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Abstract. Definitional trees have been introduced by Sergio Antoy in
order to design an efficient term rewrite strategy which computes needed
outermost redexes. In this paper, we consider the use of definitional trees
in the context of term-graph rewriting. We show that, unlike the case of
term rewrite systems, the strategies induced by definitional trees do not
always compute needed redexes, in presence of term-graph rewrite sys-
tems. We then define a new class called inductively sequential term-graph
rewrite systems (istGRS) for which needed redexes are still provided by
definitional trees. Systems in this class are not confluent in general. We
give additional syntactic criteria over istGRS’s which ensure the conflu-
ence property with respect to the set of admissible term-graphs.

1 Introduction

Many declarative languages are based on term rewrite systems (TRS). There
are good reasons for that, they actually benefit from a solid logical foundations
(equational logic, model-theory, proof methods) as well as very efficient imple-
mentation techniques. Term rewrite systems have been used also as a unifying
computational model for declarative languages sharing both functional and logic
features with very efficient operational semantics [5].

However, real-life programs, very often, deal with complex data-structures
built by means of pointers (e.g., circular lists, doubly-linked lists, etc.). Such
data-structures can be modeled as term-graphs [6,19] and are sometimes manda-
tory for efficiency reasons, namely time and space complexity of algorithms. Term
rewriting constitutes a computational model which is Turing-complete and thus
can encode theoretically any transformation over term-graphs, but such encod-
ings are in general cumbersome and too costly. Thus term-graphs appear as a
good trade-off to use rewrite systems to compute with general data-structures
without using all the machinery specific to graph transformations [20,13,14].
In recent works, e.g. [4,3,18] term-graph rewriting has also been considered as
a means to implement naturally, in declarative languages, the call-time choice
semantics introduced in [16].
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A new class of term-graph rewrite systems (hereafter, noted tGRS) has been
introduced recently in [8]. This class is a conservative extension of those intro-
duced in [9,10]. It provides some features dedicated especially to pointer rewriting
such as redirection of pointers or node constraints (see section 2). These fea-
tures allow one to write, in a rule-based language, algorithms with efficient space
complexity such as in-situ list reversal or those manipulating node constraints
such as the length of circular lists. Such algorithms were not possible to encode
directly in previous works regarding term-graph rewriting such as [19,9,10].

The new features of tGRSs are very appealing. That is why, we intend to pur-
sue our efforts in investigating the class of tGRSs. In [8], a categorical approach
has been proposed, [12] present a discussion about the use of term-graphs with
priorities as a means to overcome the non-confluence issues and [11] presents
the first general and complete narrowing procedure which is able to synthesize
solutions with circular data-structures.

The present paper is a first step towards the conception of efficient rewrite
strategies in presence of subclasses of tGRSs. We particularly consider the use of
Definitional Trees introduced by Antoy in his seminal paper [1]. Definitional trees
have been successfully used in defining efficient strategies either in term rewriting
and narrowing [1,2,5], graph rewriting and graph narrowing [9,10,4]. We show
that, the strategies induced by Definitional trees do not compute needed redexes
in general. Then, we define a particular class of term-graph rewrite systems for
which the induced strategies are efficient and compute needed redexes.

The paper is organized as follows. The next section defines the class of term-
graph rewrite systems that we consider. In section 3 we show some negative
results regarding the use of definitional trees and introduce the class of induc-
tively sequential tGRSs, for which Definitional trees help to compute needed
redexes. In section 4 we show the confluence property for a subclass of induc-
tively sequential term-graph rewrite systems. Section 5 concludes the paper.

2 Preliminary Definitions

In this section we define a class of term-graph rewrite systems, denoted tGRS.
We define the shape of its rules and the process of rewriting. The right-hand
sides of the rules consist of sequences of actions. These actions are intended to
decompose the transformation of graphs into consecutive atomic actions.

Definition 1 (Signature). A many-sorted signature Σ = 〈S, Ω〉 consists of a
set S of sorts and an S-indexed family of sets of operation symbols Ω = �s∈SΩs

with Ωs = �w∈S∗Ωw→s. We shall write f : s1 . . . sn → s whenever f ∈ Ωs1...sn→s

and say that f is of sort s and rank s1 . . . sn. A constructor-based signature Σ is
a triple Σ = 〈S, C,D〉 such that S is a set of sorts, C is an S-indexed family of sets
of constructor symbols, D is an S-indexed family of sets of defined operations,
C ∩ D = ∅ and 〈S, C � D〉 is a signature.

