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Preface

Graphs are among the simplest and most universal models for a variety of sys-
tems, not just in computer science, but throughout engineering and the life
sciences. When systems evolve we are interested in the way they change, to pre-
dict, support, or react to their evolution. Graph transformation combines the
idea of graphs as a universal modelling paradigm with a rule-based approach
to specify their evolution. The area is concerned with both the theory of graph
transformation and their application to a variety of domains.

The International Conferences on Graph Transformation aim at bringing to-
gether researchers and practitioners interested in the foundations and applications
of graph transformation. The 4th International Conference on Graph Transfor-
mation (ICGT 2008) was held in Leicester (UK) in the second week of September
2008, along with several satellite events. It continued the line of conferences pre-
viously held in Barcelona (Spain) in 2002, Rome (Italy) 2004, and Natal (Brazil)
in 2006 as well as a series of six International Workshops on Graph Transforma-
tion with Applications in Computer Science between 1978 to 1998. Also, ICGT
alternates with the workshop series on Application of Graph Transformation with
Industrial Relevance (AGTIVE). The conference was held under the auspices of
EATCS, EASST, and IFIP WG 1.3.

Responding to the call for papers, 57 papers were submitted. The papers were
reviewed thoroughly by program committee members and their co-reviewers. The
committee selected 27 papers for presentation at the conference and publication
in the proceedings. These papers mirror well the wide-ranged ongoing research
activities in the theory and application of graph transformation. They are con-
cerned with different kinds of graph transformation approaches, compositional
systems, validation and verification as well as various applications, mainly to
model transformation and distributed systems. Paper submission and reviewing
were supported by the free conference management system EasyChair.

In addition to the presentation of technical papers the conference featured
three invited speakers, a doctoral symposium, a tutorial, and four workshops.

Invited Speakers. The invited talk by Perdita Stevens introduced an algebraic
approach of bidirectional transformations exploring the group theory of the lens
framework for bidirectional transformations. In his invited talk, Wil van der
Aalst presented the Petri net formalism as a natural candidate for modeling and
analysis of workflow processes. The third invited speaker was Heiko Dörr, who
presented an approach for model-based engineering in automotive systems and
discussed the role of rule-based transformations in that context.

Satellite Events. For the first time at ICGT, a Doctoral Symposium took place – it
was organized by Andrea Corradini and Emilio Tuosto. 16 young researchers had
the opportunity to present their work and interact with established researchers of
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the graph transformation community. A tutorial by Reiko Heckel gave newcomers
to the field an opportunity to get a general introduction to graph transformation.
In addition four workshops were organized where participants of the ICGT could
exchange ideas and views on some subareas of graph transformation:

– Workshop on Graph Computation Models by Mohamed Mosbah and An-
negret Habel,

– 4th Workshop on Graph-Based Tools by Arend Rensink and Pieter Van Gorp,
– 3rd Workshop on Petri Nets and Graph Transformations by Paolo Baldan

and Barbara König, and
– Workshop on Natural Computing and Graph Transformations by Ion Petre

and Grzegorz Rozenberg.

We would like to thank Dénes Bisztray, Karsten Ehrig, Stefan Jurack, Paolo Tor-
rini, and Gerd Wierse who provided their valuable help throughout the prepara-
tion and organization of the conference and the proceedings. Last but not least,
we are grateful to Springer for their helpful collaboration and quick publication.

July 2008 Hartmut Ehrig
Reiko Heckel

Grzegorz Rozenberg
Gabriele Taentzer
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Dániel Varró Budapest (Hungary)
Albert Zündorf Kassel (Germany)

Subreviewers

Sergio Antoy
Nina Aschenbrenner
Karl Azab

Dénés Bisztray
Ivoka Boneva
Florian Brieler

Sander Bruggink
Roberto Bruni
Simone Costa



VIII Organization

Bilel Derbel
Ira Diethelm
Frank Drewes
Jörn Dreyer
Claudia Ermel
Fabio Gadducci
Leif Geiger
Joel Greenyer
Stefan Gruner
Esther Guerra
Tero Harju
Thomas Heer
Tobias Heindel
Frank Hermann
Berthold Hoffmann

Felix Klar
Renate

Klempien-Hinrichs
Pieter Koopman
Vitali Kozioura
Anne-Therese Kürtgen
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Andy Schürr and Felix Klar

Pattern-Based Model-to-Model Transformation . . . . . . . . . . . . . . . . . . . . . . 426
Juan de Lara and Esther Guerra

Adaptive Star Grammars for Graph Models . . . . . . . . . . . . . . . . . . . . . . . . . 442
Frank Drewes, Berthold Hoffmann, and Mark Minas

Tutorial and Workshops

Tutorial Introduction to Graph Transformation . . . . . . . . . . . . . . . . . . . . . . 458
Reiko Heckel

Workshop on Graph Computation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Mohamed Mosbah and Annegret Habel

Graph-Based Tools: The Contest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Arend Rensink and Pieter Van Gorp

Workshop on Petri Nets and Graph Transformations . . . . . . . . . . . . . . . . . 467
Paolo Baldan and Barbara König

Summary of the Workshop on Natural Computing and Graph
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Ion Petre and Grzegorz Rozenberg

Doctoral Symposium

ICGT 2008 Doctoral Symposium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Andrea Corradini and Emilio Tuosto



XII Table of Contents

Verification of Architectural Refactorings: Rule Extraction and Tool
Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
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Towards an Algebraic Theory of Bidirectional

Transformations

Perdita Stevens

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

Abstract. Bidirectional transformations are important for model-driven
development, and are also of wide interest in computer science. In this
paper we present early work on an algebraic presentation of bidirectional
transformations. In general, a bidirectional transformation must maintain
consistency between two models, either of which may be edited, and each of
which may incorporate information not represented in the other. Our main
focus here is on lenses [2,1,3] which provide a particularly well-understood
special case, in which one model is an abstraction of the other, and either
the abstraction or the full model may be edited. We show that there is a
correspondence between lenses and short exact sequences of monoids of ed-
its. We go on to show that if we restrict attention to invertible edits, very
well-behaved lenses correspond to split short exact sequences of groups;
this helps to elucidate the structure of the edit groups.

1 Introduction

Fundamental to the idea of graph transformations is the idea that a change in
one structure can correspond to a change in another in a precise sense. This fun-
damental idea appears in different guises in many areas of informatics; the guise
most familiar to the present author is that of bidirectional model transformations,
as they appear in the OMG’s Model-Driven Architecture (or, as it is now usually
more suggestively called, Model-Driven Development) initiative. A bidirectional
transformation R between two classes of models, say M and N , incorporates a
precise notion of what it is for m ∈ M to be consistent with n ∈ N :

R ⊆ M ×N

It also specifies how, if one model is changed, the other can be changed so as to
restore consistency. The forward transformation

−→
R : M ×N −→ N

takes a pair of models (m, n) which are not (necessarily) consistent. Leaving m
alone, it calculates how to modify n so as to restore consistency. It returns this
calculated n′ such that R(m, n′). Symmetrically,

←−
R : M ×N −→ M

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 P. Stevens

explains how to roll changes made to a model from N back to a change to make
to a model from M .

For practical reasons, it is preferable that all three elements of the transfor-
mation – R,

−→
R and

←−
R – be expressed in one text; but this will not be essential

to our semantic treatment here.
This basic framework is flexible enough to explain a wide range of languages

for bidirectional transformations, including for example the OMG’s QVT-R
(Queries Views and Transformations – Relations) language. That language is
discussed in [5], as are the postulates that a bidirectional transformation may
be expected to satisfy. The reader is referred to that paper for details. In brief,
the two main postulates are correctness and hippocraticness. Correctness has
already been mentioned: it states that the forwards and backwards transforma-
tions really do restore consistency, e.g. that the returned n′ above really does
satisfy R(m, n′). Hippocraticness (“first do no harm”) states that the transfor-
mation must not modify a pair of models which is already consistent (not even
by returning a different consistent model). Correctness and hippocraticness go a
long way to ruling out “silly” transformations, but something else still seems to
be required. In [5] a third postulate, undoability is proposed, but this is arguably
too strong.

The crucial point to notice is that there may be a genuine choice about how con-
sistency is restored. In the absence of defensible way to define which is the “best”
option, we want that choice to be in the hands of the person who designs the trans-
formation. Given m ∈ M , there may be many n′ ∈ N such that R(m, n′). Given
a model n such that R(m, n) does not hold, the designer of the transformation−→
R should be able to choose which of the possible n′ will be returned. Although it
may be that our transformation language imposes some limitations, for it to be
practically useful it will have to permit considerable choice.

Thus far, our framework, like those typically used in graph transformations,
is completely symmetric in M , N . Neither model is necessarily an abstraction
of the other: each may contain information which is not contained in the other.
We will begin with this general situation, but later we shall specialise to the
particular case where N is an abstraction of M . This is the situation studied
by the Harmony group and reported on in a series of papers including [2,1].
Much of the present paper can reasonably be seen as “just” a translation into
algebraic language of that work, sometimes with generalisation, sometimes with
restriction. At the end of the paper we will discuss why this may be a useful
undertaking; at the very least, it is hoped that it may amuse the algebraically-
inclined reader.

The rest of this paper is structured as follows. In Section 2 we introduce some
important equivalence relations that a bidirectional transformation imposes on
the sets of models it relates. In Section 3 we discuss edits and introduce some
basic algebraic ideas. Section 4 shows how to construct a short exact sequence
of monoids (or groups) from appropriate lenses, while Section 5 shows how to
go the other way, from a suitable sequence to a lens. Finally Section 6 concludes
and briefly mentions future work.
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A recent survey of bidirectional transformation approaches is found in [6];
these are many, so this paper will not attempt to summarise again, but will stick
to the technical focus.

2 Transformations and Equivalences

Let R (comprising, by abuse of notation, a consistency relation R, a forward
transformation

−→
R and a backward transformation

←−
R ) be a transformation which

is correct and hippocratic.
We will always assume that there is a trivial or content-free element of each

set of models; for example, we will write the trivial element of M as ΩM . If M
is a set of models defined by a metamodel, this might be the model containing
no model elements, if that is a member of M , i.e. permitted according to the
metamodel. However, it might not be literally empty; if for example all models
in M are required to contain some basic model elements, then ΩM will contain
these and nothing else. We will assume that R(ΩM , ΩN ).

Definition 1. The equivalence relations
−→
B and

←−
B on M , and

−→
F and

←−
F on N ,

are defined as follows:

– m ∼→
B

m′ ⇔ ∀n ∈ N.
−→
R (m, n) =

−→
R (m′, n)

(Intuitively, this says “m and m′ do not differ in any way that is visible on the
N side”. The reader familiar with lenses will recognise that this generalises
∼g.)

– m ∼←
B

m′ ⇔ ∀n ∈ N.
←−
R (m, n) =

←−
R (m′, n)

(Intuitively, “the only differences between m and m′ are those visible on
the N side, so that they become indisinguishable after any synchronisation
with an element of N”. The reader familiar with [1] will recognise that this
generalises ∼max, the coarsest equivalence with respect to which a lens is
quasi-oblivious.)

and dually,

– n ∼→
F

n′ ⇔ ∀m ∈ M.
−→
R (m, n) =

−→
R (m, n′)

– n ∼←
F

n′ ⇔ ∀m ∈ M.
←−
R (m, n) =

←−
R (m, n′)

We can also, in the obvious way give versions of these definitions which are
parameterised on subsets of M , N , respectively, the above then being given
by plugging in the largest available set, getting the finest available equivalence
relations. We do not need any of the coarser equivalences in this paper, however.

Thus, the transformation defines two different equivalences on M (and dually
on N). Of course, any element m ∈ M can then be viewed as a representative of
its equivalence class [m]∼→

B

, or as a representative of its other equivalence class
[m]∼←

B

. These are the co-ordinates of m in the sense that m is uniquely defined
by its two classes; this was already remarked in the case of lenses in [1]:
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Lemma 1. 1 Let m1, m2 ∈ M . If both m1 ∼→
B

m2 and m1 ∼←
B

m2 then m1 = m2.

A useful picture to bear in mind – although, of course, since M need not be
finite or even countable, it is only an informal idea – is of the elements of M laid
out on a grid whose columns represent ∼→

B
-equivalence classes and whose rows

represent ∼←
B
-equivalence classes. We have just shown that no square on the grid

can contain more than one element of M . In general, not every square need be
occupied; indeed, the equivalence classes might have different cardinalities.

The closure of M with respect to transformation R, denoted by M̄ , is the
cartesian product of the two sets of equivalence classes, which “contains” M :
informally, the set of all squares in the grid. We will have M = M̄ in the special
case that R is an undoable transformation (again, this corresponds to a remark
in [1] for lenses).

Since we are, so far, in the completely symmetric case of general bidirectional
transformations, the same remarks and result apply to N . In the special case of
lenses, which we shall come to, the grid for N , which in that setting is a strict
abstraction of M , is degenerate, since then ∼→

F
is universal and ∼←

F
is trivial.

In the even more special case of a bijective transformation (or oblivious lens, in
the terminology of [2]), the grid for M is also degenerate.

3 Edits and Algebraic Basics

We will assume that the reader is familiar with the standard notions of group,
monoid, mono-, epi- and isomorphisms of groups and monoids, subgroup, sub-
monoid, and normal subgroup. Other definitions from algebra will be reproduced,
marked (Standard).

In order to discuss how transformations behave it is useful to have a notion
of an edit : a way in which a model is changed by its user. When an edit has
been done on a model, restoring consistency between it and another model is a
matter of performing the “corresponding” edit on the other model. The task of
a transformation is then to specify what it means for an edit on one structure
to correspond to an edit on the other structure.

The notion of an edit, though, is a little trickier than at first appears. What is
an “edit” on a model? Intuitively, it is a thing you can do to an model, changing
it into another model. Doing nothing is certainly an edit; edits can be undone;
two edits can be done in sucession. Can the same edit be done on any model
from a given model set; in other words, if we model an edit as an endofunction

g : M −→ M

should it be total? It is easy to come up with reasonable examples we might
want to model that are (“add a class with a new name in the top level package”)
but also easy to come up with examples that at first sight are not (“delete the
class called Customer”). We can get around the problem of edits which are not
1 All proofs – generally easy – are omitted. A version of the paper which does contain

proofs is available from the author’s web page.
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obviously total by decreeing that if an edit is not naturalistically applicable to a
given model, then it should leave the model unchanged (“delete the class called
Customer if there is one, otherwise do nothing”). In this way, we can model only
total edits without imposing any real restriction.

To say that doing nothing is an edit is simply to say that the identity function
is an edit. Then to say that edits can be composed is to say that the set of edits
is a monoid. We will give the definition in order to set up some notation.

Definition 2. (Standard) A set G provided with an operation

∗ : G×G −→ G

(written infix, e.g. g1 ∗ g2, and in practice normally omitted: g1g2) is a monoid if

1. G contains an identity element, written 1G, such that for any g ∈ G

1G ∗ g = g ∗ 1G = g

2. ∗ is associative: that is, for any g1, g2, g3 ∈ G, we have

(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

Given a set S, we will often be interested in the monoid of all endofunctions
S −→ S, in which the operation is function composition and the identity is the
identity, “do nothing” function. We will write this M(S).

What about the fact that edits can be undone? It is tempting to say that this
means we have a group of edits, but this is premature. To say that an edit can
be undone in the sense that a modelling tool will allow simply means that the
tool will retain enough information to reverse any change that the user makes.
It does not mean that there will necessarily be an edit g−1 which always undoes
the effect of edit g, regardless of which model it was applied to. For example, in
the case of our edit “delete the class called Customer if there is one, otherwise
do nothing”, there is no inverse, because the edit is not injective.

Definition 3. (Standard) Let G be a monoid. If in addition G has inverses;
that is, for any g ∈ G there is an element g−1 ∈ G such that

g−1 ∗ g = g ∗ g−1 = 1G

then G is a group. In that case, inverses are necessarily unique.

Let us pause to observe that an edit can be total without being invertible, and
vice versa. For example,

– “delete everything” is total, but not invertible
– “delete package P and everything in it” is neither total nor invertible
– “add 1 to constant MAX” is not total, but it is invertible where defined
– “swap true and false wherever they occur” is both total and invertible (as

it happens, it is self-inverse).
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Given any monoid M of endofunctions on a set S, we will sometimes be
interested in the set of all invertible – that is, bijective – elements of M , which
of course forms a group. We will write this G(M). Then in particular G(M(S))
is the full permutation group on S.

Let us also note that if our transformation engine only sees models, before
and after edits, it does not have access to information about what edit the user
was doing, in the sense that we do not find out what s/he would have done on
a different model; we only see what was done in one instance. Since the user
may be thinking of a permutation, the transformation certainly has to behave
sensibly in that case. Thus let us proceed, for now not committing ourselves to
whether we have a group or only a monoid of edits.

Definition 4. (Standard) Let G be a group or a monoid. The action of G on a
set M is a function

· : G×M −→ M

such that for any g, h, m

1. 1G ·m = m
2. (gh) ·m = g(h ·m)

We normally omit the dot and just write gm.

If G is a group, i.e. has inverses, it is easy to see that g−1n = m iff gm = n. This
is why any group action on a set is a permutation action.

3.1 Lenses

We now switch to the restricted setting of lenses, in which one of the models is
a strict abstraction of the other. We will use the notation of [1].

The basic premise is that we have two (maybe structured) sets, C and A,
connected by an abstraction function get : C −→ A. We consider c and a to be
consistent iff get c = a.

The get function, as well as specifying consistency, also provides the forwards
transformation. Because of the restricted framework there is no choice, in the
sense that the forward transformation is completely determined by the consis-
tency relation: given c, there is a unique consistent a. Thus a lens l corresponds
to a special bidirectional transformation R in which R(c, a) holds iff a = get c,
and

−→
R (c, a) = get c (note that in this special case

−→
R ignores a).

We will also need the two equivalence relations on C denoted ∼→
B

and ∼←
B

above, which as remarked are called ∼g and ∼max in [1]. In the special case of
lenses, we will refer to these equivalences as ∼A and ∼L respectively, for reasons
which will become apparent. Thus c1 ∼A c2 iff get c1 = get c2, while c1 ∼L c2

iff for every a ∈ A we have put a c1 = put a c2.
Where the lens designer has a genuine choice is in the put function, which

corresponds to the backward transformation. A lens also provides

put : A −→ C −→ C



Towards an Algebraic Theory of Bidirectional Transformations 7

Note that in [2] lenses are for technical reasons not required to be total on
their domains, in order that a language of lenses can be defined using recursion;
the lenses eventually written by a lens programmer will be total. In this paper,
where we consider only semantic issues and do not concern ourselves with the
language in which lenses are defined, we are only considering total lenses.

We will, as remarked in the symmetric setting, always assume that there is a
trivial or content-free element of C, written ΩC , and similarly for A. We require
get ΩC = ΩA (thus ensuring that ΩC and ΩA are consistent, as required) and
we derive a function

create : A −→ C

a 
−→ put a ΩC

To complete the definition, lenses are (in this paper) required to satisfy two
basic lens laws, as follows.

Definition 5. (adapted from [2]) Let C and A be sets, containing trivial ele-
ments ΩC and ΩA respectively. A lens from C to A consists of a pair of functions,
get : C → A and put : A → C → C, such that the following conditions hold:

get ΩC = ΩA

put (get c) c = c GetPut

get (put a c) = a PutGet

Note that the lens law CreateGet from [1], viz that for any a ∈ A we have
get (create a) = a, follows from the definition and PutGet.

In general create (get c) need not of course be c (it could be something else
in the same ∼A equivalence class), but we do have (and will later use):

Lemma 2. Create ΩA = ΩC

This framework is equivalent to a restricted version of the model transformation
framework in which the right hand model is required to be an abstraction of the
left hand model, and transformations are required to be correct and hippocratic
but not undoable. The curious thing is how little those two conditions alone
actually restrict the transformation writer: there is an enormous amount of choice
about what the put function should do, and many such choices will be in no way
defensible as “sensible” behaviour. Formally:

Lemma 3. Let get : C −→ A be a surjective function, and let fc : A −→ C
be a family of injective functions, one for each c ∈ C. Then provided only that
fc(get c) = c for each c ∈ C, get together with the function put defined by
put a c =def fc(a) is a lens.

Basically, the lens laws force put to behave correctly if putting back an abstract
element against the concrete element of which it is an abstraction – it is not
allowed to break things if nothing has changed – but once any modification has
been made in the abstract view, all bets are off. The corresponding issue in the
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model transformation framework is that hippocraticness requires a transforma-
tion not to fix something that isn’t broken, but as soon as it is broken in even
a trivial detail, the transformation is allowed to do whatever it wants. This is
intuitively all wrong: we generally want a tiny change to one model to cause a
tiny change to another, or at the very least, only certain enormous changes will
seem reasonable! The question of how this should best be captured in a lan-
guage framework is still open. As discussed in [5], we currently have no entirely
satisfactory candidate condition. See also the discussion in [2]. Most convincing,
although for some applications too strong, is the law called PutPut in [2]: it
states (modulo totality) that for any a, a′ ∈ A and c ∈ C,

put a′ (put a c) = put a′ c PutPut

Definition 6. (from [2]) A lens is called verywell-behaved if it satisfies PutPut.

4 Building Sequences from Lenses

Suppose we are given a lens: that is, sets C and A, each with their trivial element,
with functions get and put satisfying the lens laws (and derived function create).
In this section we will show how to represent this lens algebraically.

Now, fundamentally what we want to do is to say what edit on one model
corresponds to an edit on the other, and we want to do this in such a way that
composition of edits is respected and obviously so that doing nothing on one
model corresponds to doing nothing on the other.

Lenses, however, do not come equipped with a notion of edit: we have to add
that. What should the edits on C be? Our first thought might be to use the whole
monoid of functions from C to itself: but in fact, we will need a compatibility
condition in order for get, which is supposed to be an abstraction function, to
work as one. The condition is that for any g in our monoid of edits, and for any
c, c′ ∈ C:

get c = get c′ ⇒ get gc = get gc′ Compat

– in other words, an edit should act on C/∼A. Let ΠC ⊆ M(C) be the set
of all functions from C to itself that satisfy this compatibility condition. It is
easy to see that ΠC is itself a monoid, and that it acts transitively on C, which
reassures us that it is expressive enough to model anything the user does to an
actual model. In fact, an element g of ΠC is defined by:

1. a function ḡ : C/∼A−→ C/∼A, together with
2. for each [c] ∈ C/∼A, a function g[c] : [c] −→ [gc].

Essentially the compatibility condition says that the abstraction embodied in
get respects the edits which are allowed, in the sense that if two concrete states
look the same in the abstract view before a concrete edit, they will also look the
same in the abstract view after the edit. Although this may repay further study,
it seems a plausible requirement, in order for there to be a notion of edit on
the abstract domain which is compatible with the notion of edit on the concrete
domain.
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Lemma 4. Any lens induces a monoid homomorphism

μ : ΠC −→ M(A)

defined as
(μg)(a) = get (g(create a))

Let us write K and H for the kernel and image of μ, respectively.

Lemma 5. If g1ΩC = g2ΩC then μg1ΩA = μg2ΩA

Next, consider the function (in the absence of PutPut it is not necessarily a
homomorphism, as we shall discuss):

λ : H −→ ΠC

given by
(λh)(c) = put h(get c) c

This is the function that captures how to “put back” information introduced by
a user editing an abstract model, to give a corresponding edit on the concrete
model.

Lemma 6. λ is well-defined.

Lemma 7. μλ is the identity on H.

Thus, the function λ is a right inverse for the epimorphism μ.
Although in general λ may not be a monoid homomorphism, it does behave

as such on the identity:

Lemma 8. (λ1H) = 1ΠC

Later, we shall want:

Lemma 9. For all g ∈ ΠC and for all h ∈ H, we have

h(μg)ΩA = (μg)ΩA ⇒ (λh)gΩC = gΩC

To sum up what we have done so far, we need two more standard definitions:

Definition 7. (Standard) A sequence of groups or monoids

... → Gi−1
λi→ Gi

λi+1→ Gi+1 → ...

is exact if for each i,
img λi = ker λi+1

– that is, the elements of Gi which are the images under λi of elements of Gi−1

are exactly those elements of Gi which are mapped by λi+1 to the identity element
of Gi+1.
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Definition 8. (Standard) A short exact sequence is an exact sequence of length
5, whose ends are trivial:

1 → K → G → H → 1

Therefore we may rephrase what we have shown so far as

Proposition 1. Let l be a lens from C to A, consisting of functions put and
get. Let ΠC be the monoid of endofunctions on C which satisfy Compat. Then

1 → K → ΠC
μ→ H → 1

is a short exact sequence of monoids, where the monoid homomorphism μ is
defined by

(μg)(a) = get (g(create a))

Moreover, the function λ : H −→ ΠC defined by (λh)(c) = put h(get c) c is
a right inverse for μ.

However, the usual reason in algebra for considering short exact sequences is that
they often encode useful information about the structures in them; unfortunately,
in the case of general monoids, they are not so informative. The rephrasing above
is suggestive, but not yet very useful. In order to go further, we have to restrict
the setting. There are two obvious ways to do this: we can consider only very well-
behaved lenses (those which satisfy PutPut), and/or we can restrict attention
to invertible edits. Let us consider the first of these restrictions first.

4.1 Very Well-Behaved Lenses

It turns out that insisting that the lens be very well-behaved corresponds exactly
to insisting that λ be a monoid homomorphism.

Lemma 10. If PutPut holds then λ is a monoid homomorphism.

Lemma 11. If λ is a homomorphism then PutPut holds.

This is a very interesting correspondence, particularly in view of the difficulty,
mentioned earlier, in choosing an appropriate condition to complement the basic
lens laws and ensure “sensible” behaviour. The fact that PutPut corresponds
to so basic an algebraic phenomenon as homomorphism is encouraging. Let us
now consider the restriction to invertible edits.

4.2 Invertible Edits

Recall that for any monoid M , G(M) is the collection of invertible elements of
M , which forms a group. Using exactly the same definition as above, we can
define μ : G(ΠC) −→ G(M(A)).

However, it turns out that the development we did for monoids will fail in
two ways if we try to use an arbitrary lens in conjunction with considering only
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invertible edits. Firstly, the action of G(ΠC) will not necessarily be transitive on
C, because if c1 and c2 are in ∼A equivalence classes of different cardinalities,
then no invertible element of ΠC can map c1 to c2. A consequence of this is that,
if we restrict to invertible edits but still consider an arbitrary lens, there might
be cases were we could not handle the situation in which a user modified a model
c1, turning it into c2, and the changes were rolled through to a corresponding
model. Since the original lens, which is independent of any notion of edit, can
roll through any change a user might make, our algebraic framework would then
be failing to describe the full behaviour of the lens. Secondly, our function λ
might not be well-defined, since if it is not a monoid homomorphism, it might
map an invertible edit to one which is not invertible.

Both of these problems are solved if we assume, for the remainder of the
section, that l is a very well-behaved lens, so that PutPut holds. (This may not
be the only way to proceed, however.) The development done for monoids now
goes through smoothly, using

Lemma 12. (from [1]) If l is a very well-behaved lens, then there is a bijection
between C and the cartesian product C/∼L ×C/∼A.

In particular, all the equivalence classes in C/∼A have the same cardinality:
according to the informal grid picture we suggested before, there is exactly one
element of C occupying every square of the rectangular grid whose columns are
labelled by elements of C/∼A and whose columns are labelled by elements of
C/∼L.

Thus an element g of G(ΠC) is defined by:

1. a permutation ḡ : C/∼A−→ C/∼A, together with
2. for each [c] ∈ C/∼A, a bijection g[c] : [c] −→ [gc].

First, we need to check that for any g ∈ G(ΠC), the endofunction μg is indeed
invertible. This is immediate from the fact that μ is a monoid homomorphism.
Recall that any monoid homomorphism between groups is a group homomor-
phism. Finally we have to check that λ remains well-defined when restricted.
Since λ is a monoid homomorphism, the image of any invertible element is in-
vertible, so it is a group homomorphism.

We will now write G instead of G(ΠC).
Now that we are considering groups rather than just monoids, let us return

to our short exact sequence. The crucial standard result is

Lemma 13. (Standard) Let

1 → K → G → H → 1

be a short exact sequence of groups. Then K � G and G/K � H; we say that G
is an extension of H by K.

That is, the short exact sequence tells you how G is in a certain sense built from
its substructure K together with the extending structure H . Notice, though,
that H need not embed in G, i.e., there need not be any group monomorphism
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from H to G; if these are edit structures, there need not be a systematic way
to regard an edit done on an abstract model as an edit done on the concrete
model. That is, we cannot necessarily express the edits that can be done on the
concrete domain, in terms of edits done on the abstract domain together with
other information. Algebraically, this is because – in general – a short exact
sequence does not necessarily split.

Definition 9. (Standard) A short exact sequence of groups

1 → K → G
σ→ H → 1

is said to split if there exists a group monomorphism λ : H → G which composes
with σ to the identity on H:

∀h ∈ Hσ(λh) = h

In that case, λ is said to split the sequence, and G � K � H.

Definition 10. (Standard) Let G be a group, with subgroups K�G and H ≤ G.
G is the (internal) semi-direct product K � H if:

– KH = G
– K ∩H = 1G

In this case, we observe that

– every element g of G can be written uniquely as the product g = kh of
elements k ∈ K and h ∈ H;

– (kh)−1 = (h−1k−1h)h−1 (note that h−1k−1h ∈ K by normality of K);
– (k1h1)(k2h2) = (k1h1k2h

−1
1 )(h1h2) (noting again that this is the product of

an element of K and one of H, by normality).

The product is direct if in addition H and K commute.

Our restriction to very well-behaved lenses gives us that λ is a monoid and hence
a group homomorphism, which is exactly what is needed to ensure that the short
exact sequence splits. That is, we have (summarising)

Theorem 1. Let l be a very well-behaved lens from C to A, consisting of func-
tions put and get. Let G be the group of invertible endofunctions on C which
satisfy Compat. Then

1 → K → G
μ→ H → 1

is a short exact sequence of groups, where the group homomorphism μ is defined
by

(μg)(a) = get (g(create a))

Moreover, the function λ : H −→ G defined by (λh)(c) = put h(get c) c is a
right inverse for μ, and a group homomorphism. Therefore it splits the sequence
and we have an isomorphism

K � H � G
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We can now discuss the action of G on C in terms of what K, H do to C/∼L

and C/∼A.

Lemma 14. The subgroup λH of G acts, trivially, on C/∼L: that is, for any
c ∈ C and h ∈ H, (λh)c ∼L c.

To put it another way, λ(H) stabilises the ∼L-equivalence classes.
In particular, λ(H) ≤ G acts on create A ⊆ C just as H acts on A.
Let us identify A with the set create A and take this as the transversal of ∼A;

and let L be the set put ΩA C, and take these elements as the transversal of ∼L.
Observe that (in this restricted setting) create a ∼L create b for any a, b ∈ A,
and also get (put ΩA c) = get (put ΩA d)(= ΩA) for any c, d ∈ C, so we can
picture the elements of create A laid out as the bottom row and the elements
of L in the left-hand column of our grid, respectively. We can identify C with
L×A via the bijection c 
→ (put ΩA c, create (get c)).

Let us from now on elide λ and regard H as a subgroup of G via λ.2

In terms of our informal grid, elements of H stabilise the rows, permuting the
elements of each row. Each row is permuted identically. Formally:

Lemma 15. For any h ∈ H and (l, a) ∈ L×A we have h(l, a) = (l, ha).

Next we consider the role of K.

Lemma 16. The normal subgroup K of G acts, trivially, on C/∼A: that is, for
any c ∈ C and k ∈ K, kc ∼A c.

To put it another way, K stabilises the ∼A-equivalence classes. In particular, K
acts on L. In terms of our informal grid, elements of K stabilise the columns,
possibly permuting the elements of each column individually. Unlike H acting on
rows, however, K does not necessarily do the same permutation on each column.
Suppose for a moment that we are not given G with its action on L × A = C,
but instead are given just H and K, together with K’s action on L (that is, on
the left-hand column of the informal grid only) and H ’s action on A (that is, on
the bottom row of the grid). We may ask, does this information determine the
full action of G on L ×A? If not, to what extent does it constrain it? Since we
know that H acts in the same way on every row, so its action on C is determined
by its action on A, the interesting part is how K can act on a general element.

Lemma 17. Let k ∈ K and (l, a) ∈ L × A. Then k(l, a) can be written as
((hkh−1)l, a) where h ∈ H satisfies ha = ΩA.

Putting these calculations together, we see that the action of G on C can be
composed from the actions of H on A and of K on L, thus:

(kh)(l, a) = ((h1kh−1
1 )l, ha)

where h1a = ΩA.
2 That is, as usual we can safely elide the distinction between internal and external

semi-direct products.
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In general there is a genuine choice of element of H – or equivalently, a gen-
uine choice of semidirect product, that is, of homomorphisms in our short exact
sequence – so that the actions of H on A and K on L, devoid of information
about how the two groups are connected, do not completely determine G with
its action on C. We also need an oracle to make the necessary choices, or, equiv-
alently, to be given the homomorphism μ which determines which of the various
semidirect products of H with K is intended.

We should, however, observe two special cases. First, if the action of H on
A is such that there is always a unique element h such that ha = ΩA, then
each choice is unique, and the actions of H and K on A and L respectively will
completely determine the action of G on C. Second, if G is actually the direct
product K×H – that is, elements of K commute with elements of H – then the
action of G on C simplifies to the pointwise action

(k, h)(l, a) = (kl, ha)

as expected, there is no choice to be made, and again the actions of K and H on
L and A do completely determine the action of G on C. This means, informally,
that in this special case an edit acts independently on the part of the concrete
model from C that’s retained in the abstract view A and on the part which is
discarded by the abstraction.

5 Building Lenses from Sequences

To show that we really do have an alternative way of looking at this world, we
now need to consider the other direction.

Suppose we are given a short exact sequence of monoids

1 → K → G
μ→ H → 1

in which G acts on a set C (equipped with a trivial element ΩC) and H acts on a
set A (equipped with trivial element ΩA). We can read this as telling us how to
translate edits on C to edits on A: that is, it already gives us a (unidirectional)
model transformation.

If we are given, additionally, an injective function λ : H −→ G such that μλ is
the identity function on H , we can regard this as a bidirectional transformation:
it tells us how to translate edits in both directions.

However, it does not necessarily correspond to a lens. Fundamentally the
issue is this. Lenses work in the absence of any intentional information about
the edits a user has made to the models: the lens only sees the modified models.
In principle, there is no reason why we should not define a different kind of
bidirectional transformation that does take notice of how the user achieved their
changes. Two different edits might have the same effect on a model in C (rsp.
A), but their images under μ (rsp. λ) might legitimately have different effects
on a corresponding model in A (rsp. C).

We will always require that the action of G on C and the action of H on A
are transitive, so that there always is some edit that will take the current model
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to the desired modified model. Beyond this, different choices might represent
different means of editing models.

For the rest of this section we restrict attention to those sequences from which
lenses can be defined:

Definition 11. A sequence of monoids as described above is lens-like if it sat-
isfies the following two conditions:

LL1: if g1ΩC = g2ΩC then μg1ΩA = μg2ΩA

LL2: for all g ∈ G and for all h ∈ H, we have

h(μg)ΩA = (μg)ΩA ⇒ (λh)gΩC = gΩC

Note that any sequence which arises from a lens by the construction in Section 4
is lens-like, as expected, by Lemmas 5 and 9.

Given a lens-like sequence, we can define a get function as follows. Given
c ∈ C, let g ∈ G be any element such that gΩC = c; then

get c =def μgΩA

Lemma 18. get is well-defined

Lemma 19. get and the group action of G on C satisfy the original compatibility
condition Compat.

Our definition of put involves making a choice, for each pair a ∈ A and c ∈ C,
of an element of the group H which has the desired effect; different choices may
give different put functions, so our definition is parameterised on an oracle. This
is not surprising, in the light of the many choices of put function discussed earlier
(Lemma 3).

Suppose we have an oracle which, given arguments a and c, returns h ∈ H
such that a = h(get c). (At least one such element is always guaranteed to exist
by transitivity of the action of H on A.) Then

put a c =def λhc

Theorem 2. The put and get functions defined above comprise a lens (for any
oracle).

Theorem 3. If this sequence was in fact constructed from a lens l as described
in Section 4, then the lens we construct from the sequence is exactly l (and in
particular, it does not then depend on our choice of oracle).

Lemma 20. If, further, λ is a group homomorphism, so that it splits the se-
quence, and in addition either of the following holds,

1. G and H are groups; or
2. we have the property that h(get c) = h′(get c) ⇒ (λh)c = (λh′)c

then the lens is very well-behaved.
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6 Conclusions and Further Work

In this paper we have described an algebraic framework in which to think about
bidirectional transformations between sets of models. We have focused on an im-
portant special case, where one of the models is an abstraction of the other, and
we have shown how to translate key elements of the body of work on lenses into
algebraic terms. The lens framework was invented with the pragmatic needs of
transformation programmers in mind: yet, that it fits so neatly into the algebraic
framework suggests that the choice of laws it embodies are canonical within its
region of the transformation language design space.

Much remains to be done, especially in exploiting the algebraic framework to
give new (and/or easier) insight into how edit structures and transformations can
be composed, and to explore beyond the boundaries of the lens framework. On
the other hand, within those boundaries, it would be interesting to incorporate
the work on dictionary and skeleton lenses from [1] (where wreath products
clearly have a role to play) and on lenses up to equivalences from [3]. Looking
more widely, it is to be hoped that the algebraic approach will also be useful in
integrating different approaches to bidirectional transformations, including those
from the graph transformation community; this may shed light on the design
space of bidirectional transformation languages and thus contribute, ultimately,
to the development of more useful languages for model-driven development.

From a theoretical point of view, it would be interesting to widen the search for
connections into the fields of topology and category theory, and to understand
the connections with earlier work such as [4] better. Finally, a major area of
future work is to understand the connections with graph grammars, especially
triple graph grammars.
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Abstract. Petri nets are frequently used for the modeling and analysis
of workflows. Their graphical nature, well-defined semantics, and analysis
techniques are attractive as information systems become more “process-
aware”. Unfortunately, the classical Petri net has problems modeling can-
cellation in a succinct and direct manner. Modeling cancellation regions
in a classical net is impossible or results in a “spaghetti-like” net. Can-
cellation regions are supported by many workflow management systems,
but these systems do not support advanced analysis techniques (process
mining, verification, performance analysis, etc.). This paper proposes to
use reset workflow nets (RWF-nets) and discusses (1) the discovery of
RWF-nets (i.e., extracting information from event logs to construct such
models), (2) the verification of RWF-nets (i.e., checking whether a work-
flow process has deadlocks, livelocks, etc.), and (3) the conformance of an
event log with respect to a RWF-net (i.e., comparing real with modeled
behavior).

Keywords: Petri Nets, Reset Nets, Soundness, Verification, and Process
Mining.

1 Introduction

Information systems have become “process-aware”, i.e., they are driven by pro-
cess models [26]. Often the goal is to automatically configure systems based on
process models rather than coding the control-flow logic using some conventional
programming language. Early examples of process-aware information systems
were called WorkFlow Management (WFM) systems [5,30,36,50]. In more recent
years, vendors prefer the term Business Process Management (BPM) systems.
BPM systems have a wider scope than the classical WFM systems and are not
just focusing on process automation. BPM systems tend to provide more support
for various forms of analysis and management support. Both WFM and BPM
aim to support operational processes that we refer to as “workflow processes”
or simply “workflows”.

The flow-oriented nature of workflow processes makes the Petri net formalism
a natural candidate for the modeling and analysis of workflows. Figure 1 shows

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 18–37, 2008.
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Fig. 1. A WF-net N1 modeling the booking of trips. Note that after one “NOK” the
trip will be cancelled eventually. There are 23−1 = 7 situations modeled by transitions
c1, c2, . . . , , c7. Although the model is already complicated it fails to model that there
should not be any booking activities after the first “NOK”, because the trip will be
cancelled anyway.

a so-called workflow net (WF-net), i.e., a Petri net with a start place and an
end place such that all nodes are on some path from start to end. WF-nets were
introduced in [1,2].1

The WF-net in Figure 1 models the booking of trips. After registration a
flight, a hotel, and a car are booked. Each of these booking activities can suc-
ceed (“OK”) or fail (“NOK”). For reasons of simplicity, only the successful or
unsuccessful completion of these activities is shown in Figure 1 (i.e., activities
are considered to be atomic). If all booking activities succeed, then a payment
follows. If one of them fails, a cancellation activity follows. Since each of the 3
booking activities can succeed or fail, there are 23 = 8 scenarios. Only for one
of these eight scenarios, payment is executed. For all other seven scenarios, the
trip is cancelled.

Figure 1 is already rather complex but fails to model that there should not
be any unnecessary work, i.e., after the first failure (“NOK”), no other booking
activities should be executed as cancellation is inevitable. To model this, the
seven c-transitions (c1, c2, . . . , , c7) are not adequate as there are 33 − 23 = 19
possible states after registration and before payment/cancellation in which there
is at least one “NOK”. Hence, 19−7 = 12 additional c-transitions are needed to
1 According to Google Scholar (visited on April 23rd, 2008), [2] got more than thou-

sand references illustrating the interest in the topic. In fact, [2] is the second most
cited workflow paper after [30].
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capture this. Moreover, we simplified the model by assuming that the activities
are atomic. This is not realistic because the booking of the flight, the hotel, and
the car may happen in parallel and if one of them fails the other ones need to
be withdrawn. If we incorporate this in the model, there there are 43 − 33 = 37
states after registration and before payment/cancellation in which there is at
least one “NOK”.2 This implies that to fully model the example 37 c-transitions
are needed to remove the tokens from the right places. This illustrates that
cancellation is difficult to model in WF-nets. Therefore, we propose to use reset
arcs [24,25,29]. A reset arc removes tokens from a place but does not block the
corresponding transition if the place is empty. This is a very useful construct
that allows for the modeling of various cancellation operations supported by
contemporary workflow languages, e.g., the withdraw construct of Staffware, the
cancellation region of YAWL, the cancel event of BPMN, etc. In our example, the
37 c-transitions that are needed to remove the tokens from the right places, can
be replaced by a single transition with reset arcs. This illustrates the usefulness
and relevance of reset arcs. Therefore, we introduce the so-called Reset WorkFlow
nets (RWF-nets) as an extension to the classical WF-nets [1,2].

Taking RWF-nets as a starting point we explore a spectrum of analysis ques-
tions. Concretely, we investigate the following three challenges:

– Discovering RWF-Nets. Given an event log extracted from some database,
transaction log, or set of use cases/audit trails, we want to automatically infer
a process model. Since cancellation is important when modeling workflows,
it is also important to discover cancellations when observing systems and
processes.

– Verification of RWF-Nets. Many of the modern workflow languages offer
some form of cancellation. Hence, it is important to be able to verify such
models and point out deadlocks, livelocks, etc.

– Conformance with respect to a RWF-Net. The alignment of model and sys-
tems on the one hand and real-life processes on the other often leaves much
to be desired. Therefore, it is important to be able to compare event logs
with models. Since real-live processes and their models exhibit cancellation,
it is important to take this into account when checking conformance of event
logs and models.

The remainder of this paper is organized as follows. First, we present reset
workflow nets and introduce three challenges (discovery, verification, and con-
formance), followed by Section 3 which introduces the concept of event logs.
Section 4 focuses on the verification of workflows with cancellation. Section 5
shows that conformance can be checked by “playing the token game” based on
the event log. Section 6 presents the challenge to discover reset workflow nets.
An overview of related work is provided in Section 7 and Section 8 concludes
the paper.

2 Each of the booking activities has 4 states: enabled, running, succeeded (i.e., “OK”),
and failed (i.e., “NOK”). Therefore, there are 43 = 64 possible states and 33 = 27
of these states are non-failure states.
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2 Reset Workflow Nets

The WF-net in Figure 1 is a nice illustration of the inability of classical Petri
nets to model cancellation. Therefore, we use reset nets, i.e., classical Petri net
extended with reset arcs.

Definition 1 (Reset net). A reset net is a tuple (P, T, F, W, R), where:

– (P, T, F ) is a classical Petri net with places P , transitions T , and flow rela-
tion F ⊆ (P × T ) ∪ (T × P ),

– W ∈ F → IN \ {0} is an (arc) weight function, and
– R ∈ T → 2P is a function defining reset arcs.

A reset net extends the classical Petri net with reset arcs. These are used to
remove all tokens from a place independent of the number of tokens. R(t) is the
set of places that are emptied when firing t. Also note that we are using arc
weights. Arc weights specify the number of tokens to be consumed or produced.
W (p, t) is the number of tokens transition t consumes from input place p and
W (t, p) is the number of tokens transition t produces for output place p.

Figure 2 shows a reset net. In this example all arc weights are 1, i.e., W (x, y) =
1 for (x, y) ∈ F . Transition c has seven reset arcs connected to it. When c fires
all tokens are removed from places fOK , hOK , cOK , NOK , bf , bh, and bc. For
the enabling of c these reset arcs is irrelevant, i.e., c is enabled if and only if
there is a token in place NOK .

The state of a reset net, also referred to as marking, is described as a multiset.
Therefore, we introduce some notation. Let A be a set, e.g., the set of places P .
IB(A) = A → IN is the set of multi-sets (bags) over A, i.e., X ∈ IB(A) is a multi-
set where for each a ∈ A: X(a) denotes the number of times a is included in the
multi-set. The sum of two multi-sets (X+Y ), the difference (X−Y ), the presence
of an element in a multi-set (x ∈ X), and the notion of sub-multi-set (X ≤ Y )
are defined in a straightforward way and they can handle a mixture of sets and
multi-sets. πA′(X) is the projection of X onto A′ ⊆ A, i.e., (πA′(X))(a) = X(a)
if a ∈ A′ and (πA′(X))(a) = 0 if a �∈ A′.

To represent a concrete multi-set we use square brackets, e.g., [fOK , hOK ,
cOK ] is the marking with a token in each of the “OK places” and [NOK 3] is
the marking with three tokens in place NOK .

Because of the arc weights the classical preset and postset operators re-
turn bags rather than sets: •a = [xW (x,y) | (x, y) ∈ F ∧ a = y] and a• =
[yW (x,y) | (x, y) ∈ F ∧ a = x]. For example, •pay = [fOK , hOK , cOK ] is the
bag of input places of pay and pay• = [end ] is the bag of output places of pay .

Now we can formalize the notions of enabling and firing.

Definition 2 (Firing rule). Let N = (P, T, F, W, R) be a reset net and M ∈
IB(P ) be a marking.

– A transition t ∈ T is enabled, notation (N, M)[t〉, if and only if, M ≥ •t.
– An enabled transition t can fire while changing the state to M ′, notation

(N, M)[t〉(N, M ′), if and only if, M ′ = πP\R(t)(M − •t) + t•.



22 W.M.P. van der Aalst

Fig. 2. A RWF-net N2 modeling the booking of trips. Note that unlike the WF-net in
Figure 1, unnecessary work is avoided. Moreover, the number of nodes to handle the can-
cellation is constant and the number of arcs is linear in the number of booking activities
(flight, hotel, car, etc.) and activity states (enabled, running, succeeded, failed, etc.).

The resulting marking M ′ = πP\R(t)(M−•t)+t• is obtained by first removing
the tokens required for enabling: M − •t. Then all tokens are removed from the
reset places of t using projection. Applying function πP\R(t) removes all tokens
except the ones in the non-reset places P \ R(t). Finally, the specified numbers
of tokens are added to the output places. Note that t• is a bag of tokens.

(N, M)[t〉(N, M ′) defines how a Petri net can move from one marking to
another by firing a transition. We can extend this notion to firing sequences.
Suppose σ = 〈t1, t2, . . . , tn〉 is a sequence of transitions present in some Petri net
N with initial marking M . (N, M)[σ〉(N, M ′) means that there exists a sequence
of markings 〈M0, M1, . . . , Mn〉 where M0 = M , Mn = M ′, such that for any 0 ≤
i < n: (N, Mi)[ti+1〉(N, Mi+1). Using this notation we define the set of reachable
markings R(N, M) as follows: R(N, M) = {M ′ ∈ IB(P ) | ∃σ(N, M)[σ〉(N, M ′)}.
Note that by definition M ∈ R(N, M) because the initial marking M is trivially
reachable via the empty sequence (n = 0).

We would like to emphasize that any reset net with arc weights can be trans-
formed into a reset net without arc weights, i.e., all arcs have weight 1. Therefore,
in proofs can assume arc weights of 1 when convenient and still use them in con-
structs. See [6] for a construction.
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The idea of a workflow process is that many cases (also called process in-
stances) are handled in a uniform manner. The workflow definition describes
the ordering of activities to be executed for each case including a clear start
state and end state. These basic assumptions lead to the notion of a WorkFlow
net (WF-net) [1,2] which can easily be extended in the presence of reset arcs.

Definition 3 (RWF-net). An reset net N = (P, T, F, W, R) is a Reset Work-
Flow net (RWF-net) if and only if

– There is a single source place i, i.e., {p ∈ P | • p = ∅} = {i}.
– There is a single sink place o, i.e., {p ∈ P | p• = ∅} = {o}.
– Every node is on a path from i to o, i.e., for any n ∈ P ∪ T : (i, n) ∈ F ∗ and

(n, o) ∈ F ∗.
– There is no reset arc connected to the sink place, i.e., ∀t∈T o �∈ R(t).

Figures 1 and 2 both show a RWF-net. The requirement that ∀t∈T o �∈ R(t) has
been added to emphasize that termination should be irreversible, i.e., it is not
allowed to complete (put a token in o) and then undo this completion (remove
the token from o).

Let us now compare figures 1 and 2 showing RWF-nets N1 and N2 respec-
tively. In the the original net without reset arcs (N1) the number of cancellation
transitions is exponential in the number of bookings while in the second net (N2)
there is just one cancellation transition and the number of reset arcs is linear in
the number of bookings. Also note that in N2 tokens are also removed from the
input places of the booking activities to make sure than no unnecessary work
is conducted. Extending N1 to obtain the same behavior requires the addition
of 12 more cancellation transitions. This clearly shows the benefits of using re-
set arcs. Moreover, figures 1 and 2 also illustrate the need for the modeling of
cancellations in real-life workflow processes.

3 Event Logs

Traditionally, the focus of workflow analysis at design-time has been on model-
based verification and simulation while at run-time the focus has been on mea-
suring simple key performance indicators such as flow times, service levels, etc.
Because more and more information about processes is recorded by information
systems in the form of so-called “event logs”, it seems vital to also use this
information while analyzing processes. A wide variety of process-aware infor-
mation systems [26] is recording excellent data on actual events taking place.
ERP (Enterprise Resource Planning), WFM (WorkFlow Management), CRM
(Customer Relationship Management), SCM (Supply Chain Management), and
PDM (Product Data Management) systems are examples of such systems. De-
spite the omnipresence and richness of these event logs, most software vendors
have been focusing on relatively simple questions under the assumption that the
process is fixed and known, e.g., the calculation of simple performance metrics
like utilization and flow time. However, in many domains processes are evolv-
ing and people typically have an oversimplified and incorrect view of the actual
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business processes. Therefore, process mining techniques attempt to extract non-
trivial and useful information from event logs. One aspect of process mining is
control-flow discovery, i.e., automatically constructing a process model (e.g., a
Petri net) describing the causal dependencies between activities [11,12,17,20].

Later in this paper, we discuss process discovery and conformance checking
using RWF-nets. These are particular process mining techniques that require
event logs as input. Therefore, we define the notion of an event log.

Definition 4 (Event log). Let A be a set of activities. A trace σ can be de-
scribed as a sequence of activities, i.e., σ ∈ A∗. An event log L is a multiset of
traces, i.e., L ∈ IB(A∗).

A trace can be considered as the execution path of a single process instance
(case). Note that this is a rather simplified view, i.e., in real life events have
timestamps (When did the activity happen?), resource information (Who ex-
ecuted the activity?), data (What information was used and produced?), etc.
However, for this paper we focus on the control-flow only. A trace possible accord-
ing to Figure 2 is σ = 〈register , book flight NOK , c, cancel〉. An example event
log consisting of 5 traces is L = [〈register , book hotel NOK , c, cancel〉3, 〈register ,
book hotel OK , book car OK , book flight OK , pay〉2].

As already indicated in Section 1, this paper focuses on three challenges:

– Discovering RWF-Nets. Given an event log L, we want to infer a
RWF-net N .

– Verification of RWF-Nets. Given a RWF-net N , we want to discover errors
such as deadlocks, etc.

– Conformance with respect to a RWF-Net. Given an event log L and a RWF-
net N , we want to discover discrepancies between L and N .

The remainder of this paper will focus on these three challenges. We start by
elaborating on the verification of RWF-nets.

4 Verification of RWF-Nets

Based on the notion of RWF-nets we now investigate the fundamental question:
“Is the workflow correct?”. If one has domain knowledge, this question can be
answered in many different ways. However, without domain knowledge one can
only resort to generic questions such as: “Does the workflow terminate?”, “Are
there any deadlocks?”, “Is it possible to execute activity A?”, etc. Such kinds of
generic questions triggered the definition of soundness [1,2]. Different soundness
notions have been proposed, e.g., k-soundness [32,33], weak soundness [39], gen-
eralized soundness [32,33], relaxed soundness [21], etc. However, here we focus
on the original definition given in [1].

Definition 5 (Classical soundness [1,2]). Let N = (P, T, F, W, R) be a RWF-
net. N is sound if and only if the following three requirements are satisfied:
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– Option to complete: ∀M∈R(N,[i]) [o] ∈ R(N, M).
– Proper completion: ∀M∈R(N,[i]) (M ≥ [o]) ⇒ (M = [o]).
– No dead transitions: ∀t∈T ∃M∈R(N,[i]) (N, M)[t〉.

A RWF-net such as the one sketched in Figure 1 is sound if and only if the
following three requirements are satisfied: (1) option to complete: for each case
it is always still possible to reach the state which just marks place end, (2) proper
completion: if place end is marked all other places are empty for a given case,
and (3) no dead transitions : it should be possible to execute an arbitrary activity
by following the appropriate route through the RWF-net. It is easy to see that
N1 and N2 (figures 1 and 2) are sound.

Fig. 3. A RWF-net N3 that is not sound. From the initial marking [start ] e.g. the mark-
ing shown (i.e., [bh , fOK , end ]) is reachable. This shows that the first two requirements
stated in Definition 5 do not hold.

RWF-net N3 shown in Figure 3 is an example of a workflow that is not sound.
Since c does not remove tokens from the places before the booking activities,
tokens may be left behind. In fact, it is still possible to book a hotel after
transition cancel has put a token in end (cf. Figure 3). This example shows that
it is easy to make errors when modeling workflows with cancellation.

In [1,2] it was shown that soundness is decidable for WF-nets, i.e., RWF-
nets without reset arcs. A WF-net N = (P, T, F ) (without reset arcs and arc
weights) is sound if and only if the short-circuited net (N, [i]) with N = (P, T ∪
{t∗}, F∪{(o, t∗), (t∗, i)}) is live and bounded. Since liveness and boundedness are
both decidable, soundness is also decidable. For some subclasses (e.g., free-choice
nets), this is even decidable in polynomial time [1,2].
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Since the mid-nineties many people have been looking at the verification of
workflows. These papers all assume some underlying model (e.g., WF-nets) and
some correctness criterion (e.g., soundness). However, in many cases a rather
simple model is used (WF-nets or even less expressive) and practical features
such as cancellation are missing. Many practical languages have a cancellation
feature, e.g., Staffware has a withdraw construct, YAWL has a cancellation re-
gion, BPMN has cancel, compensate, and error events, etc. Therefore, it is in-
teresting to investigate the notion of soundness in the context of RWF-nets, i.e.,
WF-nets with reset arcs [24,25,29]. Unfortunately, soundness is not decidable
for RWF-nets with reset arcs.

Theorem 1 (Undecidability of soundness). Soundness is undecidable for
RWF-nets.

For a proof we refer to [6]. Although far from trivial, it is possible to construct
a RWF-net N ′ given an arbitrary reset net N such that N ′ is sound if and only
if M ′ is not reachable from M in N . Since reachability is undecidable for reset
nets [24,25,29], this implies that soundness is also undecidable for RWF-nets.

Theorem 1 is non-trivial because properties such as coverability (Is it possible
to reach a marking M ′ that covers M , i.e., M ′ ≥ M?) are decidable for reset nets.

Note that although soundness is undecidable for RWF-nets, for many repre-
sentatives of this class, it may still be possible to conclude soundness or non-
soundness. There may be rules of the form “If WF-net N has property X , then
N is sound” or “If WF-net N has property Y , then N is not sound”. As shown
in [41] it is possible to find many errors using such an approach. In [41] a set
of more than 2000 process models from practice (including more than 600 pro-
cesses from the SAP reference model) was analyzed. It could be shown that at
least 10 percent of these models is not sound. These examples show that even if
soundness is undecidable, errors can be discovered. Similarly, for many models it
is still possible to guarantee soundness even if the general verification problem
is undecidable.

In the related work section, we provide some pointers to analysis techniques
using brute force (e.g. coverability graphs), structural techniques (invariants),
and/or reduction rules. For example, RWF-nets can be reduced using the reduc-
tion rules presented in [48] to speed-up analysis and improve diagnostics.

5 Conformance with Respect to a RWF-Net

As indicated in Section 3, lion’s share of analysis efforts has been devoted to
model-based analysis (verification, simulation, etc.) and measuring simple per-
formance indicators. However, given the abundance of event logs it is interesting
to “discover models” based on event logs (see Section 6) or to measure the con-
formance of existing models based on the real behavior recorded in logs. In this
section, we focus on the latter question, i.e., “Do the model and the log conform
to each other?”. Conformance checking aims at the detection of inconsistencies
between a process model N and its corresponding execution log L, and their
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quantification by the formation of metrics. In [4,42,43] two basic conformance
notions have been identified (fitness and appropriateness). First of all, the fit-
ness between the log and the model is measured (i.e., “Does the observed process
comply with the control flow specified by the process model?”). Second, the ap-
propriateness of the model can be analyzed with respect to the log (i.e., “Does
the model describe the observed process in a suitable way?”). Appropriateness
can be evaluated from both a structural and a behavioral perspective [43].

In this paper, we only consider fitness. However, it is important to stress that
a model with good fitness may not be appropriate. For example, the model with
just a single place that serves as a self-loop for all transitions T is able to parse
any trace in T ∗ [4,42,43].

One way to measure the fit between event logs and process models is to
“replay” the log in the model and somehow measure the mismatch. The replay
of every trace starts with the marking of the initial place in the model, e.g.,
[start ] in Figure 1. Then, the transitions that belong to the logged events in the
trace are fired one after another. While replay progresses, we count the number
of tokens that had to be created artificially (i.e., the transition belonging to the
logged event was not enabled and therefore could not be successfully executed)
and the number of tokens that were left in the model, which indicate that the
process was not properly completed. Based on counting the number of missing
tokens during replay and the number of remaining tokens after replay, we define
a function f that has a value between 0 (=poor fitness) and 1 (=good fitness).

Definition 6 (Fitness). Let N = (P, T, F, W, R) be a RWF-net and let L ∈
IB(A∗) be an event log where we assume that T = A. Let k be the number
of traces in event log L. For each log trace i (1 ≤ i ≤ k), mi is the number
of missing tokens, ri is the number of remaining tokens, ci is the number of
consumed tokens, and pi is the number of produced tokens during log replay of
trace i. The token-based fitness metric f is defined as follows:

f(N, L) =
1
2
(1−

∑k
i=1 mi∑k
i=1 ci

) +
1
2
(1−

∑k
i=1 ri∑k
i=1 pi

)

Note that the above definition is rather informal. In [42,43] this metric was
defined for WF-nets, i.e., workflows without cancellation. However, as shown
here the metric can easily be extended for RWF-nets. Let us consider some
trace i consisting of a sequence of n events σi = 〈e1, e2, . . . , en〉 ∈ T ∗. The
initial state of N is [i] and the desired end state is [o]. If (N, [i])[σi〉(N, [o]),
then there is a perfect fit, i.e., the trace can be replayed without leaving to-
kens behind. So, (N, [i])[σi〉(N, [o]) if and only if f(N, [σi]) = 1. Let σ1 =
〈register , book hotel NOK , c, cancel〉. It is easy to see that f(N2, [σ1]) = 1, i.e.,
the trace can be replayed without missing or remaining tokens. (Recall that N2 is
the RWF-net shown in Figure 2.) Now consider σ2 = 〈register , book hotel OK , c,
pay〉. It is possible to execute the partial trace 〈register , book hotel OK 〉. How-
ever, to execute c, there has to be a token in NOK (i.e., one token is missing). If
we force c to fire anyway, the resulting state is [ec]. In this state, we cannot fire
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pay as there are three missing tokens. This brings the number of missing tokens
to 4. After forcing pay to fire, the resulting state is [ec, end ]. Hence one token
remains in place ec.

We can show the calculation of the values m2, r2, c2, and p2 step-by-step us-
ing four temporary variables. Initially, m = 0 (no missing tokens), r = 0 (no
remaining tokens), c = 0 (no consumed tokens), and p = 1 (prior to the execu-
tion of register the net is in state [start ], so the environment already put a to-
ken in the initial place). After start fires state [bf , bh, bc] is obtained and m = 0,
c = 0+1 = 1, and p = 1+3 = 4. After book hotel OK fires marking [bf , bc, hOK ]
is reached and m = 0, c = 1 + 1 = 2, and p = 4 + 1 = 5. After c fires state
[ec] is obtained and m = 0 + 1 = 1 (missing token in NOK ), c = 2 + 4 = 6
(four tokens are removed, one by a “normal” arc and three by reset arcs), and
p = 5 + 1 = 6. After pay fires state [ec, end ] is reached and m = 1 + 3 = 4,
c = 6 + 3 = 9, and p = 6 + 1 = 7. Finally, the token is removed from end
and the remaining token is recorded, i.e., c = 9 + 1 = 10 and r = 1. Note that
in the calculation the marking of the source place is considered to be a produc-
tion step while the removal of the token from the sink place is considered to be a
consumption step. Also note that the removal of tokens through reset arcs is cal-
culated as a consumption step. Hence, m2 = 4, r2 = 1, c2 = 10, and p2 = 7.
Therefore, f(N2, [σ2]) = 1

2 (1 − 4
10 ) + 1

2 (1 − 1
7 ) = 51

70
∼= 0.73. The fitness of

f(N2, [σ1, σ2]) = 1
2 (1− 0+4

7+10 ) + 1
2 (1− 0+1

7+7 ) = 403
476

∼= 0.85.

Several definitions of fitness are possible. For example, Definition 6 gives equal
weights to missing tokens and remaining tokens. By replacing the weights 1

2 by
e.g. weight 3

4 and weight 1
4 in Definition 6, more emphasis is put on problems

related to missing tokens and less on proper termination.
Several metrics for fitness and various appropriateness notions have been im-

plemented in ProM for WF-nets [42,43]. As shown in this section, these metrics
can be adapted for RWF-nets in a straightforward manner. Figure 4 illustrates the
current functionality of ProM. For a specific log, the fitness is calculated with re-
spect to the WF-net shown in Figure 1. As Figure 4 shows the fitness is 0.80908644
(metric is shown in top right corner). Several places are annotated with one or two
numbers. Positive numbers refer to remaining tokens (i.e.,

∑k
i=1 ri for a particular

place) and negative tokens refer to missing tokens (i.e.,
∑k

i=1 mi for a particular
place). The input place of cancel (i.e., place ec in Figure 1) has the number “−25”
indicating that in the whole log there were 25 situations where according to the
log cancel had to fire while according to the model this was not possible because
ec was empty. As shown in Figure 4, nice diagnostics can be given showing were
in the model mismatches occur and how severe they are.

Note that the transitions c1, c2, . . . , , c7 in Figure 1 are depicted differently in
the conformance checker (cf. Figure 4). The reason is that there are no events
related to c1, c2, . . . , , c7 in the log, i.e., these are “silent transitions” and cannot
be observed. The conformance checker in ProM can deal with such situations
using state-space analysis. The same technique is used to deal with “duplicates”,
i.e., two transitions having the same label. See [43] for details. Interestingly, all
ideas from [43] can be generalized to workflows with cancellation.
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Fig. 4. The conformance checker in ProM applied to the WF-net shown in Figure 1
and an event log containing 42 cases and 172 events

6 Discovering RWF-Nets

The last challenge addressed in this paper is the discovery of workflows with
cancellation, i.e., based on some event log L we want to automatically construct
a RWF-net N that “captures” the behavior seen in the log. Many techniques
have been proposed in literature [11,8,12,17,20,22,23,49]. However, none of these
techniques discovers workflow models with cancellation features.

Figure 5 illustrates the concept of process discovery. Given an event log with-
out any explicit process information, we want to discover a process model. On
the right-hand side of Figure 5, a fragment of a larger event log is shown. As dis-
cussed in Section 3, event logs tend to have more information (e.g., timestamps,
data, etc.), but here was assume that an event log is simply a multiset of traces.
For example, the first trace in Figure 5 refers to a scenario were all bookings
succeeded. The α-algorithm [11] is a very basic process mining algorithm that is
able to discover the model shown in Figure 5. Since the traces shown correspond
to possible traces of the WF-net N1 shown in Figure 1, it is nice to see that the
α-algorithm is actually able to discover N1 (modulo renaming of places). The α-
algorithm [11] is very simple but not very suitable for real-life applications. The
algorithm makes strong assumptions about the routing constructs to be used
and the completeness of the log. For example, it is not realistic that one actually
observes the routing transitions c1, c2, . . . , , c7. Unlike transition cancel which is
a real activity, c1, c2, . . . , , c7 have only been added for routing purposes. For-
tunately, better process mining algorithms are available today (see Section 7).
However, these do not capture cancellation as the underlying models do not allow
for a direct representation of such constructs.
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register book_flight_OK book_hotel_OK book_car_OK pay
register book_hotel_OK book_flight_OK book_car_OK pay
register book_hotel_NOK book_flight_OK book_car_OK c2 cancel
register book_car_OK book_hotel_OK book_flight_OK pay
register book_hotel_NOK book_flight_OK book_car_OK c2 cancel
register book_flight_OK book_hotel_OK book_car_OK pay
register book_flight_OK book_hotel_OK book_car_NOK c1 cancel
register book_hotel_NOK book_flight_OK book_car_OK c2 cancel
register book_flight_OK book_car_OK book_hotel_OK pay
register book_flight_NOK book_car_NOK book_hotel_NOK c7 cancel
register book_hotel_OK book_car_OK book_flight_OK pay
register book_car_OK book_flight_OK book_hotel_OK pay
register book_flight_NOK book_car_NOK book_hotel_NOK c7 cancel
register book_hotel_OK book_car_NOK book_flight_NOK c6 cancel
...

Fig. 5. Based on a complete event log, the α-algorithm [11] can discover the WF-net
shown in Figure 1

The goal is to develop process mining algorithms that discover cancellations
in event logs and treat cancellation as a basic construct. Concretely, we want
to discover a RWF-net N with “suitable” reset arcs based on some event log L.
Since we do not what to develop a process mining algorithm from scratch, we
try to extend existing techniques.

The basic idea behind most of the existing process mining algorithms is to
add a causal dependency based on an analysis of the log. For example, a >L b iff
there is a trace in L where a is directly followed by b and a →W b iff a >W b and
b �>W a. Using such information places are added, e.g., a and b are connected
through some place if a →W b. Hence, the places provide information about one
activity triggering another activity. However, there is no explicit information in
the log on disabling events (i.e., there is no “negative information” in the log).
Therefore, we suggest to use existing algorithms and do some post-processing
using reset arcs as a cleanup. Below is an informal sketch of the basic idea:

Step 1. Given an event log L construct a RWF-net N = (P, T, F, W, R) using
conventional process mining techniques (initially R(t) = ∅ for all t ∈ T ). It
is best to use a technique that avoids blocking transitions, i.e., no missing
tokens (mi) in the sense of Definition 6.

Step 2. Construct a relation ��L⊆ T × T such that a ��L b if and only if a is
never followed by b.

Step 3. Replay the log in N = (P, T, F, W, R) and record places with remain-
ing tokens and calculate the fitness. If there are no remaining tokens or all
alternatives below have been tried, return N .

Step 4. Pick a place p that has the most remaining tokens. Let Tp be the set
of output transitions of p, i.e., Tp = p•.

Step 5. T ′ = {t′ ∈ T \ Tp | ∀t∈TP t′ ��L t ∧ p �∈ R(t′)}, i.e., transitions that
“seem” to disable Tp transitions but do not actually disable these transitions
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Fig. 6. Using regions, a Petri net is discovered that captures the behavior but where
tokens are left behind. The fitness is 0.897 as shown in top right corner.

yet. If T ′ = ∅, then go to Step 3, otherwise pick a tr ∈ T ′. Take the “earliest”
transition in T ′, e.g., using a relation similar to �L.

Step 6. Add a reset arc to N connecting p and tr, i.e., N ′ = (P, T, F, W, R′)
where R′(tr) = R(tr) ∪ {p} and R′(t) = R(t) for all other t.

Step 7. Return to Step 3 using N = N ′.

Note that the above is not indented to be a concrete algorithm. It is merely
a solution approach that needs to be made specific in the context of a concrete
process mining algorithm. To illustrate this let us use a log L2 that contains all
possible behaviors of the RWF-net shown in Figure 2. In the log transition c is
not visible as it is just there for routing purposes, i.e., an example trace in L2

is 〈register , book flight NOK , cancel〉. Applying the α-algorithm to L2 gives an
incorrect and rather meaningless result because of the invisible routing activity c
and the cancellation construct. If we apply the region-based approach presented
in [9,44], then we obtain the Petri net shown in Figure 6. The region-based
approach guarantees that it is possible to replay all traces in the log without
missing tokens, but there may be remaining tokens. In terms of Definition 6,
this means mi = 0 and ri ≥ 0 for any trace i. This makes the technique of [9,44]
suitable for the post-processing mentioned above. Note that there are six places
where tokens may remain.

The Petri net in Figure 6 is able to execute the sequence 〈register , book flight
NOK , cancel〉 but leaves two tokens behind. Note that the central place in-
between register and pay acts as a mutex place blocking all activities after the
first “NOK”. Also note that there is a not a sink place in Figure 6, i.e., it is
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not a WF-net. This is due to the implementation of the plug-in in ProM and
is merely a technicality that can be resolved easily (e.g., by adding a dummy
end transition). Using the 7 steps described above reset arcs are added from the
six places with remaining tokens to transition cancel . However, also superfluous
reset arcs are added, e.g., from some of places with remaining tokens to pay .
This can be optimized in various ways. First of all, additions that do not improve
fitness can be discarded. Second, improving T ′ to filter out transitions that do
not appear in traces that have problems (i.e., if there is no problem related to
sequences where transition t′ appears, then no reset of t′ on p is needed). Both
optimizations would get rid of the superfluous reset arcs. The resulting model
nicely captures the behavior recorded in the log including the cancellation after
the first “NOK” result.

Fig. 7. A Petri net constructed using language-based regions theory [45]

There are alternatives to the post-processing approach described above. First
of all, it would be relatively easy to extend the genetic miner in ProM [7,40]
to deal with reset arcs. For genetic mining basically only a good representa-
tion (RWF-nets) and fitness function (Definition 6) are needed [7,40]. Second,
it would be interesting to extend mining approaches based on language-based
regions [45] to come up with special arcs. Figure 7 shows the application of the
language-based region miner in ProM using a very conservative setting for log
L2, i.e., the same log as used to construct Figure 6. Because of the conserva-
tive setting just a few places were added, however, a correct characterization of
the behavior is given. This shows the basic principle that a Petri net without
any places can parse any log and that adding places corresponds to adding con-
straints. Since this approach uses integer linear programming as a basis, it is
versatile and seems to be a good platform to add special types of arcs such as
reset arcs, inhibitor arcs, etc.
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7 Related Work

Since the mid nineties, many researchers have been working on workflow verifi-
cation techniques. It is impossible to give a complete overview here. Moreover,
most of the papers on workflow verification focus on rather simple languages,
e.g., AND/XOR-graphs which are even less expressive than classical Petri nets.
Therefore, we only mention the work directly relevant to this paper.

The use of Petri nets in workflow verification has been studied extensively. In
[1,2] the foundational notions of WF-nets and soundness are introduced. In [32,33]
two alterative notions of soundness are introduced: k-soundness and generalized
soundness. These notions allow for dead parts in the workflow but address prob-
lems related to multiple instantiation. In [39] the notion of weak soundness is pro-
posed. This notion allows for dead transitions. The notion of relaxed soundness is
introduced in [21]. This notion allows for potential deadlocks and livelocks, how-
ever, for each transition there should be at least one proper execution.

Most soundness notions (except generalized soundness [32,33]) can be inves-
tigated using classical model checking techniques that explore the state space.
However, such approaches can be intractable or even impossible because the
state-space may be infinite. Therefore, alternative approaches that avoid con-
structing the (full) state space have been proposed. [3] describes how structural
properties of a workflow net can be used to detect the soundness property. [46,47]
presents an alternative approach for deciding relaxed soundness in the presence
of OR-joins using invariants. The approach taken results in the approximation
of OR-join semantics and transformation of YAWL nets into Petri nets with
inhibitor arcs. In [51] it is shown that the backward reachability graph can be
used to determine the enabling of OR-joins in the context of cancellation. In the
general area of reset nets, Dufourd et al.’s work has provided valuable insights
into the decidability status of various properties of reset nets including reach-
ability, boundedness and coverability [24,25,29]. Moreover, in [48] it is shown
that reduction rules can be applied to reset nets (and even to inhibitor nets) to
speed-up analysis and improve diagnostics.

Since the mid-nineties several groups have been working on techniques for
process mining [11,8,12,17,20,22,23,49], i.e., discovering process models based
on observed events. In [10] an overview is given of the early work in this do-
main. The idea to apply process mining in the context of workflow management
systems was introduced in [12]. In parallel, Datta [20] looked at the discovery
of business process models. Cook et al. investigated similar issues in the context
of software engineering processes [17]. Herbst [34] was one of the first to tackle
more complicated processes, e.g., processes containing duplicate tasks.

Most of the classical approaches have problems dealing with concurrency.
The α-algorithm [11] is an example of a simple technique that takes concurrency
as a starting point. However, this simple algorithm has problems dealing with
complicated routing constructs and noise (like most of the other approaches
described in literature). In [22,23] a more robust but less precise approach is
presented. The classical “theory of regions” [13,14,18,19,27] can also be used
to discover Petri-net-based models as shown in [9,44]. Recently, some work on
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language-based regions theory appeared [16,45,37,38]. In [16,45] it is shown how
this can be applied to process mining.

In this paper we do not consider issues such as noise. Heuristics [49] or genetic
algorithms [7,40] have been proposed to deal with issues such as noise.

For an overview of related work with respect to conformance checking we re-
fer to [4,42,43]. Note that so far no process mining techniques (discovery and/or
conformance) have been proposed for models with cancellation such as RWF-nets.

To conclude this related work section, we provide some pointers to the rela-
tionships between Petri nets and graph grammars/transformations [28,31]. The
relationships between Petri nets and graph grammars have been well known for
quite some time [35]. In fact, graph grammars can be seen as a proper gen-
eralization of Petri nets. The firing of a transition corresponds to applying a
“production” to a graph while firing sequences correspond to graph derivations.
Reset arcs can easily be encoded in terms of graph grammars. In Section 3.2 of
[31], extensions of graph rewriting using multi objects are discussed, i.e., uni-
versally quantified operations are used to remove all objects of a particular type
in one go. Such ideas directly apply to reset nets. In [15] the relation between
“extended Petri nets” and graph rewriting is investigated in detail. In this pa-
per, Petri nets having read, inhibitor and reset arcs are mapped onto graph
grammars. Thus far little work has been done on the relation between graph
grammars/transformations on the one hand and workflow verification and pro-
cess discovery on the other. It would be interesting to explore this further.

8 Conclusion

In this paper we explored various analysis questions related to workflows with
cancellations. As a modeling language we used reset workflow nets (RWF-nets).
Taking RWF-nets as a starting point we explored challenges related to discovery
(process mining), verification, and conformance. For example, it was shown that
soundness is undecidable for RWF-nets. However, despite this result, analysis
is possible in most cases using e.g. reduction rules and structural techniques as
shown in [48]. Conformance checking can be done in a straightforward manner
by adapting the techniques described in [42,43] to RWF-nets. From a process
mining viewpoint, no prior work has been done on the discovery of processes
with cancellations. In this paper we made some initial suggestions to develop
process discovery algorithms for RWF-nets. Given the importance of cancellation
in workflows, it is interesting to develop techniques and tools to further address
the challenges mentioned in this paper.
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Abstract. The international development partnership AUTOSAR strives for re-
use and exchange of SW components along various dimensions: between OEM 
and supplier, between vehicle platforms, between electronic networks, and be-
tween individual electronic control units (ECUs). To enable the exchange an 
abstraction layer – the AUTOSAR runtime environment (RTE) – has been  
defined as a set of services provided to applications. Typical services are com-
munication via buses, memory access, or diagnostic support. The services are 
implemented by several stacks of basic SW-modules being highly configurable 
to support the large variety of ECUs. By configuration, the same SW module 
can be used for those ECUs with a given micro-controller abstraction.  

To exploit the variability in a structured approach, AUTOSAR defined a 
methodology which heavily makes use of so-called templates capturing all in-
formation of an electronic vehicle network. The data-structures are defined by a 
meta-model allowing for a consistent definition of the templates. 

The development approach adopted by AUTOSAR is related to model-
driven development. At the first step in the methodology, an overall system de-
scription is defined showing the logical architecture of the SW system. Each 
SW component is described by an instance of the SW-template. When the SW 
system shall be applied to an electronic network, the dedicated HW resources 
must be described as well. So, the properties and capabilities of ECUs and 
buses are captured by an ECU resource template. During the next step, a map-
ping of the logical to the physical architecture has to be found. This task is of 
high importance, since it determines the overall system performance. Once the 
mapping is established, configuration files for individual ECUs of the network 
are generated. Based on the configuration the appropriate SW-components can 
be loaded onto the ECU and the required communication channels are estab-
lished such that the SW application can be successfully executed. 

Currently, there is no strong tool-support for mapping besides plain editors. 
Rule-based transformations may be applied to define and realize (semi-) auto-
matic mapping strategies for the different areas in the system and ECU resource 
template. 
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Abstract. The algorithm of Cocke, Younger, and Kasami is a dynamic
programming technique well-known from string parsing. It has been
adopted to hypergraphs successfully by Lautemann. Therewith, many
practically relevant hypergraph languages generated by hyperedge re-
placement can be parsed in an acceptable time. In this paper we extend
this algorithm by hypergraph completion: If necessary, appropriate fresh
hyperedges are inserted in order to construct a derivation. The resulting
algorithm is reasonably efficient and can be directly used, among other
things, for auto-completion in the context of diagram editors.

Keywords: hypergraph completion, hyperedge replacement, parsing.

1 Introduction

Hypergraphs are an extension of graphs where edges are allowed to visit an arbi-
trary number of nodes. A well-known way of describing hypergraph languages are
hyperedge replacement grammars HRG [1]. Although restricted in power, this
formalism comprises several beneficial properties: It is context-free and still quite
powerful. Grammars are comprehensible, and reasonably efficient parsers can be
defined for practical languages. In general, parsing is NP-complete though.

Lautemann has provided a detailed discussion of the complexity of hyperedge
replacement [2]. He also has suggested a hypergraph parsing algorithm straight-
forwardly adopting the dynamic programming approach proposed by Cocke,
Younger, and Kasami CYK [3] for string parsing. Given a string s = a1...an, the
CYK algorithm computes a table where the cell in row i and column j contains
derivation trees that derive the substring ai...ai+j−1. This table can be com-
puted bottom up by joining two appropriate entries at a time – provided that
the grammar is in Chomsky normalform CNF, which is no restriction.

An extended version of Lautemann’s CYK-style algorithm for hypergraphs
has been proposed by the third author and incorporated into the diagram editor
generator DiaGen [4]. In analogy to the string setting, HRGs are transformed to
a kind of CNF first. However, the parsing algorithm does not need to compute a
table but rather n layers where n is the number of hyperedges in the hypergraph.
Thereby, layer k is computed by combining two “compatible” derivation trees
from layers i and j at a time where i + j = k.
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Fig. 1. Hypergraphs as a model for diagrams

Diagram editors are an important area of application for hypergraph parsing
since hypergraphs have appeared to be well-suited as a model for diagrams. For
instance, in DiaGen the abstract syntax of a diagram language is defined using
HRGs, and the parser checks which parts of a freely drawn diagram are correct.
In Fig. 1 an example Nassi-Shneiderman-Diagram NSD and a corresponding
hypergraph model are shown. Hyperedges are represented by boxes with the
particular label inside. Nodes are represented as circles; the so-called external
ones as black dots. Lines (tentacles) indicate that a hyperedge visits a node. The
hypergraph language of NSDs can be defined using an HRG as we see later.

In this paper we propose an algorithm for hy-

n:=0

x even

n:=n+1

x:=x/2

y n

x>1

Fig. 2. Incomplete NSD

pergraph completion with respect to HRGs. Hyper-
graph completion can be used, among other things,
as a powerful and flexible base for diagram com-
pletion. Indeed, content assist in diagram editors
is just as valuable as conventional content assist as
known from modern text editors and integrated de-
velopment environments. The editor user normally
does not only want to be notified when his diagram
is incorrect, but is also interested in the particular
problem and possible solutions. For instance, the insertion of a simple statement
at the right place is already sufficient in order to repair the diagram shown in
Fig. 2. Such suggestions are particularly important for free-hand editors like the
ones generated with DiaGen. By providing assistance we can effectively com-
bine the advantages of structured and free-hand editing: The user is allowed to
draw his diagram with maximal freedom, but guidance is provided if needed.

The information required for some assistance can be gathered by the parser.
It is possible to infer places where new hyperedges may be added to complete a
given hypergraph, although those might not be uniquely determined. We have
discussed a first, logic-based approach in [5]. The proposed framework of graph
parser combinators follows a top-down approach with backtracking, thus partial
results might be computed several times.
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In this paper we substantially improve efficiency by using dynamic program-
ming techniques. We basically extend Lautemann’s CYK-style algorithm to sup-
port the computation of hypergraph completions. Our key idea is to pretend a
(limited) number of hyperedges while parsing. Therefore, several fresh hyper-
edges are introduced initially, which visit fresh, special nodes. Later, these nodes
can be glued with nodes already occurring in the input hypergraph.

We proceed as follows: First, we introduce hypergraphs and HRGs in Sect. 2
using NSDs as a running example. Thereafter, we describe our parser and how
it computes so-called complement hypergraphs (Sect. 3). This is the main con-
tribution of this paper. In Sect. 4 we discuss related work. Finally, we sketch
future prospects and conclude the paper (Sect. 5).

2 Hypergraphs and Hyperedge Replacement Grammars

In this section the formal basics are introduced. Most definitions are close to [1]
and [2]. We just recapitulate them to make this paper self-contained.

Let C be an arbitrary, but fixed set of labels and let type: C → IN be a typing
function for C. Let V denote a universe of nodes. A hypergraph H over C is a
tuple (VH , EH , attH , labH , extH) where VH ⊂ V is a finite set of nodes, EH is
a finite set of hyperedges, attH : EH → V ∗

H is a mapping assigning a sequence
of pairwise distinct attachment nodes attH(e) to each e ∈ EH , labH : EH → C
is a mapping that labels each hyperedge such that type(labH(e)) = |attH(e)|
(length of sequence), and extH ∈ V ∗

H is a sequence of pairwise distinct external
nodes (in pictures numbers represent a node’s position in ext). We further define
type(H) := |extH |, |H | := |EH |, and H0 := (VH , EH , attH , labH , ε) (the under-
lying type-0 hypergraph of a hypergraph H). We denote the empty hypergraph
as ∅G. The set of all hypergraphs over Σ ⊆ C is denoted by HΣ . We occasionally
call hypergraphs just graphs and hyperedges edges.

A hypergraph H is called elementary if it is induced by a single edge e,
i.e., EH = {e}, VH = [attH(e)]1, and extH = attH(e). In this case, we define
lab(H) := labH(e) and edge(H) := e. Given a set of hypergraphs H, the set of
elementary hypergraphs in H is denoted by elem(H).

Given hypergraphs H, H ′ ∈ HC with EH ∩ EH′ = ∅, e ∈ EH such that
VH ∩ VH′ = [attH(e)] and extH′ = attH(e), the hypergraph H [e/H ′] resulting
from the replacement of e by H ′ is defined as H [e/H ′] := (VH ∪VH′ , (EH\{e})∪
EH′ , attH ∪ attH′ , labH ∪ labH′ , extH). Let B ⊆ EH be a set of hyperedges to be
replaced and let repl : B → HC be a mapping such that H [e/repl(e)] is defined
for all e ∈ B. We denote the replacement of all edges contained in B by H [repl]
(the order of their replacement does not matter [1]).

Let H, H ′ ∈ HC . Then H is a sub-hypergraph of H ′, denoted H ⊆ H ′, if
VH ⊆ VH′ , EH ⊆ EH′ , attH(e) = attH′(e), and labH(e) = labH′(e) for all
e ∈ EH . The ext-union of H and H ′, denoted H∪extH

′ where ext ∈ (VH∪VH′ )∗,
is defined as (VH ∪ VH′ , EH ∪ EH′ , attH ∪ attH′ , labH ∪ labH′ , ext) provided
EH ∩EH′ = ∅. Two hypergraphs H and H ′ are isomorphic, denoted H ∼= H ′, if
1 [a1...an] := {a1, ..., an}.
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Fig. 4. A possible derivation wrt GNSD

there are bijections φV : VH → VH′ and φE : EH → EH′ such that for all e ∈ EH

labH′(φE(e)) = labH(e), attH′(φE(e)) = φ∗
V (attH(e)) and extH′ = φ∗

V (extH).2

A production A→ R over N ⊆ C consists of a label A ∈ N and a hypergraph
R ∈ HC such that type(A) = type(R). Let P be a set of productions, H ∈ HC ,
e ∈ EH , (labH(e)→ R) ∈ P , R′ ∈ HC such that R′ ∼= R and H [e/R′] is defined.
Then H directly derives H ′ = H [e/R′], denoted H =⇒P H ′.

A hyperedge replacement grammar is a system G = (N, T, P, S) where N ⊂ C
is a set of nonterminals, T ⊂ C with T ∩N = ∅ is a set of terminals, P is a finite
set of productions over N , and S ∈ N is the start symbol. Let LA(G) := {H ∈
HT | ∃L ∈ elem(H{A}) : L =⇒∗

P H}. The hypergraph language L(G) generated
by G is defined as L(G) := LS(G).

As an example consider the grammar of NSD graphs GNSD = ({NSD, Stmt},
{text, cond, while}, PNSD, NSD) where the set of productions PNSD is shown in
Fig. 3. A possible derivation is given in Fig. 4. Note, that in the following we
omit the “while”-production for the sake of brevity.

2 f∗(a1...an) := f(a1)...f(an).
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In the string setting the CYK-algorithm requires grammars to be in so-called
Chomsky normalform CNF. This is no restriction, since every context-free gram-
mar (that does not generate the empty string) can be transformed to a grammar
that defines the very same language and is in CNF. A similar notion can be de-
fined for HRGs:

Definition 1 (Chomsky normalform). An HRG is in Chomsky normalform
CNF, iff for every production A → R holds: R does not contain isolated nodes,
and either R ∈ HT ∧ |R| = 1 (terminal production) or R ∈ HN ∧ |R| = 2
(expansion production).

Every HRG whose language does not contain hypergraphs with isolated nodes
or the empty graph ∅G can be transformed to an equivalent grammar in CNF.
A constructive proof of this proposition is given in [6]. The productions of an
HRG in CNF equivalent to GNSD (without “while”) are shown in Fig. 5.3 Note,
that isolated nodes do not occur in the context of visual language specifications.
However, if they cannot be avoided in a particular situation, it might be sufficient
to add unary dummy edges.

Since HRGs are context-free (cf. context-freeness lemma in [1]) the notion of a
derivationtree ismeaningful.LetG = (N, T, P, S)beanHRG.Thesetofderivation

3 Basically, productions with more than two hyperedges at their right-hand side are
split successively (therefore, in our example the new nonterminal “CondLeft” and the
corresponding production are added). Where necessary, special nonterminal labels l̂
are introduced that only derive an elementary graph labeled l, see, e.g., “Cond”. And
finally, so-called chain productions like the derivation of a single “Stmt” nonterminal
from “NSD” are eliminated by adding the productions over “Stmt” also to “NSD”.
This transformation is very similar to the corresponding transformation in the string
setting and can be performed automatically (as realized in DiaGen).
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trees TREE(G) is recursively defined: Consider a triple t = (L, R, branch) where
L ∈ elem(HN ), R ∈ HC , L =⇒P R, branch : EN

R → TREE(G)4. Let root(t) := L.
The triple t is in TREE(G) iff labR(e) = lab(root(branch(e))) for all e ∈ EN

R and
result(t) := R[{e �→ result(branch(e)) | e ∈ EN

R }] (the graph spanned by this tree)
is defined. Note, that according to this definition the leaves of a derivation tree are
triples where R ∈ HT .

An example graph and its derivation tree are shown in Fig. 6. The arrows
represent the mapping determined by branch. The elementary root graphs L
can be represented by their labels lab(L), since the nodes visited by edge(L) are
just the external nodes of R. Numbers of external nodes are omitted. All nodes
are marked with letters to make them distinguishable. The notions derivation
and derivation tree are indeed equivalent as, e.g., proven in [1].

Next, we introduce the concept of a complement hypergraph. Informally, this
is a graph such that its union with the given input graph can be derived from a
particular start graph.

Definition 2 (complement hypergraph). Given an HRG G = (N, T, P, S),
type-0 hypergraphs H, Hc ∈ HT , and L ∈ elem(HN ). Hc is a complement hyper-
graph of H with respect to G and L iff EHc ∩ EH = ∅ and L =⇒∗

P H ∪extL
Hc.

Note, that we do not assume anything about the correctness of the given graph
H wrt G. If H is incorrect, Hc is a completion. Otherwise, it is a correctness-
preserving extension of H , just as needed, among other things, for the realization
of situation-dependent structured editing operations in diagram editors.

This notion is illustrated by example in Fig. 7. Given the type-0 hypergraph
H surrounded by the box. In the figure several complement hypergraphs of H are
shown (in union with H) – each with respect to the elementary graph labeled
4 EN

R := {e ∈ ER | labR(e) ∈ N}.
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Fig. 7. Some complement graphs of the given graph H

NSD whose external nodes are just the ones marked in the particular image.
Note, that our definition does not relate VH and VHc . Indeed those sets may
either overlap or be disjoint. Nodes of the complement graphs that do not already
belong to the original hypergraph H are surrounded by an extra circle in the
figure. In general, the number and size of complement graphs is not restricted,
although a practical implementation surely has to impose meaningful bounds.

3 A CYK-Style Complementing Parser

Given a type-0 hypergraph H , a conventional parser analyzes H with respect
to an HRG G. If possible, a sequence of external nodes is established such that
the resulting graph is in L(G). The corresponding derivation tree can be con-
structed, e.g., by using dynamic programming similar to the CYK algorithm. So
the hypergraph parser of the DiaGen system computes n = |H | layers. In layer
k, 1 ≤ k ≤ n, all derivation trees are contained whose result is a graph H ′ ⊆ H
such that |H ′| = k. Since HRGs are transformed to CNF in advance, for k > 1
layer k can be computed by combining two derivation trees from layers i and j
at a time where i+ j = k. Thereby, expansion productions are applied reversely.

The complementing parser proposed in this section does not only check if H
is a member of the language. It also computes complement hypergraphs up to a
particular size max. If the parameter max is set to zero it simply is a conventional
parser. Our key idea is to introduce fresh edges that can be embedded into the
input graph in a flexible manner. If these edges are actually used in a particular
derivation tree they constitute the complement graph. For every terminal symbol
t of the language, max fresh edges with label t are introduced. Each of these
edges visits type(t) nodes, which are also fresh and special in the sense, that –
in the process of parsing – they might be identified with nodes from H or even
with other fresh nodes (similar to logic variables).
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Before we define the algorithm more formally we provide an example run with
max = 1 to clarify its basic principle. Fig. 8 shows a possible input hypergraph
and, resulting from the algorithm, its union with the only complement graph
wrt NSD of size up to 1. The corresponding external nodes are also marked.

Fig. 9 illustrates how the layers are filled according to this example. The
number enclosed by a circle in the upper right of a derivation tree indicates,
how many of the fresh edges have already been used in this derivation. The
capital letters A, B, C and D are just shorthands for the particular trees to
avoid cluttering the figure by too many arrows. We further simplify the figure
by joining derivation trees that only differ in the labels of their root graphs.
Those mainly appear due to the elimination of chain productions. In this case,
trees are marked with all possible root labels, here NSD and Stmt.

Furthermore, all “imaginable” derivation trees in layer 2 are shown, although
most of them are invalid for some reason and, thus, disregarded by the parser.
Such invalid trees are shaded in the figure and the particular problem is marked
with a lightning symbol. When constructing derivation trees, we have to ensure
that at most max of the fresh edges are used at a time. The derivation tree in
the lower right of layer two, for instance, consumes two fresh edges, which is
prevented by the restriction max=1. The others violate the so-called gluing con-
dition. Here, a node is reduced, i.e., it is non-external within the right-hand side
of an “instantiated” production, although there still is an edge in the remaining
graph visiting this node. It is important to filter invalid derivation trees as soon
as possible to reduce the number of combinations in the layers above.

We compute an equivalence relation ∼ between nodes to realize the gluing of
fresh nodes with nodes actually occurring in the input graph. The “significant”
subset of this relation is shown in the figure. A simple mapping indeed is not
sufficient, since an arbitrary number of fresh nodes may coincide.

Complete derivation trees are those consuming the whole input graph. They
are surrounded by thicker lines in the figure and can, of course, only occur in
the layers between |H | and |H | + max. In the example, there is only one tree
with complete coverage of the input graph whose root is labeled with the start
symbol NSD at the same time: the one whose result is shown in Fig. 8.

Next, we define the parsing algorithm more formally. Let G = (N, T, P, S)
be a HRG in CNF, H ∈ HT a type-0 hypergraph, and max ∈ IN . The parser
successively constructs layers Li ⊆ HT × HT × 2V×V × TREE(G) for 1 ≤ i ≤
|H | + max. We first provide a lemma which states the properties holding for
the elements of the computed layers. This simplifies the understanding of the
algorithm defined afterwards.
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Fig. 9. Illustration of the CYK-style graph parser with completion

Lemma 1. The following properties hold for the elements (H ′, Hc,∼, t) ∈ Li if
we identify nodes equivalent wrt equi(∼)5:

1. |H ′|+ |Hc| = i,
2. H ′ ⊆ H,
3. result(t) = H ′ ∪extresult(t) Hc,
4. |Hc| ≤ max,
5. Hc is a complement hypergraph of H ′ with respect to G and root(t).

A proof sketch of this lemma is given in Appendix A. After processing the layers
we are mainly interested in entries (H ′, Hc,∼, t) where lab(root(t)) = S and
|H ′| = |H |, i.e., the whole input graph is covered. To simplify the definitions of
the layers let us define an auxiliary predicate for ensuring the gluing condition:

For a graph R, gcH(R) :⇔ ∀e ∈ EH\ER : [attH(e)] ∩ VR ⊆ [extR]

5 equi(∼) := (∼ ∪ ∼T )∗ denotes the smallest equivalence relation containing ∼. For-
mally, the identification of equivalent nodes means to deal with the corresponding
quotient graph (whose nodes actually are equivalence classes of nodes), but to avoid
cluttering we just assume the identification of equivalent nodes implicitly.
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Thus, gcH(R) holds if and only if no edge of H that is not already in R vis-
its a non-external node of R. Next, we define the layers recursively. Layer 1
only contains derivation trees resulting from the reverse-application of terminal
productions. Thereby, either a single, terminal edge of H is derived, or one of
max · |T | fresh edges. This possibly large number of fresh edges is necessary, since
edges should keep their label and at this early stage we cannot know how many
edges with a particular label we will eventually need:

L1 :=
{
(R0, ∅G, ∅, (L, R, ∅)) |
R ⊆ H, |R| = 1, L ∈ elem(HN ), L =⇒P R, gcH(R)

}⋃ {
(∅G, R0, ∅, (L, R, ∅)) | t ∈ T, k ∈ {1, ..., max},

ek fresh edge, nsk sequence of type(t) fresh nodes,

L ∈ elem(HN ), R = ([nsk], {ek}, {ek �→ nsk}, {ek �→ t}, extL), L =⇒P R
}

As illustrated in Fig. 9, from layer 2 on the derivation trees are composed by
combining two compatible derivation trees t1 and t2 of lower layers at a time
by reverse-applying expansion productions. Thus, layer Li, i > 1 is constructed
from already computed layers Lj and Li−j where j < i. For 1 < i ≤ |H |+ max
we define:

Li :=
�i/2�⋃
j=1

(Lj ⊕ Li−j)

Thereby, the combination of two sets M, N ⊆ HT ×HT × 2V×V × TREE(G) is
defined as follows:

M ⊕N :=
{
(H ′

1 ∪ε H ′
2, H1c ∪ε H2c ,∼n, (L, R, {e1 �→ t1, e2 �→ t2})) |

(H ′
1, H1c ,∼1, t1) ∈ M, (H ′

2, H2c ,∼2, t2) ∈ N,

EH′1
∩ EH′2

= ∅, EH1c
∩ EH2c

= ∅, |H1c |+ |H2c | ≤ max,

let Lk := root(tk), ek := edge(Lk) for k ∈ {1, 2},
∃ ∼n minimal relation in 2V×V such that
∼1⊆∼n, ∼2⊆∼n, ∼:= equi(∼n), preservesVH

(∼),
when identifying nodes equivalent wrt to ∼
∃L ∈ elem(HN ), R := L1 ∪extL

L2, L =⇒P R, gcH(R)
}

When combining derivation trees the fresh nodes can be glued to other nodes.
For this purpose an equivalence relation between nodes is established such that
the union of the roots of t1 and t2 is isomorphic to the right-hand side of the
particular production. It must not happen, however, that nodes of the input
graph VH are identified among each other. Rather their identities have to be
preserved. This restriction is ensured by using the predicate preservesV (∼) :⇔
∀n1, n2 ∈ V : n1 ∼ n2 ⇒ n1 = n2. Thus, the relation {(n1, n2) ∈∼ | n1, n2 ∈ VH}
has to be the identity. Since the layers are recursively defined Lemma 1 now can
be proven by induction as sketched in Appendix A.
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Discussion

This algorithm also ensures that indeed all structurally different complement
graphs up to size max are computed, because all possible embeddings of up to
max arbitrarily labeled, fresh edges into H are constructed. At the end, those
equivalence classes of nodes not containing a node of the input graph can be
considered as new nodes contributed by a complement graph.

Performance. Although the algorithm is correct and complete, it suffers from
an inherent problem. If the bound max is increased, we get a lot of redundant
derivation trees, since new derivation trees in layer 1 (where fresh edges have the
same label) can be embedded at different places interchangeably. Unsurprisingly,
this effect has a negative impact on the performance of the algorithm.

It is possible to avoid this problem though. In our current implementation,
layer 1 only contains derivation trees for edges originally occurring in the input
graph. In addition, for each terminal production a special leaf derivation tree
is constructed that can be cloned if required. This approach is more syntax-
driven and, thus, yields only structurally different solutions. Therefore, it can
even be used as a reasonably efficient language generator. However, the formu-
lation given in this paper is less technical. It has been preferred for the sake of
presentation.

Indeed our current implementation has turned out to be sufficiently efficient
even for interactive applications. In Fig. 10 we provide performance data for
different values of max. The input graphs have been simple sequences of state-
ments, i.e., |H | is the length of the sequence. Thus, the corresponding comple-
tions are extensions of correct graphs (incorrect graphs show a similar behavior,
but are more difficult to construct in a homogeneous way). The algorithm shows
a polynomial runtime behavior. Note, that our implementation has not been op-
timized with respect to performance yet. Further enhancements can be achieved
by a prior analysis of the grammar such that compatible derivation trees can be
found more efficiently. We also work on an incremental version of the algorithm
where additional fresh edges can be efficiently incorporated on demand.
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Fig. 10. Execution time of our implementation applied to NSD graphs with different
values of max on standard hardware
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There is one factor particularly known for its strong impact on the perfor-
mance: the degree of connectedness. We already know that parsing performance
suffers if graphs of a language are highly disconnected, cf. [1,2]. This effect un-
fortunately becomes worse with our approach, since the gluing condition cannot
be used as effectively anymore to exclude derivation trees at an early stage.

Gluing Nodes. Per definition the algorithm presented in this section preserves
the nodes of the input graph. However, we have noted that it is sometimes
convenient to relax this condition. In-
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Fig. 11. Gluing original nodes

correct input graphs often can already
be corrected by gluing some nodes ap-
propriately.

For instance, reconsider the exam-
ple graph given in Fig. 7. It can be
corrected by inserting an artificial ex-
tra edge. However, there also is a more
lightweight way: The two isolated
edges can be joined together by glu-
ing some nodes. There are two ways to do this both shown in Fig. 11. Support
for this kind of repair action can be achieved with a very little adaptation of
the given algorithm. However, formally this approach would have to rely on a
broader notion of completion.

4 Related Work

To the best of our knowledge graph completion wrt hyperedge replacement gram-
mars has not been considered yet. Due to their logic-based approach graph parser
combinators [5] provide some support for completion as a nice side effect. How-
ever, from a performance point of view this framework cannot be used for prac-
tical, interactive applications. In contrast, the algorithm presented in this paper
does not suffer from this problem.

In the more general context of graphs, several approaches exist to error
correction and inexact matching, respectively. Most practical approaches pro-
pose either particular restrictions on the graph grammar formalism, incorporate
application-specific knowledge or even make use of heuristics [7] in order to solve
the particular problem with an acceptable performance.

For instance, Kaul proposed a fast parser for the computation of a minimum
error distance [8]. It depends on so-called precedence graph grammars and runs in
O(n3). Sánchez et al. add special error correcting rules to the graph grammar [9],
which they define in terms of region adjacency graphs. Their approach appears
to be beneficial in the domain of texture symbol recognition.

In the context of diagram editors, the grammar-based system VlDesk [10]
provides support for so-called symbol prompting. Here, the parsing table of a
Yacc-based parser is exploited to extract information about possible contexts
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of a particular symbol. Following this approach, local suggestions can be made
that may, however, be misleading from an overall perspective (although local
context in general can provide more suggestions and can be computed more
efficiently). In the tool AToM3 [11] model completion can be realized by solving
a constraint-logic program that can be generated from the metamodel of the
particular language [12].

5 Conclusion and Further Work

We have presented an approach for hypergraph completion with respect to hy-
peredge replacement grammars. The practicability of the proposed algorithm
has been validated by incorporating it in the diagram editor generator DiaGen.
The algorithm appears to be widely applicable and sufficiently efficient even for
interactive applications. It can be directly used for the realization of content
assist in the domain of diagram editors.

Our algorithm is quite beneficial to correct errors in a graph. However, we do
not require the given graph to be incomplete. Whereas incomplete graphs can
be completed, we can further compute powerful structured editing operations
from the complement graphs of already complete graphs. In both DiaGen and
also Tiger [13] complex editing commands can be specified by means of graph
transformation rules. While this is a powerful way to specify editing operations,
it is also quite tedious and error-prone. With our approach a set of applica-
ble commands, which automatically preserve or even establish the syntactical
correctness of the resulting graph/diagram, can be computed on the fly.

We already have specified several, prototypical diagram editors with comple-
tion support. Nevertheless, in the future we have to study in depth how hyper-
graph completions can be translated back to diagram completions in a systematic
way. We further have to realize more sophisticated user interaction mechanisms
which provide maximal benefit of the different completions.

Our algorithm can be extended in a variety of ways. A quite severe restriction
is that it can only be applied to context-free languages. Unfortunately, many
graph/diagram languages are not context-free. A restrictive embedding mech-
anism all practical diagram languages can be defined with has been proposed
by the third author to address this issue. The adopted parser (as incorporated
in DiaGen) is still efficient. In the future we want to investigate how context-
sensitive embedding rules can be supported by our parser to further widen its
range of applicability.
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A Proof Sketch of Lemma 1

Proof. By induction on i. For i = 1 layer i is defined as the union of two sets. It
can be easily checked that both satisfy the given properties.

Induction step: Let r = (H ′, Hc,∼n, t) ∈ Li where t = (L, R, branch). Then
there has to be a j, 1 ≤ j ≤ �i/2�, such that r ∈ Lj⊕Li−j . This means, that there
are two tuples (H ′

1, H1c ,∼1, t1) ∈ Lj , (H ′
2, H2c ,∼2, t2) ∈ Li−j with EH′1

∩EH′2
=

∅, EH1c
∩ EH2c

= ∅, |H1c | + |H2c | ≤ max, ∼n is a minimal relation such that
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∼1⊆∼n, ∼2⊆∼n, preservesVH
(∼) and, when identifying nodes equivalent wrt ∼,

L =⇒P R and gcH(R). Thereby, Lk := root(tk), ek := edge(Lk), k ∈ {1, 2},∼:=
equi(∼n) and R := L1 ∪extL

L2.

1. |H ′|+ |Hc| = i: follows by induction hypothesis and the fact that only graphs
with disjoint edge sets are combined.

2. H ′ ⊆ H : this statement holds, since, by induction hypothesis, both H ′
1 and

H ′
2 are subgraphs of H .

3.

result(t) = R[{ek �→ result(branch(ek)) | k ∈ {1, 2}}] (def. result)
= R[{ek �→ result(tk) | k ∈ {1, 2}}] (constr. branch)
= R[{ek �→ H ′

k ∪extresult(tk) Hkc | k ∈ {1, 2}}] (ind. hypothesis)

= L1[{e1 �→ H ′
1 ∪extresult(t1) H1c}] ∪extL

L2[{e2 �→ H ′
2 ∪extresult(t2) H2c}] (ek ∈ ELk

, def. R)

= (H ′
1 ∪extresult(t1) H1c) ∪extL

(H ′
2 ∪extresult(t2) H2c) (Lk elementary)

= (H ′
1 ∪ε H ′

2) ∪extL
(H1c ∪ε H2c) (outermost ext)

= H ′ ∪extL
Hc (constr. H ′, Hc)

= H ′ ∪extresult(t) Hc (L =⇒P R)

4. |Hc| ≤ max: holds by definition of the layer (|Hc| = |H1c |+ |H2c | ≤ max).
5. Hc is complement hypergraph of H ′ with respect to G and root(t): We just

argue here, since otherwise we would need to formally introduce quotient
graphs. The prerequisites for the definition of complement graphs are sat-
isfied. Disjointness of edge sets is maintained while constructing the layers.
So the only statement to prove is root(t) = L =⇒∗

P H ′ ∪extL
Hc = result(t).

Since by construction t is a proper derivation tree this statement normally
holds. However, we have implicitly dealt with equivalence classes of nodes, so
that two issues have to be clarified. Firstly, with preserve we have prevented
nodes of the input graph H to coincide via ∼. Thus, H is isomorphic with
its quotient graph. Second, it must not happen that by joining nodes the
gluing condition ensured at a particular layer can be hurt afterwards. This
cannot happen though, since the gluing condition only prevents non-external
nodes of the right-hand side of an instantiated production to occur in the
remaining graph. In the following, however, only external nodes are joined
due to the minimality of ∼n.
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Abstract. We consider four different models of process interactions that
unify and generalise models introduced and studied by Angluin et al. [2]
and models introduced and studied by Mazurkiewicz [17,18]. We encode
these models by labelled (hyper)graphs and relabelling rules on this la-
belled (hyper)graphs called negotiations. Then for these models, we give
complete characterisations of labelled graphs in which the naming prob-
lem can be solved. Our characterizations are expressed in terms of locally
constrained homomorphisms that are generalisations of known graph
homomorphisms.

1 Introduction

Three major process influence (interaction) models in distributed systems have
principally been considered: the message passing model, the shared memory
model, the local computation model. In the three models the processes are rep-
resented by vertices of a graph and the interactions are represented by edges
or hyperedges. In the message passing model processes interact by messages:
they can be sent along edges. In the shared memory model atomic read/write
operations can be performed on registers associated with hyperedges. In the lo-
cal computation model, interactions are defined by labelled graph relabelling
rules; supports of rules (graphs used for the description of labellings) are edges
or stars. These models (and their sub-models) reflect different system architec-
tures, different levels of synchronization and different levels of abstraction. The
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structure of the communication or of the interaction subsystem is represented
as a graph. In general this graph is static: it means that it remains fixed during
the distributed computation. Some works consider dynamic graphs: some links
may fail and recover and some nodes may fail and recover.

In this paper we consider local computations on another kind of dynamic
distributed system: processes are mobile and they interact when they are suffi-
ciently close to each other or when some localisation conditions are verified. In
[2], Angluin et al. consider a distributed system where a set of moving sensors
can interact when they are sufficiently close to each other. They assume that
every pair of sensors repeatedly come sufficiently close to each other for being
able to communicate, i.e., the interaction graph is the complete graph. In their
work, they consider finite-state sensors (each sensor has a constant number of
bits of memory) and they study the computational power of such a system.

In [17,18] the distributed system is presented in the following way. There
is a number of individuals, each of them brings an integer as a label. They
are grouped into associations: within an association they can communicate, ex-
change information, and modify their labels; there is no possibility of direct
communication between individuals that do not belong to the same association.
However, since some individuals can be affiliated to more than one association,
indirect communication between remote individuals is possible using individuals
with multiple affiliations as go between. Such systems are called communica-
tion structures. Associations act by their assemblies that take place from time
to time; an association is active during its assembly, and passive out of it. The
purpose of an assembly is to exchange information among participants and to
update the states of the participants.

In this work, we consider a system where the processes have an unbounded
number of states and where a computation step can involve an arbitrary number
of processes. Moreover, we do not assume that each process can interact with any
other process: we just assume that the communication structure is connected.
We study the computational power of such systems through the naming problem.

The naming problem. We focus on the naming problem, that is a classical
problem to highlight differences between different models of distributed com-
puting. A distributed algorithm A is a naming algorithm if each execution of
A terminates and leads to a final configuration where all processes have unique
identities. Being able to give dynamically and in a distributed way unique iden-
tities to all processes is very important since many distributed algorithms work
correctly only under the assumption that all processes can be unambiguously
identified. In this paper naming is done using a distributed enumeration algo-
rithm. A distributed enumeration algorithm assigns to each network vertex a
unique integer ; in such a way we obtain a bijection between the set V (G) of
vertices and {1, 2, . . . , |V (G)|}.

The study of the naming problem makes it possible to highlight combinatorial
tools useful for other problems like termination detection or recognition (see
[20,21,5,7]).
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Formal Models. A communication structure is defined by a set of individuals
that belong to different associations. Some individuals can be affiliated to more
than one association. A communication structure is represented as an undirected
hypergraph: vertices represent individuals and hyperedges define associations. In
the particular case where all associations have exactly two members, a commu-
nication structure can be seen as a simple graph. Labels (states) are attached to
individuals and associations thus we consider labelled (hyper)graphs which are
defined by a labelling function λ which associates to a vertex or an (hyper)edge
a label. In the more general model of computation called labelled negotiations,
a computation step enables to modify the states of the vertices of a hyperedge
and the label of the hyperedge itself according only to their previous states.
In other words, in one computation step, the members of an association syn-
chronize, exchange their labels and modify them. We consider communication
structures where hyperedges cannot be labelled and then vertices cannot always
distinguish the different hyperedges they belong to. This restriction leads us to
study unlabelled negotiations We also consider models of computations where
in one computation step, one vertex observes the states of the vertices of a hy-
peredge it belongs to and the state of the hyperedge (if available) and modifies
only its state and the state of the hyperedge (if this one is available). Such a
model of computation will be called cellular. Thus, we study cellular (un)labelled
negotiations.

Our results. We characterize labelled (hyper)graphs where the naming problem
can be solved in the four different models we consider. We first show that cellular
labelled negotiations have the same computational power as labelled negotiations
(Proposition 1). To give our characterization, we generalize locally constrained
graph homomorphisms to hypergraphs (Section 2). This enables us to formulate
conveniently necessary conditions (Lemma 1) inspired by Angluin’s lifting lemma
[1]. It turns out that the necessary conditions are also sufficient. Then we present
algorithms that solve the naming problem (Theorems 1, 2 and 3) (Theorem 1 is
another formulation of a result presented in [17]).

Related Work. In [2,4,3] Angluin et al. study the power of models of computa-
tion by pairwise interactions of identical finite-state agents. The general question
is of characterising what computations are possible. They prove in particular that
all predicates stably computable are semilinear, in the model in which finite state
agents compute a predicate of their inputs via two-way interactions in the all-
pairs family of communication networks [3]. This kind of computations may be
encoded by local computations on edges of labelled graphs. The case of one-way
communication between two agents corresponds to cellular local computations
on edges, thus of the form:

X◦ Y◦ −→−→−→ X′◦ Y◦

where X, Y and X ′ are labels (states) attached to vertices, X ′ = f(X, Y ) and
f is a transition function. In [11], a complete characterization of labelled graphs
for which enumeration and election are possible is presented.
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The case of two-way communication corresponds to local computations on
edges of labelled graphs, thus of the form:

X◦ Y◦ −→−→−→ X′◦ Y′◦

where X, Y, X ′ and Y ′ are labels (states) attached to vertices, X ′ = f1(X, Y ),
Y ′ = f2(Y, X) and f1, f2 are transition functions. Graphs for which the naming
problem is solvable are characterized in [8].

All-pairs family of communication network is captured by our model by consid-
ering the case where each association has no name and has exactly two members,
and the set of associations defines the complete graph. The two-way interaction
model of [3] corresponds to our general model of computation. The one-way pop-
ulation protocol defined in [4] corresponds to the cellular computation model. In
[17,18] associations are labelled and cellular relabellings are not considered.

Overview. The structure of this paper is as follows. Section 2 reviews basic
definitions of communication structures and negotiations. In Section 3 first we
prove that labelled negotiations can be simulated by cellular labelled negotia-
tions, then we present characterisations of communication structures which ad-
mit a naming algorithm using (cellular) labelled negotiations. Section 4 presents
characterisations of communication structures which admit a naming algorithm
using (cellular) unlabelled negotiations. Section 5 presents final remarks.

2 Preliminaries

2.1 Communication Structures and Labelled Graphs

A communication structure C is defined by a set B(C) of individuals and a
set A(C) of associations : each association is a set of individuals. Each individual
b ∈ B(C) belongs to one or more associations a ∈ A(C) and it will be denoted by
b ∈ a; one will say that b is a member of a and that a contains b. Each association
may contain an arbitrary number of elements and two distinct associations can
have the same members. A communication structure is connected if for any
associations a, a′ ∈ A(C), there exists a sequence a0, a1, . . . , an such that a0 = a,
an = a′ and for any i ∈ [1, n], there exists an individual that belongs to ai−1 and
ai. In the following, we will only consider connected communication structures.

A communication structure C is bilateral if each association contains exactly
two elements. In this case C can be represented by a graph where vertices are
individual and edges are associations.

A communication structure C may be viewed as a hypergraph where vertices
denote individuals and hyperedge denote associations. It will be represented by
a simple bipartite graph GC that is a classical representation of hypergraphs.
The set of vertices V (GC) contains two disjoint subsets VA(GC) and VB(GC).
Each association a (resp. individual b) of C corresponds to a vertex va ∈ VA(GC)
(resp. vb ∈ VB(GC)). If an individual b belongs to an association a, then there
is an edge {va, vb} in E(GC). Given a vertex v ∈ VA(GC) ∪ VB(GC), NGC (v)
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denotes the set of neighbours of v ∈ GC , i.e., the set {v′ | {v, v′} ∈ E(GC)}. A
graph homomorphism ϕ from G to G′ is a mapping from V (G) to V (G′) such
that if {v, w} ∈ E(G), then {ϕ(v), ϕ(w)} ∈ E(G′).

We want to extend to communication structures the definitions of coverings,
pseudo-coverings and submersions that are used in [8,9,10,14] for graphs, that
are bilateral communication structures studied in [17]. We give a definition of ho-
momorphism between communication structures: it is a generalization of graph
homomorphisms.

Definition 1. Given two communications structures C and C′, a mapping ϕ
from B(C) to B(C′) and from A(C) to A(C′) is a homomorphism from C to
C′ if it induces a graph homomorphism of GC to GC′ such that for each ver-
tex va ∈ VA(GC), the following holds: (1) |NGC (va)| = |NGC′ (ϕ(va))|, and (2)
ϕ(NGC (va)) = NGC′ (ϕ(va)).

Throughout the paper we will consider communication structures where individ-
uals and associations are labelled with labels from a recursive label set L that
admits a total order <L. A labelled communication structure will be denoted by
C = (C, λ) where C is the underlying unlabelled communication structure and
where λ : B(C)∪A(C) → L is a labelling function. A mapping ϕ from C = (C, λ)
to C′ = (C′, λ′) is a homomorphism if ϕ is a homomorphism from C to C′ that
preserves the labelling, i.e., for each x ∈ B(C) ∪A(C), λ(x) = λ′(ϕ(x)).

For any set S, |S| denotes the cardinality of S while Pfin(S) is the set of finite
subsets of S.

2.2 Locally Constrained Homomorphisms

We now define submersions, coverings and pseudo-coverings of communication
structures that are just generalizations of existing definitions for graphs. A com-
munication structure C is a submersion of C′ if there exists a locally surjective
homomorphism from C to C′.

Definition 2. Given two communication structures C=(C, λ) and C′=(C′, λ′),
C is a submersion of C′ via a homomorphism ϕ if for each vertex vb ∈ VB(GC),
ϕ(NGC (b)) = NGC′ (ϕ(b)). In this case, we say that ϕ is a locally surjective
homomorphism from C to C′.

In other words, a homomorphism ϕ from C to C′ is locally surjective if for
each individual b ∈ B(C), the associations that contain ϕ(b) are the images
of the associations that contain b. A communication structure C will be called
submersion-minimal if for any C′ with |B(C′)| < |B(C)|, C is not a submersion.

A communication structure C is a covering of C′ if there exists a locally
bijective homomorphism from C to C′.

Definition 3. Given two communication structures C and C′, C is a covering
of C′ via a homomorphism ϕ if for each vertex vb ∈ VB(GC), |NGC (vb)| =
|NGC′ (ϕ(vb))| and ϕ(NGC (vb)) = NGC′ (ϕ(vb)). In this case, we say that ϕ is a
locally bijective homomorphism from C to C′.
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In other words, a homomorphism ϕ from C to C′ is locally bijective if for each
individual b ∈ B(C) ϕ induces a bijection between the associations that contain
b and the associations that contain ϕ(b). A communication structure C will be
called covering-minimal if C is not a covering of any C′ such that |B(C′)| <
|B(C)|.

We now define pseudo-coverings that generalize pseudo-coverings of graphs
introduced in [8].

Definition 4. Given two communication structures C=(C, λ) and C′=(C′, λ′),
C is a pseudo-covering of C′ via a homomorphism ϕ if there exists a subset
A0 of A(C) such that the communication structure C0 = (C0, λ0) defined by
B(C0) = B(C), A(C0) = A0 and for each x ∈ B(C0)∪A(C0), λ0(x) = λ(x) is a
covering of C′ via the restriction of ϕ to C0.

A communication structure C will be called pseudo-covering-minimal if C is not
a pseudo-covering of any C′ such that |B(C′)| < |B(C)|.

Obviously, if a communication structure C is a covering of C′, then C is a
pseudo-covering of C′ and if C is a pseudo-covering of C′, then C is a submersion
of C′.

2.3 Negotiations and Relabelling Rules

In our models, in one computation step the states of an association and its
members are modified according only to their previous states. An algorithm can
then be described by a set R of relabelling rules r = (λr , λ

′
r) where λr and λ′

r

are two labellings of an association. A computation step is then an application of
a rule to some association of the communication structure. We will note CRC′

if C′ can be obtained from C by applying a rule of R to some association of
C. Obviously, C and C′ have the same underlying communication structure C,
only the labelling of the active association is modified. Thus, slightly abusing
the notation, R will stand both for a set of rules and the induced relabelling
relation over labelled communication structure. The transitive closure of such
a relabelling relation is noted R∗. Computations using uniquely this type of
relabelling rules are called in our paper negotiations.

The relation R is called noetherian on a communication structure C if there
is no infinite relabelling sequence C0RC1R . . . with C0 = C. The relation R is
noetherian if it is noetherian on each communication structure. Clearly, noethe-
rian relations code always terminating algorithms.

An algorithm encoded with such computation rules is a distributed algorithm
in the sense that two computation steps can be applied simultaneously to two
distinct associations, provided that no individual belongs to both of associations.

In the following, we will consider four different models of negotiations. The
most general model described above is called labelled negotiations. We will also
deal with communication structures where the associations cannot be labelled,
this model will be called unlabelled negotiations. We will also consider models
where in one computation step, the label of at most one member can be modified,
i.e., in one computation step, one member modifies its label and the label of an
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association it belongs to (if associations can be labelled) according to the labels
of all the members of this association and to the label of the association (if
the associations can be labelled). When the associations can be labelled, the
model corresponding to this kind of computation steps will be called cellular
labelled negotiations and when the associations cannot be labelled, it will be
called cellular unlabelled negotiations.

Given a terminating algorithm A using labels in a set L, one will say that
an algorithm A′ using labels in a set L′ simulates A if there exists a mapping
π : L′ → L such that for any communication structure C, each execution of A′

on C terminates and for each execution of A′ on C with a final labelling λ′,
there exists an execution of A on C with a final labelling λ on C, such that for
each x ∈ B(C) ∪ A(C), π(λ′(x)) = λ(x). It is obvious that any algorithm using
cellular labelled negotiations is an algorithm that uses labelled negotiations; in
fact, cellular labelled negotiations have the same computational power as labelled
negotiations:

Proposition 1. Any algorithm A using labelled negotiations can be simulated
by an algorithm A′ that uses cellular labelled negotiations.

In the following, we say that an algorithm A has the termination detection
property if for any execution of A on C , there exists an individual b ∈ B(C)
that can detect locally (according only to its state) that the computation is over,
i.e., that each individual has computed its final value.

An algorithm will be described by a recursive set of rules of the form (λr, λ
′
r).

We can see each rule r as a couple of two multisets:
({{λr,0, λr,1, . . . , λr,k}}, {{λ′

r,0, λ
′
r,1, . . . , λ

′
r,k}}).

We can apply r to an association a if a has k members, if the label of a (if
available) is λr,0 and if the multisets of labels {{λ(b) | b ∈ a}} is equal to
{{λr,1, . . . , λr,k}}. In this case, the label of a becomes λ′

r,0 and the label of each
member of a labelled by λr,i becomes λ′

r,i. In the case of cellular negotiations,
for each i > 1, we should have λ′

r,i = λr,i.
When we want to describe a set of rules that do not depend on the size of the

association a, we will write the precondition as a logical formula that the labels
of a and its members must satisfy to apply the rule. Then we describe the new
labels of a and of each member of a. This description enables to encode an infinite
number of relabelling rules (one for each size of association) in a finite way.

2.4 Impossibility Result

The following lemma exhibits a strong link between homomorphisms and nego-
tiations. This is a counterpart of the lifting lemma of Angluin [1] adapted to
communication structure homomorphisms.

Lemma 1 (Lifting Lemma). Let R be a relabelling relation corresponding to
an algorithm using labelled negotiations (resp. unlabelled negotiations, cellular
unlabelled negotiations) and let C1 be a covering (resp. pseudo-covering, sub-
mersion) of C2. If C2R∗C′

2, then there exists C′
1 such that C1R∗C′

1 and C′
1 is

a covering (resp. pseudo-covering, submersion) of C′
2.
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Consequently, there cannot exist a naming algorithmA using labelled negotiations
(resp. unlabelled negotiations, cellular unlabelled negotiations) on a communica-
tion structure C1 that is not covering-minimal (resp. pseudo-covering-minimal,
submersion-minimal). Indeed, if C1 is a covering (resp. pseudo-covering, submer-
sion) of C2 with |B(C2)| < |B(C1)|, consider a terminating execution ρ of A on
C2 that leads to a final configuration C′

2. From Lemma 1, one can construct a ter-
minating execution on C1 from ρ that leads to a final configuration C′

1 that is a
covering (resp. pseudo-covering, submersion) of C′

2. Consequently, there exists an
individual in C′

2 whose label appears at least twice in C′
1: individuals do not have

unique identities in C′
1.

3 (Cellular) Labelled Negotiations

In this section, we give a characterization of communication structures where we
can solve the naming problem using cellular labelled negotiations or labelled ne-
gotiations. We give a naming algorithm using labelled negotiations that solves the
enumerationproblemonany communication structureC that is covering-minimal.

Each individual b (resp. association a) attempts to get a number between 1
and |B(C)| (resp. |A(C)|). Each individual (resp. association) chooses a number
and collects the numbers of the associations it belongs to (resp. the numbers of its
members) to construct its local view. Then, each individual and each association
broadcasts its number with its label and its local view. If some individual b (resp.
an association a) detects that there exists another individual b′ (resp. another
association a′) with the same number, then it compares its label and its local
view with the label and the local view of its opponent. If the label or the local
view of b is “weaker”, then b chooses a new number and broadcasts it again.
At the end of the computation, each individual and each association will have a
unique number if the communication structure is covering-minimal.

Labels. Consider a communication structure C = (C, λ) with an initial labelling
λ : B(C) ∪ A(C) → L. During the computation each individual b ∈ B(C) will
acquire new labels of the form (λ(b), n(b), N(b), M(b), S(b)) and each association
a ∈ A(C) will get labels of the form (λ(a), m(a), P (a)) where:

– the first component λ(b) (resp. λ(a)) is just the initial label (and thus remains
fixed during the computation),

– n(b) ∈ N (resp. m(a) ∈ N) is the current identity number of b (resp. a)
computed by the algorithm,

– N(b) ∈ Pfin(N) (resp. P (a) ∈ Pfin(N)) is the local view of b (resp. a). Intu-
itively, the algorithm will try to update the current view in such a way that
N(b) (resp. P (a)) will consist of the current identities of the associations
that contains b (resp. of the members of a). Therefore N(b) (resp. P (a)) will
be always a finite (possibly empty) set of integers,

– M(b) ⊆ N×L×Pfin(N) is the current individual-mailbox of b. It contains the
whole information about individuals received by b during the computation.
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– S(b) ⊆ N×L×Pfin(N) is the current association-mailbox of b. It contains the
whole information about associations received by b during the computation.

The fundamental property of the algorithm is based on a total order on the set
Pfin(N) of local views, as defined by Mazurkiewicz [16]. Consider two sets N1, N2

of integers. Suppose that N1 �= N2. Then N1 ≺1 N2 if the maximal element of
the symmetric difference N1 �N2 = (N1 \N2) ∪ (N2 \N1) belongs to N2. Note
that in particular the empty set is minimal for ≺1. If N(b) ≺1 N(b′) then we say
that the local view N(b′) of b′ is stronger than the one of b (and N(b) is weaker
than N(b′)). We extend ≺1 to a total order on L× Pfin(N): (
, N) ≺1 (
′, N ′) if
either 
 <L 
′ or (
 = 
′ and N ≺1 N ′). We will also use the reflexive closure �1

of ≺1.

Labelled Negotiations Rules. We describe here the relabelling rules that
define the enumeration algorithm. First of all, to launch the algorithm there is a
special initial rule R0 that just extends the initial label λ(b) (resp. λ(a)) of each
individual b (resp. association a) to (λ(b), 0, ∅, ∅, ∅) (resp. (λ(a), 0, ∅)). The label
of an association a (resp. a member b of a) obtained by the application of a rule
to a is denoted (λ(a), m′(a), P ′(a)) (resp. (λ(b), n′(b), N ′(b), M ′(b), S′(b))).

The first rule R1 enables to update the mailboxes of all the individuals that
belongs to a same association.
R1:
if ∃b, b′ ∈ a, M(b) �= M(b′) or S(b) �= S(b′) then

∀b ∈ a,M ′(b) :=
⋃
b∈a

M(b) and S′(b) :=
⋃
b∈a

S(b) ;

The second rule R2 does not involve any synchronisation. It enables an in-
dividual b to change its identity if its current identity number n(b) is 0 or if it
knows that there exists another individual with the same number and a stronger
label or a stronger local view.
R2:
if n(b) = 0 or ∃(n(b), �, N) ∈ M(b) such that (λ(b), N(b)) ≺1 (�, N) then

n′(b) := 1 + max{n′ | (n′, �′, N ′) ∈ M(b)};
M ′(b) := M(b) ∪ {(n′(b), λ(b), N(b))};

The rules R3,R4,R5 are designed such that one can apply one of these rules
to some association a only if one cannot apply the preceding ones to a. The
third rule enables an individual b0 to modify its identity if it belongs to some
association a such that there exists another individual b1 ∈ a with the same
number, the same label and the same local view.
R3:
if ∀b, b′ ∈ a, M(b) = M(b′) and S(b) = S(b′) and ∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈
M(b), (�, N) 	1 (λ(b), N(b)) and ∃b0, b1 ∈ a such that n(b0) = n(b1) then

n′(b0) := 1 + max{n′ | (n′, �′, N ′) ∈ M(b0)};
M ′(b0) := M(b0) ∪ {(n′(b0), λ(b0), N(b0))};
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The fourth rule is the counterpart for associations of the second rule. It enables
to modify the identity of an association a if the current identity number m(a)
is 0 or if there exists another association with the same number and a stronger
label or a stronger local view. When this rule is applied to a, the local view of
the members of a is updated.
R4:
if ∀b, b′ ∈ a, M(b) = M(b′), S(b) = S(b′) and n(b) �= n(b′),
∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈ M(b), (�, N) 	1 (λ(b), N(b))
and m(a) = 0 or ∃(m(a), �, P ) ∈ S(b) such that (λ(a), P (a)) ≺1 (�, P ) then

m′(a) := 1 + max{m′ | (m′, �′, P ′) ∈ M(b)};
P ′(a) := {n(b) | b ∈ a};
∀b ∈ a,N ′(b) := N(b) \ {m(a)} ∪ {m′(a)};
∀b ∈ a,M ′(b) := M(b) ∪ {(n(b′), λ(b′), N ′(b′)) | b′ ∈ a};
∀b ∈ a,S′(b) := S(b) ∪ {(m′(a), λ(a), P ′(a))}};

The last rule enables to update the local view of an association.
R5:
if ∀b, b′ ∈ a, M(b) = M(b′), S(b) = S(b′) and n(b) �= n(b′)
and ∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈ M(b), (�, N) 	1 (λ(b), N(b))
and p(a) �= 0 and ∀(m(a), �, P ) ∈ S(b), (�, P ) 	1 (λ(a), P (a))
and ∃b0 ∈ a such that n(b0) /∈ P (a) then

P ′(a) := {n(b) | b ∈ a};
∀b ∈ a,S′(b) := S(b) ∪ {(m(a), λ(a), P (a))}};

Any execution of the algorithm satisfies monotonicity properties. Any run ρ
of the algorithm on a labelled communication structure C = (C, λ) terminates
and yields a final labelling (λ, nρ, Nρ, Mρ, Sρ) of individuals and a final labelling
(λ, mρ, Pρ) of associations.

The mapping defined by nρ and mρ is a locally bijective homomorphism from
C to C′

ρ. Consequently, if C is covering-minimal, it implies that in the final con-
figuration, {nρ(b) | b ∈ B(C)} = [1, |B(C)|]. From Lemma 1 and Proposition 1,
we get the following theorem.

Theorem 1. For every communication structure C, there exists a naming algo-
rithm for C using (cellular) labelled negotiations if and only if C is
covering-minimal.

Suppose that all the individuals initially know |B(C)|, then the termination detec-
tion of the algorithm is possible on a covering-minimal communication structure
C. Indeed, once an individual gets the identity number |B(C)|, it knows that all
the individuals have different identity numbers that will not change any more.

4 (Cellular) Unlabelled Negotiations

We now consider unlabelled negotiations and cellular unlabelled negotiations.
We give characterizations of communication structures where we can solve the
naming problem using these two kinds of negotiations. A corollary of these char-
acterizations is that unlabelled negotiations have a strictly greater computational
power than cellular unlabelled negotiations.
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4.1 Cellular Unlabelled Negotiations

The algorithm uses the same ideas as the algorithm of the previous section. The
main difficulty is to achieve to update correctly the local view of the individuals.

