

Lecture Notes in Computer Science 5230
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Richard Lippmann Engin Kirda
Ari Trachtenberg (Eds.)

Recent Advances
in Intrusion Detection

11th International Symposium, RAID 2008
Cambridge, MA, USA, September 15-17, 2008
Proceedings

13

Volume Editors

Richard Lippmann
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, MA, USA
E-mail: lippmann@ll.mit.edu

Engin Kirda
Institut Eurecom
Sophia-Antipolis, France
E-mail: engin.kirda@eurecom.fr

Ari Trachtenberg
Boston University
Boston, MA, USA
E-mail: trachten@bu.edu

Library of Congress Control Number: 2008934305

CR Subject Classification (1998): K.6.5, K.4, E.3, C.2, D.4.6

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-87402-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87402-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12511846 06/3180 5 4 3 2 1 0

Preface

On behalf of the Program Committee, it is our pleasure to present the pro-
ceedings of the 11th International Symposium on Recent Advances in Intrusion
Detection (RAID 2008), which took place in Cambridge, Massachusetts, USA
on September 15–17.

The symposium brought together leading researchers and practitioners from
academia, government and industry to discuss intrusion detection research and
practice. There were six main sessions presenting full-fledged research papers
(rootkit prevention, malware detection and prevention, high performance in-
trusion and evasion, web application testing and evasion, alert correlation and
worm detection, and anomaly detection and network traffic analysis), a session
of posters on emerging research areas and case studies, and two panel discussions
(“Government Investments: Successes, Failures and the Future” and “Life after
Antivirus - What Does the Future Hold?”).

The RAID 2008 Program Committee received 80 paper submissions from
all over the world. All submissions were carefully reviewed by at least three
independent reviewers on the basis of space, topic, technical assessment, and
overall balance. Final selection took place at the Program Committee meeting on
May 23rd in Cambridge, MA. Twenty papers were selected for presentation and
publication in the conference proceedings, and four papers were recommended
for resubmission as poster presentations.

As a new feature this year, the symposium accepted submissions for poster
presentations, which have been published as extended abstracts, reporting early-
stage research, demonstration of applications, or case studies. Thirty-nine posters
were submitted for a numerical review by an independent, three-person sub-
committee of the Program Committee based on novelty, description, and eval-
uation. The subcommittee chose to recommend the acceptance of 16 of these
posters for presentation and publication.

The success of RAID 2008 depended on the joint effort of many people. We
would like to thank all the authors who submitted papers, whether accepted
or not. We would also like to thank the Program Committee members and
additional reviewers, who volunteered their time to carefully evaluate the nu-
merous submissions. In addition, we would like to thank the General Chair, Rob
Cunningham, for handling the conference arrangements, Ari Trachtenberg for
handling publication, Jon Giffin for publicizing the conference, Anup Ghosh for
finding sponsors for the conference, and MIT Lincoln Lab for maintaining the
conference website. Finally, we extend our thanks to The Institute for Infor-
mation Infrastructure Protection (I3P), Symantec Corporation, IBM, and MIT
Lincoln Laboratory for their sponsorship of student scholarships.

June 2008 Richard Lippmann
Engin Kirda

Organization

RAID 2008 was organized by MIT Lincoln Laboratory and held in conjunction
with VIZSEC 2008.

Conference Chairs

Conference Chair Robert Cunningham (MIT Lincoln Laboratory)
Program Chair Richard Lippmann (MIT Lincoln Laboratory)
Program Co-chair Engin Kirda (Eurecom / Technical University

of Vienna)
Publications Chair Ari Trachtenberg (Boston University)
Publicity Chair Jon Giffin (Georgia Tech)
Sponsorship Chair Anup Ghosh (George Mason University)

Program Committee

Michael Bailey University of Michigan
Michael Behringer Cisco
Herbert Bos Vrije Universiteit
David Brumley Carnegie Mellon University
Tzi-cker Chiueh State University of New York at Stony Brook
Andrew Clark Queensland University of Technology
Robert Cunningham MIT Lincoln Lab
Ulrich Flegel SAP Research
Debin Gao Singapore Management University
Anup Ghosh George Mason University
Jonathon Giffin Georgia Institute of Technology
Thorsten Holz University of Mannheim
Jaeyeon Jung Intel
Engin Kirda Institute Eurecom
Kwok-Yan Lam Tsinghua University
Zhuowei Li Microsoft
Richard Lippmann MIT Lincoln Laboratory
Raffael Marty Splunk
Benjamin Morin Supélec
Rei Safavi-Naini University of Calgary
R. Sekar State University of New York at Stony Brook
Robin Sommer ICSI and LBNL
Salvatore Stolfo Columbia University
Toshihiro Tabata Okayama University
Ari Trachtenberg Boston University

VIII Organization

Vijay Varadharajan Macquarie University
Andreas Wespi IBM Zurich Research Laboratory
Diego Zamboni IBM Zurich Research Laboratory
Jianying Zhou Institute for Infocomm Research

Steering Committee

Marc Dacier (Chair) EURECOM, France
Hervé Debar France Télécom R&D, France
Deborah Frincke Pacific Northwest National Lab, USA
Ming-Yuh Huang The Boeing Company, USA
Erland Jonsson Chalmers, Sweden
Wenke Lee Georgia Tech, USA
Ludovic Mé Supélec, France
Alfonso Valdes SRI International, USA
Giovanni Vigna University of California, Santa Barbara, USA
Andreas Wespi IBM Research, Switzerland
S. Felix Wu UC Davis, USA
Diego Zamboni IBM Research, Switzerland
Christopher Kruegel University of California, Santa Barbara, USA /

Technical University of Vienna, Austria

Additional Reviewers

Hirotake Abe Toyohashi University of Technology
Manos Antonakakis Georgia Tech
Venkat Balakrishnan Macquarie University
Ulrich Bayer Technical University of Vienna
Leyla Bilge Technical University of Vienna
Damiano Bolzoni University of Twente
Gabriela Cretu Columbia University
Italo Dacosta Georgia Tech
Loic Duflot DCSSI
Thomas Dullien Zynamics
Jose M. Fernandez École Polytechnique de Montréal
Vanessa Frias-Martinez Columbia University
Jochen Haller SAP Research
Philip Hendrix Harvard University
Yoshiaki Hori Kyushu University
Kyle Ingols MIT Lincoln Laboratory
Florian Kerschbaum SAP Research
Hyung Chan Kim Columbia University
Andreas Lang University of Magdeburg
Pavel Laskov Fraunhofer FIRST & University of Tuebingen
Timothy Leek MIT Lincoln Laboratory

Organization IX

Zhenkai Liang National University of Singapore
Ludovic Mé Supélec
Chee Meng Tey
Philip Miseldine SAP Research
Andreas Moser Technical University of Vienna
Jon Oberhide University of Michigan
Yoshihiro Oyama The University of Electro-Communications
Yoshiaki Shiraishi Nagoya Institute of Technology
Sushant Sinha University of Michigan
Yingbo Song Columbia University
Abhinav Srivastava Georgia Tech
Eric Totel Supélec
Uday Tupakula Macquarie University
Shobha Venkataraman CMU
Peter Wurzinger Technical University of Vienna
Sachiko Yoshihama IBM Tokyo Research Laboratory
Weiliang Zhao Macquarie University

Sponsoring Institutions

The Institute for Information Infrastructure Protection (I3P)
Symantec Corporation
IBM
MIT Lincoln Laboratory

Table of Contents

Recent Advances in Intrusion Detection

Rootkit Prevention

Guest-Transparent Prevention of Kernel Rootkits with VMM-Based
Memory Shadowing . 1

Ryan Riley, Xuxian Jiang, and Dongyan Xu

Countering Persistent Kernel Rootkits through Systematic Hook
Discovery . 21

Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang

Malware Detection and Prevention

Tamper-Resistant, Application-Aware Blocking of Malicious Network
Connections . 39

Abhinav Srivastava and Jonathon Giffin

A First Step towards Live Botmaster Traceback . 59
Daniel Ramsbrock, Xinyuan Wang, and Xuxian Jiang

A Layered Architecture for Detecting Malicious Behaviors 78
Lorenzo Martignoni, Elizabeth Stinson, Matt Fredrikson,
Somesh Jha, and John C. Mitchell

A Study of the Packer Problem and Its Solutions . 98
Fanglu Guo, Peter Ferrie, and Tzi-cker Chiueh

High Performance Intrusion Detection and Evasion

Gnort: High Performance Network Intrusion Detection Using Graphics
Processors . 116

Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis,
Evangelos P. Markatos, and Sotiris Ioannidis

Predicting the Resource Consumption of Network Intrusion Detection
Systems . 135

Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer

High-Speed Matching of Vulnerability Signatures . 155
Nabil Schear, David R. Albrecht, and Nikita Borisov

XII Table of Contents

Web Application Testing and Evasion

Swarm Attacks against Network-Level Emulation/Analysis 175
Simon P. Chung and Aloysius K. Mok

Leveraging User Interactions for In-Depth Testing of Web
Applications . 191

Sean McAllister, Engin Kirda, and Christopher Kruegel

Model-Based Covert Timing Channels: Automated Modeling and
Evasion . 211

Steven Gianvecchio, Haining Wang, Duminda Wijesekera, and
Sushil Jajodia

Alert Correlation and Worm Detection

Optimal Cost, Collaborative, and Distributed Response to Zero-Day
Worms - A Control Theoretic Approach . 231

Senthilkumar G. Cheetancheri, John-Mark Agosta, Karl N. Levitt,
Felix Wu, and Jeff Rowe

On the Limits of Payload-Oblivious Network Attack Detection 251
M. Patrick Collins and Michael K. Reiter

Determining Placement of Intrusion Detectors for a Distributed
Application through Bayesian Network Modeling . 271

Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon

A Multi-Sensor Model to Improve Automated Attack Detection 291
Magnus Almgren, Ulf Lindqvist, and Erland Jonsson

Anomaly Detection and Network Traffic Analysis

Monitoring SIP Traffic Using Support Vector Machines 311
Mohamed Nassar, Radu State, and Olivier Festor

The Effect of Clock Resolution on Keystroke Dynamics 331
Kevin Killourhy and Roy Maxion

A Comparative Evaluation of Anomaly Detectors under Portscan
Attacks . 351

Ayesha Binte Ashfaq, Maria Joseph Robert, Asma Mumtaz,
Muhammad Qasim Ali, Ali Sajjad, and Syed Ali Khayam

Advanced Network Fingerprinting . 372
Humberto J. Abdelnur, Radu State, and Olivier Festor

Table of Contents XIII

Posters

On Evaluation of Response Cost for Intrusion Response Systems
(Extended Abstract) . 390

Natalia Stakhanova, Chris Strasburg, Samik Basu, and
Johnny S. Wong

WebIDS: A Cooperative Bayesian Anomaly-Based Intrusion Detection
System for Web Applications (Extended Abstract) 392

Nathalie Dagorn

Evading Anomaly Detection through Variance Injection Attacks on
PCA (Extended Abstract) . 394

Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang,
Anthony D. Joseph, Shing-hon Lau, Nina Taft, and J.D. Tygar

Anticipating Hidden Text Salting in Emails (Extended Abstract) 396
Christina Lioma, Marie-Francine Moens, Juan-Carlos Gomez,
Jan De Beer, Andre Bergholz, Gerhard Paass, and Patrick Horkan

Improving Anomaly Detection Error Rate by Collective Trust
Modeling (Extended Abstract) . 398

Martin Rehák, Michal Pěchouček, Karel Bartoš, Martin Grill,
Pavel Čeleda, and Vojtěch Krmı́ček

Database Intrusion Detection and Response (Extended Abstract) 400
Ashish Kamra and Elisa Bertino

An Empirical Approach to Identify Information Misuse by Insiders
(Extended Abstract) . 402

Deanna D. Caputo, Greg Stephens, Brad Stephenson,
Megan Cormier, and Minna Kim

Page-Based Anomaly Detection in Large Scale Web Clusters Using
Adaptive MapReduce (Extended Abstract) . 404

Junsup Lee and Sungdeok Cha

Automating the Analysis of Honeypot Data (Extended Abstract) 406
Olivier Thonnard, Jouni Viinikka, Corrado Leita, and Marc Dacier

Anomaly and Specification Based Cognitive Approach for Mission-Level
Detection and Response (Extended Abstract) . 408

Paul Rubel, Partha Pal, Michael Atighetchi, D. Paul Benjamin, and
Franklin Webber

Monitoring the Execution of Third-Party Software on Mobile Devices
(Extended Abstract) . 410

Andrew Brown and Mark Ryan

XIV Table of Contents

Streaming Estimation of Information-Theoretic Metrics for Anomaly
Detection (Extended Abstract) . 412

Sergey Bratus, Joshua Brody, David Kotz, and Anna Shubina

Bots Behaviors vs. Human Behaviors on Large-Scale Communication
Networks (Extended Abstract) . 415