A term-graph is defined in this paper as a set of nodes and edges between the
nodes [6]. Each node may be labeled with an operation symbol or not. A node



86 R. Echahed

which is not labeled will act as a variable. Let N = �s∈SNs, be an S-indexed
family of countable sets of nodes. N is supposed to be fixed throughout the rest
of the paper.

Definition 2 (Term-Graph)
A term-graph g over 〈Σ,N〉 is a tuple g = 〈Ng,NΩ

g ,Lg,Sg〉 such that :

1. Ng is the set of nodes of g, i.e., Ng = �s∈S(Ng)s with (Ng)s ⊆ Ns.
2. NΩ

g is the subset of labeled nodes of g, NΩ
g ⊆ Ng

3. Lg, the labeling function of g, is an S-indexed family of functions associating
an operation symbol to each labeled node of g, i.e., Lg = �s∈S(Lg)s with
(Lg)s : (NΩ

g )s → Ωs.
4. Sg, the successor function of g, is an S-indexed family of functions associ-

ating a (possibly empty) string of nodes to each labeled node of g, i.e., Sg =
�s∈S(Sg)s with (Sg)s : (NΩ

g )s → N ∗
g such that for every node n ∈ (Ng)s :

– if (Lg)s(n) = f with f : s1 . . . sk → s, then there exist n1, . . . , nk ∈ Ng

such that (Sg)s(n) = n1 . . . nk and ni ∈ (Ng)si for all i ∈ 1..k.
– if (Lg)s(n) = c with c ∈ Ωε,s (c is a constant), then (Sg)s(n) = ε (i.e.,

n has no successor).
We write n ∈ Sg(m) if n is a successor of m.

We write ar(n) for the arity of node n which is equal to the length of Sg(n). A
rooted term-graph, denoted by gn, is a term-graph g with a distinguished node n
(n ∈ Ng) called the root of g. n will be denoted by Rootg. Let g be a term-graph
and n and m two nodes of g (n, m ∈ Ng), we write n �g m iff m ∈ Sg(n). We
will say that node m is reachable in g from node n iff n

∗
�g m. A rooted term-

graph gn is a constructor-rooted term-graph if and only if the root n is labeled
by a constructor (i.e. Lg(n) ∈ C). A rooted term-graph gn is a constructor term-
graph if and only if every reachable node m from the root n (n ∗

�g m), m is either
labeled by a constructor symbol (Lg(m) ∈ C) or m is not labeled (m 
∈ NΩ

g ).

In the sequel, we will assume that all formulae we are considering are well-sorted,
and thus drop subscripts related to the many-sorted framework.

As the formal definition of term-graphs is not very convenient to write ex-
amples, we recall below the linear notation [6] of term-graphs. In the following
grammar, the variable A (resp. n) ranges over the set Ω (resp. N ):

TermGraph ::= Node | Node + TermGraph
Node ::= n:A(Node,. . . ,Node) | n:• | n

The root of a rooted term-graph defined by means of a linear expression is the
first node of the expression. n:• means that node n is not labeled. + stands for
the union of graph definitions.

Example 1. Let Ga
1 be the graph (see Fig.1) defined by Ga

1=〈NGa
1
,NΩ

Ga
1
,LGa

1
,SGa

1
〉

such that:

– NGa
1

= {a, b, c, d, e}
– NΩ

Ga
1

= {a, b, c, e}
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– LGa
1
(a) = succ;LGa

1
(b) = f ;LGa

1
(c) = g;LGa

1
(e) = h

– SGa
1
(a) = b;SGa

1
(b) = ce;SGa

1
(c) = de;SGa

1
(e) = b

Ga
1 could also be written using the linear notation as follows:

Ga
1 = a : succ(b : f(c : g(d : •, e : h(b)), e))

Definition 3 (Homomorphism). Let gn
1 and gm

2 be two rooted term-graphs. A
homomorphism h from gn

1 to gm
2 is a mapping h : Ngn

1
→ Ngm

2
which preserves

the root, the labeled nodes and the labeling and successor functions, i.e., h(n) =
m, h(NΩ

gn
1
) ⊆ NΩ

gm
2

, and for each labeled node, p, in gn
1 , Lgm

2
(h(p)) = Lgn

1
(p)

and Sgm
2

(h(p)) = h∗(Sgn
1
(p)) where h∗ denotes the extension of h to strings (of

nodes) defined by h∗(p1 . . . pk) = h(p1) . . . h(pk).