Consider a communication structure C = (C, λ) with an initial labelling
λ : B(C) → L. During the computation each individual b ∈ B(C) will acquire
new labels of the form (λ(b), n(b), N(b), M(b)) where:

– n(b) ∈ N is the identity number of b.
– N(b) ∈ Pfin(Pfin(N)) is the local view of b. Intuitively, the algorithm will try

to update the local view of b such that N(b) contains a set {n(b′) | b′ ∈ a}
for each association a that contains b.

– M(b) is the mailbox of b and it contains the whole information the individual
b has about the network.

We also need to define a total order on local views. We will just generalize the
order defined above. Consider two sets N1, N2 whose elements are some sets of
integers ordered by ≺1. Suppose that N1 �= N2. Then N1 ≺2 N2 if the maximal
element for≺1 of the symmetric difference N1�N2 = (N1\N2)∪(N2\N1) belongs
to N2. Again, we extend ≺2 to a total order on L × Pfin(Pfin(N)): (
, N) ≺2

(
′, N ′) if either 
 <L 
′ or (
 = 
′ and N ≺2 N ′).

Cellular Unlabelled Negotiations Rules. The label of an individual b0 after
the application of a relabelling rule to an association a that modifies the state
of b0 is denoted by (λ(b0), n′(b0), N ′(b0), M ′(b0)). The three first rules have the
same meaning as the three first rules of the algorithm described in the previous
section.
R1:
if ∃b ∈ a, M(b) \ M(b0) �= ∅ then

M ′(b0) :=
⋃
b∈a

M(b);

R2:
if n(b0) = 0 or ∃(n(b0), �, N) ∈ M(b0) such that (λ(b0), N(b0)) ≺2 (�, N) then

n′(b0) := 1 + max{n′ | (n′, �′, N ′) ∈ M(b0)};
M ′(b0) := M(b0) ∪ {(n′(b0), λ(b0), N(b0))};

R3:
if ∀b, b′ ∈ a, M(b) = M(b′),
∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈ M(b), (�, N) 	2 (λ(b), N(b))
and ∃b ∈ a, b �= b0 such that n(b0) = n(b) then

n′(b0) := 1 + max{n′ | (n′, �′, N ′) ∈ M(b0)};
M ′(b0) := M(b0) ∪ {(n′(b0), λ(b0), N(b0))};

The fourth rule enables an individual b to add the set S′ = {n(b′) | b′ ∈ a} of
the current identity numbers of the members of an association a it belongs to.
In this case, all the sets S belonging to N(b) such that S ≺1 S′ are removed.
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The intuitive justification for the deletion of all such S is the following.
Suppose that there exists an association a that contains b such that the set
S′ = {n(b′) | b′ ∈ a} does not belong to N(b). Suppose that there is a com-
putation step that enables to modify the state of b according to the states of
the members of a. Then, since the very purpose of the view N(b) is to stock
the identity numbers of all the members of all the associations it belongs to, we
should add S′ to the view N(b) of b.

If the state of b is modified according to a for the first time, then adding S′ to
N(b) is sufficient. But, it can also be the case that b modified its state according
to a in the past and in the meantime another member b′ of a has modified its
identity. Then b should not only add S′ to N(b) but it should remove the old set of
identity numbers corresponding to a from its view. The problem is that b cannot
know which set it should remove from its view. However, since our algorithm
ensures that the identity numbers of individuals can only increase, we know that
the eventual old set of numbers S is weaker for ≺1 than S′ and consequently,
by removing all the S ≺1 S′, we are sure to delete all invalid information. Of
course, we can also delete legitimate informations from the local view of b. But
in this case, b can recover this information by some new applications of R4 to
the other associations that contain b.
R4:
if ∀b, b′ ∈ a, M(b) = M(b′) and n(b) �= n(b′),
∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈ M(b), (�, N) 	2 (λ(b), N(b))
and {n(b′) | b′ ∈ a} /∈ N(b0) then

S′ := {n(b′) | b′ ∈ a};
N ′(b0) := N(b0) \ {S | S ≺1 S′} ∪ {S′};
M ′(b0) := M(b0) ∪ {(n(b0), λ(b0), N

′(b0))};

Properties. The algorithm we described has the same interesting properties as
the one described in Section 3. And from Lemma 1, we get:

Theorem 2. For every communication structure C, there exists a naming
algorithm for C using cellular unlabelled negotiations if and only if C is
submersion-minimal.

Again, if the individuals initially know |B(C)|, then the termination detection
of the algorithm is possible in a submersion-minimal communication structure:
once an individual gets the number |B(C)|, it knows that each individual has a
unique number that will not change any more.

4.2 Unlabelled Negotiations

We add time-stamps to local views in order to obtain a pseudo-covering with the
final labelling. Consider a communication structure C = (C, λ) with an initial
labelling λ : B(C) → L. Here again, each individual b ∈ B(C) will acquire new
labels of the form (λ(b), n(b), N(b), M(b)) where:
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– n(b) ∈ N is the identity number of b.
– N(b) ∈ Pfin(Pfin(N)×N) is the local view of b. Intuitively, the algorithm will

try to update the local view of b such that N(b) contains a set {n(b′) | b′ ∈ a}
for each association a that contains b. Moreover, a time-stamp o will be
associated to each of these sets in order to enable an individual, when it is
possible, to detect if it belongs to different associations whose members have
the same numbers.

– M(b) is the mailbox of b and it contains the whole information the individual
b has about the network.

Again, we need a total order on local views. Consider two sets N1, N2 whose
elements are some pairs (S, o) where o ∈ N and S ∈ Pfin(N). Given two elements
(S, o) and (S′, o′), one will generalize ≺1 to say that (S, o) ≺1 (S′, o′) if S ≺1

S′ or if S =1 S′ and o < o′. We now define a new order ≺3 for elements of
Pfin(Pfin(N) × N). We say that N1 ≺3 N2 if the maximal element for ≺1 of the
symmetric difference N1 � N2 = (N1 \ N2) ∪ (N2 \ N1) belongs to N2. Again,
we extend ≺3 to a total order on L × Pfin(Pfin(N)): (
, N) ≺3 (
′, N ′) if either

 <L 
′ or (
 = 
′ and N ≺3 N ′).

Unlabelled negotiations rules. The label of an individual b after the appli-
cation of a relabelling rule to an association a that contains b is denoted by
(λ(b), n′(b), N ′(b), M ′(b)). The three first rules have the same meaning as the
three first rules of the algorithms described above.
R1:
if ∃b, b′ ∈ a, M(b) �= M(b′) then

∀b ∈ a,M ′(b) :=
⋃
b∈a

M(b);

R2:
if n(b) = 0 or ∃(n(b), �, N) ∈ M(b) such that (λ(b), N(b)) ≺3 (�, N) then

n′(b) := 1 + max{n′ | (n′, �′, N ′) ∈ M(b)};
M ′(b) := M(b) ∪ {(n′(b), λ(b), N(b))};

R3:
if ∀b, b′ ∈ a, M(b) = M(b′)
and ∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈ M(b), (�, N) 	3 (λ(b), N(b))
and ∃b0, b1 ∈ a such that n(b0) = n(b1) then

n′(b0) := 1 + max{n′ | (n′, �′, N ′) ∈ M(b0)};
M ′(b0) := M(b0) ∪ {(n′(b0), λ(b0), N(b0))};

The fourth rule enables to update the local views of all the members of an
association in one computation step. This rule can be applied to some association
a only if the preceding ones cannot be applied to a. One can apply this rule to a
if there does not exists any time-stamp o such that for each b ∈ a, (o, {n(b′) | b′ ∈
a}) belongs to N(b). When the rule is applied, a new time-stamp o′ is generated
and (o′, {n(b′) | b′ ∈ a}) is added to N(b) for each b ∈ a. For the same reasons
as in Section 4.1, each time we add an element (S′, o′) in N(b), we remove all
the elements of N(b) that are smaller than (S′, o′) for ≺1.
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R4:
if ∀b, b′ ∈ a, M(b) = M(b′) and n(b) �= n(b′)
and ∀b ∈ a, n(b) �= 0 and ∀(n(b), �, N) ∈ M(b), (�, N) 	3 (λ(b), N(b))
and �o such that ∀b ∈ a, ({n(b′) | b′ ∈ a}, o) ∈ N(b) then

o′ := 1 + max{o | ∃b ∈ a,∃(S, o) ∈ N(b)};
S′ := {n(b) | b ∈ a};
∀b ∈ a,N ′(b) := N(b) \ {(S, o) | (S, o) ≺1 (S′, o′)} ∪ {(S′, o′)};
∀b ∈ a,M ′(b) := M(b) ∪ {(n(b′), λ(b′), N ′(b′)) | b′ ∈ a};

Properties. The algorithm we described has the same interesting properties as
the ones described in Sections 3 and 4.1. Finally, we have:

Theorem 3. For every communication structure C, there exists a naming al-
gorithm for C using unlabelled negotiations if and only if C is pseudo-covering-
minimal.

Again, if the individuals initially know |B(C)|, then the termination detection of
the algorithm is possible in a pseudo-covering-minimal communication structure:
once an individual gets the number |B(C)|, it knows that each individual has a
unique number that will not change any more.

5 Final Remarks

The homomorphisms we introduced generalize locally constrained graph homo-
morphisms. These graph homomorphisms have already been studied in the lit-
erature [6,19] and one can wonder how the combinatorial properties satisfied by
graph homomorphisms can be generalized to homomorphisms of communication
structures. Locally constrained graph homomorphisms have also been studied
from the complexity point of view [13,15]. In particular, it has been shown in
[12] that it is co-NP-complete to decide whether a graph admits a naming algo-
rithm in the models studied in [8,9,10,17]. An interesting corollary of this result is
the following : The problems that ask whether a given communication structure
C admits a naming algorithm using labelled negotiations, cellular labelled ne-
gotiations, unlabelled negotiations, cellular unlabelled negotiations respectively,
are co-NP-complete.
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Abstract. We present a novel application of hyperedge replacement
grammars, showing that they can serve as an intuitive formalism for
abstractly modeling dynamic data structures. The aim of our frame-
work is to extend finite-state verification techniques to handle pointer-
manipulating programs operating on complex dynamic data structures
that are potentially unbounded in their size. The idea is to represent
both abstraction mappings on user-defined dynamic data structures and
the (abstract) semantics of pointer-manipulating operations using graph
grammars, supporting a smooth integration of the two aspects. We
demonstrate how our framework can be employed for analysis and ver-
ification purposes, e.g., to prove that a procedure preserves structural
invariants of the heap.

1 Introduction

Techniques for analyzing pointer programs are highly desirable. Programming
with pointers is error-prone with potential pitfalls such as dereferencing null
pointers and the emergence of memory leaks. When considering pointer programs
we face the problem of infinite state spaces arising due to the unboundedness of
the heap. Thus for employing verification methods like model checking in this
scenario, abstraction techniques are indispensable.

We present an approach to abstracting state spaces of pointer programs op-
erating on linked data structures of arbitrary size and shape. In our framework,
states of the heap are modeled by hypergraphs, and both pointer-manipulating
operations and abstraction mappings are represented by hypergraph transforma-
tions. More concretely we employ hyperedge replacement grammars to specify
data structures and their abstractions. The essential idea is to use the replace-
ment operations which are induced by the grammar rules in two directions. By
a backward application of some rule, a subgraph of the heap can be condensed
into a single nonterminal edge, thus obtaining an abstraction of the heap. By
applying rules in forward direction, certain parts of the heap which have been
abstracted before can be concretized again. Later we will see that this opera-
tion will be required in order to avoid the necessity for defining the effect of
pointer-manipulating operations on abstracted parts of the heap.
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Due to the generality of this framework, the use of hyperedge replacement
grammars does not always ensure the boundedness of the resulting abstract
heaps and, thus, the finiteness of the corresponding transition systems. The
formalism can therefore be extended by introducing an additional parameter
which allows to limit the size of the heaps. We sketch this aspect in Sct. 4.3; it
is not required for understanding the actual abstraction framework.

Altogether we obtain an expressive and highly parametrized framework which
allows to specify complex dynamic data structures and their abstractions in an
intuitive way. Our approach is illustrated by considering a simple programming
language and an example program operating on a cyclic, doubly-linked list. Using
our formalism we will be able to show that the program preserves the structure
of the list, independent of its size.

2 Related Work

Related work on the topic of analyzing pointer-manipulating programs can be
classified into the following (often overlapping) categories: Shape analysis is a
static analysis technique that represents recursive data structures of unbounded
size by finite structures, called “shape graphs”, which are usually formalized by
three-valued logical structures [6,23]. Predicate abstraction abstracts the state
space of the program by evaluating it under a number of given predicates, ob-
taining a Boolean program which conservatively simulates all potential execu-
tions [3,9,19]. Regular model checking is a framework for unified verification of
infinite-state systems based on automata theory. It represents states using words
(trees) over a finite alphabet and sets of states using finite (tree) automata [7].
Dataflow analysis is a technique for gathering information about certain aspects
of a program using its control flow graph. This approach is generally efficient
but restricted to rather shallow properties of programs such as aliasing rela-
tions [17], points-to information [25], or pointer range analysis [24]. Hoare-style
approaches extend first-order logic by reachability predicates over heap nodes
[8,15]. Separation logic has been proposed as an extension to Hoare logic that
permits local reasoning about linked structures, supporting features to support
modular correctness proofs for pointer-manipulating programs [18,22].

Research in the field of graph transformations often concentrates on verify-
ing and abstracting graph transformation systems, e.g. by employing so-called
“Petri graphs” [4,5] or model checking state spaces generated by graph gram-
mars [13]. We, however, make use of graph grammars for abstraction. Existing
approaches with similar ideas essentially try to represent the shape of heap data
structures by (abstract) graphs, and to implement statements of a program-
ming language by graph transformation rules [20,21]. The framework presented
in [1,2,10] is quite close to ours; the authors use graph reduction grammars for
abstractly representing pointer structures. Their approach – which so far only
handles shape safety – requires to specify an abstract transformation for each
operation modifying a data structure. In contrast, we only require an abstraction
specification; pointer operations do not need to be redefined in dependence of
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this abstraction since they are handled automatically. Another grammar-based
approach to heap abstraction is presented in [14], however, it only supports tree
data structures and cannot handle DAGs and general graphs as we do.

Thus our approach is unique in that it offers a new, descriptive way for spec-
ifying abstractions on arbitrary data structures. It supports dynamic memory
allocation (leading to unbounded heap sizes) and destructive updates. In addi-
tion it is easily extendable to concurrent programs with dynamic thread creation
along the lines of [16].

3 Hyperedge Replacement

For the realization of our framework we concentrate on hyperedge replacement
grammars [11] as they provide sufficient expressive strength for our application
but still share some of the nice properties of context-free string grammars. In
the following we introduce some notations that will be useful in the specification
of our framework.

Given a set S, S� denotes the set of all finite sequences (strings) over S. For
s ∈ S� the length of s is denoted by |s|, the set of all elements of the sequence
s is written [s], and by s(i) we denote the ith component of s. Given a tuple
t = (A, B, C, ...) we sometimes write tA, tB etc. for the components if their
names are clear from the context.

The domain of a function f is denoted by dom(f). For two functions f and g
with dom(f)∩dom(g) = ∅ we define f∪g by (f∪g)(x) = f(x) if x ∈ dom(f) and
(f ∪ g)(x) = g(x) if x ∈ dom(g). For a set S ⊆ dom(f) the function f � S is the
restriction of f to S. Every f : A → B is implicitly defined on sets f : 2A → 2B

and on sequences f : A� → B� by point-wise application. By f [a/b] we denote
the function update defined by f [a/b](a) = b and ∀c �= a : f [a/b](c) = f(c). The
identity function on a set S is idS .

3.1 Hypergraphs

Hyperedge replacement grammars operate on hypergraphs, which allow hyper-
edges connecting an arbitrary number of vertices. Let Σ be a finite ranked alpha-
bet where rk : Σ → � assigns to each symbol a ∈ Σ its rank rk(a). We partition
Σ into a set of nonterminals NΣ ⊆ Σ and a set of terminals TΣ = Σ \NΣ . We
will use capital letters for nonterminals and lower case letters for terminal sym-
bols. We assume that both the rk function and the partitioning are implicitly
given with Σ.

Definition 3.1. A (labeled) hypergraph over Σ is a tuple H = (V, E, att , 
, ext)
where V is a set of vertices and E a set of edges, att : E → V � maps each edge
to a sequence of attached vertices, 
 : E → Σ is an edge-labeling function, and
ext ∈ V � a sequence of pairwise distinct external vertices.

We require that for all e ∈ E: |att(e)| = rk(
(e)). The set of all hypergraphs
over Σ is denoted by HGraphΣ. Furthermore we use the notations E(v) := {e ∈
E | v ∈ [att(e)]} for the edges attached to a vertex and |H | := |V |+ |E| for the
size of a hypergraph.
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Thus edges are separate objects in the graph and are mapped to sequences of
attached vertices. The external vertices play an important role in graph trans-
formation steps. We will usually not distinguish between isomorphic copies of a
hypergraph. Two hypergraphs H1 and H2 are isomorphic, written H1

∼= H2, if
they are identical modulo renaming of vertices and edges.

To facilitate notation later on we introduce the notion of a handle which is a
hypergraph consisting of only one hyperedge attached to its external nodes.

Definition 3.2. Given X ∈ Σ with rk(X) = n, the X-handle is the hypergraph
X• = ({v1, ..., vn}, {e}, {e 
→ v1...vn}, {e 
→ X}, v1...vn) ∈ HGraphΣ.

3.2 Hyperedge Replacement Grammars

Now we are ready to define hyperedge replacement grammars. They share some
pleasant properties with context-free string grammars such as confluence and
associativity [11], which is not the case for most other types of graph grammars.

Definition 3.3. A hyperedge replacement grammar (HRG) over Σ is a set G of
(production) rules, each of the form X → H with X ∈ NΣ and H ∈ HGraphΣ

where |extH | = rk(X).
We denote the set of hyperedge replacement grammars over Σ by HRGΣ and

assume that there are no isomorphic production rules, i.e., rules with identical
left-hand and isomorphic right-hand sides.

Fig. 1 depicts a grammar generating doubly-linked lists. The only nonterminal
is the symbol D, and the letters n and p are respectively used to model the next-
and previous-pointers. In the (rule-)graphs the rank of all symbols is two. The
small numbers close to the connecting edges represent the order of the connected
vertices and the vertices shaded in gray are the external nodes. Rules p1 and p2

are “redundant”; this is necessary for concretization to work (see Sct. 4.1).
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Fig. 1. HRG for Doubly-
Linked Lists

The rules specify for each nonterminal X a re-
placement hypergraph H that will replace (the
hyperedge labeled by) X when the rule X → H is
applied. When a hyperedge e labeled by a nonter-
minal is replaced, the external vertices of the re-
placement graph are matched with the attached
vertices of e. Thus a hyperedge replacement rep-
resents a local change in the graph structure.

Definition 3.4. Let G ∈ HRGΣ, H ∈
HGraphΣ, p = X → K ∈ G and e ∈ EH such
that 
(e) = X. Let EH−e := EH \{e}. We assume
w.l.o.g. that VH ∩ VK = EH ∩EK = ∅ (otherwise
the components in K are renamed). The substi-
tution of e by K, J ∈ HGraphΣ, is defined by

VJ = VH ∪ (VK \ [extK ]) EJ = EH−e ∪ EK


J = (
H � EH−e) ∪ 
K extJ = extH

attJ = mod ◦ ((attH � EH−e) ∪ attK)
with mod = idVJ [extK(1)/attH(e)(1), ..., extK(rk (e))/attH(e)(rk (e))]
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We write H =⇒G J if there exist e and X → K as above. The reflexive-transitive
closure and the inverse of =⇒G are denoted by =⇒�

G and =⇒−1
G , respectively.

The language of a grammar G ∈ HRGΣ consists of all terminal graphs (that is,
graphs that have only edges with terminal labels) that can be derived from a given
starting graph H ∈ HGraphΣ , i.e., L(G, H) = {K ∈ HGraphTΣ

| H =⇒�
G K}.

For actual applications it is important to not have nonterminals in the gram-
mar from which no terminal graph is derivable (∀X ∈ NΣ : L(G, X•) �= ∅). We
call such grammars productive. Any HRG can be transformed into an equivalent
productive grammar if its language is non-empty.

We are interested in (heap) graph abstractions for analysis and verification,
which need to be effectively computable. Since, as we will see later, abstractions
are obtained by backward applications of rules, the termination of the abstrac-
tion procedure can be ensured by requiring all rules in a HRGs to be increasing,
meaning that the replacement graph (if it contains nonterminals) is “larger”
than the handle of the respective nonterminal.

Definition 3.5. A grammar G ∈ HRGΣ is increasing iff for all X → H ∈ G
such that 
H(EH) ∩NΣ �= ∅ we have |X•| < |H |.

Theorem 3.6. Let G ∈ HRGΣ be increasing and H ∈ HGraphΣ. Then the set
{K ∈ HGraphΣ | K =⇒+

G H} is finite.

Proof. The increasingness of G implies that for any two hypergraphs H1 and H2

with H1 =⇒+
G H2 we have |H1| < |H2| or H2 ∈ HGraphTΣ

. Thus for every finite
hypergraph H there is a bound n ∈ � such that all derivations yielding H are
of length ≤ n (no “loops” are possible), which proves our claim.  !

As we will see in Sct. 4 the result of Thm. 3.6 is essential for our abstraction
technique since it allows us to compute a minimal abstract heap representation.
Note that the HRG in Fig. 1 is increasing.

4 Abstraction of Heap States

For using HRGs as an abstraction mechanism for pointer-manipulating programs
we have to represent heaps as hypergraphs. This is done by introducing two
types of terminal edges: edges labeled with program variables (which we include
in the terminal alphabet) are of rank one, edges of rank two – labeled with
record selectors – are representing pointers in the heap. Formally, we let TΣ =
VarΣ " SelΣ where rk (VarΣ) = {1} and rk (SelΣ) = {2}. Finally there are
nonterminal edges of arbitrary rank that are used in the abstraction and that
stand for (a set of) entire subgraphs.

Definition 4.1. A heap configuration over an alphabet Σ is a hypergraph H ∈
HGraphΣ such that ∀x ∈ VarΣ : |{e ∈ EH | 
H(e) = x}| ≤ 1 and extH = ε
where VarΣ and SelΣ satisfy the constraints mentioned above. We denote the
set of all heap configurations over Σ – including a special configuration Herr
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which is reached if pointer errors occur (i.e., dereferencing of a null pointer) –
by HCΣ. A heap configuration H is called concrete if H ∈ HCTΣ . We identify
two heap configurations H and H ′ if H ∼= H ′.

Additional notation. For H = (V, E, att , 
, ε) ∈ HCΣ, x ∈ VarΣ and v ∈ V we
write x ↪→H v to denote that ∃e ∈ E : 
(e) = x∧ att(e) = v. Writing x ↪→H nil is
equivalent to �v ∈ V : x ↪→H v. (That is, variables pointing to nil are represented
by omitting the corresponding edge.) For v, w ∈ V and s ∈ SelΣ we write v

s
↪→H w

to indicate that ∃e ∈ E : 
(e) = s ∧ att(e) = vw.

4.1 Abstraction and Concretization

When modeling the semantics of assignments it is convenient to assume that
those edges which are connected to vertices that are referenced by variables, are
all labeled by terminal symbols. If there is an edge e violating this property it is
called a violation point. For all those edges we record the indices of the attached
vertices that are the targets of program variables.

Definition 4.2. Let H ∈ HCΣ. The set of violation points VP (H) ⊆ EH ×�
is given by:

(e, i) ∈ VP (H)
⇔ 
(e) ∈ NΣ ∧ (∃x ∈ VarΣ , v ∈ VH : x ↪→H v ∧ v = attH(e)(i))

If no violation points exist a configuration is called admissible. As mentioned in
the introduction, this will avoid the necessity for defining the effect of pointer-
manipulating operations on abstracted parts of the heap.

Definition 4.3. The set of all admissible heap configurations is given by
aHCΣ = {H ∈ HCΣ | VP (H) = ∅}.

We use forward derivations to restore admissibility of a configuration. This partial
concretization (see Def. 4.7), however, raises additional requirements for the pro-
duction rules. To see this, let us again consider the example from Fig. 1. Here we
could omit the rule p2 and would still obtain a grammar that suffices to generate the
language of all doubly-linked lists, thus p2 is redundant. Omitting it, though, would
lead to problems when concretizing since there might be an unbounded derivation
sequence starting from anonterminal until finally one terminal symbol is generated
at its place and thus we have infinitely many concretizations. To circumvent this
problem we considered to use Greibach Normal Form for hyperedge replacement
grammars [12] (a generalization of Double Greibach Normal Form of context-free
string grammars). For a HRG in Greibach Normal Form a single rule application
suffices for concretization. Unfortunately this idea proved to be impractical since
already for simple grammars the Greibach Normal Form is often huge [12]. Thus
we decided to introduce a class of HRGs that we call heap abstraction grammars
whose definition is admittedly more complicated.

Definition 4.4. An increasing and productive graph grammar G ∈ HRGΣ is a
heap abstraction grammar if
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1. 
H(EH) ∩ VarΣ = ∅ for all X → H ∈ G and,

2. for every X ∈ N with rk(X) = k there exist GX
1 , ..., GX

k ⊆ G such that

–
⋃k

i=1 GX
i = G,

– L(GX
i , X•) = L(G, X•) for all 1 ≤ i ≤ k, and

– 
H(EH(extH(i))) ⊆ TΣ for all X → H ∈ GX
i .

The first condition disallows variables (from which we do not abstract) as edge
labels. The second condition enforces a kind of symmetry for rules that have
nonterminal edges connected to external vertices. The idea is to use only rules
from GX

i when concretizing a nonterminal edge from the ith attached vertex
(i.e. to this vertex a variable is attached). Since we have subgrammars for all i
we can concretize from any direction while avoiding “loops”. Note that the GX

i

are usually not disjoint.
In Fig. 1 rules p1 and p2 fulfill the conditions of Def. 4.4; the two rules to-

gether enable concretization from either “side” of a nonterminal edge while the
generated graph language is retained. Thus, when concretizing a D-edge it suf-
fices to apply either p1 or p3 (if p1 concretizes “from the right-hand side”). For
this example we have GD

1 = {p1, p3} and GD
2 = {p2, p3}.

Based on the concepts presented so far we can formalize the notion of an
abstraction function AG, called heap abstractor. According to the principle that
abstraction is performed by backward application of rules, AG returns some
irreducible, admissible successor of the current heap configuration with respect
to the inverse derivation relation =⇒−1

G .

Definition 4.5. Let G ∈ HRGΣ be a heap abstraction grammar. A heap ab-
stractor over G is a function AG : aHCΣ → aHCΣ such that

AG(H) ∈ {K ∈ aHCΣ | K =⇒�
G H s.t. �J ∈ aHCΣ with J =⇒G K}.

Note that heap abstraction mappings are not uniquely defined. This is only
the case if =⇒−1

G is confluent which, together with its well-foundedness that is
implied by the increasingness of the HRG according to Thm. 3.6, yields unique
normal forms. In general the abstractor should minimize the size of a heap
configuration. Also note that this definition immediately implies the correctness
of our abstraction in the sense that every concrete heap configuration can be
re-generated from its abstraction:

Corollary 4.6. Under the above assumptions, H ∈ L(G, AG(H)) for every H ∈
aHCTΣ .

Since heap objects that are not reachable from program variables play no role in
program semantics we delete them using a garbage collector. When computing
the reachability of vertices we handle hyperedges of rank greater than two, i.e.
nonterminal edges, conservatively as undirected edges connecting all attached
vertices. We here omit the exact definition of the garbage collector and denote
the mapping by GC : HCΣ → HCΣ .
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As already mentioned before, in addition to abstraction also concretization is
necessary to restore admissibility. The essential point is that we employ partial
concretization by applying grammar rules in forward direction. Here derivation
stops as soon as the resulting heap configuration is admissible, in order to mini-
mize the degree of concretization. Thus the properties of heap abstraction gram-
mars as required in Def. 4.4 guarantee that only a finite number of configurations
can be obtained.

Definition 4.7. Let G ∈ HRGΣ be a heap abstraction grammar and let the
GX

i ⊆ G be given as in Def. 4.4. The heap concretizer, CG : HCΣ → 2aHCΣ , is
then defined as follows:

CG(H) =

{
CG({K ∈ HCΣ | H =⇒GX

i
K}) if ∃(e, i) ∈ VP (H) ∧ 
H(e) = X

{H} if H ∈ aHCΣ

Note that, in contrast to a heap abstractor (Def. 4.5), the heap concretizer is
uniquely defined as it yields all reachable (first) admissible configurations.

4.2 Pointer Programs and Their Semantics

Previously we already introduced the memory model, abstraction and concretiza-
tion techniques but we still did not consider any programming language. In the
following we will do this; the language itself is kept minimal to reduce the formal
effort in the specification of the semantics, though it is sufficient to model most
standard concepts in pointer programs.

Definition 4.8. A pointer program π is a sequence of statements s1; ...; sr with
si ∈ CMD where CMD is the set of the following commands:

PExp := PExp (pointer assignment) if BExp goto n (conditional jump)
new(PExp) (object creation) goto n (unconditional jump)

Furthermore we have:
PExp ::= nil | x (x ∈ VarΣ) | x.s (s ∈ SelΣ)
BExp ::= PExp = PExp | BExp ∧ BExp | ¬BExp delete() {

1 if x = nil goto 10;
2 if x = x.n goto 9;
3 y := x.n;
4 x := x.p;
5 x.n := y;
6 y.p := x;
7 y := nil ;
8 goto 10;
9 x := nil ;
10 }

Fig. 2. Delete from an
arbitrary Cyclic Doubly-
Linked List

Please note that for simplicity the programming lan-
guage does not support arbitrary dereferencing depths.
This is no restriction since this feature can be em-
ulated by multiple assignments. An object deletion
command is omitted since a nil -assignment with a sub-
sequent garbage collection has the same effect. The pro-
gramming language can be extended with unbounded
threads and atomic regions using the concepts we in-
troduce in [16].

In Fig. 2 an example program is shown that deletes
an element from a cyclic doubly-linked list. The se-
lectors n and p respectively model the next- and
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previous-pointers. The variable x is assumed to point to some object in the
structure while y is used as an auxiliary variable.

In the pointer semantics we use the special value err to denote that a pointer
error (e.g. nil dereference) occurred.

Definition 4.9. For H = (V, E, att , 
, ext) ∈ aHCΣ the semantics of pointer
expressions PH [[· ]] : PExp → V ∪ {nil , err} is defined as follows:

PH [[nil ]] = nil
PH [[x ]] = v if x ↪→H v
PH [[x ]] = nil if x ↪→H nil

PH [[x.s ]] = v if PH [[x ]] �= nil ∧ PH [[x ]]
s

↪→H v

PH [[x.s ]] = nil if PH [[x ]] �= nil ∧ �v ∈ V : PH [[x ]]
s

↪→H v
PH [[x.s ]] = err if PH [[x ]] = nil

The semantics of Boolean expressions BH [[· ]] : BExp → �∪{err} is as usual but
strict, i.e. if one of the arguments (pointer or Boolean expression) yields err the
result is also err. Next we can formulate the semantics of assignments and new-
statements, still without considering the additional steps, e.g. concretization,
garbage collection and abstraction.

Definition 4.10. Let H ∈ aHCΣ and α, α′ ∈ PExp. Then we define H [α/α′] ∈
HCΣ as follows:

– H [x.s/α′] = Herr if x ↪→H nil or PH [[α′ ]] = err
– Otherwise we distinguish the cases given in Fig. 3 where the modifications

are represented by graph transformations. Here the triangle vertex is assumed
to be PH [[α′ ]]. Thus there is more than one possible result. Graph objects not
shown in the source or target graphs remain unchanged.

H [α/new] ⊆ aHCΣ is given similarly by:

– H [x.s/new] = Herr if x ↪→H nil
– Otherwise the cases given in Fig. 3 apply where the triangle vertex is a new

vertex inserted into VH before applying the transformations.

Combining all the concepts introduced before we obtain the abstract heap se-
mantics that captures the effect of the commands on the heap. For the more
involved commands (assignment, new) the following steps are necessary:

1. execution of the actual assignment (nondeterministic)
2. garbage collection
3. partial concretization (nondeterministic)
4. re-abstraction

A fifth step may become necessary if the abstraction grammar is not suitable
for the data structures occurring in the program. We then need to “artificially”
bound the heap configuration by collapsing vertices. This is done by a so-called
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heap compactor which we only briefly sketch in Sct. 4.3 in favor of concentrating
on the actual abstraction.

Finally we can introduce an abstract “transition relation” that captures the
effect of the statements in our programming language.

Definition 4.11. Let G ∈ HRGΣ be a heap abstraction grammar, and AG :
aHCΣ → aHCΣ a heap abstractor. The abstract heap transformation relation
h⇒⊆ (aHCΣ × CMD × aHCΣ) is given as follows for H ∈ aHCΣ, H �= Herr

(we omit the if and goto statements since their semantics is straightforward
and has no effect on the heap):

K ∈ AG(CG(GC(H [α/α′])))

H, α := α′ h⇒ K

K ∈ AG(CG(GC(H [α/new])))

H,new(α) h⇒ K
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Figure 4 shows the semantics of the delete() operation from Fig. 2 based on the
HRG for doubly-linked lists (Fig. 1). We start with a configuration with three
nodes and one D-edge, that is, it represents arbitrary large cycles with at least
four nodes (see the left heap in subfigure 6). The if -statements have no effect
in this case. After the first assignment y := x.n, we obtain the configuration
depicted in subfigure 1. Here the variable y is too close to the D-edge and thus
the configuration is not admissible. We have to concretize it using the rules p1

and p3 (from GD
1 ), obtaining two resulting configurations where one only contains

terminal edges (application of p3). Rule p2 is not applicable since it would not
produce a terminal edge on the left-hand side. Note that this does not violate
correctness, since the HRG from Fig. 1 is a heap abstraction grammar.

The next assignment x := x.p makes a further concretization necessary since
the variable x is now too close to the D-edge. Now rules p2 and p3 (from GD

2 )
are applied to the left-hand graph from subfigure 2, and we obtain two results
one of which is concrete. The third graph is resulting from the right-hand graph
in subfigure 2.

The two assignments x.n := y and y.p := x exchange the next- and previous-
pointers in the subgraph between x and y; the result is shown in subfigure 4.
The following garbage collection (the lower vertex is unreachable) and the nil -
assignment to y yield the states visualized in subfigure 5. A re-abstraction apply-
ing rules p1 to the left-hand and p3 to the middle graph leads to the same result.
The left-hand heap in subfigure 6 is again the initial graph, and the right-hand is
the concrete one that results from deleting one node in the (minimal) cyclic list
with four elements. (It is the same as in subfigure 5 since no rule is applicable).

Hence we just proved that delete() preserves the structure of cyclic doubly-
linked lists of arbitrary size. The heap compactor is not required for our example
since all abstract configurations have less than five nodes. For an insert-operation
one could easily give a similar proof and would obtain even less configurations
(due to the lower degree of nondeterminism).

The correctness proof for our abstraction technique requires to first define the
transformation relation on concrete heaps, which is straightforward, and then
to relate concrete and abstract computations in the following way. Whenever a
concrete heap H ∈ aHCTΣ is transformed into H ′ ∈ aHCTΣ and its abstraction
AG(H) ∈ aHCΣ is (abstractly) transformed into H ′′ ∈ aHCΣ , then H ′ ∈
L(G, H ′′). That is, every concrete computation has its abstract counterpart,
and thus our abstraction constitutes a safe approximation of the system.

4.3 Enforcing Finiteness

This section is optional reading and gives a short overview of the heap compactor
which may be necessary to enforce a finite state space in certain situations
where unsuitable abstraction grammars are used. The cost is an inherent loss
in precision. The compactor works by merging vertices to form a special sink
vertex if the configuration exceeds a size bound given a priori. This vertex that
can represent arbitrary subgraphs has to be considered in the semantics and
yields additional nondeterminism.
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Definition 4.12. A heap compactor is a function κ : aHCΣ×�→ aHCΣ. For
H, K ∈ aHCΣ and k ∈ �, κ(H, k) = H if |VH | ≤ k and otherwise κ(H, k) = K
such that:

– |VK | = k
– sink ∈ VK ⊂ (VH ∪ {sink})
– EK = {e ∈ EH | [attH(e)] \ {sink} �= ∅ ∨ 
(e)
∈ VarΣ}

– attK = mod ◦ attH where

mod : VH → VK , mod(v) =

{
v if v ∈ VK

sink otherwise
– 
K = 
H � EK
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Fig. 5. Heap Compactor
(Example)

Thus the heap compactor only modifies a config-
uration if the abstractor (which is to be executed
beforehand) does not “compress” it enough. Its pur-
pose is to guarantee finiteness of the semantics. If
the constant k is large enough, small inconsistencies
as they occur often temporarily when manipulating
data structures do not result in a loss of precision
since the compactor does not modify configurations
with at most k nodes.

In Fig. 5 the compactor is visualized by an exam-
ple. The vertices shaded in gray are merged to form
the sink vertex visualized in black. For the actual
implementation of the heap compactor a heuristics
that merges connected vertices (otherwise poten-
tial dependencies between independent parts of the
graph are created) and those that are distant from
the program variables seems promising. The latter will reduce the probability
that the sink vertex plays a role in the program semantics.

Modifying the expression and assignment semantics is mostly straightforward
and is therefore omitted here. One essentially needs to consider additional nonde-
terministic cases which are introduced by the sink vertex. This leads for example
to a multi-valued Boolean semantics: if an expression refers to the sink vertex we
cannot decide anymore whether it is true or not and thus have to consider both
cases. For assignments we get a nondeterministic step if a variable references the
sink vertex.

5 Conclusions and Future Work

We have presented a framework for the analysis of pointer-manipulating pro-
grams operating on arbitrary dynamic data structures. The abstraction mecha-
nism is parametrized via a hyperedge replacement graph grammar that models
the data structure(s) used in the program. We showed how the abstract states
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can be transformed and how abstract state spaces can be generated. When em-
ploying a compactor our method ensures that these state spaces are always finite,
even if the underlying data structure is outside of the specification. Smaller in-
consistencies that naturally occur when manipulating data structures can be
handled without loss of precision.

The programming language can be extended with concurrency, e.g. unbounded
threads and atomic regions, without major changes [16]. This works essentially
by modelling the control-flow semantics separately from the heap semantics by
a Petri net and then combining both for state-space exploration. Hereby an
orthogonal abstraction is applied on the control-flow part.

Currently we are working on an implementation of our framework. We are
planning to introduce a logic to formulate verification properties and a model
checking algorithm to verify those on a given program. Furthermore we will
analyze how data structure definitions – as they occur in many programming
languages – can be used for automatically generating an appropriate abstraction
grammar.
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Abstract. Definitional trees have been introduced by Sergio Antoy in
order to design an efficient term rewrite strategy which computes needed
outermost redexes. In this paper, we consider the use of definitional trees
in the context of term-graph rewriting. We show that, unlike the case of
term rewrite systems, the strategies induced by definitional trees do not
always compute needed redexes, in presence of term-graph rewrite sys-
tems. We then define a new class called inductively sequential term-graph
rewrite systems (istGRS) for which needed redexes are still provided by
definitional trees. Systems in this class are not confluent in general. We
give additional syntactic criteria over istGRS’s which ensure the conflu-
ence property with respect to the set of admissible term-graphs.

1 Introduction

Many declarative languages are based on term rewrite systems (TRS). There
are good reasons for that, they actually benefit from a solid logical foundations
(equational logic, model-theory, proof methods) as well as very efficient imple-
mentation techniques. Term rewrite systems have been used also as a unifying
computational model for declarative languages sharing both functional and logic
features with very efficient operational semantics [5].

However, real-life programs, very often, deal with complex data-structures
built by means of pointers (e.g., circular lists, doubly-linked lists, etc.). Such
data-structures can be modeled as term-graphs [6,19] and are sometimes manda-
tory for efficiency reasons, namely time and space complexity of algorithms. Term
rewriting constitutes a computational model which is Turing-complete and thus
can encode theoretically any transformation over term-graphs, but such encod-
ings are in general cumbersome and too costly. Thus term-graphs appear as a
good trade-off to use rewrite systems to compute with general data-structures
without using all the machinery specific to graph transformations [20,13,14].
In recent works, e.g. [4,3,18] term-graph rewriting has also been considered as
a means to implement naturally, in declarative languages, the call-time choice
semantics introduced in [16].
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A new class of term-graph rewrite systems (hereafter, noted tGRS) has been
introduced recently in [8]. This class is a conservative extension of those intro-
duced in [9,10]. It provides some features dedicated especially to pointer rewriting
such as redirection of pointers or node constraints (see section 2). These fea-
tures allow one to write, in a rule-based language, algorithms with efficient space
complexity such as in-situ list reversal or those manipulating node constraints
such as the length of circular lists. Such algorithms were not possible to encode
directly in previous works regarding term-graph rewriting such as [19,9,10].

The new features of tGRSs are very appealing. That is why, we intend to pur-
sue our efforts in investigating the class of tGRSs. In [8], a categorical approach
has been proposed, [12] present a discussion about the use of term-graphs with
priorities as a means to overcome the non-confluence issues and [11] presents
the first general and complete narrowing procedure which is able to synthesize
solutions with circular data-structures.

The present paper is a first step towards the conception of efficient rewrite
strategies in presence of subclasses of tGRSs. We particularly consider the use of
Definitional Trees introduced by Antoy in his seminal paper [1]. Definitional trees
have been successfully used in defining efficient strategies either in term rewriting
and narrowing [1,2,5], graph rewriting and graph narrowing [9,10,4]. We show
that, the strategies induced by Definitional trees do not compute needed redexes
in general. Then, we define a particular class of term-graph rewrite systems for
which the induced strategies are efficient and compute needed redexes.

The paper is organized as follows. The next section defines the class of term-
graph rewrite systems that we consider. In section 3 we show some negative
results regarding the use of definitional trees and introduce the class of induc-
tively sequential tGRSs, for which Definitional trees help to compute needed
redexes. In section 4 we show the confluence property for a subclass of induc-
tively sequential term-graph rewrite systems. Section 5 concludes the paper.

2 Preliminary Definitions

In this section we define a class of term-graph rewrite systems, denoted tGRS.
We define the shape of its rules and the process of rewriting. The right-hand
sides of the rules consist of sequences of actions. These actions are intended to
decompose the transformation of graphs into consecutive atomic actions.

Definition 1 (Signature). A many-sorted signature Σ = 〈S, Ω〉 consists of a
set S of sorts and an S-indexed family of sets of operation symbols Ω = "s∈SΩs

with Ωs = "w∈S∗Ωw→s. We shall write f : s1 . . . sn → s whenever f ∈ Ωs1...sn→s

and say that f is of sort s and rank s1 . . . sn. A constructor-based signature Σ is
a triple Σ = 〈S, C,D〉 such that S is a set of sorts, C is an S-indexed family of sets
of constructor symbols, D is an S-indexed family of sets of defined operations,
C ∩ D = ∅ and 〈S, C " D〉 is a signature.

A term-graph is defined in this paper as a set of nodes and edges between the
nodes [6]. Each node may be labeled with an operation symbol or not. A node
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which is not labeled will act as a variable. Let N = "s∈SNs, be an S-indexed
family of countable sets of nodes. N is supposed to be fixed throughout the rest
of the paper.

Definition 2 (Term-Graph)
A term-graph g over 〈Σ,N〉 is a tuple g = 〈Ng,NΩ

g ,Lg,Sg〉 such that :

1. Ng is the set of nodes of g, i.e., Ng = "s∈S(Ng)s with (Ng)s ⊆ Ns.
2. NΩ

g is the subset of labeled nodes of g, NΩ
g ⊆ Ng

3. Lg, the labeling function of g, is an S-indexed family of functions associating
an operation symbol to each labeled node of g, i.e., Lg = "s∈S(Lg)s with
(Lg)s : (NΩ

g )s → Ωs.
4. Sg, the successor function of g, is an S-indexed family of functions associ-

ating a (possibly empty) string of nodes to each labeled node of g, i.e., Sg =
"s∈S(Sg)s with (Sg)s : (NΩ

g )s → N ∗
g such that for every node n ∈ (Ng)s :

– if (Lg)s(n) = f with f : s1 . . . sk → s, then there exist n1, . . . , nk ∈ Ng

such that (Sg)s(n) = n1 . . . nk and ni ∈ (Ng)si for all i ∈ 1..k.
– if (Lg)s(n) = c with c ∈ Ωε,s (c is a constant), then (Sg)s(n) = ε (i.e.,

n has no successor).
We write n ∈ Sg(m) if n is a successor of m.

We write ar(n) for the arity of node n which is equal to the length of Sg(n). A
rooted term-graph, denoted by gn, is a term-graph g with a distinguished node n
(n ∈ Ng) called the root of g. n will be denoted by Rootg. Let g be a term-graph
and n and m two nodes of g (n, m ∈ Ng), we write n �g m iff m ∈ Sg(n). We
will say that node m is reachable in g from node n iff n

∗
�g m. A rooted term-

graph gn is a constructor-rooted term-graph if and only if the root n is labeled
by a constructor (i.e. Lg(n) ∈ C). A rooted term-graph gn is a constructor term-
graph if and only if every reachable node m from the root n (n ∗

�g m), m is either
labeled by a constructor symbol (Lg(m) ∈ C) or m is not labeled (m �∈ NΩ

g ).

In the sequel, we will assume that all formulae we are considering are well-sorted,
and thus drop subscripts related to the many-sorted framework.

As the formal definition of term-graphs is not very convenient to write ex-
amples, we recall below the linear notation [6] of term-graphs. In the following
grammar, the variable A (resp. n) ranges over the set Ω (resp. N ):

TermGraph ::= Node | Node + TermGraph

Node ::= n:A(Node,. . . ,Node) | n:• | n

The root of a rooted term-graph defined by means of a linear expression is the
first node of the expression. n:• means that node n is not labeled. + stands for
the union of graph definitions.

Example 1. Let Ga
1 be the graph (see Fig.1) defined by Ga

1=〈NGa
1
,NΩ

Ga
1
,LGa

1
,SGa

1
〉

such that:

– NGa
1

= {a, b, c, d, e}
– NΩ

Ga
1

= {a, b, c, e}
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– LGa
1
(a) = succ;LGa

1
(b) = f ;LGa

1
(c) = g;LGa

1
(e) = h

– SGa
1
(a) = b;SGa

1
(b) = ce;SGa

1
(c) = de;SGa

1
(e) = b

Ga
1 could also be written using the linear notation as follows:

Ga
1 = a : succ(b : f(c : g(d : •, e : h(b)), e))

Definition 3 (Homomorphism). Let gn
1 and gm

2 be two rooted term-graphs. A
homomorphism h from gn

1 to gm
2 is a mapping h : Ngn

1
→ Ngm

2
which preserves

the root, the labeled nodes and the labeling and successor functions, i.e., h(n) =
m, h(NΩ

gn
1
) ⊆ NΩ

gm
2

, and for each labeled node, p, in gn
1 , Lgm

2
(h(p)) = Lgn

1
(p)

and Sgm
2

(h(p)) = h∗(Sgn
1
(p)) where h∗ denotes the extension of h to strings (of

nodes) defined by h∗(p1 . . . pk) = h(p1) . . . h(pk).

Notice that homomorphisms, as defined above, can map unlabeled nodes to
labeled ones.

Definition 4 (Actions). An action has one of the following forms. We omit
to give sort constraints which are quite straightforward and thus we assume that
all constructions are well-sorted.

– a node definition or node labeling α : f(α1, . . . , αn) where α, α1, . . . , αn

are nodes and f is a label of rank s1, . . . , sn. This means that α is labeled by
f and α1 . . . αn are the successor nodes of α (S(α) = α1 . . . αn).

– an edge redirection or local redirection α �i β where α, β are nodes and
i ∈ {1, . . . , ar(L(α))}. This is an edge redirection and means that the target
of the ith edge outgoing α is redirected to point to the node β.

– a global redirection α � β where α and β are nodes. This means that all
edges pointing to α are redirected to point to the node β.

The result of applying an action a to a term-graph g is denoted by a[g] and is
defined as the following term-graph g′:

– If a = α : f(α1, . . . , αn) then Ng′ = Ng ∪ {α, α1, . . . , αn}, Lg′(α) = f ,
Lg′(β) = Lg(β) if β �= α, and Sg′ (α) = α1, . . . , αn, Sg′(β) = Sg(β) if β �= α.
∪ denotes classical union.

– If a = α �i β then Ng′ = Ng, Lg′ = Lg, and if Sg(α) = α1, . . . , αi, . . . , αn

then Sg′(α) = α1, . . . , αi−1, β, αi+1, . . . , αn and for any node γ we have
Sg′(γ) = Sg(γ) iff γ �= α. If α does not occur in Ng, then g′ = g.

– If a = α � β then Ng′ = Ng, Lg′ = Lg and for all nodes δ such that
Sg(δ) = α1, . . . , αn then Sg′(δ) = α′

1, . . . , α
′
n such that for i in 1..n, α′

i = β
if αi = α, and α′

i = αi if αi �= α. If α does not occur in Ng, then g′ = g.

The application of an action a to a rooted term-graph gn is a rooted term-graph
g′m such that g′ = a[g] and root m is defined as follows:

– m = n if a is not of the form n � p.
– m = p if a is of the form n � p.
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Fig. 1. Term-graph Ga
1

a : succ
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b : f
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d : • u : succ

��
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Fig. 2. Term-graph Ga
2

a : succ
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b : f
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w : 0 u : succ

��
v : h





Fig. 3. Term-graph Ga
3

a : succ

��
w : 0

Fig. 4. Term-graph Ga
4

The application of a sequence of actions u to a (rooted) term-graph g is defined
inductively as follows : u[g] = g if u is the empty sequence and u[g] = u′[a[g]] if
u = a; u′ where ; is the concatenation operation.

Example 2
Let Ga

1 be the graph defined in Example1 (see Fig.1).
Let Ga

2 be the graph (see Fig.2) Ga
2 = a : succ(b : f(c : g(d : •, u : succ(v :

h(b))), u))
Let Ga

3 be the graph (see Fig.3) Ga
3 = a : succ(b : f(w : 0, u : succ(v : h(b))))

Let Ga
4 be the graph (see Fig.4) Ga

4 = a : succ(w : 0)
Below we give some examples of the application of actions on the graphs above.

The first line shows the application of the actions v : h(b) ; u : succ(v) ; e � u
on the term-graph Ga

1 . The second line shows the application of the actions
w : 0 ; c � w on the term-graph Ga

2 . The last line shows the application of the
action b � w on the term-graph Ga

3 .

v : h(b) ; u : succ( v) ; e � u [Ga
1 ] = u : succ(v) ; e � u[Ga

1 + v : h(b)] = e �
u [Ga

1 + u : succ(v : h(b))] = Ga
2 + e : h(b)

w : 0 ; c � w [Ga
2 ] = c � w [Ga

2 + w : 0] = Ga
3 + c : g(d : •, u)

b � w [Ga
3 ] = Ga

4 + b : f(w, u : succ(v : h(w)))
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Definition 5 (Node Constraint). A node constraint is a (possibly empty)
conjunction of disequations between nodes:

∧n
i=1(αi � .= βi). A substitution σ :

N → N is a solution of a constraint φ =
∧n

i=1(αi � .= βi) iff for any i ∈ [1..n],
we have σ(αi) �= σ(βi). We denote by sol(φ) the set of solutions of φ.

Notice that we do not use equality constraints. Such equalities may be encoded
directly into term-graphs.

Definition 6 (Rule, system)
A term-graph rewrite rule is an expression of the form [l | c] → r where r is
a sequence of actions, c is a constraint and l is a rooted term-graph s.t. for
any node α occurring in l, we have Rootl

∗
�l α (i.e. any node occurring in the

left-hand side must be reachable from the root Rootl). A rule ρ2 is said to be
a variant of a rule ρ1 iff ρ2 is obtained from ρ1 by (one-one) renaming all the
nodes in ρ1. A term-graph rewrite system is a set of rewrite rules.

Example 3. We first define an operation, sameloc, which tests whether two ar-
guments are located at the same place or not. Such operation is sometimes used
to enhance the implementation of equality in declarative languages.

r : sameloc(n : •, n) → q : true; r � q
[r : sameloc(n : •, m : •) | n � .= m] → q : false; r � q

As a second example, we define below the operation length which deals with
cyclic data-structures. length(p : •) computes the number of elements of any,
possibly circular, list matched by node p.

r : length(p : •) → r′ : length′(p, p); r � r′

r : length′(p1 : nil, p2 : •) → r′ : 0; r � r′

r : length′(p1 : cons(n : •, p2 : •), p2) → r′ : s(0); r � r′

[r : length′(p1 : cons(n : •, p2 : •), p3 : •) | p2 � .= p3] → r′ : s(q : •); q :
length′(p2, p3); r � r′

Pointers help very often to enhance the efficiency of algorithms. In the follow-
ing, we define the operation reverse which performs the so-called “in-situ list
reversal”.

2 o : reverse(p : •) → o′ : reverse′(p, q : nil); o � o′

o : reverse′(p1 : cons(n : •, q : nil), p2 : •) → p1 �2 p2; o � p1

o : reverse′(p1 : cons(n : •, p2 : cons(m : •, p3 : •), p4 : •) → p1 �2 p4; o �1

p2; o �2 p1

The last example illustrates the encoding of classical term rewrite systems. We
define the addition on naturals as well as the function double with their usual
meanings.

r : +(n : 0, m : •) → r � m
r : +(n : succ(p : •), m : •) → q : succ(k : +(p, m)); r � q
r : double(n : •) → q : +(n, n); r � q
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Definition 7 (Matching). Let [l | c] → r be a rewrite rule and gn a rooted
term-graph. We say that the left-hand side [l | c] matches the term-graph gn at
node p, and denoted by [l | c] ≤ gp iff p is reachable from n (i.e. n

∗
�g p) and there

exists a homomorphism, also called matcher, h from l to gp, i.e. h : Nl → Ng

such that h(Rootl) = p and h is a solution of constraint c, i.e., h ∈ sol(c).

Definition 8 (Rewrite Step). Let ρ be the rewrite rule [l | c] → r and gn be
a rooted term-graph. We say that gn rewrites to gm

1 at node p by using the rule
ρ iff there exists a matcher h : l → gp which is a solution of constraint c and
gm
1 = h(r)[gn]. We write gn →[p, [l|c]→r] gm

1 , gn →p gm or simply gn → gm.

Example 4. Let f, g and h be three defined operations specified by the following
rewrite rules:

n : f(p : 0, q : •) → n � p
n : g(p : •, q : succ(m : •)) → w : 0; n � w
n : h(p : •) → u : succ(v : h(p)); n � u

Let Ga
1 , Ga

2 , G
a
3 and Ga

4 be the graphs defined in Example 2. We recall their
definitions below.

Ga
1 = a : succ(b : f(c : g(d : •, e : h(b)), e))

Ga
2 = a : succ(b : f(c : g(d : •, u : succ(v : h(b))), u))

Ga
3 = a : succ(b : f(w : 0, u : succ(v : h(b))))

Ga
4 = a : succ(w : 0)

From the rules given in this example, we can get the following derivation. Notice
that we did not report the nodes which are not reachable from the roots of the
considered term-graphs.

Ga
1 →e Ga

2 →c Ga
3 →b Ga

4

3 Inductively Sequential Term-Graph Rewrite Systems

Inductively sequential term rewrite systems have been introduced by Antoy in
[1]. Such systems are defined over constructor-based signatures. The left-hand
sides of the rules are patterns of the form f(k1, · · · , kn) where f is a defined
symbol and the sub-terms (i.e., the ki’s) are constructor terms. By definition,
the rules of an inductively sequential term rewrite system are stored in data-
structures called definitional trees. Thanks to these data-structures, several effi-
cient rewriting and narrowing strategies have been devised (e.g. [1,5]).

In this section we consider a subclass of tGRSs which consists of systems that
can be stored within definitional trees.

Definition 9 (Definitional tree). Let SP = 〈Σ,R〉 be a tGRS such that Σ
is a constructor-based signature. A tree T is a partial definitional tree, or pdt,
with pattern [π | C] iff one of the following cases holds:
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– T = rule([π | C] → r), where [π | C] → r is a variant of a rule of R.
– T = position.branch([π | C], o, T1, . . . , Tk), where o is a non-labeled node of

π, o is of sort s, c1, . . . , ck (k > 0) are different constructors of the sort s
and for all j ∈ 1..k, Tj is a pdt with pattern [πj |C], such that πj is obtained
from π by applying an action which labels the node o with constructor cj,
i.e., πj = o : cj(o1 : •, . . . , on : •)[π], where n is the number of arguments of
cj and o1, . . . , on are new nodes.

– T = share.branch([π | C], T1, T2), where T1 is a pdt with pattern [π | C∧n � .=
m] such that n and m are nodes occurring in π and the constraint n � .= m
does not occur in C and T2 is a pdt with pattern [π′ | C] such that π′ is
obtained from π by collapsing the two nodes n and m (and their successors).
I.e. π′ is obtained by encoding the constraint n

.= m into π.

We write pattern(T ) to denote the pattern argument of a pdt.
A definitional tree T of a defined operation f is a finite pdt with a pattern of
the form [p : f(o1 : •, . . . , on : •) | true], also denoted by p : f(o1 : •, . . . , on : •),
where n is the number of arguments of f , p, o1, . . . , on are new nodes, and for
every rule [l | C] → r of R, with l of the form f(g1, . . . , gn), there exists a leaf
rule([l′ | C′] → r′) of T such that [l′ | C′] → r′ is a variant of [l | C] → r.

Example 5. We consider the auxiliary operation length′ defined in Example 3.
We recall first its rules and provide a definitional tree for it. We give only the
pattern or the rule for every node of the tree.

(Rule1) r : length′(p1 : nil, p2 : •) → r′ : 0; r � r′

(Rule2) r : length′(p1 : cons(n : •, p2 : •), p2) → r′ : s(0); r � r′

(Rule3) [r : length′(p1 : cons(n : •, p2 : •), p3 : •) | p2 � .= p3] → r′ : s(q : •); q :

length′(p2, p3); r � r′

Readers familiar with classical definitional trees [1] should notice the introduc-
tion of a new kind of nodes called share.branch. In the context of term-graph
rewriting, sharing of data-structures plays an important role which cannot be
handled easily in the framework of term (tree) rewriting. The addition of the
nodes share.branch still ensures the property of non overlapping of the patterns
situated at the leaves of a definitional tree. We can easily prove the following
statement.

r : length′(p1 : •, p2 : •)

������
����

�
�������

������
��

Rule1 length′(p1 : cons(n : •, p3 : •), p2 : •)

������
������

�����
��

Rule2 Rule3

Fig. 5. A definitional tree of operation length′
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Proposition 1. Let T be a definitional tree of a defined operation f . Let [l1 |
c1] → r1 and [l2 | c2] → r2 be two different rules of T . Then, the left-hand sides
[l2 | c2] and [l1 | c1] do not overlap. I.e., there exist no term-graph g, and matchers
h1 : l1 → g and h2 : l2 → g which fulfil respectively constraints c1 and c2.

Hereafter, we define the rewrite strategy Φ induced by definitional trees. We
start by the following technical definition of constructor paths.

Definition 10 (Constructor Path). We will say that a node p is reachable
from a node n0 in a term-graph g through a constructor path iff there exists a
path in g, say n0 �g n1 �g . . . �g nk �g p such that, for all i ∈ 0..k, Lg(nj)
is a constructor symbol (∈ C).

Definition 11 (A term-graph rewrite strategy). Let SP = 〈Σ,R〉 be a
tGRS such that Σ is constructor-based and the rules of every defined operation
are stored in a definitional tree. Let gn be a rooted term-graph. Let p be a reach-
able node from the root n through a constructor path in gn such that p is labeled
by a defined operation f and let Tf be a definitional tree of f . Φ is the partial
function defined by Φ(gn) = ϕ(gp, Tf ).

Below, we define the partial function ϕ. Let gn be a rooted term-graph such
that Lgn(n) ∈ D (i.e. the root n is labeled with a defined operation) and T a
pdt such that pattern(T ) ≤ gn. When it is defined, the value ϕ(gn, T ) is a pair
(p, R) such that the term-graph gn can be reduced at node p using the rule R.
More precisely, ϕ(gn, T ) is defined as follows:

ϕ(gn
, T )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n, [π′ | C′] → r′) if T = rule([π | C] → r) and
[π′ | C′] → r′ is a variant of [π | C] → r ;

ϕ(gn, Ti) if T = share.branch([π | C], T1, T2) for
the unique i such that pattern(Ti) ≤ gn and i ∈ 1..2;

ϕ(gn, Ti) if T = position.branch([π | C], o, T1, . . . , Tk) for
the unique i such that pattern(Ti) ≤ gn and i ∈ 1..k;

(p,R) if T = position.branch([π | C], o, T1, . . . , Tk),
[π | C] matches gn at the root n by
homomorphism h : π → g,

h(o) is labeled with a defined operation f (in g),
T ′ is a definitional tree of f and

ϕ(gh(o), T ′) = (p, R).

Example 6. We illustrate the use of the strategy Φ. We consider again the oper-
ations and the rules given in Example 4.

(R1) n : f(p : 0, q : •) → n � p
(R2) n : g(p : •, q : succ(m : •)) → w : 0; n � w
(R3) n : h(p : •) → q : succ(m : h(p)); n � q

First, we provide a definitional tree for each operation.

Tf = position.branch(n : f(p : •, q : •), p, rule(R1))
Tg = position.branch(n : g(p : •, q : •), q, rule(R2))
Th = rule(R3)
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The following derivation given in Example 4 is developed by the strategy Φ.

Ga
1 →e Ga

2 →c Ga
3 →b Ga

4

One can easily verify the following equalities:

Φ(Ga
1) = (e,R3)

Φ(Ga
2) = (c,R2)

Φ(Ga
3) = (b,R1)

The aim of the definition of the strategy Φ is to compute needed nodes to be con-
tracted during the transformation of a term-graph. We define below the notions
of needed nodes and outermost nodes in the framework of term-graph rewriting.

Definition 12 (needed node, outermost redex). Let SP = 〈Σ,R〉 be a
tGRS such that Σ is constructor-based. Let gn

1 and gm
2 be two term-graphs and

B = gn
1

∗→ gm
2 a rewrite derivation. A node q labeled with a defined operation in

gn
1 and reachable from the root n is a residual node by B if q remains reachable

from the root m in gm
2 . Then, we call descendant of gq

1 the rooted term-graph gq
2.

A node q in g is needed iff in every rewrite derivation from g to a constructor
normal form, a descendant of gq is rewritten at its root q. A node q labeled with
a defined operation in gn is an outermost node of gn iff q = n or q is reachable
from n through a constructor path. A redex u rooted by q in gn is an outermost
redex iff q = n or q is reachable from n through a path p0 �gn p1 �gn . . . �gn pk

such that p0 = n, pk = q and gpi is not a redex for all i ∈ 0..(k − 1).

Unlike the case of terms, we show in the following proposition that, in general,
the strategy Φ does not compute needed nodes when it is applied on term-
graphs. We will give later in Definition 13 sufficient conditions which ensure the
neededness of the nodes computed by the strategy Φ.

Proposition 2. Let SP = 〈Σ,R〉 be a tGRS such that Σ is constructor-based
and the rules of every defined operation are stored in a definitional tree. Let gn

be a rooted term-graph. Then,

1. the computation of φ(gn) may be infinite.
2. if φ(gn) = (p, R), the node p is not needed in general.
3. if φ(gn) is not defined, gn can still have a constructor normal form.

Proof. The proof is given by counter examples. Let us consider the following
tGRS which satisfies the conditions of the proposition.

r : f1(p : 0) → r � p

r : f1(p : succ(p′ : •)) → r � p

r : h1(p : 0, q : succ(n : •)) → q � p

r : g1(p : 0) → r � p
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1. Let En be the term-graph n : f1(m : f1(n)). Then, by definition of the
strategy φ, φ(En) = ϕ(En, Tf1), for some definitional tree, Tf1 , of f1. By
definition of ϕ and from the patterns of the rules defining f1, one can easily
verify that φ(En) does not halt.

2. Let Gn = n : succ(r : succ(p : f1(q : succ(s : h1(u : 0, r))))). We can easily
verify that φ(Gn) = (p, r1 : f1(p1 : succ(p′1 : •)) → r1 � p1). However, the
node p is not needed in Gn since one may obtain the desired normal form
n : succ(u : 0) after one rewrite step performed at node s.

3. Let us consider the graph Hn = n : succ(r : succ(p : g1(q : succ(s : h1(u :
0, r))))). Then, φ(Hn) = ϕ(Hp, Tg1) is not defined for any definitional tree
Tg1 . However, if we rewrite Hn at node s we get a constructor normal form
Hn

1 = n : succ(u : 0).

To overcome the issues pointed by Proposition 2, we propose below sufficient
syntactic conditions over rewrite rules.

Definition 13 (inductively sequential tGRS). Let SP = 〈Σ,R〉 be a tGRS.
SP is called inductively sequential tGRS iff (i) the signature Σ is constructor-
based, (ii) the rules which define every defined operation are stored in a defini-
tional tree and (iii) the nodes which can be subject to local or global redirections
are the roots of the left-hand sides of the rules. That is to say, for all rules
[π | C] → r in R, for all global (respectively, local) redirections of the form
p � q (respectively, p �i q for some i), occurring in the right-hand side r, we
have p = Rootπ.

Example 7. The rewrite systems given in Example 3 and Example 4 are all
inductively sequential but the one which defines the operation reverse.

The following proposition summarizes the main properties of ϕ in presence of
inductively sequential term-graph rewrite systems.

Proposition 3. Let SP = 〈Σ,R〉 be an inductively sequential tGRS, f a defined
operation, Tf a definitional tree of f , and gn a rooted term-graph whose root is
labeled with f (i.e. Lgn(n) = f). If ϕ(gn, Tf ) = (p, R) , then (i) in every rewrite
derivation from gn to a constructor-rooted term-graph, a descendant of gp is
rewritten at the root p, in one or more steps, into a constructor-rooted term-
graph ; (ii) gp is a redex of g matched by the left-hand side of R ; (iii) gp is an
outermost redex of gn. (iv) If ϕ(gn, T ) is not defined, then gn cannot be rewritten
into a constructor-rooted term-graph.

Theorem 1. Let SP = 〈Σ,R〉 be an inductively sequential tGRS, and gn a
rooted term-graph. If Φ(g) = (p, R), then gp is an outermost needed redex of gn

and gn can be rewritten at node p with rule R. If Φ(g) is not defined, then gn

cannot be rewritten into a constructor term-graph.
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4 Confluence

In this section, we consider the property of confluence which could be of great
interest for deterministic computations. Ensuring confluence in presence of term-
graph rewrite systems is not an easy task (see e.g., [17]). For example, a rewrite
system as simple as the two following rules f(x) → x and g(x) → x is not
confluent. Indeed, the term-graph n : f(m : g(n)) can be reduced to two dif-
ferent term-graphs n : f(n) and m : g(m). The two last term-graphs cannot be
reduced to a common term-graph. In [9,10], a subclass of circular term-graphs,
called admissible term-graphs, has been introduced. It has been shown that, for
a large class of term-graph rewrite systems, the rewrite relation induced over
admissible term-graphs is confluent. In this section, we generalise that result to
the admissible inductively sequential tGRSs.

Definition 14 (admissible rooted term-graph). [9,10] A rooted term-graph
gn is admissible iff for all nodes m, labeled by a defined operation (i.e., Lgn(m) ∈
D), m is not reachable from itself (i.e., m does not belong to a cycle m � ∗� m).

Definition 15 (admissible inductively sequential tGRS). Let SP=〈Σ,R〉
be an inductively sequential tGRS. SP is called admissible iff for all rules [π |
C] → r in R the following conditions are satisfied

– for all global (respectively, local) redirections of the form p � q (respectively,
p �i q for some i), occurring in the right-hand side r, we have p = Rootπ
and q �= Rootπ.

– for all actions of the form α : f(β1, . . . , βn), for all i ∈ 1..n, βi �= Rootπ
– the set of actions of the form α : f(β1, . . . , βn), appearing in r, do not

construct a cycle consisting only of newly introduced nodes in r and including
a node labeled with a defined operation. If we denote by �r the reachability
over the new nodes introduced in r, this condition could be specified as : for
all nodes, α, introduced in r and labeled by a defined operation, α � ∗�r α.

– Constraint C includes disequations of the form p � .= q where p and q are
labeled by constructor symbols.

Example 8. All the previous inductively sequential systems are admissible or can
be modified to fulfil the required conditions. Below we provide an admissible in-
ductively sequential tGRS which defines equality over naturals.

p : eq(n : •, n) → q : true; p � q

[p : eq(n : 0, m : 0) | n � .= m] → q : true; p � q

[p : eq(n : succ(n′ : •), m : succ(m′ : •)) | n � .= m] → p �1 n′; p �2 m′

p : eq(n : succ(n′ : •), m : 0) → q : false; p � q

p : eq(n : 0, m : succ(m′ : •)) → q : false; p � q
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The following proposition states that the class of admissible term-graphs is closed
under the rewrite relation induced by an admissible inductively sequential tGRS.

Proposition 4. Let SP = 〈Σ,R〉 be an admissible inductively sequential tGRS
and gn an admissible rooted term-graph. If gn rewrites to gm via a rewrite rule
in R, then gm is also an admissible rooted term-graph.

Definition 16 (Confluence). Let SP = 〈Σ,R〉 be an admissible inductively
sequential tGRS. We say that the rewriting relation→ is confluent w.r.t the class
of admissible term-graphs iff for all rooted admissible term-graphs gn

1 , gn′

2 , gm
3

and gm′

4 such that gn
1 and gn′

2 are identical up to renaming of nodes (gn
1 ∼ gn′

2 ),
gn
1

∗→ gm
3 and gn′

2
∗→ gm′

4 , there exist two admissible graphs go
5 and go′

6 such that
gm
3

∗→ go
5, gm′

4
∗→ go′

6 and go
5 ∼ go′

6 .

We state below a new confluence result regarding the class of admissible induc-
tively sequential tGRS. The reader familiar with the confluence property may
notice that systems in this class are not always confluent modulo bisimilarity
(two term-graphs are said bisimilar iff they represent the same rational term).
For instance the application of the operation length, as defined in Example 3,
to two bisimilar and non isomorphic lists, should yield different values.

Theorem 1. Let SP = 〈Σ,R〉 be an admissible inductively sequential tGRS.
Then the rewriting relation → is confluent w.r.t the class of admissible term-
graphs.

The proof of Theorem 1 is obtained by classical induction on the length of the
considered rewrite derivations and leans basically on the following key result.

Lemma 1. Let SP = 〈Σ,R〉 be an admissible inductively sequential tGRS and
gn, gm

1 and go
2 be three admissible term-graphs. If gn → gm

1 and gn → go
2, then

there exist two graphs gp
3 and gq

4 such that gm
1

ε→ gp
3 , go

2
ε→ gq

4 and gp
3 and gq

4 are
equal up to renaming of nodes (gp

3 ∼ gq
4). The notation g

ε→ g′ means that g′ is
either g (zero rewrite step) or it is obtained from g after one rewrite step.

5 Conclusion

Definitional trees [1] give rise to efficient rewrite and narrowing strategies. In
this paper we investigated ways to use Definitional trees with the aim to pro-
pose new efficient strategies for term-graph rewriting. We succeeded to show
the computation of needed redexes in the particular class of inductively sequen-
tial tGRSs. We gave also counter-examples illustrating some negative results.
These results give an idea about the limits of the use of Definitional trees in
the context of term-graph rewriting. On the other hand, we proposed a new
class of admissible term-graph rewrite systems for which the rewrite relation
is confluent with respect to admissible term-graphs and for which Definitional
trees still behave nicely. The presented results open some directions of work. In
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[11], a general narrowing procedure has been proposed. The class of inductively
sequential tGRSs seem to be a good candidate to develop an efficient narrowing
strategy for term-graphs. Abstraction techniques has been successfully used in
the context of term rewrite systems (see, e.g., [7,15]). Extensions of abstraction
methods to term-graph rewrite systems worth also to be investigated.
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Abstract. Mobile agents are a well-known paradigm for the design and
implementation of distributed systems. However, whilst their popular-
ity continues to grow, a uniform theory of mobile agent systems is not
yet sufficiently elaborated, in comparison with classical models of dis-
tributed computation. In this paper we show how to use mobile agents
as an alternative model for implementing distributed local computation
rules. In doing so, we approach a general and unified framework for local
computations which is consistent with the classical theory of distributed
computations based on graph relabeling systems.
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1 Introduction

Models of local computations, described by graph relabeling systems provide a
useful theoretical framework to specify and reason about various aspects of dis-
tributed computation with distributed algorithms [9,10,2]. Assuming that the
reader is already familiar with this theoretical background, we will only briefly re-
capitulate the basic characteristics and features of modeling distributed systems
by local computations and graph relabeling systems. This well-known paradigm
will be our starting point from where we shall proceed towards a more recent
paradigm of distributed computation by mobile agents.

Our aim is to demonstrate that all basic building blocks of the graph relabel-
ing paradigm can be implemented by the activities of mobile agents, leading to
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the hypothesis that mobile agents are as powerful as classical distributed sys-
tems, i.e., message passing systems [4]. In practice, the use of mobile agents for
the implementation of distributed algorithms can have advantages over classical
implementations, because roaming agents can better cope with temporary net-
work failures and also consume less computational resources, in comparison with
the global network activities induced by classical implementations of distributed
algorithms. In addition, mobile agents allow to bring a new level of abstraction
in distributed computing. For instance, in the message passing model, the nodes
represent both the topology of the network and the autonomous computation en-
tities. In opposite, in the mobile agent model, the nodes define only the topology
of the network, while the agents define the computation entities of the network.

The consideration (description, reconstruction) of agent systems in terms of
graph transformation systems is not a new idea; take for example [8] as an early
contribution to this field of study. In [8], however, graph transformation tech-
niques are used to model internal properties and/or actions of agents, whereas
the focus of our paper is on their external properties, mainly motion between
network places, motivated by our intention to demonstrate the possibility of ex-
pressing (respectively implementing) classical distributed algorithms in terms of
mobile agent systems. To this end, graph transformation systems can be regarded
as the bridge formalism between the domain of classical distributed algorithms
and the domain of mobile agent systems.

Graph Relabeling Systems: Processor networks, which are the substrate of
distributed computation, are represented by labeled graphs G = (V, E, L, λ) with
a set of labels L and a (possibly partial) labeling function λ : (V " E) −→ L
that attaches labels to vertices (nodes) and/or edges (arcs) of the network graph.
The labels, which may lexically appear arbitrarily complex, are used to model
the internal states of the network components during the run of a distributed
algorithm on the network. A final label configuration represents the result of a
terminated algorithm. Thereby, the models must be designed in such a way that
three locality conditions are always fulfilled:

c1: Relabeling does not modify the underlying graph structure (from a topolog-
ical point of view);

c2: Each step can only relabel a limited, connected sub graph (fixed in size);
c3: The applicability of a relabeling step in a “neighborhood” is constrained only

by the local conditions within such a neighborhood, not by the global state
of the entire network.

Distributed algorithms described in such a framework are usually composed of
basic units which correspond to certain types of relabeling rules. These various
rule types, which are classified and explained in [5], comprise constructs such as:
single node relabeling depending on only one neighbor, two neighbor relabeling,
single node relabeling depending on labels of all neighbors (star relabeling),
single node relabeling in the center of a ball of radius 2, relabeling of an entire
ball of radius k > 1.
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R1: �
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Fig. 1. Rules for a distributed construction of a rooted spanning tree

However, not every rule type is suitable for composing (describing) a partic-
ular distributed algorithm. For example, whereas the distributed computation
of a spanning tree across the underlying network can well be described in terms
of the most simple rule type (relabeling one node depending on only one neigh-
bor), others, more complicated distributed algorithms can only be described in
terms of more complicated types of relabeling rules [11]. Anyway, a relabeling
system gives us a uniform and unified methodology for describing and proving
distributed algorithms. For example, Figure 1 shows a simple relabeling rule sys-
tem, consisting of two rules only, by means of which a spanning tree of a graph
can be computed in a distributed and self-organizing fashion1.

Mobile Agent Systems: One can ask how to turn a set of relabeling rules into
an executable distributed algorithm — in other words, how to implement a dis-
tributed algorithm described with a relabeling system into a practical distributed
setting. Because we can find many types of distributed systems relying on the
type of communication (e.g., messages, shared memory), the type of synchrony
(e.g., synchronous, asynchronous), and the type of computation entities (e.g.,
processors, mobile agents), many solutions are possible. For instance, some algo-
rithms are known for the case of classical message passing systems [13,14,12,7].
In this paper we are interested in a uniform mobile agent solution.

When a distributed algorithm is to be implemented by means of mobile agents,
a variety of issues must be considered. Amongst those, there are some especially
important considerations concerning the nature of synchronization, the notion of
agent, as well as the organization of agent processing whenever an agent arrived
at a particular node in the network.

In order to perform local relabeling classically, some type of synchronization is
needed for a short period of time between the involved nodes. In the usual imple-
mentation of a local relabeling step [3], messages are sent between the involved
nodes such that, depending on the information contents of those messages, syn-
chronization can be achieved. In a pure mobile agent system, however, there are
no messages; there are only agents moving from node to node.2 Consequently,
the notion of “synchronization” looses its traditional meaning: In a classical dis-
tributed system, all nodes are active during the same time. They might not have
1 In the example of Fig. 1, it is implicitly assumed that at the beginning there exists a

unique node with label R (root) in the network graph, and all the other nodes have
label N .

2 Thus the agent itself “is” a message.
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a common clock and might follow their own local speed of pace, but no node is
supposed to fall asleep until the termination of the algorithm. In a mobile agent
system, on the contrary, a network node is asleep as long as no agent is locally
present: consequently, the notion of “synchrony” in a mobile agent system can
only be circumscribed in terms of particular patterns of agent moves between
two quasi-synchronized neighbor nodes.

Remainder of the Paper: In the remainder of the paper we present some
mobile agent implementations of relabeling systems. In Section 2, we describe
two implementations of two basic classes of local relabeling rules called type
LC0 and LC1. In Section 3 we describe a general methodology (or framework)
for implementing any class of relabeling rules.

2 Basic Agent Operations

As mentioned in the Introduction, there are several classes of local relabeling
rules, according to the various types of neighborhoods in which those rules can
be anchored (e.g. edge-shaped neighborhood, star-shaped neighborhood, ball-
shaped neighborhood, and the like). In the following sub-sections we present
novel solutions for rules of type LC0 and LC1 in terms of mobile agents.

2.1 Blocking-Free LC0

The LC0 rule (which is well-known to be suitable for the distributed computation
of spanning trees) looks like this:

LC0 rule: �

T
�

N
�

T
� �

T
�

It replaces Nonterminal nodes by Terminal nodes, and increases thus its own
applicability by every actual application. One should note that an initial labeling
of the graph that will allow the application of such a rule must have at least one
node with a type T label.

In the following we present a simple implementation which does not use any
blocking in the agent code at all. Instead, mutual exclusion will be provided by
the operating systems of the nodes themselves which provides internal waiting
FIFO queues to cope with the arrival of more than one agent at the same node
at the same time. Thus, the here presented approach makes only minimalist
requirements as far as the internal structure (code) of agents are concerned.

Preliminaries, Part A: Agents

– All LC0 agents are assumed to be identical which means that (a) they carry
the same program code and (b) they do not carry any static unique ID that
could distinguish them from each other once and for all.
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– In this model an agent can not continue the execution of the program code
after migrating from one node v to another node v′. Thus they must always
start with their very first line of program code again, whenever they arrive
at another processing place.

– However, an agent needs one bit of persistent memory C in order to remember
the context from where he came. Because of the specification of the LC0
Rule, namely {T —N} =⇒ {T → T }, an agent must have visited a T
node before he may change an N node to T . Coming from another N node
the agent may not update an N node, because otherwise the agent would
implement a wrong rule, namely {N—N} =⇒ {N → T }, for which there
is no specification. Without any kind of persistent memory, which the agent
can carry along in his ‘rucksack’ while traveling from node to node, the agent
could not remember the type of node from where he came and could thus
not correctly implement LC03. At agent creation time we set C := false and
update the value to true as soon as the agent has found its very first LC0
context node of type T .

These types of agents are deliberately specified minimalistically to be the most
primitive and ‘non-intelligent’ agents we can think of; yet these primitive enti-
ties will be sufficient to implement the above-mentioned LC0 rule, if only the
underlying network environment provides the following features:

Preliminaries, Part B: Environment

– According to the LC0 rule of above, a node possesses one out of two distin-
guishable types T : These are T , respectively N .

– A node shall also be equipped with a waiting queue for incoming agents.
Because of the system being fully asynchronous, the waiting time of an agent
in a node’s waiting queue is completely arbitrary; an agent could vanish in
a queue for several hours as well as for just a few micro seconds.

– We assume that an agent gets exclusive access to the processor of a node from
the beginning to the end of its agent code, while other agents are waiting
in the queue until that agent has finished its task. There is no round robin
(or any other pseudo-simultaneous) processor sharing amongst a multitude
of agents sitting in the same node at the same time, which means that two
agents can never disturb each other while sitting in the same network node
at the same time.

– We assume that a node maintains locally unique channel names (port names)
to each of its adjacent edges ei.

– We assume that a node will be able to inform an incoming agent a0 about
local identity of the channel ei through which that agent entered that node.
This information will be stored in the operating system of the node even
while the according agent is waiting in the node’s internal queue.

3 Technically speaking, the agent must modify its own program code —like in the ‘core
war’ game— when modifying its own persistent memory, for the agent consists of
nothing else but program code.
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– After an LCO rule {T —N} =⇒ {T → T } has been successfully applied to
a node v, i.e. another branch (→) of a spanning tree has been constructed
and v has become part of it by changing its type from N to T , v will
internally mark the according channel port. A link memory L shall store
this information. Note that a node can have at most one incoming edge in
a spanning tree, such that L is either empty or it carries the name of one of
the ports of its node.

Algorithm (Pseudo-Code)
Based on the assumptions of above, the algorithm of Fig. 2 (the code of which is
carried by the mobile agents), implements relabeling rules of type LC0. Deadlock-
Freeness of the procedure is guaranteed because no kinds of blocking techniques
(semaphores, etc.) are used at all. Mutual Exclusion of agents in one node is
guaranteed by the underlying operating system of that node which is assumed
to provide a FIFO queue for incoming agents. Correctness of the spanning tree
construction is guaranteed by the fact that any node can have at most one
incoming link, and any agent can create at most one such links at the same
time, and at most one agent can be active in the same node at the same time.

Also note that the agent’s memory C is actually a monotonous function: As
soon as the agent has found his first context node of type T , C will switch

PROCEDURE AGENT[C] . . . . . . . . . . . . //C is persistent during migration!
BEGIN
ARRIVE @ node;
BEGIN ATOMIC SECTION

if( T(node) == ‘T ’ ) . . . . . . . . . . . . . . . . . // found potential LC0 rule context
C := true;
p := getAnyPort(node); . . . . . . . . . . . . . . . . . . . . . . // try to find node type ‘N ’
LEAVE(p);

if( T(node) == ‘N ’ AND C == true ) . . . . . . . . . . . . .// application possible
i := getMyIncomingPort(node);
L(node) := i;
T(node) := ‘ T ’; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .// update accomplished
p := getAnyPort(node); . . . . . . . . . . . . . . . . . . . . . . . // try to find further work
LEAVE(p);

if( T(node) == ‘N ’ AND C == false ) . . . . . . . . . . . . . // not seen T -context
p := getAnyPort(node); . . . . . . . . . . . . . . . . . . . . . // try to find node type ‘ T ’
LEAVE(p);

END ATOMIC SECTION
END

Fig. 2. LC0 implementation: code for an agent
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to true and will never be switched back to false again, for any node visited
immediately afterward is either a T too, or will switch from N to T in the
course of the operation. This means that our agent implementation of above
is almost state-less, and can indeed be made completely state-less if it can be
externally guaranteed that the starting place of an agent (at creation time) is a
node which has type T .

2.2 LC1 with Two Different Types of Agents

LC1 is the star rule type that updates a single node in relation to all its neighbors.
In other words, LC1 works like a generalized cellular automaton rule in the sense
of [6]. We can thus sketch the update type of LC1 as:

LC1 rule: �
N
{ ⊗

X
}∗ � �

T
{ ⊗

X
}∗

whereby X stands for any node label in the neighborhood which will remain the
same; only the center of the star is updated when the neighborhood condition
is fulfilled. In the following implementation of this rule we will use a blocking
technique, such that two agents who wish to update neighbor nodes cannot
interfere with each other. The according agents of type Star will be used to
implement the core of LC1.

However, whenever blocking is allowed, the resulting system is deadlock-prone.
To break the symmetry of a mutual-block situation, an agent of type “Lamport”
will crawl through the web and assign priority labels wherever a mutual-block
situation is detected. Consequently an area with a higher priority can be served
first by the agents of type Star. In the following we first present the code of the
Star agents, thereafter the code of the “Lamport” agent.4

Preliminaries. Without loss of generality (only for the sake of intuitive de-
scription) we assume that a star center is connected by with its neighbor nodes
by means of one hyper edge. Given a node set V , a hyper edge is a structure
h = (v, V ), whereby v ∈ V and V ⊆ V . Thus an agent shall be able to use
the information h(v) ∈ V (and for any v′ ∈ V , h−(v′) = v) for the purpose of
traveling between a center of a star and its fringes (orientation). A node shall
be endowed with a rich internal state, made up of the following components:

– p ∈ IN0"{−1} is a priority flag which will be used to solve conflicts between
competing neighbor activities. (The value −1 means that this node has not
yet been ranked in any priority order.)

– m is the node’s main label, which can be updated as a result of any LC1
rule application.

– h is the node’s hyper edge information which is used by a Star agent to
navigate within a star shaped neighborhood.

4 The idea is inspired by Lamports well-known “Bakery” protocol.
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– M = [m1, . . . , mn] is a field with a buffer mi for every neighbor node vi =
h(v) ∈ V . According to rule LC1 the center node can be updated as soon as
information from all its neighbors are collected, and M will be used exactly
for this purpose.

Similar to the previous example (LC0), a Star agent shall possess a small, persis-
tent runtime environment which the agent can carry from node to node during
migration. The main components of this runtime environment are

– A number memory (‘my-prio’, init.:nil), such that priority considerations can
be made;

AG DEF PERSISTENT VAR:
my-label(init:nil), my-prio(init:nil),
my-memo(init:nil), my-counter(init:0) ;

BEGIN
if IF (my-count = 0) AND (host-prio = −1) then

host-prio := 0 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .// mark center active
my-prio := host-prio ;
my-count := 1 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // prepare for work

if (my-count = 1) then
my-label := host-hyp ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . // remember hyper edge
my-prio := host-prio ;
my-count := 2 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // prepare for fringe
DO select neighbor N with host-M[N] = nil ;
DO move and enqueue into [my-label → N] ;

if (my-count = 2) AND ((host-prio = −1) OR (my-prio < host-prio)) then
my-memo := host-m ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // collect info
my-count := 3 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // prepare for center
DO move and enqueue into [my-label−] ; . . . . . . . . . . . . . . . . . . . . .// go back

if (my-count = 2) AND (my-prio ≥ host-prio) then
my-memo := nil ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // fringe is blocked
my-count := 3 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // prepare for center
DO move and enqueue into [my-label−] ; . . . . . . . . . . . . . . . . . . . . .// go back

if (my-count = 3) then
DO update host-M ← my-memo ; . . . . . . . . . . . . . . . . . . . . . . . . . . . // bring info
if IF (host-M contains nil) then my-count := 1 else my-count := 4

if (my-count = 4) then
// all neighbors checked
DO update host-m = • ; . . . . . . . . . . . . . . . . . . . . . // rule application in center
host-prio := −1 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // job done
my-count := 0 ;
DO move away to another job ;

if (otherwise) then
// nothing to do here my-count := 0 ;
DO move away to another job ;

Fig. 3. LC1 implementation: code for a Star agent
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if (host-prio = 0) then
// found node in critical section
host-prio := my-number ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . // allocate priority
my-number := my-number +1 ;
DO move away to another job ;

Fig. 4. LC1 implementation: code for the Lamport agent

– A hyper edge memory, (‘my-label’, init.:nil) such that the agent has orien-
tation within a star-shaped neighborhood of nodes;

– A work-mode flag (‘my-counter’, init.:0) such that the agent can determine
whether he is in the center of a star, or at the fringe of a star, or in search
for another job;

– A memory (‘my-memo’, init.:nil) for reading a node’s label and transporting
this information back into the center of a star.

Agent Star (Pseudo-Code). Based on the preliminaries of above, the algo-
rithm of Fig. 3 for the Star agent should be more or less self-explanatory — note,
however, that the agent code is started from the very first line of the program
whenever the agent arrives at a new node, (thus: no persistent program pointer
and consequently no code-continuation in the process of migration):

Basically the algorithm says: When you have collected information from all
the neighbors then you must apply the LC1 rule. However, if a neighbor is
prior, then you cannot collect its information and you must return to the center
undone; and try again later. The priority labels are allocated by the supportive
Lamport agent which is described in the following.

Agent “Lamport” (Pseudo-Code). This agent is very simple, see Fig. 4 for
the detailed description. However, to ensure uniqueness of the priority numbers,
we stipulate that there be only one instance of “Lamport” in the network. Because
the code of this agent is only short, we can assume that it will work sufficiently
fast to do his job across the network. Whenever the Lamport agent finds a critical
node (with number 0), it will allocate a unique number n > 0 to it. This is also
the reason why the Star agent has to update his own priority memory whenever
he comes back into the center — because the Lamport agent could have visited
the center in the meantime while the Star agent was in the fringe.

Because of the uniqueness of the priority numbers allocated by the Lamport
agent, the Star agents can never deadlock, though they can temporarily protect
their current neighborhoods against other Star agents roaming in the network.

3 A General Mobile Agent Framework for Relabeling
Systems

After having presented two particular examples (LC0, LC1) in the previous sec-
tion, we are now aiming for a constructive and general method of implementing
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any local graph relabeling system by means of mobile agents. In doing so, we ap-
proach a general and unified framework for local computations which is consistent
with the classical theory of local computation based on graph relabeling systems.

In the rest of the paper, we consider a k-locally generated relabeling system R.
We recall that R is called k-locally generated if any relabeling rule of R is entirely
defined by the precondition and the relabeling of a generic ball of radius at most
k. Intuitively speaking, only the labels of nodes and edges in a ball of radius k are
changed. One application of this type of relabeling systems is for studying graph
reduction rules and graph recognizers in a distributed and static environment.
For instance, in [15] it is shows how to encode handy reduction rules envolving
vertex (edge) deletion (addition) in a distributed environement by mean of k-
locally generated relabeling systems.

Before going into the details, let us define the model we will consider. We will as-
sume that each node is equipped with a whiteboard where agents can read and write
information under mutual exclusion. The label of a node is stored in itswhiteboard.
The whiteboard WB(v) of a node v contains also other variables allowing agents to
exchange information and to communicate together (e.g., to decide whether a node
may be relabeled). More precisely, for every node v we will denote by WB(v).c the
couple (X, i) with X a label from set {M,Locked}, and i is an integer value. In our
general approach, we will assume that every agent has a unique identifier. In fact,
if the agents (and the network) are anonymous and if k > 2, there exists no deter-
ministic distributed algorithm in the asynchronousmobile agentmodel allowing to
execute a k-locally generated relabeling system for any graph. This claim can be
proved using the equivalence result of [4]. Roughly speaking, the equivalence result
there says that mobile agents and message passing systems have the same power
from a computability point of view5. Since it is well known that it is impossible to
implement a k-locally generated relabeling system for any graph using messages
(see e.g., [1,13]), our claim is straightforward.For simplicity and clarity, we assume
that the identifier of agent Ai (with i ∈ {1, · · · , n}) is i.

Assume that we have n agents which have been scattered over the entire
network. Our goal is to make the agents apply the relabeling rules given by R
in a distributed way. The examples of the previous section have shown that the
major challenge consists in making the agents execute the rules in an independent
and concurrent way, that is, if an agent is being executing some rule in some
region, then no other agent should execute a rule simultaneously on the same
region — otherwise the relabeling may be wrong or ill-defined. We first present
an algorithm for the case there is exactly one agent in the network, thereafter
we extend the solution for the more general case of many agents (n > 1).

3.1 Single Agent Implementation

For now we assume that we have only one agent in the network to implement a
distributed algorithm specified by a local graph relabeling system. Two problems
must be solved in this scenario:
5 In other words, what can be computed by message passing can also be computed by

mobile agents and vice versa.
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– How shall the agent traverse the entire network without omitting any node?
– How does the agent recognize the neighborhood of a node in order to apply

a relabeling rule on this node in that neighborhood?

The traveling problem can be solved by means of a spanning tree. Thus, first
we make the agent construct a rooted spanning tree T of the entire network.
Many spanning tree algorithms are described in the literature, and any kind
of spanning tree will do (see also the next section for a Depth First Search
(DFS) tree algorithm). Now, the agent can use T as a map for traveling across
the network. For instance, from the root of T , the agent could perform a DFS-
traversal of T . Whenever the agents visit a new node, he temporarily interrupts
his DFS-traversal in order to apply a local relabeling rule. Thereafter the agent
continues the DFS-traversal to visit another node in T . Once the entire network
is traversed the agent will start a new DFS-traversal, and so on, until no further
relabeling rules are applicable. This method ensures that all the nodes of the
graph will be visited at some time by the agent, such that node starvation is
impossible.

Now we need to describe how the agent can execute a graph relabeling rule
after arrival at some node v. The idea is to make the agent “learn” the k-
neighborhood of v in order to be able to check if a relabeling rule can be applied.
In order to learn the node’s k-neighborhood, the agent first constructs a Breadth
First Spanning (BFS) tree TB(v,k) of the ball B(v, k) rooted at v (for instance
this can be done in a layered fashion). Then the agent collects the entire topol-
ogy of B(v, k) by traversing the neighborhood tree TB(v,k). In case the network
nodes have unique identifiers the learning of a node’s k-neighborhood is quite
straightforward. In case that no such unique node identifiers are available it is
also not too difficult to let the agent himself create such identifiers for the visited
nodes (e.g., when constructing the initial spanning tree T ). Having “learned” the
topology of B(v, k), and having noticed that some relabeling rule r is applicable
in the context of B(v, k), the agent visits B(v, k) again (using the neighborhood
tree TB(v,k)) and attaches new labels according to rule r.

3.2 Multiple Agent Implementation

In the remainder of this section, we extend the previous single agent approach
and describe our generic framework for implementing a k-locally generated re-
labeling system for any integers k, n ≥ 1.

Initializing and Traveling the Network. The key idea of our approach is
to partition the graph G into a set of n regions (Gi)i∈{1,...,n} and to assign a
region Gi to every agent Ai. Each agent then applies the applicable relabeling
rules in its own region, independent of other agents. Thereby we have to consider
how the regions are assigned to the agents, and how the application of rules is
managed at the borderline between two regions.

Without loss of generality, we can assume that a node contains no more than one
agent at the beginning. In fact, if this assumption is not satisfied then the agents
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mark the initial departure node as root of TGi ;
find a new un-explored node neighboring the current node;
if a new un-explored node v is found then

mark the new explored node v as part of sub-graph Gi;
update the rooted tree TGi ;
continue the exploration (DFS-traversal) from node v (go to line 2);

else
move back to the previous parent node u using the rooted tree TGi ;
if node u is the root and all outgoing edges of u were explored then

stop the exploration;
TGi is ready;

else
continue the exploration from node u (go to line 2);

Fig. 5. Algorithm InitNetwork for constructing a region Gi: high level code for agent
number i

with the lowest identifiers travel the network searching for a new departure node.
If no free node is found (which can be detected by performing a DFS-traversal of
the network), the agent searching for a departure node vanishes (it dies).

At the beginning, each agent executes algorithm of Fig. 5. This algorithm is
an adaptation of the classical DFS-tree algorithm for a mobile agent system. For
simplicity, we have omitted the details showing how an agent marks a node or
an edge (which is straightforward using the above-mentioned whiteboards of the
nodes). After termination, every agent has computed a spanning tree denoted
by TGi . In other words, the region Gi is defined to be the subgraph of G induced
by the tree constructed by agent Ai.

Note that it might possibly happen that an agent fails to compute a tree.
In this case, the agent should vanish and the actual number of agents in the
network is decreased. Moreover, the case of a unique agent corresponds to the
case where there is only one region (the whole graph). However, the algorithm
InitNetwork of Figure 5 allows to construct a spanning forest of G even when
the agents do not have unique identifiers which could be of independent interest.
Note that algorithm InitAgent can be easily encoded in a high level way using
rules type LC0 or LC1.

Executing the local relabeling. Now that the regions (Gi)i∈{1,...,n} are con-
structed, every agent is responsible for executing relabeling rules in its own re-
gion. In the interior of a region, the rules could be executed like specified by our
single agent implementation. However, some conflicts may occur at the border-
line between two adjacent regions. The main purpose of the following paragraphs
is to show how to deal with these conflicts. First, each agent Ai constructs a BFS-
spanning tree TBi(v,k) of B(v, k) for each node v ∈ Gi (note that TBi(v,k) may
contain nodes in another region Gj �= Gi). Then, each agent Ai traverses Gi in
a DFS fashion using TGi . When agent Ai is at a node v ∈ Gi, it tries to apply a
rule using the following four phase strategy:
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1. In the first phase, agent Ai traverses TBi(v,k) and collects the labels of B(v, k)
in order to check if a rule can be applied. If no rule can be applied, then Ai

continues the traversal of TGi . Otherwise, Ai goes to the second step.
2. In the second phase, agent Ai traverses TBi(v,k) and tries to mark the

WB(w).c field of nodes w ∈ B(v, k) using an extra label (M,i) as following:
– If a node w ∈ B(v, k) is marked with label (locked,j) for any j �= i, then

agent Ai waits until node w is unlocked by agent Aj (see next phase).
– If a node w ∈ B(v, k) is already marked (M,j) by another agent Aj �= Ai,

then there are two cases:
• If i < j then Ai unmarks all the nodes he has already marked and

continues the traversal of TGi (go to step 1).
• Otherwise, Ai marks w with label (M,i) and continues the traversal

of TBi(v,k) (exploration of B(v, k)).
3. In the third phase, if Ai succeeds in marking all the nodes of B(v, k) with

(M,i), then it traverses TBi(v,k) once again in order to lock all the nodes
in B(v, k) by marking them with the extra label (locked,i), i.e., the neigh-
borhood ball is ready to be relabelled according to a rule. If the label of at
least one node w ∈ B(v, k) is not (M,i) then Ai unmarks all nodes marked
with label (M,i) or those locked with label (locked,i) and continues the
DFS-traversal of TGi (in other words, it reinitializes the WB(w).c field of
nodes w ∈ B(v, k) marked by himself and goes to phase 1). When an agent
Ai traverses TBi(v,k) in order to lock the nodes, it also collects the topology
of B(v, k) at the same time in order to prepare executing a rule which avoids
to make another traversal.

4. The fourth phase is executed if and only if the agent Ai has succeeded locking
all nodes in B(v, k). Hence, the agent traverses B(v, k) for the fourth time
in order to apply a rule. At the same time, it unlocks the nodes in B(v, k).
Finally, the agent continues the DFS-traversal of TGi and starts another
cycle in the first phase again.

Note that an agent executes the second phase if and only if it finds a rule to
execute after the first traversal in the first phase. Nevertheless, it may happen
that in the fourth phase, no rule can be applied since the label of some nodes in
B(v, k) may change. In addition, a node w marked (locked,i) by an agent Ai

can be updated only by agent Ai himself. In other words, if an agent j wants to
mark node w, then he must wait until agent Ai unmarks it.

Correctness Analysis. First we argue that the relabeling done by an agent
Ai locally on a ball B(v, k) is correct. In fact, the relabeling of a ball is always
done according to a valid relabeling rule described by the relabeling system given
in input. Furthermore, whenever an agent is being relabeling a node w (or an
edge) of a ball B(v, k) in phase 4, no other agent could be relabeling a node
w′ in B(v, k) at the same time. The latter property is quite easily proven, too,
since an agent Ai begins relabeling a ball B(v, k) in phase 4 if and only if the
entire ball B(v, k) has been marked with label (locked,i), and nodes marked
with label (locked,i) cannot be unlocked by other agents. Now, it remains the
prove that the relabeling is globally correct.
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Lemma 1. Our framework is deadlock free, i.e., an agent cannot be blocked
infinitely often in any node.

Proof. (Sketch) The only case where an agent Ai may wait at a node w is
when w is marked (locked,j) with i �= j (phase 2). In other words, the agent Ai

may wait if the node w was locked by another agent Aj . From the description
of phase 3 and 4, we are sure that node w will be unlocked by agent Aj . Since
node w was locked by agent Aj this means that agent Aj has succeeded into
applying phase 2, i.e., it has marked all nodes in the corresponding B(v, k) ball
with label (M,j). Thus, agent Aj is applying either phase 3 or phase 4, while
agent Ai is waiting in node w. From the description of phase 3 and 4, agent Aj

is never blocked and it always unlocks the nodes in B(v, k).  !

The deadlock freeness property stated in the previous lemma is not sufficient to
prove the correctness of our framework. In fact, it only ensures that the agents
will not be blocked waiting for each others, but it does not ensure that the
relabeling rules will be effectively applied. In the following, we argue that if a
rule r has to be executed in any node v in order to continue the relabeling of the
graph, then there exists an agent Ai that succeeds in relabeling B(v, k) within
a finite time according to r.

Note that in the first stage of our framework, an agent at node v always
verifies whether a rule can be applied. Thus if an agent starts marking the nodes
of some ball B(v, k), then this means that some rule can be applied in B(v, k).
Now, observe that if an agent Ai fails preparing a ball B(v, k) in phase 3 i.e.,
it fails locking the nodes of B(v, k), then there must exist another agent Aj

applying a rule in a ball B(w, k) such that j > i and B(v, k) ∪ B(w, k) �= ∅.
The agent Aj may also fail preparing ball B(w, k) because of a neighboring
agent A� with a higher identifier. Using the deadlock freeness property we are
sure that among all agents who passe the first phase, at least the agent having
the highest identifier will succeed applying a rule. Now, suppose that some rule
r has to be executed in some ball B(v, k) in order to continue the relabeling
of the graph, that is no other rule can be applied in any other node before
rule r is applied in B(v, k). Then, the agent Ai in the region Gi containing
v will be the only agent who passes the first stage of our framework and will
not be disturbed by other neighboring agents when preparing the ball B(v, k)
in phase 3.

Therefore we can conclude that our generic framework is correct; there is no
deadlock, there is no rule starvation, and the relabeling performed by agents
works as intended.

4 Conclusion

In this paper, we have argued that mobile agent paradigm is suitable for imple-
menting distributed algorithms based on relabeling systems. By doing so, we are
approaching a more comprehensive theory of distributed algorithms in which (i)
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relabeling systems are considered as a formal tool-box for designing algorithms
and (ii) our mobile agent algorithms are considered as a practical tool-box for
implementing them. Consequently, the mobile agent algorithms given in this
paper can be considered as the key to a complete solution for designing, proving
and implementing distributed algorithms using relabeling systems.

We believe that mobile agents will play an important role into bringing about a
new theoretical and a practical approach to some classical distributed problems.
Indeed, the abstraction provided by mobile agents allows both an encapsulation
and a modularization of distributed computations over a network, which should
lead to feasible solutions.
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Abstract. We present a graphical implementation for finite processes
of the mobile ambients calculus. Our encoding uses unstructured (i.e.,
non hierarchical) graphs and it is sound and complete with respect to the
structural congruence of the calculus (that is, two processes are equiva-
lent iff they are mapped into isomorphic graphs). With respect to alterna-
tive proposals for the graphical implementation of mobile ambients, our
encoding distinguishes the syntactic structure of a process from the acti-
vation order of a process components. Our solution faithfully captures a
basic feature of the calculus (ambients can be nested and reductions are
propagated across ambient nesting) and it allows to model the reduction
semantics via a graph transformation system containing just three rules.

1 Introduction

Among recently introduced nominal calculi, mobile ambients [1] proved to be
a popular specification formalism. Besides the standard operators for parallel
composition and name restriction, it introduces the notion of ambient, i.e., a
named environment where system evolutions may take place. The application
domains of the calculus proved quite large, as witnessed by its use in system
biology [2]. Moreover, the calculus inspired novel verification tools such as spatial
logic [3], where the logical operators reflect the topological structure of a system.

As it is nowadays standard for nominal calculi, the operational semantics of
mobile ambients is expressed by a set of (structural) axioms, plus a set of infer-
ence rules, inducing a reduction relation on processes. With respect to similar
foundational calculi, though, those rules are rather complex, reflecting the rich
structure of processes. Such a complexity is confirmed by the current (distrib-
uted) implementations for the calculus, as surveyed in [4]. Besides the usual prob-
lems of nominal calculi, linked with the use of message passing for addressing the
so-called magic matching issue (the implicitly global choice for the subprocess
where the reduction has to take place), the abstract machines have to “separate
the logical distribution of ambients (the tree structure given by the syntax) from
their physical distribution (the actual sites they are running on)” [4, p.117]: the
states of the machine thus have to explicitly record the nesting of ambients.
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This paper presents a graphical implementation for the mobile ambients cal-
culus that exploits the dichotomy between the tree structure of a process and the
topology associated to its activation points, i.e., to those ambients that actually
allow for the evolution of the subprocesses they contain. The encoding is then
exploited to recast the complex operational semantics of the calculus by an easy
and natural presentation via DPO rules, thus inheriting the wealth of tools and
techniques for system analysis that are available for graph transformation.

It has been indeed since its origins in the late 1960’s that the theory of graph
transformation has been successfully applied in those areas where both static
and dynamic modeling of systems by graphical structures play an important
role. Graph rewriting has been used, for example, as a computational model for
functional programming languages and for specifying distributed systems and
visual languages. Only in recent years, though, graph rewriting has been used for
process algebras specification: graphs model processes and graph transformation
techniques simulate the reduction semantics of the calculus at hand.

The widespread acceptance of π-calculus made it the formalism usually con-
sidered when proposing a graphical framework for the description of concurrent
and distributed systems (see e.g. [5] and the references therein), and even more
so after the introduction of Milner’s bigraphs [6]. However, the richness of mo-
bile ambients may prove it a more suitable testbed for the use of graph-based
formalisms in the description of process calculi.

The earliest proposal we are aware of is [7], from where our solution lifts the
use of unstructured graphs in the encoding of processes. Besides introducing a
slender graph syntax (according to [5]), the difference with the previous solution
lies in the chosen representation of the states: the lack of records for the activa-
tion points in [7] forced the introduction of suitable rules for forwarding the in-
formation about “being enabled” to subprocesses. The presence of such spurious
rules, possibly inhibiting the execution of some reductions, made the correspon-
dence between graph transformations and process reductions only weakly sound
and complete (see e.g. [7, Theorems 5.3 and 5.4]). Thus, it made less meaningful
the application of standard tools from graph transformation (such as the differ-
ent parallelism theorems) for discussing about properties of process evolution.
Our chosen state representation allows instead for the reuse of such techniques,
as surveyed in [5] for the π-calculus.

As far as other proposals for graphical implementation are concerned, we are
aware of [8,9], using the so-called Synchronized Hyperedge Replacement frame-
work, as well as of [10], in the mold of the standard DPO approach. Moreover,
in [11] an encoding of mobile ambients by bigraphs is just outlined. As future
work they plan to pursue this in detail, but still no encoding has been proposed.

In general, those SHR solutions are eminently hierarchical, meaning that each
edge/label is itself a structured entity, and possibly a graph. More precisely,
“sequential processes become edge labels: when an action is performed, an edge
labelled by M.P is rewritten as the graph corresponding to P” [8, p. 11]. This
is unfortunate for calculi such as mobile ambients, where the topology of the
systems plays a major role in discussing e.g. about distributed implementation
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and parallel execution of reductions [12]. Moreover, to the expressive power of the
SHR framework corresponds a rather complex mechanism for rule application,
which compares unfavourably with the basic DPO matching of our solution.

As far as [10] is concerned, the main difference with respect to our proposal
is in the use of a process representation where the nesting of ambients is made
explicit by the presence of suitable edges, instead of being implicit in the repre-
sentation of each process, as in our proposal. The resulting encoding of processes
is thus centralized, and this condition results in a complex set of graph trans-
formation rules. Moreover, the encoding of process reduction is sound, yet not
complete, thus not allowing the reuse of tools for system analysis that we men-
tioned earlier.

This paper is organized as follows. Section 2 briefly recalls the mobile ambients
calculus. In Section 3 we introduce (typed hyper-)graphs and their extension with
interfaces, while Section 4 presents the DPO approach to their rewriting. Then, in
Section 5 we introduce a graphical encoding for processes of the mobile ambients
calculus, and we present our first result, namely, that our encoding is sound and
complete with respect to the structural congruence of mobile ambients. The
main results of our paper are presented in Section 6, which introduces a graph
transformation system for modelling the reduction semantics of mobile ambients.
Finally, Section 7 concludes the paper.

2 Mobile Ambients

In this section we briefly recall the mobile ambients calculus [1]. In particular, we
introduce the syntax and the reduction semantics for the finite, communication
free fragment of the mobile ambients calculus.

Table 1 shows the syntax of the calculus. We assume a set N of names ranging
over by m, n, o, . . . Also, we let P, Q, R, . . . range over the set P of processes.

Table 1. Syntax of mobile ambients

P ::= 0, n[P ], M.P, (νn)P, P1|P2 M ::= in n, out n, open n

The restriction operator (νn)P binds n in P . A name n occurring in the scope
of the operator (νn) is called bound, otherwise it is called free. We denote the
set of free names of a process P by fn(P ). We adopt the standard notion of
α-conversion of bound names and the standard definition for name substitution.
We write P{m/n} for the process obtained by replacing each free occurrence of
n in P with m, and by α-converting the bound names to avoid conflicts with m.

The semantics of the mobile ambients calculus is given by a structural con-
gruence between processes and a reduction relation. The structural congruence,
denoted by ≡, is the least relation on processes that satisfies the equations and
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Table 2. Structural congruence

P ≡ Q ⇒ n[P ] ≡ n[Q] P |0 ≡ P
P ≡ Q ⇒ M.P ≡ M.Q (νn)(νm)P ≡ (νm)(νn)P
P ≡ Q ⇒ (νn)P ≡ (νn)Q (νn)(P |Q) ≡ P |(νn)Q if n /∈ fn(P )
P ≡ Q ⇒ P |R ≡ Q|R (νn)m[P ] ≡ m[(νn)P ] if n �= m
P |Q ≡ Q|P (νn)0 ≡ 0

(P |Q)|R ≡ P |(Q|R) (νn)P ≡ (νm)(P{m/n}) if m /∈ fn(P )

the rules shown in Table 2. The congruence relates processes which intuitively
specify the same system, up-to a syntactical rearrangement of its components,
and it is then used to define the operational semantics.

The reduction relation, denoted by→, describes the evolution of processes over
time: P → Q means that P reduces to Q, that is, P can execute a computational
step and it is transformed into Q. Table 3 shows the reduction rules. The first
three rules are the only three axioms for the reduction relation. In particular, the
Red-In rule enables an ambient n to enter a sibling ambient m. The Red-Out rule
enables an ambient n to get out of its parent ambient m. Finally, the last axiom
allows to dissolve the boundary of an ambient n. The Red-Res, Red-Amb and
Red-Par rules say that reduction can occur underneath restriction, ambient and
parallel composition, respectively. Finally, the last rule says that the reduction
relation is closed under the structural congruence ≡.

As we said above, the structural congruence is used to define the reduction
relation. It is possible to take into account different structural congruence rela-
tions. As in [7], we consider the structural congruence, denoted by ≡′, defined
as the least relation that satisfies the axiom in Table 4 and all the equations
and the rules in Table 2, except the axiom (νn)0 ≡ 0. We denote by →′ the
reduction relation defined by the rules shown in Table 3, but closed under the
structural congruence ≡′. Note that considering the structural congruence ≡′

does not change substantially the reduction semantics. Indeed, the equality in-
troduced by the axiom in Table 4 holds in the only observational equivalence
for mobile ambients that we are aware of, proposed in [13]. In particular, two

Table 3. Reduction relation

n[in m.P |Q]|m[R] → m[n[P |Q]|R] (Red-In)
m[n[out m.P |Q]|R] → n[P |Q]|m[R] (Red-Out)
open n.P |n[Q] → P |Q (Red-Open)
P → Q ⇒ (νn)P → (νn)Q (Red-Res)
P → Q ⇒ n[P ] → n[Q] (Red-Amb)
P → Q ⇒ P |R → Q|R (Red-Par)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red-Cong)
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Table 4. The additional axiom of the structural congruence

(νn)M.P ≡′ M.(νn)P if n /∈ fn(M)

processes that are congruent according to the axiom in Table 4 are also reduction
barbed congruent.

3 Graphs and Graphs with Interfaces

This section presents some definitions concerning (hyper-)graphs, typed graphs
and graphs with interfaces. It also introduces two operators on graphs with
interfaces. We refer to [14] and [15] for a detailed introduction.

Definition 1 (Graphs). A (hyper-)graph is a four-tuple 〈V, E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions.

From now on we denote the components of a graph G by VG, EG, sG and tG.

Definition 2 (Graph morphisms). Let G, G′ be graphs. A (hyper-)graph
morphism f : G → G′ is a pair of functions 〈fV , fE〉, such that fV : VG → VG′

and fE : EG → EG′ and they preserve the source and target functions, i.e.
fV ◦ sG = sG′ ◦ fE and fV ◦ tG = tG′ ◦ fE.

The category of graphs is denoted by Graph. We now give the definition of
typed graph [16], i.e., a graph labelled over a structure that is itself a graph.

Definition 3 (Typed graphs). Let T be a graph. A typed graph G over T is
a graph |G| with a graph morphism τG : |G|→ T .

Definition 4 (Typed graph morphisms). Let G, G′ be typed graphs over T .
A typed graph morphism f : G → G′ is a graph morphism f : |G| → |G′|
consistent with the typing, i.e., such that τG = τG′ ◦ f .

The category of graphs typed over T is denoted by T -Graph. In the following,
we assume a chosen type graph T .

To define the encoding for processes inductively, we need operations to com-
pose graphs. So, we equip typed graphs with suitable “handles” for interacting
with an environment. The following definition introduces graphs with interfaces.

Definition 5 (Graphs with interfaces). Let J, K be typed graphs. A graph
with input interface J and output interface K is a triple G = 〈j, G, k〉, where G
is a typed graph, j : J → G and k : K → G are injective typed graph morphisms,
and they are called input and output morphisms, respectively.
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Definition 6 (Interface graph morphisms). Let G, G′ be graphs with the
same interfaces. An interface graph morphism f : G ⇒ G′ is a typed graph
morphism f : G → G′ between the underlying graphs that preserves the input
and output morphisms.

We denote a graph with input interface J and output interface K by J
j−→

G
k← K. If the interfaces J and K are discrete, i.e., they contain only nodes, we

represent them by sets. With an abuse of notation, in the following we refer to
the nodes belonging to the image of the input morphism as inputs. Similarly, we
refer to the nodes belonging to the image of the output morphism as outputs.
We often refer implicitly to a graph with interfaces as the representative of
its isomorphism class. Moreover, we sometimes denote the class of isomorphic
graphs and its components by the same symbol.

Now, we define two binary operators on graphs with discrete interfaces.

Definition 7 (Sequential and parallel composition). Let G = J
j−→ G

k←
K and G′ = K

j′−→ G′ k′← I be graphs with discrete interfaces. Their sequential

composition is the graph with discrete interfaces G ◦ G′ = J
j′′−→ G′′ k′′← I, where

G′′ is the disjoint union G " G′, modulo the equivalence on nodes induced by
k(x) = j′(x) for all x ∈ VK , and j′′ and k′′ are the uniquely induced arrows.

Let G = J
j−→ G

k← K and G′ = J ′ j′−→ G′ k′← K ′ be graphs with discrete
interfaces, such that τJ (x) = τJ′(x) for all x ∈ VJ ∩ VJ′ and τK(y) = τK′(y) for
all y ∈ VK ∩VK′ . Their parallel composition is the graph with discrete interfaces

G ⊗ G′ = (J ∪ J ′)
j′′−→ G′′ k′′← (K ∪K ′), where G′′ is the disjoint union G " G′,

modulo the equivalence on nodes induced by j(x) = j′(x) for all x ∈ VJ ∩VJ′ and
k(y) = k′(y) for all y ∈ VK ∩ VK′ , and j′′, k′′ are the uniquely induced arrows.

Intuitively, the sequential composition G ◦G′ is obtained by taking the disjoint
union of the graphs underlying G and G′, and gluing the outputs of G with
the corresponding inputs of G′. Similarly, the parallel composition G ⊗ G′ is
obtained by taking the disjoint union of the graphs underlying G and G′, and
gluing the inputs (outputs) of G with the corresponding inputs (outputs) of
G′. Note that both operations are defined on “concrete” graphs. However, their
results do not depend on the choice of the representatives of their isomorphism
classes.

A graph expression is a term over the syntax containing all graphs with dis-
crete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all the occurrences of both sequential
and parallel composition are defined for the interfaces of their arguments, ac-
cording to Definition 7. The interfaces of a well-formed graph expression are
computed inductively from the interfaces of the graphs occurring in it; the
value of the expression is the graph obtained by evaluating all the operators
in it.
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4 Graph Rewriting

In this section we introduce the basic definitions for the DPO approach to the
rewriting of (typed hyper-)graphs [17,18] and graphs with interfaces.

Definition 8 (Graph production). A T -typed graph production p : (L l←−
K

r−→ R) consists of a production name p and of a span of graph morphisms
(L l←− K

r−→ R) with l mono in T -Graph.

Definition 9 (Graph transformation system). A T -typed graph transfor-
mation system (gts) G is a pair 〈T, P 〉, where T is a type graph and P is a set
of productions, all with different names.

Definition 10 (Graph derivation). Let p : (L l←− K
r−→ R) be a T -typed

graph production and let G be a T -typed graph. A match of p in G is a morphism
mL : L→ G. A direct derivation from G to H via production p and match mL is
a diagram as depicted in Figure 1, where (1) and (2) are pushouts in T -Graph.
We denote this derivation by p/m : G =⇒ H, for m = 〈mL, mK , mR〉, or simply
by G =⇒ H.

Before giving the definition of derivation between graphs with interfaces, we
introduce the notion of track function.

Definition 11 (Track function). Let p be a graph production and let p/m :
G =⇒ H be a direct derivation, as in Figure 1. The track function tr(p/m)
associated with the derivation is the partial graph morphism r∗ ◦(l∗)−1 : G→ H.

Lp :

mL

��

(1)

K
r ��l��

mK

��

(2)

R

mR

��

G D
r∗

��
l∗

�� H

Fig. 1. A direct derivation

The track function identifies the items before and after a derivation. It is used
to give the definition of derivation between graphs with interfaces.

Definition 12 (Graph with interfaces derivation). Let G = J
j−→ G

k←−
K and H = J

j′−→ H
k′←− K be graphs with interfaces, and let p/m : G =⇒ H

be a direct derivation such that the track function tr(p/m) is total on j(J) and
k(K). We say that p/m : G =⇒ H is a direct derivation of graphs with interfaces
if j′ = tr(p/m) ◦ j and k′ = tr(p/m) ◦ k.

Intuitively, a derivation between graphs with interfaces is a direct derivation
between the underlying graphs, such that inputs and outputs are preserved.
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5 Graphical Encoding for Processes of Mobile Ambients

This section introduces a graphical encoding for processes of the mobile ambients
calculus. First of all, we present a suitable type graph, depicted in Figure 2, and
then we define an inductive encoding by exploiting the composition operators
introduced in Definition 7. This corresponds to a variant of the usual construction
of the tree for a term of an algebra: names are interpreted as variables, so they
are mapped to leaves of the graph and can be safely shared.

As we can see, in the type graph there are three types of node. Intuitively,
a node of type ◦ represents an ambient name, while a graph that has as roots
a pair of nodes 〈', •〉 represents a process. More precisely, the node of type '
represents the activating point for reductions of the process represented by the
graph. We need two different types of node to model processes by graphs because
each graph has to model both syntactical dependences between the operators of
the process and their activation dependences. Indeed, in mobile ambients the
nesting of operators does not reflect the activation dependences between them,
since reductions can occur inside ambients. So, in order to model a process, we
use • nodes to model the syntactical dependences between the operators of the
process, and ' nodes to model their activation dependences.

Each edge of the type graph, except the go edge, simulates an operator of
mobile ambients. Note that the act edge actually represents three edges, namely
in, out and open. These three edges simulate the capabilities of the calculus,
while the amb edge simulates the ambient operator. Notice that there are no
edges to simulate the restriction operator and the parallel composition. Finally,
the go edge is a syntactical device for detecting the “entry” point for the compu-
tation. We need it later to simulate the reduction semantics of mobile ambients.
It allows to avoid that a reduction can occur underneath a capability operator.

All edges, except go edge, have the same type of source, that is the node list
〈', •〉, while they have different types of target. In particular, the amb edge has
the node list 〈•, ◦〉 as target, while the in, out and open edges have the same type
of target, i.e. the node list 〈', •, ◦〉. Note that the three latter edges have a node
' in the target. This node represents the activating point for the reductions of
the continuation of the capability. It is different from the activating point of the

amb

�� ��
•

��

��

◦ �

��

		

�� go

act



 ����

Fig. 2. The type graph (for act ∈ {in, out, open})
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a �� �



� a��

p �� • �� act

��

��



• p��

◦ n��

a �� �



a��

p �� • �� amb ��



• p��

◦ n��

a �� � �� go

Fig. 3. Graphs actn (with act ∈ {in, out, open}); ambn; and go (left to right)

outermost capability operator, because the reductions of the continuation can
occur only after the action regulated by the capability is executed. The amb edge
instead has no node of type ' in its target. In fact, the activating point for the
reductions of the process inside an ambient is the same activating point of the
outermost ambient. This occurs because process reductions permeate ambients.

Now we define a class of graphs such that all processes can be encoded into an
expression containing only those graphs as constants, and parallel and sequential
composition as binary operators. Figures 3 and 4 depict these constant graphs.
In particular, Figure 3 presents the graphs that correspond to the edges of the
type graph. Figure 4 presents additional constant graphs needed for the formal
presentation of our encoding. Note that in the graphs of the two figures we
denote the input interface on the left and the output interface on the right.
For example, the graph ambn in the middle of Figure 3 has as input interface
{a, p} and as output interface {a, p, n}. Since a and p are constants used by our
encoding, we assume that p, a /∈ N , while n ∈ N (where N is the set of names
of mobile ambients).

In the following, we use 0a,p as shorthand for 0a ⊗ 0p. Moreover, for a set of
names Γ , we use idΓ and newΓ as shorthands for

⊗
n∈Γ idn and

⊗
n∈Γ newn,

respectively. Note that both last expressions are well defined, because the ⊗
operator is associative. The definition below introduces the encoding of processes
into graphs with interfaces. It maps each finite process into a graph expression.

Definition 13 (Encoding for processes). Let P be a finite process and let Γ
be a set of names such that fn(P ) ⊆ Γ . The encoding of P , denoted by �P �Γ , is
defined by structural induction according to the rules in Table 5.

Note that the encoding �M.P �Γ represents the encoding of in n.P , out n.P and
open n.P , while actn represents the inn, outn and openn graphs, respectively.

Our encoding solves the α-conversion of restricted names by denoting them
with ◦ nodes that are not in the image of the variable morphism. The mapping

a �� �

p �� •

n �� ◦

◦ n�� n �� ◦ n��

Fig. 4. Graphs 0a and 0p; 0n and newn; and idn (top to bottom and left to right)
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Table 5. Encoding for processes

�0�Γ = 0a,p ⊗ newΓ

�n[P ]�Γ = ambn ◦ (idn ⊗ �P �Γ )
�M.P �Γ = actn ◦ (idn ⊗ �P �Γ )
�(νn)P �Γ = �P{m/n}�Γ∪{m} ◦ (0m ⊗ idΓ ) for m /∈ Γ

�P |Q�Γ = �P �Γ ⊗ �Q�Γ

is well defined in the sense that the result is independent of the choice of the
name m in the rule for restriction.

The encoding �P �Γ , where Γ is a set of names such that fn(P ) ⊆ Γ , is a
graph with interfaces ({a, p}, Γ ). We note that the mapping is not surjective. In
fact, there are graphs with interfaces ({a, p}, Γ ) that are not in the image of the
encoding. The encoding of a process P is the graph �P �fn(P ). Below we give an
example of encoding of a process.

Example 1. Let us consider the example below, originally proposed in [1], which
illustrates a form of planned dissolution of an ambient n:

R = n[acid[out n.open n.P ]|Q]|open acid.0.

Figures 5 depicts the graph encoding �R�fn(R). We represent the graph encodings
for the processes P and Q by GP and GQ, respectively. Moreover, for the sake
of simplicity, we assume that the ambient names n and acid do not belong to
the set of free names of P and Q. For the moment, the reader can ignore the
edge labelled go and the labels of the nodes.

The leftmost edges, labelled amb and open, have the same roots, into which the
names a and p are mapped. Those two edges represent the topmost operators of
the two parallel components of the process. The edges in the middle, representing
from left to right the operators acid[ ] and out n. , respectively, are linked to the
same ' root. Intuitively, this means that they have the same activating point of
the outermost ambient, and hence the reductions can permeate the two ambients
n and acid. Instead, the rightmost edge, labelled open, has a different ' source

go GQ �4a
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•6p

�6a

Fig. 5. Graph encoding for the process n[acid[out n.open n.P ]|Q]|open acid.0
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that is the target of the edge out. Intuitively, this means that this capability
open can be executed only after the action out.

The following theorem states that our encoding is sound and complete with
respect to the structural congruence ≡′.

Theorem 1. Let P, Q be processes and let Γ be a set of names, such that
fn(P ) ∪ fn(Q) ⊆ Γ . Then, P ≡′ Q if and only if �P �Γ = �Q�Γ .

6 A Graph Transformation System for Mobile Ambients

This section presents a graph rewriting system that models the reduction se-
mantics of the mobile ambients calculus.

First of all, we enrich the encoding introduced in Definition 13 in order to avoid
performing reductions underneath capability operators. To do this we attach a
go edge to the ' root node of each graph representing a process. The go edge is
a syntactical device needed for detecting the “entry” point for the computation
of the process. Given a process P and a set of names Γ such that fn(P ) ⊆ Γ ,
its enriched encoding is the graph �P �Γ ⊗ go. We denote it by �P �

go
Γ .

Figure 6 presents the rules of the gts Ramb, which simulates the reduction
semantics →′ introduced in Section 2. The gts Ramb contains just three rules,
namely pin, pout and popen. They simulate the Red-In, Red-Out and Red-Open
reductions, respectively. The action of the three rules is described by the node
identifiers. These identifiers are of course arbitrary. They correspond to the ac-
tual elements of the set of nodes and are used to characterize the track function.

Now we discuss the rules of the gts Ramb. In order to give a clear explanation
of the rule actions, we denote by ambn an amb edge having in its target a ◦ node
identified by n. Let us consider the pin production. The pin rule preserves the
ambm edge, removes the ambn edge and re-creates this last one under ambm.
Note that, after the reduction, the in edge disappears and the nodes identified
by 2p and 3p are coalesced. Moreover, the ' node under the in prefix is activated.

The pout rule preserves the ambm edge and removes the ambn edge, too. It
also re-creates this last one with the same source nodes of ambm. Analogously
to pin, after the reduction the out edge disappears and the nodes identified by
3p and 4p are coalesced. Moreover, the ' node under the out prefix is activated.

Finally, the popen production removes both amb and open edges. After the
reduction, all the ' nodes and all the • nodes are coalesced, respectively. Fur-
thermore, the ' node under the open prefix is activated.

It seems noteworthy that three rules suffice for recasting the reduction seman-
tics of mobile ambients. That is possible for two reasons. First, the closure of
reduction with respect to contexts is obtained by the fact that graph morphisms
allow the embedding of a graph within a larger one. Second, no distinct instance
of the rules is needed, since graph isomorphism takes care of the closure with
respect to structural congruence, and interfaces of the renaming of free names.

We now introduce the main theorems of the paper. They state that our en-
coding is sound and complete with respect to the reduction relation →′.
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Fig. 6. The rewriting rules pin, pout and popen (top to bottom)

Theorem 2 (Soundness). Let P, Q be processes and Γ a set of names, with
fn(P ) ⊆ Γ . If P →′ Q, then Ramb entails a direct derivation �P �go

Γ =⇒ �Q�go
Γ .

Intuitively, a process reduction is simulated by applying a rule on an enabled
event, that is, by a match covering a subgraph with the go operator on top.

Theorem 3 (Completeness). Let P be a process and Γ a set of names, with
fn(P ) ⊆ Γ . If Ramb entails a direct derivation �P �go

Γ =⇒ G, then there exists a
process Q, such that P →′ Q and G = �Q�

go
Γ .

The correspondence holds since a rule is applied only if there is a match that
covers a subgraph with the go operator on the top. This allows the occurrence
of reductions inside activated ambients, but not inside capabilities. In fact, if an
amb operator is activated, that is, its ' source node has an outgoing go edge, then
all operators inside it are activated too, because they have the same source node
' as the amb operator. Differently, a reduction can not occur inside the outermost
capability, because the activating point for the reductions of the continuation of
a capability is different from the activating point of the outermost capability.

The following example shows the application of some rules of the GTS Ramb

to the graph encoding for the process considered in Example 1.
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Fig. 7. Graph encoding �acid[open n.P ]|n[Q]|open acid.0�go
fn(R)
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Fig. 8. Graph encoding �open n.P |n[Q]�go
fn(R)

Example 2. Let us consider again the process shown in Example 1:

R = n[acid[out n.open n.P ]|Q]|open acid.0.

The graphical encoding for the process above is depicted in Figure 5. The
nodes are labelled in order to denote the track function of the derivation. The
edge labelled go denote the entry point for the computation of the process.
Note that the two edges amb, the edge out and the outermost edge open can be
involved in a reduction step because they have the same activation node with
an outgoing go edge. Instead, the rightmost edge, labelled open, is not activated,
since its ' source is the target of another edge.

The application of the pout rule to the graph in Figure 5 re-
sults in the graph in Figure 7, which is the encoding for the process
acid[open n.P ]|n[Q]|open acid.0. In fact, this rewriting step simulates the transi-
tion n[acid[out n.open n.P ]|Q]|open acid.0→′ acid[open n.P ]|n[Q]|open acid.0.

Now, we can apply the popen rule to the graph in Figure 7, and we obtain
the graph in Figure 8. Note that this rewriting step simulates the transition
acid[open n.P ]|n[Q]|open acid.0→′ open n.P |n[Q].

Finally, by applying the popen rule to the graph in Figure 8, we get the graph
in Figure 9. The derivation mimics the reduction open n.P |n[Q]→′ P |Q.
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��

""

##$$

amb
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�� •2p
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�� amb

��

�� •3p �� GP

◦ m�� ◦ n��

open ��

��

��

•4p �� GQ

p �� •1p
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�� open ��

��

��

•5p �� GR �4a

��

�5a

��

Fig. 10. Graph encoding for the process m[n[P ]|open n.Q]|open m.R

The rewriting steps shown in the example above simulate a sequence of process
reductions all occurring on the top. The next example shows instead how our
encoding is able to simulate process reductions nested inside ambients.

Example 3. Let S be the process m[n[P ]|open n.Q]|open m.R, previously pro-
posed in [7]. The encoding �S�

go
fn(S) is depicted in Figure 10. For the sake of

simplicity, we assume that the names m and n do not belong to the free names
of P , Q and R.

go

a �� �1a
4a

��

��



''

##
amb



�� 2p•3p
4p

((

�� GP

◦ m�� ◦ n��

GQ

p �� •1p
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�� open ��

��

��

•5p �� GR

�5a

��

go

a �� 5a�1a
4a

��

��

**

��

GP

◦ m�� ◦ n��

GQ

p �� 1p
2p
•
3p4p
5p

��

��

��

GR

Fig. 11. Graph encodings �m[P |Q]|open m.R�go
fn(S) and �P |Q|R�go

fn(S) (left to right)
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The rewriting step, resulting in the graph on the left of Figure 11, is obtained
by applying the popen rule and it simulates the process reduction nested in-
side the ambient m, namely, m[n[P ]|open n.Q]|open m.R→′ m[P |Q]|open m.R.
The application of the popen rule to the graph on the left results instead in
the graph on the right of Figure 11. This rewriting step mimics the transi-
tion m[P |Q]|open m.R →′ P |Q|R. Note that, as discussed in [7, Section 5.3],
these two reductions are parallel independent, hence they can be executed
in any order, obtaining two derivations that differ only in the scheduling
of the two steps. The two derivations thus correspond to the same graph
process [16].