Wei Lu and Ali A. Ghorbani

Anomalous Taint Detection . 417
Lorenzo Cavallaro and R. Sekar

Deep Packet Inspection Using Message Passing Networks
(Extended Abstract) . 419

Divya Jain, K. Vasanta Lakshmi, and Priti Shankar

System Call API Obfuscation(Extended Abstract) 421
Abhinav Srivastava, Andrea Lanzi, and Jonathon Giffin

Author Index . 423

Guest-Transparent Prevention of Kernel

Rootkits with VMM-Based Memory Shadowing

Ryan Riley1, Xuxian Jiang2, and Dongyan Xu1

1 CERIAS and Department of Computer Science, Purdue University
{rileyrd,dxu}@cs.purdue.edu

2 Department of Computer Science, North Carolina State University
jiang@cs.ncsu.edu

Abstract. Kernel rootkits pose a significant threat to computer systems
as they run at the highest privilege level and have unrestricted access to
the resources of their victims. Many current efforts in kernel rootkit de-
fense focus on the detection of kernel rootkits – after a rootkit attack has
taken place, while the smaller number of efforts in kernel rootkit preven-
tion exhibit limitations in their capability or deployability. In this paper
we present a kernel rootkit prevention system called NICKLE which ad-
dresses a common, fundamental characteristic of most kernel rootkits: the
need for executing their own kernel code. NICKLE is a lightweight, vir-
tual machine monitor (VMM) based system that transparently prevents
unauthorized kernel code execution for unmodified commodity (guest)
OSes. NICKLE is based on a new scheme called memory shadowing,
wherein the trusted VMM maintains a shadow physical memory for a
running VM and performs real-time kernel code authentication so that
only authenticated kernel code will be stored in the shadow memory.
Further, NICKLE transparently routes guest kernel instruction fetches
to the shadow memory at runtime. By doing so, NICKLE guarantees
that only the authenticated kernel code will be executed, foiling the ker-
nel rootkit’s attempt to strike in the first place. We have implemented
NICKLE in three VMM platforms: QEMU+KQEMU, VirtualBox, and
VMware Workstation. Our experiments with 23 real-world kernel rootk-
its targeting the Linux or Windows OSes demonstrate NICKLE’s effec-
tiveness. Furthermore, our performance evaluation shows that NICKLE
introduces small overhead to the VMM platform.

1 Introduction

Kernel-level rootkits have proven to be a formidable threat to computer sys-
tems: By subverting the operating system (OS) kernel, a kernel rootkit embeds
itself into the compromised kernel and stealthily inflicts damages with full, un-
restricted access to the system’s resources. Effectively omnipotent in the com-
promised systems, kernel rootkits have increasingly been used by attackers to
hide their presence and prolong their control over their victims.

There have been a number of recent efforts in mitigating the threat of kernel
rootkits and they can mainly be classified into two categories: (1) detecting the

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R. Riley, X. Jiang, and D. Xu

presence of kernel rootkits in a system [1, 2, 3, 4, 5] and (2) preventing the
compromise of OS kernel integrity [6, 7]. In the first category, Copilot [4] pro-
poses the use of a separate PCI card to periodically grab the memory image of
a running OS kernel and analyze it to determine if the kernel has been compro-
mised. The work which follows up Copilot [2] further extends that capability by
detecting the violation of kernel integrity using semantic specifications of static
and dynamic kernel data. SBCFI [3] reports violations of the kernel’s control
flow integrity using the kernel’s control-flow graph. One common attribute of
approaches in this category is the detection of a kernel rootkit’s presence based
on certain symptoms exhibited by the kernel after the kernel rootkit has already
struck. As a result, these approaches are, by design, not capable of preventing
kernel rootkit execution in the first place.

In the second category, Livewire [6], based on a virtual machine monitor
(VMM), aims at protecting the guest OS kernel code and critical kernel data
structures from being modified. However, without modifying the original ker-
nel code, an attacker may choose to load malicious rootkit code into the kernel
space by either exploiting kernel vulnerabilities or leveraging certain kernel fea-
tures (e.g., loadable kernel module support in modern OSes). More recently,
SecVisor [7] is proposed as a hypervisor-based solution to enforce the W⊕X
property of memory pages of the guest machine, with the goal of preventing
unauthorized code from running with kernel-level privileges. SecVisor requires
modifying kernel source code and needs the latest hardware-based virtualiza-
tion support and thus does not support closed-source OSes or legacy hardware
platforms. Moreover, SecVisor is not able to function if the OS kernel has mixed
pages that contain both code and data. Unfortunately, such mixed kernel pages
do exist in modern OSes (e.g., Linux and Windows as shown in Section 2.2).

To complement the existing approaches, we present NICKLE (“No Instruction
Creeping into Kernel Level Executed”)1, a lightweight, VMM-based system that
provides an important guarantee in kernel rootkit prevention: No unauthorized
code can be executed at the kernel level. NICKLE achieves this guarantee on top
of legacy hardware and without requiring guest OS kernel modification. As such,
NICKLE is readily deployable to protect unmodified guest OSes (e.g., Fedora
Core 3/4/5 and Windows 2K/XP) against kernel rootkits. NICKLE is based on
observing a common, fundamental characteristic of most modern kernel rootkits:
their ability to execute unauthorized instructions at the kernel level. By removing
this ability, NICKLE significantly raises the bar for successfully launching kernel
rootkit attacks.

To achieve the “NICKLE” guarantee, we first observe that a kernel rootkit
is able to access the entire physical address space of the victim machine. This
observation inspires us to impose restricted access to the instructions in the
kernel space: only authenticated kernel instructions can be fetched for execution.
Obviously, such a restriction cannot be enforced by the OS kernel itself. Instead,

1 With a slight abuse of terms, we use NICKLE to denote both the system itself and
the guarantee achieved by the system – when used in quotation marks.

Guest-Transparent Prevention of Kernel Rootkits 3

a natural strategy is to enforce such memory access restriction using the VMM,
which is at a privilege level higher than that of the (guest) OS kernel.

Our main challenge is to realize the above VMM-level kernel instruction fetch
restriction in a guest-transparent, real-time, and efficient manner. An intuitive
approach would be to impose W⊕X on kernel memory pages to protect existing
kernel code and prevent the execution of injected kernel code. However, due to
the existence of mixed kernel pages in commodity OSes, this approach is not
viable for guest-transparent protection. To address that, we propose a VMM-
based memory shadowing scheme for NICKLE that will work in the face of mixed
kernel pages. More specifically, for a virtual machine (VM), the VMM creates
two distinct physical memory regions: a standard memory and a shadow memory.
The VMM enforces that the guest OS kernel cannot access the shadow memory.
Upon the VM’s startup, the VMM performs kernel code authentication and
dynamically copies authenticated kernel instructions from the standard memory
to the shadow memory. At runtime, any instruction executed in the kernel space
must be fetched from the shadow memory instead of from the standard memory.
To enforce this while maintaining guest transparency, a lightweight guest memory
access indirection mechanism is added to the VMM. As such, a kernel rootkit
will never be able to execute any of its own code as the code injected into the
kernel space will not be able to reach the shadow memory.

We have implemented NICKLE in three VMMs: QEMU[8] with the KQEMU
accelerator, VirtualBox [9], and VMware Workstation. Our evaluation results
show that NICKLE incurs a reasonable impact on the VMM platform (e.g.,
1.01% on QEMU+KQEMU and 5.45% on VirtualBox when running UnixBench).
NICKLE is shown capable of transparently protecting a variety of commodity
OSes, including RedHat 8.0 (Linux 2.4.18 kernel), Fedora Core 3 (Linux 2.6.15
kernel), Windows 2000, and Windows XP. Our results show that NICKLE is
able to prevent and gracefully respond to 23 real-world kernel rootkits targeting
the above OSes, without requiring details of rootkit attack vectors. Finally, our
porting experience indicates that the NICKLE design is generic and realizable
in a variety of VMMs.

2 NICKLE Design

2.1 Design Goals and Threat Model

Goals and Challenges. NICKLE has the following three main design goals:
First, as its name indicates, NICKLE should prevent any unauthorized code
from being executed in the kernel space of the protected VM. The challenges
of realizing this goal come from the real-time requirement of prevention as well
as from the requirement that the guest OS kernel should not be trusted to
initiate any task of the prevention – the latter requirement is justified by the
kernel rootkit’s highest privilege level inside the VM and the possible existence
of zero-day vulnerabilities inside the guest OS kernel. NICKLE overcomes these
challenges using the VMM-based memory shadowing scheme (Section 2.2). We

4 R. Riley, X. Jiang, and D. Xu

VM

Guest OS

Standard Memory

Kernel code

Kernel code

Shadow Memory

Auth. kernel code

Auth. kernel code

VMM

Physical
Memory

NICKLE Module

Applications

Kernel code authentication and copying

(a) Kernel code authorization and copying

VM

Guest OS

VMM
NICKLE Module

Guest physical address

Physical
Memory

Standard Memory

Kernel code

Kernel code

Applications

Other memory accesses Guest kernel instruction fetch

Shadow Memory

Auth. kernel code

Auth. kernel code

(b) Guest physical address redirection

Fig. 1. Memory shadowing scheme in NICKLE

note that the scope of NICKLE is focused on preventing unauthorized kernel
code execution. The prevention of other types of attacks (e.g., data-only attacks)
is a non-goal and related solutions will be discussed in Section 5.

Second, NICKLE should not require modifications to the guest OS kernel.
This allows commodity OSes to be supported “as is” without recompilation and
reinstallation. Correspondingly, the challenge in realizing this goal is to make
the memory shadowing scheme transparent to the VM with respect to both the
VM’s function and performance.

Third, the design of NICKLE should be generically portable to a range of
VMMs. Given this, the challenge is to ensure that NICKLE has a small footprint
within the VMM and remains lightweight with respect to performance impact.
In this paper we focus on supporting NICKLE in software VMMs. However, we
expect that the exploitation of recent hardware-based virtualization extensions
[10, 11] will improve NICKLE’s performance even further.

In addition, it is also desirable that NICKLE facilitate various flexible response
mechanisms to be activated upon the detection of an unauthorized kernel code
execution attempt. A flexible response, for example, is to cause only the offending
process to fail without stopping the rest of the OS. The challenge in realizing
this is to initiate flexible responses entirely from outside the protected VM and
minimize the side-effects on the running OS.
Threat Model and System Assumption. We assume the following ad-
versary model when designing NICKLE: (1) The kernel rootkit has the highest
privilege level inside the victim VM (e.g., the root privilege in a UNIX system);
(2) The kernel rootkit has full access to the VM’s memory space (e.g., through
/dev/mem in Linux); (3) The kernel rootkit aims at stealthily maintaining and
hiding its presence in the VM and to do so, the rootkit will need to execute its
own (malicious) code in the kernel space. We note that such a need exists in
most kernel rootkits today, and we will discuss possible exceptions in Section 5.

Guest-Transparent Prevention of Kernel Rootkits 5

Meanwhile, we assume a trusted VMM that provides VM isolation. This as-
sumption is shared by many other VMM-based security research efforts [1, 6, 12,
13, 14, 15]. We will discuss possible attacks (e.g., VM fingerprinting) in Section
5. With this assumption, we consider the threat from DMA attacks launched
from physical hosts outside of the scope of this work.2

2.2 Enabling Scheme and Techniques

Memory Shadowing. The memory shadowing scheme enforces the “NICKLE”
property: For a VM, apart from its standard physical memory space, the VMM
also allocates a separate physical memory region as the VM’s shadow memory
(Figure 1) which is transparent to the VM and controlled by the VMM. Upon
the startup of the VM’s OS, all known-good, authenticated guest kernel instruc-
tions will be copied from the VM’s standard memory to the shadow memory
(Figure 1(a)). At runtime, when the VM is about to execute a kernel instruc-
tion, the VMM will transparently redirect the kernel instruction fetch to the
shadow memory (Figure 1(b)). All other memory accesses (to user code, user
data, and kernel data) will proceed unhindered in the standard memory.

The memory shadowing scheme is motivated by the observation that modern
computers define a single memory space for all code – both kernel code and user
code – and data. With the VMM running at a higher privilege level, we can now
“shadow” the guest kernel code space with elevated (VMM-level) privileges to
ensure that the guest OS kernel itself cannot access the shadowed kernel code
space containg the authenticated kernel instructions. By doing so, even if a kernel
rootkit is able to inject its own code into the VM’s standard memory, the VMM
will ensure that the malicious code never gets copied over to the shadow memory.
Moreover, an attempt to execute the malicious code can be caught immediately
due to the inconsistency between the standard and shadow memory contents.