Notice that homomorphisms, as defined above, can map unlabeled nodes to
labeled ones.

Definition 4 (Actions). An action has one of the following forms. We omit
to give sort constraints which are quite straightforward and thus we assume that
all constructions are well-sorted.

– a node definition or node labeling α : f(α1, . . . , αn) where α, α1, . . . , αn

are nodes and f is a label of rank s1, . . . , sn. This means that α is labeled by
f and α1 . . . αn are the successor nodes of α (S(α) = α1 . . . αn).

– an edge redirection or local redirection α �i β where α, β are nodes and
i ∈ {1, . . . , ar(L(α))}. This is an edge redirection and means that the target
of the ith edge outgoing α is redirected to point to the node β.

– a global redirection α � β where α and β are nodes. This means that all
edges pointing to α are redirected to point to the node β.

The result of applying an action a to a term-graph g is denoted by a[g] and is
defined as the following term-graph g′:

– If a = α : f(α1, . . . , αn) then Ng′ = Ng ∪ {α, α1, . . . , αn}, Lg′(α) = f ,
Lg′(β) = Lg(β) if β 
= α, and Sg′ (α) = α1, . . . , αn, Sg′(β) = Sg(β) if β 
= α.
∪ denotes classical union.

– If a = α �i β then Ng′ = Ng, Lg′ = Lg, and if Sg(α) = α1, . . . , αi, . . . , αn

then Sg′(α) = α1, . . . , αi−1, β, αi+1, . . . , αn and for any node γ we have
Sg′(γ) = Sg(γ) iff γ 
= α. If α does not occur in Ng, then g′ = g.

– If a = α � β then Ng′ = Ng, Lg′ = Lg and for all nodes δ such that
Sg(δ) = α1, . . . , αn then Sg′(δ) = α′

1, . . . , α
′
n such that for i in 1..n, α′

i = β
if αi = α, and α′

i = αi if αi 
= α. If α does not occur in Ng, then g′ = g.

The application of an action a to a rooted term-graph gn is a rooted term-graph
g′m such that g′ = a[g] and root m is defined as follows:

– m = n if a is not of the form n � p.
– m = p if a is of the form n � p.
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b : f
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c : g
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d : • e : h

��

Fig. 1. Term-graph Ga
1
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Fig. 2. Term-graph Ga
2

a : succ

��
b : f

�������
		�������

w : 0 u : succ

��
v : h





Fig. 3. Term-graph Ga
3

a : succ

��
w : 0

Fig. 4. Term-graph Ga
4

The application of a sequence of actions u to a (rooted) term-graph g is defined
inductively as follows : u[g] = g if u is the empty sequence and u[g] = u′[a[g]] if
u = a; u′ where ; is the concatenation operation.

Example 2
Let Ga

1 be the graph defined in Example1 (see Fig.1).
Let Ga

2 be the graph (see Fig.2) Ga
2 = a : succ(b : f(c : g(d : •, u : succ(v :

h(b))), u))
Let Ga

3 be the graph (see Fig.3) Ga
3 = a : succ(b : f(w : 0, u : succ(v : h(b))))

Let Ga
4 be the graph (see Fig.4) Ga

4 = a : succ(w : 0)
Below we give some examples of the application of actions on the graphs above.

The first line shows the application of the actions v : h(b) ; u : succ(v) ; e � u
on the term-graph Ga

1 . The second line shows the application of the actions
w : 0 ; c � w on the term-graph Ga

2 . The last line shows the application of the
action b � w on the term-graph Ga

3 .

v : h(b) ; u : succ( v) ; e � u [Ga
1 ] = u : succ(v) ; e � u[Ga

1 + v : h(b)] = e �
u [Ga

1 + u : succ(v : h(b))] = Ga
2 + e : h(b)

w : 0 ; c � w [Ga
2 ] = c � w [Ga

2 + w : 0] = Ga
3 + c : g(d : •, u)

b � w [Ga
3 ] = Ga

4 + b : f(w, u : succ(v : h(w)))
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Definition 5 (Node Constraint). A node constraint is a (possibly empty)
conjunction of disequations between nodes:

∧n
i=1(αi 
 .= βi). A substitution σ :

N → N is a solution of a constraint φ =
∧n

i=1(αi 
 .= βi) iff for any i ∈ [1..n],
we have σ(αi) 
= σ(βi). We denote by sol(φ) the set of solutions of φ.