7 Conclusions and Further Work

We presented an encoding for finite, communication-free processes of mobile
ambients into graphs, proving its soundness and completeness with respect to
the operational semantics of the calculus. Differently from alternative proposals,
it is based on unstructured graphs and standard DPO approach tools, thus
allowing for the reuse of analysis techniques from the graph transformation mold,
along the lines of graphical encodings presented in [5,7]. Most importantly, our
encoding has the ability both to model the syntactic structure of a process and
to keep track of its activation points, that is, of those ambients where reductions
may actually take place. Therefore, it allows a simply and faithful modeling of
the reduction semantics of mobile ambients.

For the sake of space, we discarded from our presentation the communica-
tion primitives of the calculus, as well as recursive expressions: both could be
tackled along the lines of the solution in [5]. The article also offers a list of ap-
plications for the graphical encoding of π-calculus [5, Section 8], which could
be immediately lifted to our encoding of mobile ambients. They range from the
use of graphs for verifying system properties expressed by spatial logic, to the
use of the borrowed contexts [19] approach for deriving a labelled transition sys-
tem for mobile ambients. It should be remarked that this array of applications
is possible thanks to our graphical implementation, where the tree structure of
a process is decoupled from its activation points. Moreover, the lack of activa-
tion rules (needed instead in [7]) guarantees a direct correspondence between
process reductions and graph derivations, thus allows for the simultaneous ex-
ecution of reductions, possibly nested inside ambients as well as sharing some
resources.

Our next step is the study of the labelled transition system for mobile am-
bients, which can be obtained by exploiting the borrowed context technique
discussed above. The borrowed approach proved to be able to characterize
strong bisimulation for a simple process calculi, namely, Milner’s CCS [20].
Since we are aware only of the process equivalence proposed by [13], the
analysis of the graph-based equivalence could prove pivotal in validating that
proposal.
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Abstract. Synchronising Graphs is a system of parallel graph transformation de-
signed for modeling process interaction in a network environment. We propose
a theory of context-free synchronising graphs and a novel notion of bisimulation
equivalence which is shown to be a congruence with respect to graph composi-
tion and node restriction. We use this notion of equivalence to study some sam-
ple network applications, and show that our bisimulation equivalence captures
notions like functional equivalence of logical switches, equivalence of channel
implementations and level of fault tolerance of a network.

1 Introduction

Synchronising Graphs (SG) is a system of parallel graph transformation designed for
modeling process interaction in a network environment. The system is inspired by [8],
and it stems from the Synchronized Hyperedge Replacement (SHR) of [10], with which
it has been compared in [4]. In the SG model, as in SHR, hyperedges represent agents, or
software components, while nodes are thought of as communication channels, synchro-
nisation points or, more generally, network communication infrastructure. The idea that
hypergraphs may interact by synchronising action and co-action pairs at specific syn-
chronisation points (the nodes) is quite intuitive, while the flexibility of the model in
representing diverse network topologies and communication protocols makes SG fit as
a common semantic framework for interpreting di�erent calculi. We followed this idea
in [3], where Mobile Ambients [2] and the distributed CCS of [22] (without restriction)
were both modeled in SG by using a common recursive architecture.

Here, we explore an orthogonal issue, namely the behavioural equivalence of SG.
Indeed, such equivalences are often sought in the theory of concurrency for proving
the conformance of an implementation with respect to a specification or for achieving
a sort of compositionality in the semantics. If we identify the meaning of a process
in its abstract behaviour (which is traditionally considered its bisimulation equivalence
class), compositionality requires that, when equivalent processes (e.g. a specification
and an implementation) are plugged into the same context, they behave in the same
way. This amounts to proving that bisimulation equivalence is a congruence. However,
although such results are abundant in the literature for process calculi, not so for graph
rewriting, where system behaviour is typically context dependent.

To our knowledge, the most strictly related notions of behavioural equivalence pro-
posed for related systems of graph transformation are [13] and [14]. The first paper
proposes a behavioural equivalence for a model called synchronised graph rewriting; as

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 131–146, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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pointed out by the authors, this equivalence is rather coarse, in that it is not able to distin-
guish graphs with di�erent degrees of parallelism. In this paper, we meet their challenge
for a finer notion and propose one capable of detecting parallelism (it is indeed possible
to implement in SG Plotkin’s parallel or). The behavioural equivalence of [14] refers
to a system of graph rewriting, the SHR of [10], which di�ers from ours in the mathe-
matical presentation of graphs, in their LTS and, more importantly, in the proof theory.
Syntax is pervasive in SHR, which is more deeply rooted in the field of process calculi,
of which it shares notions such as structural congruence and name binding. Nodes are
treated as names are in process calculi. Unlike in SG, no semantic di�erence can be
made between two nodes beside them being distinct. Not always so in graph rewrit-
ing, where transformations may depend on attachment to specific nodes. As shown in
Section 3 (example 5), such dependency may cause non-compositional behaviour.
Hence, while compositionality is to be expected in hyperedge replacement [14], not so
for SG, which allows, as many graph rewrinting systems [7], context-dependent specifi-
cations. Thus, we characterise the theories of synchronising graphs, called context-free
where compositionality holds. A natural notion of bisimulation equivalence is intro-
duced to capture their abstract behaviour, and proven a congruence in any context-free
theory. A similar result is presented in [14] for hyperedge replacement by exploiting
the sytactic presentation of graphs and referring to results obtained in [23] in the con-
text of structural operational semantics. Here we provide a direct proof, which relies on
no syntax and sheds light on the meta-theoretical properties of our system (Lemmas 1
and 2). While imposing on axiom formats built-in features of SHR, our result is no
special case of that in [14], as discussed in the conclusions.

Then, we use our framework for modeling four network applications where the
proposed notion of bisimulation equivalence is shown to capture interesting proper-
ties. In the first application we consider network implementations of logical switches.
Here bisimulation equivalence corresponds to functional equivalence, in that equivalent
networks have an identical input-output behaviour. Then, we consider network imple-
mentations of communication channels, where information items can travel in parallel.
Bisimulation equivalence is shown to capture the notion of (static) channel capacity. In
the third scenario, we refine the previous model by introducing node charges, that are
consumed upon passage of information. This feature cruises in several wireless appli-
cations and becomes a crucial issue in “extreme” applications like the Smart Dust [24].
Here bisimulation equivalence implies identity of dynamic capacity but provides a finer
notion of observational equivalence which can be employed for net optimisation. Fi-
nally, we study the impact of failure in a communication net and show that bisimulation
equivalence characterises exactly the degree of fault tolerance, or robustness, of a net.

The paper is structured as follows. In Section 2, we present the general model of
SG. In Section 3 we investigate the possible sources of context dependency in SG and
focus on context-free SG; a novel notion of bisimulation equivalence is then introduced
and shown to be a congruence. Section 4 presents the applications. Section 5 concludes
the paper by discussing related work and by hinting at current and future research. For
space reasons, all proofs have been omitted; the interested reader can find them in the
on-line version at ������������	
���
�����
������������
���
��	����.
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2 Synchronising Graphs

Let� be a set of nodes, which we consider fixed throughout. A graph (E�G�R) consists
of a set E of hyperedges, an attachment function G : E � �� and a set R � �G� of
nodes, called restricted, where �G� � �x � � � � e � E s.t. x � G e� is the set of nodes of
the graph. When clear from the context or when not important, we shall write a graph
by simply specifying its attachment function. When G e � x1x2 � � � xn (we shall often
abbreviate x1 x2 � � � xn as x), we call n the arity of e and say that the i-th tentacle of e is
attached to xi. We denote by res (G) the set of restricted nodes of G, and by fn (G) the
set �G� 	 res (G) of free nodes. We write e(x) for an hyperedge such that G e � x.

Let Act � �a� b� � � � � 
 �a� b� � � � � be a set of actions; we call a the co-action of a,

and intend a by a. A pre-transition is a triple (G� �� H), written G
�
	� H (or just �

for short), where � � � � Act � �� is a relation, while G and H are graphs, called
respectively the source and the destination of �. Intuitively, (x� a� y) � � expresses the
occurrence of action a at node x, which can be thought as a communication channel,
while the elements of y, called objects, are thought of as arguments. When y is the
empty sequence �, (x� a� �) is written (x� a).

In SG the occurrence of both (x� a� y) and (x� a� z) in � is called a synchronisation,
and it corresponds to the silent action � of most process calculi. Synchronising hyper-
edges may exchange information. This is implemented in SG by unifying the lists y and
z of objects, which are required to be of the same length. Only two agents at a time may
synchronise at one node. Moreover, if an action occurs at a restricted node, then it must
synchronise with a corresponding co-action, as we consider observable the unsynchro-
nised actions. A restricted node may be “opened” by unifying it with an argument of an
observable action, or with a node which is not restricted.

Notation. If � � A � B is a relation and a � A, we write � a the set �b � B : (a� b) � ��.
The domain of � is the set dom (�) � �a � A : � b � B � (a� b) � ��. A function
f : A � B is said to agree with � when f x � � x, for all x � A. If � is an equivalence
relation, [x]� is the equivalence class of an element x, which we write [x] when � is
understood. A unifier of � is a function f which agrees with � as above and such that
f [x] is a singleton, for all x.

If f : � � � is a function on nodes and (E�G�R) is a graph, we write fG the graph
(E� fG� f R) obtained by substituting all nodes x in G with f x. More precisely, for all
e � E, if G e � x1 � � � xn then ( fG) e � f x1 � � � f xn.

Given a pre-transition G
�
	� H, we denote by ��� the set �G�
 �H� and by res (�) the set

res (G)
 res (H). By obj (�) we denote the set �y � � : � (x� a� y ) � � such that y � y �.
We omit parentheses and braces when listing the elements of � above a transition arrow.

An action set is a relation � � ��Act ��� such that, for all nodes x, � x has at most
two elements and, when so, it is of the form �(a� y)� (a� z)�, where y and z are vectors of

identical length. Given an action set �, we denote by
�
� the smallest equivalence rela-

tion on nodes such that, if (x� a� y1y2 � � � yn) and (x� a� z1z2 � � � zn) are in �, then yi
�
� zi,

for i � 1 � � �n. By a slight abuse, we say that a function agrees with (or unifies) an action

set � to mean that it agrees with (unifies) the relation
�
�. Arguments of unsynchronised



134 P. Cenciarelli, D. Gorla, and E. Tuosto

actions are called dangling. More precisely, we call dangling in � the elements of the

set dng (�) � �z � obj (�) : � x � �(a� y)� and z
�
� y� for some x and y � y�.

Definition 1. A transition is a pre-transition G
�
	� H such that:

1. � is an action set such that dom (�) 
 obj (�) � �G�;
2. if a node x is restricted in G then � x is not a singleton;
3. if x � �H�, then x � fn (H) if and only if x � fn (G) 
 dng (�).
4. H � �H for some unifier � of � such that � x � fn (G) for all x � fn (G).

Condition 1 expresses the locality of action: graphs can only act upon their own nodes.

By this condition, for example, the pre-transition e(x)
x�a�y
			� d(y), legal in SHR, is not

a transition, because y � �e(x)�. A consequence of 1 and 3 is that all free nodes in the

destination of a transition must occur in the source. Hence, while e(x)
�
	� �y d(y) is

a legal transition, e(x)
�
	� d(y) is not. This rules ownership of nodes: the access to a

new channel is only acquired via synchronisation. Condition 4 enforces fusions. It also
grants a privilege to the free nodes when they are fused with the bound, which allows

�y e(x y)

x�a�x
x�a�y
			� d(x) and forbids �y e(x y)

x�a�x
x�a�y
			� d(y). This restriction is not essential for

the theory of synchronising graphs while it simplifies the meta-theory without loss of
generality.

In SG, synchronisation is subject to a non-interference condition: two transitions can
be synchronised provided they are disjoint and they share no restricted nodes. Formally,

G
�
	� H and F

�
	� K are said to be non-interfering, written � #	, whenever � � 	 � 

and res (�) � �	� � res (	) � ��� � . It is an easy check that the only nodes two non-
interfering transitions may have in common are the free nodes in their sources.

The rules of the system of synchronising graphs are given below. The composite of
two graphs (E�G�R) and (D� F� S ), written G�F, is defined when E and D are disjoint
and moreover res (G) � �F � � res (F) � �G� � ; when so, G�F is the graph (E 
 D�G �

F�R
S ), where G�F is the attachment function mapping e � E to G e and d � D to Fd.
We let �x G denote the graph (E�G�R 
 �x�) when x � �G�, while �x G � G otherwise.

[ sync ]
G

�
	� H F

�
	� K

G�F
���
			� �(H�K)

� #	 and � unifies � 
 	

[ open ]
G

�
	� H

�x G
�
	� H

x � dng (�) [ res ]
G

�
	� H

�x G
�
	� �x H

x � dng (�)

A theory of synchronising graphs is a set of transitions which is closed under the in-
ference rules. The smallest theory including a given set � of transitions is said to be
generated by the axioms in �.

Note that inference rules assume, as implicit side condition, that the conclusion be

a transition. Hence, for example, the rule [ sync ] does not apply to �y e(x y)
x�a�y
			� f (y)

and �z d(x z)
x�ā�z
			� g(z) because the conclusion would violate condition 3 of definition 1.
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Fig. 1. A non-deterministic commuter

Also note that, di�erently from the 
-calculus [19], we do not have a “close” rule to
close the scope of a restricted name after having opened it via an “open” rule. This
is related to the fact that every inference in SG can be rewritten in a sort of ‘normal
form’ where all the applications of [ res ] and [ open ] needed to infer the judgement
come after all the applications of [ sync ] (see Lemmata 1 and 2 later on). This is similar
to the presentations of the LTS for the 
-calculus that include structural equivalence:
in those cases, a “close” rule is omitted because redundant. Thus, for example, we
can build an inference for the graph �xG � �yH where the two parallel components

synchronise, assuming that G
z�a�x
			� G� and that H

z�ā�y
			� H�: indeed, �xG � �yH is just

another (but exactly identical) way of writing the graph �x(�y(G � H)), that reduces to,
e.g., �x(�y(G� � H��x�y�)) after a transition �(z� a� x)� (z� ā� y)�.

Example 1 (A non-deterministic commuter). Consider a system consisting of several
input and output sockets. The system, which we shall call non-deterministic commuter,
acts by non-deterministically connecting client processes (possibly attached to an input
socket) with one of the output sockets (where server processes may be attached). Con-
nections are established one at a time. Figure 1 depicts a commuter C with three input
and two output sockets. A client process r is being connected with a server q.

Non-deterministic commuters can be engineered in SG by assembling simple com-
ponents (edges) of the form in (x u) and out (u y), representing input and output sockets
respectively. Clients are meant to be attached to the x node of a socket, while servers are
attached to y. The node u represents an internal communication channel of the system.
As elsewhere in the paper, we may use the same name to denote distinct edges repre-
senting components of the same kind. For example, in (x u) � in (z u) will denote a graph
with two edges, each representing an input socket. Then, ignoring the two unused sock-
ets of C (viz., the second input socket and the second output socket), the initial state of
the commuter is represented by the graph �u (in (x u) � in (z u) � out (u y)). The system’s
behaviour is specified by the following two transitions, where a and a represent the
input and output actions respectively:

in (x u)
u�a�x
			�  out (u y)

u�a�y
			� out (u y)

To be precise, these are to be considered as axiom schemes, and we assume one axiom
of the first kind for each input socket and one of the second for each output. In the
present example, we further assume that any hyperedge can perform a passive (empty)
transition to itself. Then, ignoring p and its socket, the transition of figure 1 is obtained

as r(z) � q(y) � �u (in (z u) � out (u y))

u�a�y
u�a�z
			� r(y) � q(y) � �u out (u y).

�
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To conclude the presentation of SG, we give two meta-theoretical lemmata showing
that any transition in a given theory can be inferred by a canonical derivation where all
applications of [ sync ] precede [ res ] and [ open ].

Notation. Let G
�
	� H and F

�
	� K be transitions; we denote by � � 	 the set of

transitions of the form G�F
���
			� �(H�K) obtained by synchronising � and 	 with

[ sync ]. Clearly, � � 	 is empty when � and 	 interfere. The expression (� � 	) � �
stands for

�
�����( � �). Similarly, we let �x� be the transition which results from

restricting � on x by an application of [ res ] or [ open ]. The expression �x (� � 	)
denotes the set of transitions of the form �x with  � � � 	.

Lemma 1. Let � and 	 be transitions and let x occur unrestricted in the source of �.
Then, (�x�) � 	 � �x (� � 	).

The opposite inclusion does not hold: �y e(x y) � �z d(x z)

x�a�z
x�a�y
			� �y (h(y) � k(y)) is included

in �y (� � 	) where � is e(x y)
x�a�y
			� h(y) and 	 is �z d(x z)

x�a�z
			� k(z), while (�y�) � 	

is empty because the result of applying [ sync ] to �y� and 	 violates condition 3 of
definition 1.

Lemma 2. Synchronisation is associative: (� � 	) �  � � � (	 � ).

3 Context-Free Theories and Behavioural Equivalence

One of the aims of the present paper is to characterise the theories of synchronising
graphs in which the behaviour of a graph is not a�ected by the context. The following
examples will clarify this concept.

Example 2. In the theory generated by a unique axiom e�d
�
	� , the two processes e and

d, considered in isolation, have the same behaviour: none of them can move. However,
if set in the context [ ]�d, the two processes exhibit quite di�erent behaviour, as e�d can
move while d�d cannot.

Example 3. In the theory generated by a unique axiom �x e(x)
�
	� , the process e(x)

cannot move, thus exhibiting the same catatonic behaviour as the empty process .
However, when set in a context �x [ ] where x is restricted, �x e(x) can move while
�x  �  cannot.

Example 4. In the theory generated by the four axioms h(x y)

x�a�x
x�a�y
			� , d

�
	� d, e(x y)

�
	�

e(x y) and e(x x)
x�a
		� , e(x y) behaves just like the process d, cycling forever over itself.

However, when put in parallel with h(x y), e(x y) yields a trace which h(x y) � d does not

have: h(x y)�e(x y)

x�a�x
x�a�y
			� e(x x)

x�a
		� .

Example 5. In the theory generated by the three axioms h(x y)

x�a�x
x�a�y
			� , d

�
	� d and

e(x)
�
	� e(x), the processes e(x) and d have the same behaviour. However, when put
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in parallel with h(x y), e(x) yields a transition to a catatonic state, namely e(y), which
h(x y) � d cannot reach.

These are in fact the only possible sources of context dependency in a theory of synchro-
nising graphs. This is shown in the present section by providing a notion of bisimulation
equivalence on graphs and then proving that, in any theory generated by axioms includ-
ing no transitions of the kind described in the examples, the proposed equivalence is a
congruence with respect to restriction and parallel composition.

In this section we abandon the brute force notion of node substitution in a graph
G adopted in the previous section and denote by hG the graph obtained by applying a
substitution h to the free nodes of G, while restricted nodes are suitably renamed so as to
avoid capture. This simplifies the treatment while remaining consistent with the theory
developed so far. In particular, note that the new interpretation of �(H�K) in [ sync ] does
not alter the set of derivable transitions.

An instance of a transition G
�
	� H is a transition of the form hG

h�
		� � hH where h is

a node substitution � � � and � is a unifier of h�. A production is a transition whose
source consists of a single hyperedge e(x), where all components of x are distinct and
none of them is restricted. A theory of synchronising graphs is called context-free when
it is generated by all the instances of a given set of productions. Note that the constraints
that productions are asked to satisfy prevent the first three examples of context depen-
dency to occur, while the use of all their instances for generating the theory accounts
for the fourth example.

We now move to the definition of our behavioural equivalence; to this aim, we call
parameters the elements of the set � � � � Act � �. Intuitively, a parameter (x� a� i)
is an abstraction over the i-th argument yi of an action (x� a� y ). We call observations

the elements of the set � � � 
 �. Given an action set �, the relation
�
� extends to a

relation
�
�o on observations that is the smallest equivalence relation containing

�
� such

that (x� a� i)
�
�o (x� a� i) and moreover (y� b� j)

�
�o z if (y� b� z1 � � � z j � � � zn) � � and z � z j.

Not all pairs of
�
�o are observable. The set obs (�) of observables of a transition

G
�
	� H consists of its observable nodes, the set of which we denote by ���o , together

with the parameters of unsynchronised actions: obs (�) � ���o 
 �(x� a� i) � � : � x �

�(a� y )� and 0 � i � �y ��, where ���o � �x � fn (G) : x � dom (�) or x is dangling or x
�
�

y � x for some y � fn (G)�. Note that, by the definition of ���o , while x is observable in

e(x y)

x�a�y
x�a�y
			� H, y is not because, although it is free in e(x y), “self-fusion” has no bearing

on the interacting environment. The observable part of the relation
�
�o, written

�
�, is the

equivalence relation obtained by restricting
�
�o to obs (�); thus, we let p

�
� q if and only

if p
�
�o q and p� q � obs (�).

Definition 2. Two transitions G
�
	� H and F

�
	� K are called equivalent when

�
� �

�
�

and �x � fn (G) : �� x� � 2� � �y � fn (F) : �	 y� � 2�.

In our study of behavioural equivalence we follow a standard practice in process algebra
where alpha-equivalent terms are considered as identical. In our context this amounts to
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defining behaviour on classes of alpha-equivalent graphs, that is graphs which are iden-
tical up to renaming of restricted nodes. We shall call such classes abstract graphs, and
write them in bold, G. Any theory of synchronising graphs yields a transition system of

abstract graphs which includes G
�
	� H if and only if G

�
	� H is in the theory, for some

G � G and H � H.
Notice that the notion of free names can be extended to abstract graphs since, for

every G and G� in G, it holds that fn (G) � fn (G�); thus, the notion of equivalent

transitions scales to abstract graphs as well. A transition G
�
	� H is said to be fair with

an abstract graph F when none of the nodes in obj (�) � fn (G) is free in F.

Definition 3. A simulation is a binary relation � on abstract graphs such that G� F

implies that, for all transitions G
�
	� H fair with F, there exists a transition F

�
	� K such

that � and 	 are equivalent, and H� K. An abstract graph G is simulated by a graph
F, written G � F, if there exists a simulation � such that G� F. A bisimulation is a
symmetric simulation. Two abstract graphs G and F are called bisimulation equivalent,
written G � F, when they are related by a bisimulation.

Notice that the fairness condition asked for G
�
	� H in the previous definition is standard

in name-passing calculi, e.g. the 
-calculus [19].
Composition and restriction extend to abstract graphs. In particular, �x G is [�x G]�,

for some G � G such that x � res (G), while G�F is [G�F]�, for some G � G and F � F
such that G�F is defined. Note that the above definitions do not depend on specific
choices of G and F. A relation � on abstract graphs is called a congruence when G�F
implies �x G� �x F and G�H � F�H, for all x and H.

Theorem 1. Bisimulation equivalence is a congruence.

Proof (Sketch). The result is proven by showing that the symmetric relation

� � �(�x (G�U)� �x (F�U)) : G � F�

is a simulation. Then, closure under parallel composition is obtained by letting x be
the empty vector; closure under name restriction is obtained by letting U be [(; ; )]�.
Lemmas 1 and 2 are used. See appendix for detail.

�

4 Network Applications

4.1 A Non-deterministic Commuter (Example 1 Continued)

The internal communication channel of the non-deterministic commuter can be im-
plemented by a local network without a�ecting the observable behaviour of the sys-
tem. We build such internal infrastructure by means of simple components, called
connectors, of the form c(u1u2v). Connectors echo the information received from u1

(call it the input node) over u2 (the output node) using a service node v for the
matching. Once v has served its purpose, a new service node is created. In symbols:
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�

p � in

�

q

�

� �

�

�

�

�

��

r

out

c1 c2 c4

c3

in
u1

x

u2 u3z

y

v3

v1 v2 v4

u4

u5

Fig. 2. An implementation of the commuter in Figure 1 (we draw labeled boxes for hyperedges
and bullets for nodes; the latter are solid when restricted and clear otherwise; tentacles are repre-
sented by lines connecting hyperedges with nodes)

c(u1u2v)

u1�a�v
u2�a�v
				� �w c(u1u2w). The internal channel of the commuter in Figure 1 can be

implemented by the net G of four connectors in Figure 2. In symbols, grouping all
indexed names into vectors:

G � � u v p(x) � q(y) � r(z) � in (z u1) � in (x u2)
� c1(u1u2v1) � c2(u2u3v2) � c3(u3u4v3) � c4(u3u5v4) � out (u4y)�

With this implementation, the transition in Example 1 is simulated by an equiva-

lent transition G
�
	� H, where (by ignoring all the unused sockets and connec-

tors) H � r(y) � q(y) � � u w (c1(u1u2w1) � c2(u2u3w2) � c3(u3u4w3) � out (u4y)) and � is
�(u1� a� z)� (u1� a� v1)� (u2� a� v1)� (u2� a� v2)� (u3� a� v2)� (u3� a� v3)� (u4� a� v3)� (u4� a� y) �.

In general, a graph made of sockets and connectors behaves like a non-deterministic
commuter when it is a tree (that is, connected and acyclic) in which output sockets are
attached by their first tentacle, input sockets by their second, no connector is attached
by its service node, and moreover there exists a node, called pivot, that may split the
graph into two (possibly disconnected) subgraphs, one including all the input and the
other all the output sockets. In our implementation, nodes u2, u3 and u4 are all pivotal.
Of course, in the absence of a pivot, the internal infrastructure may allow for parallel
connections, which are not contemplated in the specification of Example 1.

Proposition 1. Any abstract graph G satisfying the conditions above is bisimulation
equivalent to the abstract graph corresponding to the non-deterministic commuter ob-
tained by deleting all the connectors from G and attaching all sockets to the pivot node.

4.2 Functional Equivalence

We now consider a more general kind of non-deterministic commuters, allowing multi-
ple connections to occur at once. Hence, the internal structure of a commuter can now
be any acyclic graph of connectors where all nodes are restricted. Input sockets are at-
tached by their second tentacle, while their first is attached to a free node called input
node; and dually for output sockets and output nodes.

A connection in a commuter C is a path from an input to an output node of C. A
set of disjoint such connections (i.e. no node is shared by two connections in the set) is
called a service of C. If s is a service, we write ŝ the partial function from the input to
the output nodes of C such that ŝ(x) � y if and only if there exists a connection from x
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Fig. 3. A channel with maximum flow 3 and its SG representation

to y in s. We say that two commuters are functionally equivalent when, for each service
s of one, there exists a service r of the other such that ŝ � r̂, and vice-versa.

Proposition 2. Two non-deterministic commuters are functionally equivalent if and
only if their alpha-equivalence classes are bisimulation equivalent.

4.3 The Maximum Flow in a Net

Consider an application where a sender sends discrete pieces of information, called
items, to a receiver. The communication infrastructure is represented by a directed
acyclic graph (���), where � is a set of vertices and � � � �� is a set of edges. An
edge (u� v) is an input for v and an output for u. We assume that the graph features a
unique vertex with no input edges, called source, representing the sender. Similarly, the
receiver is represented by a unique vertex with no input edges, called target.

We further endow each edge with a capacity, that is an upper bound to the number
of items it can transmit at a time: n items can travel simultaneously through an edge
provided its capacity is not less than n. No items are lost during transmission, and all
items in input to a node are immediately presented in output in equal number. Hence,
if the sender feeds the net with n items simultaneously, n items are received at once by
the receiver, provided the edge capacities are not exceeded. This gives rise to the notion
of network flow and of maximum network flow [6], i.e. the maximum number of items
which can be simultaneously fed to the net. We call channels, and use metavariables
A, B. . . to denote them, graphs (���) as above, endowed with a function c : � � �

assigning to each edge an integer capacity, which we assume strictly greater than 0.
A flow in a channel A is a function f : � � � such that f (u� v) � c(u� v) and

�
u f (u� v) �

�
w f (v�w), for all v � � except for source and target. The value of a flow

f at the source s is f (s) �
�

u f (s� u), while f (v) �
�

u f (u� v) for all other vertices v.
Clearly, f (s) � f (t), and we call this number the value of f in A. A positive flow is one
with value strictly greater than 0. The maximum flow of A, written � (A), is the greatest
value of a flow in A.

A channel A � (���� c) is modelled by a synchronising graph Â as follows. The
nodes of Â are the elements of � 
 �i� o�, where i and o are called respectively the input
and output nodes. All nodes in Â are restricted, except i and o. Hyperedges are the
vertices of �. They are attached to nodes as follows: v (xy) represents a vertex v � �s� t�
where x is a vector including all input edges of v and y all outputs. Source and target
are respectively s (i y) and t (x o). Figure 3 represents a channel and its representation
as a synchronising graph.
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Fig. 4. Three consumable channels. Omitted capacities and energy charges are assumed high
enough as to not influence the flow dynamics

The theory of channels features actions of the form n and n, where n � �, and no
parameters. It is generated by all axioms of the form:

v (x1 � � � xn y1 � � � ym)

x1 h1� ��� �xn hn
y1 k̄1� ��� �ym k̄m
										� v (x1 � � � xn y1 � � � ym)�

where
�n

i�1 hi �
�m

j�1 k j and, assuming c(i) � c(o) � �, hi � c(xi), k j � c(y j) for all

nodes xi and y j. It is easy to see that A supports a flow of value k if and only if Â has a
transition � whose only observable actions are �(i) � �k� and �(o) � �k�. The following
result shows that, in this simple model, bisimulation equivalence captures precisely the
notion of maximum flow.

Proposition 3. Let Â � A and B̂ � B; then, A � B if and only if � (A) � � (B).

4.4 The Dynamic Flow of a Net

In real applications the nodes of a wireless network are often supplied with a finite
amount of energy which is consumed in routing information. The Smart Dust [24],
where nodes are motes of 1mm diameter, is an extreme example of energy-sensitive
application. We give a simple account of such scenarios by charging the channels of
Section 4.3 with consumable energy and studying their behaviour.

A consumable channel A � (���� c� �) is a channel as above, endowed with an
energy function � : � � �. A flow in A is just as in Section 4.3, with the additional re-
quirement that f (v) � � (v) for all v � �. The energy inside a channel decreases at each
flow. For simplicity, we shall assume that the passage of one information item through
a vertex consumes one energy unit. Then, the energy dynamics is described by a tran-

sition system over consumable channels with transitions (���� c� �)
k
	� (���� c� �� )�

whenever the channel to the left admits a flow f of value k, and ��(v) � � (v) 	 f (v) for

all v � �. Clearly, A
k
	� A� implies k � � (A).

A computation of a channel A is a sequence of transitions A
k1
	� A1 � � �

kn
	� An,

which we shorten as �k1� � � � � kn�. The dynamics � (A) of a channel A is the set of all
its computations. The channels depicted in Figure 4 all have a maximum flow of 4.
However, while (B) and (C) have same dynamics, not so for (A) as it does not admit a
computation �4� 2� while the others do. In Section 4.5 we distinguish channels such as
(B) and (C) by introducing the notion of robustness.
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As before, we model a consumable channel A by a synchronising graph Â, and relate
the dynamics of the former with the observable behaviour of the latter. Â is defined just
as in Section 4.3 except that the hyperedge vn(x y) corresponding to a vertex v is now
labelled by the energy n � � (v). The axioms vn(x y)

���
	� vn� (x y) are as in Section 4.3

with the additional requirement that, writing p the value
�m

j�1 k j of the transition, p � n
and n� � n 	 p.

Channel dynamics do not provide a good notion of behavioural equivalence for con-
sumable channels. For example, consider the channels (B) and (C) in Figure 4: by al-
ways taking the upper path, after �2� 1� (B) becomes a net that cannot transmit three
information items simultaneously (because of the capacity bound on its lower edge),
whereas (C) can always perform �2� 1� 3�. Bisimulation equivalence captures such dif-
ferences in channel behaviours; moreover, it also yields a technique for proving that
two channels have identical dynamics, i.e. the same set of traces:

Proposition 4. Let Â � A and B̂ � B; then, A � B implies � (A) � � (B).

4.5 Network Robustness

The channels (B) and (C) of Figure 4 have the same dynamics in the world described in
Section 4.4 but not in a more realistic setting where vertices may fail. In such a case B
is to be considered more robust than C. Robustness is ususally defined as the minimum
number of faults that would block a net. Here we show a model where bisimulation
equivalence captures precisely this notion of robustness.

Since the interplay between robustness and dynamic flow is subtle, we shall make the
simplifying assumption that every node has infinite energy and every edge has capacity 1.
Since flow values are not of interest here, we further assume that channels may pass at
most one information item at a time. We let r(A) denote the minimum number of nodes
that must be removed to disconnect a channel A (i.e. source from target).

We represent the behaviour of a faulty channel A by augmenting the theory of syn-
chronising graphs of Section 4.4 with new axioms for failure. As anticipated, all hyper-
edges of Â are now labelled by�, and failure is represented by a sudden drop of v�(x y)
to v0(x y). The axioms of flow are just as in Section 4.4 with the only di�erence that
c(i) � c(o) � 1. For modeling failure, we introduce a new action � and the following
axiom schemes, where we write v when the energy of the vertex (� or 0) is irrelevant:

v�(x y)

xi��
y j��

			� v0(x y) s(i y)

i�0
y j��̄

			� s(i y) t(x o)

xi��̄
o�0̄
			� t(x o)

v(x y)

xi��̄
y j��

			� v(x y) for v � �s� t� v(x y)

xi��

y j��̄

			� v(x y) for v � �s� t�

The first axiom accounts for the failure of v while the two axioms to the bottom are
to transmit such an information respectively towards the source and the target. Notice
that, in the first axiom, we can freely pick any xi � x and y j � y since every xi and y j

lie in a path from s to t (because we work with connected graphs). By the remaining
two axioms, source and target hide occurrences of � by issuing 0 on the free input and
output nodes. Hence, failures are not explicitly observable. Note that we engineered our
model as to admit one failure at a time. This allows us to test robustness by counting
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the number of steps that a channel requires in order to die. Simultaneous failures could
of course have been modeled, at the cost of exposing the failure action � over the free
nodes i and o.

The following result shows that, in this model, the robustness of a faulty channel is
captured precisely by the notion of bisimulation equivalence.

Proposition 5. Let Â � A and B̂ � B; then, A � B if and only if r(A) � r(B).

5 Conclusions

Synchronised graph rewriting has been proposed as a unifying semantic framework for
process calculi [12,10,15,3]; to fulfill this project, graphs must be endowed with an
abstract notion of behaviour. In this paper we do so by introducing a notion of bisim-
ulation equivalence for a system of context-free synchronising graphs and by proving
it a congruence with respect to parallel composition and node restriction. Bisimula-
tion equivalence can be used to prove the correctness of system implementations, or
(dually) of optimisation steps. For example, we have developed an application where
the specification of a simple component, called non-deterministic commuter, is shown
to be equivalent to an implementation in which the internal communication channel is
replaced by a local net.

Bisimulation techniques could have been used, of course, directly in each one of the
applications we have considered, without passing through an encoding into SG. How-
ever, the gain from our e�ort is twofold. On the one hand, matching the proposed notion
of graph bisimulation with well known properties in the theory of networks is a good
test for naturality and flexibility. On the other hand, SG may provide “mechanical” sup-
port for reasoning about such properties: systems such as the Concurrency workbench
[5] support bisimulation proofs in the framework of process algebra. It is a challenging
project to endow SG with a similar capability.

Finally, our rule of synchronisation is reminiscent of the communication law of the
Fusion Calculus [21]. Linking to Fusion is therefore a natural gateway for us to the
universe of process algebra. We are working through this direction and have developed a
context-free theory of synchronising graphs which can be viewed, in a precise sense, as
a parallel and syntax-free version of the Fusion calculus. We believe that our translation
is fully abstract w.r.t. proper notions of bisimulation equivalences, but we still have not
been able to prove such a result.

Related work. SG is closely related to the synchronised hyperedge rewriting (SHR)
approach [10] from which it takes inspiration. SHR rewriting acts on syntactic judge-
ments, that is term-graphs equipped with an interface consisting of their set of free
nodes. The syntax-driven presentation of SHR enables several properties to be proven
at a rather high abstraction level. For example, mimicking the approach in [20] for the

-calculus, it is proven in [14] that a given notion of bisimulation is a congruence for
SHR parametrically in a synchronisation algebra with mobility, thus accounting for sev-
eral styles of interaction. While renouncing the generality of SHR in abstracting over
synchronisation algebras, SG exhibits a much simpler system of inference rules.
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Productions are built-in SHR so as to make rewriting context-independent in a much
similar way our productions do in context-free theories. Indeed, in SHR the dependen-
cies described in Section 3 (and, in particular, those in Examples 4 and 5) are avoided by
defining rewriting rules on productions rather than on graphs. Albeit being resolutive,
this approach introduces some complexity in the definition of the operational semantics
of SHR. For example, all possible instances must be considered when synchronising
productions. We prefer to maintain the simple presentation of Section 2 and apply the
(simpler) rewriting rules [ sync ], [ open ] and [ res ] to contex-free theories.

However, even in the setting of contex-free theories, SHR still di�ers from SG both

in the notion of transition and in the proof theory. For example, while x � e(x)
(x�a�y)� id
						�

x� y � d(x� y) is legal in SHR, where nodes are treated as variables, e(x)
x�a�y
			� d(x� y)

violates the principle of locality of Definition 1 in SG, where nodes are “constants”.
As for the proof theory, consider an application in which agent d(x) dies. This is done

in SG by the production d(x)
�
	� , which is mimicked in SHR by the production x �

d(x)
�� id
			� x � nil . Say this transition occurs in a larger context including an idle agent

e(y). In SG: d(x) � e(y)
�
	� e(y). In SHR: x� y � d(x) � e(y)

�� id
			� x� y � e(y). Node x

remains in the context, even if no edge is attached to it. After that, and for the rest of
its life, e(y) can procede computation in SHR only if synchronising with the identical

transition x � nil
�� id
			� x � nil of the graph consisting of a unique node x and no edges

(no such a graph exists in SG). Identities are therefore fundamental in SHR, and all
syntactic judgements are granted one. On the other hand, identities can be provided in
a context-free theory if desired. Interleaving could be inhibited, for example, by not
providing identities. This also impacts on behavioural equivalence as no distinction can
be made in SHR between edges whose only transition is the identity and edges with no
transitions at all.

The above examples show that no sensible matching can be made between SHR
(with synchronisation à la Milner) and context-free theories of synchronising graphs,
and none can be viewed as generalising the other.

Other interesting approaches have been applied to give congruential observational
semantics to graph rewriting. Notably, in [9] borrowed contexts enable the derivation
minimal contexts in a DPO (double-push out) approach. The idea, inspired by [17,16],
consists in computing the minimal context within which a system can react. The result-
ing observational semantics, where observations are given by such minimal contexts,
provides a bisimulation which is a congruence “by construction”. A similar approach is
taken in [18], where bigraphs are equipped with rules to form a bigraphical reactive sys-
tem providing a bisimilarity which is a congruence. An interesting research direction is
applying the mentioned approaches to SG and then compare the resulting observational
semantics with the one defined here. Indeed, it is not clear what are the relationships
between “natural” equivalences and those obtained via borrowed-context or reactive
approaches. Initial studies for process algebras show that such equivalences may not
coincide: for example, [11] shows a congruential bisimilarity obtained with a borrowed-
context approach that is finer than open bisimilarity in the 
-calculus. Recently, the
notion of saturated semantics [1] has been shown to provide suitable congruential
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bisimilarities (e.g. the open bisimilarity for 
-calculus can be obtained). This approach
is quite promising but, at the best of our knowledge, it has not been applied to observa-
tional semantics of graphs rewriting.
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Abstract. In this paper we present meta-rules to express an infinite
class of semantically related graph transformation rules in the context
of pure topological modelling with G-maps. Our proposal is motivated
by the need of describing specific operations to be done on topological
representations of objects in computer graphics, especially for simulation
of complex structured systems where rearrangements of compartments
are subject to change. We also define application of such meta-rules and
prove that it preserves some necessary conditions for G-maps.

Keywords: topology-based geometric modelling, graph transformation,
generalized map.

1 Introduction

Simulation of complex structured systems is a specialised area of topology-based
modelling (or topological modelling for short). Topological models deal with the
representation of the structure of objects (their decomposition into topologi-
cal units: vertices, edges, faces and volumes) and with the neighbourhood rela-
tions between topological units. Thus topological structures are specific graphs.
Among numerous topological models, generalized maps [Lie89, Lie94] (or G-
maps) constitute a mathematically-defined model. Intuitively, edges between
nodes indicate which nodes are neighbours and edge labels indicate which kind
of neighbouring is concerned (i.e. connection of volumes, faces or edges). G-maps
are thus a particular class of graphs with labelled edges defined by constraints
ensuring that neighbouring relations are consistently organised. Topology-based
modellers and simulators aggregate a large number of operations to edit objects.
Most operations are designed to be dedicated to some application scopes. More-
over, they are usually implemented by a dedicated algorithm finely tuned in
order to optimise its efficiency.

Using the framework of graph transformations [Roz97, EEPT06], we propose
in this paper to model topological operations with transformation rules. Thus,
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we will be able to develop a simulator as a simple engine of rules applications. In
a previous work, we defined transformation rules adapted to G-maps [PCG+07]
using the algebraic approach of graph transformation based on labelled graphs
and the double-pushout approach. Our first framework contains classical rules
defined on an explicit pattern and a first class of meta-rules defined on pat-
terns that carry isomorph topological units (volume, face, edge, vertex). This
first proposal was satisfactory in the sense that we defined the four basic opera-
tions of G-maps (those from which all others can be defined) in terms of graph
transformation rules. Even if we have already used our framework for the simu-
lation of complex biological structured systems [PCLG+08], this first framework
was not powerful enough to directly define complex topological operations. How-
ever, to facilitate the derivation of efficient simulation algorithms from high-level
transformation rules, it becomes essential to be able to describe a large class of
complex topological operations directly in term of transformation rules, instead
of the composition of elementary topological operations. Indeed, we take advan-
tage of such an approach both by ensuring for free some constraints of G-maps
and by directly defining efficient algorithms by means of dedicated coverages of
G-maps driven by the form of the considered high-level transformation rules.

In this paper, we present a more general class of meta-rules for G-maps which
allows one to directly define a large class of topological operations. Intuitively,
our meta-rules are built over graphs whose edges are labelled by new symbols
playing the role of variables. The name of the symbols will indicate by which
kind of topological units they can be substituted. So, our variables may be per-
ceived as typed variables, each type representing a class of topological units
of similar nature as volumes, faces or edges within the framework of G-maps.
Thus, our meta-rules are more abstract and expressive than simple transforma-
tion rules over G-maps and take advantage of variables to generate a large family
of basic transformation rules sharing the same effect according to a topological
point of view. The use of variables to abstract graph transformation rules has
been previously addressed [Hof05], in particular to model software transforma-
tions for refactoring purpose [HJE06]. In [Hof05], variables can be graph vari-
ables, attribute variables and cloning variables. In particular, cloning variables
are mechanisms for duplicating some scheme extracted from the variable-based
transformation, according to a given cardinality. The application of a transfor-
mation rule with cloning variables can then be expressed in term of application
of simple transformation rules. In a similar approach, the application of our
meta-rules will imply a mechanism of scheme cloning. However, our meta-rules
will be specialised with respect to the underlying class of graphs on which they
are applied, that is, the class of G-maps. Cloning mechanism will allow us to
capture the class of all topological units of same nature (as volume, face, ...)
which are of different size according to the considered 3D-object. Moreover, as
G-maps are strongly constrained graphs, we will give some simple conditions
on our meta-rules, ensuring both the dangling condition on all underlying ba-
sic transformation rules issued from the meta-rules and some of the constraints
characterising G-maps among all labelled graphs.
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The paper is organised as follows. Section 2 briefly presents graph transfor-
mation rules. Section 3 presents the G-map topological model. In Section 4,
we introduce graph transformation meta-rules for modelling high-level topolog-
ical operations and their application is defined by means of some intermediate
cloning steps. In Section 5, we prove that some constraints of G-maps are pre-
served through the application of graph transformation meta-rules. Section 6
provides some concluding remarks.

2 Preliminaries

Let us first recall some notions and notations concerning graph transformations
extracted from [EEPT06].

A graph G with labels in ΣE is a couple (V, E) such that V is a set of vertices
and E ⊂ V × ΣE × V is a set of non-oriented labelled edges. A path in G is
a sequence (v0, l1, v1), (v1, l2, v2), ..., (vk−1, lk, vk) of E edges. We say that this
path links v0 to vk and is labelled by the word l1l2...lk ∈ Σ∗

E . If v0 = vk, the
path is called a cycle.

We introduce orbit graphs as particular sub-graphs, those which are generated
by a vertex and an identified subset of labels. Indeed, these orbit graphs are useful
to easily represent and manipulate topological cells (like faces or volumes) in the
context of topological modelling.

Definition 1 (orbit). Let us consider G = (V, E) a graph with labels in ΣE,
{l1, ..., lk} ⊂ ΣE(k ≥ 0) a set of labels and a vertex v of G.

We call orbit < l1, ..., lk > (v), the subset of V vertices reachable from v with
paths labelled by words of {l1, ..., lk}∗. The orbit < l1, ..., lk > (v) is said to be
adjacent to v.

We call orbit graph << l1, ..., lk >> (v), the subgraph of G with vertices in
< l1, ..., lk > (v) and with edges in {(v′, l, v”) ∈ E / v′, v” ∈< l1, ..., lk > (v) and
l ∈ {l1, ..., lk}}.

A graph morphism f : G → H between two graphs G and H with labels in
ΣE , consists of two functions fV from G vertices to H vertices and fE from
G edges to H edges, such that labelled edges are preserved1. Such a morphism
is injective (resp. bijective) if both fV and fE are injective (resp. bijective). A
bijective morphism is named isomorphism. G and H are said isomorphic if there
exists an isomorphism f : G → H .

In the sequel, for our purposes, we only consider injective graph morphisms,
which formalise the classical inclusion relation. Thus, we present the algebraic
graph transformation approach and use the category Graph of graphs and graph
morphisms (see chapter 2 of [EEPT06]).

A production rule p : L ← K → R is a pair of graph morphisms l : K → L
and r : K → R. L is the left-hand side, R is the right-hand side and K is the
common interface of L and R. The left-hand side L represents the pattern of the

1 For each edge (v, l, v′) of G, fE((v, l, v′)) = (fV (v), l, fV (v′)).
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rule, while the right-hand side R describes the production. K describes a graph
part which has to exist to apply the rule, but which is not modified. Intuitively,
L\K is the removed part2 while R\K is the added part.

The rule p transforms G into a graph H , denoted by G ⇒p,m H , if there are
a match graph morphism m : L → G and two square diagrams which are graph
pushouts as in the following figure.

L K R

G D H

l r

m (1) (2)

A direct graph transformation can be applied from a production rule p on a
graph G if one can find a match m of the left-hand side L in G such that m is
an (injective) morphism.

When a graph transformation with a production rule p and a match m is
performed, all the vertices and edges which are matched by L\K are removed
from G. The removed part is not a graph, in general, but the remaining structure
D := (G\m(L)) ∪ m(K) still has to be a legal graph (see following dangling
condition), i.e. no edges should dangle (source and target vertices of all remaining
edges should also remain). This means that the match m has to satisfy a suitable
gluing condition, which makes sure that the gluing of L\K and D is equal to G
(see (1) in the figure). In the second step of a direct graph transformation, D
and R\K are glued together to obtain the derived graph H (see (2)).

More formally, we use graph morphisms K → L, K → R, and K → D
to express how K is included in L, R, and D, respectively. This allows us to
define the gluing constructions G = L +K D and H = R +K D as the pushout3

constructions (1) and (2) in the figure, leading to a double pushout.
A graph morphism m : L → G from the left-hand side of a production rule

p : L ← K → R to a graph G satisfies the dangling condition if no edge of
G\m(L) is adjacent to a vertex of m(L\K). This dangling condition makes sure
that the gluing of L\K and D is equal to G. Intuitively, all edges of G incident
to a removed vertex are also removed.

Finally, a graph transformation, or, more precisely, a graph transformation
sequence, consists of zero or more direct graph transformations.

3 Generalized Maps

The generalized maps (or G-maps) introduced by P. Lienhardt [Lie89, Lie94] de-
fine the topology of an n-dimensional subdivision space. G-maps allow the rep-
resentation of the quasi-varieties, orientable or not. To represent cellular space
2 The substraction L\K between two graphs L = (VL, EL) and K = (VK , EK) is

defined from the set substraction on vertices and edges L\K = (VL\VK , EL\EK).
Thus L\K may not be a graph.

3 Let f : A → B and g : A → C be two graph morphisms, D = B +A C is the pushout
object of B and C via A, or more precisely, via (A, f, g).
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Fig. 1. Decomposition of a 2D object

subdivisions, we can choose other topological representations like combinatorial
maps [Tut84]. Nevertheless, G-maps have the advantage of providing a homoge-
neous definition for all dimensions. Thus, operation specifications are simpler.

Intuitively, the main idea of G-maps is to decompose an object into basic
elements, also called darts (graph vertices), which are connected together (with
graph edges). The decomposition of a 2D object is shown in Fig. 1. The 2D
object is displayed on Fig. 1(a). In Fig. 1(b), the object is split in order to focus
on the two faces (topological 2-cells) which compose it. In an n-G-map, n + 1
kinds of labelled-edges (from α0 to αn) allow one to recover the knowledge about
neighbourhood relations between the topological cells. Thus, in Fig. 1(b), an α2

edge makes explicit the adjacency relation which previously exists between faces
ABC and BCDE. On Fig. 1(c), the faces are decomposed into lower dimension
elements: the 1-cells. In the same manner, α1 edges makes explicit the adjacency
relations between the 1-cells. Finally, in the 2-G-map of Fig. 1(d), edges are
split into α0-connected 0-dimensional darts (represented with black dots). We
notice that the index i of αi labelled edges gives the dimension of the considered
adjacency relation.

Definition 2 (G-map). Let n ≥ 0. An n-dimensional generalised map (or n-
G-map) is a graph G with labels in ΣE = {α0, . . . , αn}, such that:

– The following CG(ΣE) condition is satisfied:
each vertex of G has exactly one adjacent l-edge for each label l ∈ ΣE.

– The following consistency constraint is satisfied:
for each pair of labels αi, αj ∈ ΣE such that i + 2 ≤ j, there exist a cycle
labelled αiαjαiαj from each vertex v of G.

The first condition of this definition (which is denoted by C for short, in the
sequel) ensures that each vertex of an n-G-map has exactly n+1 adjacent edges
labelled by α0, ..., αn. For example, in Fig. 1(d), the vertex d4 is α0-linked with
d5, α1-linked with d3, and α2-linked with d8. On the border of the objects, some
darts do not have all of its neighbours. For instance, on Fig. 1(d) the vertex d1

is α0-linked to d6 and α1-linked to d2, but d1 is not linked to another vertex
by an α2-edge, because d1 denotes the top corner of the object of Fig. 1(a) and
thus is on the border of the 2D object. However, according to the C condition all
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vertices must have exactly one adjacent label for each dimension. Thus, there is
an α2-loop adjacent to vertex d1.

The second point of the n-G-map definition expresses some consistency con-
straints on the adjacency relations denoted by the labelled edges. Intuitively, in
an G-map, if two i-dimensional topological cells are stuck together then they
are stuck along a (i − 1)-dimensional cell. For instance, on Fig. 1(d), the 2-cell
defined by {d1, ..., d6} is stuck with the 2-cell defined by {d7, ..., d14} along the
1-cell defined by the four vertices {d5, d4, d8, d7}. The consistency constraint re-
quires that there is a cycle α0α2α0α2 starting from each vertex of {d5, d4, d8, d7}.
Thanks to loops, this property is also satisfied on object borders. For example,
on the bottom of the object of Fig. 1(d), we have the cycle α0α2α0α2 from d11

and d12.
The following definition explains the notion of i-cell in terms of G-map orbits.

Definition 3 (i-cell). Let us consider G an n-G-map, v a vertex of G and
i ∈ [0, n]. The i-cell adjacent to v is the orbit graph (see definition 1) of G
<< α0, ..., αi−1, αi+1, ..., αn >> (v). The i-cell adjacent to v is noted i-cell(v).

Let us illustrate this definition on the Fig. 1. The 2D geometric object Fig. 1(a) is
composed of 0-cells (the geometric points A, B, C, D and E), 1-cells (the geomet-
ric segments AB, BC, AC, BD, DE and CE), and 2-cells (the two geometric
faces ABC and BCDE). The corresponding 2-G-map Fig. 1(d) contains the
same cells denoted by the following sub-G-maps. The geometric triangle ABC
is denoted by 2-cell(d1), i.e. the orbit graph << α0, α1 >> (d1) which contains
all vertices reachable from d1 using α0 and α1 labelled edges. The geometric seg-
ment BC is denoted by the 1-cell(d5), i.e. the orbit graph << α0, α2 >> (d5)
which contains the four vertices d4, d5, d7 and d8. The geometric points are
denoted by 0-cells and their numbers of vertices depend on their numbers of
adjacent segments. For example A (denoted by 0-cell(d1), i.e. the orbit graph
<< α1, α2 >> (d1)), contains the two vertices d1 and d2.

We have already seen that applying a production rule on a graph requires
to find a matching morphism satisfying the dangling condition. The following
proposition shows that in case of graphs verifying the C condition (see defini-
tion 2), the dangling condition only depends on the form of the production rule,
and that the derivation then preserves the C property.

Proposition 1. Let p: L ← K → R be a production rule, and m: L → G be
a match morphism on a graph G with labels in ΣE which satisfies the CG(ΣE)
condition.

1. m satisfies the dangling condition iff L\K satisfies the CL\K(ΣE) condition4.
2. Moreover, if the rule p satisfies the following Cp(ΣE) condition, then the

derived graph H produced by the direct graph transformation G ⇒p,m H
satisfies the CH(ΣE) condition.

4 The condition CG is defined for a graph G but can be extended for a structure which
is not a graph. In this case, adjacent edges can dangle.
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Cp(ΣE): CL\K(ΣE) and CR\K(ΣE) are satisfied and each preserved vertex
of K has the same adjacent labelled edges in L and R (i.e. ∀v ∈ K, ∀l ∈ ΣE,
v has an l-edge adjacent in L iff v has an l-edge adjacent in R and if they
exist they are unique5).

Proof. Let us prove the first point. Let us suppose that m satisfies the dangling
condition. By hypothesis, G satisfies the CG(ΣE) condition, thus for each deleted
vertex v of m(L\K) and for each label l ∈ ΣE there exists a unique l-edge
adjacent to v in G noted (v, l, v′). Thus, thanks to the dangling condition, (v, l, v′)
is an edge of m(L). Because m is injective, L\K satisfies the CL\K(ΣE) condition.

Reciprocally, let us suppose that L\K satisfies the CL\K(ΣE) condition. Since
G satisfies the CG(ΣE) condition, each edge of G adjacent to a vertex of m(L\K)
is an edge of m(L\K). So, the dangling condition is satisfied.

Let us now prove the second point. Let us suppose that G, the removed
structure L\K and the created structure R\K satisfy, respectively, CG(ΣE),
CL\K(ΣE) and CR\K(ΣE) conditions and that each preserved vertex of K has
the same labelled edges in left-hand side L and in right-hand side R. Thanks
to the first point, the dangling condition is satisfied and thus the direct graph
transformation G ⇒p,m H exists. Let v be a vertex of H and l ∈ ΣE a label:

– If v is not a matched vertex, i.e. v is a vertex of G\m(L). Thanks to the
CG(ΣE) condition, there exists a unique l-edge adjacent to v in G, noted
(v, l, v′). v′ may be a vertex of m(L) or not, but (v, l, v′) is not a matched
edge, i.e. (v, l, v′) is not an edge of m(L), because L is a graph. Thus thanks
to the direct graph transformation, (v, l, v′) is the unique l-edge adjacent to
v in H ;

– If v is an added vertex, i.e. v is not a vertex of G. Thanks to direct graph
transformation, there exist a vertex u of R such that the double pushout
produces v in H from u. However, thanks to hypothesis, R have exactly one
l-edge adjacent to u. Thus H have exactly one l-edge adjacent to v;

– If v is a matched vertex, i.e. v is a vertex of m(K). Thanks to the CG(ΣE),
there exists an unique l-edge adjacent to v in G, noted (v, l, v′). And thanks
to the m injectivity, there exists a unique vertex u in L such that mV (u) = v.
• If there does not exist any l-edge adjacent to u in L, thanks to hypothesis,

there does not exist any l-edge adjacent to u in R. Thus, (v, l, v′) is an
edge of G\m(L) and thanks to direct graph transformation, (v, l, v′) is
an edge of H . Moreover, thanks to the CG(ΣE) condition, (v, l, v′) is the
unique l-edge adjacent to v in H ;

• If there exists an edge (u, l, u′) in L, thanks to hypothesis, it is the unique
l-edge adjacent to u in L and there exists an unique l-edge adjacent
to u in R noted (u, l, u′′). Moreover, thanks to the CG(ΣE) condition,
the unique l-edge adjacent to v in G is mE((u, l, u′)). Thus the double
pushout of the direct graph transformation produces an unique l-edge
adjacent to v from the (u, l, u′′) edge.

5 We suppose, without loss of generality, that the morphisms l and r of the double-
pushout figure (see section 2) are the identity.
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Consequently, there exists a unique l-labelled edge adjacent to v in H . In other
words, H satisfies the CH(ΣE) condition. �

The proposition 1 ensures that all derivations with an adequate production rule
preserve the C condition of G-maps (see definition 2). Let us notice that like
in classical operation definitions (mathematical definitions, algorithms or formal
specifications), the G-map consistency constraint (second point of definition 2)
has to be verified individually for each production rule.

4 Topological Operations in Terms of Graph
Transformation

The set of basic topological operations for G-maps has been defined [Lie89] and
includes different operations, namely vertex addition, vertex suppression, sew
and unsew. In previous works [PCG+07], we have shown that first and second
operations can be directly translated into transformation rules satisfying the C
condition and moreover the consistency constraint of G-map (see definition 2).

Nevertheless, both sew and unsew operations are generic and cannot be de-
fined directly in terms of graph transformation rules because they depend on
the orbits. To overcome this limitation, we introduced in [PCG+07] a concept of
graph transformation meta-rules which abstracts a set of graph transformation
rules along an orbit. The idea is to propagate a local transformation pattern
(expressed on a few vertices) along an orbit of the graph, independently of the
form of this orbit. To specify which part of the local pattern is associated to the
elements of the orbit, we introduce an additional label, which denotes the orbit.
Graphically, these meta-labelled edges are noted with dotted lines. Thus the 3-
sew meta-rule (which aims at sticking two volumes along one face) of Fig. 2(a)
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(a) Triangle (b) Tetrahedron (c) Square (d) Pyramid

Fig. 3. Cone operation

may be applied along a triangular face to define the classical rule of Fig. 2(b),
or along any other face orbit. More precisely, a meta-edge (d1, < α0, α1 >, d1)
of a meta-rule specifies a sub-graph labelled on {α0, α1} and thus matches an
orbit graph << α0, α1 >> (d1) in each classical rule (see Fig. 2(b)). The pat-
tern connected to d1, compounded of a α3 classical loop, must be repeated along
this orbit. Thus, Fig. 2(b) vertices a1, ..., f1, a2, ..., f2 have an α3 loop. Finally,
(d1, < α0, α1 >, d1) and (d2, < α0, α1 >, d2) must be expended in two isomorphic
orbit graphs. Thus, << α0, α1 >> (d1) and << α0, α1 >> (d2) are isomorphic
faces in Fig. 2(b).

This previous framework is enough to specify basic operations, and thus is
complete because all 3-G-map operations may be specified from the basic ones.
But, from a user point of view, to specify an operation as a large composition
of basic operations is less easy and efficient that specifying it directly. Unfortu-
nately, the previous framework is not general enough to directly specify most of
complex operations. Indeed, previous meta-rules are defined along a unique orbit,
thus every meta-edges are expended as isomorphic orbit graphs. For example,
the four meta-edges of sew rule Fig. 2(a) are expended to four isomorphic trian-
gular faces (see Fig. 2(b)). But, for most operations we need to match (and/or
to produce) different kinds of orbit graphs. In the cone operation (which aims
at producing a cone-shaped volume from one base face), different kinds of orbit
graphs are necessary to produce, for instance, a tetrahedron from a triangular
face or a pyramid from a square face (see Fig. 3). This operation cannot be
defined from several copies of the base 2-cell. But, it may be defined from copies
of base vertices linked together in the right manner. Especially, the top 0-cell of
a cone is dual6 of the base 2-cell. Intuitively, the 2-cells adjacent to the base are
also adjacent to the top. The classical rule of Fig. 4(b) defines the cone operation
on a face corner. Here, the top orbit graph << α1, α2 >> (d4) is a copy of the
base orbit graph << α0, α1 >> (d1) with a renaming of links. Thus, when a1

and b1 are α0 linked, a4 and b4 are α1 linked and when b1 and c1 are α1 linked,
b4 and c4 are α2 linked. Moreover, when a1 and b1 are α0 linked, a2 and b2 are
also α0 linked and when b1 and c1 are α1 linked, b2 and c2 are not linked. The α2

loop of the left-hand side of the rule figure 4(a), means that only isolated faces
(which are not linked to another one) can be matched in order to produce cones.

6 Two topological cells are dual if they are isomorphic up to a renaming of their labels.
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Fig. 4. Cone rules

The following definition allows us to generalise graph and production rules
notions by adding meta-edges that denote isomorphic orbit graphs up to a re-
naming of their edges labels.

Definition 4 (meta-graph and production rule). Let β = {α′
1, ..., α

′
k} ⊂

ΣE a subset of labels and Γβ be the set of all renaming functions γ : β → ΣE ∪
{ }. A renaming function γ is named meta-label and is said full if γ(β) ⊂ ΣE

(without “ ”)7.
A meta-graph on β, or meta-graph, is a graph with label in ΣE ∪ Γβ such

that each meta-labelled edge is a loop. A meta-graph is said full if all its meta-
labels are full. Graphically, a meta-loop γ is labelled by the renamed orbit <
γ(α′

1), ..., γ(α′
k) >.

A production meta-rule on β, or meta-rule, is a production rule p : L ←
K → R on the full sub-category of generalised meta-graph on β, such that the
meta-graph L is full.

The meta-rule Fig. 4(a) specifies the cone operation. In this example, we can see
four different kinds of orbits: a full orbit graph for the base (2-cell << α0, α1 >>
(d1)), two partial ones for the side faces8 (2-cells << α0, >> (d2) and <<
, α2 >> (d3)) and another full one for the top (0-cell << α1, α2 >> (d4)).

All of them are translated copies of matched 2-cell << α0, α1 >> (d1), using
respectively renaming functions γ1 : α0 
→ α0, α1 
→ α1, γ2 : α0 
→ α0, α1 
→ ,

7 Where γ(β) names the set {γ(l) | l ∈ β}.
8 Formally, this two subgraphs are not orbits in the sense of definition 1.
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Fig. 5. Expansion of a meta-graph G on {α0, α1} along a graph O

γ3 : α0 
→ , α1 
→ α2 and γ4 : α0 
→ α1, α1 
→ α2. By lack of space, we do
not explain how by means of similar production rules, we can express other
topological operations like the extrusion operation (to create box from a face)
or the rounding operation (to round angular edges or vertices).

As seen on examples, the semantic of meta-graph patterns is given by expand-
ing the meta-patterns along an orbit on β.

Definition 5 (expansion). Let β = {α′
1, ..., α

′
k} ⊂ ΣE be subset of labels and

O be a graph with labels in β. The expansion of a meta-graph G on β along O
is the Cartesian-like product G×O such that:

– The set of vertices is the Cartesian product of vertex sets
{(u, a) | u is a vertex of G and a is a vertex of O};

– The set of edges is
{((u, a), l, (v, a)) | (u, l, v) is an edge of G and a is a vertex of O}∪
{((u, a), γ(l), (u, b)) | (u, γ, u) is a meta-edge of G, γ(l) ∈ ΣE and (a, l, b) is
an edge of O}.

The expansion of a morphism f : G → H along O, is the morphism f × O :
G×O → H ×O which associates the vertex (fV (u), a) of H ×O to each vertex
(u, a) of G×O.

The expansion of a production meta-rule p : L
l← K

r→ R along O is the
production rule p×O : L×O

l×O←− K ×O
r×O−→ R×O.

In Fig. 5, we expand a graph G on {α0, α1} (see Fig. 5(a)) along a graph O
labelled in {α0, α1} (see Fig. 5(b)). Actually, G is extracted from the right-hand
side of the cone meta-rule (as shown in Fig. 4(a)) and O represents corner 2-
cell. The first step of the expansion process (see Fig. 5(c)) consists in copying
the vertices of G along O (computing VG × VO). The next steps consist in,
respectively, copying classical edges of G along O (see Fig. 5(d)) and copying
renamed edges of O along the G meta-edges (see Fig. 5(e)). Then, Fig. 4(b) is
obtained by expansion of cone meta-rule Fig. 4(a) along a face corner pattern.

Proposition 2. Let f : G → H be a morphism between the two meta-graphs G
and H on β, and O a graph with label in β. The expansion f ×O always exists.
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Proof. For each edge (u, l, v) of G and each vertex a of O, ((u, a), l, (v, a)) is an
edge of G×O and ((fV (u), a), l, (fV (v), a)) is an edge of H ×O.

For each meta-edge (u, γ, u) of G and each edge (a, l, b) of O, if γ(l) ∈ ΣE

then ((u, a), γ(l), (u, b)) is an edge of G × O and ((fV (u), a), γ(l), (fV (u), b)) is
an edge of H ×O.

G×O has no other edge. �

The following proposition shows that the expansion does not depend on β labels.
Its proof is left to the reader.

Proposition 3. Let β and δ be two subset of labels, ι : δ → β a bijective func-
tion, G be a meta-graph on β and O a graph labelled in β.

Let H be the meta-graph on δ obtained from G by renaming each meta γ-loop
to a γ ◦ ι-loop and P be the graph labelled on δ obtained from O by renaming
each label of O along ι−1. Then we have G×O = H × P .

The previous proposition founds the graphical notation of meta-loops with im-
plicit renaming functions.

By definition, if there exist several meta-edges on the left-hand side and on the
right-hand side of a production meta-rule, the expansion replaces all these meta-
edges with distinct sub-graphs (each of them is isomorphic, up to a renaming of
their edges labels, to the β-labelled graph O).

Definition 6 (direct graph meta-transformation). Let G be a graph la-
belled on ΣE and p : L ← K → R a production meta-rule on β.

The meta-rule p direct meta-transforms G into a graph H labelled on ΣE, de-
noted G ⇒p,O,m H, if there are a graph O with labels in β and a match morphism
m : L×O → G such that G ⇒p×O,m H is a direct graph transformation.

Classically, a graph meta-transformation, or more precisely, a graph meta-
transformation sequence, consists in zero or more direct graph transformations.
We should notice that, a production rule without any meta-edge can be seen
as a meta-rule on the empty set. Indeed, such production meta-rules and the
corresponding classical production rule allow one to produce the same direct
transformed graphs.

5 Consistency of G-Maps and Transformation Rules

We have already seen that applying a production meta-rule on a graph requires to
find a matching morphism which satisfies the dangling condition. The following
proposition shows that, as in proposition 1, in case of graphs in which each
vertex has exactly one adjacent l-edge for each label l (i.e. the condition C), the
dangling condition uniquely depends on the form of the production meta-rule,
and that the derivation then preserves the C property. Let us first define the
extension of condition C (see proposition 1) to meta-graphs and meta-rules:

CG(ΣE) Let G be a graph on β. For each label l ∈ ΣE , each vertex has exactly
one adjacent edge s. t. either it is l-labelled or it is γ-labelled with l ∈ γ(β);
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Cp(ΣE) Let p be the rule L ← K → R on β, CL\K(ΣE) and CR\K(ΣE) are
satisfied and each preserved vertex of K has the same adjacent labelled
edges in L and R (in the extended way).

Proposition 4. Let p : L←K → R be a production rule on β, O be a graph
with labels in β and m : L × O → G be a match morphism on a graph G with
labels in ΣE which satisfies the CG(ΣE) condition.

1. m satisfies the dangling condition iff O satisfies the CO(β) condition and
L\K satisfies the CL\K(ΣE) condition.

2. Moreover, if the rule p satisfies the Cp(ΣE) condition, then the derived graph
H produced by the direct graph transformation G ⇒p,0,m H satisfies the
CH(ΣE) condition.

Proof. Let us first prove the following lemma: for each vertex u of a meta-graph
G and each vertex a of O, vertices u in G and (u, a) in G × O have the same
labelled edges (in the extended way).

– If u has an adjacent l-labelled edge (u, l, v) in G, then (u, a) has an adjacent
l-labelled edge ((u, a), l, (v, a)) in G×O;

– If u has an adjacent meta γ-edge in G, and a has an adjacent l-labelled edge
(a, l, b) in O, such that γ(l) ∈ ΣE , then (u, a) has an adjacent labelled edge
((u, a), γ(l), (u, b)) in G×O; And by definition, G×O has no other edges.

The proof of the proposition lies directly in this lemma. �

The condition of the proposition 4 ensures that a full γ-edge in the left-hand side
of the meta-rule matches a complete < γ(β) >-orbit of the transformed graph
and respectively full γ-edges of right-hand side match complete < γ(β) >-orbit
of produced graph.

Thanks to proposition 4, a transformation of a G-map along the cone meta-
rule of Fig. 4(a) preserves the C property of G-maps. Since each vertex of the
cone meta-rule has exactly three links labelled by α0, α1 and α2 (in extended
way), the expanded rule (see Fig. 4(b) for example) has the same property.

Moreover, it is easy to prove that the consistency property of G-maps (see
second condition of definition 2) is preserved by application of the cone meta-
rule. Indeed, in the left-hand side, because d1 has a α2-loop, its α0-neighbour
has also an α2-loop. Moreover, in all expanded rules along a graph O, because of
CO({α0, α1}), each expanded vertex has an α2-loop and an α0-neighbour. And
thus, each expanded vertex has an α0α2α0α2 labelled cycle. For example, in the
cone expansion Fig. 4(b), a1b1 and c1d1 are two α0α2α0α2 labelled cycles.

In the right-hand side, since d1 and d2 are α2-linked together, their α0-
neighbours are also α2-linked together. Indeed, because of CO({α0, α1}), each
vertex of O has an α0-edge. And thus, each expanded vertex has an α0α2α0α2 cy-
cle. In the cone rule example Fig. 4(b), a1b1b2a2 and c1d1d2c2 are two α0α2α0α2

labelled cycles. In the same way, d3 and d4 are α0-linked together, thus their
α2-neighbours are also α0-linked together. In the cone rule example Fig. 4(b),
a3a4, b3b4c4c3 and d3d4 are three α0α2α0α2 labelled cycles.
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6 Conclusion and Perspectives

In this paper we focus on the formalisation of complex topological operations on
G-maps. Pursuing previous works, we propose a general class of meta-rules for
G-maps which allows us to directly define a large class of topological operations,
helpful in the context of modelling of complex structured systems, as the cone
operation taken as illustration in the paper. We prove that thanks to strong
G-maps constraints concerning edge labelling, the dangling condition of a meta-
rule can be statically verified independently of the G-map on which it is applied.
We will search for sufficient syntactical conditions on rules to ensure G-map
consistency constraints.

This rule-based approach to specify topological evolution of objects will be
useful for coupling transformations of objects with more classical rule-based ap-
proaches for simulating complex systems. In the context of modelling of complex
biological systems, such a simulation paradigm has been broadly considered lead-
ing to an enormous amount of successfull applications [CFS06, RPS+04, Car05].
In these models, the compartmentalisation captures a static topology (focusing
on exchange between compartments and molecular interactions) or simple topo-
logical modifications (resulting, for example, from endocytosis or exocytosis).
Nevertheless, although biological systems are composed of molecules, the struc-
ture of the system and components both play essential roles in the biological
functions of the system. Indeed the understanding of biological systems needs
to take into account molecular phenomena (possibly abstracted by continuous
concentrations), communication channels and space structuring of the cells at
a same accuracy level. Thus it is an important challenge to understand the ef-
fects of spatial structure on the different concentrations, and reciprocally, the
consequences of the evolution of concentrations on the spatial structure.

A general framework for rule-based simulations taking into account both
molecular phenomena and subcellular compartment rearrangments would han-
dle embedded G-maps. In previous work [PCG+07], we sketched out embed-
ded G-maps by associating labels with vertices to represent geometric aspects
(shapes of objects, distances between them, etc.) and by associating other la-
bels to represent biochemical quantities (protein concentrations, protein fluxes
through a subcellular wall, etc.). We have already used such topological trans-
formation rules to simulate the evolution of biological subcellular compartments
[PCLG+08]. To apply topological transformation rules, we have first to match
the left-hand side of a rule. The pattern-matching problem is recognised as dif-
ficult in the general case of general graphs (without any constraint). In the
particular case of G-maps, we have applied heuristics derived from usual G-map
coverage involved in classical computer graphics operations. Our future works
will then focus on the definition of embedded G-maps, and of associated graph
transformation rules. Then it will be mandatory to study the conditions which
ensure that the application of a transformation rule leads to another embedded
G-maps in a coherent way.
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Abstract. The goal of this paper is the generalization of embedding and
confluence results for graph transformation systems to transformation
systems with negative application conditions (NACs). These conditions
restrict the application of a rule by expressing that a specific structure
must not be present before or after applying the rule to a certain context.
Such a condition influences each rule application and transformation and
therefore changes significantly the properties of the transformation sys-
tem. This behavior modification is reflected by the generalization of the
Embedding Theorem and the Critical Pair Lemma or Local Confluence
Theorem, formulated already for graph transformation systems without
negative application conditions. The results hold for adhesive high-level
replacement systems with NACs and are formulated in this paper for
the instantiation to double-pushout graph transformation systems with
NACs. All constructions and results are explained on a running example.

1 Introduction

In graph transformation, negative application conditions (NACs) express that
certain structures at a given time are forbidden. They are a widely used feature
for several applications of graph transformation e.g., [1,2]. In order to allow
confluence analysis for these applications, the theory already worked out for
graph transformation systems (gts) without NACs has to be generalized to gts
with NACs. The notion of critical pairs is central in this theory. It was first
developed in the area of term rewriting systems (e.g., [3]) and, later, introduced
in the area of graph transformation for hyper-graph rewriting [4,5] and then for
all kinds of transformation systems fitting into the framework of adhesive high-
level replacement (HLR) categories [6]. We tailored the theory presented in this
paper for gts with NACs and not for other kind of constraints or application
conditions, since NACs are already widely used in practice.

For gts without NACs, embedding of a graph transformation sequence with-
out NACs and local confluence of a gts without NACs has been investigated in
detail in [6]. Recall that in order to be able to embed a transformation without

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 162–177, 2008.
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NACs into some larger context by some extension morphism k, this morphism
should be consistent as defined in [6]. Using the results on concurrency for graph
transformation with NACs [7] we introduce in this paper the definition of NAC-
consistency of an extension morphism. This is an additional condition on top
of standard consistency enabling the generalization of the Embedding Theorem
to transformations with NACs. Recall moreover that, for a gts without NACs,
in order to be locally confluent it suffices that all critical pairs are strictly con-
fluent. Having generalized the notion of critical pairs [8], completeness [8], and
embedding to transformations with NACs in this paper, we moreover introduce a
sufficient condition on the critical pairs with NACs. This condition implies local
confluence of a gts with NACs as stated in the introduced Critical Pair Lemma
with NACs. The proofs of these results are given in a technical report [9] on
the level of adhesive HLR systems. In return, all results are illustrated in this
paper by an example modeling order and payment transactions in a restaurant
by typed graphs and rules with NACs.

The structure of this paper is as follows. In Section 2, we introduce preliminar-
ies on gts with NACs and main results on concurrency for graph transformation
with NACs. In Section 3, it is explained under which conditions it is possible to
embed transformations with NACs. In Section 4, results on confluence of trans-
formation systems with NACs are formulated. Section 5 concludes this paper
with remarks on future work and a short summary.

2 Graph Transformation Systems with NACs

In this section, we reintroduce gts with NACs and some preliminary results that
we need for the remaining paper. NACs are an important feature for the modeling
of transformation systems, expressing that a certain structure is not present
when performing the transformation [10] and thus enhancing the expressiveness
of the transformation. In order to provide a rich theory for such transformations
with NACs, they are integrated into the framework of adhesive HLR systems [6].
In [7] it is remarked that gts with NACs are a valid instantiation of adhesive HLR
systems with NACs. In this paper, we concentrate on formulating the results for
graph transformation with NACs and showing their significance on an example.

Definition 1 (typed graph and graph morphism)
A graph G = (GE , GV , s, t) consists of a set GE of edges, a set GV of vertices
and two mappings s, t : GE → GV , assigning to each edge e ∈ GE a source
q = s(e) ∈ GV and target z = t(e) ∈ GV . A graph morphism f : G1 → G2

between two graphs Gi = (Gi,E , Gi,V , si, ti), (i = 1, 2) is a pair f = (fE :
GE,1 → GE,2, fV : GV,1 → GV,2) of mappings, such that fV ◦ s1 = s2 ◦ fE and
fV ◦ t1 = t2 ◦ fE. A type graph is a distinguished graph TG. A typed graph
GT : (G, type) over TG is a graph G and a graph morphism type : G → TG. A
typed graph morphism f : GT

1 → GT
2 is a graph morphism f : G1 → G2 with

type2 ◦ f = type1.
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From now on we only consider typed graphs and morphisms over a given type
graph TG and omit the prefix typed and the index T in our notations.

Definition 2 (injective, surjective, overlapping, pair factorization). A
graph morphism f : G1 → G2 is injective (resp. surjective) if fV and fE are
injective (resp. surjective) mappings. Two graph morphisms m1 : L1 → G and
m2 : L2 → G are jointly surjective if m1,V (L1,V ) ∪ m2,V (L2,V ) = GV and
m1,E(L1,E)∪m2,E(L2,E) = GE. A pair of jointly surjective morphisms (m1, m2)
is also called an overlapping of L1 and L2. A pair factorization of two graph
morphisms (m1 : G1 → H, m2 : G2 → H) consists of a pair of jointly surjective
morphisms (e1 : G1 → E, e2 : G2 → E) and an injective morphism m : E → H
such that m ◦ e1 = m1 and m ◦ e2 = m2 and is unique up to isomorphism.

Definition 3 (rule and match). A graph transformation rule p : L
l← K

r→ R
consists of a rule name p and a pair of injective graph morphisms l : K → L
and r : K → R. The graphs L, K and R are called the left-hand side (lhs), the
interface, and the right-hand side (rhs) of p, respectively. Given a rule p : L

l←
K

r→ R and a graph G, one can try to apply p to G if there is an occurrence of
L in G i.e. a graph morphism, called match m : L → G.

A negative application condition or NAC as introduced in [10] forbids a certain
graph structure to be present before or after applying a rule.

Definition 4 (negative application condition)

– A negative application condition or NAC(n) on L is a
graph morphism n : L → N . A graph morphism g : L →
G satisfies NAC(n) on L i.e. g |= NAC(n) if and only if
� q : N → G which is injective such that q ◦ n = g.

L

g

��

n �� N

q
X

��G

– A NAC(n) on L (resp. R) for a rule p : L
l← K

r→ R is called left (resp.
right) NAC on p. NACp,L (resp. NACp,R) is a set of left (resp. right) NACs
on p. NACp = (NACp,L, NACp,R), consisting of a set of left and a set of
right NACs on p is called a set of NACs on p.

Definition 5 (graph transformation with NACs)

– A graph transformation system with NACs is a set of rules where each rule
p : L

l← K
r→ R has a set NACp = (NACp,L, NACp,R) of NACs on p.

– A direct graph transformation G
p,g⇒ H via a rule p :

L
l← K

r→ R with NACp = (NACp,L, NACp,R) and
a match g : L → G consists of the double pushout [11]
(DPO) at the right where g satisfies each NAC

L

g

��

K
r ��

��

l�� R

h

��
G D ���� H

in NACp,L, written g |= NACp,L, and h satisfies each NAC in NACp,R,
written h |= NACp,R. Since pushouts in Graph always exist, the DPO can
be constructed if the pushout complement of K → L → G exists. If so, we
say that the match g satisfies the gluing condition of rule p. A graph trans-
formation, denoted as G0

∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of
direct graph transformations.
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Remark 1. From now on we only consider gts with rules having an empty set of
right NACs. This is without loss of generality, because each right NAC can be
translated into an equivalent left NAC as explained in [6], where Theorem 7.17
can be specialized to NACs as remarked in [7].

Example 1. Here we introduce our running example Restaurant modeling order
and payment transactions in a restaurant. The type and start graph of Restau-
rant are depicted in Fig. 1. Note that all results reviewed and introduced in this
paper hold in particular for typed gts with NACs, since they are a valid instanti-
ation of adhesive HLR systems with NACs. The rule openAccountTable shown in
Fig. 1 models the opening of an account for one of the tables in the restaurant.
This rule holds two NACs: notOpened forbids the rule to be applied twice to
the same table and noAlert specifies that an account can not be opened if there
exists an alert for the table. An alert can be generated by rule alertUnpaidTable
if a staff member of the restaurant notices that guests have left a table without
paying. In this case an exception handling starts making sure that unpaid orders
are considered when doing the daily accounting. The NAC noAlert for this rule
avoids it to be applied if an alert for the table already exists. noteUnpaidOrder
notes an unpaid order for a table by deleting it. resetAlert can reset the alert for
a table if it e.g. appeared to be a false alarm or all unpaid orders are processed
by noteUnpaidOrder in the meanwhile. Furthermore, gatherOrder can assign an
order for a table if there is no alert, payOrder models the paying of an order for
the case that there is no alert expressed by NAC noAlert and finally closeAc-
countTable can close the account of a table if all orders of a table are processed
which is expressed by NAC noOrders. Note that the rules payOrder and note-
UnpaidOrder have the same effect on the system since they both just delete an
order, but the first one can only be applied if there is no alert in contrast to the
second one. Of course it is possible to augment this system with information on
the price of the order, keeping track of a list of paid resp. unpaid orders etc.
For the purpose of this paper though we restrict ourselves to these more simple
operations.

In the following sections, we repeatedly need two constructions translating NACs
via morphisms and rules. More precisely, the mapping D translates NACs down-
wards along morphisms. Given a diagram as depicted in Fig. 2, consider a NACL′c
on L′

c and a morphism mc, then Dmc(NACL′c) translates NACL′c into equivalent
NACs on Lc. The basic idea of the construction of D is to consider all suitable
overlappings of Lc and NACL′c . The mapping DL translates NACs down- and
leftwards, i.e. given the diagram in Fig. 2 with NACLn on Ln, a morphism en,
and a rule Lc ← Cc → E, then DLpc(NACLn) translates the NACs on Ln

to equivalent NACs on Lc. The construction of DL is based on D translating
NACLn to equivalent NACs on E, and then on the well-known construction of
right to left application conditions [6]. For more details see [7,9].

Now we introduce the concurrent rule with NACs pc induced by a transforma-
tion with NACs t : G0

n+1=⇒ Gn+1 via a sequence of rules p0, . . . , pn. Intuitively,
a concurrent rule with NACs summarizes in one rule which parts of a graph G0
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Fig. 1. Start graph, type graph and rules of Restaurant

should be present, preserved, deleted, and produced by t. Moreover we have a
summarized set of NACs on the concurrent rule pc expressing which graph parts
are forbidden when applying p0, . . . , pn to G0 leading to t. Note that in [7,9]
it is proven that it is possible to repeat the transformation t in one step via
the concurrent rule pc with NACs. In addition, whenever it is possible to apply
a concurrent rule with NACs pc it is also possible to resequentialize this one-step
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L0

m′c �� L′
c

mc

��

g′c

��

K′
c

��

���� R′
c

e′c ��

h′c

��

Ln

en

��

gn

��

Kn

��

�� �� Rn

��

gn+1

��

Lc

gc

��

Cc

��

l�� �� E

h

��

Cn

��

�� r �� Rc

hc

��

Kc

(1)
kc

��
kn

��

G0 Dn
���� Gn D�� �� Gn+1

Fig. 2. Definition of concurrent rule with NACs

transformation into single steps via the sequence of original rules with NACs
which led to this concurrent rule.

Definition 6 (concurrent rule with NAC, concurrent (co-, lhs-)match
induced by G0

n+1=⇒ Gn+1)

n = 0 For a direct transformation G0 ⇒ G1 via match g0 : L0 → G0, comatch
g1 : R0 → G1 and rule p0 : L0 ← K0 → R0 with NACp0 the concurrent
rule pc with NAC induced by G0 ⇒ G1 is defined by pc = p0 with NACpc =
NACp0 , the concurrent comatch hc is defined by hc = g1, the concurrent lhs-
match by id : L0 → L0 and the concurrent match gc by gc = g0 : L0 → G0.

n ≥ 1 Consider p′c : L′
c ← K ′

c → R′
c (resp. g′c : L′

c → G0, h′
c : R′

c → Gn,m′
c :

L0 → L′
c), the concurrent rule with NACs (resp. concurrent match, comatch,

lhs-match) induced by G0
n=⇒ Gn. Let ((e′c, en), h) be the pair factoriza-

tion of the comatch h′
c and match gn of Gn ⇒ Gn+1. According to Fact

5.29 in [6] PO-PB decomposition, PO composition and decomposition lead
to the diagram in Fig. 2 in which (1) is a pullback and all other squares
are pushouts. For a transformation sequence G0

n+1=⇒ Gn+1 the concurrent
rule pc with NACs (resp. concurrent match, comatch, lhs-match) induced
by G0

n+1=⇒ Gn+1 is defined by pc = Lc
l◦kc← Kc

r◦kn→ Rc (gc : Lc → G0,
hc : Rc → Gn+1, mc ◦ m′

c : L0 → Lc). Thereby NACpc is defined by
NACpc = DLpc(NACLn) ∪Dmc(NACL′c).

Example 2. Consider the graph Middle2Orders depicted in Fig. 3 and a transfor-
mation t : Middle2Orders

alertUnpaidTable⇒ G1
noteUnpaidOrder⇒ G2

noteUnpaidOrder⇒
G3

resetAlert⇒ G4
closeAccountTable⇒ G5

closeAccountTable⇒ Startgraph in which an alert
is generated for the middle table, consequently both orders on the middle table
are noted as unpaid, the alert is then reset, the middle table account is closed
and the right table account is closed as well. The lhs Lc and rhs Rc of the con-
current rule pc induced by transformation t is depicted in Fig. 3 together with
the concurrent transformation via pc summarizing t into one step. It deletes two
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Fig. 3. Concurrent rule and transformation with NACs

different orders belonging to the middle table, closes its account and in addition
closes the account of the right table. Note that the node ids in this figure define
the morphisms. The concurrent NACpc induced by t holds a NAC(n1) forbid-
ding more than two orders, a NAC(n2) forbidding an alert for the table holding
already two orders, a NAC(n3) forbidding any order, and NAC(n4) forbidding
an alert for the other table. Note that the same NAC(n2) is induced by the
NACs of alertUnpaidTable and closeAccountTable applied to the middle table.
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Finally, for the Embedding Theorem with NACs we reintroduce the notion of ex-
tension diagram with NACs [8].

Definition 7 (extension diagram with NACs)

An extension diagram is a diagram (1), where, k0 :
G0→G′

0 is a graph morphism, called extension mor-
phism, and t : G0

∗⇒ Gn and t′ : G′
0

∗⇒ G′
n are graph

transformations via the same rules (p0, · · · , pn−1)
with NACs, and matches (m0, · · · , mn−1) and ex-
tended matches (k0 ◦m0, · · · , kn−1 ◦mn−1), respec-
tively, defined by the DPO diagrams on the right
for each pi. Since t and t′ are transformations with
NACs, the matches (m0, · · · , mn−1) and extended
matches (k0 ◦m0, · · · , kn−1 ◦mn−1) have to satisfy
the NACs of the rules (p0, · · · , pn−1).



Embedding and Confluence of Graph Transformations 169

3 Embedding of Transformations with NACs

Recall [6] that in order to be able to embed a transformation without NACs
into some other context by an extension morphism k, this morphism should not
identify graph elements which are deleted and on the other hand preserved by
the transformation. Moreover k should not map any node which is deleted by the
transformation to a node which is the source or target of an additional edge in
the new context. This condition on the extension morphism k can be checked by
computing its boundary and context, and checking then consistency as defined
in [6]. Combined with the results on concurrency for graph transformation with
NACs [7] it is possible to define also NAC-consistency of an extension morphism.
This is an additional condition needed on top of standard consistency to general-
ize the embedding of transformations to transformations with NACs. Note that
in order to make the difference between consistency and NAC-consistency of an
extension morphism clear, we call consistency from now on boundary consistency.

Now we can formulate the definition of NAC-consistency for an extension
morphism k0 w.r.t. a transformation t. It expresses that the extended concurrent
match induced by t should fulfill the concurrent NAC induced by t.

Definition 8 (NAC-consistency). A morphism k0 : G0 → G′
0 is called NAC-

consistent w.r.t. a transformation t : G0
∗⇒ Gn if k0 ◦ gc |= NACpc with NACpc

the concurrent NAC and gc the concurrent match induced by t.

The Embedding Theorem for rules with NACs needs NAC-consistency of the
extension morphism k0 on top of boundary consistency. Note that in [9] also the
Extension Theorem with NACs is proven describing the fact that boundary and
NAC-consistency are not only sufficient, but also necessary conditions for the
construction of extension diagrams for transformations with NACs.

Theorem 1 (Embedding Theorem with NACs [9])

Given a transformation t : G0
n=⇒ Gn with NACs.

If k0 : G0 → G′
0 is boundary consistent and NAC-

consistent w.r.t. t then there exists an extension diagram
with NACs over t and k0 as defined in Def. 7 and de-
picted on the right.

G0

(1)

∗t ��

k0

��

Gn

kn

��
G′

0
∗t′ �� G′

n

Example 3. Consider the transformation t : Middle2Orders
∗⇒ Startgraph with

its concurrent rule pc and NACpc as described in Example 2 and depicted as
concurrent transformation in Fig. 3. In addition, consider an inclusion morphism
k : Middle2Orders → Middle3Orders in which the graph Middle3Orders has
an additional order for the middle table. The morphism k is not NAC-consistent,
since the concurrent NAC induced by t is not satisfied by k ◦ gc. This is because
NAC(n1) forbidding more than 2 orders on the middle table is not satisfied.
Thus it is not possible to embed transformation t into Middle3Orders by the
extension morphism k, since k is not NAC-consistent. Intuitively speaking, it
is not possible to change the state of the tables in the restaurant in the same
way as transformation t if the middle table holds an extra order. This is because
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rule closeAccountTable would forbid closing the account for the middle table still
holding one order. Consider a different inclusion morphism k′ : Middle2Orders →
4Tables in which 4Tables just holds an extra table. Now k′ is NAC-consistent
and it is possible to embed t into 4Tables. Intuitively speaking, the embedded
transformation t′ changes the states of the tables in the restaurant in the same
way as transformation t, but does this in a restaurant with an extra table.

4 Confluence of Transformations with NACs

Local confluence of a transformation system without NACs can be inferred from
the strict confluence of all critical pairs (see Critical Pair Lemma [6]). If a critical
pair is strictly confluent via some transformations t1 and t2, we say that (t1, t2)
is a strict solution of the critical pair. Intuitively speaking, strict confluence
means that the common structure which is preserved by the critical pair should
be preserved by the strict solution of this critical pair as well. For the Critical
Pair Lemma with NACs we need a stronger condition though to obtain local
confluence of the transformation system. In addition to strict confluence of all
critical pairs we need also NAC-confluence. NAC-confluence of a critical pair
ensures that for each context into which the critical pair can be embedded, such
a strict solution can be embedded into this context as well without violating the
NACs present in t1 and t2. In particular, a critical pair is NAC-confluent if the
NAC-consistency (as defined in Def. 8) of each extension morphism w.r.t. a strict
solution of the critical pair follows from the NAC-consistency of the extension
morphism w.r.t. the critical pair itself.

First we state the definition of a critical pair with NACs. A critical pair de-
scribes a conflict between two rules in a minimal context. Therefore we consider
in the following only overlaps of graphs in order to rule out superfluous context.
Moreover, it is proven in [8] that the following critical pair definition satisfies
completeness. This means intuitively that for each pair of conflicting transfor-
mations there exists a critical pair expressing the same conflict in a minimal
context.

Definition 9 (critical pair). A critical pair is a pair of direct transformations

K
(p1,m1)⇒ P1 with NACp1 and K

(p2,m2)⇒ P2 with NACp2 such that:

1. (a) �h12 : L1 → D2 : d2 ◦ h12 = m1 and (m1, m2) jointly surjective
(use-delete-conflict)
or

(b) there exists h12 : L1 → D2 s.t. d2 ◦ h12 = m1, but for one of the NACs
n1 : L1 → N1 of p1 there exists an injective morphism q12 : N1 → P2 s.t.
q12◦n1 = e2◦h12 and (q12, h2) jointly surjective (forbid-produce-conflict)

or
2. (a) �h21 : L2 → D1 : d1 ◦ h21 = m2 and (m1, m2) jointly surjective

(delete-use-conflict)
or
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Fig. 4. Conflict Matrix for Restaurant and minimal context for (alertUn-
paidTable,gatherOrder)

(b) there exists h21 : L2 → D1 s.t. d1 ◦ h21 = m2, but for one of the NACs
n2 : L2 → N2 of p2 there exists an injective morphism q21 : N2 → P1 s.t.
q21◦n2 = e1◦h21 and (q21, h1) jointly surjective (produce-forbid-conflict).
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Example 4. All critical pairs of a gts can be computed by the graph transforma-
tion tool AGG [12]. They are illustrated by a Conflict Matrix as for our Restau-
rant example in the left part of Fig. 4. More precisely, entry (pj , pi) (row, column)

in this matrix denotes the number of critical pairs K
(pj ,mj)⇒ Pj with NACpj and

K
(pi,mi)⇒ Pi with NACpi describing delete-use and produce-forbid-conflicts as

defined in Def. 9. Consider in particular entry (alertUnpaidTable, gatherOrder).
This critical pair expresses a produce-forbid conflict, since when an alert is set
for a certain table it is impossible to gather an order for it afterwards. The min-
imal context expressing this conflict is in the right part of Fig. 4 depicting graph
Pj . The critical pair itself is depicted in the left part of Fig. 5.

Definition 10 (strict NAC-confluence). A critical pair P1
p1,g1⇐ K

p2,g2⇒ P2

is strictly NAC-confluent if
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– it is strictly confluent via some trans-
formations t1 : K

p1,g1⇒ P1 ⇒∗ X and
t2 : K

p2,g2⇒ P2 ⇒∗ X (see [6])
– and it is NAC-confluent for t1 and t2, i.e.

for every injective morphism k0 : K → G

which is NAC-consistent w.r.t. K
p1,g1⇒ P1

and K
p2,g2⇒ P2 it follows that k0 is NAC-

consistent w.r.t. t1 and t2.

P1

∗���
��

��
��

��
��

��
�

G K
k0��

(p1,g1)
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��
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P2
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Remark 2. Injectivity of k0 is sufficient by completeness of critical pairs [8].

Example 5. Consider again the Conflict Matrix of Restaurant depicted in Fig. 4.
Let us investigate the following critical pairs for strict NAC-confluence:

– (resetAlert,noteUnpaidOrder). It describes a delete-use-conflict, since
resetAlert deletes the alert and noteUnpaidOrder can only be applied if an
alert is set for the table. This critical pair can be resolved by a strict solution
by on the one hand applying payOrder and on the other hand resetAlert.
Now we investigate if this critical pair is also NAC-confluent for this solu-
tion. Rule resetAlert does not hold a NAC and therefore there is nothing to
prove. On the other hand payOrder holds a NAC which forbids an alert on
the table. The rules resetAlert and noteUnpaidOrder can only be applied if
an alert on the table is present. After applying resetAlert though this alert is
in any case deleted. The only problem that can occur is that in another con-
text more than one alert is present for a table. Cardinality constraints on the
type graph of Restaurant as depicted in Fig. 1 forbid this possibility though.
Therefore we can conclude that this critical pair is strictly NAC-confluent.

– (gatherOrder,closeAccountTable). It describes a produce-forbid-conflict,
since gatherOrder produces an order which is forbidden by closeAccount-
Table. This pair can be resolved on the one hand by paying the order and
closing the table account and on the other hand nothing. This solution de-
mands no alert on the table because of NAC noAlert on payOrder and no
orders because of NAC noOrders on closeAccountTable. It becomes clear that
this critical pair is NAC-confluent for this solution because it only occurs
on a table without an alert and without any order. These are exactly the
restrictions for which the above solution holds.

– (alertUnpaidTable,gatherOrder). We described this critical pair already in
Example 4 and it is depicted in Fig. 5. There exists a strict solution for
this critical pair resetting the alert on the one hand and paying the order
on the other hand. This solution is depicted also in Fig. 5 (part without
rounded rectangle). This critical pair is NAC-confluent for this solution since
alertUnpaidTable can be applied only on a table without any order and
therefore when paying the order there will not be any alert either.

Consider though a somewhat larger strict solution for this critical pair,
namely on the one hand resetting the alert and closing the account and on
the other hand paying the order and then closing the account. In Fig. 5 this
means we consider now as well the rounded rectangle. The critical pair is
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Fig. 5. Critical pair (alertUnpaidTable,gatherOrder) with its solution

not NAC-confluent for this solution. This is because closeAccountTable has
a NAC noOrders which is not present in the NACs of the critical pair. This
means that the graph consisting of a table with an open account could be
embedded into a graph with a table with an open account and some order
already present. In this case it is not possible to apply the same strict solution
to the produce-forbid-conflict, since there are too many orders on the table.
This example demonstrates very nicely why in this case the minimal context
in which the conflict is resolved is not sufficient to resolve the conflict also
in any other valid context in the same way.

Theorem 2 (Local Confluence Theorem - Critical Pair Lemma with
NACs [9]). Given a gts with NACs, it is locally confluent if all its critical pairs
are strictly NAC-confluent.

Example 6. Our running example transformation system Restaurant is locally
confluent, since all critical pairs are strictly NAC-confluent. Consider again the
Conflict Matrix of Restaurant as depicted in Fig. 4.

– All critical pairs on the diagonal of the matrix are trivially strictly NAC-
confluent since they are of the form P

p,g⇐ K
p,g⇒ P .

– (gatherOrder,closeAccountTable) has been discussed in Example 5.
– (closeAccountTable,gatherOrder) denotes a critical pair in delete-use-conflict

and can be resolved analogously to (gatherOrder,closeAccountTable).
– (closeAccountTable,alertUnpaidTable) denotes a critical pair in delete-use-

conflict and can be resolved, without transformation on the result of closeAc-
countTable, just applying the rules resetAlert and then closeAccountTable to
the result of alertUnpaidTable. Thereby closeAccountTable can be applied
since an alert can only be generated if no alert was there yet. Therefore after
resetting this one alert, there will be no alert anymore on the table. Moreover
there are no orderings on the table, since the table could be closed already
at the start of the transformation.

– (alertUnpaidTable,gatherOrder) has been discussed in Example 5.
– (alertUnpaidTable,payOrder) will be discussed in Example 8.
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– (alertUnpaidTable,closeAccountTable) denotes a critical pair in produce-
forbid-conflict and can be resolved analogously to (closeAccountTable,
alertUnpaidTable).

– (resetAlert,noteUnpaidOrder) has been discussed in Example 5

Given a critical pair and a strict solution for it, it would be desirable to have a
constructive method to check for NAC-confluence of this solution. Therefore the
following theorem formulates a constructive sufficient condition for a critical pair
P1

p1⇐ K
p2⇒ P2 which is strictly confluent via some transformations t1 : K

p1,g1⇒
P1 ⇒∗ X and t2 : K

p2,g2⇒ P2 ⇒∗ X to be also NAC-confluent for t1 and t2. This
means by definition that for every injective extension morphism k0 : K → G

which is NAC-consistent w.r.t. K
p1,g1⇒ P1 and K

p2,g2⇒ P2 it follows that k0 is also
NAC-consistent w.r.t. t1 and t2. In the following theorem two different conditions
on each single NAC(n1,j) (resp. NAC(n2,j)) of the concurrent NAC induced by
transformation t1 (resp. t2) are given which lead to NAC-confluence if one of
them is satisfied. The first condition expresses that there exists a suitable NAC
on p1 (resp. p2) which evokes the satisfaction of NAC(n1,j) (resp. NAC(n2,j)).
The second condition first asks for a suitable morphism between the lhs’s of
the concurrent rules induced by both transformations t1 and t2. Moreover it
expresses that there exists a suitable NAC on p2 (resp. p1) which evokes the
satisfaction of NAC(n1,j) (resp. NAC(n2,j)). Note that in the following theorem
Def. 6 is used in order to refer to a concurrent rule, match and lhs-match induced
by a transformation t, and it is referred to the downward translation of a NAC
on L via a morphism mc : L → Lc to a set of equivalent NACs on Lc denoted
as Dmc(NACL) and defined explicitly in [7].

Theorem 3 (Sufficient Condition for NAC-confluence). Given a critical
pair P1

p1⇐ K
p2⇒ P2 which is strictly confluent via the transformations t1 : K

p1,g1⇒
P1 ⇒∗ X and t2 : K

p2,g2⇒ P2 ⇒∗ X. Let Lc,1 (resp. Lc,2) be the left-hand side of
the concurrent rule pc,1 (resp. pc,2), mc,1 : L1 → Lc,1 (resp. mc,2 : L2 → Lc,2)
the lhs-match and gc,1 : Lc,1 → K (resp. gc,2 : Lc,2 → K) the concurrent match
induced by t1 (resp. t2). Then the critical pair P1

p1⇐ K
p2⇒ P2 is also NAC-

confluent for t1 and t2 and thus strictly NAC-confluent if one of the following
conditions holds for each NAC(n1,j) : Lc,1 → N1,j (resp. NAC(n2,j) : Lc,2 →
N2,j) of the concurrent NACpc,1 induced by t1 (resp. NACpc,2 induced by t2)

– there exists a NAC(n′
1,i) : Lc,1 → N ′

1,i (resp. NAC(n′
2,i) : Lc,2 → N ′

2,i)
in Dmc,1(NACL1) (resp. Dmc,2(NACL2)) and an injective morphism dij :
N ′

1,i → N1,j (resp. an injective morphism dij : N ′
2,i → N2,j) such that (1)

(resp. (1’)) commutes.
– there exists a morphism l21 : Lc,2 → Lc,1 (resp. l12 : Lc,1 → Lc,2) s.t. (2)

(resp. (2’)) commutes and in addition a NAC(n′
2,i) : Lc,2 → N ′

2,i (resp. n′
1,i :

Lc,1 → N ′
1,i) in Dmc,2(NACL2) (resp. Dmc,1(NACL1)) with an injective

morphism mij : N ′
2,i → N1,j (resp. an injective morphism mij : N ′

1,i → N2,j)
s.t. n1,j ◦ l21 = mij ◦ n′

2,i (resp. n2,j ◦ l12 = mij ◦ n′
1,i).
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Example 7 – Consider again the critical pair (gatherOrder,closeAccountTable)
as described in Example 5. The strict solution consists on the one hand of
a transformation that pays the order and then closes the account and on
the other hand nothing. Thus for the solution of this critical pair t2 merely
consists of t2 : K

closeAccountTable⇒ P2 and therefore this case is trivial. Thus
it remains to consider the diagram on the left in Theorem 3. Namely, on the
other hand t1 : K

gatherOrder⇒ K1
payOrder⇒ K2

closeAccount⇒ P2 is not trivial.
The concurrent rule pc,1 of this transformation closes the account of a table
with a concurrent NACpc,1 consisting of a NACn1,1 forbidding any alert and
a single NAC NACn1,2 forbidding any order for this table. Now NACn1,1 is
induced on the one hand by the downward translation of NAC noAlert of rule
gatherOrder, since they can be connected by an identity i.e. d1,1 = id. On the
other hand NACn1,2 is induced by NAC noOrders on rule closeAccountTable.
This is because the lhs Lc,1 of the concurrent rule pc,1 consists of an open
table and it is thus identical to the lhs Lc,2 of closeAccountTable. Therefore
the morphism l21 is in this case the identity as well as the morphism m12

connecting both single NACs.
– Consider also the critical pair (resetAlert,noteUnpaidOrder) as described in

Example 5. The sufficient condition as described in Theorem 3 is not fulfilled
for the strict solution described in Example 5. It was possible though to
conclude NAC-confluence according to Def. 10 for this solution anyway as
explained in Example 5.

The following corollary follows directly from Theorem 3. It states that NAC-
confluence for a critical pair is automatically fulfilled if a strict solution can be
found via rules without NACs.

Corollary 1. A critical pair P1
p1⇐ K

p2⇒ P2 is strictly NAC-confluent if it is
strictly confluent via the transformations t1 : K

p1,g1⇒ P1 ⇒∗ X (resp. t2 : K
p2,g2⇒

P2 ⇒∗ X) and both P1 ⇒∗ X and P2 ⇒∗ X are transformation sequences
without NACs.

Example 8. Consider now in the Conflict Matrix in Fig. 4 the critical pair corre-
sponding to (alertUnpaidTable,payOrder). A strict solution for this critical pair
on the one hand notes the unpaid order and resets the alert and on the other
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hand does nothing. Then we have a table with an open account and without or-
ders. The rules noteUnpaidOrder and resetAlert are rules without NACs there-
fore according to the former corollary this critical pair is automatically strictly
NAC-confluent and does not have to be investigated further.

5 Conclusion

In this paper, the Embedding Theorem and Local Confluence Theorem formu-
lated in [6] for graph transformations without NACs are extended to graph
transformations with NACs. These results hold not only for the instantiation
of double-pushout gts with NACs as shown in this paper, but also for more
general adhesive HLR systems with NACs as proven in [9]. In our results includ-
ing NACs extra conditions such as NAC-consistency of the extension morphism
(resp. NAC-confluence of the set of critical pairs) are required in order to lead
to a correct embedding with NACs (resp. confluent gts with NACs). These ad-
ditional conditions are explained in our running example.

Future work consists of trimming the results towards efficient tool support and
generalizing the theory for transformation systems with NACs described in [9]
to transformation systems with more general application conditions as defined
in [13].
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Abstract. Triple graph transformation has become an important ap-
proach for model transformations. Triple graphs consist of a source, a
target and a connection graph. The corresponding rules also contain these
parts and describe the simultaneous construction of both the source and
the target model. From these rules, forward rules can be derived which
describe the model transformation from a given source model to a target
model. The forward transformation must be source consistent in order
to define a valid model transformation. Source consistency implies that
the source and the target model correspond to each other according to
a triple transformation.

In this paper, the relationship between the source consistency of for-
ward transformations, and NAC consistency and termination used in
other model transformation approaches is analysed from a formal point
of view. We define the kernel of a forward rule and construct NACs based
on this kernel. Then we give sufficient conditions such that source consis-
tency implies NAC consistency and termination. Moreover, we analyse
how to achieve local confluence independent of source consistency. Both
results together provide sufficient conditions for functional behaviour of
model transformations. Our results are illustrated by an example de-
scribing a model transformation from activity diagrams to CSP.

1 Introduction

Model transformations are most important for model-driven software develop-
ment. In recent years, triple graph grammars (TGGs) introduced by A. Schürr
[1] have been shown to be a suitable basis to define model transformations in
various application areas [2, 3]. TGGs are based on triple graphs and triple rules
which allow to consistently co-develop two related structures modeled by graphs.
TGG rules are triples of non-deleting graph rules and generate the language of
triple graphs, which can be projected to the first and third component, usually
called source and target language, respectively.

In [1], it was shown that a triple rule tr can be decomposed into a source
rule trS and a forward rule trF , and similarly for the transformations, where the
forward rules can be used to define model transformations from source to target
models. Dually, triple rules and transformations can be decomposed into target
and backward rules and transformations leading to model transformations from

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 178–193, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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target to source models, and hence to bidirectional model transformations be-
tween different domain-specific modeling languages [4, 5, 6]. The decomposition
result in [1] has been extended by a corresponding composition result in [5] lead-
ing to a bijective correspondence between triple graph transformation sequences
and consistent sequences of corresponding source and forward transformation
sequences.

A forward transformation GS
tr∗F=⇒ G is called a forward model transformation

from the source projection of GS to the target projection of G if it is “source
consistent”. As defined in [5], “source consistency” means that there is a gener-

ating sequence ∅
tr∗S=⇒ GS for the source model via the corresponding source rules

such that the matches of the source components in GS
tr∗F=⇒ G are defined by the

items generated by ∅
tr∗S=⇒ GS . Actually, source consistency can be considered

as a control condition for forward transformation sequences in order to obtain a
model transformation from the source to the target model.

In most practical approaches using TGGs for model transformations there is
no formal control condition for how to apply the forward rules. But the intuitive
idea is to apply each forward rule to a corresponding item of the source graph [7].
In other graph transformation approaches to model transformations (see [5]), the
control condition is given by different layers of rules with negative application
conditions (NACs), where the rules in each layer are applied as long as possible.
Termination is checked by suitable termination criteria [8].

In this paper, the relationship between source consistency of forward transfor-
mation sequences on the one hand and NAC consistency and termination on the
other hand is analysed from a formal point of view. For this purpose, we consider
triple graph rules tr : L → R with kernels, where the kernel is a distinguished
triple k(tr) = (x, r, y) ∈ R of connected nodes in the source, connection, and
target graphs created by the triple rule tr. This allows to define the correspond-
ing kernels k(trS) = x and k(trF ) = k(tr) for the source and forward rules,
respectively. Moreover, for a forward rule trF = L → R we define so-called ker-
nel NACs NAC(trF ) = L ∪ k(trF ). This means that a NAC consistent forward
transformation via trF cannot be applied twice at the same match.

Our first main result shows that the source consistency of GS
tr∗F=⇒ G implies

NAC consistency and termination. In fact, an even slightly weaker notion called
“kernel source consistency” is sufficient for this result, where source consistency
is restricted to the kernel elements. In our second main result we give sufficient
conditions for local confluence of forward rules with kernel NACs. Both results
together lead to confluence and termination of forward rules with kernel NACs
and hence to functional behaviour of the corresponding model transformation.

This paper is organized as follows: In Section 2, we review the basic definitions
for triple graph grammars. An example model transformation from activity dia-
grams to CSP is introduced in Section 3. In Section 4, kernels of triple rules and
some basic properties are defined. In Section 5, the main results are stated and
proven, and applied to our example model transformation in Section 6. Finally,
the conclusion is given in Section 7.
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2 Triple Graph Transformation

In this section, we give a short introduction of the basic notions of triple graphs
and triple graph grammars. which have been introduced in [1] as an approach
to consistently develop related structures.

Triple graphs consist of a source, a target and a connection graph which is
embedded into both source and target graphs. For the underlying graphs, we
use for simplicity the category Graphs of graphs and graph morphisms, but the
main results in [5] have been formulated already in the framework of adhesive
HLR systems [8].

Definition 1 (Triple Graph). A triple graph G = (SG
sG← CG

tG→ TG) consists
of graphs SG, CG, and TG called source graph, connection graph, and target
graph, respectively, and graph morphisms sG : CG → SG and tG : CG → TG.

For triple graphs G and H, a triple graph morphism f = (fS , fC , fT ) : G → H
consists of graph morphisms fS : SG → SH , fC : CG → CH and fT : TG → TH

such that sH ◦ fC = fS ◦ sG and tH ◦ fC = fT ◦ tG.
Triple graphs and triple graph morphisms form the category TripleGraphs.

Remark 1. The category TripleGraphs is isomorphic to the comma category
ComCat(S,C,T, {s : C → S, t : C → T}) where S,C,T = Graphs and all
functors are the identities on Graphs.

For simplicity, for a morphism f : G → H and x ∈ SG we write f(x) instead
of fS(x), and similarly for x ∈ CG, TG.

The concept of typing plays an important role in modeling. Thus we introduce
typed triple graphs.

Definition 2 (Typed Triple Graph). Given a triple graph TG as type graph,
a typed triple graph (G, typeG) consists of a triple graph G and a triple graph
morphism typeG : G → TG. G is said to by typed over TG with typing typeG.

For typed triple graphs (G, typeG) and (H, typeH), a typed triple graph mor-
phism f is a triple graph morphism f : G → H such that typeH ◦ f = typeG.

Triple graphs typed over TG and typed triple graph morphisms form the cat-
egory TripleGraphsTG.

Remark 2. The category TripleGraphsTG is isomorphic to the slice category
TripleGraphs\TG.

For the access to the different graph parts, projections of a triple graph are
defined.

Definition 3 (Projection). For a triple graph G = (SG
sG← CG

tG→ TG) the
projections of G to the source, connection, and target graph are defined by
projS(G) = SG, projC(G) = CG, and projT (G) = TG, respectively. In case
of typed triple graphs, also the typing is projected.
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In the following, we give all the definitions based on triple graphs. They can be
formulated analogously for typed triple graphs as used in Section 4.

A triple rule is a rule based on triple graphs as in standard DPO transfor-
mation. It constructs simultaneously source and target graphs as well as their
connection graph. According to [1, 5], only non-deleting triple rules are allowed.
This simplifies the definition since we do not need to consider an interface graph
but only the left and right hand side of the rule.

Definition 4 (Triple Rule and Triple Transformation). A triple rule tr =
(L tr→ R) consists of triple graphs L and R, called left hand side and right hand
side, respectively, and an injective triple graph morphism tr : L → R.

Given a triple rule tr, a triple graph G and a triple graph morphism m :
L → G, called match, a direct triple transformation G

tr,m
=⇒ H is given by the

pushout (1) in TripleGraphs, which is the componentwise pushout (2) on the
source, connection and target graphs in Graphs due to the comma category
construction. The morphism p in pushout (1) is called comatch.

A sequence of direct triple transformations is then called triple tranformation.

L

R

G

H

SL CL TL

SR CR TR

SG CG TG

SH CH TH

tr

m

p

f

trS

mS

pS

fS

trC

mC

pC

fC

trT

mT

pT

fT

sL tL

sR tR

sG
tG

sH tH

(1)

(2)

Since we consider only nondeleting injective rules tr : L → R we can assume
w.l.o.g. that L ⊆ R and all derived triple graphs are included in each other, i.e.
for a transformation sequence G0

tr1,m1=⇒ G1
tr2,m2=⇒ . . .

trn,mn=⇒ Gn we have that
Gi ⊆ Gj for i ≤ j.

To extend the expressiveness of triple graph transformations we define nega-
tive application conditions which restrict the applicability of a triple rule.

Definition 5 (Negative Application Condition). Given a triple rule tr =
(L tr→ R), a negative application condition (NAC) (N, n) consists of a triple
graph N and a triple graph morphism n : L → N .

A match m : L → G is NAC consistent if there is no q : N → G such that
q ◦ n = m. A triple transformation G

∗=⇒ H is NAC consistent if all matches
are NAC consistent.

Up to now, the triple rules simultaneously create the source, connection and
target graphs. But for a model transformation, some source model is given that
has to be transformed into the corresponding target model. For this purpose,
we can derive source and forward rules from a given triple rule. The source
rule only creates a part of the source model, and the forward rule describes the
transformation of this part to the target model.
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Definition 6 (Source and Forward Rule). Given a triple rule tr = (L tr→ R),
the source rule trS and the forward rule trF are defined by trS = ((SL

∅← ∅
∅→

∅)
(trS,∅,∅)−→ (SR

∅← ∅
∅→ ∅)) and trF = ((SR

trS◦sL← CL
tL→ TL)

(idSR
,trC ,trT )
−→ R).

Now a triple graph grammar consists of a set of triple rules and a start graph.

Definition 7 (Triple Graph Grammar). A triple graph grammar GG =
(TR, S) consists of a set TR of triple rules and a triple graph S, the start graph.

For the rule set TR, we get induced sets TRS = {trS | tr ∈ TR} and TRF =
{trF | tr ∈ TR} of source and forward rules.

For the relationship of triple rules with their source and forward rules, match
and source consistency are introduced. Match consistency describes that in a
transformation sequence, the forward rule is always applied via the comatch
of the corresponding source rule for the source graph. Source consistency of a
forward transformation requires a match consistent transformation. In [5], it is
shown that a triple transformation can be split into match consistent source and
forward transformations via the same rule sequence, and vice versa.

Definition 8 (Match Consistency). Consider a triple transformation tt :

∅
tr∗S=⇒ GS

tr∗F=⇒ G where tr∗S = (tri,S)i=1,...,n and tr∗F = (tri,F )i=1,...,n are derived
from the same triple rules tr∗ = (tri)i=1,...,n, and we have matches mi,S and
mi,F , and comatches pi,S and pi,F , respectively. Then tt is called match consis-
tent if the source component of the match mi,F is completely determined by the
comatch pi,S , i.e. (mi,F )S = (pi,S)S, for i = 1, . . . , n.

Definition 9 (Source Consistency). A forward triple transformation GS
tr∗F=⇒

G with tr∗F = (tri,F )i=1,...,n is called source consistent if there exists a source

triple transformation ∅
tr∗S=⇒ GS such that tr∗S = (tri,S)i=1,...,n and ∅

tr∗S=⇒ GS
tr∗F=⇒

G is match consistent.

According to [5], a source consistent transformation leads to a forward model
transformation.

Definition 10 (Forward Model Transformation). A forward triple trans-

formation GS
tr∗F=⇒ G with G′

S = projS(GS) and G′
T = projT (G) is called a

forward model transformation from G′
S to G′

T if GS
tr∗F=⇒ G is source consistent.

3 Example: From Activity Diagrams to CSP

In this section, we demonstrate the definitions from Section 2 on a model trans-
formation from simple activity diagrams [9] with only actions, binary decisions
and merges to communicating sequential processes (CSP) [10]. This transforma-
tion is a slightly smaller version of the case study proposed in [11]. Due to the



Formal Analysis of Model Transformations 183

ActivityNode

DecisionNode
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Action MergeNode FinalNode InitialNode

-name
-guard

ActivityEdgesource

target
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ProcessAssignment CSPContainer

PrefixSKIP
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Process
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Event

-expression

Condition

process
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1..1
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1..1

identifier 1..1right

left 1..1

1..1 target1..1

MNPA2

1..1

1..11..*

Fig. 1. The triple type graph

restrictions of the activity diagrams we can also restrict CSP to a SKIP process,
prefix operations and conditions.

The triple type graph for the model transformation is shown in Fig. 1. In the
upper part, the type graph for activity diagrams is shown. Basically, we have
different kinds of activity nodes and activity edges, that are connected by source
and target associations to the nodes. In the bottom of Fig. 1, the simplified
type graph of CSP is depicted. Processes are defined via process assignments. A
process expression can be a simple process, a prefix combining an event and a
process, a condition, or a successful termination denoted by SKIP.

In Fig. 2, the triple rules for the consistent development of activity diagrams
and the corresponding CSP models are depicted. We use a compact representa-
tion, where the stereotype )new� means that this element is created by the
rule, and all other elements are already present in the left hand side. In the fig-
ure, on the left hand side of each rule the source graph is shown, followed by the
connection graph and the target graph on the right hand side. The morphisms
between these graphs are depicted by dashed arrows.

The triple rule trInitialNode describes that an initial node corresponds to an
CSP container where all other CSP elements are stored. With trActivityEdge, an
activity edge and its corresponding process are created. The other activity nodes
correspond to different process assignments. With the triple rule trAction, an ac-
tion and the corresponding prefix operation are created, while with trFinalNode

a final node and the corresponding SKIP process are defined. Finally, the rule
trDecisionNode handles the simultaneous creation of a binary decision and a condi-
tion, and trMergeNode creates a binary merge and the corresponding identification
of processes. Note that the rules trActivityEdge and trAction have input parameters to
define the attributes. To obtain a valid activity diagram, the rule trInitialNode has
to be applied exactly once, the rule trFinalNode at least once, and each produced
activity edge has to be connected by exactly one source and target association.
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«new»«new»

«new»
 : InitialNode

«new»
 : INCC

«new»
 : CSPContainer

«new»«new»name = x
guard = y

«new»
 : ActivityEdge «new»

 : AEP
name = x

«new»
 : Process

 : InitialNode  : INCC  : CSPContainer

 : AEP

 : AEP

«new»«new»

name = x

«new»
 : Action

«new»
 : APA

«new»
 : ProcessAssignment

«new»
target

«new»
source

«new»
 : Prefix

name = x

«new»
 : Event

«new»
assignment

«new»
process

«new»
event

«new»
target

 : InitialNode  : INCC  : CSPContainer

name
guard

 : ActivityEdge  : AEP

name

 : Process

«new»«new»«new»
 : FinalNode

«new»
 : FNPA

«new»
 : ProcessAssignment

«new»
target

«new»
 : SKIP

«new»
assignment

«new»
identifier

«new»
process

 : InitialNode  : INCC  : CSPContainer

name
guard

 : ActivityEdge  : AEP

name

 : Process

name
guard = x

 : ActivityEdge  : AEP

name

 : Process

«new»«new»«new»
 : DecisionNode

«new»
 : DNPA

«new»
 : ProcessAssignment

«new»
target

«new»
source

expression = x

«new»
 : Condition

«new»
assignment

«new»
identifier

«new»
process

«new»
left

name
guard = "else"

 : ActivityEdge  : AEP

name

 : Process

name
guard

 : ActivityEdge

name
guard

 : ActivityEdge

name

 : Process

name

 : Process

«new»
right

«new»
source

 : InitialNode  : INCC  : CSPContainer

name
guard

 : ActivityEdge  : AEP

name

 : Process

name
guard

 : ActivityEdge
 : AEP

name

 : Process

«new»

«new»

«new»
 : MergeNode

«new»
 : MNPA2

«new»
 : ProcessAssignment

«new»
target «new»

target

«new»
 : ProcessAssignment

«new»
assignment

«new»
identifier

«new»
process

«new»
identifier

name
guard

 : ActivityEdge
 : AEP

name

 : Process
«new»
prozess

«new»
source

«new»
 : MNPA1«new»

«new»

«new»
assignment

«new»
identifier

trInitialNode

trActivityEdge

trAction

trFinalNode

trDecisionNode

trMergeNode

 : AEP
name
guard

 : ActivityEdge

name

 : Process

«new»
source

Fig. 2. The triple rules
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correct

add up points

passed get mark

failed

publish result

A

C
I

G [else]

FE

D [points >= 50]B

H

A := correct → B

B := add up points → C

C := D �< points >= 50 �> G

D := passed → E

E := get mark → F

F := publish result → I

G := failed → H

H := SKIP
I := SKIP

Fig. 3. Example model

In Fig. 3, an activity diagram and the corresponding process are depicted
in concrete syntax, which are the results of the source and target projec-
tions of the transformation sequence ∅

tr∗=⇒ G with tr∗ = (trInitialNode, 9 ×
trActivityEdge, 6×trAction, trDecisionNode, 2× trFinalNode) with suitable parameter values.

From the triple rules in Fig. 2, we can derive source and forward rules. For
the source rules, we simply have to delete the connection and target graph parts
of the rules. For the forward rules, the source graph of the left hand side of
the forward rule is the source graph of the right hand side of the original rule,
thus we only have to delete the )new�-stereotypes of all elements in the source
graph of a rule to obtain the corresponding forward rule. In Fig. 4, this is shown
exemplarily for the rule trFinalNode leading to the forward rule trFinalNode

F .

 : InitialNode  : INCC  : CSPContainer

name
guard

 : ActivityEdge  : AEP

name

 : Process

«new»«new»
 : FinalNode «new»

 : FNPA
«new»

 : ProcessAssignment

target
«new»
 : SKIP

«new»
assignment

«new»
identifier

«new»
process

trF
FinalNode

Fig. 4. A forward rule

Now the transformation ∅
tr∗=⇒ G from above can be decomposed into the

transformations ∅
tr∗S=⇒ GS via the corresponding source rules and GS

tr∗F=⇒ G
via the corresponding forward rules. In this case, A = projS(GS) is the activity

diagram depicted in Fig. 3. The forward transformation GS
tr∗F=⇒ G is source

consistent and leads to the forward model transformation from A to P , where
P = projT (G) is the CSP model in Fig. 3.

4 The Kernel Approach

In the kernel approach, we consider typed triple graphs and an empty start
graph. For each rule, a distinguished kernel triple is selected. In this paper, we



186 H. Ehrig and U. Prange

only consider the source and forward rules, but the theory can be done similarly
for the target and backward rules.

The kernel of each rule is a triple of nodes, one from each graph part of a
triple graph, that is connected and generated by the rule.

Definition 11 (Kernel). For a triple graph G, a node triple (x, r, y) ∈ SG ×
CG × TG is called connected if sG(r) = x and tG(r) = y.

Given a triple graph grammar GG = (TR, ∅), we define for each rule tr =
(L tr→ R) ∈ TR the kernel k(tr) = (x, r, y) ∈ R\L = (SR\SL) × (CR\CL) ×
(TR\TL) which is a connected node triple. Then k(trS) = x and k(trF ) = (x, r, y)
are the corresponding kernels of trS and trF , respectively.

For the source and forward rules we want to have distinguished kernel typing,
which means that elements of kernel types cannot be created as non-kernel types
by any other rule. In our example, we have distinguished kernel typing (see
Section 6).

Definition 12 (Distinguished Kernel Typing). Define the source kernel
types KTY PES = {type(x) | trS ∈ TRS, k(trS) = x} and the forward kernel
types KTY PEF = {type(r) | trF ∈ TRF , k(trF ) = (x, r, y)}.

TRS has distinguished kernel typing if for all trS ∈ TRS and x created by
trS, i.e. x ∈ SR\SL, we have that x �= k(trS) implies type(x) /∈ KTY PES.

TRF has distinguished kernel typing if for all trF ∈ TRF and connected
triples (x, r, y) created by trF we have that (x, r, y) �= k(trF ) implies type(r) /∈
KTY PEF , where (x, r, y) ∈ R created by trF : L → R means that (x, r, y) /∈ L.

Moreover, TRF is called type functional if for all trF , tr′F ∈ TRF with ker-
nels k(trF ) = (x, r, y) and k(tr′F ) = (x′, r′, y′) we have that type(x) = type(x′)
implies type(r) = type(r′).

Remark 3. If sTG of the type graph TG is injective then TRF is type functional
in any case. Moreover, type(r) = type(r′) implies type(y) = type(y′).

In a triple transformation, the images of the kernels under the comatches are
called the kernel elements of the resulting graph.

Definition 13 (Kernel Elements). Consider a triple transformation ∅
tr∗S=⇒

GS with tr∗S = (tri,S)i=1,...,n and comatches pi,S. The kernel elements of GS

generated by tr∗S are all elements xi = pi,S(xi) for kernels k(tri,S) = xi and
i = 1, . . . , n.

Consider a triple transformation GS
tr∗F=⇒ G with tr∗F = (tri,F )i=1,...,n and

comatches pi,F . The kernel elements of G generated by tr∗F are all triples
(xi, ri, yi) = pi,F (xi, ri, yi) for kernels k(tri,F ) = (xi, ri, yi) and i = 1, . . . , n.

In the following Facts 1 and 2, we show that for triple transformations with
distinguished kernel typing, kernel elements are exactly the elements of kernel
types.
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Fact 1. Consider a triple graph grammar (TR, ∅) where TRS has distinguished

kernel typing and a transformation ∅
tr∗S=⇒ GS . Then we have that x ∈ GS is a

kernel element if and only if type(x) ∈ KTY PES.

Proof. For x ∈ GS with type(x) ∈ KTY PES there is a rule tri,S = (L
tri,S→

R) such that x has been created by tri,S , and there is some x ∈ SR\SL with
pi,S(x) = x. Suppose x is no kernel element, i.e. x �= k(tri,S). Since TRS has
distinguished kernel typing it follows that type(x) = type(x) /∈ KTY PES , which
is a contradiction. Thus, x is a kernel element of GS . Vice versa, if x is a kernel
element generated by k(tri,S) = x then type(x) = type(x) ∈ KTY PES .

Fact 2. Consider a triple graph grammar (TR, ∅) where TRF has distinguished

kernel typing and a triple transformation GS
tr∗F=⇒ G with projC(GS) = ∅. Then

we have that a connected triple (x, r, y) ∈ G is a kernel element if and only if
type(r) ∈ KTY PEF .

Proof. For (x, r, y) ∈ G with type(r) ∈ KTY PEF there is a rule tri,F = (L
tri,F→

R) such that r has been created by tri,F , because projC(GS) = ∅. Then there
is a triple (x, r, y) ∈ R with pi,F (x, r, y) = (x, r, y). It follows that (x, r, y) /∈ L,
otherwise r was created earlier. Suppose (x, r, y) �= k(tri,S). Since TRF has
distinguished kernel typing it follows that type(r) = type(r) /∈ KTY PEF , which
is a contradiction. Thus we have that k(tri,F ) = (x, r, y) and (x, r, y) is a kernel
element of G. Vice versa, if (x, r, y) is a kernel element generated by k(tri,S) =
(x, r, y) then type(r) = type(r) ∈ KTY PEF .

Kernel match and source consistency is the restriction of source and match
consistency to the kernel elements. Kernel consistency is easier to verify since
only one element for each direct transformation has to be considered.

Definition 14 (Kernel Match Consistency). Consider a triple transforma-

tion tt : ∅
tr∗S=⇒ GS

tr∗F=⇒ G where tr∗S = (tri,S)i=1,...,n and tr∗F = (tri,F )i=1,...,n

are derived from the same triple rules tr∗ = (tri)i=1,...,n with kernels k(tri) =
(xi, ri, yi), and we have matches mi,S and mi,F , and comatches pi,S and pi,F ,
respectively. The triple transformation tt is called kernel match consistent if
mi,F (xi) = pi,S(xi) for i = 1, . . . , n.

Definition 15 (Kernel Source Consistency). A forward triple transforma-

tion GS
tr∗F=⇒ G with tr∗F = (tri,F )i=1,...,n is called kernel source consistent if there

exists a source triple transformation ∅
tr∗S=⇒ GS such that tr∗S = (tri,S)i=1,...,n

and ∅
tr∗S=⇒ GS

tr∗F=⇒ G is kernel match consistent.

For each kernel element, from a triple transformation a unique rule can be iden-
tified which has created this element.

Fact 3. Given a triple transformation tt : ∅
tr∗S=⇒ GS

tr∗F=⇒ G with tr∗S =
(tri,S)i=1,...,n and tr∗F = (tri,F )i=1,...,n derived from the same triple rules
tr∗ = (tri)i=1,...,n, then we have that
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1. For each kernel element x in GS there is a unique i ∈ {1, . . . , n} such that
x is generated by tri,S, i.e x = xi and xi �= xj for all j �= i.

2. For each kernel element (x, r, y) in G there is a unique i ∈ {1, . . . , n} such
that (x, r, y) is generated by tri,F , i.e. (x, r, y) = (xi, ri, yi) and ri �= rj,
yi �= yj for all j �= i.

3. If tt is kernel match consistent then in Item 2 also xi �= xj for all j �= i.

Proof. 1. For each i = 1, . . . , n, when applying tri,S a new kernel element xi =
pi,S(xi) is created in GS such that x1, . . . , xn are pairwise disjoint.

2. For each i = 1, . . . , n, when applying tri,F a kernel element (xi, ri, yi) =
pi,F (xi, ri, yi) is created in G. Since ri and yi are newly created by tri,F it
follows that r1, . . . , rn and y1, . . . , yn are pairwise disjoint.

3. In the case of kernel match consistency, xi of a kernel triple (xi, ri, yi) is the
kernel element xi generated by the kernel of tri,S such that x1, . . . , xn are
pairwise disjoint due to Item 1.

To allow the application of a forward rule to a source kernel element only once,
kernel NACs for forward rules are defined.

Definition 16 (Kernel NAC). For a forward rule trF = (L trF→ R) with kernel
k(trF ) = (x, r, y) we define the kernel NAC NAC(trF ) = (N, n) with triple graph
N = L ∪ k(trF ), sN (r) = x, tN (r) = y and inclusion n : L → N .

5 Results for Model Transformations in the Kernel
Approach

In this section, we analyse how to achieve kernel source consistency and state the
main results for forward transformations in the kernel approach. In Section 6,
we apply these results to our example from Section 3.

