descriptions of environments, 
with all spatial information on the images being equally accessible (Taylor & Tversky, 
1992). This seems on the surface to be inconsistent with the above findings from 
cross-linguistic studies, inasmuch as it suggests that a nonpreferred frame of reference 
does not yield poorer performance than a preferred one does.  

To interpret these two lines of research findings, one needs to consider whether (a) 
spontaneous use of a specific frame of reference in linguistic or nonlinguistic coding 
and (b) comprehension of verbal directions given in different frames of reference are 
the same. One possibility is that people speaking a specific language use either of the 
two frames of reference in linguistic and nonlinguistic coding, but processing infor-
mation given in the two frames of reference poses an equivalent level of cognitive load 
(i.e., spontaneous use and cognitive processing load are not related). Another possi-
bility is that people use either of the two frames of reference in linguistic and nonlin-
guistic coding, and (or because) it poses a lower level of cognitive load than the other 
(i.e., which frame of reference is spontaneously used is correlated with the ease of 
processing information given in that frame of reference).  

This research aims to investigate these possibilities in real-world navigation and text 
comprehension, with participants who speak Japanese, a language in which although all 
three frames of reference are familiar, a relative or intrinsic frame of reference is used 
predominantly in linguistic and nonlinguistic coding (Levinson, 2003). In both 
real-world and text-reading settings, verbal route directions given to half the partici-
pants were switched from relative to absolute, and those given to the other half of 
participants were switched from absolute to relative.  

If the two frames of reference pose an equivalent level of cognitive load, participants 
would do equally well with either frame of reference. If a nonpreferred, absolute frame 
of reference poses a larger cognitive load, participants would do worse with it than with 
a preferred, relative frame of reference both before and after a switch of frames of 
reference (i.e., symmetric pattern of performance). Or it is also possible that partici-
pants' performance after a switch of frames of reference would be different depending 
on which frame of reference was used first (i.e., asymmetric pattern of performance). 
These possibilities were not specifically addressed in Taylor and Tversky's (1992) 
study, because the order of presenting relative and absolute descriptions was random-
ized across participants.  

In the first experiment of real-world navigation, we looked at participants' way-
finding performance and configurational understanding of routes. In the second  
experiment of text comprehension, we looked at participants' response time and con-
figurational understanding of described routes. In both experiments, we also examined 
whether participants' performance was correlated with their individual-difference 
measure of sense of direction.  
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2   Experiment 1: Outdoor Navigation 

2.1   Method 

2.1.1   Participants 

Thirty-two college students (7 men and 25 women) participated in the experiment. 
Their ages ranged from 18 to 24, with a mean of 19.8 years. These participants were 
unfamiliar with the university campus used as the study area.  

2.1.2   Materials 

(a) Study area and routes 

We used as the study area a campus of the University of Tokyo (Fig. 1). On the campus, 
we chose 10 places and the routes that connected these places. The routes were 61-524 
m long, and along each route we selected distinct landmarks to be used in verbal route 
directions (explained below). On each route, the goal was not visible from the starting 
point, or vice versa.  

(b) Verbal route directions 

We created two kinds of verbal directions for each route. One kind of route directions 
used a relative frame of reference, with egocentric terms such as left or right. The other  
 

 

Fig. 1. Map of the study area. Ten routes were selected in the area (Routes 1-10). Arrows indicate 
the direction of travel.  
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kind of route directions was given in an absolute frame of reference, using cardinal 
directions (NSEW). In relative route directions, physical objects (buildings or inter-
sections) were used to give distance; in absolute route directions, distance was given  
in meters.  

As an example, relative route directions for Route 5 (Fig. 1) were "Go straight to the 
left. You see a square [open space] to the left. Go uphill and when you pass one 
building, turn right and go straight. You see a statue in a square to the left. When you 
pass the square, turn left and go straight. You see an entrance to the Engineering I 
Building to the right." 

Absolute route directions for this route were "Go straight to the west for 110 m. You 
see a square to the south. When you hit a road running north-south, turn north and go 
straight for 60 m. You see a statue in a square to the west. When you hit a road running 
east-west, turn west and go straight for 50 m. You see an entrance to the Engineering I 
Building to the north." 

Participants walked each route by reading verbal directions written on a post-
card-sized card (10×14.8 cm), described in either a relative or an absolute frame of 
reference. The number of landmarks selected as "subgoals" on each route was the same 
for the two kinds of verbal directions (i.e., the two verbal directions shown above for 
Route 5 consists of six sentences).  

(c) Self-report sense of direction 

Participants filled out the Santa Barbara Sense-of-Direction Scale, which consists of 
fifteen 7-point Likert-type questions (Hegarty et al., 2002). Seven of the questions are 
stated positively (e.g., "I am very good at giving directions") and the other eight nega-
tively (e.g., "I very easily get lost in a new city"). Hegarty et al. showed that people 
identified as having a good sense of direction on this scale did well on tasks that re-
quired configurational understanding of the environment ("survey tasks"), as opposed 
to tasks that required sequential understanding of landmarks and routes ("route tasks"). 
We included this individual-difference measure as a possible correlate with partici-
pants' performance on route navigation, especially comprehending their locations in an 
absolute frame of reference.  

(d) Direction estimation task 

At the goal of each route, participants estimated the direction to the starting point. To 
do that, participants were given a sheet of paper on which a circle with a radius of 5.5 
cm was drawn, and drew a line from the center of the circle to indicate the direction to 
the starting point.  

2.1.3   Design 
Participants were randomly assigned to one of two groups concerning the order in 
which the two kinds of verbal route directions were given. Half the participants walked 
the first set of five routes with relative route directions and the second set of five routes 
with absolute route directions (called the relative-absolute group). The other half 
walked the first set of five routes with absolute route directions and the second set of 
five routes with relative route directions (called the absolute-relative group).  
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2.1.4   Procedure 
At the beginning of the experiment, participants filled out the Sense-of-Direction Scale. 
Then they were individually taken to the starting point of the first route. At the starting 
point of each route, participants were shown a card on which verbal directions for the 
route were written, in either a relative or an absolute frame of reference, and instructed 
to go to the goal by following the verbal directions. The experimenter walked behind 
the participants without making conversation, and recorded the time that they took to 
walk the route, where they deviated from the route, and where they made stops. If they 
did not reach the goal within a time limit, which was determined as twice as long as the 
time that the experimenter took to walk the route, the experimenter took them to the 
goal by following the correct route. At the starting point of the route that participants 
walked for the first time with absolute route directions (Route 6 for the rela-
tive-absolute group, and Route 1 for the absolute-relative group), the experimenter 
showed the direction of north to participants by pointing in that direction. Only one 
participant asked, only once, for the direction of north again during the walk.  

At the goal of each route, participants estimated, by facing straight ahead, the di-
rection to the starting point, and assessed the difficulty of following the route on a 
5-point scale. Participants finished all these experimental tasks within 90 min.  

2.2   Results 

2.2.1   Sense of Direction 
For each participant, we calculated the mean of their answers to the 15 
sense-of-direction questions. We reversed their answers to positively stated questions 
so that a higher score means a better sense of direction. There was no significant dif-
ference in sense of direction between the two groups of participants (with an alpha level 
of .05; same in the analyses below).  

2.2.2   Travel Time, Distance, and Speed 
We examined the time that participants took, and the distance that they traveled, to go 
from the starting point to the goal, for the first set of five routes and for the second set of 
five routes. A longer travel time or distance indicates that participants made stops 
during the walk or went off the routes described by the verbal route directions.  

For the first set of five routes, there was no significant difference in either travel time 
or travel distance between the two groups. For the second set of five routes, participants 
took a longer time and traveled a longer distance with absolute route directions (197 s 
and 1,176 m) than with relative route directions (175 s and 1,082 m), Fs(1, 30) = 10.42 
and 10.25, respectively, p's < .01.  

Next, we examined participants' mean walking speed across the first set of five 
routes and across the second set of five routes, to see how smoothly participants walked 
the routes described by the verbal route directions. In a mixed ANOVA with the route 
set (first vs. second set of five routes) as a within-subject factor and the group (rela-
tive-absolute vs. absolute-relative group) as a between-subject factor, no significant 
main effects or interactions were found.  
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2.2.3   Number of Stops 
We recorded when participants stopped during the walk for 15 s or longer, as an indi-
cation that they were trying to get oriented in space by comprehending the verbal route 
directions and relating them to the surrounding space. We calculated for each partici-
pant the total number of stops made on the first and second sets of five routes, and 
analyzed them in a mixed ANOVA with the route set as a within-subject factor and the 
group as a between-subject factor.  

The main effect of route set was significant, F(1, 30) = 40.32, p < .001, showing that 
participants made more stops on the first set of five routes than on the second set of five 
routes. When we examined participants' wayfinding performance on the 10 routes, we 
found that they did poorly on Route 2. On that route, 24 (75%) participants made at 
least one stop and 25 (78%) participants went off the route at least once. These numbers 
were more than twice as large as those for the other routes (on this route, finding the 
path around the rotary at the starting point was difficult).  

When we conducted a mixed ANOVA with Route 2 excluded, we found a significant 
main effect of route set, plus a significant interaction of route set and group, F(1, 30) = 
23.76, p < .001, and F(1, 30) = 11.28, p < .01, respectively. (Between-group compari-
sons yielded the same results with and without Route 2.) Post hoc comparisons showed 
that there was no significant difference between the two groups for the first set of five 
routes, but for the second set of five routes participants in the relative-absolute group 
(i.e., with absolute route directions) made more stops than those in the absolute-relative 
group (i.e., with relative route directions), F(1, 30) = 10.43, p < .01 (Fig. 2A).  

2.2.4   Deviations from the Routes 
We next examined two measures concerning participants' deviations from the verbally 
described routes: (a) how often participants went off the routes and (b) how far they 
traveled off the routes, for the first and second sets of five routes.  

In a mixed ANOVA, the main effect of route set was significant for both measures, 
Fs(1, 30) = 61.60 and 53.64, respectively, p's < .001. As in the analysis of the number of 
stops, a mixed ANOVA without Route 2 yielded a significant main effect of route set 
plus a significant interaction of route set and group (Fs[1, 30] = 18.86 and 10.14, re-
spectively, p's < .001 and .01 for the number of route deviations; Fs[1, 30] = 9.42 and 
8.27, respectively, p's < .01 for distance traveled off the routes). Post hoc comparisons 
showed that there was no significant difference between the two groups for the first set of 
five routes, but for the second set of five routes participants in the relative-absolute group 
(i.e., with absolute route directions) went off the routes more frequently and walked a 
longer distance off the routes than those in the absolute-relative group (i.e., with relative 
route directions), Fs(1, 30) = 7.94 and 11.33, respectively, p's < .01 (Figs. 2B, 2C).  

2.2.5   Direction Estimates 
For each participant, we calculated the mean absolute error of direction estimates 
across the first five routes and across the second five routes. We examined the effects of 
route set and group on direction estimates in a mixed ANOVA, and found no signifi-
cant main effects or interactions. This study was not designed specifically to 
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Fig. 2. Participants' performance on walking the verbally described routes: (A) the number of 
stops made on the routes, (B) the number of times that participants went off the routes, (C) the 
distance that participants traveled off the routes. Vertical lines depict standard errors of the means. 
For all measures, participants did worse with absolute verbal directions than with relative direc-
tions for the second set of routes. R-A = relative-absolute group; A-R = absolute-relative group.  

examine sex-related differences, but there was a significant male-female difference 
only for this measure, with men making smaller direction errors than women.  

2.2.6   Relationships with Self-Report Sense of Direction 
Three of our wayfinding-performance measures (the number of stops, the number of 
route deviations, and distance traveled off the routes) were significantly correlated with 
participants' self-report sense of direction, when they walked the second set of routes 
with absolute verbal directions. Participants with a better sense of direction tended to 
make fewer stops (r = -.57, p < .05), went off the routes less frequently (r = -.55, p < 
.05), and walked a shorter distance off the routes (r = -.59, p < .05).  

3   Experiment 2: Text Comprehension 

To examine the difficulty of comprehending the verbal navigational directions and 
constructing mental images of the described routes, we next conducted an experiment 
in which participants only read verbal route directions and did spatial tasks.  
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3.1   Method 

3.1.1   Participants 
A new group of 22 people (15 men and 7 women) participated in the experiment. Their 
ages ranged from 21 to 58, with a mean of 26.7 years. These participants did not know 
about the first experiment of outdoor navigation.  

3.1.2   Materials 
We selected three routes each from the first and second sets of five routes used in the 
first experiment (Routes 2, 3, 5, 6, 7, and 9), by eliminating simple routes consisting 
mainly of straight walks, and created relative and absolute verbal route directions for 
each route. These verbal directions were the same as those used in the first experiment, 
except that the specific names of buildings were replaced by more common terms (e.g., 
a bank, bookstore, or station), so that participants would not realize that the verbal texts 
described the university campus (if they were familiar with it).  

As an example, relative verbal directions for the route described in section 2.1.2(b) 
were "Go straight to the left. You see a square to the left. Go uphill and when you pass 
one building, turn right and go straight. You see a bank to the left. When you pass the 
bank, turn left and go straight. You see a bookstore to the right." 

Absolute verbal directions for that route were "Go straight to the west for 110 m. 
You see a square to the south. When you hit a road running north-south, turn north and 
go straight for 60 m. You see a bank to the west. When you hit a road running east-west, 
turn west and go straight for 50 m. You see a bookstore to the north." 

3.1.3   Design 
Participants were randomly assigned to one of two groups concerning the order in 
which the two kinds of verbal route directions were given. Half the participants read 
relative verbal directions for the first set of three routes and absolute verbal directions 
for the second set of three routes (called the relative-absolute group). The other half 
read absolute verbal directions for the first set of three routes and relative verbal di-
rections for the second set of three routes (called the absolute-relative group).  

3.1.4   Procedure 
At the beginning of the experiment, participants filled out the Sense-of-Direction Scale. 
Then, participants read verbal directions for each route, printed separately on an 
A4-sized sheet of paper, in either a relative or an absolute frame of reference. After 
reading the verbal route directions, they estimated the direction from the goal to the 
starting point and assessed the difficulty of the task on a 5-point scale, as participants in 
the first experiment did. Participants finished all these experimental tasks within 30 min.  

3.2   Results 

3.2.1   Sense of Direction 
We calculated for each participant the mean of their answers to the 15 
sense-of-direction questions. There was no significant difference in sense of direction 
between the two groups of participants.  



128 T. Ishikawa and M. Kiyomoto 

3.2.2   Time to Complete the Tasks 
We examined the time that participants took to read the verbal directions and do the 
experimental tasks, for the first set of three routes and for the second set of three routes. 
As in the first experiment, we conducted a mixed ANOVA with the route set (first vs. 
second set of three routes) as a within-subject factor and the group (relative-absolute vs. 
absolute-relative group) as a between-subject factor.  

There was a significant main effect of route set, showing that participants took a 
longer time for the first set of three routes than for the second set of three routes, F(1, 
20) = 18.13, p < .001. But at the same time, the interaction of route set and group was 
also significant, F(1, 20) = 11.08, p < .01, indicating that for the second set of three 
routes participants in the relative-absolute group (i.e., with absolute verbal directions) 
took a longer time than those in the absolute-relative group (i.e., with relative verbal 
directions) (Fig. 3).  

 

Fig. 3. Time to read the verbal directions and to complete the tasks. Vertical lines depict standard 
errors of the means. For the second set of routes, participants took a longer time with absolute 
verbal directions than with relative directions.  

3.2.3   Direction Estimates 
For each participant, we calculated the mean absolute error of direction estimates 
across the first set of three routes and across the second set of three routes. We exam-
ined the effects of route set and group on direction estimates in a mixed ANOVA, and 
found no significant main effects or interactions. 

3.2.4   Relationships with Self-Report Sense of Direction 
In the relative-absolute group, participants' self-report sense of direction was signifi-
cantly correlated with the time to complete the tasks and ratings of task difficulty. For 
both the first and the second sets of three routes, participants with a better sense of 
direction took a longer time (r's = .72 and .73, p's < .05). For the second set of three 
routes (i.e., with absolute verbal directions), participants with a better sense of direction 
rated the difficulty of the tasks as easier than those with a poorer sense of direction (r = 
.77, p < .01).  
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4   Discussion 

This study looked at how people use verbal route directions given in two kinds of 
frames of reference, relative and absolute, in real-world navigation. In particular, we 
examined the differences or similarities in the difficulty of using and processing in-
formation given in preferred and nonpreferred frames of reference, and whether people 
were able to adapt to or switch between the two frames of reference. Participants in this 
study were Japanese speakers, so their preferred frame of reference is relative. How-
ever, we found for the first set of routes that our participants performed equivalently on 
navigating the routes with relative and absolute verbal directions. This shows that when 
people are given these two kinds of verbal route directions and required to use them in 
navigation, they can somehow adapt to either way of thinking about space.  

But this equivalence in performance disappeared for the second set of routes: Par-
ticipants did worse with absolute route directions than with relative route directions. 
Thus, participants performed differently depending on which frame of reference was 
used, or activated in working memory, for the first set of routes. This shows that people 
find it easier to switch from a nonpreferred, absolute frame of reference to a preferred, 
relative frame of reference, than to switch the other way around. In particular, par-
ticipants with a poor sense of direction find the latter to be difficult. At the same time, 
participants performed with absolute route directions as well as they did for the first set 
of routes with relative and absolute route directions. Thus, people can adapt to non-
preferred, absolute way of thinking at least at the same level of performance as when 
using a preferred, relative frame of reference.  

The asymmetric pattern of change in performance, particularly facilitation of per-
formance with a switch of frames of reference from a nonpreferred to a preferred one, 
shows that the cognitive loads of processing the two kinds of descriptions are not the 
same. The cognitive loads posed by the two frames of reference are somehow corre-
lated with preferences inherent in a language for frames of reference in linguistic and 
nonlinguistic coding (as indicated by the better performance with relative route direc-
tions than with absolute route directions for the second set of routes). But it is not the 
case that a nonpreferred frame of reference always poses a larger cognitive load (per-
formance was equivalent with relative and absolute route directions for the first set  
of routes).  

On the other hand, concerning the configurational understanding of the routes, the 
two frames of reference did not cause a difference, for either the first or the second set 
of routes. As Taylor and Tversky (1992) discussed, people seem to be able to construct 
equivalent mental images from relative and absolute descriptions. That is, the differ-
ence lies not in mental images created but in the time needed or the ease with which to 
process information given in these two different reference frames, especially when 
frames of reference are changed from a preferred to a nonpreferred one. In absolute 
route directions, distance was given in meters, compared to the number of buildings or 
intersections in relative route directions, but it did not cause a difference in configura-
tional understanding.  

And importantly, these findings were replicated in the second experiment of text 
comprehension, in terms of response time. So the observed asymmetric pattern of 
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performance is due to the difficulty with processing and comprehending verbal route 
directions given in the two different frames of reference. This difficulty should lead to 
more errors in navigating through the environment by linking verbally described 
landmarks and physical landmarks, especially for people with poor sense of direction.  

A difference was observed between the two experiments in configurational under-
standing of the routes. The overall mean direction error for the first experiment (31.6°) 
was smaller than that for the second experiment (55.5°). This is due to the difference in 
the source of information in the two experiments. Participants in the first experiment 
walked and directly experienced the routes in the environment, while participants in the 
second experiment only read verbal directions and imagined walking the routes, thus 
lacking proprioceptive information (e.g., Couclelis & Gale, 1986; Klatzky et al., 1998).  

These findings have a number of implications for the development of location-based 
systems and the design of speech guidance for navigational aids. First, mixing relative 
and absolute descriptions in verbal navigational directions does not seem to be a good 
idea, as it requires the user to switch between the two frames of reference back and 
forth, particularly from a preferred to a nonpreferred frame of reference (e.g., one guide 
book has the description "if you go out of the university campus and go north on A 
Street and east on B Street, you will see a stone monument on the left"). But if seen 
from a different perspective, exposure to mixed frames of reference could potentially 
be used as training of environmental learning ability or sense of direction. Miller and 
Allen (2001) suggested that switching frames of reference facilitated response time in 
judging the movement of a model car. A major difference between their study and our 
study is whether people thought about an object's movement as an outside viewer or 
people reasoned about their own movement.  

In terms of spatial reasoning, it should be pointed out that in both relative and ab-
solute route directions, information about direction was given categorically, and par-
ticipants adapted to it at least to an acceptable degree. This kind of qualitative reasoning 
is an important characteristic of human spatial cognition (e.g., Frank, 1996). People do 
not normally require precise metric information in their everyday behavior, which is 
reasonable in light of the limited capacity of human memory.  

We note that verbal descriptions used in this study were fixed at the scale of a uni-
versity campus. It should be interesting to see how people respond to verbal route di-
rections at different spatial scales (see Kataoka, 2005; Taylor & Tversky, 1996). Also, 
the characteristics of the environment, particularly the structure of the represented 
space such as grid versus radial patterns of streets or alignment of streets with cardinal 
directions, should affect the ease with which to use an absolute frame of reference (e.g., 
Montello, 1991; Richter & Klippel, 2005). And finally, we hope to see in further in-
vestigation whether these findings are observed cross-linguistically.  
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Abstract. Wireless sensor networks are growing from a few hand-placed
devices to more large-scale networks in terms of coverage and node den-
sity. For various concerns, such as scalability, larger network sizes require
some management of the large volume of data that a sensor network de-
livers. One way to manage this data is processing information in the
network. This paper investigates how a sensor network’s network ar-
chitecture (specifically, the neighborhood structure) can influence the
conclusions that a sensor network makes from its measurements. The
results demonstrate that non-planar structures are infeasible for routing
and some in-network processing applications. Structures with low aver-
age edge lengths give better quantitative results, while those with high
edge densities give better qualitative results.

1 Introduction

Wireless sensor networks (WSNs) are untethered networks of miniaturized sensor-
enabled computers. WSNs are increasingly being used for geospatial applications,
such as environmental monitoring. WSNs today typically use a periodic “sense-
and-transmit” approach to transmit temporal snapshots of the entire network’s
readings to a centralized computing system [1][2]. The centralized computer sys-
tem (such as a conventional GIS) is then tasked with analyzing the snapshots to
determine what significant events have occurred. As such, many of today’s WSN
deployments can be regarded as sophisticated data loggers [3]. There are at least
three important drawbacks to this approach:

– Energy resources : WSNs are highly resource constrained systems, in partic-
ular with respect to sensor node energy resources. Wireless communication
is one of the most energy-intensive activities of a sensor node, so continually
relaying data to a central system can dramatically shorten the useful lifetime
of a WSN.

– Information overload : The fine-grained spatiotemporal detail becoming avail-
able from larger sensor networks means that individual data items become less
and less meaningful. Transmitting all data can lead to high levels of redun-
dancy and ultimately information overload.

– Sensor/actuator networks : The results of the analysis of sensor network data
are often required by the network itself in order modify the behavior of
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the network (e.g., activate or deactivate sensors to adapt the granularity of
monitoring depending on the activity of the environment, sometimes called
georesponsive sensor networks [4]). Removing information from the network,
processing it centrally, then returning it to the network is an inefficient drain
on network resources.

A growing proportion of current research in WSNs is dedicated to address-
ing these problems using in-network processing, where sensor nodes themselves
collaborate in a decentralized manner to perform partial or complete processing
of sensor data. This paper investigates how the structure of the network (links
between nodes) can influence the results of in-network processing of spatial in-
formation and events.

Due to issues such as scalability, in-network processing often involves dis-
tributed processing with nodes using information from their neighbors. The ques-
tion then arises as to which nodes are considered neighbors of a particular node.
Often, the simplest solution is taken, where a node has as its neighbors all nodes
that it can communicate with directly [5][6]. However, for routing, neighbor-
hood will sometimes need to be limited to planar graphs (as discussed further
in Sect. 2). Therefore, multiple definitions of neighborhood may exist in the
same WSN. This paper evaluates the use of different neighborhood structures
for in-network processing. Many of these structures are already used in routing
research, thus gaining multiple uses out of a single infrastructure.

The importance of neighborhood structures to spatial applications can be seen
when we realize that, for most environmental variables (such as temperature or
light intensity), nodes take only point readings (with exceptions such as cam-
eras). There is often no knowledge of the readings between nodes, either in the
WSN or in any central server. Neighborhood structures may be used to estimate
these unsampled regions. Techniques such as Voronoi diagrams [7] can partition
the field into coverage areas in order to interpolate readings for the unsensed
areas. Techniques such as kriging [8] estimate values at unsampled points. Given
sufficient point estimates, point readings can be interpolated to a field. These
techniques, however, may be computationally expensive when a node needs to
do frequent interpolations in response to a dynamic environment.

From a qualitative spatial reasoning perspective, a fundamental interpolation
process concerns the presence or absence of a boundarybetweenneighboringnodes.
Consider a binary region, for example a hot region (temperature> 25◦C) and its
complement (temperature≤ 25◦C). If two nodes are connected topologically, and
one senses that it is in the hot region and the other senses that it is out of the hot
region, it is certain that there exists a boundary of the hot regionboundary between
them. If they both sense the hot region, it can be inferred that there is no boundary
between them. An example is shown in Fig. 1. Based on a purely local, qualitative
knowledge observations in their immediate neighborhood, Nodes A and D deduce
that there must be a boundary between. Similarly, Nodes A and C can infer that
there is no boundary between them. Thus, by answering a qualitative question (“Is
there a boundary between myself and my neighbor?”), the network topology can
be used to build a picture of a region.
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Node in region:

Node out of region:
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Region boundary
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Fig. 1. Use of network edges to build a region

In order to evaluate various neighborhood structures, this paper quantitatively
tests the ability of a WSN to approximate the boundary of a region when different
structures are applied to it. Boundary was chosen as an evaluation criterion
because it is a fundamental construct for the detection of spatial events in region
evolution — events occur at a region’s boundary or events create new boundaries.
Boundary has salience for human spatial cognition and can be used to represent
various spatial properties of the region such as its shape or its area. This work
also tests the neighborhood structures’ ability to qualitatively detect topological
events occurring to a region.

It has been found that non-planar structures are infeasible not only for rout-
ing but can also cause inconsistencies in a WSN’s knowledge and state. Neigh-
borhood structures with a lower average edge length gives better quantitative
results. Those with high edge densities give better qualitative results. Higher
edge densities usually increase the average edge length, so high edge densities
result in poorer quantitative performance.

2 Background

A lot of research effort has been given to developing neighborhood structures
for WSNs because of their importance to routing. It is especially important to
greedy routing, where a message is sent to a node geographically closer to the
destination than the current node. An example of a greedy routing algorithm is
Greedy Perimeter Stateless Routing (GPSR) [9].

Greedy forwarding can fail if the message reaches a “void” where no node
is closer to the destination than the current node. GPSR therefore includes
procedures to route around the edge of the void (Geographic Face Routing)
[9][10]. Such forms of geographic routing (routing to a specific location) therefore
require specific properties from the network graph of a WSN. One is that the
number of voids must be minimized because face routing is more costly than
greedy forwarding. Another is that the graph must be planar (there must be no
crossing edges), otherwise face routing can fail. This in turn requires that there
are no uni-directional links [10].

Researchers use network graphs to test their algorithms and protocols. Occa-
sionally, researchers compare various neighborhood structures for the purposes of
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routing. However, to our knowledge, there is no research on the effect of the var-
ious neighborhood structures on the results of in-network processing. This may
be because there is little research so far into in-network processing of higher level
spatial information that rely on neighborhood structures.

This paper investigates how well different neighborhood structure approxi-
mate the boundary of a region and how well they detect topological events. A
number of boundary detection algorithms have been proposed in the literature.
In the classifier approach, nodes estimate the location of a straight line repre-
senting the local portion of the region boundary [5]. A node’s distance from that
line is used to determine whether it is a boundary node. In another approach, a
node compares the average of the readings from its neighborhood to a threshold
in order to determine whether it is on the boundary [6].

By contrast, this paper adopts a qualitative approach where boundary nodes
are identified purely from their relationship to immediate neighbors (i.e., whether
or not they neighbor a node on the opposite side of a boundary). In addition
to simplifying the model and computation, adopting this qualitative approach
can help improve the network’s robustness to imperfection in sensor data and
boundary indeterminary.

3 Neighborhood Structures

Modeling a network as a graph G = (S, E), with a set of vertices S ⊂ �2

representing sensor nodes as points in the plane and edges E ⊆ S×S representing
the potential for direct one-hop communication between nodes, the following
neighborhood structures are commonly used.

– Localized Delaunay triangulation: The Delaunay triangulation DT (S) is the
unique triangulation of S such that no point in S is inside the circumcircle
of any triangle in DT (S) [11]. A localized Delaunay triangulation (LDT) is
a graph resulting from attempting to build a Delaunay triangulation (DT)
using limited information (information local to a node). LDT does not have a
complete convex hull since some edges that exceed the communication range
of the nodes are not included in the graph. Depending on the algorithm, node
positions and communication ranges, LDT may not even be a triangulation.

– Gabriel graph: E includes edges (x, y) and (y, x) between two points x ∈ S
and y ∈ S if the circle with xy as the diameter is free of other points in S
[12]. GG(S) is a subgraph of DT (S).

– Relative neighborhood graph: E includes edges (x, y) and (y, x) if the lune
(the intersection of the two circles with centers x and y and with xy as
radius) is free of other points in S. RNG(S) is a subgraph of GG(S) [12].

– Localized greedy triangulation: The greedy triangulation GT (S) of a set of
points S is built by first creating a list of all edges between all nodes in the
network. The shortest edge is removed from the list and it is added to the tri-
angulation if it does not cross an edge that has already been inserted into the
triangulation. This continues until all the edges have been exhausted or the
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number of edges in the triangulation is 3 × N − 6, where N = |S|. Thus the
greedy triangulation (GT) attempts to minimize total edge length in a greedy
manner [11]. The localized GT (LGT), built by nodes using local information,
is not guaranteed to be a complete triangulation, similar to LDT.

– Unit disk graph: The unit disk graph (UDG) is a non-planar graph where
there is an edge between two points as long as the points are at most a unit
distance apart. In a WSN, this is a graph where each node has edges to all
nodes that it can communicate with.

The graphs can be compared in Fig. 2, which shows graphs built in a distributed
manner by a WSN simulation.

(c) RNG

(b) GG

(d) GT

(a) DT

(e) UDG

Fig. 2. Neighborhood structures built in a distributed manner

These five cover a variety of neighborhood structures. DT is well-known in
spatial applications, so it is sensible to test a distributed version in a WSN. GG
and RNG are built using completely local criteria and therefore lend themselves
to implementation in WSNs using distributed processing. GT’s usage of edge
length as a criterion may make it suitable for WSNs because many localization
algorithms determine distance (using, for example, received signal strength) be-
fore deriving coordinate information [13]. Finally, UDG is the most basic case
where all possible edges between nodes exist.

4 Methodology

The neighborhood structures were compared against each other both quantita-
tively and qualitatively. The quantitative properties of the neighborhood struc-
tures were evaluated using a WSN’s approximation of the boundary of a region.
Their qualitative properties were tested by determining their ability to detect
certain topological events. These tests were done by simulation.
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4.1 Simulation Environment

It was infeasible to perform the tests using real sensor nodes due to the require-
ment for a large number of nodes to make the spatial properties of the neighbor-
hood structures meaningful. Therefore, the tests were done by simulation. Repast
(http://repast.sourceforge.net/), a Java-based agent modeling tool, was
used. Each sensor node in the simulation was made an independent Java object.
The field being simulated was also independent from the sensor nodes. The nodes
interact among each other and with the environment in a decentralized manner.

4.2 Decentralized Computation of Neighborhood Structures

In our simulations, the neighborhood structures were built by the nodes them-
selves in a decentralized manner. Researchers have developed many decentralized
algorithms to build network graphs that meet the routing requirements that have
been mentioned in Sect. 2. The Cross-link Detection Protocol (CLDP) can gen-
erate a planar subgraph of any arbitrary graph of the network [10]. A localized
DT built by a WSN can be ensured to be planar as long as a node uses informa-
tion from nodes that are two communication hops away [14]. The Gabriel graph
(GG) has also been used to develop network architectures [15], as it does not
need a special algorithm to be built by sensor nodes locally.

In our simulations, the GG and RNG were built by simply by each node
applying the GG and RNG rules (Sect. 3) to all nodes that it can communicate
with directly. Each node x ∈ S starts with a list of these nodes, which it can
acquire in an initial handshaking phase. x tests each node in this list to check
whether an edge between them is permitted in GG or RNG.

For the LDT, for every pair of nodes y and z in x’s communication range,
if there were no nodes in the circumcircle of �xyz, edges (x, y) and (x, z) were
added to E. Thus, for GG, RNG and LDT, the node does not compute the
complete graph of all the points in its communication range.

If x uses nodes in its communication range to compute the LDT, a non-planar
graph may result. This happens when x rejects a triangle �xyz due to a node
w in �xyz’s circumcircle, but y or z accepts �xyz because w is out of its com-
munication range. This situation results in unidirectional links. If nodes that are
two communication hops away are included in the triangulation procedure, pla-
narization is ensured [14]). For simplicity, however, in our simulations x removed
all unidirectional edges (each edge (x, y) for which y did not have an edge (y, x)).
Additionally, triangles whose circumcircles include more than three nodes were
not included in the graph because they can result in crossing links. These pro-
cedures gave us a planar graph, but not a complete triangulation. Rather, the
LDT is a graph based on the rules for Delaunay triangulation.

LGT requires the nodes to compute all possible edges between all its neighbors
and create the complete graph to ensure no edges cross. Although fast algorithms
for GT exist in the literature, our objective in this work was not to use the most
efficient algorithms but rather to test the neighborhood structures. Therefore,
we used algorithms that were the simplest for us to implement, i.e., we applied
the basic rules of the neighborhood structures.

http://repast.sourceforge.net/
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Finally, UDG was built by each node creating an edge to each other node
within.

4.3 Quantitative Test: L2 Error Norm

To quantitatively determine the accuracy of the region boundaries as approxi-
mated by the WSN under various neighborhood structures, the shape, location
and size of the approximated region boundary were compared to the actual
boundary. The L2 error norm provided a simple means to test all of these
properties. The L2 error norm is the area of the region enclosed between the
boundaries of two shapes. A WSN monitoring a region O determines an approx-
imation P of the original region’s boundary (Sect. 5.1). The L2 error norm was
computed in this paper by finding the area of the symmetric difference between
O and P as a proportion of the total area of O, i.e.,

L2 error norm =
area((O − P ) ∪ (P − O))

area(O)
. (1)

An L2 error norm of zero means that not only are the areas of the two shapes
equal, but also that their boundaries are in complete agreement.

4.4 Qualitative Test: Detecting Topological Events

For various reasons, including space limitations, of the six fundamental topo-
logical events for dynamic areal objects (Fig. 3) [16], only merge and split are
investigated in this paper. In concurrent work, an algorithm has been developed
to detect these topological events and distinguish them from each other and from
non-topological events. It was found that the algorithm to detect self-merge is
similar to that for split, partial-split required other events being detected cor-
rectly, and the effects of misidentified appearances and disappearances can be
found in incorrect detection of other topological events. For these reasons, it was
felt that merge and split were suitably representative of topological events to be
used to analyze the neighborhood structures’ effectiveness.

The complete algorithm to detect and distinguish spatial events is beyond the
scope of these paper. In fact, the algorithm for detecting a merge is not needed
to understand why a merge can be incorrectly detected, so that is left out too.
Only a condensed version for the detection of split is presented.

Split Detection. The algorithm for detection of a split is complicated due
to the difficulty in distinguishing it from contraction. In both Fig. 4(a) and
Fig. 4(b), Node A has detected a change in the environment. Consequently, the
region being monitored no longer includes A. To differentiate split and contrac-
tion, Node A maintains its neighbors in a list sorted by direction (called the
cyclic ordering of the neighbors). With this sorted list, it determines how many
blocks of region/hole surround it.

If there are two such blocks, the region has contracted — in Fig. 4(a), A is
surrounded by an in-region block consisting of B, D and C and an out-of-region
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Fig. 3. Six fundamental topological events for dynamic areal objects
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Fig. 4. Split/contract

block consisting of only E. If there are four or more blocks (Fig. 4(b): B, D, C
and E are all in separate blocks around A), the region has split.

To demonstrate why four blocks are necessary, consider D. If D were not in A’s
neighborhood, A would not be able to determine whether a split has occurred.
This is because, from A’s point of view, there is a consecutive block of region
around it consisting of B and C. It therefore assumes that a contraction has
occurred. Additionally, the absence of D means that A cannot locally determine
whether the region is connected beyond its immediate neighborhood.

Further cases (such as if D is actually in a hole in the region) are easily
resolved, but those issues are beyond the scope of the paper. In our simulations
to evaluate neighborhood structures, we controlled the region evolution so that
only merge and split occurred. Therefore, in this paper, it is not necessary to
discuss the complete algorithm. Instead, it is sufficient to realize that, to detect
a split, a node must have at least four neighbors.

5 Boundary Approximation and Analysis

One hundred random deployments of 500 nodes were generated for the simula-
tions to determine which of the neighborhood structures gave rise to the best
boundary approximation from the WSN. For each of the hundred deployments,
each of the neighborhood structures was applied.
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5.1 Experiment 1: Polygonal Region

In a binary field, the WSN was used to monitor a simple polygonal region (Fig. 5).
In order to determine the WSN’s boundary approximation, a message is passed
along the boundary of the region (usually the nodes just inside the boundary).
The message collects a list of boundary coordinates as it moves from node to
node along the region boundary. The message is passed anticlockwise along the
region boundary — this was an arbitrary choice. The ordered list of coordinates
that results from this message is the WSN’s polygonal approximation of the
actual region boundary.

Fig. 5. Example of LGT-networked WSN monitoring a polygonal region

Figure 6 can be used to demonstrate how the WSN builds its polygonal ap-
proximation of the region boundary. The nodes maintain their neighbor tables
sorted by cyclic ordering around the node. For example, B’s anticlockwise neigh-
bor list may be (I, A, C, H). Let B be the initiator of the boundary approxima-
tion task. From the ordered list of its neighbors, H is the first neighbor of B
that is outside the region (since it directly follows a neighbor that is inside the
region). B starts the boundary polygon with the midpoint of BH . It then adds
midpoint of BI to the polygon. Since the next neighbor in the list, A, is inside
the region, the list of coordinates is passed to A. A adds the midpoints of AJ ,
AK, AE and AD to the list, then passes it on to C. When the list of coordinates
returns to B, it receives the complete estimate of the boundary polygon.

Results. Figure 7 (one of 100 simulations) gives a qualitative view of the WSN’s
approximation of the monitored region’s boundary using the different neighbor-
hood structures. Table 1 gives the average L2 error norm for the 100 simulations
for each neighborhood structure. The results show that RNG is the best at es-
timating a region boundary, while LGT is the worst.

T-tests were performed to determine whether the differences between the var-
ious neighborhood structures were statistically significant at the 5% level. The
tests revealed that they were significantly different, even LDT and LGT, which
were very close in results with a 0.001 difference in L2 error norm.

Absence of UDG from Results. Observe that the results do not include the
UDG. This is due to the nature of the message transmission scheme in Sect. 5.1
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Fig. 6. A simple example of a WSN’s polygonal estimate of a region boundary
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Fig. 7. Approximations of the polygonal region boundary using different neighborhood
structures

(tracing around a boundary), which is a form of face routing since messages are
sent along edges according to their cyclic order. This has the pitfalls of geographic
face routing, and so non-planar graphs cause the message to loop forever. An
example is shown in Fig. 8. A message arrives at D (1), is passed to B (2), then
to A (3), C (4) and back to B (5), at which point it continues along path 3-4-5.
Observe that removing either the edge DB or CA (making the graph planar)
can solve the problem. The UDG is intrinsically non-planar, and so is unsuitable
to the distributed boundary approximation algorithm above.

Discussion. It was expected that the neighborhood structures with higher edge
density (such as LDT and LGT) would perform better because the higher number
of edges would allow the network to trace around the boundary more accurately.
However, the results showed that RNG performed the best.
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Table 1. Average L2 error norms for the polygonal region

Neighborhood Structure Average L2 error norm

LGT 0.106
LDT 0.105
GG 0.0971

RNG 0.0919

A

B

D C

1

2

34

5

Region
Boundary

E

Fig. 8. Non-planar neighborhood causes an infinite loop

A reason for this unexpected result is that RNG is the sparsest of the four
neighborhood structures. It therefore has fewer edges that intersect the region’s
boundary, and consequently the WSN’s estimate of the region boundary has
fewer vertices. This results in fewer and longer edges in the approximation poly-
gon. This seemed a good explanation for why RNG was best at monitoring the
simulated region of few vertices and long linear edges 5.

5.2 Experiment 2: Circular Region

The results of Experiment 1 suggested that shapes with linear edges were best
monitored by a WSN with RNG. Therefore, experiment was repeated with a
region without straight lines — the circular region in Fig. 9.

Results. Figure 10 is a sample of the shape of the boundary approximations
due the the four neighborhood structures.

The L2 error norm, averaged over 100 simulation runs, showed that RNG has
the best results again (Table 2). The results were statistically significant at the
5% level, and they were also correlated — whenever one neighborhood structure
work well, the others work well too (Pearson correlations of between 0.845 and
0.942). The exception was RNG, which was comparatively uncorrelated (Pearson
correlations of between 0.578 and 0.674).

Discussion. Contrary to our expectations, RNG performed better in both cir-
cular and polygonal regions. An explanation for this is that RNG is sparser than
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Fig. 9. Example of LGT-networked WSN monitoring a circular region

DT
GG

GT
RNG

Fig. 10. Approximations of the circular region boundary using different neighborhood
structures

the other structures in terms of edge density. Its edges are therefore shorter than
those of GG and DT, of which it is a subgraph. Whenever one of the RNG edges
intersect the region boundary, the likelihood is that any point on the edge is
closer to the actual boundary location than any point on the longer edges of
LDT. Due to this low average edge length of RNG, its boundary points were on
average the most accurate.

Table 2. Average L2 error norms for the circular region

Neighborhood Structure Average L2 error norm

LGT 0.0689
LDT 0.0683
GG 0.0618

RNG 0.0508
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The results for the circular region were better than the polygonal region due
to the sharp corners of the polygonal region. The WSN is not always able to
estimate correctly these sharp turns of the polygon boundary.

6 Detection of Topological Events

It has been seen that the low edge density, and consequently the low average
edge length, of RNG makes it suited to locating the boundary. The following
experiments determine how the neighborhood structures perform in detecting
topological events.

6.1 Experiment 3: Merge

In these experiments, a small square region component moves until it merges with
the polygonal region component (Fig. 11). For each neighborhood structure, we
ran the simulation with ten different random deployments of nodes. For each
simulation run, we counted how many merges were detected.

Merge

Fig. 11. Simulation of merge

Results. WSNs under LDT, GG and LGT detected exactly one merge corre-
sponding to the merge event in Fig. 11. RNG, however, detected 12 additional
merges (Table 3).

Table 3. Number of merges detected with each neighborhood structure in 10 simulation
runs

Neighborhood Structure Number of merges detected

LGT 10
LDT 10
GG 10

RNG 22
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Discussion. Figure12demonstrateshowaWSNmay incorrectly identifyamerge.
Figure 12(a) shows a region expanding. Figure 12(b) shows the WSN’s belief of
what is occurring. Since A and C are disconnected, their detections of the region
are treated as separate. So C believes that a new region component has appeared.
When the region expands to include B, it sees two distinct region components, one
at A and the other at C, come together, so it identifies it as a merge.

(a) Actual event: region expanding

(b) WSN observes appearance and merge

A
C

B

A

B

A

B

A

B

A

B

A

B

C C

C C C

Fig. 12. False detection of merge

If the neighborhood structure had been denser, with an edge between A and
C, C would have been able to correctly identify the change as an expansion due
to having a neighbor that was in the region previously. Thus, the sparsity of
the network graph causes false positives in detecting a merge. This is why RNG
gives 12 false merge detections in addition to the 10 correct merges.

6.2 Experiment 4: Split

After the merge, the part of the region to the right splits from the region (Fig.
13). Ten different random placements of nodes were generated and then used to
run simulations for each neighborhood structure. The number of splits detected
by the WSN was recorded.

Results. Table 4 shows how many splits were missed by the WSN when the four
neighborhood structures were applied. LDT and LGT did not miss any splits.
GG missed 6 splits and RNG did not manage to detect a single split.

Discussion. Section 6.2 explains why a node needs to have at least four neigh-
bors in order to detect a split. Figure 2 shows that with GG, nodes do not always
have four neighbors. With RNG, there are even more nodes with the same prob-
lem. Therefore, although GG did sometimes successfully detect a split, RNG did
not detect a single one. For a node at the pinch point where a split occurred,
there were never four neighbors when RNG was used.
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Split

Fig. 13. Simulation scenario for detecting splits

Table 4. Number of missed splits with each neighborhood structure in 10 simulation
runs

Neighborhood Structure Number of splits missed

LGT 0
LDT 0
GG 6

RNG 10

A Further Reason for the Exclusion of UDG. Section 5.1 gives routing
difficulties as the reason for the exclusion of UDG. A different reason for the
inapplicability of UDG in Experiments 3 and 4 is that non-planar graphs result
in inconsistencies in the WSN’s knowledge if we use the qualitative approach in
Sect. 1. In Fig. 14, if A and C have an edge between them, they assume that
the region is continuous between them. If there is an edge between B and D,
the region is discontinuous between A and C — it may be said that there is a
hole in the region between B and D. If there are edges between all the nodes,
from A’s and B’s points of view, the region is continuous, while to B and D, the
region is discontinuous. This inconsistency in the WSN’s beliefs causes problems
when the nodes need to collaborate in various tasks. For these reasons, when
we attempted to apply our algorithm to a UDG-networked graph, the network
reported many false events and resulted in an incorrect network state. Therefore,
we do not use UDG to detect topological events.

6.3 Summary

– It is not possible to use UDG in a WSN where routing and event detection
is a concern, at least with the algorithms used in this paper.

– RNG gives the best quantitative results due to short average edge lengths,
but it performs very poorly in detecting topological events. However, RNG
performs poorly at qualitatively detecting topological events, to the point
that it cannot be recommended for such tasks.
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Fig. 14. Inconsistency due to non-planar graph

– LDT and LGT give the best qualitative results for event detection due
to having sufficient neighbors to distinguish complex topological and non-
topological events.

7 Conclusion

Processing of data in a WSN to generate information is an important tool for in-
formation management for various reasons, such as to improve scalability and for
in-network usage of higher level information. Neighborhood structures are im-
portant for the in-network processing of spatial information. The results demon-
strate that the properties of the neighborhood structure can have a significant
influence on the qualitative and quantitative observations of the WSN.

When network edges are used to give spatial context to sensor readings (such
as build regions), the length of the edges affects the quantitative estimates made
by the WSN. Longer edges give the WSN more opportunities to make mistakes
about assumptions any estimated made along the edge. Even so, other than
UDG, none of the neighborhood structures failed at quantitative tasks, so there
is some flexibility in choosing an appropriate structure for a WSN when other
factors are taken into account.

However, qualitative comparisons rely heavily on ordering of information.
Therefore, the lack of sufficient information to be ordered can give rise to false
results. For this reason, the RNG fails at the split detection task, while GG
performs poorly. RNG also gives false positives in detecting merges.

LDT and LGT in particular perform alike in the qualitative tasks and LDT
is slightly better at quantitative tasks. If there are no other considerations (such
as computational complexity), LDT should always be chosen over LGT. As for
the others, researchers and engineers need to choose a structure that best fits
their applications.

One of the factors that will influence the choice of neighborhood structures is
the cost of building and maintaining it as the node set changes due to, for exam-
ple, sleep cycles, movement or failure. These costs will depend on the distributed
algorithms that are employed. Since this paper does not investigate algorithms
for distributed creation and maintenance of the various neighborhood structures,
it is not possible as yet to provide a cost comparison of these structures.
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In our current research, we are developing the algorithm (part of which was
presented in Sect. 5) to detect qualitative spatial events. From the results of this
paper, we will be using LDT for our future investigations.
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Abstract. While similarity has gained in importance in research about
information retrieval on the (geospatial) semantic Web, information re-
trieval paradigms and their integration into existing spatial data in-
frastructures have not been examined in detail so far. In this paper,
intensional and extensional paradigms for similarity-based information
retrieval are introduced. The differences between these paradigms with
respect to the query and results are pointed out. Web user interfaces im-
plementing two of these paradigms are presented, and steps towards the
integration of the SIM-DL similarity theory into a spatial data infrastruc-
ture are discussed. Remaining difficulties are highlighted and directions
of further work are given.

1 Introduction and Motivation

Semantics-based information retrieval [1,2] plays an increasing role in GIScience
and research on the geospatial semantic Web. In general, two approaches can be
distinguished, those based on classical subsumption reasoning and those based on
so-called non-standard inference techniques [3,4] – similarity being one of them.
While the number of similarity theories for information retrieval is increasing,
the number of real geo-application is still low. So far, the most prominent reason
was that existing theories were not able to handle the expressivity of description
logics used by ontologies on the (geospatial) semantic Web. Recently developed
theories [5,6,7,8] bear the potential to close this gap, which moves the focus
towards new challenges. This paper addresses one of these challenges: How can
similarity be integrated within existing spatial data infrastructures (SDIs) to
support users during information retrieval?

The paper is based on the SIM-DL similarity theory [7], which is introduced
in section 2. This section also describes relevant background in the areas of sim-
ilarity measurement, description logics, and SDIs. Sections 3 and 4 present the
two main contributions of the paper. In section 3, we present a classification
of semantics-based information retrieval paradigms. We investigate the differ-
ences between subsumption and similarity-based approaches in terms of how a
query is phrased and which results can be expected. The examined paradigms

T.J. Cova et al. (Eds.): GIScience 2008, LNCS 5266, pp. 151–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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are grouped into intensional and extensional approaches (and combinations of
both). In section 4, we discuss how the similarity-based paradigms can be im-
plemented using a SDI and what difficulties have to be overcome. Section 5
concludes the paper and points out directions for future research.

In order to illustrate our work, the following scenario is used: A tourist, Nicole,
is planing a trip to Utah, US. As a passionate canoeist she would like to spend
some time canoeing. Since she has never been to Utah before, she does not know
any waterbodies that might please her. However, she does remember some rivers
and lakes that she canoed a few years ago while visiting friends in Canada.
Therefore, she decides to search for this kind of features browsing services on
the Web. We assume that these services are part of a SDI that also includes a
catalogue service providing information about available geographic feature types
and a web similarity service (WSS) based on the SIM-DL server [7].

2 Related Work

This section introduces related work. The objectives and basic components of
SDIs are presented in section 2.1. Sections 2.2 and 2.3 describe similarity mea-
surement and description logics, respectively. These provide the basis for the
SIM-DL similarity theory introduced in section 2.4.

2.1 Spatial Data Infrastructures

The main goal of SDIs is to offer access to distributed data sources. The de-
velopment of interoperability specifications – and here most prominently the
work within the Open Geospatial Consortium1 (OGC) – has created a tech-
nology evolution that moves from standalone GIS applications towards a more
loosely coupled and distributed model based on self-contained, specialized, and
interoperable (Web) services [9]. In such an infrastructure, where resources are
distributed and controlled by different organizations, catalogue services provide
a means for describing the services’ locations and capabilities. They store meta-
data and support users in discovering and using these resources. The OGC has
specified a catalogue service for the Web (CS-W) and related metadata profiles.

While thus the SDI concept promises an efficient sharing and reuse of geo-
graphic data among heterogeneous user groups [9,10], most existing SDIs are still
at an early stage in their development. Many just offer geoportals that integrate
on-line map viewers and catalogue services for their data holdings [11,12].

In this work, we focus on geographic data provided through the Web feature
service interface (WFS) and organized into geographic feature types. In SDIs,
metadata about feature types can be stored in so-called feature catalogues [13].
Feature catalogues define the types of features, their operations, attributes, and
associations. Their goal is to provide a better understanding of geographic data

1 The OpenGIS standards and specifications are available from
http://www.opengeospatial.org/standards/.

http://www.opengeospatial.org/standards/
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in order to enable users to judge whether the data fits their purpose. An imple-
mentation of a feature type catalogue as an extension package for the ebRIM
Profile of the CS-W has been proposed [14].

2.2 Similarity Measurement

Similarity has its origin in cognitive science and was established as a theory to in-
vestigate how entities are grouped into categories, and why some categories (and
their members) are comparable while others are not [15,16]. Semantic similarity
measures the proximity of meanings as opposed to purely structural compari-
son. While entities can be expressed in terms of attributes, the representation of
concepts2 is more complex. In dependence of the (computational) characteristics
of the representation language, concepts are specified as unstructured bags of
features3, regions in a multidimensional space, or set-restrictions specified using
various kinds of description logics. As the computational concepts are models of
concepts in human minds, similarity depends on what is said (in terms of repre-
sentation) about these concepts. Context is the next big challenge for similarity
research. In most cases, meaningful notions of similarity cannot be established
without defining in respect to what similarity is measured [16,18,19,20].

Similarity-based information retrieval plays an increasing role in GIScience.
Based on Tversky’s feature model [17], Rodŕıguez and Egenhofer [21] developed
the Matching Distance Similarity Measure which offers a basic context theory,
feature weights, and asymmetry, while Raubal [22] proposed geometric similarity
measures based on conceptual spaces. Several measures [5,6,7,8] were developed
to close the gap between ontologies specified in description logics and similarity
theories which had not been able to cope with the expressivity of these languages.
Other similarity theories [23,24] have been established to determine the similarity
between spatial scenes and also investigate how to use similarity within spatial
queries [24]. The ConceptVISTA [25] ontology management and visualization
toolkit uses similarity for knowledge retrieval and organization.

2.3 Description Logics and Inference

Description logics (DL) are a family of knowledge representation languages used
to model concepts and individuals within a knowledge base. A knowledge base
consists of a TBox which contains the terminology, i.e., the concepts within
a given domain, and an ABox which stores assertions (about named individu-
als). A DL system offers services to reason about the content of a knowledge
base. Standard reasoning services include satisfiability, subsumption, and in-
stance checking. The computation of the most specific concept (MSC) for an
individual and the least common subsumer (LCS) of several concepts are so-
called non-standard reasoning services [4]. Computing the MSC of an individual

2 The term concept is used in this paper for the ontological representation of ge-
ographic feature types and should not be confused with the concepts in human
minds.

3 In the sense of concept characteristics, see [17].
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yields the least concept that the individual is an instance of. Accordingly, the
LCS of some concepts is the least concept that subsumes all of them, i.e., there
is no subconcept of the LCS which is a superconcept of all these concepts.

Computing the MSC and LCS can serve a variety of purposes. A top-down
approach for constructing knowledge bases is not always feasible, since not all
relevant concepts might be known beforehand. Instead, one could only specify
the building blocks in the TBox and then introduce typical examples as indi-
viduals in the ABox. By computing the MSC (and LSC) for these individuals,
more complex concepts can be added to the TBox. A semantics-based retrieval
approach based on computing the LCS has been proposed by Möller et al [3].

2.4 SIM-DL Similarity Theory and Implementation

While the previous sections focus on similarity in general, this section gives
an insight into a similarity theory (and its implementation) which measures
similarity between concepts specified in expressive description logics.

SIM-DL [6,7] is an asymmetric and context-aware similarity measurement
theory used for information retrieval. It compares a search concept Cs with a set
of target concepts {Ct1 , ..., Ctm} from an ontology (or several ontologies using
a shared top-level ontology). The concepts themselves can be specified using
various kinds of expressive description logics. The compared-to target concepts
can be either selected by hand, or derived from the so-called context of discourse
Cd [6,19,18], i.e., a subset of the ontology, also referred to as the domain of
application [21]. It is defined as the set of concepts which are subsumed by
the context concept Cc (Cd = {Ct|Ct � Cc}). Hence, each (named) concept
C ∈ Cd is a target concept for which the similarity sim(Cs, Ct) is computed.
Besides cutting out the set of compared concepts, Cd also influences the resulting
similarities (see [6,7] for details). With respect to the canoeing scenario this
means that the similarity between the concepts River and Canal also depends
on whether Cc is set to Watercourse or the more general Waterbody (see figure
1). Up to now, the user has to specify the context concept manually. Information
retrieval paradigms overcoming this restriction are discussed in section 3. SIM-
DL offers an extended context model, but we focus on Cd here (see [18]).

SIM-DL compares two DL concepts in canonical form [6,26] by measuring the
degree of overlap between their definitions. A high level of overlap indicates a
high similarity and vice versa. DL concepts are specified by applying language
constructors, such as intersection or existential quantification, to primitive con-
cepts and roles – hence forming complex concepts. Consequently, similarity is
defined as a binary and real-valued function Cs × Ct → R[0,1] providing im-
plementations for all language constructs offered by the used description logics.
Finally, the overall similarity between concepts is the normalized (and weighted)
sum of the single similarities calculated for all parts of the concept definitions.
A similarity value of 1 indicates that the compared concepts cannot be differ-
entiated, whereas 0 indicates that they are not similar at all. SIM-DL is an
asymmetric measure, i.e., the similarity sim(Cs, Ct) is not necessarily equal to
sim(Ct, Cs). Therefore, the comparison of two concepts does not only depend on
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their descriptors, but also on the direction in which both are compared. In case of
concepts composed by disjunction, SIM-DL distinguishes between two similarity
modes, the maximum similarity and the average similarity. In the first case, sim-
ilarity depends on the most similar concept that is part of the disjunction. In the
second case, similarity is defined as the average of all involved concepts. While
this distinction is a consequence of the used representation language and the
definition of similarity functions in SIM-DL [6,7], we will discuss its importance
for information retrieval in section 3.

A single similarity value computed between two concepts hides most of the
important information. It does not answer the question whether there are more
or less similar target concepts in the examined ontology. It is not sufficient to
know that possible similarity values range from 0 to 1 as long as their distribu-
tion is unclear [7,18]. Besides these interpretation problems, isolated comparison
puts too much stress on the concrete similarity value. It is hard to argue that
and why the result is (cognitively) plausible without other reference values [18].
Consequently, SIM-DL focuses on similarity rankings. The result of a similarity
query is an ordered list with descending similarity values. SIM-DL, supports
various result representations including font-size scaling or categorization.

The SIM-DL theory is implemented as semantic similarity service (called WSS
here). The current (beta) release4 2.2 supports subsumption reasoning and sim-
ilarity measurement up to ALCHQ, as well as MCS and LCS computation (up
to ALE). More details on the SIM-DL implementation and a similarity plug-in
to the Protégé ontology editor are given by Janowicz et al. [7]. The extensions to
the description logics communication interface DIG, necessary to integrate the
WSS within the Semantic Web are discussed by Wilkes and Janowicz [27].