Notice that we do not use equality constraints. Such equalities may be encoded
directly into term-graphs.

Definition 6 (Rule, system)
A term-graph rewrite rule is an expression of the form [l | c] → r where r is
a sequence of actions, c is a constraint and l is a rooted term-graph s.t. for
any node α occurring in l, we have Rootl

∗
�l α (i.e. any node occurring in the

left-hand side must be reachable from the root Rootl). A rule ρ2 is said to be
a variant of a rule ρ1 iff ρ2 is obtained from ρ1 by (one-one) renaming all the
nodes in ρ1. A term-graph rewrite system is a set of rewrite rules.

Example 3. We first define an operation, sameloc, which tests whether two ar-
guments are located at the same place or not. Such operation is sometimes used
to enhance the implementation of equality in declarative languages.

r : sameloc(n : •, n) → q : true; r � q
[r : sameloc(n : •, m : •) | n 
 .= m] → q : false; r � q

As a second example, we define below the operation length which deals with
cyclic data-structures. length(p : •) computes the number of elements of any,
possibly circular, list matched by node p.

r : length(p : •) → r′ : length′(p, p); r � r′

r : length′(p1 : nil, p2 : •) → r′ : 0; r � r′

r : length′(p1 : cons(n : •, p2 : •), p2) → r′ : s(0); r � r′

[r : length′(p1 : cons(n : •, p2 : •), p3 : •) | p2 
 .= p3] → r′ : s(q : •); q :
length′(p2, p3); r � r′

Pointers help very often to enhance the efficiency of algorithms. In the follow-
ing, we define the operation reverse which performs the so-called “in-situ list
reversal”.

2 o : reverse(p : •) → o′ : reverse′(p, q : nil); o � o′

o : reverse′(p1 : cons(n : •, q : nil), p2 : •) → p1 �2 p2; o � p1

o : reverse′(p1 : cons(n : •, p2 : cons(m : •, p3 : •), p4 : •) → p1 �2 p4; o �1

p2; o �2 p1

The last example illustrates the encoding of classical term rewrite systems. We
define the addition on naturals as well as the function double with their usual
meanings.

r : +(n : 0, m : •) → r � m
r : +(n : succ(p : •), m : •) → q : succ(k : +(p, m)); r � q
r : double(n : •) → q : +(n, n); r � q
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Definition 7 (Matching). Let [l | c] → r be a rewrite rule and gn a rooted
term-graph. We say that the left-hand side [l | c] matches the term-graph gn at
node p, and denoted by [l | c] ≤ gp iff p is reachable from n (i.e. n

∗
�g p) and there

exists a homomorphism, also called matcher, h from l to gp, i.e. h : Nl → Ng

such that h(Rootl) = p and h is a solution of constraint c, i.e., h ∈ sol(c).

Definition 8 (Rewrite Step). Let ρ be the rewrite rule [l | c] → r and gn be
a rooted term-graph. We say that gn rewrites to gm

1 at node p by using the rule
ρ iff there exists a matcher h : l → gp which is a solution of constraint c and
gm
1 = h(r)[gn]. We write gn →[p, [l|c]→r] gm

1 , gn →p gm or simply gn → gm.

Example 4. Let f, g and h be three defined operations specified by the following
rewrite rules:

n : f(p : 0, q : •) → n � p
n : g(p : •, q : succ(m : •)) → w : 0; n � w
n : h(p : •) → u : succ(v : h(p)); n � u

Let Ga
1 , Ga

2 , G
a
3 and Ga

4 be the graphs defined in Example 2. We recall their
definitions below.

Ga
1 = a : succ(b : f(c : g(d : •, e : h(b)), e))

Ga
2 = a : succ(b : f(c : g(d : •, u : succ(v : h(b))), u))

Ga
3 = a : succ(b : f(w : 0, u : succ(v : h(b))))

Ga
4 = a : succ(w : 0)

From the rules given in this example, we can get the following derivation. Notice
that we did not report the nodes which are not reachable from the roots of the
considered term-graphs.