A forward triple transformation GS
tr∗F=⇒ G with tr∗F = (tri,F )i=1,...,n is kernel

source consistent if GS is generated by ∅
tr∗S=⇒ GS with corresponding source

rule trS = (tri,S)i=1,...,n leading to kernel elements xi in GS that determine the
kernel match for the forward rule tri,F . In other words, each forward rule tri,F is
applied exactly once at the kernel element xi generated by the source rule tri,S .

For a forward transformation GS
tr∗F=⇒ G to become kernel source consistent we

have to construct first a source generating sequence ∅
tr∗S=⇒ GS leading to kernel

elements x1, . . . , xn ∈ GS . This is a parsing problem for GS , which may lead
to nondeterministic results. Then we have to apply the corresponding forward
rules tri,F without kernel NACs at the kernel elements xi. If this is successful

we obtain a kernel source consistent forward transformation tt : GS
tr∗F=⇒ G and

under the conditions of Thm. 1 tt is NAC consistent and terminating.

Obviously, source consistency of GS
tr∗F=⇒ G implies kernel source consistency.

Vice versa, kernel source consistency implies source consistency if all matches
are uniquely determined by the kernel matches (see Thm. 2).
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Theorem 1 (NAC Consistency and Termination). Consider a triple graph
grammar (TR, ∅) where TRS, TRF have distinguished kernel typing, a kernel

source consistent forward triple transformation tt : GS
tr∗F=⇒ G, and forward rules

with kernel NACs. Then we have that:

1. tt is NAC consistent.
2. tt is terminating if TRF is type functional.

Proof. Let tt : GS = GS(0)
tr1,F=⇒ GS(1)

tr2,F=⇒ . . .
trn,F=⇒ GS(n) = G. Since tt is

kernel source consistent there exists a triple transformation ∅
tr∗S=⇒ GS such that

∅
tr∗S=⇒ GS

tr∗F=⇒ G is kernel match consistent.

1. Suppose that tt is not NAC consistent. This means that there is a rule
tri,F = (L

tri,F→ R) with match mi,F , comatch pi,F , and kernel NAC (Ni, ni)

such that GS(i−1)
tri,F=⇒ GS(i) is not NAC consistent, i.e. there is a triple

graph morphism q : Ni → GS(i−1) such that q ◦ ni = mi,F .
For the kernel k(tri,F ) = (xi, ri, yi) of tri,F we have the kernel element
pi,F (xi, ri, yi) = (xi, ri, yi) ∈ GS(i) and q(xi, ri, yi) = (x, r, y) ∈ GS(i−1)

with xi ∈ SL and mi,F (xi) = x. The commutativity of (1) with horizontal
inclusions and xi ∈ SL imply that x = mi,F (xi) = pi,F (xi) = xi.
(xi, ri, yi) is a connected triple and hence also (x, r, y) is connected in
GS(i−1). Since type(r) = type(ri) ∈ KTY PEF , Fact 2 implies that (x, r, y)
is a kernel element of G, and by Fact 3 Item 2 there is a unique j such
that (x, r, y) = (xj , rj , yj) is generated by trj,F . Obviously, j < i because
(x, r, y) ∈ GS(i−1). Now Fact 3 Item 3 implies that xi �= xj = x, which
contradicts xi = x. Hence tt is NAC consistent.

L R

GS(i−1) GS(i)

Ni L′ R′

G G′

N ′tri,F

mi,F pi,F

ni

q

tr′F

m′

n′

q′(1) (2)

2. Suppose now that tt is not terminating, i.e. there is a direct triple transfor-

mation G
tr′F ,m′

=⇒ G′ for some triple rule tr′F = (L′ tr′F→ R′) ∈ TRF with kernel
k(tr′F ) = (x′, r′, y′) and kernel element (x′, r′, y′) ∈ G′ with x′ ∈ GS and
type(x′) = type(x′) ∈ KTY PES .

By Fact 1, x′ is a kernel element of GS and by Fact 3 Item 1 there is
a unique i such that x′ = xi is generated by tri,S with kernel k(tri,S) =

xi. Kernel match consistency of ∅
tr∗S=⇒ GS

tr∗F=⇒ G implies that the kernel
k(tri,F ) = (xi, ri, yi) implies a kernel element (xi, ri, yi) ∈ G with xi = x′.
It follows that type(x′) = type(x′) = type(xi) = type(xi), and by type
functionality of TRF also type(r′) = type(ri) = type(ri) and type(y′) =
type(yi) = type(yi). For the kernel NAC NAC(tr′F ) = (N ′, n′), we define a
morphism q′: N ′ → G by q′|L′ = m′ with m′(x′) = x′ = xi and q′(x′, r′, y′) =
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(xi, ri, yi). q′ is a valid morphism because it preserves the typing, and we

have that q′ ◦ n′ = m′. Thus, G
tr′F=⇒ G′ is not NAC consistent, hence tt is

terminating.

Remark 4. Since source consistency implies kernel source consistency this theo-

rem also holds for source consistent forward triple transformations tt : GS
tr∗F=⇒ G.

Thm. 1 and the following Thm. 2 concerning local confluence are applied to our
example from Section 3 in Section 6.

Theorem 2 (Local Confluence). Consider a triple graph grammar (TR, ∅)
where TRF has distinguished kernel typing and kernel NACs. If we have that

(1) The rules in TRF are uniquely determined by the left hand sides, i.e. for

rules trF = (L trF→ R) and tr′F = (L′ tr′F→ R′), L
∼= L′ implies trF = tr′F .

(2) The matches are uniquely determined by the kernel matches, i.e. given ker-
nels k(trF ) = (x, r, y), k(tr′F ) = (x′, r′, y′) and matches m : L → G0,
m′ : L′ → G0, m(x) = m′(x′) implies m = m′ with L = L′.

then the forward rules TRF with kernel NACs are
locally confluent. This means that given G0

trF ,m
=⇒

G1, G0
tr′F ,m′

=⇒ G2 then we have either G1
∼= G2

or the direct transformations are parallel inde-
pendent with NACs leading to the local Church-
Rosser property, i.e. there are transformations

G1
tr′F ,i◦m′

=⇒ G3, G2
trF ,i′◦m

=⇒ G3.

G0 G1

G2 G3

trF ,m

tr′F ,m′ tr′F ,i◦m′

trF ,i′◦m

Proof. For given forward rules trF , tr′F ∈ TRF and matches m : L → G0,
m′ : L′ → G0 we have the following cases:

1. m = m′, which implies L = L′, and property (1) implies that also trF = tr′F .
Then the uniqueness of pushouts implies that G1

∼= G2.
2. m �= m′. For the forward rules, we have kernels k(trF ) = (x, r, y) and

k(tr′F ) = (x′, r′, y′) and m(x) = x, m′(x′) = x′.
Consider now the kernel NAC NAC(tr′F ) = (N ′, n′) with N ′ = L′∪k(tr′F ).

Given the transformation G0
trF ,m
=⇒ G1 with pushout (1) we have to show

that i ◦ m′ is NAC consistent, i.e. there does not exist a morphism q :
N ′ → G1 with q ◦ n′ = i ◦ m′. Suppose that such a q exists, then using
k(tr′F ) = (x′, r′, y′) there is a connected triple q(x′, r′, y′) = (x′, r′, y′) in G1

with type(x′) = type(x′), type(r′) = type(r′) and type(y′) = type(y′). Since
m′ satisfies N ′, (x′, r′, y′) /∈ G0, but created by trF . Hence there is a con-
nected triple (x2, r2, y2) ∈ R, (x2, r2, y2) /∈ L with p(x2, r2, y2) = (x′, r′, y′).
Since type(r2) = type(r′) = type(r′) ∈ KTY PEF it follows that k(trF ) =
(x, r, y) = (x2, r2, y2) from distinguished kernel typing of TRF . But this im-
plies that m(x) = m(x2) = p(x2) = x′ = m′(x′) by commutativity of (1),
and from property (2) it follows that m = m′, which is a contradiction.
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Hence i◦m′ is NAC consistent. Similarly,
i′◦m is NAC consistent, and with pushout (3)
the triple graph G3 is the result of both trans-

formations G1
tr′F ,i◦m′

=⇒ G3 and G2
trF ,i′◦m

=⇒
G3. Thus we have parallel independence with
NACs and the local Church-Rosser property
leading to local confluence. �

N ′ L R

L′ G0 G1

R′ G2 G3

trF

tr′F

m

m′

p

p′

i

i′

n′
q

(1)

(2) (3)

Since local confluence and termination imply confluence, we get the following
sufficient conditions for functional behaviour of forward model transformations.

Theorem 3 (Functional Behaviour). Under the assumptions of Thms. 1 and
2, forward model transformations have functional behaviour, i.e. they are termi-
nating and confluent.

6 Analysis of the Example Model Transformation

Now we want to analyse the model transformation described in Section 3.
The kernels for the triple rules in Fig. 2 are the triples in a box shaded
in gray. Thus we have that KTY PES = {InitialNode, ActivityEdge, Action,
FinalNode, DecisionNode, MergeNode} and KTY PEF = {INCC, AEP, APA,
FNPA, DNPA, MNPA1}, and it is easy to see that both TRS and TRF have
distinguished kernel typing and TRF is type functional. Moreover, the forward
rules are uniquely determined by the left hand sides.

Now consider the forward triple transformation GS
tr∗F=⇒ G leading to the for-

ward model transformation from A to P from Section 3, with A and P depicted
in Fig. 3. Since this forward triple transformation is source consistent, it is also
kernel source consistent. From Thm. 1 it follows that it is then NAC consistent
and terminating if we consider forward rules with kernel NACs.

In a valid activity diagram without merge nodes, the matches for the forward
rules are uniquely determined by the kernel matches. To see this we have to take
a closer look at the triple rules. First we know that there is only one initial node.
This means, whenever an initial node is present in the left hand side its match
is uniquely determined. Moreover, the kernel element and its match induce the
complete match because of the graph structure, and in case of the triple rule
trDecisionNode

F also the value of the attributes. This means that for the triple rules
of our forward model transformation from A to P the conditions of Thm. 2 are
fulfilled and this model transformation is confluent. Thus, the target model P is
unique for the source model A.

On the other hand, for the triple rule trMergeNode
F the matches are not uniquely

determined by the kernel matches. This is easy to see, since for a valid match
we can swap the matches of the both activity edges which have the merge node
as a target. Thus we cannot apply Thm. 2. When applying the forward rule
via both matches, we get two different triple graphs which only differ in the
mappings of the nodes MNPA1 and MNPA2. Note, that these two direct triple
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transformations are not confluent, since no rule can be applied to this merge
node due to the kernel NAC. Nevertheless, we have confluence concerning the
target models. In fact, the resulting target models are already isomorphic, since
the types of the connection nodes are not relevant for the target model.

7 Conclusion

In this paper, we have started a formal analysis of model transformations based
on triple rules which have been introduced in [1] and applied to various appli-
cation areas [2, 3, 7]. In [1], an important connection between the triple rules
and the corresponding forward rules and transformations was given. This re-
sult was extended in [5] to a bijective correspondence between triple transfor-

mations ∅
tr∗=⇒ G based on triple rules tr∗ and match consistent sequences

∅
tr∗S=⇒ GS

tr∗F=⇒ G based on corresponding source rules tr∗S and target rules
tr∗F . This allows to define model transformations formally by source consistent

forward transformation sequences GS
tr∗F=⇒ G.

In order to analyse this kind of model transformations on a formal basis,
we have defined the kernel of a forward rule and constructed a NAC based on
this kernel. This allows to define kernel source consistency as source consistency
restricted to kernel elements. Intuitively, this means that each forward rule is
applied exactly once to the distinguished kernel element in the source graph
generated by the corresponding source rule.

In our main results, we show that kernel source consistency implies NAC con-
sistency and termination, and we give sufficient conditions for local confluence,
which leads to functional behaviour of forward model transformations. Although
the forward rules are non-deleting, this result is non-trivial because we have to
ensure NAC consistency.

For a discussion of the relationship between model transformations based on
triple and plain graph grammars we refer to [6].

At the moment, the conditions for distinguished kernel typing and type func-
tionality are very restrictive, and only a subset of practical model transforma-
tions can be analyzed by our approach. In future work we want to extend our
approach, in particular to forward rules that create either target or connection
elements, but not both. As the discussion in Section 6 shows, the properties for
local confluence in Thm. 2 are very restrictive. It would be interesting to analyse
how these conditions and the concept for local confluence can be weakened, for
example concerning confluence only on the target models. Moreover, we want
to check under what conditions kernel source consistency is not only sufficient
but also necessary for NAC consistency and termination. In addition to kernel
NACs we want to consider also other NACs for forward rules. In this context,
we want to apply the Critical Pair Lemma with NACs shown in [12] to forward
transformations and verify confluence for other practical examples.

All our results dually hold for target and backward rules, which can be
derived from triple rules similar to source and forward rules. This allows to
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analyze bidirectional model transformations between source and target lan-
guages, especially the problem of how to obtain functional inverse model
transformations.
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Abstract. An important requirement of model transformations is the
preservation of the behavior of the original model. A model transforma-
tion is semantically correct if for each simulation run of the source system
we find a corresponding simulation run in the target system. Analogously,
we have semantical completeness, if for each simulation run of the target
system we find a corresponding simulation run in the source system.

In our framework of graph transformation, models are given by graphs,
and graph transformation rules are used to define the operational behav-
ior of visual models (called simulation rules). In order to compare the
semantics of source and target models, we assume that in both cases op-
erational behavior can be defined by simulation rules. The model trans-
formation from source to target models is given by another set of graph
transformation rules. These rules are also applied to the simulation rules
of the source model. The main result in this paper states the condi-
tions for model and rule transformations to be semantically correct and
complete. The result is applied to analyze the behavior of a model trans-
formation from a domain-specific visual language for production systems
to Petri nets.

1 Introduction

In recent years, visual models represented by graphs have become very popular
in model-based software development. The shift of paradigm from pure program-
ming to visual modeling and model-driven development (MDD) led to a variety
of domain-specific modeling languages (DSMLs) on the one hand, but also to
a wide-spread use of general diagrammatic modeling languages such as UML
and Petri nets. DSMLs provide an intuitive, yet precise way in order to express
and reason about concepts at their natural level of abstraction. Starting with
a domain-specific model, model transformation is the key technology of MDD
and serves a variety of purposes, including the refinements of models, their map-
ping to implementations and/or semantic domains, consistency management and
model evolution. For example, a complete design and analysis process involves
designing the system using the design language, transforming it into the analysis
language, and performing the verification and analysis on the analysis model.
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In such a scenario, it is very important that the transformation preserves the
semantics of the design model.

In this paper we study semantical correctness and completeness of model
transformations provided that the source and the target languages have already
a formal semantics. Approaches exist where semantic equivalence between one
source model and its transformed target model is shown using bisimulation. In
the approach of Karsai et al. [1] the particular transformation resulted in an
output model that preserves the semantics of the input model with respect to
a particular property. However, analogously to syntactical correctness proofs, it
is desirable to have a more general concept for showing semantical correctness
and completeness of a model transformation, independent of concrete source
models.

This paper discusses an approach to verify semantical correctness of model
transformations on the level of model transformation rules. Basically, semantical
correctness of a model transformation means that for each simulation sequence
of the source system we find a corresponding simulation sequence in the tar-
get system. Vice versa, we have semantical completeness, if for each simulation
sequence in the target system there is a corresponding sequence simulating the
source model. In order to compare the semantics of the source and target models,
we assume that in both cases operational behavior can be defined by simulation
graph rules. We then apply the model transformation to the simulation rules of
the source model, leading to a so-called rule transformation. The resulting rules
are compared to the given simulation rules of the target language.

The main result in this paper states the conditions for model and rule transfor-
mations to be semantically correct and complete. The paper generalizes and ex-
tends results from simulation-to-animation model and rule transformation (S2A
transformation), which realizes a consistent mapping from simulation steps in
a behavioral modeling language to animation steps in a more suitable domain-
specific visualization [2,3,4]. The result is applied to analyze the behavior of a
model and rule transformation from a domain-specific language for production
systems to Petri nets.

The structure of the paper is as follows: In Section 2, our running example, a
domain-specific visual language for production systems, is introduced. Section 3
reviews the basic concepts of model and rule transformation based on graph
transformation. In Section 4, the notions semantical correctness and semantical
completeness of model transformations are formally defined, and conditions are
elaborated for correct and complete model transformations defined by graph
rules. The main result is applied to our running example, showing that the model
and rule transformation from production systems to Petri nets is semantically
correct and complete. The result of the rule transformation is compared with the
given simulation rules of the target language of Petri nets. Section 5 discusses
related work, and Section 6 concludes the paper. Please note that the long version
of this paper, the technical report [5], contains the complete case study as well
as all definitions and full proofs of the theorems presented in this paper.
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2 Example: Simulation of Production Systems

In this section we provide a description of a DSML for production systems and
its operational semantics using graph transformation rules (a slightly simplified
version of the DSML presented in [6]). Note that the rules are shown in con-
crete syntax, thus making the expression of operational semantics intuitive and
domain-specific. Fig. 1 shows in the upper part a type graph for the production
system language. The language contains different kinds of machines, which can
be connected through conveyors. Human operators are needed to operate the ma-
chines, which consume and produce different types of pieces from/to conveyors.
Conveyors can also be connected. The lower part of Fig. 1 shows a production
system model (a graph typed over the type graph above) using a visual concrete
syntax. The model contains six machines (one of each type), two operators, six
conveyors and four pieces. Machines are represented as boxes, except generators,
which are depicted as semi-circles with the kind of piece they generate written
inside. Operators are shown as circles, conveyors as lattice boxes, and each kind
of piece has its own shape. Two operators are currently operating a generator of
cylindrical pieces and a packaging machine respectively.

Fig. 1. Type Graph for Producer Systems and Instance Graph

Fig. 2 shows some of the graph transformation rules that describe the opera-
tional semantics for production systems. Rule assemble specifies the behaviour of
an assembler machine, which converts one cylinder and a bar into an assembled
piece. The rule can be applied if every specified element (except those marked
as {new}) can be found in the model. When such an occurrence is found, then
the elements marked as {del} are deleted, and the elements marked as {new}
are created. Note that even if we depict rules using this compact notation, we
use the DPO formalization in our graph transformation rules. In practice, this
means that a rule cannot be applied if it deletes a node but not all its adjacent
edges. In addition, we consider only injective matches. Rule genCylinder models
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Fig. 2. Some Simulation Rules for Production Systems

the generation of a piece of kind cylinder which requires that the cylinder gen-
erator machine is attended by an operator and connected to a conveyor. Rule
move cyl describes the movement of cylinder pieces through conveyors. Finally,
rule change models the movement of an operator from one machine (of any kind)
to another one. Note that we may use abstract objects in rules (e.g., Machine
is an abstract node type). In this case, the abstract objects in a rule are instan-
tiated to objects of any concrete subclass [7]. Additional rules (not depicted)
model the behaviour of the other machine types.

3 Basic Concepts of Model and Rule Transformation

In this section, we define model transformation by graph and rule transformation
based on visual language specifications as typed graph transformation systems.

3.1 Visual Languages and Simulation

We use typed algebraic graph transformation systems (TGTS) in the double-
pushout-approach (DPO) [8] which have proven to be an adequate formalism
for visual language (VL) modeling. A VL is modeled by a type graph capturing
the underlying visual alphabet, i.e. the symbols and relations which are available.
Sentences or diagrams of the VL are given by graphs typed over the type graph.
We distinguish abstract and concrete syntax in alphabets and models, where the
concrete syntax includes the abstract symbols and relations, and additionally
defines graphics for their visualization. Formally, a VL can be considered as a
subclass of graphs typed over a type graph TG in the category GraphsTG.

For behavioral diagrams, an operational semantics can be given by a set of
simulation rules PS , using the abstract syntax of the modeling VL, defined by
simulation type graph TGS. A simulation rule p = (L ← K → R) ∈ PS is a TGS-
typed graph transformation rule, consisting of a left-hand side L, an interface K,
a right-hand side R, and two injective morphisms. In the case L = K, the rule
is called non-deleting. Applying rule p to a graph G means to find a match of
L

m−→ G and to replace the occurrence m(L) of L in G by R leading to the target

graph G′. Such a graph transformation step is denoted by G
(p,m)
=⇒ G′, or simply

by G ⇒ G′. In the DPO approach, the deletion of m(L) and the addition of R are
described by two pushouts (a DPO) in the category GraphsTG of typed graphs.
A rule p may be extended by a set of negative application conditions (NACs)
[8], describing situations in which the rule should not be applied to G. Formally,
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match L
m−→ G satisfies NAC L

n−→ N if there does not exist an injective graph
morphism N

x−→ G with x ◦ n = m. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of
graph transformation steps is called transformation and denoted as G0

∗⇒ Gn. A
transformation G0

∗⇒ Gn, where rules from P are applied as long as possible, (i.e.
as long as matches can be found satisfying the NACs), is denoted by G0

P !=⇒ Gn.
We regard a model’s simulation language V LS, typed over simulation alphabet
TGS, as a sublanguage of the modeling language V L, so that all diagrams GS ∈
V LS represent different states of the same model during simulation. Based on
V LS, the operational semantics of a model is given by a simulation specification.

Definition 1 (Simulation Specification). Given a visual language VLS

typed over TGS, i.e. VLS ⊆ GraphsTGS , a simulation specification SimSpecVLS

= (VLS , PS) over VLS is given by a typed graph transformation system (TGS , PS)
so that VLS is closed under simulation steps, i.e. GS ∈ VLS and GS ⇒ HS via
pS ∈ PS implies HS ∈ VLS . The rules pS ∈ PS are called simulation rules.

Example 1. The simulation specification SimSpecV LS = (VLS , PS) for the pro-
duction system consists of the visual language VLS typed over TGS, where TGS

is the type graph shown in the upper part of Fig. 1, PS is the set of simulation
rules partly shown in Fig. 2, and VLS consists of all graphs that can occur in
any production system simulation scenario, e.g. the instance graph shown in the
lower part of Fig. 1 is one element of V LS .

We divide a model and rule transformation from a source to a target simula-
tion specification into two phases: in the first phase (called S2I transformation
phase), non-deleting graph transformation rules are applied to the source model
and to the source language simulation rules and add elements from the target
language to the source model and rule graphs. The result is an integrated simula-
tion specification, i.e. the resulting integrated model and simulation rules contain
both source and target model elements. The second phase (called I2T transfor-
mation phase) restricts the integrated model and the integrated simulation rules
to the type graph of the target language.

3.2 S2I Model and Rule Transformation

In order to transform a source simulation specification SimSpecV LS to an inte-
grated source-target simulation specification SimSpecV LI where V LI contains
at least V LS and V LT , we define an S2I transformation S2I = (S2IM ,S2IR)
consisting of a model transformation S2IM , and a corresponding rule transfor-
mation S2IR. The S2IM transformation applies model transformation rules from
a rule set Q to each GS ∈ V LS as long as possible (denoted by GS

Q !
=⇒ GI).

The applications of the model transformation rules add symbols from the target
language to the model state graphs. The resulting set of graphs GI comprises
the source-and-target integration language V LI .

Definition 2 (Model Transformation S2IM ). Given a simulation specifica-
tion SimSpecV LS = (V LS , PS) with VLS typed over TGS and a type graph TGI,
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Fig. 3. Type Graph TGI for the ProdSystem2PetriNet Model Transformation

called integration type graph, with TGS ⊆ TGI, then a model transformation
S2IM : V LS → V LI is given by S2IM = (VLS , TGI , Q) where (TGI , Q) is a
typed graph transformation system with non-deleting rules q ∈ Q, and S2IM -
transformations GS

Q !
=⇒ GI with GS ∈ VLS . The integrated language VLI is

defined by VLI = {GI | ∃ GS ∈ VLS ∧ GS
Q !
=⇒ GI}. This means, GS

Q !
=⇒ GI

implies GS ∈ VLS and GI ∈ VLI .

Example 2. The integrated visual language V LI for the model transformation
from production systems to Petri nets is defined by the integrated type graph
TGI in Fig. 3. The subtypes of Machine and Piece are not depicted since they
are not needed in our model transformation rules. Machines and conveyors are
mapped to places; pieces and operators are elements moving from one place-like
element to another and hence mapped to tokens. Connections between conveyors
or between machines and conveyors which indicate the way token-like elements
are transported, are mapped to transitions.

The model transformation rules Q are shown in Fig. 4.
Rules mach2place and conv2place generate places for machines and convey-

ors. A conveyor is transformed to four different places, realizing a flattening from
our model with distinct piece types to a P/T net with indistinguishable tokens.

Fig. 4. ProdSystem2PetriNet Model Transformation Rules
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Distinguishing the pieces is realized in the P/T net by placing them in distinct
places. Rules op2tk and piece2tk generate tokens for operators and pieces on
the places associated to their respective machines or conveyors. Transitions are
generated for each connection between two conveyors (rule transport2tr) or be-
tween a machine and a conveyor (rules in2tr and out2tr). Two more rules (not
depicted) exist which are applicable only if a machine is already connected to
a transition and which just add an arc connecting the existing transition to an
additional conveyor place. A machine’s transition is always connected by a dou-
ble arc to the machine’s place to ensure that a machine is working only if an
operator is present.

The result of an S2IM -transformation is illustrated in Fig. 5, where a part from
the model in Fig. 1 has been transformed, applying the model transformation
rules in Fig. 4 as long as possible, but at most once at the same match. Our
aim in this paper is not only to transform model states but to obtain a complete
integrated simulation specification, including simulation rules, from the source
simulation specification. In [5] we review a construction from [3,2], allowing us to
apply the S2I transformation rules from Q also to the simulation rules, resulting
in a set of integrated simulation rules. Basically, the model transformation rules
are applied to each graph of a simulation rule pS = (LS ← KS → RS) as long
as possible, resulting in an integrated simulation rule pI = (LI ← KI → RI).
In [5] we define rule transformation for the case without NACs. An extension
to NACs is given in [3,2]. Based on this definition of rule transformation, we
now define an S2IR transformation of rules, leading to an S2I transformation
S2I = (S2IM ,S2IR) from the source simulation specification SimSpecV LS to the
integrated simulation specification SimSpecV LI .

Definition 3 (Rule Transformation S2IR). Given a simulation specification
SimSpecV LS = (VLS , PS) and an S2IM -transformation S2IM = (VLS , TGI , Q),
then a rule transformation S2IR : PS → PI is given by S2IR = (PS , TGI , Q)

and S2IR transformation sequence pS
Q !�"� pI with pS ∈ PS, where rule trans-

formation steps p1
q �"� p2 with q ∈ Q (see [5]) are applied as long as pos-

sible. The integrated simulation rules PI are defined by PI = {pI | ∃ pS ∈

PS ∧ pS
Q !�"� pI }. This means pS

Q !� "� pI implies pS ∈ PS and pI ∈ PI .

Fig. 5. ProdSystem2PetriNet: S2IM Model Transformation Result
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Definition 4 (S2I Transformation, Integrated Simulation Specifica-
tion). Given SimSpecV LS = (VLS , PS), an S2IM transformation S2IM : VLS

→ VLI and an S2IR transformation S2IR : PS → PI , then

1. S2I : SimSpecV LS → SimuSpecV LI , defined by S2I = (S2IM ,S2IR) is
called S2I transformation.

2. SimSpecV LI = (VLI , PI) is called integrated simulation specification, and
each transformation step GI

pI=⇒ HI with GI , HI ∈ VLI and pI ∈ PI is
called integrated simulation step.

Example 3. Fig.6 shows three integrated simulation rules, the result of S2IR
transformation, i.e. of applying the model transformation rules from Fig. 4 to
the source simulation rules genCylinder, move cyl and change from Fig. 2.

3.3 I2T Transformation

In the I2T transformationphase, we start with the integrated simulation specifica-
tionSimuSpecV LI andgenerate the target simulation specificationSimuSpecV LT

by restricting the integrated model graph and the integrated simulation rules to
the type graph of the target language.

Definition 5 (I2T Transformation and Target Simulation Specifica-
tion). Given an S2I transformation S2I : SimSpecV LS → SimSpecV LI , then

1. I2T : SimSpecV LI → SimSpecV LT , called I2T transformation, is defined
by I2T = (I2TM : V LI → V LT , I2TR : PI → PT ) with
– I2TM (GI) = GI |TGT (called I2TM transformation), and
– I2TR(pI) = pI |TGT (called I2TR transformation).

2. SimSpecV LT = (VLT , PT ) with V LT = {GI |TGT | GI ∈ V LI} and PT =
{pI |TGT | pI ∈ PI} is called target simulation specification, and each trans-
formation step GT

pT=⇒ HT with GT , HT ∈ VLT and pT ∈ PT is called
target simulation step.

Example 4. Fig.7 shows the target simulation rules, the result of I2TR transfor-
mation, i.e. of restricting the integrated simulation rules from Fig. 6 to the type
graph of TGT of the target language from Fig. 3 (i.e. the Petri net type graph).

Fig. 6. Some Integrated Simulation Rules resulting from S2IR Transformation
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Fig. 7. Some Target Simulation Rules resulting from I2TR Transformation

We now can define the complete S2T model and rule transformation by com-
bining the two transformation phases S2I and I2T .

Definition 6 (S2T Transformation). Given an S2I transformation S2I :
SimSpecV LS → SimSpecV LI , and an I2T transformation I2T : SimSpecV LI →
SimSpecV LT , then S2T : SimSpecV LS → SimSpecV LT , called S2T transforma-
tion, is defined by S2T = (S2TM : V LS → V LT ,S2TR : PS → PT ) with

– S2TM = I2TM ◦ S2IM (called S2TM transformation), and
– S2TR = I2TR ◦ S2IR (called S2TR transformation).

4 Semantical Correctness and Completeness of Model
and Rule Transformations

4.1 Semantical Correctness of S2I Transformations

In our case, semantical correctness of an S2I transformation means that for each
simulation step GS

pS=⇒ HS there is a corresponding simulation step GI
pI=⇒ HI

where GI (resp. HI) are obtained by model transformation from GS (resp. HS),
and pI by rule transformation from pS . Note that instead of a single step GI

pI=⇒
HI we can also handle more general sequences GI

∗=⇒ HI using concurrent rules
and transformations. In [3], it is shown that the following properties have to be
fulfilled by an S2I -transformation in order to be semantically correct:

Definition 7 (Termination of S2IM and Rule Compatibility of S2I )
An S2IM transformation S2IM : VLS → VLI is terminating if each transfor-
mation GS

Q ∗
=⇒ Gn can be extended to GS

Q ∗
=⇒ Gn

Q ∗
=⇒ Gm such that no q ∈ Q

is applicable to Gm anymore. An S2I -transformation S2I = (S2IM : VLS →
VLI ,S2IR : PS → PA) with S2IM = (VLS , TGI , Q) is called rule compatible,
if for all pI ∈ PI and q ∈ Q we have that pI and q are parallel and sequential
independent. More precisely, for each G

pI=⇒ H with GS
Q ∗
=⇒ G and HS

Q ∗
=⇒ H

for some GS , HS ∈ VLS and each G
q

=⇒ G′ (resp. H
q

=⇒ H ′) we have parallel
(resp. sequential) independence of G

pI=⇒ H and G
q

=⇒ G′ (resp. H
q

=⇒ H ′).

Theorem 1 (Semantical Correctness of S2I )
Given an S2I -transformation S2I : SimSpecV LS → SimSpecV LI with S2I =
(S2IM : VLS → VLI ,S2IR : PS → PI) which is rule compatible, and S2IM
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is terminating. Then, S2I is semantically correct in the sense that we have for

each simulation step GS
pS=⇒ HS with GS ∈ VLS and each

S2IR-transformation sequence pS
Q !�"� pI (see Def. 3):

1. S2IM -transformation sequences
GS

Q !
=⇒ GI and HS

Q !
=⇒ HI , and

2. an integrated simulation step GI
pI=⇒ HI

GS
Q ! ��

pS

##

GI

pI

##

Q ! �"�

HS
Q ! �� HI

Proof. (See [5], similar to the proof of Semantical Correctness of S2A in [3]).

Example 5. Our ProdSystem2PetriNet model transformation is terminating,
provided that all model transformation rules are applied at most once at each
possible match. (For automatic model transformations, this can be ensured by
using adequate NACs). Moreover, S2IR is rule compatible since all pI ∈ PI

are parallel and sequentially independent from the model transformation rules
q ∈ Q. This is shown by considering all overlapping matches from a rule pair
(q, pI) into an integrated model GI : Lq

h−→ GI
m←− LI . Each overlap either

is preserved by both rules, or h(Lq) is completely included in m(LI). The first
case is uncritical. In the second case, rule q is not applicable since it has been
applied before at the same match. Hence this overlap cannot lead to a parallel
dependency.

4.2 Semantical Correctness of I2T Transformations

We now consider the semantical correctness of the I2T transformation phase,
which was defined in Def. 5 as the restriction of the integrated model graph and
the integrated simulation rules to the type graph TGT of the target VL.

Theorem 2 (Semantical Correctness of I2T Transformations). Given
an S2I transformation S2I = (S2IM : V LS → V LI ,S2IR : PS → PI) :
SimSpecV LS → SimSpecV LI , and an I2T transformation I2T :SimSpecV LI →
SimSpecV LT defined by I2T = (I2TM , I2TR) according to Def. 5. Then, I2T is
semantically correct in the sense that we have for each
integrated simulation step GI

pI=⇒ HI with GI ∈ VLI and
each I2TR-transformation I2TR(pI) = pI |TGT = pT :

1. I2TM (GI) = GT and I2TM (HI) = HT , and
2. a target simulation step GT

pT=⇒ HT

Proof. See [5].

GI

pI

##

I2TM �� GT

pT

##

I2TR ��

HI
I2TM �� HT

4.3 Semantical Completeness of S2I Transformations

In this section we consider the relation between an integrated simulation speci-
fication SimSpecV LI and the corresponding source simulation specification Sim-
SpecV LS . Similar to the construction of the target simulation specification
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SimSpecV LT by restriction of SimSpecV LI to TGT , the source simulation spec-
ification SimSpecV LS can be re-constructed by restricting the integrated model
graph and simulation rules to the type graph TGS of the source language.

Definition 8 (I2S Backward Transformation). Given an S2I transforma-
tion S2I : SimSpecV LS→ SimSpecV LI , then I2S : SimSpecV LI→ SimSpecV LS,

called I2S backward transformation, is defined by I2S = (I2SM : V LI →
V LS, I2SR : PI → PS) with

– I2SM (GI) = GI |TGS (called I2SM backward transformation), and
– I2SR(pI) = pI |TGS (called I2SR backward transformation).

The S2I transformation is called faithful if S2IM (GS) = GI implies I2SM (GI) =
GS and S2IR(pS) = pI implies I2SM (pI) = pS .

Remark 1. We call a rule L
q−→ R faithful if the restriction q|TGS is the identity.

It is straightforward (see [5]) to show that the S2I transformation is faithful if
all rules q ∈ Q are faithful.

Theorem 3 (Semantical Completeness of S2I Transformations). Given
a faithful S2I transformation S2I =(S2IM ,S2IR) : SimSpecV LS → SimSpecV LI

and its backward transformation I2S = (I2SM , I2SR) : V LI → V LS , with I2SM :
V LI → V LS and I2SR : PI → PS. Then, S2I is semantically complete in the
sense that we have for each integrated simulation step GI

pI=⇒ HI
with GI , HI ∈ V LI and pI ∈ PI :

1. I2SM (GI) = GS and I2SM (HI) = HS with
S2IM (GS) = GI , S2IM (HS) = HI , and

2. a source simulation step GS
pS=⇒ HS with

I2SR(pI) = pI |TGS = pS and S2IR(pS) = pI .

Proof. See [5].

GI
I2SM ��

pI

##

GS

pS

##

I2SR ��

HI
I2SM �� HS

Example 6. Our ProdSystem2PetriNet model transformation is faithful since all
model transformation rules (see Fig. 4) add only language elements typed over
TGI \ TGS. Hence, the rules are faithful, and the ProdSystem2PetriNet S2I
transformation is semantically complete according to Thm. 3.

4.4 Semantical Completeness of I2T Transformations

Semantical completeness of I2T transformations means that for each simulation
step in the target simulation specification we get a corresponding simulation step
in the integrated simulation specification. We require the following property to
be fulfilled for an I2T transformation in order to be semantically complete. (This
property is discussed for our case study in Example 7.)

Definition 9 (I2T Completeness Condition)
Given a target simulation rule pT ∈ PT , then due to the construction ofSimSpecV LT

by restriction, there exists an integrated simulation rule pI ∈ PI such that pT =
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pI |TGT . Then, for each target transformation GT

pT=⇒ HT with GT ∈ V LT and context graph DT

and morphism KT → DT we require that there
exists a context graph DI typed over TGI and
morphism KI → DI such that

1. KT → DT is the restriction of KI → DI to
TGT , i.e. that we have two pullbacks in the
diagonal squares in the diagram to the right.

2. For the pushout objects GI and HI in the
front squares we have GI , HI ∈ V LI .

LT

$$��
�

��

KT
��

��

$$��
�

�� RT

��

$$��
�

LI

��

KI
��

��

�� RI

��

GT DT
��

$$��
�

��

��

HT

GI DI

��

�� �� HI

TGT

$$��
�

TGI

Theorem 4 (Semantical Completeness of I2T ). Each I2T transforma-
tion I2T = (I2TM , I2TR) which satisfies the I2T completeness condition (see
Def. 9) is semantically complete in the sense that for each target transformation
GT

pT=⇒ HT with GT ∈ V LT via simulation rule pT ∈ PT with pT = pI |TGT for
some pI ∈ PI there is an integrated transformation
GI

pI=⇒ HI such that

– GI , HI ∈ V LI

– GT = GI |TGT and HT = HI |TGT ∈ V LT

Proof. See [5].

GI
I2TM

��

pI

##

GT

pT

##

I2TR ��

HI
I2TM �� HT

Example 7. We show that our ProdSystem2PetriNet I2T transformation does
not fulfill the completeness condition and discuss an adaption of the model trans-
formation rules in order to achieve satisfaction of the completeness condition.

Based on the set PT of target rules resulting from the ProdSystem2PetriNet
I2T transformation, we may apply more than one pT ∈ PT to the same GT .
Consider for example the three target rules in Fig. 7. All of them are applicable to
a target graph GT if there exists a match from the “biggest” rule move cyltarget

to GT . Thus, when applying any pT from this set of applicable rules to GT , we
always get the same transformation span GT ← DT → HT , but the applied rule
pT might be the restriction of an integrated rule pI ∈ PI such that the first
part of the completeness condition is fulfilled, but not the second one: i.e., there
exists a context graph DI and morphism KI → DI such that the pushout objects
GI and HI are not in V LI . This might happen since our model transformation
“forgets” information, i.e. given a target rule (typed over the Petri net language),
we do not know from which integrated rule this target rule was constructed.

In order to avoid this situation, we propose a slight extension of the target type
graph TGT (Fig. 3) and the model transformation rules (Fig. 4). We introduce
a suitable annotation of Petri net elements (transitions or places) by attributes
keeping the information about the original role of the element. For example,
we annotate each place originating from a machine by the machine type (e.g.
Assembler or GenCyl), and each place originating from a conveyor by the piece
type a token on this place would represent (e.g. cyl or bar). The annotation
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should establish a 1:1 correspondence between the integrated rules in PI and
the target rules in PT , and between integrated models GI ∈ V LI and their
target models GT ∈ V LT . Hence, a target rule pT ∈ PT which is a restriction
of an integrated rule pI ∈ PI now is applicable to a target model GT ∈ V LT

only if there exists GI ∈ V LI to which pI is applicable. Thus, the context
graph DI and the morphism KI → DI are unique and lead to pushouts in the
front squares such that GI and HI are in V LI , i.e. also the second part of the
completeness condition is now satisfied. Note that the annotation does not affect
the semantical correctness and completeness of S2I (shown in Examples 5 and
6) since S2I is still terminating, rule compatible and faithful.

4.5 Semantical Correctness and Completeness of S2T
Transformations

Putting all steps together, we find that a source-to-target model transformation
S2T : SimSpecV LS → SimSpecV LT with S2T = I2T ◦ S2I is semantically
correct and complete if I2T and S2I are semantically correct and complete. In
this case, we get for each source simulation step in SimSpecV LS a corresponding
target simulation step in SimSpecV LT , and vice versa.

Theorem 5 (Semantical Correctness and Completeness of S2T ). Each
S2T transformation S2T = (S2TM , S2TR) : SimSpecV LS → SimSpecV LT with
S2T = I2T ◦ S2I , where S2I : SimSpecV LS → SimSpecV LI with S2I rule com-
patible, S2IM terminating (Def. 7) and S2I faithful, and I2T : SimSpecV LI →
SimSpecV LT , with I2T satisfying the completeness condition (Def. 9), is se-
mantically correct and complete in the following sense:
1. Semantical Correctness: For each source simulation step GS

pS=⇒ HS with

GS ∈ V LS and S2TR-transformation sequence pS
Q !
=⇒ pI

|TGT−→ pT we have

1. S2TM -trafo S2TM (GS) = GT : GS
Q!

=⇒ GI

|TGT−→ GT ,

S2TM -trafo S2TM (HS) = HT : HS
Q!

=⇒ HI

|TGT−→ HT , and
2. a target simulation step GT

pT=⇒ HT via target simulation rule pT ∈ PT

2. Semantical Completeness: For
each target transformation step GT

pT=⇒
HT with GT ∈ V LT and pT ∈ PT there
is a source simulation step GS

pS=⇒ HS

with

– pT = S2TR(pS),
– GT = S2TM (GS) and

HT = S2TM (HS) ∈ V LT .

GS
S2IM ��

pS

##

S2TM

%%
GI

pI

##

I2TM �� GT

pT

##

S2IR �"�

S2TR

		I2TR ��

HS
S2IM ��

S2TM

%%
HI

I2TM �� HT

This means especially that the transformation step GT
pT=⇒ HT becomes a simu-

lation step in SimSpecV LT , generated from the simulation step GS
pS=⇒ HS.
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Proof. By semantical correctness of S2I and I2T (Theorems 1 and 2), we get
directly the semantical correctness of S2T = I2T ◦ S2I . By semantical com-
pleteness of S2I and I2T (Theorems 3 and 4), we get directly the semantical
completeness of S2T = I2T ◦ S2I .

4.6 Relationship of SimSpecV LT and Target Language Semantics

In the case that the target language has already an operational semantics given
by simulation rules PT̄ (like in our running example, where the target language is
the language of Petri nets), we may require for our model transformation S2T to
be behavior-preserving in the sense that for each model in V LT the simulations
via rules in PT correspond to simulations via rules in PT̄ and vice versa.

Example 8. As classical semantics of a P/T net (with fixed arc weight 1) we
generate for each transition with i input places and o output places in a given
Petri net model a corresponding firing rule [9]. Such firing
rules belong to the rule schema depicted to the right. For
a transition with i input places and o output places there
is the graph rule pT̄ ∈ PT̄ where the transition with its
environment is preserved by the rule, all (and only the)
input places are marked each by one token in the left-hand
side, and all (and only the) output places are marked each
by one token in the right-hand side.

Furthermore, the rules must not be applied to transitions with larger environ-
ment which can be ensured by suitable NACs (called environment-preserving).
Considering the target simulation rules PT which resulted from our extended
ProdSystem2Petri S2T transformation (i.e. the rules in Fig. 7, extended by an-
notations as described in Example 7), we notice two differences to PT̄ :

1. The target rules in PT have no environment-preserving NACs,
2. The Petri net elements in the target rules in PT are annotated,
3. The target rules in PT in general contain context in addition to the environ-

ment of a single transition.

In case 1, we add environment-preserving NACs to each target rule without
changing their applicability, since the annotations ensure that each target rule
can be applied to a transition with fixed environment, anyway.

In case 2, we omit the annotations in the target rules and argue that the
rules without annotations (but with environment-preserving NACs) lead to the
same transformations as before. We find that all target rules without annotations
which are applicable to GT at matches overlapping in the enabled transition and
its environment have the same transformation span GT ← DT → HT (they are
semantically equivalent) (like e.g. the target rules in Fig. 7 which are semanti-
cally equivalent for a match from the ”biggest” rule move cyltarget to GT ). It
can be checked easily that we have a similar situation for all other target rules.
The NACs prevent that target rules without annotations are applied to transi-
tions with a larger environment. All semantically equivalent target rules without



208 H. Ehrig and C. Ermel

annotations which are applicable at matches containing the same enabled tran-
sition, correspond to exactly one application of an annotated target rule at this
match. Thus, we can omit the annotations in the target rules without causing
changes of the possible target transformation steps.

In case 3, the behavior is preserved only if the additional context in each rule
pT ∈ PT can always be found for each match into any model in SimSpecV LT ,
and if this context is not changed by the rule. We have additional context for
instance in the rules genCylindertarget and move cyltarget (see Fig. 7). Here, the
context was generated due to the flattening of conveyors to sets of four places.
Since this flattening was also performed for each conveyor in the source model
GS , we know that each match at which the rule genCylindertarget without the
three additional context places is applicable, corresponds to a match of the rule
with context. This is true in our example for all firing rules containing con-
text in addition to the active transition’s environment. Hence, we can conclude
that the ProdSystem2Petriannotated model transformation is not only seman-
tically correct and complete, but also behavior-preserving w.r.t. the Petri net
semantics.

5 Related Work

Results concerning the correctness of model transformations have been published
so far mainly on formally showing the syntactical correctness [10].

To ensure the semantical correctness of model transformations, Varró et al.
[11] use graph transformation to specify the dynamic behavior of systems and
generate a transition system for each model. A model checker verifies certain dy-
namic consistency properties by checking the source and target models. In [1], a
method is presented to verify semantical equivalence for particular model trans-
formations. It is shown by finding bisimulations that a target model preserves
the semantics of the source model w.r.t. a particular property. This technique
does not prove the correctness of the model transformation rules in general.

In [2,3,4], we consider S2A transformation, realizing a consistent mapping
from simulation steps in a behavioral modeling language to animation steps
in a more suitable domain-specific visualization. The animation specification A
in [2,3,4] corresponds to an integrated simulation specification in this paper.
However, there is no I2T transformation considered in [2,3,4]. This paper gener-
alizes and extends the results from [2,3,4] to the more general case of S2T model
transformations.

6 Conclusion and Ongoing Work

We have considered the semantical correctness and completeness of model trans-
formations based on simulation specifications (typed graph transformation
systems). The main results show under which conditions an S2T model trans-
formation is semantically correct and complete. The theory has been presented
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in the DPO-approach for typed graphs, but it can also be extended to typed
attributed graphs, where injective graph morphisms are replaced by suitable
classes M and M ′ of typed attributed graph morphisms for rules and NACs,
respectively [8]. The results have been used to analyze an S2T transformation
of a production system (a domain-specific visual model) to Petri nets. We also
discuss the requirement of a model transformation S2T to be behavior-preserving
in the sense that for each target model in V LT the simulations via rules in PT

correspond to simulations via rules in the target semantics, given by PT̄ (e.g.
the Petri net firing rules) and vice versa. Work is in progress to establish formal
criteria for semantically correct and complete S2T model transformations to be
also behavior-preserving w.r.t. a given target language semantics.

Future work is planned to analyze in more detail our I2T completeness con-
dition, to automatize our approach (e.g. check the correctness and completeness
conditions automatically by a tool) and to apply the approach to triple graph
grammars [12], nowadays widely used for model transformation specification.
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Abstract. High-level conditions are well-suited for expressing structural
properties. They can describe the precondition and the postcondition for
a high-level program, but they cannot describe the relationship between
the input and the output of a program derivation. Therefore, we inves-
tigate program conditions, a generalized type of conditions expressing
properties on program derivations. Program conditions look like nested
rules with application conditions. We present a normal form result, a
suitable graphical notation, and conditions under which a satisfying pro-
gram can be constructed from a program condition. We define a sequen-
tial composition on program conditions and show that, for a suitable type
of program conditions with a complete dependence relation we have that:
Whenever the original programs satisfy the original program conditions,
then the composed program satisfies the composed program condition.

1 Introduction

Constraints, also called graph conditions, in the sense of [1,2,3,4] are a visual
and intuitive, yet precise formalism, well suited to describe structural properties
of system states. With these concepts we can express requirements for a pro-
gram by a pair 〈pre, post〉 of a pre- and a postcondition. A relationship between
the input and the output graph cannot be expressed. In imperative program-
ming languages, the relationship between the input and the output is given by
the names of variables: in general, the value of a variable after program execu-
tion depends on its value before. In this paper, we introduce so-called program
conditions which allows us to express the relationship between the input- and
output object for high-level programs. The concept is illustrated in the cate-
gory of graphs by a simple example of repairs of broken routers in a computer
network.

Example 1 (router repair). Consider a simple network consisting of computers
( ) and routers ( ) as nodes. Network links between routers and computers are
shown as undirected edges (in reality two directed edges in the opposite direc-
tion). Inoperable routers have an incoming edge from a failure ( ) node. Broken
routers can be put on a priority list for quicker repair, which is modelled by an
edge from a priority ( ! ) node. Figure 1 shows a graph G which is transformed
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!

G

!

H

=⇒P

Fig. 1. Failing routers that were on the priority list should be repaired

into H by a graph program P . We will show how our program conditions can
express temporal properties over such pairs, e.g. “Every router that were on the
priority list has been repaired after the execution of P”.

The paper is organized as follows: In Sect. 2, we review the definitions of con-
ditions and rules. In Sect. 3, we introduce programs and program conditions,
a generalized type of conditions expressing properties on program derivations.
We also prove a normal form result for program conditions saying that, for ev-
ery program condition, there is an equivalent program condition without pre-
and postcondition. For this type of program conditions, a graphical notation is
presented. In Sect. 4, for specific program conditions, a satisfying program is
constructed. Moreover, for composed programs, a satisfying program condition
is composed from the program conditions of the subprograms. The concepts are
illustrated by examples in the category of graphs with the class of all injective
graph morphisms. A conclusion including further work is given in Sect. 5.

2 Conditions and Rules

We use the framework of weak adhesive HLR categories [3,5] and introduce
conditions and rules for high-level structures like Petri nets, (hyper)graphs, and
algebraic specifications.

Assumption 1. We assume that 〈C,M〉 is a weak adhesive HLR category with
M-initial object I satisfying the special pullback-decomposition property [6].

E.g. the category 〈Graphs, Inj〉 of graphs with class Inj of all injective morphisms
is a weak adhesive HLR category satisfying the assumption.

(High-level) Conditions are defined as in [7,4]. Syntactically, the conditions
may be seen a tree of morphisms equipped with certain logical symbols such as
quantifiers and connectives.

Definition 1 (conditions). A condition over an object P is of the form true
or ∃(a, c), where a: P → C is a morphism and c is a condition over C. Moreover,
Boolean formulas over conditions over P are conditions over P . ∃a abbreviates
∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c). Every morphism and every object sat-
isfies true. A morphism p: P → G satisfies a condition ∃(a, c) if there exists a
morphism q in M such that q ◦ a = p and q |= c.
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P

G

C,
a

p q
=

c

|=

)∃(

An object G satisfies a condition if all morphisms p: P → G in M satisfy the
condition. The satisfaction of conditions over P by objects or morphisms with
domain P is extended to Boolean formulas over conditions in the usual way. We
write p |= c [G |= c] to denote that the morphism p [the object G] satisfies c.

Remark 1. In the context of objects, conditions are also called constraints [1]
and, in the context of rules, conditions are also called application conditions.
The definition generalizes those in [1,2,3].

Remark 2. We sometimes use a short notation for conditions: For a morphism
a: P → C in a condition, we just depict C, if P can be unambiguously in-
ferred, i.e. for conditions over the M-initial object I. The graph condition
∀(∅ → , ∃( ↪→ )) has the meaning “Every computer is connected
to a router”. In the short form, the condition is written as ∀( , ∃( )). A
more complex example is the condition ∀( , ∃( ) ∧ ¬∃( )) which
has the meaning “Every computer is connected to exactly one router”.

(High-level) Rules are defined as in [3,4]. They are specified by a span of M-
morphisms 〈L ←↩ K ↪→ R〉 with a left and a right application condition. We
consider the classical semantics based on the double-pushout construction [8,9]
and restrict on M-matching, i.e. matching morphisms for rules in M.

Definition 2 (rules). A rule ρ = 〈p, acL, acR〉 consists of a plain rule p = 〈L ←↩
K ↪→ R〉 with K ↪→ L and K ↪→ R in M and two application conditions acL

and acR over L and R, respectively. L is called the left-hand side, R the right-
hand side, and K the interface; acL and acR are the left and right application
condition of p.

L K R

DG H

l r

m m∗(1)
PO

(2)
PO

acL

=
|

acR

|=

Given a morphism K ↪→ D in M, a direct derivation consists of two pushouts
(1) and (2) such that m |= acL and m∗ |= acR. We write G ⇒p,m,m∗ H and say
that m: L → G is the match, m∗: R → H is the comatch of p in H , and D is the
intermediate object. We also write G ⇒ρ,m H or G ⇒ρ H to express that there
is an m∗ and there are m and m∗, respectively, such that G ⇒r,m,m∗ H .

The well-known notions of parallel and sequential independence and the con-
structions of a parallel, concurrent, and amalgamated rule [10,9] partly have
already been extended to rules with negative application conditions. In [11],
a Local Church-Rosser, Parallelism, and Concurrency Theorem for rules with
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negative application conditions is given. There are generalized Local Church-
Rosser, Parallelism, Concurrency and Amalgamation Theorems for rules with
application conditions, see the long version of this paper [5].

3 Programs and Program Conditions

In this section, we recall the definition of programs and introduce program condi-
tions, a generalized type of conditions expressing properties on program deriva-
tions. (High-level) Programs with input-output semantics are defined in [12,7].
The semantics presented here is based on the track morphism of [13].

Definition 3 (programs). Every rule p is a program. Every finite set S of
programs is a program. If P and Q are programs, then (P ; Q), P ∗ and P ↓ are
programs. The semantics of a program P is a set �P � of spans: For a rule p,
�p� = {〈G ←↩ D ↪→ H〉 | G ⇒p H with intermediate object D}. For a finite set
S of programs, �S� = ∪P∈S�P �. For programs P and Q, �(P ; Q)� = �P � ◦ �Q�,
where the composition of spans is defined by 〈G ←↩ D1 ↪→ H〉 ◦ 〈H ←↩ D2 ↪→
M〉 = 〈G ←↩ D ↪→ M〉, where D is the pullback object of D1 ↪→ H ←↩ D2, and
(1) and (2) in the diagram below commutes.

HD1G D2 M

D

(1) (2)
(PB)

The composition is extended to sets of spans in the usual way. For a program P ,
�P ∗�=�P �∗ and �P ↓ �={〈G ←↩ D ↪→ H〉∈�P �∗|¬∃M.〈H ←↩ E ↪→ M〉 ∈ �P �}.

Example 2. Consider the graph program Repair; Deprioritize; Prioritize,
where Repair = 〈 ←↩ ↪→ 〉, Prioritize = 〈 ←↩ ↪→ ! 〉, and
Deprioritize = 〈 ! ←↩ ↪→ 〉, and the derivation below.
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The span 〈G1 ←↩ G3 ↪→ G4〉 is in the semantics of that program. The trace of
the nodes is visualized by indices: The nodes with the indices 1− 3 and 6 − 10
are in the interface of the span, the nodes with the indices 4, 5 are deleted, and
the node with index 11 is inserted. The trace of the edges is given implicitly.
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As in [14], we investigate spans and span morphisms. A span p = 〈L ←↩ K ↪→
R〉 is a pair of M-morphisms with common domain. A (span) morphism from
pc = 〈L ←↩ K ↪→ R〉 to pc′ = 〈L′ ←↩ K ′ ↪→ R′〉 is a triple of morphisms
〈L → L′, K → K ′, R → R′〉 such that (1) and (2) below commute. It is a (span)
M-morphism if morphisms in the triple are M-morphisms. The class of such
span M-morphisms is denoted by M3.

L K R

K ′L′ R′

a a∗(1) (2)

The composition of morphisms is defined by the componentwise composition
of the underlying morphisms. The identity on span morphisms is defined by
the triple of identities on its components. In category theory, spans and M-
morphisms form a category.

(High-level) Conditions are well-suited for expressing structural properties.
They can be used for describing the precondition and the postcondition for a
high-level program, but they cannot be used for describing the relationship be-
tween the input and the output of a program. Therefore, we investigate program
conditions, a generalized type of conditions expressing properties on program
derivations.

Definition 4 (program conditions). A program condition (over p) is of the
form 〈p, pre, post〉 and called basic if p = 〈L ←↩ K ↪→ R〉 is a span of M-
morphisms and pre and post are conditions over L over R, respectively, or
of the form true or ∃(ā, pc) and called nested if ā is a span morphism (with
domain p) and pc is a program condition (over the codomain of ā). More-
over, Boolean formulas over program conditions yield program conditions. p
abbreviates 〈p, true, true〉, ∃ā abbreviates ∃(ā, true), and ∀(ā, pc) abbreviates
¬∃(ā,¬pc). A morphism m̄ = 〈m, d, m∗〉 satisfies 〈p, pre, post〉 if (1) and (2) are
pullbacks, m |= pre, and m∗ |= post. The morphism m̄ satisfies ∃(ā, pc) if (1)
and (2) are pullbacks and there is an M-morphism l̄ with m̄ = l̄◦ ā satisfying pc.

L K R

DG H

m m∗(1)
PB

(2)
PB

pre

=
|

post

|=

L K R

L′ K ′ R′

DG H

m

a

l

A span s = 〈G ←↩ D ↪→ H〉 satisfies 〈p, pre, post〉 if for all M-morphisms
m: L → G satisfying pre, there is an M-morphism m̄ = 〈m, d, m∗〉 satisfying
〈p, pre, post〉. The span s satisfies a program condition ∃a [∃(a, c)] over p if all
M-morphisms from p to s satisfy the condition. The satisfaction of program
conditions is extended to Boolean formulas over program conditions in the usual
way. We write m̄ |= pc [s |= pc] to denote that the span morphism m̄ [the span
s] satisfies pc. Two program conditions pc1 and pc2 are equivalent, denoted by
pc1 ≡ pc2, if �pc1� = �pc2� where, for a program condition pc, �pc� denotes the
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set {m̄ | m̄ |= pc}. A program P satisfies the program condition pc, denoted by
P |= pc, if for all spans s ∈ �P � in the semantics of P , s |= pc.

Remark 3. We sometimes use a short notation for program conditions: For a
morphism ā: p → p′ in a program condition, we just depict p′, if p can be unam-
biguously inferred, i.e. for program conditions over the initial span 〈I ←↩ I ↪→ I〉.

Remark 4. Basic program conditions may be seen as ordinary rules with a left and
a right application condition. Nested program conditions may be seen as nested
rules in the sense of Rensink [15]. The main difference between double-pullback
transitions and basic program condition satisfaction is informally that a span
〈G ←↩ D ↪→ H〉 satisfies the condition 〈L ←↩ K ↪→ R〉 if, for every instance of L
in G, there corresponding instance of R in H . However, in the case of double-
pullback transitions, 〈G ←↩ D ↪→ H〉 is in the semantics of 〈L ←↩ K ↪→ R〉 if,
for a given instance of L in G, there is a corresponding instance of R in H . In
a sense, program conditions are universal, while double-pullback transitions are
existential conditions.

Fact 1. Program conditions generalize conditions in the sense of [1,2,3,4]: Every
pair 〈pre, post〉 of conditions over the M-initial object I constitutes a basic
program condition 〈i, pre, post〉 with i = 〈I ←↩ I ↪→ I〉.

In the following, we present some examples for program conditions.

Example 3. The program condition with empty span 〈∅ ←↩ ∅ ↪→ ∅〉, precondition
simple=¬∃( 1 2

)∧¬∃(
1

), and postcondition complete = ∀( 1 2
, ∃(

1 2
))

has the meaning “For simple graphs, the resulting graph has to be complete”. (A
graph is simple if it contains no parallel edges or loops and complete if every pair
(v1, v2) of distinct nodes is connected by an edge from v1 to v2.) The program
condition 〈

1 2
←↩

1 2
↪→

1 2
〉 has the meaning “Replace all edges with

edges in opposite direction”. Table 1 shows some pre- and postconditions and
basic program conditions with their interpretation. The short notation

1
x

2
de-

notes the graph
1 2

together with the application condition ¬∃(
1 2

→
1 2

),
meaning “There does not exist an edge from the image of 1 to the image of 2.

The definition of program conditions combines pre- and postconditions with the
concept of nesting. Pre- and post condition are well-known, well-understood, and
natural; nesting is complicated and powerful. Every basic program condition
can be transformed into an equivalent nested program condition without pre-
and postcondition, i.e. in a program condition with subcondition of the form
〈p, true, true〉.

Theorem 1. For every (basic) program condition, there is an equivalent (nested)
program condition without pre- and postcondition.

Proof. We define a transformation Nf from program conditions into an equivalent
program conditions without pre- and postcondition. If we have a transformation
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Table 1. Conditions and basic program conditions

condition interpretation as pre/post condition

∃(
1
→

1
) All old/new nodes have a loop.

¬∃(∅ →
1

) No old/new node has a loop.
¬∃(

1 2
) Previously/afterwards, all pairs of distinct nodes

are connected by at most one edge.
¬∃(

1
) Previously/afterwards, all nodes are loop-free.

program condition interpretation

〈
1
←↩

1
↪→

1
〉 All nodes are preserved.

〈
1
←↩ ∅ ↪→ ∅〉 All nodes are deleted.

¬〈
1
←↩

1
↪→

1
〉 At least one node is deleted.

¬〈
1
←↩ ∅ ↪→ ∅〉 At least one node is preserved.

〈
1 2

←↩
1 2

↪→
1 2

〉 All proper edges are preserved.

〈
1 2

←↩
1 2

↪→
1
x

2
〉 All proper edges are deleted and no new ones are

created.

〈
1
x

2
←↩

1 2
↪→

1 2
〉 Whenever there were no proper edge, an edge is

inserted.

〈
1 2

←↩
1 2

↪→
1 2

〉 Proper parallel edges are deleted.
〈

1
←↩

1
↪→

1
〉 All loops are deleted.

for basic program conditions, then the transformation can be extended to arbi-
trary program conditions by replacing basic subprogram conditions by equivalent
ones without pre- and postcondition. For basic program conditions of the form
〈p, pre, post〉, we may use the fact that, by Definition 4, 〈p, pre, post〉≡〈p, pre, true〉
∧ 〈p, true, post〉. For basic program conditions with true precondition, we may use
the fact that 〈p, true, post〉 ≡ 〈p−1, post, true〉−1, where, for a basic program con-
dition pc = 〈p, pre, post〉 with p = 〈L ←↩ K ↪→ R〉, pc−1 denotes the inverse
basic program condition 〈p−1, post, pre〉 with p−1 = 〈R ←↩ K ↪→ L〉. Without
loss of generality, we can assume that pre and post are M-conditions, i.e. for all
subconditions of the form ∃(a, c), the morphism a is in M (see [4]).

Construction. For basic program conditions of the form 〈p, pre, true〉, the trans-
formation Nf is defined by induction on the structure of the condition pre:

Nf(〈p, true, true〉) = 〈p, true, true〉
Nf(〈p, ∃(a, c), true〉) =

∨
ā∈A ∃(ā, Nf(〈p′, c, true〉))

where ā ∈ A ranges over all M-morphisms ā = 〈a, z, a∗〉 such that (11) and (21)
are pullbacks and p′ = 〈L′ ← K ′ → R′〉 is the codomain of ā. For Boolean for-
mulas over conditions, the transformation is straightforward: Nf(〈p,¬c, true〉) =
¬(Nf(〈p, c, true〉)) and Nf(〈p, c1

∧
∨ c2, true〉) = Nf(〈p, c1, true〉 ∧∨Nf(〈p, c2, true〉).

We prove Nf(〈p, pre, true〉) ≡ 〈p, pre, true〉 by induction on the structure of the
condition pre. Basis. Let pre = true. By definition of Nf, Nf(〈p, true, true〉) =
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〈p, true, true〉. Induction. Assume the hypothesis is true for conditions c, c1,
and c2. Let pre = ∃(a, c). For morphisms m̄ = 〈m, d, m∗〉, we have

m̄ |= 〈p, ∃(a, c), true〉
⇔ (1), (2) PB’s ∧m |= ∃(a, c) (Definition 4)
⇔ (1), (2) PB’s ∧ ∃ l ∈M. m = l ◦ a ∧ l |= c (Def. of |=)
⇔ m̄ |= p ∧ ∃ā ∈ A. ∃ l̄ ∈ M3. m̄ = l̄ ◦ ā ∧ l̄ |= 〈p′, c, true〉 (*)
⇔ m̄ |= p ∧ ∃ā ∈ A. ∃ l̄ ∈ M3. m̄ = l̄ ◦ ā ∧ l̄ |= Nf(〈p′, c, true〉) (Ind hyp)
⇔ m̄ |=

∨
ā∈A ∃(ā, Nf(〈p′, c, true〉) (Def. 4)

⇔ m̄ |= Nf(〈p, ∃(a, c), true〉) (Def. of Nf)

The equivalence (*) may be seen as follows: “⇒”: Let (1) and (2) be pullbacks, l ∈
M, m = l ◦ a, and l |= c. Then the decomposition of m induces a decomposition
of the pullbacks (1) and (2) into pullbacks (11), (12) and (21), (22) as follows:
Construct L′ ←↩ K ′ ↪→ D as a pullback of L′ → G ←↩ D (12). Then there is a
unique morphism K → K ′ such that diagram (11) below commutes and K →
K ′ ↪→ D = K ↪→ D. Since M is closed under decompositions, the morphism
K → K ′ is in M. By the pullback-decomposition property, (11) is a pullback.
Construct K ′ ↪→ R′ ←↩ R as a pushout of K ′ ←↩ K ↪→ R (21). Then there is a
unique morphism R′ → H such that (22) commutes and R ↪→ R′ → H = R ↪→
H . By the special pullback-decomposition property, (21) and (22) are pullbacks.
Since M-morphisms are closed under decompositions, the morphism R′ → H is
in M. Finally, let p′ = 〈L′ ←↩ K ′ ↪→ R′〉 and ā and l̄ be the triples of morphisms
in the construction. Then m̄ = l̄◦ ā. Now l |= c implies l̄ |= 〈p′, c, true〉. “⇐”: Let
m̄ |= p, m̄ = l̄ ◦ ā, l̄ |= 〈p′, c, true〉, Then the diagrams (1) and (2) are pullbacks,
m = l ◦ a, where m and l are the projections of m̄ and l̄ to the first component,
and l |= c.

L K R

DG H

m (1) (2)

L K R

L′ K ′ R′

DG H

a

l

(11) (21)

(12) (22)

m

Let pre be a Boolean formula over conditions. By the definition of Nf and
the inductive hypothesis, Nf(〈p,¬c, true〉) = ¬Nf(〈p, c, true〉) ≡ ¬〈p, c, true〉 ≡
〈p,¬c, true〉 and Nf(〈p, c1

∧
∨ c2, true〉)=Nf(〈p, c1, true〉 ∧∨Nf(〈p, c2, true〉) ≡ 〈p, c1,

true〉 ∧∨ 〈p, c2, true〉 ≡ 〈p, c1
∧
∨ c2, true〉. This completes the inductive proof.

Fact 2. The converse of Theorem 1 does not hold, e.g. see the program condition
in Example 4.

Example 4. The property “Every router that were on the priority list has been
repaired” can be expressed by the basic program condition pc with span 〈 ←↩

↪→ 〉, precondition ∃( ! ), and postcondition ¬∃( ). The program
condition can be transformed into a nested program condition Nf(pc), where
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Nf(pc) = ∃(〈 ! ←↩ ↪→ 〉,
¬〈 ! ←↩ ↪→ 〉 ∧
¬〈 ! ←↩ ↪→ 〉)

∧∃(〈 ! ← ! ↪→ ! 〉,
¬〈 ! ←↩ ! ↪→ ! 〉 ∧
¬〈 ! ←↩ ! ↪→ ! 〉).

As illustrated by Example 4, nested program conditions can have a quite verbose
form. Therefore, we introduce a shorter visual notation for program conditions.

Notation (graphical notation for program conditions). In the case of
graphs, there is a nice short notation for program conditions, also used for rep-
resenting rules in [16] and somewhat similar to the X and Y notations of [17].
The basic idea is that a graph span is represented as a single colored graph.
The colored graph of the span 〈L ←↩ K ↪→ R〉 is structurally isomorphic to
the pushout of L ←↩ K ↪→ R. Additionally, elements in the colored graphs are
visually represented with dashed lines (deleted) if they are in L−K, solid lines
(preserved) if in K, and with bold lines (created) if in R−K. Span morphisms
are then visualized as morphisms on colored graphs, yielding a visualization of
a graph program condition that is quite similar to the (standard) graph condi-
tion. A graph span with two deleted, one preserved, and two created elements,
together with the program condition for “Every router that were on the priority
list has been repaired” is shown in Fig. 2 using the visual notation.

〈 ! ← ↪→ 〉

visualization

!

(i)

∀( ! ,¬∃( ! ) ∧ ¬∃( ! ))

∧

∀( ! ,¬∃( ! ) ∧ ¬∃( ! ))

(ii)

Fig. 2. Visual representation of (i) a relative graph and (ii) a graph program condition

4 Program Construction

We now investigate program construction. For a special kind of program condi-
tions, a program can be constructed such that all spans in its semantics satisfy
the program condition (and there exists a span). Based on sequential indepen-
dence of direct derivations for rules with application conditions [5] and termi-
nation of rewrite systems [18], sequential self-independence and termination of
basic program conditions are introduced.

Definition 5 (always applicable, self-independent, terminating). A ba-
sic program condition pc = 〈p, pre, post〉 is always applicable if, for every M-
morphism m: L ↪→ G satisfying pre, there exists a direct derivation G ⇒pc,m,m∗
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H such that m∗ satisfies post. A basic program condition pc is sequentially self-
independent if all derivation sequences G ⇒pc,m1 H1 ⇒pc,m2 M are sequentially
independent and terminating if there is no infinite derivation sequence of the
form G1 ⇒pc G2 ⇒pc G3 . . . .

Example 5. The program condition 〈 ←↩ ∅ ↪→ ∅〉, meaning “Every node shall
be deleted”, is not always applicable; it is applicable if and only if the dangling
condition [8] is satisfied. The program condition 〈

1 2
←↩

1 2
↪→

1 2
〉

〈
is

not sequentially self-independent, but the modified program condition
〈

1 2
←↩

1 2
↪→

1

∗

2
〉 is. The (empty) program condition 〈∅ ←↩ ∅ ↪→ ∅〉 is

always applicable, sequentially self-independent, but not terminating. The pro-
gram condition 〈

1
x

2
←↩

1 2
↪→

1 2
〉 is always applicable, sequentially self-

independent, and terminating: the application condition “There does not exist
an edge” guarantees termination because, for every finite graph with n nodes,
at most 2n−1 proper edges can be inserted.

For basic program conditions, which are always applicable, sequentially self-
independent, and terminating, a satisfying program can be constructed.

Theorem 2 (program construction). For always applicable, sequentially self-
independent, and terminating basic program conditions pc, the program pc ↓
satisfies pc.

Proof. By the Parallelism Theorem for rules with application conditions [5].
Let pc = 〈p, pre, post〉 be always applicable, sequentially self-independent, and
terminating. Let s = 〈G ←↩ D ↪→ H〉 ∈ �pc ↓ � and m: L ↪→ G be an M-
morphism such that m |= pre. By the always applicability and termination,
there is a derivation G ⇒pc,m G1 ⇒pc . . . ⇒pc Gn = H such that there is
no M with 〈H ←↩ E ↪→ M〉 ∈ �pc�. By sequential self-independence and the
Parallelism Theorem, there is a parallel derivation G ⇒ H through the parallel
rule kpc with kp = 〈kL ←↩ kK ↪→ kR〉 where, for k ≥ 0, kA denotes the k-
fold disjoint union of A. Then the diagrams (k1) and (k2) are pushouts. Since
pushouts along M-morphisms are pullbacks, (k1) and (k2) are also pullbacks.

kL kK kR

DG H

(k1) (k2)

L K R

kL kK kR

DG H

(1) (2)

(k1) (k2)

m

By the pullback decomposition property, (1) and (2) are pullbacks and, by the
pullback composition property, the diagrams (1)+(k1) and (2)+(k2) are pull-
backs. Thus, m |= pc, Consequently s |= pc. Therefore, pc↓ |= pc.

Example 6. In Table 2 we show a number of program conditions and their con-
structed programs that follow from Theorem 2.
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Table 2. Program conditions and satisfying programs

program condition program

MakeLoopFree = 〈
1

←↩
1
↪→

1
〉 MakeLoopFree↓

DeleteEdge = 〈
1 2

←↩
1 2

↪→
1 2

〉 DeleteEdge↓
Complete = 〈

1
x

2
←↩

1 2
↪→

1 2
〉 Complete↓

Converse
∗ = 〈

1 2
←↩

1 2
↪→

1

∗

2
〉 Converse

∗ ↓
Subdivide∗ = 〈

1 2
←↩

1 2
↪→

1

∗ ∗

2
〉 Subdivide∗ ↓

Relabel = 〈
1

∗

2
←↩

1 2
↪→

1 2
〉 Relabel↓

Given satisfying program conditions for programs, a satisfying program condi-
tion for a set of programs can be constructed considering the disjunction of the
original program conditions.

Fact 3. For programs P1, P2 and program conditions pc1, pc2

Pi |= pci (i = 1, 2) implies {P1, P2} |= pc1 ∨ pc2.

Proof. Let Pi |= pci (i = 1, 2). By the semantics of programs, the assumptions,
and the definition of |=, s ∈ �{P1, P2}� = �P1�∪�P2� ⇔ s ∈ �P1� ∨ s ∈ �P2� ⇔
s |= pc1 ∨ s |= pc2 ⇔ s |= pc1 ∨ pc2. Thus, for all s ∈ �{P1, P2}�, s |= pc1 ∨ pc2,
i.e. {P1, P2} |= pc1 ∨ pc2.

Given satisfying basic program conditions for programs, the concurrent program
condition is a satisfying program condition for the sequence of programs.

Theorem 3 (composition of basic program conditions). For programs
P1, P2 and basic program conditions pc1, pc2 with dependence relation d for pc1

and pc2,
Pi |= pci (i = 1, 2) implies P1; P2 |= pc1 ∗d pc2,

where pc1 ∗d pc2 is the d-concurrent program condition of pc1 and pc2 [5].

Proof. By the Concurrency Theorem for rules with application conditions [5]. Let
pci = 〈pi, prei, posti〉 with pi = 〈Li ←↩ Ki ↪→ Ri〉 (i = 1, 2) be basic program
conditions and pc1 ∗d pc2 = 〈p, pre, post〉 with p = 〈L∗ ←↩ K∗ ↪→ R∗〉, pre =
Shift(k1, pre1) ∧ L(pc∗1, Shift(k2, pre2)), and post = R(pc∗2, Shift(k∗

1 , post1)) ∧
Shift(k∗

2 , post1) the d-concurrent program condition of pc1 and pc2, where Shift
and L, and R are the shiftings of application conditions over morphisms and
rules, from the right-hand side to the left-hand side, and from left-hand side
to right-hand side, respectively [4]. Let Pi |= pci (i = 1, 2). We will show that
P1; P2 |= pc1 ∗d pc2. Let s = 〈G ←↩ E ↪→ M〉 ∈ �P1; P2� be an arbitrary span.
By Definition 3, there are spans 〈G ←↩ E1 ↪→ H〉 ∈ �P1� and 〈H ←↩ E2 ↪→ M〉 ∈
�P2� such that E1 ←↩ E ↪→ E2 is the pullback of E1 ↪→ H ←↩ E2.

Let l: L∗ ↪→ G be an M-morphism satisfying pre. By the properties of Shift,
the composed M-morphism m1 = l ◦ k1 satisfies pre1. By assumption, we know
that P1 |= pc1, i.e., there are M-morphisms d1: K1 → E1 and m∗

1: R1 → H such
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that the diagrams (1), (2) are pullbacks and m∗
1 satisfies post1. By the pull-

back decomposition property, the pullbacks (1) and (2) can be decomposed into
pullbacks (11), (12), (21), (22). Now we have an M-morphism l′: H∗ → H such
that m∗

1 = l′ ◦ k∗
1 . By the properties of Shift and L, the composed M-morphism

m2 = l′ ◦ k2 satisfies pre2. By P2 |= pc2, there are M-morphisms d2: K2 → E2

and m∗
2: R2 → M such that the diagrams (3), (4) are pullbacks and m∗

2 satisfies
post2. By the pullback decomposition property, there is a decomposition of the
pullbacks (3) and (4) into pullbacks (31), (32), (41), (42). Now we have an M-
morphism l∗: H∗ → M such that m∗

2 = l∗ ◦ k∗
2 . Since the class of M-morphisms

is closed under decomposition, the morphism l∗ is in M . Constructing E as the
pullback object of E1 ↪→ H ←↩ E2, be the universal property of pushouts, there
is a morphism K → E such that the diagrams (22’) and (32’) commute. By
the (cube) pullback decomposition property, (22’) and (32’) are pullbacks. By
the composition property of pullbacks, the diagrams (22’)+(12) and (32’)+(42)
are pullbacks. Since M-morphisms are closed under pullbacks, the morphisms
K → E is in M. By the properties of Shift and R, the M-morphism l∗: R∗ → M
satisfies post. As a consequence, l |= pc1 ∗d pc2. For every span s ∈ �P1; P2�,
s |= pc1 ∗d pc2. Consequently, P1; P2 |= pc1 ∗d pc2.

H∗D1L∗

L1 K1 R1

D2 R∗

R2K2L2

S

E1 E2G MH

K

E

k1 k∗

1 k2 k∗

2

(0)

l
l′

l∗

m1

(11) (21) (31) (41)

(12) (22) (32) (42)

(22’) (32’)

(52)

Example 7. The program condition Converse = 〈
1 2

←↩
1 2

↪→
1 2

〉
〈

is al-
ways applicable, but not sequentially self-independent; the program Converse↓
is non-terminating. For avoiding sequentially self-dependence, the program con-
dition could be modified into a sequentially self-independent program condition
Converse′ = 〈

1 2
←↩

1 2
↪→

1

∗

2
〉. For correcting the modification, a sequen-

tially self-independent program condition Relabel = 〈
1

∗

2
←↩

1 2
↪→

1 2
〉

may be considered. By Theorem 3, the program Converse′ ↓ ; Relabel ↓ sat-
isfies the program condition Converse′ ∗d Relabel = Converse (where d is the
“complete” dependence relation 〈

1

∗

2
←↩

1

∗

2
↪→

1

∗

2
〉).

Parallel self-independence and parallel independence is defined analogously to
sequential self-independence and sequential independence of program condi-
tions, see [5] for details. E.g., the program condition Converse is parallelly
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self-independent; a program Converse ⇓ based on a parallel composition of
programs would satisfy Converse. Generally, it could be important to introduce
a parallel composition of programs. and to show how a parallel composition
can be expressed by the sequential composition. In this case, one could use the
parallel composition as an abbreviation of a more complex sequential operation.

5 Conclusion

In this paper, we introduced the syntax and semantics of high-level program
conditions. The syntax of program conditions is well-known: Basic program con-
ditions syntactically may be seen as ordinary rules with left and right application
conditions; nested program conditions may be seen as nested rules in the sense
of Rensink [15] but with a categorical definition. Their semantic differences were
discussed.

– Normal form. We showed a normal form result, relating basic program
conditions with nested program conditions.

– Program construction. For special types of program conditions, we could
create satisfying programs.

– Sequential composition. For basic program conditions, a composition is
defined by constructing the concurrent program condition according to a
dependence relation.

Further topics could be the following.

– Expressiveness of program conditions. As known by [4], graph con-
ditions are expressively equivalent to first-order formulas on graphs. How
powerful are graph program conditions?

– Concurrency Theorem for nested rules. It would be important to gen-
eralize the Concurrency Theorem to nested rules such that Theorem 3 can
be formulated for program conditions instead of basic program conditions.

– Comparison with first-order process logic. In [19], the authors extend
dynamic logic with the additional trace modalities throughout and at least
once, which refer to all the states a program reaches and allow one to specify
and verify invariants and safety constraints that have to be valid throughout
the execution of a program.
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A Shifting of Conditions

In the following, we review some improtant statements on the shifting of condi-
tions over morphisms and rules investigated in detail in [4].

Fact 4 (shifting of conditions over morphisms [4]). There is a transfor-
mation Shift such that, for all conditions c over P , all morphisms m: P → P ′,
and all n: P ′ ↪→ H in M, n |= Shift(m, c) ⇔ n ◦m |= c.

Right application conditions of a rule can be transformed into equivalent left
application conditions.

Fact 5 (shifting of application conditions over rules [4]). There are
transformations L and R such that, for every right application condition acR

and every left application condition acL of a rule ρ and every direct derivation
G ⇒ρ,m,m∗ H , m |= L(ρ, acR) ⇔ m∗ |= acR and m |= acL ⇔ m∗ |= R(ρ, acL).

B Concurrent Rules

In the following we present the construction of a concurrent rule for rules with
application conditions. It generalizes the well-known construction of concurrent
rules for rules without application conditions [10] and makes use of shifting of
application conditions over morphisms and rules (see Facts 4 and 5).

Definition 6 (d-concurrent rule). Let ρi = 〈pi, acLi, acRi〉 with pi = 〈Li ←↩
Ki ↪→ Ri〉 for i = 1, 2 be rules. A pair d = 〈S ←↩ R1 ↪→ L2〉 is a dependence
relation for rules ρ1 and ρ2, if (0) is the pushout of R2 ←↩ S ↪→ L2 and the pushout
complements (1) and (2) of K1 ↪→ R1 ↪→ H∗ and K2 ↪→ L2 ↪→ H∗ exist. Given
a dependence relation d for ρ1 and ρ2, the d-concurrent rule of ρ1 and ρ2 is the
rule ρ1 ∗d ρ2 = 〈p, acL, acR〉 with p = 〈L∗ ←↩ K∗ ↪→ R∗〉, where (3) and (4) are
pushouts and (5) is a pullback, acL = Shift(k1, acL1) ∧ L(p∗1, Shift(k2, acL2)), and
acR = R(p∗2, Shift(k∗

1 , acR1)) ∧ Shift(k∗
2 , acR2), where p∗1 = 〈L∗ ←↩ D1 ↪→ H∗〉

and p∗2 = 〈H∗ ←↩ D2 ↪→ R∗〉 are the rules derived by p1 and k1 and p2 and k2,
respectively.

H∗D1L∗

L1 K1 R1

D2 R∗

R2K2L2

K∗

S

k1 k∗

1 k2 k∗

2

(0)

(3) (1) (2) (4)

(5)

Fig. 3. Construction of a d-concurrent rule ρ1 ∗d ρ2
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Abstract. Parallel and sequential independence are central concepts
in the concurrency theory of the double pushout (dpo) approach to
graph rewriting. However, so far those same notions were missing for
dpo rewriting extended with borrowed contexts (dpobc), a formalism
used for equipping dpo derivations with labels and introduced for mod-
eling open systems that interact with the environment.

In this work we propose the definition of parallel and sequential in-
dependence for dpobc rewriting, and we prove that these novel notions
allow generalizing the Church-Rosser and parallelism theorems holding
for dpo rewriting. Most importantly, we show that the dpobc version
of these theorems still guarantees the local confluence and the parallel
execution of pairs of independent dpobc derivations.

1 Introduction

The dynamics of a computational device is often defined by a reduction system
(rs): a set, representing the possible states of the device; and a relation among
these states, representing the possible evolutions of the device. Most often, the
states have a topological structure, and the relation is built from a finite set
of reductions, in accordance to such a state structure. This construction could
e.g. be performed by a matching mechanism, identifying which sub-component
of a state is actually evolving, as well as denoting the successor state. This is
the case for term and graph rewriting systems, where states are trees (graphs,
respectively), and the reduction is built according to the dpo approach.

While rss may convey the semantics with few rules, their drawback is poor
compositionality: performing a computing step implicitly calls for a global choice
of the subsystem where the reduction has to take place, making it difficult to
model the dynamic behaviour of arbitrary standalone components. A solution
is to express the behaviour of a computational device by a labelled transition
system (lts). Should the label associated to a component evolution faithfully ex-
press how that component might interact with the whole of the system, it would
be possible to analyse on its own the behaviour of a single component, disregard-
ing the larger systems it might occur in. Thus, a “well-behaved” lts represents a
fundamental step towards a compositional semantics of a computational device.
� Research partially supported by the EU FP6-IST IP 16004 SEnSOria.
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Classically, graph transformation fits in the “global view” of the matching /
“local application” of rules dichotomy that we mentioned before. The solution
proposed by Ehrig and König [1] for dpo rewriting takes into account graph with
interfaces for system representation. Now, a state is a morphism J → G, where
J represents the part of G that may interact with the environment. A reduction
J → G ⇒ K → H is built according to the dpo approach, but it is labelled
with a borrowed context J → F ← K, intuitively representing the amount of
information required from the environment, before a reduction may take place.

Considered merely as a mechanism for label synthesis, the extension of dpo

with borrowed contexts (dpobc) is an instance of the so-called relative pushouts
approach [2] for constructing an lts from an rs, guaranteeing that the associ-
ated bisimilarity is automatically a congruence. This shows that the formalism
has a sound theoretical basis, and further venues of work include deriving suit-
able inference rules (e.g. in the so-called sos style) for building synthesized ltss,
as attempted in [3]. However, graphs with interfaces actually represent on their
own an interesting formalism for modeling open systems, already used e.g for
the graphical encoding of process calculi [4] or of spatial logics [5]. So, the con-
struction via dpobc of an lts that has graphs with interfaces as both states and
labels should just represent the starting point for further investigations. First
of all, a thorough analysis of the labelling should be carried out, in order to
understand which systems are bisimilar. So far, we are only aware of the cor-
respondence with standard interleaving semantics that has been proved for the
lts obtained by the graphical encoding of ccs in [6]. Moreover, since dpobc

may represent a foundational mechanism for rewriting (when considering graphs
with interfaces as main actors in system representation), it seems natural to ask
under which conditions we may talk about concurrency for dpobc derivations.
As a start, suitable notions of parallel and sequential independence should be
provided, as well as proving these definitions adequate, by establishing Church-
Rosser and parallelism properties. As a further sanity check, it should be pivotal
to ensure that in a lts the labels of the square of reductions induced by two
parallel independent derivations are somehow well-behaved.

The paper has the following structure. Section 2 recalls the basic definitions of
dpobc rewriting and illustrates our running example modeling a simple protocol
for message broadcasting. Section 3 discusses the nature of labels on those ltss
induced by dpobc, arguing, also on the basis of our example, which relationships
should hold between the labels of a square of concurrent derivations. Section 4
introduces the notion of parallel and sequential independence for dpobc rewrit-
ing, and it states the main results of our paper, i.e., the theorem concerning
the (local) Church-Rosser and parallelism properties. Moreover, it shows that
the labels of a square of derivations, as induced by the Church-Rosser prop-
erty, enjoy what we call the strict diamond property, as introduced in Section 3.
Section 5 further discusses about labels of parallel derivations, pointing out why
they cannot be decomposed. Finally, Section 6 draws some conclusions, and it
outlines venues and hypotheses for further work.
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2 Background

In this section we recall the basics of the double pushout (dpo) approach to
rewriting [7,8]. In particular, we consider its variant where rules and matches
are monomorphisms; and, most importantly, we introduce it in full generality,
assuming an arbitrary adhesive category [9] for system representation (yet aiming
at a presentation suitable for those familiar with standard graph transformation).

Moreover, we also present the main concepts underlying dpo rewriting with
borrowed contexts (dpobc), as proposed in [1]. In the following, we fix a chosen
adhesive category C, where rules and matches live. For all notions concerning
adhesive categories we refer the reader to [9].

2.1 Double Pushout Rewriting with Monic Matches

The idea of dpo rewriting dates back to the early Seventies, and has been shown
to be a viable rewriting mechanism in any adhesive category [9]. In the paper we
consider its restriction to monic matches, as presented in [8], since the original
definition of dpo rewriting with borrowed contexts is based on this variant.

Definition 1 (Productions and rewriting). A dpo production p is a span of
monomorphisms p = L �l� K �r� R, and a (monic) match of p is a monomor-
phisms m : L �m� G.

A dpo direct derivation diagram or derivation is a di-
agram consisting of two pushout squares as shown to the
right. It witnesses that p rewrites G into H at match m,
and we write G �=〈p,m〉⇒H.

L
��

m

��

I��l��

��

�� r �� R

��
G C

PO�

�� �� H

�PO

Note that, by virtue of the properties holding in adhesive categories, all arrows
in the above right diagram are monic. Thus, in the remainder of the paper all
mentioned arrows are assumed to be monic, unless stated otherwise.

Definition 2 (Parallel and sequential independence). Let us consider two
productions pi = Li �li− Ii −ri� Ri for i ∈ {1, 2}, and the two derivations
H1 �=〈p1,m1〉⇒ G �=〈p2,m2〉⇒H2 (G �=〈p1,m1〉⇒H1 �=〈p2,m′2〉⇒H) shown below.

R1
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I1

��

�� L1
��

m1

&&�
��
��
L2

��

m2

''��
��
�

I2

s

((��

�� R2

��
H1 C1

�� �� G

t

)) C2
�� �� H2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
L1

m1

��

I1

��

�� R1
��

&&�
��
��
L2

��

m′2
''��
��
�

I2

s′

����

�� R2

��
G C1

�� �� H1

t′

)) C1,2�� �� H

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Then the two derivations are parallel independent (sequential independent)

if there exist morphisms s and t (s′ and t′) such that they commute in the com-
posed diagrams, as shown above.
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In the case of parallel independence, when thinking of the objects I1, L1, L2, and
I2 as subobjects1 of G, then the two derivations are independent if and only if
both inclusions L1 ∩ L2 ⊆ I1 and L1 ∩ L2 ⊆ I2 hold, i.e. if L1 ∩ L2 = I1 ∩ I2;
similarly for sequential independence: the illustrated derivations are independent
if and only if R1 ∩ L2 = I1 ∩ I2.

As formulated precisely in Theorem 4, given two parallel independent deriva-
tions, it is possible to execute them in parallel, using a corresponding parallel pro-
duction. As the latter concept is central to this paper, we define it in full detail. In
its definition, A1+X A2 denotes pushout objects, e.g. A1−a′1�(A1+X A2)�a′2−A2

would be the pushout of some span A1 �a1− X −a2� A2. Now, for any pair of
arrows g1 : A1 → B and g2 : A2 → B, [g1, g2]X : A1 +X A2 → B denotes the
uniquely induced arrow. Further, for any span B1�f1−A1�a1−X−a2�A2−f2�B2

with pushout B1−b′1� (B1 +X B2)�b′2−B2, f1 +X f2 : (A1 +X A2)→ (B1 +X B2)
similarly denotes the uniquely induced arrow.

Definition 3 (Parallel productions). Let p1 = L1 �l1− I1 −r1� R1 and
p2 = L2 �l2− I2 −r2� R2 be productions, and let I1 �i1− X −i2� I2 be a span
of morphisms. The parallel production of p1 and p2 over I1 ← X → I2 is

p1 +X p2 = (L1 +X L2) �l1+X l2− (I1 +X I2) −r1+Xr2� (R1 +X R2)
= LX �lX− IX −rX� RX

=

L2

**

I2

++

l2 ��r2��R2

,,��������

X

%%��
���

���
i2 ��--���

���
��

..��������
i1
��,,��������

RXIX
rX ������lX��� � � �LX

L1

��
I1

$$

l1 ��r1��R1

--���
���

��

Theorem 4 (Church-Rosser vs. parallelism). For any pair of productions
p1 = L1 �l1− I1 −r1� R1 and p2 = L2 �l2− I2 −r2� R2, the following statements
are equivalent for certain m′

1 : L1 → H2 and m′
2 : L2 → H1.

1. There are parallel independent derivations H1 �=〈p1,m1〉⇒ G �=〈p2,m2〉⇒H2.
2. There are sequential independent derivations G �=〈p1,m1〉⇒H1 �=〈p2,m′2〉⇒H.
3. There are sequential independent derivations G �=〈p2,m2〉⇒H2 �=〈p1,m′1〉⇒H.
4. There is a derivation G �=〈(p1+Xp2),[m1,m2]X〉⇒ H with a parallel production

p1+Xp2 over the pullback I1 ← X → I2 of the cospan I1−m1◦l1�G�m2◦l2−I2.

Example 5. Consider the category Graph ↓T of typed graphs over
the graph T shown to the right. Circled nodes �������	
������ represent users
that want to send messages B via a network where a network
consists of nodes �������	 and two different kinds of edges: a double
arrow ⇒ represents a channel of unbounded capacity, while a
single arrow � models a channel of capacity one.

B
//�

��

�0�������	
������
01

12 �������	23 3�

1 A suboject L of G is a monomorphism from L to G, and the intersection of two
subobjets is achieved by taking pullbacks.
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An edge from a message (user) to a node represent the fact that the mes-
sage (user) is located at that node. The dotted arrow from a message to a
node means that the message is addressed to that node, while an edge from
a user to a message represents the fact that the user is the author of that
message.

snd uchn chn
�������	
������ ��
��
�������	

B �� �������	 ←
�������	
������ �� �������	
�������	 →

�������	
������ �� �������	
B

!"��� �� �������	
�������	 �� �������	
B
44�� ←

�������	 �� �������	
B

→
�������	 �� �������	
B

55��
�������	 �� �������	
B
44�� ←

�������	 �������	
B

→
�������	 �� �������	
B

55��

Fig. 1. Rewriting Rules

Consider the rule snd of the rewriting system that is shown in Fig. 1: if a
user would like to deliver a message to a certain destination (singled out by
the tip of the dotted arrow) while being located at another node, then the user
can send the message by posting it via the network at the node he or she is
located at. Then the message is channeled through the network, as modeled by
the rules chn and uchn . When both edges of a message point to the same node,
then the message has arrived at the destination.

R1 I1 L1 L2 I2 R2

B
��

�������	 �� �������	 B�������	 �� �������	 B
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B

66��
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B
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B
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B
88��

�� �������	
�������	 ����

99��
�������	
::

B
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B �������	
�������	 ��

99����� �������	
::

B
��

B
��

�������	
�������	 ��

99����� �������	
::

B
��

B
��

�������	
�������	 ��

99����� �������	
::

B

B
��

�������	
�������	 ��

99����� �������	
::

B
99����

H1 C1 G C2 H2

As an example of parallel independent derivations, consider the graph G
depicted above: it represents a small network with three nodes, two unbounded
channels, one bounded channel and two messages on the same node. Both
derivations use the production uchn, but in the first instance, on the left, the
matching morphism m1 : L1 → G maps the message of L1 into the upper one of
G, while in the second instance, on the right, m2 : L2 → G maps the message
into the lower one. Thus the first derivation moves the upper message, while
the second moves the lower one. To see that the two derivations are parallel
independent, consider the morphism s : L1 → C2 that maps the message of L1

into the upper message of C2, and the morphism t : L2 → C1 that maps the
message of L2 into the lower message of C1.
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We can also build a parallel rule by tak-
ing as common sub-object of I1 and I2 the
graph X = �������	 �� �������	 . The resulting produc-
tion, namely uchn +X uchn, is shown in the
upper row to the right: in one single step,
two messages can cross a channel of unbound
capacity. The graph G can also be rewritten
using this rule, which moves the two mes-
sages simultaneously.

L1 +X L2 I1 +X I2 R1 +X R2

B;;���������	 �� �������	
B

**��
B�������	 �� �������	
B

B <<���������	 �� �������	
B

==��

B
��

�������	
�������	 ��

99����� �������	
::

B
��

B �������	
�������	 ��

99����� �������	
::

B

B
88��

��
�������	

�������	 ����
99��
�������	
::

B
99����

G C H

A channel of capacity one cannot transmit two messages in one step, though.

2.2 Borrowed Contexts

The dpo rewriting formalism models the dynamics of a (closed) system in iso-
lation, i.e., without considering its interactions with the environment. As intro-
duced in [1], dpobc is an extension of dpo such that, instead of manipulating
single objects G, arrows J → G are considered, where the domain J represents
the interface of the (open) system G.

Whereas in dpo derivations the left-hand side L of a production must occur
completely in G, in a dpobc derivation it is possible that only part of the object
L might occur in G; the missing part of the left hand side can be supplied by the
environment at J , thus completing the partial match of L to a total one. That
part of the left hand side of the rule, that was provided by the environment to
allow a total match of L, is called the borrowed context.

Definition 6 (DPOBC derivations, transformations and transitions)
Given a production p = L �l− I −r� R, a dpo di-
rect derivation diagram with borrowed context, in
short bc derivation, is a diagram of as shown to the
right where the marked squares are either pushouts
(PO) or pullbacks (PB). If there exists a diagram of
this form, then p transforms J → G via the partial
match G �a− D −b� L to K → H, written

D
a ��

b �� L

��

I�� ��

��

R

��
G �� G+

�PO

C

PO�

�� �� H

�PO

J

��

�� F

�PO

��

K

�PB

��

��

>>

J → G �=〈p,a-D-b〉⇒K → H.

If instead we want to focus on the interaction with the environment we say that
J → G makes a transition with borrowed context J → F ← K and becomes
K → H, written

J → G
J→F←K−−−−−−−→ K → H.

The roles of the squares in the diagram above can be thought of as follows:
the upper left-hand pushout square D

G
↓�

←
←↓ L

G+ glues the left-hand side L and the
object G together using the partial match G �a− D −b� L, which maps (part
of) the left-hand side L onto G. The resulting pushout object G+ allows for
a total match of L and can be rewritten as in the standard dpo approach,
which produces the two pushout squares L

G+
↓�
←
←↓ I

C and I
C

↓�
←
←↓ R

H in the upper
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D1 �������	
�������	
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Fig. 2. A borrowed context derivation

row. The left-most bottom pushout G
J

↑�←←↑ G+
F glues the additional resources of

the borrowed context J → F , which are used to obtain the total match L into
G+, to the object G using the interface J → G. Finally, the interface for the
resulting object H and the second part of the label J → F ← K is obtained by
intersecting the borrowed context F and the object C, i.e. by taking the pullback
G+
F

↑�
→
→↑ C

K
. At the end, the new interface K includes what is preserved of the old

interface and borrowed resources; finally, in the resulting K → H the object H
additionaly contains everything produced by the “internal” dpo derivation.

Example 7. An example of a dpobc derivation using the production snd can
be found in Fig. 2. Here and in the remainder of the paper we do not explicitly
describe the morphisms between graphs: we always assume that morphisms pre-
serve the position of nodes and edges in the graphs. Moreover, we often denote
an object in a specific derivation with the same (possibly indexed) identifier used
in Def. 6. For example, the morphism J → G in Fig. 2 maps the leftmost and
the topmost node of J into the leftmost and the topmost node of G, respectively.

The graph G represents a small network. Those nodes of this net occurring
in the interface (the leftmost and the topmost one) are called open, since they
are open to access from the environment, while each node that does not belong
to the interface (e.g., the bottom right one in G) is called closed, as it has not
been disclosed to the environment (yet).

Observe that the graph G does not contain any messages Band hence can-
not perform any dpo derivation on its own. However, if there are users in the
environment that want to send messages between the open nodes, messages are
posted at the open nodes. This is what happens in the derivation of Fig. 2: a
user wants to deliver one message to the upper open node and hence posts it at
the lower open node. Note that (ordinary) users can only post at open nodes,
which corresponds to the fact that every (ordinary) Internet user can only access
the Internet via a provider.

In Section 4 we show how sequential and parallel independence can be lifted to
the realm of dpobc rewriting. In the next section we first present some funda-
mental observations about the nature of labels obtained via borrowed contexts.
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3 A Discussion on Concurrency and Labels

In the standard dpo approach, two derivations are parallel independent if each
one does not consume the resources needed by the other one. In the case of
dpobc derivations, due to the possibility to borrow resources from the environ-
ment, the situation is more complex. The notion of independence that we are
looking for should guarantee that a pair of branching transitions may be exe-
cuted simultaneously and can be joined to complete a Church-Rosser square,
and also that the labels of the derivations are “well-related”, which means that
no superfluous interaction with the environment takes place.

In transition systems with independence [10], a formalism based
on ltss equipped with an independence relation among transitions,
the labels represent events: in parallel and sequential independent
transitions, the labels are related as shown to the right.

Pa
�$ ����

b
?	$

$$$

P1

b
@�

%%%%
P2

a�@ ����
Q

In such a Church-Rosser square, the two transitions P ⇒ P1 and P2 ⇒ Q are
the same event, namely a, and similarly P ⇒ P2 and P1 ⇒ Q are the event b. To
get an analogy to dpobc, we must think of events as productions. However this
analogy is very rough, as the bc labels really are contexts, and, in general, the
productions themselves are not part of the labels any more. Hence we cannot
expect that the labels on parallel sides of the Church-Rosser square are actually
identical. Indeed, the source and target state of a dpobc derivation usually have
different interfaces, and hence all labels of transitions originating from the former
are different from those departing from the latter.

However, recall that (borrowed) contexts can be composed via pushouts (since
they are arrows of a bicategory of cospans [11]). Hence one would expect that the
composition of the two composable contexts on the left and on the right yields
the same result, namely the diagonal: in other terms, a dpobc Church-Rosser
square should satisfy what we call the weak diamond property.

Definition 8 (Weak diamond property)
Given four transitions as shown in the commu-
tative diagram to the right, then they satisfy the
weak diamond property if there is a derivation

J → G
J→F←K−−−−−−→ K → H

using a parallel rule and additionally the leftmost
and rightmost square are pushouts.
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The latter requirement means that the composition of the labels of the two tran-
sitions on the left and the two transitions on the right are equal to J → F ← K,
which is the label of the parallel derivation along the diagonal of the square.

However, the weak diamond property does not ensure that the labels of the
joining transitions and of the parallel one do not borrow “extra”-resources.
As an example consider the pair of branching derivations in Fig. 3, witnessing
transitions J → G

J→F1←K1−−−−−−−→ K1 → H1 and J → G
J→F2←K2−−−−−−−→ K2 → H2,

where the former relays the upper message and the latter the lower one.
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Fig. 3. Two non-parallel independent derivations

Note that both transitions use the
same channel of capacity one, and
this is also the reason why they turn
out not to be parallel independent. In
spite of this conflict we can construct
the parallel derivation shown to the
right, which borrows an extra chan-
nel from the environment. As shown
in Fig. 4, the two derivations of Fig. 3
can be completed to a square satisfy-
ing the weak diamond property.
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Fig. 4. The joining derivations of the weak diamond

Note that the label K2 → F2,1 ← K in Fig. 4 is “bigger” than the correspond-
ing J → F1 ← K1 in Fig. 3 (and similarly for the other opposite labels of the
square): the former consumes more environmental resources than the latter.

In order to guarantee that the joining derivations, as well as the parallel one,
do not consume more resources than the two branching derivations, we have to
require the following conditions.
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Definition 9 (Strong diamond property). The transitions in Def. 8 satisfy
the strong diamond property if, additionally, the label F1 → F ← F2 consists of
a pair of jointly epic morphisms.

Intuitively this means that all the resources that are borrowed by the parallel
transition J → G

J→F←K−−−−−−→ K → H have already been borrowed by one of the
branching transitions. Since the composition of the contexts on the left (right)
derivations must be equal to the parallel one, the joining derivations do not
consume more than the branching ones.

However, also the strong diamond property is in some sense too weak. Indeed,
it could be the case that the parallel derivation borrows less resources than
the branching ones. In order to guarantee that the parallel transition consumes
exactly the same resources of its two components, we have to require that the
label F of the parallel derivation is the pushout of the two branching ones along
the common interface, i.e., F = F1 +J F2.

Definition 10 (Strict diamond property). The transitions in Def. 8 satisfy
the strict diamond property if, additionally, the upmost square of the diamond
is a pushout.

Note that the strict diamond property implies the strong one.

4 Parallel and Sequential Independence

In this section we introduce parallel and sequential independence for dpobc

rewriting, and we prove that these notions guarantee the satisfaction of the
Church-Rosser property and the existence of a parallel transformation respecting
the strict diamond property. In the next section we show that the vicevers is not
always true, that is, a parallel transformation is not always decomposable into
derivations satisfying the strict diamond property.

Definition 11 (Parallel independent derivations). Let J → G be an ob-
ject with interface, and moreover let J → G �=〈p1,a1-D1-b1〉⇒ K1 → H1 and
J → G �=〈p2,a2-D2-b2〉⇒ K2 → H2 be two dpobc derivations. These are par-
allel independent if for every pair of witnessing derivation diagrams as shown
below there exist morphisms i1,2 : D1 → C2 and i2,1 : D2 → C1 which satisfy the
equations c1 ◦ i2,1 = g1 ◦ a2 and c2 ◦ i1,2 = g2 ◦ a1.
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Intuitively, the existence of i1,2 : D1 → C2 ensures that D1 (the part of G
that is needed to perform the first derivation) is left untouched by the second
derivation. Thm. 16 shows that this condition is sufficient to guarantee the strict
diamond property, but here we want to point out that it is also necessary for
the strong diamond property. Indeed, if the first derivation would consume part
of what is consumed by the second, then the parallel production could not be
applied without borrowing more resources from the environment.

The above definition specializes to the standard dpo notion of parallel inde-
pendence, since then b1 and b2 (and thus g1 and g2) would be identities.

Example 12. Consider the derivation in Fig.2. It is parallel independent with
itself. Given another one copy of the derivation where all the graphs are labeled
with D2, L2, I2 . . . one can easily construct the morphism i2,1 : D2 → C1 map-
ping the leftmost and the topmost node of D2 (recall that D2 is the same of
D1) onto the leftmost and the topmost node of C1, respectively. Analogously for
i1,2 : D1 → C2. Intuitively, these derivations are parallel independent because
they just add some structure to the nets, i.e., two users from the environment
put two messages in the same node, and clearly this could happen concurrently.
The derivations in Fig. 3 instead are not parallel independent, since the channel
in D1 does not occur in C2.

Definition 13 (Sequential independent derivations). Let J → G be an
object with interface, and moreover let J → G �=〈p1,a1-D1-b1〉⇒ K1 → H1 and
K1 → H1 �=〈p2,a2-D2-b2〉⇒ K → H be two dpobc derivations. These are se-
quential independent if for any witnessing pair of derivation diagrams as shown
below, there exist morphisms u : D2 → C1, v : D2 → G and w : R1 → C1,2 which
satisfy the equations c1 ◦ u = g1 ◦ v, c2 ◦ w = g2 ◦ o1 and a2 = x ◦ u.
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Intuitively, the existence of v requires that what is needed by the second deriva-
tion (i.e., D2) occurs in G and thus it is not added by the borrowed context. The
existence of u requires that D2 is not produced by the first derivation, while the
existence of w guarantees that the second rule does not consume anything that
the first one has produced.

Note that the definition above subsumes the notion of sequential independence
in dpo rewriting, since for dpo derivations the object G+

1 coincides with G, and
thus the the existence of u implies the existence of v.
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Fig. 5. A derivation that is sequential independent with that of Fig. 2

Example 14. The dpobc derivations shown in Fig. 2 and Fig. 5 are sequential
independent. One can safely take u, v, w as those morphisms preserving the posi-
tion of nodes and edges into the respective graphs. Intuitively, the first derivation
takes from the environment a user sending a message, and the second deriva-
tion takes another user sending another message. Clearly both derivations are
sequential independent, and we can switch the order in which users are added
(this is formally stated in Thm. 15).

Now, we can state our main result.

Theorem 15 (Church-Rosser and parallelism for Borrowed Contexts)
For any pair of productions p1 = L1�l1−I1−r1�R1 and p2 = L2�l2−I2−r2�R2,
the following are equivalent for certain a′

1 : D1 → H2 and a′
2 : D2 → H1.

1. There are parallel independent derivations

K1 → H1 �=〈p1,b1-D1-a1〉⇒ J → G and J → G �=〈p2,a2-D2-b2〉⇒K2 → H2.

2. There are sequential independent derivations

J → G �=〈p1,a1-D1-b1〉⇒K1 → H1 and K1 → H1 �=〈p2,a′2-D2-b2〉⇒K → H.

3. There are sequential independent derivations

J → G �=〈p2,a2-D2-b2〉⇒K2 → H2 and K2 → H2 �=〈p1,a′1-D1-b1〉⇒K → H.

Moreover, 1 implies that for X = D1 ∩D2,

4. there is a parallel derivation

J → G �=〈p1+Xp2,[a1,a2]X -(D1+XD2)-b1+Xb2〉⇒K → H.

The main difference with respect to parallelism for dpo is that the fourth state-
ment does not imply the others, as we discuss in the next section. Now, we want
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Fig. 6. Parallel derivation: two users put two messages in the same node

to point out that the opposite derivations in the Church-Rosser square employ
exactly the same b1 : D1 → L1 and b2 : D2 → L2. Intuitively this means that the
same resources of the system are used and thus the same are borrowed. This is
analogous to ltss with independence (discussed in Section 3), where opposite
transitions in a concurrent diamond are labeled with the same event.

Theorem 16 (Church-Rosser and parallelism on labels). The labels on
the derivations described in the first three items of Thm. 15 form a diagram
as the one shown in Def. 8 where the leftmost, the rightmost and the topmost
squares are pushouts and the lowest is a pullback.

Therefore our construction respects the strict diamond property. Moreover, since
the lowest square of the diamond turns out to be a pullback, the diamond is a
grpo in the bicategory of cospans. Indeed, in [12] it is shown that every strong
diamond where the lowest square is a pullback is a grpo.

Example 17. In Ex. 12 we have shown that the derivation in Fig. 2 is parallel
independent with itself. The joining derivations closing the Church-Rosser square
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Fig. 7. A strict diamond
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are two copies of the derivation shown in Fig. 5 (that is sequential independent
with the one in Fig. 2), while the corresponding parallel derivation is shown in
Fig. 6. This employs the parallel rule snd +X snd where X is the intersection
of D1 and D2 over G, i.e., X = �������	 �������	 (recall that D2 is equal to D1). This rule
essentially states that two users can leave two messages at the same node in
one single step. Thus the derivation borrows from the environment two users
with two messages. These are exactly the same resources that are borrowed by
performing sequentially first the derivation in Fig. 2 and then the one in Fig. 5,
i.e., labels respect the strict diamond property as shown in Fig. 7.

5 From Parallel to Parallel Independent Derivations

The item 4 of Thm. 15 states that for any pair of parallel independent derivations
there exists a parallel derivation whose labels enjoy the strict diamond property.
Unfortunately, the converse does not hold: there exist derivations using a parallel
rule that cannot be decomposed into derivations forming a strict diamond.

Consider the derivation in Fig. 9, for parallel production snd +Y snd over
Y = �������	
������ �������	 �������	 . This production allows a user to leave two messages in one step.
Thus the derivation borrows one user with two messages as context. However,
there exists no strict diamond with label J → F ← K of Fig. 9 as parallel label.

Indeed, any dpobc derivation (by the rules in Fig. 1) contains at most one
message. In order to have a user owning two messages as parallel label, we need
to identify the users. Since the label F of the derivation (according to the strict
diamond property) must be the pushout of F1 and F2 along J ; and since the
interface J does not contain any user, then users cannot be identified in F .

Intuitively, strict diamonds can not merge borrowed resources, while parallel
derivations can. Indeed, given a pair of parallel independent transformations, we
can construct a parallel transformation by gluing the productions over a graph
containing resources common to both F1 and F2 that do not occur in G. Since
these resources are merged in the left hand side of the parallel production, they
are merged also in F . And since the resources are not in J , F is not the pushout
of F1 and F2 along J . Thus, the resulting labels do not form a strict diamond.
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Fig. 9. Parallel derivation: one user sends two messages at the same node
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More concretely, the parallel derivation in Fig. 9 is constructed by taking the
two copies of the derivations in Fig. 2 (since it is parallel independent with itself)
and by gluing the productions over J : this graph contains a user, that is an item
occurring in F1 and F2, but not in G.

It seems thus clear that, in order to guarantee the converse of the parallelism
theorem, we should move from strict to strong diamonds, since requiring that
the morphisms F1 → F and F2 → F in the diamond are jointly epic allows to
merge resources in F1 and F2 that are not in J . Indeed, it is worth noting that
the labels of the derivation of the above example form a strong diamond (shown
in Fig. 8) where the branching derivations are those of Fig. 2. So far, however,
we were not able to prove such a correspondence, and we leave it for future work.

6 Conclusions and Future Work

Our work introduces the notions of parallel and sequential independence for
dpobc derivations, generalizing the corresponding concepts for dpo derivations.
It then establishes a Church-Rosser theorem for independent derivations.

The crucial problem of lifting these properties and results from dpo to dpobc

rewriting is taking into account the borrowing of resources from the environment,
and providing a precise description of the complex interactions between labels of
independent transitions. Indeed, given two branching derivations, it is often the
case that there exists a pair of joining derivations, even if these latter might differ
with respect to resource usage when compared with the branching ones. With
the strict diamond property we establish conditions to require in order to have
that the joining derivations use neither more nor less environmental resources.

Our results provide the basis for further studies on the concurrent behaviour
of open systems modeled via dpobc rewriting. Since the standard dpobc bisim-
ilarity is interleaving, we plan to refine it to a true concurrent bisimilarity and
compare it with similar behavioural equivalences proposed in the literature, e.g.
history preserving bisimilarity [13,14] and related work on Petri nets [15,16].

For this, we plan to study the behavioural equivalence that arises by applying
the standard dpobc bisimilarity not to a given set of productions but to its paral-
lel closure, which contains for every two rules also all their parallel compositions:
using the standard results, this yields a bisimulation congruence.

As far as true concurrent semantics is concerned, we would like to explore the
possibility to provide a notion of graph process for dpobc rewriting, along the
line of the theory developed for dpo rewriting [17]: in this respect, establishing
the Church-Rosser property represents the cornerstone of such a development.
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Abstract. Behavior preservation, namely the fact that the behavior
of a model is not altered by the transformations, is a crucial property
in refactoring. The most common approaches to behavior preservation
rely basically on checking given models and their refactored versions. In
this paper we introduce a more general technique for checking behavior
preservation of refactorings defined by graph transformation rules. We
use double pushout (DPO) rewriting with borrowed contexts, and, ex-
ploiting the fact that observational equivalence is a congruence, we show
how to check refactoring rules for behavior preservation. When rules
are behavior-preserving, their application will never change behavior,
i.e., every model and its refactored version will have the same behavior.
However, often there are refactoring rules describing intermediate steps
of the transformation, which are not behavior-preserving, although the
full refactoring does preserve the behavior. For these cases we present
a procedure to combine refactoring rules to behavior-preserving concur-
rent productions in order to ensure behavior preservation. An example
of refactoring for finite automata is given to illustrate the theory.

1 Introduction

Model transformation [1] is concerned with the automatic generation of models
from other models according to a transformation procedure which describes how
a model in the source language can be “translated” into a model in the target
language. Model refactoring is a special case of model transformation where the
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source and target are instances of the same metamodel. Software refactoring
is a modern software development activity, aimed at improving system quality
with internal modifications of source code which do not change the observable
behavior. In object-oriented programming usually the observable behavior of an
object is given by a list of public (visible) properties and methods, while its
internal behavior is given by its internal (non-visible) properties and methods.

Graph transformation systems (GTS) are well-suited to model refactoring
and, more generally, model transformation (see [2] for the correspondence be-
tween refactoring and GTS). Model refactorings based on GTS can be found
in [3,4,5,6]. The left part of Fig. 1 describes schematically model refactoring via
graph transformations. For a graph-based metamodel M , describing, e.g., deter-
ministic finite automata or statecharts, the set RefactoringM of graph produc-
tions describes how to transform models which are instances of the metamodel
M . A start graph GM , which is an instance of the metamodel M , is transformed
according to the productions in RefactoringM (using regular DPO transforma-
tions), thus producing a graph HM which is the refactored version of GM .

A crucial question that must be asked always is whether a given refactoring is
behavior-preserving, which means that source and target models have the same
observable behavior. In practice, proving behavior-preservation is not an easy
task and therefore one normally relies on test suite executions and informal ar-
guments in order to improve confidence that the behavior is preserved. On the
other hand, formal approaches [7,8,9,10] have been also employed. A common
issue is that behavior preservation is checked only for a certain number of models
and their refactored versions. It is difficult though to foresee which refactoring
steps are behavior-preserving for all possible instances of the metamodel. Ad-
ditionally, these approaches are usually tailored to specific metamodels and the
transfer to other metamodels would require reconsidering several details. A more
general technique is proposed in [11] for analyzing the behavior of a graph pro-
duction in terms of CSP processes and trace semantics which guarantees that
the traces of a model are a subset of the traces of its refactored version.

In [3] we employed the general framework of borrowed contexts [12] to show
that models are bisimilar to their refactored counterparts, which implies behav-
ior preservation. The general idea is illustrated in the right-hand side of Fig. 1.
We define a set OpSemM of graph productions describing the operational se-
mantics of the metamodel M and use the borrowed context technique to check

Fig. 1. Model refactoring via graph transformations and behavior preservation
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whether the models GM and HM have the same behavior w.r.t. OpSemM . In [3]
we also tailored Hirschkoff’s up-to bisimulation checking algorithm [13] to the
borrowed context setting and thus equivalence checking can in principle be car-
ried out automatically. The main advantage of this approach is that for every
metamodel whose operational semantics can be specified in terms of finite graph
transformation productions, the bisimulation checking algorithm can be used to
show bisimilarity between models which are instances of this metamodel. How-
ever, this technique is also limited to showing behavior preservation only for a
fixed number of instances of a metamodel.

In this paper we go a step further and employ the borrowed context framework
in order to check refactoring productions for behavior preservation according to
the operational semantics of the metamodel. We call a rule behavior-preserving
when its left- and right-hand sides are bisimilar. Thanks to the fact that bisimi-
larity is a congruence, whenever all refactoring productions preserve behavior, so
does every transformation via these rules. In this case, all model instances of the
metamodel and their refactored versions exhibit the same behavior. However,
refactorings very often involve non-behavior-preserving rules describing inter-
mediate steps of the whole transformation. Given a transformation G

p1⇒ H via
a non-behavior-preserving rule p1, the basic idea is then to check for the exis-
tence of a larger transformation G ⇒∗ H ′ via a sequence seq = p1, p2, . . . , pi

of rule applications such that the concurrent production [14,15] induced by seq
is behavior-preserving. Since the concurrent production pc performs exactly the
same transformation G

pc⇒ H ′ we can infer that G and H ′ have the same behavior.
This paper is structured as follows. Section 2 briefly reviews how the DPO

approach with borrowed contexts can be used to define the operational seman-
tics of a metamodel. Section 3 defines the model refactorings we deal with. An
example in the setting of finite automata is given in Section 4. In Section 5 we
define a technique to check refactoring rules for behavior preservation and an
extension to handle non-behavior-preserving rules in model refactoring. Finally,
these techniques are applied to the automata example. The proofs of the results
in this paper, which are omitted here because of space limitations, can be found
in [16].

2 Operational Semantics Via Borrowed Contexts

In this section we recall the DPO approach with borrowed contexts [12,17] and
show how it can be used to define the operational semantics of a metamodel
M . In this paper we consider the category of labeled graphs, but the results
would also hold for the category of typed graphs or, more generally, for adhesive
categories. In standard DPO [18], productions rewrite graphs with no interaction
with any other entity than the graph itself. In the DPO approach with borrowed
contexts [17] graphs have interfaces and may borrow missing parts of left-hand
sides from the environment via the interface. This leads to open systems which
take into account interaction with the outside world.
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Definition 1 (Graphs with Interfaces and Graph Contexts). A graph G
with interface J is a morphism J → G and a context consists of two morphisms
J → E ← J . The embedding of a graph with interface J → G into a context
J → E ← J is a graph with interface J → G which is obtained by constructing
G as the pushout of J → G and J → E.

J ��

��
PO

E

��

J��

++

G �� G

Observe that the embedding is defined up to isomorphism since the pushout
object is unique up to isomorphism.

Definition 2 (Metamodel M and Model). A metamodel M specifies a set
of graphs with interface of the form J → G (as in Definition 1). An element of
this set is called an instance of the metamodel M , or simply model.

For example, the metamodel DFA, introduced in Section 4, describes determinis-
tic finite automata. A model is an automaton J → G, where G is the automaton
and J specifies which parts of G may interact with the environment.

Definition 3 (Set of Operational Semantics Rules). Given a metamodel
M as in Definition 2, its operational semantics is defined by a set OpSemM of
graph productions L

l← I
r→ R, where l, r are injective morphisms.

Definition 4 (Rewriting with Borrowed Contexts). Let OpSemM be as
in Definition 3. Given a model J → G and a production p : L ← I → R (p ∈
OpSemM ), we say that J → G reduces to K → H with transition label J → F ←
K if there are graphs D, G+, C and additional morphisms such that the diagram
below commutes and the squares are either pushouts (PO) or pullbacks (PB) with
injective morphisms. In this case a rewriting step with borrowed context (BC
step) is called feasible: (J → G) J→F←K−−−−−−→ (K → H).

D ��

��
PO

L

�� PO

I�� ��

��
PO

R

��

G ��

PO

G+

PB

C�� �� H

J

��

�� F

��

K��

�� ��

In the diagram above the upper left-hand square merges L and the graph G to
be rewritten according to a partial match G ← D → L. The resulting graph
G+ contains a total match of L and can be rewritten as in the standard DPO
approach, producing the two remaining squares in the upper row. The pushout
in the lower row gives us the borrowed (or minimal) context F , along with a
morphism J → F indicating how F should be pasted to G. Finally, we need an
interface for the resulting graph H , which can be obtained by “intersecting” the
borrowed context F and the graph C via a pullback. Note that the two pushout
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complements that are needed in Definition 4, namely C and F , may not exist.
In this case, the rewriting step is not feasible. Furthermore, observe that for a
given partial match G ← D → L the graphs G+ and C are uniquely determined.

A bisimulation is an equivalence relation between states of transition systems,
associating states which can simulate each other.

Definition 5 (Bisimulation and Bisimilarity). Let OpSemM be as in Def-
inition 3 and let R be a symmetric relation containing pairs of models (J →
G, J → G′). The relation R is called a bisimulation if, whenever we have
(J → G)R (J → G′) and a transition (J → G) J→F←K−−−−−−→ (K → H), then
there exists a model K → H ′ and a transition (J → G′) J→F←K−−−−−−→ (K → H ′)
such that (K → H)R (K → H ′).

We write (J → G) ∼OpSemM (J → G′) (or (J → G) ∼ (J → G′)
if the operational semantics is obvious from the context) whenever there ex-
ists a bisimulation R that relates the two instances of the metamodel M . The
relation ∼OpSemM is called bisimilarity.

When defining the operational semantics using the borrowed context framework,
it should be kept in mind that rewriting is based on interactions with the en-
vironment, i.e., the environment should provide some information via F to the
graph G in order to trigger the rewriting step. For instance, in our finite au-
tomata example in Section 4 the environment provides a letter to trigger the
corresponding transition of the automaton.

An advantage of the borrowed context technique is that the derived bisimi-
larity is automatically a congruence, which means that whenever a graph with
interface is bisimilar to another, one can exchange them in a larger graph with-
out effect on the observable behavior. This is very useful for model refactoring
since we can replace one part of the model by another bisimilar one, without
altering its observable behavior.

Theorem 1 (Bisimilarity is a Congruence [12]). Bisimilarity ∼ is a con-
gruence, i.e., it is preserved by embedding into contexts as given in Definition 1.

In [17] a technique is defined to speed up bisimulation checking, which allows us
to take into account only certain labels. A label is considered superfluous and
called independent if we can add two morphisms D → J and D → I to the dia-
gram in Definition 4 such that D → I → L = D → L and D → J → G=D → G.
That is, intuitively, the graph G to be rewritten and the left-hand side L overlap
only in their interfaces. Transitions with independent labels can be ignored in
the bisimulation game, since a matching transition always exists.

3 Refactoring Transformations

Here we define refactoring transformations using DPO rules with negative ap-
plication conditions (NAC).
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Definition 6 (NAC, Rule with NAC and Transformation). A negative
application condition NAC (n) on L is an injective morphism n : L → NAC.
An injective match m : L → G satisfies NAC (n) on L if and only if there is no
injective morphism q : NAC → G with q ◦ n = m.

NAC
q ��$
$$$

$ L
m
��

n��

=

G

NAC L��

m
��

I
PO PO

�� ��

��

R

��

G0 C0
�� �� G1

A negative application condition NAC (n) is called satisfiable if n is not an
isomorphism.

A rule L
l← I

r→ R (l, r injective) with NACs is equipped with a finite set of
negative application conditions NACL = {NAC (ni) | i ∈ I}. A direct transfor-
mation G0

p,m=⇒ G1 via a rule p with NACs and an injective match m : L → G0

consists of the double pushout diagram above, where m satisfies all NACs of p.

Note that if NAC (n) is satisfiable then the identity match id : L → L satisfies
NAC (n). We will assume that for any rule with NACs, the corresponding nega-
tive application conditions are all satisfiable, so that the rule is applicable to at
least one match (the identity match on its left-hand side).

Definition 7 (Layered Refactoring System and Refactoring Rule). Let
metamodel M be as in Definition 2. A refactoring rule is a graph rule as in
Definition 6. A layered refactoring system RefactoringM for the metamodel M
consists of k sets RefactoringM

i (0 ≤ i ≤ k − 1) of refactoring rules. Each set
RefactoringM

i defines a transformation layer.

Definition 8 (Refactoring Transformation). Let RefactoringM be as in
Definition 7. A refactoring transformation t : (J → G0) ⇒∗ (J → Gn) is a
sequence (J → G0)

p1⇒ (J → G1)
p2⇒ · · · pn⇒ (J → Gn) of direct transformations

(as in Definition 6) such that pi ∈ RefactoringM and t preserves the interface
J , i.e., for each i (0 ≤ i < n) there exists an injective morphism J → Ci with
J → Gi = J → Ci → Gi (see diagram below). Moreover, in t each layer applies
its rules as long as possible before the rules of the next layer come into play.

NAC L��

��

I�� ��

��
PO PO

R

��

Gi Ci
�� �� Gi+1

J

�� ,, &&
=

Note that refactoring transformations operate only on the internal structure of
Gi while keeping the original interface J .

4 Example: Deleting Unreachable States in DFA

In this section we present an example of refactoring in the setting of deter-
ministic finite automata (DFA). The metamodel DFA describes finite automata
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Fig. 2. Examples of DFA as graphs with interface

represented as graphs with interface as J → DFA1 and J → DFA2 in Fig. 2, where
unlabeled nodes are states and directed labeled edges are transitions. An FS-loop
marks a state as final. A W-node has an edge pointing to the current state and
this edge points initially to the start state. The W-node is the interface, i.e., the
only connection to the environment.

The operational semantics for DFA is given by a set OpSemDFA of rules con-
taining Jump(a), Loop(a) and Accept depicted in Fig. 3. The rules Jump(a),
Loop(a) must be defined for each symbol a ∈ Λ, where Λ is a fixed alphabet.
According to OpSemDFA a DFA may change its state. The W-node receives a
symbol (e.g. ‘b’) from the environment in form of a b-labeled edge connecting
��������w ��������w

b�� ��������w
c�� An acpt-edge between W-nodes marks the end of a string.

When such an edge is consumed by a DFA, the string previously processed is
accepted.

Fig. 3. Operational semantics and a refactoring for DFA
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A layered refactoring system for the deletion of unreachable states of an au-
tomaton is given in Fig. 3 on the right. To the left of each rule we depict the
NAC (if it exists). The rules are spread over three layers. Rule1 marks the initial
state as reachable with an R-loop. Rule2(a) identifies all other states that can
be reached from the start state via a-transitions. Layer 1 deletes the loops and
the edges of the unreachable states and finally the unreachable states. Layer 2
removes the R-loops.

Applying the refactoring rules above to the automaton J → DFA1 we obtain
J → DFA2, where the rightmost state was deleted. By using the bisimulation
checking algorithm of [3] we conclude that J → DFA1 and J → DFA2 are bisimilar
w.r.t. OpSemDFA. In our setting bisimilarity via the borrowed context technique
corresponds to bisimilarity on automata seen as transition systems, which in
turn implies language equivalence.

5 Behavior Preservation in Model Refactoring

Here we introduce a notion of behavior preservation for refactoring rules and,
building on this, we provide some techniques for ensuring behavior preservation
in model refactoring.

5.1 Refactoring Via Behavior-Preserving Rules

For a metamodel M as in Definition 2 we define behavior preservation as follows.

Definition 9 (Behavior-Preserving Transformation). Let OpSemM be as
in Definition 3. A refactoring transformation t : (J → G) ⇒∗ (J → H) (as in
Definition 8) is called behavior-preserving when (J → G) ∼OpSemM (J → H).

In order to check t for behavior preservation we can use Definition 4 to derive
transition labels from J → G and J → H w.r.t. the rules in OpSemM .

Observe that behavior preservation in the sense of Definition 9 is limited to
checking specific models. This process is fairly inefficient and can never be ex-
haustive as behavior-preservation must be checked for each specific transforma-
tion. A more efficient strategy consists in focussing on the behavior-preservation
property at the level of refactoring rules. The general idea is to check for every
p ∈ RefactoringM whether its left and right-hand sides, seen as graphs with inter-
faces, are bisimilar, i.e., (I → L) ∼ (I → R) w.r.t. OpSemM . Whenever this hap-
pens, since bisimilarity is a congruence, any transformation (J → G)

p⇒ (J → H)
via p will preserve the behavior, i.e., J → G and J → H have the same behavior.

Definition 10 (Behavior-Preserving Refactoring Rule). Let OpSemM be
as in Definition 3. A refactoring production p : L ← I → R with NACL is
behavior-preserving whenever (I → L) ∼ (I → R) w.r.t. OpSemM .

Now we can show a simple but important result that says that a rule is behavior-
preserving if and only if every refactoring transformation generated by this rule
is behavior-preserving.
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Proposition 1. Let OpSemM be as in Definition 3. Then it holds: p : L ←
I → R (with NACL) is behavior-preserving w.r.t. OpSemM if and only if any
refactoring transformation (J → G)

p⇒ (J → H) (as in Definition 8) is behavior-
preserving, i.e., (J → G) ∼OpSemM (J → H).

Remark 1. The fact that the previous proposition also holds for rules with
NACs, even though Definition 10 does not take NACs into account for behavior-
preservation purposes, does of course not imply that negative application con-
ditions for refactoring rules are unnecessary in general. They are needed in
order to constrain the applicability of rules, especially of those rules that are
not behavior-preserving, or rather, are only behavior-preserving when applied in
certain contexts. As a direction of future work, we plan to study congruence re-
sults for restricted classes of contexts. This will help to better handle refactoring
rules with NACs.

Theorem 2 (Refactoring via Behavior-Preserving Rules). Let OpSemM

and RefactoringM be as in Definitions 3 and 7. If each rule in RefactoringM is
behavior-preserving w.r.t. OpSemM then any refactoring transformation (J →
G0) ⇒∗ (J → Gn) via these rules is behavior-preserving.

Example 1. We check the rules in RefactoringDFA
i (i = 0, 1, 2) from Section 4

for behavior preservation. We begin with RefactoringDFA
0 (Layer 0). For RULE1 :

NAC ← L ← I → R we derive the transition labels from I → L and I → R w.r.t.
OpSemDFA. On the left-hand side of Fig. 4 we schematically depict the first steps
in their respective labeled transition systems (LTS), where each partner has three
choices. Independent labels exist in both LTSs but are not illustrated below.

The derivation of label L1 for I → R is shown on the right. Since I → L and
I → R (and their successors) can properly mimic each other via a bisimulation
we can conclude that (I → L) ∼OpSemDFA (I → R). The intuitive reason for this is
that the R-loop, which is added by this rule, does not have any meaning in the
operational semantics and is hence “ignored” by OpSemDFA.

Analogously, RULE2(a) and the rule in Layer 2 are behavior-preserving as well.
Hence, we can infer that every transformation via the rules of Layer 0 and Layer 2
preserves the behavior. On the other hand, all rules in Layer 1, except for RULE6,
are not behavior-preserving. Note that RULE6 is only behavior-preserving be-
cause of the dangling condition. Thus, when a transformation is carried out via
non-behavior-preserving rules of Layer 1 we cannot be sure whether the behavior
has been preserved.

5.2 Handling Non-behavior-Preserving Rules

For refactoring transformations based on non-behavior-preserving rules the tech-
nique of Section 5.1 does not allow to establish if the behavior is preserved.