3 Intensional and Extensional Retrieval

In this section, we will introduce paradigms for similarity-based information
retrieval and group them into intensional and extensional approaches (and com-
binations of both). We will motivate the need for similarity by contrasting it to
approaches purely based on subsumption reasoning. To illustrate the differences,
we define two concepts, the intended concept Ci, which represents exactly the
information the user is looking for, and the search concept Cs, which is the con-
cept actually used in the search. We make this distinction, because we assume
that in most cases the intended concept is not part of the queried ontology and
has to be approximated by the search concept. The result of a query, i.e., the
concepts or individuals returned to the user, is the better the more accurate Cs

approximates Ci. In the ideal case, Cs would be equal to Ci. If Cs
I ⊂ Ci

I , all
instances of Cs fulfill the user’s requirements. In contrast, if Cs

I ⊃ Ci
I , some

instances of Cs might not fulfill the user’s requirements. Consequently, a user
interface should support users in defining appropriate search concepts. We fur-
ther introduce the notions of target concepts Ct and instances It, which will be
used in our descriptions of similarity-based search paradigms.
4 The release can be downloaded at http://sim-dl.sourceforge.net/.

http://sim-dl.sourceforge.net/
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In the following, we assume that the information the user is searching for is
represented as individuals and concepts within an ontology, and that she uses
these artifacts as the basis for her search. How this representation can be mapped
to features and feature types provided in a SDI is presented in section 4.

To illustrate the different approaches, we will use an excerpt of a hydrology
ontology (figure 1). For readability, the figure shows a simplified representa-
tion of the ontology only including its is-a relations; more expressive DL state-
ments (including concept defintions based on roles such as hasF lowV elocity or
hasOwnership) are not depicted. Note that such expressive statements can also
be used in the proposed paradigms and SIM-DL [7].

Lake

Watercourse

Reservoir

Tarn

Aqueduct Canal River

Waterbody

Sewage

SurfaceFeature

Groundwater

Ocean

Inlet

InlandFeature

SubConcept

Concept
is-a

Fig. 1. Fragment of an hydrology ontology

Referring to the canoeing scenario, Nicole is searching for the ad-hoc category
[28] of canoe-able waterbodies (Ci). As a corresponding concept is not available
in the ontology, she needs to define a query using existing concepts. We assume
a graded structure [28,29] for such ad-hoc categories, i.e., there are more typical
and less typical canoe-able waterbodies (on concept and instance level).

3.1 Subsumption-Based Retrieval

In terms of subsumption-based retrieval and as depicted in figure 2, the following
(intensional) approaches for deriving a query, i.e., the search concept, can be
distinguished (see also [1]):

a) Search concept is a subconcept of Ci. The user can specify a particular
search concept (e.g., River) that is known to be a subconcept of Ci. Con-
sequently, while all individuals of Cs also satisfy the requirements for Ci,
many appropriate individuals will not be captured as Cs

I ⊂ Ci
I .

b) Search concept is a superconcept of Ci. The user can specify a partic-
ular search concept (e.g., Waterbody) that is known to be a superconcept of
Ci. Consequently, while all individuals of Ci will be returned, many inappro-
priate individuals (e.g., instances of Tarn, Ocean, Sewage, or Groundwater)
will also be captured as Cs

I ⊃ Ci
I .
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c) Search concept is defined by conjunction. The user can try to build
a more appropriate search concept using a conjunction of existing named
concepts (e.g., SurfaceFeature � InlandFeature � Waterbody). First, this
would require a complex user interface. Second, without a detailed knowledge
of the examined ontology, the relation between Ci and Cs remains unclear
to the user. Additionally, there is a high likelihood to get an empty result set
(because of the conjunction constructor). Thus, such an approach is more
suitable for ontology engineers than for end-users.

d) Search concept is defined by disjunction. The user can select several
concepts known to be subconcepts of Ci, hence forming Cs as disjunction
of those concepts (e.g., Canal � River � Lake � Reservoir � Inlet). While
this would require a complex user interface and is time consuming, it would
result (if the concepts are carefully selected) in a good approximation of Ci.

Fig. 2. Subsumption-based information retrieval paradigms

3.2 Similarity-Based Retrieval

In terms of similarity-based retrieval and as depicted in figure 3, the following
approaches for deriving a query can be distinguished.

Intensional Paradigm. The intensional information retrieval paradigm exclu-
sively relies on concept descriptions to reason about similarity, i.e., no individuals
are taken into account. Consequently, a concept ranking is returned to the user.

e) Prototypical search concept. The user can specify a prototypical search
concept Cs (e.g., River) such as described in approach a and define a context
concept Cc (e.g., Waterbody) in addition, which is known to be a supercon-
cept of Ci (as in b)5. All subconcepts of Cc, called target concepts Ct here,

5 Approach e can also be modified to take concepts formed by disjunction or conjunc-
tion (such as in c and d, repsectively) into account.
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are compared for similarity to Cs; see section 2.4. As we assume a graded
structure, a decreasing similarity to the search concept is interpreted as less
intended concept. Such a ranking can already be delivered back to the user
[18,30]. While this approach is comparable to a combination of a and b, the
ranking is a major advantage and supports the user in generating queries
such as in case d, without requiring a detailed insight into the underlying
conceptualizations. While the selection of a prototypical concept is less dif-
ficult, finding an appropriate context concept manually is more difficult. As
each concept returned within the ranking is a subconcept of Cc, it follows
that if Cc does not capture the minimum characteristics of Ci , inappropriate
concepts may be returned (however, they would have a low position in the
ranking due to their low similarity to the search concept). Subconcepts of
Cc whose similarity is 0 (or below a pre-defined threshold) are not part of
the ranking. Each concept Ct from the ranking satisfies the more probable
the user’s requirements, the higher its similarity is to Cs.

Additionally, one could automatically generate a new search concept Csn

as a disjunction of the returned similar concepts (above a certain threshold)
which would be compareable to approach d without that the user needs to
find and select those concepts by hand. Note that one cannot think of the
instances as members of a fuzzy set with the similarity of their concepts (to
Ci) as the degree of membership. In SIM-DL (and most related measures),
inter-concept similarity cannot be directly mapped to inter-instance simi-
larity (i.e., a similarity sim(River, Canal) of 0.76 does not imply that the
similarity between all rivers to all canals is 0.76).

Extensional Paradigm. The extensional information retrieval paradigm is a
query-by-example, and hence relies exclusively on individuals to reason about
similarity. A concept (the LCS) computed from the set of examples, called ref-
erence individuals here, is used to pre-select the compared-to target individuals.
Consequently, the user’s query is answered by returning ranked individuals.

f) Reference individuals (for individual similarity). The user can spec-
ify a set of reference individuals {Ir1 , ..., Irn} (e.g., particular rivers and
lakes). The retrieval of target individuals can then be subdivided into three
steps. First, the most specific concept MSCri for each reference individual
is determined.The second step is the computation of the least common sub-
sumer for {MSCr1 , ..., MSCrn}. The LCS comprises those characteristics
that are common to all MSCs, and is therefore used as the context con-
cept Cc

6. Finally, retrieving the instances of Cc yields the target individuals
{It1 , ..., Itm} (particular rivers, lakes, reservoirs, canals, etc.). Since all target

6 Consider the following example: MSCr1 ≡ River  ∃hasF lowV elocity.V elocity 
∃hasOwnership.Public and MSCr2 ≡ Lake∃hasOwnership.Public results in the
LCS Cc ≡ SurfaceFeatureWaterbodyInlandFeature∃hasOwnership.Public.
The restriction hasOwnership.Public is common to both MSCs, and although Lake
and River do not match, their common superconcepts SurfaceFeature, Waterbody,
and InlandFeature are considered by the LCS.
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individuals instantiate Cc, they share the same characteristics common to all
reference individuals. Now, similarity is used to account for those characteris-
tics that differ among the reference individuals. For example, a characteristic
that is common to {Ir1 , ..., Irn−1}, but does not apply to Irn , is not captured
by Cc, and is therefore no requirement for a target individual. Nevertheless,
a target individual that shares that characteristic with n − 1 reference indi-
viduals might be more relevant than target individuals lacking that property.
The overall relevance of a target individual can be determined by comparing
it to each of the reference individuals and combining (e.g., averaging) the
resulting similarities. The result returned to the user is a ranking of target
individuals illustrating their similarity to the reference individuals.

Recapitulating, the reference individuals are an extensional way to ap-
proximate Ci, and at the same time their common characteristics are used
as context concept. The set of target individuals might capture inappropri-
ate individuals as {Ir1 , ..., Irn} ⊂ Ci

I ⊆ {It|It ∈ Cc and It /∈ {Ir1 , ..., Irn}}
holds. Due to the similarity ranking of target individuals, this drawback is
compensated. The higher a target individual is ranked the more likely it is
within Ci

I . In contrast to paradigm e, one could also think of the returned
ranking as a fuzzy set by replacing the crisp membership (or instance-of)
relation with its counterpart from fuzzy sets theory7. Then, the degree of
membership of a certain (target) individual is given by its similarity value.

Fig. 3. Similarity-based information retrieval paradigms

Combinations of the Intensional and Extensional Paradigm. A combi-
nation of the intensional and extensional paradigms reduces the difficulties in
selecting appropriate search and context concepts by allowing for the selection
of reference individuals (however, both paradigms return (similar) concepts).

7 See Cross and Sudkamp [31] for an overview on fuzzy sets and similarity.
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g) Prototypical search concept and reference individuals. The user
can specify a search concept (e.g., River) and a set of reference individ-
uals (e.g., waterbodies Nicole had canoed before). This is a combination of
the paradigms e and f, where the search concept is used for comparison and
the least common subsumer of the reference individuals is used as context
concept to define the context of discourse. The result is a concept ranking
such as in e. The advantage is that the user does not need to specify the
context concept manually. However, the distinction between search concept
and reference individuals may be difficult to explain to the user.

h) Reference individuals (for concept similarity). The user can specify a
set of reference individuals. Their LCS is computed and acts as context con-
cept. All resulting target concepts (Ctj � Cc) are compared to the concepts
(Cri) the reference individuals are instances of. For example, if one refer-
ence instance is a Lake, one a River and a third a Canal, the LCS would
be SurfaceFeature�Waterbody � InlandFeature and the target concepts
all concepts from our ontology fragment except Ocean, Inlet, Groundwater
and Sewage. Each target concept is compared to each Cr (Lake, Canal,
and River in our example); note that each Cr is a subconcept of Cc, and
therefore a target concept itself. This raises the question of how the resulting
ranking should be generated. The similarity modes introduced for SIM-DL
allow for two different solutions. Out of the user’s reference individuals a
search concept can be defined as disjunction of the respective reference con-
cepts. Next, either the average or maximum similarity mode can be used to
compute the similarity sim(Cs, Ctj ). In the first case, each Ct is compared
to all Cr and the average of its similarity values is used for the ranking.
In the second case, the ranking depends on the highest similarity value to
one of the Cr. With respect to our example and the average mode, River,
Canal, and IrrigationCanal would occupy a higher position in the ranking,
followed by Lake (see figure 5). This is due to the two watercourses selected
as reference individuals.

As in g, this approach is also a combination of e and f, but does not
require the manual definition of the search concept. The user only needs to
specify reference individuals while Cs and Cc are computed automatically.

3.3 Summary

In contrast to the subsumption-based approaches, similarity supports the user
in phrasing queries and delivers a ranking to help the user in judging how well
returned individuals or concepts fit her requirements. In the cases a and d, it is
guaranteed that all returned concepts are subconcepts of the intended concepts,
i.e., fulfill the user’s requirements – this is not the case for similarity-based re-
trieval in general. To overcome this difficulty the context concept is introduced
to capture the minimal characteristics and only its subconcepts are compared
for similarity. The approaches e–h offer different solutions on how to reduce the
effort of phrasing the search and the context concept, and automate these steps.
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The question which of the proposed paradigms fits best depends on the applica-
tion area. In general, the focus of similarity is more to facilitate the navigation
and browsing through results and hence to improve interaction with the user.
Section 4 introduces two prototypical user Web interfaces to demonstrate how
similarity-based information retrieval can be integrated into a SDI.

4 Integration into SDI

This section presents two conceptual designs for Web user interfaces implement-
ing the similarity-based retrieval paradigms e and h for the canoeing scenario8.
An architecture and workflow for the integration of SIM-DL into an SDI is dis-
cussed and the requirements for such integration are pointed out.

4.1 Similarity-Enabled User Interfaces

Figure 4 displays a user interface implementing paradigm e. According to the
canoeing scenario and using this interface, Nicole searches for features of any
name that are of type River (Cs) and located near Park City, Utah (1 ).

Fig. 4. A conceptual design of a user Web interface illustrating approach e

The context concept Cc is defined as LCS of all feature types which have
features in the map extent (and is hence set to Waterbody with respect to our
ontology fragment). As result, a tag cloud showing alternative (similar) feature

8 Note that implementations for both paradigms exist/are under way for different
scenarios: paradigm e has been implemented within a similarity-aware gazetteer in-
terface [7]; paradigm f is currently being implemented for a similarity-aware climbing
route recommendation service. See
http://sim-dl.sourceforge.net/applications/ for details and source codes.

http://sim-dl.sourceforge.net/applications/
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types is returned (2 ). After clicking on the search button, features within the
map extent of type River are displayed (3 ). The tag cloud can now be used to
browse for features that have a different but similar type than River.

Figure 5 shows a user interface implementing paradigm h. Here, Nicole first
specifies known reference features (from Canada) and the map extent (Utah)
(1 ). After clicking on the search button, a tag cloud of feature types (Ctj ) that
are similar to the feature types (Cri) of the reference features (Iri) is displayed
(2 ). The results are shown for the most similar feature type which is Canal, and
can be used to display features of other types such as River (3 ).

Fig. 5. A conceptual design for a user Web interface illustrating approach h

4.2 SDI Architecture and Workflow

In figure 6, an SDI architecture for implementing similarity-based information
retrieval following paradigms e, f, or h is sketched. It assumes a thematic por-
tal as a client application, e.g., a portal serving hydrology information, with a
user interface resembling the ones presented in the previous section. The other
components in the architecture are standard WMS and WFS instances as well
as a catalogue service including a feature type catalogue (CS-W & FTC) and
the WSS. We assume that both services as well as the client have access to and
use the same ontology. We do not consider here, how the access to the ontology
could be enabled through a service interface (as proposed, e.g., in [32]).

The figure shows the workflow for all three paradigms. Until the similarity
is computed, the workflow is the same for approaches f and h, where reference
individuals, rather than reference concepts as in e, have to be specified. After this
step, approaches e and h share the same workflow as the similarity computation
yields concepts rather than individuals as in approach f.
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Fig. 6. Architecture and workflow for integrating similarity-based information retrieval
into an SDI

In the first step, the client application displays a map using different feature
types from the hydrology domain (f, h)9 or a list of possible search concepts from
the ontology (approach e). The user can then graphically select one or several
features in the map (f, h) or a concept from the ontology (2 ). Approaches f and h
require that the selected features are retrieved from the WFS (3 ) and translated
from their GML representation into DL individuals (4 ). The DL individuals (f, h)
or concepts (e) that are now available in the client are sent to the WSS (5 ), which
computes the similarity using the respective approach (6 ). This yields a ranked
list of similar individuals (f ) or concepts (e, h) that is displayed in the client (7 ).
The user can then select one or several of the presented individuals (f ) or one
of the presented concepts (e, h) (8 ). In approach f, the selected individuals are
translated back into GML, in approaches e and h, the CS-W is queried for WFS
instances offering feature types annotated with the selected concepts (9 ). Based
on the GML or WFS instances, the client builds a SLD document and calls a WMS
GetMap operation (10 ). The map is created from the GML directly (f ) or based
on a GetFeature requests to the WFS instances listed in the SLD (e, h) (11).

4.3 The Missing Pieces

The architecture and workflow sketched in the previous section puts a number
of requirements on the used SDI components, in particular the CS-W and WFS.
9 In an SDI architecture, this will be done using a WMS request, possibly using a styled

layer descriptor (SLD) document with references to remote WFS instances. These
steps are omitted in figure 6 for readability.
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Catalogue Service. The catalogue service needs to store metadata about three
types of resources: (1) services, (2) data, and (3) feature types, as well as the
relationships between them. The ebRIM catalogue profile for the CS-W allows
storing this information in one registry as well as queries combining them. The
ebRIM basic extension package describes the relationship between services and
datasets through the OperatesOn Association defined in ISO 19119 [33]. In [14],
an ebRIM extension package is described that allows the storage of feature cata-
logue (as defined in ISO 19110 [13]) metadata in an ebRIM catalogue. However,
there is no association between the feature types and services and/or data. Such
an association would be required in order to find WFS instances that provide a
specific feature type.

The model defined in ISO 19110 only includes an optional definition attribute
of type string to describe a feature type. In order to do similarity-based search,
a link needs to be established to a concept that annotates the feature type.
This link should be stored in the (feature) catalogue rather than the ontology
in order to avoid having to update the ontology every time a new feature type
is registered in the feature catalogue.

Web Feature Service. For the intensional paradigm, the WFS does not have
to be changed as the approach works at the feature type (rather than the feature
instance) level and the concepts in the ontology only annotate features (rather
than also their attributes and/or operations). Thus, once one or several feature
types have been discovered, a normal GetFeature request can be sent using the
selected feature type (cf. steps 3 and 11 in figure 6).

For the extensional paradigm, features need to be translated into ontology
individuals and vice versa (cf. steps 4 and 9). This could be done following the
approach described in [34], i.e., by simply mapping the GML properties to DL
properties. If the approach is to be successful, this mapping should, wherever
possible, use DL roles already existing in the ontology. Otherwise the similarity
to existing concepts will be very low. The mapping should preferably be defined
by the data provider, or – if no mapping is yet available – by the requester. How
to support the creation of such mappings is an open research question.

5 Conclusions and Further Work

This paper investigates paradigms for similarity-based information retrieval,
presents prototypical Web user interfaces applying these paradigms, and dis-
cusses their integration into SDI as well as remaining difficulties. While the
intensional paradigm e has been implemented within SIM-DL and used for a
gazetteer research scenario before [7,35], the integration of the new extensional
paradigm f within SIM-DL is under development. Further research should espe-
cially focus on approach h. It allows to compute inter-concept similarity without
requiring the user to define the search and context concept manually. In many
application areas, selecting reference individuals, i.e., examples, may be more
intuitive both in terms of using the Web user interface as well as in interpret-
ing the results. In several cases, such as the gazetteer scenario [7,35] and to a
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certain degree also the SDI integration discussed here, geographic features are
not available as instances within the ontology; hence paradigm h can be used
instead of f (and e) to deliver similar feature types. While the question which of
the presented search paradigms (also including those purely based on subsump-
tion reasoning) fits best depends on the application area, it would be fruitful
to analyze whether certain scenarios abet a particular paradigm. This could be
done by human participants tests, but also by classifying the scenarios. For in-
stance, the benefit of similarity lies in browsing through potential results and
reducing the complexity of user interfaces [35], while scenarios which require
guaranteed results (e.g., in emergency scenarios) may put more focus on sub-
sumption reasoning. Additionally, the list of subsumption and similarity-based
paradigms presented in this paper is not exclusive. On may also think of using
logical negation to define the search concept. As pointed out by Nedas and Egen-
hofer [24], the interpretation of such queries is not trivial in terms of a similarity
ranking.

Further research should also focus on how to display the retrieved features and
types to the user. While SIM-DL supports value rankings, tag clouds, and cate-
gories so far [18], other visualization and interaction methods have to be investi-
gated. For instance (for paradigm f), one may think of sliders to select the
similarity threshold value above which features should be displaying on the map.
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Abstract. Environmental observation applications are designed for monitoring 
phenomena using heterogeneous sensor data types and for providing derived 
and often integrated information. To effectively handle such a large variety of 
different sensors, both in scale and type and data volume, we propose a geosen-
sor abstraction for large-scale geosensor networks. Our SGSA(Slope Grid for 
Sensor Data Abstraction) represents collected data in single grid-based layers, 
and allows for summarizing the measured data in various integrated grid layers. 
Within each cell, a slope vector is used to represents the trend of the observed 
sensor data. This slope is used as a simplifying factor for processing queries 
over several sensor types. To handle dynamic sensor data, the proposed abstrac-
tion model also supports rapid data update by using a mapping table. This 
model can be utilized as a data representation model in various geosensor net-
work applications. 

Keywords: Sensor data abstraction, Geosensor network, Slope grid, GIS,  
Surface model. 

1   Introduction 

Environmental monitoring applications have become significant tools for analyzing 
nature’s phenomena. The advances in wireless communication and sensor miniaturi-
zation technologies as well as small-form computing devices have significantly  
contributed to the enablement of environmental monitoring in the physical world [1]. 
To detect the conditions or events in a wide-area geographic space, a monitoring 
application requires a large-scale geosensor network [2] including various kinds of 
sensors. Today, many large, autonomous sensor platforms such as wind sensors or 
ocean buoys are deployed; in a few years, these traditional sensor environments will 
be integrated with the deployment of small-form sensor networks providing rapid 
rates of real-time sensor data of various type, scale and location. 

Monitoring applications can provide useful information for environmental science  
(e.g. a habitat analysis or a micro-climate model for spatially limited area such as a vine-
yard or a greenhouse) and for a warning system of dangerous environmental events (e.g. 
forest fire and air pollution) [3]. For developing sensor network applications, various kinds 
of technologies including sensing, communication and computing are required [4]. Fur-
thermore, the application of domain knowledge is also necessary in order to interpret and 
understand an environmental condition, based on the collected data [3]. 
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Today, queries in sensor data applications are typically executed on the raw, col-
lected sensor data stored in a database system. To process all sensor data without any 
data abstraction, query execution slows down significantly due to the large volume of 
real-time sensor data. In addition, it is difficult to compile useful information for an-
swering queries such as “When will air pollution be reduced?” and “Where is a poten-
tial dangerously polluted area in the near future?” It requires a sensor data abstraction 
as a preprocessing step for interpreting the observed data and for processing a query 
in a central monitoring server. The sensor data in a wide area can be created in large 
volume, and streamed to a central server. In addition, it also can change dynamically. 
In order to handle the observed data, some requirements are posed for the data ab-
straction model itself, such as a rapid data processing, an effective update policy, and 
easy data access, etc. 

In this paper, we designed SGSA (Slope Grid for Sensor Data Abstraction) for rep-
resenting large-scale geosensor data in a central monitoring system. The proposed 
abstraction model is based on a grid-based technique for characterizing terrain surface 
area [5]. After collecting a sensor data type, the grid represents the data on each cell 
as a spatial slope that is described by min(), max(), and a slope direction. It can find 
the condition change in the area because the slope shows the data gradient on the cell. 
Users can understand the conditions by checking the slopes on cells in the grid as if 
you would see a simple contour map. Besides, it can support a rapid data update using 
a mapping table. This proposed model can be utilized as a data representation model 
in various geosensor network applications. 

2   Related Work 

The Environment Observation and Forecasting System (EOFS) is an application for 
understanding a situation and providing forecasting using a large-scale sensor net-
work [6, 7]. The system supports centralized processing, handles huge data volume, 
and provides an autonomous operation, etc. Some usages examples of EOFS are the 
habitat monitoring of seabirds [8], the CORIE for monitoring the Columbia river [9], 
the Automated Local Evaluation in Real-Time(ALERT) [10], and the framework for 
in-situ sensor data processing [11]. The seabird habitat monitoring project focuses on 
habitat condition analysis. The goal of the CORIE project is to guide vessel transpor-
tation and forecasting. It utilized the 13 stationary sensor nodes and features a compu-
tationally intensive physical environment model. GLACSWEB project monitors the 
behavior of ice caps and glaciers for understanding the Earth’s climate [12]. The in-
situ sensor data processing system monitors continuously updated sensor data and the 
communication status in sensor network [11]. It can provide an alarm with the regis-
tered context aware model and rules. The PODS project monitors rare and endangered 
species of plants by using high-resolution cameras, a thermometer, and solar radiation 
sensors [13]. It describes a simple data display with colored dots, which shows the 
category values for each sensor. For example, green dots mean a normal condition. 
On the other hand, red indicates one of the extreme categories. It also considers data 
summarization techniques such as consolidating the data with Theissen polygons 
(Delaunay triangulation) [14] to show the general pattern of the data values as a map. 
GMT, the Generic Mapping tools, is available to present the measured data [15]. 
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On the spatial resolution, some applications need the raw data of all sensing points 
[16, 17], whereas others need just a summary of all sensors’ data, as those TAG [18]. 
An intermediate data summarization between these two cases is also utilized such as 
maps of temperature and relative humidity [7]. These applications can identify zones 
of interest such as hot and cold zones. To avoid information overload, spatial aggrega-
tion is also utilized for data summarization over subregions, pre-defined zones. For 
example, it uses a aggregation predicate such as “SELECT avg(volume) FROM  
Sensors GROUP BY region HAVING avg(volume) > threshold.” [19] The spatial 
distribution of these summarizations provides a report of the data variability over the 
entire region. In order to recognize the conditions of the circumstance, monitoring 
applications including EOFS need a well-organized data representation model, be-
cause they have to rapidly process a huge volume of sensor data and interpret the 
transmitted observed data.  

3   Slope Grid for Sensor Data Abstraction 

In a large-scale geosensor network, sensor data abstraction is required for handling 
large volumes of data and making the information useful even though a large scale 
sensor network has not yet been utilized for practical environmental monitoring until 
recently [7]. The volume of sensor data can potentially be generated over a large geo-
graphic area, and we assume that the collected values dynamically change continu-
ously. A grid is generally utilized to present the measured data or the condition on an 
area such as a graph and a terrain surface model in GIS [20]. Our slope grid is based 
on the tilted plane, which is useful to present a surface area [5]. When it present a 
surface area, a slope (the tilted plane) is better than the horizontal plane, because the 
slope can present the data elevation change as well as the height in each cell. When it 
is used to manage a large volume of moving object location data, this grid structure 
also shows good search performance by using a hash table as an index structure [21]. 
It focuses on the access method for updating and searching the location of moving 
objects. In this paper, we concentrate the summarization of environmental condition 
for analyzing a phenomenon with slope grid.  

If an application stores the measured sensor data without any data spatio-temporal 
abstraction model, all data has to be searched for answering user queries. It requires 
more time to process the queries and to derive the information that users want to 
know. The objectives of providing a sensor data abstraction model are the frequent 
data updates, the geographic area covered, and a continuous amount data process, data 
representation and a compact size, etc.  

To apply the slope for surface areas to the sensor data monitoring application, we 
simplify the presentation of the tilted plane to 9 directions derived from min() and a 
max() of 4 subcells in a cell. In order to present the continuously changed data mo-
tion, we use an update policy with a mapping table and a gradient count for checking 
the data change in a cell.  

We propose sensor data abstraction model, in which sensor data is represented in 
individual grids. The grid for each type serves as input for spatio-temporal sensor 
queries, which are sophisticated data interpretation in most cases. In our approach, we 
use the data abstraction model as a preprocessing step for interpreting the conditions 
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at the remote place, thus, as a basic data representation model for an environmental 
monitoring application [11]. It focuses only on current data. This abstract data is used 
for making useful information by combining other abstracted data types.  

The proposed sensor data abstraction is shown in Figure 1. The data is summarized 
on each cell after receiving the sensor data transmitted from geosensor network at (a). 
We choose the minimum and the maximum value for representing values within a cell 
at Figure 2(b). The other values of the cell are included in the value boundary, which 
consists of min() and max(). The size of the cell is defined depending on some condi-
tions such as the number of sensors in a cell, data feature, and application function. In 
a cell, 1~8 sensors are useful to present the trend of data, because a cell includes 4 
subcells which present a min() and a max() with two data values within each subcell. 
It can include more than 8 observed values but the data representation is not different. 
The size is also defined by a data feature. For example, it does not require many sen-
sors for observing wind direction and speed, because both phenomena don’t fre-
quently changed over a larger area. In this paper, we consider only a static cell size 
since changing a cell area also requires the time to process it. It would be an obstacle 
for the rapid data processing.  

 

Fig. 1. The sensor data abstraction 
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The coordinates (x1, y1, z1, x2, y2, z2) indicate the locations of cells in a grid. The 
time period (t1, t2) of a cell includes all of the observation time of the sensor data at 
this location. It contains the latest measurement time, because it is updated whenever 
the observed data is updated. At (c), the height is a difference between min() and 
max() in the cell. If max() is 8 and min() is 3, the height is 5 and z coordinate is 3, 
which starts at the min(). The slope direction is derived from the relative positions of 
two subcells as shown in Figure 2. One is the “M” subcell, which contains the maxi-
mum value, and the other is the “m” subcell which has a minimum value.  

 

Fig. 2. The derived slope direction 

The direction vector is a vector pointing from m subcell to M subcell. Namely, it 
presents the direction from the min() to the max() in a cell (Figure 2). In a small grid 
above each cell, M indicates the M subcell and m the m subcell. If the slope angle = 
0°, the direction = 8. It means that all the sensor data has the same value and the slope 
is flat. It is presented a dot in the grid at (c) in Figure 2.  If a subcell includes a maxi-
mum and a minimum values like (d), the direction points towards the M subcell. 
Namely, the direction always points the M subcell. When it present the data in a cell, 
this slope is better than a horizontal plane, because the slope present the data trend. 
For example, if there are two horizontal planes, which have same height, they are only 
equal. However, if there are two slopes with same height, they can present various 
kinds of data motion even though they are same height.  
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4   Updating Data to the Abstract Model 

It is essential to support frequent data update in sensor data monitoring applications, 
especially for real-time monitoring and warning systems. Such a system has to detect 
and cope with the observed emergency situation such as air pollution, forest fire, 
battlefield analysis, etc. Sensor data likely changes dynamically over time. The ab-
stracted data representation model employs a mapping table for rapid data update.  

 

Fig. 3. The sensor data update structure in the SGSA 

The update process of the abstract data model is shown in Figure 3. The transmit-
ted data is stored in an incoming sensor data table or data stream. The sensor data 
table stores the sensor id, the measurement time stamp, the sensed value, and the 
gradient. The gradient shows data variation derived from past value. The mapping 
table shows the cell id and included sensor id. Whenever the locations of sensors are 
changed, it finds the cells, which include the locations. This data is summarized in the 
abstracted data table for each cell. Here, the slope direction and the gradient count are 
also updated by changing the minimum and maximum values. However, if there is 
already a lower minimum value or higher maximum value, the values are not 
changed. So, it is designed to update the values only whenever the time period or the 
slope direction is changed. The updatable area in the SGSA can be limited by defining 
the boundary of a specific area depending on applications. 

Figure 4 shows the changed representation of the SGSA depending on an observed 
phenomenon. For example, we can imagine a temperature change on a fire area. Users 
of environmental monitoring applications can understand and cope with the event by 
analyzing these changed values. When a geosensor network detects a phenomenon, it 
changes the attributes in SGSA such as slope direction, z coordinate, height, and gra-
dient count. First, the z coordinate and the height are changed by updating the sensed 
data. Next, the slope direction is derived from the m and M subcells in each cell.  
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Fig. 4. The representation update of the SGSA 

Users can recognize the trend change of the observed data by searching the direction 
and the height, because the direction points are higher. Finally, the gradient count is 
updated depending on the direction change. The gradient count shows how long the 
value of the direction has been kept. Whenever the sensor data is updated, if the direc-
tion is not changed, it increases the count. In other words, a high count means the 
stable condition in the cell. If the direction is changed, it sets the count to 0. It means 
that the condition in the cell is changed. If the count is almost 0 in a long time, it indi-
cates the fact that the condition of the cell, or the area, is frequently changed. This 
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count is a useful factor for evaluating the dynamically changing condition of an area. 
Users can find some areas (cells), which shows recently changed data motion by 
searching low gradient count. These areas are utilized for finding a boundary of a 
phenomenon or recognizing areas which show frequently changed data motion. These 
attributes are used for tracking and analyzing a phenomenon.   

5   Utilization in Sensor Data Query Processing 

In sensor data monitoring applications, users are interested in posing higher-level 
queries to understand the information collected via sensors in a situation in a specific 
area. For example, a habitat monitoring system analyzes different conditions among 
groups of animals or an environmental monitoring application tracks the interesting 
phenomena such as red tide, a forest fire, and air pollution. 

The abstract data types are used as the basis for answering a query, because of its 
summarized data representation on spatial area by describing a data gradient, min(), 
max(), and gradient count. An example of query processing on the abstracted data is 
shown in Figure 5. Assume, a user asks the query “find all wildfire fires in the 
 

 

Fig. 5. The update of the abstracted data in the Grid 
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area” at (a). Once the query is parsed, the monitoring system registers it as a continu-
ous query. In order to answer the query, the system creates subqueries to analyze the 
related abstracted data within the observation area at (b). For example, two kinds of 
subqueries are issued to the temperature theme (abstract data) such as “find the area(s) 
detecting high temperature” and “find the area(s) detecting a high slope.” The result 
of the first subquery can be a factor for finding a currently burning area or a burned 
area, because it is already hot.  The result of the second subquery can be an indicator 
for finding areas, which could be burnt in near future by checking the high slope and 
the gradient count. The high slope and low gradient count mean that the data on the 
cell is rapidly changed. The cell detecting a high slop or a low gradient count could be 
a boundary of fire area. During this query process, if it requires a detail data on a cell, 
it can also search the sensor data by using the mapping table in Figure 3. At (c), the 
results can be combined after these two kinds of results are returned from several 
abstract data layers. Some information is extracted from the combined area depending 
on the predefined information about a fire area. It then can provide the users with a 
probability of an event at (d). 

The results of the query will be continuously updated, since most of queries are 
continuous queries. Therefore, whenever sensor data is updated, the query result 
needs to be updated. These steps show the example of query processing with the ab-
stracted model. It should predefine the relation among phenomenon (e.g. fire) and 
data types before the query processing. It could include some kinds of rules for com-
bining several data types.  

6   Implementation 

The designed slope grid is implemented with 60,000 simulated static sensors and 
10,000 cells as shown in (b) of Figure 6. It assumes that all of the observed data is 
transmitted to the central processing server. A data generator is used for creating 
simulated sensor data. Whenever the sensor data is updated by the generator, it up-
dates the attributes of the cells in the grid such as max(), min(), and the slope direc-
tion. The slopes and gradient counts of cells are derived from the attribute values in 
each cell. Finally, it makes a summarized 3 dimensional map with SGSA for present-
ing the conditions of a remote place. This map is changed over time depending on the 
observed data change. 

Two kinds of data types are used for testing the abstraction model such as random 
data and event data. When it generates all of random sensor data over time, the slopes 
are continuously changed like a wave at (c). Event data is used to detect an accident 
such as a fire, pollution, and red tide areas.  The simulated event data is generated 
according to the parameters of sensor data generator such as height, width, and maxi-
mum (or minimum) value. The attributes of the cells are also updated according to the 
abstraction model. There are various kinds of data representation depending on the data 
change such as a variety of natural geographical features. In (d) event data of Figure 6 
shows rapidly changed slopes in a specific area like a fire area. The maximum value 
and boundary of the event is used to process user queries as shown in Figure 5. In 
order to get the useful data in SGSA, some rules are used for extracting the specific 
cells having specific conditions. For example, to get the cells having the high value 
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over mean(), it uses a rule that is min() in cells > mean(). To get the boundaries of a 
phenomenon, it also uses rules that are height > 20 and gradient count < 5, because 
high height and low gradient count mean rapidly changed condition in a cell.  

Figure 7 shows the tracking phenomenon which is simulated by data generator. 
The generator makes the simulated data with predefined conditions such as height 
(10~30), radius (40 m). The created circle having high values is moved over time 
according to the user defined route. When the circle is detected by sensors at t1, it 
makes a map of data with SGSA. The map is changed depending on the simulated 
circle’s movement. We can extract the boundaries of the circle by simple rules for 
finding the cells which have the height over 17 and the gradient count less than 2. The 
red lines indicate the current detected boundaries on the left side pictures. The dot 
blue lines presented past boundaries. On the right side pictures, the boundaries are 
shown by SGSA. From these abstracted data, we can extract the information of the 
detected phenomenon such as the speed of movement, the boundaries, and the height 
of data values. It is useful to answer these questions such as “How fast does the phe-
nomenon travel?”, “What is the data gradient average in its boundaries?” To support a 
complex query, it is required to combine the information extracted from the several 
SGSAs for various data types.  

 

Fig. 6. Data representation in SGSA 
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Fig. 7. Tracking the simulated phenomenon with SGSA 
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7   Conclusions 

Environmental monitoring applications deal with the data sets of different types as 
well as merge them to enhance our understanding of the circumstance. It is required to 
abstract the sensor data as a preprocessing step for interpreting the condition on a 
specific area. We designed the data representation abstraction for large-scale geosen-
sor data in a central monitoring system. The slopes on cells represent the observed 
data in grid like a summarized contour map. It also stores a gradient count and a slope 
direction for finding the condition change in a wide area. It could be utilized as a data 
representation model in the environmental monitoring applications. In the future, this 
model can be extended by using the combination method among the heterogeneous 
abstracted data types for a sensor data fusion. 
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Abstract. The 9+-intersection is an extension of the 9-intersection, which dis-
tinguishes the topological relations between various spatial objects by the pat-
tern of a nested matrix. This paper develops a small set of constraints on this 
matrix, which is applicable to arbitrary pairs of spatial objects in various spaces. 
Based on this set of universal constraints, the sets of matrix patterns, each rep-
resenting a candidate for topological relations, are derived for every possible 
pair of basic objects (points, directed/non-directed line segments, regions, and 
bodies) embedded in R1, R2, R3, S1, and S2. The derived sets of candidates are 
consistent with the sets of topological relations ever identified, as well as yield 
the identification of some missing sets of topological relations. Finally, the 
topological relations between a region and a region with a hole in R2 and S2 are 
identified to demonstrate the applicability of our approach to deriving topologi-
cal relations between more complicated objects. 

1   Introduction 

Topological relations between two spatial objects, which concern how the objects 
intersect with each other, have been studied extensively in the geographic database 
community, motivated by the necessity of a formal and cognitively-adequate basis of 
spatial query language. Previous studies have identified sets of all possible topologi-
cal relations between various pairs of objects in R2 [1-7], as well as in R1 [8], R3 [9], 
S1 [10], S2 [11], and Z2 [12]. Rn is an n-dimensional Euclidean space, S1 is a circle  
(1-sphere), and S2 is an ordinary sphere (2-sphere), and Z2 is a discrete raster space. 
Each identified set of topological relations has a specific practical value. For instance, 
topological line-region relations in R2 are useful for modeling spatial predicates re-
lated to motions, such as enter and go across [13], and topological line-line relations 
in R1 or S1 are useful for modeling temporal relations [8, 10]. 

As a formal model of topological relations, many studies have adopted the 4-
intersection [1], the 9-intersection [2], or their extension [5, 6, 10, 14]. In these mod-
els, topological relations between two objects A and B are represented by the patterns 
of a matrix, whose elements represent the intersections between point sets associated 
with A and those associated with B. Usually, candidates for possible topological rela-
tions between A and B are derived computationally as the set of matrix patterns that 
satisfy certain constraints. The set of candidates, each with at least one geometric 
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realization, is approved as the set of all possible topological relations between A and 
B. Previous studies developed such a constraint set on the matrix for each pair of 
objects in each space [1, 2, 4-7, 9-12]. Although there are certain overlaps between 
such constraint sets [2, 9], it is a hard step to develop a constraint set in order to study 
a new set of topological relations. As a solution to this problem, this paper develops a 
set of universal constraints, which is applicable to arbitrary pairs of objects embedded 
in various spaces. 

Our universal constraints are applied to the matrix of the 9+-intersection [6]. The 
9+-intersection is an extension of the 9-intersection, which supports the subdivision of 
objects’ interior, boundary, and exterior. For instance, the exterior of a region with a 
hole is subdivided into outer and inner exterior subsets. Thanks to the support of such 
subdivisions, the 9+-intersection is able to capture the topological relations between 
various spatial objects, including complicated ones. Accordingly, making use of the 
9+-intersection together with the set of universal constraints, we can easily derive the 
candidates for the topological relations between various pair of objects embedded in 
various spaces. Indeed, this paper derives the sets of such candidates for every possi-
ble pair of basic objects (points, directed/non-directed lines, regions, and bodies) 
embedded in R1, R2, R3, S1, and S2. In this paper, lines and regions normally refer to 
simple lines and simple regions [4, 15], respectively. Simple lines are lines with no 
self-intersection and no branch, derived by a one-to-one mapping from [0,1] to the 
space. If their two endpoints are ordered, lines are called DLines (directed lines). 
Simple regions are two-dimensional point sets with a connected interior, no hole, and 
no spike, as well as no fin in R3. Finally, bodies refer to simple bodies, which are 
three-dimensional counterparts of simple regions.  

The remainder of this paper is structured as follows: Section 2 introduces the 9+-
intersection and its matrix-based representation. Section 3 develops a set of universal 
constraints on the matrix of the 9+-intersection. Based on this set of constraints,  
Section 4 derives the candidates for topological relations between every pair of basic 
objects and analyzes the candidates in comparison with the topological relations iden-
tified in the previous studies. Section 5 derives further candidates of basic topological 
relations by converting the matrix patterns derived in Section 4 and analyzes these 
new candidates. Section 6 demonstrates the applicability of our approach to the deri-
vation of topological relations between more complicated objects. Finally, Section 7 
concludes with the discussion of a future problem.  

2   The 9+-Intersection 

The 9-intersection [2] is a model of topological relations between two spatial objects. 
Based on point-set topology [16], this model distinguishes the interior, boundary, and 
exterior of each object, which are also called the object’s topological parts. Let X be a 
spatial object and X  be X’s closure (the intersection of all closed point sets that con-
tain X). Uppercase letters are used because spatial objects are considered sets of points. 
X’s interior °X  is the union of all open sets contained in X, X’s boundary X∂  is the 
difference between X  and °X , and X’s exterior −X  is X ’s complement. Accordingly, 
the boundary of a region refers to its looped edge, the boundary of a line refers to its 
two endpoints, and the boundary of a point refers to the point itself.  
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The 9-intersection captures the topological relation between two spatial objects A 
and B based on the intersections of A’s three topological parts and B’s three topologi-
cal parts. These 3 × 3 = 9 types of intersections are concisely represented by the 9-
intersection matrix in Eqn. 1. Normally, topological relations are distinguished by the 
presence or absence of these nine types of intersections. The use of some additional 
properties of the intersections are also proposed for more detailed distinction of topo-
logical relations [14, 17]. 
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Each topological part of a spatial object may be subdivided into multiple subparts 
based on their disconnection or qualitative difference (e.g., dimensions [18]). For 
instance, the boundary of a DLine is subdivided into two subparts; start-point and 
end-point [5]. In order to support such subdivision of objects’ topological parts, the 
9+-intersection [6] extends the 9-intersection, considering the intersections between 
the subparts of A’s three topological parts and those of B’s three topological parts. In 
this model, the topological relations between A and B are characterized by the 9+-
intersection matrix in Eqn. 2, whose nine bracketed elements are matrices by them-
selves, each representing the intersections between the subparts of A’s one topological 
part and those of B’s one topological part. iAo , Ai∂ , and iA−  are the ith subpart of A’s 

interior, boundary, and exterior, while jBo , Bj∂ , and jB−  are the jth subpart of B’s 

interior, boundary, and exterior, respectively. If a topological part is not subdivided, 
we consider that this topological part consists of a single subpart. As seen from the 
comparison of the matrices in Eqns. 1-2, the 9+-intersection matrix keeps the frame-
work of the 9-intersection matrix; that is, the nine inner matrices in the 9+-intersection 
matrix uniquely correspond to the nine elements in the 9-intersection matrix. Just like 
the 9-intersection, topological relations between A and B are distinguished by the 
presence or absence of all intersections listed in the matrix. 
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As an example, Eqn. 3 shows the 9+-intersection matrix for the topological relation 
between a DLine D and a region R. In this matrix, D1∂  and D2∂  represent D’s start-

point and end-point, respectively. For simplification, if a topological part consists of a 
single subpart, the subscript assigned to this subpart is omitted. In addition, brackets 
of inner matrices are omitted if they have only one element. Originally, the 9+-
intersection matrix was introduced to capture such topological DLine-region relations 
in [6], where 26 relations are identified using the specific constraints on the patterns 
of the 9+-intersection matrix in Eqn. 3, instead of the universal constraints proposed in 
this paper. 
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For visualization, the patterns of the 9-/9+-intersection matrix are represented by 
bitmap-like icons [6, 19]. Each icon is partitioned into nine blocks, which correspond 
to the nine elements of the 9-intersection matrix or the nine element sets of the 9+-
intersection matrix (Figs. 1a-b). In the icon of the 9+-intersection matrix, each block 
of the icon is further partitioned if the corresponding element set has multiple ele-
ments (Fig. 1b). Each block or sub-block is marked out if the corresponding intersec-
tion is non-empty. Accordingly, topological relations are distinguished by the icons’ 
marking patterns. 

RLRLRL
RLRLRL
RLRLRL

(a) 

RDRDRD
RD
RD

RD
RD

RD
RD

RDRDRD

2

1

2

1

2

1

(b)  

Fig. 1. Iconic representations of (a) the pattern of the 9-intersection matrix and (b) that of the 
9+-intersection matrix 

3   Universal Constraints on the 9+-Intersection Matrix 

The primitives of a spatial object X are defined as the subparts of X’s interior, bound-
ary, or exterior that are each self-connected and mutually disjoint. For instance, the 
interior, boundary, and exterior of a DLine in R1 consist of one, two, and two primi-
tives, respectively, as its boundary consists of two distinctive points (i.e., start-point 
and end-point) and its exterior consists of two distinctive half-lines (i.e., front and 
back exterior subparts). Primitives of spatial objects are classified by their dimension 
and spatial extent (Table 1). For instance, the primitives that form the interior, bound-
ary, and exterior of the DLine in R1 are classified into B-1D (bounded, non-looped 
one-dimensional primitive), 0D (zero-dimensional primitive), and U-1D (unbounded 
one-dimensional primitive), respectively.  

By illustrating the class of all primitives that form the interior, boundary, and  
exterior of a spatial object X, as well as the adjacency among these primitives, X’s 
topological structure is represented as a graph. For instance, Fig. 2 illustrates the topo-
logical structures of points, DLines, and regions embedded in R1, R2, R3, S1, and S2. 
These topological structures have the following features: 
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• Every primitive has at least one adjacent primitive; and 
• Every pair of adjacent primitives has different dimensions and belongs to different 

topological parts. 

Table 1. Classes of basic primitives 

Class  Dim. Spatial extent  Class Dim. Spatial extent 

0D 0D –  B-2D 2D bounded, non-looped 

 B-1D 1D bounded, non-looped  L-2D 2D spherically looped 

L-1D 1D circularly looped  U-2D 2D unbounded 

U-1D 1D unbounded  B-3D 3D bounded non-looped 

    U-3D 3D unbounded 

exterior

interior

boundary 0D

U-2D

Point in R2

0D 0D

U-2D

B-1D

DLine in R2

B-2D

L-1D

U-2D

Region in R2

exterior

interior

boundary

0D

U-1D

Point in R1

U-1D

0D 0D

U-1D

B-1D

DLine in R1

U-1D

0D

B-1D

Point in S1

0D

B-2D

Point in S2

0D 0D

B-2D

B-1D

DLine in S2

B-2D

L-1D

B-2D

Region in S2

0D

U-3D

Point in R3

0D 0D

U-3D

B-1D

DLine in R3 Region in R3

B-2D

L-1D

U-3D

B-3D

L-1D

U-3D

Body in R3

0D 0D

B-1D

B-1D

DLine in S1  

Fig. 2. Topological structures of points, DLines, and regions embedded in R1, R2, R3, S1, and 
S2, based on the class and adjacency of their primitives 

Assume that two spatial objects A and B are embedded in the space S. Then, A’s 
primitives and B’s primitives must satisfy the following nine conditions (see Appen-
dix for their proofs): 

• Condition 1: Each of A’s primitives intersects with at least one of B’s primitives, 
and vice versa. 

• Condition 2: If A has a zero-dimensional primitive (0D), then it intersects with only 
one of B’s primitives, and vice versa. 

• Condition 3: If A’s primitive Pi intersects with more than one of B’s primitives, 
then these primitives jointly form a connected point set, and vice versa. 

• Condition 4: A’s bounded primitives, either looped or non-looped, cannot contain a 
B’s unbounded primitives, and vice versa. 

• Condition 5: A’s non-looped primitives cannot contain a B’s looped primitive of 
the same dimension, and vice versa.  
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• Condition 6: If A’s primitive Pi intersects with B’s primitive Qj, then all of Pi’s 
adjacent higher-dimensional primitives intersect with Qj or at least one of Qj’s ad-
jacent higher-dimensional primitives, and vice versa (Fig. 3a).  

• Condition 7: If A’s primitive Pi is contained by B’s primitive Qj and they belong to 
the same primitive class, then at least one of Pi’s adjacent lower-dimensional 
primitives intersects with Qj, and vice versa (Fig. 3b). 

• Condition 8: If A’s primitive Pi intersects with B’s primitive Qj that is lower di-
mensional than Pi, then Pi intersects with at least one of Qj’s adjacent higher-
dimensional primitives (Fig. 3c) or at least two of them including one of Qj’s adja-
cent primitives that are bounded, non-looped, and one-dimensionally higher than 
Qj (Fig. 3d), and vice versa. 

• Condition 9: If A has only one unbounded primitive whose dimension is the same 
with S, then this primitive intersects with all of B’s unbounded primitives, and vice 
versa. 

Pi

Qj

P’s adjacent higher-
dimensional primitives

Qj’s adjacent higher-
dimensional primitive Pi

Qj

Pi’s adjacent
lower-dimensional

primitives
(a) (b) 

Qj

Pi

Qj’s adjacent
higher-dimensional

primitive 

Qj’s other 
adjacent 
primitive

Qj

Pi

Qj’s adjacent primitives that 
are non-looped and one-

dimensionally higher than Qj

(c) (d)  

Fig. 3. Intersection of two primitives Pi and Qj determines the presence of intersections of Pi’s 
certain adjacent primitives and Qj or Qj’s adjacent primitives 

When the 9+-intersection illustrates the intersections of A’s primitives and B’s 
primitives, Conditions 1-9 serve as the constraints on the patterns of the 9+-
intersection matrix. For instance, the 9+-intersection matrix in Eqn. 3 illustrates the 
intersections of the primitives of a DLine D ( °D , D1∂ , D2∂  and −D ) and the primi-
tives of a region R ( °R , R∂  and −R ). This matrix may distinguish 4096 patterns, as it 
has 4×3 two-valued elements, but only 26 patterns among the 4096 patterns satisfy 
Conditions 1-9. Consequently, we can conclude that these 26 patterns of the 9+-
intersection matrix represent the candidates for the topological relations between a 
DLine D and a region R. 
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4   Deriving Topological Relations between Basic Objects  

For every possible pair of basic objects (points, DLines, regions, and bodies) embed-
ded in R1, R2, R3, S1, and S2, we derived the patterns of the 9+-intersection matrix that 
satisfy Conditions 1-9, making use of their structural information illustrated in Fig. 2. 
Table 2 shows the number of the derived matrix patterns. Since each matrix pattern 
represents a candidate for topological relations, the number of all possible topological 
relations between each pair of objects in each space is equal or possibly less than the 
number in Table 2. 

Table 2. Numbers of the derived patterns of the 9+-intersection matrix for every possible pair of 
basic objects embedded in R1, R2, R3, S1, and S2 

 R1 R2 R3 S1 S2 

Point-Point 6 2 2 2 2 

Point-DLine 10 4 4 4 4 

Point-Region – 3 3 – 3 

Point-Body – – 3 – – 

DLine-DLine 26 80 80 28 80 

DLine-Region – 26 45 – 26 

DLine-Body – – 26 – – 

Region-Region – 8 43 – 11 

Region-Body – – 19 – – 
Body-Body – – 8 – – 

 
For point-point relations in R2, R3, S1, and S2, the same two patterns of the  

9+-intersection matrix are derived. These two matrix patterns correspond to the two 
scenarios—two points coincide or not. Meanwhile, point-point relations in R1 yielded 
a larger number of matrix patterns, because in R1 the exterior of each point is subdi-
vided into two primitives (i.e., front and back exterior subparts) and their order influ-
ences the distinction of topological relations. Similarly, the same four matrix patterns 
are derived for point-DLine relations in R2, R3, S1, and S2, but not for those in R1. 
These four matrix patterns correspond to the four scenarios where the point is located 
at the DLine’s interior, exterior, start-point, or end-point. For point-region relations in 
R2, R3, and S2 and point-body relations in R3, we derived the same three matrix pat-
terns, which correspond to the three scenarios where the point is located at the inte-
rior, exterior, or boundary of the region/body.  

For DLine-DLine relations in R1, we derived 26 patterns of the 9+-intersection ma-
trix. These 26 patterns correspond to the 26 relations between two directed intervals 
in R1 [20], because directed intervals are essentially DLines. 

For DLine-DLine relations in R2, 80 patterns of the 9+-intersection matrix are de-
rived. Kurata and Egenhofer [5] identified only 68 DLine-DLine relations in R2, as 
they used an extension of the 4-intersection. They also speculated that additional 12 
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relations appear if they distinguish the collapsed configurations (i.e., the configura-
tions where one DLine contains another DLine). Our 80 patterns of the 9+-intersection 
matrix successfully distinguish these 68 + 12 = 80 DLine-DLine relations. 

For DLine-region relations in R2, we derived 26 patterns of the 9+-intersection ma-
trix. This successfully corresponds to the result in [6], which identified 26 DLine-
region relations based on the 9+-intersection. 

DLine-DLine relations in R2, R3, and S2 yielded the same 80 matrix patterns. This 
result indicates that the set of 80 DLine-DLine relations in R2 are also seen in R3 and 
S2. Similarly, from the result that DLine-region relations in R2, DLine-region relations 
in S2, and DLine-body relations in R3 has yielded the same 26 matrix patterns, it is 
concluded that the set of 26 DLine-region relations in R2 are also seen in S2, and have 
a one-to-one correspondence with DLine-body relations in R3. This correspondence 
stems from the structural similarity between a region in R2 and a body in R3 (Fig. 2).  

For DLine-Region relations in R3, we derived 45 patterns of the 9+-intersection 
matrix, among which 26 patterns are identical to the 26 matrix patterns derived for 
DLine-Region relations in R2. We confirmed that each of the remaining 19 patterns 
has at least one geometrical realization in R3 (Fig. 4). Consequently, we identified that 
topological DLine-Region relations in R3 consist of 19 relations peculiar to R3 
(Fig. 4) and 26 relations common to R2, R3, and S2 (see [6] for the list). Such DLine-
Region relations in R3 are useful for categorizing the movement patterns in associa-
tion with region-like landmarks—for instance, how a bird moves around a pond. The 
newly identified 19 relations capture the bird’s movement patterns that realize only in 
a three-dimensional space. 

 

       

    
 

 
 

       

       

       

       

Fig. 4. 19 topological DLine-region relations, which are peculiar to R3 

For region-region relations in R2, eight patterns of the 9+-intersection matrix are 
derived. In this case, the matrix is essentially the 9-intersection matrix, because no 
topological part of a region is subdivided into multiple primitives. These eight matrix 
patterns are exactly the same as those derived in [2]. Similarly, the following corre-
spondences to the findings of the previous studies are observed: 
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• The eleven matrix patterns derived for region-region relations in S2 are the same as 
those derived in [11]; 

• The nineteen matrix patterns derived for region-body in R3 are the same as those 
derived in [9]; and 

• The eight matrix patterns derived for body-body relations in R3 are the same as 
those derived in [9].  

Meanwhile, for region-region relations in R3, we derived 43 patterns of the  
9-intersection matrix, while only 38 patterns are reported in [9]. Through the com-
parison the matrix patterns, we identified five missing relations (Fig. 5). In [21], 43 
region-region relations in R3 are derived based on another spatial model, called Di-
mensional Model [18]. The 43 region-region relations in the Dimensional Model are 
equivalent to the region-region relations characterized by our 43 patterns of the 9-
intersection matrix. 

 

 
 

 
 

 

 
 

 
(and its converse) 

      

Fig. 5. Five topological region-region relations in R3 that should be added to the list in [9] 

5   Topological Relations Derived by Matrix Conversion 

A unique feature of the 9+-intersection is that the 9+-intersection matrix can be con-
verted to the 9-intersection matrix, simply by integrating the elements of its nine ele-
ment sets by union operation (Fig. 6). If the original 9+-intersection matrix captures 
the topological relation between a DLine and another object X, the 9-intersection 
matrix derived by the conversion captures the topological line-X relations, as the dis-
tinction of the DLine’s start-point and end-point is lost. Similarly, for the relations in 
R1, the distinction of objects’ front and back exterior subparts is lost by the matrix 
conversion (Fig. 6b). Making use of this matrix conversion, the sets of candidates for 
topological line-X relations and the modified candidate sets for topological relations 
in R1 are derived from the matrix patterns derived in Section 4. Table 3 shows the 
number of the derived patterns of the 9-intersection matrix.  

For line-line relations in R1, eight patterns of the 9-intersection matrix are derived. 
These eight patterns correspond to the eight line-line relations in R1, identified in 
[22]. In addition, these eight matrix patterns are the same as the matrix patterns for 
region-region relations in R2. This indicates a one-to-one correspondence between the 
eight line-line relations in R1 and the eight region-region relations in R2. Similarly, 
we found a one-to-one correspondence between the eleven line-line relations in S1 and 
the eleven region-region relations in S2. 
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Fig. 6. Conversion from the 9+-intersection matrix to the 9-intersection matrix. In the left fig-
ure, DLines D1 and D2 are represented by two arrows.  

Table 3. Numbers of the patterns of the 9-intersection matrix derived by matrix conversion 

 R1 R2 R3 S1 S2 

Point-Point 2 – – – – 

Point-Line 3 – – – – 

Line-Line 8 33 33 11 33 

Line-Region – 19 31 – 19 

Line-Body – – 19 – – 

 
For line-line and line-region relations in R2, we derived 33 and 19 patterns of the 

9-intersection matrix. These two sets of matrix patterns are the same as those in [2]. 
Similarly, for line-line, line-region, and line-body relations in R3, we derived 33, 31, 
and 19 patterns of the 9-intersection matrix, which are the same as those in [9].  

The 9+-intersection matrix allows another type of matrix conversion when both ob-
jects have topological parts that can be subdivided into multiple primitives. This  
|conversion removes the subdivision of topological parts with respect to only one of 
the two objects (Fig. 7). Accordingly, the matrix derived by the conversion is still the 
9+-intersection matrix. Making use of this matrix conversion, we derived additional 
sets of patterns of the 9+-intersection matrix from those of the 9+-intersection matrix 
in Section 4. Table 4 shows the numbers of the derived matrix patterns.  

For point-point relations in R1, three patterns of the 9+-intersection matrix are de-
rived. These three matrix patterns correspond to the three scenarios where one point 
precedes, coincides, or succeeds another point on the same axis. In the previous step, 
we derived only two patterns for the same relations, because the 9-intersection matrix 
does not distinguish whether one point precedes or succeeds another point. For the 
same reason, the number of the patterns of the 9+-intersection matrix derived for 
point-line relation in R1 is larger than that of the 9-intersection matrix.  
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Fig. 7. Conversion of the 9+-intersection matrix that removes the subdivision of the second 
object’s topological parts 

Table 4. Numbers of the patterns of the 9+-intersection matrix that are newly derived by the 
matrix conversion in Fig. 7 

 R1 R2 R3 S1 S2 

Point-Point 3 – – – – 

Point-Line 5 – – – – 

DLine-Line 13 49 49 16 49 

 
For DLine-line relations in R1, 13 patterns of the 9+-intersection matrix are derived. 