Ga
1 →e Ga

2 →c Ga
3 →b Ga

4

3 Inductively Sequential Term-Graph Rewrite Systems

Inductively sequential term rewrite systems have been introduced by Antoy in
[1]. Such systems are defined over constructor-based signatures. The left-hand
sides of the rules are patterns of the form f(k1, · · · , kn) where f is a defined
symbol and the sub-terms (i.e., the ki’s) are constructor terms. By definition,
the rules of an inductively sequential term rewrite system are stored in data-
structures called definitional trees. Thanks to these data-structures, several effi-
cient rewriting and narrowing strategies have been devised (e.g. [1,5]).

In this section we consider a subclass of tGRSs which consists of systems that
can be stored within definitional trees.

Definition 9 (Definitional tree). Let SP = 〈Σ,R〉 be a tGRS such that Σ
is a constructor-based signature. A tree T is a partial definitional tree, or pdt,
with pattern [π | C] iff one of the following cases holds:
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– T = rule([π | C] → r), where [π | C] → r is a variant of a rule of R.
– T = position.branch([π | C], o, T1, . . . , Tk), where o is a non-labeled node of

π, o is of sort s, c1, . . . , ck (k > 0) are different constructors of the sort s
and for all j ∈ 1..k, Tj is a pdt with pattern [πj |C], such that πj is obtained
from π by applying an action which labels the node o with constructor cj,
i.e., πj = o : cj(o1 : •, . . . , on : •)[π], where n is the number of arguments of
cj and o1, . . . , on are new nodes.

– T = share.branch([π | C], T1, T2), where T1 is a pdt with pattern [π | C∧n 
 .=
m] such that n and m are nodes occurring in π and the constraint n 
 .= m
does not occur in C and T2 is a pdt with pattern [π′ | C] such that π′ is
obtained from π by collapsing the two nodes n and m (and their successors).
I.e. π′ is obtained by encoding the constraint n

.= m into π.

We write pattern(T ) to denote the pattern argument of a pdt.
A definitional tree T of a defined operation f is a finite pdt with a pattern of
the form [p : f(o1 : •, . . . , on : •) | true], also denoted by p : f(o1 : •, . . . , on : •),
where n is the number of arguments of f , p, o1, . . . , on are new nodes, and for
every rule [l | C] → r of R, with l of the form f(g1, . . . , gn), there exists a leaf
rule([l′ | C′] → r′) of T such that [l′ | C′] → r′ is a variant of [l | C] → r.

Example 5. We consider the auxiliary operation length′ defined in Example 3.
We recall first its rules and provide a definitional tree for it. We give only the
pattern or the rule for every node of the tree.

(Rule1) r : length′(p1 : nil, p2 : •) → r′ : 0; r � r′

(Rule2) r : length′(p1 : cons(n : •, p2 : •), p2) → r′ : s(0); r � r′

(Rule3) [r : length′(p1 : cons(n : •, p2 : •), p3 : •) | p2 
 .= p3] → r′ : s(q : •); q :

length′(p2, p3); r � r′

Readers familiar with classical definitional trees [1] should notice the introduc-
tion of a new kind of nodes called share.branch. In the context of term-graph
rewriting, sharing of data-structures plays an important role which cannot be
handled easily in the framework of term (tree) rewriting. The addition of the
nodes share.branch still ensures the property of non overlapping of the patterns
situated at the leaves of a definitional tree. We can easily prove the following
statement.

r : length′(p1 : •, p2 : •)

�����������
���������������

Rule1 length′(p1 : cons(n : •, p3 : •), p2 : •)

�����������������
��

Rule2 Rule3

Fig. 5. A definitional tree of operation length′
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Proposition 1. Let T be a definitional tree of a defined operation f . Let [l1 |
c1] → r1 and [l2 | c2] → r2 be two different rules of T . Then, the left-hand sides
[l2 | c2] and [l1 | c1] do not overlap. I.e., there exist no term-graph g, and matchers
h1 : l1 → g and h2 : l2 → g which fulfil respectively constraints c1 and c2.

Hereafter, we define the rewrite strategy Φ induced by definitional trees. We
start by the following technical definition of constructor paths.

Definition 10 (Constructor Path). We will say that a node p is reachable
from a node n0 in a term-graph g through a constructor path iff there exists a
path in g, say n0 �g n1 �g . . . �g nk �g p such that, for all i ∈ 0..k, Lg(nj)
is a constructor symbol (∈ C).