Very often there are refactoring rules representing intermediate transforma-
tions that indeed are not behavior-preserving. Still, when considered together
with neighboring rules, they could induce a concurrent production [14,15] pc,
corresponding to a larger transformation, which preserves the behavior. For a
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Fig. 4. Labeled transition systems for rule1 and a label derivation

transformation t : (J → G) ⇒∗ (J → H ′) via a sequence seq = p1, p2, . . . , pi

the concurrent production pc : Lc ← Ic → Rc with concurrent NACLc induced
by t performs exactly the same transformation (J → G)

pc⇒ (J → H ′) in one
step. Moreover, pc can only be applied to (J → G) if the concurrent NACLc is
satisfied. This is the case if and only if every NAC of the rules in t is satisfied.
The basic idea is now to check for a transformation (J → G)

p1⇒ (J → H) based
on a non-behavior-preserving rule p1 whether there exists such a larger trans-
formation t : (J → G) ⇒∗ (J → H ′) via a sequence seq = p1, p2, . . . , pi of rules
such that the concurrent production induced by t is behavior preserving. Then
we can infer that J → G and J → H ′ have the same behavior.

This is made formal by the notion of safe transformation and the theorem
below.

Definition 11 (Safe Transformation). Let OpSemM be as in Definition 3. A
refactoring transformation t : (J → G) ⇒∗ (J → H) (as in Definition 8) is called
safe if it induces a behavior-preserving concurrent production w.r.t. OpSemM .

Theorem 3 (Safe Transformations preserve Behavior). Let OpSemM

and RefactoringM be as in Definitions 3 and 7, and let t : (J → G) ⇒∗ (J → H)
be a refactoring transformation. If t is safe, then t is behavior-preserving, i.e.,
(J → G) ∼ (J → H).

In order to prove that a refactoring transformation t : (J → G) ⇒∗ (J → H) is
safe (and thus behavior-preserving), we can look for a split tsp : G ⇒∗ H1 ⇒∗

· · · ⇒∗ Hn ⇒∗ H (interfaces are omitted) of t where each step (⇒∗) induces a
behavior-preserving concurrent production (see Definition 12). In fact, as shown
below, if and only if such split exists we can guarantee that t preserves behavior
(Theorem 4).

Definition 12 (Safe Transformation Split). Let OpSemM be as in Defini-
tion 3 and let t : (J → G) ⇒∗ (J → H) be a refactoring transformation (as in
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Definition 8). A split of t is obtained by cutting t into a sequence of subtrans-
formations tsp : (J → G) ⇒∗ (J → H1) ⇒∗ · · · ⇒∗ (J → Hn) ⇒∗ (J → H). A
transformation split tsp is safe if each step (⇒∗) is safe.

In Section 5.3 we present a simple search strategy for safe splits. More elaborate
ones are part of future work.

Theorem 4. Let t : (J → G) ⇒∗ (J → H) be a refactoring transformation.
Then t is safe if and only if it admits a safe split.

Observe that, instead, the following does not hold in general: if t : (J → G) ⇒∗

(J → H) and (J → G) ∼OpSemM (J → H) then t is safe. Consider for instance
RULE5(a) inFig. 3.As remarked, it is in general not behavior-preserving, butwhen,
by coincidence, it removes a transition that is unreachable from the start state, the
original automaton and its refactored version are behaviorally equivalent.

5.3 Ensuring Behavior Preservation

In this section we describe how the theory presented in this paper can be applied.
Note that our results would allow us to automatically prove behavior preserva-
tion only in special cases, while, in general, such mechanized proofs will be very
difficult. Hence here we will suggest a “mixed strategy”, which combines ele-
ments of automatic verification and the search for behavior-preserving rules, in
order to properly guide refactorings.

More specifically, a given model J → G can be refactored by applying the
rules in RefactoringM in an automatic way, where the machine chooses non-
deterministically the rules to be applied, or in a user-driven way, where for
each transformation the machine provides the user with a list of all applicable
rules together with their respective matches and ultimately the user picks one of
them. The main goal is then to tell the user whether the refactoring is behavior-
preserving.

The straightforward strategy to accomplish the goal above is to transform
J → G applying only behavior-preserving rules. This obviously guarantees that
the refactoring preserves behavior. However if a non-behavior-preserving rule p
is applied we can no longer guarantee behavior preservation. Still, by proceeding
with the refactoring, namely by performing further transformations, we can do
the following: for each new transformation added to the refactoring we compute
the induced concurrent production for the transformation which involves the
first non-behavior-preserving rule p and the subsequent ones. If this concurrent
production is behavior-preserving we can again guarantee behavior preservation
for the refactoring since the refactoring admits a safe split (see Theorem 4).

The strategy above is not complete since behaviour preservation could be
ensured by the existence of complex safe splits which the illustrated procedure
is not able to find. We already have preliminary ideas for more sophisticated
search strategies, but they are part of future work. Note however, that this
strategy can reduce the proof obligations, since we do not have to show behavior
preservation between the start and end graph of the refactoring sequence (which
may be huge), but we only have to investigate local updates of the model.
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Fig. 5. Refactoring transformation

Example 2. Consider the automaton J → DFA1 of Section 4. By applying the
behavior-preserving rules of RefactoringDFA

0 (Layer 0) we obtain J → DFA0
1 de-

picted in Fig. 5 (the interface J is omitted). Since RefactoringDFA
0 contains only

behavior-preserving rules by Theorem 2 it holds that (J → DFA1)⇒∗ (J → DFA0
1)

preserves the behavior. No more rules in RefactoringDFA
0 can be applied, i.e., the

computation of Layer 0 terminates.
Now the rules of RefactoringDFA

1 (Layer 1) come into play. Recall that all rules
in RefactoringDFA

1 are non-behavior-preserving, except for RULE6. This set con-
tains RULE4(0) and RULE4(1) which are appropriate instantiations of RULE4(a).

After the transformation (J → DFA0
1)

RULE4(0)
=⇒ (J → DFA1

1) we can no longer guar-
antee behavior-preservation since RULE4(0) has been applied. From now on we
follow the strategy previously described to look for a behavior-preserving con-

current production. We perform the step (J → DFA1
1)

RULE4(1)
=⇒ (J → DFA2

1), build

a concurrent production pc induced by (J → DFA0
1)

RULE4(0)
=⇒ (J → DFA1

1)
RULE4(1)

=⇒
(J → DFA2

1) and, by checking pc for behavior-preservation, we find out that it is
not behavior-preserving. We then continue with (J → DFA2

1)
RULE6=⇒ (J → DFA3

1),
build p′c (Fig. 6), induced by the transformation beginning at J → DFA0

1 and
check it for behavior-preservation. Now p′c is behavior-preserving and so we can
once again guarantee behavior preservation (Theorem 3).

Finally, no more rules of RefactoringDFA
1 are applicable to J → DFA3

1. The
behavior-preserving rule in RefactoringDFA

2 (Layer 2) comes into play and per-
forms a transformation (J → DFA3

1)
RULE6=⇒2 (J → DFA2), where the final automa-

ton is depicted in Section 4 (DFA2). Concluding, since we have found a safe
split for the transformation via non-behavior-preserving rules we can infer that
J → DFA1 and J → DFA2 have the same behavior.

Intuitively, the concurrent production is behavior-preserving, since it deletes
an entire connected component that is not linked to the rest of the automaton.
Note that due to the size of the components involved it can be much simpler to
check such transformation units rather than the entire refactoring sequence.

Fig. 6. Induced concurrent production p′
c
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In addition, it would be useful if the procedure above could store the induced con-
current productions which are behavior-preserving into RefactoringM for later
use. By doing so the user knows which combination of rules leads to behavior-
preserving concurrent productions. Similarly, the user could also want to know
which combination of rules leads to non-behavior-preserving concurrent produc-
tions. Of course, in the latter case the concurrent productions are just stored but
do not engage in any refactoring transformation. It is important to observe that
we store into RefactoringM only concurrent productions which are built with
rules within the same layer (as in Example 2). For more complex refactorings,
such as the flattening of hierarchical statecharts (see [19]), a behavior-preserving
concurrent production pc exists only when it is built from a transformation in-
volving several layers. In this latter case, pc is built and checked for behavior
preservation but not stored for later use.

For the cases where a layer RefactoringM
i of RefactoringM is terminating and

confluent it is then important to guarantee that adding concurrent productions
to the refactoring layer does not affect these properties.

Theorem 5. Let RefactoringM
i be as in Definition 7 and Rpc

i be a set containing
concurrent productions pc built from p, q ∈ RefactoringM

i ∪Rpc

i . Then whenever
RefactoringM

i is confluent and terminating it holds that RefactoringM
i ∪ Rpc

i is
also terminating and confluent.

For the case where layer RefactoringM
i is terminating and confluent another

interesting and useful fact holds: assume that we fix a start graph G0 and we
can show that some (terminating) transformation, beginning with G0 allows a
behavior-preserving split. Then clearly all transformations starting from G0 are
behavior-preserving since they result in the same final graph H .

6 Conclusions and Future Work

We have shown how the borrowed context technique can be used to reason about
behavior-preservation of refactoring rules and refactoring transformations. In
this way we shift the perspective from checking specific models to the investiga-
tion of the properties of the refactoring rules.

The formal techniques in related work [7,8,9,10] address behavior preservation
in model refactoring, but are in general tailored to a specific metamodel and
limited to checking the behavior of a fixed number of models. Therefore, the
transfer to different metamodels is, in general, quite difficult.

Hence, with this paper we propose to use the borrowed context technique in
order to consider any metamodel whose operational semantics can be given by
graph productions. Furthermore, the bisimulation checking algorithm [3] for bor-
rowed contexts provides the means for automatically checking models for behav-
ior preservation. This can be done not only for a specific model and its refactored
version, but also for the left-hand and right-hand sides of refactoring rules. Once
we have shown that a given rule is behavior-preserving, i.e., its left- and right-
hand sides are equivalent, we know that its application will always preserve the
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behavior, due to the congruence result. When rules are not behavior-preserving,
they still can be combined into behavior-preserving concurrent productions. We
believe that such a method will help the user to gain a better understanding of
the refactoring rules since he or she can be told exactly which rules may modify
the behavior during a transformation. An advantage of our technique over the
one in [11] is that we work directly with graph transformations and do not need
any auxiliary encoding. Furthermore, with our technique we can guarantee that
a model and its refactored version have exactly the same observable behavior,
while in [11] the refactored model “contains” the original model but may add
extra behavior.

This work opens up several possible directions for future investigations. First,
in some refactorings when non-behavior-preserving rules are applied, the search
strategies for safe splits can become very complex. Here we defined only a simple
search strategy, but it should be possible to come up with more elaborate ones.

Second, although we are working with refactoring rules with negative appli-
cation conditions, these NACs do not play a prominent role in our automatic
verification techniques, but of course they are a key to limiting the number of
concurrent productions which can be built. In [20] the borrowed context frame-
work and the congruence result has been extended to handle rules with NACs.
However, this applies only to negative application conditions in the operational
semantics. It is, nevertheless, also important to have similar results for refactor-
ing rules with NACs, which would lead to a “restricted” congruence result, where
bisimilarity would only be preserved by certain contexts (see also the discussion
in Remark 1). Since model refactorings often use graphs with attributes it is
useful to check whether the congruence results in [12,20] also hold for adhesive
HLR categories (the category of attributed graphs is an instance thereof).

Acknowledgements. We would like to thank Gabi Taentzer and Reiko Heckel
for helpful discussions on this topic.
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Abstract. We introduce ranked open nets, a reactive extension of Petri
nets which generalises a basic open net model introduced in a previ-
ous work by allowing for a refined notion of interface. The interface to-
wards the external environment of a ranked open net is given by a subset
of places designated as open and used for composition. Additionally, a
bound on the number of connections which are allowed on an open place
can be specified. We show that the non-deterministic process semantics
is compositional with respect to the composition operation over ranked
open nets, a result which did not hold for basic open nets.

1 Introduction

Petri nets are a well-known model of concurrent and distributed systems, widely
used both in theoretical and applicative areas (14). While the basic model is
mainly aimed at representing closed, completely specified systems evolving au-
tonomously through the firing of transitions, in recent years there has been an
increasing attention to the development of reactive Petri net models, directly
supporting certain features needed for modeling open systems, which can inter-
act with the surrounding environment (3, 9, 11, 12, 13, 15).

In particular, open Petri nets, as introduced in (1), are a mild extension
of basic nets with the possibility of interacting with the environment and of
composing a larger net out of smaller open components. An open net is an
ordinary net with a distinguished set of places, designated as open, through
which the net can interact with the environment. As a consequence of such
interaction, tokens can be freely generated and removed in open places. Open
nets are endowed with a composition operation, characterised as a pushout in
the corresponding category, suitable to model both interaction through open
places and synchronisation of transitions.

It is very convenient if compositionality at the system level is reflected at the
semantic level, i.e., if the behaviour of a system can be suitably expressed on the
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basis of the behaviour of its components. This allows for modular analysis of the
systems and it helps in defining system reconfigurations (replacing a component
by another) which keep the observable behaviour unchanged (2, 4).

In particular, as non-sequential processes of a Petri net can be fruitfully used
as a representation of possible scenarios in the execution of a system (see, e.g.,
the work on workflows and the encodings of web-service description languages
like OWL or BPEL as Petri nets (4, 16, 17, 18)), it can be interesting to relate
the processes of a Petri net with those of its components. Specifically, one should
understand under which conditions processes of the subcomponent nets can be
combined into a consistent process of their composition and vice versa, how
processes of the full system can be decomposed into processes of the components.

Results in this direction have been provided for open nets in (1), by showing
compositionality for a semantics based on deterministic processes à la Goltz-
Reisig. Unfortunately, as noticed in the same paper, the result does not extend
to non-deterministic processes. To get a rough intuition of what fails, consider
the open nets in the Fig. 3(b) (ignoring, for the moment, the labels 2 and ω
attached to dangling arcs). The representation of the nets is standard; only open
places have ingoing and/or outgoing dangling arcs, meaning that transitions of
the environment could be attached and thus put and/or remove tokens in these
places. The nets Zi are simple enough to be considered processes themselves. For
instance, Z1 represents a process in which a token can be consumed either by t1
or by the environment. When joining Z1 and Z2 along the net Z0, in the result
Z3 place s is still open, the intuition being that each open place allows for an
unbounded number of connections, hence adding one connection does not affect
its openness. There is no way of specifying that, as a result of the composition,
the open port of each of the two components is occupied by the other component,
thus producing a net where place s is closed. This is problematic since a net
identical to Z3, but where place s is closed, is a valid process of Z3 (specifying
a computation having no interactions with the environment). However there is
no way to obtain it as the composition of two processes of Z1 and Z2.

In order to overcome this problem, we introduce ranked open nets, a refined
model of open nets where besides specifying the open places, which can be used
for composition with other nets, we also specify the maximum number of allowed
(input and output) connections. This provides a more expressive model, properly
subsuming basic open nets (which can be seen as special ranked open nets, where
open places always allow for an unbounded number of connections).

A mechanism for composing ranked open nets is defined which generalises
the one for basic open nets. In this case the composition operation cannot be
characterised as a colimit. Instead, it can be seen as an abstraction of a pushout
in a more concrete category where ports are made explicit.

The composition operation is extended to non-deterministic processes and we
prove the desired compositionality result: if a net Z3 is the composition of Z1

and Z2, then any process of Z3 can be obtained as the composition of processes
of the component nets and vice versa, the composition of processes of Z1 and
Z2, which agree on the common interface, always provides a process of Z3.
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The paper is organised as follows. In § 2 we introduce the categories of ranked
open nets, and an operation of composition for such nets is defined in § 3. In § 4
we introduce non-deterministic processes for ranked open nets. In § 5 we prove
the main result, i.e., compositionality for non-deterministic processes. Finally,
in § 6 we draw some conclusions and directions of future investigation.

2 Ranked Open Nets

An open net, as introduced in (1), is an ordinary P/T Petri net with a distin-
guished set of places. These places are intended to represent the interface of the
net towards the environment, which, interacting with the net, can “freely” add
or remove some tokens in the open places. Rather than simply distinguishing
between input and output places, here, for every place we specify the largest
number of allowed incoming and outgoing new connections. A place is closed if
it does not allow for any new connection.

Given a set X we will denote by X⊕ the free commutative monoid generated
by X , with identity 0, and by 2X its powerset. Furthermore given a function
h : X → Y we denote by h⊕ : X⊕ → Y ⊕ its monoidal extension, while the same
symbol h : 2X → 2Y denotes the extension of h to sets.

A P/T Petri net is a tuple N = (S, T, σ, τ) where S is the set of places,
T is the set of transitions (S ∩ T = ∅) and σ, τ : T → S⊕ assign source and
target to each transition. In this paper we will consider only finite Petri nets.
We will denote by •(·) and (·)• the monoidal extensions of the functions σ and
τ to functions from T⊕ to S⊕. Furthermore, given a place s ∈ S, the pre- and
post-set of s are defined by •s = {t ∈ T | s ∈ t•} and s• = {t ∈ T | s ∈ •t}.

Let N0 and N1 be Petri nets. A Petri net morphism f : N0 → N1 is a pair of
total functions f = 〈fT , fS〉 with fT : T0 → T1 and fS : S0 → S1, such that for
all t0 ∈ T0, •fT (t0) = fS

⊕( •t0) and fT (t0)• = fS
⊕(t0•). The category of P/T

Petri nets and Petri net morphisms will be denoted by Net.
We use N for the set of natural numbers and Nω for the same set extended

with infinity, i.e., N ∪ {ω}. Operations and relations on Nω are defined in the
expected way, i.e., n ≤ ω for each n ∈ N, ω − n = ω + n = ω + ω = ω for each
n ∈ N, while ω− ω is undefined. The same operators will be applied, pointwise,
to functions over natural numbers. E.g., given f, g : X → Nω we denote by
f + g : X → Nω the function defined by (f + g)(x) = f(x)+ g(x) for any x ∈ X .

Definition 1 (ranked open net). A (ranked) open net is a pair Z = (NZ , oZ),
where NZ = (SZ , TZ , σZ , τZ) is an ordinary P/T Petri net (called the underlying
net) and oZ = (o+

Z , o−Z ) : SZ → Nω. We define Ox
Z = {s ∈ SZ : ox

Z(s) > 0}, for
x ∈ {+,−} and call them the sets of input and output open places of the net.

As mentioned above, the functions o+
Z and o−Z intuitively specify for each place

in SZ the maximum number of allowed new ingoing/outgoing connections, also
referred to as the ranks of s. In (1) whenever a place was open, intuitively there
was no limit to the number of new connections. Hence the open nets of (1) can
be seen as special ranked open nets, where ox

Z(s) ∈ {0, ω} for any place s.
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Fig. 1. Composing ranked open nets

As an example of ranked open nets, consider net Z3 in Fig. 1, intuitively mod-
elling the booking of a ticket in a travel agency. In the graphical representation
an input (resp. output) open place s has a dangling ingoing (resp. outgoing) arc,
marked by the corresponding rank. When the rank is 1 it is omitted.

Conceptually, we can think that every place of an open net has a set of
attaching points, which can either be used by an existing transition connected
to the place, or can be free and thus usable for connecting new transitions.
Sometimes, as in the definition of concrete morphisms below (Definition 6), we
need to consider an explicit identity of such attaching points, that we call ports.
A port used by a transition is identified with the transition itself, while free
ports are identified by a progressive number. Most often, however, we will be
interested only in their number, i.e., in the degree of a place. Given n ∈ N, let [n]
denote the set {0 . . . , n− 1}. For all considered Z we assume that T ∩ Nω = ∅.

Definition 2 (input and ouput ports and degree). Let Z be an open net.
For any place s ∈ S we define the sets of input and output ports of s as follows:

p+(s) = [o+
Z (s)] ∪ •s and p−(s) = [o−Z (s)] ∪ s•

The ports in [o+
Z (s)] and [o−Z (s)] are called open ports.

Furthermore, we define the input degree of s as deg+(s) = |p+(s)|, and,
similarly, the output degree of s as deg−(s) = |p−(s)|.

The token game of open nets. The notion of enabledness for transitions is
the usual one, but, besides the changes produced by the firing of the transitions of
the net, we consider also the interaction with the environment which is modelled
by events, denoted by +s and −s, which produce or consume a token in an open
place s. For an open net Z, the set of extended events, denoted T̄Z, is defined as

T̄Z = TZ ∪ {+s : s ∈ O+
Z } ∪ {−s : s ∈ O−

Z }.
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Pre- and post-set functions are extended by defining •+s = 0 and +s
• = s, and

symmetrically, •−s = s and −s
• = 0.

Definition 3 (firing). Let Z be an open net. A firing in Z consists of the
execution of an extended event ε ∈ T̄Z , i.e., u⊕ •ε [ε〉 u⊕ ε•.

A firing can be (i) the execution of a transition u ⊕ •t [t〉 u ⊕ t•, with t ∈ TZ ;
(ii) the creation of a token by the environment u [+s〉 u⊕s, with s ∈ O+

Z ; (iii) the
deletion of a token by the environment u⊕ s [−s〉 u, with s ∈ O−

Z .

Morphisms of open nets. Morphisms of open nets will be defined as standard
net morphisms satisfying suitable conditions on the place ranks. Intuitively, a
morphism f : Z1 → Z2 “inserts” net Z1 into a larger net Z2, allowing a place s
of Z1 to be connected to “new” transitions, i.e., transitions in Z2 \ f(Z1). The
condition we impose guarantees that each new connection of s and each open
port of f(s) can be mapped to an open port of s.

For reasons discussed in § 3, we define two kinds of morphisms. In the more
abstract ones, we impose only a cardinality constraint, while in the more concrete
ones we require an explicit mapping relating, for each place s of Z1, the ports of
s to those of f(s). We next formalise the idea of “new connections” of a place.

Definition 4 (in-set and out-set of a place along a morphism). Given
open nets Z1 and Z2 and a Petri net morphism f : NZ1 → NZ2 , for each place
s1 ∈ S1 the in-set of s1 along f is defined as in(f)(s1) = { •fS(s1)− fT ( •s1)},
and similarly the out-set is out(f)(s1) = {fS(s1)• − fT (s1

•)}. This defines the
functions in(f), out(f) : S1 → 2T2 .

The functions #in(f), #out(f) : S1 → N are defined, respectively, as
#in(f)(s1) = |in(f)(s1)| and #out(f)(s1) = |out(f)(s1)|.

Definition 5 (open net morphisms). An open net morphism f : Z1 → Z2

is a Petri net morphism f : NZ1 → NZ2 such that

(i) #in(f) + o+
2 ◦ fs ≤ o+

1 and (ii) #out(f) + o−2 ◦ fs ≤ o−1 .

A morphism f is called an open net embedding if both fT and fS are injective.

Intuitively, condition (i) requires that the number of new incoming transitions
added to s ∈ S1 in the target net Z2 plus the input connections which are still
allowed for fS(s) in Z2 must be bounded by the maximum number of allowed
input connections for s. Examples of open net embeddings can be found in Fig. 1.
The mappings are those suggested by the labelling of the nets.

Definition 6 (concrete morphisms). Let Z1 and Z2 be open nets. A concrete
open net morphism f : Z1 → Z2 is a pair f = 〈f, {fs1}s1∈S1〉, where f : NZ1 →
NZ2 is a Petri net morphism and for any s1 ∈ S1, fs1 consists of a pair of
partial surjections fx

s1
: px(s1) → px(f(s1)) for x ∈ {+,−}, consistent with f ,

i.e., satisfying, for any t ∈ •s1, f+
s1

(t) = f(t) and for any t ∈ s1
•, f−

s1
(t) = f(t).

A morphism f is called an open net embedding if all components are injective.
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As anticipated, concrete morphisms explicitly relate, for each place s ∈ S1, the
ports of f(s) and of s, using the component fs. In the sequel, instead of f+

s

and f−
s , when place s is clear from the context, we will often write f+ and f−.

Moreover, when defining fx
s we will only specify its values on the open ports

[ox
Z1

(s)], which, as fx
s must be consistent with f , completely determines fx

s .
As expected, the two notions of morphism just introduced determine two cate-

gories related by an obvious forgetful functor. In fact, given a concrete morphism
f = 〈f, {fs1}s1∈S1〉 : Z1 → Z2 it is straightforward to check that the Petri net
morphism f satisfies conditions (i) and (ii) of Definition 5.

Definition 7 (open nets categories). We denote by ONetr the category of
ranked open nets and open net morphisms, and by ONetc the category having
the same objects and concrete open net morphisms as arrows.

Furthermore, we denote by U : ONetc → ONetr the forgetful functor which
is the identity on objects, and acts on an arrow f = 〈f, {fs}〉 as U(f) = f .

Sometimes, categories ONetc and ONetr will be referred to as the concrete and
the abstract category of (ranked) open nets, respectively.

The category of basic open nets introduced in (1) is (isomorphic to) the full
subcategory of ONetr including all the nets Z such that for any place s we have
ox

Z(s) ∈ {0, ω}, i.e., either s is closed or it allows for an unbounded number of
connections. In the following this subcategory will be referred to as ONet.

3 Composing Open Nets

Intuitively, two open nets Z1 and Z2 are composed by specifying a common
subnet Z0, and then by joining the two nets along Z0. Composition will be char-
acterised as a pushout in the concrete category of open nets ONetc. But since
for specification purposes the abstract category ONetr is often more appropri-
ate and easier to deal with, next we will focus on the notion of composition
induced on such category by the colimit based composition in ONetc.

Composition is possible if it respects the interface of the involved nets. This
is formalised by the notion of composability of a span of embeddings in ONetc.

Definition 8 (composable span in ONetc). A span of embeddings f1 : Z0 →
Z1 and f2 : Z0 → Z2 in ONetc is called composable if, for any s0 ∈ S0

1. for all i ∈ [o+
Z0

(s0)], if f+
1 (i) ∈ in(f1)(s0) then f+

2 (i) ∈ [o+
Z2

(f2(s0))]
2. for all i ∈ [o−Z0

(s0)], if f−
1 (i) ∈ out(f1)(s0) then f−

2 (i) ∈ [o−Z2
(f2(s0))]

plus the analogous conditions, exchanging the roles of Z1 and Z2.

Intuitively, condition (1) says that, given a place s0 and an open input port
i ∈ [o+

Z1
(s0)], if according to f1 the transition f+

1 (i) ∈ in(f1)(s0) is going to
be attached to this port, then the corresponding port in Z2 must be open, i.e.,
f+
2 (i) ∈ [o+

Z2
(f2(s0))]. The other conditions are analogous.

Given a concrete composable span Z1
f1← Z0

f2→ Z2, the composition of Z1 and
Z2 along Z0 is the open net Z3 (see Fig. 2) obtained as the pushout of f1 and
f2, which exists by the next result.
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Z0 f2f1

Z1

g1

Z2

g2Z3

Fig. 2. Composition of ranked open nets

Proposition 9 (pushout in ONetc). A span of embeddings f1 : Z0 → Z1, f2 :
Z0 → Z2 in ONetc is composable if and only if it has a pushout Z1

g1→ Z3
g2← Z2

in ONetc, whose underlying diagram is a pushout in Net.

The construction of the pushout of a composable span in ONetc turns out to
be quite complex and it is not reported for space limitations, but the intuition
is simple. Firstly, the underlying net NZ3 is obtained as the pushout of NZ1 and
NZ2 along NZ0 in Net. Next, if a place is not in Z0, then in the pushout it
maintains exactly its ports. Instead, for a place s in Z0, in the pushout the ports
of the image of s are obtained by taking the pushout of the ports of the images
of s in Z1 and Z2. Since mappings between ports can be partial, open ports can
disappear. A port is open only if it is open in both nets Z1 and Z2.

The notions of composability of spans and of composition between nets can
be transferred to the abstract category via the forgetful functor U : ONetc →
ONetr. More interestingly, these notions can be defined also directly at the ab-
stract level, by referring only to the ranks of places of the involved nets. Thanks
to this fact, in the rest of the paper we will be able to work in the abstract
category only, which provides a simpler and natural framework to be used for
specification purposes. Still, we stress here that we defined the composition of
nets in the concrete category first, because the corresponding notion in the ab-
stract category cannot be characterized by a universal property as a pushout.

Given a pair of embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2 in ONetr, we
say that they are composable if there exists a composable span of embeddings
f1 : Z0 → Z1 and f2 : Z0 → Z2 in ONetc such that U(f1) = f1 and U(f2) = f2.

Fact 10 (composable span in ONetr). A span of embeddings f1 : Z0 → Z1

and f2 : Z0 → Z2 in ONetr is composable if and only if

1. #in(f1) ≤ o+
Z2
◦ f2 and #out(f1) ≤ o−Z2

◦ f2;
2. #in(f2) ≤ o+

Z1
◦ f1 and #out(f2) ≤ o−Z1

◦ f1.

Intuitively, the first half of condition (1) requires that the number of input
connections which are added to each place s of Z0 by f1, namely #in(f1)(s), is
bounded by the number of additional input connections allowed for f2(s) in Z2,
i.e., o+

Z2
(f2(s)). The remaining conditions are similar.

Now, given a composable span of embeddings f1 : Z0 → Z1 and f2 : Z0 → Z2

in ONetr, let 〈f1, f2〉 be any pair of composable embeddings in ONetc such
that U(f1) = f1 and U(f2) = f2. Then the composition of Z1 and Z2 along Z0



264 P. Baldan et al.

(a) (b)

Fig. 3. Composing ranked open nets

in ONetr is defined exactly as their composition in ONetc, i.e., as the pushout
object of f1 and f2 in ONetc. It can be shown that this definition is well given,
and that it can be characterized as follows.

Fact 11 (composition in ONetr). Let f1 : Z0 → Z1 and f2 : Z0 → Z2 be
a span of embeddings in ONetr. Compute the pushout of the corresponding
diagram in the category Net obtaining the net NZ3 and the morphisms g1 and
g2. For i ∈ {1, 2}, define res+

i (s3) = ox
Zi

(si)−#in(gi)(si) if there is some si ∈ Si

such that gi(si) = s3 and res+
i (s3) = ω, otherwise.1 The function res−i is defined

in a dual way. Then take, for x ∈ {+,−}

ox
Z3

= min{resx
1 , resx

2}

Then Z3 (with morphisms g1 and g2) is the composition along Z0 of f1 and f2.

Intuitively, for a place s3 = gi(si), the value res+
i (si) is obtained by subtracting

from the number of connections allowed for si, i.e., o+
Zi

(si), the number of con-
nections which have been added as an effect of the composition, i.e., #in(gi)(si).
In other words res+

i (si) is the residual number of allowed connections. When
joining two places, the number of allowed connections for the resulting place will
be the minimum among the residuals of the two original places.

Two simple examples of composition can be found in Fig. 3. It is worth ex-
plaining why, for example, diagram (a) is not a pushout in ONetr. In fact, since

Z1 and Z2 are isomorphic, we can close the span Z1
f1← Z0

f2→ Z2 with arrows
Z1

id→ Z1

∼=← Z2 obtaining a commutative square in ONetr, but there is no me-
diating morphism Z3 → Z1 because the counter-image of an open place cannot
be closed. For a more complex example see Fig. 1, where two nets Z1 and Z2

representing the planning of a trip and the buying of the ticket, respectively, are
composed. Note, e.g., that place itinerary in Z2 is output open with rank 3 and
input open with rank 1, as needed for adding the connections in Z1.

1 Observe that res+
i is well-defined since gi is injective.
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4 Processes of Open Nets

A process of an open net is an open net itself, satisfying suitable acyclicity and
conflict freeness requirements, together with a mapping to the original net.

The open net underlying a process is an open occurrence net, namely an
open net K such that the underlying net NK is an ordinary occurrence net,
with some additional conditions on open places. Fig. 6 shows some examples of
occurrence nets. The open places in the occurrence net are intended to represent
occurrences of tokens which are produced or consumed by the environment in the
considered computation. Hence, input open places must satisfy o+(s) = 1 and
additionally they must be minimal. In fact, an input open place with o+(s) > 1
would represent a token possibly produced by two different transitions in the
environment; similarly an input open place in the post-set of some transition
would represent a token which can be produced either internally or by some
transition in the environments. In both cases the situation would correspond to
a backward conflict and it would prevent one to interpret the place as a token
occurrence. Instead, an output open place can be in the pre-set of a transition,
as it happens for place itinerary in the open occurrence nets K1 and K2 of Fig. 6,
and it might be that o−Z (s) > 1. The idea is that the token occurrence represented
by place s can be consumed either by transition t or by two or more occurrences
of transitions in the environment.

For a Petri net N = (S, T, σ, τ) the causality relation <N ⊆ (S ∪ T )2 is the
least transitive relation such that x<N y if y ∈ x•. Moreover, the conflict relation
#N ⊆ (S ∪ T )2 is the least symmetric relation generated by the rules:

•t ∩ •t′ �= ∅ t �= t′ t, t′ ∈ T
t #N t′

x#N y y <N y′

x#N y′ (hereditarity)

These definitions lift to open nets by considering the underlying net. We will
omit the subscripts when clear from the context.

Definition 12 (open occurrence net). An open occurrence net is an open
net K such that

1. •t and t• are sets rather than proper multisets, for each transition t ∈ T ;
2. the causality relation <K is a finitary strict partial order;
3. the conflict relation #K is irreflexive;
4. there are no backward conflicts, i.e., deg+(s) ≤ 1 for each place s ∈ S.

Notice that the net NK underlying an open occurrence net is an occurrence net
according to the standard definition.

We next introduce the notion of process for open nets.

Definition 13 (open net process). A process of an open net Z is a mapping
π : K → Z where K is an open occurrence net and π : NK → NZ is a Petri net
morphism, such that πS(O+

K) ⊆ O+
Z and πS(O−

K) ⊆ O−
Z .
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Note that the mapping from the occurrence net K to the original net Z, is not
an open net morphism in general. In fact, the process mapping, differently from
open net morphisms, must be a simulation, i.e., it must preserve the behaviour.
To this aim the image of an open place in K must be an open place in Z, since
tokens can be produced (consumed) by the environment only in input (output)
open places of Z. Instead, there is no relation between the rank of open places
in the occurrence net and in the net Z since a token in an open place can be
consumed by distinct occurrences of the same transition in the environment.

We next introduce the category of processes, where objects are processes and
arrows are pairs of open net morphisms.

Definition 14 (category of processes).
We denote by Proc the category where objects
are processes and given two processes π0 : K0 →
Z0 and π1 : K1 → Z1, an arrow ψ : π0 →
π1 is a pair of open net morphisms ψ = 〈ψZ :
Z0 → Z1, ψK : K0 → K1〉 such that the diagram
on the right (indeed the underlying diagram in
Net) commutes.

K0

π0

ψK
K1

π1

Z0
ψZ

Z1

4.1 Projecting Behaviours along Embeddings

Since open net morphisms are designed to capture the idea of “insertion” of a net
into a larger one, they are expected to “reflect” the behaviour in the sense that
given f : Z0 → Z1, the behaviour of Z1 can be projected along the morphism
to the behaviour of Z0. As in (1), this intuition can be formalised for open net
embeddings by showing how a process of Z1, as defined before, can be projected
along f giving a process of Z0. Intuitively, each possible computation in Z1 can
be “projected” to Z0, by considering only the part of the computation of the
larger net which is visible in the smaller net. Ranks are defined correspondingly.

Definition 15 (projection of a process).
Let f : Z0 → Z1 be an open net embedding and let π1 : K1 →

Z1 be a process of Z1. A projection of π1 along f , is a pair
〈π0, ψ〉 where π0 : K0 → Z0 is a process of Z0 and ψ : π0 →
π1 is an arrow in Proc, constructed as follows. Consider the
pullback of π1 and f in Net, thus obtaining the net morphisms
π0 and ψK (see the diagram on the right). Then K0 is obtained
by taking NK0 as underlying net, and defining

NK1

π1
NZ1

NK0

ψK

π0
NZ0

f

o+
K0

= o+
K1

◦ ψK + #in(ψK) and o−K0
= o−K1

◦ ψK + #out(ψK)
(i.e., by opening the places as least as possible to make ψK : K0 → K1 an open
net morphism) and ψ = 〈ψK , f〉.

5 Composing Non-deterministic Processes

Consider a composition diagram in ONetr, as in Fig. 2, where f1 and f2 are
open net embeddings. One would like to establish a clear relationship among the
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Fig. 4. Transition t would be in self-conflict in the composition

behaviours of the involved nets. Roughly, we would like that the behaviour of
Z3 could be constructed “compositionally” out of the behaviours of Z1 and Z2.

In (1) we have shown that in the setting of basic open nets this can be done
only for deterministic processes. Here we show how, in the setting of ranked open
nets, the result extends to general, possibly non-deterministic processes. Given
two processes π1 of Z1 and π2 of Z2 which “agree” on Z0, one can construct
a process π3 of Z3 by amalgamating π1 and π2. Vice versa, each process π3 of
Z3 can be projected over two processes π1 and π2 of Z1 and Z2, which can be
amalgamated to produce π3 again. Hence, all and only the processes of Z3 can
be obtained by amalgamating the processes of the components Z1 and Z2.

5.1 Composition of Non-deterministic Occurrence Open Nets

A basic step towards the composition operation is the formalisation of the in-
tuitive idea of processes of different nets which “agree” on a common part.
Concretely, this amounts to identify suitable conditions which ensure that the
composition of occurrence open nets exists and produces a net in the same class.

First, given a span K1
f1← K0

f2→ K2 we introduce the notion of causality
relation induced by K1 and K2 over K0. When the two nets are composed their
causality relations get “fused”. Hence, to ensure that the resulting net is again
an occurrence net, the induced causality must be a strict partial order.

Definition 16 (induced causality). Let K1
f1← K0

f2→ K2 be a span of em-
beddings in ONetr, where Ki (i ∈ {0, 1, 2}) are occurrence open nets. The
relation of causality <1,2 induced over K0 by K1 and K2, through f1 and f2

is the least transitive relation such that for any x0, y0, if f1(x0)<K1 f1(y0) or
f2(x0)<K2 f2(y0) then x0 <1,2 y0.

When composing non-deterministic occurrence nets, which can include mutual
exclusive branches of computation, we must also avoid that transitions becomes
non-firable due to the creation of self-conflicts. For example, Fig. 4 shows a span
where the induced causality is a strict partial order, but there would be a self-
conflict on t in the composed occurrence net. Hence t would not be firable in
any computation of the net.

To this aim, we introduce new relations, called anti-causality and anti-conflict.
Intuitively, two items x and y in K are related by anti-causality (anti-conflict)
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if, to ensure the firability of each transition in the net, x and y must remain
causally unrelated (not in conflict, resp.) when K is composed with other nets.
Then the idea is to avoid compositions which can lead to situations in which two
items are related both by a relation and by the corresponding anti-relation.

Definition 17 (anti-relations). Let K be an occurrence open net. The anti-
causality ¬<K and anti-conflict ¬#K relations over (S ∪ T )2 are defined by the
following rules (subscripts are omitted as clear from the context):

x¬# x x¬< x (anti1) x¬# y x′ <x
x′ ¬# y

(anti2)

x¬# y x# y′

y′ ¬< y
(anti3) x¬# y

y¬# x
(anti4)

The rules have a clear interpretation. Rule (anti1) states that the each single item
must remain concurrent, while rules (anti2) and (anti3) are obtained by “revert-
ing” the rule which expresses hereditarity of conflict w.r.t. causality. Finally,
(anti4) states that ¬# is symmetric.

Given an open net morphism f1 : K0 → K1, where K0 and K1 are occurrence
nets, in the following we will use the symbols <1, #1, ¬#1 and ¬<1 to denote
the projection over K0 of the corresponding relations over K1, i.e., for any r ∈
{<, #,¬#,¬<} and x0, y0 in K0 we will write

x0 r1 y0 iff f1(x0) rK1 f1(y0)

Given a span of occurrence open nets K1
f1← K0

f2→ K2 we next define the conflict
relation and the anti-relations induced over the net K0 by K1 and K2, through f1

and f2. This has been already done for causality in Definition 16, where induced
causality <1,2 is defined as the transitive closure of <1 ∪ <2.

Definition 18 (induced relations). Let K1
f1← K0

f2→ K2 be a span in ONetr,
where Ki (i ∈ {0, 1, 2}) are occurrence open nets. The conflict relation and the
anti-relations induced over K0 by K1 and K2, through f1 and f2 are as follows.

For x0, y0 in K0, let x0 ↘1 y0 be a shortcut for x0 <1 y0 and there is no z0

such that x0 <K0 z0 ≤1 y0. Observe that in this case x0 must be a place, connected
to y0 through a chain of transitions in K1, but not in K0. The notation x0 ↘2 y0

is defined in the dual way.

– induced conflict #1,2: The relation #1,2 over K0 is the least relation,
hereditary w.r.t. <1,2 such that, for any x0, y0,
1) if x0 #1 y0 or x0 #2 y0 then x0 #1,2 y0.
2) if x0 ↘1 y0 and x0 ↘2 z0 then y0 #1,2 z0.

– induced anti-relations ¬<1,2 and ¬#1,2: The relations ¬#1,2 and ¬<1,2

over K0 are defined as the least relations such that for x0, y0, for i ∈ {1, 2},
if x¬#i y then x¬#1,2 y, and similarly, if x¬<i y then x¬<1,2 y, and closed
under rules (anti1)− (anti4).
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Now we can identify the conditions which guarantee that the composition of two
occurrence open nets is still an occurrence open net.

Definition 19 (consistent span). A span K1
f1← K0

f2→ K2 of occurrence open
nets is consistent if it is composable in ONetr and for any x0, y0 in K0

1. x0 ¬<1,2 y0 ⇒ ¬(x0 <1,2 y0) and x0 ¬#1,2 y0 ⇒ ¬(x0 #1,2 y0);
2. for i, j ∈ {1, 2}, i �= j, we have that x0 ¬#i y0 implies ¬(x0 ↘j y0).

Condition (1) just requires that each anti-relation does not intersect the corre-
sponding relation. Condition (2), instead, just imposes that two anti-conflictual
places in K1 are never connected by a chain of transitions in K2 (and vice versa),
otherwise in the composition one would get a self-conflict.

We can now show that the composition in ONetr of a consistent span of
occurrence nets produces an occurrence net. We first need a preliminary result.

Lemma 20. Let K1
f1← K0

f2→ K2 be a composable span of embeddings in
ONetr, where Ki (i ∈ {0, 1, 2}) are occurrence open nets, and let K1

g1→ K3
g2←

K2 be the composition. Then for any x0, y0 in K0, if we let x3 = g1(f1(x0)) =
g2(f2(x0)) and y3 = g1(f1(y0)) = g2(f2(y0)), we have

1. x0 <1,2 y0 iff x3 <K3 y3;
2. x0 #1,2 y0 iff x3 #K3

y3;
3. x0 ¬#1,2 y0 iff x3 ¬#K3

y3;
4. x0 ¬<1,2 y0 iff x3 ¬<K3 y3.

Proposition 21. In the hypotheses of Lemma 20 above, K1
f1← K0

f2→ K2 is a
consistent span iff the composition K3 is an occurrence open net.

5.2 Amalgamating Non-deterministic Processes

For the rest of this section we refer to a fixed composition in ONetr, as in Fig. 2,
where f1 and f2 are composable open net embeddings. Two processes π1 of Z1

and π2 of Z2 can be amalgamated when they agree on the common subnet Z0.

Definition 22 (agreement of non-deterministic processes). We say that
two non-deterministic processes π1 : K1 → Z1 and π2 : K2 → Z2 agree on Z0

if there are projections 〈π0, ψ
i
K〉 along fi of πi for i ∈ {1, 2} such that the span

K1
ψ1

K← K0
ψ2

K→ K2 is consistent and, for any s0 in K0, if s3 = fi(gi(π0(s0))) is
the corresponding place in Z3, the following holds:

if #out(ψ1
K)(s0) + #out(ψ2

K)(s0) < o−K0
(s0) then s3 ∈ O−

Z3
. (1)

In this case 〈π0, ψ
1
K〉, 〈π0, ψ

2
K〉 are called agreement projections for π1 and π2.

Intuitively, the two processes agree if they have the same projection over Z0.
Additionally, as required by condition (1), if, for a place s0 in K0, the number
of external events that can consume the token in s0 exceeds the events provided
by Z1 and Z2 then the corresponding place in Z3 must be open.
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K0

π0
ψ1

K ψ2
K

K1

π1

φ1
K

Z0f1 f2 K2

π2

φ2
KZ1

g1

K3

π3

Z2

g2

Z3

Fig. 5. Amalgamation of open net processes

Definition 23 (process amalgamation). Let πi : Ki → Zi (i ∈ {0, 1, 2, 3})
be non-deterministic processes and let 〈π0, ψ

1
K〉 and 〈π0, ψ

2
K〉 be agreement pro-

jections of π1 and π2 along f1 and f2 (see Fig. 5). We say that π3 is an amalga-
mation of π1 and π2, written π3 = π1 +ψ1

K ,ψ2
K

π2, if there are projections 〈π1, φ
1〉

and 〈π2, φ
2〉 of π3 over Z1 and Z2, respectively, such that the upper square is a

composition in ONetr.

We next give a more constructive characterisation of process amalgamation,
which also proves that the result is unique up to isomorphism.

Lemma 24 (amalgamation construction). Let π1 : K1 → Z1 and π2 : K2 →
Z2 be non-deterministic processes that agree on Z0, and let 〈π0, ψ

1
K〉 and 〈π0, ψ

2
K〉

be corresponding agreement projections. Then the amalgamation π1+ψ1
K ,ψ2

K
π2 is

a process π3 : K3 → Z3, where net K3 is obtained as the composition in ONetr

of ψ1
K : K0 → K1 and ψ2

K : K0 → K2 and the process mapping π3 : K3 → Z3 is
uniquely determined by the universal property of the underlying pushout diagram
in Net (see Fig. 5). Hence π1 +ψ1

K,ψ2
K

π2 is unique up to isomorphism.

As an example, in Fig. 6 a process for the net Z3 of Fig. 1 is obtained as the
amalgamation of processes of the component nets. The process for Z1 represents
a reservation activity, which can succeed after two attempts or can be finally
cancelled. In the process for Z2 two possible itineraries are visible: the first one
can only be discarded (used by the environment) while the second one can also
trigger a payment, thus resulting in a ticket. Composing the two processes one
gets a full booking process for net Z3.

We next show that each non-deterministic process of a composed net arises
as the amalgamation of non-deterministic processes of the components.

Lemma 25 (process decomposition). Let π3 : K3 → Z3 be a process of Z3

and, for i ∈ {1, 2}, let 〈πi, φ
i〉 be projections of π3 along gi. Then there are

agreement projections 〈π0, ψ
1
K〉, 〈π0, ψ

2
K〉 of π1, π2 such that π3

∼= π1 +ψ1
K ,ψ2

K
π2.

As a consequence we finally have our main result.

Theorem 26 (compositionality for non-deterministic processes). All
and only the non-deterministic processes of Z3 can be obtained as amalgama-
tions of processes of Z1 and Z2 which agree on Z0.
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Fig. 6. An example of process amalgamation

6 Conclusions and Future Work

We have introduced a compositional semantics based on non-deterministic pro-
cesses for ranked open nets, an extension of the basic open net model of (1)
where it is possible to specify, for open places, the maximum number of allowed
connections. The composition operation is characterised as a pushout in a cat-
egory of ranked open nets with concrete morphisms. The notion of agreement
between processes of different sub-components, which is a requirement for pro-
cess composition, builds upon a theory of anti-relations (i.e., anti-causality and
anti-conflict) which could have an interest for Petri nets in general.

We believe that a theory of non-deterministic processes for open nets can
represent a starting point for a modular verification of open nets based on finite
prefixes of the unfolding (10). There are obvious difficulties, e.g., the fact that
open nets are always infinite state (whenever they have at least one input open
place). However the “regularity” of the state space suggests the possibility of
undertaking a symbolic approach, for which analogous work for standard Petri
nets, like (6), could provide an inspiration.

We foresee also potential outcomes in the setting of graph transformation
systems. In fact graph transformation systems can be seen as generalisation of
Petri nets, and it has been often productive to focus first in the latter simpler
setting. The notion of openness (7, 8) as well as the notion of processes (5) have
already been studied in the setting of graph transformation, however until now
there have been no attempts to combine them. The present work can be a first
step in this direction.
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Abstract. Graph constraints were introduced in the area of graph trans-
formation, in connection with the notion of (negative) application condi-
tions, as a form to limit the applicability of transformation rules. However,
in a previous paper, we showed that graph constraints may also play a sig-
nificant role in the area of visual software modelling or in the specification
and verification of semi-structured documents or websites (i.e. HTML or
XML sets of documents). In that paper we present a sound and complete
proof system for reasoning with this kind of constraints. Those results ap-
ply, in principle, to any category satisfying some given properties, but the
category of (typed) attributed graphs does not satisfy these properties. In
particular, the proof rules introduced for reasoning with standard graph
constraints allow us to infer infinitary formulas, making the logic incom-
plete. In addition, using the straightforward generalization of standard
graph constraints, there is no obvious way of stating properties about the
attributes of the given graphs.

In this paper we introduce a new formulation for attributed graph
constraints. More precisely, the idea is to see these constraints as stan-
dard graph constraints whose attributes are just variables, together with
a logic formula that expresses properties that must be satisfied by these
attributes. Then a proof system, which extends the one introduced in the
previous paper, is presented and it is shown to be sound and complete.

1 Introduction

Graph constraints were introduced in the area of graph transformation, in con-
nection with the notion of (negative) application conditions, as a form to limit
the applicability of transformation rules [5,7,10,4,8,9]. However, in a previous
paper [15], we showed that graph constraints may also play a significant role in
the area of visual software modelling or in the specification and verification of
semi-structured documents or websites (i.e. HTML or XML sets of documents).
For instance, in the area of software modelling graph constraints can be com-
plementary to the use of OCL when defining systems constraints. On the other
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hand, we consider that graph constraints can be more adequate for the speci-
fication of websites than approaches like [1,6], based on extending a fragment
of first-order logic with XPath notation, which makes specifications very ver-
bose and, as a consequence, unpleasant to read and to write. In addition, in
these approaches, given a specification of a class of documents we can check if
a given document satisfies the specification, but it is not studied how to reason
about the specifications themselves, for instance for checking their consistency.
The reason is probably that they would need to use associative-commutative
unification which can be very costly and difficult to implement (in general, two
arbitrary terms may have a doubly exponential amount of most general unifiers).

Using graph constraints to describe classes of documents is an approach in
a way similar to Schematron [12], a language and a tool that is part of an
ISO standard (DSDL: Document Schema Description Languages). The language
allows us to specify constraints on XML documents by describing directly XML
patterns (using XML) and expressing properties about these patterns. Then,
the tool allows us to check if a given XML document satisfies these constraints.
Unfortunately, this approach has no proper foundations. Actually, in some sense
our work could serve to provide these foundations and to extend it by allowing
the use of more general kinds of patterns and by providing deduction capabilities.

Unfortunately, the results in [15] were not defined for attributed graphs, but
for standard graphs (without attributes). Those results apply, in principle, to
any category satisfying some given properties. However, the category of (typed)
attributed graphs does not satisfy these properties. In particular, the proof rules
introduced for reasoning with standard graph constraints, when dealing with
attributed graphs, allow us to infer infinitary formulas, making the logic incom-
plete. In addition, using the straightforward generalization of standard graph
constraints, there is no obvious way of stating properties about the attributes of
the given graphs. This issue is discussed in more detail in Section 3.

In this paper we introduce a new formulation for attributed graph constraints.
The new notion of attributed constraint combines a (standard) graph constraint
with a formula describing a condition on the attributes of the graphs involved
in the constraint. Then a proof system, which extends the one introduced in the
previous paper, is presented and it is shown to be sound and complete.

The work that we present is not the first logic to reason about graphs. In par-
ticular, with different aims, Courcelle in a series of papers has studied in detail the
use of monadic second-order logic (MSOL) to express graph properties (for a sur-
vey, see [2]). That logic is quite more powerful than the one that we study in this
paper. For instance, we cannot express global properties about graphs (e.g that
a graph is connected), but using MSOL we can. Actually, we think that MSOL is
too powerful for the kind of applications that we have in mind.

The paper is organized as follows. In the second section we present some basic
concepts that are used along the paper. In particular we present the concepts of
labeled and attributed graphs and the notions of (standard) graph constraints.
Then, in section 3 we introduce attributed graph constraints and present a small
example to motivate their use in connection with visual modelling or website



276 F. Orejas

specification. In section 4 we describe the framework that we use for checking
satisfiability of sets of constraints, which is based on the use of inference rules.
Then, in section 5 we present inference rules for the classes of constraints con-
sidered, showing their soundness and completeness. Finally, in the conclusion we
briefly discuss the results presented.

2 Graphs and Graph Constraints

In this section we present the basic notions that are used in this paper. First we
present the basic notions related to attributed graphs, and then we introduce
the kind of (non-attributed) graph constraints that we consider.

2.1 Attributed Graphs

We present attributed graphs following [3]. More precisely, first we introduce a
notion of labeled graphs (called E-graphs in [3]) as a kind of graphs where the
labels are just seen as special nodes and where we associate a label to a (standard)
node (resp. to an edge) by having a special kind of edge from the node (resp.
from the edge) to its label. Then, we define attributed graphs as labeled graphs
where the labels are elements of a given (many-sorted) algebra. We could have
also extended these definitions to deal with their typed versions, however to
simplify the overall presentation we have preferred to deal with untyped graphs.

Definition 1. (Labeled Graphs and morphisms). A labeled graph over the
set of labels L is a tuple G = (V, L, EG, ENL, EEL, {sj, tj}j∈{G,NL,EL})
consisting of:

– V and L, which are the sets of graph nodes and of label nodes, respectively.
– EG, ENL, and EEL, which are the sets of graph edges, node label edges,

and edge label edges, respectively.

and the source and target functions:

– sG : EG → VG and tG : EG → VG

– sNL : ENL → L and tNL : ENL → L
– sEL : EEL → L and tEL : EEL → L

Given the graphs G and G′, a labeled graph morphism f : G→ G ′ is a tuple,
〈fVG : VG → V ′

G, fL : L → L′, fEG : EG → E′
G, fENL : ENL → E′

NL, fEEL :
EEL → E′

EL〉 such that f commutes with all the source and target functions.

As said above, an attributed graph is a labeled graph such that the labels are
elements of a given algebra:

Definition 2. (Attributed Graphs and Morphisms). Given a signature
Σ, an attributed graph AG = (G,A) consists of a Σ-algebra A and of a la-
beled graph G = (VG, L, EG, ENL, EEL, {sj , tj}j∈{G,NL,EL}), such that L is the
disjoint union of all the carrier sets As for every sort s ∈ S. Given the at-
tributed graphs AG = (G,A) and AG′ = (G′,A′), an attributed graph morphism
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f : AG→ AG ′ is a pair, 〈fG : G→ G′, fA : A→ A′〉 such that fG is a labeled
graph morphism, fA is a Σ-homomorphism and such that, for every sort s ∈ S
and every a ∈ As, fG

L (a) = fA
s (a).

In several results of the paper, given two graphs AG, AG ′ we need to put them
together in all possible ways. This is done using the construction AG⊗AG ′:

Definition 3. (Jointly surjective morphisms). Two attributed graph mor-
phisms m1 : AG1 → AG and m2 : AG2 → AG are jointly surjective if for every
element a in AG (i.e. a is a node or an edge of any kind) there is an element
a1 in AG1 or an element a2 in AG2 such that m1(a1) = a or m2(a2) = a.

Given two graphs AG and AG ′, the set of all pairs of jointly surjective monomor-
phisms from AG and AG ′ is denoted AG⊗AG ′, that is, AG⊗AG ′ = {m : AG→
H ← AG ′ : m′ | m and m′ are jointly surjective monomorphisms}.

Note that, in general, AG ⊗ AG ′ is an infinite set, unless the sets of labels of
AG and AG ′ are both finite.

2.2 Graph Constraints

The underlying idea of a graph constraint is that it should specify that certain
structures must be present (or must not be present) in a given graph. For in-
stance, the simplest kind of graph constraint, ∃C, specifies that a given graph
G should include (a copy of) C. Obviously, ¬∃C specifies that a given graph
G should not include C. A slightly more complex kind of graph constraints are
atomic constraints of the form ∀(c : X → C) where c is a monomorphism (or,
just, an inclusion). This constraint specifies that whenever a graph G includes (a
copy of) the graph X it should also include (a copy of) its extension C. However,
in order to enhance readability (the monomorphism arrow may be confused with
the edges of the graphs), in our examples we will display this kind of constraints
using an if - then notation, where the two graphs involved have been labeled
to implicitly represent the given monomorphism. For instance, the constraint:

if a b c then a b c

specifies that a graph must be transitive, i.e. the constraint says that for every
three nodes, a, b, c if there is an edge from a to b and an edge from b to c then
there should be an edge from a to c.

Graph constraints can be combined using the standard connectives ∨ and ¬
(as usual, ∧ can be considered a derived operation). In [4,16] a more complex
kind of constraints, called nested constraints, is defined, but we do not consider
them in this paper.

It may be noted that the constraint ∃∅, where ∅ denotes the empty graph, is
satisfied by any graph, i.e. ∃∅ may be considered the trivial true constraint.
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3 Attributed Graph Constraints

The notions and examples presented in the previous subsection deal with (stan-
dard) graphs and graph morphisms, but these concepts could, in principle, be
used to define a notion of constraint in any arbitrary category. Actually, in [15]
it is shown that the results presented in that paper apply to a large class of cat-
egories. However, this class does not include the category of attributed graphs
as presented above. The main problem is related to the fact that for arbitrary
attributed graphs the construction AG⊗ AG ′ is an infinite set, unless the sets
of labels of AG and AG ′ are both finite. In that context the completeness result
stated in that paper would not hold.

In addition, there are other problems with more practical implications. For
instance, suppose that we want to state the basic constraint ∃AC over some class
of attributed graphs. To state this constraint we would need to define the algebra
A that defines the attributes in the graph AC. But this implies that we need
a specification language to define such algebras. Obviously, having to write a
complete specification for each constraint may be considered a bit cumbersome.

Moreover, if we want to define constraints over attributed graphs we will
probably want to state conditions over the values included in the given graph.
If these conditions are just conditions that can be expressed as equalities, then
we can specify these conditions by an adequate definition of the corresponding
algebra. However, if they cannot be expressed as a simple equality (for instance
because a condition involves the use of quantifiers) then there may be no obvious
way to express it by an adequate definition of the corresponding algebra A.

The above problems have a simple solution which is partially inspired on the
definition of programs in Constraint Logic Programming [11,13]. We consider
that an atomic attributed graph constraint over a given algebraic signature Σ,
including predicate and function symbols, is a triple 〈V , ∀(c : X → C), α〉, where
V is a finite set of variables, c : X → C is a monomorphism between the graphs
X and C that are labeled over V (i.e, c is a standard graph constraint) and α
is a first-order Σ-formula over the variables in V . Then, we say that a given
attributed graph AG = (G,A) satisfies the constraint 〈V , ∀(c : X → C), α〉 if,
whenever AG includes a copy of the graph X (for a given assignment of values
to the variables in V), AG also includes a copy of its extension C such that the
formula α holds in A for that assignment:

Definition 4. (Syntax and satisfaction of atomic attributed graph con-
straints). An atomic attributed graph constraint over a signature Σ is a triple
〈V , ∀(c : X → C), α〉, where V is a finite set of variables, X and C are labeled
graphs over V, c : X → C is a labeled graph monomorphism, which is the identity
over the variables and α is a Σ(V)-formula. A constraint 〈V , ∀(c : X → C), α〉
where X = ∅, is called a basic constraint and is denoted 〈V , ∃C, α〉. Given a
constraint 〈V , ∀(c : X → C), α〉, we call ∀(c : X → C) its associated graph
constraint and α its associated attribute condition.

An attributed graph AG = (G,A) satisfies a constraint 〈V , ∀(c : X → C), α〉,
if for every monomorphism h : X → G there is a monomorphism f : C → G
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such that h = f ◦ c and A |=fV α, where A |=fV α denotes, as usual, that the
algebra A satisfies the formula α when the variables in α are replaced by the
their corresponding values according to fV .

As in the case of standard graph constraints, we can define general attributed
constraints using the logical connectives ∨ and ¬. Then, satisfaction may be
extended accordingly. Anyhow, in this paper, for simplicity, we will assume that
our specifications consist only of positive and negative basic constraints and
positive atomic constraints. However, in our inference systems, in addition, we
may use as premises and infer arbitrary clauses of the form:

L1 ∨ · · · ∨ Ln

where each literal Li is either a positive or negative basic constraint.
In this paper we have not considered the case where the given set of con-

straints includes negative atomic constraints, because this case poses additional
difficulties. However, we think that using the same technique that was used
in [15], based on a notion of contextual constraints, the extension should be
straightforward. As a consequence, it should also be relatively simple to extend
our approach to deal with specifications consisting of general clauses. Actually,
this would mean that we could deal with arbitrary formulas since they could
always be transformed into clausal form.

It may be noted that using only variables as labels in a given constraint is
not a limitation. For instance, if we would like to state that a given node should
have a certain value v as an attribute, we can label this node with the variable
X and, then, state X = v in the associated condition.

Example 1. Let us suppose that we want to describe an information system
modeling the lecturing organization of a department. Then the type graph of
(part of) our system could be the following one:

Subject
string Name

Lecturer
string Name

Room
int Number
int Start
int End

This means that in our system we have three types of nodes. Rooms including
three attributes, the room number and a time slot denoted by the attributes Start
and End, and Subjects and Lecturers, having its name as an attribute. We also
have two types of edges. In particular, an edge from a Subject S to a Lecturer
L means, obviously, that L is the lecturer for S. An edge from a Subject S to to
a Room means that the lecturing for S takes place in that room for the given
time slot. Now for this system we could include the following constraint:

(1) ∃
(

Subject
Name=X

Subject
Name=Y

)
with X = CS1 ∧ Y = CS2
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meaning that the given system must include the compulsory subjects Computer
Science 1 and Computer Science 2. Moreover we may have a constraint, like
constraint (2), saying that every subject included in the system must have some
lecturer assignment and some room assignment:

(2) if
Subject

then
Subject

Lecturer

Room

We may also have constraints expressing some negative conditions. For in-
stance, that there cannot be a room node with a negative time slot (constraint
(3)). Or that a room is not assigned at the same time to two subjects (constraint
(4)) or that two different rooms are not assigned with overlapping time slots to
the same subject (constraint (5)):

(3) ¬∃
( Room

Number=N
Start=T1
End=T2

)
with T1 > T2

(4) ¬∃
(

Room

Subject

Subject )

(5) ¬∃
(

Subject

Room
Number=N
Start=T1
End=T2

Room
Number=N ′

Start=T ′1
End=T ′2

)
with (T1 < T ′

1) ∧ (T ′
2 < T2)

or, finally (constraint (6)), that a lecturer does not have to lecture on two
different subjects in two different rooms at the same time:

(6) ¬∃
(

Lecturer

Subject

Subject

Room
Number=N
Start=T1
End=T2

Room
Number=N ′

Start=T ′1
End=T ′2

with (T1 < T ′
1) ∧ (T ′

2 < T2)

)



Attributed Graph Constraints 281

The system that we are describing with these graphical constraints may be
not an information system, but the set of web pages of a department, where an
arrow from a node of type t1 to a node of type t2 may mean that there is a
link between two web pages, or it may mean that the information of type t2 is a
subfield of the information of type t1. In this case, we could have displayed our
constraints not in terms of graphs, but as HTML or XML expressions.

4 Refutation Procedures

In this section we describe the framework that we use to present our refutation
procedure. We follow an approach which is quite standard in the area of auto-
mated deduction (e.g. this is the approach followed to describe resolution, or
paramodulation theorem proving). The procedure is defined by means of some
inference rules. Then, a refutation procedure can be seen as a (possibly non-
terminating) nondeterministic computation where the current state is given by
the set of formula that have been inferred until the given moment and where
a computation step means adding to the given state the result of applying an
inference rule to that state. The procedure terminates when no new inference
can be applied or when the false formula (which is represented by the empty
clause, denoted �) is inferred. In the latter case, we conclude that the given set
of formulas is unsatisfiable.

We assume that a first-order specification SP is given which characterizes
the algebras that can be used for defining the class of attributed graphs of
interest. This means that our procedure checks if there exists an attributed graph
AG = (G,A), where A ∈ Mod(SP ) that satisfies the given set of constraints,
where Mod(SP ) denotes the class of models of the specification SP. In this sense,
our refutation procedure is parameterized by SP . Actually, some inference rules
check, as a side condition, if certain formulas are satisfied by Mod(SP ). Thus
a proof tool implementing this procedure would need to be built on top of a
deductive tool for first-order specifications.

In our case, we assume that the inference rules have the form:

Γ1 α

Γ2

where Γ1 and Γ2 are clauses including only positive literals and where α is
an atomic constraint. Moreover, Γ1 is assumed to belong to the current set of
inferred clauses and α is assumed to belong to the original set of constraints.
Then a refutation procedure for a set of constraints C is a sequence of inferences:

C0 ⇒C C1 ⇒C · · ·⇒C Ci ⇒C . . .

where the initial state just includes the true clause (i.e. C0 = {〈∅, ∃∅, true〉})
and where we write Ci ⇒C Ci+1 if there is an inference rule as the one above such
that Γ1 ∈ Ci, α ∈ C, and Ci+1 = Ci ∪ {Γ2}. Moreover, we assume that Ci ⊂ Ci+1,
i.e. Γ2 /∈ Ci, to avoid useless inferences.
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Since the application of rules is nondeterministic, there is the possibility that
we never apply some key inference. To avoid this problem we assume that proce-
dures are fair, which means that if at any moment i, there is a possible inference
Ci ⇒C Ci ∪ {Γ}, then at some moment j we have that Γ ∈ Cj. Then, a refuta-
tion procedure for C is sound if whenever the procedure infers the empty clause
we have that C is unsatisfiable. And a procedure is complete if, whenever C is
unsatisfiable, we have that the procedure infers the empty clause.

5 Proof Rules for Basic Constraints and Positive Atomic
Constraints

In this section we provide inference rules for the kind of constraints consid-
ered in this paper, i.e. when specifications include (positive or negative) basic
constraints and positive atomic constraints. This means that the given specifica-
tions are assumed to consist of literals of the form 〈V1, ∃C1, α1〉, ¬〈V1, ∃C1, α1〉,
or 〈V2, ∀(c : X → C2), α2〉. Moreover, as explained in the previous section, we
assume that a specification SP is given and we can check if a given formula is
satisfiable in Mod(SP ). In addition, without loss of generality (we can do some
variable renaming if necessary), we assume that the sets of variables involved in
the premises of the rules are disjoint.

Satisfiability is based on the four rules below.

〈V1, ∃C1, α1〉 ∨ Γ ¬〈V2, ∃C2, α2〉
〈V1, ∃C1, (α1 ∧ ¬α2 ∧ eq(m))〉 ∨ Γ

(R1)

if there exists a monomorphism m : C2 → C1 and if the equivalence of (α1 ∧
¬α2∧eq(m)) and α1 is not a logical consequence of SP , and where eq(m) denotes
the formula

∧
X∈V2

X = m(X)

〈V1, ∃C1, α1〉 ∨ Γ 〈V2, ∃C2, α2〉
(
∨

〈f1:C1→G←C2:f2〉∈(C1⊗C2)
〈V , ∃G, α1 ∧ α2 ∧ eq(f1) ∧ eq(f2)〉 ∨ Γ

(R2)

if there is no monomorphism m : C2 → C1 and where V is the set of labels of
the graph G.

〈V1, ∃C1, α1〉 ∨ Γ 〈V2, ∀(c : X → C2), α2〉
(
∨

〈f1:C1→G←C2:f2〉∈G〈V , ∃G, α1 ∧ α2 ∧ eq(f1) ∧ eq(f2)〉 ∨ Γ
(R3)

if there is a monomorphism m : X → C1 and there is no monomorphism h :
C2 → C1 such that m = h◦ c and where V is the set of labels of the graph G and
where G is the set consisting of all cospans (f1 : C1 → G← C2 : f2) ∈ (C1⊗C2)
such that the diagram below commutes:



Attributed Graph Constraints 283

C1

f1

���
��

��
��

X

c
���

��
��

��
�

m
01								

G

C2

f2

01							

Finally, the fourth rule is:

〈V , ∃C, α〉 ∨ Γ

Γ
(R4)

if α is not satisfiable in Mod(SP ).
The first rule just says that if a given graph AG should include a copy of

C1 such that α1 holds, but should not include a copy of C2 such that α2 holds,
and if, in addition, C2 is included in C1, then we can infer that AG should
include a copy of C1 such that α1 holds but α2 does not hold. The requirement
in the side condition that the formulas (α1 ∧¬α2 ∧ eq(m)) and α1 should not be
a logical consequence from Mod(SP ) is just to avoid the repeated application
of the same inference. The second rule can be seen as a rule that, given two
constraints, builds a new constraint that subsumes them. More precisely, the
graphs involved in the new literals in the conclusion of the inference rule, i.e.
the graphs G, satisfy both graph constraints ∃C1 and ∃C2 and, in addition, the
associated attribute condition α1∧α2∧eq(f1)∧eq(f2) represents the combination
of the conditions of the atomic constraints involved in the rule. This means
that if we apply this rule repeatedly, using all the positive constraints in the
original set C, we would build (minimal) graphs that satisfy the graph part of
all the positive basic constraints in C. If, in addition, we find a substitution that
satisfies the associated attribute conditions, we would have (minimal) attributed
graphs that satisfy all the positive basic constraints in C. The third rule is similar
to rule (R2) in the sense that, given a positive basic constraint and a positive
atomic constraint, it builds a disjunction of literals representing graphs that try
to satisfy both constraints. However, in this case the satisfaction of the graph
constraint ∀(c : X → C2) is not ensured. In particular, the idea of the rule is that
if we know that X is included in C1 then we build all the possible extensions of
C1 which also include C2 (each G would be one of such extensions). But in this
case we cannot be sure that G satisfies 〈V2, ∀(c : X → C2), α2〉, because G may
include more instances of X , which perhaps were not included in C1. Finally, the
last rule just says that if a given clause includes a literal with an unsatisfiable
attribute condition then we can delete this literal.

The rules (R1), (R2), (R3) and (R4) are sound and complete. The soundness
of the first rule is quite obvious. If an attributed graph AG satisfies both premises
and in addition we know that C2 is included in C1, then either AG satisfies Γ
or AG includes C1 and it satisfies α1 but not α2 (with respect to the renaming
defined by m). The soundness of the second rule is based on the pair factorization
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property: Given two (mono)morphisms, g1 : C1 → H , g2 : C2 → H , with the
same codomain H there exists a graph G and monomorphisms f1 : C1 → G,
f2 : C2 → G and h : G → H such that f1 and f2 are jointly surjective and the
diagram below commutes:

C1

f1

��

g1

���
��

��
��

�

G
h �� H

C2

f2

��

g2

01								

Notice that, in that case, (f1 : C1 → G ← C2 : f2) ∈ (C1 ⊗ C2). Then, if an
attributed graph AH = (H,A) satisfies 〈V1, ∃C1, α1〉 and 〈V2, ∃C2, α2〉 then we
can see that AH also satisfies the constraint 〈V , ∃G, α1∧α2∧eq(f1)∧eq(f2)〉. On
one hand, we have that, according to the pair factorization property, h : G→ H .
On the other, A |=h α1 because A |=g1 α1 and g1 = h ◦ f1 (and similarly for α2)
and A |=h eq(f1) ∧ eq(f2) because the above diagram commutes.

The proof of soundness of (R3) is very similar to the proof for rule (R2).
If AH = (H,A) satisfies 〈V1, ∃C1, α1〉 and 〈V2, ∀(c : X → C2), α2〉, using pair
factorization we get the diagram below:

C1

f1 ���
��

��
��

h1

		��
���

���
���

���

X

c
���

��
��

��
�

m
01								

G �� H

C2

f2

01							 h2

NM��������������

then, AH will also satisfy 〈V , ∃G, α1 ∧ α2 ∧ eq(f1) ∧ eq(f2)〉.
Finally, the soundness of (R4) is trivial since no attributed graph AG = (G,A)

can satisfy a constraint 〈V , ∃C, α〉 if α is unsatisfiable in A.
Let us now sketch the proof of completeness of these rules. The underlying idea

is inspired by a technique called model construction used for proving complete-
ness of some inference systems for first-order logic with equality [14]. According
to this technique, we see the inference rules as steps for building a model of the
given set of constraints C, in case it is satisfiable. In our case, first we see that if
our constraints are satisfiable then we can build a labeled graph which satisfies
the graph part of the constraints in C. Then, we see that this labeled graph may
be transformed into an attributed graph over some algebra A in Mod(SP ) that
satisfies all the constraints in C.

The construction is as follows. We consider sequences of basic constraints
〈∅, ∃∅, true〉 ≺ 〈V1, ∃C1, α1〉 ≺ · · · ≺ 〈Vi, ∃Ci, αi〉 ≺ . . . , where Ci ≺ Ci+1 if
(a) 〈Vi+1, ∃Ci+1, αi+1〉 is a “new” literal in the clause inferred after applying
rules (R1), (R2) or (R3) to 〈Vi, ∃Ci, αi〉 and to some positive constraint in C
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(this means that the graph Ci is included in Ci+1) ; and (b) αi is satisfiable in
Mod(SP ). Each of these sequences can be seen as a path for building a possible
model of the graph part for the constraints in C. Note that, if condition (b) does
not hold then it is useless to continue this path. We require these sequences
to be fair, which means that if we can have 〈Vi, ∃Ci, αi〉 ≺ 〈V ′

i+1, ∃C′
i+1, α

′
i+1〉

via some inference, where α′
i+1 = αi ∧ α ∧ eq(f1) ∧ eq(f2) and the sequence

is infinite, then there would be some j > i such that Cj includes C ′
i+1 and

α′
j = αj−1 ∧ α ∧ eq(f ′

1) ∧ eq(f ′
2), for some adequate monomorphisms f ′

1 and f ′
2.

Before continuing with the proof sketch it is important to notice that if
〈Vi, ∃Ci, αi〉 is an element of one of these sequences then the condition αi is
satisfiable in A ∈ Mod(SP ) for some substitution h : Vi → A. This implies that
the attributed graph ACi = (C′

i,A), where C′
i is obtained from Ci by replacing

each variable X ∈ Vi by h(X), satisfies the constraint 〈Vi, ∃Ci, αi〉. Moreover
ACi also satisfies all the basic constraints in C which are used in inferences in
the sequence 〈∅, ∃∅, true〉 ≺ 〈Vi, ∃Ci, αi〉.

Now, resuming the proof sketch, we have three cases:

– All maximal sequences of this kind are finite and their last element 〈Vi, ∃Ci, αi〉
are such that αi is unsatisfiable in A. This means that no path is useful for
building a model. Then it can be shown that a fair procedure would generate
the empty clause for C.

– There is a finite sequence whose last element is 〈Vi, ∃Ci, αi〉 where αi is
satisfiable in A ∈ Mod(SP ) for some substitution h : Vi → A. Then any
attributed graph ACi = (C′

i,A) satisfies all the constraints in C, where C′
i

is obtained from Ci by replacing each variable X ∈ Vi by h(X).
– There is an infinite fair sequence. Then we can prove that the graph C, which

is the union of all the graphs in the sequence (the colimit of the sequence
of graphs ), is a model of the graph part of all the positive constraints
in C. In addition, we know that each attribute condition in the sequence,
αi, is satisfiable in Mod(SP ) and, moreover, we know by construction that
for every i, αi+1 implies αi. Then, by compactness of first-order logic, we
know that the set consisting of all the constraints αi is satisfiable for some
A ∈ Mod(SP ) via some substitution h : Vi → A. As a consequence, as in the
previous case, any attributed graph AC = (C′,A) satisfies all the constraints
in C, where C′ is obtained from C by replacing each variable X ∈ V by h(X),
and where V is the set of labels of the graph C.

As a consequence, we have:

Theorem 1. (Soundness and Completeness) Given an attribute specifica-
tion SP , let C0 ⇒C C1 ⇒C · · · ⇒C Ck . . . be a fair refutation procedure defined
over a set of basic constraints and positive atomic constraints C, based on the
rules (R1), (R2), (R3) and (R4). Then, C is unsatisfiable if and only if there is
a j such that the empty clause is in Cj.

Example 2. Let us consider the constraints that are included in Example 1 (i.e.
the constraints (1), (2), (3), (4), (5), and (6)). If we apply the third rule on
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constraints (1) and (2), and again on the resulting clause and on constraint (3)
then we would infer the following clause:

(7) ∃
(

Subject
Name=X

Lecturer

Room

Subject
Name=Y

Lecturer

Room

with X = CS1 ∧ Y = CS2

)
∨ ∃

(
Subject
Name=X

Lecturer

Room

Subject
Name=Y

Room

with X = CS1 ∧ Y = CS2

)
∨

∨ ∃
(

Subject
Name=X

Lecturer

Room

Subject
Name=Y

Lecturer

with X = CS1 ∧ Y = CS2

)
∨ ∃

(
Subject
Name=X

Lecturer

Room

Subject
Name=Y

with X = CS1 ∧ Y = CS2

)

This clause states that the graph should include two subjects (CS1 and CS2)
and these subjects may be assigned to two different rooms and to either two
different lecturers, or to the same lecturer, or they may be assigned to the same
room, and to either different lecturers, or the same lecturer. Obviously, the last
two constraints in this clause violate constraint (4), which means that we can
eliminate them using twice rule (R1), yielding the following clause:

(8) ∃
(

Subject
Name=X

Lecturer

Room

Subject
Name=Y

Lecturer

Room

with X = CS1 ∧ Y = CS2

)
∨ ∃

(
Subject
Name=X

Lecturer

Room

Subject
Name=Y

Room

with X = CS1 ∧ Y = CS2

)

Finally, we can apply rule (R1) to clause (8) and to constraint (6) and then,
again, rule (R1) to the resulting clause and to constraint (6). The result would
be the clause:
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(9) ∃
(

Subject
Name=X

Lecturer

Room

Subject
Name=Y

Lecturer

Room

with X = CS1 ∧ Y = CS2

)
∨ ∃

(
Subject
Name=X

Lecturer

Room
Number=N
Start=T1
End=T2

Subject
Name=Y

Room
Number=N ′

Start=T ′1
End=T ′2

with X = CS1 ∧ Y = CS2 ∧
∧¬(T1 < T ′

1 ∧ T ′
2 < T2)∧

∧¬(T ′
1 < T1 ∧ T2 < T ′

2)

)

where the second literal states that if the two subjects are lectured by the same
lecturer then there should be no overlapping between the time slots associated
to the two subjects. Then no further inference can be applied, which means that
the given set of constraints is satisfiable

6 Conclusion

In this paper we have extended the notion of graph constraint to deal with at-
tributed graphs. The new notion of attributed constraint combines a (standard)
graph constraint with a formula describing a condition on the attributes of the
graph. In addition, we have shown that this new kind of constraint can be an
adequate visual formalism for specifying classes of semi-structured documents
(as websites) or to define constraints associated to visual modelling formalisms.

We have also shown how can we reason with this new formalism. We have
provided inference rules that are sound and complete for the class of basic and
positive atomic constraints. Contrary to [15] we have not dealt with negative
atomic constraints. Nevertheless, we believe that the techniques that we used
in that paper for dealing with that kind of constraints can be extended in a
straightforward manner to deal with the attributed case.

We have not yet implemented these techniques, although it would not be too
difficult to implement them on top of the AGG system, given that the basic
construction that we use in our inference rules (i.e. building G1 ⊗ G2) is al-
ready implemented there. As a consequence, it would be difficult to compare
the performance of this approach with an obvious possible approach based on
coding this constraints into standard first-order logic. Obviously, this compar-
ison would depend on the coding chosen. However, the coding considered in
[1], defined just for XML documents and not for arbitrary graphs, needs to use
associative-commutative matching for checking satisfaction of constraints. This
means that to implement deduction they would probably need to use associative-
commutative unification which is very costly.
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Abstract. The tautology problem is the problem to prove the validity
of statements. In this paper, we present a calculus for this undecidable
problem on graphical conditions, prove its soundness, investigate the
necessity of each deduction rule, and discuss practical aspects concerning
an implementation. As we use the framework of weak adhesive HLR
categories, the calculus is applicable to a number of replacement capable
structures, such as Petri-Nets, graphs or hypergraphs.

Keywords: first-order tautology problem, high-level conditions, theo-
rem proving, resolution, weak adhesive HLR categories.

1 Introduction

(High-level) Conditions are a graphical formalism to specify valid objects as well
as morphisms, i.e., they can be used to describe system or program states as well
as specify matches for transformation rules. They provide an intuitive formalism
for structural properties and are well suited for reasoning about the behavior of
transformation systems.

Our goal is to decide the correctness of graphical specifications consisting
of a precondition, a program [HP01, HPR06] and a postcondition. A classical
approach [DS89] to this problem is the proof or refutation that the precondition
implies the weakest precondition [HPR06] of the program and the postcondition.
To decide such an implication is a special instance of the tautology problem: the
decision whether or not a claimed statement is valid for all possible objects.

Is c valid ?
∀G ∈ C. G |= c ?

condition c yes/no

For the category of finite, directed, labeled graphs, conditions are expressively
equivalent [Ren04, HP08] to first order logic on graphs [Cou90]. Consequently,
the tautology problem for arbitrary conditions over arbitrary categories is not
decidable, i.e., there does not exist an algorithm that decides the validity of
� This work is supported by the German Research Foundation (DFG), grants GRK
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arbitrary conditions over arbitrary categories. In the context of finite graphs,
the tautology problem is not even semi-decidable: while it is possible to search
for proofs, one is not guaranteed to find one, even if there is no (finite) graph
that does not satisfy the given condition.

In the case of graphs, the translation of conditions into first order logic [HP08]
enables to solve the tautology problem using existing first-order theorem provers
such as Vampire [RV02], Darwin [BFT06] or Prover9 [McC08]. However, 7
out of 74 example tautologies generated from correct program specifications
of the “access control” example in [HPR06] cannot be solved by any of the
aforementioned tools, given 1 hour time per tautology (Intel T5600, 1.83GHz).
One reason for this is that first-order theorem provers need to be restricted to
graphs via axioms that become part of the problem to be solved. In contrast,
a theorem prover based on conditions would be restricted to the considered
category in a natural, constructive way. This property in combination with other
advantages makes it worthwhile to investigate a theorem prover dedicated to
conditions.

In this paper, we present a calculus for conditions over adhesive high-level
replacement categories. Taking resolution [Rob65], the most successful approach
to first-order theorem proving, as an ideal, we present six deduction rules able
to refute conditions over graphs and graph-like structures in conjunctive normal
form. We show that every rule application corresponds to a logical deduction,
and investigate if omission of any rule leads to an incomplete calculus. We discuss
practical aspects concerning an implementation such as filtering out structurally
equivalent conditions, and briefly compare our results with related work, e.g.
Koch et. al. [KMP05] and Orejas et. al. [OEP08].

The paper is organized as follows. In Section 2, the definition of conditions
is reviewed and examples are given. In Section 3, the calculus is presented, and
its soundness is shown. In Section 4, we discuss practical aspects concerning
an implementation. We briefly relate our results to other work in Section 5. A
conclusion including further work is given in Section 6.

2 Conditions

In this section, we recall the definition of conditions on graphs and graph-like
structures. To abstract from a specific structure, we use the framework of weak
adhesive HLR categories. A detailed introduction can be found in [EEPT06].

Assumption 1. Assume that 〈C,M〉 is a weak adhesive HLR category consist-
ing of a category C of objects and a class M of monomorphisms. Additionally,
we require

– an M-initial object I, i.e., an object I ∈ C such that, for every object G ∈ C,
there exists a unique morphism iG: I → G and iG is in M,

– epi-M-factorization, i.e., for every morphism there is an epi-mono-
factorization with monomorphism in M,
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– a finite number of M-morphisms, i.e. for every objects G, H, there exists
only a finite number of morphisms G ↪→ H in M (up to isomorphism),

– a finite number of epimorphisms for any domain G, i.e. for every object G,
there is only a finite number of epimorphisms e: G → H (up to isomorphism).

The last two requirements ensure the effectiveness of the constructions in this
paper. From now on, morphisms in C are simply referred to as morphisms.

Example 1. The category Graph of finite, directed, labeled graphs together with
the class M of all injective graph morphisms constitutes a weak adhesive HLR
category [EEPT06] satisfying the assumptions. The empty graph ∅ is the M-
initial object.

Notation. A morphism m with domain A and codomain B is denoted by
m: A→B. We write “↪→” instead of “→” to indicate that the morphism is in M.
For graph morphisms, the mapping of nodes is depicted by indices, if necessary.

For a certain rule in our calculus, we require the notion of M-pushout. An M-
pushout is a special pushout for which it can be guaranteed that the unique
morphism u is in M, if the commutative morphisms p, q are in M.

Definition 1 (M-pushout). A pushout c ◦ a = d ◦ b with
c, d ∈ M is called M-pushout, if for all morphisms p, q with
p◦a = q ◦ b, the unique existing morphism u with p = c◦u and
q = d ◦ u is in M.

We use the following characterization of M-pushouts.

• •

• •

•

b

a d

c

(PO) q

u

p

Fact 1 (M-pushout). A pushout c◦a = d◦ b with c, d ∈M is an M-pushout,
if and only if for all epimorphisms e with dom(e) = codom(d) we have e �∈ M
implies e ◦ c �∈ M or e ◦ d �∈ M.

Proof. Via epi-M-factorization using the converse statement.
e �∈ M implies (e ◦ c �∈ M or e ◦ d �∈ M) (characterization)

⇔ not (e ◦ c �∈ M or e ◦ d �∈ M) implies not e �∈ M (converse)
⇔ (e ◦ c ∈ M and e ◦ d ∈M) implies e ∈M (deMorgan)
⇔ (m ◦ e ◦ c∈M and m ◦ e ◦ d∈M) implies m ◦ e∈M

(
m∈M, M closed

under comp./decomp.

)
⇔ (u ◦ c ∈ M and u ◦ d ∈M) implies u ∈M (epi-M-factorization)
⇔ (p ∈ M and q ∈M) implies u ∈ M (commutativity)

Example 2 (access control graphs). In the following, we present state graphs of a
simple access control for computer systems, which abstracts authentication and
models user and session management in a simple way. We use this example solely
for illustrative purposes. A more elaborated, role-based access control model
is considered in [KMP05]. The basic items of our model are users , sessions

, logs , computer systems , and directed edges between those items. An
edge between a user and a system represents that the user has the right to
access the system, i.e. to establish a session with the system. Every user node is
connected with one log node, while an edge from a log to the system represents a



292 K.-H. Pennemann

proposed connection established connection

failed, logged
login attemptaccess right

Fig. 1. The type graph of the access control system

failed (logged) login attempt. Every session is connected to a user and a system.
The direction of the latter edge differentiates between sessions that have been
proposed (an outgoing edge from a session node to a system) and sessions that
have been established (an incoming edge to a session node from a system).

Conditions are nested constraints and application conditions generalizing the
corresponding notions in [HW95, EEHP06] along the lines of [Ren04].

Definition 2 (conditions). A (nested) condition over an object P is of the
form true or ∃(a, c), where a: P → C is a morphism and c is a condition over C.
Moreover, Boolean formulas over conditions over P yield conditions over P , i.e.,
¬c and ∧j∈J cj are (Boolean) conditions over P , where J is a finite index set and
c, (cj)j∈J are conditions over P . Additionally, ∃a abbreviates ∃(a, true), ∀(a, c)
abbreviates ¬∃(a,¬c), false abbreviates ¬true, ∨j∈J cj abbreviates ¬∧j∈J ¬cj and
c ⇒ d abbreviates ¬c ∨ d.

Every object and morphism satisfies true. A morphism p satisfies a condition
∃(a, c), if there exists a morphism q in M such that q ◦ a = p and q satisfies c.

P

G

C,
a

p q
=

c

|=

)∃(

An object G satisfies a condition ∃(a, c), if the condition is over the initial object I
and the initial morphism iG: I → G satisfies the condition. The satisfaction of
conditions by objects and morphisms is extended onto Boolean conditions in the
usual way. We write G |= c resp. p |= c to denote that the object G resp. the
morphism p satisfies c. For two conditions c, d over C, d is a consequence or
logical deduction of c, written c |= d, if for all morphisms p in M with domain
C, p |= c implies p |= d. Two conditions c and c′ are equivalent, denoted by
c ≡ c′, if for all morphisms p in M, p |= c iff p |= c′.

In the context of objects, conditions (over the initial object I) are also called
constraints.

Notation. For every morphism a: P → C in a condition, we just depict the
codomain C, if the domain P can be unambiguously inferred. This is the case for
constraints, which are by definition conditions over I. For instance, the constraint
∀(∅ →

1
, ∃(

1
→

1 2
)) with the meaning “Every node has an outgoing edge

to another distinct node” can be represented by ∀(
1
, ∃(

1 2
)).
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Example 3 (access control conditions). Consider the access control graphs intro-
duced in Example 2. Conditions allow to formulate statements on the graphs of
the access control and can be combined to form more complex statements. The
following conditions are over the empty graph:
∃( ) A session is proposed
∃( ) A session is established
∀( , ∃( ) ∨ ∃( )) Every session is either proposed or established
¬∃( ) No session is shared between two users
∀( , ∃( )) Every session is associated to a user

∀( , ∃( )) Every user that is logged into a system, has
an access right.

Example 4. Consider the access control graphs introduced in Example 2. The dy-
namic part of the access control system is the reflexive, transitive closure of a
non-deterministic choice of programs such as the addition and removal of users,
the grant and revocation of access rights and a login and logout procedure. See
[HPR06] for a complete overview.We exemplarily consider the transformation rule
Access = 〈 ⇒ 〉which is a part of the login procedure. Such
a rule consists of a left-hand side expressing the prerequisites “If a user proposes a
session to a system for which he has the appropriate access right” and the local ef-
fect of the rule’s application “Then this proposed session is accepted and becomes
established”. Our goal is to show that Access preserves the satisfiability of the
condition ∀( , ∃( )) ∧ ¬∃( ). By construction of
a weakest precondition [HPR06], the problem reduces to prove that

¬

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1)
∨
¬∃

∧ (2)
∨
¬∃
(

,
∧ ∨

¬∃

)
∧ (3.1) ∃

∨ (3.2) ∃

∨ (3.3) ∃

∨ (3.4) ∃

(
,
∧ ∨

¬∃

)
∨ (3.5) ∃

(
,
∧ ∨

¬∃

)
∨ (3.6) ∃

(
,
∧ ∨

¬∃

)
∨ (3.7) ∃

(
,
∧ ∨

¬∃

)
∨ (3.8) ∃

⎛⎝ ,
∧ ∨

¬∃

⎞⎠
∨ (3.9) ∃

(
,
∧ ∨

¬∃

)

∨ (3.10) ∃

(
,
∧ ∨

¬∃

)
∨ (3.11) ∃

(
,
∧ ∨

¬∃

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is a tautology.
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For rules in our calculus such as (Lift), we assume conditions to be in M-normal
form (MNF), i.e. if for all subconditions ∃(a, c) the morphism a is in M.

Fact 2 (M-normal form). Every condition c over P can be transformed into
a condition c′ in MNF such that c ≡ c′.

Proof. ∃(a, c) ≡ ∃a ≡ false, if a �∈ M (see [HP08]).

We now define the notion of a non-negated subcondition, which we use later to
restrict the applicability of deduction rules.

Definition 3 (non-negated subcondition). A condition c is a non-negated
subcondition of a condition d, if c = d or if d is of the form ∃(a, e) or (e ∧ e′)
or (e ∨ e′) and c is a non-negated subcondition of e or e′.

3 Proving High-Level Conditions

The tautology or validity problem is the fundamental problem of deciding whether
or not a claimed statement is true for all possible objects.

Definition 4 (tautology problem). Given a category C, the tautology prob-
lem is the problem to decide for any condition c, whether or not forall G ∈ C,
G |= c.

We write “|= c” if c is a tautology and “ �|= c” if c is not a tautology. A straight-
forward approach to answer the tautology problem for a condition c is to prove
“true |= c”. This can be done by constructing a proof chain “true |= . . . |= c”,
starting without any assumptions (true), yielding in logical deductions the given
condition c. Instead of constructing such a proof top-down, resolution follows
a more target-oriented view and considers the complementary problem of re-
futing the negated condition “¬c”. In this case, the goal is to find a refutation
“¬c |= . . . |= false”.

After negation of an input F , a resolution-based algorithm on formulas would
transform the negated statement ¬F into prenex normal form and skolemize to
yield clauses. However neither does there exists a comparable normal form for
conditions, nor is skolemization possible for a given category such as Graph:
Skolemization requires the introduction of fresh function symbols of unbounded
arity, for which there seems no equivalent operation for a fixed structure. Never-
theless, it is possible to transform the condition ¬c into conjunctive normal form.

Definition 5 (conjunctive normal form). Condition true is in conjunctive
normal form (CNF). Every condition ∧j∈J ∨k∈Kj ck is in CNF, if for every j ∈ J
and every k ∈ Kj, ck = ∃(ak, dk) or ck = ¬∃(ak, dk) for some morphism a and
some condition dk in CNF.

Given a condition in CNF, the actual resolution process begins and adds derived
facts (disjunctions) to the conjunction. The goal is the addition of false as con-
junct. If a true resolution calculus were possible for conditions, each refutation
step “|=” would be of the form:
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– Select two disjunctions (¬∃(a, c)∨c1) and (∃(b, d)∨c2) from the conjunction
such that ∃(b, d) |= ∃(a, c).

– Add the resolvent (c1 ∨ c2) to the conjunction.

Special case: if c1 and c2 do not exist, or equivalently, are false, the resolvent is
false and the negated condition ¬c is refuted (the goal).

However, to decide ∃(b, d) |= ∃(a, c) is as hard as the original problem ¬c |=
true, as we can not dissolve nested subconditions. Therefore we need additional
deduction rules that cope with this situation and create, manage and (hopefully)
solve subproblems of the form ∃(b, d) |= ∃(a, c). Formally, these deduction rules
are defined as follows.
Definition 6 (deduction rules). Let c1, . . . , cn, e be conditions. A (deduction)
rule R has the form

c1
...

cn

e

if α

and is shortly denoted by R = [c1, . . . , cn/e]α. The conditions c1, . . . , cn are called
premises, e is the resolvent and α is an (informal) side condition. A rule may be
applied to a condition c in CNF, if there is exists a non-negated subcondition c′

in c such that c′ = ∧j∈J dj is a conjunction of disjunctions (dj)j∈J that contains
all premises of R, i.e. for all 1 ≤ k ≤ n, there is a j ∈ J with ck = dj, and the
side condition α is satisfied. Application of R yields a new condition d that is
derived from c by adding the resolvent e to the conjunction c′. We write c -R d
to denote such a derivation step, whereas we write c -K d to denote a derivation
sequence c -R . . . -Q d with rules R, . . . , Q in K.

The deduction rules of our calculus contain variables for morphisms and condi-
tions. Prior to a rule application, these variables must be matched in an uni-
fication process, as usual, to yield an applicable instance of the rule. For the
formal definition of our calculus, we require the following theorem stating the
possibility of combining two conditions ∃p and c conjunctively:

Theorem 1 ([HP08, HP05]). There is a transformation A2, such that for
every morphism p in M and every condition c over dom(p) the following holds:
For all p′′ ∈M with dom(p′′) = codom(p), p′′ |= A2(p, c) ⇔ p′′ ◦ p |= c.

The transformation A2 is described in [HP08] as follows:
Construction 1. For morphisms p in M and conditions over dom(p), let

•

•

•

•

•

(1)a′

e

p

a

q

r

b

A2(p, true) = true
A2(p, ∃(a, c)) = ∨e∈E ∃(b, A2(r, c)).

Construct the pushout (1) of p and a leading to morphisms
a′ and q. The disjunction ∨e∈E ranges over all epimor-
phisms e with domain dom(a′) such that both b = e◦a′ and
r = e ◦ q are in M.

Furthermore, A2(p, ¬c) = ¬A2(p, c) and A2(p, ∧j∈J cj) = ∧j∈J A2(p, cj).
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3.1 A Calculus for High-Level Conditions

In the following, we introduce a calculus K for high-level conditions representing
the possible actions a theorem prover based on K may perform.

Definition 7 (calculus K). The calculus K for high-level conditions consists
of the following six rules: (Descent), (Resolve), (Partial resolve), (Partial lift),
(Lift) and (Supporting lift). Let a, b, m be morphisms and let c, d, c1, c2 be con-
ditions.

(Descent)

∃(a, false ∧ c) ∨ c1

c1

(Resolve)

¬∃(a, true) ∨ c1

∃(b, d) ∨ c2

c1 ∨ c2

if ∃m ∈ M. m ◦ a = b

and d �= false

• •

•b

a

m

(Partial resolve)

¬∃(a, true) ∨ c1

∃(b, d) ∨ c2

¬∃(m∗, true) ∨ c1 ∨ c2

if ∃m ∈ M. m ◦ b = a and
〈m∗, b∗〉 is the M-pushout
complement of 〈b, m〉
and d �= false

• •

••

b

a
m∗

b∗

m

(Partial lift)

¬∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A2(m,¬c)) ∨ c1 ∨ c2

if c �=true and
∃m ∈ M. m ◦ a = b

and d �= false

• •

•b

a

m

(Lift)

¬∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A2(b,¬∃(a, c))) ∨ c1 ∨ c2

if c �=true and b ∈ M
and d �= false

(Supporting lift)

∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A2(b, ∃(a, c))) ∨ c1 ∨ c2

if b ∈ M
and c �= false
and d �= false

The rule (Descent) is used to carry over a successful nested refutation into an
outer refutation. The rule (Resolve) is the core of our calculus and represents
a straightforward case for which the problem ∃(b, d) |= ∃(a, c) is decidable. The
rules (Descent) and (Resolve) are the only ones that (may) reduce the number
of elements in a disjunction. The rule (Partial resolve) is necessary for proving
the validity of conditions outside the decidable ∀-free fragment of conditions.
The rules (Partial lift), (Lift) and (Supporting lift) are similar in the sense that
they create additional facts to find nested refutations by combining information.
Outstandig is the rule (Partial lift) which moves the negation from a condition
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towards the nested subcondition. Note that (Supporting lift) is the only rule for
which repeated applications on its own resolvent may be necessary. For graphs,
unbounded applications of (Supporting lift) are the only reason a theorem prover
based on K does not terminate, assuming that the deduction of structural equiv-
alent conditions is surpressed, as discussed in Section 4.
Example 5. Consider the following tautology ∀(

1
, ∃

1
) ⇒ ∀(

1 2
, ∃

1 2
)

expressing “Every node has a loop implies every two nodes each have a loop”.
A transformation into CNF yields

(1) ¬∃(
1
, ¬∃

1
)

(2) ∧ ∃(
1 2

, ¬∃
1 2

)

and a proof of the statement’s validity is as follows:

(1) ¬∃(
1
, ¬∃

1
)

(2) ∃(
1 2

, ¬∃
1 2

)

(3) ∃(
1 2

, (3.1) ¬∃
1 2

)
(3.2) ∧ ∃

1 2

(Partial lift)

1 2

1 2

1 2

1

1

(1)

m

(3.1) ¬∃
1 2

(3.2) ∃
1 2

(3.3) ¬∃
1 2

(Partial resolve)
1 2 1 2

1 21 2

(1) ¬∃(
1
, ¬∃

1
)

(3) ∃(
1 2

, (3.1) ∧ . . . ∧ (3.3))

(4) ∃(
1 2

, (4.1) ¬∃
1 2

)
(4.2) ∧ ∃

1 2

(4.3) ∧ ¬∃
1 2

(4.4) ∧ ∃
1 2

(Partial lift)

1 2

1 2

1 2

2

2

(1)

m

(4.3) ¬∃
1 2

(4.4) ∃
1 2

(4.5) false

(Resolve)
1 2 1 2

1 2

(4) ∃(
1 2

, (4.1) ∧ . . . ∧ (4.5))

(5) false
(Descent)

Example 6. Consider the condition stated in Example 4. Given the rules of K,
our goal is to refute the disjunction (3) with the help of the facts (1) and (2).
The rule (Resolve) can be applied with argument (1) to resolve (3.1)-(3.6), e.g.,
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(1)
(3.1) ∨ ((3.2) ∨ . . . ∨ (3.11))
(3.2) ∨ . . . ∨ (3.11)

(Resolve)

Subconditions (3.7)-(3.11) are resolved by applying rule (Partial lift) with argu-
ment (2) and subsequent application of (Resolve) on the nested subconditions,
and (Descent), e.g.,

(2)
(3.7) ∨ ((3.8) ∨ . . . ∨ (3.11))
(3.7′) ∨ (3.8) ∨ . . . ∨ (3.11)

(Partial lift)

with (3.7’) ∃

⎛⎝ ,
∨

¬∃

∧
∨

∃

⎞⎠
Eventually, we yield an empty disjunction, or equivalently, false as an element of
the outer conjunction, thus the input condition is refuted and the conditionproved.

3.2 Soundness

In this section, we prove the soundness of the calculus K. We show that every
application of a rule R in K corresponds to a logical deduction.

Theorem 2 (soundness of K). The calculus K for high-level conditions is
sound, i.e., for every conditions c, d over C in CNF the following holds:

c -K d implies c |= d.

The proof is done in three steps: first, we establish that we can investigate
the soundness of deduction rules independently of disjunctive context. In the
following, let r, pj , qj be conditions for 1 ≤ j ≤ n.

Fact 3. For every rule R = [(p1 ∨ q1), . . . , (pn ∨ qn)/(r∨ q1 ∨ . . . ∨ qn)]α we have
(p1 ∧ . . . ∧ pn) |= r implies ((p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn)) |= (r ∨ q1 ∨ . . . ∨ qn).

Second, we can prove the soundness of each individual rule R in K.

Lemma 1. For every rule R = [c1, . . . , cn/d]α in K, if α holds then (c1 ∧ . . . ∧
cn) |= d.

Proof. For the rule (Descent), we have ∃(a, false ∧ c) ≡ ∃(a, false) ≡ false.
For every rule of the form R = [(p1 ∨ q1), . . . , (pn ∨ qn)/(r∨ q1 ∨ . . . ∨ qn)]α with
cj = (pj ∨ qj) for 1 ≤ j ≤ n, we first show (p1 ∧ . . . ∧ pn) |= r:

(Resolve). First, we transform the proof obligation:
(¬∃(a, true) ∧ ∃(b, d)) ⇒ false

≡ ¬(¬∃(a, true) ∧ ∃(b, d)) ∨ false (Def. ⇒)
≡ ∃(a, true) ∨ ¬∃(b, d) ∨ false (De Morgan)
≡ ∃(a, true) ∨ ¬∃(b, d) ((c ∨ false) ≡ c)
≡ ∃(a, true) ⇐ ∃(b, d) (Def. ⇒)
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We show ∃(b, d) |= ∃(a, true):
∃(b, d)

|= ∃(b, true) (d |= true)
|= ∃(a, true) (∃m∈M. m ◦ a = b, Def. 2)

• •

•

•

b

a

m

p q
r

(Partial resolve). First, we transform the proof obligation:
(¬∃(a, true) ∧ ∃(b, d)) ⇒ ¬∃(m∗, true)

≡ ¬(¬∃(a, true) ∧ ∃(b, d)) ∨ ¬∃(m∗, true) (Def. ⇒)
≡ ∃(a, true) ∨ ¬∃(b, d) ∨ ¬∃(m∗, true) (De Morgan)
≡ ∃(a, true) ⇐ ¬(¬∃(b, d) ∨ ¬∃(m∗, true)) (Def. ⇒)
≡ ∃(a, true) ⇐ (∃(b, d) ∧ ∃(m∗, true)) (De Morgan)

We show (∃(b, d) ∧ ∃(m∗, true)) |= ∃(a, true):
p |= (∃(b, d) ∧ ∃(m∗, true))

⇔ ∃q ∈ M. q ◦ b = p and q |= d
and ∃r ∈M. r ◦m∗ = p and r |= true (Def. 2)

⇒ ∃s ∈ M. r ◦m∗ = s ◦ b∗ ◦m∗ = s ◦ a = p
and s |= true (M-Pushout)

• •

• •

•

b

m∗ a
m

b∗

p
q

r s

(Partial lift). We show ∃(b, d) ∧ ¬∃(a, c) |= ∃(b, d ∧A2(m,¬c)):
p |= ∃(b, d) ∧ ¬∃(a, c)

⇔ p |= ∃(b, d) and p |= ¬∃(a, c) (Def. 2)
⇔ ∃r ∈M. r ◦ b = p and r |= d and r ◦ b |= ¬∃(a, c) (Def. 2)
⇒ ∃r ∈M. r ◦ b = p and r |= d and
∃r ◦m ∈ M. r ◦m ◦ a = p and r ◦m |= ¬c (m ◦ a = b, Def. 2)

⇔ ∃r ∈M. r ◦ b = p and r |= d and
∃r ◦m ∈ M. r ◦m ◦ a = p and r |= A2(m,¬c) (Thm. 1)

⇔ ∃r ∈M. r ◦ b = p and r |= d and r |= A2(m,¬c) (m ◦ a = b, Def. 2)
⇔ p |= ∃(b, d ∧A2(m,¬c)) (Def. 2)

• •

•

•

b

a

m

p q
r

A2(m,¬c)

c

(Lift). We show ∃(b, d) ∧ ¬∃(a, c) |= ∃(b, d ∧A2(b,¬∃(a, c))):
p |= ∃(b, d) ∧ ¬∃(a, c)

⇔ ∃q ∈ M. q ◦ b = p and q |= d and q ◦ b |= ¬∃(a, c) (Def. 2)
⇔ ∃q ∈ M. q ◦ b = p and q |= d and q |= A2(b,¬∃(a, c)) (Thm. 1)
⇔ p |= ∃(b, d ∧A2(b,¬∃(a, c))) (Def. 2)

• •

•

b

p
q

A2(b,¬∃(a, c))¬∃(a, c)

(Supporting lift). The proof is analogous to (Lift) except ¬∃(a, c) is replaced
with ∃(a, c).
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By Fact 3, we can lift any statement (p1 ∧ . . . ∧ pn |= r) for any disjunctive
context q1, . . . , qn and yield (p1 ∨ q1) ∧ . . .∧ (pn ∨ qn) |= (r∨ q1 ∨ . . . ∨ qn). This
concludes the soundness proof for the deduction rules in K.

Third, we show that deductions concerning non-negated subconditions within a
condition in CNF can be lifted to the whole condition.

Fact 4. For any non-negated condition c′ within a condition c over C in CNF,
with d derived from c by replacing c′ with d′, we have c′ |= d′ implies c |= d.

Proof. By induction over the structure of conditions.
Basis: c = c′ |= d′ = d.
Step: We show, for all morphisms m in M with domain C:
Case ∃(a, c): m |= ∃(a, c) iff (∃q ∈ M. m = q ◦ a and q |= c) implies (∃q ∈
M. m = q ◦ a and q |= d) iff m |= ∃(a, d).
Case (c ∧ e): m |= (c ∧ e) iff (m |= c and m |= e) implies (m |= d and m |= e)
iff m |= (d ∧ e).
Case (c ∨ e): analogous to (c ∧ e).
The case ¬c is excluded by the assumption that c′ is a non-negated subcondition.

Finally, we can prove the soundness of K.

Proof of Theorem 2. Let c, d be arbitrary conditions over C in CNF. A deduction
c -K d is a sequence of deductions c -R . . . -Q d for rules R, . . . , Q in K. Using
induction over the length of the deduction, we can reduce the proof obligation
to “c -R d implies c |= d”, where c, d are arbitrary conditions over C in CNF
and R = [c1, . . . , cn/e]α is an arbitrary deduction rule in K. Assume, c -R d.
By Definition 6, there is a non-negated subcondition c′ which is a conjunction
(c1 ∧ . . . ∧ cn ∧ q) and d is derived from c by adding e to the conjunction, i.e.
(c1∧ . . .∧cn∧q) - (e∧c1∧ . . .∧cn∧q). By Lemma 1, we have (c1∧ . . .∧cn) |= e.
Consequently, (c1 ∧ . . . ∧ cn ∧ q) |= (e ∧ q). By Fact 4, we conclude c |= d.

3.3 Necessity

In the following, we investigate whether or not a rule is necessary, for every rule
of the calculus K. A rule R is necessary, if there exists a tautology which cannot
be proven anymore if R is omitted. We show that (Resolve) could be omitted,
if the artificial restriction c �= true is omitted from (Partial lift), and show that
all other rules are necessary. However, our considerations do not exclude the
existence of a smaller calculus with similar or different rules.

Fact 5. For every deduction c′ -(Resolve) f ′, there is a sequence of deductions

c′ -(Partial lift’) d′ -(¬true ≡ false) e′ -(Descent) f ′

where (Partial lift’)=[∃(b, d) ∧ ¬∃(a, c)/∃(b, d ∧ A2(m,¬c))]α and α = (∃m ∈
M. m ◦ a = b and d �= false).

Proof. Let c′ = (¬∃(a, true) ∧ ∃(b, d)). Then c′ -(Partial lift’) d′ -(¬true ≡ false)

e′ -(Descent) f ′ where d′ = ∃(b, d ∧ A2(m,¬true)) = ∃(b, d ∧ ¬true) and
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e′ = ∃(b, d∧false) and f ′ = false. Using Fact 3 and Lemma 1, our considerations
can be lifted to arbitrary c′,f ′ with c′ -(Resolve) f ′.

We propose to let shortcut (Resolve) remain in K, as the side conditions of (Re-
solve) and (Partial lift) prevent both rules from being applicable simultaneously.

Fact 6. For every rule R ∈ K \ {(Resolve)}, there is a condition c such that
“¬c -K false” and not “¬c -K�{R} false”.

Proof. (Descent) Negation of the tautology ¬∃( , false) with the meaning “No
node satisfies false” yields ∃( , false). No other rule is applicable.

(Partial resolve) Negation of the tautology ∀(
1 2

, ∃
1 2

∨ ¬∃
1 2

∨
¬∃

1 2
) with the meaning “For every pair of nodes, either both have loops

or the first node has no loop or the second node has no loop” yields ∃(
1 2

,

¬∃
1 2

∧ ∃
1 2

∧ ∃
1 2

). Only the rule (Partial resolve) can derive the
intermediate fact ∃

1 2
, or alternatively ∃

1 2
, required for a refutation.

(Partial lift) Negation of the tautology ∃(
1
, ¬∃

1
) ⇒ ¬∀(

1
, ∃

1
) with the

meaning “There is a node without a loop implies not every node has a loop”
yields ∃(

1
, ¬∃

1
) ∧ ¬∃(

1
, ¬∃

1
) and only the use of (Partial lift) leads

to a successful refutation as it negates the subcondition ¬∃
1

:

¬∃(
1
, ¬∃

1
)

∃(
1
, ¬∃

1
)

∃(
1
, ¬∃

1
∧ ∃

1
)

(Partial lift)

(Lift) Negation of the tautology ¬∃ ⇒ ∀(
1
, ¬∃

1
∨ ∃

1 2
) with the

meaning “There is no node with a loop implies for all nodes, there is no loop
or there is a second node” yields ¬∃ ∧ ∃(

1
, ∃

1
∧ ¬∃

1 2
) and no rule

other than (Lift) is applicable. Note, partial resolve is not applicable because
the (M-)pushout complement is non-existent.

∅
b

a
m

(Supporting lift) Negation of the tautology ∃
1

⇒ ∀(
1
, ∃

1
∨∃

1 2
) with

the meaning “There is a node with a loop implies for all nodes, the node has
a loop or there is a second node with a loop” yields ∃

1
∧ ∃(

1
, ¬∃

1
∧

¬∃
1 2

) and no rule other than (Supporting lift) is applicable.

4 Implementation

In this section, we discuss practical aspects of a theorem prover based on K. The
deduction rules represent the main computation steps a theorem prover based
on K will perform. Besides an implementation of those deduction rules, one re-
quires a method that transforms any condition into conjunctive M-normal form.
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The equivalences depicted in Figure 2, strictly read from left to right, can be
applied as long as possible to transform any condition into an (optimized) con-
dition in conjunctive M-normal form. In [Pen04], the equivalences are proven
and it is shown that an as long as possible application yields the desired nor-
mal form. Another implementational aspect is the prevention of redundancy of
rule applications with the intent to contain non-termination as far as possible.
For example, any of the rules (Partial lift), (Lift) or (Supporting lift) may add
subconditions to a conjunction that are already present anyway. Repeated appli-
cation of such a rule on its own resolvent would lead into an infinite redundant
branch of the search space. In theses cases, a notion of structural equivalence can
help to filter out double subconditions and to prevent unnecessary deductions:
Two conditions c, d are said to be structurally equivalent, denoted by c =̂ d, if
c = true = d, or if c = ¬c′, d = ¬d′ and c′, d′ are structurally equivalent, or if
c = (c1 ∧ c2), d = (d1 ∧ d2) and at least (c1, d1 and c2, d2) or (c1, d2 and c2, d1)
are structurally equivalent (case ∨ analogous), or if c = ∃(a, c′), d = ∃(a, d′) and
c′, d′ are structurally equivalent. The applicability of deduction rules may then
be restricted to those cases for which the resolvent is not structurally equiva-
lent to already existing conditions. Except for the rule (Supporting lift), this
effectively prevents recursive application of rules to derived conditions.

∃a ≡ ∃(a, true)
∀(a, c) ≡ ¬∃(a,¬c)
∃(a, c) ≡ false if a �∈ M
¬¬c ≡ c

¬true ≡ false
¬false ≡ true

¬(∨j∈J cj) ≡ (∧j∈J ¬cj)
¬(∧j∈J cj) ≡ (∨j∈J ¬cj)

((∧j∈J cj) ∨ c) ≡ (∧j∈J (cj ∨ c))

∃(id, c) ≡ c
∃(a, false) ≡ false

∃(a, ∃(b, c)) ≡ ∃(b ◦ a, c)
∃(a, ∨j∈J cj) ≡ ∨j∈J ∃(a, cj)

∨j∈J cj ≡ true if ∃k∈ J. ck = true
∨j∈J cj ≡ ∨j∈J�{k} cj if ∃k∈ J. ck =false
∧j∈J cj ≡ ∧j∈J�{k} cj if ∃k∈ J. ck =true
∧j∈J cj ≡ false if ∃k∈ J. ck = false
∨j∈∅ cj ≡ false
∧j∈∅ cj ≡ true

Fig. 2. Equivalences for conjunctive M-normal form

5 Related Work

In this section, we briefly relate our results to other work. Earliest attempts to
find deduction rules for graphical conditions are made by Koch et. al. [KMP05],
but remain incomplete. They investigate the notion of conflicting conditions of
the form ∀(I →X, ∃(X→C)) and state prerequisites under which a conjunction
of two graph conditions of this form is unsatisfiable.

Independently to our work, Orejas et. al. [OEP08] investigate sound and com-
plete calculi for three fragments of graph conditions: the fragment of Boolean
conditions over basic existential conditions ∃(I→C), the fragment of Boolean
conditions over basic existential conditions ∃(I→C) and non-negated “atomic”
conditions of the form ∀(I→X, ∃(X →C)), and the fragment of Boolean Condi-
tions over “atomic” conditions of the form ∀(I→X, ∃(X →C)). Their deduction
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rules relate to our own as follows: (R1) is a special case of (Resolve), (R2) is com-
parable to the rule (Supporting Lift), and (R3) is comparable to the rule (Partial
lift), although (R2), (R3) do not lift (parts of) the resolvent (as this is neither
necessary nor possible for the considered fragments of conditions). The operator
⊕ is a special instance of A2 restricted to basic existential conditions. In [Ore08],
a sound and complete calculus for the fragment of “basic” and “positive atomic”
attributed graph constraints is presented. Attributed graph constraints are con-
ditions over attributed graphs combined with a formula expressing conditions
on the attributes such as “(x > y)”.

An alternative approach to apply theorem proving to graph transformation is
a translation into logical formulas [Cou90]. Following this idea, Strecker [Str08]
models graph transformation in the proof assistant Isabelle. His approach sup-
ports the manual verification of formulas of “a fragment of first-order logic en-
riched by transitive closure”.

The relation to our previous work is as follows: In [Pen08], a correct and
complete satisfiability algorithm named SeekSat is described. For the fragment
of Boolean conditions over basic existential conditions ∃a, SeekSat is shown
to terminate, thus is able to decide. While SeekSat covers contradictions with
finite counterexamples and tautologies in the decidable fragment of conditions,
the presented calculus K is intended to cover all tautologies with finite proofs.

6 Conclusion

In this paper, we presented a calculus for conditions over adhesive high-level
replacement categories. We took resolution [Rob65] as an ideal and postulated six
deduction rules able to refute conditions in conjunctive normal form. We proved
that every rule application corresponds to a logical deduction, and investigated
whether or not omission of any rule leads to an incomplete calculus. We discussed
practical aspects concerning an implementation such as filtering out structural
equivalent conditions, and briefly compared our results with related work. An
implementation of K is currently under development. Future topics include

− a proof of the completeness of the calculus,
− a systematic evaluation of the implementation. Currently, all 74 example

tautologies generated from correct program specifications of the “access con-
trol” example in [HPR06] can be proved in average 9.1 seconds (median 0.1s)
(Intel T5600, 1.83GHz).

Acknowledgment. Many thanks to the referees for thoroughly reviewing the
paper and suggesting several improvements.
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Abstract. We describe an approach for the verification of attributed
graph transformation systems (AGTS). AGTSs are graph transforma-
tion systems where graphs are labelled over an algebra. We base our ver-
ification procedure on so-called approximated unfoldings combined with
counterexample-guided abstraction refinement. Both techniques were
originally developed for non-attributed systems. With respect to refine-
ment we focus especially on detecting whether the spurious counterex-
ample is caused by structural over-approximation or by an abstraction
of the attributes which is too coarse. The technique is implemented in
the verification tool Augur 2 and a leader election protocol has been
successfully verified.

1 Introduction

For practical purposes modelling languages are usually extended with the possi-
bility of adding data types and suitable operations. This is for instance done in
coloured Petri nets [12] and attributed graph transformation systems (AGTSs)
[18,9]. Extending a GTS with attributes allows one to combine the intuitive
graphical aspects of the modelled systems with the natural data structures,
which makes such extended GTSs more suitable for practical applications. In
some cases attributes can be simulated artificially by encoding them into the
graph structure (since GTSs are Turing-complete), but specifying attributes di-
rectly leads to more compact models. This is an advantage with respect to over-
approximation techniques since we have more control over what is abstracted
and in what way it is abstracted.

In the last years we have developed a verification technique for non-attributed
graph transformation systems (GTSs) [3], which allowed us to successfully verify
several case studies [7,2,16]. The technique approximates GTSs by Petri graphs
(which are Petri nets with additional hypergraph structure) and refines the ob-
tained Petri graph via counterexample-guided abstraction refinement (CEGAR)
when necessary [15]. CEGAR is a standard program analysis technique which re-
fines overly coarse approximations by looking for a spurious run, i.e., a run which
violates the property to be verified, but which has no counterpart in the original
system. Then the approximation is refined in such a way that the spurious run
� Supported by the DFG project SANDS and CRUI/DAAD Vigoni “Models based

on Graph Transformation Systems: Analysis and Verification”.
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disappears. This procedure can be repeated, but due to the undecidability of the
verification problem it is not guaranteed that it will eventually give a definitive
yes/no-answer.

In this paper we apply this technique, including abstraction refinement, to
AGTSs. We describe our view on AGTSs as graph transformation systems la-
belled over an algebra and approximate AGTSs by attributed Petri graphs which
are basically coloured Petri nets [12] or algebraic high-level nets [8] equipped with
a hypergraph structure. After performing the approximation described in [3] at-
tributes are added to the resulting Petri graph, which can then be analyzed as a
coloured Petri net. Since the carrier sets underlying data types are often infinite,
we additionally need attribute abstraction, which is standard in the framework
of abstract interpretation [5]. In the conclusion we will discuss how the approach
might be extended to predicate abstraction [10,11]. The verification technique
for AGTSs presented here was implemented in Augur 2

1 [14] and we introduce
a case study concerning a leader election protocol and describe how it has been
verified with Augur 2.

2 Attributed Graph Transformation Systems

2.1 Algebras

In this section we describe attributed graph transformation systems (AGTSs).
After introducing the (standard) notion of algebra and the (non-standard) notion
of Boolean algebra, we show how to define and rewrite attributed graphs.

Definition 1 (signature, algebra). A signature Σ is a pair 〈S,F〉 where S
is a set of sorts and F is a set of function symbols equipped with a mapping
σ : F → S∗ × S. Sorts will also be called types.

A Σ-algebra A consists of carrier sets (As)s∈S for each sort and a function
fA : As1 ×· · ·×Asn → As for every function symbol f with σ(f) = (s1 . . . sn, s).

For a Boolean Σ-algebra we require that S contains the sort Bool and that
we have two subsets TA, FA ⊆ ABool representing the truth values.

By T (Σ, X) we denote the usual Σ-term algebra, where X is a set of variables,
each equipped with a fixed sort.

For an algebra A we denote by AS the set AS =
⊎

s∈S As, i.e., the union of
all carrier sets (under the implicit assumption that they are all disjoint).

Example 1. In our implementation we use an algebra denoted by C with sorts
Bool , Int ,Str ,Unit (which have as carrier sets the standard truth values, inte-
gers, strings and one-element set respectively) and tuples over the first three
sorts. We consider standard operations, for instance +,−, ∗, / for the integers
and comparison operators <,≤, = in order to obtain truth values. Operators can
also be extended to functions operating on tuples.

We will now define a specific type of algebra needed in the following.
1 The tool is available at http://www.ti.inf.uni-due.de/research/augur/.
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Definition 2 (powerset algebra). For a given Σ-algebra A we will denote
by P(A) its powerset algebra which is an algebra over the same signature. The
carrier sets of P(A) are the powersets of the original carrier sets, i.e., P(A)s =
P(As) and function symbols f with F(f) = (s1 . . . sn, s) are interpreted as:

fP(A)(A1, . . . , An) = {fA(a1, . . . , an) | ai ∈ Ai},

where Ai ∈ (P(A))si . In the case of a Boolean algebra we set TP(A) = {A′ ⊆
ABool | A′ ∩ TA �= ∅} and similarly for FP(A).

Note that in the case of our example algebra C we have four truth values in P(C)
where TP(C) = {{true}, {true, false}}, FP(C) = {{false}, {true, false}}. Going to
powersets is a necessary step since the concretization of abstract values, which
will be introduced later, provides us with an entire set of values, as opposed to
a single value. However if we only work with single values, i.e., one-element sets,
we will get exactly the same results as in the original algebra.

Finally we need a notion of algebra homomorphism.

Definition 3 (algebra homomorphism). Let A,B be two Σ-algebras. An al-
gebra homomorphism h : A → B is a family of maps (hs : As → Bs)s∈S such
that for each f ∈ F with σ(f) = (s1 . . . sn, sn+1) we have

hsn+1(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an)).

2.2 Attributed Graphs

We will now define the notion of graphs we are working with. We consider a
fixed set of labels Λ and we start with the definition of hypergraphs and their
morphisms.

Definition 4 (hypergraph). A hypergraph G is a tuple (VG, EG, cG, lG), where
VG is a finite set of nodes, EG is a finite set of edges, cG : EG → V ∗

G is a connection
function, and lG : EG → Λ is the labeling function.

We consider a fixed typing function ltype : Λ → S which associates a sort to
each label. The theory could be easily extended to associating several (named)
attributes to each label and this is how it is handled in our implementation.

We are now ready to introduce attributed hypergraphs. Note that here we
choose a different representation of attributed graphs than in [9] where the focus
is on viewing attributed graphs in the framework of adhesive HLR categories
and where graphs include specific data nodes. One of our main concerns is to
fully separate the graph structure and the attributes for verification purposes.

Definition 5 (attributed hypergraph). Let A be a Σ-algebra. An A-attrib-
uted hypergraph is a tuple G = (VG, EG, cG, lG, attrG), where (VG, EG, cG, lG)
is a labelled hypergraph and attrG : EG → AS is a function such that for each
e ∈ EG it holds that attrG(e) ∈ Altype(lG(e)).

We consider nodes of a hypergraph as unlabelled (and without attributes). At-
tributes can be added by providing nodes with unary hyperedges which contain
the attribute for that node.
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Definition 6 (hypergraph morphisms). Let G1, G2 be two hypergraphs. A
(hypergraph) morphism ϕ : G1 → G2 consists of two total functions ϕV : VG1 →
VG2 and ϕE : EG1 → EG2 such that for every e ∈ EG1 it holds that lG1(e) =
lG2(ϕE(e)) and ϕV (cG1(e)) = cG2(ϕE(e)). A morphism is called edge-bijective
( edge-injective) whenever it is bijective (injective) on edges. (We will in the
following drop the subscripts V and E.)

Definition 7 (morphisms of attributed hypergraphs). Let G1, G2 be two
attributed hypergraphs (where G1 is attributed over A and G2 over B). An at-
tributed hypergraph morphism ϕ = (ψ, h) : G1 → G2 consists of a hypergraph
morphism ψ and an algebra homomorphism h : A→ B such that

∀e ∈ EG1 : attrG2(ψ(e)) = h(attrG1(e)).

2.3 Rewriting of Attributed Graphs

Attributed hypergraphs can be transformed using rewriting rules which we define
in the following. Our approach follows essentially the presentation in [18], but
without using category theory. Furthermore we use the same restrictions on rules
as in [3] since this greatly simplifies verification.

Definition 8 (attributed rewriting rule). We fix a signature Σ and a set X
of variables. An attributed rewriting rule r is a quadruple (L, R, α, g), where L
and R are T (Σ, X)-attributed hypergraphs, called left-hand side and right-hand
side respectively, α : VL → VR is an injective mapping, indicating how nodes are
preserved, and g ∈ T (Σ, X) is a guard condition of sort Bool .

We demand that each of the term attributes of L is a single variable of X (such
that each variable appears only once). The set of all variables in the left-hand
side is denoted by X ′. The right-hand side R may be attributed with arbitrary
terms from T (Σ, X ′). Each rule r is associated with a guard expression g(r) ∈
T (Σ, X ′)Bool .

We demand also that there are no isolated nodes in the left-hand side L and
no isolated nodes in VR − α(VL). Additionally EL must not be empty and there
can not be two edges with the same label in the left-hand side of a rule.

If an instance of the left-hand side is found in the current state of the system,
then this rule can be applied and the instance of the left-hand side of the rule
will be replaced by its right-hand side. We are now ready to define the notion of
attributed graph transformation systems.

Definition 9 (attributed graph transformation system (AGTS)). An
attributed graph transformation system (AGTS) G = (R, G0) over an algebra A
is a finite set of attributed rewriting rules R together with an A-attributed start
hypergraph G0 (also called initial graph).

We now describe in a set-based notation how rules can be applied to attributed
graphs. This could also be done categorically.
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Definition 10 (rule application). A match of a rewriting rule r = (L, R, α, g)
in an A-attributed graph G is a morphism ψ = (ϕ, h) : L→ G which is injective
on edges. We can apply r to a match in G obtaining a new graph H, written
G

r⇒ H, whenever the guard expression is satisfied, i.e., h(g) ∈ TA. The target
graph H is defined as follows

VH = VG " (VR − α(VL)) EH = (EG − ϕ(EL)) " ER

and, defining ϕ : VR → VH by ϕ(α(v)) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise,
the source, target, labelling and attribute functions are given by

e ∈ EG − ϕ(EL) ⇒ cH(e) = cG(e), lH(e) = lG(e), attrH(e) = attrG(e)

e ∈ ER ⇒ cH(e) = ϕ(cR(e)), lH(e) = lR(e), attrH(e) = h(attrR(e))

That is, a left-hand side is found and replaced by the corresponding right-hand
side. We use a restricted version of the DPO (double-pushout) approach where we
only allow discrete interfaces. Merging as well as deletion of nodes is forbidden.
Edges, however, can be deleted. The new attributes in the right-hand side are
obtained by using h, the binding of the set of free variables X ′ of the left-hand
side.2

Example 2. We use the simple AGTS shown in Fig. 1 as a running example.
Edges labelled B and C have integer attributes. The attribute in B is increased
by one whenever a new edge is created, whereas the attribute in C is multiplied
with the corresponding attribute in B when C crosses B. The edges A and Error
have no attributes. The property we want to verify is that no Error edge will
ever be created. Note that intuitively this holds since no edge labelled 7 will ever
be created and hence rule “Cross Backward” will never be applied, since C will
always contain a even attribute value.

3 Approximation of Attributes

In Example 1 we considered an algebra with infinite carrier sets. In order to
analyse the systems thus obtained we need a mechanism of attribute approxi-
mation. Hence we work in the framework of abstract interpretation [5] and start
with the notion of a Galois connection, which is basically a pair of adjoints.

Definition 11 (Galois connection on algebras). Let Σ = 〈S,F〉 be a sig-
nature and let A, B be two algebras over this signature, where each carrier set
is lattice-ordered via ..3

2 Note that in the case of a powerset algebra some elimination of over-approximation
could be useful, by removing attribute values in the right-hand side that did not
satisfy the guard expression. In order to be able to represent the theory in a compact
way we choose not to follow this path at the moment.

3 The partial order � stands for the information ordering. Intuitively whenever a � b,
then a is considered to be more exact, i.e., a conveys more information about the
system state.
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Fig. 1. Example of an attributed graph transformation system

A family of functions (αs : As → Bs, γs : Bs → As)s∈S is called Galois
connection on algebras if they are monotone with respect to . and if for all
s ∈ S: ∀a ∈ As : a . γs(αs(a)) and ∀b ∈ Bs : αs(γs(b)) . b.

Finally we require that for each function symbol f with σ(f) = (s1 . . . sn, s)
the function fB is a safe over-approximation of fA, i.e., for all a1, . . . , an with
ai ∈ Asi it holds that: αs(fA(a1, . . . , an)) . fB(αs1(a1), . . . , αsn(an)). Note
that this condition says that α is an algebra homomorphism “up to” .. Such
mappings will also be called .-homomorphisms.

Furthermore if A, B are Boolean algebras we require that both use the same car-
rier set for Bool , that αBool , γBool are identities, TA = TB, FA = FB and that
furthermore truth values respect the information ordering . in the following sense:

∀v, v′ : (v′ . v ∧ v′ ∈ TA ⇒ v ∈ TA) (and similarly for FA).

Example 3. The algebra C that is used by our implementation allows several
possible abstractions via algebras with finite carrier sets, some of which are
already predefined. For instance, for the integers we use modulo abstraction
modulo base b (each integer k is abstracted by (k mod b)) and interval abstraction
with boundaries m, n (k is abstracted by one of “< −m”,−m, . . . , n−1, n,“> n”).
We also defined suitable operators on the abstract values which safely over-
approximate the original functions in the sense of Definition 11.

However, we can not use directly the algebra C for a Galois abstraction since
it is not lattice-ordered. Hence we work with P(C) where the lattice-order is set
inclusion. Then every set of concrete values is mapped to set of abstract values
via αs, whereas γs is the corresponding concretization.

4 Analysis of Attributed Graph Transformation Systems

Since GTSs are in general Turing-powerful, over-approximation techniques are
needed for their analysis. In our case we abstract AGTSs by coloured Petri
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nets, which are a conceptually simpler formalism which is easier to analyse. In
[3] an approximated unfolding technique for GTSs was presented, in which—
compared to standard unfolding techniques—additional folding steps are used,
which over-approximate but guarantee a finite approximation. The resulting
over-approximation is a so-called Petri graph which is a Petri net with an addi-
tional hypergraph structure, i.e., the hyperedges are at the same time the places
of the net. Our idea here is to construct an attributed Petri graph which over-
approximates an AGTS: an attributed Petri graph consists of an attributed (or
coloured) Petri net and a hypergraph structure over it. Our notation is oriented
on coloured Petri nets [12] and algebraic high-level nets [8].

4.1 Attributed Petri Graphs

We now formally define attributed Petri nets and attributed Petri graphs. We
consider a fixed set of labels Λ and a function ltype : Λ→ S.

By A⊕ we denote the free commutative monoid over A with monoid operation
⊕, whose elements are also called multisets. A multiset M ∈ A⊕ can be written
as a formal sum M =

⊕
a∈A ma · a and given M we write M(a) to denote

the coefficient ma. A function f : A → B can be extended to a function f :
A⊕ → B⊕ on multisets as follows: For M ∈ A⊕ we define M ′ = f(M) with
M ′(b) =

∑
a∈f−1(b) M(a) for every b ∈ B. Besides ⊕ we also use difference

M / M ′, where M, M ′ ∈ A⊕ and inclusion, defined by M ≤ M ′, when there
exists M ′′ ∈ A⊕ such that M ⊕M ′′ = M ′.