Interestingly, these 13 matrix patterns correspond to the 13 interval relations in Al-
len’s interval algebra [8], because DLine-Line relations in R1 essentially illustrate 
how one line (interval) extends with respect to another line (interval) on the same axis 
with the distinction of front and back. Similarly, for DLine-Line relations in S1, we 
derived 16 matrix patterns, which correspond to the 16 interval relations in a cyclic 
temporal frame identified in [10].  

For DLine-line relations in R2, R3, and S2, the same 49 patterns of the 9+-
intersection matrix are derived. We confirmed that each of these 49 matrix patterns 
has at least one geometric realization (Fig. 8). Thus, it is concluded that these 49 ma-
trix patterns represent the set of all possible DLine-line relations in R2, R3, and S2 
under the 9+-intersection. Such DLine-line relations are useful for categorizing the 
movement patterns associated with a linear landmark, such as a wall or a trench. 

Finally, through the comparison of Tables 2-4, we found the following features:  

• The number of matrix patterns for line-line/DLine-line/DLine-DLine relations in S1 
are larger than that for the counterparts in R1, because S1 allows the relation where 
one line/DLine includes the entire exterior of another line/DLine, but R1 does not. 
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• The number of topological relations between two spatial objects is invariant to the 
embedding space, as long as these two objects are lower dimensional than the 
space. One exception is point-point relations in R1 distinguished by the 9+-
intersection (Table 2), because the distinction of the points’ front and back exteri-
ors increases the number of point-point relations. 

 
Fig. 8. 49 topological DLine-line relations, common to R2, R3, and S2, each with an example of 
geometric realizations 
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6   Deriving Topological Relations Related to Complicated Objects  

The combination of the 9+-intersection and the universal constraints are effective also 
for deriving the possible topological relations between a basic object and a more 
complicated object, or even the relations between two complicated objects (here, 
complicated objects mean the objects that are derived by a set operation on multiple 
basic objects). As a demonstration, this section derives all possible topological rela-
tions between a simple region (so far we have called this a region) and a simple re-
gion with a hole. For simplification, these relations are called topological region-
region+1H relations. In [7], 23 topological region-region+1H relations in R2 are already 
identified, but those in S2 are not yet. 

A simple region with a hole X is defined as the difference between two simple re-
gions X* and XH, where X* contains XH entirely. X* is called X’s generalized region, 
while XH is called X’s hole [23]. A simple region with a hole in S2 may represent a 
ring-like object on a sphere (Fig. 9a) or a belt-like object that surrounds the sphere 
(Fig. 9b) Accordingly, region-region+1H relations in S2 can be used for modeling, for 
instance, the spatial arrangement of an island and a typhoon, that of the iris and the 
covered surface of a human eye, or that of the Earth’s surface receiving sunlight and a 
certain latitude zone. 

 

  
(a) (b) 

Fig. 9. Examples of simple regions with a hole embedded in S2 

The topological relation between a simple region A and a simple region with a hole 
B are characterized by the 9+-intersection matrix in Eqn. 4, where B1∂ , B2∂ , 1−B , and 

2−B  are B’s outer boundary, hole-side boundary, outer exterior, and hole-side exterior, 
respectively. In S2, the outer exterior and the hole-side exterior have no geometric 
difference (Fig. 9b) and, accordingly, their distinction depends on the observer’s view. 
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Instead of the 9+-intersection matrix in Eqn. 4, the same topological region-
region+1H relation is characterized by a pair of the 9-intersection matrices, which rep-
resent the topological region-region relation between A and B’s generalized region B* 
and that between A and B’s hole BH, respectively [7, 23]. The patterns of these two 9-
intersection matrices are determined uniquely from the pattern of the corresponding 
9+-intersection matrix (Fig. 10). 
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Fig. 10. Conversion from the 9+-intersection matrix for a topological region-region+1H relation 
to a pair of the 9-intersection matrices. This figure shows the conversion of the elements in the 
matrix’s first row. The elements in the second and third rows are converted in the same way. 

Fig. 11 shows the topological structures of simple regions and simple regions with 
a hole embedded in R2 and S2. Based on this structural information and Conditions 1-
9 (i.e., universal constraints), we computationally derived 23 and 37 matrix patterns 
for topological region-region+1H relations in R2 and S2, respectively. It is confirmed by 
the matrix conversion in Fig. 10 that the former 23 matrix patterns perfectly corre-
spond to the 23 region-region+1H relations in R2 identified in [7]. Among the latter 37 
matrix patterns, 23 patterns are the same as those for region-region+1H relations in R2. 
Meanwhile, we confirmed that each of the remaining 14 matrix patterns has at least 
one geometric realization in S2 (Fig. 12). Thus, it is confirmed that topological region-
region+1H relations in S2 consist of 14 relations peculiar to S2 (Fig. 12) and 23 rela-
tions that are also seen in R2 (see [7] for the list). 
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Fig. 11. Topological structures of simple regions and simple regions with a hole, embedded in 
R2 and S2 

In the same way, it is possible to derive the candidates for topological relations be-
tween a basic object and a complicated object (e.g., DLine-region+1H relations), as 
well as the relations between two complicated objects (e.g., region+1H-region+1H  
relations). 
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Fig. 12. 14 topological relations between a region A and a region with a hole B, which are 
peculiar to S2, together with an example configuration and its cross section. The name given to 
each relation combines the name of the topological relation between A and B’s generalized 
region and that between A and B’s hole, following the notation of [7]. 

7   Conclusions 

Topological relations, which concern how two objects intersect with each other, have 
been studied for decades in pursuit of cognitively adequate models of the objects’ 
spatial arrangement. The 9+-intersection captures such topological relations in a sys-
tematic way using a nested matrix, called the 9+-intersection matrix. This paper  
developed a set of universal constraints on the patterns of the 9+-intersection matrix. 
These constraints allow us to derive the candidates for the topological relations be-
tween a given pair of objects, regardless of their geometric types. The combination of 
the 9+-intersection and the universal constraints is, therefore, highly useful when we 
study new sets of topological relations. Indeed, we newly identified DLine-Region 
relations in R3, DLine-Line relations in R2, R3, and S2, and region-region+1H relations 
in S2, as well as found that many sets of topological relations in S1 and S2 are equiva-
lent to those in R1 and R2. 

A remaining issue is to answer whether our universal constraints are always suffi-
cient, in the sense that every pattern of the 9+-intersection matrix, determined by the 
universal constraints, always has at least one geometric realization. The constraints’ 
sufficiency is empirically confirmed with respect to the relation between every  
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possible pair of basic objects embedded in R1, R2, R3, S1, and S2. For the relations 
between complicated objects, however, it becomes hard to check the validity of all 
derived matrix patterns due to its large number. Thus, a mathematical examination of 
the constraints’ sufficiency is left for future work.  
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Appendix: Proofs of Conditions 1-9 in Section 3 

Conditions 1-3 
These three conditions are satisfied because the primitives of a spatial object are 
jointly exhaustive, mutually exclusive, and self-connected, respectively.  

Conditions 4-5 
These two conditions are basic properties of topology. 

Condition 6 
Let Pk be a Pi’s adjacent higher-dimensional primitive. Pk is adjacent to Pi ∩ Qj as 
well. On the other hand, Pi ∩ Qj is surrounded entirely by the set of all Qj’s adjacent 
higher-dimensional primitives and ij PQ \ . Accordingly, Pk intersects with at least one 

of Qj’s adjacent higher-dimensional primitives or Qj. 
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Condition 7 
Let us consider a subspace of S, called S', which embeds Qj and whose dimension is 
the same with Qj. Since Qj contains Pi, S' also embeds Pi. Pi’s adjacent primitives in 
S', which are always lower-dimensional than Pi, is identical with the set of Pi’s adja-
cent lower-dimensional primitives in S. Since Qj contains Pi in S', Qj intersect with at 
least one of Pi’s adjacent primitives in S'. Accordingly, Qj intersect with at least one of 
Pi’s adjacent lower-dimensional primitives in S.  

Condition 8 
Let Q be the set of all of Qj’s adjacent higher-dimensional primitives. Pi ∩ Qj is sur-
rounded entirely by Q and ij PQ \ . Accordingly, Pi, which contains Pi ∩ Qj and higher 

dimensional than ij PQ \ , intersects with at least one of primitives in Q. Let us assume 

that Qj has an adjacent primitive that is bounded, non-looped, and one-dimensionally 
higher than Qj, called Qk. Qk is an element of Q. Let S' be a sub-space of S, which 
embeds Pi and whose dimension is the same with Pi. Since Qj cannot split the Qk, Qj 
must be located at the end of Qk. Accordingly, Pi ∩ Qj is not surrounded entirely by 
Qk in S', but by the combination of Qk,, some other elements in Q, and ij PQ \  in S'. 

On the other hand, Pi ∩ Qj is surrounded entirely by ji QP \  and ij PQ \  in S'. Conse-

quently, if Qk exists, Pi intersects with not only Qk, but also another element in Q.  

Condition 9 
Let Pi be A’s only one unbounded primitive whose dimension is the same with S. 
Since Pi’s complement 

iP  is bounded, each of B’s unbounded primitive is not entirely 

included in 
iP . Consequently, Pi intersects with B’s unbounded primitives. Note Pi 

refers to the exterior of a spatial object in Rn (n ≥ 2). 
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Abstract. Movement patterns, like flocking and converging, leading and
following, are examples of high-level process knowledge derived from low-
level trajectory data. Conventional techniques for the detection of move-
ment patterns rely on centralized “omniscient” computing systems that
have global access to the trajectories of mobile entities. However, in de-
centralized spatial information processing systems, exemplified by wire-
less sensor networks, individual processing units may only have access
to local information about other individuals in their immediate spatial
vicinity. Where the individuals in such decentralized systems are mobile,
there is a need to be able to detect movement patterns using collabora-
tion between individuals, each of which possess only partial knowledge
of the global system state. This paper presents an algorithm for decen-
tralized detection of the movement pattern flock, with applications to
mobile wireless sensor networks. The algorithm’s reliability is evaluated
through testing on simulated trajectories emerging from unconstrained
random movement and correlated random walk.

1 Introduction

Movement patterns represent high-level process knowledge derived from low-
level trajectory data [1]. They are the spatiotemporal “trace” left behind by the
behavior of moving entities [2]. Examples of movement patterns include flocking
as in a “mob” of sheep [3], leading and following found in group dynamics [4, 5],
or converging and diverging of pedestrians in crowding scenarios [6, 7]. Figure 1
illustrates the movement pattern of a prototypical “flock”. The figure shows that
at a particular time instant t, four moving entities a, b, d, e are in close spatial
proximity (all lie within a circle of radius p). A commonsense interpretation
of a flock is where mobile individuals maintain such spatial proximity over an
extended period of time.

Wireless sensor networks (WSN) are increasingly applied in a dynamic con-
text. So-called mobile wireless sensor networks (mWSN) provide new opportuni-
ties for monitoring and understanding coordinated movement processes, with a
wide range of applications including “smart” farming [8], emergency response [9],
robotics [10], and in-car navigation [11]. Conventional techniques for the detec-
tion of movement patterns rely on centralized “omniscient” computing databases
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Fig. 1. A “flock” can be defined as a set of entities moving in spatial proximity for
some specified time period

and systems that have global access to the trajectories of mobile entities. However,
in decentralized spatial information processing systems, like mWSNs, individual
processing units may only have access to local information about the movement
of other individuals in their immediate spatial vicinity. This paper presents a de-
centralized algorithm that enables moving sensor nodes in an mWSN to infer if
they are part of an ongoing flocking movement pattern. The algorithm uses only
local collaboration with no central control, and relies on qualitative spatial infor-
mation (i.e., it does not require precise coordinate information about the location
of individuals). Like most tractable centralized flock detection algorithms, our de-
centralized algorithm generates approximate solutions, so the paper includes an
empirical analysis of reliability of the algorithm.

The remainder of this paper is structured as follows. Section 2 reviews the
relevant literature on mining movement patterns and mobile wireless sensor net-
works. Section 3 introduces the underlying model of mobility and flocking in
an mWSN. Section 4 presents the algorithm for detecting flocks in an mWSN,
termed flags. A series of simulation experiments are used to evaluate the re-
liability and efficiency of flags in Sect. 5. The paper discusses the findings of
this work in Sect. 6 and concludes with final remarks and an outlook in Sect. 7.

2 Background

2.1 Mining Movement Patterns

Various data mining techniques have been used to detect generic movement pat-
terns [2]. In 2004, Laube et al. [12] defined a collection of spatiotemporal patterns
based on direction of movement and location, e.g. flock, leadership, convergence
and encounter, and they gave algorithms to compute them efficiently. Several
subsequent articles improved the formalization and the algorithmic discovery of
such patterns.

Benkert et al. [13] modified the original definition of a flock to be a set of
entities moving close together during a time interval. The applied data mining
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approach bases on projection of 2D trajectories into multidimensional space and
query operations on quadtrees. This approach results in efficient approximation
algorithms for finding such flock patterns of a fixed length and a fixed number
of flock entities, where the radius is approximated within a factor of 2. For the
same definition of flock, Gudmundsson and van Kreveld [14] showed that for any
radius approximation with factor smaller than 2, computing the longest duration
flock and the largest subset flock is NP-hard to compute and even NP-hard to
approximate within a factor of |T |1−ε and |A|1−ε, respectively, where T is the set
of all discrete time steps, A is the set of all sensor nodes, and ε > 0. As another
such movement pattern, Andersson et al. [15] gave a generic definition of the
pattern leadership and discussed how such leadership patterns can be computed
from a group of moving entities. This work revolves around the concept of leading
as “being followed but not following anyone else” for some time. Mining for such
leadership patterns involves a set of algorithms operating on a set of globally
preprocessed data arrays that store leading and following constellations for the
investigated set of entities. All such movement patterns have in common that
some geometrical relation of the involved moving objects has to persist over a
certain time span.

Current data mining approaches for movement patterns rely on global knowl-
edge and global data structures such as quadtrees, clustering, or preprocessed
metadata arrays. The use of such global and hence static data structures is not
well-suited for local knowledge discovery in a dynamic scenario such as a mobile
wireless sensor network.

2.2 Mobile Wireless Sensor Networks

A wireless sensor network (WSN) is a wireless network of untethered, battery
powered miniaturized computers with the ability to sense, process, and commu-
nicate information in a collaborative way [16]. A WSN monitoring a phenomenon
in geographic space is called geosensor network [17]. The tracking of mobile tar-
gets is one typical task for geosensor networks [16, 18]. Other applications have
included observing hazards [19], monitoring seismic activity [20, 21], or manag-
ing traffic flow [11]. When the sensor nodes are deployed to moving entities in a
dynamic scenario, we refer to a mobile wireless sensor network (mWSN).

Mobility presents significant challenges to the design of mWSN applications.
Maintaining static, global data structures, like connectivity graphs and routing
tables, is a particular challenge in mWSN. Even in static WSN, battery power re-
sources forwireless communicationare extremely limited.WithmWSN, constantly
changing network topologies and senseddatameansmaintaining centralized global
knowledge and data structures can become highly complex and inefficient.

As a result, some researchers have turned to decentralized algorithms (an al-
gorithm that runs in parallel on sensor nodes without any centralized control) to
address this problem. Unlike global approaches, decentralized algorithms facili-
tate fast local updating and do not require hard-to-maintain global consistency
[22]. Other researchers including [19, 23, 24, 25] have all investigated decentral-
ized knowledge maintenance and creation in spatial applications to cope with
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the problems posed by mobility in mWSN. Such decentralized approaches can
also help to increase energy efficiency [16], increase scalability and robustness
[26], and reduce the potential for information overload [27, 28].

As well as challenges, mobility also presents opportunities that are beginning
to be exploited by some researchers. Several authors exploit the mobility dif-
fusion effect, that is the diffusion of information through an mWSN from the
constant hand-over of information amongst meeting moving nodes [29]. Last en-
counter routing (LER), for example, computes routes purely based on a last
encounter table stored in every node. The constant rearrangement of nodes in
an mWSN can furthermore be exploited to overcome unfavorable constellations.
Grossglauser and Tse [22], for example, showed that for asynchronous appli-
cations with high delay tolerance, patience can increase efficiency with respect
to throughput capacity when messages can wait for good routes in a network
topology constantly changing due to node mobility.

In summary, the constantly changing topology amongst the moving nodes in
an mWSN challenges conventional solutions that have been developed for static
networks, but at the same time offers new options for in-network data processing
through the exploitation of the spatiotemporal nature of movement. Decentral-
ized spatial computing is well-suited to use in mWSN, capable of operating using
purely local knowledge, but still aiming to monitor geographic phenomena with
global extents [30].

3 Problem Definition

In this section, we provide a formal problem definition, including specifying
the assumptions behind decentralized processing in an mWSN, and providing a
precise definition of the meaning of “flock” in our scenario.

3.1 Preliminaries and Assumptions

An mWSN can be modeled as a set A of sensor nodes. The locations of sensor
nodes are known for an ordered set of discrete time steps T = {t1, t2, ..., tn}.
The associated movement trajectories of sensor nodes in the plane (IR2) can be
modeled as a locator function l : A × T → IR2. Thus for any time t ∈ T and
sensor node a ∈ A, l(a, t) gives the coordinate location of sensor node a at time
t. The distance between two sensor nodes a, a′ ∈ A at time t ∈ T is given by
the usual Euclidean metric δ(l(a, t), l(a′, t)). In the sequel, we write δt(a, a′) to
denote the distance between two sensor nodes a and a′ at time t for conciseness,
i.e., δt(a, a′) := δ(l(a, t), l(a′, t)).

At this point a few assumptions are worth noting. Without loss of generality
we make the simplifying assumption that the set of sensor nodes is constant
over time (i.e., that no sensor nodes leave or enter the network). We model
time as a discrete domain T . This assumption also does not lead to a loss of
generality, since continuous time can always be adequately approximated in a
specific application with arbitrarily fine discrete time steps.
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Nearby sensor nodes in an mWSN can wirelessly communicate with one an-
other. Thus at any given point in time, each sensor node will have a (possibly
empty) set of sensor nodes within its communication range, called its neighbor-
hood. Given a fixed communication distance c ∈ IR+, the neighborhood of a
sensor node a at time t, written nbr(a, t), is the set of sensor nodes within a’s
communication distance at time t, i.e., nbr(a, t) := {a′ ∈ A|δt(a, a′) ≤ c}. Even
though the here described flocking scenario is scale-less, a reasonable assump-
tion for communication range c in an implemented network of current standard
sensor nodes could be 30m, allowing, for instance, the detection of flocking cattle
in confinement. Note furthermore that this model assumes all sensor nodes have
constant and equal communication distances. Although this is not realistic in
actual sensor node networks, it is adequate for the purposes of this paper and
helps simplify the formal model.

One further point worth noting is that although the locator function provides
the location of each sensor node in the plane over time, our algorithm does not
assume that individual sensor nodes have access to this information. Instead the
algorithm in the next section is purely qualitative, relying instead on the neigh-
borhoods of each sensor node. These neighborhoods emerge as a consequence
of the physical characteristics of wireless communication, without the need for
quantitative positioning systems such as GPS or range-finding.

3.2 Decentralized Detection of Flocks

Laube et al. [12] use the term “flocking” to describe a collective movement
pattern expressed by a set of moving entities. In our context, the entities refer
to the moving sensor nodes of a mWSN. A flock in this sense is any set M of n
mobile sensor nodes that exhibit the same motion attribute over a given period
of time of length k ∈ IR. Speed or movement azimuth are examples of motion
attributes in this context. This initial definition is very general and does not
assume any notion of proximity, which is often associated with the term flocking
in common usage.

Adding a proximity constraint, [13] defined an (n, k, p)-flock as any set M of
n mobile sensor nodes, where for every moment in a time period of k consecutive
time steps, there exists some disk of pattern radius p that contains every sensor
node in M . More formally and in the context of our definition of mWSN above, an
(n, k, p)-flock is a set M ⊆ A such that for every time instant t ∈ {ti, ..., tj} ⊆ T ,
with j − i + 1 ≥ k, there exists a circle of radius p that spatially contains l(m, t)
for all m ∈ M .

The definition of an (n, k, p)-flock thus assumes a flock exists for a period of
k consecutive time steps single. Further, the definition assumes that the flock
is composed of n identical sensor nodes for its entire existence. As such, the
definition is quite restrictive. Current work by the authors is looking at relaxing
these constraints, and discussion of the options has already appeared in the
literature [3].

The problem we address in this paper is a decentralized detection of (n, k, p)-
flocks. Given a set of sensor nodes A, we give an algorithm that detects for
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any time t all present (n, k, p)-flocks by only relying on local knowledge and
without any form of global information processing. As our main objective is to
substitute global approaches with a purely decentralized approach, we primarily
investigate the reliability of our inherently approximating decentralized solution.
In this context, reliability refers to an error analysis, quantifying the number of
correctly detected and missed patterns, respectively.

4 The FLAGS Algorithm

As part of this work we have developed a family of decentralized algorithms for
flock detection. This section presents the flags algorithm for detecting flocking
amongst geo-sensors in an mWSN. flags is designed to find flock patterns
without central control, solely by decentralized collaboration of roaming sensor
nodes, that only perceive their immediate neighbors via simple “hello” messages.

The algorithm is distributed as it runs in parallel on all sensor nodes at the
same time. The algorithm is decentralized in the sense that each sensor node a
can only access information about its immediate neighborhood, specifically the
identity of sensor nodes that are within direct one-hop communication range of
a at time t, i.e., nbr(a, t). The algorithm is dynamic, because each sensor node is
constructing new information about the existence of flocks on-the-fly as it moves
through time and space.

4.1 Handing Around Maturing Information Tokens

In the flags algorithm, the collective of roaming sensor nodes administers in-
formation tokens that accumulate knowledge about flock patterns over time. A
token is simply a pair (X, j), where X is a set of sensor nodes that a knows
currently lie within a circle of radius p during the previous j time steps. The set
of tokens stored by a sensor node a at time t is denoted TokenSet(a, t).

At each time step ti the algorithm works as follows (see Algorithm 1): Each
sensor node a computes its set of neighbors nbr(a, ti) by sending and receiving
simple “hello” messages (line 1). If as current set of neighbors contains at least as
many sensor nodes as are required for detecting a flock (denoted by the threshold
ν, related to the number of nodes in the flock n and discussed further in the
next section), a will create a new token containing this information and add it
to TokenSet(a, ti) (lines 3–4). Initially, TokenSet(a, ti) is empty (line 2). Next, a
will update and check all its tokens (X, j) ∈ TokenSet(a, ti−1) from the previous
time step ti−1 (line 5). The token (X, j) is updated by X := X ∩ nbr(a, ti) to
indicate that now only a smaller set of sensor nodes are in a’s neighborhood,
and by j := j + 1 to reflect the increased number of time steps that the sensor
nodes in the updated X have been neighbors of a (line 6). If the size of the
updated X is at least the number of sensor nodes required for detecting a flock
ν, the token is added to TokenSet(a, ti) (lines 7–8). After that, the sensor node a
inspects all tokens in TokenSet(a, ti), and whenever it finds a token of age j ≥ k
it triggers a “pattern found” message (lines 9–11). As a last but very important
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step, sensor node a will exchange its set of tokens with its neighbors (line 12).
Figure 2 illustrates this procedure and Algorithm 1 formalizes it.

flags decouples knowledge about patterns from sensor nodes. Knowledge
diffuses through the network in form of knowledge collecting tokens that are
handed over between roaming sensor nodes. Even if all members of a flock re-
arrange at each consecutive step, the spatiotemporal knowledge describing that
flock is very likely to persist, because it is likely that at least one sensor node
holds an appropriate token.
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Fig. 2. Maturing knowledge tokens detect a (n = 4, k = 3, p)-flock locally when c ≈ p.
At t5 sensor node e counts the required 4 neighbors, creates a token ({a, b, d, e}, 1)
that is transmitted to all its neighbors within communication range c (little numbered
flags). At t6, after having moved and potentially rearranged, all sensor nodes check
their tokens. This time only sensor node d counts enough neighbors and ages his token
to ({a, b, d, e}, 2). All other sensor nodes drop their token. Sensor node d, however,
forwards its aged token to all its neighbors. Finally, at t7, again e counts enough
neighbors, its token ({a, b, d, e}, 3) reaches the mature age k = 3, and flags a “found
pattern”-message (crown).

4.2 Local Extrapolation

The description of the flags algorithm in the previous section was deliberately
vague about the precise value of ν, the “number of sensor nodes required for
detecting a flock.” This section explains how a correct value for ν is chosen in
the flags algorithm.

As discussed above, the spatial awareness of the roaming sensor nodes is
constrained by their neighborhood, which in turn is constrained by their com-
munication range c. As a result, the ratio of the sensor node’s communication
range c and the pattern radius p, informally termed a node’s perception range,
plays a critical role in detecting flocks in a decentralized algorithm. Figure 3
illustrates the c

p -ratio for c � p, c ≈ p, and c � p, respectively.
Constellations c � p are of limited interest from a decentralized spatial com-

puting perspective, since in these cases there is every chance a single sensor node
will locally be able to observe the entire flock (ultimately converging toward
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Algorithm 1. Procedure that is locally run once at each time step ti in
each sensor node a for a global value ν.
// initialization

communicate “hello” messages and construct set of neighbors nbr(a, ti)1

TokenSet(a, ti)← ∅2

// create new token if the neighborhood is large enough

if |nbr (a, ti)| ≥ ν then3

TokenSet(a, ti)← TokenSet(a, ti) ∪ {(nbr(a, ti), 1)}4

// check tokens of previous time step; if valid, update and age them

foreach (X, j) ∈ TokenSet(a, ti−1) do5

Xnew ← X ∩ nbr(a, ti)6

if |Xnew | ≥ ν then7

TokenSet(a, ti)← TokenSet(a, ti) ∪ {(Xnew , j + 1)}8

// check for patterns in current set of tokens

foreach (X, j) ∈ TokenSet(a, ti) do9

if j ≥ k then10

report “pattern found”11

// information diffusion

communicate with neighbors and update TokenSet(a, ti)12

sensor nodes having global knowledge). By contrast, c ≈ p, and particularly
c � p require strategies and heuristics allowing sensor nodes to overcome their
own limited perception range.

To correct for limited communication range, flags applies a local extrapola-
tion heuristic, by assuming that a sensor node that is part of a flock can expect
a neighborhood size that is in proportion to its perception range. In other words,
a sensor node for which c � p detects a flock constellation when its neighbor-
hood contains approximately ν = c2

p2 ∗ n sensor nodes. In Fig. 3(a) the central
sensor node has a neighborhood of 5 (including itself) and hence might infer

dp c
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Fig. 3. The c
p
-ratio rules the difficulty of detecting flock patterns in a decentralized

way, illustrated are the ratios c = 0.5p (a), c = 1p (b), and c = 2p (c) respectively.
Furthermore, even if c = 1p there is no guarantee for “seeing” all sensor nodes of a
flock, as the most central sensor node may be eccentric (d).
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the compensation factor is E(1.0) = 0.69, and for c = 2p it is E(2.0) = 1.0.

the presence of a flock of size n = 20 having sensed the required fraction (in
this case: 1

4 ) of n. Obviously, local extrapolation assumes that the density of
sensor nodes within communication range c approximates the density of sensor
nodes in the flock. In many cases this is a fair assumption. However, if the sensor
nodes cluster in only one segment of the flock area and hence some individual
nodes in the sparsely populated segments miss out on that flock, the flock as a
whole would be detected by the sensor nodes in the dense segment instead.

However, this first approximation fails as it assumes that some sensor node
is located at the exact center of the flock. Any eccentricity in the most central
node’s location means a sensor node’s communication area is expected to only
cover a smaller part of the flock area, shown in Fig. 3(d). As a result, we expect
a sensor node in a flock to sense on average slightly fewer than c2

p2 ∗ n neighbors
due to its eccentricity with respect to the center of the flock.

To correct for this effect a compensation factor E was introduced. E was
computed as the expected fraction of the flock area (a circle of radius p) that is
covered by the communication area (a circle of radius c, with center inside the
flock area) of a uniformly randomly placed sensor node inside this flock. The
formal mathematical details of the derivation of E are outside the scope of this
paper. Instead we provide a short explanation of our approach in the following
paragraph and an illustrative Fig. 4 plotting E over various c

p ratios .
To compute E, we model the flock and communication areas as two disks in

the plane with radius p and c, respectively. The distance between the centers of
the disks is denoted by s. These disks have nonempty intersection, since s ≤ p.
We computed the area of intersection as a function A of p, c and s. We then
defined a function R of p, c and s, as the ratio of the area A and the flock area.
The expected value of this function for a uniformly randomly chosen s with
0 ≤ s ≤ p, is derived from the integral of R from s = 0 to s = p. This yields a
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function E of p and c. But since R and E are defined to be ratios, E is only a
function of c

p and not the actual values of p and c.
In the flags algorithm, the threshold ν is used as the number of sensor nodes

required for detecting a flock, defined as follows:

ν := E

(
c

p

)
· n

The effect of the compensation factor E is to reduce the number of neighbors
a sensor node that is part of a flock expects to have. As discussed above, this
reduction allows for the likelihood that, on average, sensor nodes are not ideally
situated to perceive the best possible number of neighbors.

5 Evaluation

This section reports on implementation and testing of the flags algorithm. In
addition to testing the reliability of the algorithm, this section also investigates
to what degree the underlying movement regime influences the performance of
our decentralized knowledge discovery algorithm. For evaluation purposes, a sim-
ulation environment for detecting flocks in given trajectories was implemented
using the popular open source agent-based modeling toolkit repast (see Fig. 5).

Fig. 5. flags-implementation in repast. The framework features a map view (com-
munication ranges as gray shades, trajectories as dotted lines), two error plots (eoo,
eoc), a parameter and a log window.
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5.1 Data

Simulated trajectory data was used instead of real movement observation data, as
this allows control of both the movement regime and the flocking behavior of the
moving sensor nodes in the experiments. Different movement regimes were ex-
pected to have a significant influence on the performance of the flags algorithm,
so simulated trajectories that follow well-known movement regimes were used:
unconstrained random movement (URM) and correlated random walk (CRW).
Using simulated movement observation data also had the experimental advan-
tage that the number of flocks present in the data could be easily controlled.
This was crucial for the performance analysis, which evaluates how many of the
implanted patterns are actually found by the flags algorithm.

For all experiments a population A of sensor nodes (|A| = 200) was generated
moving over |T | = 100 discrete time steps in an underlying square space of size
8192 ∗ 8192 positions. 50 out of 200 sensor nodes were given flocking behavior,
implanted in five flocks consisting of n = 10 flocking sensor nodes each with
a pattern radius p = 250. The flocking behavior follows the definition of flock
outlined in Sect. 3.2.

Unconstrained Random Movement (URM). In order to maximize the
comparability of our decentralized approach with previous work, the first set of
experiments used the same unconstrained random movement (URM) generator
as [13]. In the URM data sets, the location of a sensor node is completely random,
and unrelated to any previous steps. Non-flocking sensor nodes randomly “jump”
around in simulation space. Flocking sensor nodes, however, are at each time
step randomly positioned withing a circle of size pattern radius p = 250, itself
randomly positioned.

Correlated Random Walk (CRW). Initial experiments showed that URM
only allowed for very limited exploitation of the spatiotemporal characteristics
of movement. Anticipating that any decentralized pattern detection approach
would rely in part on exactly such exploitation, a second set of experiments was
conducted with trajectories generated using correlated random walks.

In a random walk, the location of a sensor node in successive timesteps is
determined by a randomized displacement from the previous time step. In cor-
related random walk (CRW) steps of sensor nodes are correlated by making the
direction and/or step length of the current move bias the direction and step
length of the next move [31]. Step length and turning angle of the subsequent
move are typically drawn from some stochastic frequency distribution, for in-
stance in the case of direction with turning angles concentrated around μ = 0.
CRW provides a more realistic model of random spatial movement than URM,
as consecutive locations of sensor nodes are highly correlated in space.

In the experiments a normal distribution with a direction change N(μ =
0, σ = 0.6 ∗ π) and a step length of N(μ = 50, σ = 15) was used. Each sensor
node walked a trajectory of approximate length 100∗50 = 5000 units. In addition
to the CRW property, flocking sensor nodes satisfied the flock property, by simply
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ensuring that they were aggregated within the given pattern radius p = 250. The
map view in Fig. 5 illustrates first 50 time steps of a CRW data set.

5.2 Experiments

Following the general WSN constraint that communication consumes more en-
ergy than sensing, algorithm efficiency often bases on keeping the number of
messages low. For the evaluation of the here discussed decentralized data min-
ing application, a slightly different perspective was taken. It was assumed that
our sensor nodes constantly know in a qualitative manner by which neighbors
they are surrounded. Since it had to be anticipated that the decentralized data
mining algorithm is rather an approximation than an exact solution, perfor-
mance was evaluated as the ratio of patterns found with the centralized and the
decentralized approach. For the sake of simplicity, this evaluation focused on the
pattern detection and did not investigate the details of routing the information
back to the query source once the patterns had been detected.

flags reliability was tested for both URM data and CRW data (Fig. 6). In
both cases two levels of flock contiguity were tested: In order to be detected
flocks were required to be detected for k = 3, and k = 10 consecutive time steps
out of |T | = 100 time steps in total. Note that each flock could only be counted
once, even if several sensor nodes would find the same flock. For a total of 5
simulation runs and four combinations each, the detection error for a variable
c
p − ratio was computed.

– detection error (y-axis): At each time step the number of found patterns was
compared with the known number of implanted patterns. Errors of omission
(eoo) and errors of commission (eoc) were evaluated and averaged over all
|T | = 100 time steps1.
• eoo (“missed patterns”): As 5 flocks consisting of 10 sensor nodes each

were implanted, over |T | = 100 time steps a total 500 flocks could be
detected correctly. An experiment run missing 100 flocks would result in
eoo = 0.2.

• eoc (“false positives”): flags uses heuristics in order to infer the presence
of patterns (local extrapolation and compensation factor E, see Sect.
4.2). Hence, flags may detect patterns where there are no patterns to
be found. Such false positives could, for example, emerge when c � p and
ν = 2, as it might happen that two independent sensor nodes randomly
intermingle for a long enough time. All such false positives were counted
and again averaged over the whole experiment run. Again, with a total of
500 flocks per run, a total of 50 false positives would result in eoc = 0.1.

– c
p −ratio (x-axis): flags performance was evaluated for a variable c

p −ratio.
Given a pattern radius p = 250 the communication range c was varied in the
interval of [0, . . . , 500], hence in a c

p − ratio interval of [0, . . . , 2].

1 Please note that in fact the error was averaged over |T | − k + 1 time steps, as in the
first k − 1 time steps no flocks can be detected due to their temporal extent.
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Obviously, the above evaluation experiments do not account for flocks that
may randomly emerge in the generated data set, but were not purposely im-
planted in the first place. However, the emergence of such random flocks is
minimized by a relatively large flock size n = 10, and gets very unlikely with
increasing flock contiguity k. Furthermore, such random flocks would only in-
fluence eoc, as in fact existing random flocks could be misinterpreted as false
positives. Hence, our evaluation, in the worst case, overestimates eoc.

5.3 Results

All four graphs show a few similar properties (Fig. 6). No results are provided
when c

p < 0.48, as below that threshold ν drops below 2 and hence pattern
detection is not possible anymore (see Fig. 4). Furthermore, the error graphs
often show “zigzagging” shape. This feature emerges since the number of counted
neighbors inherently changes in discrete steps and hence flags performance
alters in grades.

URM, k = 3. As long as the communication range c is slightly larger than
the pattern radius p, no patterns are missed out and eoc is 0. Around c

p ≈ 1.0 a
first eoo-peak emerges when large numbers ν are required for token generation.
Below 1.0, the performance decreases gradually, as flock sensor nodes randomly
shuffled in the flock disk result in more and more misses. No eoc was recorded.
Given that the sensor nodes relocate randomly at each step, it is very unlikely
that a significant number of sensor nodes satisfy the flock definition randomly.

URM, k = 10. As with k = 3, eoo emerges at c
p < 1.2. However, with k = 10

it is almost impossible that any sensor node re-finds the very same neighbors
out of the n = 10 neighbors, hence flags’ performance degrades rapidly to total
failure shortly below 0.8. Again, and for the very same reasons as above, no eoc
was recorded.

CRW, k = 3. In the CRW experiment flags performs significantly better than
with URM, for k = 3 the performance is almost flawless. A t-test for 5 simulation
runs indicates that for any ratio c

p < 0.84, eoo for CRW is significantly lower
than for URM on the 95% significance levels. The explanation for this good
performance lies in the locality property of CRW. Even when c drops below
p, subgroups within a flock tend to stay together and hence knowledge about
subgroups persists, allowing the consistent extrapolation of pattern knowledge
using the compensation factor E( c

p ). Also eoc shows moderate levels and only
expresses noticeable values when ν reaches 2 at c

p = 0.56. The random event of
two nodes staying together for k = 3 time steps is moderately likely with the
chosen parameters and this eoc peak is hence unsurprising.

CRW, k = 10. Again, eoo is moderate, but admittedly on a higher level (ac-
cording to a t-test significantly higher at the 95% level for 0.78 < c

p < 1.12). The
constraint of k = 10 makes it harder to maintain knowledge about subgroups.
On a positive note, the eoc does not peak at all as it is just too unlikely that
random patterns emerge with even ν = 2.
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6 Discussion

Three major findings emerge from our experiments. First, with the used para-
meters, eoc is not an issue. Apart from the single peak with small c for k = 3,
eoc is negligible. This can be explained that with the used parameters even for
small νs and short ks it is very unlikely that enough sensor nodes stay together
for enough time steps. Different flock parameters and different densities amongst
non-flocking sensor nodes may admittedly result in higher eoc values. Second,
longer contiguities k are understandably harder to detect as a longer time re-
quired for tokens to mature opens up more possibilities for failure. Third, flags
performs much better for CRW than for URM, as we would expect from an
algorithm developed for detecting structure in structured movement data. Since
flags collects neighborhood knowledge over several consecutive time steps, lo-
cality where individuals tend to stay together for some time, obviously helps
for the crucial token maturing. Even though we assumed in our experiments
random movement, we could show that flags performs better as movement
becomes less random. We hence argue that the flags algorithm is taking ad-
vantage of the opportunity of movement rather than purely dealing with the
challenges of movement.

This last finding agrees with similar experiences in the LER experiments in
[29]. In their experiments the performance of their history based routing algo-
rithm depended heavily on the nature of the mobility regime and the parame-
terization of the experimental setup. LER succeeds only since the sensor nodes
perform random walks and thus sensor node mobility diffuses estimates of the
destination’s location sufficiently quickly and densely throughout the dynamic
mWSN. Even though the preferred regime was random walk in their case and
correlated random walk in ours, it seems apparent that the inevitably very spe-
cialized algorithms for decentralized spatial computing operate best within the
constraints that they have been designed for.

Our initial experiments with decentralized data mining suggest that we simply
have to accept the fact that any decentralized solutions inferring global knowl-
edge from partial and potentially imperfect local information must allow for
approximation solutions. One way of giving the limited sensor nodes the leeway
to do so is the use of heuristics, as applied with the local extrapolation approach
and the compensation factors E in flags. We allow our sensor nodes to detect
and report patterns even if they actually only found fractions of patterns. For
many decentralized data mining applications we will have to allow for some error
in order to achieve a workable solution at all. For the parameterizations used in
our experiments, the heuristics provided very useful tools without introducing
too much of eoc. In other cases one might have to accept some eoc in order to
keep eoo low. Obviously, decentralized approximation solutions could always be
used as a cost-effective preliminary data mining step that might trigger more
reliable but also more expensive approaches.

flags exploits the spatiotemporal properties of movement as it features infor-
mation exchange amongst roaming neighbors. This constant process of exchang-
ing and validating information allows individual sensor nodes to learn from their
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neighbors about processes beyond their own limited perception range. However,
recording of the past and hence “memory” is purely outsourced to the knowl-
edge tokens, the sensor nodes themselves are oblivious. Clearly, alternative ap-
proaches can be thought off where individual sensor nodes, other than exchange
their knowledge with their neighbors, also record what they see along their tra-
jectory, and integrate such spatiotemporal knowledge in order to gain the big
picture beyond their limited perception range.

As mentioned earlier, we use the same definition of flock and the same data
generator (for URM trajectories) as in [13]. However, a direct comparison between
the two studies is not meaningful, because in [13], the results focus on theoretical
and experimental running times, while the evaluation of our approach bases on an
error analysis, investigating on the reliability of a decentralized solution.

7 Conclusions

In this paper we revisited the generic movement pattern “flock” and showed
that such patterns formed by individuals are very suitable for decentralized and
hence “ego-centric” pattern detection algorithms. We introduced flags (flocking
amongst geo-sensors) a solely decentralized flock detection algorithm. flags
exploits the spatiotemporal properties of movement as roaming sensor nodes
exchange information tokens that collect knowledge about patterns. Experiments
with simulated movement data show that flags successfully completes its task
without central control when a priori knowledge about the movement regime
can be exploited.

As a first general lesson learned, we argue that separating knowledge from
sensor nodes (in our specific case in the form of “floating knowledge tokens”), is
a promising strategy for overcoming the limited spatial perception of individual
sensor nodes in an mWSN. Second, we acknowledge that in a decentralized set-
ting heuristics are a suitable way for compensating for the limited perception of
individual sensor nodes. We thirdly identify the need to further explore locality.
Hence, currently we are working on improved versions of flags that use a mem-
ory function. Sensor nodes with memory are enabled to “graze” information in
space-time and hopefully assemble spatially limited glimpses in order to form
the bigger picture.
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Abstract. The paper presents a framework for sensitivity analysis (SA)
in spatial multiple criteria evaluation (S-MCE). The framework focuses
on three aspects of S-MCE: spatiality, scope, and cardinality. Spatiality
stresses the importance of spatial criteria and spatial weights that should
be explicitly considered in GIS-based MCE. Scope relates to the extent
of SA, ranging from local one-at-a-time criterion examination to global
testing of interdependencies among the multiple criteria model compo-
nents. Cardinality addresses the duality of motivation for performing SA,
namely, single-user learning and group consensus building. The frame-
work organizes the existing SA techniques according to spatiality and
scope and can be used as a conceptual guide in selecting SA techniques
fitting a task at hand.

Keywords: Spatial Multiple Criteria Evaluation, Sensitivity Analysis,
SDSS.

1 Introduction

Spatial multiple criteria evaluation (S-MCE) belongs to one of the basic analyt-
ical methods of GIS [16]. Over the last two decades, much work has gone into
integrating MCE techniques with GIS to support formulation, modeling, and
evaluation of spatial decision problems [9,17,28,33,39,40,54]. S-MCE is a method
supporting a rational decision process in which a set of geographical options is
evaluated based on a number of decision criteria in search of the best choice
[39]. Many applications of spatial decision support systems (SDSS), of which
S-MCE is a part, suggest that S-MCE has become a well established procedure
for solving spatial choice problems. However, S-MCE models have also been crit-
icized for the inadequate treatment of uncertainty present in model outcomes.
For example Uran and Janseen [56], in their assessment of five SDSS models,
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identify the shortcomings of spatial post-processing analysis of option rankings
generated with S-MCE. The uncertainty arises more often than not from the
preliminary character of data and unstable human preferences. We may argue
that the potential of using S-MCE lies in its exploratory approach to analyzing
the decision problem [40]. Thus, ironically, the very essence of S-MCE might be
at the same time its weakest point.

In this paper, we argue for strengthening the exploratory role of S-MCE by
focusing on sensitivity analysis (SA) as part of the decision support methodology.
In response to the lack of systematic treatment of SA in the S-MCE literature,
we propose a framework for organizing and guiding the use of SA techniques.
According to the framework, the objective of SA in S-MCE is to strengthen the
confidence in the obtained solution or, in the case of weak confidence, help to
redefine the set of acceptable alternative solutions. In the proposed framework,
we extend SA beyond the criterion data uncertainty to account for the spatial
characteristics of a geographic decision situation.

The roots of formal SA may be traced to engineering and scientific predictive
modeling [19,22,44]. Its role has been also recognized in decision sciences, where
the main purpose of SA is strengthening the bases for a decision recommendation.
In Simon’s decision process framework [51] of intelligence-design-choice, SA is
perceived as the core of the final choice stage, where the decision maker evaluates
and selects the desirable solution [18,28,39]. Still, a comprehensive SA included
in S-MCE models is more the exception than the norm [14].

The importance of SA may be attributed to the complexity of decision pro-
cesses dealing with spatial choice. Complex spatial problems involve irreducible
(aleatory) uncertainty [24] caused by the difficulty of arriving at a stable pref-
erence structure for decision makers. Aleatory uncertainty is a result of semi- or
ill-structured decision problems, where the decision makers are unable to define
fully the problem [4,15,40]. A semi-structured decision problem may involve, for
example, an incomplete or vague knowledge of decision option impacts, in which
case SA could be used to examine the sensitivity of evaluation results derived
from various plausible impact characteristics.

The spatial nature of geographic problems amplifies the complexity of deci-
sion making through spatial interdependencies and spatio-temporal dynamics.
Future impacts of proposed choices are often stochastic and deeply uncertain
[34]. The solutions to such problems should be thoroughly evaluated to ensure
their robustness under a wide range of possible conditions [35,39]. Unlike the
optimal outcomes, which are based on normative computational tools, there is a
need to look for robust solutions in the presence of a broad spectrum of beliefs
and values and under varying future conditions. Robustness is defined here as
the minimal response of a model solution caused by changing input conditions.
In particular, robust S-MCE solutions are characterized by rank-order stability
[31], where the prioritization of options is not significantly affected by minor
changes in evaluation components [3].

Traditionally, SA has been defined as the analysis of response of a model to
changes in input parameters [32,37,39,57]. Usually, the general question asked in
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SA is: given the outcome, what is its sensitivity to changes in initial conditions?
Therefore, in order to perform S-MCE SA, the decision maker must have a ranking
of options already in hand. In this paper, we conceptualize SA more broadly. We
define SA in S-MCE as a thought experiment [1] or computer-assisted reasoning
[34] aimed at quantitative and qualitative assessment of the stability of a given
option ranking. This definition is not restricted to the analysis of the stability of
ranking given changes in input parameters. Such a strict definition is counter to
the uncertain nature of spatial decision making. An overly structured SA does
not fit into an often substantially unstructured spatial problem [18]. Hence, we
should account for various other - intangible and qualitative - decision factors that
may influence the choice. Furthermore, the spatially-explicit nature of geograph-
ical problems calls for new, spatially-explicit methods of SA [18]. The ranking of
alternatives should be analyzed based on both site-specific criterion outcomes and
on spatial relations, such as proximity, contiguity, or clustering.

Finally, we should distinguish between sensitivity analysis and uncertainty
analysis (UA). According to Saltelli et al. [47] UA is forward-looking in nature.
Therefore, performing UA, assumptions are mapped onto inferences [46], whereas
in SA a backward-looking or reverse analysis is undertaken. UA embraces mul-
tiple solutions and does not refer to any specific (initial) solution. SA focuses on
the robustness of a specific solution. This paper addresses the theoretical and
methodological foundations of SA in S-MCE.

In the following section we present a framework for SA in S-MCE, followed
by a review of SA methods. In the final section, we outline research challenges
and recommend directions for further research on SA in S-MCE.

2 A Framework of Sensitivity Analysis in Spatial
Multiple Criteria Evaluation

The goal of the proposed framework is to provide an organizational outline of SA
including many methods and multiple analysis pathways. We start from a three-
dimensional conceptualization of SA, followed by a methodology and a review
of techniques that may be used to uphold the scope and spatiality perspectives.
The following questions guided the formulation of the framework:

1. Which elements of the decision process are the least informational and thus
especially suited for identification in the course of SA? Are they spatially
sensitive? What types of measures should be used to analyze the sensitivity
of these decision components?

2. What is the informational extent of SA? Does it embrace ’the big picture of
the decision problem’ or ’a more focused exploration’?

3. What is the motivation for performing SA? Is it individual knowledge dis-
covery or group consensus building?

To address these questions and to present the fabric of SA in S-MCE, we suggest
a 3-dimensional representation of SA, called the SA cube (Figure 1).
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Fig. 1. Sensitivity analysis cube of spatial multiple criteria evaluation

2.1 The SA Cube

Each of the axes in Figure 1 represents one of the following characteristics of SA
in S-MCE: spatiality, scope, and cardinality. Spatiality stresses the importance
of spatial criteria and spatial weights that should be explicitly considered in GIS-
based MCE. Scope relates to the extent of SA ranging from local one-at-a-time
criterion examination to global testing of interdependencies among the multiple
criteria model components. Cardinality addresses the duality of motivation for
performing SA, namely, single-user learning and group consensus building.

Spatiality. The spatiality axis comprises both the aspatial and spatial nature
of the decision situation and falls under the rubric of technicality proposed by
Belton and Stewart [6]. Based on the inventory by Delgado and Sendra [14],
the vast majority of the reported SA studies concern only the aspatial nature of
the decision situation. Within this category of SA methods, the major factors
analyzed relate to: the diversity of choice alternatives (option list), the choice of
attributes (criteria), the stability of solution to changes in weights (weighting),
and the uncertainty of evaluation method (e.g. standardization, weighting, and
aggregation techniques). The majority of evaluation methods come from general
decision theory and embrace spatial variability only implicitly. For instance, in
the well-established GIS procedure of weighted overlay, the decision maker de
facto performs traditional weighting by assigning the same importance value to
every spatial unit of a given criterion layer [36,38].

Only recently it has been recognized that a spatially explicit decision com-
ponent may potentially influence the rank-order of alternatives [18,25,45]. Spa-
tial SA involves the use of topological and non-topological relations in S-MCE
(Figure 2). For example, the analyst may use GIS to calculate distance between
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spatial decision alternatives and some attractor. The distance criterion can be
further analyzed using traditional SA, for example, by changing its importance
and recalculating the weighted option utility. However, given the spatial na-
ture of the problem, the analyst should seek a more geographically oriented SA.
Continuing the example, he/she may perform SA by varying the criterion im-
portance over space and assigning different weights to different locations [18].
We call this spatial weighting (spatial bias), which assigns non-uniform weights
to spatial units [25], providing a way of articulating stakeholders’ sense of place.
Each decision participant may have an individual spatial frame of reference like
home, work, daily activity route, or other place of importance, which impacts the
perception of the proposed courses of action. Note that this concept of spatial
weight involves the perception (judgment) of criterion importance varying over
geographical space and it is different from another concept of spatial weights
that measure the level of interaction between features in geographical space [21].

Fig. 2. Spatial relations applicable to SA

A different type of problem arises from the spatial distribution of options
and their criteria values. Following the above example, the analyst may be more
interested in options that form a cluster because their proximity may reinforce
positive or negative effects. Such spatial characteristics (contiguity, compactness,
proximity etc.) are called spatial criteria [8,40,45] and are derived from various
spatial relations (Figure 2). Consequently, SA applied to spatial criteria does
not involve subjective perception of place (spatial weighing), but rather the un-
certainty of spatial distributions, interactions, impacts, and relationships, which
can be studied by performing repetitive spatial transformations.
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Unlike the geographical SA defined by Lodwick et al. [36], we argue that
spatially explicit SA pertains rather to relative location than to spatial coinci-
dence of absolute location. Absolute location manifests itself in the traditional
SA approach of weighted overlay, where the composite score of geographic op-
tion is derived by weighting and re-weighting criteria values at specific locations.
Additionally, it involves the uncertainty of criteria evaluation scores measured
at particular sites. Relative location refers to geographical variability, which
manifests itself via situational relations (e.g. contiguity, compactness, proxim-
ity) representing spatial organization and spatial configuration in reference to a
particular location [11]. Within the context of GIS, such spatially explicit SA
complements traditional (aspatial) SA.

Scope. Spatiality concerns the structure of the decision process and, in par-
ticular, the spatial component of this structure. However, if the objective is to
understand the behavior of a selected subset of the criteria and their weights in
the decision model (one, few, many, or all) then the scope of SA is more relevant.

Scope may range from a detailed component-focused study to a generalized
simultaneous testing of interdependencies among decision elements. Convention-
ally, the practice of S-MCE treats SA as a method of examining one specific
component of S-MCE, where the analyst changes one parameter at a time and
evaluates how sensitive the output is to the change [37,39]. Additionally, the
analyst may vary multiple factors but within a small range around the favored
values [47]. This type of SA is very interactive in nature and is termed local
SA [47]. Conversely, if we perturbate one factor within its whole distribution or
vary multiple factors simultaneously over the entire problem space, we perform
global SA [49]. The latter is much more data intensive and therefore is usually
done through a sampling-based simulation [47].

The above local-global categorization of SA is specific to an aspatial analysis.
The spatiality of geographic problems, however, puts the scope of SA in a differ-
ent context. The division into local spatial SA and global spatial SA is similar
to the local-global notion in spatial statistics. Specifically, spatial SA is defined
as the examination of one or more spatial relations (Figure 2) within the extent
of either the proximal (neighborhood) space or the whole space of the study
area [36]. For example, adjacency and proximity are more neighborhood-related
and should be used when dealing with local spatial associations. Conversely, the
reference frame may span from a single location to the whole study area. The
latter results in a constant spatial weight value, which is simply the traditional
weighting in weighted overlay.

Cardinality. The third dimension of the cube, cardinality, reflects two potential
motivations for SA, namely, 1) insight into individual’s values, and 2) learning
about the group values. Cardinality follows the line of thought proposed by
Belton and Stewart [6], who divided SA into two distinct perspectives, namely
single user and group. The single user perspective of SA deals with intuition and
understanding. In this respect, we study the convergence or divergence of our
favored options with the options suggested by the model [6]. The user discovers
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his/her individual viewpoint of the decision problem. In the context of S-MCE,
this may manifest itself in the individualistic spatial weighting. Group SA follows
a different logic and is concerned more with the perspectives of others than with
the individual perspective. Whereas single-user SA has its roots in operations
research, the group SA is more related to collaborative learning. Given the value-
laden nature of group decision making, group SA should incorporate analytic-
deliberative functionality [43], to enhance place-based qualitative perceptions
and consensus building among stakeholders [2,19,26]. A possible quantitative
application of group SA in S-MCE relates to the analysis of spatial equity [52].

3 Methods and Measures of SA

This section examines various methodological approaches to SA within the SA
cube framework (Figure 1). Since none of the methods developed so far is all-
inclusive, and since different methods of SA produce different outcomes, a good
understanding of SA methodology and trade-offs involved in using different
methods is needed in order to effectively apply SA [1,3,47].

3.1 Traditional Local and Global SA Methods

Given an initial decision option prioritization, we may focus on analyzing the
sensitivity of various components that contribute to computing the rank-order.
Therefore, we divided the methods into four broad, partly overlapping categories
of options, criteria, weights, and option scoring/ranking (Figure 3).

The first group of methods concentrates on modifying the list of examined
options. The analyst may delete some options which score low or are otherwise

Fig. 3. Aspatial SA methods and their scope
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inferior or he/she may add back the previously deleted option. It is also possible
to impose a constraint on a criterion value and thus modify the ranking by
removing these options that do not meet the constraint [2].

Similarly to adding/deleting options, we may modify the rank-order by delet-
ing or adding a criterion. According to Alexander [1] a criterion that changes the
order of the best option (by being added or deleted) may be termed sensitive. We
modify the list of criteria if they do not reflect our values and preferences [57].
In weighted overlay, changing the attribute list is equivalent to map removal
sensitivity [36]. Additionally, we might be uncertain about criteria evaluation
scores [57]. This problem is best addressed by using ranges/distribution of values
rather than a specific value. With such constructed parameters, we may perform
a Monte Carlo (MC) simulation of output variability due to the uncertainty of
criteria scores [46].

Criterion uncertainty may also be related to a standardization method used to
convert criteria to a common scale [1,46] or the valuation of a criterion [31]. For
example, a person may choose to maximize the proximity to a proposed trans-
portation improvement project since the project will benefit him/her by shorten-
ing his/her daily commute. Another person maydeem such a proximity criterion as
cost because it reduces public safety and hence, he/she wants to locate the projects
elsewhere (minimize proximity). A novel method of determining the most critical
decision criteria was proposed by Triantaphyllou [55], where the criticality is de-
fined by the minimum change in performance measures (evaluation scores) causing
the rank reversal for any two options. For the highly uncertain criteria it may also
be useful to perform rescaling [57] from a higher to a lower measurement level, for
example from ratio/interval to ordinal scale. The resultant decrease in accuracy
may in fact better reflect the true reliability of data.

Weights have often been criticized as the subjective component of S-MCE and
hence have been the focus of SA methods. The basic method of examining the sen-
sitivity of weights relates systematic changes in weight values to changes in option
ranking. Weighting plays a double role in S-MCE - it either represents a relative
criterion importance or a substitution rate among criteria [18]. Due to the large
number of explicit weighting methods that have been proposed [39], the choice of
weighting method can also be a subject of SA [46]. It is also possible to determine
critical weights for these criteria for which a relatively small change in the weight
value causes the rank reversal of any two options [7,55]. Additionally, for one pa-
rameter at a time weight change analysis, there is a rule of thumb for establishing
criterion criticality, which states that if the decision maker changes the parameter
by n-percent and the result will change by less than n-percent then he/she may
conclude that this parameter does not significantly influence the result [37].

The methods so far discussed are mainly local in scope. A more complex
approach to establishing the importance of criteria scores and weights involves
global SA, which decomposes the variance of the output of the MCE process into
a variety of explanatory factors. An example of a global SA method is the ex-
tended Fourier Amplitude Sensitivity Test (FAST). The extended FAST method
uses first and total order indices as SA measures. The first order sensitivity
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index is defined as a fractional contribution to the variance of MCE model out-
put (e.g. option ranking) due to the uncertainty of a given input parameter
treated independently from other parameters [13,22,46,49,50]. The total order
index represents the overall contribution of a given parameter (e.g. criterion
weight) including its interactions with other parameters. Computation of the in-
dices requires a large number of rank-order calculations performed with weight
vectors derived from the decision maker’s weight distribution functions [46].

The key challenge for SA in S-MCE is to determine the stability of the
rank-order of decision options. While all four groups of aspatial SA methods in
Figure 3 can be used to determine the stability of rank-order, the option scoring
and ranking methods address this task directly. Combining weighted multiple
criteria values is inherently uncertain since none of the developed aggregation
methods is flawless. Thus, SA may also comprise of comparing the stability of
the rank-order under different aggregation methods [33,41].

Sometimes, highly ranked decision options are very close to each other in terms
of their overall evaluation scores being very similar. Such a situation warrants a
careful investigation of critical score difference (Figure 3). For these options, it
may be interesting to discover what changes in weights make them score equally
well, a procedure which Pannell [44] calls the break even value. If the break even
value is within an acceptable range, then we may justify the switch in rank and
select an option which we value more given other intangible criteria. The scale of
the necessary weight modification may also provide information about options
that are more likely to be ranked first - a method called proximity ranking [58].

Insua and French [27] proposed a more generic framework for SA scoring and
ranking. According to their framework, we should first find the non-dominated
alternatives, then narrow down the non-dominated set to those alternatives that
are optimal, find the adjacent potentially optimal alternatives, and establish for
them the least change in weights that is needed to switch the highest ranked
option. Such analysis not only pinpoints the most efficient options and their
competitors, but also provides information about the minimum tradeoffs between
the options [19]. A more extensive SA of option scoring relies on the division of
multidimensional space into subsections of weight value ranges where a selected
favored alternative wins [6]. These subsections are then called preference regions.
Sampling-based MC simulation is another useful approach to assessing rank
stability [20,37,39,57]. For example, for a large number of rank-orders from MC
runs we can calculate different summary statistics like minimum, maximum, and
mean position of the option thus revealing how stable the option rank is under
changing parameter values [3].