Definition 11 (A term-graph rewrite strategy). Let SP = 〈Σ,R〉 be a
tGRS such that Σ is constructor-based and the rules of every defined operation
are stored in a definitional tree. Let gn be a rooted term-graph. Let p be a reach-
able node from the root n through a constructor path in gn such that p is labeled
by a defined operation f and let Tf be a definitional tree of f . Φ is the partial
function defined by Φ(gn) = ϕ(gp, Tf ).

Below, we define the partial function ϕ. Let gn be a rooted term-graph such
that Lgn(n) ∈ D (i.e. the root n is labeled with a defined operation) and T a
pdt such that pattern(T ) ≤ gn. When it is defined, the value ϕ(gn, T ) is a pair
(p, R) such that the term-graph gn can be reduced at node p using the rule R.
More precisely, ϕ(gn, T ) is defined as follows:

ϕ(gn, T )=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n, [π′ | C′] → r′) if T = rule([π | C] → r) and
[π′ | C′] → r′ is a variant of [π | C] → r ;

ϕ(gn, Ti) if T = share.branch([π | C], T1, T2) for
the unique i such that pattern(Ti) ≤ gn and i ∈ 1..2;

ϕ(gn, Ti) if T = position.branch([π | C], o, T1, . . . , Tk) for
the unique i such that pattern(Ti) ≤ gn and i ∈ 1..k;

(p,R) if T = position.branch([π | C], o, T1, . . . , Tk),
[π | C] matches gn at the root n by
homomorphism h : π → g,

h(o) is labeled with a defined operation f (in g),
T ′ is a definitional tree of f and

ϕ(gh(o), T ′) = (p, R).

Example 6. We illustrate the use of the strategy Φ. We consider again the oper-
ations and the rules given in Example 4.

(R1) n : f(p : 0, q : •) → n � p
(R2) n : g(p : •, q : succ(m : •)) → w : 0; n � w
(R3) n : h(p : •) → q : succ(m : h(p)); n � q

First, we provide a definitional tree for each operation.

Tf = position.branch(n : f(p : •, q : •), p, rule(R1))
Tg = position.branch(n : g(p : •, q : •), q, rule(R2))
Th = rule(R3)
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The following derivation given in Example 4 is developed by the strategy Φ.

Ga
1 →e Ga

2 →c Ga
3 →b Ga

4

One can easily verify the following equalities:

Φ(Ga
1) = (e,R3)

Φ(Ga
2) = (c,R2)

Φ(Ga
3) = (b,R1)

The aim of the definition of the strategy Φ is to compute needed nodes to be con-
tracted during the transformation of a term-graph. We define below the notions
of needed nodes and outermost nodes in the framework of term-graph rewriting.

Definition 12 (needed node, outermost redex). Let SP = 〈Σ,R〉 be a
tGRS such that Σ is constructor-based. Let gn

1 and gm
2 be two term-graphs and

B = gn
1

∗→ gm
2 a rewrite derivation. A node q labeled with a defined operation in

gn
1 and reachable from the root n is a residual node by B if q remains reachable

from the root m in gm
2 . Then, we call descendant of gq

1 the rooted term-graph gq
2.

A node q in g is needed iff in every rewrite derivation from g to a constructor
normal form, a descendant of gq is rewritten at its root q. A node q labeled with
a defined operation in gn is an outermost node of gn iff q = n or q is reachable
from n through a constructor path. A redex u rooted by q in gn is an outermost
redex iff q = n or q is reachable from n through a path p0 �gn p1 �gn . . . �gn pk

such that p0 = n, pk = q and gpi is not a redex for all i ∈ 0..(k − 1).

Unlike the case of terms, we show in the following proposition that, in general,
the strategy Φ does not compute needed nodes when it is applied on term-
graphs. We will give later in Definition 13 sufficient conditions which ensure the
neededness of the nodes computed by the strategy Φ.

Proposition 2. Let SP = 〈Σ,R〉 be a tGRS such that Σ is constructor-based
and the rules of every defined operation are stored in a definitional tree. Let gn

be a rooted term-graph. Then,

1. the computation of φ(gn) may be infinite.
2. if φ(gn) = (p, R), the node p is not needed in general.
3. if φ(gn) is not defined, gn can still have a constructor normal form.