We will now introduce attributed Petri nets which imitate coloured nets [12] in
their graphical representation, and which are basically algebraic high-level nets
[8] with small variations. For instance, compared to [8], we only allow variables,
but not arbitrary terms in the preset of a transition.

Definition 12 (attributed Petri net). LetA be a Σ-algebra. An A-attributed
Petri net is a tuple N = (S, T, l, •(), ()•, guard , m0), where S is a set of places,
T is a set of transitions, l : S → Λ is a labelling function, •(), ()• : T → (S →
(T (Σ, X)S)⊕) are pre- and postset functions, guard : T → T (Σ, X)Bool is a guard
function, and m0 is the initial marking of the net. A marking of an attributed Petri
net is a function m : S → A⊕

S . We also require that:

(1) Each element of the multisets •t(s), t•(s) and m(s) is of sort ltype(l(s)).
(2) The multiset

⊕
s∈S

•t(s) = X ′ contains only variables, each with multiplic-
ity 1. Furthermore, the elements of t•(s) are contained in T (Σ, X ′) and
guard(t) ∈ T (Σ, X ′)Bool .

Elements of m(s) (which are elements of the carrier sets) are also called tokens.
For a marking m define |m| : S → N as |m|(s) = |m(s)|, i.e., each place is
associated with the number of tokens it contains.

A transition t is enabled for the marking m if there exists a binding h :
T (Σ, X) → AS such that h(guard(t)) ∈ TA and for each place s it holds that
m(s) ≥ h(•t(s)). An enabled transition with a given binding h can be fired and
the marking m of the net will be transformed into m′, denoted by m [t, h〉m′:
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m′(s) = m(s)/ h(•t(s))⊕ h(t•(s)).

We consider a Petri graph as consisting of an attributed Petri net and a
non-attributed hypergraph structure over it.

Definition 13 (attributed Petri graph). Let G = (R, G0) be an AGTS. An
A-attributed Petri graph (over R) is a tuple P = (G,N , pN , μ), where G is a
(non-attributed) hypergraph, N is an A-attributed Petri net where the places are
the edges of G, pN associates to each transition t a rule pN (t) = (L, R, α, g) ∈ R
such that guardP (t) = g and μ associates to each transition t from N with pN (t)
as above a (non-attributed) hypergraph morphism μ(t) : L ∪ R → G such that
•t(s) =

⊕
μ(t)(e)=s,e∈EL

attrL(e) and t•(s) =
⊕

μ(t)(e)=s,e∈ER
attrR(e).

An attributed Petri graph for G is a pair (P, ι), where P = (G, N, pN , μ) is
an attributed Petri graph over R and ι : G0 → G is a (non-attributed) graph
morphism such that m0(s) =

⊕
ι(e)=s attrG0(e) for each edge e ∈ EG0 .

Note that the edges of the graph are at the same time the places of the net and
that the transitions are labelled with rules of the AGTS.

For each marking m of an attributed Petri graph we define an attributed
graph graph(m) as follows: first we take the subgraph G′ of G with edge set
E′ = {e | m(e) �= ∅} and with all nodes adjacent to some edge in E′. Assume
that m(e) =

⊕k
i=1 ai is the marking of e ∈ E′. Now we replace in G′ each e by

k edges e1, . . . , ek with lG(ei) = lG(e), cG(ei) = cG(e) and attrG(ei) = ai.

4.2 Approximated Unfolding

We now describe how to obtain an attributed Petri graph from a given AGTS.
First, we unfold the underlying GTS in an approximative way as it is described
in [3] without taking attributes into consideration. This is done by starting with
the initial graph and applying unfolding steps that “simulate” rule applications
by adding transitions, as well as folding steps that merge left-hand sides which
are causally dependent. Since the approximated unfolding procedure supplies us
with morphisms ι and μ(t) as described in Definition 13 there is a unique way
of adding attributes to the Petri graph after the approximated unfolding. This
means that attributes do not affect the unfolding procedure itself in any way.

Still, it is necessary to show that the resulting Petri graph is a valid over-
approximation.

Proposition 1. Let P be an attributed Petri graph for a GTS G obtained as
described above. Then, there exists a simulation relation4 R between the reach-
able graphs in G and the reachable markings in P such that: (G0, m0) ∈ R and
for every pair (G, m) there exists an edge-bijective attributed hypergraph mor-
phism (with the identity as algebra homomorphism) G→ graph(m). Specifically
this means that every graph reachable in G is over-approximated by a reachable
marking of P .
4 In the simulation game every application of a rule r must be answered by a transition

labelled r.
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We extended Augur 2 [14] to construct and analyse over-approximations of
AGTSs. Fig. 2 depicts the coarsest over-approximation for the AGTS in Fig. 1
computed by Augur 2. Places, which coincide with the edges, are depicted as
boxes with rounded corners, with circle-shaped tokens inside. Transitions are rep-
resented by thin black rectangles with guard conditions and preset/postset anno-
tations. For instance 1′x on an arc leaving a place means that one token is removed
and its value bound to x. Note that the over-approximation below is too coarse
since the error edge can be covered. Hence abstraction refinement is necessary.

Cross Forward

1

Error

1

Cross Backward
(x=7)

B C1’ y

1’ y

1’ y

1’ y

1’ x*y

1’ x

1’ x

1’ x

1’ x

1 2 2

Error
A

1’ y
Create B

1’ y

1’ y+1

Fig. 2. Petri graph approximating the GTS (first approximation)

4.3 Analysing Petri Graphs

The obtained Petri graphs are basically coloured Petri nets [12] and can be
analyzed with techniques developed for such nets. In particular we want to check
that certain edges (or places), called error edges, can not be covered. Due to
Proposition 1 we can infer that if this holds for the approximation, it is also
true for the original system. However, we still have to handle infinite carrier
sets, which is done by attribute abstraction. We show here that if the attributes
are correctly abstracted, then the abstract version of a Petri graph correctly
over-approximates the concrete version.

In the following we assume that AGTSs are attributed over an algebra A,
which will be abstracted by an algebra B via a Galois connection (αs, γs) (see
Definition 11). If we take a Petri graphP attributed overA this can be easily seen
as a Petri graph attributed over B by applying αs to all elements of the initial
marking. The (abstract) Petri graph obtained in this way is denoted by P a.

The following proposition shows how the abstract Petri graph P a can be used
in order to analyse P . But let us first fix some notation: For two multisets M1, M2

we write M1 . M2 if there is a bijection from M1 to M2 such that each element
of M1 is smaller than or equal to its image in M2 (with respect to the information
ordering .). For two markings we write m̂1 . m̂2 whenever m̂1(s) . m̂2(s) for
each place s.

Proposition 2. For the attributed Petri graphs P and P a it holds that there is
a simulation relation R on the reachable markings such that (m0, m

a
0) ∈ R and

for each pair (m, m̂) ∈ R we have ma . m̂.
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To analyse attributed Petri graphs we need to check whether certain markings
or places can be covered by a reachable marking. Hence we adapted two such
techniques, coverability graphs [19] and backward reachability [1], to attributed
Petri graphs with finite carrier sets and implemented them in Augur 2. We
also extended both methods to provide us with a trace (= counterexample) to
a given coverable marking.

4.4 Abstraction Refinement

This section generalizes the abstraction refinement technique from [15]. We adapt
the technique of abstraction refinement for AGTS and attributed Petri graphs. If
the analysis of the Petri net gives us a spurious counterexample for the property
to verify then we can try to eliminate it using counterexample-guided abstraction
refinement [15]. In our case there are two possible ways to refine the obtained
over-approximation: either we can refine the graph structure of the obtained
over-approximation or the attribute abstraction. One of the challenges is to
determine which of the two cases applies.

First we define a notion of (abstract) runs and their correspondence.

Definition 14 (abstract run of an AGTS). An abstract run of an AGTS
(R, G0) is a sequence of attributed hypergraphs J = (J0 ⇒r1 J1 ⇒r2 · · · ⇒rn

Jn), where ri is a rule name, together with (attributed) morphisms ϕi : Li+1 → Ji

for each i = 1, . . . , n−1, where Li is the left-hand side of rule ri ∈ R.
Note that we do not demand that Ji can be derived from Ji−1 by applying rule

ri at match ϕi (hence the name abstract). If an abstract run is derivable it will
be called a real run. The j-th prefix of J is the run pr j(J ) = (J0 ⇒r1 J1 ⇒r2

· · ·⇒rj Jj) together with the morphisms ϕi.
Let J ′ = (J ′

0 ⇒r1 J ′
1 ⇒r2 . . .⇒rn J ′

n) be another abstract run with morphisms
ϕ′

i : Li+1 → J ′
i for each i = 1, . . . , n−1. We say that J ′ weakly corresponds to

J (in symbols J ′ ) J ) if for each i = 1, . . . , n−1 there exist edge-bijective
(attributed) morphisms ξi : J ′

i → Ji for i = 0, . . . , n. If furthermore the following
diagram commutes we say that J ′ corresponds to J and write J ′ ≪ J .

Li+1
ϕ′i ��

ϕi

NMJ ′
i

ξi �� Ji

In both cases, we require that the attributed morphisms are equipped with iden-
tity homomorphisms. If they have only .-homomorphisms (as defined in Defini-
tion 11) we talk about (weak) .-correspondence and write )� and ≪�.

For later use we need following construction (cf. [15]): Let G be a hypergraph and
m a marking of the underlying Petri net, specifically m ∈ E⊕

G . That is, there
exists a (non-attributed) morphism ψ : graph(m) → G. Now let ϕ : G′ → G
be a morphism such that ϕ⊕(EG′) ≤ |m|. Then there exists an edge-injective
morphism em,ϕ : G′ → graph(m) such that ψ ◦ em,ϕ = ϕ.

We will mainly use this construction for the special case where ϕ = μ(t)|L :
L → G, i.e., ϕ is a match of the left-hand side in the Petri graph (see Defini-
tion 13), and m is a marking that allows to fire transition t.
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Petri graphs can, as mentioned above, be seen as symbolic representations of
graph transition systems and also as representations of sets of abstract runs.

Definition 15 (abstract runs of an attributed Petri graph). Let (P, ι)
with P = (G, N, pN , μ) be an attributed Petri graph for an AGTS (R, G0). Fur-
thermore let m0[t1, h1〉 . . . [tn, hn〉mn be a firing sequence of the net N and let
ri = pN (ti) be the rules corresponding to the transitions. We consider (non-
attributed) morphisms νi+1 = emi,μ(ti+1)|Li+1

: Li+1 → graph(mi), where Li+1

is the left-hand side of rule ri+1 and extend them in the canonical way to
attributed morphisms by adding bindings. It is easy to see that the sequence
graph(m0)⇒r1 graph(m1)⇒r2 . . .⇒rn graph(mn) together with the morphisms
ϕi = (νi, hi) is an abstract run.

Each real run JR = (G0 ⇒r1 G1 ⇒r2 . . .⇒rn Gn) of the AGTS (R, G0) can be
considered as an abstract run where the ϕi : Li+1 → Gi represent the matches
of the left-hand sides of the rules ri.

Now let G be an AGTS, let P be an attributed Petri graph approximat-
ing G and let P a be the abstract Petri graph derived from P . That is, P
over-approximates the (graph) structure, whereas P a additionally abstracts at-
tributes.

Then, for every real run JR of G there exists an abstract run JA of P , such
that JR ≪ JA. And furthermore for every abstract run JA of P there exists
an abstract run ĴA of P a such that JA ≪� ĴA. This is a direct consequence
of the simulation property (see Propositions 1 and 2). Since correspondence is
transitive this means that every real run JR of G can be associated with an
abstract run ĴA of P a such that JR ≪� ĴA.

We start abstraction refinement with an attributed Petri graph Pa which is
obtained by unfolding an AGTS G and interpreting the resulting Petri graph
in B (as described in the previous section). If the property we want to verify is
violated, we obtain a counterexample of the following form:

m̂0[t1, ĥ1〉 . . . [tn, ĥn〉m̂n,

where the ti are transitions and the ĥi are the corresponding bindings. Usually
the AGTSs that we consider have an error rule and the property we want to
verify is that this rule is not applicable. Hence an error trace includes a firing of
the corresponding error transition as the last step. It can be seen as an abstract
run (with abstracted attributes) of the following form:

ĴA = (graph(m̂0)⇒r1 graph(m̂1)⇒r2 . . .⇒rn graph(m̂n)),

where rj = pN (tj) and (νj , ĥj) : Lj → graph(m̂j−1) are the corresponding
morphisms from the left-hand side of rj to graph(m̂j−1) for j = 1, . . . , n.

After analysing the Petri graph P a and searching for counterexamples there
could be the following four possibilities:

(1) The property is successfully verified, i.e., no counterexample was found in P a.
(2) A real (non-spurious) counterexample ĴA is found. That is, we have JR ≪�
ĴA for a real run JR of G. In this case we have found an error.
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(3) The detected counterexample is spurious. This means that no real run JR

with JR ≪� ĴA exists. However, there could be real runs J ′
R shorter than ĴA

that correspond to a prefix pr i(ĴA) of the counterexample, i.e., J ′
R ≪� pr i(ĴA).

Let k be the maximal length of such a run. The set of all such maximal real runs
(there could be several of them) is denoted by H.

For a given J ′
R ∈ H there always exists a (unique) run J ′

A of the attributed
Petri graph P (with concrete attributes) with morphisms (νj , hj) : Lj → graph
(mj−1) (morphisms νj as above) such that J ′

R ≪ J ′
A (see Fig. 3). It is easy to

see that also J ′
A ≪� pr i(ĴA).

graph(m0)

G0

L1

ξ0

ξ̂0

r1

r1

r1

graph(m1)

G1

ξ̂1

ξ1

graph(m̂1)

L2

...

...

...r2

r2

r2

ϕ0 ϕ1

(ν1, h1)

(ν1, ĥ1)

(ν2, h2)

(ν2, ĥ2)

graph(m̂0)

graph(mi)

ξi

Gi

ξ̂i

graph(m̂i)

J ′
R:

pri(ĴA):

J ′
A:

Fig. 3. Counterexample (abstract and real runs with corresponding left-hand sides)

We now distinguish the following two cases:

(3a) We say that the over-approximation is structurally too coarse if for some
J ′

R ∈ H the corresponding run J ′
A can be extended to a run J ′′

A of length
k + 1 with a morphism (νk+1, hk+1) : Lk+1 → graph(mk) in such a way that
J ′′

A ≪� prk+1(ĴA). The set of such prefixes of H is denoted by HS . Below
we describe a technique based on the one proposed in [15] which allows us to
eliminate the obtained counterexample in this case.
(3b) In the last case for each run J ′

R ∈ H such that J ′
R ≪� prk(ĴA), the

corresponding run J ′
A can not be extended as in the previous case, i.e.,HS = ∅. If

this holds then we say that in the over-approximation P a the attribute abstraction
is too coarse.

In the first two cases we have solved the problem either with a positive or a
negative outcome. If the obtained over-approximation is structurally too coarse
(case (3a)) and does not allow us to verify the property, a counterexample-guided
abstraction refinement technique [15] for refining the approximation is available.
It uses the set HS of prefixes of the counterexample and refines the structure
of the Petri graph. This is done by identifying which nodes have previously
been merged or folded erroneously and by restarting the approximated unfold-
ing from scratch, but making sure that those node are now kept separate. The
technique described in [15] for non-attributed GTSs can be applied here without
modification. As in [15], we will eliminate not only the spurious run ĴA but all
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other abstract runs corresponding to it and at the same time having a weak
correspondence to some run in HS .

Proposition 3. The structurally refined Petri graph P ′a constructed above does
not contain any run Ĵ ′

A which .-corresponds to the spurious run ĴA of P a and
has a weak .-correspondence to some run in HS . Furthermore if P ′a contains
a spurious run Ĵ ′

A, then it .-corresponds to some run ĴA in P a.

To refine the approximation in the last case we make our abstraction of attributes
more exact in a predefined way. For example for the modulo abstraction we can
increase the modulo base b (we usually multiply it by two), and for the interval
abstraction we can increase the interval bounds m and/or n. However in this
case we have no guarantee that the spurious counterexample will be eliminated.
In the implementation the attribute abstraction is refined a predefined number
of times and if spurious counterexample are then still reproducible, we terminate
with the answer “don’t know”. Future work is the integration of the predicate
abstraction which will be discussed in the conclusion.

So our results for the refinement of attribute abstraction are weaker than in
the case of structure refinement. But we can still show that whenever we refine
the attribute abstraction in a certain way, no new spurious runs will appear.

Proposition 4. Let (αs : As → Bs, γs : Bs → As)s∈S be the Galois connection
between algebras A, B which was originally used for attribute abstraction. Now
let (α′

s : As → Ds, γ′
s : Ds → As)s∈S be a new connection from A to D.

We furthermore assume that there exists a Galois connection from D to B
with mappings α′′

s , γ′′
s such that αs 0 α′′

s ◦ α′
s. Then if the refined Petri graph

P ′a contains a run Ĵ ′
A , it .-corresponds (with α′′

s as .-homomorphisms) to
some run ĴA in P a. In particular, if Ĵ ′

A leads to a marking covering an error
edge, then the same is true for ĴA.

We can iterate abstraction refinement by storing an arbitrary number of spurious
counterexamples. Naturally, due to undecidability and the fact that AGTSs are in
general Turing-complete, there is no guarantee that this loop will ever terminate.

Example 4. Let us now consider the Petri graph in Fig. 2 using a modulo ab-
straction with base one (unit abstraction). The edge labelled Error of the Petri
graph can be covered by firing transition “Error”. This means that either the
property does not hold or the over-approximation is too coarse. In this case one
can show that the run is spurious, i.e., it has no counterpart in the original
AGTS and the over-approximation is structurally too coarse (case (3a)). Apply-
ing abstraction refinement gives us a refined Petri graph (which is not depicted
here due to space constraints).

Now an error edge is still in the approximation and a counterexample can be
constructed (via rules “Cross Backward”, “Error”). However, this counterexam-
ple can not be reproduced without attribute approximation, which means that
the abstraction is too coarse and should be refined (case (3b)). By using base
two in the modulo abstraction we obtain a Petri graph in which the Error-edge
is no longer coverable, which means successful verification.
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5 Example: Leader Election

In this section we sketch the modelling and verification of a leader election
protocol in a ring architecture with AGTSs. The purpose of the protocol is to
elect a unique leader among the stations in a ring-shaped network.

The algorithm uses only local communication and does not depend on the size
of the ring. The leader is chosen on the basis of the unique ids of the stations and
will eventually be the station with the smallest id (in our case: id 1). Each station
sends a message with its id around the ring. Upon reception of the message from
its predecessor a station compares the received id with its own id and, if the
incoming id is smaller than its own, forwards the message. If the id is larger,
then the message is discarded. If a station receives its own id, then it declares
itself the leader. The protocol is parametrized in the sense that we can create
rings of arbitrary size with a potentially infinite number of stations. We want
to show that we never choose the wrong leader, i.e., there is never a situation
where we have a station that has a smaller id than the current leader.

Concerning the ids we use interval abstraction with start interval [0, 1]. After
unfolding the AGTS and analysing it via the coverability technique we obtain a
spurious counterexample. Afterwards three iterations of abstraction refinement
can be applied: two with structural refinement and one with attribute abstraction
in the interval [0, 2]. The coverability check then shows that we have successfully
verified the protocol. The whole verification procedure for the leader election
protocol took 48.15 seconds.5 More details on this case study will be reported
in [17].

6 Conclusion

We have presented a framework for the verification of attributed graph trans-
formation systems, using approximated unfoldings, attribute abstraction and a
counterexample-guided abstraction refinement technique.

There are some related approaches to the verification of graph transformation
systems in the literature, see for instance [20,21,6,4]. However, there seems to
be only a small amount of work on the verification and over-approximation of
attributed graph transformation systems. We are currently aware of attributes
in the tool Groove [13] for the verification of finite-state graph transformation
systems. Furthermore AGTSs could be transformed into the input language of
more conventional model checkers that do support attributes.

This combination is clearly of practical interest and also raises interesting
methodological questions. As we have shown the combination of structural re-
finements and refinements of attribute abstractions is non-trivial.

Currently we handle the refinement of attribute abstraction semi-automat-
ically, by leaving the choice mainly to the user. Clearly this is not completely
satisfactory. A natural question to ask is whether the counterexample-guided
5 All experiments were made using Augur 2 [14] written in C++ under Linux and

the computer parameters are 2*Genuine Intel(R) 1.66 GHz with 2.0 GB RAM.
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abstraction refinement approach based on predicate abstraction and Craig inter-
polation [10,11] can be adapted to our setting. In this approach the abstraction
is refined by generating new predicates over the program variables, based on
the counterexample. In our setting the difficulty is not so much how to generate
these predicates (after all, we have a specific counterexample) but how to inter-
pret them over the markings of the Petri net. The situation would be easy if all
predicates were unary, since in this case we would employ the concept of Galois
connections introduced in this article. However generated predicates typically
have a higher arity, often predicates are binary predicates of the form x < y. For
the original predicate abstraction approach this is not a problem since there are
only finitely many variables and the value of predicates for an abstract state can
be described in a finite way. However in our case there can be arbitrarily many
tokens and it is not clear to us how to solve the coverability problem for Petri
nets with such an abstraction mechanism.

In addition we need more (and larger) case studies in order to test our tech-
niques. Currently we are working on the verification of variants of the Needham-
Schroeder protocol a cryptographic protocol used for authentication (see [17]).
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Abstract. Infinite or very large state spaces often prohibit the success-
ful verification of graph transformation systems. Abstract graph trans-
formation is an approach that tackles this problem by abstracting graphs
to abstract graphs of bounded size and by lifting application of produc-
tions to abstract graphs. In this work, we present a new framework of
abstractions unifying and generalising existing takes on abstract graph
transformation. The precision of the abstraction can be adjusted accord-
ing to the properties to be verified facilitating abstraction refinement.
We present a modal logic defined on graphs, which is preserved and re-
flected by our abstractions. Finally, we demonstrate the usability of the
framework by verifying a graph transformation model of a firewall.

1 Introduction

Formal verification of graph transformation systems aims at statically proving
or inferring properties of a graph transformation system, where such properties
are typically given in some form of temporal logic. It is crucial to distinguish ver-
ification and simulation, the latter being very useful only for debugging, whereas
verification establishes a property for all computations of a graph transformation
system. Problems do arise when approaching this task. One such problem is the
possibly infinite behaviour of a system which in most cases makes it impossible
to study the whole behaviour of the system. Another problem is space: even for
a finite state space, each state can be quite big to represent.

Some approaches to formal verification of graph transformation systems in-
clude [1,2,3,4,5,6,7,8].They can be characterised as to which approach to graph
transformation is used for modelling, which verification technique is applied, and
which applications are tackled. The technique presented in [1] feeds finite-state
graph transformation systems, given as a double pushout system, to an off-
the-shelf model checker to verify reactive systems. However, we face the more
general problem of unbounded systems. The approaches presented in [2,3] both
use backwards reachability analysis for hyperedge replacement grammars trying
to reach an initial graph by backwards search from a forbidden configuration.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 321–335, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The technique is applied to mechatronic systems and ad-hoc network routing,
respectively, but, unfortunately, is not guaranteed to terminate. An approxima-
tion of the behaviour of a graph transformation system in terms of Petri net
unfoldings was used in [4] to verify properties of data structures residing in the
run-time heap of programs with dynamically allocated heap memory.

In this work, we present a new take on abstract graph transformation as in-
troduced independently by [6] and [7]. Abstract graph transformation relies on
abstract interpretation [9] of graph transformation systems, that is, given some
equivalence relation, graphs are quotiented into abstract graphs of bounded, fi-
nite size. Application of productions is then lifted to work on abstract graphs.
The abstraction first introduced in [10] summarises nodes with similar kind and
number of incident edges, while the abstraction of [7] considers similar adjacent
nodes. These two abstractions are generalised in this work and put into a unifying
framework. To this end, we introduce the notion of neighbourhood abstraction as
a part of a general abstraction framework. For this abstraction, nodes are sum-
marised if they have similar neighbourhood up to some radius i, parameter of
the abstraction. This enables abstractions with different precisions. Additionally,
the number of possible abstract graphs obtained by neighbourhood abstraction
is bounded. We introduce a logic accompanying our abstractions: given a formula
our abstraction guarantees that a) if the formula holds for the original graph,
then it holds for the abstracted graph (preservation); and b) if the formula holds
for the abstracted graph, then it holds for the original one too (reflection).

Contributions

– Our abstraction framework unifies and generalises previous approaches on
abstract graph transformation. For this particular technique, it supposedly
establishes the most general treatment of local abstractions, that is, abstrac-
tions based on equivalence relations, where equivalence is determined by
local information on nodes. In contrast, equivalences used in shape analysis
[11] of heap programs often consider global properties like reachability.

– Technically, the most surprising result comprises the definition of a modal
logic, properties of which are preserved and reflected by our abstraction.
While preservation is necessary for the soundness of analyses based on our
abstraction, reflection is a rather unusual and strong result.

– Our framework allows for automated abstraction refinement. If a property
cannot be established given a certain neighbourhood size, one may auto-
matically increase this size to obtain more precise results. The only other
approach allowing for automated refinement is [5].

– A canonical representation of abstract graphs reduces otherwise costly iso-
morphism checks to simple equality tests.

– While, certainly, our method has its limitations, it works well for an im-
portant class of systems, dynamic communication systems. They are char-
acterised by a dynamically changing number of communicating objects and
a dynamically changing communication topology. Important examples in-
clude ad-hoc network protocols, traffic control- or mechatronic systems. Our
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Fig. 1. Two networks delimited by a firewall

method is not suited for the analysis of graphs occurring in runtime heaps.
The latter almost always require reachability information to be taken into
account, something our approach fails to handle satisfactorily.

Outline. To start with, we shall present our case study, a firewall system, in
Sect. 1.1. Section 2 introduces graphs and the general abstraction mechanism,
as well as so called neighbourhood abstraction. In Sect. 3, we present a modal
logic that is preserved and reflected by neighbourhood abstraction. In Sect. 4, a
canonical representation of abstract graphs obtained by neighbourhood abstrac-
tion is defined, which is crucial for the representation of graphs in the actual
implementation of the transformation. Before we conclude in Sect. 6, we briefly
describe, in Sect. 5, how all ingredients can be combined for defining a fully
automatic method for system verification.

1.1 Case Study: Firewalls

Figure 1 shows a graph model of two networks delimited by a firewall (FW).
It has an internal and an external interface (IF), connected respectively to a
network of in-locations (LI) to be protected by the firewall, and a network of
out-locations (LO). Arbitrarily many packets flowing through the network can
be created at locations – safe ones at any location and unsafe ones only at out-
locations. The flow is bi-directional despite the drawing of directed c-edges. The
full set of rules implementing such a firewall are given in [12]. A property we
want to verify is that unsafe packets never reach in-locations.

2 Graphs and Graph Abstraction

We consider finite graphs whose edges are labelled from a finite set of labels,
Lab. We mimic node labels by labelling special edges whose target is a special
node ⊥. Formally, a graph G is a tuple (NG, EG, srcG, tgtG, labG) where NG is a
finite set of nodes, EG is a finite set of edges disjoint from NG, srcG : EG → NG

and tgtG : EG → NG ∪ {⊥} with ⊥ �∈ (NG ∪ EG) associate with each edge
its source and target nodes, and labG : EG → Lab labels edges. Let G and H
be graphs. A graph morphism f : G → H is a function from NG ∪ EG ∪ {⊥}
to NH ∪ EH ∪ {⊥} such that f(⊥) = ⊥ and f−1(⊥) = {⊥}; f maps nodes to
nodes and edges to edges, i.e. f(NG) ⊆ NH , f(EG) ⊆ EH ; f is compatible with
source and target mappings, i.e. srcH ◦ f = f ◦ srcG, and tgtH ◦ f = f ◦ tgtG,
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(a) μ = 1, ν = 1 (b) μ = 1, ν = 3

Fig. 2. Examples of abstract graphs

and f preserves labels, f ◦ labG = labH . A morphism f is called injective (resp.
surjective, resp. bijective) if it defines an injective (resp. surjective, resp. bijective)
map. A bijective morphism is also called an isomorphism. We extend labG to
a node to determine its set of labels, i.e. labG(v) = {a ∈ Lab | ∃e ∈ EG :
srcG(e) = v, tgtG(e) = ⊥, labG(e) = a}. We write v�a

G and v�a
G for the set of

a-outgoing edges and a-incoming edges of node v, respectively, i.e. v�a
G = {e ∈

EG | srcG(e) = v, labG(e) = a} and symmetrically for v�a
G. For a set of nodes V ,

V �a
G (resp. V �a

G) is the extension of �a
G (resp. �a

G) on sets. Finally, for X, Y
nodes or sets of nodes, we denote X ��a

GY the set of a-labelled edges between
X and Y , i.e. X ��a

GY = X �a
G ∩Y �a

G. When the graph G is clear from the
context, we may omit the subscript G. For brevity, in the sequel of the paper we
ignore the node ⊥ and simply talk about node labels.

A multiplicity approximates the cardinality of a finite set. For any natural
μ > 0, let Mμ be the set {0, 1, 2, . . . , μ, ω} where ω �∈ N. The μ-multiplicity of
a set U is denoted |U |μ and defined by: |U |μ = Card(U) if Card(U) ≤ μ, and
|U |μ = ω otherwise. We write M+

μ for the set Mμ �{0}. The usual ordering ≥ is
extended to elements of Mμ by ω ≥ λ for all λ in Mμ. Sums over multiplicities
are defined as expected writing

∑μ for μ-bounded sums. For the sequel, we fix
two naturals, ν, μ > 0, to denote multiplicities of sets of nodes (ν) and sets of
edges (μ), i.e. ν and μ are parameters of graph abstractions.

2.1 Abstract Graphs and Abstraction

In this section, we discuss the notion of abstract graphs. Abstract graphs, such
as the ones of Fig. 2, represent sets of (concrete) graphs called their concreti-
sations. Every node of an abstract graph is associated with a node multiplicity
indicating the number of concrete graph nodes it represents. The dotted rect-
angles are delimiting groups of nodes induced by an equivalence relation, the
grouping relation, on them. All edges have associated multiplicity information
(from Mμ) in their end points: outgoing edges multiplicity, when associated to
the source of the edge, and incoming edges multiplicity when associated to the
target. Sometimes, this multiplicity is shared by several edges, indicated by the
grey arc relating them. Edge multiplicities indicate how many of the depicted
edges should be there in a concretisation. Note that edges related in one of their
end points all have their other end point in the same group of nodes, and all have
the same label. Actually, this is the condition for relating edges. More precisely,
edge multiplicities are associated with a triple composed of a node, a label and
a group of nodes.
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(a) (b)

Fig. 3. Example concretisations of the abstract graphs on Fig. 2

Consider the abstract graph of Fig. 2(a). It represents a set of bipartite con-
crete graphs, such as the ones of Fig. 3(a), where a-nodes are connected to
b-nodes by c-edges. Each of these graphs has at least two (as ν = 1, ω stands
for “two or more”) a-nodes and at least three (ω plus one) b-nodes. Moreover,
every a-node has at least two (i.e. ω) outgoing c-edges going to b-nodes. All
b-nodes except one have only one incoming edge; the remaining b-node has at
least two incoming edges. The abstract graph of Fig. 2(b) represents a set of
concrete graphs having three a-nodes connected to each other forming b cycles,
such as in Fig. 3(b).

Let us fix some notations. Let A be a set and ∼ ⊆ A × A be an equivalence
relation over A. For x ∈ A, [x]∼ denotes the equivalence class of x induced by ∼,
and A/∼ is the set of ∼-equivalence classes in A. If ∼ and ∼′ are two equivalence
relations over A such that ∼ ⊆ ∼′, then ∼ is called a refinement of ∼′.

Definition 1 (abstract graph). An abstract graph S is a structure (GS ,∼S

, multn,S , multout,S , multin,S) where

– GS = (NS , ES , srcS , tgtS , labS) is a graph;
– ∼S ⊆ NS×NS is an equivalence relation on NS called the grouping relation;
– multn,S : NS → M+

ν is a node multiplicity function;
– multout,S : NS×Lab×NS/∼S→ Mμ is an outgoing edges multiplicity function;
– multin,S : NS×Lab×NS/∼S→ Mμ is an incoming edges multiplicity function.

Moreover, for any v ∈ NS, a ∈ Lab and C ∈ NS/∼S, we require multout,S(v, a, C)
= 0 iff v ��a

GS
C = ∅, and multin,S(v, a, C) = 0 iff C ��a

GS
v = ∅.

Formally, the relation between concretisations of an abstract graph S and S is
captured by abstraction morphisms respecting multiplicity.

Definition 2 (abstraction morphism, concretisation). Let G be a graph
and S be an abstract graph. An abstraction morphism of G into S is a surjective
graph morphism s : G → GS such that the following conditions are met:
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1. for all w ∈ NS: multn,S(w) =
∣∣s−1(w)

∣∣
ν
;

2. for all w ∈ NS, for all a ∈ Lab, for all C ∈ NS /∼S, and for all v ∈ s−1(w):

multout,S(w, a, C)=
∣∣v ��a

G(s−1(C))
∣∣
μ
and multin,S(w, a, C)=

∣∣(s−1(C))��a
Gv
∣∣
μ

.

If s : G → S is an abstraction morphism, then G is a concretisation of S. The
set of all concretisations of S is written Concr(S).

As another example, Fig. 4, page 329 shows an abstract graph for the firewall
example from Fig. 1, with ν = μ = 1. The corresponding abstraction morphism
summarises the two LI-neighbours of the internal interface to the unique LI-
neighbour of the internal interface in the abstract graph. The three LO nodes
that have only LO neighbours are summarised to a unique node. All other nodes
in the abstract graph have multiplicity one and correspond to a unique node in
the concrete graph.

Note that the requirements on outgoing (resp. incoming) edge multiplicities
guarantee in particular that two different nodes v, v′ of graph G can only be
summarised by an abstraction morphism, if they have the same outgoing and
incoming edges multiplicities with respect to a label and a group of nodes.

Construction of an Abstract Graph. Definitions 1 and 2 are declarative and do
not give a hint on the effective construction of an abstract graph. This can be
done as follows: Let G be a graph and ∼, ≡ ⊆ NG × NG be two equivalence
relations such that ≡ refines ∼. Furthermore, assume that for any v, v′ ∈ NG,
for any C ∈ NG /∼, and for any label a: v ≡ v′ implies

|v ��a
GC|μ = |v′ ��a

GC|μ and |C ��a
Gv|μ = |C ��a

Gv′|μ

Then ≡ and ∼ induce an abstract graph, S =(GS ,∼S, multn, multout, multin), and
an abstraction morphism, s : G → S as follows:

– Extend the equivalence relation ≡ to edges as follows: e ≡ e′ if srcG(e) ≡
srcG(e′), tgtG(e) ≡ tgtG(e′) and labG(e) = labG(e′). Then SG = (NS , ES ,
srcS , tgtS , labS) is the graph quotient of G w.r.t. ≡, i.e. NS = NG /≡; ES =
EG /≡; and for any edge [e]≡ in ES , srcS([e]≡) = [srcG(e)]≡, tgtS([e]≡) =
[tgtG(e)]≡ and labS([e]≡) = labG(e). Note that, because of the definition of
≡ on edges [e]≡ is well-defined.

– Mapping s : NG ∪ EG → NS ∪ ES is defined by s(v) = [v]≡ and s(e) = [e]≡
for any v ∈ NG and any e ∈ EG and extended to preserve ⊥.

– ∼S ⊆ NS × NS is the equivalence relation given by [v]≡ ∼S [v′]≡ if v ∼ v′

for all v, v′ ∈ NG.
– multn : NS → M+

ν is defined by multn(w)=
∣∣s−1(w)

∣∣
ν

for all w in NS .
– multout, multin : NS × Lab × NS /∼S→ Mμ are mappings defined by

multout([v]≡ , a, C) = |v ��a
GC|μ multin([v]≡ , a, C) = |C ��a

Gv|μ
for all v ∈ NG, a ∈ Lab, and C ∈ NS /∼S .

It is obvious that S and s are indeed a well-defined abstract graph and abstrac-
tion morphism for two such equivalence relations. The complete formalisation
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and proof of this construction is in [13]. Note that not all abstract graphs can
be thus defined. Such abstract graphs necessarily have concretisations and can-
not have parallel edges, which is not the case for general abstract graphs. Still,
any abstract graph admitting concretisations and without parallel edges can be
defined this way. For a graph G and equivalence relations ∼ and ≡ as above
we write abstr graph(G,∼,≡) and abstr morph(G,∼,≡) for the abstract graph
and the corresponding abstraction morphism constructed as shown above.

2.2 Isomorphism of Abstract Graphs

Abstract graphs can be abstracted just like graphs, yielding “more abstract”
graphs. In this section we describe this abstraction relation, which is com-
poseable. We then use it to define the notion of isomorphism between abstract
graphs having the interesting property that isomorphic abstract graphs have the
same concretisations.

Definition 3 (abstraction morphism between abstract graphs). An ab-
straction morphism from an abstract graph S to an abstract graph T is a graph
morphism f : GS → GT that complies to the following axioms:

1. ∀v, v′ ∈ NS: v ∼S v′ implies f(v) ∼T f(v′);
2. ∀w ∈ NT : multn,T (w) =

(∑ν
v∈f−1(w) multn,S(v)

)
;

3. ∀w ∈ NT , ∀a ∈ Lab, ∀C ∈ NT /∼T , ∀v ∈ f−1(w), it holds

multout,T (w, a, C) =
μ∑

D ∈ (f−1(C))/∼S

multout,S(v, a, D)

and similarly for the incoming edges multiplicity.

The axioms in the previous definition are well-defined. In the third axiom we
sum up multout,S(v, a, D) and multin,S(v, a, D) for all D ∈ (f−1(C)) /∼S . It is
then necessary that all the triples (v, a, D) belong to the domain of multin,S, that
is, it is necessary that any such D belongs to NS /∼S . This is indeed the case
thanks to the first axiom.

There is an analogy between an abstraction morphism between abstract graphs
(Def. 3) and an abstraction morphism from a graph into an abstract graph (Def. 2).
Namely, the second axiom in Def. 3 corresponds to the first axiom in Def. 2, but we
sum up node multiplicities instead of simply counting nodes. Also the third axiom
in Def. 3 and the second axiom in Def. 2 are analogous. Note that the composition
of two abstraction morphisms yields another abstraction morphism [13].

We can now define two abstract graphs S and T to be isomorphic if there
exists an isomorphism f : GS → GT such that both f and f−1 are abstraction
morphisms. This leads us to the following interesting statement proven in [13].

Lemma 1. If two abstract graphs S and T are isomorphic, then they have the
same concretisations.
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Note that the inverse is not true. To this end, consider two abstract graphs
S and T , where S has a single node of multiplicity two and no edges. T has
two nodes, each of multiplicity one, and no edges. S and T both have a unique
concretisation (up to graph isomorphism) which is the graph with two nodes
and no edges, but S and T are clearly not isomorphic.

2.3 Neighbourhood Abstraction

So far, we have defined the notion of abstract graphs, concretisations, and abstrac-
tion morphisms. In our construction of abstract graphs, we assumed the existence
of equivalence relations ≡ and ∼ having particular properties. We shall now de-
fine an interesting choice of such relations inducing the notion of neighbourhood
abstractions. This conveys the central idea of our work. In such an abstract graph,
each node represents concrete graph nodes that have similar neighbourhood, up
to some “radius” i. This i is a parameter of the precision of the neighbourhood
abstraction. By gradually increasing i, we can obtain more precise abstractions,
if the current one is too imprecise to verify the desired properties (abstraction
refinement). We shall now define equivalence between nodes according to their
neighbourhoods and, subsequently, neighbourhood abstraction.

Definition 4 (neighbourhood abstraction). Let G be a graph. For each nat-
ural i > 0, we define the i-neighbourhood equivalence relation ≡i over NG re-
cursively by:

– v ≡0 v′ if labG(v) = labG(v′);
– v ≡i+1 v′ if v ≡i v′, and |v ��aC|μ = |v′ ��aC|μ, and |C ��av|μ = |C ��av′|μ

for all label a in Lab and for all C ∈ N / ≡i.

The level i neighbourhood abstraction of G is abstr graph(G,≡i−1,≡i) and the
corresponding abstraction morphism is abstr morph(G,≡i−1,≡i).

Two nodes are mapped to the same node of the abstract graph if they are
neighbourhood equivalent up to some radius. The grouping relation is also given
by neighbourhood equivalence, but using a smaller radius. Figure 4 shows the
level 1 neighbourhood abstraction of the firewall configuration from Fig. 1 for
μ = 1 and ν = 1.

It is obvious from the definition that the level i + 1 neighbourhood abstrac-
tion of a graph refines the level i neighbourhood abstraction. This is the basis
of our abstraction refinement mechanism. The neighbourhood abstraction of a
graph is defined syntactically, which ties it to its representation. To avoid this
inconvenient situation, in the sequel by neighbourhood abstraction of a graph
we mean the isomorphism class of the actual abstract graph.

Neighbourhood abstraction behaves well w.r.t. isomorphism (Lemma 2 below).
In combination with Lemma 1 this shows that two graphs obtained by neighbour-
hood abstraction are isomorphic iff they have the same concretisations.

Lemma 2. Let S and T be two abstract graphs obtained by neighbourhood ab-
straction. If S and T admit a common concretisation, then they are isomorphic.
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Fig. 4. The level one neighbourhood abstraction of the firewall example. Omitted node
and edge multiplicities are equal to one.

3 A Modal Logic for Graphs and Abstract Graphs

So far, we have delineated a novel abstraction to be employed by abstract graph
transformation, neighbourhood abstraction. For verification, we also need an
accompanying logic to be defined now, which can be evaluated on both concrete
and abstract graphs. A central theorem of our work states that this logic is
preserved and reflected by neighbourhood abstraction.

Before we give the formal definition, let us look at properties for the firewall
configuration of Fig. 1: (1) a packet cannot be safe and unsafe simultaneously;
(2) an in-location cannot be directly connected to an out-location; (3) an unsafe
packet never reaches an in-location; (4) a packet has at most one current posi-
tion. These can be expressed in our logic as follows, where the 〉at〉λ operator
is a forward existential modality, indicating the existence of at least λ outgoing
c-edge; 〈at〈λ is similar, but for incoming edges; tt stands for the true formula.

(1) (safe → ¬unsafe) ∧ (unsafe → ¬safe) (3) ¬ ( LI ∧ 〈at〈1 ·unsafe )

(2) ¬ ( LI ∧ 〉c〉1 ·LO ) ∧ ¬ ( LO ∧ 〉c〉1 ·LI ) (4) Packet → ¬〉at〉2 ·tt

3.1 Syntax and Semantics of the Logic

Logic formulae are defined by the following syntax (for a ∈ Lab and λ ∈ Mμ):

φ ::= a | ¬φ | φ ∨ φ | 〉a〉λ ·φ | 〈a〈λ ·φ

The nesting depth d(φ) of φ measures the maximal number of nested modal-
ities. It is defined recursively as: d(a) = 0, d(〉a〉λ ·φ) = d(〈a〈λ ·φ) = 1 + d(φ),
d(¬φ) = d(φ), d(φ ∨ φ′) = d(φ ∧ φ′) = max (d(φ), d(φ′)) for any a in Lab. We
write Li for the set of formulae with nesting depth at most i. Logic formulae are
interpreted in graph nodes. For a graph G, a node v in NG, and a formula φ,
the satisfaction relation G, v |= φ is defined recursively on the structure of φ by:

– G, v |= a if a ∈ lab(v);
– G, v |= ¬φ if G, v �|= φ;
– G, v |= φ ∨ φ′ if G, v |= φ or G, v |= φ′;
– G, v |= 〉a〉λ ·φ if |{e ∈ v�a | G, tgt(e) |= φ}|μ ≥ λ;
– G, v |= 〈a〈λ ·φ if |{e ∈ v�a | G, src(e) |= φ}|μ ≥ λ.
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If G, v |= φ, we say that φ holds in node v. Intuitively, a formula of the form 〉a〉λ·φ
holds in a node v if the μ-bounded number of a-labelled edges (e) connecting it
to some node v′ (srcG(e) = v and tgtG(e) = v′) in which φ holds is at least λ.
Analogously, 〈a〈λ·φ holds in v if the number of a-labelled edges connecting some
such v′ to v is at least λ.

The satisfaction relation is defined for an abstract graph almost in the same
way as for a (concrete) graph. The difference is the way it is defined for modali-
ties. There, we no longer count individual edges, but sum up edge multiplicities
instead.

– S, v |= 〉a〉λ ·φ if λ ≤
∑μ

C∈X multout,S(v, a, C), and
– S, v |= 〈a〈λ ·φ if λ ≤

∑μ
C∈X multin,S(v, a, C),

where X = {C ∈ NS /∼S | ∀w ∈ C. S, w |= φ}. In the firewall example, IF →
〈c〈1·(LI∨LO) holds in all nodes of the level 1 neighbourhood abstraction depicted.
Note finally that counting makes our logic more expressive than the “usual”
modal logic, while still strictly enclosed in first-order logic.

3.2 Preservation and Reflection

Let s : G → S be an abstraction morphism from the graph G to the abstract
graph S. We say that s preserves a property p if whenever p holds in the node
v of G, it also holds in the node s(v) of S. Inversely, we say that s reflects p if
whenever p holds in the node s(v) of S, it also holds in the node v of G. One
can also define in a similar manner preservation and reflection by an abstraction
morphism between abstract graphs. Preservation and reflection are very impor-
tant characterisations. If an abstraction preserves a set of safety properties, these
properties can be verified on the abstract level. If an abstraction reflects a set
of properties, then any characterisation of an abstract graph also holds for its
concretisations. If both preservation and reflection hold, verifying a property on
a graph is equivalent to verifying it on the abstract level. Neighbourhood ab-
straction features preservation and reflection of logic formulae with appropriate
nesting depth, as stated in the following theorem.

Theorem 1 (Preservation and Reflection). Let G be a graph and S the level
i neighbourhood abstraction of G, for some i ≥ 1, with corresponding abstraction
morphism s : G → S. Then s preserves and reflects Li(Lab).1

An important consequence of it is that neighbourhood abstraction can be para-
metrised by the properties we want to verify by choosing the level of abstraction
1 Preservation of formulae with negation may seem in contradiction with the Morphism

Preservation Theorem for finite structures [14] stating that a first order formula is
preserved by morphism iff it is equivalent to an existential positive formula. Some
modal logic formulae cannot be expressed in first-order logic without negation (e.g.
¬〉a〉λ·tt). However, in our case, abstract graphs contain information on the interpre-
tation of negated formulae, by means of the multiplicity functions explaining this
apparent contradiction.
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that preserves the properties one is interested in. The following lemma formalises
the relation between the logic and neighbourhood equivalence:

Lemma 3. Two nodes v, v′ of a graph G are i-neigborhood equivalent if, and
only if, the same Li(Lab) formulae hold in v and in v′.

For our running example, let G be the graph of Fig. 1 and S its level 1 neigh-
bourhood abstraction of Fig. 4. Let s : G → S be the corresponding abstraction
morphism, and let φ = LO∧〉c〉1·IF and ψ = LO∧〉c〉1·〉c〉1·IF. In G, φ only holds
for the LO-neighbour of the out interface, and in S, φ only holds for the corre-
sponding abstract node. That is, φ of nesting depth 1 is preserved and reflected
by s, whereas ψ, a formula of nesting depth 2, is not reflected. Indeed, in S, ψ
holds in the LO-node with multiplicity ω but only in one of the pre-images of
this node in G.

4 Canonical Representation of the Neighbourhood
Abstraction

For abstract graph transformation, it is crucial to determine whether a newly
computed abstract graph has been met before. To avoid expensive isomorphism
checks on abstract graphs, we can benefit from a canonical representation of
neighbourhood abstracted graphs. In effect, this reduces isomorphism checks to
mere equality tests and is another important contribution we make.

Canonical names. Canonical names occur frequently in literature, e.g., in [11].
Here, a canonical name is a unique representation of an equivalence class w.r.t.
a neighbourhood equivalence relation, which is independent of the underlying
graph. For instance, each equivalence class for ≡0 contains only nodes having
the same labels and is identified by this set of labels. It becomes the canonical
name of this equivalence class. Each relation ≡i is equipped with a set NCani of
canonical names.

Definition 5 (Canonical Name). The set of level i node canonical names,
NCani, is defined inductively for i ≥ 0:

NCan0 = 2Lab

NCani+1 = NCani × (NCani × Lab → Mμ)× (NCani × Lab → Mμ).

The set ECani of level i edge canonical names is ECani = NCani × Lab×NCani.
Let G be a graph. The mapping namei

G maps nodes and edges of G to their
level i canonical name as follows. For node v of G, name0

G(v) = labG(v), and
namei+1

G (v) = (namei
G(v), out, in) where for C ∈ NCani and for each a ∈ Lab

(NC stands for the set of nodes v′ such that namei
G(v′) = C),

out(C, a) = |v ��a
GNC |μ in(C, a) = |NC ��a

Gv|μ.
For edge e of G, namei

G(e) = (namei
G(src(e)), lab(e), namei

G(tgt(e))).
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Note that the number of different level i canonical names is finite. In combina-
tion with Lemma 4 below, we conclude that the number of level i neighbourhood
abstractions is also finite up to isomorphism facilitating the verification of po-
tentially infinite systems.

In the firewall example (Fig. 4), the different level zero canonical names are
C1 = {FW}, C2 = {IF}, C3 = {LI}, C4 = {LO}, C5 = {Packet, safe} and C6 =
{Packet, unsafe}. The level one canonical name for the in-interface is (C2,0, in),
where in = {(C1, in) 
→ 1, (C3, c) 
→ ω}, and 0 is the constant zero function.
The canonical name for the bottom-most LO-node is (C4, out, in), where out =
{(C4, c) 
→ 1} and in = {(C4, c) 
→ 1}.

There is an obvious relation between canonical names and the neighbourhood
equivalence expressed in the following central theorem. As a consequence of it
and Lemma 3 we obtain that v ≡i v′ iff namei

G(v) = namei
G(v′), iff v and v′

satisfy the same Li logic formulae. This closes the circle between neighbourhood
equivalence, canonical names, and logical satisfaction.

Theorem 2. For any i ≥ 0, any graph G, any two nodes v, v′ of G and any two
edges e, e′ of G, v ≡i v′ if, and only if, namei

G(v) = namei
G(v′), and e ≡i e′ if,

and only if, namei
G(e) = namei

G(e′).

Canonical Representation of the Neighbourhood Abstraction. Let G be a graph.
Consider the triple CG = (namei(NG), namei(EG), mult), where mult : namei

(NG) → M+
ν is the function defined by mult(C) =

∣∣{v ∈ NG | namei
G(v) = C}

∣∣
ν

for all C ∈ namei(NG). Then CG is a canonical representation of the isomorphism
class of the level i neighbourhood abstraction of G, as stated below:

Lemma 4. Let G, H be graphs, and let i ≥ 1. The level i neighbourhood ab-
stractions of G and H are isomorphic if, and only if, CG and CH are equal.

By CG and CH are equal, we mean component-wise equality, that is, equality of
the sets of node and edge canonical names and equality of the node multiplicity
functions that define them. Effectively, this allows us to reduce isomorphism
checks on neighbourhood abstracted graphs to mere equality tests.

5 Towards an Automatic Verification Framework

We have defined a framework of neighbourhood abstractions having canonical
representations and showed that an accompanying logic is preserved and reflected
by it. We have not yet said how the application of a graph production rule is
lifted to work on abstract graphs. Unfortunately, for lack of space, we need to
refer the reader to [13] for a detailed treatment. In general, a rule application
consists of three stages (which is typical of abstract graph transformation in
general), where S is an abstract graph and (L, R, p) a production rule.

1. Materialisation: Transform the abstract graph S into the less abstract graph
S′, such that there is an abstraction morphism S′ → S and a matching
m : L → S′, the image of which is a concrete sub-graph of S′; i.e. a sub-graph
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in which all node and edge multiplicities are equal to one. S′ is not unique,
and the aim of materialisation is to construct the set of abstract graphs S
such that for all concretisations G of S, for all matchings m : G → S, there
exists T ∈ S and abstraction morphisms s : G → T , t : T → S such that the
image of s ◦m is concrete in T .

2. Update: As we are dealing with concrete (sub-)graphs now, rule application
is just as usual and applied to each element of materialisation.

3. Normalisation: The graphs obtained after updates need not necessarily be in
canonical form. Therefore, we need to neighbourhood abstract them again.

We show in [13] that this abstract transformation mechanism is sound, in the
sense that it over-approximates the concrete graph abstraction. If a graph G
can be transformed by rule (L, R, p) yielding a graph H , then G’s abstraction
S can be abstractly transformed by the same rule yielding H ’s abstraction T .
Note that general negative application conditions (NACs) cannot be handled,
as satisfiability of such conditions is not preserved by the abstraction. How-
ever, transformation can be defined for simple NACs which satisfiability can be
checked using the canonical name only, as for instance conditions testing for the
absence of an adjacent edge or path of bounded length.

The overall verification of a system works as follows. Start with the neigh-
bourhood abstraction of the initial graph of the system to be verified. Given
the abstract transformation defined above, successively apply it to construct an
abstract version of the graph transformation system which has neighbourhood
abstractions as states and which is guaranteed to be finite regardless the original
system. The canonical representation of the neighbourhood abstraction makes
it easy to check whether a newly derived state has already been met before,
which is a very costly operation in normal graph transformations. Moreover, the
abstraction can be parametrised by the property one wants to verify, expressed
in the modal logic. As the modal logic is preserved by the abstraction, one may
now evaluate formulas on finite, abstract graphs to obtain information about the
possibly infinite-state original system. Finally, note that our framework naturally
gives rise to abstraction refinement: If the level i neighbourhood abstraction is
not conclusive, then one can try level i + 1.

Running Example. In the abstract graph transformation system (GTS) induced
by the level 1 abstraction of the firewall example, all reachable abstract graphs
have one FW-node and two IF-nodes, to which the different possible configu-
rations of the internal and external networks are connected. The number of
abstract configurations is bounded, whereas the number of concrete configura-
tions is infinite, because of the possibility of creating packets and connecting
new locations. Consider now the four properties listed above. They are all safety
properties, defining invariants that should hold in all state of the GTS. These
properties indeed hold in all states of the abstract GTS. As the four formulae are
of nesting depth one, by reflection of the logic we can deduce that they also hold
in all states of the concrete GTS. For this particular example, the abstraction
mechanism allows to verify the four properties using the level 1 neighbourhood
abstraction.
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Usability and Limitations. Our verification framework is fully automatic and
parametrised by the properties of interest. Due to the local nature of neigh-
bourhood abstractions, it works well on systems where updates are determined
locally and where reachability is not important. Typical use cases include the
firewall example as given here or wireless traffic control systems as, e.g. the ones
investigated in [7]. Also an application to ad-hoc network routing is promising
but has not yet been explored.

However, our technique is not so suited for systems, where reachability is of
importance, which is often the case for verification of software with dynamically
allocated data structures. For instance, in the case of linked lists, our abstraction
(regardless of radius) cannot distinguish between circular and non circular lists,
which in practice results in lots of spurious states and transitions in the abstract
transition system (i.e. states and transitions that do not exist in the concrete
system). Also, the rather high complexity of our approach might be prohibitive
for really large examples. This is yet to be explored by careful experimentation.

6 Conclusion

We presented a framework of graph abstractions, called neighbourhood abstrac-
tion, which generalises previous approaches to abstract graph transformation, a
method for formal verification of graph transformation systems. The abstraction
is based on regrouping nodes with similar neighbourhood, and can be paramet-
rised by the radius of the neighbourhood to be considered. It is guaranteed to
yield systems of finite, bounded size facilitating their exploration. We also pre-
sented a modal logic that can be interpreted both on graphs and on abstract
graphs. The logic and the abstraction are closely related, which makes it possi-
ble to parametrise the abstraction so that it preserves and reflects the valuation
of formulas. We delineated the implementation of a fully automated verification
framework based on our novel abstractions and facilitated by a canonical form of
abstract graphs. Interestingly, this framework also allows for automated abstrac-
tion refinement. Our proposal is illustrated by an interesting and relevant graph
transformation based model of a firewall system. Usability and limitations of our
approach were clearly identified. Note that related work was already discussed
in the Introduction and that proofs and some other tedious formalities were left
out but can be found in [13].

Future Work. We plan to implement our technique within the Groove [15]
framework, a standard tool for graph transformations. This will allow for a more
thorough exploration of more examples and for a qualified judgement on prac-
tical scalability. We believe that our framework caters for all possible local ab-
stractions, where locality refers to the portion of the graph used to determine
the equivalence of nodes. On the other hand, this complicates the verification
of heap-manipulating programs, where reachability, a more global property, is
crucial. Therefore, we are working on abstractions taking reachability into ac-
count. This is similar to abstractions used in the work of Sagiv et al. on shape
analysis (see [11] for an overview) of heap-manipulating programs. In this work,
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the authors use logical structures to represent memory states of programs; ab-
stract structures are 3-valued logical structures. Properties on these structures
are defined using first-order logic with transitive closure (FO+TC) enabling the
definition of reachability. It seems promising to explore the opportunities offered
by FO+TC for abstract graph transformation too.
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Abstract. In this paper we give a category-based characterization of
recognizability. A recognizable subset of arrows is defined via a functor
into the category of relations on sets, which can be seen as a straight-
forward generalization of a finite automaton. In the second part of the
paper we apply the theory to graphs, and we show that our approach is
a generalization of Courcelle’s recognizable graph languages.

1 Introduction

Regular languages have been studied extensively in computer science and they
have a large number of applications. For instance, more recent approaches take
advantage of regular languages for model-checking [1] and termination analysis
[11]. The notion of regularity can be straightforwardly generalized to trees and
tree automata. Hence one can talk about regular tree languages and exploit the
convenient closure properties that these languages enjoy.

Hence, as a next step, it is natural to ask for a natural notion of regular graph
languages. There have been several attempts to answer this question [23,18,22,5],
all arriving at slightly different notions of regularity (also called recognizability),
of which the notion of Courcelle [5,7] emerged as the one which is widely ac-
cepted. To our knowledge these notions of recognizability have not been applied
extensively to verification and it is not entirely clear how they relate to graph
transformation specified by double-pushout rewriting [4], one of the standard
graph transformation approaches.

Courcelle focuses on the notion of recognizability—which is equivalent to reg-
ularity in the case of word languages—and which characterizes languages as the
inverse image of a monoid morphism from the monoid of words (with concate-
nation) into a finite monoid. Specifically, he extends the more general notion of
Mezei and Wright [17] from recognizability in one-sorted algebras to recogniz-
ability in many-sorted algebras by considering a specific algebra of graphs.

Here we compare the algebraic notion of recognizability by Courcelle with a
categorical notion of recognizability, strongly related to composition-represen-
tative subsets introduced by Griffing [12].
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We show that if we use the notion of Griffing and work in the category of
cospans of graphs, we recover exactly the notion of recognizability proposed by
Courcelle. Although both approaches rely on the same basic ideas, the proof
is non-trivial. Furthermore it gives us a close relation with the double-pushout
approach which can be characterized as a reactive system over cospans [21].

In addition we extend the notion of Griffing with a so-called automaton functor
that—when instantiated to the word case—specializes to the notion of determin-
istic or non-deterministic finite automaton. We show that standard constructions
on finite automata such as determinization or minimization can also performed
on automaton functors.

We will proceed as follows: in Sect. 2 we will briefly introduce the necessary
concepts of category theory, graphs and graph morphisms. In Sect. 3, we will
introduce our category-theoretic notion of recognizable graph language, and in
Sect. 4 we show that this enjoys useful properties, such as closure properties. In
Sect. 5 we will apply our notion of recognizable arrow languages to define a no-
tion of recognizable language of graphs, by considering the category of cospans of
graphs, and we show that we can restrict ourselves to cospans between discrete
graphs, i.e. graphs consisting of nodes only, without affecting the notion of recog-
nizability. Finally, we show that our approach is equivalent to Courcelle’s notion
of recognizability. All proofs which are not in the paper, are made available in
an extended version, which can be obtained from the authors’ web pages.

2 Preliminaries

We briefly review the concepts from category theory, graphs and graph mor-
phisms that will play a role in this paper. For more detailed introductions we
refer to [16] and [10].

2.1 Category Theory

We presuppose basic knowledge of category theory. The identity arrow of an
object G will be denoted by idG (or just by id if G is clear from the context).
Furthermore, arrow composition will be denoted by either ;, where the composed
arrow which applies first f and then g is denoted by f ; g. The category Rel is the
category which has sets as objects, relations as arrows and relation composition
as composition operator. The category Set is the subcategory in which all arrows
are in fact total functions.

In the rest of this section we define the more advanced concept of a cospan
category, which will be used in Sect. 5. The idea of the cospan category is to
have a category which has cospans as arrows.

Let C be a category in which all pushouts exist. A cospan c is a pair of
C -arrows 〈cL, cR〉 with the same codomain:

c : J
cL−→ G

cR←− K .

Above, J and K are the domain (or inner interface) and codomain (or outer
interface) of the cospan c, resp., i.e., the cospan can be considered as an arrow
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from J to K. The identity cospan for an object G is the cospan consisting of
twice the identity arrow of G: 〈idG, idG〉 : G→ G← G. Let c : J → G←M and
d : M → H ← K be cospans (where the codomain of c equals the domain of d):
The composition of c and d is defined by the commuting diagram

J G

M

M ′

H K
cL

cR

f

dL

g

dR(PO)

where the middle diamond is a pushout, and the resulting composed cospan is
defined as:

(c ; d) : J
cL;f−−−→M ′ dR;g←−−− K .

We want to form a category which has cospans as arrows, but in order to have
the new category satisfy all axioms of category theory, we have to do some work.
Let two cospans

c : J
cL−→ G

cR←− K and d : J
dL−→ H

dR←− K

with the same interfaces be given. We define the equivalence relation∼ as follows:
c ∼ d if there exists an isomorphism k from G to H , such that cL ; k = dL and
cR ; k = dR. A semi-abstract cospan is a ∼-equivalence class of cospans. Note
that all members of a semi-abstract cospan have the same domain and codomain,
and we define the domain and codomain of the semi-abstract cospan to be the
domain and codomain of its members.

Now, the category Cospan(C ) is defined as the category which has the objects
of C as objects, and semi-abstract cospans as arrows.

2.2 Graphs and Graph Morphisms

Let a set Σ of labels be given. A hypergraph G (in the following also called a
graph) is a four-tuple 〈VG, EG, attG, labG〉, where VG is the set of nodes of G, EG

is the set of edges, attG : EG → V ∗
G (where V ∗

G is the set of sequences of elements
of VG) is the attachment function and labG : EG → Σ is the labeling function.
By ∅ we denote the empty graph. A graph morphism f between two graphs G
and H is a pair 〈fV, fE〉 of functions fV : VG → VH and fE : EG → EH such that
the following hold:

fE ; labH = labG and fE ; attH = attG ; f∗
V

where f∗
V is the natural extension of fV to sequences.

We define the category HGraph of hypergraphs as the category which has
as objects finite (hyper)graphs, and as arrows graph morphisms. Concretely,
taking a pushout of morphisms f : U → G, g : U → H in the category of graphs
means to take the disjoint union of G and H and to factor through the smallest
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equivalence ≡ (on nodes and edges) that satisfies f(x) ≡ g(x) for all items (i.e.,
for all nodes and edges) x of U .

In particular, we will work with the category Cospan(HGraph). Cospans of
graphs are intimately connected with the double-pushout (dpo) approach to
graph rewriting [21]. dpo rewriting rules are spans of graphs of the form

p : L
ϕL←− I

ϕR−→ R .

We consider the cospans � : ∅→ L
ϕL← I and r : ∅→ R

ϕR← I as left and right-hand
sides. Now, for a graph G let [G] : ∅→ G← ∅ be the cospan consisting of G with
empty source and target. Then dpo rewriting can also be defined as follows: the
graph G rewrites to H by applying rule p if and only if [G] = � ; c and [H ] = r ; c
for some cospan c.

3 Recognizable Languages of Arrows

We consider a fixed category C . In order to be able to talk about sets, we will
require that C is locally small, i.e., for every two objects the class of arrows
between them is a set, called homset. Furthermore in the following a subset of a
homset will be called an (arrow) language.

Definition 3.1 (Recognizability). Let C be a category. We consider a functor
A : C → Rel where every object X of C is mapped to a finite set A(X) (called
the set of states of X) and every arrow f : X → Y is mapped to a relation
A(f) ⊆ A(X)×A(Y ). We assume that every set A(X) contains a distinguished
set IAX of start states and a distinguished set FA

X of final states as subsets.
The functor A is also called automaton functor. It is called deterministic

whenever every relation A(f) is a function and every IAX contains exactly one
element; this element will be denoted by iAX .

Let J, K be two objects. The (J, K)-language LJ,K(A) (of arrows from J to
K) is defined as follows:

f : J → K is contained in LJ,K(A) if and only if there exist s ∈ IAJ ,
t ∈ FA

K which are related by A(f).

A language LJ,K of arrows from J to K is recognizable in C if it is the (J, K)-
language of a an automaton functor A : C → Rel .

The intuition behind the definition is to have a mapping into a finite domain
that respects compositionality and identities, that is, which is a functor. The
functor property ensures that decomposing the arrow in different ways does not
affect acceptance in any way. This is different from the case of words where there
is essentially only one way to decompose a word into atomic components.

In a sense A(f) gives the transition relation of the finite automaton, only that
here we do not have a single set of states, but a set of states for every object.
This means that we have infinitely many sets (which corresponds to the infinitely
many sorts in the case of [5]).
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Example 3.2. Let F be a nondeterministic finite automaton over the alphabet
Σ, with state set Q, start states I ⊆ Q, final states F ⊆ Q and transition relation
δ ⊆ Q×Σ → P(Q). We consider the free monoid of Σ, i.e., the category with one
object X and words over Σ as arrows from X to X . We construct the following
automaton functor A which recognizes a language L if and only if L is accepted
by F .

– A(X) = Q, with IAX = I and FA
X = F ;

– for w ∈ Σ∗, A(w) = {〈s, t〉 | t ∈ δ̂(s, w)}, where δ̂ is the extension of δ from
letters to words given by
• δ̂(s, ε) = {s};
• δ̂(s, wa) =

⋃
{δ(s′, a) | s′ ∈ δ(s, w)}.

Example 3.3. Also tree automata can be seen as a special case of our notion
of automaton functor: take as the category a Lawvere theory where objects are
natural numbers and arrows from m to n are n-tuples of terms with m holes.
Arrow composition is the usual term substitution.

As an example take two unary function symbols f, g, a binary function symbol
h and a constant a. Now, the 3-tuple 〈f(x1), h(x1, x2), g(f(a))〉 has two holes,
i.e., two variables x1, x2. Hence it can be regarded as an arrow from 2 to 3. Then
trees can be represented as arrows from 0 to 1, since they are single terms (or
1-tuples of terms) without variables.

Note that this specific instantiation has similarly been considered in [12].

Two automaton functors are equivalent if they recognize the same language.
Sometimes we are mainly interested in languages of arrows which start at a
fixed object, for instance the initial object; therefore we parametrize the notion
of equivalence with a source object.

Definition 3.4. Let A and B be automaton functors. A and B are said to be
J-equivalent if they recognize the same languages LJ,K of arrows from J to K,
for arbitrary K. They are equivalent if they are J-equivalent for all C -objects J .

It is also possible to find a characterization of recognizable language in terms of
congruence classes, similar to Myhill-Nerode equivalences in the case of regular
string languages.

Definition 3.5 (Congruence). Let C be a category. Let a family of relations

≡R = {RJ,K | J, K are objects of C }

be given, where the components RJ,K are equivalence relations on C -arrows from
J to K. We call ≡R a (right) congruence if the following holds for all arrows
a, a′ : J → K, b : K →M :

If a RJ,K a′, then (a ; b) RJ,M (a′ ; b).

A congruence ≡R is locally finite if each RJ,K ∈ ≡R is an equivalence relation
of finite index (i.e., it has finitely many equivalence classes).
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Let a : J → K be an arrow. In the following we will write [[a]]RJ,K , or simply
[[a]]R if J and K are clear from the context, to denote the congruence class of
which a is a member. We will also usually write a ≡R b instead of a RJ,K b.

Proposition 3.6. Let C be a category, J, K C -objects and LJ,K a set of C -
arrows from J to K. The language LJ,K is recognizable in C , if and only if
there exists a locally finite congruence ≡R such that LJ,K is the union of some
equivalence classes of RJ,K .

Note that the proof of Prop. 3.6 only works if we fix a specific start object.
Dually it would also have been possible to fix a target object and to concentrate
on left congruences. But for our examples and for the comparison to the work
of Courcelle fixing a start object seems to be more natural.

The paper by Griffing [12] does not introduce the notion of an automaton
functor, but it shows that composition-representative subsets (which are our
recognizable languages) can be characterized via locally finite congruences. In
addition the paper gives another—equivalent—characterization via a functor
from C into a category with finite homsets. The recognizable languages are then
the preimages of subsets of a finite homset.

4 Determinism, Closure Properties and Minimization

One of the advantages of our characterization over characterizations utilizing fi-
nite homsets or congruences, is that we can talk explicitly about determinization
and minimization. In this section we consider these two notions as well as closure
properties. These results, different from the results in Sect. 5, are not particu-
larly deep or surprising; usually they can be shown quite straightforwardly. We
show them here for completeness and in order to illustrate that our notion of
recognizability is reasonable.

Proposition 4.1. For every automaton functor, there exists an equivalent de-
terministic automaton functor.

Proof. (Sketch.) The construction is more or less equivalent to the case of finite
automata: we replace every set of states by its powerset.  !

Proposition 4.2 (Closure under boolean operators). Suppose we have two
recognizable languages of arrows, L1

J,K and L2
J,K. Then also L1

J,K ∩L2
J,K, L1

J,K ∪
L2

J,K and (L1
J,K)C (the complement of L1

J,K) are recognizable.

Proof. (Sketch.) Again the construction resembles the case of finite automata:
we work with deterministic automaton functors, take the cross product of the
state sets and define the final states appropriately.  !

In the rest of this section we show that each deterministic automaton functor
has a unique equivalent minimal one. The construction of a minimal automa-
ton is analogous to the usual construction for finite automata: first we remove
unreachable states, and then we fuse indistinguishable states.



342 H.J.S. Bruggink and B. König

The notion of minimality depends on the exact notion of equivalence we use. If
we fix the source object in advance, the equivalence classes grow, and therefore
smaller minimal automaton functors may be found. The constructions in the
general case and the case with fixed source object are exactly the same, except
for the fact that with a fixed source more states may be unreachable.

We give here two key definitions, of minimality and reachability, and mention
the minimization result.

Definition 4.3. Let A : C → Rel and B : C → Rel be automaton functors. We
define:

A ≤ B if for all G ∈ Obj (C ), |A(G)| ≤ |B(G)|
An automaton functor A is (J-)minimal if, for all (J-)equivalent automaton
functors B it holds that A ≤ B.

Definition 4.4. Let A : C → Rel be an automaton functor and K an object of
C . A state s ∈ A(K) is J-reachable, if there exists an arrow c : J → K such
that s ∈ A(c)(IAJ ). The state s is reachable, if it is J-reachable for some J .
A is said to be fully (J-)reachable if for all C -objects K and states s ∈ A(K),

s is (J-)reachable.

Proposition 4.5. For each deterministic automaton functor A, there exists a
minimal, (J-)equivalent, deterministic automaton functor Amin which recognizes
the same language and which is unique up to isomorphism.

Note that the results of this section depend on the specific nature of the cate-
gories Rel and Set . It would be interesting to find an abstract characterization
which still allows the techniques and constructions of this section.

5 Recognizable Graph Languages

In this section we apply the theory of the previous sections to recognizing lan-
guages of graphs. First, we show how graph languages can be recognized by
considering the category of (semi-abstract) cospans of graphs. Then we briefly
introduce Courcelle’s algebraic notion of recognizable graph languages, and fi-
nally we show that we can recognize the same graph languages as Courcelle.

5.1 Recognizing Languages of Graphs by Cospans

In the following, the category under consideration will be Cospan(HGraph), i.e.,
the category of cospans of graphs, or put differently, the category of graphs with
inner and outer interfaces. If we want to talk only about graphs without inter-
faces, we can restrict ourselves to languages of cospans with empty interfaces,
i.e., cospans where the source and target is the empty graph.

Definition 5.1. A set L of graphs is recognizable whenever

L∅,∅ = {[G] : ∅→ G← ∅ | G ∈ L}

is a recognizable language in Cospan(HGraph).
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Below we give an example for a recognizable graph language. It is not surprising
that it is recognizable since it is definable in monadic second-order graph logic
and all such languages are recognizable in the sense of Courcelle [5,7]. However,
the example provides some intuition into the notion of recognizability.

Example 5.2 (k-Colorability). We set Nk = {0, . . . , k − 1}. Let G be a graph.
A k-coloring of G is a function f : VG → Nk such that for all e ∈ EG and for
all v1, v2 ∈ attG(e) it holds that f(v1) �= f(v2) if v1 �= v2. We show that the
language of all k-colorable graphs is recognizable, by considering the following
automaton functor A : Cospan(HGraph)→ Rel :

– Every graph J is mapped to A(J), the set of all valid k-colorings of J :

A(J) = {f : VJ → Nk | f is a valid k-coloring of J} .

– For a cospan c : J → G← K the relation A(c) relates two colorings fJ , fK ,
whenever there exists a coloring f for G such that f(cL(v)) = fJ(v) for every
node v ∈ VJ and f(cR(v)) = fK(v) for every node v ∈ VK .

Specifically we have thatA(∅) = {∅} where ∅ is the empty coloring. Then in order
to accept all k-colorable graphs with empty interfaces we take IA∅ = FA

∅ = {∅}:
a graph ∅→ G← ∅ is accepted whenever the two empty mappings are related.

Note that it is well known that k-colorability of graphs is an NP-complete prop-
erty. Intuitively this manifests itself in the fact that interfaces may grow unbound-
edly, leading to an exponential explosion of the size of the state sets. However, if
we restrict ourselves to graphs of bounded treewidth, there are efficient algorithms
for k-colorability (see also the related discussion in the conclusion).

Example 5.3. Let H be a fixed graph. We consider the language LH of all graphs
G for which a morphism f : G → H exists. The language LH is recognizable
whenever H is finite.

The functor A associates to every graph J the set of
all morphisms J → H . For a cospan c : J → G ← K it
relates a morphism fJ : J → H to a morphism fK : K → H
whenever there exists a morphism f : G → H such that
cL ; f = fJ and cR ; f = fK . All states are initial and final.

J
cL ��

fJ ��
++

++
++

+ G

f

��

K
cR��

fK--		
		
		
	

H

This is a weaker notion than recognizability and has been considered before
(see for instance [14,3]).

5.2 Robustness

We now show the robustness of recognizability by restricting ourselves to injec-
tive, edge-injective and discrete interfaces. These results will also be important
for the comparison with Courcelle’s notion of recognizability (see Sect. 5.4).

We use proof principles already explored in [9] where robustness proofs are based
on the characterization of recognizable languages in terms of locally finite congru-
ences (see Def. 3.5). The results and proofs all follow the same lines: let D be a
subcategory of C and let J, K be two objects of D . We want to show that every
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language of arrows from J to K is recognizable in C if and only if it is recognizable
in D . The direction from left to right is obvious, we simply restrict the congruence
or the automaton functor accordingly.The real challenge is the direction from right
to left. In this case take a congruence≡R on D and construct a congruence≡′

R on
C that is locally finite and refines ≡R when restricted to D . Since ≡′

R refines ≡R

any union of equivalence classes can still be represented as a union of (possibly
more) equivalence classes, and hence recognizability is preserved.

We now show the convenient fact that restricting our attention to cospans with
injective interfaces does not limit the descriptive power of the formalism. Hence
let G = Cospan(HGraph) be a cospan category and let Ginj be its subcategory
that consist only of the cospans with injective interface morphisms.

Proposition 5.4. Let a class LJ,K of graphs with injective interfaces J, K be
called injectively recognizable whenever LJ,K is recognizable in Ginj. Then LJ,K

is recognizable in G if and only if it is injectively recognizable.

We now restrict our attention to the subcategory Geinj of cospans with interface
morphism which are injective on edges. The result is not that interesting in its
own right, but it is a necessary auxiliary step for Prop. 5.6.

Corollary 5.5. Let a class LJ,K of graphs with edge-injective interfaces J, K be
called edge-injectively recognizable whenever LJ,K is recognizable in Geinj. Then
LJ,K is recognizable in G if and only if it is edge-injectively recognizable.

Similar to the restriction to injective interfaces we now show the fact that re-
stricting our attention to cospans with discrete interfaces does not limit the
descriptive power of the formalism. This allows us to restrict our attention to
discrete interfaces in the following. Let G = Cospan(HGraph) be a cospan cate-
gory and let Gdis be its subcategory that consist only of the cospans with discrete
interfaces, i.e., with interface graphs that do not contain edges.

Proposition 5.6. Let a class LJ,K of graphs with discrete interfaces J, K be
called discretely recognizable whenever LJ,K is recognizable in Gdis. Then LJ,K

is recognizable in G if and only if it is discretely recognizable.

In a sense the result above is mirrored in the fact that graph rewriting does not
lose any expressive power if we restrict to discrete interfaces.

5.3 Courcelle’s Algebra of Graphs

We will now give a short introduction to Courcelle’s algebraic notion of recogniz-
able graph languages [5,7]. Courcelle’s notion of recognizable graph language is
widely accepted as a notion of regularity for graphs. Also, Courcelle showed that
if a language is definable in monadic second-order logic then it is recognizable.
In [13] Courcelle’s notion has been found to be nearly identical to the notions
finite graph property and compatible graph property, which were developed in
different contexts. For instance compatible properties arise in connection with
hyperedge replacement grammars.
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In [7] the relevant graph algebra is called hr-algebra (and in addition another
algebra, called vr-algebra is investigated). However, here in this paper we use the
algebra introduced in [5], since it is closer to our notion of cospan composition
and hence yields simpler proofs.

Note that there are two major differences between cospan composition and the
algebra of graphs introduced below: first the graph algebra considers only discrete
interfaces, and we have already shown how to bridge this gap via Prop. 5.6. Second,
cospans have two interfaces whereas graphs in the algebra have only one.

First, we give some preliminary definitions. We set Nk = {0, . . . , k − 1}. Let
P, Q be arbitrary sets. For functions f : Nn → P and g : Nm → Q, we define the
function f 2 g : Nn+m → P ∪Q as follows:

(f 2 g)(i) =
{

f(i) if i < n
g(i− n) otherwise.

An n-ary hypergraph is a pair G = 〈baseG, ζG〉 consisting of a hypergraph
baseG and a mapping ζG : Nn → V , where V is the node set of baseG. The
function ζG is called the interface of the graph, and its range the external nodes.
Basically, an n-ary hypergraph corresponds to a graph with an empty internal
and discrete external interface.

In [2], the following atomic operations on n-ary graphs are defined:

Redefinition of external nodes. Let an n-ary hypergraph G be given, and
let σ : Nm → Nn be a function. The redefinition of G under σ is:

redefσ(G) = 〈baseG, (σ ; ζG)〉.

Note that this means that redefσ(G) is an m-ary graph.
Fusion of external nodes. Let G be an n-ary graph, and θ an equivalence

relation on Nn. The fusion of G over θ, denoted fuseθ(G), is obtained by
fusing the nodes of G according to θ. The result is again an n-ary graph.

Disjoint union. Let G be an n-ary graph and H an m-ary graph. The disjoint
union of G and H is defined as:

G⊕H = 〈baseG ⊕ baseH, ζG 2 ζH〉

(we assume here that the node sets of baseG and baseH are disjoint and that
⊕ denotes the disjoint union on base graphs.)

We will now define recognizability in the sense of Courcelle via congruences.
There is an alternative, but equivalent, definition of recognizable subsets as
preimages of algebra homomorphisms.

Definition 5.7. Let ≡C be an equivalence on n-ary hypergraphs that relates only
hypergraphs with the same arity. It is called locally finite if for each n there are
only finitely many equivalence classes. It is called a congruence if the following
conditions hold:

– if G ≡C H, then redefσ(G) ≡C redefσ(H);
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– if G ≡C H, then fuseθ(G) ≡C fuseθ(H);
– if G1 ≡C H1 and G2 ≡C H2, then G1 ⊕G2 ≡C H1≡CH2.

A set L of n-ary graphs is called Courcelle-recognizable if it is the union of
finitely many equivalence classes of a locally finite congruence.

We will in the following show that the notion of recognizability of Courcelle
coincides with our notion, hence the notion of “Courcelle-recognizability” is re-
dundant. However, we will keep it for the moment in order to properly distinguish
the two notions of recognizability.

5.4 Equivalence of the Two Notions of Recognizability

In this subsection we show that our notion of recognizable graph language is
equivalent to Courcelle’s. In Courcelle’s notion there is only one (discrete) inter-
face. The role of cospan composition is played by the operators defined above.

Encouraged by the result of Prop. 5.6 we restrict our attention to cospans
with discrete interfaces. The discrete graph with node set Nn will be called
canonical n-graph, and will be represented by Disn; we make use of the fact that
each discrete graph with n nodes is isomorphic to the canonical n-graph. To
formalize the equivalence between both notions of recognizability, we must first
associate (sets of) cospans of graphs with n-ary graphs.

Definition 5.8. For each discrete graph D with n nodes we fix in advance an
isomorphism diD : Disn → D such that diD1⊕D2 = diD1 2 diD2 .

We define the function bend which maps a cospan

c : J
cL−→ G

cR←− K

where J, K are discrete interfaces with n, m nodes, resp., to an (n+m)-ary graph
as follows:

bend(c) = 〈G, (diJ ; cL)2 (diK ; cR)〉 .

The name bend is inspired by the fact that the function basically ‘bends’ a
cospan so that its inner and outer interface are together, and then interprets the
resulting figure as a (m + n)-ary hypergraph, as illustrated below:

J

G

K external nodes

Theorem 5.9. Let J be a discrete graph. A set of graphs L is the (∅, J)-language
of some automaton functor A if and only if bend(L) is Courcelle-recognizable.

Proof. (Sketch.) We prove the theorem by simulating Courcelle’s operations by
cospan composition, and cospan composition by Courcelle’s operations, so that
the congruences can be transferred. Suppose J has n nodes. The simulations of
Courcelle’s operations work as follows (see Fig. 1):
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redef σ =
•

•

•

•

•
•
•

J J K

σ′

fuseθ =
•
•
•

•

•

•
•
•

J D J

Fig. 1. Simulating Courcelle’s graph operation by cospans. On the left: example of
cospan simulating redefinition of external nodes; on the right: example of cospan sim-
ulating fusion of external nodes.

G

n

H

n m

⊕
�

n n m

�

m

Fig. 2. Simulating cospan composition with Courcelle’s operations. First, we construct
the disjoint union of the graphs In the second step the indicated external nodes are
fused and then removed from the external nodes by a redefinition.

– Let σ : Nm → Nn be a function, and K a discrete graph with m nodes. It
can be considered as a graph morphism from Dism to Disn. Then σ′ = di−1

K ;
σ ; diJ is the corresponding graph morphism from K to J . Postcomposing a
cospan c with the cospan

redef σ : J
idJ−→ J

σ′←− K

simulates performing the redefσ operation on c.
– Let θ be an equivalence relation on the elements of Nn (i.e. an equivalence

relation on the nodes of Disn). Suppose θmap is the morphism which maps
each element of Nn to its θ-equivalence class and let θ′ = di−1

J ; θmap. Then

fuseθ : J
θ′−→ D

θ′←− J ,

where D is the discrete graph with node set {[[v]]θ | v ∈ Nn}, simulates the
fuseθ operation.

– Disjoint sum is simulated by disjoint sum in the category of graphs and
we obtain the congruence property via the congruence property for cospan
composition (see the extended proof in the extended version).

The simulation of cospan composition in Courcelle’s algebra depends on the
fact that bend(c ; d) = redefσ(fuseθ(bend(c) ⊕ bend(d))) for appropriate σ and
θ. In Fig. 2 this is depicted for cospans c, d where c has inner interface ∅.  !

Note that one of the reasons why the proof works is the fact that the category
of cospans is compact-closed, which means that certain “bending” laws, similar
to the one above, hold.
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6 Conclusion

We have shown that a very general categorical notion of recognizability via au-
tomaton functors (which is equivalent to a notion suggested by Griffing [12]) is
equivalent to a notion of recognizability for graph languages by Courcelle when-
ever we consider the category of cospans of graphs. The proof of this equivalence
is non-trivial.

Furthermore we investigated our notion of automaton functor and showed
that it preserves several nice properties which are well-known for finite-state
automata. Our main motivation behind this work is to provide automata-based
techniques for verification and termination analysis of graph transformation sys-
tems. Some preliminary results on termination analysis are reported in [3].

Cospans of graphs were also investigated, in the context of gluing graph struc-
tures, by Rosebrugh, Sabadini and Walters [19,20], but in [20] their graph struc-
tures represent automata which recognize word languages rather than graph
languages. In the future we plan to explore the relations between their and our
work in some more detail.

Naturally, efficiency questions arise. The automaton functor we are working
with is only locally finite, i.e., the sets of states are finite for every interface, but
interfaces might be arbitrarily large. This question has already been addressed by
Courcelle, who characterized classes of graphs which can be recognized efficiently.
He showed that for the hr-algebra of graphs a graph can be decomposed via
interfaces whose size is bounded by k + 1 if and only if its treewidth is bounded
by k [6,7]. Hence a language L can be recognized efficiently (even in linear time!)
if there is a bound on the treewidth of the graphs contained in L (see also [8]).
This is also known as Courcelle’s theorem and applies to properties such as
k-colorability that would be NP -complete on graphs of unbounded treewidth.

Since with cospans we have a different notion of interface and different oper-
ations, this result by Courcelle does not carry over directly, although we have
the same notion of recognizability. This is a point which has to be investigated
further, but in order to arrive at a similar result we believe that it is necessary
to equip our category with a monoidal operation ⊕ (which is the disjoint sum
on cospans) and to require that an automaton functor preserves this monoidal
operation. We conjecture that, at least in the case of graphs with empty inner
interface, adding such a monoidal operation will not affect which sets of (cospans
of) graphs are recognizable. Currently it seems that we can only guarantee linear-
time algorithms for graphs of bounded pathwidth, since cospans allow only to
construct path decompositions of graphs.

Of course, in order to obtain practical algorithms for recognizability, we have
to find reasonable ways to represent and handle automaton functors, at least in
the case of graphs of bounded treewidth. We have some preliminary ideas how
this can be achieved, but it is an interesting problem that has to be studied
further.

In this paper we mainly considered cospans of graphs, but there is a more gen-
eral notion of (dpo) rewriting based on adhesive categories [15,10]. Our notion of
recognizability can be easily generalized to this setting, whereas it is not entirely
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clear how to extend Courcelle’s algebra of graphs. One possible application of
such a generalization provides us with a method to show that (recognizable) sets
of objects in an adhesive category are invariant under dpo rewriting rules. Let
p : L ← I → R be a dpo rule and let ≡R be a congruence1 characterizing a
language L of objects. We observe that whenever an object A is rewritten to B
via p, A ∈ L and (0 → L ← I)≡R (0 → R ← I) (for an initial object 0), then
we can conclude that B ∈ L.

Finally, an important result in Courcelle’s work is that a language is recog-
nizable whenever it is definable in monadic second-order logic [5,7]. Currently
we have no counterpart to this result, but it might be worthwhile to study it in
a more categorical setting.

Acknowledgement

The authors would like to thank Tobias Heindel for his valuable comments on
the contents of this paper.

References

1. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

2. Bouderon, M., Courcelle, B.: Graph expressions and graph rewritings. Mathemat-
ical Systems Theory 20, 81–127 (1987)

3. Bruggink, H.J.S.: Towards a systematic method for proving termination of graph
transformation systems (work-in-progress paper). In: Proc. of GT-VC 2007 (Graph
Transformation for Verification and Concurrency) (2007)

4. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
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Abstract. In this paper, graph multiset transformation is introduced
and studied as a novel type of parallel graph transformation. The basic
idea is that graph transformation rules may be applied to all or at least
some members of a multiset of graphs simultaneously providing a com-
putational step with the possibility of massive parallelism in this way.
As a consequence, graph problems in the class NP can be solved by a
single computation of polynomial length for each input graph.

1 Introduction

In this paper, a new type of graph transformation, called graph multiset transfor-
mation, is introduced that is inspired by the concepts of genetic algorithms and
DNA computing (see, e.g., [1,2,3,4,5]). Adleman’s seminal experiment demon-
strates how combinatorial problems may be solved using DNA. Roughly speak-
ing, a tube is filled with certain quantities of properly chosen DNA strands.
Then their reactions according to the Watson-Crick complementarity produces
DNA molecules, a suitable selection of which represents solutions. Similarly, a
genetic algorithm transforms a “population of individuals” step by step into one
of “fitter” individuals by means of “mutation,” “cross-over,” and “selection.”
If, for example, the individuals are solutions of an optimization problem that
differ from the optimum, then the genetic algorithm may yield solutions that
are closer to the optimum or even meet it. If one replaces tubes of molecules and
populations of individuals by multisets of graphs and chemical reactions and
genetic operations by rule applications, one gets the concept of graph multiset
transformation.

The basic idea is that graph transformation rules may be applied to all or at
least some members of a multiset of graphs simultaneously providing a compu-
tational step with the possibility of massive parallelism in this way. As a conse-
quence, graph problems in the class NP can be solved by a single computation
of polynomial length for each input graph.
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The paper is organized in the following way. The next section provides the pre-
limininaries concerning graphs and rule-based graph transformation. In
Section 3, simple graph transformation units are recalled as devices to model
and compute graph algorithms and processes. Section 4 introduces a way to
solve decision problems on graphs by means of terminating units. In particular,
a graph-transformational variant of the class NP is defined. Based on simple
and terminating units, graph multiset transformation is proposed as a computa-
tional framework with massive parallelism in Section 5 and 6. As a consequence,
NP-problems can be solved in a polynomial number of computational steps.
The Appendix recalls multisets together with some basic definitions used in this
paper. Throughout the paper, the well-known NP-complete Hamiltonian path
problem is discussed as a running example. The proofs are omitted because of
the limited space. It may be noted that the basic ideas of graph multiset trans-
formations have been sketched in [6] in a draft way.

2 Graphs and Rule-Based Graph Transformation

In this section, we recall the basic notions and notations of graphs and rule-based
graph transformation as far as they are needed in this paper. We use directed
and edge-labeled graphs with binary edges.

Let Σ be a set of labels. A graph over Σ is a system G = (V, E, s, t, l) where
V is a finite set of nodes, E is a finite set of edges, s, t : E → V are mappings
assigning a source s(e) and a target t(e) to every edge in E, and l : E → Σ is
a mapping assigning a label to every edge in E. An edge e with s(e) = t(e) is
called a loop. The components V , E, s, t, and l of G are also denoted by VG,
EG, sG, tG, and lG, respectively. The set of all graphs over Σ is denoted by GΣ .
We reserve a specific label ∗ which is omitted in drawings of graphs. In this way,
graphs where all edges are labeled with ∗ may be seen as unlabeled graphs. The
sum of the number of nodes and the number of edges is the size of G, denoted
by size(G).

For graphs G, H ∈ GΣ , a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.,
gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all
e ∈ EG. If the mappings gV and gE are bijective, then g is an isomorphism,
and G and H are called isomorphic. If the mappings gV and gE are inclusions,
then G is called a subgraph of H, denoted by G ⊆ H. For a graph morphism
g : G→ H , the image g(G) ⊆ H of G in H is called a match of G in H .

Example 1. The graph G0 in Figure 1 has four Hamiltonian paths which are
represented by the graphs H1, H2, H3, and H4.1 A box � represents a node with
an unlabeled loop. Therefore, G0 has four nodes, four loops and five additional
unlabeled edges. The other graphs are variants of G0. We use to represent
a begin-node which is a node with a loop labeled with begin. Analogously,
represents an end -node. If one starts in the begin-node and follows the p-labeled
1 A path is called Hamiltonian if it visits every node exactly once.
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edges, one reaches the end -node in the graphs H1, H2, H3, and H4. In each case,
the sequence of p-edges defines a Hamiltonian path of G0, where the intermediate
nodes have no loops.

G0 = H1 =

p

p

p

H2 = p

p

p H3 =

p

p

p

H4 = p

p

p

Fig. 1. G0 with all its Hamiltonian paths

If one removes the right vertical edge and the loops at the source and the
target of this edge in the graph G12 in Figure 2, then one gets the subgraph Z0.
One may extend the graph Z0 by a p-edge and an end-loop to get G123.

G12 =

p

⊇ Z0 =

p

⊆ G123 = p

p

Fig. 2. Two graphs with a common subgraph

There are two graph morphisms from the graph Lrun = into G12 which
map to the subgraphs of the same form.

A rule r = (L ⊇ K ⊆ R) consists of three graphs L, K, R ∈ GΣ such that
K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively. The application of
r = (L ⊇ K ⊆ R) to a graph G = (V, E, s, t, l) consists of the following three
steps.

1. A match g(L) of L in G is chosen subject to the following conditions.
– contact condition: v ∈ gV (VL) with sG(e) = v or tG(e) = v for some

e ∈ EG − gE(EL) implies v ∈ gV (VK).
– identification condition: gV (v) = gV (v′) for v, v′ ∈ VL implies v = v′ or

v, v′ ∈ VK as well as gE(e) = gE(e′) for e, e′ ∈ EL implies e = e′ or
e, e′ ∈ EK .

2. Now the nodes of gV (VL − VK) and the edges of gE(EL −EK) are removed
yielding the intermediate graph Z ⊆ G.

3. Let d : K → Z be the restriction of g to K and Z, then the pushout of
d and the inclusion of K into R yields the resulting graph H and graph
morphisms h : R → H and i : Z → H. Without loss of generality, one can
assume that i is the inclusion of Z into H and that h is the identity on
R −K. This provides an explicit construction of H because Z ∪ h(R) = H
and Z ∩ h(R) = d(K) = h(K).

The application of a rule r to a graph G is denoted by G⇒
r

H , where H is
the graph resulting from the application of r to G. A rule application is called a
direct derivation. The subscript r may be omitted if it is clear from the context.
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The contact condition guarantees that the removal of L − K from G yields
a graph and that the restriction d of g to K and Z is a graph morphism. The
identification condition makes sure that G together with g and the inclusion of
Z into G is a pushout of d and the inclusion of K into L. Altogether, a direct
derivation is given by a double pushout (cf. Figure 3).

G

L

⊇

⊇

Z

K

⊆

⊆

H

R

g d h
� � �

Fig. 3. Diagram of a double pushout

The sequential composition of direct derivations d = G0 =⇒
r1

G1 =⇒
r2

· · ·=⇒
rn

Gn

(n ∈ N) is called a derivation from G0 to Gn. As usual, the derivation from G0

to Gn can also be denoted by G0
n=⇒
P

Gn where {r1, . . . , rn} ⊆ P , or just by

G0
∗=⇒
P

Gn. The subscript P may be omitted if it is clear from the context. The

string r1 · · · rn is the application sequence of the derivation d.

Example 2. Consider the following two rules

start = ⊇ ⊆

run = ⊇ ⊆ p

The rule start describes the removal of an unlabeled loop and the addition of
a begin-loop and an end -loop at the same node, which is depicted by . The
rule run replaces an unlabeled edge by a p-edge removing the two loops of the
left-hand side and adding an end -loop at the target node of the right-hand side.

Figure 4 shows all derivations that start in the graph G0 and apply the rule
start only once in the beginning (while the rule run is applied repeatedly after-
wards). At first, the rule start can be applied to G0 in four ways deriving the
four graphs in the second column from the left of Figure 4. The graphs in the
right-most column of Figure 4 are H1, H2, H3, and H4 representing the Hamil-
tonian paths of G0. They are characterized by the property that they do not
contain any unlabeled loop.

It is not dificult to prove that the Hamiltonian paths of every unlabeled graph
(with a single loop at each node) can be generated in the same way: Apply the
rule start once and then the rule run repeatedly. A derived graph is Hamiltonian
if and only if it has no unlabeled loop left.

Given a finite set of rules and a graph G, the number of matches is bounded
by a polynomial in the size of G because the sizes of left-hand sides of rules are
bounded by a constant. Given a match, the check, whether the contact and the
identification condition hold, and the construction of the directly derived graph
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Fig. 4. The derivations starting in G0 with one application of start

is linear in the size of G. Therefore, it needs polynomial time to find a match and
to construct a direct derivation, and there is a polynomial number of choices at
most. Moreover, the size of the resulting graph differs from the size of the host
graph by a constant.

3 Simple Graph Transformation Units

A rule yields a binary relation on graphs and a set of rules a set of derivations.
The example of Hamiltonian paths shows (like many other examples would show)
that more features are needed to model algorithms and processes on graphs in a
proper way. In particular one needs initial graphs to start the derivation process,
terminal graphs to stop it, and some control conditions to regulate it. Initial and
terminal graphs may be specified by graph class expressions. The notion of simple
graph transformation units encompasses all these features to model and compute
relations between initial and terminal graphs by means of regulated derivations.

3.1 Graph Class Expressions

A graph class expression may be any syntactic entity X that specifies a class of
graphs SEM (X) ⊆ GΣ . A typical example is a subset Δ ⊆ Σ with SEM (Δ) =
GΔ ⊆ GΣ . Forbidden and reduced structures are also frequently used. Let F be
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a graph, then SEM (forbidden(F )) contains all graphs G such that there is no
graph morphism f : F → G. Another useful type of graph class expressions is
given by sets of rules P where SEM (reduced(P )) contains all P -reduced graphs,
i.e., graphs to which none of the rules in P can be applied. In the examples,
we use the constant expression unlabeled graphs denoting the set of unlabeled
graphs each node of which is equipped with a single unlabeled loop.

3.2 Control Conditions

A control condition is any syntactic entity that cuts down the non-determinism of
the derivation process. A typical example is a regular expression over a set of rules
(or any other string-language-defining device). Let C be a regular expression
specifying the language L(C). Then a derivation with application sequence s is
permitted by C if s ∈ L(C).

3.3 Simple Graph Transformation Units

A simple graph transformation unit is a system tu = (I, P, C, T ), where I and
T are graph class expressions to specify the initial and the terminal graphs
respectively, P is a set of rules, and C is a control condition.

Each such transformation unit tu specifies a binary relation SEM (tu) ⊆
SEM (I)× SEM (T ) that contains a pair (G, H) of graphs if and only if there is
a derivation G

∗=⇒
P

H permitted by C.

Example 3. The considerations in Examples 1 and 2 can be summarized by the
following simple graph transformation unit:

HP
initial: unlabeled graphs
rules: start, run
control: start ; run*
terminal: forbidden(�)

The initial graphs are unlabeled graphs with a single unlabeled loop at each
node. The rules start and run are given in Example 2, and the control condition
is a regular expression over the set of rules with the sequential composition ; and
the Kleene star * (specifying that a single application of start can be followed by
an arbitrary sequence of applications of run). Graphs derived in this way from
initial graphs are accepted as terminal if they do not contain any unlabeled loop.

3.4 Computation and Complexity

Using the effective construction of direct derivations, the relation SEM (tu) of
a transformation unit tu = (I ,P ,C ,T ) is recursively enumerable if SEM (I ) is
recursively enumerable and SEM (T ) and the control condition are decidable.
SEM (tu) can be computed as follows:
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– Enumerate the graphs of SEM (I ).
– For each G ∈ SEM (I ), enumerate all derivations starting in G together with

their application sequences.
– For each derived graph G, check whether G ∈ SEM (T ).
– If yes, check whether the respective application sequence belongs to L(C ).
– If yes, put (G, G) into SEM (tu).

The assumptions apply to all graph class expressions and control conditions that
are explicitly introduced above.

The time to check whether a graph G belongs to SEM (unlabeled graphs),
SEM (forbidden(F )) or SEM (reduced(P )) is polynomial in the size of G. If
G

k⇒H and k is bounded by a polynomial in the size of G, then the size of H
is also bounded by a polynomial in the size of G. Therefore, to check whether
H belongs to SEM (forbidden(F )) or SEM (reduced(P )) takes also time that is
polynomial in the size of G. Finally, the construction of the application sequence
can be done together with the derivation without extra effort and its length
coincides with the length of the derivation. The membership problem of regular
expressions is linear in this length so that it is polynomial in the size of G.

The notion of a transformation unit has been introduced in [7,8,9] as a mod-
eling and structuring concept for graph transformation systems. Here the struc-
turing component is omitted and the computational aspect is emphasized. In
addition to the cited papers, one can find more about graph class expressions
and control conditions in [10,11]. Habel and Plump [12] have recently shown that
a similar kind of graph transformation approach is computationally complete.

4 Solving Decision Problems

A simple graph transformation unit is terminating if, for every initial graph,
the number of derivations starting in this graph is finite. In this case, all these
derivations can be constructed effectively, and it can be checked whether any of
them is permitted by the control condition and derives a terminal graph. This
means that a terminating unit can be re-interpreted as a solution of a decision
problem on the initial graphs. If the lengths of derivations are bounded by a
polynom in addition, one gets a graph-transformational variant of the class NP
of decision problems with nondeterministic polynomial solutions.

Definition 1. Let tu = (I ,P ,C ,T ) be a transformation unit. tu is terminating
if, for each initial graph G ∈ SEM (I ), there is an upper bound b(G) ∈ N such
that n ≤ b(G) for each derivation G

n⇒
P

G′. The function b : SEM (I ) → N given

in this way is called termination bound.

A well-known sufficient condition for termination can be used in the framework
of graph transformation units.

Observation 2. Let tu = (I ,P ,C ,T ) be a transformation unit. Let val : GΣ →
N be a valuation function with val(G′) > val(G′′) for each direct derivation
G′⇒

P
G′′. Then tu is terminating.
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Definition 3. Let tu = (I ,P ,C ,T ) be a terminating transformation unit with
the termination bound b : SEM (I )→ N.

1. A function D : SEM (I )→ {true, false} is called a decision problem.
2. tu solves D if the following holds for all G ∈ SEM (I ):

D(G) = true if and only if (G, G) ∈ SEM (tu) for some G ∈ SEM (T ).

This is denoted by COMP(tu) = D.
3. tu is called polynomial if there is a polynom p such that, for all G ∈ SEM (I ),

b(G) ≤ p(size(G)).
4. The class of all decision problems that are solved by polynomial transforma-

tion units is denoted by NPGT .

Remarks. 1. If tu is terminating, there is only a finite number of derivations
G

∗⇒
P

G′ for each G ∈ SEM (I ). Hence, it can be checked effectively whether

a terminal graph is derived by a permitted derivation or not.
2. The computational framework given by terminating and polynomial trans-

formation units in particular is still nondeterministic because there may be a
derivation G

∗⇒
P

G′ with G′ ∈ SEM (reduced(P )), but G′ /∈ SEM (T ), and also

a permitted derivation G
∗⇒
P

G with G ∈ SEM (T ). In the polynomial case, it

takes polynomial time to build up a single derivation and to check whether
its derived graph is terminal or not (cf. 3.4). Both points together justify
the denotation NPGT . The same reasoning shows that a decision problem
D : SEM (I ) → {true, false} which is solved by a polynomial transforma-
tion unit belongs to the class of NP-problems if one chooses a proper string
representation of graphs. Also the converse inclusion holds because one can
simulate the computational steps of a Turing machine by the application of
graph transformation rules. This consideration yields the following result.

Observation 4. NPGT = NP .

Example 4. The rules start and run (cf. Example 2) decrease the number of
unlabeled loops by 1 whenever one of them is applied. Therefore, the unit HP
(cf. Example 3) is terminating due to Observation 2. Because HP finds all exist-
ing Hamiltonian paths of every initial graph as terminal graphs, HP solves the
Hamiltonian path problem. Moreover the termination bound is linear so that
the problem is explicitly shown to be a member of NPGT .

Termination has been studied in the context of graph transformation for example
by Plump [13], Godard, Métivier, Mosbah, and Sellami [14], and by Ehrig, Ehrig,
de Lara, Taentzer, Varró, and Varró-Gyapay [15].

5 Graph Multiset Transformation

In this section, graph multiset transformation is introduced employing ordinary
graph transformation as basis. The underlying data structures are finite multisets
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of graphs. In each derivation step, some of the graphs of a given actual multiset
are directly derived into graphs by applying ordinary rules, yielding a new actual
multiset where the deriving graphs are replaced by the derived ones. This idea is
formalized in Definition 5. A derivation of multisets of graphs corresponds to a
set of simultaneous derivations of graphs (cf. Observation 6). In this sense, graph
multiset transformation is a framework for massively parallel computation. In
particular, one can show that NP -problems can be solved by graph multiset
transformation in a polynomial number of steps.2

Definition 5. Let P be a set of rules. Let M : GΣ → N be a finite multiset of
graphs and M ′ ≤ M a sub-multiset of M . Let G1 · · ·Gn ∈ Perm(M ′) be one of
the sequential representations of M ′ and G′

1 · · ·G′
n ∈ G∗

Σ be another sequence of
graphs with Gi⇒

P
G′

i for all i = 1, . . . , n. Let M ′′ = [G′
1 · · ·G′

n] be the multiset

of G′
1 · · ·G′

n.
Then M directly derives the graph multiset M = M −M ′ + M ′′, denoted by

M⇒
P

M .

A sequence M0⇒
P

M1⇒
P
· · ·⇒

P
Mn of direct derivations of multisets of graphs

defines a (graph multiset) derivation from M = M0 to M = Mn of length n in
the usual way. Such derivations are shortly denoted by M

n⇒
P

M or M
∗⇒
P

M . The

subscript P may be omitted if it is clear from the context.

Remark. It should be noted that the derived multiset does not depend on the
choice of the sequential representation of M ′ because each permutation of the
sequence G1 · · ·Gn corresponds to the respective permutation of G′

1 · · ·G′
n and

the multisets of sequences are invariant with respect to permutation.

It is easy to see that graph multiset derivations correspond to derivations of the
graphs in the multisets and that the lengths of graph multiset derivations are
bounded if and only if the lengths of graph derivations are bounded.

Observation 6. 1. Let M
k⇒
P

M be a graph multiset derivation of length k and

G1 · · ·Gn ∈ Perm(M) a sequential representation of M . Then there is a
sequential representation G1 · · ·Gn ∈ Perm(M) such that Gi

ki⇒
P

Gi for all

i = 1, . . . , n with ki ≤ k.
2. Let G1 · · ·Gn, G1 · · ·Gn ∈ G∗

Σ be sequences of graphs with Gi
ki⇒
P

Gi for all i =

1, . . . , n. Then there is a graph multiset derivation [G1 · · ·Gn] k⇒
P

[G1 · · ·Gn]

with k = max{ki | i = 1, . . . , n}.

Observation 6 means, in particular, that graph multiset transformation is a kind
of parallel graph transformation that has the same termination properties as
ordinary graph transformation discussed above. Therefore, graph multiset trans-
formation can be used as a computational framework similarly to graph trans-
formation. In particular, a terminating transformation unit can solve a decision
2 The definitions concerning multisets are given in the Appendix.
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problem on its initial graphs by means of graph multiset transformation. The
computation starts with multiple copies of an initial graph and yields true if
some terminal graph occurs in one of the derived multisets. Using polynomial
transformation units, the lengths of graph multiset derivations are polynomially
bounded and true is computed in a single derivation with high probability if
the multiplicity of the initial graph is chosen large enough.

Definition 7. Let tu = (I ,P ,C ,T ) be a terminating transformation unit. Let
D : SEM (I ) → {true, false} be a decision problem. Then tu computes D by
graph multiset transformation (GMST) if the following holds.

For each G ∈ SEM (I ), there is a graph multiset derivation n · [G] ∗⇒
P

M for

some n ∈ N so that some underlying derivation G
∗⇒
P

G is permitted by C with

G ∈ car(M) ∩ SEM (T ) if and only if D(G) = true.

Remarks. 1. If tu computes D by graph multiset transformation, then this may
be denoted by D = COMPGMST (tu).

2. PGMST denotes the set of all decision problems that are computed via graph
multiset transformation by polynomial transformation units.

3. If tu is polynomial and G an initial graph, then the number of deriva-
tions starting in G is bounded by a number exponential in the size of G.
If the multiplicity n of G is chosen larger than this bound and the derivation
n · [G] ∗⇒

P
M is long, then the probability is high that most permitted deriva-

tions starting in G are underlying n · [G] ∗⇒
P

M . Therefore the probability is

high to find the proper value of D(G) in a single graph multiset derivation
with a polynomial number of steps. This justifies the denotation PGMST .

As a first result on polynomial graph multiset transformation and as the main
result of this section, one can show that the classes NPGT and PGMST coincide.
Unfortunately, this is not a solution of the P=NP-problem because the class
PGMST relies on massive parallelism.

Theorem 8. NPGT = PGMST .

Example 5. Based on the unit HP in Example 3, Figure 5 shows a graph multiset
derivation that starts with two copies of G0. In the first step, the rule start
is applied to the left upper node of both copies. There is only one possible
match in each case exept for the third step where run is applied to the right
vertical edge in the upper graph and to the diagonal edge in the lower graph.
In the following steps, run is applied as long as possible. The horizontal rows
of graphs represent the underlying derivations which are both permitted. The
derived (multi-)set contains two graphs of which one graph is terminal proving
that COMPGMST (HP)(G0) = true.

The section is closed by a more explicit construction of the computations that solve
decision problems by graph multiset transformation. To keep track of underlying
derivations that are permitted by the control condition, a finite automaton is used.
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Fig. 5. A graph multiset derivation

Moreover, we assume that terminal graphs are reduced. Therefore, the check for
terminality can be postponed until a derivation cannot be prolonged.

Construction 9. Let tu = (I, P, C, T ) be a terminating transformation unit
with SEM (T ) ⊆ reduced(P ). Let A = (S, P, d, s0, F ) be a finite automaton with
L(A) = L(C) where P is the input alphabet.

As underlying data structures, configurations of the form (M ∗⇒M, W, w) with
W ∈ Perm(M) and w ∈ S∗ are used. In addition, one may assume length(W ) =
length(w) so that each copy of each graph in M is associated with a state of A.
Given an initial graph G, a computation can be constructed inductively in the
following way.

Induction base: Choose n, and consider (n · [G] 0⇒n · [G], Gn, sn
0 ) as start con-

figuration.
Induction hypothesis: Assume that a configuration

(n · [G] k⇒ M̂, Ĝ1 . . . Ĝn, s1 . . . sn)

is already constructed so that the following holds for i = 1, . . . , n:

si ∈ d∗(s0, ui)

where ui is the application sequence of the underlying derivation G
ki⇒ Ĝi.

Induction step: If possible, then choose for i = 1, . . . , n, Ĝi⇒
r

Gi with some

si ∈ d(si, r). Otherwise, let Gi = Ĝi and si = si. Then [Ĝ1 . . . Ĝn]⇒[Gi . . .Gn]
is a direct derivation giving rise to the follow-up configuration

(n · [G] k⇒ M̂⇒[G1 . . . Gn], G1 . . . Gn, s1 . . . sn).

The construction can be terminated if a configuration

(n · [G] l⇒M, Gi . . . Gn, s1 . . . sn)

is reached such that there is no Gi⇒
r

Gi. Consequently, all follow-up configura-
tions remain unchanged. Such a configuration is reached eventually because the
transformation unit tu is terminating.

Observation 10. Let tu = (I, P, C, T ) be a terminating transformation unit
with SEM (T ) ⊆ reduced(P ). Let A = (S, P, d, s0, F ) be a finite automaton with
L(A) = L(C). Let D = COMPGMST (tu). Then the following statements hold.
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1. Let (n · [G] k⇒M, G1 . . .Gn, si . . . sn) be a configuration constructed above.
Let, for i = 1, . . . , n, ui be the application sequence of the underlying deriva-
tion G

ki⇒Gi. Then si ∈ d∗(s0, ui).
2. Let n · [G] ∗⇒M, G1 . . . Gn, si . . . sn) be a terminated configuration for some

G ∈ SEM (I) with Gi ∈ SEM (T ) and si ∈ F for some i = 1, . . . , n. Then
D(G) = true.

3. If D(G) = true, then there is a terminated configuration of the form
(1 · [G] ∗⇒(1 · [G], G, s) for some G ∈ GΣ and s ∈ F.

6 Exhaustive Computations

A polynomial graph transformation unit tu = (I, P, C, T ) solves a decision prob-
lem by means of graph multiset transformation in a polynomial number of steps
with a high probability if the multiplicity of the initial graph is large. It does
not provide an exact solution because there is no guarantee that a permitted
derivation G

∗⇒G with G ∈ SEM (I) and G ∈ SEM (T ) belongs to the deriva-
tions underlying a computation MG

∗⇒M. This may be seen as a drawback. But
the problem can be resolved by means of exhaustive computations that cover all
derivations and all their prefixes up to a given length.

Definition 11. A computation n · [G] k⇒M for some n ∈ N is exhaustive if each
derivation G

l⇒ Ĝ with l ≤ k is an initial section of an underlying derivation,
meaning that there is a derivation Ĝ

∗⇒G with G
l⇒ Ĝ

∗⇒G ∈ der(n · [G] ∗⇒M).

Theorem 12. Let tu = (I, P, C, T ) be a transformation unit with SEM (T ) ⊆
reduced(P ). Let n · [G] ∗⇒M for some n ∈ N be exhaustive with car(M)
⊆ reduced(P ). Let G

∗⇒G with G ∈ SEM (T ) be permitted by C. Then G
∗⇒G ∈

der(n · [G] ∗⇒M).

Remark. Exhaustive computations can be constructed inductively.
Induction base: [G] 0⇒[G] is an exhaustive computation of length 0.
Induction step: Let n · [G] k⇒M be an exhaustive computation of length k

which exists by induction hypothesis. Let max be the maximum number of
direct derivations starting in some G ∈ car(M ). Let max · n · [G] k⇒max · M
be obtained from n · [G] k⇒M by copying every rule application max times.
Then there are max copies of G in max · M for each G ∈ car(M) so that all
direct derivations starting in G can be constructed. This defines an exhaustive
computation max · n · [G] k⇒max ·M⇒ M̂ of length k + 1.

Example 6. Figure 4 in Example 2 represents the full derivation process starting
in G0 that obeys the control condition start; run∗. It can be considered as an
exhaustive graph multiset derivation where the columns are the multisets and
each column from right to left is filled with enough copies of the present graphs
that all alternative rule applications can be applied simultaneously. Altogether,
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six copies of G0 are needed to derive all reduced graphs. The derivation length
is bounded by the number of nodes of the initial graph, and the reduced graphs
contain a terminal graph if and only if the initial graph contains a Hamiltonian
path. In other words, the exhaustive derivations of maximum lengths solve the
Hamiltonian path problem in a linear number of steps.

7 Conclusion

In this paper, we have proposed graph multiset transformation as a novel frame-
work for the modeling and computation of graph algorithms and decision prob-
lems on graphs in particular. The basic idea is to apply rules to various graphs
in a multiset simultaneously in a single computational step. In particular, NP-
problems can be solved polynomially by graph multiset transformation employ-
ing exhaustive derivations. A result like this is typical for and should be expected
of a computational model with massive parallelism.

We are convinced that future investigations will prove the significance of this
approach.

1. Graph multiset transformation may be compared with other types of paral-
lelism within and beyond graph transformation.

2. Graph multiset transformation may be used like genetic algorithms as a
heuristic approach. This would mean to start with a comparatively small
multiplicity of initial graphs and to employ more sophisticated control con-
ditions to improve the chances of successful computations.

3. The example of the Hamiltonian path problem indicates that simple graph
transformation units and their evaluation by graph multiset transformation
provides a quite natural way to model graph problems and their solutions.
Further case studies can strengthen this view.

4. As pointed out in the Introduction, graph multiset transformation is inspired
by Adleman’s experiment, in which he solved the Hamiltonian path problem
by means of DNA computing in the proper sense using DNA molecules and
their reaction with each other. Similarly, it may be possible to translate
graph multiset transformation into DNA computing and implement it by a
massively parallel machinery in this way.

5. Because of the close relation to genetic algorithms and DNA computing,
graph multiset transformation is potentially applicable wherever these both
are useful.

Acknowledgement. We are grateful to the anonymous referees for their valuable
comments.
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Appendix

This appendix recalls the notions and notations of multisets used in the paper.

1. Let X be a set. Then a multiset (over X) is a mapping M : X → N, where
M(x) is the multiplicity of x in M .

2. The carrier of M contains all elements of X with positive multiplicity, i.e.

car(M) = {x ∈ X | M(x) > 0}.

3. A multiset is finite if its carrier is a finite set.
4. Let M and M ′ be multisets. Then M ′ is a sub-multiset of M , denoted by

M ′ ≤ M , if M ′(x) ≤ M(x) for all x ∈ X .
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5. Let M and M ′ be multisets. Then the sum (difference) of M and M ′ is the
multiset defined by

(M ±M ′)(x) = M(x)±M ′(x) for all x ∈ X.

Here + and − are the usual sum and difference of non-negative integers with
m− n = 0 if m ≤ n in particular.

6. Using the sum of multisets, the multiplication of multisets with non-negative
numbers can be defined inductively for all multisets M by
(i) 0 ·M = 0 and
(ii) (k + 1) ·M = k ·M + M for all k ∈ N

where the multiset 0 is the multiset with the constant multiplicity 0, i.e.
0(x) = 0 for all x ∈ X.

7. Each sequence w ∈ X∗ induces a multiset [w] by counting the number of
occurrences of each x in w, i.e., for all x, y ∈ X and w ∈ X∗,
– [λ](x) = 0
– [yw](x) = if x = y then [w](x) + 1 else [w](x).

8. Let M be a multiset. Then the set of all sequences w with [w] = M is denoted
by Perm(M). An element of Perm(M) is called a sequential representation
of M . Note that Perm(M) contains all permutations of w if [w] = M .

9. The set of multisets over X as well as the set of finite multisets over X give
rise to a commutative monoid with the multiset 0 as null and the sum as
inner composition. Moreover, the set of finite sultisets over X is generated
by the sigletons [x] for all x ∈ X so that the finite multisets are characterized
as the free commutative monoid over X .
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Abstract. Following earlier work on pullback rewriting, we describe
here the notion of graph grammar relevant to our formalism. We then
show that pullback grammars are context-free and provide a surprising
example, namely the context-free generation of square grids.

Keywords: Pullback, Graph grammar.

1 Introduction

Graph rewriting has been studied at large over the last forty years, giving rise
to several distinct formalisms and to a lot of results.

To be short, one may say that two main directions have been explored corre-
sponding to two distinct (somehow dual) approaches to the structure of a graph,
either as nodes linked by arrows (vertex rewriting) or as arrows glued by nodes
(edge or hyperedge rewriting).

In both directions, three levels of description have been explored: set theoretic,
algebraic (namely using universal algebra) or categorical (using category theory
as basic tool).

In this last setting, namely using category theory, the main effort has been
devoted to edge (and hyperedge) replacement, using pushout as a basic operation
and leading to the development of a large theoretical body, via the double and
single pushout approach to graph rewriting (the so-called algebraic approach)
and their extensions.

In this paper, we focus on the dual approach (in the category theoretical
sense!), using pullback as the basic rewriting operation, as introduced by the
first author in order to provide vertex replacement with a categorical treatment
(an “algebraic approach”).

Several papers have been published so far (see [1,2,3]), which describe the
basic formalism, and show e.g. how to encode standard node rewriting systems
such as NLC or NCE systems by pullback rewriting.

Let us summarize the main peculiarities of this approach (and refer the reader
to earlier papers for a more detailed description and further “intuition”):

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 366–378, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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– Node labels describe not only properties of the nodes, but also their relation-
ships. In other words, the alphabet is not just a set as usual, but a graph;
and the labeling is not a mere mapping, it is a family of graph morphisms.

– The rewriting mechanism is not the classical notion of substitution (which
is a form of union), but a notion of “controlled product”, namely categorical
pullback.

– Arrows are reversed and so are diagrams (when compared to the push-out
approach).

Here we go one step forward, defining the notion of graph grammar (the pullback
grammar) relevant to this new rewriting mechanism. We only give the basic
definitions and results and limit ourselves to simple graphs. Space limitations do
not allow any proof or extended discussions.

Section 2 is devoted to the basic concepts and to the definition of graph
rewriting via pullback. Several notions have to be developed or introduced. First,
in order to describe several distinct rules and unknowns, we need a slightly more
general alphabet than in [1,2]. Then the classical notions of rules, terminal and
non terminal items are described.

It must be clear that, as we try to stick to a “good” categorical approach,
our interest focuses on arrows. To be more precise, our rules and unknowns are
arrows i.e. graph morphisms, even though we may happen to use the words
“unknown, neighbor and context” in a loose way when we try to support the
intuition of the readers.

In a standard approach to vertex rewriting, the graph has a labeling, namely
a mapping to a set of terminal and non terminal labels, describing whether and
how a node may be rewritten. A rule associates to a non-terminal label the
graph to substitute to the rewritten node (“the right hand side”) together with
a connection relation.

Our formalism is both simpler and more complex. It is more complex, since
our labeling will be given via a family of morphisms which we call unknowns
(let say one per non-terminal node although this is not that simple) and which
completely describes what will happen to the node. The rule will also be a graph
morphism and it will completely describe how the node will be transformed
(including the replacement graph and the connection relation). Since the “right
hand side” of a classical rule may be a labeled graph, it will also be labeled by
a family of morphisms.

It is simpler, because the rewriting is “uniform”: application of a rule will be
given by a pullback computation whose by-product will be a labeling of the new
graph. This is described in section 2.3.

Section 3 describes pullback grammars and one of their main properties: Pull-
back grammars are context-free in the sense defined by Courcelle in [5] (associa-
tive and confluent). And then we give the surprising example of a (context-free)
pullback grammar with only one rule which generates square grids and only
square grids. This clearly shows the strength of our formalism since square grids
are normally taken as a paragon of non context-freeness!
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2 Pullback Rewriting

2.1 Graphs

This section is devoted to basic concepts. We consider directed graphs with
possibly multiple edges.

Definition 1. A graph G is a 4-tuple G = 〈VG, EG, sG, tG〉 where VG, EG are
two finite disjoint sets, sG and tG are two mappings from EG to VG. We call
VG the set of vertices and EG the set of edges. For every element e ∈ EG, sG(e)
and tG(e) are called source vertex and target vertex of the edge e respectively.

A vertex v ∈ VG is reflexive if there exists an edge e ∈ EG such that sG(e) =
tG(e) = v. A graph G is reflexive if all its vertices are reflexive, it is said to be
simple if for any pair x, y of vertices of G, there is at most one edge from x to y.

Definition 2. Given two graphs G1, G2, a graph morphism f from G1 to G2

consists of a pair 〈fV , fE〉 such that:

1. fV : VG1 → VG2 is a mapping from the vertex set of G1 to the one of G2;
2. fE : EG1 → EG2 is a mapping from the edge set of G1 to the one of G2;
3. fV ◦ sG1 = sG2 ◦ fE ; fV ◦ tG1 = tG2 ◦ fE.

Having defined graphs and graph morphisms, the set of graphs can be considered
within the categorical framework where objects are graphs and arrows are graph
morphisms (see [7] for basics about category theory). The central categorical
tool in our work is pullback, which is defined as follows.

Definition 3. Given two morphisms f : B → A and g : C → A, the pullback of
f, g is a triple (P, p, q) where p, q are two morphisms p : P → B, q : P → C such
that:

– f ◦ p = g ◦ q ;
– for every other triple (H, m : H → B, n : H → C) such that f ◦m = g ◦ n,

there exists a unique morphism u : H → P such that p◦u = m and q◦u = n.

P is called the pullback object. The condition is illustrated by the diagram in
Figure 1.

It is well known that the category of graphs has all products and pullbacks.
Moreover, pullbacks of a given pair of morphisms are unique up to isomorphism.
Therefore we use in the sequel the pullback object for the class of isomorphic
objects. It is important to note (since we shall use this basic property extensively)
that the category of graphs has a terminal element (the graph with one vertex
and one edge, denoted by 2) which is a neutral element for the categorical
product.
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Fig. 1. Definition of pullback

2.2 Alphabet

Our rewriting mechanism needs to distinguish between three kinds of nodes:
those which can be transformed, their neighbors and all the remaining nodes.
This will of course be done through some form of labeling, e.g. some kind of
mapping from the graph to a ”set of letters”. But, since we need to encode the
way a node will be rewritten as well as the way relations between nodes will be
affected (encoding so-called connection relations), we need a notion of alphabet
which is richer than a simple set: we shall consider a graph, and the labeling
(operation to distinguish a vertex from its neighbors and the context) will be
done via graph morphisms to this kind of “alphabet”.

Definition 4. An alphabet graph Am,n|m,n∈Z+ of type m, n is built by connecting
a reflexive vertex to m vertices of a complete reflexive graph Km+n.

Because an alphabet graph is totally reflexive, there always exists a graph mor-
phism from any graph to a given alphabet graph.

The graph Am,n has an obvious modular decomposition in three modules that
we shall call C, Nm and Un, with respectively 1, m and n vertices. To support
one’s intuition, nodes in C, Nm and Un, will respectively be called context,
neighbors and variables (or non terminals), and so will be any node mapped
onto them by any graph morphism.

Example 1. The alphabet graph A3,2 is shown in Figure 2. As we shall often
do to help intuition, we have labeled the graph vertices using integers. 0 is
used to name the unique vertex of C (the context), positive integers to name
the vertices of N3 (the neighbors), negative integers to name those of U2 (the
unknowns or non-terminals). We could as well have used letters, colors or shapes,
but integers turn out to be quite convenient. For the sake of simplicity, edges
in the alphabet graph are drawn as ↔ to represent the pairwise inverse edges
between two vertices.
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−2

0

1

2

3

−1

Fig. 2. Alphabet graph A3,2

2.3 Unknowns

Definition 5. Let G be a directed simple graph and Am,n an alphabet graph, an
unknown l on G is a graph morphism from G to Am,n such that:

– there exists at least one vertex v in Un of Am,n with a non empty pre-image
(i.e. such that l−1(v) �= ∅)

– l is monomorphic on the pre-image of Nm.

Such an unknown on G distinguishes three kinds of vertices which we shall call
context, interface and non-terminal nodes. The context nodes are mapped to the
singleton C in the alphabet graph, and the mapping from the interface nodes to
Nm is monomorphic. According to this definition, an unknown can indicate more
than one non-terminal node and these can be mapped to different nodes of Un.

Definition 6. A non-terminal graph GL = (G, U) is a reflexive graph G to-
gether with a non empty finite set U of unknowns on G.

The reflexivity of G is just useful to simplify further definitions. It is easily
checked that this is not a restriction since self loop can easily be removed by
adding specific terminal rules.

Example 2. In Figure 3 we illustrate a non-terminal graph (G, U). The directed
graph G is shown in the left part of the figure. The two unknowns in U are denoted
by l1, l2. The labels on the nodes of G are pairs consisting of one letter (the name
of the node) and one integer showing their image in the alphabet graph.

2.4 Rewriting Rule

Definition 7. A rewriting rule r is a morphism r : R → Am,n which is iso-
morphic on the inverse image of the subgraph of Am,n generated by C ∪Nm. If
the inverse image of Un is empty, the rule is erasing. A rewriting rule r whose
graph R is non-terminal is said to be non-terminal, otherwise it is terminal.

We illustrate the notion of rewriting rule in the following simple example.

Example 3. Figure 4 illustrates two rewriting rules. The left hand side shows a
terminal rewriting rule R = r : R → Am,n, while the right hand side shows a
non-terminal rule R∗ by introducing an unknown lR on the graph R. The graph
morphisms r and lR are described below.
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a,−1

c,−1

u,0

b,1a,3

2l

u,0

v,0

−2

−1

3

2

1

0

1l

v,2

−2

−1

3

2

1

0

c,0

w,3

b,1

w,−2

Fig. 3. A graph with two unknowns
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r(0) = 0, r(1) = 1, r(2) = 2, r(3) = 3
lR(u) = −2, lR(a) = 1, lR(b) = 2

lR(0) = lR(1) = lR(2) = lR(3) = 0

2

0
2

1

3

−1

−2

r

1

3

a

b

u

A terminal rewriting rule R A non terminal rewriting rule R∗

0 2

0
2

1

3

−1

−2

1

3

a

b

u

lR

0

r(a) = r(b) = r(u) = −1

Fig. 4. Rewriting rules

2.5 Rewriting Graphs by Pullback Computation

As already said in the introduction, the rewriting mechanism will simply be the
pullback computation of a pair (l, r) where l : G → Am,n is an unknown on a
graph G and r : R→ Am,n is a rewriting rule.

This is illustrated in an informal way in Figure 5. A non-terminal graph is
shown in the bottom left. [U ] stands for element to be rewritten. In the right
column [R] designates the ingredient to replace for [U ]. By a single pullback
computing step, the [U ]’s are replaced by [R]s. The fact that the initial element 2
is a neutral element for the categorical product plays a key role in the mechanism.

Definition 8. Let r : R → Am,n be a rewriting rule. Given a non-terminal
graph (G, U) and l ∈ U , the application of R on G at unknown l is the pullback
computation of (l, r).
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 [U]

[R]

[R]

[R]

[R]

[R]

[R]

part

 [U]  [U]

Km

Context Interface

Kn
Km

Am,n

Pullback

Unknown

Fig. 5. Pullback rewriting schema

Intuitively the application of a rewriting rule R to a non-terminal graph at an
unknown l consists in replacing the reflexive vertices indicated by the unknown
in the original graph with the subgraph provided by the rule graph, and then
connecting the added parts to the remaining of the original graph according to
the way specified in the rule morphism.

Remark 1. The application of a non-terminal rewriting rule r at unknown l ∈
U of a non-terminal graph (G, U) produces a new non-terminal graph whose
unknowns are well defined. Let us illustrate it by the diagram in Figure 6. Any
other unknown in U (here denoted by l1) gives rise to an unknown l1 ◦ p in the
result graph G′. Similarly, for an unknown lR introduced by the non-terminal
rewriting rule, a new unknown is defined by lR ◦ q in the result graph G′.

For the sake of simplicity and if no ambiguity arises, the new unknown l1◦p on

G′ will still be denoted by l1. Therefore the rewriting sequence G
(l,r)
=⇒ G1

(l1◦p,r1)=⇒
G2 will be simply written as G

(l,r)
=⇒ G1

(l1,r1)=⇒ G2.

Example 4. We first show two rewriting rules r1 and r2 in Figure 7.
In Example 2 we have shown a non-terminal graph with two unknowns l1, l2

illustrated in Figure 3. By applying r1, r2 at unknowns l1, l2 respectively, we have
two pullback diagrams shown in Figure 8. That is, by computing the pullback
of (l1, r1) we rewrite c, w in the initial graph. This is illustrated in the left part
of the figure. While by computing the pullback of (l2, r2) we rewrite a, shown in
the right part of Figure 8.

In these and all following examples, a rule application will be depicted as a
square diagram, where the alphabet graph will be in the bottom row and the
rewriting rule in the right column. The graph computed by the pullback appears
in the top left position of the diagram.
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R

R

AG

G’
q
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l

l1
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Fig. 6. An application
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3,2A
3,2A

2R0

Fig. 7. Rules r1 and r2

3 Pullback Grammars

Classically, a formal grammar is a system made of an alphabet, a set of substi-
tution rules, an initial element. Here is our definition of a grammar.

Definition 9. A pullback grammar is a quadruple PGrm = 〈A,5, G0, P〉 where:

– A is the alphabet graph,
– 5 is a finite set of rewriting rules. A rewriting rule R ∈ 5 can be terminal

or non-terminal.
– The initial graph G0 is a non-terminal graph, also called the start symbol.
– P ⊂ U×5 defines the rule application relations where U is the set of all the

unknowns of G0 and of every non-terminal rule in 5.

Rewriting according to the grammar is defined as follows.
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Fig. 8. Examples of two pullback rewriting steps

For any non-terminal graph produced by the grammar, each unknown is as-
sociated with a type, which is an element of U. The meaning of the types is
explained below. Types are defined inductively as the following:

– for any unknown l associated with G0 typ(l) = l, and for any unknown lR
introduced by a non-terminal rewriting rule r such that r ∈ 5, typ(lR) = lR.