The astute reader may be asking “How is NICKLE functionally different from
W⊕X?” In essence, W⊕X is a scheme that enforces the property, “A given
memory page will never be both writable and executable at the same time.”
The basic premise behind this scheme is that if a page cannot be written to
and later executed from, code injection becomes impossible. There are two main
reasons why this scheme is not adequate for stopping kernel level rootkits:

First, W⊕X is not able to protect mixed kernel pages with both code and
data, which do exist in current OSes. As a specific example, in a Fedora Core
3 VM (with the 32-bit 2.6.15 kernel and the NX protection), the Linux kernel
stores the main static kernel text in memory range [0xc0100000, 0xc02dea50]
and keeps the system call table starting from virtual address 0xc02e04a0. No-
tice that the Linux kernel uses a large page size (2MB) to manage the physical
memory,3 which means that the first two kernel pages cover memory ranges
2 There exists another type of DMA attack that is initiated from within a guest VM.

However, since the VMM itself virtualizes or mediates the guest DMA operations,
NICKLE can be easily extended to intercede and block them.

3 If the NX protection is disabled, those kernel pages containing static kernel text will
be of 4MB in size.

6 R. Riley, X. Jiang, and D. Xu

[0xc0000000, 0xc0200000) and [0xc0200000, 0xc0400000), respectively. As a re-
sult, the second kernel page contains both code and data, and thus must be
marked both writable and executable – This conflicts with the W⊕X scheme.
Mixed pages also exist for accommodating the code and data of Linux loadable
kernel modules (LKMs) – an example will be shown in Section 4.1. For the Win-
dows XP kernel (with SP2), our investigation has confirmed the existence of
mixed pages as well [16]. On the other hand, NICKLE is able to protect mixed
pages.4

Second, W⊕X assumes only one execution privilege level while kernel rootkit
prevention requires further distinction between user and kernel code pages. For
example, a page may be set executable in user mode but non-executable in
kernel mode. In other words, the sort of permission desired is not W⊕X, but
W⊕KX (i.e. not writable and kernel-executable at the same time.) Still, we point
out that the enforcement of W⊕KX is not effective for mixed kernel pages and,
regardless, not obvious to construct on current processors that do not allow such
fine-grained memory permissions.

Another question that may be asked is, “Why adopt memory shadowing when
one could simply guard kernel code by keeping track of the ranges of valid
kernel code addresses ?” Indeed, NICKLE is guided by the principle of kernel
code guarding, but does so differently from the brute-force approach of track-
ing/checking kernel code address ranges – mainly for performance reasons. More
specifically, the brute-force approach could store the address ranges of valid
kernel code in a data structure (e.g., tree) with O(logN) search time. On the
other hand, memory shadowing allows us to locate the valid kernel instruction
in the shadow memory in O(1) time thus significantly reducing the process-
ing overhead. In addition, memory shadowing makes it convenient to compare
the instructions in the shadow memory to those in the standard memory. If
they differ (indicating malicious kernel code injection or modification), a num-
ber of response actions can be implemented based on the difference (details in
Section 3).
Guest Memory Access Indirection. To realize the guest memory shadow-
ing scheme, two issues need to be resolved. First, how does NICKLE fill up
the guest shadow memory with authenticated kernel code? Second, how does
NICKLE fetch authenticated kernel instructions for execution while detecting
and preventing any attempt to execute unauthorized code in the kernel space?
We note that our solutions have to be transparent to the guest OS (and thus
to the kernel rootkits). We now present the guest memory access indirection
technique to address these issues.

4 We also considered the option of eliminating mixed kernel pages. However, doing so
would require kernel source code modification, which conflicts with our second design
goal. Even given source code access, mixed page elimination is still a complex task
(more than just page-aligning data). In fact, a kernel configuration option with a
similar purpose exists in the latest Linux kernel (version 2.6.23). But after we enabled
the option, we still found more than 700 mixed kernel pages. NICKLE instead simply
avoids such complexity and works even with mixed kernel pages.

Guest-Transparent Prevention of Kernel Rootkits 7

Guest memory access indirection is performed between the VM and its mem-
ory (standard and shadow) by a thin NICKLE module inside the VMM. It has
two main functions, kernel code authentication and copying at VM startup and
upon kernel module loading as well as guest physical address redirection at run-
time (Figure 1).
Kernel Code Authentication and Copying. To fill up the shadow memory with
authenticated kernel instructions, the NICKLE module inside the VMM needs to
first determine the accurate timing for kernel code authentication and copying.
To better articulate the problem, we will use the Linux kernel as an example.
There are two specific situations throughout the VM’s lifetime when kernel code
needs to be authorized and shadowed: One at the VM’s startup and one upon
the loading/unloading of loadable kernel modules (LKMs). When the VM is
starting up, the guest’s shadow memory is empty. The kernel bootstrap code
then decompresses the kernel. Right after the decompression and before any
processes are executed, NICKLE will use a cryptographic hash to verify the
integrity of the kernel code (this is very similar to level 4 in the secure bootstrap
procedure [17]) and then copy the authenticated kernel code from the standard
memory into the shadow memory (Figure 1(a)). As such, the protected VM will
start with a known clean kernel.

The LKM support in modern OSes complicates our design. From NICKLE’s
perspective, LKMs are considered injected kernel code and thus need to be au-
thenticated and shadowed before their execution. The challenge for NICKLE is
to externally monitor the guest OS and detect the kernel module loading/unload-
ing events in real-time. NICKLE achieves this by leveraging our earlier work on
non-intrusive VM monitoring and semantic event reconstruction [1, 14]. When
NICKLE detects the loading of a new kernel module, it intercepts the VM’s exe-
cution and performs kernel module code authentication and shadowing. The au-
thentication is performed by taking a cryptographic hash of the kernel module’s
code segment and comparing it with a known correct value, which is computed
a priori off-line and provided by the administrator or distribution maintainer.5

If the hash values don’t match, the kernel module’s code will not be copied to
the shadow memory.

Through kernel code authentication and copying, only authenticated kernel
code will be loaded into the shadow memory, thus blocking the copying of ma-
licious kernel rootkit code or any other code injected by exploiting kernel vul-
nerabilities, including zero-day vulnerabilities. It is important to note that nei-
ther kernel startup hashing nor kernel module hashing assumes trust in the
guest OS. Should the guest OS fail to cooperate, no code will be copied to the
shadow memory, and any execution attempts from that code will be detected and
refused.
Guest Physical Address Redirection. At runtime, the NICKLE module inside the
VMM intercepts the memory accesses of the VM after the “guest virtual address
→ guest physical address” translation. As such, NICKLE does not interfere
5 We have developed an off-line kernel module profiler that, given a legitimate kernel

module, will compute the corresponding hash value (Section 3.1).

8 R. Riley, X. Jiang, and D. Xu

with – and is therefore transparent to – the guest OS’s memory access handling
procedure and virtual memory mappings. Instead, it takes the guest physical
address, determines the type of the memory access (kernel, user; code, data;
etc.), and routes it to either the standard or shadow memory (Figure 1(b)).

We point out that the interception of VM memory accesses can be provided
by existing VMMs (e.g., QEMU+KQEMU, VirtualBox, and VMware). NICKLE
builds on this interception capability by adding the guest physical address redi-
rection logic. First, using a simple method to check the current privilege level
of the processor, NICKLE determines whether the current instruction fetch is
for kernel code or for user code: If the processor is in supervisor mode (CPL=0
on x86), we infer that the fetch is for kernel code and NICKLE will verify and
route the instruction fetch to the shadow memory. Otherwise, the processor is in
user mode and NICKLE will route the instruction fetch to the standard memory.
Data accesses of either type are always routed to the standard memory.

One might object that an attacker may strive to ensure that his injected
kernel code will run when the processor is in user mode. However, this creates a
significant challenge wherein the attacker would have to fundamentally change
a running kernel to operate in both supervisor and user mode without changing
any existing kernel code. The authors do not consider such a rootkit to be a
possibility without a severe loss of rootkit functionality.

Flexible Responses to Unauthorized Kernel Code Execution Attempts
If an unauthorized execution attempt is detected, a natural follow-up question
is, “How should NICKLE respond to an attempt to execute an unauthenticated
kernel instruction?” Given that NICKLE sits between the VM and its memory
and has a higher privilege level than the guest OS, it possesses a wide range of
options and capabilities to respond. We describe two response modes facilitated
by the current NICKLE system.
Rewrite mode: NICKLE will dynamically rewrite the malicious kernel code with
code of its own. The response code can range from OS-specific error handling
code to a well-crafted payload designed to clean up the impact of a rootkit
installation attempt. Note that this mode may require an understanding of the
guest OS to ensure that valid, sensible code is returned.
Break mode: NICKLE will take no action and route the instruction fetch to
the shadow memory. In the case where the attacker only modifies the origi-
nal kernel code, this mode will lead to the execution of the original code – a
desirable situation. However, in the case where new code is injected into the
kernel, this mode will lead to an instruction fetch from presumably null content
(containing 0s) in the shadow memory. As such, break mode prevents malicious
kernel code execution but may or may not be graceful depending on how the OS
handles invalid code execution faults.

3 NICKLE Implementation

To validate the portability of the NICKLE design, we have implemented
NICKLE in three VMMs: QEMU+KQEMU [8], VirtualBox [9], and VMware

Guest-Transparent Prevention of Kernel Rootkits 9

Workstation6. Since the open-source QEMU+KQEMU is the VMM platform
where we first implemented NICKLE, we use it as the representative VMM to
describe our implementation details. For most of this section, we choose RedHat
8.0 as the default guest OS. We will also discuss the limitations of our current
prototype in supporting Windows guest OSes.

3.1 Memory Shadowing and Guest Memory Access Indirection

To implement memory shadowing, we have considered two options: (1) NICKLE
could interfere as instructions are executed; or (2) NICKLE could interfere when
instructions are dynamically translated. Note that dynamic instruction transla-
tion is a key technique behind existing software-based VMMs, which transpar-
ently translates guest machine code into native code that will run in the physical
host. We favor the second option for performance reasons: By being part of the
translator, NICKLE can take advantage of the fact that translated code blocks are
cached. In QEMU+KQEMU, for example, guest kernel instructions are grouped
into “blocks” and are dynamically translated at runtime. After a block of code is
translated, it is stored in a cache to make it available for future execution. In terms
of NICKLE, this means that if we intercede during code translation we need not
intercede as often as we would if we did so during code execution, resulting in a
smaller impact on system performance.

The pseudo-code for memory shadowing and guest memory access indirection
is shown in Algorithm 1. Given the guest physical address of an instruction to
be executed by the VM, NICKLE first checks the current privilege level of the
processor (CPL). If the processor is in supervisor mode, NICKLE knows that it is
executing in kernel mode. Using the guest physical address, NICKLE compares
the content of the standard and shadow memories to determine whether the
kernel instruction to be executed is already in the shadow memory (namely
has been authenticated). If so, the kernel instruction is allowed to be fetched,
translated, and executed. If not, NICKLE will determine if the guest OS kernel
is being bootstrapped or a kernel module is being loaded. If either is the case,
the corresponding kernel text or kernel module code will be authenticated and,
if successful, shadowed into the shadow memory. Otherwise, NICKLE detects an
attempt to execute an unauthorized instruction in the kernel space and prevents
it by executing our response to the attempt.

In Algorithm 1, the way to determine whether the guest OS kernel is being
bootstrapped or a kernel module is being loaded requires OS-specific knowledge.
Using the Linux 2.4 kernel as an example, when the kernel’s startup 32 function,
located at physical address 0x00100000 or virtual address 0xc0100000 as
shown in the System.map file, is to be executed, we know that this is the first

6 We acknowledge the VMware Academic Program for providing the source code. Due
to space and licensing constraints, however, the VMware port is not further discussed
or evaluated in this work. Some additional discussion of the port is available in our
technical report [16].

10 R. Riley, X. Jiang, and D. Xu

Algorithm 1. Algorithm for Memory Shadowing and Guest Memory Access
Indirection
Input: (1) GuestPA: guest physical address of instruction to be executed; (2) ShadowMEM[]:

shadow memory; (3) StandardMEM[]: standard memory

if !IsUserMode(vcpu) AND ShadowMEM[GuestPA] != StandardMEM[GuestPA] then1
if (kernel is being bootstrapped) OR (module is being loaded) then2

Authenticate and shadow code;3
else4

Unauthorized execution attempt - Execute response;5
end6

end7
Fetch, translate, and cache code;8

instruction executed to load the kernel and we can intercede appropriately. For
kernel module loading, there is a specific system call to handle that. As such,
the NICKLE module inside the VMM can intercept the system call and perform
kernel module authentication and shadowing right before the module-specific
init module routine is executed.