3.2 Spatial SA Methods

Spatial SA is an underdeveloped component of SA in S-MCE. Studies that utilize
spatially-explicit SA are rare. Table 1 is a proposition of a GIS-based methodol-
ogy that addresses spatially-explicit components of S-MCE problems. Based on
these components, spatial SA methods are grouped into options, criteria, and
weights-focused methods.
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Table 1. Methods supporting spatial SA

S-MCE Component Spatial SA Procedure Example
Sensitivity Relations Operations

OPTIONS: Adjacency Map options that Topology operations e.g.
Spatial distribution are adjacent ’Share a line segment’
of options
e.g. dispersed, Proximity Locate proximate Spatial statistics e.g.
contiguous options measures of centrality,

cluster analysis;
Distance decay functions

Pattern Map the dispersion Spatial statistics:
of options and mapping clusters;
the shape of option Point/line/kernel density;
clusters Map algebra:

neighborhood operations

Direction Map the direction Directional distrbution;
options distribution Directional mean

CRITERIA: Pattern Modify the criterion Spatial statistics:
spatial distribution layer with a random cluster analysis, spatial
of evaluation scores uncertanty layer autocorelation;

derived from spatial Point/line/kernel density;
distribution Spatial interpolation
of this criterion

Use a more Map algebra:
generalizedlized neighborhood operations;
criterion layer Reclassify/remap;

Aggregate

WEIGHTS: Proximity Use different Straight line distance;
Reference frame reference frames as Distance decay functions;
(point, line, or area spatial weight Spatial statistics:
of interest) and its layers standard distance,
spatial distribution standard deviational

ellipse

Containment Variable-size buffer;
Overlay: e.g.
point-on-polygon;
Map algebra: Boolean and
zonal operations

The first group of spatial SA methods refers to geographical distributions
of the decision options represented in Table 1 by four categories of relations:
adjacency, proximity, pattern, and direction. For example, the decision maker
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may prefer to select high-ranked options because they are located in the direct
proximity to other high-ranked options [45]. Such spatial autocorrelation can
lead to positive spatial externalities. Alternatively, the decision maker may use
spatial statistics to analyze and map significant clusters of high scoring options.
Other spatial SA operations, pertaining to spatial distribution of options, include
map algebra, topology rules, or density analysis. Such operations can be used to
derive geographically adjusted option evaluation scores [45].

The sensitivity of decision criteria stems from the uncertainty of the evalua-
tion scores (criteria values). In spatial decision situations, such sensitivity could
be analyzed based on traditional value measurement uncertainty (error) or value
assessment ambiguity, and spatial uncertainty stemming from the geographical
distribution of a given criterion. For example, if the decision maker uses rain-
fall as a decision criterion in raster-based S-MCE, he/she should consider the
uncertainty of the rainfall measure at a particular location, together with the
uncertainty associated with a selected interpolation method. One way of analyz-
ing the spatial sensitivity of a criterion involves adding an uncertainty surface to
the criterion surface. The uncertainty surface should be derived from a spatial
distribution of the criterion under consideration [32]. Another method of ana-
lyzing criterion spatial sensitivity involves attribute generalization [32], similar
to the more traditional rescaling proposed by Voogd [57].

Spatial weight sensitivity pertains to the subjective reference frame of the
decision maker. Participants may perceive certain locations as more favorable
from a given perspective. For example, they may conceive the rainfall criterion
as being more important in rural areas than elsewhere. Consequently, spatial
sensitivity of criteria weights may have a direct effect on option scoring and
ranking and should be explicitly addressed. Two spatial relations that capture
the spatial sensitivity of criteria weights are the proximity of and the containment
within the areas of interest (Table 1). The former can be applied using different
distance-decay functions [45] or modeling situation factors [12]. The latter can
be implemented by a variable-size buffer analysis [23,32,53].

3.3 Methods Supporting Group SA

The SA methods discussed above support the dynamics of group SA only im-
plicitly. When used in a collaborative setting, the results of individual SA must
be aggregated by some means. Jankowski et al. [31] and Feick and Hall [18]
present consensus maps that show the dispersion of summarized votes using
graduated circles or colors. The votes relate to a number of decision elements
like option scores, criteria weights or criteria selection. Borda or Copeland voting
protocols are used to aggregate the votes. Additionally, the variance of voting
results can be displayed to identify the most contentious issues that need further
discussion. These analytical techniques rely solely on non-spatial social voting
functions. Spatially-explicit and scope-variant group SA remains to be explored
in future research.
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4 Discussion and Challenges

Like any method of S-MCE, SA should embody a range of techniques that fit
multiple styles of decision making [2,20,42] and, thus, the need for appropriate
SA methods is self-evident. Many well-developed techniques for SA in S-MCE
exist; however, each of them has limitations.

The aspatial methods of SA have been used for years and there is an extensive
record of SA applications. However, these methods ignore a geographic aspect
of S-MCE expressed by the spatial variability of criteria values and weights.
We have suggested that spatial variability and hence, the sensitivity of S-MCE
solutions to criteria values and weights can be addressed by the analysis of
spatial relations. The methodology of spatial SA is currently still in its infancy
and lacks techniques for rank stability testing. Furthermore, not much is known
on whether spatial SA can enhance group decision making [18].

Until recently, the majority of studies reported on local one parameter at a time
SA techniques. Local SA proved to be useful for human-mediated dynamic testing
of rank-order stability. Yet, local SA makes sense only if we deal with perfectly
linear models [50], which is unlikely in the majority of spatial decision problems.
The most appropriate technique for non-linear processes is the model-independent
variance-based global SA [46]. Also, due to its theoretical underpinnings, global
SA constitutes an important advance over the local SA methods.

It is also worth noting the role of qualitative group SA, in which the stake-
holders negotiate using in-depth descriptive information that may reinforce or
change their initial selection. Although only mentioned in this paper, such soft
SA presents an intriguing area for future research and has the potential to bridge
quantitative and qualitative approaches in decision making [34].

4.1 Visual Representations of SA

SA is a useful approach to explore spatial decision options, but its utility can
be further enhanced by the use of a cognitively straightforward visual feedback
to decision makers. In this respect, the greatest progress has been made in the
techniques of traditional local SA. The developments have been based on the
principles of human-computer interaction and include user-friendly interfaces,
computationally efficient algorithms, data brushing and dynamic linking between
the maps, tables, and graphs. A variety of tools are available in today’s software
including weight sliders [3,29], value path plots [2,6,44], spider-web charts [44],
appraisal roses [57], or pie and bar chart histograms [10]. More complex display
methods have been proposed to account for the interrelated multidimensional
nature of a decision problem. Examples include graphs of time-variant decom-
position [50], decision maps [30], and policy landscapes combined with policy
regions [5].

A future research challenge for visual representations concerns effective tech-
niques of representing the sensitivity of S-MCE solutions at spatial locations.
The exemplary cartographic representations of SA in the form of rank maps,
rank stability maps, or utility symbol maps should be enhanced with more spe-
cific sensitivity maps.
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4.2 Representational and Computational Issues

Krivoruchko and Gotway-Crawford [32] notice that the results of uncertainty
and SA may be numerous and call for creative summary tools. Standards for
defining statistical descriptors and improvements in computational techniques
bode well for enhancing the ease of use and comprehensiveness of SA [18]. An
exemplary possibility is the dynamic visualization of global SA in the form of
a pre-computed approximation of a solution hypercube, which is dynamically
sliceable depending on the specified parameter set. SA creates new information
about the decision process [44] and, within GIS, this emergent information can
be introduced in the form of maps [30]. Another important issue to be considered
relates to the spatial and aspatial scales of data granularity, representative to
a specific decision situation. A possible solution may involve a nondeterministic
fuzzy approach to SA in S-MCE [17].

5 Conclusions

This article began with declaring SA as the simultaneous advantage and short-
coming of S-MCE. In the course of the article, we presented a framework for a
holistic SA within the context of S-MCE. The goal of this framework is to assist
the decision makers with the selection of SA methods and techniques that are
appropriate for a specific decision situation. We formalized the structure of SA
into spatiality, scope, and cardinality. The first dimension recognizes the duality
of the spatial and aspatial nature of geographic decision making. The second
dimension relates to analytical methods ranging from the low level exploration
of a single decision parameter to the global synthesis of decision situation sen-
sitivities. The final dimension reflects the divergent motivation for performing
SA, namely individual learning or group consensus building.

We also discussed a number of SA techniques, delineating the advantages and
disadvantages associated with parametric and nonparametric (judgmental) un-
certainty. While the spatiality of alternatives is widely recognized, little progress
has been made on including spatial aspects of decision criteria and decision
weights into MCE-based SA. Therefore, the development of spatially explicit
techniques of SA deserves further research. Additionally, the SA cube frame-
work points to the lack of both spatial and aspatial scope-variant group SA
methods, which are especially needed to enhance collaborative decision making.

SA is not a substitute for decision making analysis. Instead, it is a way of mak-
ing the participants of the decision processes aware of the uncertainties inherent
in any decision situation. Unlike a typical perception of scientific analysis, in
which we put probably too much trust in precise (but not necessarily accurate)
results, SA emphasizes the impossibility of providing an always-best solution
[48]. Ascough et al. [4] state that multicriteria SDSS should be an environment
where decision makers can define, explore, redefine and understand the problems
they deal with. To accomplish this goal, we need more research into the meth-
ods of spatial SA. The SA framework presented here is intended to be a step in
building the foundation for further progress in spatial decision support.
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Abstract. The facilitation of interoperability requires a clear distinction if a re-
lation refers to classes of individuals or to specific instances, in particular when 
it comes to the logical properties of the involved relations. Class relations are 
defined whenever the semantics of entire classes are described, independently 
of single instances. Typical examples are spatial semantic integrity constraints 
or ontologies of entity classes. The paper continues research on spatial class re-
lations by deepening the analysis of the reasoning properties of class relations. 
The work is based on a set of 17 abstract class relations defined in [11]. The pa-
per provides a complete composition table for the 17 abstract class relations and 
redefines the concept of conceptual neighbourhood for class relations. This ap-
proach can be used to find conflicts and redundancies in sets of semantic integ-
rity constraints or other applications of spatial class relations. 

Keywords: Class Level Relations, Spatial Relations, Reasoning, Compositions, 
Conceptual Neighbourhood, Constraint Networks. 

1   Introduction 

The definition of class relations and their logical properties did not attract much atten-
tion of the scientific community so far. But as already argued by [1] the facilitation of 
interoperability requires a clear distinction if a relation refers to classes of individuals 
or to concrete instances, in particular when it comes to the logical properties of the 
involved relations. The difference becomes obvious through simple natural language 
statements, like for example: “house #12 is contained by parcel #1234”. This is a 
simple statement about two entities related by the spatial relation contained by. Since 
contained by is the inverse relation of contains the statement also implies “parcel 
#1234 contains house #12”. A statement about the corresponding entity classes is 
“buildings are contained by a parcel”. Applying the symmetry of the instance relation 
again it becomes: “a parcel contains buildings”. These statements can be mistaken, 
since they should be understood as “every building is contained by some parcel”, but 
NOT as “every parcel contains some building”. This example shows the influence of 
words like “all” or “some” on the semantic of a statement. They define cardinality 
restrictions on the applied relation. For a human reader it is very often possible to 
interpret the correct semantics, but a formal description of such a statement must 
explicitly contain cardinality information. The example also shows that a relation 
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among the classes is not subject to the same logical properties as a relation between 
instances and the cardinality information must be considered for reasoning. This has 
also been pointed out by [1] and [11]. 

Class relations define a cardinality restriction for a certain relation between the indi-
viduals of classes. The restriction is always valid for entire classes or subsets of classes 
and not exclusive for single instances. A class relation always links the cardinality 
restriction to an instance relation. Typical applications of class relations are ontologies 
of classes and semantic integrity constraints. For geographical information class rela-
tions are of particular interest, because a semantic description of such data requires 
class relations which are based on spatial instance relations, like e.g. topological or 
metric relations. The interoperable exchange of data of different domains and applica-
tion areas requires semantic descriptions of the data. Class relations are useful for the 
formalization of these descriptions. The logical properties of the class relations support 
an automatic processing, querying and comparing of such descriptions. 

As shown in previous investigations [1] [11] it is useful to separately analyse the 
reasoning properties of the class relations and those of the instance relations. 
Therewith class relations can be flexibly used in combination with any kind of  
instance relation. In a previous paper a set of 17 abstract class relations has been de-
fined, which is independent of concrete instance relations [11]. For these relations 
some basic reasoning concepts have been investigated. This paper continues these 
investigations particularly with regard to the composition of class relations and the 
conceptual neighbourhood of class relations. The following chapter will recapitulate 
the definition of basic cardinality properties and based on that the definition of the 17 
abstract class relations. In the third chapter the composition of 17 class relations is 
investigated. The paper provides an overall analysis of all possible compositions, 
which has never been presented before. Furthermore the concept of conceptual 
neighbourhood, which has been so far only considered in combination with instance 
relations, is redefined for class relations. It is shown how these logics can be used to 
find conflicts in triples of class relations. 

2   Definition of Class Level Relations 

A class relation defines cardinality restrictions for a certain relation between all in-
stances of the involved classes. In the following subchapters some basic cardinality 
properties are defined and used for the definition of class relations. It recapitulates the 
definitions made in [11]. For a more extensive elaboration refer to the original paper.  

2.1   General Definitions and Requirements 

For the definition of class relations the classes must conform to the following two 
preconditions. First, the involved classes must have at least one instance, i.e. empty 
classes are not feasible. As stated before class relations are linked to instance rela-
tions. Thus the second condition specifies that if a class relation is defined, there must 
at least one corresponding instance relation exist among the instances of the involved 
classes. The investigations in this paper are restricted to binary relations between 
entire entity classes. Relations between three or more classes or between subsets of 
classes (e.g. all blue houses as a subset of the class house) are not considered.  



236 S. Mäs 

In the following definitions small letters ‘x’, ‘y’, ‘z’, … denote variables for in-
stances / individuals. Every instance must be associated to an entity class. For entity 
classes capital letters ‘A’, ‘B’, ‘C’, … are used. ‘Inst(x,A)’ means individual x is an 
instance of class A. The function ‘r(x,y)’ means instance x has the relation r to in-
stance y; x and y are said to participate in the relationship instance r. The  
meta-variable r can stand for any relation between instances (e.g. topological relations 
between areal features [2], which are used in the examples the paper). Instance rela-
tionships can be associated to a class relation R. For class relation definitions 
‘R(A,B)’ denotes that R relates the classes A and B. The meta-variable R can stand 
for any class relationship. Every R is related to an instance relation r. If a class rela-
tion R(A,B) is defined, at least one r must exist between the instances of A and B.  

2.2   Cardinality Properties of Class Level Relations  

Cardinalities represent the number of elements of a set. Class relations refer to an 
instance relation and restrict the cardinality of this relation between the instances of 
the involved classes. The restrictions are defined through cardinality properties. In 
[11] the following cardinality properties of class relations have been used.  

LT(A, B, r) : x(Inst(x, A) y(Inst(y, B) r(x, y))) .= ∀ → ∃ ∩  (CP1)

RT(A, B, r) : y(Inst(y, B) x(Inst(x, A) r(x, y))).= ∀ → ∃ ∩  (CP2)

The cardinality properties (CP1) and (CP2) define a totality for the class A and B 
respectively. (CP1) holds if every instance of A has the relation r to some instance of 
B. In set theory such relations are called left-total.  

(CP2) holds if for each instance of B there is some instance of A which stands in 
relation r to it. This means that every instance of B has the inverse relation of r to 
some instance of A. In this case the relation is right-total. The concepts of totality 
have also been used for the class relations defined in [1]. 

LD(A,B, r) : x, y, z[Inst(x,A) Inst(y,B) Inst(z, A)

r(x, y) r(z, y) x z] Ex(A,B, r).

= ∀ ∩ ∩ ∩
∩ → = ∩

 (CP3) 

RD(A,B, r) : x, y, z[Inst(x,A) Inst(y,B) Inst(z,B)

r(x, y) r(x, z) y z] Ex(A,B, r).

= ∀ ∩ ∩ ∩
∩ → = ∩

 (CP4) 

Ex(A,B, r) : x y(Inst(x, A) Inst(y,B) r(x, y)).= ∃ ∃ ∩ ∩  (CP5) 

Class relations which hold (CP3) are left-definite and specify that for no instance of B 
there is more than one instance of A which stands in relation r to it. This property 
restricts the number of r relations an instance of B can participate; the instances of A 
are not restricted. The last term ensures that at least one instance relation r does exist 
between the instances of A and B (CP5). 

(CP4) specifies that no instance of A participates in a relationship r to more than 
one instance of B. When this cardinality property is defined in a class relation all 
instances of A are restricted while the instances of B are not affected. The correspond-
ing class relations are right-definite.  
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Such properties of class relations are well established in data modelling, for exam-
ple when total participation and cardinality ratio constraints are described using the 
Entity-Relationship notation. In such models a total participation is represented by a 
double line for the relation and cardinality ratio for example by a N:1 next to the rela-
tion signature (figure 1). In this example all buildings are restricted to be contained by 
exactly one parcel, while the parcels are allowed to contain an undefined number of 
buildings. Contains is the restricted instance relation. The number of different cardi-
nality ratio constraints of such a notation is indefinite. This approach only considers a 
cardinality ratio of 0..1, which is representing the concept of unambiguousness.  

 

Fig. 1. Constraints in an Entity-Relationship Notation 

2.3   Class Level Relations 

The formal definition of class relations is based on the above defined cardinality prop-
erties left-definite, right-definite, left-total and right-total. These properties are inde-
pendent of each other. This means that no property implies or precludes one of the 
other properties. If a class relation is only defined as right-total there is no informa-
tion about its left totality and the unambiguousness available.  

As the example in figure 1 illustrates, the properties can be combined for the defi-
nition of a class relation. The class relation in the example is based on the topological 
instance relation contains and the cardinality properties left-definite and right-total. 
The other two properties are not valid. The corresponding class relation CON-
TAINSLD.RT(Parcel, Building) is based on the class relation defined in (CR1). 

LD.RTR (A,B) : LD(A,B, r) RT(A,B, r) RD(A,B, r) LT(A,B, r).= ∩ ∩¬ ∩¬  (CR1) 

In the following I will refer such class relations, which are not linked to a particular 
instance relation, as abstract class relations (e.g. RLD.RT(A,B)). In analogy to (CR1) 
the four cardinality properties can be used to define a set of 15 abstract class relations, 
where for each relation at least one of the four properties holds and the others are 
excluded, respectively. An investigation of all possible combinations leads to: 

− Four abstract class relations where one property is valid and the corresponding 
other three are excluded, 

− Six abstract class relations where two properties are valid and the other two are 
excluded, 

− Four abstract class relations which combine three of the four defined cardinality 
properties respectively and exclude the corresponding fourth, 

− And one abstract class relations where all four properties are valid.  
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Additionally to these 15 abstract class relations two special cases are considered in 
[11]. To achieve a jointly exhaustive set of relations one abstract class relation is 
defined for the situation that none of the four properties is valid but some instances of 
A stand in relation r to some instances of B (CR2). 

Second, a further abstract class relation is defined for the case that all instances of 
A have a relationship instance of R to all instances of B (CR3). This is a strict case of 
a left-total and right-total relation. For class relations it is frequently occurring, for 
example when no instances of two classes are allowed to intersect:  
DISJOINTLT.RT-all(Streets, Lakes). 

This set of 17 abstract class relations enables the definition of class relations based on 
any binary instance relation. For further details on the definition of the abstract class 
relations it is referred to [11]. Figure 2 shows an example for each of the abstract class 
relations.  

Table 1. Restrictions of the number of instances of the abstract class relations 

Minimal 
required 
instances 

Minimal 
required 
instances

Abstract  
class  

relation 
A B 

Comparison 
number of A / 
number of B

Abstract 
class 

relation 
A B

Comparison 
number of A / 
number of B 

1. RLD.RD 2 2 - 10. RRD.RT 3 1 A > B + 1 
2. RLD 2 3 - 11. RLT 2 3 - 
3. RRD 3 2 - 12. RRT 3 2 - 
4. Rsome 3 3 - 13. RLD.RD.LT.RT 2 2 A = B 
5. RLD.RD.LT 1 2 A < B 14. RLD.LT.RT 2 3 A < B 
6. RLD.RD.RT 2 1 A > B 15. RRD.LT.RT 3 2 A > B 
7. RLD.RT 2 2 - 16. RLT.RT 2 2 - 
8. RRD.LT 2 2 - 17. RLT.RT-all 1 1 - 
9. RLD.LT 1 3 A + 1 < B     

 
Please note that class relations are not depending on fixed numbers of instances 

and the constellations represented in figure 2 are just exemplarily. Some abstract class 
relations require a minimum number of instances of A and/or B and a certain ratio 
between the instances of both classes. These restrictions are represented in table 1. 

The set of the 17 abstract class relations is a qualitative representation of the con-
stellation of instance relations between two classes. For every instance relation there 
is only one class relation valid for each pair of classes. Nevertheless it is possible to 
define more than one class relation between two classes, even when the applied in-
stance relations are part of the same jointly exhaustive and pair wise disjoint (JEPD)  
 

someR (A, B) : Ex(A, B, r) LD(A, B, r) RD(A, B, r)

LT(A, B, r) RT(A, B, r).

= ∩ ¬ ∩ ¬ ∩
¬ ∩ ¬

 (CR2)

LT.RT allR (A,B) : x y(Inst(x, A) Inst(y, B) r(x, y)).− = ∀ ∀ ∩ →  (CR3)
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Fig. 2. Examples of the 17 abstract class relations  

set of instance relations. Based on the definitions of the cardinality properties and the 
abstract class relations [11] it can be proven that for a JEPD set of instance relations 
the corresponding class relations are also JEPD (hence each class relation definition 
excludes the cardinality properties which are not valid, see (CR1)). 

3   Reasoning on Class Relations 

The reasoning methods presented in this chapter can be used to find conflicts and 
redundancies in sets of class relations. As demonstrated in [1] and [11] the logical 
properties of class relations derive from the logical properties of the corresponding 
instance and abstract class relations. It has been shown that it is appropriate to analyse 
the reasoning properties of the abstract class and instance level relations independ-
ently of each other. For the abstract class relations it is reasonable to refer the logical 
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properties to their cardinality definitions. The following sections investigate the sym-
metry, composition and conceptual neighbourhood of the 17 abstract class relations. 

3.1   Symmetry of Class Relations 

Logical properties class relations, like symmetry and transitivity, have been researched 
in [1]. As pointed out by [11] in particular the symmetry is of interest, since this prop-
erty has to be proven to ensure the arc consistency of a class relation network. It has 
been shown that every class relation has an inverse relation, if the corresponding in-
stance relation has an inverse relation or is symmetric. Most spatial relations fulfil this 
requirement. The symmetry properties of the class relations can be derived from the 
symmetry of the applied instance relations and the cardinality definitions of the ab-
stract class relations ((CP1)-(CP5), (CR2) and (CR3)). The inverse of a class relation is 
also based on the inverse of the applied instance relation. If an abstract class relation is 
left-total / left-definite the inverse relation is right-total / right-definite and vice versa. 
Rsome and RLT.RT-all are symmetric. The following two examples demonstrate the deriva-
tion of inverse class relations. Here the class relations are based on the symmetric 
instance relation disjoint and the inverse relations contains and inside: 

(DISJOINT RD.LT (A,B) )i  =  DISJOINT LD.RT (B,A). 
(CONTAINS LD.RD.LT (A,B) )i  =  INSIDE LD.RD.RT (B,A). 

3.2   Composition of Class Relations 

The composition of binary relations enables the derivation of implicit knowledge 
about a triple of entities. If two binary relations are known the corresponding third 
one can potentially be inferred or some of the possible relations can be excluded. This 
knowledge can also be used to find conflicts in case all of the three relations are 
known. The compositions rules of a set of relations are usually represented in a com-
position table like it has been done for the topological relations between areal entities 
in [4][8] and for directional/orientation relations in [6][9]. Many other sets of binary 
spatial relations also allow for such derivations. 

 

Fig. 3. Two levels composition of class relations 
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The composition of class relations is hardly researched yet, but as shown in [11] it 
is also possible. This paper proposes a two level reasoning formalism, which sepa-
rates the compositions of the abstract class relations from those of the instance rela-
tions (see figure 3). Therewith the composition of the abstract class relations can be 
defined independently of a concrete set of instance relations. 

The following example demonstrates how the compositions of the abstract class re-
lations are inferred. With the class relations R1LT.RT-all(A,B) and R2LD.RD.LT.RT(B,C) 
given, the relation between the classes A and C shall be derived. Such a situation is 
schematically represented in figure 4. All instances of A have the same instance rela-
tion r1 to all instances of B and all instances of B are related by r2 to one instance of 
C. To infer the composition of the abstract class relations every possible triple of A, B 
and C instances has to be separately analysed. Whenever the relation r1 between the 
instance of A and the instance of B and the relation r2 between the instance of B and 
the instance of C is given, the relation r3 (or a disjunction of possible relations) be-
tween the A and C instances can be inferred. The combination of the inferences of all 
possible triples of instances leads to the abstract class relation between A and C. If no 
triple of instances with r1 and r2 relations exists, then no inference for r3 is possible. 
Therewith the composition of the class relations leads to a universal disjunction U  of 
all possible class relations. For the example shown in figure 4, each instance of A is 
related to every instance of C via some instance of B. Therewith it is obvious that all 
instances of A must have the same instance relation to all instances of C. Thus the 
composition of the abstract class relations must be:  

LT.RT all LD.RD.LT.RT LT.RT allR1 (A,B);R2 (B,C) R3 (A,C).− −⇒  

For the composition of the class relations this result must be combined with the compo-
sition of the instance relations, for example (taken from the composition table in [8]): 

meet(a, b);covers(b,c) disjoint(a,c) meet(a,c).⇒ ∪  

 

Fig. 4. Possible scene defined by the class relations R1LT.RT-all(A,B) and R2LD.RD.LT.RT(B,C) and 
their composition R3LT.RT-all(A,C) 
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The combination of the compositions of the two levels results in: 

[ ]LT.RT all LD.RD.LT.RT LT.RT all
MEET (A,B);COVERS (B,C) DISJOINT MEET (A,C).− −

⇒ ∪  

For the example shown in figure 4 the derived composition is independent of the 
number of instances. This means that the composition of the given abstract class rela-
tions will always lead to the same result. The 17 abstract class relations have 289 
possible compositions. Many of them have differing results, depending on the number 
of instances of the three classes and the relative arrangement of the instance relations.  
This must be considered when the compositions are calculated.  

The influence of the relative arrangement of the instance relations on the composi-
tion is illustrated in figure 5. The two boxes show possible constellations of the 
R1LT.RT ; R2LT.RT composition. They only differ in an instance relation between  
the classes B and C: in the left box b1 and c2 are related whereas in the right box the 
instances b2 and c1 are related. The abstract class relations and the total amount of 
instance relations are the same. Nevertheless this difference will lead to different 
compositions. For the left constellation the relation between the instances a2 and c1 
can not be inferred and the composition is R3LT.RT (relation #16). The right constella-
tion allows for a deduction of all four instance relations between A and C and thus the 
composition is RLT.RT-all (relation #17). The disjunction of all possible results leads to 
the composition of the abstract class relations: 

LT.RT LT.RT LT.RT LT.RT allR1 (A,B);R2 (B,C) R3 (A,C) R3 (A,C).−⇒ ∩  

 

Fig. 5. Example of how the relative arrangement of the instance relations influences the compo-
sition of the abstract class relations 

In previous publications the composition of class relations has only been exempla-
rily investigated; an overall analysis of all possible compositions has never been  
presented. The calculation of this composition table is complex and costly. For the 
defined abstract class relations it requires an analysis of all possible arrangements of 
instance relations for up to 6 instances for each of the three classes. If both classes of 
one relation have 6 instances than there are about 68,7 billion arrangements possible. 
Each of these has to be separately analysed with all possible arrangements of the 
second relation. An analysis of classes with 7 or more instances does not lead to addi-
tional results in the composition. Making use of some heuristics this calculation can 
be further optimised. The overall composition table is shown in figure 6. 



 Reasoning on Spatial Relations between Entity Classes 243 

 

Fig. 6. Composition table of the 17 abstract class relations 

Some of the compositions can be summarized by general rules, which deduce the 
composition directly from the cardinality properties. This allows a more convenient 
use of the composition. Some obvious rules are: 

− If the first abstract class relation is not right-total and the second relation is not 
left-total the composition is always a universal disjunction U . 

− If the first relation is RLD.RD.RT (relation #6) and the second is not left-total the com-
position is equal to the second abstract class relation. 

− If the first relation is RLD.RD.RT (relation #6) and the second is left-total the composi-
tion has the same cardinality properties as the second relation, but it is not left-
total. For RLT.RT-all (relation #17) this can be relation #6, #7, #10 or #12.  
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− If the first relation is not right-total and the second is RLD.RD.LT (relation #5) the 
composition is equal to the first abstract class relation. 

− If the first relation is right-total and the second is RLD.RD.LT (relation #5) the compo-
sition has the same cardinality properties as the first relation, but it is not right-
total. For RLT.RT-all (relation #17) this can be relation #5, #8, #9 or #11.  

− If one of the relations is RLD.RD.LT.RT (relation #13) the composition is always equal 
to the corresponding other abstract class relation. Because of this property 
RLD.RD.LT.RT can represent the identity relation of classes if it is combined with a 
identity instance relation, e.g. EQUALLD.RD.LT.RT (A,A). 

− If the first relation is RLT.RT-all (relation #17) and the second is right-total the com-
position is always RLT.RT-all. 

− If the first relation is left-total and the second is RLT.RT-all (relation #17) the compo-
sition is always RLT.RT-all. 

The compositions which are defined by these rules are highlighted in grey in figure 6. 
A set of rules which completely represents the composition table is a subject of fur-
ther research.  

For the abstract class relations and their composition table the properties of a rela-
tion algebra [12] have been computationally checked. Some properties of the pre-
sented composition of abstract class relations are:  

− The inverse of an inverse relation is equal to the original relation: ( Ri )i  =  R. 
− All compositions with the identity relation (relation #13) are idempotent: 

R;RLD.RD.LT.RT  R and RLD.RD.LT.RT ;R  R. 
− The inverse of a composition is equal to the composition of the inverses of the two 

relations in reverse order:  (R1 ; R2)i =  R2i ; R1i. 
− The associative property (R1;R2);R3 = R1;(R2;R3) and the semiassociative prop-

erty R; ( U ; U )= (R ; U ); U  [10] are not valid. Therewith the composition of the 
abstract class relations is nonassociative.  

3.3   Conceptual Neighbourhood of Class Relations 

The conceptual neighbourhood represents continuous transformations between rela-
tions through linking relations that are connected by an atomic change. [6] defines 
two relations in a representation as conceptual neighbours, “if an operation in the 
represented domain can result in a direct transition from one relation to the other.” 
Examples of conceptual neighbourhood networks of instance relations can be found 
for temporal interval relations in [7], for topological relations between regions in [3] 
and between regions and lines in [5]. 

The conceptual neighbourhood of class relations has not yet been researched. In 
this approach two class relations are considered as conceptually neighboured if they 
are linked to the same instance relation and only differ by a single instance relation 
between two entities. The number of instances of the class is considered as fixed. In 
figure 7 the conceptual neighbourhood of Rsome and RLT.RT is exemplarily illustrated. 
All arrows symbolize one instance relation of the same kind r. The addition of a fur-
ther instance relation, represented by the dashed arrow in the right box, leads to a 
transition of the abstract class relation from Rsome to RLT.RT . 
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Fig. 7. Conceptual neighbourhood between Rsome and RLT.RT  

Table 2. Conceptual neighbourhood of the class relations; +/- represents neighbourhood 
through addition/removal of an instance relation 

 
 
The computation of all conceptual neighbourhoods between class relations requires 

an analysis of all possible arrangements of instance relations for up to 4 instances for 
both classes. A higher number of instances does not lead to additional results. For the 
17 class relations are all together 45 neighbourhoods existing. Since the neighbour-
hood is defined through adding or removal of a single instance relation all neighbour-
hoods are directed. Table 2 represents the neighbourhoods which result from an  
addition by a “+” and those which result from a removal by a “-”. If a class relation 
has changed though an addition / removal of an instance relation, it is not possible to 
get the same class relation again by further adding / removing of instance relations. 
The adding of instance relations will ultimately lead to RLT.RT-all (relation #17). A re-
moval will lead to RLD.RD (relation #1)1. The numbering of the abstract class relations 
                                                           
1 For this relation both involved classes must have at least two entities, see table 1. 
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has been chosen such that for all class relations the relations which result from an 
addition have a higher number and all inverse relations are successive. Because of this 
order all removal neighbourhoods appear at the left bottom and all addition 
neighbourhoods at the right top in table 2. 

The following example shall illustrate the practical use of the conceptual 
neighbourhood of class relations. Three class relations are defined for the classes A, B 
and C: MEETsome(A,B), CONTAINSLD.RD.LT.RT(B,C) and DISJOINTLT(A,C). These rela-
tions shall be analysed for conflicts through comparing the composition of the class 
relations A to B and B to C with the given third relation between A and C. The com-
positions of the corresponding instance and abstract class relations are: 

meet(a,b);contains(b,c) disjoint(a,c).⇒  

some LD.RD.LT.RT someR1 (A, B);R2 (B,C) R3 (A,C).⇒  

Thus the combination of the compositions of the two levels results in:  

some LD.RD.LT.RT someMEET (A,B);CONTAINS (B,C) DISJOINT (A,C).⇒  

This result seems to be in conflict to the given third relation DISJOINTLT(A,C). Figure 
8 exemplarily illustrates this situation. The first box shows the given class relations 
and the second the inferred relation between A and C. In comparison with this the 
third box shows that the given relation DISJOINTLT(A,C) possibly differs from DIS-
JOINTsome(A,C) by only one disjoint instance relation (in this case a3 to c2). 
Therewith DISJOINTsome(A,C) and DISJOINTLT(A,C) are conceptual neighbours. In 
figure 8 the three disjoint instance relations of DISJOINTLT(A,C) are implied by the 
class relations A to B and B to C. About further relations between the instances of A 
and C the composition does not allow for any conclusion. It can also not be excluded 
that further pairs of A and C instances are disjoint. Hence the composition of MEET-
some(A,B) and CONTAINSLD.RD.LT.RT(B,C) does not conflict DISJOINTLT(A,C) and the 
triple of class relation is consistent. Beside DISJOINTLT(A,C) also the class relations 
DISJOINTRT(A,C) and DISJOINTLT.RT(A,C) as direct conceptual neighbours of DIS-
JOINTsome() and DISJOINTLT.RT-all(A,C) as conceptual neighbour of DISJOINTLT.RT() 
would not conflict. 

In general, a class relation R3 is not in conflict with a composition R1 ; R2  R3* 
if R3* and R3 are based on the same instance relation r3 and the addition of further r3 
instance relations to R3* can lead to a transition to class relation R3. For this the re-
sult of the composition R3* and R3 don’t need to be direct conceptual neighbours. 
There can also be further class relation transitions between the two class relations. 
Nevertheless the conceptual neighbourhood points out which R3 class relations are 
valid, since it shows which transitions are possible for a certain class relation R3*.  

Thus the check of conflicts in a triple of class relations consists of two steps: first 
the comparison of the composition of two relations with the given third. If they are 
equal the triple of relations is conform to the introduced composition of class relations 
and there is no obvious conflict. If these two relations are not equal the second step 
checks their conceptual neighbourhood as described above. If the given third relation 
is not a corresponding conceptual neighbour of the composition the triple of class 
relations is conflicting. 
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Fig. 8. Use of the conceptual neighbourhood for the composition of class relations 

4   Conclusion and Open Issues 

The scientific investigation of class relations is currently still in the early stages. This 
work continues research into spatial class relation by deepening the analysis of the 
reasoning properties of the class relations. It is based on a set of 17 abstract class 
relations defined in [11]. The paper focuses on the composition and conceptual 
neighbourhood of class relations. The definitions and reasoning rules of the class 
relations are described independently of a specific set of instance relations. The intro-
duced two levels composition of class relations allows for a separate analysis of  
instance relations and abstract class relations. Therewith the overall reasoning formal-
ism can be used with any spatial or non-spatial set of instance relations. The only 
requirements imposed on the instance relations are that they are part of a JEPD set of 
relations and have defined inverse relations and compositions. 

With the described logics it is possible to find conflicts and redundancies in net-
works of class relations. This can for example be applied to prove consistency of sets 
of spatial semantic integrity constraints or spatial relations between classes in an  
ontology. 

This approach is restricted to binary relations between entire entity classes. Rela-
tions between three or more classes or between subsets of classes are not considered. 
Further more, only total participation and a cardinality ratio of 0..1 are included as 
cardinality properties of the class relations. Nevertheless this framework provides a 
basis, which can be extended for other possibly more complex types of class relations. 
For an extension by further cardinality ratio constraints (e.g. 0..2) it has to be consid-
ered, that this will increase the calculation cost of the compositions exponentially.  

Further work can also deal with the direct derivation of the reasoning properties of 
the class relations from their cardinality properties. This will deepen the understand-
ing of the logics and support possible extensions by additional cardinality properties. 
The two levels composition of class relations separates the compositions of the ab-
stract class relations from those of the instance relations (figure 3). However, some 
combinations of instance and abstract class relations lead to conflicts which can not 
be found this way. For example the combination of EQUALLD.RT(A,B) and 
RLD.RD.LT.RT(B,C) (see figure 2: relation #7; relation #13) is not possible. This is due to 
the specific properties of the equal identity instance relation and the cardinality prop-
erties of the two abstract class relations. A general description of such conflicts is 
unsolved.  
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As pointed out in table 1 some abstract class relations require a minimum number 
of instances in A and/or B and a certain ratio between the instances of both classes. 
For many entity classes the number of existing individuals is unknown or variable. 
For these classes the restriction of the number of individuals is irrelevant. However, 
for classes with a small and well defined number of instances (e.g. earth surface or 
continents) the designer of a data model or an ontology is in many cases aware of 
these numbers. The knowledge about these numbers and their correlation to the class 
relations can be included in reasoning about class relations. The restrictions on the 
number of instances also lead to restrictions of the composition and the conceptual 
neighbourhood. 
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Abstract. This paper presents an automatic approach to mining col-
lections of maps from the Web. Our method harvests images from the
Web and then classifies them as maps or non-maps by comparing them
to previously classified map and non-map images using methods from
Content-Based Image Retrieval (CBIR). Our approach outperforms the
accuracy of the previous approach by 20% in F1-measure. Further, our
method is more scalable and less costly than previous approaches that
rely on more traditional machine learning techniques.

1 Introduction

As more and more information comes online, disciplines ranging from medicine
to geography benefit from the proliferation of freely available data. For example,
in the field of geography, huge repositories of maps can be built by harvesting
maps from all of the images on the Web. Once harvested, these maps can then
be aligned to known geographic sources in a process known as “georeferencing”
[1,2,3]. Previous work georeferences maps to satellite images by first automat-
ically extracting the roads and intersections from the map image [4,5,6], and
then using those roads and intersections to automatically align the map to the
satellite image in a process known as conflation [1,2]. Once georeferenced, the
map collection can be queried using the same spatial queries used on the satellite
images, such as queries by region, latitude/longitude, street name, etc. Further,
not only are the maps returned for the given query, but they can be put in con-
text by overlaying the map images on top of the satellite image. An example of
a conflated map with a satellite image is given in Figure 1.

� This research is based upon work supported in part by the National Science Foun-
dation under award number IIS-0324955, in part by the United States Air Force
under contract number FA9550-08-C-0010, and in part by a gift from Microsoft.
The U.S. Government is authorized to reproduce and distribute reports for Govern-
mental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of any of the above organizations or any person connected with them.

T.J. Cova et al. (Eds.): GIScience 2008, LNCS 5266, pp. 249–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



250 M. Michelson, A. Goel, and C.A. Knoblock

Fig. 1. A bus map for Washington, DC conflated with a satellite image of the city

In this paper we focus on the first of these problems, automatically harvesting
maps from the freely available images on the Web. However, given that there
is no filter for publishing on the Web, a major challenge exists in separating
the map images from the other types of images. Manually sifting through the
images is both tedious and costly, especially given the huge amounts of data
that must be examined. In this paper we address the problem of automatically
separating geographic maps from other images collected on the World Wide Web.
An autonomous approach not only eases the cost associated with identifying
maps, but it also provides an easy and scalable approach to growing a collection
of maps over time. Once collected, such maps are useful for data integration,
intelligence analysis and geographic information systems. While we focus on the

Fig. 2. A software system for automatically collecting maps from the Web
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particular task of identifying maps, we believe the approach is general enough
to work for other specific image types, such as medical images.

More specifically, we start with a collection of images harvested from the Web
and our goal is to sort the images into maps and other images. Rather than
collecting the images ourselves, which is costly, we leverage the image-search
databases of large companies such as Microsoft, Yahoo!, and Google who index
and collect millions of images from all over the Web. Since these databases are
refreshed frequently with new content, this allows us to collect new maps over
time without having to spider the Web itself. Using such image databases, we
can collect the search results and classify each returned image as a map or non-
map, storing the newly classified maps in a map server. These stored maps can
then be georeferenced for future querying. Figure 2 shows this process.

As shown in Figure 2, we exploit two repositories, one of maps and one of
non-maps, to do our classification. While the specifics of our classifier are given
in Section 2, intuitively, if an image to be classified is more similar to the maps in
our repository than the non-maps, then it is more likely a map itself. That is, us-
ing techniques from Content-Based Image Retrieval (CBIR), we select the most
similar images from the repositories for a given map and use those returned im-
ages to decide if the input image is a map or not. We find that our CBIR method
is both more scalable than machine learning methods (as justified in Section 2),
and it is also more accurate (as shown in the experiments of Section 3).
This is the basis of our contribution: a method to sort images into maps that is
scalable, robust, autonomous and accurate.

The rest of this paper is organized as follows. We describe the details of our
CBIR map classifier in Section 2. We then describe our experiments and justify
our approach in Section 3. We next present related work in Section 4, and we
finish with our conclusions and future research in Section 5.

2 Automatically Classifying Maps

The focus of this paper is the classification of maps from images harvested from
the Web. In this paper we broadly define a map as any digital image which
contains “map like” characteristics such as lines, intersections and labels. The
important aspect for our task is that we remain consistent in our definition of
maps versus non-maps.

Our map classifier exploits techniques from Content-Based Image Retrieval
(CBIR).1 CBIR is essentially the image equivalent to traditional text based Web
search. Instead of finding the most similar Web pages for a given set of query
terms, in CBIR the most similar images from a set are returned for a given query
image. For example, consider Figure 3. In this figure, the query image comes into
the system and the top three most similar images are returned. This is the basis
of our classifier.

To exploit CBIR for classification, we use a voting, k-Nearest Neighbor clas-
sifier [8]. We first use CBIR to find the nine most similar images (neighbors)
1 See [7] for an excellent survey of the topic
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Fig. 3. An example of Content-Based Image Retrieval

from the combined set of images in the map and non-map repositories. The
similarity measure in our CBIR method is based on Water-Filling features [9].
Water-filling uses the edge maps of an image to quantify measures such as edge
complexity (based on forking), edge lengths, etc. These Water-Filling features
are well suited for images with clear edge structures [9], such as maps. Further,
by using edge-based features we make our classifier color invariant.

We then employ a simple majority voting mechanism [8]. If the majority of
returned images are maps, we classify the query image as a map. If the majority
of returned images are non-maps, we classify the query image as a non-map. This
simple algorithm is shown in Figure 4. Therefore, although it may be the case
that other images on the Web will have clear edge structures (such as diagrams),
since our technique relies not only on the edge features themselves, but also on
the similarity to the edge features of the images in our map repository, such
images will be filtered out. The accuracy of our experimental results indeed
show this to be the case.

We choose a CBIR based k-Nearest Neighbor classifier over more traditional
machine learning methods for the following reasons. First, CBIR similarity meth-
ods allow us to exploit image similarities without explicitly modeling them. For
instance, hydrography maps are similar to other hydrography maps and urban
city maps are more similar to urban city maps but these types of maps may
be quite different from each other. By using CBIR methods, these similarities
can be exploited without modeling them explicitly because the returned images
encompass the image similarities implicitly (that is why they are returned as
similar). If we use traditional machine learning methods, such as Support Vec-
tor Machines, we have two options to capture these different types of image
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Fig. 4. A k-Nearest Neighbor map classifier using CBIR

similarity. On the one hand, we can train a model for each class of map, then if
an incoming image matches any of these map classes, we know it is a map (since
each class composes the image similarities). That is, we can take the hydography
maps and learn a model of what a hydrography map should be. We can then
take the urban city map and learn an urban city map model.

There are several problems with trying to learn a model for each type of map.
For one, the number of such classes is not known in advance. Therefore, a user
will have to make a decision as to which maps constitute a class and hope he or
she made the correct choices to lead to accurate classification. Along these lines,
the user must make decisions as to the granularity of the classes (is an urban-
hydrographical map its own class?), which can further complicate the creation of
classes. Also, learning a new model may be a non-trivial process both in the work
and time required. So, if a new class is discovered or needed, this can become a
prohibitively costly problem.

Instead, rather than modeling all of the different types of image similarities
in distinct classes, one could try to learn a single model that encompasses all of
these different types of similarities. However, since different types of map images
can vary wildly, trying to generalize to cover all of these different similarities leads
to a learned model that does not discriminate well (as shown in our experiments).

The other reason we chose CBIR instead of machine learning has to do with
robustness and scalability. We can exploit huge repositories in our method, which
is not the case using machine learning. In machine learning, learning models
from massive amounts of data can take so long that it is not practical. CBIR
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techniques, however, are built on methods from information retrieval which the
major search engines have shown to be fast and robust in very large, practical
settings. Further, we can freely tweak the size and composition of our repository
to test the effect (something we do in the experiments to test this idea). Using
machine learning, we have to retrain a model each time we tweak the repository
(training data). In situations where training is costly, this is not a good solution.
Therefore, by using CBIR methods we can grow the repository over time without
retraining which allows for a scalable and autonomous solution to classifying
maps and building good map repositories. In our experiments, we show the
effects of growing the repository on the accuracy of classification.

3 Experiments

We collected 1,704 map images and 3,462 non-map images for our experiment.
We used Yahoo Image Search2 to gather all of the map images and some of
the non-map images. Most of the non-map images come from the CALTECH
101 data set [10], which is a set of pictures of objects belonging to 101 different
categories. Table 1 presents the distribution of images by source. Note that we
labeled all images as maps or non-maps manually.

Table 1. Distribution of images by source

Source of image Number Number of Number of
(Keyword used) of images map images non-map images

Los Angeles Maps 378 327 51

Seattle Maps 132 87 45

Chicago Maps 480 376 104

Pittsburgh Maps 139 92 47

New York Maps 143 87 56

New Delhi Maps 188 124 64

City maps 624 611 13

NonMap (CALTECH 101) 3,082 0 3,082

ALL 5,166 1,704 3,462

Our experimental collection includes not only cities in the United States,
but also international cities. Specifically, we included maps from New Dehli,
and the maps retrieved for the keywords “city maps” include maps from China,
Hungary, Israel, Ireland, France, Scotland and many other countries. Further, the
maps in our collection retrieved by city keywords (such as “Pittsburgh maps”)
include not only urban street level maps, but also county maps, highway maps,
weather maps, “metro area” maps, tourist maps (such as parks), and other types.
Therefore, our map collection is diverse and interesting.

2 images.search.yahoo.com
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Our CBIR-based classifier builds upon LIRE3, an open source CBIR library
written in Java,4 which we augmented to use Water-Filling features[9]. Previous
work demonstrated that Water-Filling features increase performance in the re-
trieval of images with clear edge structures [9], a condition that applies well to
maps. Since Water-Filling uses edge maps, we pre-process each image using the
Canny edge detector[12] to create the edge maps.

For our experiments, we randomly select 800 maps and 800 non-maps from
the entire set of images to build the repository for the CBIR method. Since the
repository acts as the set of labeled samples for the CBIR method, we used this
same set to train the SVM. Then we test each method on 800 randomly chosen
maps and 800 randomly chosen non-maps to test the method’s effectiveness. We
repeated this process over 10 trials.

Our experiments test two hypotheses. First, we test whether CBIR is a more
accurate classifier than the SVM by comparing both methods, using the Water-
Filling features. Second, we also test whether Water-Filling features are more
suited to map classification by comparing an SVM using Water-Filling features
to one that uses Law’s Textures [3]. By comparing an SVM using Law’s Textures,
which was used in a machine learning approach to the same problem [3], to our
CBIR-based method using Water-Filling, we can also show that not only is our
method more scalable and robust (since it does not require a training phase),
it also outperforms the previous approach. Table 2 presents our experimental
results as average precision, recall and F1-measure (the first harmonic mean
between precision and recall), the standard metrics for classification tasks.

Table 2. Performance of the CBIR and SVM methods

Method Precision Recall F1-measure

CBIR with WaterFilling 87.14 77.36 81.96

SVM with WaterFilling 88.80 56.00 68.69

SVM with Laws’ Texture 69.50 47.43 56.38

The first result to notice is that the CBIR with WaterFilling method greatly
outperforms the other two methods in F1-measure, which means it has the su-
perior map classification performance. Note that all differences, except for one,
are statistically significant, using a two-tailed t-test with α set to 0.05. The only
difference that is not statistically significant is the precision between the CBIR
with WaterFilling and the SVM with WaterFilling methods.

Note that while the precision using WaterFilling is similar (not statistically
significant) using either the SVM or the CBIR method, the recall is much im-
proved using the CBIR method, yielding the best F1-measure. This supports
our notion that CBIR generalizes to many map types better than SVM does. In
order to increase the SVM’s recall, we would need to train it for the various map
classes. As it stands, training it to learn a single “meta-map” class only results

3 http://www.semanticmetadata.net/lire/
4 LIRE is part of the Calif&Emir project [11].
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in its classification of roughly half of the maps correctly. Meanwhile, because
the CBIR method returns the nearest neighbors, which may be of arbitrary map
types, it is able to cover many more map classes, and return a higher propor-
tion of the maps. It does this while maintaining a high level of precision, and is
therefore a more accurate classifier.

The next result to notice is that WaterFilling features are much better suited
for the map classification task. This is clear by examining the difference in preci-
sion between the SVM method using WaterFilling features and the SVM method
using Law’s Textures. Both methods have very similar recall values, generally
capturing half of the maps in the testing data, but the Law’s Textures method
does a far worse job at distinguishing noise from the true maps. As stated, since
maps have a strong-edge structure, Water-Filling can do a much better job at
distinguishing true maps from false positives.

Fig. 5. Comparison of CBIR and SVM varying the repository size

We also analyze the effect of the size of the repository on the CBIR method’s
classification performance. Since the repository is equivalent to the training data
for the SVM method, this is analogous to studying the effect of the amount of
training data on the SVM. To do this, we repeated the above classification exper-
iment, this time varying the repository size (training data) by 200 maps and 200
non-maps, starting with 200 maps and 200 non-maps up to 1,400 maps and 1,400
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non-maps. Figure 5 again compares the F1-measures for the three methods, CBIR
with WaterFilling, SVM with WaterFilling, and SVM with Law’s Textures.

Figure 5 suggests that even with a small repository, the CBIR method outper-
forms the SVM methods. Moreover, as we add more images to the repository, the
CBIR method’s F1-measure improves steadily. Again, the primary cause for both
of the SVM methods’ low F1-measure is their low recall. As we argue above, the
primary reason for the low recall is that maps vary dramatically in their shapes
and density, such that when the SVM tries to learn one model for all of these
types as maps, it converges to a set of feature values which are an average over
these maps. As a result it defines a hyperplane approximately in the middle of
the feature space resulting in lots of maps falling on the non-map side of the
plane. In fact the recall hovers around the 50% mark reaching 56% for the most
training. Note that the way to overcome this would be train an SVM for each
map type, but this is infeasible given that we do not know the map types on the
Web ahead on time.

Lastly, we examine the maps misclassified by the CBIR method. Since the
precision is high, we focus on issues dealing with recall. Specifically, we delve
more deeply into false-negatives (maps that are errantly classified as non-maps),
which are the determinant for recall misses. We realized that the majority of
false-negative cases are caused when there is one more non-map than map in
the returned neighbors, which leads the system to classify the input image as
a non-map (since it has a five to four majority). In most of these cases, it is
a small set of non-map images that repeatedly get included as these neighbors
which sway the vote to an errant classification. We call these “culprit” images.
Figure 6 shows the edge-map of an example culprit image. This image is a person
in front of a stack of books. However, the edge map for the stack of books in
the background looks quite similar to an urban map (it has lots of squares and
intersections). To deal with “culprit images” we plan to use relevance feedback
techniques to find this small set of non-map images and remove them from the
repository.

(a) (b)

Fig. 6. An image where the edge map looks like a city map; Figure (a) shows the
original image, Figure (b) shows the edge map
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4 Related Work

CBIR methods have been applied to various scientific disciplines ranging from
astronomy[13] to botany[14]. Much attention has been given to CBIR methods
in medicine, where they can have tremendous impact [15]. For example, in one
medical system the authors use a CBIR-based, k-Nearest Neighbor approach to
classify medical images [16]. This work also includes Water-Filling features for
the CBIR component. However, their work (and most of those above) differs
from ours in the context in which it is applied. Our system is geared toward
automatically harvesting maps from the Web, while their system is used to
classify images so that images can be queried categorically. More specifically,
these authors use many different types of features to classify their images, while
we use only water-filling in the interest of accurate classification. Further, we are
the first to use CBIR methods to automatically harvest maps from the Web.

Although we are the first to propose CBIR-based classification for map har-
vesting, other work has been proposed to automatically classify (and harvest)
maps from the Web [3]. As stated in our experiments, Desai, et. al. [3] pro-
pose machine learning methods to classify maps versus non-maps. In our exper-
iments we find this method is less effective than our CBIR based classifier. More
specifically, not only is the machine learning component not as accurate as the
CBIR-based classifier, but a machine learning method requires different models
for each map type, since our experiments show that learning a single model to
cover all maps leads to inaccurate classification.

Our experiments point to the necessity of using the correct features for CBIR.
While we choose Water-Filling, which are good for images such as maps with
strong edge maps, other methods could perhaps work as well. For instance,
authors have proposed “salient point” features based on wavelets [17]. Another
set of features based on shape similarity [18] could be well suited for our task
as well, since maps seems to share certain shapes within them. Lastly, methods
have been proposed to more efficiently store color information [19], which makes
retrieval more efficient. Although we use textures based on edge maps to make
our method color invariant, color information might help in discriminating maps.
Our CBIR-method is not tied to Water-Filling, though those features perform
well. It will be interesting future work to compare the various features and their
efficiency and accuracy for map classification.

5 Conclusion

In this paper we present an autonomous, robust and accurate method for clas-
sifying maps from images collected on the World Wide Web. We find that a
CBIR based classification method outperforms a machine learning based method,
largely because we do not have to explicitly model the different types of maps
that should be covered by the classifier. That is, by leveraging CBIR we can clas-
sify a variety of maps without having to explicitly train a classification model for
each one. Further, we find that Water-Filling features, which are shown to work
well on images with clear edge structures, work well for maps in our classifier.
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However, although our method performs well, there are still areas for im-
provement. For example, some maps are misclassified when the majority vote is
borderline (for example, one image sways the classification as a map or non-map).
In this case, we can deal with the ambiguity by employing relevance feedback
techniques from information retrieval. Such relevance feedback could help us
to identify and prune away “culprit” images who consistently sway the vote in
miss-classifications. Other future work involves exploring different features such
as wavelets and shape similarities.

Nonetheless, despite the future work proposed above, our technique provides
an automatic, accurate, practical and scalable solution to the problem of creat-
ing useful image repositories from the Web. More importantly, by plugging our
method in with methods for aligning raster maps with satellite images we can
create a harvesting framework for scouring the freely available images on the
Web to build map collections for any given region in the world.
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16. Lehmann, T.M., Güld, M.O., Deselaers, T., Keysers, D., Schubert, H., Spitzer,
K., Ney, H., Wein, B.B.: Automatic categorization of medical images for content-
based retrieval and data mining. Computerized Medical Imaging and Graphics 29,
143–155 (2005)

17. Tian, Q., Sebe, N., Lew, M.S., Loupias, E., Huang, T.S.: Image retrieval using
wavelet-based salient points. Journal of Electronic Imaging 10(4), 835–849 (2001)

18. Latecki, L.J., Lakamper, R.: Shape similarity measure based on correspondence
of visual parts. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10),
1185–1190 (2000)

19. Deng, Y., Manjunath, B.S., Kenney, C., Moore, M.S., Shin, H.: An efficient color
representation for image retrieval. IEEE Trans. Image Processing 10(1), 140–147
(2001)



Improving Localization in Geosensor Networks through
Use of Sensor Measurement Data

Frank Reichenbach1, Alexander Born2, Edward Nash2, Christoph Strehlow1,
Dirk Timmermann1, and Ralf Bill2

1 University of Rostock, Germany
Institute of Applied Microelectronics and Computer Engineering
{frank.reichenbach,christoph.strehlow,

dirk.timmermann}@uni-rostock.de
2 University of Rostock, Germany

Institute for Management of Rural Areas
{alexander.born,edward.nash,ralf.bill}@uni-rostock.de

Abstract. The determination of a precise position in geosensor networks re-
quires the use of measurements which are inherently inaccurate while minimizing
the required computations. The imprecise positions produced using these inaccu-
rate measurements mean that available methods for measurement of distances or
angles are unsuitable for use in most applications. In this paper we present a new
approach, the Anomaly Correction in Localization (ACL) algorithm, whereby
classical trilateration is combined with the measurements of physical parameters
at the sensor nodes to improve the precision of the localization.

Simulation results show that for localization using triangulation of distance
measurements with a standard deviation of 10% then the improvement in pre-
cision of the estimated location when using ACL is up to 30%. For a standard
deviation in the measurements of 5% then an improvement in positioning preci-
sion of ca. 12% was achieved.

1 Introduction

In the near future masses of tiny smart electronic devices will be placed ubiquitously
in the environment surrounding us. These so called geosensor networks (GSN) sustain-
ably measure mechanical, chemical or biological conditions, aggregate the important
information and transmit it over neighboring sensor nodes to a data sink where it can be
collected and then analyzed. GSNs are evolving as a promising technique for industry,
modern life science applications or natural disaster warning systems. One of the most
important issues in GSNs is the localization of each node using distances or angles to
neighbors as the geographical position is required to make use of the measurements.
Due to the large errors which are caused by available methods for the measurement of
distances or angles, the expected precision, particularly indoors, is insufficient for most
applications.