Proof. The proof is given by counter examples. Let us consider the following
tGRS which satisfies the conditions of the proposition.

r : f1(p : 0) → r � p

r : f1(p : succ(p′ : •)) → r � p

r : h1(p : 0, q : succ(n : •)) → q � p

r : g1(p : 0) → r � p
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1. Let En be the term-graph n : f1(m : f1(n)). Then, by definition of the
strategy φ, φ(En) = ϕ(En, Tf1), for some definitional tree, Tf1 , of f1. By
definition of ϕ and from the patterns of the rules defining f1, one can easily
verify that φ(En) does not halt.

2. Let Gn = n : succ(r : succ(p : f1(q : succ(s : h1(u : 0, r))))). We can easily
verify that φ(Gn) = (p, r1 : f1(p1 : succ(p′1 : •)) → r1 � p1). However, the
node p is not needed in Gn since one may obtain the desired normal form
n : succ(u : 0) after one rewrite step performed at node s.

3. Let us consider the graph Hn = n : succ(r : succ(p : g1(q : succ(s : h1(u :
0, r))))). Then, φ(Hn) = ϕ(Hp, Tg1) is not defined for any definitional tree
Tg1 . However, if we rewrite Hn at node s we get a constructor normal form
Hn

1 = n : succ(u : 0).

To overcome the issues pointed by Proposition 2, we propose below sufficient
syntactic conditions over rewrite rules.

Definition 13 (inductively sequential tGRS). Let SP = 〈Σ,R〉 be a tGRS.
SP is called inductively sequential tGRS iff (i) the signature Σ is constructor-
based, (ii) the rules which define every defined operation are stored in a defini-
tional tree and (iii) the nodes which can be subject to local or global redirections
are the roots of the left-hand sides of the rules. That is to say, for all rules
[π | C] → r in R, for all global (respectively, local) redirections of the form
p � q (respectively, p �i q for some i), occurring in the right-hand side r, we
have p = Rootπ.

Example 7. The rewrite systems given in Example 3 and Example 4 are all
inductively sequential but the one which defines the operation reverse.

The following proposition summarizes the main properties of ϕ in presence of
inductively sequential term-graph rewrite systems.

Proposition 3. Let SP = 〈Σ,R〉 be an inductively sequential tGRS, f a defined
operation, Tf a definitional tree of f , and gn a rooted term-graph whose root is
labeled with f (i.e. Lgn(n) = f). If ϕ(gn, Tf ) = (p, R) , then (i) in every rewrite
derivation from gn to a constructor-rooted term-graph, a descendant of gp is
rewritten at the root p, in one or more steps, into a constructor-rooted term-
graph ; (ii) gp is a redex of g matched by the left-hand side of R ; (iii) gp is an
outermost redex of gn. (iv) If ϕ(gn, T ) is not defined, then gn cannot be rewritten
into a constructor-rooted term-graph.

Theorem 1. Let SP = 〈Σ,R〉 be an inductively sequential tGRS, and gn a
rooted term-graph. If Φ(g) = (p, R), then gp is an outermost needed redex of gn

and gn can be rewritten at node p with rule R. If Φ(g) is not defined, then gn

cannot be rewritten into a constructor term-graph.
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4 Confluence

In this section, we consider the property of confluence which could be of great
interest for deterministic computations. Ensuring confluence in presence of term-
graph rewrite systems is not an easy task (see e.g., [17]). For example, a rewrite
system as simple as the two following rules f(x) → x and g(x) → x is not
confluent. Indeed, the term-graph n : f(m : g(n)) can be reduced to two dif-
ferent term-graphs n : f(n) and m : g(m). The two last term-graphs cannot be
reduced to a common term-graph. In [9,10], a subclass of circular term-graphs,
called admissible term-graphs, has been introduced. It has been shown that, for
a large class of term-graph rewrite systems, the rewrite relation induced over
admissible term-graphs is confluent. In this section, we generalise that result to
the admissible inductively sequential tGRSs.

Definition 14 (admissible rooted term-graph). [9,10] A rooted term-graph
gn is admissible iff for all nodes m, labeled by a defined operation (i.e., Lgn(m) ∈
D), m is not reachable from itself (i.e., m does not belong to a cycle m 
 ∗� m).

Definition 15 (admissible inductively sequential tGRS). Let SP=〈Σ,R〉
be an inductively sequential tGRS. SP is called admissible iff for all rules [π |
C] → r in R the following conditions are satisfied

– for all global (respectively, local) redirections of the form p � q (respectively,
p �i q for some i), occurring in the right-hand side r, we have p = Rootπ
and q 
= Rootπ.