In our implementation, the loading of LKMs requires special handling. More
specifically, providing a hash of a kernel module’s code space ends up being
slightly complicated in practice. This is due to the fact that kernel modules
are dynamically relocatable and hence some portions of the kernel module’s
code space may be modified by the module loading function. Accordingly, the
cryptographic hash of a loaded kernel module will be different depending on
where it is relocated to. To solve this problem, we perform an off-line, a priori
profiling of the legitimate kernel module binaries. For each known good module
we calculate the cryptographic hash by excluding the portions of the module that
will be changed during relocation. In addition, we store a list of bytes affected
by relocation so that the same procedure can be repeated by NICKLE during
runtime hash evaluation of the same module.

We point out that although the implementation of NICKLE requires certain
guest OS-specific information, it does not require modifications to the guest
OS itself. Still, for a closed-source guest OS (e.g., Windows), lack of information
about kernel bootstrapping and dynamic kernel code loading may lead to certain
limitations. For example, not knowing the timing and “signature” of dynamic
(legal) kernel code loading events in Windows, the current implementation of
NICKLE relies on the administrator to designate a time instance when all au-
thorized Windows kernel code has been loaded into the standard memory. Not
knowing the exact locations of the kernel code, NICKLE traverses the shadow
page table and copies those executable pages located in the kernel space from the
standard memory to the shadow memory, hence creating a “gold standard” to
compare future kernel code execution against. From this time on, NICKLE can
transparently protect the Windows OS kernel from executing any unauthorized
kernel code. Moreover, this limited implementation can be made complete when
the relevant information becomes available through vendor disclosure or reverse
engineering.

Guest-Transparent Prevention of Kernel Rootkits 11

3.2 Flexible Response

In response to an attempt to execute an unauthorized instruction in the kernel
space, NICKLE provides two response modes. Our initial implementation of
NICKLE simply re-routes the instruction fetch to the shadow memory for a
string of zeros (break mode). As to be shown in our experiments, this produces
some interesting outcomes: a Linux guest OS would react to this by triggering a
kernel fault and terminating the offending process. Windows, on the other hand,
reacts to the NICKLE response by immediately halting with a blue screen – a
less graceful outcome.

In search of a more flexible response mode, we find that by rewriting the
offending instructions at runtime (rewrite mode), NICKLE can respond in a less
disruptive way. We also observe that most kernel rootkits analyzed behave the
following way: They first insert a new chunk of malicious code into the kernel
space; then they somehow ensure their code is call’d as a function. With this
observation, we let NICKLE dynamically replace the code with return -1;,
which in assembly is: mov $0xffffffff, %eax; ret. The main kernel text or
the kernel module loading process will interpret this as an error and gracefully
handle it: Our experiments with Windows 2K/XP, Linux 2.4, and Linux 2.6 guest
OSes all confirm that NICKLE’s rewrite mode is able to handle the malicious
kernel code execution attempt by triggering the OS to terminate the offending
process without causing a fault in the OS.

3.3 Porting Experience

We have experienced no major difficulty in porting NICKLE to other VMMs. The
NICKLE implementations in both VMMs are lightweight: The SLOC (source
lines of code) added to implement NICKLE in QEMU+KQEMU, VirtualBox,
and VMware Workstation are 853, 762, and 1181 respectively. As mentioned
earlier, we first implemented NICKLE in QEMU+KQEMU. It then took less
than one week for one person to get NICKLE functional in VirtualBox 1.5.0
OSE, details of which can be found in our technical report [16].

4 NICKLE Evaluation

4.1 Effectiveness Against Kernel Rootkits

We have evaluated the effectiveness of NICKLE with 23 real-world kernel rootk-
its. They consist of nine Linux 2.4 rootkits, seven Linux 2.6 rootkits, and seven
Windows rootkits7 that can infect Windows 2000 and/or XP. The selected rootk-
its cover the main attack platforms and attack vectors thus providing a good
representation of the state-of-the-art kernel rootkit technology. Table 1 shows

7 There is a Windows rootkit named hxdef or Hacker Defender, which is usually clas-
sified as a user-level rootkit. However, since hxdef contains a device driver which will
be loaded into the kernel, we consider it a kernel rootkit in this paper.

12 R. Riley, X. Jiang, and D. Xu

Table 1. Effectiveness of NICKLE in detecting and preventing 23 real-world kernel
rootkits (DKOM† is a common rootkit technique which directly manipulates kernel
objects; “partial”‡ means the in-kernel component of the Hacker Defender rootkit fails;
BSOD§ stands for “Blue Screen Of Death”)

Outcome of NICKLE Response
Guest OS Rootkit Attack Vector Rewrite Mode Break Mode

Prevented? Outcome Prevented? Outcome

Linux 2.4

adore 0.42, 0.53 LKM � insmod fails � Seg. fault
adore-ng 0.56 LKM � insmod fails � Seg. fault

knark LKM � insmod fails � Seg. fault
rkit 1.01 LKM � insmod fails � Seg. fault
kbdv3 LKM � insmod fails � Seg. fault
allroot LKM � insmod fails � Seg. fault

rial LKM � insmod fails � Seg. fault
Phantasmagoria LKM � insmod fails � Seg. fault

SucKIT 1.3b /dev/kmem � Installation fails silently � Seg. fault

Linux 2.6

adore-ng 0.56 LKM � insmod fails � Seg. fault
eNYeLKM v1.2 LKM � insmod fails � Seg. fault

sk2rc2 /dev/kmem � Installation fails � Seg. fault
superkit /dev/kmem � Installation fails � Seg. fault

mood-nt 2.3 /dev/kmem � Installation fails � Seg. fault
override LKM � insmod fails � Seg. fault

Phalanx b6 /dev/mem � Installation crashes � Seg. fault

Windows 2K/XP

FU DKOM†
� Driver loading fails � BSOD§

FUTo DKOM � Driver loading fails � BSOD
he4hook 215b6 Driver � Driver loading fails � BSOD

hxdef 1.0.0 revisited Driver partial‡ Driver loading fails � BSOD
hkdoor11 Driver � Driver loading fails � BSOD
yyt hac Driver � Driver loading fails � BSOD

NT Rootkit Driver � Driver loading fails � BSOD

our experimental results: NICKLE is able to detect and prevent the execution of
malicious kernel code in all experiments using both rewrite and break response
modes. Finally, we note that NICKLE in all three VMMs is able to achieve the
same results. In the following, we present details of two representative experi-
ments. Some additional experiments are presented in [16].

SucKIT Rootkit Experiment. The SucKIT rootkit [18] for Linux 2.4 infects
the Linux kernel by directly modifying the kernel through the /dev/kmem inter-
face. During installation SucKIT first allocates memory within the kernel, injects
its code into the allocated memory, and then causes the code to run as a function.
Figure 2 shows NICKLE preventing the SucKIT installation. The window on the
left shows the VM running RedHat 8.0 (with 2.4.18 kernel), while the window on
the right shows the NICKLE output. Inside the VM, one can see that the SucKIT
installation program fails and returns an error message “Unable to handle ker-
nel NULL pointer dereference”. This occurs because NICKLE (operating in break
mode) foils the execution of injected kernel code by fetching a string of zeros from
the shadow memory, which causes the kernel to terminate the rootkit installation
program. Interestingly, when NICKLE operates in rewrite mode, it rewrites the
malicious code and forces it to return −1. However, it seems that SucKIT does not
bother to check the return value and so the rootkit installation just fails silently
and the kernel-level functionality does not work.

In the right-side window in Figure 2, NICKLE reports the authentication
and shadowing of sequences of kernel instructions starting from the initial BIOS

Guest-Transparent Prevention of Kernel Rootkits 13

Fig. 2. NICKLE/QEMU+KQEMU foils the SucKIT rootkit (guest OS: RedHat 8.0)

bootstrap code to the kernel text as well as its initialization code and finally to
various legitimate kernel modules. In this experiment, there are five legitimate
kernel modules, parport.o, parport pc.o, ieee1394.o, ohci1394, and autofs.o, all
authenticated and shadowed. The code portion of the kernel module begins with
an offset of 0x60 bytes in the first page. The first 0x60 bytes are for the kernel
module header, which stores pointers to information such as the module’s name,
size, and other entries linking to the global linked list of loaded kernel modules.
This is another example of mixed kernel pages with code and data in Linux
(Section 2.2).

FU Rootkit Experiment. The FU rootkit [19] is a Windows rootkit that
loads a kernel driver and proceeds to manipulate kernel data objects. The ma-
nipulation will allow the attacker to hide certain running processes or device
drivers loaded in the kernel. When running FU on NICKLE, the driver is unable
to load successfully as the driver-specific initialization code is considered unau-
thorized kernel code. Figure 3 compares NICKLE’s two response modes against
FU’s attempt to load its driver. Under break mode, the OS simply breaks with
a blue screen. Under rewrite mode, the FU installation program fails (“Failed to
initialize driver.”) but the OS does not crash.

4.2 Impact on Performance

To evaluate NICKLE’s impact on system performance we have performed
benchmark-based measurements on both VMMs – with and without NICKLE.
The physical host in our experiments has an Intel 2.40GHz processor and 3GB of
RAM running Ubuntu Linux 7.10. QEMU version 0.9.0 with KQEMU 1.3.0pre11
or VirtualBox 1.5.0 OSE is used where appropriate. The VM’s guest OS is
Redhat 8.0 with a custom compile of a vanilla Linux 2.4.18 kernel and is
started inuniprocessor mode with the default amount of memory (256MB for

14 R. Riley, X. Jiang, and D. Xu

(a) Under break mode (b) Under rewrite mode

Fig. 3. Comparison of NICKLE/QEMU+KQEMU’s response modes against the FU
rootkit (guest OS: Windows 2K)

Table 2. Software configuration for performance evaluation

Item Version Configuration Item Version Configuration
Redhat 8.0 Using Linux 2.4.18 Apache 2.0.59 Using the default high-performance

configuration file
Kernel 2.4.18 Standard kernel compilation ApacheBench 2.0.40-dev -c3 -t 60 <url/file>

Unixbench 4.1.0 -10 index

Table 3. Application benchmark results

QEMU+KQEMU VirtualBox
Benchmark w/o NICKLE w/NICKLE Overhead w/o NICKLE w/ NICKLE Overhead

Kernel Compiling 231.490s 233.529s 0.87% 156.482s 168.377s 7.06%
insmod 0.088s 0.095s 7.34% 0.035s 0.050s 30.00%
Apache 351.714 req/s 349.417 req/s 0.65% 463.140 req/s 375.024 req/s 19.03%

VirtualBox and 128MB for QEMU+KQEMU). Table 2 shows the software con-
figuration for the measurement. For the Apache benchmark, a separate ma-
chine connected to the host via a dedicated gigabit switch is used to launch
ApacheBench. When applicable, benchmarks are run 10 times and the results
are averaged.

Three application-level benchmarks (Table 3) and one micro-benchmark
(Table 4) are used to evaluate the system. The first application benchmark is
a kernel compilation test: A copy of the Linux 2.4.18 kernel is uncompressed,
configured, and compiled. The total time for these operations is recorded and
a lower number is better. Second, the insmod benchmark measures the amount
of time taken to insert a module (in this case, the ieee1394 module) into the
kernel and again lower is better. Third, the ApacheBench program is used to
measure the VM’s throughput when serving requests for a 16KB file. In this
case, higher is better. Finally, the UnixBench micro-benchmark is executed to
evaluate the more fine-grained performance impact of NICKLE. The numbers

Guest-Transparent Prevention of Kernel Rootkits 15

Table 4. UnixBench results (for the first two data columns, higher is better)

QEMU+KQEMU VirtualBox
Benchmark w/o NICKLE w/NICKLE Overhead w/o NICKLE w/ NICKLE Overhead
Dhrystone 659.3 660.0 -0.11% 1843.1 1768.6 4.04%
Whetstone 256.0 256.0 0.00% 605.8 543.0 10.37%

Execl 126.0 127.3 -1.03% 205.4 178.2 13.24%
File copy 256B 45.5 46 -1.10% 2511.8 2415.7 3.83%
File copy 1kB 67.6 68.2 -0.89% 4837.5 4646.9 3.94%
File copy 4kB 128.4 127.4 0.78% 7249.9 7134.3 1.59%

Pipe throughput 41.7 40.7 2.40% 4646.9 4590.9 1.21%
Process creation 124.7 118.2 5.21% 92.1 85.3 7.38%
Shell scripts (8) 198.3 196.7 0.81% 259.2 239.8 7.48%

System call 20.9 20.1 3.83% 2193.3 2179.9 0.61%
Overall 106.1 105.0 1.01% 1172.6 1108.7 5.45%

reported in Table 4 are an index where higher is better. It should be noted that
the benchmarks are meant primarily to compare a NICKLE-enhanced VMM
with the corresponding unmodified VMM. These numbers are not meant to
compare different VMMs (such as QEMU+KQEMU vs. VirtualBox).