In our new approach we take advantage of the fact that sensor measurements are
related to their position in a pattern that can be largely determined in advance. We
have therefore developed a model that combines spatial sensor information and classical
localization approaches such as trilateration to increase the overall precision.
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This paper is structured as follows. In Section 2 the fundamentals of localization in
geosensor networks are summarized. Section 3 introduces the basic concept by which
we hope to improve the precision of localization and Section 4 describes the new ACL
algorithm in detail. Section 5 then presents simulation results before Section 6 sum-
marizes the results presented in this paper. Finally, Section 7 discusses some ideas for
future work in this area.

2 Fundamentals of Localization

The task of the described networks consists of the collection with sensors of a phenom-
ena with a certain spatial dimension. The capability to self-determine the position of
each sensor is an essential feature of the sensors because measurements are only useful
if connected to a time and a place. A potential method would be the use of the Global
Positioning System (GPS) or in future Galileo [1]. Because of the additional costs and
the required small size of the sensor nodes these techniques are only feasible if used on
a small number of more powerful nodes, further called Beacons. These Beacons deter-
mine their positions with such methods and make this information available to all other
sensor nodes in the network. For the localization of the other nodes, different methods
are available and can be separated into approximate and exact methods. An overview
can be found in [2],[3].

Simple exact methods are the well known trilateration or triangulation, using mea-
surement of distances or angles respectively. Due to the fact that measuring angles re-
quires additional hardware (e.g. antenna arrays on each node), triangulation has not
been subject to intensive investigation and the trilateration approach is favored. In the
case of 2D localization, a system of three equations may be constructed using Euclidian
distances [4]. Subtracting one equation from the other two and insertion of one of the
remaining unknowns produces a quadratic equation which may be uniquely resolved.
This method requires a low calculation and memory effort, but the measurement of the
distances results in systematic and stochastical errors. These errors influence the results
of the trilateration and significantly decrease the accuracy of the determined position
because of the lack of robustness of the trilateration. In the worst case the localization
process can fail if the Beacon positions are also subject to errors.

Two methods to overcome these problems exist in the literature. Approximative al-
gorithms use coarse positions or distances as start values and determine relatively in-
accurate results, but with a minimum of calculation cost. Algorithms used include e.g.
(weighted) centroid determination (CL,WCL) [5,6] or overlapping areas (APIT) [7]
and are more error resistant and therefore robust, but the approximate nature of the al-
gorithms themselves means that even with error-free start values an exact position can
never be determined.

This is an advantage of the second class of methods - the exact algorithms. These
can produce exact positions if accurate start values are used. The disadvantage is that
they require a higher calculation and memory effort. They are therefore not appropriate
to be used at resource-limited sensor nodes. There are however some algorithms which
overcome these problems by distributing the tasks [8,9,10,11].



Improving Localization in Geosensor Networks 263

Additional to further developments of the algorithms we follow up a completely
different approach - the use of spatial information inherent in sensor measurements. We
will discuss this concept in the next section.

3 Basic Concept

In Section 2 we explained the problems affecting the positioning process. Intensive ef-
forts have been made to reduce these errors using better localization algorithms. How-
ever, these algorithms all base on the same data such as Beacon positions and distance
measurements. Even with the best measurement methods some error sources cannot
be eliminated. Further available sources of information must therefore be considered.
With the large amount of sensor data collected it is possible to draw conclusions about
the environment in which the sensor nodes are located. In many cases there will be a
correlation between the collected data and the sensor location. This information can
be used to increase the position accuracy if it is possible to mathematically define this
correlation.

For a better understanding we will give an application example from Precision Agri-
culture, where the use of GSNs is currently a topic of research [12],[13]. In the future
a large number of sensor nodes may be deployed, e.g. by aeroplane, over cropland.
The sensor nodes measure chemical or biological soil composition as well as typical
physical parameters such as temperature, light intensity or air pressure. Nodes which
settle in areas of dense plant canopy, e.g. under trees, will measure a consistently lower
light intensity, caused by the shadowing effects of the vegetation. On the other hand
the sensor nodes in an open area without plant coverage would measure a consistently
higher light intensity. Combining the estimated position with the sensor data and a sur-
face model would allow us to draw conclusions about the localization. If a sensor node
estimates a position in an open area but records a very low light intensity then an outlier
is highly probable. Although this example is highly specialized, due to the fact that the
sensor nodes may carry a large number of different sensors many potential classes of
measurements could be used for an outlier detection.

In this paper this principle is used as follows. Usually a sensor network contains
redundant Beacons. Using trilateration, different positions can be estimated followed
by the elimination of errors. In Section 4 we will introduce an algorithm with which it
is possible to filter values which are subject to errors and thus improve the localization
result. This approach is based on the idea that it is possible to define location-dependent
ranges for measurement of certain phenomena. Using these ranges the sensor nodes can
exclude certain areas for determining their own position, leading to a decrease in the
localization error.

4 Anomaly Correction in Localization (ACL)

In this section we describe the Anomaly Correction in Localization (ACL) method. The
aim can be summarized as to produce a very resource-saving trilateration, requiring only
minimal additional calculation on the nodes whilst still determining a precise position.
In particular, single outliers from the distance measurement may significantly affect the
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Fig. 1. Resulting discrepancy in position between sensor measurement and calculated trilateration

result of the trilateration. This effect should be reduced or removed by the use of the
ACL algorithm as described here.

4.1 Prerequisites

ACL realizes an improvement in the localization through elimination of highly inac-
curate estimated positions based on sensor measurements and some previous knowl-
edge of the measurement environment. Figure 1 illustrates how a sensor node with
light sensor may reject false positions when the light conditions for cropland and forest
are known. In this case, based on the measured light conditions, only positions in the
forested area will be accepted. Prerequisites for a successful application of ACL are:

– there must be sufficient sensors installed on the sensor nodes which measure a
spatially-related phenomenon (exact numbers and densities are likely to be appli-
cation dependent and further investigation is required),

– and it must be possible to clearly define the spatial relation of the phenomenon
being used using discrete (or potentially, with an extension of the model, fuzzy)
zones linked to expected observation values which can be determined independent
of the current sensor network (e.g. zones for expected soil moisture content may be
derived from a digital terrain model through use of the topographic wetness index).

Additionally it must be possible to allocate a specific region of space to each envi-
ronmental parameter. This important relationship between a defined spatial region and a
sensor value range is hereafter referred to simply as ’sensor interval’. Potential environ-
mental parameters which may be used are temperature, light intensity, moisture, pH,
pressure, sound intensity and all other physical parameters which may be metrically
defined. A sensor interval is then defined as matching to a region when the expected
measurement value lies within the delimited range with a high degree of probability.
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A further important prerequisite is an inhomogeneity in the relevant environmental
parameter. If the entire measurement field belongs to a single sensor interval or the
measured variable may not be classified then this parameter is not suitable for use in the
localization. It is therefore only possible to use parameters which may be divided into
two or more intervals with a high significance.

The ACL algorithm bases on the previous trilateration. Since normally more than the
three required Beacons (n Beacons), are available within the range of a sensor node, it

is possible to perform multiple trilaterations. In total,
(n
3
)

different trilaterations may

be calculated. The question however remains as to which trilateration will produce the
best (most precise) result, as it is important to minimize the computational effort. This
optimum may be expressed by the question as to which trilateration produces a result
which does not violate the clear rules of the ACL algorithm. Based on our previous
example, this means that there would be a conflict when an estimated position lies in
an open area, but the light sensor measures a very low value. This indicates that this
trilateration is unreliable. The mathematical background is described in the following
Section.

4.2 Construction of the Model

A model has been developed which abstracts real given environmental parameters and
allows a variable allocation to intervals. For this, a rectangular measurement area is
defined in which the sensor nodes are placed. The whole area is subdivided using an
arbitrarily scalable raster, which may be represented using a square matrix. This allows
both a very flexible configuration and a fast computation.

Sensor intervals do not have preassigned values but may be indicated by a region in
which the sensor values cluster within a certain interval. These regions may be formed
by a set of adjacent cells, whereby each cell is represented by a logical ”1” in the rele-
vant position in the matrix. This significantly simplifies the required calculations as no
geometrical tests (e.g. point-in-polygon) must be performed but only a simple mapping
of the spatial coordinates to the dimensions of the matrix and a logical comparison. The
size, number and position of the sensor intervals may be generically defined.

The measurement of sensor values is modeled through the allocation of the nodes to
the sensor intervals in which the actual position of the sensor lies. A potential measure-
ment error is thereby excluded, i.e. each sensor delivers values from the exact interval
corresponding to its position. The measured sensor information are further referred to
as ’sensor profile’ and are considered to be a defined spatially-variable property.

Figure 2 illustrates an example measurement area. Each node has a 1D vector which
defines its allocation to each sensor interval. Node 1 (N1) has in this case the vector
V (N1) = (1, 0, 0) which indicates that N1 is located in sensor interval 1, but outside
intervals 2 and 3.

It is also possible that a sensor interval is distributed over multiple spatially discrete
regions in order to allocate the same sensor profile to multiple areas. Such discrete
regions may generally be considered as separate sensor intervals, with the difference
that calculated positions which lie in one sub-region, but where the actual position lies
in a different sub-region, will not be recognized as outliers.
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Fig. 2. Schematic of a localization with outlier detection by ACL

4.3 Algorithm Description

There now follows a step-by-step description of the algorithm. There are two possible
sequences which should be considered.

ACL with Averaging. The following sequence is more computationally expensive, but
potentially more accurate as all available information is used.

1. Beacons send their position to the sensor nodes in the transmission range tx.
2. Sensor nodes save the received position and measure the distance to the Beacons

using a standard measurement technique such as signal-strength measurement.
3. After all data are saved, i.e. all Beacons have finished transmitting, the sensor nodes

calculate all q =
(n
3
)

possible positions by repeated trilateration.

4. All resulting positions are tested using the ACL algorithm. The actual measured
sensor value is compared to the previously defined sensor interval. If it matches
then the position is considered as valid, otherwise as invalid.

5. After all positions have been tested using ACL, an average of all valid positions is
calculated. This average is then used as the final estimated position.

ACL with First Valid Position. As the previously described algorithm has the disad-
vantage of requiring that all trilaterations are calculated, we introduce a version which
may be interesting for practical use. In this version, the calculation is stopped as soon
as a valid trilateration is found. The sequence is identical to that previously described,
except that the result of each trilateration (stage 3) is immediately validated using ACL
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(stage 4) until a valid position is found. This position will then be used as the estimated
position of the node and the algorithm terminates. Using this version then a greater
localization error is to be expected. This is explained in the following Section.

5 Simulation and Results

For simulation we have used the packet simulator J-Sim from the Ohio State University
[14]. Details of the implementation can be found in [15]. At this point we wish to
present the simulation conditions and the results.

The necessary distance measurement for the trilateration is modeled through calcula-
tion of the Euclidean distance, adjusted using a normally-distributed (Gaussian) random
value to represent measurement error. The simulated distance d is thus calculated using
the following formula:

d =
√

(x − x0)
2 + (y − y0)

2 + rGauss ·σd (1)

where x, y are the coordinates of the unknown node, x0, y0 are the coordinates of the
Beacons, rGauss is a normally distributed random number between zero and one and
σd is the standard deviation of distances.

For the localization an even distribution of nodes is assumed, resulting in an equal
distribution of favorable and unfavorable alignments for the trilateration. This means
that even with this idealized normally-distributed error model then significant outliers
in the localization are to be expected.

In the simulations then the localization errors of the initial position Ef and the lo-
calization error of the first correct position (without outliers) Ef,ACL are determined.
It can therefore be seen, by how much the mean localization error is reduced when the
ACL algorithm with version 1 and 2 is applied. The improvement is shown in the dia-
grams in meters, although since a sensor field of 100m × 100m is used then this may
also be interpreted as percent. Similarly, the standard deviation may also be interpreted
as percent values. A 100m × 100m sensor field with a cell size of 5m × 5m was used for
all simulations. Figure 3 shows a typical visualization window of the results achieved
by the J-Sim tool.

5.1 Mean Improvement with 10 Beacons

In the first simulation, 10 Beacons and 20 sensor nodes are distributed in the field. Three
sensor intervals with range 49 and a distance error of σd = 1.0 are used. In the case that
all three sensor intervals do not overlap, their area represents ca. 36% of the total area.
In a simulation with 10 Beacons there are 120 possible trilaterations. At this point, only
the mean improvement V = E − EACL is considered. The data are sorted based on
the proportion of outliers, i.e. it is calculated how many of the 120 possible positions
lie outside the correct sensor interval.

For each of the 20 nodes used there is a particular percentage of outliers and therefore
a line in the diagram (figure 4). Each line represents the absolute value of the mean
improvement which each node achieves with 120 trilaterations and the given number of
outliers. In the case that multiple nodes have the same number of outliers a mean value
is calculated.
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Fig. 3. Screenshot of simulation results in J-Sim; triangles are Beacons and points with lines are
sensor nodes with its error-vector; three darker areas represent sensor intervals

Since the raw data show a high scattering, a linear regression is used to emphasize the
trend. The improvement increases with an increasing number of outliers. This trend is not
demonstratably linear, but a similar trend is observed over many simulations, leading to
the assumption that the improvement is at least linear or even exponential. Similarly it can
be seen that with a low number of outliers, up to ca. 15%, there is a negative improvement
(i.e. a worsening). This shows that there is a certain minimum number of outliers under
which the use of the ACL algorithm is not appropriate. This limit is dependent on the
particular configuration and can not therefore be generally specified.

5.2 Correlation between Number of Outliers and Distance Errors

The number of outliers is dependent on the error in the distance measurement, in this
case the standard deviation σd. In the following simulation the same configuration as in
Section 5.1 is used with different distance errors. The parameter σd is varied between
1.0 and 10.0 with an interval of 1.0. The number of outliers is calculated as a function
of this parameter.

Figure 5 shows the mean number of outliers in relation to σd over multiple sim-
ulations. It shows that the number of outliers increases with an increasing standard
deviation. Again a trend line is shown to illustrate the trend. This emphasizes that the
values have a high random component and deliver different results in each simulation.
It is however clear that the mean proportion of 15% outliers is rapidly exceeded, which
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Fig. 4. Average improvement over outliers with 10 Beacons, 20 sensor nodes and a standard
deviation σd = 1.0
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indicates that the ACL algorithm will only be ineffective, or detrimental as in figure 4,
where there is a very small σd.

5.3 Influence of the Size and Number of Sensor Intervals

Further important factors in the effectiveness of ACL are the size, number and position
of the sensor intervals. For the simulations, the intervals were individually parameter-
ized by size and number, but randomly positioned. Alongside the random distribution
of the sensors, this is one of the main reasons for the high variability of the resulting
data. There is therefore no explicit results from which a formula for the accuracy of
the ACL in relation to these parameters can be derived. An investigation of the influ-
ence of size and number of sensor intervals however resulted in the expected results. An
increasing number of sensor intervals results in an increasing fragmentation of the mea-
surement field into smaller sections with different sensor profiles. This is particularly
the case where the sensor intervals are larger and therefore overlap more. The number
of outliers thus increases with an increasing size and number of sensor intervals, which
results in a greater improvement. It is also important to note that sensors which lie near
to an interval boundary profit most from the outlier detection because the probability of
an outlier is higher in these locations than in a homogenous region.
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Fig. 6. Outlier and average improvement depending on the number of sensor intervals with 10
Beacons and 20 sensor nodes

Figure 6 shows this relationship. With an increasing number of outliers, the mean
improvement V also increases with an increasing number of sensor intervals. For this
case a sensor interval with three sub-regions of size 49 was created. In a second step
a further similar sensor interval was introduced and subsequently a third, whereby the
previous intervals were retained with a constant configuration. Furthermore, 10 Bea-
cons, 20 nodes and σd = 1.0 were used, which indicates that with increasing distance
errors both curves would show an increased slope.
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5.4 Comparison of Mean Improvement and First Improvement

Due to the various possibilities for determining a final estimated position, experiments
were made which should favor each method. For this a field with three sensor intervals
of size 49 with 10 Beacons and 20 nodes was used to compare the mean improvement
V with the first improvement Vf . The mean values from the 20 nodes were used to
reduce the weight of the variation. The standard deviation of the distances was again
varied between 1.0 and 10.0.
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Fig. 7. Comparison of the average improvement and the first improvement depending on the
standard deviation σd

It is clear from figure 7 that the first improvement demonstrates a significantly lower
increase in precision in comparison with the mean improvement. This is partly due
to the fact that significantly fewer trilaterations are considered, but also because only
a few nodes show any first improvement because they are not near the boundary of
an interval and therefore have few or no outliers. The trends are also in this case not
necessarily linear and are emphasized using regression lines. The mean improvement is
demonstrated here to deliver significantly better results and is therefore the method of
choice, although the increased computational expense must also be considered.

6 Conclusion

This paper presented a new approach to improve the precision of localization algorithms
in sensor networks which were previously too inexact or calculation-intensive for use.
The spatial correlation of the measured sensor values is used for this. The principle used
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is that sensor observations vary within defined boundaries depending on their location.
We have presented a way to use this information by defining sensor intervals. These may
be used after localization by trilateration to test the reliability of the resulting estimated
positions by comparing the observed values with the sensor intervals. This method was
presented as the ACL algorithm together with investigations as to its effectiveness.

Simulations showed that the use of the ACL algorithm can improve the mean error
of the localization using trilateration by up to 30% when the measured distances have a
standard deviation of 10%. With a 5% standard deviation the improvement is ca. 12%.
These results were obtained using three known sensor intervals, which coverered around
one third of the measurement field. With further prerequisites the localization could
be further improved. Only with very small distance errors with a standard deviation
of under 1% is the use of the algorithm not appropriate as in this range an increased
localization error was determined.

In conclusion, it has been shown that using the sensor measurement data for localiza-
tion is a sensible approach, particularly as these data are already available. A significant
improvement is possible with minimal additional complexity of calculation on the sen-
sor nodes. The concrete use is however very dependent on how accurate the available
measurements are and how many prerequisites can be determined. An advantage of this
method is that no additional errors are produced since it effectively involves no more
than a filtering of the input values. This can have negative consequences in isolated
cases, but from an overall standpoint leads to a more precise result. A further advan-
tage of the model presented here is the possibility to formulate arbitrarily complex
prerequisites.

The ACL algorithm can be considered as an efficient additional method for localiza-
tion. Even with relatively few preconditions it is possible to improve the localization
or to verify the positions. In particular in combination with approximate algorithms it
is possible to obtain good results, but also with exact positioning where large distance
errors are present then the ACL is of benefit.

7 Future Work

The idea presented here is by no means optimally applied. It is necessary to find a bet-
ter mathematical model on which the ACL algorithm may operate. Currently a simple
comparison of measured values with sensor values is made. This is computationally
easy, but the spatial information can only be very coarsely exploited. A model such as
convex optimization should be considered instead.

Furthermore, the definition of sensor intervals is still very static and inflexible. This
could also lead to problems at run-time as the sensor intervals may vary over time.
To continue the example of light intensity sensors, the intervals may vary strongly be-
tween day and night or summer and winter. To solve this problem an automatic interval
generation may be used, which may be possible with e.g. an evolutionary algorithm or
simmulated annealing.

Ultimately the additional information are used purely as a means of detecting outliers
in the trilateration. The aim is to combine further localization algorithms with this in-
formation to obtain an increased precision and to possibly weight the defective distance
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measurements and error prone sensor data. It is conceivable that the briefly introduced
WCL algorithm may be thus made more precise. This is however primarily reliant on
the effectiveness of new mathematical models.
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Abstract. Current applications for wayfinding and navigation assis-
tance usually calculate the route to a destination based on the shortest or
fastest path from the origin. However, numerous findings in cognitive sci-
ence show that the ease of use and communication of route instructions
depends on factors other than just the length of a route, such as the
number and complexity of decision points. Building on previous work
to improve the automatic generation of route instructions, this paper
presents an algorithm for finding routes associated with the “simplest”
instructions, taking into account fundamental principles of human direc-
tion giving, namely decision point complexity, references to landmarks,
and spatial chunking. The algorithm presented can be computed in the
same order of time complexity as Dijkstra’s shortest path algorithm,
O(n2). Empirical evaluation demonstrates that the algorithm’s perfor-
mance is comparable to previous work on “simplest paths,” with an
average increase of path length of about 10% compared to the shortest
path. However, the instructions generated are on average 50% shorter
than those for shortest or simplest paths. The conclusions argue that the
compactness of the descriptions, in combination with the incorporation
of the basic cognitive principles of chunking and landmarks, provides
evidence that these instructions are easier to understand.

1 Introduction

Automated wayfinding assistance is an increasingly popular and economically
important application area for geographic information science. Systems for au-
tomated wayfinding assistance employ computationally efficient algorithms for
calculating the shortest or fastest route to a destination, but typically do not
account for human principles of direction giving, and ignore how humans con-
ceptualize their environment. The instructions generated, while generally usable,
seem artificial and often make it hard to form survey knowledge about imminent
wayfinding decisions, i.e., to prepare for what is coming up.

In recent years several approaches have emerged that cover (at least part
of) the generation of route instructions that respect for human principles of
wayfinding and direction giving [1,2,3,4]. However, these approaches usually aim

T.J. Cova et al. (Eds.): GIScience 2008, LNCS 5266, pp. 274–289, 2008.
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at improving the presentation of route instructions for a previously calculated
route. This paper presents a new algorithm that addresses the problem of finding
the best route with respect to the simplicity of route instructions.

Given a geographic network, our algorithm as explained in this paper finds
the route between a source and destination that is the “simplest” to describe, in
terms of the complexity of its associated routing instructions. Building on fun-
damental principles of human direction giving, the route instructions generated
are expected to be easier for a human wayfinder to remember, communicate, and
use. The underlying algorithm is based on the widely-known Dijkstra’s short-
est path algorithm [5]. As will be demonstrated in the paper, the extensions
made to Dijkstra’s algorithm do not increase computational complexity. Thus,
the primary contribution of this paper is an efficient algorithm for generating
cognitively ergonomic route instructions.

The next section presents related work on automatic generation of cognitively
ergonomic route instructions, in particular simplest paths and context-specific
route instructions. Section 3 introduces the algorithm that allows for finding the
best route instructions to guide a wayfinder from origin to destination, includ-
ing a discussion of the computational and cognitive properties of the algorithm.
Section 4 then presents the results of an empirical evaluation of the algorithm,
looking at the length of the paths and the instruction sequences generated. Sec-
tion 5 concludes the paper with a discussion of the paper’s contribution and an
outlook on future work.

2 Generating Route Directions

This paper deals with determining a route between two points in a network
space. Efficient algorithms exist for this task, primarily Dijkstra’s shortest path
algorithm [5]. Shortest path algorithms apply a cost function that is somehow
related to the network’s structure in its embedding geographical reference frame
(e.g., distance between vertices, speed of movement, or direction of travel). How-
ever, shortest path algorithms neither account for human conceptualization of
space nor for principles of human direction giving.

Human route instructions reflect the instruction-giver’s knowledge about an
environment. When asked to provide instructions, humans activate the spatial
knowledge of the route to be described, identify the relevant information, struc-
ture this information, and communicate it to the requester [6,7]. The literature
specifically includes two important principles that are employed when providing
instructions: 1) references to landmarks and 2) combining multiple consecutive
decision points into a single instruction, termed spatial chunking by Klippel et
al. [8]. Landmarks are important for acquiring and organizing knowledge about
our surrounding space [9,10]. In route instructions, they are frequently referred
to; landmarks may signal crucial actions, locate other landmarks in relation
to the referenced landmark, or confirm that the right track is still being fol-
lowed [7,11]. Often, humans subsume instructions for several decision points
into a single ‘chunked’ one. For example, “turn right at the third intersection”



276 K.-F. Richter and M. Duckham

corresponds to going straight at the next two decision points and then turning
right at the third one.

A range of existing research has addressed the automatic generation of route
instructions that account for human principles of direction giving. Some of this
work only covers parts of the generation process, such as the identification [12,13]
or integration [14,15] of landmarks. Others focus on generating instructions that
mimic the way humans present such information [1,3], or that adapt to human
conceptualization of wayfinding situations [4].

In the following, two approaches are presented in more detail that form the
basis for the new algorithm proposed in this paper. The first approach is that
of simplest paths [16], which aims to find a route that is easy to follow, by
minimizing the number and complexity of decision points. The second approach
is that of context-specific route instructions [17], which aims to generate route
instructions for a given route that are easy to conceptualize and to remember.

2.1 Simplest Paths

Duckham and Kulik [16] extend standard shortest path search by a heuristic that
associates a cost with each pair of connected edges (rather than each edge as in
classic shortest path approaches). This cost reflects the complexity of negotiating
the “decision point” represented by the two adjacent edges (e.g., turning from
one edge onto another — see Figure 1). The specific weighting used is based on
an adaptation of earlier work by Mark [18], who classifies different types of in-
tersections according to the complexity of describing the action to be performed
there. Duckham and Kulik, accordingly, term their algorithm simplest path al-
gorithm. In a simulation experiment, they show that their algorithm generally
results in paths that are only slightly longer than the shortest path.

While the costs employed account for structural differences of intersections,
they do not account for functional aspects, for example, (possible) ambiguity in
the direction to take at an intersection, nor landmarks or other environmental
characteristics that might be exploited in instructions. In summary, like shortest
paths, the simplest path finds the cheapest route according to a cost function.
Unlike shortest paths, the cost function used applies to the complexity of navi-
gation decisions rather than travel distance or time.

2.2 Context-Specific Route Directions

Context-specific route directions account for environmental characteristics and
a route’s properties; they adapt to the action to be taken in the current sur-
rounding environment. Such instructions are termed “context-specific” because
of the explicit adaptation to the structure and function in wayfinding [17]. A
computational process, called Guard (Generation of Unambiguous, Adapted
Route Directions), has been developed by Richter [19] for generating context-
specific route instructions. Guard unambiguously describes a specific route to
the destination, with instructions adapted to environmental characteristics. The
route that is described has been previously selected outside of Guard. Figure 2
provides an overview of the generation process.
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straight on 1 slot

turn (not at intersection) 4 slots

turn left or right at T-intersection 6 slots

turn left or right at intersection 5 + deg(v) slots

Fig. 1. Weighting (slot values) of different intersection types; from [16] (modified).
deg(v) denotes the degree of an intersection, i.e. the number of branches meeting at
this intersection

Guard works on a geographic network. This graph is annotated with infor-
mation on landmarks, for example, their location and shape. The generation of
context-specific route instructions is a three-step process. In the first step, for
every decision point of the route, all instructions that unambiguously describe
the route segment to be taken are generated, resulting in a set of possible instruc-
tions for each decision point. Guard accounts for different types of landmarks
in generating instructions whose role in the route instructions depends on their
location relative to the route [15,19].

Next, Guard performs spatial chunking. Guard is flexible with respect to
the principles used in these steps. For example, it allows integrating the chunking
principles presented by Klippel et al. [8] or Dale et al. [3]. Finally, in the third
step of Guard, the actual context-specific route directions are generated. Here,
from all possible instructions, those that best describe the route are selected.
As this is realized as an optimization process, “best” depends on the chosen
optimization criterion. Just as with the chunking principles, Guard is flexible
with respect to the criterion used. Optimization results in a sequence of chunks
that cover the complete route from origin to destination. Due to the aggregation
of instructions performed in chunking, instructions for some decision points will
be represented implicitly, thus reducing the communicated information.

In summary, the approach to context-specific route directions finds the best
instruction sequence according to the optimization criterion, but for a previously
given route.
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Syntactic Chunking

Postprocessing Chunks

Extracting Instructions

Optimization

Context-Specific Route Directions

Calculating Route

Fig. 2. Overview of Guard, the generation process for context-specific route directions

3 Simplest Instructions Algorithm

In this section, the “simplest instructions” (SI) algorithm will be introduced.
The algorithm combines the reasoning behind both simplest paths and context-
specific route directions. Like simplest paths, the algorithm finds the best route,
i.e., the route associated with the lowest cost in terms of instruction complexity.
In that, the SI algorithm generates the best instructions for a route according
to optimization criteria related to human direction giving, which are like those
used in Guard.

3.1 The Algorithm

The SI algorithm is based on Dijkstra’s shortest path algorithm. Like Dijkstra’s
algorithm, the SI algorithm operates on a network represented as a graph G =
(V, E) comprising a set of vertices V and edges E connecting vertices, E ⊆ V ×V .
Dijkstra’s algorithm determines for each vertex in a graph the shortest path from
a given start vertex (origin). It uses a cost function that determines the cost of
traversing an edge. These costs are represented as the edges’ labels. Starting
from the origin, at each step the edge with the lowest costs is selected, which
is then marked as visited. The costs for reaching all unvisited edges adjacent to
the current vertex are then updated, i.e., it is checked whether the newly found
path from origin to these edges is cheaper than the previously known one.

The SI algorithm, given in Algorithm 1 and explained in more detail below,
differs from Dijkstra’s algorithm in three key respects, considered in more detail
in the following subsections:
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1. the algorithm models the instructions required to describe a route, including
the possibility of using landmarks in those instructions (section 3.2);

2. the cost function is associated with pairs of edges, rather than individual
edges, to represent the cognitive cost of negotiating a decision point (section
3.2); and

3. the algorithm accounts for chunking of instructions, combining multiple in-
structions into one low cost (i.e., cognitively efficient) instruction (section 3.3).

3.2 Instructions and Costs

The complete line graph (or evaluation mapping) is the graph G′ = (E′, E). E′

is the set of edges in G, where the direction of edges is ignored (i.e., (vi, vj) =
(vj , vi) in E′). E is the set of pairs of vertices in E that share their “middle”
vertex, i.e., E = {((vi, vj), (vj , vk)) ∈ E ×E} [20,16]. We refer to the elements of
E as decisions. In other words, a pair of adjacent edges in E represents a decision
an agent can take to move from one edge to the next.

The algorithm models the instructions required to describe a route as a set
I of (arbitrary) labels. Instructions are associated with pairs of adjacent edges
(“decisions”), describing a decision to move from one edge to another (e.g.,
“turn left at the intersection”). Instructions may include references to landmarks
(e.g., “turn left at the post office”). Each pair of adjacent edges may have zero
or more instructions associated with it (e.g., the instructions “turn left at the
intersection” and “turn left at the post office” might both encode the same
decision at a particular decision point). Each instruction may be associated with
zero or more pairs of adjacent edges (e.g., “turn left at the intersection” might be
a valid instruction for describing decisions at several different decision points).
However, we assume no ambiguity in instructions, and disallow the possibility
that the same instruction might be used to encode different decisions from the
same edge (e.g., where “turn left at the intersection” can be used to describe
more than one decision at a particular edge).

Formally, for the set of instructions I, the labeling function l is defined to be l :
E → I2. Thus, for a given pair of adjacent edges (e, e′), l(e, e′) = {i1, .., in} gives
the (possibly empty) set of instructions that describe that decision. Conversely,
the decision function is defined to be d : E × I → E ∪ {∅}. For a given edge
e and instruction i, d(e, i) = e′ gives the edge e′ that results from executing the
decision i at edge e. Note that e′ may be the empty set (indicating that it is
not possible to execute the decision i at edge e). Further note that since d is
functional, we disallow ambiguity: there will be at most one edge e′ ∈ E that
results from applying an instruction at edge e.

Each instruction has a cost associated with it using the function w : I → R
+

that models the cognitive effort associated with executing an instruction. Thus
for a given instruction i, w(i) yields the cognitive cost of executing instruction
i. Potentially any cost function may be used, but in this empirical evaluation
of the algorithm that follows we adopt the same cost function as previous work
[17,19]. The SI algorithm minimizes the costs associated with traversing pairs of
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edges rather than individual edges (cf. [16]). In this way, the SI algorithm aims to
minimize the cognitive cost of negotiating the decision points in a route, instead
of minimizing the costs associated with travel (like distance or travel time).

3.3 Chunking

Spatial chunking is realized in the SI algorithm by spreading instructions forward
through the graph from the edge currently being processed. Humans do not
generate instructions with arbitrarily long chunks, so spreading instructions also
needs to account for the cognitive and structural characteristics of the emerging
chunks. This is implemented in a way that the approach is flexible with respect to
the superordinate chunking principles used (Guard allows for similar flexibility
in its chunking step). Considering, for instance, the principles discussed in [4]
and [17], a chunk cannot be arbitrarily long unless a structural feature, such as
a landmark, unambiguously marks its end.

For each pair of edges (e, e′) we allow for a set of possible instructions. Allow-
ing for multiple instructions for an edge corresponds to having a set of possible
instructions to describe how to reach the next decision point from the current
one. It is important to note that these multiple instructions do not correspond
to having multiple edges between two vertices. Each instruction may have dif-
ferent costs associated with it and selection of an edge is determined by the
instruction with the lowest costs. In the SI algorithm a vertex that has once
been selected as the one with the lowest costs is never visited again in the
search for the optimal path. If each instruction corresponded to an edge, then
after selecting the one with the lowest costs all other edges connecting the two
vertices would be unreachable. However, as discussed below, this would render
transferring spatial chunking to the path-search algorithm impossible. That is,
since a global selection criterion—spatial chunking—is introduced, the local se-
lection criterion—choosing the next edge based on a instruction’s costs—needs
to account for more than one possibility to traverse this edge.

In terms of spreading instructions through the graph, a distinction needs to
be drawn between an edge being reachable and being chunkable. An edge et is
reachable from edge es with an instruction i if there exists a path from es to
et that can be encoded as sequence of executions of instruction i. An edge et is
chunkable from es with an instruction i if the sequence of i instructions required
to reach et from es is also valid according to the employed superordinate chunking
rules. As chunkable edges can be covered with a single instruction, the costs for
all edges in a chunk are the same, namely those for reaching the first edge of a
chunk using the chunked instruction.

An instruction needs to be spread forward as long as there are edges reach-
able with it. However, a cost update is only performed for those edges that are
chunkable. This way of realizing spatial chunking can be viewed as dynamically
introducing new edges to the graph that connect first and last vertex of a chunk.
Figure 3 illustrates how instructions spread across neighboring edges and the dis-
tinction between reachable and chunkable edges. This cost updating is the reason
why all instructions need to be considered when selecting the edge with the lowest
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Fig. 3. Spreading instructions: a) If the instructions for reaching consecutive edges
match, a vertex is reachable, denoted by r. If this combination also adheres to the
superordinate chunking principles, a vertex is chunkable, denoted by c; the edges are
labeled with their associated instruction sets (e.g., {k,m}); b) Chunkable vertices can
be reached in a single step. This corresponds to dynamically introducing new edges
between the first vertex of the chunk (denoted by s) and the chunkable one; reaching
these vertices has the same costs as reaching the chunk’s first edge (denoted by the
different ws).

costs. Globally, it might be less expensive to select an instruction that is locally
more expensive if this instruction allows to cover more edges in the final path.

Formally, to implement this behavior in our algorithm we assume a chunk
validity function v : E × E × I → {true, false}. For a given start edge es ∈ E,
terminator edge et ∈ E, and instruction i ∈ I, v(es, et, i) = true only if et is
chunkable from es using instruction i. We do not provide any further details of
the actual procedure used to check chunk validity in this paper, since this issue
is already covered in great detail in [4] and [17].

3.4 Algorithm Description

The SI algorithm is presented in Algorithm 1. In addition to the structures
introduced above (the graph G, the complete line graph of G, the instruction set
I, the labeling function l, the decision function d, the chunk validity function v)
the algorithm requires an origin (starting) edge o as input.

The algorithm generates a predecessor function, p : E → E × I, that stores
for each edge the preceding edge in the least cost path and the instruction
used to reach the edge from its predecessor. If several edges are chunkable by
an instruction, this predecessor is the first edge of the chunk (see Figure 3).
Accordingly, when the algorithm visits an edge e, it needs to be checked for
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Algorithm 1. Simplest instruction algorithm with multiple instructions
and postponed chunking

Data: G = (V, E) is a connected, simple, directed graph; G′ = (E′, E) is the
complete line graph of G; o ∈ E is the origin (starting) edge; I is a set of
instructions; w : I → R

+ is the instruction weighting function; l : E → I2

is the labeling function; d : E × I → E ∪ {∅} is the decision function;
v : E × E × I → {true, false} is the chunk validity function.

Result: Function p : E → E × I that stores for each edge the preceding edge
and the instruction used in the least cost path.

// Initialize values;1

forall e ∈ E do2

Initialize c : E → R
+ such that c(e)←∞;3

Initialize Ue ← ∅;4

Set S ← {}, a set of visited edges;5

Set p(o)← (o, i) for some arbitrary i ∈ I ;6

Set c(o) = 0;7

// Process lowest cost edge until all edges are visited

while |E\S| > 0 do8

Find e ∈ E\S such that c(e) is minimized;9

Add e to S;10

forall e′ ∈ E\S such that (e, e′) ∈ E do11

// Update instruction/edge pairs from e to e′

forall i ∈ l(e, e′) do12

Ue′ ← Ue′ ∪ {(i, e)};13

forall e′ ∈ E\S such that (e, e′) ∈ E do14

// Update costs to e′ based on instruction weights

forall i ∈ I such that d(i, e) = e′ do15

if c(e′) > c(e) + w(i) then16

Set c(e′)← c(e) + w(i);17

Set p(e′)← (e, i);18

// Perform chunking by propagating instructions forward

forall (i, ep) ∈ Ue do19

Set ex ← e′;20

Set X ← S ∪ {∅};21

while ex �∈ X do22

X ← X ∪ {ex};23

Set en ← d(ex, i);24

if en �= ∅ then25

Uen ← Uen ∪ {(i, ep)};26

if c(en) > c(e′) and v(ep, en, i) = true then27

Set c(en)← c(e′);28

Set p(en)← (ep, i);29

ex ← en;30
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every instruction holding for (e, e′) whether it lowers the costs associated with
e′, and whether it can be used to reach other edges from e′ as well (Algorithm
1, lines 1–1). Chunking (i.e., the updating of weights to edges other than those
directly connected to the current edge) can be postponed until after the edge
weights have been updated (Algorithm 1, lines 1–1). In order to keep track of
which instructions need to be further considered at an edge, all instructions the
edge has been reached by so far need to be stored, along with the edge the
current edge has been reached on (for correctly setting predecessors). Formally,
for each edge, the algorithm also stores a set Ue of instruction/edge pairs (i, e),
initialized in line 1.

Next, the algorithm updates the weights associated with the unvisited edges
that are incident with the current edge e (Algorithm 1, lines 1–1). This step
is as used in the simplest path algorithm [16], and is essentially the same core
condition used in Dijkstra’s algorithm operated upon the complete line graph.

Finally, Algorithm 1, lines 1–1 performs chunking by propagating instructions
forward from the current edge as far as is possible. As already discussed, all
edges that are reachable store information about the instruction being forward
propagated (line 1), but only those edges for which the resulting instruction
would be a valid chunk have their weights updated (lines 1–1).

3.5 Computational Time Complexity Analysis

The computational time complexity of finding the lowest cost path through the
graph is O(|E|2), because in the worst case for each edge visited the algorithm
must update the costs of every other edge. Similarly, the computational cost
of spreading the selected instruction through the graph is O(|E|2), because it
requires visiting each edge in turn and in the worst case, spreading instructions to
every other edge in the graph. Thus the overall time complexity of the algorithm
is O(|E|2 + |E|2) = O(|E|2). Compared to Dijkstra’s shortest path algorithm,
which is O(|V |2), in a totally connected graph with |E| = |V |2 edges, this results
in an overall time complexity of O(|V |4).

However, as argued in [16], geographic routing problems never deal with to-
tally connected graphs. If instead a planar graph is assumed, then by Euler’s
formula (simple connected planar graph has n vertices - m edges + f faces = 2)
the number of edges is linear in the number of nodes, |E| ≤ 3(|V |−2). Thus, the
overall time complexity for the SI algorithm applied to a planar graph is O(|V |2).
This is the same as the complexity of Dijkstra’s algorithm, so we conclude the SI
algorithm does not increase the computational time complexity compared with
the simplest path or shortest path algorithms, at least for planar graphs.

3.6 Reconstructing Routes

Algorithm 1 generates a predecessor function p : E → E × I that stores for each
edge the preceding edge in the least cost path and the instruction used to reach
the edge from its predecessor. Reconstructing a path to a particular destination
edge t is then simply a matter of backtracking from t using p, at each step storing
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Algorithm 2. Algorithm for reconstructing the simplest instruction path
Data: G = (V, E) is a connected, simple, directed graph; o ∈ E is the origin

(starting) edge; t ∈ E is the target (destination) edge;
d : E × I → E ∪ {∅} is the decision function; p : E → E × I is the
predecessor function (generated by algorithm 1).

Result: A sequence (word) P of edges corresponding to the optimal path and a
sequence (word) L of labels corresponding to the best sequence of
instructions.

Set P to be the empty word λ;1

Set L to be the empty word λ;2

Set T to be the empty word λ;3

Set e← t;4

while e �= o do5

Let p(e) = (ep, i);6

Set L← i + L;7

Set e′ ← ep;8

Set T ← e′;9

while (e′, e) �∈ E do10

e′′ ← d(e′, i);11

Set T ← T + e′′;12

Set e′ ← e′′;13

Set P ← T + P ;14

Set e← ep;15

the predecessor edge and instruction in a list. Algorithm 2 gives an example of
reconstructing routes using p (using an algebraic language notation, where E and
I form alphabets, and the lists of edges and instructions in the route are stored
as sequences P and L of letters—words—from those alphabets, constructed by
iteratively prepending letters to the initially empty word with the concatenate
+ operator). In Algorithm 2, retrieval of the instruction word L simply requires
direct backtracking through the predecessor list (line 2). Construction of the edge
list word P requires an additional loop to retrieve the edges between chunked
instructions (lines 2–2).

4 Comparisons

As we have demonstrated in the last section, the SI algorithm is able to in-
corporate fundamental principles of human direction giving without increasing
the overall computational complexity of the route generation algorithm. In ad-
dition to computational complexity, other measures of the performance of the
SI algorithm are the length of paths the algorithm generates, and the number
of instructions required to describe the route.

The length of the path described by the simplest instructions is necessarily
equal to or longer than the shortest path. Thus, the length of the simplest
instruction path, when compared with the shortest path, provides a measure of
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Fig. 4. The test area: part of Melbourne, Australia

the detour a wayfinder would need to take when using the simplest instruction
path. Conversely, the length of instructions generated by the SI algorithm is
expected to be shorter that those generated by the shortest path (assuming one
instruction per decision point).

To analyze these aspects, the lengths of paths and instruction sequences pro-
duced by the SI algorithm are compared with those produced by Dijkstra’s
shortest path as well as the simplest path algorithm. Thus, these results aim to
provide an indication of the balance struck by the different algorithms between
the desire for direct (short) routes and simple (short) route instructions.

4.1 Data

The algorithm’s performance was tested using several different geographic data
sets. The results in this section were derived from a transportation network data
set representing part of the inner city (CBD) and surrounding districts of Mel-
bourne, Australia (see Figure 4). The transportation network was augmented
with objects representing landmarks. The landmark objects in this case were
derived from the railway infrastructure in the area (essentially they are train
stations). Clearly, railway infrastructre will not always be appropriate for hu-
man wayfinding, but provides an adequate simplification in the context of the
following experiments.

4.2 Results of Experiments on Path Length

All three algorithms—shortest path, simplest path, simplest instructions—were
used to calculate paths between randomly chosen origins and destinations in
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Fig. 5. Shortest path (the thick black line), simplest path (the gray line), and SI path
(the dark gray line with dashed border) for a sample origin / destination pair

the network. For each origin/destination pair, each algorithm calculated a path.
For each of 53,000 different origin/destination pairs tested, the resulting paths
from each algorithm were compared in terms of path length and the number of
associated instructions required to describe the path (in simplest and shortest
paths, the number of decision points; in simplest instructions the number of
chunked instructions). Figure 5 depicts typical differences in shortest, simplest,
and simplest instruction paths between two points.

On average, paths determined with the SI algorithm were 13.31% longer than
the shortest path between origin and destination. Using simplest paths, there
was an increase in length of 12.52% (a result comparable to [16], which found
lengths of simplest paths that on average were 15.8% longer than the corre-
sponding shortest path). The average path length of simplest paths and simplest
instructions were almost equal (3,645.82m to 3,671.49m, standard deviation of
1,821.49m and 1,840.99m, respectively).

A t-test was conducted to test the hypothesis that the simplest instruction
paths are longer than the simplest paths. The test showed that the differences
in length were significant at the 1% level, so we conclude that the SI algorithm
does generate paths that are longer than the simplest path. However, while the
differences were significant, a test for effect size results in very small differences,
0.06. This value indicates that the actual differences in length between simplest
paths and simplest instruction paths are very small; the average increase in
length for paths generated by the SI algorithm is 25.67m.

With respect to the shortest paths, the simplest instruction paths were again
significantly longer than the corresponding shortest path, as expected. In more
detail, from all 53,000 paths, 40,232 SI paths were less than 15% longer than
the corresponding shortest (with 6829 paths being equally long to the shortest
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path); 3481 were more than 25% longer than the shortest path; only for 54 paths
was this increase more than 50%. In summary, for only 6.7% of all cases were
the simplest instruction paths more than 25% longer than the shortest path; in
75.9% of all cases the simplest instructions paths were less than 15% longer than
the shortest path.

4.3 Results of Experiments on Instruction Length

The algorithm for simplest instructions significantly reduces the number of in-
structions needed to descibe the routes generated. Assuming an instruction is
required for every decision point in shortest and simplest paths, the number
of instructions required to describe the simplest instruction paths was on aver-
age average 57.93% less than required for shortest paths, and 55.37% less than
required for simplest paths. A Wilcoxon signed-rank test confirms that this dif-
ference is statistically significant at the 1% level. This result is comparable to
previous evaluations done with Guard and illustrates the strengths of spatial
chunking even when employed on data sparsely annotated with landmarks. The
result also highlights that while simplest paths can help to minimize the cognitive
complexity of individual instructions used in the route, they do not necessarily
provide savings in terms of the global number of instructions required to describe
the route. By contrast, the paths generated by the SI algorithm do dramatically
reduce the overall length of route instructions.

One final test was to compare the length of the instructions generated by
the SI algorithm with the length of instructions generated using Guard applied
to the corresponding shortest path. As expected, in all cases the length of the
instructions generated by the SI algorithm was equal to or less than the cor-
responding chunked instructions generated by Guard applied to the shortest
path. We used the same Wilcoxon-test as before to test the difference for stastit-
ical significance. It shows that there is a significant advantage in using the SI
algorithm over simply applying Guard to the shortest paths.

5 Conclusions

We have presented the simplest instructions (SI) algorithm, which is based on
Dijkstra’s shortest path algorithm. The SI algorithm integrates fundamental
principles of human direction giving, namely references to landmarks and spa-
tial chunking, in finding a route between an origin and a destination. Multiple
labels attached to an edge capture several options to describe which action to
perform for reaching the next decision point. Generation of these labels is based
on Guard, a process for producing cognitively ergonomic route instructions.
Spatial chunking, i.e., the subsumption of several consecutive instructions to a
single one, is realized by spreading labels forward through the graph and dy-
namically introducing new edges. The SI algorithm computes paths in the same
order of time complexity as the generalized Dijkstra algorithm, O(n2).

An empirical evaluation, comparing the path lengths produced by the SI algo-
rithm with the corresponding shortest and simplest paths, has shown promising
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results. On average, the SI paths are about 13% longer than the shortest path,
which is in the same range as the increase in length introduced by simplest paths.
The length of instructions, however, is decreased by 57%, i.e., on average slightly
more than two consecutive instructions can be chunked into a single one, reduc-
ing the amount of information that needs to be communicated by more than
half. Thus, with only a slight increase in path length, the SI algorithm produces
instructions that can be expected to be significantly easier to follow.

For a small number of paths, however, there is a considerable increase in path
length. To counter these cases, the algorithm may be adapted to balance the
increase in path length and the ease of instructions (see also [21]). Here, human
subject studies are called for to elicit sensible parameters. Furthermore, as spatial
chunking relies to a good part on the presence of landmarks, a more detailed
analysis of the relationship between the density of landmarks on one hand, and
path length and chunking ratio on the other hand will reveal a more detailed
picture of the algorithm’s performance and may point out refined methods in
choosing labels and applying chunking. Also, an analysis of how an environment’s
structure influences the resulting paths may allow identifying strategies on how
instructions may be automatically adapted to different environmental situations.
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Abstract. Road networks, roads, and junctions are examples of natural lan-
guage terms whose semantics can be described by affordances of their physical 
referents. In order to define affordances in such a way that they can be used for 
classifying and describing instances in a geographic database, one has to deal 
with the problems of informational incompleteness and limited definability. In 
this paper, we propose an affordance-based theory of channel networks, based 
on the work of Hayes [4], as a means to derive necessary conditions for data-
base representations of road networks. By exploring this example, we show that 
affordance-based logical definitions are a convenient method to capture essen-
tial properties of physical objects usually not present in their database represen-
tation, but appropriate to explain and define its structure.  

Keywords: Ontology, Road network, Affordance-based theory, Naïve physics. 

1   Physical Object Notions and Geographic Databases 

Affordance-based logical theories were inspired by Gibson’s work [2] and have been 
used as a means for semantic analyses [7][8][12]. But can they also be used to classify 
representations of physical objects in a geographic database into affordance-based 
categories? For example, can an affordance-based specification of a certain kind of 
intersection be used to classify features in a road database? If the answer is positive, this 
provides an approach to semantically annotate the contents of databases and services. 

We assume that a formal definition of a natural language term in a logical theory 
specifies a human category denoted by this term. Since each feature is an instance of a 
certain data type (a.k.a. feature type), we can focus on the evaluation of a data model 
with respect to category definitions. There are two major challenges in this approach: 

Limited Definability. Attempts to formally define terms of a natural or technical 
language face the "human knowledge soup" [11], so they suffer from 
overgeneralizations, abnormal conditions, unanticipated applications, and incomplete 
definitions. This usually means that (1) existing instances of a category are overlooked 
("birds fly", but what about penguins?) and (2) non-instances are included ("birds fly", 
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is then a bat also a bird?). Although this problem is generally unsolvable, it does not 
mean that incomplete definitions are useless. Ontologies are in fact meant to be partial 
specifications of conceptualizations [3]. Furthermore, as Hayes [5] has pointed out, a 
logical theory aiming to describe the physical world can be at most experimentally 
complete (see Israel [6]) or conceptually closed, so that everything that should be said 
can be said, and it is always doomed to include "ghostly" unintended models in its 
universe of meaning. One can handle this problem by tying the meaning of the theory’s 
tokens to observational systems [5]. In our case we try to tie a physical theory to a data 
model, but this poses another severe problem. 

Informational Incompleteness. Essential properties of the theory are not explicitly 
represented or excluded in the data model. Think about a computer application that 
has to figure out where to "go and get a coffee" by using a geometric data model of all 
objects in a room. One must deal with the difficulty of how to interpret a theory in an 
incomplete data model, because essential aspects of the task, like for example the 
information about the location of liquids in a room, are not present in it. This diffi-
culty could be solved if the intelligent agent knew that liquids can be contained in a 
cup and if it could identify a cup. Therefore a solution to this problem can be appro-
priate knowledge representation [4]. For this we suggest the usage of an affordance-
based theory, which allows to partially infer the missing types and their properties. 

In this paper, we develop a conceptually closed theory of movements and supports 
in which it is possible to define the category road network by describing what actions 
its members must afford. From this definition it is then possible to infer and explain 
necessary structural properties of any road network data model. Our work presents a 
method for defining arbitrary categories of a road network database by explaining its 
structural properties using a specialized affordance theory. We intend to address more 
sophisticated examples like "road" and "junction" explicitly in the near future. As 
current data model standards for transportation networks, like ISO GDF, are rather 
informal descriptions, we furthermore see this work as a contribution to a formal 
domain ontology. 

In the next section, we sketch our approach. In section 3, we introduce a common 
graph theoretic data model for navigational road network data. In section 4.1, we 
introduce the abstract concept of a history, which is the basic thing to exist in a physi-
cal world that has to cope with movements. A purposefully developed ontology of 
channels is introduced in section 4.2. In section 5, we introduce an affordance-based 
notion of a channel network and partially interpret the network theory in the graph 
data model. 

2   Methodological Sketch 

Affordances say something about the kinds of physical actions that are possible in an 
environment. But affordances also say something about certain static aspects of the 
environment, which we call structure. Physical actions and structures are thought to 
be mutually dependent.  

For our purpose, we need an affordance-based logical theory consisting of basic 
and derived types, each of which denotes a set of objects in the theory’s universe, and  
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Fig. 1. A half-pipe in a skateboard world is an example of an affordance category 

some axioms and definitions that give meaning to them. We suppose there are two 
non-functional kinds of types structure and action. For our affordance-based theory to 
be useful, it should logically restrict the joint appearance of structures and actions in 
the conceptual affordance relation, such that if we restrict the structure part of the 
theory, the action part is restricted as a consequence, and vice versa.  For example, if 
our physical universe of traffic had only rollerblades and skateboards as conveyances, 
then the whole accessible world’s infrastructure would be restricted to 2 1/2 dimen-
sional solid objects with smooth surfaces.  

Our task now is to define a category as a structure subtype in terms of the com-
monsense knowledge that comes with it, and then to interpret this definition in a data 
model. For example, in our skateboard world, we would like to define a "half-pipe" 
(compare FIGURE 1) in order to search for "half-pipe candidate" objects. We sup-
pose that affordance-based theories are especially well suited for this purpose, be-
cause on the one hand, the type of afforded action is usually what we know a-priori 
about such a category, so it comes close to our commonsense knowledge about it. As 
a skateboarder, we perfectly know that a half-pipe is a thing that allows us to attain 
extreme speeds by an action called "pumping". On the other hand, we can assume 
that every member of such a category must afford this type of action, and therefore 
we have a convenient means of finding necessary conditions for an object to be in that 
category. So we can safely call every object that affords pumping actions a half-pipe. 
The most important aspect is nevertheless that the affordance-based theory allows us 
to infer what is usually not known a-priori for the category, which are the structural 
properties of the object that exist due to its afforded action. If we search for a half-
pipe in our skateboard world, we may infer that everything which is similar to a cer-
tain upward concavity could be one. It is therefore possible to close the informational 
gap between incomplete knowledge about afforded actions and an incomplete data 
model of the affordance structure. 

An affordance-based theory allows defining a physical object in affordance terms, 
that is defining its structural properties with the help of its afforded actions. These 
properties are expressed by the set of theorems about the defined structural subtype, 
which we call affordance theorems. A data model is said to partially satisfy the affor-
dance definition, if there is a translation from every non-logical symbol of this model 
into the theory such that the translated tokens all satisfy the subset of affordance theo-
rems that exist about them. We call this test weak data satisfiability of a data model. 
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The proposed method is considered to be useful in at least two respects (much in 
the spirit of analytic/deductive machine learning):  

• In order to find reliable and operational (but necessarily incomplete) formal defini-
tions of categories for databases 

• In order to find domain theoretical explanations for structural properties of data 
base instances 

In the remainder of the paper, we show that the data model introduced in the next 
section, which is a common representation of a road network (for details see [10]), 
satisfies the structural part of the affordance based definition of a road network devel-
oped in section 4 and 5.  

3   A Common Road Network Data Model 

Let the road network S = (N, L) be a directed graph with nodes N and edges L ⊆ N× 
N. For an edge l = (n1, n2), let l- = n1 its incident source and l+ = n2 its sink. A node 
stands for a street intersection and an edge for one direction of a street segment be-
tween two intersections. Note that a bidirectional street segment is represented by two 
parallel edges l = (n1, n2) and l’ = (n2, n1). A trace t consists of a sequence of edges 
l1, …, ln such that li

+ = li+1
- for all i = 1, …, n-1. Let t- = l1

- denote the source and t+ = 
ln

+
 the sink of the trace t.  
We call a road network embedded if we additionally have mappings point : N → P 

and line : L → 2P where P is the set of points in the Euclidian plane; the embedding 
is a simple linear curve in the Euclidian plane that geometrically connects the points 
of its two incident nodes. We assume that bidirectional street segments have the same 
geometry, i.e. line(n1, n2) = line(n2, n1). 

Further, we refer to a subset E ⊆ {(l1, l2) ∈ L × L | l1
+ = l2

-} as navigation relation 
for vehicle traffic (compare line graphs L(S) [1] or linear dual graphs [14]): (l1, l2) ∈ 
E implies that it is possible (according to traffic rule and street construction) to drive 
from the segment l1 into the segment l2 crossing their incident node n = l1

+ = l2
-. A 

trace t = l1, …, ln of the road network S = (N, L) is navigable iff  (li, li+1)∈ E for all i = 
1, …, n-1. Note that navigable paths or traces are a true subset of all the paths in S, 
because there are certain junction types where not each possible path in S is allowed 
(compare Scheider et al. [10] and FIGURE 2).  

We henceforth assume that S is connected by navigable traces, i.e. for all nodes n, 
n’ ∈ N, there exists a navigable trace t such that t- = n and t+ = n’. 

From this several properties follow. We call a network edge in L graveyard if it has 
no outgoing navigation edge in the navigation relation E, that is {l |¬∃ l2.(l, l2)∈E}. 
We call a segment a factory if it is an element of the set {l |¬∃ l1.(l1, l)∈E},. Because 
S is connected by navigable traces, we can exclude graveyards and factories in S, that 
is, each network edge in S must both have at least one navigation tuple leaving the 
segment and one navigation tuple entering the segment. Furthermore, each node must 
have two appropriately directed adjacent segments in S being a navigable tuple from 
E, and hence the minimum degree of each vertex in S is greater than or equal to 2. So 
∀n∈ N. ∃(l1, l2)∈ E. l1

+ = l2
- = n.   
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Fig. 2. Types of one-way intersection nodes for a dual carriageway road. Diametrical bifurca-
tions (n4/5) are examples of nodes with navigational restrictions. 

For illustration purposes, let us consider some common road network features in 
this model. All non-parallel network edges in S are called one-way edges. Navigation 
tuples connecting two bidirectional network edges are called u-turns. A set of two 
bidirectional network edges with one of its two vertices exclusively being part of a u-
turn edge, is called dead-end. Vertices in S can be e.g. diverging or converging bifur-
cations, diametrical bifurcations and crossings (compare FIGURE 2). Definitions of 
the higher level concepts bidirectional road, dual carriageway and junction (e.g. 
roundabout) are straightforward in this data model, compare [10].  

4   What Road Networks Afford 

The notions structure and action are domain dependent key concepts of every affor-
dance definition, and therefore need a formal treatment consistent with our domain 
knowledge about the category. In the following theory, we elaborate such formalization 
for road networks in terms of the types flat support and supported movable history.  

4.1   Histories and Movements 

We base our theory on the logic of histories (for a detailed discussion we refer to [4]), 
and extend Hayes’ theory to derive an ontology of movements, channels and networks. 

Some remarks on the notational style. Sentences are written in predicate logic. For 
convenience, every expression is defined because invalid function applications have 
an undefined value and invalid predicate applications are defined to become false. 
Variables and constants are implicitly typed. Free variables are understood to be uni-
versally quantified. ∃! means the existence of exactly one instance. We always pre-
suppose a ≠ b for two different symbols. Predicates are capitalized. Additionally, we 
use the ordinary operations on (point) sets and the usual Euclidian vector calculus. 
Some definitions and proofs are omitted and informally described in the text. 
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The principal argument of Hayes is, that in order to identify physical objects (and the 
things they are made of), we can cut space-time into histories. We describe histories as 
pieces of 4-dimensional space-time, h ⊂ R4 (see appendix). We assume that histories 
and their lower dimensional projections in geographic space G and time T have well 
defined dimensionality, boundaries and interiors. A formal definition is given in the 
appendix. We can think of point histories as 0-dimensional, curve histories as 1-
dimensional, surface histories as 2-dimensional and regular histories as 3-dimensional 
compact entities in geographical space that are "one-piece" and exist for an extended 
time interval. Note that the definition of the boundary and interior of a history h, de-
noted by ∂h and h°, contrasts sharply with usual definition in point set topology. 