– A rewriting is authorized by the grammar if it has the form:

(G, U)
(l,r)
=⇒ (Ḡ, Ū)

where l ∈ U and (typ(l), r) ∈ P. In this case, if we denote by G
π← Ḡ

α→ R

the pullback of G
l→ A

r← R, one defines the type of any unknown l̄ ∈ Ū of
Ḡ as follows:
• if l̄ = l′ ◦ π for some l′ ∈ U then typ(l̄) = typ(l′),
• if l̄ = lr ◦α for some unknown lr of introduced by r then typ(l̄) = typ(lr).

The pairs defined in P specify which rules can be applied to the unknowns.
However, unknowns appearing in such pairs are only the unknowns of the ini-
tial graph and of the non-terminal rules. Let us call these unknowns the initial
unknowns. Therefore, one must also specify which rules can be applied to the
unknowns of a graph produced by the grammar after several rewriting steps.
This is the role of the types. Indeed, the type of such an unknown specifies the
original unknown from which it is issued. And thus, together with P, it defines
which rule can be applied to itself.

3.1 Context-Freeness

In [5], the notions of confluence and associativity for a grammar have been
defined axiomatically by B. Courcelle. They are used to define in an abstract
way what is the context-freeness for grammars (of words, trees or graphs).

Our main result is the following theorem.

Theorem 1. Pullback grammars are context-free (in the sense of [5]).

It is an immediate consequence of the following definitions and results. Detailed
proofs may be found in [4].
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Confluence

Definition 10. Let G be a non-terminal graph. If for any two applications
(l1, r1) and (l2, r2) where l1, l2 are two unknowns on G and r1, r2 are two rewrit-
ing rules we have

G
(l1,r1)⇒ G1

(l2,r2)⇒ G12

G
(l2,r2)⇒ G2

(l1,r1)⇒ G21

}
=⇒ G12 � G21

where the symbol � means “isomorphic”, the rewriting system is said to be
confluent.

Intuitively when we say a rewriting system is confluent it means that two suc-
cessive rewriting steps concerning distinct rule applications can be done in any
order, giving the same result.

Theorem 2. Pullback grammars are confluent.

Associativity

Definition 11. Let G be a non-terminal graph. If for any two applications
(l,R1) and (l1,R2) where l is an unknown of G, R1,R2 are two rewriting rules

and l1 is an unknown of R1, the sequence G
(l,R1)⇒ G1

(l1,R2)⇒ G12 can always be
replaced by the following process

1◦ R1
(l1,R2)⇒ R12;

2◦ G
(l,R12)⇒ G12,

then the rewriting system is said to be associative.

Theorem 3. Pullback grammars are associative.

3.2 Grid-Pattern Generating Pullback Grammar

As an example, we now describe a pullback grammar which generates square
grids and only square grids. This shows that the language of square grids is
context-free.

Definition 12. A grid of n-order (n ∈ Z+) is a graph Grdn such that:

– VGrdn = {(i, j)|i, j ∈ [1, n] ⊂ Z+}
– The graph is totally reflexive
– [(i − 1, j), (i, j)] ∈ EGrdn for i ∈ [2, n] and j ∈ [1, n] and [(i, j − 1), (i, j)] ∈

EGrdn
for i ∈ [1, n] and j ∈ [2, n].

There is no other item in the graph.
The term n-order means that an n-order square grid has n× n vertices.
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From the definition a grid in fact is a reflexive simple graph.

Definition 13. A grid-rule RGrd is a non-terminal rewriting rule ((R, l∗), r),
where l∗ is the only unknown brought by the rule. R is a graph such that:

– VR = {(0, 0)}+ VGrd3

– ER = {[(0, 0), (0, 0)], [(0, 0), (1, 1)], [(1, 2), (2, 1)], [(1, 3), (3, 1)]}+ EGrd3

The graph morphism r from R to the alphabet graph A1,3 is defined as follows:

– rV ((0, 0)) = 0
– rV ((1, 1)) = 1
– rV ((1, 2)) = rV ((1, 3)) = −2, rV ((2, 1)) = rV ((3, 1)) = −1, rV ((2, 2)) =

rV ((2, 3)) = rV ((3, 3)) = rV ((3, 2)) = −3
– The mapping of edges is consistent with the node mapping.

The unknown l∗ : R→ A1,3 is defined as follows:

– l∗V ((0, 0)) = l∗V ((1, 1)) = 0
– l∗V ((1, 2)) = l∗V ((2, 2)) = l∗V ((2, 1)) = 1
– l∗V ((1, 3)) = l∗V ((3, 2)) = −1
– l∗V ((2, 3)) = l∗V ((3, 1)) = −2
– l∗V ((3, 3)) = −3
– The mapping of edges corresponds just with the nodes mapping.

Figure 9 visualizes the grid-rule. We use different shapes for nodes to illustrate
the mapping relations between rule graph and the alphabet graph A1,3, that is,
the vertices in the rule graph are mapped to the vertices having the same shape.
To simplify the drawing, the graphs in the illustrations are not explicitly shown
as directed.

With these elements, we can now define our pullback grammar.

Definition 14. A grid-generating pullback graph grammar GGrid is a triple
〈A1,3, {RGrd},2〉 where A1,3 is the alphabet graph, RGrd is the grid-rule, and 2
is the initial symbol which is the terminal object in the category of graphs.

R

r l*

A1,3

Fig. 9. Grid-generating rule
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r

Fig. 10. � ⇒ Grd2

r

Fig. 11. Grd2 ⇒ Grd3

We illustrate the two first rewriting steps beginning from 2 by Figures 10 and 11.

Theorem 4. GGrid generates the set of all grids.

We omit here the formal proof and refer the reader to [4] for details.  !

4 Conclusion

This short paper recalls the basics of pullback rewriting in graphs and defines
the corresponding pullback grammars.

Our main result is the fact that pullback rewriting is intrinsically confluent
and associative, hence that all pullback grammars are context-free according to
the definitions of [5].

As a consequence we provide an example of a context-free pullback grammar
which generates the square grids and only square grids, a well known obstruction
to context-freeness in classical frameworks.

Obviously, a lot remains to be done, characterizing the expressive power of
pullback grammars (at least VR hence HR), finding a parsing method for pull-
back grammars, etc. Some other results are available in [4] and will soon be
submitted for publications.
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It must also be clear that a significant part of this approach can be carried
to more general categories (for instance, [2] deals with node rewriting in hyper-
graphs) in order to define a kind of High Level Pullback systems. This will be
the object of later work.

Acknowledgment

It is a pleasure for us to thank the anonymous referees whose comments have
greatly helped us improve our text.

References

1. Bauderon, M.: A uniform approach to graph rewriting: the pullback approach. In:
Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 101–115. Springer, Heidelberg (1995)

2. Bauderon, M., Jacquet, H.: Node rewriting in graphs and hypergraphs: a categorical
framework. Theoretical Computer Science 266(1-2), 463–487 (2001)

3. Bauderon, M., Jacquet, H., Klempien-Hinrichs, R.: Pullback rewriting and applica-
tion. Electr. Notes Theor. Comput. Sci. 51, 83–92 (2001)

4. Chen, R.: Graph Transformation and Graph Grammar Based on Pullback Opera-
tion, PhD thesis, Université Bordeaux 1 (2007)
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Eva Jeĺınková1 and Jan Kratochv́ıl1,2

1 Department of Applied Mathematics�

2 Institute for Theoretical Computer Science
Charles University

Malostranské nám. 25, 118 00 Praha, Czech Republic��

{eva,honza}@kam.mff.cuni.cz

Abstract. In this paper we study the problem of deciding if, for a
fixed graph H , a given graph is switching-equivalent to an H-free graph.
Polynomial-time algorithms are known for H having at most three ver-
tices or isomorphic to P4. We show that for H isomorphic to a claw, the
problem is polynomial, too. Further, we give a characterization of graphs
switching-equivalent to a K1,2-free graph by ten forbidden induced sub-
graphs, each having five vertices. We also give the forbidden induced
subgraphs for graphs switching-equivalent to a forest of bounded vertex
degrees.

1 Introduction

Seidel’s switching is a graph operation which makes a given vertex adjacent to
precisely those vertices to which it was non-adjacent before, while keeping the
rest of the graph unchanged. Two graphs are called switching-equivalent if one
can be made isomorphic to the other by a sequence of switches. The class of
graphs that are pairwise switching-equivalent is called a switching class.

The concept of Seidel’s switching was introduced by the Dutch mathematician
J. J. Seidel in connection with algebraic structures, such as systems of equian-
gular lines, strongly regular graphs, or the so-called two-graphs. For structural
properties of two-graphs, cf. [12]–[14].

In this paper, we study the computational complexity of problems related
to Seidel’s switching. The problem of deciding if a given graph is switching-
equivalent to a graph having a certain desired property has already been ad-
dressed by several authors.

As observed by Kratochv́ıl et al. [9] and also by Ehrenfeucht at al. [2], there
is no correlation between the complexity of the problem and the complexity of
the property itself. For example, the problems of deciding if a graph contains
a Hamiltonian path or cycle are well known to be NP-complete [3]. However,
Kratochv́ıl et al. [9] proved that any graph is switching-equivalent to a graph
containing a Hamiltonian path, and it is polynomial to decide if a graph is
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switching-equivalent to a graph containing a Hamiltonian cycle. These results
have been extended to graph pancyclicity by Ehrenfeucht et al. [1].

On the other hand, the problem of deciding switching-equivalence to a regular
graph was proven NP-complete by Kratochv́ıl [11], and switching-equivalence to
a k-regular graph for a fixed k is polynomial, while both the regularity and k-
regularity of a graph can be tested in polynomial time. Three-colorability and
switching-equivalence to a three-colorable graph are both NP-complete [2].

In this paper, we focus on hereditary properties, i.e., properties closed on
induced subgraphs. In particular, we consider the property of being H-free for
fixed graphs H . Given a graph G, we want to decide if G is switching-equivalent
to an H-free graph.

Let Kn denote the complete graph on n vertices, let Pn be the path with n
vertices and let In be the discrete graph with n vertices and no edges. Polynomial-
time decision algorithms are known if H has at most three vertices or is isomor-
phic to a P4. The algorithm for K2 or I2 is simple (see [5]), the one for K1,2 or
K2 + K1 is due to Kratochv́ıl et al. [9]. Hayward [6] and independently Hage at
al. [5] found an algorithm for K3 or I3; the result is a core of the polynomial-
time algorithm for recognizing P3-structures of graphs. The case of P4 has been
solved by Hertz [8] in connection to perfect switching classes.

It can be observed that an algorithm for H , when run on a complement of
the input graph, gives an algorithm for H . But the switching-equivalence of H
and H ′ does not yield any obvious relation of algorithms for H and H ′.

All the known algorithms mentioned above are either direct or based on a
reduction to 2-SAT. We use a different method—a reduction to a system of linear
equations modulo 2. With this method, we prove in Section 3 that a polynomial-
time algorithm exists even for K1,3. We thus extend the solved graphs H by
another graph on four vertices, which is the maximum number of vertices so far.

1.1 Characterizations by Forbidden Induced Subgraphs

Let P be a hereditary property. Then there exists a class F(P ) of minimal
forbidden induced subgraphs such that a graph G is switching-equivalent to a
graph with P if and only if G does not contain any element of F(P ) as an
induced subgraph. If F(P ) is finite, this can be tested in polynomial time.

Hence, when examining the computational complexity of recognizing switch-
ing classes with P , the characterization by F is valuable. However, a polynomial-
time algorithm may exist even when F is infinite. And, in some cases, more
efficient algorithms are already known.

A finite characterization by F is known, for example, for switching classes
whose all graphs are perfect (due to Hertz [8]), and for switching classes whose
all graphs contain a 1-perfect code (due to Kratochv́ıl [10]). Hage and Harju [4]
give the class F for switching classes containing an acyclic graph; apart from
the cycles Cn for n ≥ 7, there are 905 graphs in F , each having at most nine
vertices. A computer program was employed to obtain this result.

In some cases, characterizations by finite F are known for switching-equi-
valence to H-free graphs. Namely, for H isomorphic to K2 or I2 the class F
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consists of two graphs on three vertices [5]. For P4 it consists of four graphs on
five vertices, as shown by Hertz [8].

In Section 4 we describe the class F for H = K1,2 by ten forbidden induced
subgraphs, each having five vertices. This characterization does not bring any
algorithmic improvement for deciding switching-equivalence to a K1,2-free graph;
checking all induced subgraphs on five vertices requires time Ω(n5), whereas the
already known algorithm of Kratochv́ıl et al. [9] runs in timeO(n3). However, this
characterization is interesting, because the minimal forbidden induced subgraphs
are few and small; for H = K3, there are at least hundreds of graphs in F . We
discuss this in Section 6.

More generally, we want to recognize switching-equivalence to H-free graphs,
i.e., graphs that are H-free for every H ∈ H, where H is a fixed graph class. If
we consider the class C of all cycles, then C-freeness is the same as acyclicity. For
switching-equivalence to acyclic graphs, the set F was described by Hage and
Harju [4] in a result mentioned above.

Note that any subclass of acyclic graphs is 1-degenerated; hence it follows
from a result of Kratochv́ıl [11] that switching-equivalence to it can be decided
in polynomial time O(n5).

When H = C ∪ {K1,d+1}, the H-free graphs are forests of maximum degree
at most d; in case that d = 1, they are called partial matchings. For switching-
equivalence to partial matchings, the set F was described by Herman [7]. In
Section 5 we extend this result to any integer d ≥ 5, and give a superset of F
for d = 2, 3, 4.

2 Preliminaries

2.1 Basic Definitions

Throughout this paper, the symmetric difference of two sets A and B is denoted
by A � B. All graphs considered are finite, undirected, and without loops or
multiple edges. Unless defined otherwise, by n we denote the number of vertices
of the currently discussed graph.

We say that the graph H is an induced subgraph of G, written H ≤ G, if VH ⊆
VG and EH =

(
VH

2

)
∩ EG. For a set A ⊆ VG we call the graph (A,

(
A
2

)
∩ EG) the

subgraph of G induced by A and denote it by G[A]. If an isomorphic copy of H is
an induced subgraph of G, we shall for simplicity say that G contains H as an
induced subgraph or just that G contains H . We say that a graph G is H-free if it
does not contain H . For a vertex v ∈ VG, the subgraph of G induced by V \ {v} is
denoted by G−v. The disjoint union of two graphs G and G′ is denoted by G+G′.
The symbol G stands for the edge-complement of the graph G.

2.2 Seidel’s Switching

Definition 1. Let G be a graph. Seidel’s switch of a vertex v ∈ VG results in a
graph called S(G, v) whose vertex set is the same as of G and the edge set is the
symmetric difference of EG and the full star centered in v, i.e.,
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VS(G,v) = VG

ES(G,v) = EG \ {xv : x ∈ VG, xv ∈ EG}) ∪ {xv : x ∈ VG, x �= v, xv �∈ EG}.

It is easy to observe that the result of a sequence of vertex switches in G depends
only on the parity of the number of times each vertex is switched. This allows
generalizing switching to vertex subsets of G.

Definition 2. Let G be a graph. Then the Seidel’s switch of a vertex subset
A ⊆ VG is called S(G, A) and

S(G, A) = (VG, EG � {xy : x ∈ A, y ∈ VG \A}).

Definition 3. We say that two graphs G and H are switching equivalent (de-
noted by G ∼ H) if there is a set A ⊆ VG such that S(G, A) is isomorphic to H.
The set

[G] = {S(G, A) : A ⊆ VG}

is called the switching class of G.

Proposition 1. Let G be a graph and let A be a vertex subset of G. Then
S(G, A) = S(G, A).

Proof. A straightforward case analysis shows that the edges in S(G, A) and
S(G, A) are the same.

It follows that the graph S(G, A) is H-free if and only if the graph S(G, A) is
H-free. Hence, G is switching-equivalent to an H-free graph if and only if G
is switching-equivalent to an H-free graph. Thus, the algorithm for H = K1,3

described in Section 3 also gives one for H = K3 + K1.

2.3 Hereditary Properties and Forbidden Induced Subgraphs

We say that P is a graph property if P is isomorphism-closed class of graphs; a
class of graphs is hereditary if it is closed on induced subgraphs. For a heredi-
tary graph property P we define the class F(P ) of minimal forbidden induced
subgraphs for P in the following way:

F(P ) = {F : F �∈ P, ∀F ′ ≤ F : F ′ ∈ P}.

Then a graph G has the property P if and only if it does not contain any element
of F .

Lemma 1. Let P be a hereditary graph property. Then the property of being
switching-equivalent to a graph with P is hereditary as well.

Proof. Let G be a graph, let A ⊆ VG such that S(G, A) has P . Clearly, for
any G′ ≤ G, it holds that S(G′, A ∩ VG′) ≤ S(G, A). Hence, by hereditariness,
S(G′, A ∩ VG′) has P , so G′ is also switching-equivalent to a graph with P .
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In view of Lemma 1 we may further define the class F(S(P )) as the class of
minimal forbidden induced subgraphs for switching-equivalence to P .

We study the property of being H-free for fixed graphs H . It can easily be ob-
served that this property is hereditary; we want to find the class
F(S(“being H-free”)). Similarly as for algorithms, there is a relation between
results for H and for H . From Proposition 1 we get the following corollary.

Proposition 2. For every graph F it holds that F ∈ F(S(“being H-free”)) if
and only if F ∈ F(S(“being H-free”)).

Proof. Assume that a graph F is an element of F(S(“being H-free”)), but F is
not in F(S(“being H-free”)). Then F is either not forbidden or not minimal.

In the former case, F is switching-equivalent to an H-free graph. But then,
by Proposition 1, F is switching-equivalent to an H-free graph, which is a con-
tradiction. In the latter case, we get in the same way a contradiction with the
minimality of F . The other implication follows from the fact that F = F .

Hence a finite class of forbidden induced subgraphs for H also yields one of the
same cardinality for H ; and the result of Section 4 for K1,2 also gives the class
for K2 + K1. In case of the triangle K3 and the claw K1,3, the corresponding
polynomial-time algorithms exist (due to Hayward [6] and Hage et al. [5], and
the result of Section 3), but the classes of forbidden induced subgraphs are not
known to be finite. We discuss this in Section 6.

3 Switching to a Claw-Free Graph

In this section, we show that it is polynomial to decide if a given graph can be
switched to a K1,3-free graph. A graph isomorphic to K1,3 is called a claw.

Definition 4. We call a graph on four vertices a dangerous graph if it is switch-
ing-equivalent to a claw. We say that the vertex of degree three in a claw is the
root of the claw; vertices of degree one are the nails of the claw.

Our aim is to find a switch of a graph so that it destroys all claws and creates no
new one. Clearly, the dangerous subgraphs are the only subgraphs that we need
to care about. The following crucial lemma indicates which ways of switching
dangerous graphs are good and which are not.

Lemma 2. All the dangerous graphs (up to isomorphism) are the claw K1,3 it-
self, the four-cycle C4 and four isolated vertices I4. By switching an even number
of vertices in a dangerous graph, we obtain

– a claw from a claw
– a non-claw from a non-claw.

By switching an odd number of vertices in a dangerous graph, we obtain

– a claw from a non-claw
– a non-claw from a claw.
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any even number
of vertices

one or three
vertices

the root or
all nails

everything but one nail
or one nail

one or three
vertices

two nonadjacent
vertices

any two vertices

all vertices, none,
or two neighbours all vertices

or no vertex

Fig. 1. Dangerous graphs and switching between them

Proof. All possible switches between the graphs K1,3, C4, and I4 are demon-
strated in Fig. 1. A case analysis of the switches follows.

Switching four or zero vertices does not modify the graph, therefore it does not
change the property of being a claw; it remains to consider switching one, two
or three vertices. Switching any two vertices of a claw creates a claw. Switching
the root or all nails of a claw yields an I4, and switching one nail or everything
but one nail yields a C4. Thus switching any vertex subset of a claw results in
one of K1,3, C4, and I4, and those are really all the dangerous graphs (up to
isomorphism). Moreover, we get a claw from a claw if and only if we switch an
even number of its vertices.

Switching one or three vertices in a C4 gives us a claw. By switching two
adjacent vertices we get a C4, and by switching two non-adjacent vertices we
obtain an I4. Thus we get a claw from a C4 if and only if we switch an odd
number of vertices.

Switching one or three vertices in an I4 yields a claw, whereas switching two
yields a C4. Again, a claw arises from an I4 if and only if an odd number of
vertices are switched.

Corollary 1. Let G be a graph and A ⊆ VG. Then S(G, A) is claw-free if and
only if for every dangerous induced subgraph H of G the following is true:

– |V (H) ∩A| is odd if H is a claw,
– |V (H) ∩A| is even if H is not a claw.

Proof. By Lemma 2, switching such an A creates a non-claw from every (dan-
gerous) claw and a non-claw from every dangerous non-claw. But a claw can
arise only from a dangerous graph; therefore switching A destroys all claws and
creates no new one.
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Conversely, if a set A yields a claw-free switch, then by Lemma 2 it contains
an odd number of vertices out of every dangerous claw, and an even number of
vertices out of every dangerous non-claw.

Theorem 1. Given a graph G, we can find a set A ⊆ VG such that S(G, A) is
claw-free, or find out that no such set A exists in polynomial time.

Proof. We show that vertex subsets with the desired properties can be described
by a system of linear equations over GF (2) with O(n) variables and O(n4)
equations. Solutions of such an equation system can be computed, for example,
by the Gaussian elimination in time O(n6). In particular, it can be decided in
time O(n6) whether a solution of such a system exists. The equations, too, can
be constructed in polynomial time.

We compute in GF (2). To every vertex v ∈ VG we assign a variable xv, and
for every dangerous subgraph H on vertices vi, vj , vk, vl, we form an equation

xvi + xvj + xvk
+ xvl

= 1

if H is a claw or
xvi + xvj + xvk

+ xvl
= 0

if H is not a claw. Clearly, we get at most
(
n
4

)
= O(n4) equations in this way.

Every assignment of values to the variables yields a vertex subset

A = {v ∈ VG : xv = 1}.

The equations express parity requirements for the size of the intersection of A
and dangerous subgraphs. Then, according to Corollary 1, the solutions of this
system correspond to all vertex subsets A such that S(G, A) is claw-free.

4 Switching Classes Containing a K1,2-Free Graph

In this section, we prove that the class F(S(“being K1,2-free”)) is finite and
contains (up to isomorphism) exactly the graphs listed in Fig. 2 and Fig. 3.

The lemma below states that the graphs in Fig. 2 and Fig. 3 are forbidden
and minimal. It can be proved by a straightforward case analysis; due to space
limitations, the proof is placed in the Appendix.

Lemma 3. The graphs G1, G2, G3, G4 are (up to isomorphism) all the graphs
switching equivalent to G1. The graphs G5, . . . , G10 are (up to isomorphism) all
the graphs switching equivalent to G5.

None of them can be switched to a K1,2-free graph, while all their induced
subgraphs can.

Lemma 4. Let G′ be a graph not containing any of G1, . . . , G10 as an induced
subgraph. Then G′ is switching-equivalent to a K1,2-free graph.

Proof. If G′ does not contain any K1,2, we are done. Otherwise we seek a switch
of G′ that is K1,2-free. Throughout the proof, we use the following observation.
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G1 G2 G3 G4

u

y

v

x z

Fig. 2. Forbidden graphs switching-equivalent to G1

G5 G6 G7

G8 G9 G10

u

v x y z

Fig. 3. Forbidden graphs switching-equivalent to G5

Observation 1 A graph G is K1,2-free if and only if G is a disjoint union of
cliques.

We choose a K1,2 in G′, denote its vertex of degree two by v1 and the other
ones v2 and v3. Without loss of generality we may assume that in G′, the vertex
v1 is adjacent to all other vertices. If it is not, we switch G′ appropriately and
consider the switched graph instead of G′. Obviously, the new graph does not
contain any of G1, . . . , G10, either, and the K1,2 on v1, v2, v3 is preserved.

We divide the vertices of G′ into four groups according to their neighborhood
in v1, v2, v3 in the following way: A is the set of vertices adjacent to v1, v2, v3,
B is the set of vertices adjacent to v1 and v2, C is the set of vertices adjacent
to v1 and v3, and D is the set of vertices adjacent to v1 only. Our aim now is
to show that the groups A, B, C, are cliques, whereas D is a disjoint union of
cliques.

In Fig. 4, the upper left graph represents one of the forbidden situations: it
contains the fixed K1,2 with its vertices denoted by v1, v2, v3, and two vertices
a, b ∈ A along with all the edges connecting any vertex of A to v1, v2, v3.

We want A to be a clique, so we want to prevent the case that a and b are
not adjacent. But the non-adjacency of a and b yields a forbidden graph G9, as
shown in the leftmost column of Fig. 4 – the lower left graph is the same as the
upper left one, it is only redrawn to make its isomorphism to G9 more obvious.
This proves that A induces a clique in G′.

The two cases in the middle of Fig. 4 show the forbidden subgraphs created
by a missing edge in B, C, with each forbidden situation (or just a part of it)
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v1

v3

v2

a

b

a

v2

v3

b

v1

A missing edge
{a, b} in A

creates a G9

a
v2

v3 b

v1

v1

v3

v2

v1

v3

v2

aa

bb

A missing edge
{a, b} in C

creates a G7

A missing edge
{a, b} in B

creates a G7

a
v3

v2 b

v1
a

v2

b c

v1

v1

v3

v2

a

b

A K1,2 on
{a, b, c} in D
creates a G7

c

Fig. 4. Forbidden graphs created by missing edges in A, B, or C and by a K1,2 in D

redrawn in the way described above. By the assumptions, no forbidden subgraph
is contained in G′, so we conclude that all those groups induce cliques in G′.

The group D need not be a clique; we just want it to be a disjoint union of
cliques. We prove this by showing that if D contains a K1,2 (and thus is not a
disjoint union of cliques), it creates a forbidden subgraph. This situation is the
last case of Fig. 4. So D is a disjoint union of cliques.

We proceed by showing that the edges between vertices of different groups
are determined already. We shall for simplicity speak about adjacency of whole
cliques instead of single vertices.

Definition 5. We say that two cliques K1 and K2 are adjacent if all vertices
of K1 are adjacent to all vertices of K2. We say that two cliques K1 and K2 are
non-adjacent if no vertex of K1 is adjacent to any vertex of K2.

The desired situation is as follows:

– The group A is adjacent to B, C and D.
– The groups B, C, and D are pairwise non-adjacent.
– All the cliques in D are pairwise non-adjacent as well.

Moreover, the vertex v1 has the same neighborhood (in the rest of the graph) as
vertices of A, and is adjacent to all of them; so we can add v1 to the clique A
while keeping all the desired adjacency properties of A. Analogously, we add v2

to C and v3 to B.
By examining all the possible cases, we show that an unwanted, or wanted

but missing edge would create a forbidden subgraph. The upper part of Fig. 5
shows bad edges between A and the other groups, and the forbidden graphs
caused. The lower part shows bad edges among B, C, and D. That finishes the
case analysis of edges in G′.

It remains to prove that the graph G∗ = S(G′, A) is a disjoint union of cliques.
That is true, because G∗ and G′ differ only in edges between A and some other
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Fig. 5. Bad edges between A and B, C, D; bad edges among B, C, and D

group, so the cliques of G′ are preserved. The groups B, C, D are pairwise non-
adjacent, and A becomes non-adjacent to the other cliques as well. Therefore
G∗ = S(G′, A) is the desired K1,2-free switch of G′.

Theorem 2. F(S(“being K1,2-free”)) = {G1, . . . , G10}.

Proof. The theorem follows immediately from Lemmas 3 and 4.

5 Switching to d-Forests

In this section we describe the class F(S(“being acyclic and K1,d+1-free”)). An
acyclic K1,d+1-free graph is a forest with all degrees at most d; we call it a
d-forest.

For a graph G, we say that a set A ⊆ VG is feasible if S(G, A) is a d-forest.
Fig. 6 contains examples of graphs with the feasible sets marked in black. These
graphs will be important in the further proofs.
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. . .

. . .

k vertices,
0 ≤ k ≤ d

at most d− k
isolated vertices

the root has
an arbitrary degree

. . .

the root has
degree d + 1

at most
d vertices

Pd+1 Qd+1

Fig. 6. Graph classes Pd+1 and Qd+1

The graphs A0
d+1, . . . , A

d+1
d+1, Bd+1, Cd+1, Dd+1, Ed+1 in Fig. 7 are called the

fan graphs.

Lemma 5. Let d ≥ 2. The fan graphs A0
d+1, . . . , A

d+1
d+1, Bd+1, Cd+1, Dd+1, Ed+1

are minimal forbidden induced subgraphs for switching to d-forests.

Proof. To prove the minimality, it suffices to show that by removing any vertex
from any fan graph we obtain a graph that is switching-equivalent to a d-forest.

All fan graphs are acyclic. The reader may verify that removing a vertex from
any fan graph either destroys all occurrences of induced K1,d+1 in it (and thus
makes it a d-forest), or makes it an element of Pd+1 or Qd+1. The elements of
Pd+1 and Qd+1 can be switched to a d-forest in the way indicated in Fig. 6.

To prove that the graphs are forbidden, we show that none of them can be
switched to a d-forest.

A graph isomorphic to K1,d+1 is called a multiclaw. We say that vertices of
degree one in a multiclaw are nails, and the vertex of degree d + 1 is the spur.
A vertex non-adjacent to any vertex of a multiclaw M is called a crumb of M .

The following lemma will be useful for examining the switches of fan graphs.

Lemma 6. Let G contain a multiclaw M , and let A be a feasible set. Then A
contains either

– all nails and not the spur, or
– the spur and no nails.

Furthermore, any crumb of M is an element of A if and only if the nails of M are.

Lemma 6 may be proved by a straightforward case analysis; due to space con-
straints, it is proved in the Appendix.

We continue the proof of Lemma 5 by showing that no fan graph can be
switched to a d-forest. We say that a vertex set A is feasible if switching A
makes the considered graph a d-forest. For contradiction, assume that a fan graph
has a feasible set A. We consider only feasible sets that satisfy the conditions
of Lemma 6. Moreover, we assume that A contains the bottom spur of the
considered graph, and it does not contain any of its nails nor any crumbs.
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. . .
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. . .
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. . .

K1,d+1Ed+1

Fig. 7. The fan graphs

– Any graph Ak
d+1, where 0 ≤ k < d + 1, contains at least one crumb c. Then

if any other non-crumb vertex is in A, it yields a multiclaw together with
its non-adjacent nails and with c. Hence A contains the spur only, but that
also yields a multiclaw in S(Ak

d+1, A) (with the same spur).
– The graph Ad+1

d+1 contains no crumbs; any other vertex is adjacent to a nail.
If A contains the spur only, then there is a multiclaw in S(Ad+1

d+1, A). Hence
A contains at least one other vertex x. But then all the remaining vertices
are in A, because the converse would yield a triangle (as indicated in Fig. 9).
Since d ≥ 2 there are at least three other vertices in A, and those vertices
together with their adjacent nails yield a cycle of length six.

– In Bd+1, the above assumptions determine the set A entirely. However,
S(Bd+1, A) then contains a triangle, and is not a d-forest.

The analysis of the remaining graphs is fairly similar; due to space limitations,
it is placed in the Appendix.

We conclude that, indeed, no fan graph can be switched to a d-forest, and
that the fan graphs are minimal forbidden subgraphs for switching to a d-forest.

The following result was proved by Hage and Harju [4].

Theorem 3. There are 27 switching classes of graphs having at most 9 vertices
in F(S(“being acyclic”)). The switching classes [Cn] of cycles are the only graphs
having at least 10 vertices in F(S(“being acyclic”)).
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Let A denote the class F(S(“being acyclic”)), and let Fd+1 denote the union of
switching classes of the fan graphs A0

d+1, . . . , A
d+1
d+1, Bd+1, Cd+1, Dd+1, Ed+1.

Theorem 4. Let d ≥ 2. Then F(S(“being a d-forest”)) is a subset of A∪Fd+1.
For d ≥ 5, the classes F(S(“being a d-forest”)) and A∪ Fd+1 are equal.

Proof. By Lemma 5 and by the definition of A, no graph on the right-hand
side can be switched to a d-forest. The graphs in Fd+1 are minimal with such
property; the graphs in A are minimal for switching to acyclicity.

If d ≥ 5, then all graphs in Fd+1 have at least 9 vertices, hence none of them
is an induced subgraph of a graph in A except for, possibly, a cycle. However, it
is easy to see that no induced subgraph of a cycle is forbidden. Therefore, the
graphs in A are minimal for switching to a d-forest as well.

It remains to prove that if a graph G contains no element of A nor Fd+1, then
it can be switched to a d-forest. By the definition of A again, G has an acyclic
switch Ga.

If Ga contains no K1,d+1, then we are done. Otherwise, we root the component
of Ga that contains a K1,d+1 so that the spur becomes the root x. Let neighbors
of x be called the first level ; vertices adjacent to the first level (excluding the
root) the second level etc. We distinguish the following two cases.

– There is a vertex v in the third level; let w be its ancestor. If the degree
of the root was at least d + 2, then the vertex v with w, the root and the
first-level vertices non-adjacent to w form a Bd+1. So the degree of the root
is exactly d + 1.

There is no other second-level vertex than w, otherwise Ga contains a
Dd+1. Furthermore, Ga is connected, otherwise Ga contains a Ed+1. And
there are at most d vertices in the third level, because they are all non-
adjacent to the first level, and there may be no A0

d+1 in Ga. Altogether, we
have that Ga is an element of Qd+1.

– There is no vertex in the third level. Since Ga does not contain a A0
d+1, there

are at most d connected components in it. And since Ga does not contain
a Bd+1, all components except for the rooted one are just isolated vertices
(crumbs). Moreover, any branching in the first level would imply a Cd+1.
Thus, each first-level vertex has at most one descendant. And finally, there
is no A0

d+1, so the number of second-level vertices plus the number of crumbs
is at most d. Therefore, Ga is an element of Pd+1.

In both cases, Ga can be switched to a d-forest in the way depicted in Fig. 6.
Thus, by transitivity, G is switching-equivalent to a d-forest as well, which fin-
ishes the proof.

6 Concluding Remarks

We have examined the problem of switching-equivalence to an H-free graph for
fixed graphs H . Polynomial-time decision algorithms are known for this problem
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if H has at most three vertices or is isomorphic to a P4. In Section 3 we have
shown that the problem is polynomial even when H is isomorphic to a claw. Thus
all known results for particular graphs H yield polynomial-time algorithms, and
the following problem (first examined in [9]) remains open.

Problem 1. Is there a graph H such that the problem of deciding switching-
equivalence to an H-free graph is NP-complete?

We have described the class F(S(“being K1,2-free”)). In case of the triangle
K3 and the claw K1,3, polynomial-time decision algorithms exist (due to Hay-
ward [6] and Hage et al. [5], and the result of Section 3), but the classes F are
not known to be finite. Moreover, it seems that neither of the classes is reason-
ably small. According to a computer search, both classes soon grow to enormous
size, which we find interesting in view of the fact that the class for K1,2 has
ten graphs only, and the graphs K3 and K1,2 differ just in one edge. Also, the
minimal forbidden induced subgraphs for K1,2 all have five vertices; but for K3

we have found hundreds of minimal forbidden induced subgraphs on nine or
more vertices, and even one on fifteen vertices (shown in Fig. 8). For K1,3 there
are also hundreds of minimal forbidden induced subgraphs on nine vertices; the
maximum number of vertices for which we have found one is twelve.

Fig. 8. One of hundreds of minimal forbidden induced subgraphs for H = K3

This indicates that even if an upper bound M for the number of vertices of a
graph in F was found, a naive search through all graphs on at most M vertices
would be nearly impossible. However, the classes may still be finite, which yields
the following question.

Problem 2. Is there a graph H such that F(S(“being H-free”)) is infinite?

Of course, if there is a graph H such that deciding switching-equivalence to an
H-free graph is NP-complete, then the class F is surely infinite (assuming that
P is not NP). So a positive answer to Problem 1 is also a positive answer to
Problem 2, but not conversely.

The proof in Section 3 uses a reduction to a linear equation system over GF (2).
A similar reduction works for H isomorphic to a K1,2; however, for K1,2 there is
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alreadyamore efficient algorithmdue toKratochv́ıl et al. [9]. Itmightbe interesting
to findout if a similar approach – possibly using a larger finite field instead ofGF (2)
– works for some other graphs as well; we have not found any.
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Appendix

Proof (of Lemma 3). Since being switching-equivalent is an equivalence relation,
it suffices to examine all the possible switches of G1 and G5. Without loss of
generality the set A of switched vertices is of size at most two (otherwise we
switch A′ = VG \ A instead of A, which gives us the same resulting graph). By
switching one vertex in G1 we obtain a G2. By switching two adjacent vertices
in G1 we get a G3, and switching two non-adjacent ones gives us a G4.

By switching u we get a G5. By switching one of v, x we get a G6. Switching
one of y, z produces a G7. Switching u and one of v, x yields a G7. By switching
u and one of y, z we get a G6. By switching v and x we get a G8. Switching
y and z produces a G9 and, finally, switching one of v, x and one of y and z
creates a G10.

Further, we want to show that none of the graphs G1, . . . , G10 can be switched
to a K1,2-free graph; in other words, the switching class of G1 does not contain
a K1,2-free graph. Indeed, none of G1, . . . , G10 is K1,2-free, as can be seen in
Fig. 2 and Fig. 3.

As for the minimality, we note that any graph on four (or less) vertices can
be switched to a K1,2-free graph. Assume that it contains a K1,2 on vertices a,
b, c, where b is the vertex of degree two, and let d be the fourth vertex. If d is
adjacent to at least two of a, b, c, then we switch the set {b, d}. Otherwise, we
switch {b}. The resulting graph contains at most one edge, hence it is K1,2-free.

Proof (of Lemma 6). Since S(G, A) is a d-forest, S(M, A) is not a multiclaw.
Thus, A ∩ VM is a proper nonempty subset of VM .

Assume that A violates the first condition above. Then, without loss of gener-
ality, A contains the spur s, a nail x, and it does not contain a nail y. There are
at least three nails in a multiclaw, because d ≥ 2. If A contains no more nails,
then S(M, A) is again a multiclaw (whose spur is now x). Otherwise, A contains
another nail y; then the vertices s, x, y, z induce a cycle in S(M, A), which is a
contradiction.

It remains to prove that crumbs are in A if and only if nails are. Suppose the
contrary: without loss of generality, A contains no nails and it does contain a
crumb c. Then the vertex c together with the nails forms another multiclaw in
S(G, A), which is not possible.

Proof (of Lemma 5, continued)

– Cd+1 contains two non-multiclaw vertices, x and y. If none of them is in A,
then they form a cycle in S(Cd+1, A) with the spur and their adjacent nail n.
If both are in A, then they yield a four-cycle with any two nails non-adjacent
to them. Hence one of them, say, x, is in A, and y is not. But then x forms a
multiclaw in S(Cd+1, A) together with y and all the formerly non-adjacent
nails.

– In Dd+1, the neighbor x of the crumb c must be in A, otherwise x, c and
the spur form a triangle in S(Dd+1, A) (see Fig. 9). Then y is also in A,
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Fig. 9. Illustration of the proof of Lemma 5. Vertices of A are marked black, the others
white.

otherwise there is a triangle x, y, n. But in that case there is a multiclaw on
y, c and all the nails except for n.

– In Ed+1, the vertex x is in A for the same reasons as in Dd+1. Then x,
the crumb c and the nails formerly non-adjacent to x yield a multiclaw in
S(Ed+1, A).
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Abstract. In graph transformation, the most cost-intensive phase of a transfor-
mation execution is pattern matching, where those subgraphs of a model graph
are identified and matched which satisfy constraints prescribed by graph patterns.
Incremental pattern matching aims to improve the efficiency of this critical step
by storing the set of matches of a graph transformation rule and incrementally
maintaining it as the model changes, thus eliminating the need of recalculating
existing matches of a pattern. In this paper, we propose benchmark examples
where incremental pattern matching is expected to have advantageous effect in
the application domain of model simulation and model synchronization. More-
over, we compare the incremental graph pattern matching approach of VIATRA2
with advanced non-incremental local-search based graph pattern matching ap-
proaches (as available in VIATRA2 and GrGen).

Keywords: incremental graph pattern matching, RETE, benchmarking.

1 Introduction

Incremental graph pattern matching approaches [18,1,2,3] have recently become a hot
topic in the graph transformation community. The core guideline is to improve the
execution time of the time-consuming pattern matching phase by additional memory
consumption. Essentially, the (partial) matches of the left-hand side (LHS) of graph
transformation rules are stored explicitly, and these match sets are updated incremen-
tally in accordance with elementary model changes. While model manipulation be-
comes slightly more complex, all matches of a graph pattern can be retrieved in constant
time in exchange by eliminating the need for recomputing existing matches.

Up to now, the performance evaluation of such incremental graph pattern matching
approaches have been limited to dedicated benchmark examples, all of which were
characterized by traditional, batch-like execution strategy.

In the current paper, we first propose two benchmark examples where an incremental
pattern matching strategy appears to be very beneficial: (i) in the simulation example,
enabled transitions of a Petri net are maintained in an incremental way, while (ii) in
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the model synchronization example, an object-relational mapping is carried out where
changes in the source UML model are propagated incrementally to the corresponding
relational database model.

In addition, we evaluate the performance of the incremental graph transformation
engine of the VIATRA2[1] framework on various benchmark examples. A full-fledged
comparison is provided with respect to the non-incremental version [4] of the VIATRA2
engine, furthermore, an initial comparison is provided with GrGEN.NET [5], which is
currently considered to be the fastest graph transformation engine.

The rest of the paper is structured as follows. Section 2 briefly introduces model sim-
ulation captured by graph transformation rules, which serves as one of the benchmarks
presented in the paper. In Sect. 3, an incremental graph pattern matching approach is
overviewed, which was implemented in the VIATRA2 framework. As the main con-
tribution, novel benchmark examples are presented in Sect. 4 for model simulation
and model synchronization with performance evaluation discussed in Sect. 5. Finally,
Sect. 6 summarizes the related work and Sect. 7 concludes the paper.

2 Foundations of Model Simulation

This section overviews the foundations of modeling language specification and simula-
tion. In order to specify the abstract syntax of most modeling language, the concept of
metamodeling is used. For simulating the behaviour of models, the paradigm of graph
transformation [6] is applied.

2.1 Running Example: Simulation of Petri Nets

In the current paper, we will use the simulation of Petri nets as one of our performance
benchmarks for incremental pattern matching. We will use the same example to demon-
strate the technicalities of incremental pattern matching in graph transformation tools.

Petri nets (Fig. 1) are widely used to formally cap-

Fig. 1. A sample Petri net

ture the dynamic semantics of concurrent systems due
to their easy-to-understand visual notation and the wide
range of available analysis tools. Petri nets are bipar-
tite graphs, with two disjoint sets of nodes: Places and
Transitions. Places may contain an arbitrary number of
Tokens. A token distribution (marking) defines the state
of the modelled system. The state of the net can be
changed by firing enabled transitions. A transition is en-

abled if each of its input places contains at least one token and no place connected with
an inhibitor arc contains a token (if no arc weights are considered). When firing a tran-
sition, we remove a token from all input places (connected to the transition by Input
Arcs) and add a token to all output places (as defined by Output Arcs).

2.2 Foundations of Metamodeling

A metamodel describes the abstract syntax of a modeling language. Formally, it can be
represented by a type graph. Nodes of the type graph are called classes. A class may
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have attributes that define some kind of properties of the specific class. Inheritance may
be defined between classes, which means that the inherited class has all the properties
its parent has, but it may further contain some extra attributes. Associations define con-
nections between classes. Both ends of an association may have a multiplicity constraint
attached to them, which declares the number of objects that, at run-time, may participate
in an association. The most typical multiplicity constraints are i) the at-most-one (0..1),
and (ii) the arbitrary (denoted by *). A simple Petri net metamodel is shown in Fig. 2.

The instance model (or, formally, an instance

Fig. 2. Petri net metamodel

graph) describes concrete systems defined in a
modeling language and it is a well-formed in-
stance of the metamodel. Nodes and edges are
called objects and links, respectively. Objects and
links are the instances of metamodel level classes
and associations, respectively. Attributes in the
metamodel appear as slots in the instance model.
Inheritance in the instance model imposes that in-

stances of the subclass can be used in every situation, where instances of the superclass
are required.

2.3 Graph Patterns and Graph Transformation

Graph patterns are frequently considered as the atomic units of model transformations
[7]. They represent conditions (or constraints) that have to be fulfilled by a part of the
instance model in order to execute some manipulation steps on the model. A basic
graph pattern consists of graph elements corresponding to the metamodel. A negative
application condition (NAC), defined by a negative subpattern, prescribes contextual
conditions for the original pattern which are forbidden in order to find a successful
match. Negative conditions can be embedded into each other in an arbitrary depth (e.g.
negations of negations), where the expressiveness of such patterns converges to first
order logic [8].

As an example, the firing enabledness condition for a Petri net transition may be ex-
pressed using a graph pattern as shown in Fig. 3 using the VIATRA2 notation. This pat-
tern uses nested negative application conditions to express that a Transition is

pattern isTransitionFireable(Transition) ={
transition(Transition);
neg pattern notFireable_fl(Transition) =
{
place(Place);
outArc(OutArc, Place, Transition);
neg pattern placeToken(Place) =
{

token(Token);
tokens(X, Place, Token);

}
}

}

Fig. 3. Petri-net firing condition
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enabled if every input Place instance connected to the Transition instance has at least
one Token instance associated and no inhibitor input Place instance contains tokens. In
this example, embedded NACs are used to express universal quantification with double
negation of existence.

Graph transformation (GT) [9] provides a high-level rule and pattern-based manipu-
lation language for graph models. Graph transformation rules can be specified by using
a left-hand side – LHS (or precondition) pattern determining the applicability of the
rule, and a right-hand side – RHS (postcondition) pattern which declaratively specifies
the result model after rule application. Elements that are present only in (the image of)
the LHS are deleted, elements that are present only in the RHS are created, and other
model elements remain unchanged. For instance, a GT rule may specify how to remove
(or add) a token from a place, as shown in Fig. 4.

// Removes a token from the place ’Place’.
gtrule removeToken(in Place, in Transition) = {
precondition find sourcePlaceWithToken

(Transition , Place, Token);
postcondition find sourcePlaceWithoutToken

(Transition , Place, Token);
}
// Adds a token from the place ’Place’.
gtrule addToken(in Place, in Transition) = {
precondition find targetPlaceWithoutToken

(Transition , Place, Token);
postcondition find targetPlaceWithToken

(Transition , Place, Token);
}

Fig. 4. Graph transformation rules for firing a transition

Complex model transformation can be assembled from elementary graph patterns
and graph transformation rules using some kind of control language. In our examples,
we use an abstract state machine (ASM) [10] for this purpose as available in the VI-
ATRA2 framework. The following transformation (which will be used as a benchmark
example in Sect. 4.1) simulates the firing of a transition, i.e. the removal of tokens from
input places and the addition of tokens to output places (see Fig. 5).

rule fireTransition(in T) = seq {
/* perform a check to confirm that the transition is fireable */
if (find isTransitionFireable(T))
seq
{/* remove tokens from all input places */
forall Place with find inputPlace(T, Place)
do apply removeToken(T, Place); // GT rule invocation
/* add tokens to all output places */
forall Place with find outputPlace(T, Place)
do apply addToken(T, Place);

}
}

Fig. 5. Transformation program for firing a transition
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3 RETE-Based Incremental Graph Pattern Matching

The incremental graph pattern matcher of the VIATRA2 framework [1] adapts the RETE
algorithm, which is a well-known technique in the field of rule-based systems.

RETE network for graph pattern matching. RETE-based pattern matching relies on a
network of nodes storing partial matches of a graph pattern. A partial match enumerates
those model elements which satisfy a subset of the constraints described by the graph
pattern. In a relational database analogy, each node stores a view. Matches of a pat-
tern are readily available at any time, and they will be incrementally updated whenever
model changes occur.

Input nodes serve as the underlying

Fig. 6. Simple RETE matcher

knowledge base representing a model.
There is a separate input node for each en-
tity type (class), containing a view repre-
senting all the instances that conform to
the type. Similarly, there is an input node
for each relation type, containing a view
consisting of tuples with source and tar-
get in addition to the identifier of the edge
instance.

At each intermediate node, set opera-
tions (e.g. filtering, projection, join, etc.)
can be executed on the match sets stored
at input nodes to compute the match set
which is stored at the intermediate node.
The match set for the entire pattern can be
retrieved from the output production node.
An intermediate node of a RETE is the

join node, which performs a natural join on its input nodes in terms of relational al-
gebra. A negative node contains the set of tuples stored at the primary input which
do not match any tuple from the secondary input (which corresponds to anti-joins in
relational databases).

Updates after model changes. Input nodes receive notifications about each elementary
model change (i.e. when a new model element is created or deleted) and release an
update token on each of their outgoing edges. Such an update token represents changes
in the partial matches stored by the RETE node. Positive update tokens reflect newly
added tuples, and negative updates refer to tuples being removed from the set.

Upon receiving an update token, a RETE node determines how the set of stored
tuples will change, and release update tokens of its own to signal these changes to its
child nodes. This way, the effects of an update will propagate through the network,
eventually influencing the result sets stored in production nodes. An example RETE
network is depicted in Fig. 6.

The match set can be retrieved from the network instantly without re-computation,
which makes pattern matching very efficient. As a trade-off, there is increased memory
consumption, and update operations become more complex.
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4 Benchmarks for Incremental Graph Transformation

In the paper, we propose two new benchmark problems as an extension to the Varro
benchmarks [11]. From a problem-specific viewpoint, they address two important ap-
plication scenarios, namely, model simulation and model synchronization, which were
only partially covered in [11]. Moreover, from a tool-oriented viewpoint, they provide
the first test sets for the “as-long-as-possible” optimization strategy, which was not mea-
sured up to now. Finally, the change propagation scenario in model synchronization is
a highly realistic challenge for model transformation tools.

4.1 Simulation Scenario Based on Petri Net Firing

Description. We selected the Petri net benchmark for the scenario of simulation of
visual languages with dynamic operational semantics. This scenario summarizes typical
domain specific language simulation with the following characteristics: (i) mostly static
graph structure, (ii) relatively small and local model manipulations, and (iii) typical
as-long-as-possible (ALAP) execution mode. This benchmark focuses on the effective
reusability of already matched elements as typical firing of a transition only involves
a small part of the net. While an incremental pattern matcher can track the changes of
the Petri net and updates only the involved sub-matchings, non-incremental local search
based approaches will have to restart the matching from scratch after the net changed.

Test case generation. In the Petri net test set, we selected “regular” Petri nets as test
cases, which are generated automatically. Here regular means that the number of places
and transitions are approximately equal (where their exact ratio is around 1.1). Fur-
thermore, the net has only a low number of tokens, and thus, there are few fireable
transitions in each marking.

To generate the elements of the test set we used six re-

Fig. 7. Feature matrix of
Petri Net benchmark

duction operations (in the inverse direction to increase the
size of the net) which are described in [12] as means to
preserve safety and liveness properties of the net. These
operations are combined with a weighted random oper-
ation selection. This allows fine parametrization of the
number of transitions and places with an average fan-out
of 3-5 incoming and outgoing edges. In all test cases, the
generation started from the Petri net depicted in Fig. 1
(which is trivially a live net) and the final test graphs are

available in PNML [13] format at [14]. As the size of a Petri net cannot be described
by only a single parameter we used the number of property preserving we applied to
indicate the relative ”size” of test cases.

Execution phases. A step in the iterative execution sequence contains two phases: (i)
a fireable transition is non-deterministically selected by pattern isTransitionFireable
(Fig. 3) and then (ii) the GT rules addToken and removeToken are applied to simulate
the token flow (Fig. 4).

Despite its simple execution semantics, it is easy to derive additional Petri nets as
new benchmark scenarios with significantly different run-time characteristics for the
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different graph transformation tools. For example, a Petri net with an equal number of
transitions, places and tokens but with few fireable transitions can be used as a bench-
mark where type-based optimization strategies of pattern matcher algorithms are neu-
tralized, which forces the pattern matchers to use other heuristics.

Note that the only assumption we made on our Petri net test cases is to use live
and bounded nets to have a potentially unbounded execution sequence. We selected
1000 consecutive transition firings as Short execution sequences and 1000000 transition
firings as Long execution sequences.

For this benchmark, we compared the total execution time of the simulation se-
quences. As the actual firing transitions are non-deterministically selected by the tools,
we allowed the pattern matchers to select their own execution paths, but this turned out
to have only insignificant effects on execution times.

Characteristics. In order to give a comparable description of our proposed benchmarks
with the ones defined in [11] we also use feature matrices to describe the characteristics
of the new test sets. The definition of the features are the following:

– Pattern size, or the number of nodes and edges in the LHS graph, is a critical factor
in the runtime phase of pattern matching.

– The maximum degree of nodes (fan-out) in the model is the number of edges that
are adjacent to a certain node.

– The third feature is the number of matches during the test case execution.
– The length of the transformation sequence also affects the overall execution time.

For example, with a large number of rule applications, the relative cost of one-time
overhead of the pattern matcher is decreased.

Fig. 7 presents the feature matrix describing the Petri net test case. Note that if the
characteristics of a feature depends on the concrete parameter settings of the test case,
then it is called parameter dependent (marked PD).

4.2 Model Synchronization Scenario by Object-Relational Mapping

Description. The Object-to-Relational schema mapping (ORM) benchmark, as pre-
sented in the current paper, is an extension of the original benchmark proposed in Sect.4
of [11]. The original transformation processed UML class diagrams to produce corre-
sponding relational database schemas, according to the known mapping rules. Since a
straightforward application of the incremental pattern matching approach is the syn-
chronization between source and target models, we extended the benchmark by two
additional sequences: (i) after the initial mappings are created, the source models are
modified, and, in an additional pass, (ii) the system has to synchronize the changes to
the target model (i.e. find the changes in the source and alter the target accordingly).
A local seach-based algorithm has to search for the changes first, while an incremental
pattern matcher can track changes in the source model so that the model parts affected
are instantly available for the synchronization sequence.
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Fig. 8. Generated UML class dia-
gram for N=K=2

Test case generation. In order to produce sufficiently
large model graphs for the measurements, we imple-
mented a simple generator as described in [11]. By this
approach, a fully connected graph is created, i.e. for N
UML classes, N(N − 1) directed associations are de-
fined (with each association represented as three nodes
– an association node and two endpoints). Addition-
ally, each UML class can reference K attributes, thus,
for a given N and K, N + 3N(N−1)+ NK nodes and
4N(N−1)+ NK edges are created (Fig. 8). Although
the model produced is not “realistic” in the sense that
very few practical UML class diagrams are fully con-
nected, the method is quite efficient in creating large
graphs quickly.

Execution phases. The transformation sequence is comprised of four main phases:

1. The generation phase creates the model graph.
2. The build phase creates the initial mapping of the UML model into the relational

schema domain, with reference models connecting mapped model objects.
3. The modification phase modifies the UML models programmatically to emulate

user editing actions.
4. Finally, the synchronization phase locates the affected model elements and makes

changes in the schema model accordingly.

Characteristics. For this benchmark, we compare the execution times for the last (syn-
chronization) phase. In order to scale the synchronization sequence as the model size
grows, we designed the modification sequence to extend roughly linearly with the
model. Thus, in the default case, it is composed of the following operations: (i) first,
one third of generated classes, along with their attributes and referenced associations
are deleted; (ii) then, one fifth of remaining associations are deleted; (iii) next, every
second attribute is renamed; (iv) finally, a new class is added and a new fully connected
graph is created (with the remaining UML classes and the newly added class as nodes,
ignoring existing associations). The feature matrix based on the notation in Sect. 4.1 is
shown in Fig. 9.

Fig. 9. Feature matrix for the
ORM benchmark

Transformation rules for synchronization. In incremental
synchronization, to avoid rebuilding target models in each
pass, a reference model is used to establish a mapping re-
lationship between source and corresponding target model
elements (Fig. 10). With correspondence edges, it is possi-
ble to track changes in both the source and target models:
for instance, the graph pattern on Fig. 11 matches tables
in the schema model which are no longer referenced by
classes or associations in the UML models (orphan tables).

Similarly, a newly created class may be matched by a negative condition forbidding
the existence of a mapped table. Renames (value changes) may be expressed e.g. by
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Fig. 10. Reference metamodel

pattern orphanTable(T) =
{

table(T);
neg pattern mapped(T) =
{

class(C);
table(T);
class.tableRef(_REFN, C, T);

} or {
association(A);
table(T);
association.tableRef(_REFN, A, T);

}
}

Fig. 11. Graph pattern for orphan tables

matching for both the attribute and the mapped column, and looking for pairs where the
name (attribute value) is different. The modification sequence results in the following
synchronization sequence: (i) all orphan tables belonging to the deleted classes and their
associations are deleted; (ii) all orphan tables belonging to the deleted associations are
deleted; (iii) column names mapped to the renamed attributes are changed; (iv) new
tables are added for the newly created class and the new associations.

5 Measurement Results

The measurements reported in this paper have been carried out on a standard desktop
computer with a 2 GHz Intel Core2 processor with 2 gigabytes of system RAM avail-
able, running version 1.6.0 05 of the 32-bit Sun Java SE Runtime (for VIATRA2) and
version 3.0 of the .NET Framework on Windows Vista (for GrGEN.NET). In general,
ten test runs were executed, and the results were calculated by averaging the values
excluding the highest and lowest number. The transformation sequences were coded so
that little or no output was generated; in the case of VIATRA2, we refrained from dis-
abling the GUI. Execution times were measured with millisecond precision as allowed
by the operating system calls.

5.1 Distributed Mutual Exclusion Algorithm

In order to compare the pattern matcher algorithms used in this paper with an already
available benchmark, we evaluated the performance of the VIATRA2 local search based
(VIATRA/LS) and incremental (VIATRA/RETE) pattern matchers along with the Gr-
GEN.NET with the distributed mutual exclusion algorithm test set defined in [11] which
is not a primary application filed for incremental pattern matching.

The results are shown in Fig. 12 with logarithmically scaled axes, where the size of
the process ring represents the number of processes in the run, which is, in turn, the
runtime parameter for the test case. We can make the following observations: (i) the
scaling complexity is a high order polynomial for VIATRA/LS and close to linear for
VIATRA/RETE and linear for GrGEN.NET; (ii) this test set seems to fit better for op-
timized local search based approaches as incremental caching of non-reuseable model
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Fig. 12. Results for the Short Transformation Sequence mutex benchmark

elements produced in the second phase increases the overhead of the cache synchro-
nization. Additionally, by looking at memory consumption figures, it can be seen that
the static graph structure limits the memory overhead to the same order of magnitude
for VIATRA/RETE and GrGEN.NET.

5.2 Simulation of Petri Nets

The Petri net synchronization benchmark was executed with short (1000) and long
(1000000) execution sequences.

Fig. 13. Size of test cases

The size parameters of the nets used as
test cases are depicted in Fig. 13. Net size
represents the number of randomly applied
inverse property preserving operations used
during their generation, while Places, Transi-
tions and Tokens represent their actual number.
The results are shown in Fig. 14 with logarith-
mically scaled axes, where model size indicates
the net size of the test case.

As it can be seen from the graph, VIATRA/RETE has a predictable linear scaling
up to model size of 105 with a speed of at least two orders of magnitude faster than
VIATRA/LS. As expected, the incremental approach works well for large model sizes
as long as there is enough memory (the spike in case of long transformation sequences
occured because of garbage collection as the heap was exceeded).

VIATRA/RETE matches and outperforms the GrGEN.NET tool for very large mod-
els in case of both short and long execution sequences. Moreover, with additional mem-
ory provided, the characteristics of VIATRA2 are expected to be better for even larger
models with predictable execution time.
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Fig. 14. Results for the Petri net firing benchmark

This result is a significant achievement considering the architectural and run-time
differences between VIATRA2 and GrGEN.NET. Most notably, GrGEN.NET uses com-
pile-time optimizations and an entirely different model persistence approach based on
compile-time generated type information, whereas VIATRA2 uses a generic model stor-
age supporting dynamic typing and support for interactive applications such as a noti-
fication and transaction management mechanism (note that the VIATRA2 GUI was not
disabled for the measurement, while GrGEN.NET was used without GUI through Gr-
Shell). However, for fairness, it should be pointed out that (unlike the mutual exclusion
case) this benchmark was prepared by ourselves (i.e. by GrGEN non-experts), thus ad-
ditional language or tool-specific optimizations might be available.

5.3 Object-Relational Mapping Synchronization

The ORM synchronization benchmark was executed with the VIATRA2 tool (due to
time constraints, measurements with GrGEN.NET and others are left as future work).
Models up to 67800 nodes (with edges, the total model size is 157800 model elements)
were generated (Fig. 15) and the execution time for the build and synchronization
phases was measured.

Fig. 15. Model and synchronization sequence sizes for the ORM benchmark

The results are shown in Fig. 16 (model size is the total number of nodes). It is
again revealed that the scaling characteristic of both phases is exponential for VIA-
TRA/LS and linear for VIATRA/RETE. With respect to synchronization, the constant
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Fig. 16. Results for the ORM synchronization benchmark

difference between the build and sync phases for VIATRA/RETE means a constant
multiplier; thus, since the model elements affected by the modification sequence are
a linear fraction of the whole model, it can be concluded that the execution time for
the synchronization process is a linear function of the model elements affected (as ex-
pected), and independent of the size of the rest of the model. VIATRA/LS, on the other
hand, exhibits an ever increasing time difference between build and sync, thus, the time
taken for the synchronization process increases exponentially with the number of af-
fected model elements (again, as expected, since in case of local search, the system has
to locate the changed elements first which is an additional graph traversal). It is impor-
tant to note that for “practical” model sizes (e.g. below the 5000 node count range),
VIATRA/RETE can perform a synchronization affecting a considerable portion of the
model in the 10-500 msec range which makes the approach very suitable for interactive
applications.

In addition to execution times, the memory consumed by the Java Virtual Machine
was also recorded. The sequence for the RETE matcher (75, 100, 114, 245, 490, 750,
1000 megabytes respectively for model sizes from 85 to 67800 nodes) shows a linearly
expanding RETE network as the node count grows, which is in-line with our expecta-
tions based on the nature of the RETE building algorithm (note that the above figures
include the whole user interface with a complete Eclipse instance).

5.4 Summary

Analyzing the results obtained in our test cases, the following conclusions can be drawn:
(i) A major concern of any incremental pattern matching implementation is the in-

creased memory consumption. While our implementation does indeed consume more
memory than the standard local search-based VIATRA engine, this overhead, even for
the extreme model sizes in the benchmark problems, is still within the bounds of RAM
available in modern desktop computers making the approach feasible for a wide range
of applications.

(ii) Within the memory boundaries, our new RETE-based pattern matcher provides a
predictable, linear scaling up to the 105 model size range in all three scenarios. While
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even generic transformations experience a speed-up, the real potential of the implemen-
tation is revealed in the scenarios especially suited for incremental pattern matching
where the execution speed matches, or even surpasses the speed of the fastest conven-
tional graph transformation tool employing compile-time optimization.

(iii) By comparing the run-time characteristics of our multiple test cases, it seems
evident that the best results could be achieved by employing different pattern match-
ing strategies for different execution phases, or, even for different patterns in a model
transformation program.

6 Related Work

Incremental pattern matching. Incremental updating techniques have been widely
used in different fields of computer science. Now we give a brief overview on incre-
mental techniques that are used in the context of graph transformation. The transfor-
mation engine of TefKat [16] performs an SLD resolution based interpretation during
which a search space tree is constructed to represent the trace of transformation exe-
cution. This tree is maintained incrementally in consecutive steps of transformations as
described in [17]. The uniform, incremental handling of model elements and patterns
can be considered a unique, advanced feature of the approach. [18] proposes a graph
pattern matching technique, which constructs and stores a tree for partial matchings of
a pattern, and incrementally updates it, when the model changes. The main advantage
of this solution is that only matchings, which appear as leaves of the tree, have to be
physically stored, which possibly saves a significant amount of memory. The memory
saving technique of [18] is orthogonal to the structure of the underlying RETE network,
and, thus, it can expectedly be used for our approach as well, but the exact integration
requires further research and implementation tasks.

RETE networks. RETE networks [19], which stem from rule-based expert systems,
have already been used as an incremental graph pattern matching technique in several
application scenarios including the recognition of structures in images [20], and the co-
operative guidance of multiple uninhabited aerial vehicles in assistant systems as sug-
gested by [21]. Our contribution extends this approach by supporting a more expressive
and complex pattern language.

Graph transformation benchmarking. Some of the measurements in the current pa-
per are conceptual continuations of the comprehensive graph transformation bench-
mark proposed in [11], which gave an overview on typical application scenarios of
graph transformation together with their characteristic features. [15] suggested some
improvements to the benchmarks described in [11] and reported measurement results
for many graph transformation tools including AGG [22], PROGRES [23], Fujaba [24],
and GrGEN.NET [5]. A similar approach to graph transformation benchmarking was
used for the AGTIVE Tool Contest [25], including a simulation problem for the Ludo
table game. Our Petri net firing test case is better suited for benchmarking performance
since it can be parameterized to scale up to large model sizes and long transformation
sequences.
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7 Conclusion and Future Work

In the current paper, we have have proposed two new test cases as performance bench-
marks of graph transformation which are suitable for assessing incremental graph trans-
formation strategies. For this purpose, we focused on two scenarios: (i) The Petri net
model simulation benchmark was designed to provide a parameterizable and scalable
test case for analyzing the impact of incremental pattern matching on a typical sim-
ulation scenario; (ii) the Object-Relational Mapping scenario was adapted to model
synchronization which is a prime target for an event-driven application of graph trans-
formation, where models have to be mapped on-the-fly as the user is editing the model.

We carried out various measurements to assess the performance of the incremental
pattern matcher of the VIATRA2framework [1], which clearly demonstrate the viabil-
ity of the approach: very fast execution with predictable, linear scaling up to memory
limitations.

By analyzing the test runs with a Java code profiler, we have identified some key
areas where the performance of the VIATRA/RETE tool could be further improved in
the future, such as (i) optimizing VIATRA model persistence, especially with regard
to type information storage and attribute handling; (ii) employing more efficient search
plan generation for the construction of the RETE network; (iii) reducing code interpre-
tation overhead by precompiling model manipulation sequences into native Java calls.

In additon to improving performance, we plan to provide support for mixing different
pattern matching strategies to allow the transformation designer to specify which pattern
matcher implementation should be used on a per-pattern basis. Additionally, we plan
to investigate the possibilities of adaptive pattern matching strategy change based on
automatic profiling.
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Abstract. Triple graph grammars (TGGs) have been invented 15 years
ago as a formalism for the declarative specification of bidirectional graph-
to-graph translations. In this paper we present a list of still open problems
concerning the interpretation and the expressiveness of TGGs. We will
comment on extensions proposed to improve the original approach and
the drawbacks that arise thereof. Consequently a more precise formaliza-
tion of compulsory properties of the translation of triple graph grammars
into forward and backward graph translation functions is given. Regard-
ing these properties an interpretation and implementation of negative ap-
plication conditions is derived that does not destroy the benefits of the
original approach. Additionally a new demand-driven forward/backward
translation rule application strategy is proposed. It guarantees for the first
time automatically a correct ordering of rule applications without impos-
ing any additional requirements on the structure of the regarded graphs.

Keywords: triple graph grammars, graph translation, model transfor-
mation, rule application.

1 Introduction

The concept of triple graph grammars (TGGs) has been invented in 1993 as a
generalization of Pratt’s pair grammars [1]. The first publication [2] appeared in
1994; it introduced TGGs as a declarative formalism for the specification of bidi-
rectional translations between different graph languages, sometimes also called
exogenous graph or model transformations. TGGs as defined in [2] are grammars
that generate languages of graph triples which consist of two related graphs—
often called source and target graphs—plus a correspondence graph “between”
them. The correspondence graph realizes an explicit representation of correspon-
dence relationships between the nodes of source and target graphs. Any TGG
can be compiled into a pair of so-called forward and backward graph transla-
tions (FGTs/BGTs) that take either the source or the target graph as input and
produce an appropriate target or source graph (plus the needed correspondence
relationship graph between them) as output.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 411–425, 2008.
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412 A. Schürr and F. Klar

From the very beginning TGGs have been used to specify and implement
mappings between software engineering documents with a main focus on model-
to-model translations [3,4]. In this application scenario the correspondence rela-
tionships play the role of typed traceability links between software engineering
artifacts. Since 1994 quite a number of papers have been published that intro-
duced extensions of the original TGG definitions and presented various kinds
of applications [5,6,7,8,9]. Furthermore, at least 6 different implementations of
TGGs do exist with different properties concerning the functionality and the
realization of derived FGTs and BGTs [10,11,9,7,12]. Rather recently, the fun-
damental ideas of TGGs have even been adopted by the OMG in their model
transformation language standard QVT [13]. For a more or less complete survey
of all existing TGG publications the reader is referred to [14].

Despite of the fact that quite a number of research groups around the world
are nowadays actively developing and using TGGs, some fundamental problems
are still unsolved until today:

1. TGGs have been invented to specify mappings between two languages of
graphs, but most published approaches either use inefficient graph gram-
mar parsing and/or backtracking algorithms or rely on not very well-defined
constraints of processed TGGs such that they are not able to guarantee
important properties of derived FGTs/BGTs with their TGG.

2. In practice urgently needed negative application conditions (NACs) of TGG
productions are either simply excluded or handled in a way that destroys
the fundamental properties of TGGs, i.e. derived FGTs/BGTs may generate
graph triples that can’t be generated by the original TGG.

3. Finally, appropriate means for modularization, refinement, and reuse of TGGs
have not been studied until recently despite of the fact that quite large TGG
specifications have already been created and used in industrial case studies.

In this submission we study problems 1 and 2 listed above. For first ideas how
to address problem 3 the reader is referred to [15].

The next section introduces a running example of a TGG together with its
derived FGT/BGT rules. Furthermore, we use the running example to argue
that NACs are needed in practice and to discuss the difficulties how to translate
them into appropriate NACs of FGT/BGT rules. In Sect. 3, the basic formal
definitions of TGGs are repeated (for reasons of completeness). Furthermore, this
section lists some fundamental properties that all TGG approaches developed in
the past and the future should respect: consistency, completeness, expressiveness,
and efficiency. Section 4 is a survey of related publications that evaluates existing
TGG approaches w.r.t. the fundamental TGG properties introduced in Sect. 3.
Section 5 then introduces a new control algorithm that automatically determines
a proper ordering of forward/backward rule applications even in the presence of
NACs using a very efficient eager, demand-driven approach. Section 6 finally
summarizes the achievements of this paper and lists a number of still open
problems that have to be addressed by future research activities.
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2 Informal Introduction of TGGs

This section sketches TGGs and describes the challenges that result from using
NACs in TGGs. As a running example we will use a cut-out of the well-known
example of the translation of class diagrams (with single inheritance) into rela-
tional database schemata. Figure 1 shows a TGG schema that defines the corre-
spondence structure between elements of class diagrams and relational database
schemata. Each class together with all its subclasses corresponds to one table.
Sequentially ordered class attributes are mapped onto sequentially ordered table
columns.

Fig. 1. TGG schema that defines a correspondence structure (center) between elements
of class diagrams (left) and relational database schemata (right)

The bidirectional mapping is specified in Fig. 2 by means of five TGG pro-
ductions.1 These productions define the simultaneous creation of elements of
both languages and the correspondence graph that relates these elements. Cor-
respondence links are denoted as hexagonal nodes that connect elements of both
languages. In the following we will sketch the behavior of the TGG productions.

The first production creates the root of a new class hierarchy together with
a new table. The second production associates a new subclass of an already
existing class with its corresponding already existing table. Productions 3 to 5
deal with attributes and columns such that their sequential order is preserved.
Production 3 creates the first attribute of a class and the first column of the
related table. Production 4 creates the first attribute of a (sub-)class and a
new last column of the related table, whereas production 5 creates another new
last attribute and a new last related column. Note that each production of the
TGG creates at most one node of the involved graph languages. These nodes
labeled with ++ are the primary nodes of their productions. Later on we will
use the restriction that each TGG production creates only at most one primary
node of each graph language to present an efficiently working graph translation
algorithm.2

The presented TGG clearly shows that NACs are urgently needed in practice.
Without the NACs listed in Fig. 2 invalid graphs, as shown in Fig. 3, would
be processed as input or created as output of an FGT or BGT. Our running
example relates languages of graphs with rather similar constraints such that
1 TGG productions are also sometimes called TGG rules in other publications.
2 TGG productions may create additional secondary graph elements if connected with

the selected primary node.
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Fig. 2. TGG productions for translating class diagrams and relational database
schemata (including negative application conditions)

the introduced NACs are mainly needed to prohibit processing of invalid in-
put graphs that would produce invalid output graphs—with one exception: if
we drop the NAC in production 4 that deals with columns then we are able
to translate correct class diagrams into incorrect relational database schemata,
where one column may have more than one predecessor column. To summarize,
TGGs without NACs often do not characterize precisely the language of con-
sistent pairs of connected graphs we are interested in. We might get rid of the
NACs of productions 1 through 4 if we introduce production priorities such that
production 2 has higher priority than production 1 and production 5 has higher
priority than production 4 which has higher priority than production 3. But
there is no way to get rid of the NACs of production 5 by means of production
priorities. The NAC of this production prohibits the creation of (schema incom-
patible) graphs, where one attribute or column may have multiple successors.

Our running example also shows that there is no obvious way how to handle
NACs of TGG productions, when we derive the corresponding FGT/BGT rules.
Let us assume that we are interested in the forward translation of a class diagram
into a relational database schema. As discussed in [16] we have two obvious
options how to handle the NACs for class diagram elements. The first option is
that we simply ignore the negative nodes of the productions, when we generate
the related FGT rule. In this case generated FGT rules are able to translate class
diagrams that may or may not be derivable by the given TGG into relational
database schemata that cannot be derived by the TGG, too. Another option is
to simply preserve the NACs of TGG productions, when the corresponding FGT
rules are generated. This results in a useless set of FGT rules that even are not
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Fig. 3. Examples of invalid input graphs

able to handle attribute and column lists with more than one element. This is
due to the fact that the NAC of the generated FGT rule 3 blocks the application
of this rule for classes with more than one attribute. As a consequence generated
FGT rules have to interpret NACs as follows: a FGT/BGT rule with a NAC is
applicable if we either find no match for this NAC in the input graph or if all
potential matches of the NAC are not yet translated; therefore, we will present
a rule application algorithm later on that keeps track of all already translated
elements of an input graph and handles not yet translated elements like non-
existing elements. This algorithm thus simulates the creation of the input graph
while actually creating the related output graph.

Fig. 4. Examples of core rules and complete rules required for FGT

In order to be able to simulate the creation of the input graph faithfully we
have to introduce so-called core rules that are used by the algorithm presented
in Sect. 5. FGT core rules as presented in Fig. 4 for TGG productions 3 and 5
check whether a regarded fragment of the input graph potentially matches the
input part of their related complete FGT rules. As a side effect they identify
all elements of the input graph that must have been already translated by other
FGT rules before the selected FGT rule can be applied. We call these input graph
elements context elements. The context element required by rule 3 is a class
that is the owner of attribute a. Rule 5 has an additional context element—an
attribute of the class that is the owner of attribute a and the direct predecessor
of attribute a.
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Figure 4 also shows the complete FGT rules derived from TGG productions 3
and 5. The FGT rules consist of a matching part (normal nodes and NACs) and
a translating part (nodes marked with ++). The matching part of FGT rule 5
starts at the given attribute a. The owning class is retrieved and it is checked
whether it has an attribute that is the direct predecessor of attribute a. Addi-
tionally the owning class must have been already translated into a table. The
NAC at the left-hand side ensures that the matched attribute is not the prede-
cessor of an attribute that has already been translated. The input graph might
contain a predecessor-relationship nevertheless, but the NAC (with stereotype
<<translated>>) ensures that it has not already been translated by a previous
call to an FGT rule. Thus the just regarded NAC guarantees that class attributes
are processed in the given order. The table must have a last column, i.e. it is not
the previous column of any other column of the table. If such a match is found,
a new column is added by the translating part as the last column of the table
and associated with the given attribute a.

The presented example finally shows that TGGs usually define m-to-n rela-
tions and not functions between two graph languages. In our case, e.g. an infinite
number of different class hierarchies (without attributes) is mapped onto a sin-
gle relational database table (without columns). Furthermore, the attributes of
an unordered set of n subclasses may be mapped in n! different ways onto a
sequentially ordered list of columns of the related table. Nevertheless, FGTs and
BGTs derived from a TGG are usually implemented as partial functions that
take one graph as input and produce either no result or another graph as output.
This is due to the fact that most of the time when TGGs are used in practice
we are not interested in the sometimes infinite set of all possible outputs graphs
that are related to a given input graph. On the contrary it is usually sufficient if
FGTs and BGTs compute an appropriate representative of the set of all output
graphs only. In the case of the running example we would expect, e.g., that a
BGT computes the smallest class diagram that corresponds to a given database
schema; such a BGT maps a given table with columns onto a single class with
attributes without using rule 2 shown in Fig. 2.

3 Fundamental TGG Properties and Research Challenges

Motivated by the observations of the last section, we will introduce FGTs/BGTs
derived from a given TGG as pairs of partial functions that have to preserve well-
defined compatibility properties. Furthermore, we present a compact characteri-
zation of TGG-related research activities in the form of a “grand TGG research
challenge”. We will use these definitions in the following section to evaluate the
usefulness of various TGG approaches that have been published in the past. Let
us start with the basic definition of TGGs as introduced in [2]:

Definition 1. Graphs, Graph Morphisms, and Graph Operators.
A quadruple G := (V ,E , s , t) is a graph with elements(G) := V ∪ E, where

(1) V is a finite set of vertices, E is a finite set of edges, and
(2) s , t : E → V are functions assigning sources and targets to edges.
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Let G := (V ,E , s , t),G ′ := (V ′,E ′, s ′, t ′) be two graphs. A pair of functions
h := (hV , hE ) with hV : V → V ′ and hE : E → E ′ is a graph morphism from G
to G’, i.e. h : G → G ′, iff
(3) ∀ e ∈ E : hV (s(e)) = s(hE (e)) ∧ hV (t(e)) = t(hE (e)) .

Furthermore, the operators ⊆ for subgraph, ∪ for union of graphs with gluing
of nodes and edges (with same identifiers), and \ for the deletion of the removal
of graph elements, are defined as usual, and with h : G → G ′ being a morphism,
h(G) ⊆ G ′ denotes that subgraph in G’ which is the image of h.

Definition 2. Monotonic Productions and Graph Rewriting.
Any tuple of graphs p := (L,R) with L ⊆ R is a monotonic production and p

applied to a given graph G produces another graph G ′ ⊇ G, denoted by: G
p� G ′,

with respect to redex3 selecting morphisms g : L→ G and g ′ : R → G ′, iff:

(1) g ′ | L = g , i.e. g and g’ are identical mappings w.r.t. L.
(2) g’ maps new elements of R\L onto unique new elements of G ′\G .

Definition 3. Graph Triples.
Let LG, RG, and CG be three graphs, and lr : CG → LG, rr : CG → RG

are morphisms which represent m-to-n relationships between the left-hand side
graph LG and the right-hand side graph RG via the correspondence graph CG in
the following way:

x ∈ LG is related to y ∈ RG :⇔ ∃ z ∈ CG : x = lr(z ) ∧ rr(z ) = y .
The resulting graph triple is denoted as follows: GT := (LG lr← CG rr→ RG) .

Definition 4. Production Triples and Graph Triple Rewriting.
Let lp := (LL,LR), rp := (RL,RR), and cp := (CL,CR) be monotonic pro-

ductions. Furthermore, lh : CR → LR and rh : CR → RR are graph morphisms
such that their restrictions lh |CL: CL → LL and rh |CL: CL → RL are mor-
phisms, too, which relate the left- and right-hand sides of productions lp and rp
via cp to each other. The resulting production triple is denoted as follows:

p := (lp lh← cp rh→ rp) .
And the application of such a production triple to a graph triple

GT := (LG lr← CG rr→ RG)
produces another graph triple

GT ′ := (LG ′ lr ′← CG ′ rr ′→ RG ′) ,
i.e.: GT

p� GT ′ , which is uniquely defined (up to isomorphism) as shown in [2].

Definition 5. Triple Graph Grammar and Triple Graph Grammar Language.
A triple graph grammar TGG is a tuple (P ,AT ), where P is the set of its

TGG productions and AT is its axiom graph triple. The language L(TGG) is
the set of all graph triples that can be derived from AT = (LA lr← CA rr→ RA)
using a finite number of TGG production rewriting steps.

3 A redex is a subgraph within a host graph matching a production’s left-hand side.
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The definition of a TGG presented above introduces an axiom graph triple that
has been omitted when we presented our running example in Sect. 2. In that
case the axiom graph is a triple of three empty graphs. On the other hand,
our running example is accompanied by a graph schema definition that is not
captured by the formal definitions listed above due to lack of space. The same is
true for node attributes, attribute expressions, and NACs used in Sect. 2. These
missing parts of the formalization of TGGs can be added easily. Furthermore,
they do not have any impact on the following explanations of desirable properties
of TGGs and derived FGTs and BGTs in this section.

In Sect. 2 we did already explain how FGT and BGT rules can be derived
from the set of productions of a given TGG. Furthermore, the initial TGG pub-
lication [2] did already prove that for any graph triple (LG lh← CG rh→ RG) that
belongs to L(TGG) we can find a sequence of forward translation rule applica-
tions that translates (LG la← CA ra→ RA) into (LG lr← CG rr→ RG) and a sequence
of backward translation rule applications that translates (LA la← CA ra→ RG)
into (LG lr← CG rr→ RG), too. The problem with this proof is that it does
not include the presentation of an efficient algorithm that computes the needed
sequence of FGT/BGT rule applications for obvious reasons: the graph gram-
mar membership problem is NP-complete even for rather restricted classes of
graph grammars. Nevertheless, TGGs have been used in the past rather success-
fully for solving practical problems by usually using rather simple and efficient
FGT/BGT rule application control algorithms. In all cases we are aware of these
algorithms are realized in such a way that applied to an input graph they either
fail or compute a single graph as output. As a consequence a set of FGT/BGT
rules together with an appropriate control algorithm implement a pair of par-
tial FGT/BGT functions on graphs that are compatible with the corresponding
TGG in a certain sense. It was and still is always a matter of debate how to define
the desired level of compatibility of FGT/BGT functions with their TGGs as
well as how to increase the expressiveness of TGG productions without sacrific-
ing needed efficiency and compatibility properties. Based on the considerations
listed above we can now formulate the

“Grand Research Challenge of the Triple Graph Grammar Community”:
A “useful” TGG together with a FGT/BGT rule derivation strategy and the
related rule application control strategy should not violate the following four
design principles:

1. Consistency: whenever an FGT function maps a graph LG onto a graph
RG together with a correspondence graph CG, then (LG lr← CG rr→ RG)
must be an element of L(TGG). An analogous property holds for the BGT
function.

2. Completeness : whenever a triple graph (LG lr← CG rr→ RG) is an ele-
ment of L(TGG) then the FGT function maps LG onto an RG’ that is
“somehow” equivalent to RG. An analogous property holds for the BGT
function.
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3. Efficiency: derived FGT/BGT functions are efficiently executable in the
sense that they have a polynomial space and time complexity O

(
m × nk

)
with m = number of rules, n = size of input graph, and k = maximum
number of nodes of a rule.

4. Expressiveness : TGGs have to support modeling constructs that are ur-
gently needed for solving practical problems and that have been added to
regular graph transformations rules decades ago. This includes the support
for NACs as discussed earlier on as well as complex attribute conditions
etc.

The original TGG approach as introduced in [2] combined with a naive back-
tracking parsing algorithm fulfills the consistency and completeness properties
listed above, but violates the efficiency and expressiveness requirements. As a
consequence it cannot and has not been used in practice without any modifi-
cations. All TGG approaches that have been implemented in the meantime for
solving practical problems circumvented the efficiency problem by using a one or
two pass translation algorithm that visits all elements of a regarded input graph
in a predefined separately specified order. As a consequence these approaches
violate the completeness criteria listed above in the general case. Furthermore,
TGG approaches that are more expressive than the original definition in addition
tend to violate the above mentioned consistency criteria (cf. Sect. 4).

It is the main contribution of this paper to introduce a new TGG approach
that increases the expressiveness of the original approach by adding NACs to
TGG productions without violating consistency. Furthermore, the rule applica-
tion control algorithm introduced in Sect. 5 uses for the first time a demand-
driven rule ordering approach. In contrast to all other algorithms we are aware
of it does not rely on a predefined order of the elements of an input graph or
TGG productions. The presented algorithm translates a given input graph in
a single pass into an output graph without any book keeping overhead rather
efficiently. The main drawback of the algorithm lies in the fact that we cannot
guarantee its completeness for arbitrary TGGs. It is up to future work to first
of all define the above introduced completeness criteria more precisely and to
characterize then families of TGGs for which we can guarantee the completeness
of the new FGT/BGT rule application algorithm.

But please note that the algorithm is complete for the running example used
in this paper for the following two reasons: (1) due to heavy usage of NACs
there is no pair of FGT/BGT rules that can be applied using redexes that
overlap in elements created/translated by the corresponding TGG productions;
(2) the presented algorithm implicitly and eagerly tries to maximize the positive
context of an applicable rule, i.e. gives rules without NACs a higher priority
than rules with NACs. As a consequence we have called the new algorithm
an eager demand-driven rule application control strategy. Thus, the algorithm
always produces an output graph for a given input graph when the presented
TGG is able to generate a graph triple that contains these two graphs.
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4 Related Work

Based on the characterization of useful TGG approaches in the preceding section
we are now prepared to evaluate and assess various forms of TGGs that have
been published in the past.

As already mentioned the first TGG publication [2] introduced a rather
straight-forward translation of TGG productions into FGT and BGT rules. It
relied on the existence of graph grammar parsing algorithms with exponential
worst-case space and time complexity. As a consequence a first generation of
follow-up publications [3,5] all made the assumption that the regarded graphs
have a dominant tree structure and that the three subcomponents of a TGG
production possess one and only one primary node. Based on these assumptions
a control algorithm is used that simply traverses the tree skeleton of an input
graph node by node and selects an arbitrary matching FGT/BGT rule for a
regarded node that has a node of this type as its primary node. This algorithm
defines FGT/BGT functions that are neither consistent nor complete in the
general case. Both properties are endangered by the fact that the selected tree
traversal order does not guarantee that rules are applied in the appropriate or-
der. It may happen that the application of a rule fails because one of its context
nodes has not yet been processed or that a rule is applied despite of the fact that
one of its context nodes has not yet been matched by another rule beforehand.

As a consequence, [16] introduces an algorithm that still relies on a tree traver-
sal, but keeps track of the set of already processed nodes and uses a waiting queue
to delay the application of rules if needed. This algorithm defines consistent
FGT/BGT functions, but has an exponential worst-case behavior concerning
the number of re-applications of delayed rule instances.

Another class of TGG approaches attacked the rule ordering problem in a
rather different way [17]. It introduced a kind of controlled TGGs, where each
rule explicitly creates a number of child rule instances that must be processed af-
terwards. As a consequence it is the responsibility of the specifier that the thus
explicitly encoded rule application strategy guarantees that rule applications
never fail because of the fact that required context nodes have not yet been pro-
cessed. Thus, one of the main advantages of a rule-based approach is destroyed
that basic rules can be added and removed independently of each other and that
it is not necessary to encode a proper graph traversal algorithm explicitly.

All publications mentioned so far refrain from the usage of NACs. Some of
them even argue that NACs cannot be added to TGGs without destroying
their fundamental properties! But, rather recently a whole bunch of application-
oriented TGG publications simply introduced NACs without explaining how
derived FGT and BGT rules and their rule application strategies look like pre-
cisely. The publications even give the reader the impression that NACs can be
evaluated faithfully on a given input graph without regarding the derivation his-
tory of this graph w.r.t. its related TGG. [9], e.g., explicitly makes the proposal
to handle complex graph constraints in this way, whereas [18] and [7] ignore the
problems associated with the usage of NACs completely.
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Finally, we have to reference [19] as the first publication that studied useful
properties of FGTs and BGTs including “invertibility” from a formal point of
view. The authors of this paper are interested in pairs of translation relations
that are inverse to each other. As a consequence they have to impose hard
restrictions on TGGs in order to be able to construct their proofs. Furthermore,
the paper has a main focus on consistency, whereas efficiency, expressiveness,
and completeness are out-of-scope.

To summarize, after 15 years of TGG research activities we are still not able
to handle TGGs with NACs appropriately, i.e. we did not yet find the right
compromise between expressiveness of TGG productions and the here defined
consistency and completeness properties of derived forward and backward trans-
lations. In the following section we will, therefore, propose a new approach how
to derive FGT or BGT rules from TGG productions with primary nodes and
NACs (as mentioned above) and how to control the order of the application of
these rules. This algorithm neither relies on the existence of dominant tree struc-
tures nor does it impose the burden on the specifier of a TGG to define the rule
application order explicitly. Furthermore, we will show that the resulting TGG
approach is more expressive than its predecessors, but nevertheless consistent
and efficient. Unfortunately, we are not yet able to guarantee completeness for
a precisely defined subset of TGGs with NACs.

5 The Algorithm

In this section we sketch our new batch algorithm that controls the application
of forward or backward translation rules derived from a TGG. It is able to
handle NACs and does not rely on a user-defined traversal algorithm of the input
graph. Please note that we have to omit quite a number of details including the
computation of rule matches, and the execution of matching rules.

Procedure translate processes every node of the input graph together with
its adjacent edges by invoking procedure translateNode. It may use any strat-
egy to traverse the input graph to increase the efficiency of the translation pro-
cess, but its consistency does not rely on a specific strategy. As we will see the
algorithm uses recursive calls of the procedure translateNode to reorder node
visits on demand. Two global sets guarantee that cycles are broken (as present
in graph d of Fig. 3) and that nodes of the input graph are only translated
once. Additionally translatedElements, which contains all nodes and edges
that have been translated so far, is important for the handling of NACs.

It is the job of the recursively defined procedure translateNode to compute
the appropriate order in which rules are applied to their primary node matches
in the input graph. Whenever a node of the input graph shall be translated into
a new subgraph of the output graph, the procedure in a first step guarantees
the following property: all context nodes in the input graph that are potentially
needed by any rule that may translate the input node are determined by a core
rule match and translated recursively beforehand (if possible).
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The algorithm dealing with NACs (in pseudo code)

procedure Graph translate(inputGraph: Graph) {

global outputGraph: Graph;

global translatedElements: ElementSet = nullSet;

global justRegardedNodes: NodeSet = nullSet;

for all nodes in inputGraph {

translateNode(node);

}

if (translatedElements contains all elements of inputGraph)

print "Valid output graph has been constructed";

else

print "Could not construct complete valid output graph";

return outputGraph;

}

prodecure translateNode(n: Node) {

if (n in translatedElements or in justRegardedNodes)

return;

else {

add n to justRegardedNodes;

select all rules that have node of n.class as primary node;

for all rule in rules {

compute rule.coreRule match in inputGraph with n as primary node;

if (at least one coreRule match found) {

for all contextNode in context elements of coreRule match {

translateNode(contextNode);

if (contextNode not in translatedElements)

break;

}

if (translatedElements contains all context elements of coreRule match)

add rule to appropriateRules;

}

}

for all rule in appropriateRules {

execute rule for some match and extend outputGraph

(regarding NACs that must not find a match with translatedElements);

if (successfully executed) {

determine all elements of inputGraph that have been translated by the rule;

add all these elements (including n) to translatedElements;

break;

}

}

remove n from justRegardedNodes;

}

}

We will now apply our running example to the algorithm and have a look
at its interesting parts in detail. In the following we let the algorithm translate
a valid input graph that contains a class c and three attributes a1, a2, a3,
i.e. four nodes and five edges (cf. input graph d shown in Fig. 3, but without
the edge between a1 and a3). a1 is the first attribute and a3 the last one.
The visiting order of nodes in procedure translate is arbitrary, so let’s assume
the order is a2, a3, c, a1. The first interesting situation is the selection of
rules for a2. These rules have attributes as primary nodes, so rules 3, 4, and 5
derived from the TGG productions shown in Fig. 2 are selected. The context
is now calculated by the according FGT core rules. Every context node is then
translated by a recursive call to translateNode. In our example FGT core rules 3
and 5 deliver c respectively c and a1 as context of a2. As the order of context
translation is arbitrary, too, we assume that first c as delivered by rule 3 is
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translated. The translation of c is straightforward, as it has no context that
must be translated. The only appropriate rule is rule 1, as FGT core rule 2
won’t find a superclass of c in the input graph.4 After the successful execution
of the complete FGT rule 1 and translation of c, a1 is translated. Context node
c has been translated already and the appropriate rules are 3 and 4. Rule 5
won’t find a match as a1 is the first attribute and so has no preceding attribute.
Imagine the complete FGT rule 4 is now selected. It cannot translate a1, too—
due to the fact that its right-hand side does not match. At least the complete
FGT rule 3 is executed successfully. Note that for every translated attribute the
translated elements are the attribute itself, the edge to the class and (if not the
first attribute) the edge to the preceding attribute. Now the recursive translation
of a2’s context is complete. The determined appropriate rules are 3, 4, and 5
which are tested in this order in the worst case. Rule 3 won’t succeed, as the
NAC finds a1 that is attached to c and has been translated already. Rule 4
won’t succeed either, as the right-hand side does not match and additionally
the NAC finds a1. Finally, the complete FGT rule 5 is executed. It will succeed,
because it finds a match in the input graph and the NACs also hold. Now
procedure translateNodewill return and a3 will be translated. Its context nodes
c and a2 have been translated already. The appropriate rules are 3, 4, and 5
again. Rules 3 and 4 won’t succeed for the same reasons as mentioned for the
translation of a2, but rule 5 will succeed. Finally, all nodes have been translated
and translatedElements contains all nodes and edges of the input graph. So
the algorithm has successfully constructed a valid output graph.

It is obvious that the above introduced algorithm is rather efficiently (w.r.t. to
the definition of efficiency in Sect. 3). Each node of the input graph is processed
only once as a primary node of its related set of FGT or BGT rules with one
exception: it may happen that the demand-driven translation of some context
nodes fails again and again due to the fact that they either cannot be translated
at all or due to the fact that some nodes of the output graph are still missing.
Assuming that rule applications never fail if they have found a match in the
input graph we can simply add another global set of nodes to the algorithm
which keeps track of not translatable nodes in the input graph. With the help
of this set the algorithm can be modified such that not translatable nodes are
only handled once (or we could even abort the execution of the algorithm if we
are not interested in partial translation results).

Remains the question whether the presented algorithm implements FGT and
BGT functions that are consistent and complete w.r.t. to their TGG. Due to
lack of space a precise formal characterization of classes of TGGs that guaran-
tee consistency and completeness of implemented FGT and BGT functions is
out-of-scope of this paper and we can only sketch arguments and ideas how to
answer this question. It is rather obvious that the algorithm implements consis-
tent functions due to the fact that we simulate the TGG derivation process of
the input graph using the global set translatedElements and directly perform
the TGG’s derivation process on the output graph. It is also quite obvious that

4 Rules without context (like rule 1) are automatically added to appropriateRules.
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the presented algorithm does not implement complete FGT/BGT functions in
the general case for the following reasons: The procedure translateNode executes
an arbitrarily selected rule with an arbitrarily selected match if more than one
rule with more than one match can be used to translate a regarded primary node
of the input graph. Furthermore, the procedure translateNode uses an eager ap-
proach that translates context nodes of a just regarded input node as early as
possible. As a consequence it may happen that the check of a NAC fails due to
the fact that some elements in the input graph have been translated too early.
Thus we either have to modify the algorithm presented above such that it is
able to explore all derivation alternatives, which would have significant impact
on its efficiency, or to find useful classes of TGGs for which we can guarantee the
completeness of the developed algorithm that are nevertheless useful in practice.

6 Conclusion

In this paper we gave a retrospect on 15 years of Triple Graph Grammar re-
search activities. Furthermore, we introduced four fundamental properties that
all TGGs should fulfill that are used for solving practical problems: consistency,
completeness, efficiency, and expressiveness. As usual some of these properties
tend to exclude each other, like completeness and efficiency of specified trans-
lation processes. The presented new TGG-based graph translation algorithm
guarantees consistency and increases the expressiveness of TGGs by handling
negative application conditions properly. Furthermore, it reduces the amount of
work for the TGG developer by, for the first time, not relying on a predefined
ordering of nodes of the input graph or the TGG rules. Unfortunately, using
this algorithm we cannot guarantee completeness in the general case. It is our
experience from industrial case studies that we can neither afford an exponen-
tial worst-case behavior to guarantee completeness of translation functions nor
reduce the expressiveness of the regarded classes of TGGs such that we are able
to design an efficiently working complete translation algorithm. Nevertheless, it
is our plan for future research activities to identify new classes of TGGs with
NACs for which we can prove consistency and completeness of efficiently ex-
ecutable forward/backward graph translations. Furthermore, we will study the
problem how to add support for negative application conditions to incrementally
working graph translation algorithms as presented in [17].
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2. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer,
Heidelberg (1995)

3. Lefering, M.: Software document integration using graph grammar specifications.
In: 6th International Conference on Computing and Information. Journal of Com-
puting and Information, vol. 1, pp. 1222–1243 (1994)



15 Years of Triple Graph Grammars 425
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Abstract. We present a new, high-level approach for the specification of
model-to-model transformations based on declarative patterns. These are
(atomic or composite) constraints on triple graphs declaring the allowed
or forbidden relationships between source and target models. In this way,
a transformation is defined by specifying a set of triple graph constraints
that should be satisfied by the result of the transformation.

The description of the transformation is then compiled into lower-
level operational mechanisms to perform forward or backward transfor-
mations, as well as to establish mappings between two existent models.
In this paper we study one of such mechanisms based on the gener-
ation of operational triple graph grammar rules. Moreover, we exploit
deduction techniques at the specification level in order to generate more
specialized constraints (preserving the specification semantics) reflecting
pattern dependencies, from which additional rules can be derived.

1 Introduction

Model-Driven Development (MDD) is a software engineering paradigm where
models are the core asset. They are used to specify, simulate, test, verify and
generate code for the application to be built. Most of these activities include
the specification and execution of model transformations, some of them between
different languages. The transformation of a model conformant to a meta-model
into another one conformant to a different meta-model is called model-to-model
(M2M) transformation, and is the topic of this paper.

There are two main approaches to M2M transformation: operational and
declarative. The first one is based on rules or instructions that explicitly state
how and when the elements of the target model should be created starting from
the elements of the source one. In declarative approaches, a description of the
mappings between the source and target models is provided. This description
states the relation that should hold between two models rather than how to
create and link their elements. Declarative approaches are higher-level than op-
erational ones since they form a compact description of a set of (operational)
rules. In addition, they are inherently bidirectional because they do not specify
any causality. Thus, they bring together in a single specification forward (i.e.
source-to-target) and backward (i.e. target-to-source) transformations.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 426–441, 2008.
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The state-of-the-art on declarative M2M transformation notations includes
a handful of languages (see Section 5). However, sometimes they lack a formal
foundation and analysis techniques able to prove properties of the transforma-
tion [1]. In other cases, specifications are not fully declarative and may require a
control mechanism or defining a causality between existing elements and those
to be created in a given relation [2,3], introducing some degree of operationality.

In this paper, we propose a purely declarative, formal approach to M2M trans-
formation based on triple patterns to express the relations between source and
target models. These are similar to graph constraints [4] but for triple graphs,
made of two graphs related through an intermediate one. Patterns can spec-
ify positive (the relation they declare must hold) or negative information (the
relation must not hold) and can be constrained by positive and negative restric-
tions. This high-level specification is compiled into lower-level mechanisms based
on triple graph grammar operational rules [3] to achieve forward and backward
transformations, as well as to relate two existing models. The compilation is per-
formed in two steps. First, we use deduction rules to derive additional patterns
that reflect dependencies and refine existing patterns with negative restrictions.
Then, a rule for the chosen transformation direction is derived from each pattern.

The advantages of our technique are the following. First, it is purely declar-
ative, based on patterns and constraints. This contrasts with other declarative
approaches (such as Triple Graph Grammars (TGGs) [2,3,5]) where a causal-
ity has to be given between the existing elements and the ones that have to
be created. As we exploit interactions between patterns, these dependencies are
automatically derived. Second, it has a formal foundation that allows the study
of the M2M transformation specification, in both declarative (i.e. patterns) and
operational (i.e. derived rules) formats. Finally, we have devised deduction tech-
niques, able to derive semantic information from the very patterns. For example,
having a positive pattern demanding a certain structure and a negative one for-
bidding its duplication allows generating two rules: one creating the structure if
it is not present, and another one reusing it if it already exists.

Paper Organization. Section 2 introduces triple patterns and Section 3 presents
their deduction rules. Then, Section 4 shows how to derive the operational rules.
Section 5 presents related work. Finally, Section 6 ends with the conclusions.

2 Specifying Transformations: Triple Patterns

This section introduces the different kinds of triple patterns, their satisfiability
and the characteristics of the underlying operational mechanisms. These con-
cepts rely on the notion of triple graph, which we introduce first.

Triple graphs are made of two graphs related through an intermediate one.
We can use any graph model for these three graphs, from standard unattributed
graphs (V ; E; s, t : E → V ) to more complex attributed graphs (e.g. E-graphs [4]).

Definition 1 (Triple Graph). A triple graph TrG = (Gs, Gc, Gt, cs : VGc →
VGs , ct : VGc → VGt) is made of two graphs Gs and Gt called source and target,
related through the nodes of the correspondence graph Gc.
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Nodes in the correspondence graph Gc have morphisms to nodes of the source
and target graphs. If ∃m ∈ VGc s.t. x

cs←− 	 m
ct�−→ y we write x rel y. Other kinds

of mappings could be used as well, for example the simpler one in [2], where the
correspondence functions are graph morphisms or the more complex one in [6]
where the correspondence functions can relate edges or be undefined. We use
the notation TrG|x (for x ∈ {s, t, c}) to refer to the Gx component of TrG, and
write 〈Gs, Gt〉 for a triple graph with source and target graphs Gs and Gt, and
〈Gs, ∅, Gt〉 for a triple graph with empty correspondence.

Next, we define triple graph morphisms.

Definition 2 (Triple Graph Morphism). A triple graph morphism f =
(fs, fc, ft) : TrG1 → TrG2 is made of three graph morphisms fx : TrG1|x →
TrG2|x (with x = {s, c, t}), where fs|V ◦cs1 = cs2◦fc|V and ft|V ◦ct1 = ct2◦fc|V .

Source and target graphs can be typed by a type graph, or more in general by
a meta-model, which includes inheritance [7]. In the latter case, we use the term
model instead of graph. Given meta-model MM , L(MM) refers to the set of
all valid models conformant to (typed by) it. Similarly, we use the notion of
meta-model triple [6] for the typing of triple graphs.

Triple patterns are similar to graph constraints [4,8], but defined on triple
graphs. We use them to describe the allowed and forbidden relationships between
source and target models. We consider both simple and composite patterns.

Definition 3 (Pattern). Given triple injective morphism C
q→ Q and sets

NPre = {Q ci→ Ci}i∈Pre, NPost = {Q cj→ Cj}j∈Post of negative pre- and post-
conditions:

–
∧

i∈Pre

←−
N (Ci)⇒ P (Q)

∧
j∈Post

−→
N (Cj) is a simple pattern (S-Pattern).

–
∧

i∈Pre

←−
N (Ci)∧

←−
P (C)⇒ P (Q)

∧
j∈Post

−→
N (Cj) is a composite pattern (C-Pattern).

–
−→
N (Cj) is a negative pattern (N-Pattern).

Remark. The notation
←−
P (·), ←−N (·) and

−→
N (·) is just syntactic sugar to indicate

a positive pre-condition, a negative pre-condition or a negative post-condition.
An S-Pattern is made of a positive graph Q restricted by negative pre- and

post-conditions (Pre and Post sets). Intuitively, Q should be present in triple
graph TrG whenever no negative pre-condition Ci is found; and if Q is found,
then no occurrence of the negative post-conditions should be found. That is,
while pre-conditions express restrictions for the pattern Q to occur, post-
conditions describe forbidden graphs. A C-Pattern is an S-Pattern with an ad-
ditional positive pre-condition graph C. Thus an S-Pattern is a C-Pattern with
C and q empty. Finally, an N-Pattern is a C-Pattern where C and Q are empty
and there is only one negative post-condition, forbidden to occur.

Definition 4 (M2M Specification). A M2M specification S =
∧

i∈I Pi is a
conjunction of patterns, where each Pi can be simple, composite or negative.
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Remark. For technical reasons, we assume that initially in a specification only
N-patterns have negative post-conditions. This is not a restriction, as any post-
condition can be expressed as an N-pattern. In fact, a M2M specification is
usually made of just N- and S-patterns, from which we automatically derive C-
patterns with positive pre-conditions encoding pattern dependencies, and trans-
form N-patterns into post-conditions for the other patterns (see Section 3).

Fig. 1. M2M Specification

Example. Fig. 1 shows some patterns in an ex-
ample M2M specification, inspired by the class to
relational database transformation [1]. S-Pattern
C-T states that a C node (a class) that is not con-
nected to another one (i.e. it does not have a par-
ent) should be related to a T (table). S-Pattern
A-Co states that a C node connected to an A (an
attribute), should be related to a T with a Co (col-
umn). Differently from TGGs, we don’t need to
specify here a positive pre-condition stating that
a relation between a C and a T should already
exist. This dependency is detected by the deduc-
tion rules we present in Section 3. S-Pattern A-Co2
specifies that in the case of two C nodes connected
through an R (a directed relation), the associated
T node of the source C should have as foreign key (F node) an attribute of the
target class. Finally, N-Pattern notDupF forbids two F s between two T s.

Next we define the satisfaction of a pattern. As S- and N-Patterns are special
cases of C-Patterns, it is enough to formulate C-Pattern satisfaction.

Definition 5 (Pattern Satisfaction). Triple graph TrG satisfies CP =
[
∧

i∈Pre

←−
N (Ci) ∧

←−
P (C)⇒ P (Q)

∧
j∈Post

−→
N (Cj)], written TrG |= CP , iff:

– CP is forward satisfiable, TrG |=F CP : [∀ms : Ps → TrG s.t. (∀i ∈ Pre
s.t. Ns

i � Ps, �ns
i : Ns

i → TrG with ms = ns
i ◦ as

i ), ∃m : Q → TrG with
m ◦ qs = ms, s.t. ∀j ∈ Post �nj : Cj → TrG with m = nj ◦ cj ],

– and CP is backwards satisfiable, TrG |=B CP : [∀mt : Pt → TrG s.t. (∀i ∈
Pre s.t. N t

i � Pt, �nt
i : N t

i → TrG with mt = nt
i ◦ at

i), ∃m : Q → TrG with
m ◦ qt = mt, s.t. ∀j ∈ Post �nj : Cj → TrG with m = nj ◦ cj ],

with Px = C +C|x Q|x, Nx
i = C +C|x Ci|x and Nx

i

ax
i←− Px

qx

−→ Q (x ∈ {s, t}), see
the left of Fig. 2. C +C|x Q|x is the pushout object of C and Q|x through C|x.

Remark. Morphisms qx : Px → Q (x = {s, t}) uniquely exist due to the uni-
versal pushout property (as C|x ↪→ C

q→ Q = C|x
qx→ Q|x ↪→ Q). For the same

reason, ax
i : Px → Nx

i uniquely exist (as C|x ↪→ C
es

i→ Nx
i = C|x

qx→ Q|x
ci|x→

Ci|x
di→ Nx

i ). Moreover, bi
x = ci ◦ qx. 	

C-Patterns have a universal quantification, therefore we split them into two
directed constraints. For this purpose we demand that in forward satisfaction,
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Fig. 2. Forward Satisfaction of Pattern (left). Forward Satisfaction Example (right).

for each occurrence of Ps = Q|s +C|s C = 〈Q|s, C|c, C|t〉 satisfying the negative
pre-conditions, an occurrence of Q must be found satisfying the negative post-
conditions, see the left of Fig. 2. A positive pattern graph Q is satisfied either
because no ms is found (vacuous satisfaction), because ms and some negative
pre-conditions are found (negative satisfaction), or because ms and m are found
and the negative pre- and post-conditions are not found (positive satisfaction).
Note that if the resulting directed negative pre-condition Nx

i is isomorphic to Px,
then it is not taken into account. This is needed as many pre-conditions express
a restriction in either source or target but not on both. In addition to forward
satisfaction, similar conditions are demanded for the target graph (backwards
satisfiability). A graph satisfies specification S if it satisfies all its patterns.

Example. The right of Fig. 2 shows the forward satisfaction of S-Pattern C-T
by a triple graph. We have that TrG |=F C − T as there are two occurrences of
ms, the first one is shown in the figure (upper node C in TrG) and is positively
satisfied, while the second (lower C) is negatively satisfied. We also have TrG |=B

C − T , as there is just one mt, positively satisfied. Thus, TrG |= C − T .
Please note that the specification does not explicitly state if a class with a

parent should be connected with a table or not. An additional pattern could de-
scribe such situation. The forward operational mechanism presented in Section 4
does not add such table, as it minimally enforces the specification.

Starting from a specification S, lower level operational mechanisms are derived
to perform forward (

−→
S ) and backward transformations (

←−
S ), as well as to relate

two existing models (
←→
S , omitted for space constraints, see [9]).

Definition 6 (Operational Mechanisms). Specification S has the following
associated operational transformations:

– Forward: A function
−→
S : VS(MMS) → TrG with domain VS(MMS) =

{Ms ∈ L(MMs)|∃〈Ms, X〉 |= S} s.t. ∀Ms ∈ VS(MMS) [
−→
S (Ms) |= S] ∧

[
−→
S (Ms)|s ∼= Ms].

– Backwards: A function
←−
S : VT (MMT ) → TrG with domain VT (MMT ) =

{Mt ∈ L(MMt)|∃〈X, Mt〉 |= S} s.t. ∀Mt ∈ VT (MMT ) [
←−
S (Mt) |= S] ∧

[
←−
S (Mt)|t ∼= Mt].
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The previous definitions are similar to the concept of correct transformation
given in [10], but in addition we forbid modifying the source (resp. target) model
in forward (resp. backwards) transformations.

3 Deduction and Annotation Mechanisms for Patterns

Next we present the deduction rules we use to: (i) generate new patterns that
take dependencies into account, which guide the order of pattern enforcement
by the operational mechanism; (ii) enrich S- and C-Patterns with pre- and post-
conditions derived from other patterns; and (iii) deduce positive information
from N-Patterns. We use two operations: deduction, which infers new patterns,
and annotation, which makes dependencies among patterns explicit.

For example, from the specification in Fig. 1, the deduction rules generate
a new pattern to reflect the dependency between C-T and A-Co (to take into
account whether a pair (C, T ) is already related, before relating a pair (A, Co)).
The deduction rules also add negative post-conditions derived from the notDupF
N-pattern to the rest of patterns, and produce new patterns that reuse part of
notDupF so that duplication of F objects is not possible.

Most deduction rules are based on the maximal intersection of two triple
graphs, called maximal intersection object (MIO), which is defined next.

Definition 7 (MIO). Given triple graphs TrG1 and TrG2, a maximal inter-
section (MI) is given by a span of injective morphisms (TrG1

m1←− M
m2−→ TrG2),

s.t. M � ∅ ∧ � M ′ � M with (TrG1
m′1←− M ′ m′2−→ TrG2) and m12 : M → M ′

injective s.t. the diagram to the left of Fig. 3 commutes. Object M is called MIO.

MIOs are not unique, as the example to the right of Fig. 3 shows: M1 and M2

are both MIOs, but not M3 as M1 is bigger. The set of all MIs (resp. MIOs) of
TrG1 and TrG2 is denoted by MI(TrG1, T rG2) (resp. MIO(TrG1, T rG2)).

M ′

m′1
   

   
 

AA   
  
 m′2

&&&
&&&

&

B�&
&&

&&
&== M

/ m12

��
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IG��
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ON%%

m′
1(M

′)
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� �
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��
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Fig. 3. Conditions for MIO (left). Example (right).

Patterns in a specification may have dependencies inducing a certain order of
enforcement by the operational mechanism. We make such dependencies explicit
by annotating patterns with additional graphs, related to the positive graph Q.
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Dependencies are calculated by the intersection of two patterns, and can be
interpreted as restrictions that must not hold when the pattern is enforced.

Definition 8 (Annotated Pattern). An annotated pattern (P, {nk : Dk →
Q}k∈K) contains a pattern P and a set of dependencies Dk to P ’s positive
graph Q.

Before presenting the deduction rules, we define an operation called pre-condition
weakening (PW), which tests whether the positive graph of a C-Pattern is in-
cluded in another one, and then adds the negative pre-conditions from the former
to the latter. We show it here in its simplest form for S-Patterns, see [9] for the
complete definition.

Definition 9 (PW). PW on [
∧

i∈Pre1

←−
N (C1

i )⇒ P (Q1)] ∧ [P (Q2)] with Q1 ↪→
Q2 results in [

∧
i∈Pre1

←−
N (C1

i )⇒ P (Q1)] ∧ [
∧

i∈Pre1

←−
N (C1

i +Q1 Q2)⇒ P (Q2)]

Remark. The specification resulting from PW is not equivalent to the original
one. The second pattern is added negative pre-conditions, so that it is satisfiable
by more graphs, namely by those in which ∃ni : C1

i +Q1 Q2 → TrG (injective), as
then Q2 is not forced to occur. However, we use this operation to make coherent a
specification: as an occurrence of the second pattern implies an occurrence of the
first, by adding the negative pre-conditions we ensure that a positive satisfaction
of the second implies a positive satisfaction of the first.

Example. As S-Pattern C-T is included in A-Co, PW adds the negative restric-
tion

←−
N (noParent) from the former to the latter. The resulting pattern is shown

to the right of Fig. 4 (second row, to the left).
Next, we show some deduction rules that preserve the specification semantics.

We only show the simplest forms of them (for S-Patterns), see [9] for additional
definitions and proofs. We first present the deduction rule for two S-Patterns
called S-Deduction and its annotation mechanism SA( , ). S-Deduction creates
a new pattern handling an intersection of two S-Patterns, while the annotation
mechanism adds such intersections as dependencies to the two original patterns.

Proposition 1 (S-Deduction). From
∧

k∈{1,2}[
∧

i∈Prek

←−
N (Ck

i )⇒ P (Qk)], we

deduce the new patterns
∧

M∈MIO(Q1,Q2)[
∧

i∈Pre1∪Pre2

←−
N (C′

i)∧
←−
P (M)⇒P (Q1+M

Q2)], where the C′
i are calculated as shown to the left of Fig. 4.

Definition 10 (S-Annotation). Given two annotated S-Patterns (Pi, Di) with
positive graphs Qi: SA((P1, D1), (P2, D2)) = {(Pi, Di

⋃
M∈MIO(Q1,Q2)

{M → Qi})}i=1,2

⋃
M∈MIO(Q1,Q2){(SD(P1, P2, M), ∅)}, with SD(P1, P2, M)

the resulting pattern from applying S-Deduction using M .

Example. The right of Fig. 4 shows an example of S-Annotation, where the
newly generated pattern (bottom right) considers the fact that the relation de-
manded by pattern C-T may already exist. The added dependencies (D1) ensure
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Fig. 4. Negative Pre-Conditions in S-Deduction (left). S-Annotation Example (right).

that the first and second patterns will only be enforced by the operational mech-
anisms when no occurrence of D1 is found. As we will see later, this makes the
TGG operational rules generated for the first two patterns mutually exclusive
with the one of the third, as well as confluent. Moreover, the rule for the third
pattern will be able to reuse the structure created by the rule of the first.

Next deduction rule is used to take into consideration the interaction of N-
patterns, which express global negative constraints, with other patterns.

Proposition 2 (N-Deduction). [
∧

i∈Pre

←−
N (Ci) ⇒ P (Q)

∧
j∈Post

−→
N (Cj)] ∧

[
−→
N (CN )] is equivalent to [

∧
i∈Pre

←−
N (Ci)⇒P (Q)

∧
j∈Post

−→
N (Cj)

∧
Cr∈RS

−→
N (Cr)]∧

[
−→
N (CN )] with RS = {rn : Q→ Cr}Cr∈PO(MI(Q,CN )) and PO(MI(Q, CN )) is the
set of pushout objects of all spans in MI(Q, CN ).

Proof(Sketch). We have related CN in all possible (maximal) ways with Q, which
is given by the pushout of each span in MI(Q, CN ). This is similar to the pro-
cedure to convert a graph constraint into a post-condition [4,8]. 	

Remark. Removing
−→
N (CN ) does not yield an equivalent specification, as e.g.

a graph with no occurrence of Q is allowed to have an occurrence of CN . Note
however that we will delete N-Patterns when generating the TGG operational
rules, as these by construction cannot generate any forbidden pattern.

Fig. 5. N-Deduction Example (left). NP-Deduction and Annotation Example (right).
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Example. The left of Fig. 5 shows how N-Pattern notDupF induces a negative
constraint on S-Pattern A-Co2, resulting in the S-Pattern to its right. There
are two isomorphic MIOs (both made of two T s and one F ) resulting in two
isomorphic negative constraints, so that one is eliminated.

The following deduction rule detects N-Patterns that forbid a repetition of
structures and generates a positive pattern that reuses such structure. First, we
define the completion of a triple graph M with respect to a graph T such that
M ↪→ T . The completion adds to M |t all elements that are related to elements
of M |s and belong to T − M , and similar for source elements. In addition,
completion includes all unrelated elements of T .

Definition 11 (Completion). C(M, T ) = G iff G is the smallest graph s.t.
M ↪→ G ↪→ T ∧ (∀n ∈ VG|s , �m ∈ VT |t − VG|ts.t. n rel m) ∧ (∀x ∈ VG|t , �y ∈
VT |s − VG|ss.t. y rel x) ∧ (�z ∈ (VT |s ∪ VT |t)− (VG|s ∪ VG|t) s.t. z is unrelated ).
G also contains all edges of T with source and target in nodes of G.

Fig. 6. Example of Completion

Example. Fig. 6 shows an example of completion, where graph M is completed
with respect to graph T, yielding graph C(M, T). Note that M ↪→ C(M, T ) ↪→ T .

Proposition 3 (NP-Deduction). [
∧

i∈Pre

←−
N (Ci) ⇒ P (Q)] ∧ [

−→
N (S)], with S

the
pushout of two isomorphic graphs S1

∼= S2 and S1 ∈ MIO(Q, S), is equivalent
to [
∧

i∈Pre

←−
N (Ci)⇒ P (Q)] ∧ [

−→
N (S)] ∧ [

∧
i∈Pre

←−
N (Ci) ∧

←−
P (C(S1, Q))⇒ P (Q)].

Proof. C(S1, Q) ↪→ Q, thus [
←−
P (C(S1, Q))⇒ P (Q)] is subsumed by P (Q). 	

The NP-Deduction rule has an associated annotation rule NP ( , ), which adds
a dependency to the S-Pattern equal to the positive pre-condition of the newly
generated pattern (see details in [9]).

Example. The right of Fig. 5 shows the derivation of C-Pattern A-Co2.notDupF
from A-Co2 and notDupF. The latter is made of the pushout of two isomorphic
graphs made of two T s and one F , which belongs to MIO(A-Co2, NotDupF).
The completion of one of the isomorphic graphs with respect to A-Co2 is the
pre-condition graph

←−
P () of A-Co2.notDupF. The newly generated pattern reuses

two T s and one F so that the rule to be generated from it will not produce the
situation forbidden by notDupF. The annotation procedure adds a dependency
to A-Co2 so that the generated rule will be mutually exclusive with the one for
the deduced pattern.
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4 Generating the Operational Rules

Next we show the generation of operational TGG rules from a specification.
Compilation into other formalisms is also possible, e.g. to a constraint satisfac-
tion problem [11]. We first present the structure of non-deleting TGG rules.

Definition 12 (Non-Deleting Oper. TGG Rule). A TGG rule r = (L l→
R, pre = {ni : L → N i

L}i∈I , post = {nj : R → N j
R}j∈J ) is made of an injective

morphism l of triple graphs, and sets pre and post of negative pre- and post-
conditions.

Next we show how to generate a TGG rule given an annotated C-Pattern. The
main idea is to use Ps = C+C|sQ|s = 〈Q|s, C|c, C|t〉 as the LHS (for the forward
rule) and Q as the RHS. The negative pre- and post-conditions of the C-Pattern
are used as negative pre- and post-conditions of the rule. Note the similarities
with the satisfiability of patterns (Def. 5 and Fig. 2). The rule’s RHS is used
as a negative pre-condition so that satisfiability is enforced only once. Finally,
dependencies are converted into negative pre-conditions.

Definition 13 (Derived TGG Rule). Given annotated pattern T = (
∧

i∈Pre←−
N (Ci) ∧

←−
P (C)⇒ P (Q)

∧
j∈Post

−→
N (Cj), D = {nk : Dk → Q}k∈K), the following

TGG operational rules are derived:

– Forward. −→rT : (L = 〈Q|s, C|c, C|t〉
(id,qc,qt)−→ R = Q, pre = {L n→ R} ∪

{as
i : L→ Ns

i |L � Ns
i }i∈Pre∪{sk : L→ Sk}k∈K , post={nj : R→Cj}j∈Post).

– Backwards. ←−rT : (L = 〈C|s, C|c, Q|t〉
(q|s,q|c,id)−→ R = Q, pre = {L n→

R} ∪ {at
i : L → N t

i |L � N t
i }i∈Pre ∪ {sk : L → Sk}k∈K , post = {nj : R →

Cj}j∈Post).

where Nx
i
∼= Ci|x +C|x C, and ax

i : L → Nx
i is uniquely determined (see Fig. 2,

where Px = L). Sk is the left-extension of Dk, see left of Fig. 7, where nk ◦ bk =
r ◦ lk and dk ◦ bk = sk ◦ lk are pullback and pushout squares respectively.

Bk
bk

��

lk��
P.B.

Dk

nk

�� dk

��

L

sk SR

r �� R = Q

P.O.

Sk

Fig. 7. Left Extension of Dk → Q (left). Generated Forward Rule A-Co (right).

Example. The right of Fig. 7 shows the generated forward rule from the anno-
tated pattern A-Co of Fig. 4. Note how the NAC S1 forbids applying the rule if
the node C has an associated T . In this case, the rule generated from the derived
pattern C-T.A-Co in Fig. 4 would be applicable (see rule C-T.A-Co in Fig. 8).
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Before generating the rules we use the deduction and annotation mechanisms
on the initial M2M pattern specification in order to transform N-patterns into
negative post-conditions of the other patterns, generate patterns that take into
consideration the satisfaction of other patterns, and identify dependencies be-
tween them. As stated before, we assume that the initial specification does not
include patterns with both a positive graph and a negative post-condition.

Definition 14. [Generation of Operational TGG Rules] Given specification S:

1. Use PW (Def. 9) on all possible patterns.
2. Use S-Annotation (Def. 10) for each pair of S-Patterns.
3. Use NP-Annotation on all possible patterns, initial and derived.
4. Use N-Deduction (Prop. 2) on all possible patterns and eliminate N-Patterns.
5. Take each derived pattern, and add to it all dependencies of the patterns it

was derived from. Do not add such dependencies if they are included in the
positive pre-condition of the derived pattern, as the pattern would be useless.

6. Generate an operational TGG rule for each causal pattern (Def. 12).

Fig. 8. Some of the Generated Forward Operational Rules

Example. Fig. 8 shows some of the generated forward rules. Rule C-T is gen-
erated from pattern C-T. NAC1 results from a pre-condition, while NAC2 is
equal to the RHS. Rule A-Co results from pattern A-Co. NAC3 comes from the
PW operation with pattern C-T, NAC2 is equal to RHS, and NAC1 is derived
from a dependency when making S-Deduction with C-T. Rule C-T.A-Co is gen-
erated from a pattern derived from C-T and A-Co through S-Deduction. Its first
NAC comes from a dependency induced by their source patterns. Finally, rule
A-Co.notDupF results from NP-Deduction (see the right of Fig. 5), where NAC1
and NAC2 come from pre-conditions of the patterns from which it is derived,
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and NAC3 comes from a dependency. These two last rules have some additional
NACs (not shown), stemming from N-Deduction with pattern notDupF. The
procedure generates a total of 10 rules (see [9]).

4.1 Correctness of the Operational Mechanisms

Now we show the correctness of the generated rules, focussing on forward rules
as a similar reasoning holds for the backwards case. The generated rules: (i)
produce models satisfying the specification, (ii) are confluent, (iii) terminate,
and (iv) transform each source model for which there is a correct target model.
We give an intuition, see [9] for more details.

(i) follows from the construction of the TGG rules. Their LHS is〈Q|s, C|c, C|t〉=
C +C|s Q|s = Ps, which is the base graph from which forward satisfaction
is checked (see Fig. 2). As R = Q, morphism m : Q → TrG exists after
the application of the rule. The rule negative pre- and post-conditions are
derived from the negative pre- and post-conditions of the pattern. Thus, the
rule can be applied iff the base morphism ms exists and the negative pre-
and post-conditions of the pattern are satisfied. The additional NAC ∼= R
makes the rule enforce the pattern once. As initially all forbidden graphs
are expressed as N-Patterns, and we have performed N-Deduction, no rule
can produce a forbidden result. Since we start with an empty target graph,
backwards satisfaction is also obtained.

(ii) follows because S-annotation adds dependencies (which are transformed into
NACs) to the initial patterns, and these are appropriately propagated to
their derived patterns in step 5 of the rule generation process. Note, however,
that initially we may have patterns included in others: [P (Q1)] ∧ [P (Q2)]
with Q1 ↪→ Q2. In this case S-Deduction generates [P (Q1)] ∧ [P (Q2)] ∧
[P (M)⇒ P (Q1 +M Q2)] (assuming just one MIO), from which we generate
three rules. There is a conflict between the first two rules (i.e. a critical pair).
However in a situation where both the first and the second are applicable
(e.g. if we have Q2|s ↪→ TrG), applying the first and the third is equivalent
to applying the second. Besides, we cannot apply the first and the second
due to the generated NACs. Thus, even in this case, rules are confluent
(see [9]).

Example. Consider the rules for the patterns C-T and A-Co and the and
their derived pattern (C-T.A-Co see Fig. 8). Assume a situation where both
C-T and A-Co are applicable. If C-T is applied first, then A-Co is disabled,
but C-T.A-Co can be applied. If A-Co is applied first, then no other rule is
applicable. However, in both cases we reach the same result.

(iii) follows from the fact that (a) each rule has its RHS as a NAC, therefore it
can only be applied once for each initial match in the source model; and (b)
a forward rule only changes the target model.

(iv) cannot be achieved for arbitrary M2M specifications. We restrict to what
we call Injective Positive Specifications, which contain enough positive pat-
terns to produce the operational TGG rules. Next definition introduces the
forward case (FIP), the backwards one is similar.
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Definition 15 (FIP Spec.). Specification S =
∧

i=1..n Ti is FIP, iff ∀Ms ∈
L(MMs) s.t. ∃TrG = 〈Ms, X〉 |= S, ∃ki ∈ N, ∃P i

s ← Sij
uv → P j

s with Pm
s =

Cm +Cm|s Qm|s, u = {1..ki}, v = {1..kj} and Sij
uv � P i

s if i = j, s.t. G is
the colimit of the diagram to the left of Fig. 9 (with all arrows injective) with
G ↪→ TrG and G|t ∼= TrG|t.

Fig. 9. Condition for FIP (left). Non-FIP Specification (center). Invalid Graph (right).

Remark. The definition considers ki occurrences of each pattern Ti. Two occur-
rences of patterns Ti and Tj can overlap, and this is modelled by Sij

uv. We forbid
P i

s be the overlap of two occurrences of the same pattern Qi, as the operational
mechanism minimally enforces each pattern (i.e. rules have a NAC equal to the
RHS). We have made a simplification in the diagram, but each occurrence of Ti

should satisfy its negative pre- and post-conditions.

Fig. 10. FIP Specification

Example. Consider the specification in the center
of Fig. 9, and assume no deduction is performed.
There is a valid triple graph TrG with two As in its
source, but the rules generated without deduction
cannot create such graph, as they would produce
two Bs.

NP-Deduction can turn some non-FIP specifica-
tions into FIP, because it creates a new pattern that
reuses an already created structure. The right of
Fig. 9 shows that if NP-Deduction is not applied,
we cannot handle a graph with two As. Fig. 10 shows that after NP-Deduction
the resulting pattern can handle such graph as it reuses a B and is applied twice.
It is up to future work to determine further deduction rules to cover additional
non FIP-specifications.

5 Related Work

Some declarative approaches to M2M transformation use a textual syntax, e.g.
PMT [12] or Tefkat [13]. These two particular notations are uni-directional,
whereas we generate forward and backward transformations.
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Among the visual declarative approaches, a prominent example is the QVT-
relational language [1]. The relations may include when and where clauses that
identify pre- and post-conditions and can refer to other relations. From this spec-
ification, executable QVT-core is generated that performs forward/backward
transformations. This approach is similar to ours, but we compile our patterns
to TGG rules, allowing the analysis of the generated transformation [4]. Besides,
we can analyse at a higher-level (i.e. pattern level) as our patterns have a formal
foundation [9]. Moreover, we automatically detect pattern dependencies and per-
form pattern inference. In QVT-relations dependencies must be made explicit
in the when and where clauses, and there is no equivalent to our N-Patterns. An
attempt to formalize QVT-core is found in [14].

In [15], transformations are expressed through positive patterns that rely on
OCL constraints, but no operational mechanism is given. In BOTL [16], the
mapping rules use a UML-based notation that allows reasoning about applica-
bility or meta-model conformance. We can reason both at the specification and
operational levels.

TGGs [3] formalize the synchronized evolution of two graphs through declara-
tive rules. From this specification, low-level operational TGG rules are derived to
perform forward and backward transformations, as well as to relate two existing
graphs. We also generate these operational rules from our patterns. However,
whereas in declarative TGG rules dependencies must be made explicit (i.e. we
must say which elements should exist and which ones are created), in our pat-
terns this information is derived. For instance, in TGGs, a rule like pattern
C-T.A-Co has to be specified, it is not enough to give C-T and A-Co.

Although inspired by TGGs, our patterns are a different approach: patterns
specify relations, not rules. Similar to graph constraints [8,17], a M2M specifi-
cation by patterns describes a language of valid triple graphs. Moreover, TGGs
have some limitations. First, they allow neither specifying negative information,
nor deriving positive information from negative one (like NP-Deduction). In [5],
the lack of negation is alleviated by assigning execution priorities to rules. How-
ever, this is insufficient to simulate general application conditions, it has an
operational nature, and implies knowing the rule generation mechanism and ex-
ecution engine. Second, a control mechanism is needed to guide the execution of
the operational rules, such as priorities [5] or their coupling to editing rules [2].
One can see TGGs as a subset of our approach, where a TGG rule is a pattern
of the form

←−
P (L)⇒ P (R) without negative conditions or deduction techniques.

In [18], an algorithm is given for the derivation of declarative TGGs from
example pairs of models. Interestingly, the user does not have to specify the
correspondence nodes in these pairs. The employed techniques resemble our use
of MIOs, but our patterns are richer, allowing negative pre- and post-conditions,
and our theory supports further derivation techniques (e.g. NP-Deduction).

With respect to graphical patterns, in [17] a logic of constraints is proposed,
in which constraints are existentially satisfied, while ours are universal. More-
over, we provide deduction techniques specially tailored for M2M specifications
and triple patterns. In [19] we presented a simpler notion of pattern and used
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it to extend normal rules to synchronous TGGs. We applied it to the synchro-
nization of the concrete and abstract syntax of visual models. The patterns were
restricted to work with positive information, and the execution of the derived
rules was associated to editing rules (like traditional TGGs). Here we present a
new concept of pattern, which allows expressing negative conditions, introduce
deduction rules and present a new algorithm for TGG rule derivation that is
suitable for M2M transformation and does not need a normal rule to start with.

6 Conclusions and Future Work

In this paper we have presented a new formal approach to declarative M2M
transformation. Relations between source and target models are expressed as
different kinds of patterns, from which operational TGG rules are derived im-
plementing forward/backwards transformations and taking into account pattern
interactions. This is done by deduction mechanisms that detect interdependen-
cies and produce new patterns that reuse structures created by other patterns.
This is one of the strengths of the present work: pattern dependencies are auto-
matically calculated and not explicitly given by the designer such as with QVT
and TGGs.