QEMU+KQEMU. The QEMU+KQEMU implementation of NICKLE ex-
hibits very low overhead in most tests. In fact, a few of the benchmark tests show
a slight performance gain for the NICKLE implementation, but we consider these
results to signify that there is no noticeable slowdown due to NICKLE for that
test. From Table 3 it can be seen that both the kernel compilation and Apache
tests come in below 1% overheard. The insmod test has a modest overhead,
7.3%, primarily due to the fact that NICKLE must calculate and verify the hash
of the module prior to copying it into the shadow memory. Given how infre-
quently kernel module insertion occurs in a running system, this overhead is not
a concern. The UnixBench tests in Table 4 further testify to the efficiency of the
NICKLE implementation in QEMU+KQEMU, with the worst-case overhead of
any test being 5.21% and the overall overhead being 1.01%. The low overhead of
NICKLE is due to the fact that NICKLE’s modifications to the QEMU control
flow only take effect while executing kernel code (user-level code is executed by
the unmodified KQEMU accelerator).

VirtualBox. The VirtualBox implementation has a more noticeable overhead
than the QEMU+KQEMU implementation, but still runs below 10% for the
majority of the tests. The kernel compilation test, for example, exhibits about
7% overheard; while the UnixBench suite shows a little less than 6% overall.
The Apache test is the worst performer, showing a 19.03% slowdown. This can
be attributed to the heavy number of user/kernel mode switches that occur
while serving web requests. It is during the mode switches that the Virtual-
Box implementation does its work to ensure only verified code will be executed
directly [16], hence incurring overhead. The insmod test shows a large perfor-
mance degradation, coming in at 30.0%. This is due to the fact that module
insertion on the VirtualBox implementation entails the VMM leaving native
code execution as well as verifying the module. However, this is not a concern
as module insertion is an uncommon event at runtime. Table 4 shows that the

16 R. Riley, X. Jiang, and D. Xu

worst performing UnixBench test (Execl) results in an overhead of 13.24%. This
result is most likely due to a larger number of user/kernel mode switches that
occur during that test.

In summary, our benchmark experiments show that NICKLE incurs minimal
to moderate impact on system performance, relative to that of the respective
original VMMs.

5 Discussion

In this section, we discuss several issues related to NICKLE. First, the goal of
NICKLE is to prevent unauthorized code from executing in the kernel space,
but not to protect the integrity of kernel-level control flows. This means that
it is possible for an attacker to launch a “return-into-libc” style attack within
the kernel by leveraging only the existing authenticated kernel code. Recent
work by Shacham [20] builds a powerful attacker who can execute virtually
arbitrary code using only a carefully crafted stack that causes jumps and calls
into existing code. Fortunately, this approach cannot produce persistent code to
be called on demand from other portions of the kernel. And Petroni et al. [3]
found that 96% of the rootkits they surveyed require persistent code changes.
From another perspective, an attacker may also be able to directly or indirectly
influence the kernel-level control flow by manipulating certain non-control data
[21]. However, without its own kernel code, this type of attack tends to have
limited functionality. For example, all four stealth rootkit attacks described in
[22] need to execute their own code in the kernel space and hence will be defeated
by NICKLE. Meanwhile, solutions exist for protecting control flow integrity [3,
23, 24] and data flow integrity [25], which can be leveraged and extended to
complement NICKLE.

Second, the current NICKLE implementation does not support self-modifying
kernel code. This limitation can be removed by intercepting the self-modifying
behavior (e.g., based on the translation cache invalidation resulting from the
self-modification) and re-authenticating and shadowing the kernel code after the
modification.

Third, NICKLE currently does not support kernel page swapping. Linux does
not swap out kernel pages, but Windows does have this capability. To support
kernel page swapping in NICKLE, it would require implementing the introspec-
tion of swap-out and swap-in events and ensuring that the page being swapped
in has the same hash as when it was swapped out. Otherwise an attacker could
modify swapped out code pages without NICKLE noticing. This limitation has
not yet created any problem in our experiments, where we did not encounter
any kernel level page swapping.

Fourth, targeting kernel-level rootkits, NICKLE is ineffective against user-
level rootkits. However, NICKLE significantly elevates the trustworthiness of
the guest OS, on top of which anti-malware systems can be deployed to defend
against user-level rootkits more effectively.

Guest-Transparent Prevention of Kernel Rootkits 17

Fifth, the deployment of NICKLE increases the memory footprint for the
protected VM. In the worst case, memory shadowing will double the physical
memory usage. As our future work, we can explore the use of demand-paging
to effectively reduce the extra memory requirement to the actual amount of
memory needed. Overall, it is reasonable and practical to trade memory space
for elevated OS kernel security.

Finally, we point out that NICKLE assumes a trusted VMM to achieve the
“NICKLE” property. This assumption is needed because it essentially establishes
the root-of-trust of the entire system and secures the lowest-level system access.
We also acknowledge that a VM environment can potentially be fingerprinted
and detected [26, 27] by attackers so that their malware can exhibit different
behavior [28]. We can improve the fidelity of the VM environment (e.g., [29,
30]) to thwart some of the VM detection methods. Meanwhile, as virtualization
continues to gain popularity, the concern over VM detection may become less
significant as attackers’ incentive and motivation to target VMs increases.

6 Related Work

Rootkit Prevention Through Kernel Integrity Enforcement. The first
area of related work includes recent efforts in enforcing kernel integrity to thwart
kernel rootkit installation or execution. Livewire [6], based on a software-based
VMM, aims at protecting the guest OS kernel code and critical data structures
from being modified. However, an attacker may choose to load malicious rootkit
code into the kernel space without manipulating the original kernel code.

SecVisor [7] is a closely related work that leverages new hardware extensions to
enforce life-time kernel integrity and provide a guarantee similar to “NICKLE”.
However, there are two main differences between SecVisor and NICKLE: First,
the deployment of SecVisor requires modification to OS kernel source code as
well as the latest hardware support for MMU and IOMMU virtualization. In
comparison, NICKLE is a guest-transparent solution that supports guest OSes
“as is” on top of legacy hardware platforms. In particular, NICKLE does not rely
on the protection of any guest OS data structures (e.g., the GDT – global de-
scriptor table). Second, SecVisor is developed to enforce the W⊕X principle for
the protected VM kernel code. This principle intrinsically conflicts with mixed
kernel pages, which exist in current OSes (e.g., Linux and Windows). NICKLE
works in the presence of mixed kernel pages. OverShadow [31] adopts a similar
technique of memory shadowing at the VMM level with the goal of protecting
application memory pages from modification by even the OS itself. In compar-
ison, NICKLE has a different goal and aims at protecting the OS from kernel
rootkits.

To ensure kernel code integrity, techniques such as driver signing [32] as well
as various forms of driver verification [5, 33] have also been proposed. These
techniques are helpful in verifying the identity or integrity of the loaded driver.
However, a kernel-level vulnerability could potentially be exploited to bypass

18 R. Riley, X. Jiang, and D. Xu

these techniques. In comparison, NICKLE operates at the lower VMM level and
is capable of blocking zero-day kernel-level exploitations.

Symptom-Driven Kernel Rootkit Detection. The second area of related
work is the modeling and specification of symptoms of a rootkit-infected OS
kernel which can be used to detect kernel rootkits. Petroni et al. [4] and Zhang
et al. [34] propose the use of external hardware to grab the runtime OS memory
image and detect possible rootkit presence by spotting certain kernel code in-
tegrity violations (e.g., rootkit-inflicted kernel code manipulation). More recent
works further identify possible violations of semantic integrity of dynamic ker-
nel data [2] or state based control-flow integrity of kernel code [3]. Generalized
control-flow integrity [23] may have strong potential to be used as a prevention
technique, but as yet has not been applied to kernel integrity. Other solutions
such as Strider GhostBuster [35] and VMwatcher [1] target the self-hiding na-
ture of rootkits and infer rootkit presence by detecting discrepancies between the
views of the same system from different perspectives. All the above approaches
are, by design, for the detection of a kernel rootkit after it has infected a system.
Instead, NICKLE is for the prevention of kernel rootkit execution in the first
place.

Attestation-Based Rootkit Detection. The third area of related work
is the use of attestation techniques to verify the software running on a target
platform. Terra [13] and other code attestation schemes [36, 37, 38] are proposed
to verify software that is being located into the memory for execution. These
schemes are highly effective in providing the load-time attestation guarantee.
Unfortunately, they are not able to provide run-time kernel integrity.

7 Conclusion

We have presented the design, implementation, and evaluation of NICKLE, a
VMM-based approach that transparently detects and prevents the launching of
kernel rootkit attacks against guest VMs. NICKLE achieves the “NICKLE”
guarantee, which foils the common need of existing kernel rootkits to exe-
cute their own unauthorized code in the kernel space. NICKLE is enabled by
the scheme of memory shadowing, which achieves guest transparency through
the guest memory access indirection technique. NICKLE’s portability has been
demonstrated by its implementation in three VMM platforms. Our experiments
show that NICKLE is effective in preventing 23 representative real-world kernel
rootkits that target a variety of commodity OSes. Our measurement results show
that NICKLE adds only modest overhead to the VMM platform.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their insightful comments that helped improve the presentation of this
paper. This work was supported in part by NSF Grants CNS-0716376, CNS-
0716444 and CNS-0546173.

Guest-Transparent Prevention of Kernel Rootkits 19

References

[1] Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection through VMM-Based
“Out-of-the-Box” Semantic View Reconstruction. In: Proceedings of the ACM Con-
ference on Computer and Communications Security (CCS 2007) (October 2007)

[2] Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An Architecture for
Specification-based Detection of Semantic Integrity Violations in Kernel Dynamic
Data. In: Proceedings of the 15th USENIX Security Symposium (2006)

[3] Petroni Jr., N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-
Flow Attacks. In: Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS 2007) (October 2007)

[4] Petroni, N., Fraser, T., Molina, J., Arbaugh, W.: Copilot: A Coprocessor-based
Kernel Runtime Integrity Monitor. In: Proceedings of the 13th USENIX Security
Symposium, pp. 179–194 (2004)

[5] Wilhelm, J., Chiueh, T.-c.: A Forced Sampled Execution Approach to Kernel
Rootkit Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID
2007. LNCS, vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

[6] Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Proc. Network and Distributed Systems Security
Symposium (NDSS 2003) (February 2003)

[7] Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Guar-
antee Lifetime Kernel Code Integrity for Commodity OSes. In: Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP 2007) (October 2007)

[8] Bellard, F.: QEMU: A Fast and Portable Dynamic Translator. In: Proceedings of
the USENIX Annual Technical Conference, FREENIX Track, pp. 41–46 (2005)

[9] Innotek: Virtualbox (Last accessed, September 2007),
http://www.virtualbox.org/

[10] Intel: Vanderpool Technology (2005),
http://www.intel.com/technology/computing/vptech

[11] AMD: AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming, 3.12 edition (September 2006)

[12] Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt: Enabling Intrusion
Analysis through Virtual Machine Logging and Replay. In: Proc. USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 2002) (2002)

[13] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual
Machine-Based Platform for Trusted Computing. In: Proc. of ACM Symposium
on Operating System Principles (SOSP 2003) (October 2003)

[14] Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction
Honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

[15] Joshi, A., King, S., Dunlap, G., Chen, P.: Detecting Past and Present Intrusions
through Vulnerability-specific Predicates. In: Proc. ACM Symposium on Operat-
ing Systems Principles (SOSP 2005), pp. 91–104 (2005)

[16] Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits
with VMM-based Memory Shadowing. Technical report CERIAS TR 2001-146,
Purdue University

[17] Arbaugh, W.A., Farber, D.J., Smith, J.M.: A Secure and Reliable Bootstrap Ar-
chitecture. In: Proceedings of IEEE Symposium on Security and Privacy, May
1997, pp. 65–71 (1997)

[18] sd, devik: Linux on-the-fly Kernel Patching without LKM. Phrack 11(58) Article 7
[19] fuzen op: Fu rootkit (Last accessed, September 2007), http://www.rootkit.

com/project.php?id=12

http://www.virtualbox.org/
http://www.intel.com/technology/computing/vptech
http://www.rootkit.
com/project.php?id=12

20 R. Riley, X. Jiang, and D. Xu

[20] Shacham, H.: The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In: Proceedings of the ACM Conference on
Computer and Communications Security (CCS 2007) (October 2007)

[21] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.: Non-Control-Data Attacks
Are Realistic Threats. In: Proceedings of the 14th USENIX Security Symposium
(August 2005)

[22] Baliga, A., Kamat, P., Iftode, L.: Lurking in the Shadows: Identifying Systemic
Threats to Kernel Data. In: Proc. of IEEE Symposium on Security and Privacy
(Oakland 2007) (May 2007)

[23] Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control Flow Integrity: Princi-
ples, Implementations, and Applications. In: Proc. ACM Conference on Computer
and Communications Security (CCS 2005) (November 2005)