– for all actions of the form α : f(β1, . . . , βn), for all i ∈ 1..n, βi 
= Rootπ
– the set of actions of the form α : f(β1, . . . , βn), appearing in r, do not

construct a cycle consisting only of newly introduced nodes in r and including
a node labeled with a defined operation. If we denote by �r the reachability
over the new nodes introduced in r, this condition could be specified as : for
all nodes, α, introduced in r and labeled by a defined operation, α 
 ∗�r α.

– Constraint C includes disequations of the form p 
 .= q where p and q are
labeled by constructor symbols.

Example 8. All the previous inductively sequential systems are admissible or can
be modified to fulfil the required conditions. Below we provide an admissible in-
ductively sequential tGRS which defines equality over naturals.

p : eq(n : •, n) → q : true; p � q

[p : eq(n : 0, m : 0) | n 
 .= m] → q : true; p � q

[p : eq(n : succ(n′ : •), m : succ(m′ : •)) | n 
 .= m] → p �1 n′; p �2 m′

p : eq(n : succ(n′ : •), m : 0) → q : false; p � q

p : eq(n : 0, m : succ(m′ : •)) → q : false; p � q
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The following proposition states that the class of admissible term-graphs is closed
under the rewrite relation induced by an admissible inductively sequential tGRS.

Proposition 4. Let SP = 〈Σ,R〉 be an admissible inductively sequential tGRS
and gn an admissible rooted term-graph. If gn rewrites to gm via a rewrite rule
in R, then gm is also an admissible rooted term-graph.

Definition 16 (Confluence). Let SP = 〈Σ,R〉 be an admissible inductively
sequential tGRS. We say that the rewriting relation → is confluent w.r.t the class
of admissible term-graphs iff for all rooted admissible term-graphs gn

1 , gn′
2 , gm

3

and gm′
4 such that gn

1 and gn′
2 are identical up to renaming of nodes (gn

1 ∼ gn′
2 ),

gn
1

∗→ gm
3 and gn′

2
∗→ gm′

4 , there exist two admissible graphs go
5 and go′

6 such that
gm
3

∗→ go
5, gm′

4
∗→ go′

6 and go
5 ∼ go′

6 .

We state below a new confluence result regarding the class of admissible induc-
tively sequential tGRS. The reader familiar with the confluence property may
notice that systems in this class are not always confluent modulo bisimilarity
(two term-graphs are said bisimilar iff they represent the same rational term).
For instance the application of the operation length, as defined in Example 3,
to two bisimilar and non isomorphic lists, should yield different values.

Theorem 1. Let SP = 〈Σ,R〉 be an admissible inductively sequential tGRS.
Then the rewriting relation → is confluent w.r.t the class of admissible term-
graphs.

The proof of Theorem 1 is obtained by classical induction on the length of the
considered rewrite derivations and leans basically on the following key result.

Lemma 1. Let SP = 〈Σ,R〉 be an admissible inductively sequential tGRS and
gn, gm

1 and go
2 be three admissible term-graphs. If gn → gm

1 and gn → go
2, then

there exist two graphs gp
3 and gq

4 such that gm
1

ε→ gp
3 , go

2
ε→ gq

4 and gp
3 and gq

4 are
equal up to renaming of nodes (gp

3 ∼ gq
4). The notation g

ε→ g′ means that g′ is
either g (zero rewrite step) or it is obtained from g after one rewrite step.

5 Conclusion

Definitional trees [1] give rise to efficient rewrite and narrowing strategies. In
this paper we investigated ways to use Definitional trees with the aim to pro-
pose new efficient strategies for term-graph rewriting. We succeeded to show
the computation of needed redexes in the particular class of inductively sequen-
tial tGRSs. We gave also counter-examples illustrating some negative results.
These results give an idea about the limits of the use of Definitional trees in
the context of term-graph rewriting. On the other hand, we proposed a new
class of admissible term-graph rewrite systems for which the rewrite relation
is confluent with respect to admissible term-graphs and for which Definitional
trees still behave nicely. The presented results open some directions of work. In
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[11], a general narrowing procedure has been proposed. The class of inductively
sequential tGRSs seem to be a good candidate to develop an efficient narrowing
strategy for term-graphs. Abstraction techniques has been successfully used in
the context of term rewrite systems (see, e.g., [7,15]). Extensions of abstraction
methods to term-graph rewrite systems worth also to be investigated.
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