We have already identified analysis properties, both at the specification (e.g.
language covering, pattern conflicts) and operational levels (e.g. hippocratic
transformations [10]). We have omitted them by lack of space (see [9]).

Although we generate operational TGG rules from a pattern specification,
other target formalisms could be used as well (e.g. OCL, Alloy). In fact, one of
our next goals is expressing a specification in terms of a constraint satisfaction
problem, in the lines of [11]. This would eliminate some problems of the compi-
lation into rules, such as the restriction to handle FIP specifications only. Note
that with the theory presented so far we can handle attributes, but not attribute
conditions or computations. Our aim is to use OCL and the analysis techniques
we proposed in [11].

It would be interesting to extend the set of derived operational rules to handle
incremental synchronization and change propagation. More complex patterns
able to deal with recursion or having parameters are also under consideration.
Finally, we aim to formalize a part of QVT using this technique.

Acknowledgements. We thank the reviewers for their useful comments. Work
supported by the Spanish Ministry of Education and Science, projects TSI2005-
08225-C07-06 and TIN2006-09678.
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Abstract. Adaptive star grammars generalize well-known graph gram-
mar formalisms based on hyperedge and node replacement while retain-
ing, e.g., parseability and the commutativity and associativity of rule
application. In this paper, we study how these grammars can be put to
practical use for the definition of graph models. We show how to use
adaptive star grammars to specify program graphs, models of object-
oriented programs that have been devised for investigating refactoring
operations. For this, we introduce notational enhancements and one
proper extension (application conditions). The program graphs gener-
ated by the grammar comprise not only the nested composition of enti-
ties, but also scope rules for their declarations. Such properties cannot
easily be defined by meta-models like Uml class diagrams. In contrast,
adaptive star grammars cover several aspects of class diagrams.

1 Introduction

Graphs have always been used for visual communication, in science and beyond.
In computer science, graph models gained a new quality since the Unified Mod-
eling Language Uml emerged: when models drive the development of object-
oriented software, they must be processed by computers, and need to be defined
precisely. In this paper we investigate how graph models can be specified by graph
grammars. As a case study, we choose program graphs, a language-independent
model for object-oriented programs that has been devised for defining and ana-
lyzing refactoring operations [15,20]. Program graphs have a particular structure:
They are composed in a nested fashion according to a context-free syntax, and
contain references from entities to their declarations that respect specific scope
rules. We define program graphs by adaptive star grammars [4], an extension
of the well-known hyperedge and node replacement grammars [11]. We further
extend these grammars to enhance the definition and understanding of rules.
One of these extensions, application conditions, increases the generative power
of the formalism. Without it, the syntax and scope rules of program graphs could
probably not have been defined completely. When we compare the grammar to
common model definitions by meta-models, it turns out that the grammar allows
to infer the structural information about incidences and multiplicities of edges
that is specified, e.g., in Uml class diagrams. The syntax and scope rules for
program graphs, however, could only be specified by logical predicates, e.g., in
the object constraint language Ocl of Uml.
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In Section 2, we recall the definition of adaptive star grammars and add
some extensions that enhance their practical use as a specification language. We
introduce program graphs in Section 3, explain their adaptive star grammar, and
describe their general properties and parsing. In Section 4, we discuss the relation
of our grammatical formalism to object-oriented meta-models. We conclude with
a discussion of related and future work in Section 5.

2 Adaptive Star Grammars and Their Extensions

Graph grammars generalize the idea of Chomsky grammars to graphs: A set
of graph transformation rules defines how the graphs of the language can be
derived by applying them successively to a given start symbol.

Node replacement and hyperedge replacement [11] have been studied most
thoroughly as grammars for deriving graph languages. Their rules remove a
nonterminal node, and attach a replacement graph to its neighbor nodes. The
sort (i.e., the label) and the direction of the edge connecting a neighbor to the
nonterminal determine completely how the neighbor is attached to the replace-
ment graph; in hyperedge replacement, the number of neighbors is even fixed
for every nonterminal. Both formalisms can specify context-free compositions of
graphs in the sense of [3], but fail to define simple languages such as the language
of all graphs. Adaptive star grammars [4] overcome these limitations by means
of a cloning mechanism that makes its rules more powerful.

2.1 Adaptive Star Grammars

Let us briefly define the concepts needed; for more detailed definitions, see [4].

Graphs. Let S, the set of sorts, be the disjoint union of countably infinite
disjoint sets Ṡ and S̄, which will be used as node and edge labels, resp. For the
sake of clarity, subsets S of S may be specified as pairs (Ṡ, S̄) = (S ∩ Ṡ, S ∩ S̄).

A graph G = 〈Ġ, Ḡ, sG, tG, �̇G, �̄G〉 consists of

– finite sets Ġ and Ḡ of nodes and edges, resp.,
– source and target functions sG, tG : Ḡ→ Ġ, and
– functions �̇G : Ġ→ Ṡ and �̄G : Ḡ→ S̄ assigning a sort to each node and edge,

resp.

For a node x in G, the subgraph consisting of x and its adjacent nodes and
incident edges is denoted by G(x). A border node of x is a node in Ġ(x) \ {x}.
In addition, we use common terminology regarding graphs, such as subgraph,
disjoint union and isomorphism, assuming that the reader is familiar with them.

Rules and Replacement. Adaptive star grammars are based upon a simple
kind of graph transformation that replaces a subgraph of the form G(x) by
another graph. For this, define a rule r = 〈y, R〉 to be a pair consisting of a
graph R and a distinguished node y ∈ Ṙ. We call R(y) and R \ {y} the left- and
right-hand side of r, resp.
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Let G be a graph and x ∈ Ġ such that G(x) ∼=g R(y) for some isomorphism
g. Then the graph H = G[x /g r] is obtained from the disjoint union of G and R
by identifying R(y) with G(x) according to the isomorphism g and removing x
and its incident edges. In the following, we simply write H = G[x/r] instead of
G[x /g r]. (But note that x and r do not necessarily determine g uniquely, and
we may have G[x /g r] �∼= G[x /h r] for h �= g.)

In the following, we assume that Ṡ is divided into two infinite disjoint sets ṠN

and Ṡ \ ṠN of nonterminals and terminals, resp. For each rule r as above, y will
be a nonterminal node, i.e., �R(y) ∈ ṠN, and its border nodes will be terminal.

Multiple Nodes. To make rules adaptive, we invent multiple nodes, similar
to the set nodes of [19]. A multiple node x represents any number of ordinary
nodes, the clones of x. Formally, multiple nodes are designated by special sorts.
For this, we assume that Ṡ\ṠN is partitioned into a set of singular node sorts and
a set S̈ of multiple node sorts, where the latter is made up of pairwise distinct
copies of the singular node sorts. For a singular node sort a, its copy in S̈ is
denoted by ä. Likewise, the set of multiple nodes of a graph G is denoted by G̈.
In figures, a multiple node of sort ä is distinguished by drawing it with a dashed
line and a “shade” (see Figure 2 on page 450), but labeled with the singular
sort a. A graph that does not contain any multiple node is said to be a singular
graph. Note that there are no multiple nonterminal nodes.

Cloning. Let G be a graph. A function μ : G̈→ N is a multiplicity for G. The
graph Gμ is obtained from G by cloning each node x ∈ G̈ according to μ, as
follows. If �̇G(x) = ä, then x and its incident edges are replicated μ(x) times,
where the sort of the copies is changed into a, i.e., clones are always singular. If
μ(x) = 0, then x and its incident edges are simply deleted.

Adaptive Star Grammars. Call a graph well formed if it contains neither
adjacent nonterminal nodes nor indistinguishable edges, i.e., parallel edges with
identical sorts. A star is a graph of the form G(x) that contains neither loops
nor parallel edges, such that x is nonterminal and its border nodes are terminal.
An adaptive star rule over S ⊆ S is a rule r = 〈y, R〉, where R is a well-formed
graph with sorts in S, and R(y) is a star. A clone of r is a rule 〈y, R′〉 such that

– R′ is well formed, and
– there is a multiplicity μ for R such that R′ can be obtained from Rμ by

identifying some of the border nodes of y with each other (where, of course,
only nodes of the same sort can be identified).

An adaptive star grammar is a system Γ = 〈S,P , Z〉, where S ⊆ S is a finite set
of sorts, P is a finite set of adaptive star rules, and Z is the initial star (all sorts
being taken from S). Given a graph G, we write G =⇒P H if H = G[x /r] for
some node x ∈ G and a clone r of an adaptive star rule in P . The adaptive star
language generated by Γ is the set of all terminal graphs G that can be derived
from Z:

L(Γ ) = {G | Z =⇒+
P G and �̇G(x) ∈ S \ ṠN for all x ∈ Ġ},

where =⇒+
P denotes the transitive closure of =⇒P .
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Example 1 (The Language of Unlabeled Graphs). To depict a rule 〈y, R〉 in a
readable and space-efficient manner, we use the following drawing conventions
inspired by [13]; see also [11]. The node y designating the left-hand side of the
rule is drawn as a large rectangle covering all other nodes of R as well as the
edges between them. Edges connecting y with its border nodes attach to the
rectangle from the outside. The label of y is written in the upper left corner of
the rectangle.

As an example, consider the adaptive star grammar Γ which is given by
Γ = (({◦, ◦̈,A}, {-}), R, Z), where

R =

⎧⎪⎪⎨⎪⎪⎩
A A

,

A A

,

A
⎫⎪⎪⎬⎪⎪⎭ and Z = A .

It derives arbitrary graphs without loops over the “invisible” sorts ◦ and -, that
is, the class of finite unlabeled graphs. Starting with Z, the first rule makes
it possible to add an arbitrary number of border nodes. The second rule adds
edges between border nodes, and the third removes the nonterminal node. A
more conventional way to draw the second rule can be obtained by “unfolding”
it in two steps, like this:

A A A
::=

A

Moving out the right-hand side Separating the sides

Let us briefly discuss the two main differences between the definition of adap-
tive star grammars used here and the one in [4]. Firstly, using the terminology
of [4], we have restricted ourselves to early cloning, i.e., cloning produces only
singular nodes. As shown in [4], this does not restrict the generative power of
adaptive star grammars. Secondly, rules can be applied to subgraphs G(x) that
are not stars, but contain parallel edges. Note that, although the left-hand side
R(y) of an adaptive star rule r = 〈y, R〉 is a star, cloning it prior to applica-
tion may involve taking a quotient that identifies border nodes of y in Rμ with
each other. This may sound alarming, as it was shown for quite a similar type
of adaptive star grammars in [5] that all recursively enumerable languages can
be generated. However, note that we restrict this ability to the case where the
resulting right-hand side R′ is well formed. In particular, R′ must not contain
indistinguishable edges. As a consequence, adaptive star grammars of the sort
defined above can be simulated by ordinary ones (i.e., those in [4]) by using
subsets of S̄ to label edges in stars and turning every rule into a finite number
of rules (corresponding to the allowed quotients).
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2.2 Extensions of Adaptive Star Grammars

We now introduce and discuss three extensions of adaptive star grammars that
turn out to be useful when writing complex grammars. The first two extensions
do not increase the generative power, but are nevertheless important in order to
keep the grammars readable, because they lead to a considerable reduction of
the number of rules.

Extension 1 (Subsorting). In order to avoid the necessity to draw lots of
similar rules, we enrich the set S with additional abstract sorts and equip the
so-enlarged sets Ṡ and S̄ with subsort relations, partial orders denoted by “
”.
For ä, b̈ ∈ S̈, we require that ä 
 b̈ if and only if a 
 b.

Sorts that are not abstract are concrete. For graphs G, H , we write G 
 H if
H and G are equal up to their node and edge sorts and, for all x ∈ Ġ, e ∈ Ḡ, we
have �̇G(x) 
 �̇H(x) and �̄G(e) 
 �̄H(e). A graph is concrete if it contains only
concrete sorts as labels, and abstract otherwise.

Now, every adaptive star rule 〈y, R〉 stands for the set of all 〈y, R′〉 such that R′

is a concrete graph with R 
 R′. Clearly, this extension does not make adaptive
star grammars more powerful, since the set of all such graphs R′ is finite for any
given R (as S is finite). However, it can help to avoid a combinatorial explosion
of the number of rules that have to be drawn.

Extension 2 (Multiple Subgraphs, Options, and Repetitions). We ex-
tend the notion of multiple nodes, as follows. In a rule r = 〈y, R〉, an induced
subgraph M with y /∈ Ṁ may be designated as a multiple subgraph. Thus,
the multiple subgraph consists of the nodes in Ṁ and all edges e ∈ R̄ with
sR(e), tR(e) ∈ Ṁ . Distinct multiple subgraphs must either be disjoint or prop-
erly nested. Graphically, we indicate a multiple subgraph by enclosing it in a
dashed box with a dashed shade (see Figure 2). A multiple subgraph may be
cloned any number of times prior to rule application. Here, cloning means to
choose a multiple subgraph M not contained inside another multiple subgraph,
and replacing it with n 
 0 isomorphic copies. Each of the copies is connected
to the border nodes of M (i.e., the nodes in Ṙ \ Ṁ which are adjacent to nodes
in Ṁ) by copies of the edges that connect M with its border nodes. The cloning
procedure is repeated until there are no multiple subgraphs left.

In addition to multiple subgraphs, it is useful to introduce optional subgraphs,
drawn with dashed borders without a dashed shade, which may have n ∈ {0, 1}
clones, and repeated subgraphs, drawn with solid borders and a dashed shade,
which may have n 
 1 clones. If an optional or repeated subgraph consists of a
single node, we apply these drawing conventions to the node itself rather than
adding a box around it. (Thus, for multiple, optional, and repeated nodes, this
is the notation known from Progres [19].)

The reader may have noticed that multiple, optional, and repeated nodes
and subgraphs lift the use of regular expressions “E∗”, “E?”, and “E+” in the
extended Backus-Naur form of context-free rules to the graph case, thus avoiding
the necessity to use clumsy auxiliary rules. Similar to the case of context-free
grammars, the expressive power of adaptive star grammars is not affected. To see
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this, note that a multiple subgraph M in a rule r as above may be implemented
as follows. We remove M from R, except for the border nodes of y that are
contained in M . Singular border nodes of y in M become multiple. Now, we add
a new nonterminal x (labeled with a new sort), which is connected to all border
nodes of M as well as to the border nodes of y contained in M , by edges labeled
with pairwise different sorts. This yields the modified rule 〈y, R′〉. Finally, two
new rules are added to the grammar, which generate any number of copies of
the multiple subgraph by iteration. The terminating rule is 〈x, R′(x) − Ṁ〉. We
leave the straightforward definition of the iteration rule to the reader.

Extension 3 (Application Conditions). The example presented in the next
section shows that the power of adaptive star rules suffices to express almost
all the important structural properties of program graphs. Nevertheless, in some
cases, the subgraph derived by a rule is subject to a condition which we do
not know how to capture by adaptive star rules. Therefore, we extend them by
allowing required or forbidden terminal subgraphs to be attached to the border
nodes in the left-hand side of a rule. In fact, we only need required and forbidden
edges between border nodes. We emphasize these edges by underlaying them in
grey, and cross them out if they are forbidden.

Note that we cannot offer a formal proof for the necessity of application
conditions. In particular, the three uses of application conditions in Fig. 2 can
perhaps be avoided by a more ingenious grammar. However, we have not been
able to come up with such a solution. Finding it or disproving its existence
remains a subject for future work.

3 A Grammar for Program Graphs

Program graphs have been devised in [15], as a language-independent represen-
tation of object-oriented code for studying refactoring operations. They capture
concepts that are common to many object-oriented languages, like single inheri-
tance and method overriding. The simplified graphs defined here represent only
the data flow of programs. See [20] for a specification of program graphs that
covers their control flow as well.

A Sample Program Graph. Figure 1 shows a program graph for the follow-
ing rudimentary program:

class Cell is

var cts: Any;

method get() Any is
return cts;

method set(const n: Any) is
cts := n

subclass ReCell of Cell is

var backup: Any;

method restore() is
cts := backup;

override set(const n: Any) is
backup := cts;
super.set(n)

The node sorts C, M, K, V, B, E distinguish program entities: classes, method
signatures, constants, variables, bodies (of methods), and expressions. In the fig-
ure, some nodes are annotated with the names of the entities they represent.
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Fig. 1. A program graph

(Note that there are three nodes of sort C, rather than two, the leftmost one
representing the predefined root class Any.) Edge sorts distinguish relations be-
tween program entities. Arrows drawn as “ ” represent the composition of
entities, and arrows of the form “ x ”, with x ∈ {t, b, c, u, w}, represent refer-
ences of entities to declarations: the typing of features by classes, the binding of
bodies to the signatures of methods, the call of methods within expressions, the
use of constant and variable values in expressions, and the writing of values of
expressions to variables in assignments.

For instance, the node of sort C representing the class ReCell is composed of
four entities. The leftmost node among these four, of sort B, represents the body
overriding the body of set in Cell. In turn, the nodes beneath this node represent
the expressions (and constants) occurring in the body, as well as the ways in
which they call, use, or write to other visible entities.

Program graphs have a particular structure: Their composition follows the
syntax of the underlying program texts, whereas their references obey the scope
rules for the visibility of declarations in programs. Due to this structural com-
plexity, the generative power of ordinary context-free graph grammars does not
suffice to specify the set of all program graphs. Instead, this is now done using
an adaptive star grammar, with the extensions introduced in Subsection 2.2.

The Concrete Sorts. The nonterminal node sorts Prg, Hy, Cls, Fea, Sig,
Bdy, Exp, and Act label placeholders for the program, a class hierarchy, a class
or feature definition, the signature or body of a method, an expression, or ac-
tual parameters, respectively. In rules, nonterminal nodes are connected to their
border nodes by edges of different sort and direction. Every nonterminal node x
is incident with one or two anchor edges, drawn as “ ”, and may be incident
with scope edges of the form “ v ”, with v ∈ {g, h, i}. Sort and direction of such
an edge indicate the role of the node at the other end in the derivations of x:
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– An anchor edge points to the program entity, represented by a singular node,
the components of which are being defined by x. (The only situation in which
a nonterminal node has two anchor edges is when a method consisting of a
signature and a body is being defined.)

– Ingoing scope edges connect nodes representing declarations within the scope
of x; these nodes represent the declarations of constants, variables, methods,
and classes that may be referred to in the program entity defined by x.

– Outgoing scope edges connect the nonterminals Hy, Cls, and Sig to the set
of declarations that are made visible by the program entities defined by these
nonterminals.

The edge sorts g, h, and i classify the visibility of declarations as global, heredi-
tary, and internal, respectively. (In our program graphs, classes are always global,
and for the example program above, we assume that all method declarations are
global, whereas attribute declarations are internal to a class.) Further edges of
sort s connect “selected” nodes of type M to nonterminals Bdy, Exp, and Act,
and nodes of type K to nonterminals Act. The major purpose of these edges is
to keep track of a method signature when deriving a body for it.

The Abstract Sorts and Subsort Relation. In addition to the sorts men-
tioned above, we use abstract node sorts D, F, and A, together with the following
subsort hierarchy on the declarations: A declaration D is either a class C, or a
feature F, which in turn is either a method M, or an attribute A, which in turn
is either a constant K, or a variable V. Moreover, the scope sorts g, h, and i
are subsorts of an abstract scope sort that is just drawn as “ ”. See the sort
graphs in Figure 3(a) and (b).

The Rules. The adaptive star rules defining program graphs are shown in
Figure 2, and will be explained in the following paragraphs.

Start Rule. The rule start initiates the derivation of a class hierarchy. It applies
to the initial star of the grammar, which consists of the nonterminal Prg with an
anchor node representing the root Any of the class hierarchy. Together with the
root node, the clones of the multiple D-node represent all globally visible decla-
rations of the program. All of them are connected to the Hy-labeled nonterminal,
say x, by in- and outgoing g-edges. Intuitively, this means that they are passed
to the rule hy as declarations that are both visible and going to be defined by the
derivation of x. Thus, these nodes play two roles in the derivations of x. Note
that, in hy, these roles are split as its left-hand side does not contain parallel
edges (as required by the definition of adaptive star rules). Thus, quotients will
have to be taken in order to apply this rule.

Class Hierarchy. The rule hy defines a class hierarchy, consisting of a root class,
plus n 
 0 sub-hierarchies. The root classes of the sub-hierarchies are direct sub-
classes of the root class. The root class defines sets of features of different visi-
bilities: Its internal features are only visible within itself, whereas its hereditary
features are also visible to its sub-hierarchies. Its global declarations, together
with those of its sub-hierarchies, are the global declarations of the whole hier-
archy. The global method declarations are furthermore passed as “hereditary”
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to the sub-hierarchies, because only such methods may be overridden. These
methods are thus visible to the sub-hierarchies in two roles, since they are also
contained, as “global”, in the visible declarations.

Class Definitions. The rule cls derives a set of features as members of a class.
Note that the derived features that may have global, hereditary, or internal
visibility, depending on which subsort of the abstract derived scope sort is used.
The multiple K-node represents the parameters of all methods in the class; they
are passed around as global, so that they can be accessed when their method is
used. (See the rules for expressions below, which contain application conditions
to make sure that the visibility rules are obeyed.)

Feature Definitions. The rules for Fea derive the features that may be defined
in a class: either a (constant or variable) attribute (rule att), a new method
(rule method), or a method overriding a hereditary method (rule override). The
new method is abstract if its optional body is missing. In rules method and over-
ride, the M-node being defined or overridden is passed as a “selected” entity to
Bdy (and further on to Exp and Act) in order to access the parameters of the
signature in expressions.

Method Signatures and Bodies. The rules result and par derive signatures of
methods. Methods have an optional result type, and any number of formal pa-
rameters. The type of a result or a parameter is the class represented by the
target of a t-edge. The rule bdy derives method bodies, each consisting of a set
of expressions.

Expressions. The rules use, usep, assign, and call specify four kinds of expres-
sions: the use of a visible attribute value, the use of a parameter of a method
within its body, an assignment writing the value of an expression to a variable,
and the call of a method with a list of actual parameters. Each of these rules
inserts a reference to a declaration that is visible in the expression. The appli-
cation conditions in use and usep make sure that an attribute is visible only if
it is not the (constant) parameter of a method, and that a parameter is visible
only within the method it belongs to, i.e., the selected one. In rule call, the ap-
plication conditions make sure that all parameters of the method to be called
are subsumed under the multiple K-node – there are no edges to other nodes in
the set of visible entities.

Actual Parameters. The rules no and more generate as many expressions (actual
parameters) as there are formal parameters of the method being called. To see
this, not that each application of more “releases” one K-node.

Properties of Program Graphs. The rules given in Figure 2 have been
designed so that the program graph grammar and the language it derives have
the following properties:

– The composition edges induce a syntax tree. This is a spanning tree of the
program graph. (Thus, program graphs are connected.)
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– The composition and anchor edges of the rules induce syntactic sub-rules of
the grammar, yielding a hyperedge replacement grammar that generates the
syntax trees in a purely context-free manner.1

– The outgoing scope edges of a nonterminal n point to declaration nodes that
are contained in the syntax tree derived by the syntactic sub-rule of n. These
border nodes are uniquely determined by the underlying syntax tree.

– The ingoing scope edges of a nonterminal n connect it to the subset of
declaration nodes that are method parameters, or visible in the syntax tree
generated by n.

– The rules for a nonterminal n may insert reference edges to the ingoing
declaration nodes that are visible. Thus terminal program graphs are syntax
trees with references from entities to declarations that are visible to these
entities.

The reader may have noticed that the program graph grammar has been de-
signed with attribute grammars [14] in mind, a formalism that has been devised
for specifying the contextual analysis and translation of (textual) programming
languages. More precisely, the grammar corresponds to an attribute grammar
with a semantic basis that has sets of syntax tree nodes as values, and set oper-
ations as semantic functions (like set union, and member selection). The anchor
edges indicate what would be the underlying syntax of the attribute grammar,
and the scope edges specify the values of its (inherited and synthesized) at-
tributes.

Parsing. A parsing algorithm for adaptive star grammars has been developed
in [17,4]. However, the rules given above must be transformed in order to make
them acceptable for the algorithm:

– Optional, multiple, and repeated nodes and subgraphs can be defined as
outlined in Extension 2.

– Empty rules, i.e., rules where the replacement just consists of the border
nodes of their distinguished node, are also forbidden. In the program graph
grammar, this occurs when the multiple subgraph in rule cls has no clone, or
when the optional class node in rule result is missing. Empty rules can also
be removed, by a transformation similar to the removal of empty rules from
context-free word grammars [4].

As mentioned above, application conditions are a real extension of the formal-
ism. Consequently, it is not clear whether adaptive star grammars with applica-
tion conditions have a decidable membership problem in general. However, for
“attribute-grammar-like” rules like the one presented here, a parsing algorithm
can take advantage of the structure of such rules. First, the syntax tree can be
parsed. Then the outgoing declaration nodes of the nonterminal stars can be
determined, thus defining the ingoing declaration nodes. This, finally, allows to
check whether the references are in place. During this process, it is easy to check
whether the application conditions are fulfilled.
1 The auxiliary rules defining the multiple subgraphs in the sub-rules become tree-

generating hyperedge replacement rules as well.
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4 Adaptive Star Grammars and Meta-models

The static structure of object-oriented software is commonly described by meta-
models like Uml class diagrams. A class diagram contains specifications of three
kinds of properties:

– Inheritances describe “is-a” relationships between classes.
– Incidences specify which associations may exist between which classes.
– Multiplicities define how many associations of some kind may leave and enter

some class, thus distinguishing “1:1”, “1:n”, “n:1”, and “n:m” relationships.

For an adaptive star grammar like that of program graphs, label subsorting
does already specify the inheritances of a meta-model. Incidences can then be
determined by constructing a sort graph as follows:

– Form the disjoint union of the start graph with all graphs of all rules, where
all multiple node labels are turned into singular ones.

– Identify all equally labeled nodes with each other.
– Insert all inheritance edges in that graph. (This requires “meta-edges” be-

tween edges.)
– For some edge e labeled �, remove all edges that are parallel to e and labeled

by � or a subsort of �.
– If a node may have equally labeled edges to (or from) every direct sub-node

of some node n, replace these edges by a single edge to n.

In Figure 3, the sort graph for program graphs is shown in three pieces: the left-
hand side shows the subgraph induced by its composition and reference edge
sorts, whereas the subgraph on the right-hand side is induced by its anchor and
visibility edge sorts. In the middle, we depict the subsort relation on edge sorts.
Altogether, the graphs in Figure 3 correspond to schema graphs in Progres [19],
and to type graphs with inheritance in algebraic graph transformation [8].

The multiplicities known from Uml class diagrams could be inferred by a
similar, yet slightly more complicated procedure. For instance, rules start and hy
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imply that composition edges incident with C-nodes have the source multiplic-
ity 0 � n and the target multiplicity 0 � m � 1, i.e., a C-node has at most one
ingoing composition edge indicating its supertype, and may have any number of
outgoing composition edges that indicate its subtypes. In the notation of Uml

class diagrams, this could be specified by annotating the loop edge at the node
C in Figure 3 with “∗ ?”. Most of the composition edges have the multiplicity
“∗ 1”, saying that n 
 0 edges may leave, and one edge enters a node.2 Ref-
erence edges have the multiplicity “? ∗”, saying that n ∈ {0, 1} of these edges
may leave, and n 
 0 of these edges may enter a node.

However, even a class diagram with multiplicities is not as precise as the
program graph grammar. The scope rules for programs specified in the rules
cannot be described by incidences and multiplicities alone. In an object-oriented
meta model, they could be specified by logical formulas written in, e.g., Ocl,
the logical language of Uml.

Vice versa, adaptive star grammars do not specify attributes for nodes and
edges. However, this could be added in a straightforward way; if needed, their
values could be determined by attribute functions. For instance, an attribute arity
of B-nodes could be initialized to 0 in rules method and override, and increased
in rule par.

In summary, one may say that adaptive star grammars provide a generative
alternative to the use of meta models combined with logics. It is certainly a
matter of debate which one appears more natural and is easier to use. However,
as argued in [6], general graph transformation rules can conveniently describe
model transformations, such as refactoring operations. This means that software
refactoring systems based on graph transformation could make use of adaptive
star grammars for specifying the models to be transformed, and of general graph
transformation rules to specify the actual transformations. This avoids the need
to mix different paradigms, one of them being used for the specification of the
models and the other one for the description and implementation of valid trans-
formations.

5 Conclusions

Adaptive star grammars are rather straightforward extensions of hyperedge and
node replacement, and still have some properties of context-free grammars, e.g.,
nondeterministic versions of associativity and confluence. Adaptive star gram-
mars allow to derive graph languages that define rather advanced software mod-
els, specifying properties as they are typically needed to represent programming
languages.

The correctness of the grammar presented in Section 3 has not been proved
formally. Nevertheless, such a proof should be rather straightforward (though
technically tedious), exploiting the similarity of this particular example with at-
tribute grammars pointed out earlier. This would formally support our claim
that the power of adaptive star grammars is close to what is necessary for being
2 Composition edges leaving nodes of sort B have the multiplicity “+ 1” .
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able to specify program graphs and similar structures. However, without applica-
tion conditions, adaptive star grammars seem to be unable to cope with complex
constraints like the correspondence of actual to formal parameters of methods.
It is also open whether other constraints, like the type rules for expressions, can
be expressed with adaptive star grammars.

In this paper, we have omitted certain features of the program graphs de-
scribed in [20]. There, method bodies may contain local declarations and control
flow. These features can be captured by refining and extending the rule set
presented here. The nodes in [20] do also have attributes, for instance strings
representing the identifier of a declaration, or numbers representing the arity
of a method. Attributes are convenient to have; they cannot be handled by the
grammatical formalism itself, but have to be evaluated while applying a rule,
somewhat similar to the way in which application conditions are handled.

Certainly, some properties of models should not be described by the grammat-
ical formalism. For instance, type rules could probably be specified by adaptive
rules (with application conditions) as well, but only in a rather complicated way.
Generally, attribute values and their dependencies, and negative conditions on
the structure should rather be defined by predicates, e.g., in Ocl.

So far, grammars, in particular graph grammars, have hardly been consid-
ered for defining software models. Graph grammars have been primarily used to
define semantics of models or model transformation. Hölscher et al. [12] specify
the semantics of some UML diagram types by graph grammars. They specify,
among others, state charts and interaction diagrams, i.e., the behavior of object-
oriented software. However, graph grammars are used to specify the behavior in
terms of the modeling diagrams, and not the syntactic structure of a program
as described here. Syntax, in particular abstract syntax, is now usually repre-
sented by meta-models together with additional constraints. Typical examples
of this approach are based on meta-modeling frameworks MOF [18] or EMF [10].
Moflon [1] allows to specify the abstract syntax of domain specific languages and
their implementation using MOF and OCL. Graph transformation systems are
used for model transformation and model integration. Tiger [9] uses EMF for
specifying the abstract syntax of visual languages by a meta-model. Graph trans-
formations are used to specify editing operations, i.e., behavior of a generated
visual editor. While (graph) grammars had been the main approach to specify
syntax of (visual) languages (e.g., [16]) in the past, they are now mostly used for
behavior specification. Syntax specification by meta-modeling has become the
more popular approach, probably since meta-models appear to be easier to build
and understand than graph grammars. However, we think that more complex
languages, like software models as described in this paper, can be described by
graph grammars in a better and more concise manner.

The survey paper [7] has discussed the general scenario of transforming be-
tween different graph models. This allows to prove a kind of commutativity
between the model transformations and the rules of the graph grammars defin-
ing the models concerned. However, it gives no means to check the integrity of
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the models themselves, as there is no parsing algorithm for the general graph
grammar rules considered there.

In the graph reduction specifications proposed by Bakewell et al. [2], the
inverses of the rules have convergent reductions that supply a parsing algorithm.
However, they have only be used to specify the shape of data structures involving
pointers so far.

Adaptive star grammars are used for shaped generic graph transformation [6].
The rules proposed there may contain variable nodes as placeholders for graphs
(and also multiple nodes). Adaptive star grammars are used to specify the legal
substitutions for variables. We plan to refine generic transformation so that it its
is “shape-preserving”: the transformed graphs shall be shaped according to an
adaptive star grammar, and rules replace one well-shaped subgraph by another
well-shaped graph. This will then allow to define model transformations that may
not only be shown to preserve incidence constraints, but the shape of models as
well.

In order to use adaptive star grammars in practice, we need a graph systems
wherein they can be edited, transformed, and parsers for them can be generated.
Such a system is under way. Furthermore, we are interested in the following
methodical question: Can grammars be systematically developed from a context-
free “kernel” defining spanning trees, as this has been done for program graphs?

Acknowledgments. We want to thank our former colleague Niels Van Eet-
velde. Without his work on the first adaptive star grammar for program graphs
[20], this paper could not have been written. Furthermore, we thank the anony-
mous referees for their constructive comments.
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Abstract. This tutorial is intended as a general introduction to graph
transformation for participants to the conference or its satellite events
who are not familiar with the mainstream approaches and concepts of the
area. The tutorial will start with an informal introduction to the basic
concepts of graph transformation, such as graphs, rules, transformations,
discussing semantic choices such as the handling of dangling edges during
rewriting, and extensions such as attributes, types, or inheritance.

In the second part, the tutorial will give a survey of typical applica-
tions of graph transformation, for example as a specification language
and semantic model for concurrent and distributed systems, as a model
transformation language for defining syntax, semantics, and manipula-
tion of visual models, etc.

Finally, the tutorial will go into some details about the theory of (in
particular) the algebraic approach to graph transformation, its formal
foundations and relevant theory and tools. This shall enable the partici-
pants to better appreciate the conference and its satellite events.

1 Motivation

Graphs and diagrams provide a simple and powerful approach to a variety of
problems that are typical to computer science, and many other areas of sci-
ence and engineering. For example, for most of the activities in the software
development process, visual notations are used including state diagrams, control
flow graphs, architectural diagrams, and the UML family of languages. Models
based on these notations can be seen as graphs and thus graph transformations
are involved, either explicitly or behind the scenes, when specifying how these
models should be built and interpreted, and how they evolve over time and are
mapped to implementations. At the same time, graphs provide a universally
adopted data structure, as well as a model for the topology of object-oriented,
component-based and distributed systems. Computations in such systems are
therefore naturally modelled as graph transformations, too.

2 Content

In this tutorial, we will introduce the basic concepts and approaches to graph
transformation, demonstrate their application to, in particular, software engi-
neering problems, and provide a high-level survey of graph transformation theory
and tools.
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We start by introducing a simple set-theoretic presentation of the double-
pushout approach [3] whose features are common to most graph transformation
approaches and which provides the foundation for further elaboration. Then,
we discuss alternatives and extensions, like multi objects, programmed transfor-
mations concerned with controlling the (otherwise non-deterministic) rewriting
process, as well as application conditions, restricting the applicability of individ-
ual rules.

Typical applications of graph transformation to software engineering problems
are presented in terms of examples. They include

– Model and program transformation;
– Syntax and semantics of visual languages;
– Visual behaviour modelling and programming.

In particular, we distinguish between the use of graph transformation as a mod-
elling notation (and semantic model) to reason on particular problems, like func-
tional requirements or architectural reconfigurations of individual applications,
and its use as a meta language to specify the syntax, semantics, and manipula-
tion of visual modelling languages, like the UML.

The last part of the tutorial is dedicated to a survey on the algebraic approach
to graph transformation, its formal foundations and relevant theory [2]. This
shall enable attendees to work their way through the relevant literature and to
benefit more from the presentations at the conference.

Previous versions of this tutorial together with accompanying papers have
been presented in [1,4].
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Abstract. A variety of computation models have been developed using
graphs and graph transformations. These include models for sequential,
distributed, parallel or mobile computation. A graph may represent, in
an abstract way, the underlying structure of a computer system, or it may
stand for the computation steps running on such a system. In the former,
the computation can be carried on the corresponding graph, implying a
simplification of the complexity of the system. The aim of the workshop
is to bring together researchers interested in all aspects of computation
models based on graphs, and their applications. A particular emphasis
will be made for models and tools describing general solutions.

1 Graph Computation Models

There are a lot computation models based on graphs, and their applications. The
computation models include mobile computing, programming, data transforma-
tions, concurrent and distributed computing. In the following, we will sketch
some of these graph computation models.

1.1 Graph Relabeling Systems and Distributed Computing

Graph relabeling systems have been successfully used as a suitable tool for encod-
ing distributed algorithms, for proving their correctness and for understanding
their power. In this model, a network is represented by a graph whose vertices
denote processors, and edges denote communication links. The local state of a
processor (resp. link) is encoded by the label attached to the corresponding ver-
tex (resp. edge). A rule is a local transformation of labels. A relabeling system
is defined by a finite set of such rules. The application of the rules are asyn-
chronous: there is no global clock available, and two conflict-free applications
of rewriting rules may occur simultaneously, provided they do not attempt to
modify the same local context in the host graph. Thus, the behaviour of the
network is defined by its initial labeling and the rule base of the associated local
rewriting calculus. Problems of interest in distributed computing include node
election, node enumeration, spanning tree construction, termination detection,
synchronisation, inter-node agreements, or local recognition of global properties.
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These studies rely on rule-based local computations on network graphs on the
one hand, and the recognition and classification of certain initial network con-
figurations on the other hand. The non-existence of deterministic distributed
solutions to certain problems leads to propose also the investigation of proba-
bilistic distributed algorithms, the formulation of which seems rather simple, but
their analysis is difficult. An important aspect is the relationship between the
three principal paradigms of distributed computing – local computations, mes-
sage passing, shared memory – and the comparison of their expressive powers.
Similar questions arise where those three paradigms are compared with mobile
agent systems. See e.g. [1,2,3,4].

1.2 Graph Reduction

Pointer manipulation is notoriously dangerous in languages like C where there
is nothing to prevent: the creation and dereferencing of dangling pointers; the
dereferencing of nil pointers or structural changes that break the assumptions
of a program, such as turning a list into a cycle. The goal is to improve the
safety of pointer programs by providing (1) means for programmers to specify
pointer data structure shapes, and (2) algorithms to check statically whether
programs preserve the specified shapes. In [5], these aims are approached as
follows. 1. Develop a formal notation for specifying shapes (languages of pointer
data structures); that is the main cfoncern of this paper. We show how shapes
can be defined by graph reduction specifications, which are the dual of graph
grammars in that graphs in a language are reduced to an accepting graph rather
than generated from a start graph. Polynomially terminating graph reduction
specifications whose languages are closed under reduction allow a simple and
efficient membership test for individual structures, yet seem powerful enough
to specify all common data structures. 2. The effect of a pointer algorithm on
the shape of a data structure is captured by abstracting the algorithm to a
graph rewrite system annotated with the intended structure shape at the start,
end and intermediate points if needed. A static verifier then checks the shape
annotations.

1.3 Term Graph Rewriting

The theory of term graph rewriting allows to reason about computations on
expressions with shared subexpressions. Sharing improves the efficiency of com-
putations in space and time, and is ubiquitous in implementations of functional
and logic programming languages, systems for automated deduction, and com-
puter algebra systems. Term graph rewriting provides a model to reason about
the correctness, completeness and efficiency of term rewriting with shared subex-
pressions. This model reflects the properties of real implementations more ad-
equately than the conventional, tree-based model of term rewriting. Sharing
makes term graph rewriting different from term rewriting with respect to both
efficiency and properties such as termination and confluence, thus requiring a
theory different from established term rewriting theory. See, e.g., [6,7].
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2 Organization

The workshop will include tutorials, contributed papers, and system demonstra-
tions. The tutorials will introduce many types of graph transformations and their
use to study computation models. The system demonstrations based on graph
computation models.will range from alpha-versions to fully developed products
that are used in education, research or being prepared for commercialisation.
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Abstract. This event is the second instance of the contest for graph
transformation-based tools, which was first held as part of the AGTIVE
workshop. The aim is to stimulate tool development by providing a sense
of competitiveness, as well as the chance to get to know and learn from
the features of other, related tools.

1 Aims of the Workshop

Tools are crucial for the promotion of graph transformation in industry. It is only
with the ready availability of reliable, easy-to-use tools that the attractions and
benefits of graph transformation can ever become clear to anyone not having a
prior education in this field. Furthermore, given the inherent complexities of the
method, tool performance is an important issue. As a community we should be
constantly working to improve tool support in all these aspects.

A variety of tool environments exists, supporting different graph transforma-
tion approaches and to some degree serving different purposes. There are some
examples of tool comparisons, e.g., (2, 3, 6); furthermore, Varro et al. (9) propose
some benchmarks to be used for such purposes. Nevertheless, having a certain
application in mind, it is difficult for newcomers to decide the right graph trans-
formation tool to use. Moreover, even for most of the tool experts it is true that
they know much about one or two tools but little about the others.

To stimulate both the continued improvement of tools and the wider dis-
semination of knowledge about existing tools, GraBaTs 2008 comprises a tool
contest, building upon the contest held as part of the AGTIVE 2007 symposium
(see (7)). The aim is to compare the expressiveness and the performance of graph
transformation tools, along a number of selected case studies. This year, we have
extended the contest with a live session to also measure the usability of tools in
a controlled environment. The desired outcome is threefold:

– To learn about the pros and cons of each tool for different applications. A
deeper understanding of the relative merits of different tool features will help
to improve graph transformation tools and to indicate open problems.

– To identify common functionality across tools. By identifying features that
are becoming mainstream, developers may decide to reuse functionality from
other tools and focus more on unique added value.
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– To instill a sense of challenge and competition that will motivate tool de-
velopers to continue their efforts. There is nothing like seeing, and being
inspired by, the features of other tools to stimulate progress in one’s own.

The case studies, outlined in Sect. 2, were selected from the entries received
after an open call for cases. The second phase of the contest consists of the
development of solutions to these case studies. At the time of writing, we cannot
yet estimate the response to the call for solutions.

In addition, with respect to the first tools contest we have added the concept of
a live session. The idea of this session is that the participants (limited to those
who have explicitly registered to this session) will receive a case description
on the spot, and will be asked to provide a solution, using the tool of their
choice, within a fixed time frame of half a day. This experiment complements
the solutions submitted to the pre-defined cases; it will provide valuable data
about the flexibility and ease of use of the various tools.

2 The Cases

A Case Study for Program Refactoring. This case study, described in (4), con-
cerns the implementation of three non-trivial source code (viz., Java) refactor-
ings: Encapsulate Field, Move Method, and Pull-up Method. Input and output
are to be given in a GXL-formatted encoding of Java programs. The case aims
to enable comparison of various features of graph transformation tools, such as
their expressiveness and their ability to interact with the user.

The AntWorld Simulation Tool Case. This case study, described in (10), com-
plements the Sierpinski triangles benchmark studied in AGTIVE 2007 (cf. (8)).
The case has been designed such that the tools will most likely not run into
memory problems. Over time, the number of Ants grows to the square of exe-
cuted rounds. Thus, the focus of the benchmark is the movement of Ants. This
can again be done with reasonably simple rules that mainly employ local search.
Thus, the AntWorld simulation stresses local rule application. Another aspect
of this case is the visualisation of the ants.

Transforming BPMN process models to BPEL process definitions. This case
study, described in (1), considers the definition of model transformations be-
tween two languages for business process modelling, namely BPMN and BPEL.
The model transformations should achieve four evaluation criteria: completeness,
correctness, readability and reversibility.

3 Conclusion

The previous instance of the tool contest, summarised in (7), identified strong
and weak points and made a number of recommendations. In this second instance
we have taken measures to resolve the weaknesses and take the recommendations
into account.
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Explicit challenges. It was recommended to include explicit challenges in the
case descriptions. This has been implemented by requiring case submissions
to include a description of the challenges involved.

Ranking. It was recommended to take measures to enable the ranking of sub-
missions. We have responded to this by requiring that all case studies pro-
vided a set of variation points. This enables a comparison of the solutions
on a common basis while leaving enough room for differentiation. Moreover,
a reference server is set up so that solutions can be run and compared on an
equal basis, making a more objective ranking possible.

Case categories. It was recommended to include more case categories, such as,
for instance, “NP-complete problems” and verification issues. Unfortunately,
neither of these topics is featured among the selected cases (see above).

Separate workshop. It was recommended to organise the next instance of the
tool contest as a separate workshop, so that there would be more time for
all submissions to be demonstrated (this being an important incitement for
further improvements). Clearly, this recommendation has been implemented.

At the time of writing, we cannot yet make a statement about the success of
these measures. In any event, we hope to have a lively workshop, with a healthy
mixture of competitiveness and cooperation.
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The Workshop on Petri Nets and Graph Transformations, which is currently at
its third edition, is focused on the mutual relationship between two prominent
specification formalisms for concurrency and distribution, namely Petri nets and
graph transformation systems. It belongs to folklore that Petri nets can be seen
as rewriting systems over (multi)sets, the rewriting rules being the transitions,
and, as such, they can be seen as special graph transformation systems, acting
over labelled discrete graphs. The basic notions of Petri nets such as mark-
ing, enabling, firing, steps and step sequences can be naturally “translated” to
corresponding notions of graph transformation systems. Due to this close corre-
spondence there has been a mutual influence between the two fields, which has
lead to a fruitful cross-fertilisation.

Several approaches to the concurrent semantics of graph transformation sys-
tems as well as techniques for their analysis and verification have been strongly
influenced by the corresponding theories and constructions for Petri nets (see,
e.g., [11]). For instance, the truly concurrent semantics of algebraic graph trans-
formations presented in [3,2] can be seen as a generalisation of the correspond-
ing semantic constructions developed for Petri nets in [23,15]. Similarly, the
concurrent semantics for EMS systems in [13] is partly inspired by the Goltz-
Reisig process semantics for Petri nets. More recently, several approaches to the
analysis and verification of graph transformation systems properties have been
proposed (see, e.g., [19,5,22,7,18]) and also in this case the relation with Petri
nets has been often a source of inspiration. In particular, some approaches are
inspired by analogous techniques previously developed in the domain of Petri
nets, e.g., based on invariants or on finite prefixes of the unfolding, and some
others reduce the verification of a graph transformation systems to the analysis
of a suitable abstraction expressed in the form of a Petri net.

Classical Petri net models have been integrated with graph transformation
systems in order to define rule-based changes in the Petri net structure. This
can be used for a stepwise refinement of Petri net models, which leads from an
abstract description of the system to the desired model, or to formalise model
transformation over Petri net models. Alternatively, transformations over Petri
nets can be used to define dynamically reconfiguring Petri nets, i.e., extended
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Petri net models where the standard behaviour, expressed by the token game
over a fixed structure, is enriched with the possibility of altering the net structure
(see, e.g., reconfigurable nets of [1] and high-level replacement systems applied
to Petri nets in [17,8])

As mentioned above, the theory of rewriting over categories of Petri falls into
the realm of high-level replacement systems, an extension of graph transfor-
mation systems to general categories, the so-called called HLR categories [9],
including, e.g., algebraic specifications. The HLR approach has been generalised
with the introduction of adhesive categories [14] and adhesive HLR systems [10],
which provide a quite elegant and general framework where (double-pushout)
rewriting can be developed. The view of Petri nets as rewriting systems over
adhesive categories [20] or as bigraphical reactive systems [16] has been recently
used to automatically derive compositional behavioural equivalences for Petri
nets. More generally, adhesive categories appear as a promising framework where
notions, constructions and results arising in the areas of Petri nets and graph
transformation can be given a unified, abstract presentation (see, e.g., [21,4]).

As a further link between the two models, recall that graph transformation
systems are also used for the development, the simulation, or animation of vari-
ous types of Petri nets, e.g., via the the definition of visual languages and envi-
ronments [6,12].

The workshop is aimed at favouring the cross-fertilisation and the exchange
between the areas of Petri nets and of graph transformation, by gathering re-
searchers working in the field of low- and high-level Petri nets, and researchers
working in the field of rewriting, including graph transformation, high-level re-
placement systems and rewriting systems over adhesive categories.
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Natural Computing is a research area concerned with computing taking place
in nature and with human-designed computing inspired by nature. It is a fast
growing, genuinely interdisciplinary field involving, among others, biology, math-
ematics and computer science. Graphs and graph transformations are of great
interest in this field in several respects. On the one hand, graphs are often used
in the modeling of natural processes either as a representation of the hierarchical
structures involved in the process or as a way to formalize the features of reality
on several levels of abstraction. Several graph related formalisms such as Petri
nets, abstract state machines, automata, membrane systems, mobile ambients,
etc., are already used as modeling tools for natural processes. On the other hand,
in human-designed computing inspired by nature, graph theoretical formulations
and problems are often used as benchmarks for the investigation of the potential
of the proposed computational paradigms.

The topics of interest of this workshop include, but are not limited to:

– Applications of membrane systems in modeling natural processes
– Petri nets in systems biology
– Abstract state machines in systems biology
– Visual languages in systems biology
– Modeling with finite and hybrid automata
– Unconventional solutions to graph theoretical problems
– Hierarchies of models and their refinement

We would like to thank all members of the program committee for helping
selecting a high level scientific program for our workshop. They were: Tero
Harju (Turku), Reiko Heckel (Leicester), Natasha Jonoska (Tampa), George
Paun (Bucharest), Ion Petre (Turku), Leila Ribeiro (Rio Grande do Sul) and
Grzegorz Rozenberg (Leiden).

We would also like to thank the four invited speakers and all the authors
of the submitted papers for their talks at the workshop. Here is the list of the
invited speakers and the abstracts of their talks:
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Robert Brijder (Leiden, the Netherlands): Self-assembly of graphs using
multisets.

Self-assembly is the ubiquitous process in which individual components au-
tonomously assemble into intricate complexes. Here we consider a model having
multisets of ”attach points” assigned to nodes of a graph. Using pre-defined
rules, these attach points can ”grab” other nodes present in the environment.
In this way graphs self-assemble into larger structures. By restricting the gen-
eral model in different ways, one can distinguish different levels of generative
power. In particular a pumping lemma analog for these self-assembling graphs
is obtained.

Tero Harju (Turku, Finland): Graph transformations related to gene assembly.
Stichotrich ciliates have a heavily fragmented storage genome which is de-

fragmented and reorganized in gene assembly to a fully functional genome. This
process of gene assembly has been modeled by three types of operations that
have been presented by three rather natural operations on undirected graphs.
We survey some of the known results and discuss some open problem concerning
these graph operations.

Ina Koch (Berlin, Germany): Petri nets and systems biology.
The huge amount of experimental data in molecular biology enables re-

searchers to derive larger and more complex models of biochemical processes.
Because of experimental limitations or ethical reasons, often, more qualitative
than quantitative (kinetic) data is known. Petri net theory represents one of
the concepts enabling discrete qualitative and quantitative modeling to estimate
the network behavior. Moreover, modeling at different abstraction levels is sup-
ported. The first application of Petri nets to biochemical networks has been
published in 1993. Meanwhile, many Petri net models of different biochemical
subjects have been published.

The aim of the talk is to demonstrate which Petri net properties and analysis
techniques are suitable in particular for modelling biochemical systems and why.
Several biological examples will be used to show different modeling types. Fur-
ther, new developed analysis techniques, which are mainly based on invariant
analysis, will be introduced and discussed such as MCT-sets and T-clusters for
network reduction and Mauritius maps as new data structure and visualization
technique to support knockout analysis. In this context, the special biological
tasks will be explained. The talk will finish with open problems in the field of
computational systems biology.

Andrei Păun (Bucharest, Romania): Discrete nondeterministic modeling of
cellular pathways.

Computer modeling of molecular signal cascades can provide useful insight
into the underlying complexities of biological systems. We provide a refined
approach of the discrete modeling of protein interactions within the environ-
ment of a single cell. The technique we offer utilizes the Membrane Systems
paradigm which, due to its hierarchical structure, lends itself readily to mimic the
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behavior of cells. Since our approach is non-deterministic and discrete, it provides
interesting contrast to the standard deterministic ordinary differential equations
techniques. We argue that our approach may outperform ordinary differential
equations when modeling systems with relatively low numbers of molecules - a
frequent occurrence in cellular signal cascades. Refinements over our previous
modeling efforts include the addition of nondeterminism for handling reaction
competition over limited reactants, increased efficiency in the storing and sort-
ing of reaction waiting times, and modifications of the model reactions. Results
of our discrete simulation of the type I and type II Fas-mediated apoptotic sig-
nal cascade are illustrated and compared with two approaches: one based on
ordinary differential equations and another based on the well-known Gillespie’s
algorithm.



ICGT 2008 Doctoral Symposium

Andrea Corradini1 and Emilio Tuosto2

1 Dipartimento di Informatica, Pisa
2 Department of Computer Science, Leicester

For the first time in the history of the ICGT conference series, this year a specific
event, the ICGT 2008 Doctoral Symposium, is explicitly dedicated to Ph.D. stu-
dents and young researchers who completed their doctoral studies within the past
two years. In fact, the Doctoral Symposium consists of some technical sessions,
held during the main conference, dedicated to presentations by doctoral students
and young researchers, and giving them a unique opportunity to present their
work and to interact with established researchers of the graph transformation
community and with other students.

We received many submissions of very high quality among which the following
sixteen three-pages abstracts are included in the ICGT 2008 proceedings and will
be presented at the conference:

1. Dénes Bisztray, Verification of Architectural Refactorings: Rule Extraction
and Tool Support.

2. Filippo Bonchi, Abstract Semantics by Observable Contexts.

3. Duc-Hanh Dang, Triple Graph Grammars and OCL for Validating System
Behavior.

4. Mike Dodds, From Separation Logic to Hyperedge Replacement and Back.

5. Davide Grohmann, Security, cryptography and directed bigraphs.

6. Mohammad Hammoudeh, Modelling Clustering of Sensor Networks with
Synchronised Hyperedge Replacement.

7. Tobias Heindel, Grammars Morphisms and Weakly Adhesive Categories.

8. Frank Hermann, Process Construction and Analysis for Workflows modelled
by Adhesive HLR Systems with Application Conditions.

9. Ákos Horváth, Towards a Two Layered Verification Approach for Compiled
Graph Transformation.

10. Ajab Khan, Model-based Analysis of Network Reconfigurations using Graph
Transformation Systems.

11. Carlos Matos, Service Extraction from Legacy Systems.

12. Karl-Heinz Pennemann, Development of Correct Graph Transformation
Systems.

13. Michael Striewe, Using a Triple Graph Grammar for State Machine
implementations.

14. Pieter Van Gorp, Model-Driven Development of Model Transformations.
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15. Hong Qing Yu and Yi Hong, Graph Transformation for the Semantic Web:
Queries and Inference rules.

16. ErhardWeinell, Transformation-based operationalization ofGraph Languages.

Those contributions have been selected according to their originality, signifi-
cance, and general interest by a few members of the ICGT 2008 Program Com-
mittee on the basis of the submitted abstracts. We would like to explicitly thank

– Paolo Baldan

– Luciano Baresi

– Hartmut Ehrig

– Annegret Habel

– Reiko Heckel

– Barbara König

– Hans-Jörg Kreowski

– Dirk Janssens

– Juan de Lara

– Tom Mens

– Mauro Pezzé

– Detlef Plump

– Gabriele Taentzer

for having participated actively to the review process of the abstracts submitted
for the Doctoral Symposium.

After the conference, authors of selected contributions will be invited to sub-
mit a full paper for the refereed post-proceedings of the Doctoral Symposium,
which is expected to be published as a volume of the Electronic Notes in Theo-
retical Computer Science series.
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1 Introduction

With the recent success of the component-based and service-oriented paradigm,
the complexity of software also increased. To tackle complexity, architectural
models aid the developers. However, a software in constant use, must continually
evolve, otherwise it becomes progressively less satisfactory [1]. During the adap-
tation to changed requirements and improvement of internal structure, changes
may be required to preserve the observable behaviour of the systems. In OO pro-
gramming, such behaviour-preserving transformations are called refactorings [2].

For distributed and service-oriented applications, the important changes take
place at the architectural models. These changes have to be checked for behaviour
preservation. To avoid the costly verification of refactoring steps on large systems
we extract a (usually much smaller) rule from the transformation performed and
verify this rule instead. However, the notion of observable behaviour has to be
established, formal requirements for extracting the refactoring rule and methods
that can verify its behaviour preservation.

2 Method

The method of verifying architectural level refactorings consists of three ingre-
dients: the modelling language used, its semantics, and the relation capturing
our idea of behaviour preservation. For representing the type and instance-level
architecture of our system, we use UML component and composite structure di-
agrams in conjunction with activity diagrams specifying the workflows executed
by component instances as described in [3].

To verify the semantic relation between source and target models, the seman-
tics of the combined structure diagram is expressed in a denotational style, using
Communicating Sequential Processes (CSP) [4] as semantic domain. CSP is a
process algebra for concurrent systems.

A mapping sem has been defined from the UML diagrams to CSP processes by
means of graph transformation rules. The semantic relation of behaviour preser-
vation can conveniently be expressed using one of the refinement and equivalence
relations on CSP processes.
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3 Rule Verification and Extraction

The verification a refactoring over sufficiently large systems can be very costly,
while affecting only a relatively small fragment of the overall model. It would
be advantageous if we could focus our verification on those parts of the model
that have been changed, that is, verify the refactoring rules rather than the
actual steps. This is indeed possible, as we shown in [3]: assuming a refactoring
G =⇒ H , via the graph transformation rule p : L→ R, if the relation R holds
for sem(L) R sem(R) then sem(G) R sem(H) also holds. This is possible due
to the compositional property [3] of the semantic mapping.

Fig. 1. Example Refactoring

An example refactoring is depicted in Figure 1. As the interfaces are un-
changed and the behaviour is encapsulated inside the components, the marked
parts can be extracted. Then, this transformation rule can be verified instead of
dealing with the complete system. Although this extraction was obvious, there
can be complicated refactorings that span change on multiple component be-
haviour. To determine the mechanics of producing a rule, we perform extractions
on proven and successful refactorings. In general for a transformation G =⇒ H
with sem(G) R sem(H), we want to extract the smallest rule such that:

1. when applying it on G at the appropriate match, the transformation step
produces H

2. sem(L) R sem(R)

As requirement 1 basically needs an initial pushout [5], extracting a rule that
fulfills it is solved. However, determining the necessary context for requirement
2 is an open question. Tool support is needed not only for verifying complicated
system refactorings but also for supporting rule extraction mechanisms.

4 Implementation

A visual editor has been implemented using the Eclipse Graphical Modelling
Framework, to support the creation and editing of all three aspects of the soft-
ware architecture model. As in UML the instantiation is an association between
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type and instance objects, the components and their instances are situated in
the same diagram. The activity diagram of the owned behaviour is embedded in-
side the components, similarly to activities as shown in Figure 1. This combined
diagram is called combined structure diagram. The metamodel of the combined
structure is represented as an Eclipse Modeling Framework (EMF) model which
is essentially an attributed typed graphs.

The transformation is implemented using the Tiger EMF Transformer [6] tool.
It consists of 45 rules organised in 4 major groups (type-level, owned behaviour,
instance-level, renaming) as detailed in [7]. The production rules are defined by
rule graphs, namely a left-hand side (LHS), a right-hand side (RHS) and possible
negative application conditions (NACs). The rules were designed using the EMT
Visual Editor.

FDR2 is a refinement checker for establishing properties of models expressed
in CSP [8]. We use FDR2 to check trace refinement in the CSP expressions
generated by the EMT transformation.

Currently the architecture and rule design along with the semantic mapping
and verification are supported. Automated mechanisms for rule extraction is
future work.
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The operational behavior of interactive systems is usually given in terms of
transition systems labeled with actions, which, when visible, represent both ob-
servations and interactions with the external world. The abstract semantics is
given in terms of behavioral equivalences, which depend on the action labels
and on the amount of branching structure considered. Behavioural equivalences
are often congruences with respect to the operations of the language, and this
property expresses the compositionality of the abstract semantics.

A simpler approach, inspired by classical formalisms like λ-calculus, Petri nets,
term and graph rewriting, and pioneered by the Chemical Abstract Machine [1],
defines operational semantics by means of structural axioms and reaction rules.
Process calculi representing complex systems, in particular those able to gen-
erate and communicate names, are often defined in this way, since structural
axioms give a clear idea of the intended structure of the states while reaction
rules, which are often non-conditional, give a direct account of the possible steps.
Transitions caused by reaction rules, however, are not labeled, since they repre-
sent evolutions of the system without interactions with the external world. Thus
reduction semantics in itself is neither abstract nor compositional.

One standard solution, pioneered in [2], is that of defining a saturated transi-
tion system as follows:

a process p can do a move with label C[−] and become p′ iff C[p] � p′.
Saturated semantics, i.e., the abstract semantics defined over the saturated tran-
sition system, are always congruences, but they are usually untractable since they
have to tackle all possible contexts of which there are usually an infinite number.
Moreover, in several paradigmatic cases, saturated semantics are too coarse. For
example, in Milner’s Calculus of Communicating Systems (CCS, [3]), saturated
bisimilarity cannot distinguish “always divergent processes” and for this reason
Milner and Sangiorgi introduced barbs [4]. These are observations on the states
representing the ability to interact over some channels.

In [5], Sewell introduced a different approach that consists in deriving a transi-
tion system where labels are not all contexts but just the minimal ones allowing
a system to reach a rule. In such a way, one obtains two advantages: firstly
one avoids considering all contexts, and secondly, labels precisely represent in-
teractions, i.e., the portion of environment that is really needed to react. This
idea was then refined by Leifer and Milner in the theory of reactive systems [6],
where the categorical notion of idem relative pushout precisely captures this idea
of minimal context.

The main theorem of this theory guarantees that if relative pushouts (RPOs)
exist in the category representing the syntax of the formalism, then the abstract
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semantics defined over such a derived lts are congruences with respect to the
operators of the language. Since Lawvere-like categories usually do not have
RPOs, Milner introduced bigraphs [7] with the aim of enconding process calculi
whose operational behaviour is expressed by reaction rules and then derive a
labeled transition semantics for them.

In this thesis, we try to use borrowed contexts rewriting [8] and some encodings
of process calculi into graphs. In this perspective, spans of graphs represent re-
action rules, double pushout rewrites mimic reduction of processes (represented
as graphs) and borrowed contexts rewrites mimic labeled transitions of processes
where, again, the labels represents the minimal contexts that is needed to per-
form a reaction. In [9], we have shown that in the case of CCS, this approach
works well, i.e., the derived lts is very close to the standard one, and the result-
ing bisimilarity coincides with the standard bisimilarity. Moreover, this approach
has some interesting advantages with respect to bigraphs that we cannot detail
in this abstract. However for several other interesting formalism the abstract
semantics resulting from such approach are too strict. This is not due to our
graphical encodings or to the borrowed contexts technique, but it is a bug of the
general idea of considering the minimal contexts as labels.

In our opinion, considering as labels the minimal contexts that allow a certain
reduction, allows the observer to observes too much, and thus the resulting
semantics are usually too fine. One result of the thesis (presented in [10]) is that
of providing evidence of this through several interesting formalisms modeled
as reactive systems (without using borrowed contexts): Logic Programming, a
fragment of open π-calculus, and an interactive version of Petri nets.

Moreover, we introduce two alternative definitions of bisimilarity that effi-
ciently characterize saturated bisimilarity, namely semi-saturated bisimilarity
and symbolic bisimilarity [10]. These allow us to reason about saturated seman-
tics without considering all contexts, but saturated semantics are in several cases
too coarse. In order to have a framework that is suitable for many formalisms,
we add to the above approach observations. Indeed, in our opinion, labels cannot
represent both interactions and observations, because these two concepts are in
general different, like for example, in the asynchronous calculi where receiving
is not observable. Thus, we believe that some notion of observation, either on
transitions or on states (e.g. barbs [4]), is necessary.

A further result of the thesis (presented in [11]) is that of providing a general-
ization of the above theory starting not just from purely reaction rules, but from
transition systems labeled with observations. Here we can easily reuse saturated
transition systems by defining them as follows:

a process p can do a move with context C[−] and observation o and become p′

iff C[p] o−→ p′.

Again, saturated semantics, i.e. abstract semantics defined over the above tran-
sition systems, are congruences. Analogously to the case of reactive systems,
we can define semi-saturated bisimilarity and symbolic bisimilarity as efficient
characterizations of saturated semantics. The definition of symbolic bisimilar-
ity which arises from this generalization is similar to the abstract semantics
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of several works [12,13,14,15]. Here (and in [11]) we consider open [14] and
asynchronous [12,16] π-calculus, by showing that their abstract semantics are
instances of our general concepts of saturated and symbolic semantics. We also
apply our approach to open Petri nets [17] (that are an interactive version of
P/T Petri nets) obtaining a new symbolic semantics for them, that efficiently
characterizes their abstract semantics.
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Abstract. We propose an approach based on the integration of Triple
Graph Grammars (TGGs) and the Object Constraint Language (OCL)
for checking the conformance between use case and design models.

1 Introduction

Triple graph grammars (TGGs) have been first formally proposed in [1]. They
seem to be a promising approach for explaining relationships between models
within model-driven development. A need and a challenge within software engi-
neering is how to explain the relationship between behavioral models, a use case
model as a functional requirement model and a design model as a realization
of use cases. The major difficulty in this relationship lies in the informality of
use cases, and the loose relationship between the use case model and the design
model. We propose a novel approach employing TGGs for checking the confor-
mance between a use case model and a design model. Within our approach, an
integration of TGGs and OCL is proposed and implemented in our tool UML-
based Specification Environment (USE).

A use case is a textual description of the system’s behavior as the system
responds to a request from actors (user types). A use case model may be realized
by a design model. The relationship between the use case model and the design
model should be a behavioral refinement. Explaining the relationship as well as
concepts of refinement is a topic of ongoing research activities.

In [2], we propose an approach for explaining this relationship. The heart of
the approach is to check the synchronization between system scenarios at the
use case level and the design level. A step in a system scenario at the use case
level may define the next step in the corresponding scenario at the design level,
and vice versa, a step at the design level may define the next step at the use case
level. In order to realize the approach, we define metamodels of system mod-
els at the use case level and the design level. The metamodels are extended by
graph transformation rules, which allow defining a dynamic model evolution as a
simulation of system evolution. We employ TGGs in order to relate transforma-
tion rules of the graph transformation systems towards synchronization between
system scenarios.

� I would like to thank my supervisor Martin Gogolla for contributions to this work.
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Within our approach, a mechanism for checking the conformance between a
use case model and a design model is established. Test cases, which are generated
from the use case model, are employed for defining scenarios. The mechanism
represents system states in an easy-to-understand and visual form. It is sig-
nificant for the early design phase. Within our approach, we do not address
structural refinement: use case and design models share a domain class diagram.
However, our approach has the possibility to support the structural refinement.

Some technical challenges arise within our approach. Our approach requires
the integration of TGGs and OCL. In the recent literature, a need for the inte-
gration has been expressed. TGGs and QVT (Queries, Views, Transformations)
share many building blocks. But in contrast to TGGs, QVT includes the declar-
ative language OCL, which allows to express properties and to navigate in com-
plex models. Attaching OCL constraints to TGG rules seems not difficult, but
a challenge arises when inducing operations from the integration. To the best
of our knowledge, an approach for the integration has not been proposed. An-
other challenge within our approach is that use cases and a design model must
be specified as graph transformation systems. Some papers have specified a de-
sign model, e.g., UML interaction diagrams, as a graph transformation system.
However, a metamodel for representing scenarios has not been proposed.

The rest of this paper is structured as follows. Section 2 discusses our approach
for the integration of TGGs and OCL. Section 3 describes how TGGs can be
employed for synchronizing scenarios. The paper is closed with a summary of
our expected results. Due to the paper format, full references are not included.
The final work will include a detailed discussion of related work.

2 Integrating TGGs and OCL

This section discusses our approach for the integration of TGGs and OCL. First
of all, we define requirements for the integration of TGGs and OCL as follows.

– Supporting OCL formulas for attribute expressions.
– Supporting OCL conditions as pre- and posconditions of TGG rules (corre-

sponding to negative application conditions and the right-hand side of TGG
rules respectively), which cannot be represented by graphs.

– Supporting constraints on the metamodel of the middle domain of TGG
rules. (Supposing that all of the constraints must be taken from TGG rules)

– Supporting bi-directionally executable TGG rules in a synchronous way.

We propose the language USE4TGG for the integration of TGGs and OCL:
One part of USE4TGG has a one-one mapping to TGGs and the remaining part
covers OCL concepts. The approach is similar to our previous work [3,4]. A TGG
rule in USE4TGG is transformed into an operation, which is realized in USE by
taking two views on it: OCL pre- and postconditions are employed as operation
contracts, and command sequences are taken as an operation realization.

USE4TGG fulfills all above requirements except the final requirement. Our
restriction is that OCL formulas must be presented in an assignment-like style if
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we want to obtain a corresponding operation realization. We plan to develop an
algorithm for translating TGG rules into operations for synchronizing models.

3 TGGs and OCL for Synchronizing Scenarios

This section describes our approach employing TGGs and OCL for synchronizing
scenarios of a use case model and a design model.

In order to define graph transformation systems controlling scenarios of a use
case model and a design model, we have already developed the language UCL for
specifying use cases and the language DML for specifying scenarios for executing
design models. A set of rules for selecting scenarios of the use case model and
the design model has been defined. Due to the paper format, we do not describe
these languages in detail.

Effects of TGG rules on scenarios at the use case level include: (1) To assign
input values to variables; (2) to select the next activity; (3) to select the next
activity from effects of the design model. Effects of TGG rules on scenarios at
the design level include: (1) To assign input values to variables and to select
the next operation; (2) to select the next action of the current operation; (3) to
select the next operation corresponding to the current activity of use cases.

Our next task is to define TGGs rules for relating the graph transformation
systems, and to implement a TGG engine for realizing the synchronization.

4 Expected Contributions

The followings are expected results of our work.
– Discovering a new application scenario of TGGs for synchronizing graph

transformation systems. The result is significant for software engineering.
– Proposing an approach for the integration of TGG and OCL and implement-

ing a corresponding TGG engine in the USE tool.
– Proposing and realizing an approach based on TGGs for checking the con-

formance between a use case model and a design model.
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1 Introduction

Hyperedge replacement grammars and separation-logic formulas both define
classes of graph-like structures. In this paper, we describe two effective trans-
lations between restricted hyperedge replacement grammars and formulas in a
fragment of separation logic. These translations preserve the semantics of for-
mulas and grammars.

Hyperedge-replacement grammars [1] are a natural extension of context-free
string grammars to the world of hypergraphs. An HR grammar defines language
of structures that can be constructed from an initial graph.

Separation logic [2] is a recently-developed logic for specifying the proper-
ties of heaps that extends normal first-order logic with a so-called separating
conjunction. This allows a formula to specify the spatial relationships between
assertions in the heap. Recent work based on separation logic has made consid-
erable progress in verifying programs with pointers [3].

Our translations demonstrate that formulas in our fragment of separation
logic are of corresponding expressive power to HR grammars under our restric-
tions. We have used this correspondence to prove some interesting results about
our fragment of separation logic using the theoretical results for hyperedge-
replacement grammars.

2 The Intuitive Correspondence

A correspondence exists between separation logic formulas and hyperedge re-
placement grammars because (1) the recursive definitions commonly used in
separation logic closely resemble hyperedge replacement productions, and (2)
the separating property enforced by separating conjunction corresponds to the
context-free property of hyperedge-replacement grammars.

The following example illustrates this correspondence.

Example 1 (Binary tree). The predicate bt(x) is defined as the least predicate
satisfying the following equality.1

� Work completed during study towards a PhD at the University of York.
1 To express this formula in our fragment of separation logic we make use of a recursive

‘let’ operator. For simplicity this is omitted from the example.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 484–486, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



From Separation Logic to Hyperedge Replacement and Back 485

bt(x1) = (x1 �→ nil, nil) ∨ (∃x2, x3 : (x1 �→ x2, x3) ∗ bt(x2) ∗ bt(x3))

bt(x) is satisfied if either x points to a location holding a pair of nil-values, or
if x points to a pair of locations, both of which also satisfy bt. The separating
conjunction ∗ between the branch and the two subtrees differs from conventional
conjunction in that it prohibits sharing between its conjuncts. This enforces the
tree property by preventing sharing between the subtrees.

This predicate definition corresponds to the hyperedge replacement grammar
BT = 〈T, N, Z, P 〉. This defines the language of binary tree graphs with a shared
leaf. The sets of terminal and non-terminal edge labels are respectively T = {E}
and N = {B}. The initial graph Z and set of productions P are:

Z = B

1

2

B⇒

1

E

1

2

2 3

1

E

B B
2

2 2

1

2 3

1 1

The root (top node) of the initial graph Z corresponds to the variable x with
which the predicate bt is called, while the leaf (bottom node) of Z corresponds
to the nil constant. The individual cases of the production defined for label B
in the grammar correspond to the two disjuncts defining the predicate bt. The
first disjunct corresponds to a terminal branch, and the second a branch and a
pair of child trees.

3 Defining the Translations

We define a mapping g[[◦]] from separation logic formulas to hyperedge replace-
ment grammars, and a reverse mapping s[[◦]] from hyperedge-replacement gram-
mars to separation logic formulas.

The mappings g[[◦]] and s[[◦]] are defined syntactically as functions over the
structure of a grammar and a formula respectively. The elements of hyperedge
replacement grammars and separation logic formulas are related as follows:

– The productions over a single nonterminal symbol in the grammar corre-
sponds to the definition of a single recursive predicate in separation logic.

– Terminal edges in the grammar’s initial graph and in the right-hand sides of
productions correspond to separation logic’s points-to assertion (�→).

– Non-terminal edges in the grammar correspond to instances of recursively-
defined predicates in separation logic. The attachment nodes of the edges
correspond to the arguments passed to the predicate.

Hyperedge replacement grammars define languages of graphs, while separation
logic formulas define classes of graph-like states. To resolve this mismatch be-
tween the domains we define the notion of a heap-graph for graphs which cor-
respond to states, and a bijective mapping α from states to heap-graphs. Each
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node in a heap graph can be the first attachment point to at most one termi-
nal edge. Our mappings are defined only over grammars which construct sets of
heap-graphs.

Our mappings are defined over a fragment of full separation logic as given
in (for example) [2]. This fragment includes separating conjunction (∗), disjunc-
tion (∨), ‘points-to’ (�→) and existential quantification (∃). To allow recursive
definitions, we introduce a recursive let construct (let Γ in P ). Omitted oper-
ators include conjunction, negation, and separating implication (the adjoint of
separating conjunction).

4 Results

Our major results are as follows:

1. We have proved that our definitions of both g[[◦]] and s[[◦]] are semantics
preserving modulo the mapping α. That is, α◦g = g◦α, and α−1◦s = s◦α−1.

2. As a consequence of (1), our fragment of separation logic is of equivalent
expressive power to hyperedge-replacement grammars for heap graphs.

3. We have proved that the operators omitted from our fragment of separation
logic cannot be simulated by a corresponding hyperedge replacement gram-
mar. Notably conjunction corresponds to language intersection, and negation
to language complement, both of which are known to be HR-inexpressible.

4. As a consequence of (2), results for hyperedge replacement languages, such as
the inexpressibility results, can be imported into the fragment of separation
logic. For example, the languages of red-black trees, balanced binary trees,
grid graphs are all known to be HR-inexpressible. Therefore no formula exists
in our fragment which is satisfied by the class of states containing these
structures.
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Bigraphical reactive systems are an emerging graphical framework proposed by
Milner and others [4,5,2,3] as a unifying theory of process models for distributed,
concurrent and ubiquitous computing. A bigraphical reactive system consists of
a category of bigraphs (usually generated over a given signature of controls) and
a set of reaction rules. Bigraphs can be seen as representations of the possible
configurations of the system, and the reaction rules specify how these configu-
ration can evolve. The advantage of using bigraphical reactive systems is that
they provide general results for deriving a labelled transition system automat-
ically from the reaction rules, via the so-called IPO construction. Notably, the
bisimulation on this transition system is always a congruence.

A bigraph is a set of nodes (the controls), endowed with two independent
structures, the place graph and the link graph. The place graph is a tree over the
nodes, representing the spatial arrangement (i.e., nesting) of the various compo-
nents of the system. The link graph represents the communication connections,
possibly traversing the place structure. Intuitively, edges represent (delocalized)
resources, or knowledge tokens, which can be accessed by controls. Arcs are ar-
rows from ports of controls to edges, possibly through names on the interfaces
of bigraphs. A bigraph may be “not ground”, in the sense that it may have one
or more “holes”, or sites to be instantiated; these holes are specific leaves of
the place graph, where other bigraphs can be grafted, respecting the connection
links. This notion of composition between bigraphs yields a categorical structure.

In this paper, we will study how to model key-passing and authentication
protocols on insecure networks inside bigraphical framework. In literature, many
calculi have been introduced to deal with security aspects, as the spi-calculus
[1], and they are used as frameworks to prove process equivalences. Indeed,
many protocols can be analyzed checking if its specification and implementation
are observational equivalent, that is the implementation does all the requested
actions defined by the specification and nothing more. For these reasons, we will
study the IPO bisimilarity, and which security properties are ensured by it.

For describing how to model security protocols inside bigraphs, we consider as
a running example the wide mouth frog protocol. This protocol can be described
as follows (using the well-known Alice-Bob notation):

A → S : idA, {KAB, idB}KAS (1)
S → B : {KAB, idA}KBS

The protocol suppose the existence of a server (S) trusted by both parties, i.e. A
and B share a key each with S (KAS and KBS, respectively).

Informally, the agent A aims to communicate with B opening a secure channel
using the key KAB. To do so, A sends a message to S saying that it wants to talk

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 487–489, 2008.
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Fig. 1. Examples of nodes in the signature for protocols

with B using the key KAB. Then, S sends a message to B, saying that A desires
to talk with him using KAB for encrypting messages. At this point, both A and
B know the key KAB and they are able to establish a secure communication.

The bigraphical signature used to encode agents, keys, messages and terms is
graphically and informally described in Figure 1.

As shown in the example protocol (1), the exchanged messages are tuples
of (possibly encrypted) basic data: keys, identifiers or nonces (i.e., “number
used once”, which are useful in avoiding reply attacks). Terms can be naturally
encoded using the place structure of the bigraph. For this purpose, there is
a control for every basic term: id, key and nonce. Next, there are constructor
controls with holes: pair for constructing pairs: its holes contain the encoding of
the two subterms; and encrypt for constructing encrypted data: its hole contains
the term to encrypt, and its port is linked to the key used in the encryption.

The control known is used to assign aliases to complex terms, this is useful
for two reasons: in the communication we can send/receive only aliases, and an
agent knowledge is encoded (and inferred) by arcs from agent controls to edges
linked to “terms”, i.e., know, id, key and/or nonce controls.

The agents are represented as locations containing actions and “pointers” to
known terms or keys. The actions are encoded using the controls get, send for
the communication and the destructors split and decrypt, that resemble the case-
operator of the spi-calculus. As usual, the prefix is encoded using the place graph
structure: an “action node” is disabled if it is inside another one.

The reactive rules are described in Figure 2. The first three rules describe the
communication mechanism, similarly to the Fusion calculus [6,3]. The last two
rules describe how to access the subterms using the destructors. Due to lack of
space, these rules are described only in the case where pair and crypt contain
complex terms (know nodes), but there are rules for the other cases too.

Finally, in Figure 3, it is shown an encoding of the wide mouth frog protocol.
The agent A is sending the encoding of the first message to the server S along
the channel cAS . The two holes are fitted with some bigraphs P and Q con-
taining the next steps necessary to complete the protocol: P contains actions to
communicate with B, and Q contains the controls necessary to deconstruct the
message from A and to construct a message for B using the new information.



Security, Cryptography and Directed Bigraphs 489

t n

0

t′

1

t n

0

t′

1
Comm

n m n m

Fuse

n n

Disp

f s n

0

f ′ s′

1 2

f s n

0

f ′ s′

1 2 Split

t k

0

t′

1

t k

0

t′

1 Decrypt

Fig. 2. Reaction rules for protocols

B A cAS

P

S

Q

Fig. 3. The first step of the wide mouth frog protocol

References

1. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus.
In: ACM Conference on Computer and Communications Security (1997)

2. Grohmann, D., Miculan, M.: Directed bigraphs. In Proc. XXIII MFPS. Electronic
Notes in Theoretical Computer Science, vol. 173. Elsevier, Amsterdam (2007)

3. Grohmann, D., Miculan, M.: Reactive systems over directed bigraphs. In: Caires,
L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703. Springer, Heidelberg
(2007)

4. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-
CUR 2001. LNCS, vol. 2154. Springer, Heidelberg (2001)

5. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computa-
tion 204(1), 60–122 (2006)

6. Parrow, J., Victor, B.: The fusion calculus: Expressiveness and symmetry in mo-
bile processes. In: Proceedings of LICS 1998. IEEE Computer Society Press, Los
Alamitos (1998)



Modelling Clustering of Sensor Networks with

Synchronised Hyperedge Replacement

Mohammad Hammoudeh

School of Computing and IT, University of Wolverhampton,UK
m.h.h@wlv.ac.uk

1 Introduction

This paper proposes Synchronised Hyperedge Replacement (SHR) as a suitable
modelling framework forWirelessSensorNetworks (WSN).SHRfacilitates explicit
modelling of WSN applications environmental conditions (that greatly affect the
applications performance) while providing a sufficiently high level of abstraction
for the specification of the adopted clustering mechanism. We model with SHR few
communication and coordination aspects of a new algorithm, Balanced Minimum
Radius Clustering (BMRC), for solving the balanced clustering problem.

The key contribution of this work is to demonstrate that SHR is sufficiently
expressive to describe algorithms, such as balanced clustering algorithms, and
can describe their behaviour at a suitable level of abstraction to allow onward
analysis. We also propose a new cluster balancing algorithm to be used as a
working example. We have chosen this particular algorithm because it is an
intractable problem to solve in a distributed manner, and distribution is impor-
tant, by reason of both avoiding specialised node vulnerability and minimising
message overhead.

Developing, testing, and evaluating network protocols, architectures and ser-
vices for WSNs are typically undertaken through test-beds or simulation. The
substantial cost of deploying and maintaining large-scale WSNs and the time
needed for setting up the network for experimental goals makes simulation in-
valuable in developing reliable and portable applications for WSNs. However,
simulation in WSNs has its own set of problems. For instance, test-bed imple-
mentation is not always viable because it does not easily scale to a large number
of nodes; also, some simulators are acknowledged to be difficult to use, platform
dependent, containing inherent bugs, distributed under commercial licenses, etc.

We argue that abstract models may provide cost effective methods for
analysing WSNs before deployment. They can, for example, help in assessing
the scalability of algorithms independently from target hardware platforms and
with a certain degree of accuracy; or else, they may simplify the software devel-
opment process for WSN applications. One of the main difficulties in modelling
WSNs lies in their intrinsic interdependency with the environment in which
they operate. WSN applications attribute integration of communication, com-
putation, and interaction with the physical environment. The environment is the
physical phenomena and layout which has effect on the functionality of a sensor
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network application. The layout includes different types of surfaces, each affect-
ing radio propagation characteristics in a different way. Therefore, interactions,
coordination and performances of WSNs are greatly affected by environmental
conditions. As a result, the lack of the environmental conditions in any modelling
framework may diminish the realism of the modelling results.

To the best of our knowledge, a suitable abstract modelling framework encom-
passing these peculiarities of WSNs are still missing. Available models represent
and study various network aspects of WSNs but neglect environmental issues.
We contend that a modelling framework for WSNs to cover these concerns is
required. In [2], a first attempt to specify such a model has been proposed; it is
shown how SHR can suitably represent several facets of WSNs mechanisms in a
unique formal framework.

We apply here the ideas in [2] to represent the communication and coordi-
nation aspects of a new clustering algorithm. As discussed later, SHR allows us
to uniformly represent different abstraction levels. Specifically, we show how we
can explicitly model very low level aspects (e.g., the wireless communications re-
quired in the preliminary phase of BRMC) along with abstract ones (e.g., spatial
distribution or the sensors interaction mechanisms more suitable in modelling
communications between sensors and cluster-heads). Another advantage offered
by SHR is that it separates the coordination aspects of the algorithm from the
data-related aspects. In fact, the metrics used to balance the clusters is para-
metric with respect to the SHR productions describing sensors coordination.
This makes our approach suitable for studying classes of algorithms obtained by
varying the metric criteria.

2 Balanced Minimum Radius Clustering

Clustering is another very important optimization problem in WSNs. For brevity,
we refer readers to the recent survey on clustering algorithms for WSNs by
Abbasi et. al [1].

We propose the BMRC algorithm to generate optimally balanced clusters
based on unbalanced clusters. The distributed balanced clustering consists of
four different steps: (1) Local clustering; (2) Determination of a local model; (3)
Determination of a global model which is based on all local models; (4) Finally,
updating of all local models.

In BMRC, the nodes are clustered locally and suitable representatives out
of these clusters are extracted by the respective cluster-head. These represen-
tatives are sent to the sink node where the complete clustering based on the
local representatives is balanced. This approach is very efficient, because the
local clustering can be carried out quickly and independently. Furthermore, it
achieves lower transmission cost, as the number of transmitted representatives
is much smaller than the cardinality of the complete data set. Based on this
small number of representatives, the global cluster balancing can be done very
efficiently. All parts of the protocol have been modelled using SHR, from cluster
formation, to cluster balancing.
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3 Final Remarks

This paper has posited a novel approach to modelling one of the major practical
problems facing designers of large WSNs. As has been argued, the traditional
approach of simulation can be of limited use, both due to the difficulty of building
a simulation using

Current tools, and due to the computational resources needed to analyse a
network of substantial size. Also, a simulation is not an intellectually satisfying
proof of good behaviour. Analytical examination of the network offers the pos-
sibility of proving at least some of its behaviours, and may therefore be able to
provide answers where simulation cannot. It is argued here that SHR is a suit-
able and appropriate modelling framework for this type of problem and this has
been demonstrated by the modelling of the BMRC cluster balancing protocol
using it. Cluster balancing was chosen as a working example because it is an
intractable problem to solve in a distributed manner.

This paper provides a model around which an analytical proof enterprise may
be situated. In the process, it has been demonstrated that SHR is sufficiently ex-
pressive to describe such a protocol, and can describe its behaviour at a suitable
level of abstraction to allow onward analysis. All parts of the protocol have been
modelled, from cluster formation, to cluster balancing. These models lay the
groundwork for future analysis of BMRC and other protocols, and the prospect
of implementation of systems which are genuinely scalable, efficient and reliable,
by dint of the proof of those properties as part of the design process. This type
of analysis will not replace simulation, but it does provide a means for obtaining
the kind of open-ended guarantees that simulation cannot give.
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In the area of specification and modelling of concurrent systems, Petri nets
have become a standard tool, and they still work behind the scenes in tools for
graph transformation systems (cf. [1]). Moreover there is still potential for cross-
fertilization between the graph transformation and Petri net community. Even
a better understanding of adhesive categories [2] and the related concepts of [3]
seems possible in light of the proposed notion of weakly adhesive categories [4],
which has emerged during work on the generalization of the co-reflective seman-
tics of Petri nets to the realm of graph transformation and adhesive rewriting
systems.

As an example of the interplay between graph transformation and Petri nets,
take the notion of net morphism; it was introduced in [5] as a means to com-
pose Petri Net models of concurrent computational systems via synchronization,
which corresponds to taking the product in the category of Petri nets. While “it
took the quarter of a century from the inception of Petri nets [. . . ] to the defini-
tion of their morphisms”1 it took another ten years to find grammar morphisms
that are suitable to generalize the unfolding of Petri nets in the style of [7] to
graph grammars (cf. [8,9]).

In this abstract, it will be outlined how the first attempts to generalize the
unfolding semantics of graph grammars to adhesive rewriting systems have led
to the definition of weakly adhesive categories (see Definition 1). The first ap-
proach was based on the restriction that grammar morphisms between T - and
T ′-typed grammars, for given type objects T and T ′ of a suitable category C (of
graphs), have to be based on C-spans T �u� U −f� T ′ with monic u. Later it
turned out that these grammar morphism might better be thought of as “rule-
structure”-preserving functors of the form f! ◦ u∗ : C↓T → C↓T ′, where the
functor u∗ : C↓T → C↓U acts by pulling back along u, and f! : C↓U → C↓T ′

(post-)composes with f . Note that the action of the functor f! ◦ u∗ is closely
related to the idea of retyping of [8], and recall that a C-span T �u� U −f� T ′

with monic u is essentially a partial map (see [10] for details).
The crucial observation about the unfolding construction of [8] is that it

cannot only be characterized as a functor that forms part of a co-reflection,
but moreover it can be described as an (ω-chain) co-limit in the category of
grammars and grammar morphisms. More precisely, the unfolding UG of a T -
typed grammar G is the co-limit object of a chain of (occurrence) grammars

1 This quote is from [6].
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G0 “⊆” G1 “⊆” · · · “⊆” Gn “⊆” · · ·. Moreover the type object TU of the unfold-
ing UG is the C-co-limit object of the chain of type objects T0��T1��· · ·Tn�� · · ·
where each Ti is the type object of the grammar Gi.

The main ingredient of this co-limit characterization of the unfolding relies on
the fact that the latter C-co-limit is preseved by the inclusion of the category C
into the associated category of partial maps Par(C) (see [10]). This is ensured
by the theorem that (any topos) C is a co-reflective subcategory of the category
of partial maps Par(C), which implies that all co-limits are preserved by the
inclusion C ⊆ Par(C). Further, in (any topos) C, all co-limits are universal.
These two phenomena, namely universality of co-limits, and preservation of co-
limits by the inclusion C ⊆ Par(C), were the main inspiration for the following
definition.

Definition 1 (Weakly adhesive category). A category is weakly adhesive if

1. pullbacks and pushouts along monomorphisms exist, i.e. for each co-span
A −f� D �m� M with monic m, a pullback A �n� N −g� M exists, yielding
a pullback square A

D

↑�→
→↑ N

M
, and for each span B �f−A�m�C with monic m,

a pushout B −n� D �g− C exists, yielding a pushout square B
D
↓�
←
←↓ A

C;
2. pushouts of pairs of monomorphisms are universal (or stable under pullback),

i.e. in each commutative cube over a pushout square B←A↘
↘D←C having pullback

squares as lateral faces as shown in the middle diagram in the display below,
the top face is a pushout square;

B C

A

D

B′ C ′
A′

D′

i m

a

b c

i′ m′

n′

n

d

j′

j

⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ B C

A

D

B′ C ′
A′

D′

i m

a

b c

i′ m′

n′

n

d

j′

j

⇒

B C

A

D

B′ C ′
A′

D′

i m

a

b c

i′ m′

n′

n

d

j′

j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
3. pushouts along monomorphisms are mono-universal and converse mono-uni-

versal: in each commutative cube on top of a pushout square B←A↘
↘D←C as in

the left diagram in the display below, with pullback squares as back faces and
the “corner”-arrows b and c monic, its top face is a pushout square if and
only if the front faces are pullback squares and the morphism d is monic.

B C

A

D
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D′

f m

a

b c

f ′ m′

n′

n

d

g′

g

⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ B C

A

D

B′ C ′
A′

D′

f m

a

b c

f ′ m′

n′

n

d

g′

g

⇒
⇐

B C

A

D

B′ C ′
A′

D′

f m

a

b c

f ′ m′

n′

n

d

g′

g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Note that adhesive categories [2], apart from having all pullbacks, satisfy the
simpler (and stronger) version of Condition 3 that does not contain any condi-
tions on the vertical morphisms a, b, c and d. Condition 3 is equivalent to the
requirement that pushouts along monomorphisms are hereditary in the sense
of [11]. Finally, the subtle difference to the weak adhesive hlr-categories of [3] is
that in the definition of the latter, the vertical morphism d into the “tip” of the
bottom pushout is required to be monic already in the antecedent, which implies
the “top face-front faces”-equivalence. Note that this definition can be general-
ized straightforwardly to M-weakly adhesive categories by using an admissible
class M (see [10]) of monomorphisms instead of the class of all monomorphisms.

I conclude with the fact that every adhesive category is weakly adhesive, and
every M-weakly adhesive category is a weak hlr category w.r.t. M, while it is
open whether the converse of the latter holds in general, although I expect that
virtually all weak adhesive hlr categories w.r.t. M that will occur in practical
applications are actually M-weakly adhesive.
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Abstract. Graph transformation systems (gts) are suitable for mod-
elling concurrent and distributed behaviour of systems and in particular
of workflows. Analysis of the behaviour of these models is in general
highly complex, but it is of main interest, especially for optimizing the
system execution. Main focus of the PhD project is a formal approach for
constructing the process of a workflow scenario to support possibilities
of efficient analysis and execution. Based on the abstract framework of
adhesive high level replacement systems the developed techniques will
be applied on two levels. First, the framework is instantiated to different
kinds of graph as well as Petri net transformation systems, which are
key ingredient for modelling mobile networks in [1]. In the second level,
the modelling techniques are used to specify the production of indus-
trial products, which can involve several thousands of production steps.
A case study will show how a chain of production steps taken from a
real production facility can be modelled as gts derivation. Formal tech-
niques for process construction and analysis known for basic cases only
have to be extended in various dimensions in order to be applied to the
model and in general to the domain of workflows. A practical evaluation
will compare the results with those derived by standard techniques for
process analysis.

State of the Art. Graph transformation offers a rule based modelling of systems.
One execution of the system corresponds to a specific derivation of the gts.
A process of this execution describes all possible equivalent executions. Corre-
spondingly, a process of a derivation defines an equivalence class of derivations.
Processes of graph transformation systems based on the double pushout (dpo)
approach [2] were defined as occurrence grammars in [3], where causal relation
together with asymmetric conflict relation allow analysis of dependencies and
conflicts. Occurrence grammars were lifted to the abstract setting of adhesive
rewriting systems [4] in order to generalize the process construction. This opened
possibilities for analyzing processes of transformation systems based on arbitrary
adhesive categories [5], such as typed graphs, graphs with scopes and graphs with
second order edges.

Several extensions for gtss, such as attribution, type graphs with inheritance
as well as positive and negative application conditions [6], were introduced to
allow specification of practical relevant models. These features imply additional
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constraints for dependencies in a derived process such that equivalences change
as well. Main challenge is an extension of the process construction, such that it
can be applied to the mentioned highly featured models.

First contributions. Subobject transformation systems (stss) [7] are generalized
occurrence grammars, which coincide with them if constructed as a process of
a derivation, but they are less restrictive in general. New basic relations for
stss were shown to compose to the existing compound ones and allow a more
detailed view on dependencies. A first description of the adaption of the process
construction to attribution was presented in [8] including also an extension to
transformation systems with arbitrary matching while monomorphic matches
were required in the cases before.

Aims of the PhD project. Main challenge of the forthcoming PhD project is a
complete foundation of the process construction and analysis techniques in the
abstract setting of adhesive high level replacement (HLR) systems and the eval-
uation for practical workflow applications. Furthermore, a model transformation
of the constructed stss into Petri nets will allow the application of efficient anal-
ysis techniques available for different kinds of Petri nets. Selected aspects of the
PhD project are explained in more detail in the following paragraphs and will
be presented in the Doctorial Symposium.

Processes for Adhesive HLR Systems. The abstract framework of adhesive
rewriting systems was extended to adhesive HLR systems [6] to integrate some
additional systems of practical relevance, where Petri net and attributed graph
transformation systems are important examples. Since adhesive HLR systems
fulfil the conditions of HLR systems [9,10], all main results can be transferred
including e.g. the local Church-Rosser, embedding, extension, parallelism and
concurrency theorems. Transformation systems with attribution necessarily need
possibly non-injective matches, because attributes in rules are terms, which
may be evaluated to the same value. Therefore, an appropriate process con-
struction needs to allow arbitrary matching. The solution in [11,8] is based on
E−M-Factorization, which can be performed in many categories for graph struc-
tures. The process construction is extended by first factorizing the matches of
the derivation. All rule applications are instantiated according to the factoriza-
tion and lead to an instantiated derivation, which contains M-morphisms only.
Thereafter, the former process construction can be performed, but it is adapted
to the class of M-morphisms instead of general monomorphisms.

Extension for Application Conditions. Case studies of graph transformations
often use the concept of application conditions and in particular negative ap-
plication conditions (nacs), which restrict rule applications by prohibiting the
presence of a negative pattern. In order to integrate application conditions in the
process construction they need to be instantiated for each possible occurrence, be-
cause they define properties outside the image of rule matches. The instantiation
can cause several copies of one condition, but some conditions may also disappear,
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if their patterns never occur at the corresponding matches. Furthermore, rule oc-
currences may depend on each other in several ways causing equivalent derivations
that are not shift equivalent. While a derivation step may be independent from a
sequence of steps it can depend on some steps in between. Therefore, a process
will define a class of equivalent permutations of the steps of a derivation.

Conclusion. The proposed extension of the process construction for adhesive
rewriting systems with monomorphic matches to adhesive HLR systems with ap-
plication conditions and arbitrary matches will build a general and abstract foun-
dation for both, formal semantics of true concurrency for various instantiations
and a reliable framework for practical applications. The extraction of the mini-
mal process model will additionally help to increase efficiency while the case study
shall show possibilities for calculating equivalent executions that show maximal
parallelism or improved properties with respect to the application domain.
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1 Introduction

As model driven software development (MDSD) is being applied more and more in the
safety critical (SC) and dependable system development processes there is an increasing
need for verified model transformations to guarantee certain semantic properties to hold
after their execution. For instance, when transforming UML models into Petri nets, the
results of a formal analysis can be invalidated by erroneous model transformations when
the system developer cannot easily distinguish whether an error is in the design or in
the transformation.

In this paper we introduce our vision for verifying property preservation of graph
transformation systems with a two layered approach.

2 Overview of the Approach

Fig 1 gives an overview of our com-

Fig. 1. Overview of the approach

mon model transformation process.
The model transformation (XForm
rules) is specified by a number of
graph transformation rules. The GT
rules are specified with respect to the
metamodels of the source and the tar-
get metamodel. From these rule spec-
ifications, a compiled transformation
(compiled XForm) is generated (see

in [1]). The automatically derived compiled XForm transformation transforms a source
model into a target model.

Our goal is to verify property preservation for the compiled transformation, meaning
that, if a certain property holds in the source model after executing the transformation it
will also hold in the target model. To achieve this we separated the verification process
into two steps.

– First, we plan to apply shape analysis [2] on the XForm rules to summarize the
behavior of a statement on an infinite set of possible rundown states of the GT
rules. Shape analysis concerns the problem of determining shape invariants for
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programs that perform destructive updates on dynamically allocated storage. This
way correctness of transformation rules applied to any model of the specified type
can be verified (the concrete instances of the metamodels are irrelevant for the
proof).

– Then, as the result of the shape analysis is based on the assumption that the GT
rule specification are ”executed” semantically correct, in the second step we fo-
cus on the correctness check of the compiled GT rules. As the correctness of the
generated compiled code depends on the correctness of the generator itself, that is
usually a complex software components which cannot be verified easily. We use an
alternative assurance approach, in which the generator is extended with formal pro-
gram specification to enable Hoare-style [3] safety analysis for each individually
generated GT rule. The crucial step in this approach is to extend the generator to
produce all required annotations without compromising the assurance provided by
the subsequent verification phase.

2.1 Analysis of Model Transformation Specification

Shape analysis: In our approach we plan to use the TVLA [4] (Three-Valued-Logic An-
alyzer), a system for automatically generating a static (shape) analysis implementation
from the operational semantics of XForm rules. The small-step structural operational
semantics is written in a meta-language based on first-order predicate logic with transi-
tive closure. The main idea is that program states are represented as logical structures
and the program transition system is defined using first order logical formulas. TVLA
automatically generates the abstract semantics, and, for each program point, produces
an abstract representation of the program states at that point. TVLA relies on a fun-
damental abstraction operation for converting a potentially unbounded structure into a
bounded 3-valued structure (logic). 3-valued logic extends boolean logic by introducing
a third value 1/2 denoting values that may be 0 or 1. A 3-valued logical structure can be
used as an abstraction of a larger 2-valued logical structure. This is achieved by allow-
ing an abstract state (i.e., a 3-valued logical structure) to include summary nodes, i.e.,
individuals that correspond to one or more individuals in a concrete state represented
by that abstract state.

Our initial examples with the TVLA system shows that the mapping of the meta-
model to the TVLA is a key problem for efficient shape analysis generation.

2.2 Analysis of Model Transformation Implementation

Hoare-style platform specific code analyzers: Hoare logic is a formal system to provide
a set of logical rules in order to reason about the correctness of computer programs with
the rigour of mathematical logic. The central feature of Hoare logic is the Hoare triple.
A triple describes how the execution of a piece of code changes the state of the com-
putation. A Hoare triple is of the form {P}C {Q} where P, Q and C are precondition,
postcondition and command, respectively. Based on the concept of pre-/postcondition
introduced in the Hoare triple, design by contract [5] (DBC or programming by contract)
prescribes that software designers should define precise verifiable interface specifica-
tions (pre/postconditions) for software components based upon the theory of abstract
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data types and the concept of a business contract. This means that contracts provides
semantics to formally describe the behavior of a program module, removing potential
ambiguity with regard to the module implementation.

Tools built upon the DBC methodology include the logic of predicate calculus and
Dijkstra’s weakest precondition calculations. We focused our studies on two of the most
widely used frameworks: the (i) Spec# [6] programming system having developed at
Microsoft Research to extend C# with formally verifiably method contracts in the form
of pre-/postconditions as well as object invariants, and the (ii) KeY [7] formal software
development system built upon a semi-automated prover over the Java Dynamic Logic
(JavaDL) calculus (with support to Java Modeling Language (JML)) which covers the
complete Java Card language, and additionally supports some Java SE features such as
multi-dimensional arrays and dynamic object creation.

Both approaches look promising but our initial experiments show that none of them
provide efficient support for: (i) dynamic casting of complex data structures (e.g., ar-
rays), (ii) effective handling of nested loop invariants, (iii) contracts for library functions
and finally (iv) user-friendly feedback from proof obligations.

3 Conclusion and Future Work

We have presented an ongoing work how graph transformations can be verified with
a combination of shape analysis (with TVLA) and static code analyzer (e.g., Spec#,
KeY). In the current state of our research, we have studied the boundaries of Hoare-
style static code analyzers with respect to complex object navigation (as being the core
of transformation implementation). It resulted in state space explosion in case of com-
mon implementations of GT rules and have to be further studied to achieve analyzable
implementation.

As for the future, we plan to finish formalizing GT rules in 3-valued logic to achieve
feasible shape analyze results and adapt the model logic described in [8] to capture
properties of graph models.
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1 Introduction

P2P VoIP traffic potentially suffers from performance issues like packet loss,
delay, jitter and echo [1], which greatly affect the quality of the service (QoS).
Packet loss and delay mostly occur due to network reconfiguration caused by
peer dynamics. In case of VoIP traffic, the network has to recover fast enough
so that the quality of service is not affected [2].

Various solutions have been proposed to this problem, e.g., [3] proposes that
an incentive has to be given to intermediate nodes and resource owners, whereas
[4] proposes to keep many redundant links between peers, and [5] suggests that
traffic has to be stopped and the routing may be changed. However, peer dy-
namics and complexity of P2P networks make it hard and expensive to validate
these solutions [6] through classical means.

We propose to use model-based analysis and simulation to study the recon-
figuration in P2P networks. The aim is to model different protocols in order to
evaluate and improve their QoS properties with specific focus on VoIP applica-
tions. We consider the P2P network architecture as a graph, in which network
nodes are represented by graph vertices and graph edges represent the network
connections. Then reconfiguration in such a network can naturally be modeled
by graph transformation [4] and stochastic analysis techniques can be used for
validation. This extended abstract will motivate the idea by means of an example
and discuss some of the challenges faced.

2 Case Study: Skype Network Architecture

The Skype P2P network offers three major services: VoIP, instant messaging
and file transfer[7,8]. The architecture of the Skype network is described by the
figures below. Skype nodes are distinguished into the Skype clients (SC) and
super nodes (SN). Between them, SNs maintain an overlay network, while SCs
have to connect to one of the SNs, which act as telephone switches or routers
for the client. The Skype network is subject to architectural reconfiguration
whenever a new SC joins the Network, an SN leaves the network, an intermediate
SN fails to route the traffic or has problems of connectivity. Then, one of the
SCs needs to be promoted to SN.

H. Ehrig et al. (Eds.): ICGT 2008, LNCS 5214, pp. 502–504, 2008.
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In our model we consider that after registration each Skype client keeps a
permanent connection with a SN node: first the SC finds the latency of the SN
node and if the latency is in the range of the standard i.e 800 ms then it establish
a connection. Alternatively the SC can connect to SN which has the maximum
spare bandwidth. The model can be best described with the help of the type
graph below. i.e., registration servers (RS), super nodes (SN) and Skype clients
(SC), while edge types model links (l), registrations (r), sending and receiving
of time-stamped messages (ms, mr).

(a) Type Graph (b) Skype Network

Fig. 1. Network Model

(a) Rule 1 (b) Rule 2-a

(c) Rule 2-b (d) Rule 3

Fig. 2. Transformation Rules

3 Skype Reconfiguration as Graph Transformation

We refer to [4] for the basic notions of graph and graph transformation. We model
the following scenario. When an SC tries to establish a network connection, it has
to get registered with a central registration server. Then, the SC receives the ad-
dresses of a number of SNs, among which it has to make a selection based on their
reachability, available bandwidth, etc. Before an SC links to an SN, it sends a
packet to the node and waits for its return in order to measure the delay. This
is the time it takes packets to travel from the SC to the SN and back. If the delay
is in the range of the standards set by the International Telecommunication Union
(ITU-T) [9] then it establishes a link with the SN. After the SC is linked, it can
communicate directly with other peers, obtaining their address from the global
index maintained by the central login server. The time stamping allows the peer
to connect to a SN which offers the lowest latency as per ITU-T. If the latency is
not acceptable, the connection attempt is abandoned and a new SN is selected.
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The modelling of time follows the approach of a unique time stamp attribute
chronos, associated with nodes or edges of the graph, as required.[10] The SC will
be linked to the SN if the SCs current time when receiving the message mr[ts] has
advanced no more than 800ms from the point when the time stamp ts has been set
while sending ms[ts]. An alternative way of selecting an SN is to choose the one
with the most available bandwidth. This is an example where, among the matches
possible for a rule a selecting is performed which maximises a certain property(see
Rule 3). Note that the example presented here is far from complete. Other aspects
that need to be addressed include the promotion of peers to super peers, reaction to
failures and disappearance of nodes, the connection to peers in local domains and
behind firewalls, etc. which will be addressed in the extended version of the paper.

4 Challenges and Future Work

To carry out the research programme outlined in the introduction, of developing
a methodology based on graph transformation for the modelling and validation
of QOS properties of network protocols with dynamic topology, a number of
problems have to be addressed in regard to the expressivity of the graph trans-
formation approach, its formal semantics, and analysis techniques. In particular,
these include the integration of the modeling of time with stochastic analysis
techniques like model checking and simulation, and the formalization and imple-
mentation of optimising matches to support selecting the best match according
to some specified metric.
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Abstract. This paper presents a methodology for migration of legacy
systems towards Service-Oriented Architectures. This approach is based
on source code analysis and graph transformation with a central goal of
allowing a high degree of automation.

The work presented here is developed in the context of a collaboration
between academia and industry and is targetted to be applied system-
atically in software reengineering projects.

1 Introduction

The frequent changes of business requirements and evolution in technology oc-
curring nowadays result in the need to develop new methods to support software
evolution and, in particular, the transition of legacy systems to modern archi-
tectures. This need is observed frequently over the years and examples include
the adoption of object-oriented programming languages, the advent of Web tech-
nologies and Service-Oriented Architectures (SOAs).

The adoption of SOAs has been growing and is becoming a prevailing soft-
ware engineering practice [1]. However, experience indicates that SOA initiatives
rarely start from scratch. The properties that derive from Service-Orientation
include major challenges for reengineering of legacy systems:

1. The separation of business logic from presentation logic
2. The loosely coupled relationship between services
3. The coarse-grained nature of services

Legacy systems were not built with these concerns in mind thus much effort is
necessary to accommodate them. This paper presents a methodology to address
migration of legacy software to SOA while complying to the above properties.

2 General Methodology

Architecture migration involves different types of restructuring. Depending on
the intended target, these are made along either technological and functional di-
mensions or both. The latter is the case of SOAs. Technological restructuring is
used in the layering of software systems and may lead to a 3-tiered architecture,
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Fig. 1. General methodology

separating logic, data, and user interface (UI). Functional restructuring sepa-
rates components which, after having replaced their UI tier with an appropriate
interface and being grouped according to specific parameters, represent services.

The general methodology instanced for both technological and functional di-
mensions is presented in Figure 1. This consists of the steps: (1) code annotation-
categorises blocks of source code according to the different elements of the
target architecture they will be mapped to - in the technological dimension this
is achieved by using code patterns to identify the parts of the code that belong to
UI, Logic and Data; (2) reverse engineering - obtains a graph representation of
the annotated code; (3) redesign - uses graph transformation rules to achieve the
target architecture - in the technological dimension the rules aim to re-organise
the model into a 3-tier architecture, thus complying to the first SOA property
from the Introduction; and (4) forward engineering - uses the result of step 3
and traceability to the code (relations R1 and R2 ) to obtain the target code.

One of the main goals of this methodology is to allow a high degree of automa-
tion. The manual intervention is in step 1 even though this is highly automated
as well. A more detailed description of the methodology, and technological di-
mension, can be found in [2]. The next section details the functional dimension,
except steps 2 and 4 as these are similar to the technological dimension.

3 Identification of Services

The functional code annotation phase is performed by two tasks: 1. operation
identification and 2. grouping of operations into services. Identifying operation
entry points is performed by using a combination of techniques that include:

– Code belonging to the Logic layer that is invoked by the UI (Figure 2);
– External API’s (e.g. from IDL files);
– Code that falls into a typical pattern of control / data flow;
– Entry point for code that is mapped to more than one operation;
– Known feature location techniques such as LSI [3] and SBP [4].

The dependencies between each operation entry point and the remaining code
can be determined using slicing techniques. The second task of service extraction
is where the operations previously obtained are grouped into coherent services.
Ranked groupings of operations are proposed by using metrics, including: over-
lapping between operations, actors involved, information about data accessed
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Code View

Logic

Data

UI
External
interface

Fig. 2. Identification of operations

and similarity measure (e.g. using LSI). The graph transformation rules used in
this dimension are designed so that operations are grouped in meaningful ser-
vices (as per the categorisation) and that services have loosely coupled relations,
thus complying to the two last SOA properties mentioned in the Introduction.

4 Conclusion

The main contribution of this work is the definition of a methodology that can
be used for service extraction from legacy systems, while having a high level
of automation. Code pattern matching and graph transformation are central to
achieve this. By applying those in the technological and functional dimensions,
the result is a concrete process of addressing SOA migration projects in a sys-
tematic way. This work is still ongoing but originated from problems found in
projects and is developed in collaboration with the industry.
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Abstract. A major goal of this thesis is the ability to determine the
correctness of graphical specifications consisting of a graph precondi-
tion, a graph program and graph postcondition. According to Dijkstra,
the correctness of program specifications can be shown by construct-
ing a weakest precondition of the program relative to the postcondition
and checking whether the precondition implies the weakest precondi-
tion. With the intention of tool support, we investigate the construction
of weakest graph preconditions, consider fragments of graph conditions,
for which the implication problem is decidable, and investigate an ap-
proximative solution of said problem in the general case. All research is
done within the framework of adhesive high-level replacement categories.
Therefore, the results will be applicable to different kinds of transforma-
tion systems and petri nets.

Graph transformation has many application areas in computer science, such as
software engineering or the design of concurrent and distributed systems. It is
a visual modeling technique and expected to play a decisive role in the devel-
opment of growingly larger and complex systems. However, the use of visual
modeling techniques alone does not guarantee the correctness of a design. In
context of rising standards for trustworthy systems, there is a growing need for
the verification of graph transformation systems and programs. The research of
appropriate methods for this purpose is the topic of this thesis. More precisely,
a major goal of this thesis is the ability to determine the correctness of graph
program specifications consisting of a graph precondition, a graph program and
a graph postcondition. For an overview, see Figure 1.

Graph conditions. As language for the specification of state properties, graph
conditions [5,6,7,8,9,10,11,12] are investigated. Graphs conditions are a graphical
and intuitive, yet precise formalism, well-suited to describe structural properties
of first-order.

Graph programs. Graph transformations rules with application conditions form
the elementary steps of the considered computation model. Additional program
constructs are nondeterministic choice, sequential composition, conditional exe-
cution, and various iterative constructs. Graph programs [13,1] are able to model
� This work is supported by the German Research Foundation (DFG), grants GRK

1076/1 (Graduate School on Trustworthy Software Systems) and HA 2936/2 (De-
velopment of Correct Graph Transformation Systems).
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Fig. 1. The big picture

transactions that deal with an unbounded number of elements and are compu-
tationally complete.

Weakest preconditions. According to Dijkstra, the correctness of program speci-
fications can be shown in a classical way by constructing a weakest precondition
of the program relative to the postcondition and checking whether the precondi-
tion implies the weakest precondition. The construction of weakest preconditions
and strongest postconditions of graph programs and graph postconditions is de-
scribed in [1] and [4], respectively.

Implication problem. To determine, whether or not a graph precondition im-
plies a weakest precondition, either a proof or a counterexample must be found.
In [2], a correct calculus for proving graph conditions was proposed. In [3], a
satisfiability algorithm was presented, proven to be correct and complete, and a
decidable fragment of conditions was identified.

Implementation. Following the outlines of [14], the components sketched in
Figure 1 are implemented. The weakest precondition transformer, the theorem
prover and the satisfiability solver rely on a small number of structure-specific
operations, provided by [15] for directed, labeled graphs.

Evaluation. A number of case studies are conducted, e.g. a railroad control sys-
tem [9,11], an access control system [1,2], and a car platooning case study. The
prover and solver components are evaluated against existing tools such as Vam-
pire, Darwin and Paradox applied onto straightforward translations of graph
conditions into first-order graph formulas [10,16,4], using the axiomatization of
Courcelle, which is extended to labeled graphs.

Preliminary conclusion and further work. Graphs conditions are convenient to
describe system requirements as well as suited to infer knowledge about sys-
tem behavior. The developed methods and their implementations are able to
automatically prove or refuse all test specifications of the access control case
study. Surprisingly, existing tools such as Vampire, Darwin and Paradox fail to
determine the correctness of some of these specifications. Reasons for this may



510 K.-H. Pennemann

include the axiomatization of direct, labeled graphs that tends to become a part
of the problem to be solved. In contrast, condition-based algorithms are con-
structively restricted to the considered structure, e.g. directed labeled graphs.
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1 Introduction

Pervasive computing becomes an important characteristic of today’s IT systems.
In particular, context awareness is a core technology to enhance pervasive com-
puting functionalities [1]. In recent years, Semantic Web (SW) is widely used in
the development of mainstream software systems; it becomes increasingly im-
portant and feasible for improving conventional web data sharing process by
providing machine-readable information and metadata expressed in various se-
mantic web technologies such as Web Ontology Language (OWL) and Resource
Description Framework (RDF). SW technology itself has already indicated the
solutions to context modeling and sharing. However, the context querying and
inferencing methodologies are still missing which leads to 2 major challenges.

– Specifying context inference rules at abstract level to provide validation and
composition support for domain experts and users with ease-of-use front-end.

– Mapping abstract level rules into lower level executable rule language.

In this paper, we will address above issues by applying graph transformation
theory.

2 General Approach

In our work, the context information is organized and stored as RDF/OWL doc-
uments. Thus, both context querying and reasoning are essential steps in terms
of RDF/OWL processing. It is reasonable to use rules guiding their activities.
The rule allows us to specify preconditions and postconditions of the query or
inferencing procedure. The postconditions represent corresponding query or in-
ference results. In additional, an RDF/OWL document can be seen as nodes
and edges in as a directed and labelled graph. These characteristics are the
prerequisite of graph transformation theory [2].

Moreover, RDF/OWL schema can be treated as the type graph (TG) while
concrete instances of model can be shown as instance graph (IG) in terms of

� Thanks to Dr. Stephan Reiff-Marganiec and inContext (Interaction and Context
Based Technologies for Collaborative Teams) partners for their discussions.
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Fig. 1. General approach

graph transformation theory. Furthermore, pre- and post-conditions within rea-
soning rules are actually OWL/RDF graph pattern, which clearly indicates graph
transformation would be a proper way for illustrating inference mechanism. The
general approach that implements the graph transformation based context in-
formation inference and query includes four major steps (see Fig. 1): (1) Using
graph transformation process to specify the reasoning rules both for query and
inference. (2) Mapping the graph based rules into the Jena-based deductive rule
syntax. (3) Executing SPARQL queries combining with the Jena reasoning rules.
(4) Getting the query results as XML document.

3 RDF/OWL Graph and Graph Transformation

OWL ontology is a RDF graph which contains a set of triples. Both RDF subject
and object are vertices V in the graph while predicate (property) are labelled
edges E that represent a statement of a relationship between them [3]. RDF graph
include two levels of abstraction: static structure of the model can be represented
in OWL schema, which corresponds to type graph TG, while the snapshot at a
specified time can be also described in OWL corresponding to instance graph.
OWL provides mechanism to specify additional property restriction including
symmetric property, transitive property and functional property etc, for example
isFriendOf is a symmetric property that means if Person Alice isFriendOf Tom
then Tom isFriendOf Alice. Similarly, isLocatedIn relationship can be declared
as transitive property. Therefore, the approach of reasoning is to derive implicit
triples from existing triples by means of graph transformation. The creation of
implicit triples is modeled as graph transformation rules. The Fig. 2 shows how
OWL transitive property is defined with graph transformation rules.

Similar graph transformation rules can be used to define other metamodel level
properties such as symmetric and inverse property. Moreover, graph transforma-
tion rules also can specify inference at domain-specific level, which addresses
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Fig. 2. Type graph (TG) and instance graph (IG) example

problems in a particular domain. In order to make the graph transformation
rules executable, we mapped from our abstract rules to Jena-based inference
syntax, which can be defined as follow:

[rule_name: (pre-condition 1),(pre-condition 2),...

-> (post-condition 1),(post-condition 2),...].

The left hand side of “→” consists of a set of triple patterns which correspond
to graph L, right hand side stands for graph R.

In conclusion, we introduced a graph transformation based reasoning method
in this paper. In particularly, we discussed the overview of the approach, the
way to use RDF/OWL graph presenting the graph transformation rules and the
mapping to lower level Jena syntax. To develop a debugable and visual graph
rule design tool as shown is still an important future work.
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1 Introduction and Concept

State machines can be comprehensively specified, simulated and validated at de-
sign time to get a formally founded skeleton for a software application. A direct
implementation of state machines in Java source code can realize states as classes,
transitions as methods and variables as well as pre-conditions and variable up-
dates as auxilliary methods, invoking either arbitrary application methods to
retrieve the current variable values or evaluating expressions [1]. Viewed from
an abstract level, implementation and state machine are two models, sharing the
same semantics. To maintain the modelled software systems, it is vitally impor-
tant to perserve as much of this semantics as possible in the source code to be
able to track back changes and errors [2,3]. In contrast to these considerations,
current techniques of model-driven development use several unidirectional steps,
starting from an abstract model and resulting in platfrom specific source code.

Following the ideas of [4], this problem leads to the idea of a Triple Graph
Grammar, translating a state machine to an abstract syntax graph GC for its
implementation as well as to an abstract syntax graph GV for a data format
suitable for model verification. The necessary correspondence graph GM can be
understood as a meta-model of the actual state machine. This approach should
not only allow simultaneous manipulation of two graphs, but open a way to
transform between formal model and concrete implementation without loss of
information and impact on source code that is not part of the meta-model re-
alization. Note, that this bidirectional transformation is important, because in
practice manipulations of source code can hardly be considered as strict appli-
cation of transformation rules but as structured text editing. Therefore changes
are not primarily performed by rewriting the meta-model, but triggered by ei-
ther changing code or verification model. These changes have to be propagated
through the graph triple, resulting in a virtually simultaneous change of both
syntax graphs.

2 Mappings and Rules

In order to realize the desired transformations, two graph mappings have to
be defined: one between the meta-model GM and the syntax graph GV and one
between the meta-model GM and the syntax graph GC . Figure 1 shows a part of
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Fig. 1. TGG rule with mappings for inserting a new transition into an existing state
machine. Mappings M1 and M2 map the states, while M3 maps the transition.

this mapping as an example, covering the correspondency in the rule for adding
a new transition. In this example, GC is placed on the left side and GV on the
right, while dashed boxes and arrows denote the mappings. The LHS consists of
two states, mapped by M1 and M2 in the correspendence graph. The RHS adds
the representation of a transition to both syntax graphs and conntects them
through M3. From this rule we can derive three pairs of actual transformation
rules. They are used to cover simultaneous transformations of all three graphs
of the triple as well as to propagate changes of GC to GV and vice versa.

The first pair is the one for adding and removing a transition simultaneously
in both syntax graphs. The rule can be derived directly from the TGG rule using
the LHS and RHS for the manipulation of the syntax graphs. The second pair
would be used to propagate changes from GC to GV . If a transition is added
manually in this case, it is only present in the left syntax graph and M3 is
missing. So the derived rule has to add the necessary nodes in the right syntax
graph and extend the correspondence graph by inserting M3. If a transition is
removed manually in this case, it is missing in the left syntax graph, but still
present in the right one and the remainings of M3 still exist. So the derived
rule has to remove the nodes from the right syntax graph and remove M3 from
the correspondence graph. The same applies to the third pair of rule, but with
switched sides to propagate changes from GV to GC .

Another set of rules is needed for adding and removing states. It is simpler
than the example shown above as can be expected by looking at M1 or M2 in
figure 1. In contrast to this, the rules for simultaneous manipulation and prop-
agating changes in preconditions and variable updates are much more complex.
Syntax trees for condition expressions may consist of virtually any number of
syntactical elements. A series of rules has to be applied after adding a condi-
tion to handle the expression stepwise. Removing conditions is simpler, because
they can be disconnected from the transitions by deleting one edge and then be
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removed by a generic ruleset for removing the dangling subtree. Further rules
are needed as well, for example to mark the initial state of the state machine or
to compose a list of model variables.

3 Implementation and Further Work

The presented approach has been preliminary implemented using the AGG tool
environment for algebraic graph transformations [5]. Rules where derived man-
ually from the described TGG rules. For retrieving and writing the abstract
syntax graphs for Java, a plugin for the Eclipse IDE has been written. UPPAAL
[6] was used as a state machine modeling and verification tool, storing its data
in a XML file format which is easy to parse. This preliminary implementation
confirmed the expected benefits of the concept, but did also reveal several draw-
backs. Object structures representing the abstract syntax trees inside editing
systems are often not prepared for the application of graph transformations.
This make it necessary to export these structures into a graph format suitable
for graph transformation and write them back afterwards. The result is multi-
stage toolchain, which induces a significant slowdown and makes it difficult to
realize simultaneous editing. Moreover, imports and exports may be error-prone,
so the use for tracking back errors is limited.

Therefore one of the next goals is more direct tool support, using object struc-
tures directly by accessing editors through appropiate APIs. Then there would
be no longer the need to use a toolchain and write the graph structure explicitly
to disk, so a better performance can be expected. In an optimal solution an
IDE would integrate source code editor, model editor and graph transformation
engine, all sharing the same graph based data structure.

References

1. Goedicke, M., Balz, M., Striewe, M.: UPPAAL-Modelle als ausführbare Spezifika-
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Abstract. The “model-driven development of model transformations”
requires both a technique to model model transformations as well as a
means to transform transformation models. Therefore, the thesis under-
lying this paper evaluates and extends state-of-the-art model transfor-
mation approaches. For example, the thesis contributes a new language
construct for modeling subgraph-copy operations. Perhaps surprisingly,
this thesis intentionally does not propose a fundamentally new transfor-
mation language and toolset. Instead, the thesis is based on a small UML
profile for controlled graph transformation. The profile only relies on class
diagrams, activity diagrams, and the UML’s extension mechanism. The
proposed techniques have emerged from several case studies that involve
model evolution, model refinement, as well as model synchronization.

1 Problem: Lack of Portability and Reuse

Controlled graph transformation gained industrial credibility in the nineties,
thanks to the application of the Progres language (and tool) within industrial
tool integration projects. After working within the Progres team, so-called “Story
Diagrams” were proposed as a UML based syntax for modeling graph transfor-
mation systems. Since some implementation challenges were hard to overcome
on top of the C based implementation of the Progres tool, the Java based Fujaba
tool was implemented. With the advent of the MDA, several comparable tools
were constructed once more. Unfortunately, several tools have proposed yet an-
other syntax for existing graph transformation constructs. Moreover, none of the
graph transformation tools relied on common libraries to reuse existing infras-
tructure for pattern matching, control flow, etc.

2 Solution: A Standard Transformation Modeling Profile

The first step to transformation tool integration is the agreement on a common
metamodel for representing transformation models. Whenever possible, such a
metamodel should be aligned with mainstream standards. As stated in the previ-
ous section, “Story Diagrams” was the first language for representing controlled
graph transformation models in mainstream UML syntax. Unfortunately, the
language was initially based on a proprietary and rather implicit metamodel.
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Therefore, as a first contribution to the thesis, we aligned that controlled graph
transformation language with the UML metamodel. Several off-the-shelf UML
tools can now be used to edit the transformation models based on Story Dia-
grams. Moreover, the tool that supports this thesis relies on another mainstream
MDA tool to transform transformation models into standard (i.e., MOF/JMI)
compliant repository code. This lowers the cost and risk for adopting the pro-
posed approach in an industrial context. Unlike the emerging QVT standard,
there is no need to learn a completely new language and buy into a completely
new toolset.

The core profile for modeling model transformations only supports the basic
concepts of controlled graph transformation: it has the notion of a rewrite rule
(matched elements, created elements, deleted elements and updated elements)
and control flows (iterative loops, conditionals and called transformations). In-
terestingly, these constructs already enable one to model refactorings [3] as well
as refinements [5] in a human friendly manner. Nevertheless, the proposed ap-
proach enables one to add more expressive language constructs instead of pre-
maturely standardizing all transformation tools to the bare minimum of their
“lowest common denominator”.

3 Extensibility: Higher Order Transformations

The previous section only indicated how transformation model editors can be
integrated at the syntactic level. The thesis proposes to define new language
constructs as extensions to a small (the “core”) transformation modeling profile.
The role of higher order transformations is to transform transformation models
that conform to an extension of the profile into transformation models that
conform to the core profile (of which the semantics has been standardized).

A key to the proposed approach is that the higher order transformations
themselves are modeled using the core profile for transformation modeling [4,
Chapter 8]. Therefore, any transformation engine that supports the core profile
can execute the higher order transformations. Consequently, any such engine
can normalize transformation models that apply a new language construct into
more primitive transformation models. Today, only a Copy operator has been
realized using this approach. However, as new operators (such as Merge, Diff, ...)
are introduced, a transformation tool may need to execute a series of publicly
available higher order transformations before executing the result on its native
graph transformation engine.

4 Related Work

First of all, Graph Transformation eXchange Language (GTXL [2]) has been
proposed as a standard for exchanging transformation models. Unlike the pro-
posed profile, GTXL has no relation to a mainstream modeling language such as
the UML. Therefore, there are no off-the-shelf industrial tools for editing GTXL
models. Secondly, the GTXL metamodel relies on a XML DTD instead of on
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the MOF. Therefore, it requires more integration effort in an MDA tool inte-
gration context. Finally, GTXL only supports uncontrolled rules whereas the
proposed profile supports rules that are controlled by activity diagrams. Finally,
due to the lack of a profile concept, GTXL cannot be extended without breaking
metamodel compatibility with its implementations.

Secondly, the Queries/Views/Transformations (QVT) standard presents three
languages for transformation modeling. Apart from the MOF basis, it has the
same limitations as GTXL. The QVT standard does promote bridges between
its sublanguages by means of higher order transformations. In fact, the mapping
between the relations and core language is formalized in the QVT relations lan-
guage. Unfortunately, the QVT relations language is not as generally applicable
as the profile presented in this paper.

Within the VIATRA tool, the transformation process from human-oriented
transformation models into machine-oriented transformation code is supported
by higher order transformations too [1]. Unlike the proposed approach, the trans-
formation models do not conform to any standards. Moreover, the higher order
transformation is not written in a standard transformation language either.

5 Conclusions

This paper presented a new approach to the integration and extension of trans-
formation languages and tools. A realization of the proposed approach enables
transformation tool builders to focus on user-oriented added value (such as edi-
tor usability, run-time performance, ...) and new, declarative language constructs
(such as a Copy operator), instead of spending time on the implementation of
evaluation code that was already been realized in other tools before. A unique
characteristic of the approach is that it only requires transformation tool builders
to implement a small core, and provides support for more declarative language
constructs without breaking interoperability.
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Abstract. Graph Languages1 emerged during the seventies from the
necessity to process data structures with complex interrelations. Nowa-
days, various variants of these languages can be found for querying [1][2],
in-place transforming [3][4], and translating graph structures [5][6]. Still,
new graph languages supporting different paradigms and usage scenar-
ios are proposed regularly. In fact, languages tailored for a dedicated
application domain can be restricted to a concise and clear syntax rep-
resentation, thus reducing effort to learn and apply them. Effectively
aiding the development of graph languages, even though considering the
already existing ones, therefore remains an important working topic.

Constructing specialized graph languages, considering them as spe-
cial case of domain-specific modeling languages, is supported by var-
ious frameworks and so-called Meta-CASE tools, e.g. [7]. Operational
implementations of these languages is usually achieved by customizing
template-based code generators. However, graph languages, in contrast
to purely static modeling languages, are inherently complex to implement
due to the required pattern matching facility, and the possibly required
non-deterministic execution engine.

As alternative to the usual code generation approach, I propose a
solution to implement graph languages by transformation. The approach
is based on an extensible core graph language, to which rules modeled in
a specialized graph language are transformed. Extensions can be added
to the core language to approximate both languages’s conceptual levels,
and thus to narrow their “semantic gap”. In contrast, a code generation
module would have to span a significantly larger gap from a high-level
specification language to an imperative or object-oriented programming
language.

A coarse-grained overview on the presented approach is given in Fig-
ure 1. Technically, this platform is built on top of the graph-oriented
database DRAGOS [8]. Thanks to DRAGOS’ exchangeable backends,
language implementations gain access to established storage solutions
like relational databases or model repositories.

To construct a new graph language, developers usually build an ed-
itor based on the language’s concrete syntax model, be that a textual
or visual one. Based on this, a partly generic export facility transfers

1 The term Graph Language subsumes languages for querying and transforming
graphs, and especially from the overlapping of these areas.
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Fig. 1. Architectural overview

instances of this language, e.g. entered by the user at runtime, into the
graph database as abstract syntax trees (ASTs). This intermediate stor-
age facility decouples further processing from the actual concrete syntax
and from the applied editing technology.

Afterwards, as the first curved arrow suggests, the ASTs are trans-
formed into instances of the provided core graph language, DRAGULA.
This transformation, which needs to precisely capture the specialized
language’s intended semantics, can be modeled in a rule-based way. For
this purpose, a simple uni-directional model transformation language
is provided. Technically, this language’s rule instances are stored in an
additional repository in the database, and are transformed to the core
language, too.

Finally, the generated core language rules can be evaluated by the cor-
responding engine, thereby referring to the database’s data repository.
Both the rule engine and the data repository are subject to user inter-
action, e.g. to select rules for invocation or to directly inspect the stored
graphs. This talk primarily discusses the first curved arrow, whereas the
second one has been described in [9], and the core language’s extensibility
in [10].

Summary. The proposed solution eases operational implementations
of graph languages, using a rule-based transformation approach. The
DRAGULA language is well-suited to implement different kinds of lan-
guages, e.g. for queries and transformations. Extensions allow to capture
additional functionality.

Related work. Modeling a domain-specific language’s dynamic seman-
tics is offered by some meta-case tools, e.g. presented in [11]. In con-
trast to the present work relying on a core graph language as target
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domain, the authors apply petri nets for this purpose. Though restrict-
ing their approach in expressing graph languages, petri nets naturally
provide valuable analytical properties.

Existing core graph languages can also be found in the literature, such
as the lately proposed GP [12]. GP offers core functionality for a basic
graph model, whilst DRAGULA is tailored towards complex models in-
cluding hierarchical graphs and hypergraphs. Furthermore, DRAGULA
focusses on extensibility to allow concise mapping of specialized graph
languages [10]. Like GP already does, DRAGULA will soon support non-
deterministic rule application.
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