[24] Grizzard, J.B.: Towards Self-Healing Systems: Re-establishing Trust in Compro-
mised Systems. Ph.D. Thesis, Georgia Institute of Technology (May 2006)

[25] Castro, M., Costa, M., Harris, T.: Securing Software by Enforcing Data-Flow
Integrity. In: Proc. of USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2006) (2006)

[26] Klein, T.: Scooby Doo - VMware Fingerprint Suite (2003),
http://www.trapkit.de/research/vmm/scoopydoo/index.html

[27] Rutkowska, J.: Red Pill: Detect VMM Using (Almost) One CPU Instruction (No-
vember 2004), http://invisiblethings.org/papers/redpill.html

[28] F-Secure Corporation: Agobot, http://www.f-secure.com/v-descs/agobot.shtml
[29] Kortchinsky, K.: Honeypots: Counter Measures to VMware Fingerprinting (Jan-

uary 2004), http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
[30] Liston, T., Skoudis, E.: On the Cutting Edge: Thwarting Virtual Machine

Detection (2006), http://handlers.sans.org/tliston/ThwartingVMDetection
Liston Skoudis.pdf

[31] Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: A Virtualization-Based Ap-
proach to Retrofitting Protection in Commodity Operating Systems. In: Proc. of
the 13th Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2008) (March 2008)

[32] Microsoft Corporation: Driver Signing for Windows,
http://www.microsoft.com/resources/documentation/windows/xp/all/
proddocs/en-us/code signing.mspx?mfr=true

[33] Kruegel, C., Robertson, W., Vigna, G.: Detecting Kernel-Level Rootkits Through
Binary Analysis. In: Yew, P.-C., Xue, J. (eds.) ACSAC 2004. LNCS, vol. 3189,
pp. 91–100. Springer, Heidelberg (2004)

[34] Zhang, X., van Doorn, L., Jaeger, T., Perez, R., Sailer, R.: Secure Coprocessor-
based Intrusion Detection. In: Proceedings of the 10th ACM SIGOPS European
Workshop, pp. 239–242 (2002)

[35] Wang, Y.M., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth
Software with Strider GhostBuster. In: Proc. IEEE International Conference on
Dependable Systems and Networks (DSN 2005), pp. 368–377 (2005)

[36] Kennell, R., Jamieson, L.H.: Establishing the Genuinity of Remote Computer
Systems. In: Proc. of the 12th USENIX Security Symposium (August 2003)

[37] Sailer, R., Jaeger, T., Zhang, X., van Doorn, L.: Attestation-based Policy En-
forcement for Remote Access. In: Proc. of ACM Conference on Computer and
Communications Security (CCS 2004) (October 2004)

[38] Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and Implementation of a
TCG-based Integrity Measurement Architecture. In: Proc. of the 13th USENIX
Security Symposium (August 2004)

http://www.trapkit.de/research/vmm/scoopydoo/index.html
http://invisiblethings.org/papers/redpill.html
http://www.f-secure.com/v-descs/agobot.shtml
http://seclists.org/lists/honeypots/2004/Jan-Mar/0015.html
http://handlers.sans.org/tliston/ThwartingVMDetection_
Liston_Skoudis.pdf
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/code_signing.mspx?mfr=true
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/code_signing.mspx?mfr=true

Countering Persistent Kernel Rootkits through
Systematic Hook Discovery

Zhi Wang1, Xuxian Jiang1, Weidong Cui2, and Xinyuan Wang3

1 North Carolina State University
2 Microsoft Research

3 George Mason University

Abstract. Kernel rootkits, as one of the most elusive types of malware, pose
significant challenges for investigation and defense. Among the most notable are
persistent kernel rootkits, a special type of kernel rootkits that implant persistent
kernel hooks to tamper with the kernel execution to hide their presence. To defend
against them, an effective approach is to first identify those kernel hooks and then
protect them from being manipulated by these rootkits. In this paper, we focus on
the first step by proposing a systematic approach to identify those kernel hooks.
Our approach is based on two key observations: First, rootkits by design will
attempt to hide its presence from all running rootkit-detection software includ-
ing various system utility programs (e.g., ps and ls). Second, to manipulate OS
kernel control-flows, persistent kernel rootkits by their nature will implant kernel
hooks on the corresponding kernel-side execution paths invoked by the security
programs. In other words, for any persistent kernel rootkit, either it is detectable
by a security program or it has to tamper with one of the kernel hooks on the
corresponding kernel-side execution path(s) of the security program. As a result,
given an authentic security program, we only need to monitor and analyze its
kernel-side execution paths to identify the related set of kernel hooks that could be
potentially hijacked for evasion. We have built a proof-of-concept system called
HookMap and evaluated it with a number of Linux utility programs such as ls, ps,
and netstat in RedHat Fedora Core 5. Our system found that there exist 35 kernel
hooks in the kernel-side execution path of ls that can be potentially hijacked for
manipulation (e.g., for hiding files). Similarly, there are 85 kernel hooks for ps
and 51 kernel hooks for netstat, which can be respectively hooked for hiding
processes and network activities. A manual analysis of eight real-world rootkits
shows that our identified kernel hooks cover all those used in them.

1 Introduction

Rootkits have been increasingly adopted by general malware or intruders to hide their
presence on or prolong their control of compromised machines. In particular, kernel
rootkits, with the unique capability of directly subverting the victim operating system
(OS) kernel, have been frequently leveraged to expand the basic OS functionalities
with additional (illicit) ones, such as providing unauthorized system backdoor access,
gathering personal information (e.g., user keystrokes), escalating the privilege of a
malicious process, as well as neutralizing defense mechanisms on the target system.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 21–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 Z. Wang et al

In this paper, we focus on a special type of kernel rootkits called persistent ker-
nel rootkits. Instead of referring to those rootkits that are stored as persistent disk
files and will survive machine reboots, the notion of persistent kernel rootkits here
(inherited from [14]) represents those rootkits that will make persistent modifications
to run-time OS kernel control-flow, so that normal kernel execution will be somehow
hijacked to provide illicit rootkit functionality1. For example, many existing rootkits
[1,2] will modify the system call table to hijack the kernel-level control flow. This type
of rootkits is of special interest to us for a number of reasons. First, a recent survey
[14] of both Windows and Linux kernel rootkits shows that 96% of them are persistent
kernel rootkits and they will make persistent control-flow modifications. Second, by
running inside the OS kernel, these rootkits have the highest privilege on the system,
making them very hard to be detected or removed. In fact, a recent report [3] shows
that, once a system is infected by these rootkits, the best way to recover from them
is to re-install the OS image. Third, by directly making control-flow modifications,
persistent kernel rootkits provide a convenient way to add a rich set of malicious rootkit
functionalities.

On the defensive side, one essential step to effectively defending against persistent
kernel rootkits is to identify those hooking points (or kernel hooks) that are used by
rootkits to regain kernel execution control and then inflict all sorts of manipulations
to cloak their presence. The identification of these kernel hooks is useful for not only
understanding the hooking mechanism [23] used by rootkits, but also providing better
protection of kernel integrity [10,14,20]. For example, existing anti-rootkit tools such as
[8,16,17] all can be benefited because they require the prior knowledge of those kernel
hooks to detect the rootkit presence.

To this end, a number of approaches [14,23] have been proposed. For example,
SBCFI [14] analyzes the Linux kernel source code and builds an approximation of
kernel control-flow graph that will be followed at run-time by a legitimate kernel. Un-
fortunately, due to the lack of dynamic run-time information, it is only able to achieve
an approximation of kernel control-flow graph. From another perspective, HookFinder
[23] is developed to automatically analyze a given malware sample and identify those
hooks that are being used by the provided malware. More specifically, HookFinder
considers any changes made by the malware as tainted and recognizes a specific change
as a hooking point if it eventually redirects the execution control to the tainted attack
code. Though effective in identifying specific hooks used by the malware, it cannot
discover other hooks that can be equally hijacked but are not being used by the malware.

In this paper, we present a systematic approach that, given a rootkit-detection pro-
gram, discovers those related kernel hooks that could be potentially used by persistent
kernel rootkits to evade from it. Our approach is motivated by the following observation:
To hide its presence, a persistent kernel rootkit by design will hide from the given
security program and the hiding is achieved by implanting kernel hooks in a number
of strategic locations within the kernel-side execution paths of the security program.
In other words, for any persistent kernel rootkit, either it is detectable by the security
program or it has to tamper with one of the kernel hooks. Therefore, for the purpose of

1 For other types of kernel rootkits that may attack kernel data, they are not the focus of this
paper and we plan to explore them as future work.

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 23

detecting persistent kernel rootkits, it is sufficient to just identify all kernel hooks in the
kernel-side execution paths of a given rootkit-detection program.

To identify hooks in the kernel-side execution of a program, we face three main
challenges: (1) accurately identifying the right kernel-side execution path for monitor-
ing; (2) obtaining the relevant run-time context information (e.g., the ongoing system
call and specific kernel functions) with respect to the identified execution path; (3)
uncovering the kernel hooks in the execution path and extracting associated semantic
definition. To effectively address the first two challenges, we developed a context-aware
kernel execution monitor and the details will be described in Section 3.1. For the third
one, we have built a kernel hook identifier (Section 3.2) that will first locate the run-
time virtual address of an uncovered kernel hook and then perform OS-aware semantics
resolution to reveal a meaningful definition of the related kernel object or variable.

We have developed a prototype called HookMap on top of a software-based QEMU
virtual machine implementation [6]. It is appropriate for two main reasons: First,
software-based virtualization allows to conveniently support commodity OSes as guest
virtual machines (VMs). And more importantly, given a selected execution path, the
virtualization layer can be extended to provide the unique capability in instrumenting
and recording its execution without affecting its functionality. Second, since we are
dealing with a legitimate OS kernel in a clean system, not with a rootkit sample that may
detect the VM environment and alter its behavior accordingly, the use of virtualization
software will not affect the results in identifying kernel hooks.

To evaluate the effectiveness of our approach, we ran a default installation of Red-
Hat Fedora Core 5 (with Linux kernel 2.6.15) in our system. Instead of using any
commercial rootkit-detection software, we chose to test with three utility programs,
ls, ps and netstat since they are often attacked by rootkits to hide files, processes or
network connections. By monitoring their kernel-side executions, our system was able
to accurately identify their execution contexts, discover all encountered kernel hooks,
and then resolve their semantic definitions. In particular, our system identified 35, 85,
and 51 kernel hooks, for ls, ps and netstat, respectively. To empirically evaluate the
completeness of identified kernel hooks, we performed a manual analysis of eight real-
world kernel rootkits and found that the kernel hooks employed by these rootkits are
only a small subset of our identified hooks.

The rest of the paper is structured as follows: Section 2 introduces the background
on rootkit hooking mechanisms. Section 3 gives an overview of our approach, followed
by the description of HookMap implementation in Section 4. Section 5 presents the
experimental results and Section 6 discusses some limitations of the proposed approach.
Finally, Section 7 surveys related work and Section 8 concludes the paper.

2 Background

In this section, we introduce the hooking mechanisms that are being used by persistent
kernel rootkits and define a number of terms that will be used throughout the paper.

There exist two main types of kernel hooks: code hooks and data hooks. To implant
a code hook, a kernel rootkit typically modifies the kernel text so that the execution
of the affected text will be directly hijacked. However, since the kernel text section is

24 Z. Wang et al

 int $0x80

Applications

ENTRY(system_call)

 SAVE_ALL
 ...

 ...

 pushl %eax # eax: syscall number

 call *0xc030f960(,%eax,4) # call sys_call_table[eax]

Userland

Kernel

A HAP instruction

(a) The system call dispatcher on Linux

#define REPLACE(x) o_##x = sys_call_table[__NR_##x];\
 sys_call_table[__NR_##x] = n_##x

 REPLACE(getdents);
 REPLACE(write);

 ...

 REPLACE(kill);
 REPLACE(fork);
 REPLACE(clone);
 REPLACE(close);
 REPLACE(open);
 REPLACE(stat);
 REPLACE(lstat); ...

{
int adore_init(void)

}

module_init(adore_init);

(b) The Linux adore rootkit

Fig. 1. A HAP instruction example inside the Linux system call dispatcher – the associated kernel
data hooks have been attacked by various rootkits, including the Linux adore rootkit [1]

usually static and can be marked as read-only (or not writable), the way to implant
the code hook can be easily detected. Because of that, rootkit authors are now more
inclined to implant data hooks at a number of strategic memory locations in the kernel
space. Data hooks are usually a part of kernel data that are interpreted as the destination
addresses in control-flow transition instructions such as call and jmp. A typical example
of kernel data hook is the system call table that contains the addresses to a number of
specific system call service routines (e.g., sys open). In addition, many data hooks may
contain dynamic content as they are mainly used to hold the run-time addresses of
kernel functions and can be later updated because of the loading or unloading of kernel
modules. For ease of presentation, we refer to the control-flow transition instructions
(i.e., call or conditional or un-conditional jumps) whose destination addresses are not
hard-coded constants as hook attach points (HAPs).