We furthermore adopt the notion of a face1, and the function toso meaning that a 
piece-of-space is to the other side of a face of another piece-of-space (see appendix). 
We will use the binary predicate Disjoint to express that two pieces of space do not 
intersect, and Joined if they have just a face in common. We say that two pieces of 
space are InContact if they are Disjoint but there is only a free surface between the 
two (compare [4]). 

A state is an instantaneous spatial slice of a history at a certain time-instant, that is 
the projection of a history h into G for a time instant t. A certain state is denoted by 
h@t. As histories are topologically connected and bounded, there are two uniquely 
defined states called start and finish. Consequently, there are two unique time instants 
called begin and end (compare FIGURE 4).  

 

 
Fig. 3. Free and solid pieces-of-space and their faces, adapted from [4] 

 

                                                           
1 A face of a piece-of-space A is a piece-of-space F of one lower dimension which forms part 

of A’s boundary. 
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Histories are not arbitrary subsets of Euclidian space; they are always thought to 
contain a physical object in each time instant. This object is different from the piece-
of-stuff or the composite it is made of: we identify a river not by identifying the water 
in it, and we identify a car not by identifying its parts. We call a history solid, if its 
object is made of the same things in each moment in time, so that other histories can-
not intersect with its interior. In order to specify this, we introduce the predicate Free 
and appropriately constrain the topological relations of solid (non-free) histories: 

Axiom 1. History (h1) ∧ History(h2) ∧ ¬Free(h1) ∧ ¬Free (h2) ⇒ 
(∀t1∈when (h1),t2 ∈ when (h2).Joined(h1@t1, h2@t2)) ∨  
 (∀t1∈when (h1),t2∈ when (h2).Disjoint(h1@t1, h2@t2)) 

We furthermore assume that a free history does not include its faces, so it is equal to 
its interior (and therefore its faces can be either solid or free), whereas a solid history 
does (compare FIGURE 3). 

When(h) denotes the time interval during which h takes place. Where(h) denotes 
the spatial projection of h in G for all time instances, that is the place where the his-
tory "takes place".  

An episode e of a history h, episode(e, h), is defined as a subset of h which has the 
same spatial extensionality as h for a non-zero subinterval of when(h): 

Definition 1. Episode(e,h) ⇔ History(e) ∧when(e) ⊆ when(h) ∧∀t ∈ when(e). 
h@t=e@t. 

A history is said to be rectangular, if it doesn’t change its geometric state in time: 

Definition 2. Rectangular(h) ⇔ ∀t1, t2∈ when(h). h@t1 = h@t2. 

A history is isometric if each pair of spatial points has a fixed Euclidian distance over 
all states. Let fI be a congruence isomorphism2 (isometric) function on Euclidian 
space R3 with distance function3 d. A history is said to be isometric if it has a congru-
ent shape for each pair of time instants: 

Definition 3. Isometric(h) ⇔∀t1, t2∈ when(h). ∃fI .∀s1∈h@t1. ∃s2∈h@t2. fI
 (s1)= s2. 

Clearly, rectangular(h) ⇒ isometric(h). The function Trajx/t
h ={<ti, fI

t, ti(x)>| ti ∈ 
when(h)} for some fixed x∈h@t and some fixed t∈when(h) denotes the trajectory of 
point x at time t of the isometric history h. Let point x be the object’s centroid. 
Clearly, as trajectories are point histories, they have episodes, start and finish, begin 
and end. Furthermore, we call the spatial projection of a trajectory, where(Traj), its 
path (compare FIGURE 4). 

Now we can define the notion of differentiability for isometric histories. We call 
the first vector derivative of a trajectory the velocity vector of that time instant, vf(t). 
Differentiability is defined for all time points in the open time interval (denoted by 
]…[) that the history encloses: 
                                                           
2  That is, a combination of a linear translation and a rotation preserving relative distances 

between points. 
3  Function fI is isometric iff ∀ x, y ∈ G. d(fI(x), fI(y)) = d(x,y). 
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Fig. 4. Illustration of histories. Adapted from [4]. 

Definition 4. Differentiable(h) ⇔ Isometric(h) ∧ ∀t∈]begin(h);end(h)[. limΔt→0(Trajh 

(t+Δt) – (Trajh(t)+vTraj(t)*Δt))/Δt = 0. 

This has the consequence that the trajectory does not have any "sharp corners" with 
sudden jumps in direction. Also, from differentiability follows continuity for the open 
time interval of history h.  

Movable histories obviously enclose solid objects, which is the reason for their dif-
ferentiable behavior in time. In naïve physics, the histories of solid objects cannot 
finish at once [4], because they first have to lose their form. Following this thought, 
we assume that a moving object is an endurant. For the scope of this paper, we ex-
clude non-isometric destruction and construction histories, and therefore require the 



298 S. Scheider amd W. Kuhn 

existence of moving objects to last forever by AXIOM 2. Start(h) and finish(h) of a 
movable history then are also faces of other connected histories and the velocities at 
these states always exist and can be zero. Let us call differentiable non-free histories 
movable(h):  

Definition 5. Movable(h) ⇔  Differentiable(h) ∧ ¬Free(h). 

It follows a quite obvious theorem for movable subepisodes: 

Theorem 1. Movable(g) ∧ Episode(h,g) ⇒ Movable(h). 

We write h⊗h’ for the connection of two movable histories, with h and h’ being con-
nectable episodes: 

Definition 6. h⊗h’ := h∪h’ iff h’@begin=h@end  ∧ Movable(h)  ∧ Movable(h’).     

We say that a movable history is larger than another movable history, h < superh, iff 
there is a connection h’’⊗(h⊗h’) = superh. Now we state an axiom of infinite exis-
tence of movable objects: 

Axiom 2. Movable(h)  ⇒ ∃h’. Movable(h’) ∧ h < h’. 

Now we are able to define movements. A movement is a movable history without zero 
velocity, which means that it is continuously changing its location from the beginning 
to the end of its history: 

Definition 7. Movement(h) ⇔  Movable(h) ∧ ¬∃ t ∈ ]begin(h);end(h)[. vTraj(t) = 0. 

Note that the so called Brownian motion, as it is nowhere differentiable, and many 
other kinds of motions, e.g. simulated motions on a network [13], would not be con-
sidered a movement.  

Using THEOREM 1 it follows that the connected histories of a larger movable his-
tory are also movable. Then it is clear that those episodes could be rectangular as well 
as movements. Now let h be a movement history and h’ be a connected rectangular 
history. It follows from differentiability of h⊗h’, that the velocities of h must ulti-
mately converge to zero. In general we can always distinguish between movable his-
tories that converge to zero, and therefore must have a connected rectangular history, 
and histories which do not, and therefore must have a connected movement history. 
We call the first ones bounded movable histories and the second ones unbounded: 

Definition 8. Unboundedmovable(h) ⇔  Movable(h) ∧ t∈] begin(h); end(h)[   ∧ ¬ 
limt→end(h) vTraj(t) = 0 ∧ ¬ limt→begin(h) vTraj(t) = 0. 

Clearly, unbounded movable histories imply connected movements. This follows 
from AXIOM 2, DEFINITION 8 and everything that was said above:  

Theorem 2. Unboundedmovable(h)⇒∃ h’. h’@begin=h@end ∧ Movement(h’) ∧ 
∃h’’. h@begin=h’’@end ∧ Movement(h’’). 

We account for motions that can occur on a geographical scale, which we call friction 
dominated. These cannot be modeled in general. What can be modeled are aspects 



 Road Networks and Their Incomplete Representation by Network Data Models 299 

which exist due to the fact that the movement is constrained by its support infrastruc-
ture, which is the street surface. 

4.2   Supports and Channels  

Now we clarify the notion of a movement constraint. In doing so, we are mostly con-
cerned with rectangular histories h, and for these, we write h also as an abbreviation 
for where(h). 

Friction dominated movements have supports. In terms of Newtonian physics, a 
support is a physical object whose spatial geometry is such that it provides a normal 
force for the contact force acting on the supported object. We define a support as a 
solid rectangular regular history with its 3-dimensional spatial extension in G having 
a 2-D face (called a plateau) with a vertical component of its surface normal in every 
point. We therefore assume that the plateau of the support is a differentiable surface. 
Hayes’ notion of a container is an example of a non-flat support [4]. If a flat support 
is projected into the geographic plane (denoted by the function plane), it is identical to 
the plane-projection of the plateau, so the plateau covers the cell. 

Definition 9. Flatsupport(sp) ⇔ RegularHistory(sp) ∧ Rectangular(sp)∧¬Free(sp) ∧ 
∃pl. plateau(sp)=pl ∧ FaceOf(pl, sp) ∧ DifferentiableSurface(pl) ∧ ∀s∈pl. 
∃v.Verticalsurfacenormal(pl, s)=v ∧ ∃i. inside(sp) =i ∧ RegularHistory(i) ∧ Rectan-
gular(sp) ∧ Free(i) ∧ FaceOf(pl, i) ∧ plane(pl) = plane(sp) = plane(i). 

For every support, we assume that there is a free space immediately above the plateau 
of a support, such that the plateau is a face of it and it is equal to the support’s plane-
projection. We call this space inside(sp). Unlike the inside of Hayes’ open container, 
the height of inside(sp) is dependent on the height of the supported objects and is not 
determined by the support geometry.  

For the definition of channels, we think of a portal as a free, differentiable face of the 
support’s inside touching the plateau such that its plane-projection is a face of the plane-
projection of the support (we say that the portal is on the boundary of the plateau): 

 

Fig. 5. An illustration of a flat support with two portals and two borders 
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Definition 10. Portalof(p,sp)⇔Free(p)∧DifferentiableSurface(p)∧ Flatsupport(sp)  ∧ 
FaceOf(p, inside(sp)) ∧ FaceOf(plane(p), plane(sp)) ∧ ∃c. FaceOf(c, p) ∧ FaceOf (c, 
plateau(sp)). 

In particular, we allow the formation of joined collections of free portals including 
their common free faces. These objects are again free surfaces. We abbreviate this 
operation by ∪A for a set of histories A = {B, C, D}: 

Definition 11. Portal(p) ⇔ Surface(∪p) ∧ Free(∪p) ∧ ∀pi ∈ p. (∃sp. Portalof(p,sp)). 

A movement is said to non-tangentially intersect a free differentiable surface in a 
point, iff its path intersects it in just that point, and the movement velocity vector does 
not converge to a vector lying in the tangential plane of the surface at that point: 

Definition 12. Nti(h, p, s) ⇔ Movable(h) ∧ DifferentiableSurface(p) ∧ Free(p) 
∧∃s∈G.(path(h)∩p=s ∧ ∃t, ti∈when(h). Trajh(t) =s ∧ limti→tvh(t)=vht ∧ (s +vht) ∉ 
tangentialplane(p, s)). 

Note that from this definition it follows that the velocity vector cannot converge to 
zero (because then it would be in the tangential plane) and the point cannot lie at the 
non-differentiable boundary of the surface. A movement that non-tangentially inter-
sects two surfaces in its start and finish therefore is unbounded. If a movement non-
tangentially intersects the surface in an inner point of its trajectory, it is said to pass 
that surface: 

Definition 13. Passing(h, p) ⇔ ∃s∈G. Nti(h,p,s) ∧ s ∉ start(Trajh) ∧ s ∉ finish(Trajh). 

We state that a movement passing a portal has two connected episodes with one  of 
them having a path being toso of the portal: 

Theorem 3. Passing(h, p) ∧ Portalof(p, sp) ⇒ ∃e, e’. e⊗e’ = h ∧ path(e’)° ⊆  toso(p, 
inside(sp)). 

A proof of this theorem is not presented here, but because the curve does not intersect 
the surface in one of its end points, it can be divided into two connected parts. Then 
the only way that two parts of a differentiable curve can stay in the inside is to inter-
sect it tangentially.  

We furthermore restrict supported movement histories to always be in contact with 
a flat support, so we exclude flying movements, and having their path interior inside 
of the support’s inside: 

Definition 14. Supportedby(h, sp) ⇔ Flatsupport(sp) ∧ Movable(h) ∧ ∀t∈when(h). 
Incontact(h@t, where(sp)) ∧ path(h)°⊆ inside(sp). 

We assume that a supported movable object has to stay supported for all its existence, 
so all its history connections have to stay in contact with a support. 

Definition 15. Supportedmovable(h) ⇔ ∃ sp. Supportedby(h,sp) ∧ ∀h’. h<h’ ⇒ Sup-
portedmovable(h’). 



 Road Networks and Their Incomplete Representation by Network Data Models 301 

In particular, for a given supported movable history h and its support sp, there always 
exists a unique largest supported history of h with respect to sp, h < largestsupported  
(h, sp).  

Now we can state that an unbounded supported movable history that non-
tangentially intersects a portal of its support implies the existence of a flat-joined 
support with a common portal. We call this theorem the theorem of unbounded 
movement support: 

Theorem 4. Supportedmovable(h) ∧ ∃sp.Supportedby(h,sp) ∧ ∃p.(Portalof(p, sp) ∧ 
∃s∈p.Nti(h,p,s)⇒  ∃h’,sp’, p’. Movement(h’) ∧ Supportedby(h⊗h’, sp∪sp’)) ∧ Porta-
lof(p’, sp’) ∧ s∈ p’ ∧ Passing(h⊗h’,p). 

Proof. As the movement is supported, it is contained in a support’s inside (by DEFINI-
TIONS 14 and 15). Although it non-tangentially intersects a portal, it cannot pass that 
portal by THEOREM 3, because the portal is on the boundary, and the other side of 
inside(sp) must lie in its exterior. By DEFINITION 14, it therefore must intersect the 
portal in either its start or finish. Such a movement must be unbounded (see DEFINI-
TION 13). As the movement is unbounded, by THEOREM 2, there must be a connected 
following (or preceding) movement. The connection of these movements must be pass-
ing the portal by DEFINITION 14, because the intersection point must be an inner point 
of the movement and it intersects the portal non-tangentially. Then, by THEOREM 3, 
the connected movement episode is to the other side of the portal. By DEFINITION 15, 
the connections of the movement must be supported by a second support. As support 
histories cannot overlap (by AXIOM 1) and the movement is continuous (by DEFINI-
TION 5), there must be a flat-joined history supporting the connected movement. And 
as the boundary of this support can only be passed at a portal, there must be a common 
portal that includes the point of non-tangential intersection. 

 

Fig. 6. Illustration (plane projection) of a channel. Exit and entry are portals, so they can consist 
of a chain of joined free differentiable surfaces. 

Now we can think of a channel as a kind of flat support with entry and exit portals. 
We say that channels require their supported movements (or their larger movable 
histories) to actually leave at an exit portal and enter at an entry portal: 
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Definition 16. Channel(sp) ⇔ Flatsupport(sp) ∧ ∃!entry, exit. Portal(entry) ∧ Por-
tal(exit) ∧ ∀pi∈entry.∀pj∈exit. Portalof(pi,sp) ∧ Portalof(pi,sp) ∧(Disjoint(pi, pj) ∨ 
Joined(pi, pj)) ∧ ∀h.(Movement(h) ∧ Supportedby(h,sp) ∧ m =largestsupported(h, sp) 
⇒ ((∪exit)∩path(m) = finish(Trajm) ∧ ∃p∈exit.Nti(m,p, finish(Trajm))) ∧ ((∪en-
try)∩path(m) = start(Trajm) ∧ ∃p∈entry.Nti(m,p,start(Trajm))). 

5   Channel Networks as Affordances 

Supported movable histories (DEFINITION 15) are the action type (compare section 2) 
of our affordance-based theory, whereas flat supports (DEFINITION 9) are the struc-
ture type. We derive necessary affordance conditions for a network by acting on the 
closed world assumption that all flat supports are part of one single network: 

Axiom 3. ∃! Net. ChannelNetwork(Net) ∧ ∀SubNet. Flatsupport(SubNet) ⇒ SubNet 
⊆ ∪Net. 

A channel network in terms of an action type can now be defined as a set of channels 
which must afford a movable history to connect every pair of points on their plateaus: 

Definition 17. ChannelNetwork(Net) ⇔ ∀c∈Net.Channel(c)∧ ∀s1,s2 ∈ ∪c∈Net pla-
teau(c). ∃ h. Supportedmovable(h) ∧ plane(start(Trajh))=plane(s1) ∧ plane (fin-
ish(Trajh))= plane(s2). 

 

Fig. 7. Some important flat-joined configurations of channels (left) forming road features, and 
their translations in the graph data model (right) (dotted arrows mean navigation tuples)  
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From DEFINITION 17 and the closed world assumption many plausible network 
theorems follow. In particular, it follows that every channel of a network must be 
connected to other channels at every one of its portals. Otherwise the network would 
exclude movements starting or ending at these portals because of DEFINITION 16 
and THEOREM 4. This restricts the possibilities for channel configurations.  

We illustrated possible flat-joined channel configurations in FIGURES 7, 8, 9, and 
one can see that well known road network feature types can be derived by flat-joining 
channels so as to form common portals. In this way, three-way intersections like bi-
furcations can be formed (FIGURE 8), as well as 4-way intersections (FIGURE 9).  

It is astonishing that a certain type of configuration logically requires also the exis-
tence of so called periodic channels (see FIGURE 8). These are channels that must 
alternately cease to exist, because otherwise two logically necessary channels would 
intersect "at grade", which is prevented by AXIOM 1. In these cases we can presume 
the existence of a traffic regulator, like a traffic light. 

Furthermore, we can obviously distinguish between channels that are connected to 
the same portal (see number 5 in FIGURE 8 and FIGURE 9), and ones that are con-
nected to two different portals, which we will call inner and outer channels, respec-
tively. We suspect also that it is provable in our theory that periodic channels are 
always inner channels. 

 

Fig. 8. Flat joined configurations of channels that form 3-valued vertices in the graph data 
model 
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On the right hand side of each figure, we included equivalent sub-graphs of the 
graph data model in section 3, translated into our theory by the following rules: 

1. Let the set of network nodes N in the graph S be the set of portals of a network. 
2. Let every directed edge of S in L be an outer channel of this network, such that 

the first vertex is the portal including the channel’s entry and the second one is 
a different portal including the channel’s exit. For two bidirectional edges in S, 
let their outer channels be joined at their border. 

3. Let a navigation tuple in E mean that its two vertices, translated to outer chan-
nels, are either connected at a common portal or at a common inner channel.  

Let us denote the translations into our theory τ(exp), with exp being a type (e.g. N) 
or a term (e.g. n∈N) of the graph data model. We now have an exact notion of the 
incompleteness of the data model: As portals are reduced to a vertex in the graph data 
model, the information about inner channels and periodic channels (the existence of 
traffic regulators) is lost. The portals of a channel also include its possible turn off 
directions, but these are modeled as edges of the navigation relation E. 

If the translated data model of the set of edges L, τ(L), is a channel network, then 
the translation has to comply with the following affordance theorems: 

Because of AXIOM 3 and DEFINITION 17, there cannot be other supports than 
channels of one single network. Clearly, as τ(S) consists of channels and portals of 
one network, there are no other supports existent in the data model. 

 

Fig. 9. Flat joined configurations of channels that form 4-valued vertices in the graph data 
model. These require the existence of periodic channels (signal period), because all channels 
meet at-grade 
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Furthermore, every channel of the network must be reachable from every other 
channel by a chain of navigable connected channels. It follows from AXIOM 3 that a 
movement is supported by a chain of connected channels. According to DEFINITION 
17, there must exist a supported movement from every channel to every other one, 
and so there must also exist an appropriate chain of connected channels, q.e.d.. Now, 
is this theorem satisfied by the translated data model? As the edges of the graph S are 
translated into outer channels, from the connectedness of S by navigable paths, it 
follows that for each pair of outer channels, there must exist a chain of appropriately 
connected channels between them, because each tuple of E is translated into either a 
pair of connected outer channels or a triple of connected inner and outer channels.  

So, both theorems of the channel network are satisfied by the data model, and from 
these, all other mentioned characteristics of the data model follow, like the non-
existence of graveyards and factories and the minimum vertex degree of 2. 

6   Conclusion 

Every attempt to classify representations of physical objects in a geographical data-
base into categories is challenged by limited definability and informational incom-
pleteness. We propose to use affordance-based logical theories in the sense of Naϊve 
Physics in order to derive a set of necessary properties, called affordance theorems, 
for every data model that is supposed to represent such a category. On the one hand, 
the specification of the afforded action, in our example the movement connectivity of 
a channel network, comes close to the commonsense a-priori knowledge about the 
category. On the other hand, through the affordance relation, it becomes possible to 
derive and explain a-priori unknown structural properties of the physical object, in our 
example graph connectivity, minimal vertex degree and the non-existence of grave-
yards and factories.  

The proposed method needs to be further elaborated: It is necessary to provide a 
means to make sure that the proposed set of affordance theorems for the partially inter-
preted types is in fact complete, so that it covers all derivable theorems about these 
types in the proposed theory. Furthermore, the more interesting categories are road and 
junction types, which could be defined by induced sub-graphs of the network.  
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Appendix 

A subset of Rm is bounded if it is contained in an m-ball of finite radius. A subset of Rm 
is connected, if it cannot be partitioned into two disjoint nonempty closed sets. A topo-
logical n-manifold (with boundary) (compare [9]) is a Hausdorff space in which every 
point has a neighborhood homeomorphic to an open subset of Euclidean half-space: 

 (1) 

Let M be a n-manifold with boundary. The interior of M, denoted M°, of dimen-
sionality n, is the set of points in M which have neighborhoods homeomorphic to an 
open subset of Rn. The n-1 dimensional boundary of M, denoted ∂M, is the comple-
ment of M° in M. The boundary points can be characterized as those points on the 
boundary hyperplane (xn = 0) of Rn

+ under some homeomorphism.  
A history is a subset h ⊂ R4 of 4-dimensional space-time, with the first three real 

valued dimensions denoting geographical space G := R3, and the fourth real valued 
dimension denoting time T := R, having the following properties:  

1. h is a topological n-manifold (with boundary), with 1 ≤  n ≤ 4. 
2. the projection of h into T (denoted by when(h)) is a non-degenerate interval, 

so it is connected and neither the empty nor the singleton set. We say that h is 
"temporally extended". 
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3. each projection of h into G for any moment t ∈ T (denoted by h@t) is a 
bounded and connected subset of G, so a history is said to be "spatially 
bounded" and "one piece". 

Every closed m-1 manifold embedded in Rm (e.g. a closed 2-sphere in R3) divides 
the space Rm into two unique disjoint open subspaces, one of which is the bounded 
interior and the other one being the unbounded exterior. As this is always the case for 
the boundary of an m-manifold (e.g. a 3-ball), for every boundary part f (called 
"face") of this m-manifold, the function toso(f,e) is a bijective mapping between the 
two subspaces.  
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Abstract. New methods of data collection, in particular the wide range of sen-
sors and sensor networks that are being constructed, with the ability to collect
real-time data streams, provide a driver for an appropriate underlying theory for
information related to dynamic geographic phenomena. This paper investigates
the underlying processes by which entities with both spatial and aspatial com-
ponents may evolve and change through time, and how the spatial and aspatial
dimensions participate separately and together in such an evolution. The overall
structure that we propose is that of attributed locations in space-time. After mo-
tivation and a survey of relevant background work, the paper introduces a formal
framework and presents a case study that applies it to a detailed example. The
focus is the impact of spatial change on attribute change, but also considered is
the converse process. We conclude by discussing the relevance of this work to
the extraction of dynamic objects and their changes from sequences of temporal
snapshots of static scenes.

1 Introduction

New methods of data collection, in particular the wide range of sensors and sensor
networks that are being constructed, with the ability to collect real-time data streams,
provide a driver for an appropriate underlying theory for information related to dynamic
geographic phenomena. There has already been research, some of which is detailed
in section 2, into the purely geometrical and topological aspects of such phenomena.
This paper describes research that also brings into play some of the non-spatial aspects,
sometimes called the attribute or semantic components of geographic information. We
investigate the underlying processes by which entities with both spatial and aspatial
components may evolve and change through time, and how the spatial and aspatial
dimensions participate separately and together in such an evolution.

Components of a geospatial feature include not only spatial properties (e.g., location,
shape, size) and relationships (Euclidean, metric and topological relations), but also
attribute properties (e.g., level of a scalar value such as temperature). In a collection of
features, objects may change in their spatial relationships with each other in addition
to changes to themselves. Objects may come in to the scene, as well as leave it. The
events themselves may be part of larger patterns, comprising of many “atomic events.”
A sequence of snapshots is insufficient in itself, without further reasoning, to determine
the underlying changes.

To take a very simple example, the left hand side of figure 1 shows two snapshots, A
and B, of the evolution of a region. What cannot be determined is whether the change
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A B C D

Fig. 1. Engulfment or hole growth?

from A to B results in engulfment, as in the upper intermediate state, or creation of a
hole, as in the lower. It is interesting that information about non-spatial properties of
the entity (in this case, color), provides the possibility of more finely-tuned reasoning.
Looking at the right-hand part of figure 1, if we assume that colors of individual regions
cannot change, except by growth of new components, then the engulfment process can
be eliminated from the evolution of the region from C to D. Although this is an artificial
and simplified example, it shows the framework presented in this paper, namely analysis
of the evolution of mixes of spatial and aspatial properties.

Figure 2 shows a typical representation of spatial data, taken from a sample of the
Ordnance Survey of Great Britain’s MasterMap dataset. In it we see the spatial foot-
prints of real world entities represented by polygons, while other attributes are indicated
by text and color. When we look more closely at the representation we see a mix of data
about particular entities, such as ‘Manchester House’ and the polygon that represents
its spatial footprint, as well as more general information, such as ‘PH’, indicating that
an entity whose spatial footprint is represented by a specific polygon is in the category
of public houses, or the color blue indicating a road. Now, this representation is purely
static, involving neither spatial nor aspatial change. If such changes are allowed, a range
of questions arises, such as, ‘How should a merge of the spatial footprint of one of the
public houses merges with a neighboring house be represented?’ ‘What happens to the
representation if Manchester House becomes a public house?’. Now the answer to any
one of these questions might be straightforward, but reasoning about change requires a
general foundation, and it is this foundation that is presented here.

The overall structure that we propose is that of attributed locations in space-time.
The attributes may be natural-language, symbolic, or in any other appropriate form.
In the case of the map in figure 2, the attributes are a mix of natural language, sym-
bols, and colors. The choice of form of attribute is partly a question of representation,
but more fundamental is the issue of the different ontological categories that the la-
bels indicate. One dichotomy is between the universal and the particular. Universals
have instances, are repeatable, abstract, and lack specific locations in space-time; while
particulars have a unique spatio-temporal location. In figure 2, ‘public house’ is a uni-
versal while ‘Manchester House’ is a particular. Universals are commonly divided into
types, properties, and relations. Types may be thought of as having instances that are
‘objects’, in some sense. Thus ‘public house’ is a type, whose instances are particular
public houses at specific locations. An example of a property is ‘rectangular’, referring
to the shape of a land parcel, and an example of a relation is ‘adjacent’, indicating a
relationship between two land parcels. We will see in what follows that it is important
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Fig. 2. Typical representation of spatial data (Reproduced by permission of Ordnance Survey. (c)
Crown Copyright).

to know what category our attributes fall into, as well as the structure of the category,
in order to perform a correct analysis.

This paper reports research on the interaction between instances and their types as
they evolve. The evolution will often be considered to be through time. So, an example
of a typical question is, when two patches of liquid attributed by distinct liquid types
become merged, what is the type associated with the merged instance? But the frame-
work also applies when the evolution is in representation, as for example when a spatial
representation is generalized. For example, suppose that a land parcel attributed with
type house is merged with a land parcel of type garden, what is the type of the merged
parcel? Our framework will be seen to cover both these cases.

The structure of this paper is as follows. After this introduction is given a review
of some relevant background work. We will then introduce the framework and present
a case study that applies it to a detailed example. The next section considers related
questions, especially the dual issue of the impact of a change of types upon the repre-
sentation of the instances. The paper concludes with a summary and consideration of
future directions.

2 Background

Research in the area of spatio-temporal information systems is now well-established.
Early work includes a general survey of early work with a database orientation [1];
a description of a proposal for a temporal query language [9], and construction of a
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model of spatio-tempral information with a focus on region evolution [13]. An im-
portant event that established a research agenda for spatio-temporal reasoning in geo-
graphic spaces was the 1993 National Center for Geographic Information and Analysis
Specialist Meeting [4].

Analysis of dynamic scenes, particularly as found in the computer vision commu-
nity, has traditionally been quantitative and data-intensive (see, for example, [5]). Gen-
eral foundational work on types of object evolution, not specifically related to spatial
change is reported by Hornsby and Egenhofer in [7]. The foundation for giving first-
class status to events was set out ontologically by Grenon and Smith in [6] and from
an information modeling and reasoning perspective by Worboys in [14]. Grenon and
Smith extended the usual ontologies of things in snapshot (so-called SNAP ontologies)
to include entities that are changes, occurrences, processes, and events (SPAN ontolo-
gies). Worboys analyzed changing spatial entities, including dynamic spatial phenom-
ena from the SPAN perspective, and showed how techniques applied to computational
processes, including process calculi and the event calculus used in artificial intelligence
for robotic reasoning, could be applied in the geospatial context. The specifically spa-
tial dimension of change has been analyzed in the context of basic topological change
by Jiang and Worboys in [8]. This builds upon work on transitions between topological
states, as found for example in [3], where a network structure is presented in which
node represent topological relationships between two regions, and two nodes are direct
neighbors if no sudden spatial “jump” is needed to get from one relationship to the
other. Stell [11] considered how evolving entities could be described at different levels
of detail through a granular account of time.

Some of the inspiration for the formal structures developed later in the chapter comes
from work on Chu categories as developed in theories of information transfer between
components of distributed systems. A good reference for this work is [2] on information
flow and [12] on the more formal properties of Chu spaces.

There are many applications of spatial change reported in the literature, from the
engulfment of cytoplasm by bacteria, to patterns of evolution of a gene sequence, to
land type and use change. Research on evolutionary biology has also inspired some
of the idea in this proposal, in particular work by theoretical biologists on topological
spaces in patterns of evolutionary change (see, for example, [10]).

3 Formal Framework

In this section we set out the formal properties that we expect the operation of combi-
nation to possess. We then outline the basic formal structure, around which this work
is based, and show how it applies to a simple example. Assume that we have a set of
spatial objects (e.g., regions, or links on a network), each of which has some attribu-
tion. For example, a region of land might have a land type associated with it. We make
the simplifying assumption that each object has one and only one attribute (although of
course, such an attribute might be a vector of simpler types). So, let X be a set of spatial
objects and T be a set of attributes (called here types).

We assume that the spatial objects may change and combine in terms of their spatial
extents. Thus, an object might move, rotate, dilate, grow a hole, merge with another,
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blue

yellow

green

black

Fig. 3. Splitting and merging attributed spatial objects

split, engulf another, and so on. We will focus specifically on the types of movement
involving changes in the topology of the total assemblage. Merging, splitting, inser-
tion, and deletion provide the principal topological changes to the spatial extents under
consideration here. The investigation of these topological changes on their own, with
no attributes, is the subject of earlier research [8]. Their possible influence on attribute
changes is shown by an example in figure 3. Here we see the evolution of a pair of areal
objects, attributed in this case by colors. The top object merges with itself, forming a
hole, while the lower one splits. One piece of the lower object migrates and merges with
the upper object, while the other develops a hole. In the case of colored liquids, we can
imagine the effect to be as shown.

3.1 Combining Entities

The focus of this work is the effect of topological change on the attribution of areal
objects. To begin to understand this, we must consider the structure of the domain from
which the attributes are taken, and the effect of this structure on combination, splitting,
and recombination. It is clear that a combination of colors, that might occur in the
mixing of paints, is rather different from a combination of land use types that might
take place in the generalization of a spatial representation. There are other cases, such
as the combination of a husband and wife into a married couple that introduce further
complexities. To indicate the differences, we might reasonably say that a husband is
part of a married couple, and but maybe less obvious that the color blue is a part of
the color green or that the type house is part of the type residence. In the first case, the
structure of the domain is mereological, while in the second and third examples, we
have a subsumption structure.

We now make some assumptions about the domains of interest, and the properties
that mixing or combination has for those domains. Let T be the domain of attributes.
For the set T , we impose a structure that models the ability for types to combine. Define
a binary operation ∨ on T , where a ∨ b which is to be interpreted the type formed by
the mix or combination of types a and b. We impose the following properties on the
structure 〈T,∨〉:

– For all a, b, c ∈ T , (a ∨ b) ∨ c = a ∨ (b ∨ c). (Associativity)
– For all a ∈ T , a ∨ a = a. (Idempotence)
– For all a, b ∈ T , a ∨ b = b ∨ a. (Symmetry)
– There is an element ⊥, such that for all a ∈ T , a ∨ ⊥ = a. (Existence of a bottom

element)
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Fig. 4. Spatial object reformation

These properties can be interpreted in a natural and intuitive way as properties of
combination. Combination is assumed to be associative, and idempotence reflects the
idea that mixing a quality with itself produces no change. We assume that the order of
combination is not important (symmetry), and that there is a “zero” quality that when
mixed with any quality leaves it unchanged. This is just one set of plausible properties,
and the application would determine what formal properties would form the basis of an
appropriate model. In the case above, 〈T,∨〉 has the structure of a join semilattice with
bottom element. As for the collection X of spatial objects, to begin with we give it no
more structure than that of a set.

3.2 Combination of Attributed Objects

The first situation under discussion is represented by the arrow diagram shown in the
left of figure 4. The objective is to find the effect on the typing of spatial objects if they
are reformed. This shows a reformation of the spatial objects from the set X to the set
Y , represented as a relation r from X to Y . So, for example, the merge of two objects x1

and x2 into object y is represented by x1 r y and x2 r y, while the split of object x into
objects y1 and y2 is represented by x r y1 and x r y2. The function t is a typing function,
indicate the type tx of each element x ∈ X . We wish to construct typing function u, or
at least to determine constraints upon its construction. So for example, we might expect
that the type of the merged object y above reflects the types of its constituent objects,
and that the types of the objects y1 and y2 are derived from the object from which they
split. The exact rules will depend upon the application, so here is presented to outline
of a general theory. We are assuming in this situation that the collection of types T is
unchanged. This will be generalized later.

It is convenient to work wholly with functions rather than a mix of functions and
a relation. To do this, we consider collections of objects, rather than the individual
objects themselves. Hence, we construct functions r∗ : PY → PX and t+ : PX → T
as follows.

r∗ : B !→ {x ∈ X | x r b for b ∈ B}, where B ⊆ Y (1)

t+ : A !→
∨
s∈A

ts, where A ⊆ X (2)

It is not difficult to see that if we can find function u+ : PY → T , it is then possible
to reconstruct function u by the rule that uy = u+{y}. All that remains is to state the
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Fig. 5. Spatial scene reformation

rule for constructing function u+, (alternatively, the constraint on u+). This is given by
equation 3.

u+ = t+r∗ (3)

3.3 Example: Spatial Representation Generalization

Let us work through this formalism by means of an example. The left hand portion of
figure 5 shows a configuration of spatial objects. This configuration can be represented
as a pairing of a set of instances X = {a, b, c, d, e, f, g, h, i, j, k, l} with a set of types
T . The types have the additional structure of a join semilattice, and are shown in figure
6. The explicit pairings are shown in figure 7, where in this case each instance in X is
related to a unique type in T through its spatial situation as an areal object. Because
the relationship between instances and spatial situations is a 1-1 correspondence, the
pairing t between instances and types is functional. So, for example t : a !→ house.

Now, imagine that a map reformation operation entails the merging and splitting of
areal objects, as shown in the middle portion of figure 5. This reformation entails a
relation r from instances to merged/split instances, as shown in figure 8. For example,
the regions attributed a and b have been merged into the region attributed a′, and the
region attributed i has been split into the regions attributed f′ and g′. Relation r is fully
specified by, ara′, bra′, crb′, drb′, erc′, frc′, grd′, hre′, irf′, irg′, jre′, krh′, and lrh′.

The function r∗ defined by equation 1 can now be constructed. Firstly, construct the
action of r∗ on singleton sets, with, for example:

r∗ : {a′} !→ {a, b}
r∗ : {b′} !→ {c, d}
r∗ : {f′} !→ {i}
r∗ : {g′} !→ {i}

Then, the action of r∗ on non-singleton subsets is computed by taking the union of its
actions on the singleton constituents. So, for example:

r∗ : {a′, b′} !→ {a, b} ∪ {c, d} = {a, b, c, d}
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Fig. 7. Links between objects and types

In a similar way, function t+ defined by equation 2 is constructed by computing its
action on singleton sets, with, for example:

t+ : {a} !→ house

t+ : {b} !→ garden

t+ : {i} !→ parking lot

Then, the action of t+ on non-singleton subsets is computed by taking the join of its
actions on the singleton constituents. So, for example:

r∗ : {a, b} !→ house ∨ garden = residence
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The final step is to construct function u+, as defined by equation 3, as the composi-
tion of t+ with r∗. So, for example:

u+ : {a′} !→ {a, b} !→ residence

u+ : {f′} !→ {i} !→ parking lot

u+ : {g′} !→ {i} !→ parking lot

This enables us to complete the attributes for each land area, as shown in the right-hand
panel of figure 5. The example computations above are shown for the cases of a merge
and a split, and in both cases lead to the result we would expect.

4 Further Investigations

The preceding section set out the underlying structure, and showed how reformation of
the scene of spatial objects implies a reconfiguration of types. In this section we look
at one extension of this idea, where the types may also evolve, and then consider the
converse case where a change of types will effect a reformation of the spatial scene.

4.1 Evolution of the Type Structure

In this section, we not only allow the spatial objects to change, but also the types.
Changes to the type domain correspond in database terminology to schema evolution.
This more general framework is shown in figure 9. There are two type domains, T and
U , and a function s between them. In some cases, it might be appropriate to constrain
s to be a function that preserves the structure of the type domains, so in our paper s
would be a join-semilattice morphism. For example in the case of spatial representation
generalization, it might well be appropriate to assume that the type domain for the
generalized map is a homomorphic image of the source type domain. However, this is
not essential in what follows.
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Fig. 10. Extracting dynamic objects from sequences of scene snapshots

The extension is quite straightforward. The equations 1 and 2 are as before, but
equation 3 is modified to:

u+ = s t+r∗ (4)

4.2 Effect of Type Changes upon the Underlying Spatial Representation

Next, we investigate the degree to which merging attributes has an impact on the spatial
representation. In maps, we can observe that a common annotation between neighbor-
ing regions might allow cross-border integration. Returning to the example of section
3.3, suppose that we assume some combination of types, and wish to infer a reformation
of the spatial representation. For concreteness, assume we have the following mapping
s : T → U , given by s : house !→ residence, s : garden !→ residence, s : vicarage !→
residence, and s acts as the identity on all other members of T . (Note by the way that
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s : T → U is a join-semilattice morphism.) If we followed through a process dual to
that in section 3.3, we would like to be able to conclude that a pair of spatial regions that
are attributed house and garden in T have the possibility of merging into a single region
attributed by residence in U . Of course, we do not want all such pairs of objects to be
merged. Firstly, they must be share a common boundary, and even that is insufficient
(note regions attributed f and d in figure 8. We need more information to correctly merge
the appropriate regions. This points to a basic lack of duality between spatial objects
and their types.

5 Conclusions

In this paper, we have argued that static representations of the beginning and ending of
a change are insufficient in general to determine the nature of the change. The change
needs itself to be explicitly represented. To this end, we developed earlier work on the
explicit and formal representation of purely spatio-topological change so that changes
of attributed spatial objects may be also represented. The formalism was applied to an
example where changes take place to a representation through the process of general-
ization. A key issue was the effect that the structure of the spatial and attribute domains
had upon the overall structure, and we examined the particular case where the attribute
domain had the structure of a join-semilattice under attribute combination. In the first
stage of the work, only the spatial domain was allowed to evolve through change, but
in the second we extended the formalism to allow both spatial structure and attribute
domain evolution.

One of the as yet only partially solved problems in spatio-temporal reasoning is the
extraction from a temporal sequence of spatial snapshots a collection of dynamic and
evolving spatial objects. We expect the formalism developed here to allow the construc-
tion of constraints imposed by pairs of spatial snapshots to possible object evolutions
within the sequence. Figure 10 shows an example of the process carried through five
time steps, t1 up to t5. The top portion of the figure shows the dynamic spatial scene,
comprising of a temporal sequence of scene snapshots. The approach is to utilize the
formal constraints, as developed above, to identify possible relationships between the
objects in consecutive snapshots. These relationships will be labeled with uncertainty
levels, according to weight of evidence that a relationship exists. In the lower half of the
figure, the weighted relationships have been used to determine the dynamic object and
its change relationships. In the example, there are merge, creation, splitting, attribute
change, attribute combination, destruction, and hole formation change events. This is
the subject of ongoing work.
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Abstract. Methods to automatically derive landforms have typically focused on 
pixel-based, bottom-up approaches and most commonly on the derivation of  
topographic eminences. In this paper we describe an object-based, top-down al-
gorithm to identify valley floors. The algorithm is based on a region growing 
approach, seeded by thalwegs with pixels added to the region according to a 
threshold gradient value. Since such landforms are fiat we compare the results 
of our algorithm for a particular valley with a number of textual sources de-
scribing that valley. In a further comparison, we computed a pixel-based six-
fold morphometric classification for regions we classified as either being, or not 
being, valley floor. The regions classified as valley floor are dominated by pla-
nar slopes and channels, though the algorithm is robust enough to allow local 
convexities to be classified as within the valley floor. Future work will explore 
the delineation of valley sides, and thus complete valleys. 

Keywords: Landform, geomorphometry, valley, valley floor, delineation. 

1   Introduction 

Since the early 1990s the explosion of availability of spatial data in general, and data 
describing the elevation of the earth’s surface in particular, has led to considerable 
effort by geomorphologists and GIScientists to develop techniques capable of de-
scribing and delineating the features which go together to make up a landscape. In 
many ways, such research is a return to early ideas expressed by Maxwell [1] in his 
treatise “On hills and dales”. In this paper, we are particularly interested in the de-
lineation of landforms, that is to say attempts to answer questions such as “Where is a 
mountain?” posed by Fisher et al. [2]. However, in our exploration of the literature we 
noted a concentration by GIScientists on the delineation of mountains (e.g. ibid., [3]) 
or, as they are also more neutrally termed, topographic eminences [4]. Further, Hug-
get [5], a geomorphologist, states that “valleys are so common that geomorphologists 
seldom defined them and, strangely, tended to overlook them as landforms”. Thus, in 
this paper we describe research which aims to explore a range of techniques for the 
extraction of valleys, concentrating on valley floors. Importantly, we are concerned 
not with the extraction of channel networks (the thalweg), but with deriving the spa-
tial extent associated with a valley floor.  

An important prerequisite to extracting landforms is to consider what the term it-
self implies. In the literature there appear to be two contrasting, and for GIScientists 
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familiar, sets of definitions. The first set of definitions are essentially field-based. For 
example, Whittow [6] defines landform as “the morphology and character of the land 
surface that results from the interaction of physical processes (...) and crustal move-
ments with the geology of the surface layers of the Earth’s crust”. Following this 
definition, landforms are defined by fields of continuous attributes (e.g. gradient and 
curvature) and a multitude of what we will term pixel-based extraction techniques 
have been developed which set out to extract landform elements on the basis of simi-
larities in these attributes. The second set of definitions view landforms as objects, 
with for example Lapidus et al. [7] and Blasczczinski [8] giving examples of land-
forms which include mountains, valleys, rivers and canyons. 

These two sets of definitions lead, in turn, to two different approaches to the prob-
lem of extracting landform(s) (elements). In the case of a field-based view of land-
forms, the problem is essentially bottom-up. Attributes are defined over an entire 
landscape, and a range of techniques applied to identify areas within a landscape with 
similar attribute values. By inspection of attribute values within similar landform 
elements, they may be assigned either a name reflecting simply these attribute values 
(e.g. double-convex slopes), or be associated with a landform (e.g. convex local 
maxima may be assigned to the landform topographic eminence). In an object view of 
landforms the essential difference is that the starting point is some notion of the land-
form under investigation, which in turn leads to a top-down method. Thus, our start-
ing point is to characterise a landform of interest (e.g. a valley) before applying a 
range of methods to delineate the boundaries or, if we adopt a fuzzy approach similar 
to that proposed by Fisher et al. [2], the valleyness of locations. 

In this paper we describe a case study with a special focus on Gürbe valley in 
Switzerland, using techniques based on both popular notions of Gürbe valley and a 
top-down method developed to extract valley floors from DEMs. We firstly set out a 
range of related work on the extraction and definition of landforms and landform 
elements, as well as the application of Naïve Geography to delineating object bounda-
ries and list a series of definitions of the landforms valley and valley floor. We then 
describe simple methods to extract Gürbe valley from natural language descriptions, 
before we introduce a DEM-based algorithm for the delineation of valley floors. The 
algorithm results are illustrated over Switzerland as a whole before we describe them 
in detail for the Gürbe valley and relate them to the natural language descriptions and 
compare our results with a pixel-based classification. 

2   Related Work 

2.1   Describing Landscapes in Terms of Surface Form 

Geomorphometry can be defined as the quantitative measurement and analysis of the 
form of the earth’s surface. A range of attributes are used in describing this form (cf. 
e.g. [9, 10]). In GIScience terms these attributes can be split into focal, zonal and 
global measures. Basic focal attributes encompass the first order derivatives of eleva-
tion, i.e. slope in terms of magnitude (gradient) and direction (aspect) [11, 12]. Pro-
file, plan and a variety of additional curvature measures (cf. [13]) are second order 
derivatives of elevation. All these measures can be approximated from a moving 
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window through a focal operation, typically with a neighbourhood of 3x3 cells, 
though Wood [14] and others have emphasised the importance of scale (and thus 
varying window size) on the derivation of such attributes.  

Zonal attributes are computed within some defined analysis region. Local relief [15] 
defined as the range of elevations in an area is an example. The hypsometric curve and 
the hypsometric integral are also calculated over a pre-defined region, typically a 
drainage basin. 

Global attributes, which in principle can consider any cell within the study area, 
are typically more complex to compute. Examples are the distance to a local depres-
sion, the elevation above local depression [16] or ridge proximity [17]. 

Compound derivatives combine two or more terrain attributes which may be fo-
cally, zonally or globally defined. Examples in geomorphology include the topo-
graphic wetness index [18, 19] and the stream power index [10]. 

Pixel-Based Bottom-Up Approaches. Pixel-based bottom-up approaches are numer-
ous. They can be roughly subdivided into supervised (classification) and unsupervised 
(clustering; classical bottom-up) approaches. The latter first choose attributes on which 
the clustering process is to take place, before forming either crisp or fuzzy clusters by 
minimising intra-class variance and maximising inter-class variance (e.g. [20, 17, 21]). 

Supervised classification utilises either training data or values from the literature to 
identify clusters within data. Pennock et al. [22] proposed a seven-fold crisp classifi-
cation based on Ruhe’s [23] profile form classes. A similar scheme was put forward 
by Dikau [24] and modified by Wood [14]. These classification schemes have – 
sometimes in adapted or extended form – often been applied to derive both crisp [25, 
26, 27, 28] and fuzzy [29, 30] classifications. Wood [14] proposed multi-scale classi-
fication which was extended into fuzzy multi-scale classification based on a range of 
crisp classifications at different scales [2]. 

Object-Based Top-Down Approaches. Besides pixel-based approaches characteri-
sations of topography can result in defined objects, rather than classified pixels (clearly, 
pixel-based characterisations can be used to derive objects by the identification of some 
threshold value). For example, Lucieer and Stein [31] use a texture measure, as well as 
other attributes, to seed a region growing algorithm. However, no a priori knowledge 
about landforms is utilised, making the process essentially data-driven. 

Fisher et al. [2] present a partially top-down approach where they reason about the 
essence of peaks and their relationship to summits. They use fuzzy multi-scale classi-
fication into six morphometric classes resulting in fuzzy areas of peakness associated 
with summits. Although the result is a raster representation of fuzzy regions, the ap-
plied parameters allow individual peaks to be separated from each other. Recently, a 
number of methods have been developed which both incorporate a priori knowledge 
and are object-based [3, 32]. Their methods use peak contributing areas and promi-
nence to delineate mountains and hills and ranges. 

2.2   Determining Region Boundaries 

In identifying the borders of any region, or to be more specific in our case, landform, 
it is important to consider the nature of the region and its borders. Landforms are 
generally classical examples of fiat objects – that is to say they are defined by human 
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perception and do not have a physically unambiguous expression on the earth’s sur-
face because they are vague [33]. Thus, regarding our case study, the area which is 
unambiguously Gürbe valley cannot, by definition, be defined. Recent work has 
sought to define the boundaries of similar vague fiat regions for so-called vernacular 
regions, regions which are used in common parlance but have no official or adminis-
trative boundary. Examples of such regions include downtown or the American  
Mid-West. Montello et al. [34] investigated this problem by asking residents of Santa 
Barbara to sketch the boundaries of downtown on a map. More recently, Jones et al. 
[35] searched for place names co-occurring with vernacular regions, and used density 
surfaces to estimate the borders of the fiat regions. Both of these sets of techniques 
used human perception of the boundaries, or locations found inside a region, to de-
lineate a spatial extent for vernacular regions. 

2.3   Defining Valleys 

There is a range of definitions for the term “valley” in the literature. Here we give 
three typical examples: 

1. a low area more or less enclosed by hills [36]; 
2. a long, narrow depression in the Earth’s surface, usually with a fairly regular 

downslope (Spatial Data Transfer Standard; [37, 38]); and 
3. (a) any low-lying land bordered by higher ground; especially an elongate, rela-

tively large, gently sloping depression of the Earth’s surface, commonly situated 
between two mountains or between ranges of hills or mountains, and often con-
taining a stream with an outlet. It is usually developed by stream erosion, but may 
be formed by faulting. (b) a broad area of generally flat land extending inland for a 
considerable distance, drained or watered by a large river and its tributaries; a river 
basin. Example: the Mississippi Valley [39]. 

As opposed to the extremely general notion of (1), (2) specifies the shape of the val-
ley explicitly as “long” and “narrow”. Additionally, a valley “usually” has a “fairly 
regular downslope”. (3) begins similarly to (2) but then gives some detail, for exam-
ple, the gentle slope and the presence of streams. 
According to the above definitions, characteristics of valleys include the following: 

− Valleys are low areas or depressions relative to their surroundings. 
− Valleys are elongated. 
− Valleys are (gently) sloping. 
− Valleys often contain a stream or a river. 

The terms ‘valley floor’ or ‘valley bottom’ appear infrequently in the literature. How-
ever, the Dictionary of Earth Science [40] characterises a valley floor as “the broad, 
flat bottom of a valley” and says it is “also known as valley bottom; valley plain”. 
Bates and Jackson [39] define it as “the comparatively broad, flat bottom of a valley; 
(...)” and refer to “valley bottom” and “flood plain” as synonyms. However, ‘flood 
plain’ has the implication/affordance of being occasionally inundated by a river (and 
thus implies that a valley floor must, in contrast to the above, contain a river). In con-
clusion we can say that a valley floor is a relatively broad, flat region within a valley 
and will thus inherit the characteristics of valleys listed above. 
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2.4   Delineating Valleys 

Researchers from several fields have investigated methods to extract valleys or fea-
tures pertaining to valleys from digital representations.  

Tribe [41] aimed to automatically recognise valley heads from DEMs by applica-
tion of a region growing algorithm on seed cells near the upper end of simulated 
drainage branches. In a follow-up paper, Tribe [42] reviewed shortcomings of existing 
“valley and drainage network recognition” methods. Most of the reviewed methods 
seem to yield one pixel wide ‘valleys’. A new method improving upon the methodol-
ogy by Carroll [43] is proposed, including a threshold slope in order to eliminate 
insignificant depressions and including a larger user-defined neighbourhood in order 
to reduce network discontinuities in wide, flat-floored valleys. 

Miliaresis and Argialas [44] also applied a gradient-dependent region growing al-
gorithm for their delineation of mountains, piedmont slopes and basins from 
GTOPO30. They used pixels with higher-than-mean flow accumulation as seed cells 
for basins and, with upslope flow direction, for mountains. However, “the seeds for 
basins did not give the impression of a network” [44: 720], since basins had gradients 
less than 2° and aspect/flow direction was undefined. “Thus, the high order valley 
lines remained undetected” (ibid.). However, the resulting segmentation seems to 
have overcome this limitation. It was favourably compared to a physiographic map of 
the region. The extraction of mountain objects but not of basins and slopes was then 
successfully tested in two additional regions and later re-used in another study [45] 
which aimed at further describing the extracted mountain-objects with additional 
topographic attributes (cf. also [46]). 

Chorowicz et al. [47] proposed a method for the extraction of drainage networks of 
areal features. The method seeks to combine a threshold-based “profile scan” and the 
“hydrological flow routing” method to overcome the problem of hydrological flow 
routing yielding one-pixel wide channel networks. 

Sagar et al. [48] studied the extraction of what they term ridge and valley connec-
tivity networks (RCN and VCN). The authors use multi-scale opening and closing, as 
well as erosion and dilation of the DEM to extract these networks. While the results 
for the RCN look relatively sensible, the method seems to have problems with flat-
floored valleys where, for smaller neighbourhoods, the concave areas where the val-
ley floor joins the valley sides seem to be extracted rather than the valley axes. 

A very different, contour-based approach to hill and valley extraction was pro-
posed by Cronin [49]. One problem of contour-based delineation is the ambiguity of 
open contours. This is resolved by arbitrarily choosing the smaller area on either side 
of the open contour as the interior of the contour line. The extraction method is exem-
plified at four sites. However, three of them feature hills and valleys of approximately 
half the size of the study area and the fourth example seems to suggest that the pre-
sented algorithm tends to derive hills and valleys of a size that is controlled by the 
map extent and scale. 

As already described, curvature-based methods have been implemented by several 
authors (e.g. [14, 2]) on a multi-scale basis – operationalised as varying window sizes 
for curvature calculation. However, the latter study focused on mountains or convexi-
ties rather than valleys. While these multi-scale methods account for the fuzziness of 
landforms they generate pixel-based characterisations (‘channelness’) rather than  
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contiguous objects such as valleys or valley floors. Also, while the multi-scale nature 
of the approaches is better able to portray landscapes with their inherent multi-scale 
properties, the problem of choosing an appropriate window size (or range of sizes) for 
characterisation is unsolved. Gallant and Dowling applied a similar method, but based 
on the application of slope (representing flatness) and elevation percentiles (represent-
ing lowness with respect to surroundings), to the classification of valley bottoms [50]. 

2.5   Research Gaps 

In general, work on the delineation of landforms and landform elements has focused 
on bottom-up methods, often pixel-based, and especially the delineation of topog-
raphic eminences. In this paper, we therefore wish to address the issue of the extrac-
tion of valley (floors) from two perspectives – one based around Naïve Geography 
and the other focusing on a top-down geomorphometric approach. Furthermore, we 
wish to compare the results of the applied method to a pixel-based method, the classi-
fication into six geomorphometric classes identified by Wood [14]. 

3   Defining the Gürbe Valley through Naïve Geography 

For Naïve Geography delineations of the Gürbe valley we looked primarily at natural 
language descriptions from internet sources provided by both the general public and a 
tourism organisation in the area. They thus deliberately do not portray a specialist or 
geoscientific view of the valley or of valleys in general. 

The general public’s view was operationalised using Wikipedia. Although the 
community model (‘crowd-sourcing’) of this online reference work has limitations, 
Wikipedia is used and referred to by the public. Wikipedia is split into language 
groups, the encyclopaedic coverage and, of course, regional focus of the language 
groups differing significantly. There were 2,150,000 English articles vs. 690,000 
German articles as of January 7th, 2008 [51]. 

For the tourism perspective we referred to the tourism association of the Gürbe val-
ley (Verkehrsverband Region Gürbetal, [52]) which owns the internet domain 
‘www.guerbetal.ch’. We obtained a snapshot of the website as of February 2nd, 2007 
from the internet archive [53]. 

In order to gain additional clues on the extent of the Gürbe valley and some other 
topographic features mentioned e.g. by Wikipedia, we analysed toponyms used in 
Swiss topographic maps, similarly to [2]. For this purpose we used three scales of 
Swiss maps: 1:25,000, 1:50,000 and 1:100,000. 

For comparison with DEM-based methods, and due to the limited number of 
points, convex hulls were derived for toponym label locations associated with the 
Gürbe valley, whilst region boundaries were used as is. 

4   Automatically Extracting Valley Floors 

4.1   Operationalisation 

In developing a method for the extraction of valleys, the eventual aim of our work, Max-
well [1] was chosen as a starting point. The dales as defined by Maxwell equal drainage 
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basins and effectively enclose valleys. While the enclosing relation may be one-to-one 
(typically in small headwater drainage basins), this is of course not necessarily the case 
for larger drainage basins which may contain several valleys. Thus, in order to narrow 
down the search area for valleys, which we consider to have a one-to-one relationship 
with valley floors, we clip drainage basins of a certain Shreve order with contributing 
drainage basins of lower orders (cf. also [54]). A drainage sub-basin is thus defined, a 
core area more closely related to one valley than the original drainage basin. 

Starting from the definitions in section 2.3 we assumed that streams or thalwegs 
could well serve as conceptual cores of valleys and their floors. Valley floors can then 
be described as relatively flat areas bordering thalwegs. Thus, valley floors can be 
extracted by imposing a gradient threshold on a region growing procedure seeded by 
thalweg/stream cells. In accordance with our assertions on the relations of drainage 
(sub-)basins and valleys we also imposed drainage sub-basin constraints – region 
growing only occurs within, and not across, sub-basins. 

4.2   Implementation 

The procedure of extracting approximations to valley floors is as follows. First, the 
SRTM DEM [55] was projected into the Swiss national projection system and resam-
pled to 100 m resolution. The DEM was then filled and D8 flow directions and a flow 
accumulation grid calculated. By imposing a channel initiation threshold of ≥ 500 
cells a stream network and its Shreve ordering was derived, with pourpoints being 
created where stream of differing orders merged. 

Subsequently, drainage basins of order x were clipped by all drainage basins of order 
y < x. The use of Shreve ordering led to a segmentation of the drainage basins in general 
flow direction, i.e. each segment of a river between two tributaries has its own drainage 
sub-basin, cf. Fig. 1. A raster dataset was computed storing for each drainage sub-basin 
its hydrological order and an ID unique amongst the sub-basins of that order.  