In Figure 1, we show an HAP example with associated kernel data hooks, i.e.,
the system call table, which is commonly attacked by kernel rootkits. In particular,
Figure 1(a) shows the normal system call dispatcher on Linux while Figure 1(b) con-
tains the code snippet of a Linux rootkit – adore [1]. From the control-flow transfer
instruction – call *0xc030f960(,%eax,4)2 in Figure 1(a), we can tell the existence of
a hook attach point inside the system call dispatcher. In addition, Figure 1(b) reveals
that the adore rootkit will replace a number of system call table entries (as data hooks)
so that it can intervene and manipulate the execution of those replaced system calls.
For instance, the code statement REPLACE(write) rewrites the system call table en-
try sys call table[4] to intercept the sys write routine before its execution. The corre-
sponding run-time memory location 0xc030f970 and the associated semantic definition
of sys call table[4] will be identified as a data hook. More specifically, the memory
location 0xc030f970 is calculated as 0xc030f960 + %eax × 4 where 0xc030f960
is the base address of system call table and %eax = 4 is the actual number for the
specific sys write system call. We defer an in-depth analysis of this particular rootkit in
Section 5.2.

2 This instruction is in the standard AT&T assembly syntax, meaning that it will transfer its
execution to another memory location pointed to by 0xc030f960 + %eax × 4.

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 25

Meanwhile, as mentioned earlier, there are a number of rootkits that will replace spe-
cific instructions (as code hooks) in the system call handler. For instance,
the SucKit [19] rootkit will prepare its own version of the system call table and then
change the dispatcher so that it will invoke system call routines populated in its own
system call table. Using Figure 1(a) as an example, the rootkit will modify the control-
flow transfer instruction or more specifically the base address of the system call table
0xc030f960 to point to a rootkit-controlled system call table. Considering that (1)
implanting a code hook will inflict kernel code modifications, which can be easily
detected, and (2) every kernel instruction could be potentially overwritten for code hook
purposes, we in this paper focus on the identification of kernel data hooks. Without
ambiguity, we use the term kernel hooks to represent kernel data hooks throughout the
paper.

Finally, we point out that kernel hooks are elusive to identify because they can be
widely scattered across the kernel space and rootkit authors keep surprising us in using
new kernel hooks for rootkit purposes [7,18]. In fact, recent research results [23] show
that some stealth rootkits use previously unknown kernel hooks to evade all existing
security programs for rootkit detection. In this paper, our goal is to systematically
discover all kernel hooks that can be used by persistent kernel rootkits to tamper with
and thus hide from a given security program.

3 System Design

The intuition behind our approach is straightforward but effective: a rootkit by nature
is programmed to hide itself especially from various security programs including those
widely-used system utility programs such as ps, ls, and netstat. As such for an infected
OS kernel, the provided kernel service (e.g., handling a particular system call) to any
request from these security software is likely manipulated. The manipulation typically
comes from the installation of kernel hooks at strategic locations somewhere within
the corresponding kernel-side execution path of these security software. Based on this
insight, if we can develop a system to comprehensively monitor the kernel-side exe-
cution of the same set of security programs within a clean system, we can use it to
exhaustively uncover all kernel hooks related to the execution path being monitored.
Figure 2 shows an architectural overview of our system with two main components:
context-aware execution monitor and kernel hook identifier. In the following, we will
describe these two components in detail.

3.1 Context-Aware Execution Monitor

As mentioned earlier, our system is built on top of an open-source virtual machine
implementation, which brings the convenient support of commodity OSes as guest
VMs. In addition, for a running VM, the context-aware execution monitor is further
designed to monitor the internal process events including various system calls made by
running processes. As suggested by the aforementioned insight, we need to only capture
those kernel events related to security software that is running inside the VM. Note that
the main purpose of monitoring these events is to understand the right execution context
inside the kernel (e.g., “which process is making the system call?”). With that, we can

26 Z. Wang et al

LogGuest OS Kernel hooks

anti−rootkit software system utilities
(ps, ls, netstat)

Context−aware execution monitor

Kernel hook identifier

A
 v

irt
ua

l m
ac

hi
ne

Virtual machine monitor (VMM)

Fig. 2. A systematic approach to discovering kernel hooks

then accurately instrument and record all executed kernel instructions that are relevant
to the chosen security software.

However, a challenging part is that modern OS kernels greatly complicate the capture
and interpretation of execution contexts with the introduction of “out of order” execu-
tion (mainly for improving system concurrency and performance reasons). The “out
of order” execution means that the kernel-side execution of any process can be asyn-
chronously interrupted to handle an incoming interrupt request or temporarily context-
switched out for the execution of another unrelated process. Notice that the “out of
order” execution is considered essential in modern OSes for the support of multi-tasking
and asynchronous interrupt handling.

Fortunately, running a commodity OS as a guest VM provides a convenient way to
capture those external events 3 that trigger the “out of order” executions in a guest ker-
nel. For example, if an incoming network packet leads to the generation of an interrupt,
the interrupt event needs to be emulated by the underlying virtual machine monitor and
thus can be intercepted and recorded by our system. The tricky part is to determine when
the corresponding interrupt handler ends. For that purpose, we instrument the execution
of iret instruction to trace when the interrupt handler returns. However, additional com-
plexities are introduced for the built-in support of nested interrupts in the modern OS
design where an interrupt request (IRQ) of a higher priority is allowed to preempt IRQs
of a lower priority. For that, we need to maintain a shadow interrupt stack to track the
nested level of an interrupt.

In addition to those external events, the “out of order” execution can also be intro-
duced by some internal events. For example, a running process may voluntarily yield
the CPU execution to another process. For that, instead of locating and intercepting all
these internal events, we need to take another approach by directly intercepting context
switch events occurred inside the monitored VM. The interception of context switch
events requires some knowledge of the OS internals. We will describe it in more details
in Section 4.

With the above capabilities, we can choose and run a particular security program (or
any rootkit-detection tool) inside the monitor. The monitor will record into a local trace

3 Note that the external events here may also include potential debug exceptions caused from
hardware-based debugger registers. However, in this work, we do not count those related hooks
within the debug interrupt handler.

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 27

file a stream of system calls made by the chosen program and for each system call, a
sequence of kernel instructions executed within the system call execution path.

3.2 Kernel Hook Identifier

The context-aware execution monitor will collect a list of kernel instructions that are
sequentially executed when handling a system call request from a chosen security
program. Given the collected instructions, the kernel hook identifier component is de-
veloped to identify those HAPs where kernel hooks are involved. The identification of
potential HAPs is relatively straightforward because they are the control-flow transfer
instructions, namely those call or jmp instructions.

Some astute readers may wonder “wouldn’t static analysis work for the very same
need?” By statically analyzing kernel code, it is indeed capable of identifying those
HAPs. Unfortunately, it cannot lead to the identification of the corresponding kernel
hooks. There are two main reasons: (1) A HAP may use registers or memory loca-
tions to resolve the run-time locations of the related kernel hooks. In other words, the
corresponding kernel hook location cannot be determined through static analysis. (An
example is already shown in Figure 1(a).) (2) Moreover, there exists another complexity
that is introduced by the loadable kernel module (LKM) support in commodity OS
kernels. In particular, when a LKM is loaded into the kernel, not only its loading
location may be different from previous runs, but also the module text content will be
updated accordingly during the time when the module is being loaded. This is mainly
due to the existence of certain dependencies of the new loaded module on other loaded
modules or the main static kernel text. And we cannot resolve these dependencies until
at run-time.

Our analysis shows that for some discovered HAPs, their run-time execution trace
can readily reveal the locations of associated kernel hooks. As an example, in the system
call dispatcher shown in Figure 1(a), the HAP instruction – call *0xc030f960(,%eax,4),
after the execution, will jump to a function which is pointed to from the memory
location: 0xc030f960 + %eax × 4, where the value of %eax register can be known
at run-time. In other words, the result of the calculation at run-time will be counted as
a kernel hook in the related execution path. In addition, there also exist other HAPs
(e.g., call *%edx) that may directly call registers and reveal nothing about kernel hooks
but the destination addresses the execution will transfer to. For that, we need to start
from the identified HAP and examine in a backwards manner those related instructions
to identify the source, which eventually affects the calculated destination value and
will then be considered a kernel hook. (The detailed discussion will be presented in
Section 4.2.) In our analysis, we also encounter some control-flow transfer instruc-
tions whose destination addresses are hardcoded or statically linked inside machine
code. In this case, both static analysis and dynamic analysis can be used to iden-
tify the corresponding hooks. Note that according to the nature of this type of hooks
(Section 2), we consider them as code hooks in this paper.

Finally, after identifying those kernel hooks, we also aim to resolve the memory
addresses to the corresponding semantic definitions. For that, we leverage the symbol
information available in the raw kernel text file as well as loaded LKMs. More specifi-
cally, for main kernel text, we obtain the corresponding symbol information (e.g., object

28 Z. Wang et al

names and related memory locations) from the related System.map file. For kernel
modules, we derive the corresponding symbol information from the object files (e.g., by
running the nm command)4. If we use Figure 1(a) as an example, in an execution path
related to the sys open routine, the hook’s memory address is calculated as 0xc030f974.
From the symbol information associated with the main kernel text, that memory ad-
dress is occupied by the system call table (with the symbol name sys call table) whose
base address is 0xc030f960. As a result, the corresponding kernel hook is resolved as
sys call table[5]5 where 5 is actually the system call number for the sys open routine.

4 Implementation

We have built a prototype system called HookMap based on an open-source QEMU
0.9.0 [6] virtual machine monitor (VMM) implementation. As mentioned earlier, we
choose it due to the following considerations: (1) First, since we are dealing with normal
OS kernels, the VM environment will not affect the results in the identified kernel
hooks; (2) Second, it contains the implementation of a key virtualization technique
called dynamic binary translation [6,4], which can be leveraged and extended to select,
record, and disassemble kernel instruction sequences of interest; (3) Third, upon the
observation of VM-internal process events, we need to embed our own interpretation
logic to extract related execution context information. The open-source nature of the
VM implementation provides great convenience and flexibility in making our imple-
mentation possible. Also, due to the need of obtaining run-time symbols for semantic
resolution, our current system only supports Linux. Nevertheless, we point out that
the principle described here should also be applicable for other software-based VM
implementations (e.g., VMware Workstation [4]) and other commodity OSes (e.g.,
Windows).

4.1 Context-Aware Execution Logging

One main task in our implementation is that, given an executing kernel instruction, we
need to accurately understand the current execution context so that we can determine
whether the instruction should be monitored and recorded. Note that the execution
context here is defined as the system call context the current (kernel) instruction belongs
to. To achieve that, we have the need of keeping track of the lifetime of a system call
event. Fortunately, the lifetime of a system call event is well defined as the kernel
accepts only two standard methods in requesting for a system call service: int $0x80
and sysenter. Since we are running the whole system on top of a binary-translation-
capable VMM, we can conveniently intercept these two instructions and then interpret
the associated system call arguments accordingly. For this specific task, we leverage an
“out-of-the-box” VM monitoring framework called VMscope [11] as it already allows

4 We point out that the nm command output will be further updated with the run-time loading
address of the corresponding module. For that, we will instrument the module-loading
instructions in the kernel to determine the address at run-time.

5 The calculation is based on the following: (0xc030f974 − 0xc030f960)/4 = 5, where 4
represents the number of bytes occupied by a function pointer.

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 29

to real-time capture system calls completely outside the VM. What remains to do is to
correlate a system call event and the related system call return event to form its lifetime.
Interested readers are referred to [11] for more details.

Meanwhile, we also face another challenge caused by the “out-of-order” execution
(Section 3). To address that, we monitor relevant external events (e.g., interrupts) as well
as internal events (e.g., context switches) to detect run-time changes of the execution
context. The main goal here is to avoid the introduction of “noises” – unnecessary kernel
executions – into the execution path for monitoring and analysis. Fortunately, with a
software-based VM implementation, we are able to intercept all these external events
as they need to be eventually emulated by the underlying VMM. However, an interesting
part is to handle the nested interrupts scenario where a shadow interrupt stack should be
maintained at the VMM layer to keep track of the nested level of the ongoing interrupt.
For the internal events, our prototype sets a breakpoint on a kernel function that actually
performs context-switching. On Linux, the related function is called switch to and its
location is exported by kernel and can be found in the System.map file6.

With the above capabilities, our system essentially organizes the kernel instruction
execution into a stream of system calls and each system call contains a sequence of
kernel instructions executed within this specific context. Furthermore, to facilitate later
identification and analysis of kernel hooks, for each kernel instruction in one particular
context, we further dump the memory locations as well as registers, if any, involved in
this instruction. The additional information is needed for later kernel hook identifica-
tion, which we describe next.