Using this raster and a raster of the streams a region growing procedure using 
stream cells as seeds was carried out. Growing was allowed to occur only within an 
 

 

Fig. 1. Clipping of drainage basins. Solid outline represents original drainage basin of point P, 
dashed outlines represent several drainage sub-basins pertaining to different streams (grey 
lines). The drainage sub-basin of point P is represented by the grey area. 
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individual drainage sub-basin. A raster cell i was classified as pertaining to the valley 
floor, when at least one of its neighbours was a seed cell or a grown valley floor cell 
and one of the following conditions concerning the elevations of cell i and the seed 
cell was met: 

Cardinal neighbours: ( ) .0tan melevelev seedithrsh ≥−≥⋅ λγ  (1) 

Diagonal neighbours: ( ) .02tan melevelev seedithrsh ≥−≥⋅⋅ λγ  (2) 

where γthrsh: gradient threshold [°], λ: cell size [m], elevi and elevseed: elevation [m] of 
cell i and seed cell, respectively. 

This procedure ensures that valley floors are contiguous and that only those areas 
which can be reached from the thalweg with a low slope are delineated as belonging 
to the valley floor, thus matching the definitions for valley floors in section 2.3. Re-
gion growing was run iteratively until no new valley floor cells were detected. We 
tested a range of gradient thresholds (γthrsh) from 0.25° to 3° where, through qualitative 
visual examination, a threshold value of 1.5° gave the most promising results and was 
used in the following evaluation.  

5   Results and Discussion 

Fig. 2 shows delineated valley floors in Switzerland and bordering regions. Note the 
floors of the broader alpine valleys, the conspicuous Rhine valley near the border of  

 

 

Fig. 2. Delineation of valley floors (light grey areas) using 1.5° threshold in the area of Switzer-
land (border in black). The black square denotes the region of the Gürbe (and Aar) valley sub-
sequently analysed in detail. 
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Switzerland, Liechtenstein and Austria in the upper right corner and the Rhône valley 
in south-western Switzerland. Note also the floor of the Rhine Graben marking the 
border of France and Germany. While the extents of valley floors in the Swiss Prealps 
and in the lowland seem relatively sensible, the delineation may be problematic in 
France near the western border of the study area. There an obviously less accentuated 
topography leads to large regions being classified as valley floor. 

In the remainder of this section we will compare the extent of the delineated valley 
floor in the Gürbe valley – a prealpine valley marked by the square in Fig. 2 – to valley 
delineations based on Naïve Geography descriptions of the area. Subsequently we com-
pare our valley floor delineation to the distribution of six morphometric classes [14]. 

5.1   Comparison with Naïve Geography Delineations 

The following excerpt is our translation of the entry in the German-speaking Wikipe-
dia article “Gürbetal” (Gürbe valley) [56]: 

 

 

Fig. 3. Characterisation of the Gürbe valley in the German-speaking Wikipedia. Black linear 
features are administrative boundaries (large, in the middle: district of Seftigen; smaller: adja-
cent municipalities), dark grey features are water bodies. Background is a hillshaded DEM with 
delineated valley floors superimposed in light grey. 
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 “The Gürbe valley is the region between Bern and Thun (west of the Aar) in Switzer-
land. It encompasses the district of Seftigen and neighbouring municipalities. The val-
ley is named after the river Gürbe. The largest town in the valley is Belp. The Gürbe 
and Aar valleys are separated by Belpberg (a ridge). To the west, the Gürbe valley is 
bordered by Längenberg. The flat Gürbe valley floor has a width of between 1 and 
2 km and is intensively farmed.” 

Fig. 3 shows a depiction of the most important elements in the Wikipedia article 
along with our delineation of the valley floor. In the western part of the area is the 
River Gürbe, in the eastern part the river Aar flows out of Lake Thun. North of Belp 
the Gürbe flows into the Aar which then in turn flows through Bern. As can be seen in 
Fig. 3, Wikipedia’s description of the ridge Belpberg separating the Gürbe valley 
from the Aar valley somewhat contradicts the assertion that the Gürbe valley is the 
region bordering the Aar from the west or encompasses the district of Seftigen (whose 
eastern border is in fact the Aar). However, the width of the Gürbe valley specified by 
Wikipedia to be 1 to 2 km closely matches the area the DEM-based algorithm deline-
ated as valley floor. 

The boxes in Fig. 4 denote the extent of toponym labels mentioned in the Wikipe-
dia article [56] signifying the Längenberg, the Gürbe valley and the Belpberg (from 
east to west) as extracted from Swiss 1:25,000, 1:50,000 and 1:100,000 maps. Note 
how the Belpberg toponym labels indeed flank those of the Gürbe valley and the 
adjacent delineated valley floor of the Aar valley. The boundary of the district of 
Seftigen, however, contains Belpberg and can thus be deemed to be – at least in this 
region – too wide an approximation to the Gürbe valley. 

Although for cartographic reasons toponym labels may not be placed directly over 
the objects they signify, toponym label locations and the valley floor delineated using 
our algorithm coincide well. However, the 1:100,000 toponym label of Gürbe valley 
extends significantly further south than toponym labels from larger scales into a re-
gion our algorithm also delineated as valley floor.  

The apparent uncertainty about the upper end of the Gürbe valley is reinforced by 
descriptions by the tourism authority of the Gürbe valley. Its website [52, 53] lists 
seventeen municipalities that belong to the Gürbe valley which are shown in Fig. 5 
along with their convex hull. This delineation contains large areas of the delineated 
valley floor and also matches relatively closely the locations of the Gürbe valley 
toponyms in Fig. 4 – except for the toponym of 1:100,000 which extends considerably 
further south and the municipality of Rüeggisberg which, judged from the toponyms 
(Fig. 4) is west of Längenberg. 

5.2   Comparison with Pixel-Based Morphometric Classification 

In order to compare the valley floor delineation method with a pixel-based classifica-
tion, we computed six morphometric classes [14] for the whole region shown in 
Fig. 2. We selected a window for implicit surface fitting of between 3 and 7 cells 
(~300 to 700 metres). In order to determine sensible thresholds for surface gradient 
and curvature we computed classifications using LANDSERF [57], with curvature 
threshold of 0.1 and 0.5. We selected a gradient threshold of 1.5° which both gave 
sensible results and matches the threshold of our region-growing approach.  
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Fig. 4. Outline of toponym labels of Swisstopo
maps 1:25,000 (lightest), 1:50,000 (medium)
and 1:100,000 (darkest grey) referring to 
Längenberg (west), Gürbe valley (middle) and
Belpberg (east). Background: hillshaded DEM, 
and delineated valley floor, district of Seftigen
(black outline) for reference. 

 

Fig. 5. Municipalities listed as belonging to 
the Gürbe valley by the tourism organisation 
of the region together with a convex hull (1: 
Kehrsatz, 2: Belp, 3: Zimmerwald, 4: Belp-
berg, 5: Toffen, 6: Gelterfingen, 7: Gerzensee, 
8: Kaufdorf, 9: Rümligen, 10: Kirchen-
thurnen, 11: Rüeggisberg, 12: Mühleturnen, 
13: Riggisberg, 14: Lohnstorf, 15: Seftigen, 
16: Burgistein, 17: Wattenwil). Background 
as in Fig. 4 

Table 1. Proportions of morphometric classes for region shown in Fig. 2 

 Thresholds in classification 
 {1.5°; 0.1} {1.5°; 0.5}

Pit 0.28 % 0.00 %
Channel 28.93 % 6.64 %
Pass 1.00 % 0.01 %
Ridge 28.27 % 8.03 %
Peak 0.22 % 0.00 %
Planar 41.30 % 85.31 %

 
Table 1 shows the proportions of each morphometric class for the two curvature 

values. With a lower threshold curvature the proportion of curved features such as 
channels, passes or ridges is considerably higher. The adoption of a higher threshold 
curvature results in an explosion in planar features (85% of the whole region is classi-
fied as planar) and we do not further compare values with these thresholds.  
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Fig. 6. Cross-tabulation statistics of valley floor delineation vs. morphometric feature classifi-
cation for region shown in Fig. 2 with gradient threshold of 1.5° and curvature threshold 0.1 in 
the latter 

Fig. 6 shows a cross-tabulation between our classification into streams, valley floor 
and areas not deemed to be valley floor and the six-fold morphometric classification 
into pit, channel, pass, ridge, peak and planar classes with thresholds {1.5°; 0.1}. 
Areas not classified as valley floors have almost equal proportions of channel, ridge 
and planar pixels. This is in clear contrast to streams where channel pixels dominate 
and almost no ridge pixels (< 2%) occur and to the valley floors where there is a clear 
dominance of planar pixels, followed by channel (16%) and ridge (6%) pixels. 

Figs. 7 and 8 show the spatial arrangement of the delineated valley floor with re-
spect to the morphometric classification and are mutually exclusive since they each 
depict a part of the six-fold classification but together show all classes except for 
passes (which are also present in the valley floor).  

Fig. 7 shows many channel features on the valley floor, however, their location sug-
gests that these are primarily artifacts occurring near the concavity of the transition from 
valley floor to side slopes. Pits are found throughout the valley floor, often close to 
channel features. Fig. 8 shows that there are several instances of ridge pixels and also 
some peak pixels located within the delineated valley floor mainly (but not exclusively) 
of the Aar valley. These stem from minor surface undulations which were, from the 
perspective of some seed pixels, sufficiently smooth to be classified as valley floor. 

Summarising, the classifications of morphometric features suggest that the attrib-
utes of our valley floors at a pixel level make sense (relative dominance of channel 
and planar features in streams and valley floors). Furthermore, minor ridges and peaks 
(which may well be glacial features such as moraines and eskers) are identified by our 
algorithm as belonging to the valley floor. This suggests a potential strength of object-
based top-down approaches over pixel-based methods, where the delineation of a 
relatively simple landform such as valley floor may not easily be reproduced by ex-
tending a pixel-based morphometric classification (e.g. through subsequent applica-
tion of a gradient threshold on planar features). 
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Fig. 7. Planar, pit and channel pixels of classi-
fication {1.5°; 0.1} within delineated valley
floors 

Fig. 8. Planar, ridge and peak pixels of classi-
fication {1.5°; 0.1} within delineated valley 
floors 

5.3   Limitations and Extensibility of the Approach 

An obvious limitation of the approach is the adoption of a single universal gradient 
threshold for the delineation of valley floors with a region growing algorithm. While 
the quality of the results can be judged visually, there is no clear indication of a uni-
versally applicable threshold to be obtained from the literature or everywhere else. A 
possible extension of the approach would select a threshold based upon some con-
textual information, e.g. lower gradient threshold for lower order (and usually less 
incised) streams or the tuning of the threshold with some property of the respective 
drainage sub-basin. However, while such a procedure might improve results it would 
also introduce additional ambiguity in the form of new parameters. 

6   Conclusions and Outlook 

In this paper our key aim was to develop a robust method, capable of deriving valley 
floor extents over a large area. The developed method is object-based and top-down – 
that is to say it uses definitions of valley floors in the algorithm development and 
grows regions which are considered to be valley floor. To assess the method, given 
the fiat nature of landforms, we compared the extents of valleys derived from Naïve  
 



 Delineation of Valleys and Valley Floors 333 

Geography sources with valley floors from our algorithm. Using the Gürbe valley in 
Switzerland as an example, comparisons show a relatively good agreement between 
the vernacular region associated with the Gürbe valley from a variety of sources and 
the valley floor delineated using our DEM-based algorithm. Additionally, we com-
pared our top-down approach to a pixel-based more bottom-up approach which classi-
fies a DEM into six morphometric classes. This comparison showed that our valley 
floors had differing distributions of morphometric classes from non-valley floor areas 
(primarily planar slopes and channels), though our algorithm was capable of classi-
fying pixels identified as ridges and peaks as belonging to the valley floor. 

It appears that valleys and associated landforms or, more generally, topographic 
depressions, have gained less attention in the literature than, for example, topographic 
eminences. We thus intend to continue our current work to delineate valley sides, and 
thus define the extent of valleys and their relationship to topographic eminences. 
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Abstract. The discontinuities in boundaries and exteriors that regions with 
holes expose offer opportunities for inferences that are impossible for regions 
without holes. A systematic study of the binary relations between single-holed 
regions shows not only an increase in the number of feasible relations (from 
eight between two regions without holes to 152 for two single-holed regions), 
but also identifies the increased reasoning power enabled by the holes. A set of 
quantitative measures is introduced to compare various composition tables over 
regions with and without holes. These measures reveal that inferences over rela-
tions for holed regions are overall crisper and yield more unique results than re-
lations over regions without holes. Likewise, compositions that involve more 
holed regions than regions without holes provide crisper inferences, which sup-
ports the need for relation models that capture holes explicitly.  

1   Introduction 

The proliferation of geosensor networks (Stefanidis and Nittel 2004) for monitoring 
spatially distributed phenomena challenges spatial querying and spatial reasoning 
methods beyond the state of the art of current GISs. In addition to the real-time analysis 
of spatial fields, the traditional spatial-database domain of object-based querying 
requires renewed attention as well. While the focus on simple cases of homogeneous 2-
dimensional regions has dominated the formalization of spatial relations and spatial 
reasoning, holes—typically considered the minnows of geospatial modeling—raise to 
primetime with the analysis of objects that are derived from geosensor networks. In 
such settings, the need for spatial reasoning with holes is not solely motivated by the 
prototypical static cases such as South Africa completely surrounding Lesotho or 
Manitoulin Island in Lake Huron as the world’s largest island in a lake. It also arises 
from less controlled and more frequently occurring scenarios such as sensor failures, 
leading to coverage holes, that is, areas that cannot be reached by a certain amount of 
sensors (Ahmed et al. 2005). Likewise variations in analytical thresholds to extract 
regions of homogenous values from fields may yield regions with holes, while other 
types of holes found in wireless sensor networks, such as routing holes, jamming holes, 
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or sinkholes, are typically related to cavities in graphs. The holes referred to in this 
paper, more closely resemble coverage holes. 

Figure 1 shows a sensor network of buoys deployed in the Gulf of Maine to record 
such variables as wind speed, wave height, air and water temperatures, and atmos-
pheric pressure (http://www.gomoos.com/). The two snapshots in Figures 1a and 1b 
refer to the available data on two consecutive days, where the highlighted regions 
depict two zones with data unavailability, each around a malfunctioning buoy, yield-
ing holes in the coverage regions. With the movement of the buoys on the ocean sur-
face, these zones of data availability shift, and so do the holes of missing data. The 
comparison of both regions over the 2-day period reveals that for the first buoy, both 
the region and its hole have moved on the second day (Figure 1c), while the second 
buoy’s region has changed only slightly in size but its hole has moved (Figure 1d). In 
order to perform such analyses at a more abstract level, so that it could be performed 
conveniently through a spatial query language, one needs an account of the possible 
relations between such regions with holes. Beyond such an enumeration of all possi-
ble cases, however, the inferences that can be drawn from such relations reveal new 
insights. For instance, what could be derived if one had further information available 
that on day 3 the regions have moved such that they are now disjoint from their posi-
tions on day 2?  

 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Example of regions with a hole due to data holes in a buoy network in the Gulf of 
Maine: (a) two regions, A (left) and B (right), with missing data on 02/04/2005, (b) two re-
gions, A' (left) and B' (right), with missing data on 02/05/2005, (c) overlay regions A and A', 
and (d) overlay of regions B and B' 

The nature of holes in three-dimensional objects has been studied from a philoso-
phical perspective (Casati and Varzi 1994; Lewis and Lewis 1970). An explicit theory 
for holes (Varzi 1996) builds on contributions from ontology (addressing the holes’ 
identity conditions), mereology (their part-whole relations), topology (the relations 
between holes and their hosts, as well as the patterns of their interactions with the 
environment), and morphology (referring to the shapes of holes, their fillability, and 
their ability to be penetrated by other entities). Despite such philosophical studies 
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computational models of spatial relations between regions with holes have been 
scarce, however.  

The most fine-grained models for topological relations involving regions with 
holes employ a spatial scene of regions (Egenhofer et al. 1994). The topological rela-
tion between two regions, one with n holes the other with m holes, is modeled as a 
spatial scene with 2+n+m regions, in which each holed region is filled, yielding a 
generalized region. All holes are inside their hosts, the generalized region (although 
variations with holes coveredBy or equal to the host have been considered as well), 
and all other relations with respect to the generalized regions and between the n+m 
holes are captured explicitly. Based on this approach, the topological relations be-
tween a region with a hole and a region without a hole have been studied (Egenhofer 
and Vasardani 2007). 

This paper investigates how spatial-relation reasoning over 2-dimensional regions 
with holes differs from similar inferences without holes. The introduction of a hole 
into a region is expected to increase the number of possible relations with such a 
holed-region. For instance, in IR2, a hole in a region gives rise to two cases in which 
a region is separate from another region (Figures 2a and 2b) and three qualitatively 
different cases in which a region touches another region (Figures 2c-2e). A question 
of interest is to examine how the larger number of relations affects the ambiguity of 
qualitative inferences through the relations’ compositions.  

(a) (b) (c) (d) (e)  
Fig. 2. Example configurations of binary relations of single-holed regions 

For this goal, this paper derives the set of topological relations between two re-
gions, each with one hole, called a single-holed region, and the complete composition 
table for relations between single-holed region relations. The crispness and ambiguity 
of these inferences is then compared with the established inferences for the relations 
of regions without holes, called simple regions (Egenhofer 1994) and for the relations 
between a simple region and a single-holed region (Egenhofer and Vasardani 2007). 
This analysis calls for new analytical methods for comparing composition tables over 
relation sets with different cardinalities, which are developed in this paper. 

The remainder of the paper is structured as follows: Section 2 discusses various 
models of relations between regions with holes and visually similar configurations. A 
set of jointly exhaustive and mutually disjoint binary topological relations between two 
single-holed regions is systematically derived (Section 3) and analyzed for their prop-
erties (Section 4). Section 5 determines the inferences that one obtains from the  
composition of two single-holed region relations. Section 6 introduces a novel set of 
quantitative measures to compare composition tables over differing domains and ap-
plies them to the various compositions over single-holed regions and regions without 
holes. The paper closes with conclusions and a discussion of future work (Section 7). 
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2   Relations of Holed Objects 

Models of spatial relations account for holes at various granularities. Some address 
relations with holed objects at the same level as without holes, essentially ignoring the 
restrictions, as well as opportunities, offered by the holes when making qualitative 
inferences. Other models account for holes, but employ the same mechanisms 
developed successfully for relations of objects without holes. Most restrictive are 
models, such as the 9-intersection (Egenhofer and Herring 1994), that exclude regions 
with holes, but in return its region relations form a relation algebra with consistent 
inference behavior, a property that is unknown for other sets of spatial relations with a 
more ambitious domain (Li and Ying, 2003).  

The coarsest level of topological relations that apply to holed regions abstracts 
away the holes, considering only relations between regions without holes; therefore, 
no particularities that arise through the holes can be captured (such as a region that is 
fully contained in another regions’ hole vs. in the region). This applies, for instance, 
to the relations between minimum bounding rectangles (Papadias et al. 1995).  

In a similar way the region-connection-calculus (RCC) considers for regions with 
holes the same relation definitions as for regions without holes, yielding eight jointly 
exhaustive and pairwise disjoint topological relations (Randell et al. 1992). While 
compact and compatible across regions with an arbitrary number of holes, this ap-
proach implies, for instance, that a region A located outside of another region B  
(Figure 2a) has the same topological relation as if A were located in B’s hole  
(Figure 2b). In the same vein, the three external-connection configurations—A is 
externally connected to B from the outside (Figure 2c) or from the inside through B’s 
hole (Figure 2d), or by filling B’s hole completely (Figure 2e)—are categorized by the 
same RCC relation. 

The application of the vanilla 9-intersection to such complex spatial objects as re-
gions with holes yields thirty-three relations (Schneider and Behr 2006). Much like 
RCC it provides a single relation for configurations with or without holes distinguish-
ing, however, some additional details that are a grouped together in RCC. This comes, 
however, at the premium of causing some anomalies when holes are introduced into 
or removed from regions, leading at times to reclassifications of relations. For in-
stance, B filling A’s hole (Figure 2e) has the same vanilla 9-intersection as Figures 2c 
and 2d, but when B’s hole is filled, the configuration switches to a relation of its own. 
RCC, on the other hand, offers a more consistent treatment of such scenarios. 

Some of the most detailed relations that seem to model holed region relations actu-
ally apply to visually similar configurations. These are the models for the relations 
between broad-boundary regions (Clementini and di Felice 1996) and the egg-yolk 
model (Cohn and Gott 1996). Broad-boundary regions and egg-yolk regions yield 
conigurations that resemble those of holed regions if one depicts them graphically by 
only drawing the regions’ outlines. Since they both model imprecise regions, how-
ever, they are conceptually significantly distinct from holed regions (Egenhofer and 
Vasardani 2007). For instance, the minor variations in pre-conditions used for the 
broad-boundary vs. egg-yolk models, leading to relation sets with different cardinal-
ities, do not apply to holed regions.  
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3   Topological Relations between Two Single-Holed Regions 

The following notation is used for topological relations: tRR  refers to the topological 
relation between two simple regions (i.e., without a hole), whereas tRhRh  denotes the 
topological relation between two single-holed regions. At times the relation between a 
simple region and a single-holed region, and its converse, denoted by tRRh  and tRhR , 
respectively, will be used as well.  

The topological relation between two single-holed regions, A and B, is modeled as 
a spatial scene (Egenhofer et al. 1994), comprising the generalized regions, A*  and 
B* , and their corresponding holes, AH  and BH , together with the sixteen binary topo-
logical relations among these four regions (Figure 3). Eight of these sixteen binary 
topological relations are implied for any configuration between two single-holed 
regions, because each region must be equal to itself, A*  contains AH , B*  contains 
BH , and conversely AH  is inside A* , and BH  is inside B* . 

 
 A*  AH  B*  BH  

A*  equal contains t(A*, B* ) t(A*, BH ) 
AH  inside equal t(AH , B* ) t(AH , BH ) 
B*  t(B*, A* )  t(B*, AH ) equal contains 

BH  t(BH , A* ) t(BH , AH ) inside equal 

Fig. 3. Representation of the topological relation between two single-holed regions, A and B, 
comprising eight binary relations and their converses (the remaining eight relations are fixed 
for two single-holed regions)  

At most the four relations t(A*, B* ) , t(A*, BH ) , t(AH , B* ) , and t(AH , BH )  are re-
quired to specify any tRhRh  (Eqn. 1), because their converse relations are implied by the 
arc consistency constraint (Macworth 1977). These four relations are called the con-
stituent relations of a topological relation between two single-holed relations. Their 2x2 
matrix is a direct projection of the top-right elements of the spatial scene (Figure 3).  

tRhRh  (A, B) = 
t(A*, B*) t(A*, BH )
t(AH , B* ) t(AH , BH )

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (1) 

The principal relation between two single-holed regions, π (tRhRh ) , captures the 
relation between the two generalized regions. It is the top-left element of the constitu-
ent relations (Eqn. 2a). The other three constituent relations are referred to as the 
inter-hole relation ω (tRhRh )  (Eqn. 2b), the minor relation ψ(tRhRh )  (Eqn. 2c), and the 
reverse minor relation ψ−1(tRhRh )  (Eqn. 2d).  

π (tRhRh (A, B)) = t(A*, B* )  (2a) 
ω(tRhRh (A, B)) = t(AH , BH )  (2b) 
ψ(tRhRh (A, B)) = t(A* , BH ) (2c) 

ψ −1(tRhRh (A, B)) = t(AH , B* )  (2d) 
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Fig. 4. The specifications of the 152 topological relations between two holed regions, captured 
by their constituent relations (d = disjoint, m = meet, o = overlap, e = equal, cB = coveredBy, 
i = inside, cv = covers, ct = contains) 
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While the domain of the constituent relations is the set of eight region-region rela-
tions, only a subset of the 84 = 4,096 is feasible given the constraint that each hole 
must be included in its corresponding generalized region. For instance, the configura-
tion with the principal relation meet and all other constituent relations overlap is  
impossible, whereas the configuration with the principal relation meet and all other 
constituent relations disjoint is feasible.  

The complete set of feasible topological relations between two single-holed regions 
A and B is derived from the 4-region spatial scene (Figure 3). To specify a tRhRh , each 
of the four constituent relations is replaced in the spatial scene by a single tRR . The 
tRhRh  is then feasible if (1) its 4-region scene is node-, arc-, and path consistent (Mac-
worth 1977) and (2) there exists a planar graphical depiction of that spatial scene.  

By taking into account the dependencies known from the 23 tRRh  (Egenhofer and 
Vasardani 2007) the upper bound of 4,096 tests can be reduced. Splitting the constitu-
ent relations into two 1x2 matrices generates two tRRh —one between simple region 
A*  and a single-holed region B (Eqn. 3a) and another between a simple region AH  
and the single-holed region B (Eqn. 3b). Instead of four variables with a range of the 
eight tRR , this approach leaves two variables that each range over the 23 tRRh , yield-
ing a total of 232 = 529 possible combinations. 

tRRh(A*, B) = [t(A*, B* )  t(A*,  BH )]  (3a) 
tRRh(AH , B) = [t(AH , B* )  t(AH ,  BH )] (3b) 

The set of all consistent configurations was derived with a scene consistency 
checker that iterated over the 23 feasible relations for each of the unknown tRRh  and 
determined computationally whether that scene was node-consistent, arc-consistent, 
and path-consistent. Out of the 529 candidates, 152 combinations fulfilled these crite-
ria. Their feasibility was confirmed by drawing for each, an example configuration 
(http://www.spatial.maine.edu/~mvasardani/152relations.pdf). Figure 4 provides the 
complete set of the 152 consistent relations and a naming scheme to enable the map-
ping from the graphical domain onto their symbolic representations. This naming 
scheme is purely symbolic as the numbers in the symbolic names do not imply an 
ordering. For instance, Figures 1c and 1d are examples of t17  and t81, respectively, 
while Figures 2a-2e map onto t1, t152 , t2 , t141, and t143 . Like other sets of topological 
relations, the 152 tRhRh  are jointly exhaustive—there is always one of the 152 rela-
tions that applies between any possible pair of single-holed regions—and pairwise 
disjoint—for any configuration no more than one of the 152 relations applies. 

4   Properties of the Single-Holed Region Relations 

Are all four constituent relations needed to capture the 152 relations? To answer this 
question we examine the occurrence of the 152 relations for each constituent relation. 
Figure 5 summarizes the occurrences of all tRh Rh  by their principal relation π (tR hRh ) , 
inter-hole relation ω (tRhRh ) , minor relation ψ(tRhR h ) , and reverse-minor relation 
ψ−1(tRhRh ) . The counts of the latter two show the expected converse behavior, but 
otherwise the distributions of these counts differ widely. 
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rel # (π (tRhRh ) = rel)  # (ω (tRhRh ) = rel) # (ψ( tRhRh ) = rel) # (ψ−1( tRhRh ) = rel)  
disjoint 1 48 9 9 

meet 1 22 7 7 
overlap 56 23 23 23 
equal 8 5 1 1 
covers 20 12 23 1 
inside 23 15 1 87 

coveredBy 20 12 1 23 
contains 23 15 87 1 

Fig. 5. Counts (#) of tRh Rh s by their principal relation π (tR hRh ) , inter-hole relation 
ω (tRhRh ) , minor relation ψ(tRhR h ) , and reverse-minor relation ψ−1(tRhRh )  

The summary reveals that most constraining principal relations are disjoint and 
meet, which each yield only a single possible relation for two single-holed regions. In 
both cases the relation between the generalized regions is so strong that the two holes 
must be disjoint and each hole must be disjoint from the other generalized region as 
well. For the remaining 150 relations, the mere knowledge of the principal relation 
leaves the tRhRh  underdetermined, that is, one can exclude some—but not all—
options for the three constituent relations with the holes. Among the underdetermined 
relations, those with the principal relation equal are the most constraining ones  
yielding eight variations, which is the same count as the cardinality of different re-
gion-region relations. This coincidence is not accidental, however, because when two 
generalized regions are equal, then they necessarily contain each other’s holes, which 
between each other may assume any of the eight region-region relations. So any un-
derdetermined tRhRh  with an equal principal relation is completed with the specifica-
tion of the inter-hole relation ω (tRhRh ) . Less restrictive is the principal relation covers 
(and its converse coveredBy). When A*  covers B* , then it necessarily contains BH , 
which means all but three of the 23 tRRh  between AH  and a region with a hole B apply 
( AH  cannot be equal to, cover or contain B* ). Even less restrictive is the principal 
relation contains (and its converse inside). Since A*  contains B*  also implies A*  
contains BH , these tRhRh  are completed with the information about which of the 23 
tRRh  holds between AH  and the region with hole B. The least constraining principal 
relation is overlap, for which 56 different cases apply. 

The occurrences of tRhRh  according to the inter-hole relation ω (tRhRh )  show that 
no tRhRh  is fully determined by its ω (tRhRh )  alone, while the remaining two constitu-
ent relations—the minor ψ(tRhR h )  and the reverse-minor with the same distributions 
for pairs of converse relations—each has three uniquely defined relations: (1) when 
one generalized region coincides with the other region’s hole and (2) when the gener-
alized region is somehow contained in the region’s hole, or converse the region’s hole 
is somehow contained in the generalized region.  

When considering combinations of the constituent relations, two of these duals ex-
hibit good increases in uniquely defined relations: π (tR hRh )  and ω (tRhRh )  together 
specify another 21 relations that are not yet covered by them individually, while 
ψ(tRhR h )  and ψ−1(tRhRh )  together yield another 11 unique relations. The best result 
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from considering triples— π (tR hRh ) , ω (tRhRh ) , and ψ(tRhR h )  or ψ−1(tRhRh ) —yields 
altogether 66 uniquely specified relations. The analysis of the triples also shows that 
20 of the 152 relations (i.e., 13%) are not covered by the union of all three-
combination triples, therefore, requiring all four constituent relations. 

The relation converse to tRhRh , denoted by t RhRh , is implied through the converse 
properties of each constituent relation (Eqns. 4a-d). For the matrix representation of 
tRhRh  (Eqn. 1) this means that t RhRh  is the transposed matrix of the corresponding con-
verse constituent relations (Eqn. 4e).  

t(B*, A* ) = t (A*, B* ) (4a) 
t(B*, AH ) = t (AH , B* )  (4b) 
t(BH , A* ) = t (A* , BH )  (4c) 
t(BH , AH ) = t (AH , BH ) (4d) 

tRhRh (B,A) = tRhRh (A, B) =
t (A* , B* ) t (A* , BH )
t (AH , B* ) t (AH , BH )[ ]

T

=
t(B* , A* ) t(B* , AH )
t(BH , A* ) t(BH , AH )[ ]

 

(4e) 

This dependency allows us to derive for each of the 152 tRhRh  (Figure 4) its con-
verse relation. For instance, t97  and t140  form a pair of converse relations, because the 
constituent relations along the main diagonal form converse pairs—inside/contains 
and coveredBy/covers—and the converses of the constituent relations off the diagonal 
map onto each other—covers/coveredBy and inside/contains.  

A special role is assumed by those tRhRh  whose constituent relations are identical to 
their own converse relations, which identifies these tRhRh  as symmetric relations. An 
obvious symmetric relation is t1 with each constituent relation disjoint, because the 
converses of all four constituent relations are disjoint again, whereas a less obvious 
case is t51 (with overlap and disjoint along the main diagonal being identical to their 
converses, while the two elements off the diagonal—contains and inside—map onto 
each other). Among the 152 tRhRh  eighteen relations are symmetric ( t1 through t3 , t9 , 
t15  through t17 , t31 through t33 , t51 through t53 , t58  through t61, and t64 ), while the remain-
ing 134 relations form 67 pairs of converse relations. 

5   Compositions Involving Single-Holed Region Relations 

The primary method of inferring information about combinations of relations is their 
composition. If two relations ti (A, B) and tj (B, C) are known, then their composition 
over their common region B, denoted by ti ; tj , derives the set of possible relations 
{tk }(A, C). We are mostly interested in examining the influence of the hole on  
the inferences that result from a composition. It is suggested that when the hole of the 
common region of the two composed relations is taken into account, then the 
composition results comprise fewer relations, reducing ambiguities.  

We consider the two composition cases that result in a tRhRh : (1) the compositions 
tRhR ; tRRh ⎯that is, the composition of a relation between a single-holed region and a 
region without a hole, with a relation between a region without a hole and a single-
holed region—and (2) the compositions tRhRh ; tRhRh⎯that is, the composition of two 
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relations each between two single-holed regions. The results are also compared with 
the composition cases that result in a tRR ⎯the compositions tRR  ; tRR  and 
tRRh  ; tRhR , both available from earlier investigations (Egenhofer 1994, Egenhofer 
and Vasardani 2007)⎯to examine the influence of the hole of the common region 
when the rest of the involved regions are plain.  

It might be tempting to derive the compositions tRhRh ; tRhRh  simply from their con-
stituent relations by applying the region-region composition (Egenhofer 1994) for 
each corresponding pair of relations and mapping these constituent compositions back 
onto tRhRh . For instance, the composition of t109  ; t109  could be determined over each 
pair of constituent relations, deriving four times that inside ; inside = inside, so that 
t109  ; t109  is t109 . While this result is correct in this particular case, the approach is 
incomplete and too simplistic, leading at times to incorrect composition inferences. It 
would, for instance, derive for the composition of t99  ; t99  with three compositions of 
inside ; inside = inside and one composition of equal ; equal = equal the incorrect 
result t99 . Instead, the derivation of the compositions of tRhR ; tRRh  and tRhRh ; tRhRh  re-
quires the more involved model of a spatial scene with the complete set of relations 
between generalized regions and their holes.  

To derive the compositions of tRhR ; tRRh , a spatial scene over five regions ( A* , AH , 
B, C*  and CH ) is needed as the framework for deriving the tRhR ; tRRh  composition 
table. Regions A and C have a hole, whereas the common region B is simple, yielding 
25 region-region relations (Figure 6). The four derived relations t(A* ,C* ), t(A* ,CH ) , 
t(AH ,C* ) , and t(AH ,CH ) are the constituent relations of the inferred tRhRh . 
 

 A*  AH  B  C*  CH  

A*  equal contains t(A* , B)  t(A* ,C* )  t(A* ,CH )  

AH  inside equal t(AH , B) t(AH ,C* )  t(AH ,CH ) 
B  t(B, A* )  t(B, AH )  equal t(B,C* )  t(B,CH )  

C*  t(C* , A* )  t(C* , AH )  t(C* , B)  equal contains 

CH  t(CH , A* )  t(CH , AH ) t(CH , B) inside equal 

Fig. 6. The spatial scene of five regions to derive the composition tRhR  (A, B) ; tRRh  (B C) 

The range of t(A, B) and t (C, B) is the set of set of 23 tRhR ; therefore, there are 
232 = 529 compositions. The range of the inferred t (A, C) is the set of 152 tRhRh . The 
scene consistency checker found all compositions to be valid (i.e., node-, arc- and 
path-consistent so that no composition resulted in an empty relation). The two ex-
treme scenarios—compositions with unique and universal results—reveal 44 unique 
cases (i.e., 8.3% of the 529 compositions) and six universal cases (i.e., 1.1%). 

The analog approach was used to derive the tRhRh  ; tRhRh  composition table, starting 
with a spatial scene over six regions for three single-holed regions (Figure 7). 

Since the range of each t(A, B) and t (B, C) is the 152 tRhRh , there are 1522 = 23,104 
compositions. The scene consistency checker found all of them valid⎯that is, each 
relation inferred with the three network consistency constraints has no empty relation 
as its composition result. Among the 23,104 compositions, 2,239 inferences (i.e., 
9.7%) are unique and six (i.e., 0.03%) are universals. 
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 A*  AH  B*  BH  C*  CH  

A*  equal contains t(A* , B* )  t(A* , BH )  t(A* ,C* )  t(A* ,CH )  

AH  inside equal t(AH , B* ) t(AH , BH )  t(AH ,C* )  t(AH ,CH ) 

B*  t(B* , A* )  t(B* , AH )  equal contains t(B* ,C* )  t(B* ,CH )  

BH  t(BH , A* ) t(BH , AH )  inside equal t(BH ,C* ) t(BH ,CH )  

C*  t(C* , A* )  t(C* , AH )  t(C* , B* )  t(C* , BH )  equal contains 

CH  t(CH , A* )  t(CH , AH ) t(CH , B* ) t(CH , BH )  inside equal 

Fig. 7. The spatial scene of six regions to derive the composition tRhRh  (A, B) ; tRhRh  (B, C) 

The tRhRh  ; tRhRh  composition table identifies that three tRhRh  relations are transitive 
(i.e., the composition of such relations results in the same relation). These are t61, t109 , 
and t152 . Among them t61  is the identity relation for tRhRh , because it is symmetric, 
transitive, and reflexive. For t61, the pair of generalized regions A*  and B* , as well as 
the pair of holes AH  and BH , is equal—the two constituent relations along t61’s main 
diagonal. These two constraints imply that A*  contains BH  and AH  is inside B* , 
which are t61’s two constituent relations off the main diagonal. 

The typical non-transitive composition with a unique inference composes two dif-
ferent relations and implies a single relation of a different category. For instance, t2  ; 
t152  implies t1 . Among the non-transitive compositions with unique inferences is, 
however, an interesting case that deviates from this pattern, providing a scenario that 
does not occur with region-region relations. The composition of t143  ; t143  a single-
holed region whose hole is filled by another single-holed region, which in turn has a 
its hole filled with yet another single-holed region—is unique, but unlike a transitive 
relation, it does not result in t143 . Instead, this composition results in t152  (i.e., the 
most-inner nested region is fully contained in the hole of the outer most region).   

6   Analysis of Compositions 

In order to examine a hole’s influence on the inferences, we compare some properties 
of the composition tables involving holed regions. The results offer an insight into 
how the reasoning changes when holes are taken into account and justify the need for 
a separate qualitative model that acknowledges holed regions explicitly.  

Four composition tables are available for this analysis. The first two composition 
tables ( tRR  ; tRR  and tRRh  ; tRhR ) both yield tRR , while the second two composition 
tables ( tRhR  ; tRRh  and tRhRh  ; tRhRh ) both yield tRhRh . Therefore, each pair of com-
parisons has compatible domains. They also feature the same pattern of inserting a 
hole into the common region. 

6.1   Absolute Frequencies of Compositions 

The result of each composition consists of some subset of the complete set of 
relations over which the resulting type of relations ranges. The count of relations that 
are choices in the composition result is called the composition cardinality. 
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Composition cardinality of a unique composition is 1, a composition with two choices 
has composition cardinality 2, etc. Therefore, the upper bound of the composition 
cardinality applies to compositions that result in the universal relation, yielding a 
cardinality that equals to the number of relations in that set. For the compositions 
resulting in tRR — tRR  ; tRR  and tRRh  ; tRhR —the results are subsets of the eight tRR , 
while for compositions resulting in tRhRh — tRhR  ; tRRh  and tRhRh  ; tRhRh —the results 
are subsets of the 152 tRhRh . The focus here is on observations on the frequencies of 
these subsets in each composition table. In order to make the results comparable, the 
frequencies of compositions are normalized (Figure 8). 
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Fig. 8. Normalized frequencies for compositions that result in (a) tRR  and (b) tRhRh  

Finding 1: Inserting a hole, increases frequencies of crisper results. Both normalized 
frequencies reveal that the insertion of a hole into the common region increases the 
frequencies of crisper compositions. This increase is due to the additional constraints 
that the hole puts on the relation with other regions. The frequencies of tRR  
inferences increase for composition cardinalities 1–4 (Figure 8a), while for tRhRh  
inferences the frequencies increase, with a few exceptions, for composition 
cardinalities 1 to approximately 38.  

Finding 2: Compositions of relations with more holes make more fully unambiguous 
inferences. For both compositions summarized in Figure 8, the compositions with the 
highest normalized frequencies are those with a singleton. For the two compositions 
with tRR  inferences, the normalized frequencies of the singleton results are very 
similar⎯42.2% for tRR  ; tRR  and 42.3% for tRRh  ; tRhR —whereas for the two 
compositions with tRhRh  inferences, the normalized frequencies increase⎯from 8.3% 
for tRRh  ; tRRh  to 9.7% for tRhRh  ; tRhRh . These quantified relative increases are 
smaller due to the larger range of the composition results (i.e., 152 vs. 8 possible 
relations). However, the larger number of single-holed regions involved in the 
compositions with tRhRh imposes more constraints on the reasoning, thereby 
increasing the number of fully unambiguous inferences. 
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6.2   Cumulative Frequencies of Compositions 

The cumulative frequency of the composition cardinalities provides another measure 
for a hole’s influence on the inferences. Each composition cardinality cci  has a 
corresponding normalized frequency ˜ f i . Composition cardinalities are ordered, such 
that cci < cci+1, with ccmin  = 1 and ccmax  being the cardinality of the set’s universal 
relation. Taken over the ordered sequence j of all composition cardinalities cc j , the 
cumulative frequency of the composition cardinalities captures the sum of all 
normalized frequencies ˜ f 1 … ˜ f j . Since the composition cardinalities typically differ 
depending on the set of relations considered, they are also normalized onto a scale of 
0 to 1 (by the cardinality of the set’s universal relation), yielding normalized 
composition cardinalities. Figure 9 shows the cumulative normalized frequencies 
over normalized composition cardinalities for the two compositions tRR  ; tRR  and 
tRhR  ; tRRh . Both are compositions over a single-holed region. The differences in the 
two graphs stem from properties of the underlying domains of the composition 
results—8 vs. 152 composition cardinalities—as well as the inference power of the 
different relation sets. 
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Fig. 9. Cumulative normalized frequencies over normalized composition cardinalities for 
tRR  ; tRR  and tRhR  ; tRRh  

Better comparisons can be made between pairs of compositions with equal infer-
ence ranges (Figure 10). Both pairs of corresponding curves have approximately the 
same origin and lead to the identical culmination point (at 100% accumulation for all 
composition cardinalities). 

Finding 3: The insertion of a hole increases monotonically the cumulative 
frequencies of the compositions, preserving the change in the accumulation pace. The 
pairs of cumulative frequency graphs for tRR  ; tRR  and tRRh  ; tRhR  (Figure 10a) as 
well as tRhR ; tRRh   and tRhRh  ; tRhRh   (Figure 10b) have similar shapes. In both cases, 
the curves increase strictly monotonically, except at their tail ends where they remain 
almost constant. The composition cardinalities over a single-holed region always have 
higher cumulative frequencies than their respective composition cardinalities over a 
simple region. The same shape and the higher cumulative frequencies, motivate 
further investigations into the properties of the cumulative normalized frequencies.  
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Fig. 10. Cumulative normalized frequencies over normalized composition cardinalities for 
compositions resulting in (a) tRR  and (b) tRhRh  

Since the curves of corresponding composition pairs form essentially closed areas, 
it is feasible to quantify the difference in the cumulative frequencies by considering 
the increase in the area from the composition curve without a hole to the composition 
curve with a hole (Eqn. 5a and 5b).  

ΔH RR =
RRhR(x) dxmin RRhR

max RRhR∫
RRR(x) dxmin RRR

max RRR∫
− 1 (5a) 

ΔH RhRh
=

RhRhRh (x) dxmin Rh RhRh

max Rh Rh Rh∫

RhRRh (x) dxmin Rh RRh

max Rh RRh∫
− 1 (5b) 

To calculate the area increases, 6th degree polynomial trend lines were fitted to the 
curves (Figure 11). Since the single trend lines for tRR  results did not generate the 
desired fit (Figure 11a), another approximation with the curves split in half at their 
apparent break points was used as well (Figure 11b). The increase calculated from 
these two approximations was the averaged. The quantitative values obtained are 
ΔH RR  = 8% and ΔH Rh Rh  = 12%. 

Finding 4: Diversions from the average increase in cumulative frequencies reflect an 
increase of the frequencies of crisper composition results when a hole is inserted. For 
the pair of compositions resulting in tRR , the increase in the cumulative frequencies 
was assessed at the eight normalized composition cardinalities separately, in order to 
compare them with the average increase of 8%. For up to 0.5 normalized composition 
cardinalities, the increase in cumulative frequencies is above average⎯18.39% for up 
to 0.5 normalized composition cardinalities and 17.25% for up to 0.375 normalized 
composition cardinalities (which translates to 3 and 4 out of the eight tRR ). These 
numbers indicate that overall, when the composition’s common region is a single-
holed region, it increases the occurrence of crisper results, and specifically for 
composition results with up to 3 or 4 relations. 

This increase of crisper composition results is also verified for compositions that 
result in tRhRh . Samples of cumulative frequencies, taken at the normalized composi-
tion cardinalities of 0.125, 0.250, 0.375, 0.5, 0.625, 0.750, 0.875, and 1, show that the  
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Trendlines for Compositions Resulting in tRR
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Fig. 11. Approximations for cumulative frequency graphs: (a) and (b) two trendlines for 
compositions resulting in tRR  and (c) single trendline for compositions resulting in tRhRh  

biggest increase in cumulative frequencies occurs up to 0.125 composition cardinal-
ities⎯which translates to 19 out of 152 relations for the tRhRh  domain. This increase 
is 36%, in contrast to 12%, which was the average increase calculated by the differ-
ence in the areas under the trend lines. The increase in the cumulative frequencies 
continues to be higher than the average up to a normalized composition cardinality of 
0.5 (i.e., compositions with 76 relations in their results). These observations verify the 
hypothesis that when the composition’s common region is single-holed, crisper results 
are anticipated than for compositions over a region without a hole.  

Finding 5: Saturation of the cumulative frequency is reached earlier when the com-
mon region of the composition has a hole. For tRRh  ; tRhR , for a composition cardi-
nality of up to 0.5 relations the accumulation reaches 78%, compared to 66% reached 
at the same point for tRR  ; tRR . Therefore, up through a composition cardinality of 4 
relations, the accumulation of the tRRh  ; tRhR  is reached earlier than that of tRR  ; tRR . 
For composition cardinalities of more than 0.5 normalized relations, the accumulation 
slows down for tRRh  ; tRhR , but increases for tRR  ; tRR , confirming that the hole in 
the common region affects the reasoning by decreasing ambiguity of the inferences. 
Similarly due to the higher frequencies of crisper results, the cumulative frequencies 
for tRhRh  ; tRhRh  increase faster up to 0.5 normalized relations, after which they slow 
down. At this point, however, the pace increases for tRhR  ; tRRh . 
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Finding 6: The accumulation pace is even faster when more holes are included in the 
pair of composed relations. For the crisper composition results, the accumulation pace 
in tRhRh  ; tRhRh  is the highest among all composition scenarios considered. For up to 
50% of the composition cardinalities, the cumulative normalized frequency has al-
ready reached 95%, in contrast to 66% for tRR  ; tRR , 78% for tRRh  ; tRhR  and 84% 
for tRhR  ; tRRh

. When compared with the composition of the same domain approxi-

mately 60% of the accumulation has been reached already for a composition cardinal-
ity of up to 0.125 normalized relations, which translates to up to 19 relations per  
composition. The same percentage is reached only after the number of relations has 
more than doubled in the case of tRhR  ; tRRh , where the cumulative frequency reaches 
60% after the composition cardinality has reached 0.263 normalized relations (which 
translates to up to 40 relations per composition results). This faster pace continues 
until the accumulation is approximately 90%, after which the pace is smaller for 
tRhRh  ; tRhRh . The additional constraints that the bigger number of holes overall im-
pose in this composition scenario (i.e., each pair of composed relations comprises of 2 
single-holed regions whereas all the rest of the compositions happen between  
relations that comprise at most 1 single-holed region) are responsible for cripser  
composition results. 

7   Conclusions 

Holes in regions offer a plethora of topological relations, beyond those for regions 
without holes. While the amount of topological relations increase (from eight to 152 
for two single-holed regions), the holes provide additional constraints for qualitative 
reasoning so that inferences may become crisper and, therefore, less ambiguous. The 
systematic analysis of four sets of compositions revealed that relations over holed 
regions yield more unique composition inferences, and reduce the ambiguities for 
close-unique inferences. The new quantitative measures enable the comparison of 
composition tables of relations over different domains (e.g., tRR , tRRh , tRhR , and 
tRhRh ). They revealed that overall inferences for tRhRh  are approximately 50% crisper 
than for other compositions with holed region-relations. 

The results enable the investigation of a set of new questions. Do the 
152 tRhRh form a relation algebra? Is their composition strong? What are tractable 
algorithms? Is the conceptual neighborhood graph for the 152 tRhRh  planar? Given 
the large set of relations, it is of interest to derive coarser relations from this set, much 
like the generalization from RCC-8 to RCC-5.  

Other future work items relate to the identification of those relations that maintain 
their inference power when regions have more than one hole, such as disjoint and 
meet, which survive any tampering with holes. What properties of the compositions 
change as holes are added, and what properties change when holes are removed, as 
typically applied in cartographic generalization? An approach in which holes have 
different levels of importance (e.g., by size of functionality) may overcome the limita-
tions from all holes being the same. 

Another set of new questions relate to the analogy of temporal and spatial reason-
ing. How similar are the compositions over 1-dimensional intervals with gaps to  
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regions with holes? Do gapped interval relations increase at a comparable pace as 
holed region relations? Such insights would contribute to a better understanding of 
properties that are common to the spatial and temporal domains. 
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Abstract. Closed, watertight, 3D geometries are represented by polyhedra. Cur-
rent data models define these polyhedra basically as a set of polygons, leaving 
the test on intersecting polygons or open gaps to external validation rules. If this 
testing is not performed well, or not at all, non-valid polyhedra could be stored 
in geo-databases. This paper proposes the utilization of the Constrained Delau-
nay Tetrahedralization (CDT) for the validation (i.e. check on self-intersecting 
and closeness) of polyhedra on the one hand, and the efficient storage of valid 
polyhedra on the other hand. The paper stresses on the decomposition of a 
polyhedron through a CDT and the possibility to store and compose the polyhe-
dron through the vertices of the CDT, a bitmap that indicates which faces of the 
Delaunay Tetrahedralization (DT) links to a CDT-face, and a list of non-
recovered CDT-faces. 

1   Introduction 

Real world objects are characterized by a particular representation, identified and 
captured, and stored according a specified datamodel in a geo-database. For applica-
tions within the 3D domain, one cannot work any longer with ‘down to earth’ flat-
tened objects, which are defined as polygon footprints attached to a 2D or 2.5D  
surface. An appropriate 3D representation is needed, which has to be supported by a 
suitable 3D data model. 

The polyhedral approach, as described in [1] defines the boundary of a 3D primi-
tive (or simple object) as a set of polygons, where the vertices of each polygon are co-
planar and valid according the Simple Feature Specification of the OGC [2], i.e. non 
self-intersecting and closed. The polygons, defining the boundary of the 3D primitive, 
should be connected to each other in such a way that the 3D primitive itself is ‘closed’ 
(or ‘watertight’). That yields the set of polygons consist of non mutual-intersecting 
polygons and does not leaves open gaps, resulting in a connected interior for the 3D 
primitive (simple object). 
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1.1   Data Models for Polyhedra 

Three-dimensional geometries (simple solids) have to be stored in a geo-database 
according to a supporting data model. In [3] a review is given of the ISO 19107 
Schema [4], OGC GML specification [5] and Oracle Spatial SDO_GEOMETRY data 
type to store 3D geometries. This paper [3] defines more specific and refined rules for 
valid geometries. In relation to standardization organizations it states: “ISO and OGC 
have tried to give unambiguous and complete definitions of valid geometric primi-
tives. But as it was already pointed out in [6] it turns out that the standards are not 
unambiguous and complete, even in the case of 2D-polygons. For 3D geometric 
primitives there is an abstract ISO specification [4], but this is not the needed imple-
mentation specification”. 

The GML and ISO definition for solids reads: “A solid is the basis for 3-
dimensional geometry. The extent of a solid is defined by the boundary surfaces 
(shells). A shell is represented by a composite surface, where every shell is used to 
represent a single connected component of the boundary of a solid. It consists of a 
composite surface (a list of orientable surfaces) connected in a topological cycle. 
Unlike a ring, a shell’s elements have no natural sort order. Like rings, shells are 
simple. The element ‘exterior’ specifies the outer boundary of the solid. Boundaries 
of solids are similar to surface boundaries. In normal 3-dimensional Euclidean space, 
one (composite) surface is distinguished as the exterior. The element ‘interior’ speci-
fies the inner boundary of the solid.”  

In [3] a description of Simple Solids (Polyhedra) in Oracle is given: “A simple 
solid is defined as a ‘Single Volume’ bounded on the exterior by one exterior com-
posite surface and on the interior by zero or more interior composite surfaces. To 
demarcate the interior of the solid from the exterior, the polygons of the boundary are 
oriented such that their normal vector always point “outwards” from the solid.”  

The Computational Geometry Algorithms Library (CGAL) [7] gives the following 
work-definition of a polyhedron: “Polyhedral surfaces in three dimensions are com-
posed of vertices, edges, facets and an incidence relationship on them. The organiza-
tion beneath is a halfedge data structure, which restricts the class of representable 
surfaces to orientable 2-manifolds - with and without boundary. If the surface is 
closed we call it a polyhedron. Each edge is represented by two halfedges with oppo-
site orientations. Facets are defined by the circular sequence of halfedges along their 
boundary. The halfedges along the boundary of a hole are called border halfedges and 
have no incident facet. An edge is a border edge if one of its halfedges is a border 
halfedge. A surface is closed if it contains no border halfedges. A closed surface is a 
boundary representation for polyhedra in three dimensions.”  

1.2   Validation of Polyhedra 

Surprisingly, existing schemas, specifications and even implementations define data-
models to store 3D geometries, but they are not limited to store valid, thus ‘water-
tight’, 3D geometries only: also ‘non-watertight’ (boundary intersecting, open,  
non-connected interior) 3D geometries can be stored. In [3] the following validation 
rules/tests of solids are defined. These tests check on both a valid, closed boundary as 
on the connectedness of the interior. 
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These operations should use tolerance values to deal with the problems to express 
exact fractions in decimal notion with a finite number of binary digits.  

• Single Volume check: the volume should be contiguous:  
− Closed test: the boundary has to be closed.  
− Connect test: the volume has to be connected. This means each component of 

the solid should be reachable from any other component.  
• Inner-outer check:  
− Every surface marked as an inner boundary should be ‘inside’ the solid defined 

by the exterior boundary.  
− Inner boundaries may never intersect but only touch under the condition that the 

interior of the solid remains connected.  
• Orientation check: The volume bounded by the exterior boundary is computed 

as a positive value if every face is oriented such that each normal is pointed 
away from the solid due to the Greens Theorem. Similarly, the volume bounded 
by the interior boundary is computed as a negative value. If each exterior and in-
terior boundary obeys this rule and they pass the connect test as well, then this 
check is passed.  

• Element-check: Every specified surface is a valid surface.  

A possible way to avoid non-valid polyhedra, i.e. self-intersecting faces (a non cir-
cular sequence of halfedges) or non-planar faces, is to restrict the boundary of the 
polyhedra to be composed of a set of triangular facets. But even then this ‘solid ob-
ject’ has to be validated, as it is still possible that the triangular facets of this ‘polyhe-
dron’ could intersect each other.  

1.3   Storage of Polyhedra through Tetrahedralization 

The idea to use a tetrahedralization to represent polyhedra is based on previous work 
by the first author in representing Planar Maps through Conforming Delaunay Trian-
gulations [8]. A method was described to store (encode) and receive (decode) a Planar 
Map (PM) through a Constrained Delaunay Triangulation (CDT) with applications in 
a server-client environment. Planar maps are embeddings of topological maps into the 
plane. A planar map subdivides the plane into vertices, edges, and faces [9]. In two 
dimensions a true, conforming, Delaunay Triangulation that constrains to the input 
can be created by adding Steiner points at the edges of the Planar Map. 

To store a PM the server creates a CDT of the edges of the PM. As the PM is now 
embedded by the CDT it is sufficient to send to the client the list of coordinates of the 
CDT nodes and an efficient encoded bitmap of the corresponding PM-CDT edges. 
The client determines a Delaunay Triangulation (DT) of the received list of coordi-
nates of the CDT nodes. The DT at the client side is - omission degenerated cases - 
equivalent to the CDT at the server side. The edges of the PM are recovered within 
this DT by the bitmap (true/false) of the corresponding PM-CDT edges. 

Within [8] it was stated: “Despite all these considerations, the encoding (decompo-
sition) of Planar Maps by Conforming Delaunay Triangulations could be extended to 
the third dimension. Polyhedron boundary representations could be encoded (decom-
posed) and decoded (composed) through a conformal tetrahedralization”. That idea 
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was presented in [10]. But, although polyhedra can be represented by a Conforming 
Delaunay Tetrahedralization, this can result in an extraordinary amount of added 
Steiner Points. In two-dimensions [11] shows an example that two-dimensional con-
forming Delaunay triangulations may need a quadratic number of Steiner points with 
respect to the input number of nodes. Therefore, we have adapted the method in this 
paper by applying Constrained Delaunay Tetrahedralization. 

This paper links up with research by Penninga at al. on a simplicial complex-based 
DBMS approach to 3D topographic data modeling’ [12] that has a focus on updating 
features in a TEN-based DBMS approach [13].  

1.4   Our Work 

We propose the use of a Constrained Delaunay Tetrahedralization (CDT) to validate 
and store polyhedra. By definition a polyhedron has to have one closed, watertight, 
polygonal outer surface and possible one or more inner surfaces. The validation of 
this important property has to be done in advance, as most geo-databases allow the 
storage of polygonal surfaces and polyhedra through the same datamodel. To check 
whether or not a polygonal surface is closed, and thus watertight, is not a straightfor-
ward task, as even the existing standards and specifications defining polyhedra (sim-
ple solids) are ambiguous.  

The motivation behind the use of a CDT is given by its construction scheme. First 
and for all, if a polyhedron is valid, the faces of the derived CDT have to match the 
faces of its surface triangulation completely. This requirement holds also for polygo-
nal surfaces, but as the final phase of the tetrahedralization removes the tetrahedra 
outside the surface triangulation, only closed, watertight, polyhedra survive. 

The second advantage of applying a CDT is given by the possibility to store the 
geometry of the polyhedron by only its nodes, the added Steiner points, a Delaunay 
Tetrahedralization (DT) of these nodes and Steiner points, a bitmap of the lexical 
ordered faces (natural sorted on three nodes) of this DT (thus only one bit per face), 
and a list of the DT missing triangles of its surface triangulation. The efficiency of 
this approach depends on one hand on the amount of added Steiner points and on the 
other hand on how much the CDT conforms to the DT. 

1.5   Outline 

In the preliminary section of this paper (section 2) we describe the possibilities and 
limitations of current datamodels for the storage and validation of polyhedra. We give 
formal definitions of Conforming Delaunay Tetrahedralization and Constrained De-
launay Tetrahedralization. In section 3 we focus on the issue of validating polyhedra 
by means of CDT and we discuss the possibility to detect self-intersecting polygons 
and the distinction between (closed, watertight) polyhedra and polygonal surfaces. 
Section 4 describes the possibility to store polyhedra through CDT and some exam-
ples and test results on the efficiency of this approach are given. Section 5 resumes 
with the conclusions. 
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2   Preliminaries 

This section presents the essential definitions and notations of the geometric objects 
used in this paper. These objects are based on the fundamental concepts developed in 
topology and geometry. Good introductory texts are given by Edelsbrunner [14] and 
Ziegler [15]. 

2.1   Polyhedra and Faces 

In this section, we define a general and therefore not necessarily convex polyhedron 
and its faces. 

Definition 1 (Polyhedron). A polyhedron P in Rd is the union of a finite set P of 

convex polyhedra, i.e., P=⋃U∈PU, and the space of P is connected. 

The dimension dim(P) is the largest dimension of a convex polyhedron in P. Note that 
P may contains holes in its interior. Whatever, we require that the space of P must be 
connected, i.e. any two points in the interior of P can be connected through a path in 
the interior of P. See Fig. 1 for examples. 
 

 

Fig. 1. Polyhedra and faces. Left: A three-dimensional polyhedron (a torus) formed by the 
union of four convex polytopes. It consists of 16 vertices (zero-faces), 24 edges (1-faces), 10 
two-faces (the faces at top and bottom are not simply connected), and 1 three-face (which is 
itself). Right: Two three-dimensional polyhedra. Each one has 12 vertices, 18 edges, 8 two-
faces, and 1 three-faces. The shaded area highlights two 2-faces whose points have the same 
face figures. 

There are few definitions about faces of a non-convex polyhedron. The following 
definitions of faces are mainly by [14] with only difference in the connectness of the 
faces. Let B(x,r) denote the open ball in Rd centered at x with radius r. 

For a point x in a polyhedron P we consider a sufficiently small neighborhood 

Nε(x)=(x+B(0,ε))⋂P. The face figure of x is the enlarged version of this neighbor-

hood within P, i.e., x+⋃λ>0λ(Nε(x)−x). 

Definition 2 (Face). A face F of a polyhedron P is the closure of a maximal con-
nected set of points with identical face figures. 
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By this definition, a face of P may contain holes in its interior, but it is always con-
nected. See Fig. 1 for examples. 

A face F of P is again a polyhedron. Particularly, ∅ is a face of P. If all convex 
polyhedra in P have the same dimension, then P itself is a face of P. All other faces of 
P are proper faces of P. We also write F≤P or F<P if F is a face or a proper face of P. 
The faces of dimension 0, 1, dim(P)−2, and dim(P)−1 are called vertices, edges, 
ridges, and facets, respectively. The set of all vertices of P, the vertex set, will be 
denoted by vert(P). The set of all proper faces of P is called the boundary complex of 
P, denoted as bd(P). The interior int(P) is P−bd(P). 

Note that a polyhedron may be unbounded. In the scope of this work, we always 
assume that a polyhedron is bounded, i.e., it is a polytope. In our later discussions, a 
polytope can be convex or non-convex. 

2.2   Delaunay Triangulation / Tetrahedralization 

Let S be a finite set of points in Rd. A Delaunay triangulation [16] (abbreviated as 
DT) of S is a triangulation T such that (i) the vertex set of T is S, (ii) the convex hull 
of S equals to the underlying space of T, and (iii) (Delaunay criterion) every simplex 
(i.e. triangle in 2D-space, tetrahedron in 3D-space) of T has a circumscribed ball 
whose interior contains no points of S. Fig. 2 illustrates a two-dimensional Delaunay 
triangulation. The DT of a three-dimensional point set is also called a Delaunay  
tetrahedralization. 

 

 

Fig. 2. The Delaunay triangulation (shown in solid black lines) of a two-dimensional point set. 
All circumcirles (shown in blue) of the triangles are empty. The dotted lines show the dual 
Voronoi diagram. 

  

2.3   Conforming Delaunay Triangulation 

Let P be a polygon. The DT of the vertices of P does not necessarily contain all the 
boundaries of P. A conforming Delaunay triangulation T of P is a Delaunay triangu-
lation, such that  
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(i) each vertex of P is a vertex of T,  
(ii) every boundary of P is a union of simplices of T, and  
(iii) every simplex of T satisfies the Delaunay criterion.  

Usually, a conforming DT of P will contain some additional points (so-called 
Steiner points) which do not belong to P (See Fig. 3 left for an example). It is worth to 
mention, even for a simple polygon, a large number of Steiner points may be needed. 
Let n be the number of points in the polygon. A simple example which needs Ω(n2) 
Steiner points is given in [11].  

 

  

Conforming DT Constrained DT 
Fig. 3. Left: A conforming Delaunay triangulation of a two-dimensional Polygon P. Right: A 
constrained Delaunay triangulation of P.  

2.4   Constrained Delaunay Triangulation 

An alternative approach to form a triangulation of a polygon P is to use a Delaunay-
like triangulation (not necessary to be a DT) which respects the boundaries of P. 

The visibility between two vertices p,q∈P is defined as follows: p and q are invisi-
ble to each other if the line segment pq intersects with any boundary of P at an inte-
rior point of pq. 

Let T be a triangulation such that the underlying space of T is the convex hull of 
the vertices of P. A simplex σ∈T is constrained Delaunay if there exists a circum 
circle Bσ of σ such that either Bσ contains no other vertices of T or there is no vertex 
inside Bσ which is visible from the interior of σ. Then T is a constrained Delaunay 
triangulation (abbreviated as CDT) of P if 

(i) Every boundary of P is represented by a union of simplices of T.  
(ii) Every simplex of T is constrained Delaunay. 

A two-dimensional CDT is illustrated in Fig. 3 at the right. A three-dimensional 
CDT is also called a constrained Delaunay tetrahedralization. 

The above definition implies that a CDT of P may contain Steiner points, i.e., 
points which do not belong to P. When it is the case, we call it a Steiner CDT. Other-
wise, it is called a pure CDT. It is well known that a pure CDT of a polyhedron may 
not exist. For instance, given the Schönhardt polyhedron [18], the problem to decide 
whether a pure CDT of P exists or not, is NP-complete [19]. On the other hand, there 
are infinitely many Steiner CDTs of P. 
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As in the 2-Dimensional case, many Steiner points can be needed to obtain a genu-
ine Conforming Delaunay Tetrahedralization, see i.e. [20], [21], [22]. 

If Steiner points are allowed, Chazelle [23] showed that any simple polyhedron of 
n vertices may need O(n2) Steiner points, and this bound is tight in the worst case. 
Chazelle and Palios [24] presented an algorithm to decompose a simple polyhedron 
using O(n+r2) Steiner points, where r is the number of reflex edges (a quantitative 
measure of nonconvexity) of P . However, even for a simply shaped polyhedron, i.e. 
Fig. 4 (top-left) this algorithm will introduce unnecessarily large number of Steiner 
points, see Fig. 4 (top-right). More practical approaches using conforming Delaunay 
triangulations [20], [21] and constrained Delaunay triangulations [25], [26] are pro-
posed, see Fig. 4 (bottom-left) and (bottom-right). However, no polynomial upper 
bound on the number of Steiner points is known; see the 22nd open problem in [14]. 

 

  

  

Fig. 4. Comparison of various approaches in decomposition (tetrahedralization) of a polyhe-
dron: A ‘simple’ polyhedron with 20 vertices and 2 reflex can end up with 51 vertices and 103 
tetrahedra to create a Conforming Delaunay Tetrahedralization 

3   Validation of Polyhedra through CDTs 

The data models presented in Section 1.1 do have one feature in common: the parts 
(i.e. polygons, shells, facets) of a three-dimensional solid are given. However there is 
no guarantee these parts are bound together to form a valid polyhedron. Various ap-
proaches have been proposed for validating a polyhedron from a given representation, 
see e.g., [3]. In this section, we propose a new approach for validating a polyhedron. 
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3.1   Decomposition of Polyhedra through Tetrahedralization 

Our approach is based on this simple observation: A valid polyhedron P can be de-
composed into a tetrahedralization T such that the boundary of P is represented as a 
union of simplices of T. This observation can be easily proved: Since P is valid, then 
let T be a Constrained Delaunay Tetradedralization (CDT) of P. Otherwise, if such a 
T does not exist, then either the boundary bd(P) of P contains self-intersections or 
bd(P) is not closed. Hence, the problem of validating a polyhedron P can be trans-
formed into the problem of finding a tetrahedralization of P. This is a long studied 
problem in computational geometry (see e.g., [23], [24], [27]), as well as in mesh 
generation (see e.g. [28], [29], [30]). 

To validate P takes two steps: (1) check the self-intersection in the boundary of P, 
and (2) generate the CDT of P. Note that step (2) can be called only if step (1) is suc-
cessful. Then P is valid only if a CDT of P can be generated, the boundary of P is 
represented as a union of simplices of T, and the interior of T is connected. 

The generation of CDTs is an active research topic. The discussion of such meth-
ods is out of the scope of this work, we refer to the research paper of Shewchuk [25] 
and Si et al [26]. A software implementation of the CDT algorithms can be found in 
the program TetGen [31]. In the following, we briefly discuss the approach to detect 
self-intersections. 

3.2   Self-intersection Detect 

A basic requirement for a 3D polyhedron P is that any two facets of P should touch 
only along their common faces. Let T1 and T2 be two triangles in R3, let U=T1⋂T2. 
We say that T1 and T2 intersect each other if U≠∅ and U is not a proper face of both 
T1 and T2. See Fig. 5 for examples. 
 

 

 

Fig. 5. Possible cases of two triangles in R3 can intersect each other. 
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The problem. Consider the set of triangles forming the triangulation F of the bound-
ary bd(P) of P, find all intersected pairs of triangles in F.  

The primitive operation for this task is a function TRI_TRI_INTERSECT(T1,T2). That 
is, it takes two triangles T1,T2 in R3 as inputs, return a value indicating whether T1 and 
T2 intersect each other or not. 

Fast algorithms are proposed to test the intersection between three-dimensional tri-
angles, such as Möller [32] and Guigue et al [33]. In practice, Möller’s algorithm is 
less robust since it needs to compute an intermediate line interval which requires 
arithmetic precision. Guigue et al’s algorithm relies exclusively on orientation predi-
cates, which eliminates the intermediate error caused by floating-point arithmetics. 
However, both algorithms do not satisfy our goal. Let U=T1⋂T2. The problem lies 
that both algorithm only detect whether U is empty or not. In our problem, we need to 
distinguish more cases when U≠∅. To distinguish these cases needs to handle all 
degenerate cases.  

We implemented a triangle-triangle test algorithm. The idea is similar to that of 
Guigue et al [33], only the three-dimensional orientation test is involved. It further 
classifies all degenerate cases based on the study of the signs. A trivial approach to 
check the boundary self intersection of the polyhedron is just to test the intersection of 
triangles pair by pair, which takes O(m2) time, where m is the number of triangles. A 
simple way to improve the speed is to filter out triangle pairs that can not intersect by 
first doing the intersection of their bounding boxes whose sides are parallel to the 
axes. It has been shown [34] that such box intersection can be reported in 
O(mlog2m+J) time, where J is the number of intersected pairs.  

We implemented a divide-and-conquer approach for reducing the number of inter-
section tests. Starting from the bounding box of the vertices, it recursively partitions 
the box into smaller boxes, until the number of triangles in a box is not decreased 
anymore. Then a brute-force pairwise triangle-triangle intersection test is performed. 
This approach runs in time O(mlogm+I2), where I is the largest number of triangles 
appearing in a box which is not partitioned. It is possible that I=m, i.e., the worst-case 
time complexity is O(m2). For most inputs which have a dense point set, I is relatively 
small comparing to m. Fig. 6 illustrates an example. 
 

 
 

 

Fig. 6. Boundary intersection check. A surface mesh of a Cow is shown left. The triangles on 
the tail (the annotated place) are intersecting each other shown on the right. 
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4   Storage of Polyhedra through Constrained Delaunay 
Tetrahedralization 

To proof the efficiency (i.e. gain of storage) of decomposition (encoding) and compo-
sition (decoding) a polyhedron through means of a tetrahedralization is not trivial.  

The basic idea of this method is the decomposition of a given polyhedron by a 
Constrained Delaunay Tetrahedralization (CDT) of the nodes of the polyhedron. As 
shown in section 2, extra Steiner points are needed to make sure each polygon of the 
polyhedron is represented by a set of faces of the CDT. Within the obtained CDT, the 
faces which ‘belong’ to the polyhedron are marked with a binary bit ‘1’, and the faces 
of the CDT that do not ‘belong’ to the polyhedron (thus faces inside or outside the 
polyhedron) are marked with a binary bit ‘0’. The composition is performed by a 
regular Delaunay Tetrahedralization (DT) of the original nodes of the given polyhe-
dron plus the extra Steiner points. 

4.1   Implementation Issues 

One complication within this process is that the set of faces of the DT created during 
the composition phase can be different of the set of faces of the CDT created during 
the decomposition phase. The first reason for this is because the Constrained DT 
(CDT) does not have to be a Conforming Constrained Delaunay Tetrahedralization 
(CCDT): a CDT-tetrahedron does not have to obey in general to the Delaunay-
criterion of an empty circumsphere. One option to work around that problem is to 
create during the decomposition phase a CCDT also, as suggested in [10]. But in 
creating a CCDT one needs to add far more Steiner points [20], [21], [22] and this 
extra amount of Steiner points limits this method. The second reason is caused by 
possible degenerated cases: five or more points directly on one circumsphere can be 
tetrahedronized in a different way by another DT-algorithm. So, even if a CCDT can 
be created, the DT of the same set of input points can result in another set of tetrahe-
dra. One possibility to ‘solve’ this problem is to define a unique decision rule, i.e. two 
preferred directions as presented in for 2-dimensional DT in [35]. This method could 
be extended to a Delaunay Tetrahedralization, but this will cause some issues in de-
fining directions in 3D. 

For this reason, the coding of the faces ‘belonging’ to the polyhedron is based on 
the DT. One binary bit is needed for each face of the DT. A DT-face is to be marked 
(flagged) with a binary bit ‘1’ when the corresponding CDT-face is marked (flagged) 
with a ‘1’ and thus the DT-face is part of the boundary of the polyhedron. All other 
DT-faces are to be marked with a ‘0’ to identify these faces as part of the interior or to 
be outside the polyhedron. The ‘bitmap’ of marked and non-marked lexical ordered 
faces (i.e. natural sorted on their nodes) is stored. To emphasize, the DT faces them-
selves are not stored, but only a bit for each face indicating whether or not the face is 
part of the boundary of the polyhedron. The CDT-faces marked with a ‘1’, but not 
part of the DT, have to be stored separately. 

In summery, the decomposition process consists of the following steps:  

1. Create a CDT of the given polyhedron P; 
2. Store CDT-nodes (hence nodes of polyhedron and extra Steiner points); 
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3. Mark CDT-faces (‘1’: face is part of boundary of polyhedron P, ‘0’ remaining 
faces);  

4. Create DT of nodes CDT;  
5. Mark DT-faces (‘1’: DT-face that corresponds to CDT ‘1 ‘ face is identical marked 

‘1’; ‘0’ remaining faces); 
6. Store ‘bitmap’ of marked and non-marked ordered DT-faces; 
7. Store ‘1’-marked CDT-faces which do not have a corresponding DT-face.  

The composition process consists of the following steps:  

1. Read CDT-nodes; 
2. Create DT of CDT-nodes; 
3. Read ‘bitmap’ 
4. Order DT faces and set each DT-face according to the bitmap; 
5. Create polygonal surface out of ‘1’-marked DT-faces; 
6. Read non-recovered CDT-faces; 
7. Create a watertight polyhedron boundary by completing the polygonal surface with 

non-recovered CDT-faces.  

The gain in storage is within the difference of storing the polyhedron just by its 
nodes and the faces of its surface at the one hand, and the storage of the nodes of the 
CDT and the non-recovered CDT-faces at the other hand. To make this comparison 
more easy we assume the polyhedron is defined by a triangulated surface, thus all 
faces of the polyhedron are triangles. The storage requirements for this kind of trian-
gular polyhedra are as follows: for each node of the polygon we need 3 floats for the 
X, Y and Z-coordinate, and for each face 3 integers (reference value to nodes).  

The triangulated boundary of the polyhedron makes the comparison more easy, but 
is introduces one main disadvantage as is also stressed in section 1.2 of [25]: each 
triangular face of the boundary is now constrained, and thus more Steiner points are 
needed to make sure the CDT faces are part of the boundary of the polyhedron.  

 
Fig. 7. Polyhedron representation dataset M440 with 906 surface faces 
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Fig. 8. Constrained Delaunay Tetrahedralization of Polyhedron representation of dataset M440 

The storage requirements for the CDT encoded polyhedron sums to: for each node 
and also for all necessary Steiner points we need 3 floats for the X, Y and Z-
coordinate, for each DT-face 1 bit, and for each non-recovered CDT-face 3 integers 
(reference values to nodes). As both methods require the storage of the nodes of the 
polygon, these are to be left out the comparison. 

 

Fig. 9. Delaunay Tetrahedralization (DT) of vertices of Constrained Delaunay Tetrahedraliza-
tion (CDT) of Polyhedron representation of dataset M440. The DT consists of 10545 faces. 187 
Faces of the CDT are not recovered by the DT. 
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4.2   Experimental Results 

We have tested this decomposition/composition method with some datasets from 
INRIAs 3D Meshed Research Database (http://www-c.inria.fr/gamma/). 
The tetrahedralization is performed by Tetgen 1.4.2 [31]. 

Polyhedron M440 represents a house, see Fig. 7. To store the 906 surface faces of 
the input model we need 906 * 3 * 32 = 86976 bits. The decomposition through 
means of a CDT as shown in Fig. 8, adds 480 Steiner Points, thus 480 * 3 * 32 = 
46080 bits. The DT from the nodes of this CDT consists of 10545 faces (bits). The 
DT could not recover 187 faces of the CDT (see Fig. 9) so an extra 187 * 3 * 32 = 
17952 bits are needed. In total we need: 46080 + 10545 + 17952 = 74577 bits. In 
conclusion, here we ‘win’ 86976 - 74577 = 12399 bits, or 14%. 

For this dataset the gain is very modest. As mentioned in section 4.1, this result 
could be influenced by the triangulated boundary of the input polyhedron, as each 
face is to be recovered in the CDT.  

5   Conclusions 

We have demonstrated the utilization of the Constrained Delaunay Tetrahedralization 
(CDT) for the validation and efficient storage of polyhedra. The main advantage of 
this idea is not on the storage gain, but on the confidence to store closed, watertight 
polyhedral surfaces, and thus polyhedra. If a polyhedron is decomposable by a CDT, 
the surface faces of this CDT are to be connected to the surface of the polyhedron, 
and the interior of the CDT is connected, then the polyhedron is valid.  

Further research could address the following questions: 

• To what extent has a CDT to conform to the generic Delaunay Tetrahedralization? 
Adding more Steiner points can result in a more conforming or even completely 
Conforming Constrained Delaunay Tetrahedralization (CCDT). The efficiency is a 
trade off between this CCDT-likeness (with less non-CDT recovered faces to store) 
and the needed space to store the extra Steiner points and amount of faces of the 
Delaunay Tetrahedralization of the vertices of the CDT. 

• What are the complications on validating and storing large datasets with many 
polyhedra collectively through one tetrahedralization? Is it still possible to validate 
a non-connected polyhedron or polyhedron completely inside another polyhedron? 
What will be the storage gain by the method as presented in this paper? 
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Abstract. Geospatial data sharing is an increasingly important subject as large
amount of data is produced by a variety of sources, stored in incompatible for-
mats, and accessible through different GIS applications. Past efforts to enable
sharing have produced standardized data format such as GML and data access
protocols such as Web Feature Service (WFS). While these standards help en-
abling client applications to gain access to heterogeneous data stored in different
formats from diverse sources, the usability of the access is limited due to the lack
of data semantics encoded in the WFS feature types. Past research has used on-
tology languages to describe the semantics of geospatial data but ontology-based
queries cannot be applied directly to legacy data stored in databases or shape-
files, or to feature data in WFS services. This paper presents a method to enable
ontology query on spatial data available from WFS services and on data stored
in databases. We do not create ontology instances explicitly and thus avoid the
problems of data replication. Instead, user queries are rewritten to WFS getFea-
ture requests and SQL queries to database. The method also has the benefits of
being able to utilize existing tools of databases, WFS, and GML while enabling
query based on ontology semantics.

1 Introduction

The National Spatial Data Infrastructure promotes geospatial data sharing to improve
data quality, to reduce costs, and to make data more usable to the public [17]. How-
ever, much of the existing geospatial data is stored in proprietary formats such as
ESRI shapefiles, coverage, and geodatabases, and it is only accessible through vendor-
specific geospatial information systems such as ESRI ArcGIS and Intergraph GeoMe-
dia [29,36]. Data sharing is difficult in this context because different GIS software has
incompatible system designs, data models, and database storage structures [9,28,34,35].

To enable sharing of geospatial data, the Open Geospatial Consortium (OGC) has es-
tablished a series of specifications such as Geographic Markup Language (GML) [11]
and Filter encoding, and data exchange protocols such as Web Feature Service
(WFS) [13] and Web Map Service (WMS) [12]. These specifications and protocols have
provided constructs for describing and accessing geospatial data at the domain level. For
example, GML files can encode the geometries of an object as points, lines, or poly-
gons. The WFS server can accept query of features within a bounding box and return the

T.J. Cova et al. (Eds.): GIScience 2008, LNCS 5266, pp. 370–392, 2008.
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query results in GML format. The resulting GML data can be rendered for visualization
based on the geometry encoding. Also, WFS servers accept more complex queries using
OGC filter encodings with relational or spatial operators [13]. Although the fast devel-
opment of these standards and web service technologies has undoubtedly improved the
sharing and synchronization of geospatial information across diverse resources, they
only can support technical data interoperability and cannot resolve semantic hetero-
geneity problems in spatial data sharing. WFS and WMS protocols, and GML and OGC
filters have no provisions for data sharing at semantics level for applications. For exam-
ple, a WFS server may name a feature representing a bus route as “Route” or “ROUTE”.
A getFeature query to the WFS server has to spell the name correctly, otherwise no re-
sults will return. Similarly, the geometry of the feature can be either a complete route
or just a link segment of the route. WFS service client has to know this information
in order to formulate getFeature requests to retrieve a route by its name. Moreover, a
route may have implicit relations with other features such as bus stop but such relation
is not specified as a feature property. Even if relations such as bus stops of a route are
somehow included as feature properties, they has to be encoded using XML complex
types because of the one-to-many relations and users of WFS services may not be able
to interpret the meaning of these feature properties based on the XML types alone.

The root of the problem is that structured data such as XML and GML does not have
enough constructs to express data semantics. As a result, software developed based
on the OGC standards cannot be readily adapted to consider data semantics. Recent
research [18,1,15,28,36] has applied the concepts of semantic web to geospatial data
sharing. Semantic web [5] promotes the use of ontology languages such as Resource
Description Framework (RDF) and Web Ontology Language (OWL) to provide seman-
tics for data usually found in databases or other structured documents [19,36]. One
important advantage of RDF and OWL ontology is that it is easier to define semantics
for data using ontology constructs such as classes and properties. In addition, com-
bined with ontology semantic constraints, the ontology can allow reasoners based on
Description Logic (DL) to infer further knowledge from partially specified data and
check for data consistencies [2]. Tools like Jena1 allow inference rules be used to sup-
port more powerful query of ontology data. For example, in transit system, a property
transitStop may be the same as the composition of the transitPointFeatureEvent and
stopEvent properties. This is not yet supported in OWL but one can encode this rule in
Jena using its general purpose rule engine. Finally, ontology definitions are extensible
so that geospatial applications can use existing domain ontologies as basis to create ap-
plication ontologies. Thus, by providing a semantic interpretation of the data, RDF and
OWL ontology allows software programs to automatically understand structures and
meanings of diverse information sources and conduct automatic knowledge inference
or reasoning from existing data and documents.

Recent research projects have applied ontology to modeling observations and mea-
surements [30], to enable spatial/temporal/thematic reasoning [1], and to assist the dis-
covery and access of geospatial web services [27]. However, ontology reasoners only
can apply to ontology instances such as RDF instances or OWL individuals, which cor-
respond to the database records and WFS feature instances. Transforming all legacy

1 http://jena.sourceforge.net/
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geospatial data to ontology form is time consuming, error prone, and inefficient. Also
ontology tools such as Protégé2 cannot efficiently manipulate ontology instances in
large quantity due to memory consumption. Moreover, it is not cost-effective for on-
tology tools to include the functionalities provided by geodatabases and WFS ser-
vices such as transaction management and spatial query. Thus, to efficiently support
ontology-based reasoning on geospatial data, it is necessary to keep legacy data stored
in geodatabases and other data files while providing an ontology-enabled interface to
translate user requests into queries to legacy data stores. To this end, there are projects
focused on extracting ontology definitions from database schemas [3] and annotating
geospatial data with semantic annotations based on OWL and inference rules [23].
However, it is not clear how the extracted ontology information can help translate user
requests into queries to legacy data sources.

In this paper, we propose a new solution to spatial data interoperability at semantic
level through an interface based on RDF ontology. We use a real world transportation
application, a transit system, as an example for our solution. Comparing with other
existing approaches, the most important advantage of our solution is that it does not
need to replicate legacy data stored in relational databases, shapefiles, or GML data
accessible from WFS services. The interface is to provide an ontology layer for spatial
data accessible from WFS services and databases. Users of the interface can query
spatial data as if it is defined in terms of some domain and application ontologies. The
interface relies on WFS services as data sources for spatial data so that it can use the
spatial query functions of WFS servers and use existing WFS client library for feature
rendering. The interface can also use relational databases as sources for non-spatial data
since this can improve the performance of queries not involving geometries.

The rest of the paper is organized as follows. We discuss related works in Section 2.
In Section 3, we give an overview of the proposed interface. Section 4 presents a simple
RDF ontology used in our example. In Section 5, we describe the mapping and inference
rules that are used to connect ontology definitions with the feature data in databases and
WFS servers. Section 6 explains the supported RDF queries, the query semantics, our
query rewriting algorithm, and possible extension to handle RDF semantic constraints.
Implementation issues are discussed in Section 7.

2 Related Work

RDF-based data integration The problem of data integration is to combine data of
different sources and provide users a unified view of the data [24]. A data integration
system often uses a global schema containing mappings from global definitions to lo-
cal schemas in each data sources. In this context, data query problem can be reduced
to the problem of answering queries using materialized views [21], where data sources
are described as precomputed views on the global schema. Our method is similar to
answering queries using views except that the global schema is defined using RDF on-
tology and because of this, the views are not just the mapping from data sources on
the global schema but also include inference rules to obtain object properties. Also,
we need to consider the semantic constraints of the RDF ontology such as subclass

2 http://protege.stanford.edu



Ontology-Based Geospatial Data Query and Integration 373

and subproperty relations. In this aspect, our method is closely related to [8] that also
uses RDF ontology as a medium to provide integrated access to different relational
databases. Their approach is to define database schemas as views on RDF ontology
entirely including object properties and semantic constraints. One of their focus is to
consider databases as incomplete data sources such that missing information is toler-
ated while query rewriting may result in alternative answers to the same query based
on different data sources used. In comparison, our method is more restrictive in the
way that mappings may be defined from database tables or WFS features to RDF on-
tology. In particular, we require each database table and WFS feature to map to one
RDF class. Additional RDF classes and object properties are defined through inference
rules. This simplifies the query rewriting algorithm and still preserves the flexibility of
using RDF ontology to express complex relations of spatial and non-spatial objects.
Another related work is D2RQ [7], which is a tool suite that provides RDF interface to
relational databases. D2RQ allows users to define a mapping file with rules to establish
a RDF ontology that maps RDF classes and properties to database tables and columns.
Also, additional properties may be defined over existing RDF classes and properties in
a way similar to our inference rules. D2RQ only provides RDF interface for relational
databases. We use it to provide access to non-spatial data in databases while spatial data
queries are handled by WFS servers.

Geo-spatial ontology. Difference in semantics used in different data sources is one of
the major problems in spatial data sharing and data interoperability [6,16]. One possi-
ble approach to overcome the problem of semantic heterogeneity is by means of on-
tology [18,31,32]. Cruz et. al. [10] studied the problem of ontology-alignment in the
context of integrating geospatial data in databases. They developed a semi-automatic
method of generating mappings between ontologies of local databases and a global
one. The mappings can then be used for query rewriting. Baglioni et. al [3] proposed
a method on accessing spatial database through ontology layer by semi-automatically
building an application ontology from a geographical database and then enrich it with
domain ontology by finding correspondence between the classes and properties of the
two ontologies. The enriched ontology is said to be used in assisting query answering
though it is not clear how semantic queries are translated to spatial SQL to databases.
Also related is a project for semi-automatically adding semantic annotations to geospa-
tial data [23], which uses OWL to provide semantic annotation and uses Semantic Web
Rule Language (SWRL)3 to add additional properties between instances based on the
existing ontology. More general discussion on developing geospatial ontologies can be
found in the work of Arpinar et. al. [1], where geospatial semantics are considered for
three types of geospatial relations: topological relations, cardinal directions, and prox-
imity relations. Their system architecture would pull geospatial data from sources such
as National Map, NASA sources, UCGIS sources, and put it in a massive metadata
store, which is then used to populate the ontology-based knowledge base accessible to
users via spatial/temporal/thematic reasoners. When geospatial data is solely provided
through web services, an additional layer of ontology included in a Service Oriented
Architecture can be useful. Paul and Ghosh [27] argue that a domain ontology can be

3 http://www.w3.org/Submission/SWRL/
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used to provide shared vocabulary for the schemas of WFS servers. User queries to a
service broker, which maintains a list of services, can somehow be translated to specific
getFeature requests to different service providers – WFS servers. The SPIRIT spatial
search engine [22] has shown ontology to be useful in searching web documents with
spatial contents. User queries can include a subject, a place name, and a spatial relation
to the place name. Results are list of documents and their positions on a map. The
search engine uses geographical and domain ontologies to disambiguate and expand
user queries, to rank documents based on relevance, and to extract metadata from web
documents.

The overall assessment is that our approach may extend or complement the related
works. For example, some methods [3,10] generate useful ontologies from geospatial
databases, which can be used as the application and/or domain ontologies for our inter-
face. We do not use OWL as in [23] but it may be possible to include OWL ontologies
with help of reasoning tools. Also, our method could be one step towards realizing the
goal of using reasoners to query data sources through ontology interface as proposed
in [1]. The differences are that we do not require data be migrated from sources to
knowledge base, thus avoiding the problems of data replication, and we do not support
thematic and spatial-temporal queries. Lastly, our method may be applied to both web
service discovery and retrieval [27]. In this setting, web services should be published
using the class and properties of a domain ontology and service brokers then translate
service-retrieval requests to WFS getFeature requests using predefined rules.

3 A RDF-Based Spatial Data Interface

Geospatial data contains both spatial attributes such as geometry and non-spatial at-
tributes. The fact that spatial data is distributed among many sources and stored in
different formats makes it hard to query spatial data through a single interface. WFS
as a standardized protocol designed to alleviate this problem by providing uniform in-
terface to data stores in forms of databases, shapefiles, and GML files. Though there
are sophisticated WFS server implementations such as GeoServer4, software for imple-
menting WFS clients is less than ideal. The client software such as MapBuilder5 and
OpenLayers6 primarily supports map retrieval, feature rendering, and feature transac-
tions. While the existing WFS clients can locate WFS services and create map layers,
the utility of these clients is limited by the lack of data semantics in WFS features. Also,
though features may contain descriptive attributes, joint queries based on them are not
very efficient since the WFS protocol uses bulky GML tags to encode feature attributes
while WFS service is more suitable for spatial querying and transactions. Many iden-
tifying attributes of the spatial features can be efficiently stored and accessed through
traditional relational databases.

In this paper, we describe an ontology-based interface for querying spatial features.
We focus on three aspects:

4 http://geoserver.org/display/GEOS/GeoServer+Home
5 http://communitymapbuilder.org/
6 http://www.openlayers.org/
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<rdfs:Class rdf:ID="Feature"/>

<rdfs:Class rdf:ID="SpatialFeature">
<rdfs:subClassOf rdf:resource="#Feature"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Geometry"/>

<rdf:Property rdf:ID="hasID">
<rdfs:domain rdf:resource="#Feature"/>

</rdf:Property>

<rdf:Property rdf:ID="geometry">
<rdfs:domain rdf:resource="#SpatialFeature"/>
<rdfs:range rdf:resource="#Geometry"/>

</rdf:Property>

Fig. 1. Domain ontology in RDF schema

1. Create an ontology to describe the problem domain of the data supported by the
interface.

2. Define mapping and inference rules to connect the ontology with the WFS feature
types and database schemas.

3. Rewrite ontology queries to getFeature requests to WFS services and SQL queries
to databases to obtain answers.

For simplicity, we assume that the spatial data in question is distributed among a WFS
service and a relational database. The WFS service stores the feature geometries and
IDs while the relational database stores the rest of the non-spatial attributes.

We define the ontology in terms of a RDF schema. In the schema, RDF classes cor-
respond to the feature types while RDF properties correspond to feature attributes and
relations between features. The instances of the RDF classes form a RDF graph and they
correspond to the spatial features but we are not going to create these RDF instances
explicitly. Instead, the ontology interface provides access to the features through query
rewriting. The mapping rules define the correspondence between the RDF properties
and the WFS feature attributes and database columns. Simply mapping rules are not
very useful other than unifying the access to the two data sources. We use additional
inference rules to define some RDF properties between RDF instances in terms of other
RDF properties created in the previous step.

4 RDF-Based Ontology

We begin with a simple domain ontology where Feature class contains all spatial
and non-spatial objects. All instances of this class have an ID field through the property
hasID. Spatial objects belong to the SpatialFeature class, which is a subclass of
Feature and has an additional geometry property.
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Class Superclass

Route Feature

Pattern Feature

LinkSequence Feature

Stop SpatialFeature

Link SpatialFeature

Property Domain Range

name Route string

intersection Stop string

routeID Pattern integer

patternID LinkSequence integer

linkID LinkSequence integer

linkOrder LinkSequence integer

route link Route Link

route stop Route Stop

nearby stop Stop Stop

Fig. 2. Summary of application ontology for transit system

We extend the domain ontology with an application ontology to describe a transit
system with Route, Stop, Link, LinkSequence, Pattern, etc. The Stop and
Link are spatial classes with point and line geometry respectively. Other classes de-
scribe non-spatial features but they are all closely related to the spatial features. For ex-
ample, each instance of Route class contains several instances of Link that make up
the route through the property route link. A Route instance can also point to sev-
eral instances of Stop that are on the route. A Stop instance can refer to stops within
a certain radius via the property nearby stop. We can find the intersection of
a Stop instance as well.

Other classes and properties are not directly related to spatial objects but they are
used to infer the properties such as route link. For example, the spatial data for link
and stop originally stored as shapefiles may be accessible as Web Features through a
WFS server. However, they only contain IDs and their geometries. Thus, we cannot find
out the propertyroute link directly by querying the WFS service, and we need other
classes and properties to infer route link. The non-spatial data such as Route, Stop
(some of its properties), LinkSequence, Pattern often is stored in tables of a relational
database and we can use its properties to infer route link. Specifically, we can use
the Pattern table to find the patterns in a route and then find the links contained in
these patterns through the LinkSequence table (which describes the links traversed in a
pattern sequentially).

5 RDF Views of WFS Features and Database Tables

The RDF ontology is an abstraction of the spatial and non-spatial data stored in WFS
servers and relation databases. In order to have an ontology-based interface to the data,
we need a way to map the RDF ontology to the schemas of WFS features and relational
tables. This mapping is defined as RDF views from the feature and database schemas to
the ontology. With RDF views, RDF queries can be rewritten to getFeature requests to
WFS servers and SQL queries to databases.
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The RDF views are defined in two steps. The first step is to create mapping rules to
define each WFS feature and relational table as a view over the RDF ontology. In this
step, only datatype properties are used in the mapping rules. Datatype properties are
the properties with ranges of primitive types such as string or integer. The second step
is to define inference rules for some additional RDF properties in terms of the datatype
properties used in the previous step. The additional properties include the so-called
object properties whose ranges are RDF class types.

5.1 Mapping Rules

Definition 1. A mapping rule from WFS feature or database table to RDF triples has
the form of p(X) : −R(X, Y ), where p is a predicate corresponding to a WFS feature
or a relational table, R is a set of RDF triples, X and Y are sets of variables.

Figure 3 illustrates the mapping from relational tables and WFS features to RDF ontol-
ogy. The mapping rules written in Datalog-like7 notations are summarized in Figure 4.
A mapping rule m has two parts, the left of :- is called the rule head and can be
written as m.head and the right of :- is the rule body accessible via m.body. The
rule head is a predicate corresponding to a WFS feature or database table. For exam-
ple, wfs:link(?id, ?geom) refers to the link feature in a WFS server, where ?id
and ?geom are variables corresponding to the ID and Geometry properties respectively.
Note that any string started with ? is a variable. Similarly, db:Route(?id, ?name)
is a route table in a database where ?id and ?name are variables representing the ID
and name columns of the route.

The rule body is a set of RDF triples written in N38 notations, where each triple has
the form of subject predicate object, and subject and object can be vari-
ables that correspond to RDF instances or primitive values such as strings, and object
can also be RDF types or constants. The predicate corresponds to the RDF properties
such as hasID and geometry. For each database table and each WFS feature type,
we create a corresponding RDF class. The mapping rules map the database tables and
WFS feature types to the corresponding RDF classes. Consequently, the RDF triples in
a body of a rule always have the same subject. For example, the only subject in Rule
(M1) is ?stop while the subject in (M2) is ?link.

In our definition, a variable ?x appearing in the rule head corresponds to the value of
a WFS feature property or a database table cell, while a variable ?y only appearing in
the rule body but not in rule head corresponds to RDF instances. Since we don’t create
RDF instances explicitly, the variables such as ?y are never materialized.

5.2 Inference Rules

The mapping rules connect WFS features and database tables to RDF ontology but only
the datatype properties of the ontology are used. RDF ontology is more flexible in that
it can define object properties to connect RDF instances. For example, we can define
route link property to specify the links contained in a route. This is useful because

7 http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html
8 http://www.w3.org/2000/10/swap/Primer.html
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Fig. 3. Schematic mapping from database tables and WFS features to RDF ontology

a route does not have geometry of its own. If we want to display a route on a map
based on the route name, we cannot rely on the datatype properties of the Route class.
Instead, we can use route link property to find out the links in a route with certain
name and render the geometries of these links on a vector layer of a map.

To connect object properties such as route link to WFS features and database
tables, we use a set of inference rules to derive object properties based on the datatype
properties. An inference rule i also written in Datalog-like notations has two parts: the
head written as i.head and the body written as i.body. The head of the rule has the form
of a RDF triple while the body is a set of RDF triples plus some filters.
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(M1) wfs:stop(?geom, ?sid) :- ?stop rdf:type Stop,
?stop hasID ?sid,
?stop geometry ?geom.

(M2) wfs:link(?geom, ?lid) :- ?link rdf:type Link,
?link hasID ?lid,
?link geometry ?geom.

(M3) db:stop(?sid, ?intersect)
:- ?stop rdf:type Stop,

?stop hasID ?sid,
?stop intersection ?intersect.

(M4) db:route(?rid, ?name) :- ?route rdf:type Route,
?route hasID ?rid,
?route name ?name.

(M5) db:pattern(?pid, ?rid) :- ?pattern rdf:type Pattern,
?pattern hasID ?pid,
?pattern routeID ?rid.

(M6) db:linksequence(?pid, ?lid, ?linkOrder)
:- ?linkseq rdf:type LinkSequence,

?linkseq patternID ?pid,
?linkseq linkID ?lid,
?linkseq linkOrder ?linkOrder.

Fig. 4. Mapping rules from WFS features and relational tables to RDF ontology

(I1)
?route route_link ?link :-

?route rdf:type Route,
?route hasID ?rid,
?pattern rdf:type Pattern,
?pattern hasID ?pid,
?pattern routeID ?rid,
?linkseq rdf:type LinkSequence,
?linkseq hasID ?lid,
?linkseq patternID ?pid,
?link rdf:type Link
?link hasID ?lid.

(I2)

?stop nearby_stop ?other :-
?stop rdf:type Stop,
?other rdf:type Stop,
?stop geometry ?geom,
?other geometry ?g,
filter(

DWithin(?g, ?geom, 1)
).

Fig. 5. Inference rules where filter(DWithin(?g, ?geom, 1)) is a filter to specify that
?g is within a distance of 1 from ?geom

Definition 2. An inference rule has the form of r(X) : −R(Y , Z), F (Z), where r is
a RDF triple, R is a set of RDF triples, F is an optional set of filters, and X , Y , Z
are sets of variables. X is a subset of Y and they contain variables referring to RDF
instances. Z is a set of variables referring to datatype values or geometries.

Figure 5 shows two inference rules where Rule I1 says that Property route stop
relates a route to a link if the route ID matches the route ID of a pattern, the pattern’s ID
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matches the pattern ID of a link-sequence, and the link-sequence’s link ID matches the
link’s ID. The inference rule for route stop can be defined similarly. Note that the
filter in Rule I2 is similar to the OGC filters and the rule says that a stop one has a nearby
stop two if stop two’s geometry is within a distance of 1 from stop one’s geometry. Here
we omit the unit of distance.

To simplify query rewriting algorithm, we require an object property to appear in the
head of at most one inference rule.

6 RDF Queries

We use SPARQL9 – a query language for RDF data to write our spatial queries. The
SPARQL queries have to be rewritten to WFS getFeature requests and SQL queries.
The queried results can then be displayed or rendered on a map.

Definition 3. We consider SPARQL queries in the form of

select X where R(Y , Z), F (Z)

where R is a set of RDF triples, F is an optional set of filters, and X , Y , and Z are set
of variables. X is a subset of Z . Y is a set of variables corresponding to RDF instances
while Z is a set of variables corresponding to datatype values and geometries.

We restrict the set of variables that a SPARQL query selects to be datatype variables
or geometries. The reason is that we are mainly interested in the attributes of spatial or
non-spatial features, not the virtual RDF instances. We call the set of RDF triples in a
SPARQL query q its body and write it as q.body.

As an example, suppose we want to find the geometry of a route by the route name
“Summit”. The SPARQL query can be written as

(Q1) select ?geom where ?route rdf:type Route.
?route route_link ?link.
?link geometry ?geom.
?route name ?name.
filter(?name = "Summit").

Here we use the property route link to find the links of a route with name “Sum-
mit”. Another example is to find the intersection address of a bus stop based on the x, y
coordinates of the stop (-88, 43).

(Q2)
select ?intersect where ?stop rdf:type Stop.

?stop intersection ?intersect.
?stop geometry ?geom.
filter(DWithin(?geom, (-88,43), 0.1)).

9 http://www.w3.org/TR/rdf-sparql-query/
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To display the nearby stops of a given stop, we can use the query below:

(Q3) select ?g where ?stop rdf:type Stop.
?stop geometry ?geom.
filter(DWithin(?geom, (-88,43), 0.1)).
?stop nearby_stop ?other.
?other geometry ?g.

Note that a user interface can hard-wire some of the queries into the interface so that
users do not have to write them explicitly. The queries such as Q2 and Q3 are incon-
venient for users to write directly because the geometries of interests are difficult to
specify precisely. The interface, however, can rely on mouse click to select stops and
then query for the nearby stops or intersection addresses.

6.1 Query Semantics

Given a set of RDF views connecting a RDF ontology and a set of WFS and database
schemas, we can always convert a set of WFS and database instances – the source
instances, to a set of RDF instances – the target instances. The goal here is to allow
querying on the target instances without actually creating them.

Thus, the problem we want to solve is

to find the answers to a SPARQL query Q1 on the RDF ontology by rewrit-
ing the query to WFS/SQL queries Q2 so that the answer to Q2 on source
instances is the same as the answer to Q1 on target instances.

WFS feature instances
wfs:stop(10, (-88,42)) wfs:link(22, ((-88,42), (-88,43)))
wfs:stop(11, (-88,43)) wfs:link(23, ((-88,43), (-87,43)))

database instances
db:route(25, "Summit") db:pattern(11, 25)
db:stop(10, "Main at Oakland") db:linksequence(11, 22, 1)
db:stop(11, "Main at Adams") db:linksequence(11, 23, 2)

target RDF instances
_stop10 rdf:type Stop;

hasID 10;
intersection "Main at Oakland";
geometry (-88,42).

_stop11 rdf:type Stop;
hasID 11;
intersection "Main at Adams";
geometry (-88,43)

_link22 rdf:type Link;
hasID 22;
geometry ((-88,42), (-88,43)).

_link23 rdf:type Link;
hasID 23;
geometry ((-88,43), (-87,43)).

_route25 rdf:type Route;
hasID 25;
name "Summit".

_pattern11 rdf:type Pattern;
hasID 11;
routeID 25.

_seq11_1 rdf:type LinkSequence;
linkID 22;
linkOrder 1;
patternID 11.

_seq11_2 rdf:type LinkSequence;
linkID 23;
linkOrder 1;
patternID 11.

Fig. 6. WFS/database instances and the corresponding RDF instances written in N3 notations.
For example, route25 is a node of Route type and it has ID 25 and name “Summit”
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_route25 rdf:type Route;
hasID 25;
name "Summit";
route_link _link22;
route_link _link23;

_stop10 rdf:type Stop;
hasID 10;
intersection "Main at Oakland";
geometry (-88,42);
nearby_stop _stop11.

_stop11 rdf:type Stop;
hasID 11;
intersection "Main at Adams";
geometry (-88,43);
nearby_stop _stop10.

Fig. 7. RDF node with properties derived with inference rules

As an example, consider the WFS and database instances shown in Figure 6, where
wfs:stop(10, (-88,42)) represents a feature instance of bus stop that has ID
10 and point geometry (−88, 42). Similarly, the line geometry of wfs:link(22,
((-88,42),(-88,43))) is ((−88, 42), (−88, 43))). Also, a database instance
written as db:linksequence(11, 22, 1) is a link sequence with pattern ID
11, link ID is 22, and link order 1.

We use the mapping rules to create target RDF instances shown in Figure 6. Apply-
ing the inference rule I1 and I2 to the sample data, we obtain additional properties for
the instances of Route and Stop class as shown in Figure 7. Figure 8 illustrates the rela-
tionship between the route nodes, link nodes, and stop nodes. If we directly apply query
Q1 to the target instances in Figure 6 and 7, then we can find that a route by the name
of “Summit” has two links link22 and link23, which have the line geometries of
((-88,42), (-88,43)) and ((-88,43), (-87,43)). We want to rewrite
Q1 to WFS requests and SQL queries so that the same answers are returned from the
WFS servers and databases.

6.2 Query Rewriting

The query rewriting algorithms have two parts. The first part shown in Figure 9 applies
inference rules to the body of a SPARQL query (target query) so that RDF triples with
object properties are replaced by RDF triples with datatype properties. An inference

Fig. 8. Route route25 includes the links link22, link23 and the stops stop10 and stop11
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1 input: target query q
2 a set of inference rules I
3

4 for each triple t in q.body
5 for each inference rule i in I
6 if there exists a substitution s such that s(i.head) = t
7 then replace t in q.body with s(i.body)
8 end for
9 end for

10

11 output: q’ where q’.body has only triples in RDF mapping

Fig. 9. Algorithm 1: apply inference rule to SPARQL query

rule i is applicable to a triple t if i.head matches t via a variable substitution s such that
s(i.head) = t.

Definition 4. A substitution s is a variable mapping from the set V to another set V ′

such that for each v ∈ V , s(v) ∈ V ′. s(t) is t with every variable in t replaced by t(v).

Note that an inference rule may define an object property in terms of not only datatype
properties but also other object properties. This problem can be solved by recursively
applying the inference rules to the query body until no object property remains. We do
not consider this case for simplicity

Also note that the inference step is similar to backward chaining technique of au-
tomatic deduction used in logic programming systems such as Prolog [33]. However,
we do not define recursive inference rules and the head of each inference rule is dis-
tinct. The restrictions ensure that Algorithm 1 always terminates and there is no need
for backtracking (to try alternative rules of the same head).

The second part shown in Figure 10 applies algorithm 1 to the target query, and then
rewrites the resulting query to WFS getFeature requests and SQL queries.

For example, we can apply inference rule I1 to the query Q1 to replace ?route
route link ?link. with the body of Rule I1. Below is the result with some re-
dundant triples removed.

(Q1’) select ?geom where ?route rdf:type Route.
?route hasID ?rid.
?route name ?name.
filter(?name = "Summit").
?pattern rdf:type Pattern.
?pattern hasID ?pid.
?pattern routeID ?rid.
?linkseq rdf:type LinkSequence.
?linkseq patternID ?pid.
?linkseq hasID ?lid.
?link rdf:type Link.
?link hasID ?lid.
?link geometry ?geom.
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1 input: target query q
2 a set of mapping rules M
3 initialize: apply algorithm 1 to q to obtain q’
4 group triples in q’.body by subject name
5 resulting a set of triple groups L
6

7 for each triple group t in L
8 for each mapping rule m in M
9 if there exists a substitution s such that

10 s(m.body) contains all triples in t
11 then replace t in q’ with s(m.head)
12 end for
13 end for
14

15 output: q’ where q’.body contains database queries and/or
16 WFS getFeature requests

Fig. 10. Algorithm 2: query rewriting

Next, we apply mapping rules to replace the query body with WFS requests and SQL
queries. For Query Q1’, we apply the set of mapping rules M2, M4, M5, and M6. After
substitution, we get query Q1”.

(Q1’’) select ?geom where wfs:link(?geom, ?lid),
db:pattern(?pid, ?rid),
db:linksequence(?pid, ?lid, ?linkOrder),
db:route(?rid, ?name),
filter(?name = "Summit").

At this point, the query rewriting is complete where the body of Query Q1’’ has
a WFS getFeature request for the link feature and and a database SQL query for the
pattern, linksequence, and route tables.

The order of execution of this query may be significant, however, since it is not
efficient to send the WFS getFeature request without obtaining link IDs of the route
“Summit” first. There could be large number of link features and the resulting GML file
returned by the getFeature request can be slow to download and parse. This requires us
to execute the database query that corresponds to:

db:pattern(?pid, ?rid),
db:linksequence(?pid, ?lid, ?linkOrder),
db:route(?rid, ?name),
filter(?name = "Summit").

This fragment can be translated to SQL of the form

select distinct l.lid
from patterns p, linksequence l, route r
where p.pid = l.pid and

r.rid = p.rid and
r.name = "Summit";
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The retrieved link IDs are used to send getFeature request to the WFS server for the
geometries of the feature link.

Similarly, Query Q2 can be rewritten as

(Q2’)
select ?intersect where db:stop(?sid, ?intersect),

wfs:stop(?sid, ?geom),
filter(DWithin(?geom, (-88,43), 0.1)).

In this case, it is more efficient to query WFS feature stop for the stop ID where the
geometry of the stop is with distance 0.1 of the point (-88,43). The retrieved stop ID is
used to query database for the address of the stop intersection.

Lastly, Query Q3 can be rewritten as

(Q3’) select ?g where wfs:stop(?id, ?geom),
filter(DWithin(?geom, (-88,43), 0.1)),
wfs:stop(?sid, ?g),
filter(DWithin(?g, ?geom, 1)).

In this case, two WFS requests are needed. The first request finds the geometry ?geom
of a stop around the point (-88,43) and the second request finds all the stops that are
within the distance of 1 from ?geom. The geometries of all requested stops are returned.

Note that the execution of WFS and database queries may be more efficient if at least
one variable of each WFS query is given values by the previous queries or such variable
is constrained by some OGC filters. This is somewhat related to query rewriting in the
context of data integration where data sources may have restrictions on possible access
path to data [20].

Also note that in general, query rewriting using views should consider whether the
rewritings are equivalent or maximally contained and whether the views are assumed
to be complete or not [20]. In our case, the views (database or WFS schemas) on RDF
schemas are complete and we seek equivalent rewriting. The views are relatively simple
since there can be at most one database view and one WFS view on each RDF class.
Because of these restrictions, each database table or WFS feature type has unique map-
ping in a RDF class. So if a RDF ontology R is created from a database and a WFS
based on the above mapping and inference rules, and Q′ is a rewriting of Q using Al-
gorithm 2, then Q′ should always produce the same result as executing Q on R. Also,
though the complexity for query rewriting when queries and views are expressed as
conjunctive queries is NP-complete [25], our algorithm is polynomial time because of
the restrictions on views.

6.3 Semantic Constraints

RDF schema10 includes some constructs of semantic constraints to assist ontology
reasoning. The constructs include rdfs:subClassOf, rdfs:subPropertyOf,
rdfs:domain, and rdfs:range, etc. These restrictions can be useful in stating
queries. For example, a RDF query for the instances of SpatialFeature class that
are within a certain bounding box can be automatically translated to queries for in-
stances of Stop and Link since they are both subclasses of SpatialFeature.

10 http://www.w3.org/TR/rdf-schema/
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In fact, the ontology defined in Figure 1 and 2 already contains some semantic
constraints. The class SpatialFeature is a subclass of Feature, while the for-
mer has the subclasses Link and Stop, and the latter has the subclasses Route,
Pattern, LinkSequence, etc. Also, we specified the domain and range of the prop-
erty route link to be Route and Link.

Because of these constraints some queries can be simplified. For example, Query
Q1 does not need to say that the type of ?route is Route because the domain of
route link already has that restriction.

simplified (Q1)

select ?geom where ?route route_link ?link.
?link geometry ?geom.
?route name ?name.
filter(?name = "Summit").

Nothing needs to be changed in the algorithm for this example because the inference
rule for route link will add triples to specify the types of ?route and ?link.

In general, however, we need to include more inference rules to incorporate the use
of semantic constraints. That is, we need to include inference rules to consider subclass
and subproperty relations and the domain and range restrictions. We need to modify
Algorithm 1 so that for each triple of the form ?s rdfs:type SpatialFeature,
we add additional triples ?s rdfs:type Stop and ?s rdfs:type Link since
Stop and Link are subclasses of SpatialFeature. Similar treatment should be
applied to Feature. Also, for any triple ?s p ?o, if the property p has domain and
range constraints, we should add type restrictions for ?s and ?o; if p has a subproperty
p’, then we should add another triple ?s p’ ?o. Algorithm 2 remains the same.

More semantic constraints can be found in another ontology language OWL11, an
extension of RDF. For example, classes and properties in OWL can be declared as
synonyms using owl:sameAs. Note that OWL-DL – a subset of OWL is based on
description logics. Query rewriting with views is more difficult when the views are
expressed in description logics and conjunctive queries over description logics. Query
rewriting may be possible with some restrictions on the views [4]. Also, when descrip-
tion logics are combined with inference rules, the problem may be undecidable. Some
restricted systems have decidable algorithms but they do not deal with query rewriting.
Examples include AL-Log [14], which is an integrated system for knowledge repre-
sentation based on description logics and Datalog, and Motik et.al. [26] proposed a
decidable combination of OWL-DL with function-free Horn rules.

7 Implementation Issues

Though the query rewriting algorithm can translate SPARQL queries to WFS requests
and SQL queries, it is easier to do this using an existing application – D2R Server [7]
that can create virtual RDF graphs from one or more relational databases. With D2R

11 http://www.w3.org/TR/owl-features/
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server, we no longer need to send SQL queries to databases directly. In fact, we can
modify the Algorithm 2 slightly to make it work with D2R Server. D2R Server ac-
cepts SPARQL queries and through a set of mapping rules similar to what we have
described, it translates the SPARQL queries to database queries and gets results back as
RDF triples. So we first rewrite some RDF triples in the body of initial query to WFS
getFeature requests. For example, Query Q1 can be rewritten to

select ?geom where ?route rdf:type Route.
?route route_link ?link.
?route name ?name.
filter(?name = "Summit").
?link hasID ?lid.
wfs:link(?lid, ?geom).

Since we are interested in the link IDs of the route “Summit”, we can send the following
SPARQL query to the D2R Server:

(Q4) select ?lid where ?route rdf:type Route.
?route route_link ?link.
?route name ?name.
filter(?name = "Summit").
?link hasID ?lid.

The above query retrieves link IDs from database and we assume that the D2R Server
has the same RDF ontology, which includes the RDF property route link.

After obtaining the link IDs, a getFeature request similar to Figure 11 can be sent
to WFS server to retrieve the geometries of the links. Notice that Query Q4 has an
additional triple in its body ?link hasID ?lid to retrieve link IDs. This can be
generalized because the WFS features can be identified by their IDs. So in general, if
the initial query involves a WFS feature, we require both the WFS getFeature request
and the SPARQL query to D2R server to return IDs of the feature. If a WFS request is

<wfs:GetFeature service="WFS" version="1.0.0"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc" ...
<wfs:Query typeName="wfs:link">
<ogc:Filter>

<OR>
<PropertyIsEqualTo>

<PropertyName>id</PropertyName>
<Literal>22</Literal>

</PropertyIsEqualTo>
...

</OR>
</ogc:Filter>

</wfs:Query>
</wfs:GetFeature>

Fig. 11. A WFS GetFeature request to retrieve instances of feature Link with ID filters
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Fig. 12. RDF interface architecture

Fig. 13. Transit routes of Waukesha county

sent first, then the resulting feature IDs are used in the filters of the SPARQL query to
D2R server. The architecture of the RDF interface is shown in Figure 12.

A sample demonstration of the interface12 is shown in Figure 13, which shows
Waukesha county’s route links and streets as a WFS and a WMS layer, and Figure 14,
which shows the links and bus stops of the route “Summit” retrieved from a WFS server
using the link IDs and stop IDs retrieved from a D2R server. Also, as shown in Fig-
ure 14, users can click on a bus geometry (highlighted) and retrieve the intersection
“SUMMIT AVE at SYLVAN TER” associated with the stop.

12 http://jiangxi.cs.uwm.edu:8080/waukesha/gis.html
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Fig. 14. Route “Summit” and its stops

8 Conclusion and Future Work

We have presented a new method to provide integrated access to distributed geospa-
tial data using RDF ontology and query rewriting. This method is more efficient than
converting all data to ontology instances because it avoids the costs and consistency
problems of data replication. Also, ontology interface can still use existing tools for con-
ducting spatial query on geometries and relational queries on non-spatial data, and for
rendering spatial features encoded in GML. Using the proposed method, user queries
can be more straightforward because the application ontology can encode data seman-
tics not available in WFS feature types or database schemas.

Our method uses RDF ontology but since RDF is a subset of OWL, the method can
be directly applied to OWL ontology though extension may be needed to take advan-
tage of the semantic constraints of OWL. OWL has more semantic constructs such as
class equivalence/intersection/union, transitive/reflexive object properties, and the re-
strictions of universal/existential quantification on object properties. Our query rewrit-
ing algorithm needs to be extended to handle semantic constraints encoded with these
constructs. However, it may be possible to use some existing tools such as Jena in this
extension.

To evaluate the effectiveness of our method, we may need to implement a more com-
plete ontology interface where user can query any classes and properties defined in
domain and application ontology. The evaluation criteria may include the expressive-
ness of the interface – how many kinds of queries the interface can handle. The criteria
should also include the efficiency of the interface – how fast the results are returned
in comparison to the alternative ways of data integration such as data warehousing ap-
proach where all data are converted to ontology instances. Finally, we may want to
evaluate the flexibility of the method – how easy it is to combine this method with other
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GIS applications. For example, we can provide this ontology interface as a web service
where other web-based applications can use it as a source of querying and rendering
geospatial data.

As future work, we plan to implement the query rewriting algorithms to accept ar-
bitrary SPARQL queries. Also, it may be useful to have ontology browser to display
instances of ontology classes, thus users can navigate to other instances following links
of object properties. The browser could be implemented on top of the query rewriting
module. However, it is not clear how the contents of the browser should be presented
since plain text of GML geometries is clearly not interesting while rendering all re-
turned spatial instances could be very inefficient.
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