4.2 Kernel Hook Identification

Based on the collected sequence of kernel instructions, the kernel hook identifier locates
and analyzes those control-flow transfer call or jmp instructions (as HAP instructions)
to uncover relevant kernel hooks. As a concrete example, we show in Table 1 a list of
identified HAPs, associated system call contexts, as well as those kernel hooks that are
obtained by monitoring kernel-side execution of the ls command. Note that a (small)
subset of those identified kernel hooks have already been used by rootkits for file-hiding
purposes (more in Section 5).

As mentioned earlier, for an HAP instruction that will read a memory location and
jump to the function pointed by a memory location, we can simply record the memory
location as a kernel hook. However, if an HAP instruction directly calls a register (e.g.,
call *%edx), we need to develop an effective scheme to trace back to the source – a
kernel hook that determines the value of the register.

We point out that this particular problem is similar to the classic problem addressed
by dynamic program slicing [5,24]: Given an execution history and a variable as the
input, the goal of dynamic program slicing is to extract a slice that contains all the
instructions in the execution history that affected the value of that variable. As such,
for the register involved in an identified HAP instruction, we apply the classic dynamic

6 A different version of ls can result in the execution of sys getdents64 instead of sys getdents,
which leads to one variation in the identified kernel hooks – sys call table[220] instead of
sys call table[141]. A similar scenario also happens when identifying another set of kernel
hooks by monitoring the ps command (to be shown in Table 2).

30 Z. Wang et al

Table 1. File-hiding kernel hooks obtained by monitoring the ls -alR / command in RedHat
Fedora Core 5

execution path # Hook Attach Points (HAPs) Kernel Hooks
address instruction address

sys write

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[4]
2 0xc014e5a3 call *0xec(%ecx) selinux ops[59]
3 0xc014e5c9 call *%edi tty fops[4]
4 0xc01c63c6 jmp *0xc02bfb40(,%eax,4) dummy con[33]
5 0xc01fa9d2 call *0xc(%esp) tty ldisc N TTY.write chan
6 0xc01fd4f5 call *0xc8(%ecx) con ops[3]
7 0xc01fd51e call *0xd0(%edx) con ops[5]
8 0xc01fd5fa call *%edx con ops[4]
9 0xc01fd605 call *0xc4(%ebx) con ops[2]
10 0xc0204caa call *0x1c(%ecx) vga con[7]

sys open

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[5]
2 0xc014f024 call *0xf0(%edx) selinux ops[60]
3 0xc0159677 call *%esi ext3 dir inode operations[13] (ext3.ko)
4 0xc015969d call *0xbc(%ebx) selinux ops[47]
5 0xc019ea96 call *0xbc(%ebx) capability ops[47]

sys close
1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[6]
2 0xc014f190 call *%ecx ext3 dir operations[14] (ext3.ko)
3 0xc014f19a call *0xf4(%edx) selinux ops[61]

sys ioctl

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[54]
2 0xc015dbcf call *%esi tty fops[8]
3 0xc015de16 call *0xf8(%ebx) selinux ops[62]
4 0xc01fc5a1 call *%ebx con ops[7]
5 0xc01fc5c9 call *%ebx tty ldisc N TTY.n tty ioctl

sys mmap2

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[192]
2 0xc0143e0e call *0xfc(%ebx) selinux ops[63]
3 0xc0143ebc call *0x2c(%edx) selinux ops[11]
4 0xc0144460 call *%esi mm→get unmapped area
5 0xc019dc50 call *0x18(%ecx) capability ops[6]
6 0xc019f5d5 call *0xfc(%ebx) capability ops[63]

sys fstat64
1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[197]
2 0xc0155f33 call *0xc4(%ecx) selinux ops[49]

sys getdents6

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[114]
2 0xc015de80 call *0xec(%ecx) selinux ops[59]
3 0xc015decc call *0x18(%ebx) ext3 dir operations[6] (ext3.ko)
4 0xc016b711 call *%edx ext3 dir inode operations[3] (ext3.ko)

sys getdents64

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[220]
2 0xc015de80 call *0xec(%ecx) selinux ops[59]
3 0xc015decc call *0x18(%ebx) ext3 dir operations[6] (ext3.ko)
4 0xc016b711 call *%edx ext3 dir inode operations[3] (ext3.ko)

sys fcntl64
1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[221]
2 0xc015d7a7 call *0x108(%ebx) selinux ops[66]

program slicing algorithm [5] to find out a memory location that is associated with
a kernel object (including a global static variable) and whose content determines the
register value. To do that, we follow the algorithm by first computing two sets for

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 31

#line machine code instruction DEF USE
==== ============= ==================== ======== =====
i-1 : ...
i+0 : 89 c3 mov %eax,%ebx %ebx %eax
i+1 : 83 ec 04 sub $0x4,%esp %esp %esp
i+2 : 8b 80 c4 00 00 00 mov 0xc4(%eax),%eax %eax mem[%eax+0xc4], %eax
i+3 : f6 c2 03 test $0x3,%dl eflags %dl
i+4 : 89 04 24 mov %eax,(%esp) mem[esp] %eax
i+5 : 74 0e je c016b713 eflags
i+6 : 8b 40 24 mov 0x24(%eax),%eax %eax mem[%eax+0x24], %eax
i+7 : 8b 50 0c mov 0xc(%eax),%edx %edx mem[%eax+0xc], %eax
i+8 : 85 d2 test %edx,%edx eflags %edx
i+9 : 74 04 je c016b713 eflags
i+10: 89 d8 mov %ebx,%eax %eax %ebx
i+11: ff d2 call *%edx %eip %edx
i+12: ...

Fig. 3. Discovering a kernel hook based on dynamic program slicing

each related instruction: one is DEF [i] that contains the variable(s) defined by this
instruction, and another is USE[i] that includes all variables used by this instruction.
Each set can contain an element of either a memory location or a machine register. After
that, we then examine backwards to find out the memory location that is occupied by
a kernel object and whose content determines the register value. In the following, we
will walk-through the scheme with an example. (For the classic algorithm, interested
readers are referred to [5] for more details.)

Figure 3 shows some sequential kernel instructions7 of a kernel function mark
inode dirty that are executed in the sys getdent64 context of the ls command. In par-

ticular, the sequence contains an HAP instruction – call *%edx – at the memory lo-
cation 0xc016b711 (line i + 11 in Figure 3). Note that since we monitor at run-time,
we can precisely tell which memory locations/registers are defined and/or used. As a
result, we directly derive the corresponding destination address (contained in the %edx
register), which is 0xc885bca0 – the entry point of a function ext3 dirty inode within
a LKM named ext3.ko. Obviously, it is the destination address the HAP instruction
will transfer to, not the relevant kernel hook. Next, our prototype further expands the
associated semantics of every executed instruction i to compute the two sets DEF [i]
and USE[i] and the results are shown in Figure 3. With the two sets defined for each
instruction, we can then apply the dynamic slicing algorithm. Specifically, from the
HAP instruction (line i+11), the USE set contains the %edx register, which is defined
by the instruction at line i + 7. This particular instruction is associated with a USE
set having two members: %eax and mem[%eax+0xc]. It turns out the %eax points
to the kernel object ext3 dir inode operations and 0xc is an offset from the kernel
object. After identifying the responsible kernel object, the slicing algorithm then out-
puts ext3 dir inode operations[3] as the corresponding kernel hook and terminates. In
Table 1, this is the fourth kernel hook identified in the sys getdent64 context. Note that
this particular kernel object is a jump table containing a number of function pointers.
The offset 0xc indicates that it is the fourth member function in the object as each
function pointer is four bytes in size. (The first four member functions in the kernel
object are in the offsets of 0x0, 0x4, 0x8, and 0xc, respectively.)

7 These instructions are in the AT&T assembly syntax, where source and destination operands,
if any, are in the reverse order when compared with the Intel assembly syntax.

32 Z. Wang et al

5 Evaluation

In this section, we present the evaluation results. In particular, we conduct two sets
of experiments. The first set of experiments (Section 5.1) is to monitor the execu-
tion of various security programs and identify those kernel hooks that can be poten-
tially hijacked for hiding purposes. The second set of experiments (Section 5.2) is to

Table 2. Process-hiding kernel hooks obtained by monitoring the ps -ef command in RedHat
Fedora Core 5

execution path # kernel hooks Details
sys read 17 sys call table[3], selinux ops[5], selinux ops[59],

capability ops[5], kern table[336], timer pmtmr[2],
proc info file operations[2], proc file operations[2],

proc sys file operations[2], proc tty drivers operations[2],
tty drivers op[0], tty drivers op[1], tty drivers op[2],

tty drivers op[3], proc inode.op.proc read,
simple ones[1].read proc, simple ones[2].read proc

sys write 11 sys call table[4], selinux ops[59], dummy con[33], tty fops[4],
con ops[2], con ops[3], con ops[4], con ops[5],
vga con[6], vga con[7], tty ldisc N TTY.write chan

sys open 20 sys call table[5], selinux ops[34], selinux ops[46],
selinux ops[47], selinux ops[60], selinux ops[88],

selinux ops[112], capability ops[46], capability ops[47],
pid base dentry operations[0], proc sops[0], proc sops[2],
proc root inode operations[1], proc dir inode operations[1],
proc self inode operations[10], proc sys file operations[12] ,

proc tgid base inode operations[1], proc tty drivers operations[12],
ext3 dir inode operations[13] (ext3.ko), ext3 file operations[12] (ext3.ko)

sys close 10 sys call table[6], selinux ops[35], selinux ops[50],
selinux ops[61], pid dentry operations[3],

proc dentry operations[3], proc tty drivers operations[14],
proc sops[1], proc sops[6], proc sops[7]

sys time 2 sys call table[13], timer pmtmr[2]

sys lseek 2 sys call table[19], proc file operations[1]

sys ioctl 5 sys call table[54], tty fops[8], selinux ops[62],
con ops[7], tty ldisc N TTY.n tty ioctl

sys mprotect 3 sys call table[125], selinux ops[64], capability ops[64]

sys getdents8 3 sys call table[141], selinux ops[59], proc root operations[6]

sys getdents64 3 sys call table[220], selinux ops[59], proc root operations[6]

sys mmap2 8 sys call table[192], selinux ops[63], selinux ops[11],
capability ops[6], capability ops[63], ext3 dir inode operations[3] (ext3.ko),

ext3 file operations[11], mm→get unmapped area

sys stat64 16 sys call table[195], selinux ops[34], selinux ops[46], selinux ops[47],
selinux ops[49], selinux ops[88], selinux ops[112], capability ops[46],

capability ops[47], ext3 dir inode operations[13] (ext3.ko),
pid base dentry operations[0], pid dentry operations[3],

proc root inode operations[1], proc self inode operations[10],
proc sops[0], proc tgid base inode operations[1]

sys fstat64 2 sys call table[197], selinux ops[49]

sys geteuid32 1 sys call table[201]

sys fcntl64 2 sys call table[221], selinux ops[66]

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 33

Table 3. Network-hiding kernel hooks obtained by monitoring the netstat -atp command in
RedHat Fedora Core 5

execution path # kernel hooks Details
sys read 8 sys call table[3], selinux ops[59], seq ops.start, seq ops.show,

seq ops.next, seq ops.stop, proc tty drivers operations[2]

sys write 12 sys call table[4], selinux ops[59], dummy con[33],
con ops[2], con ops[3], con ops[4], con ops[5],
tty fops[4], tty ldisc N TTY.write chan,
vga con[6], vga con[7], vga ops[8]

sys open 19 sys call table[5], selinux ops[34], selinux ops[35],
selinux ops[47], selinux ops[50], selinux ops[60],
selinux ops[61], selinux ops[112], capability ops[47],

ext3 dir inode operations[13] (ext3.ko), pid dentry operations[3],
proc root inode operations[1], proc dir inode operations[1],

proc sops[0], proc sops[1], proc sops[2],
proc sops[6], proc sops[7], tcp4 seq fops[12]

sys close 9 sys call table[6], selinux ops[35], selinux ops[50], selinux ops[61],
proc dentry operations[3], proc tty drivers operations[14],

proc sops[1], proc sops[6], proc sops[7],

sys munmap 2 sys call table[91], mm→unmap area

sys mmap2 6 sys call table[192], selinux ops[11], selinux ops[63], capability ops[6],
capability ops[63], mm→get unmapped area

sys fstat64 2 sys call table[197], selinux ops[49]

empirically evaluate those identified hooks by analyzing a number of real-world rootkits
and see whether the used kernel hooks are actually a part of the discovered ones8.

5.1 Kernel Hooks

In our experiments, we focus on three types of resources that are mainly targeted
by rootkits: files, processes, and network connections. To enumerate related kernel
hooks, we correspondingly chose three different utility programs – ls, ps, and net-
stat. These three programs are from the default installation of Red Hat Linux Fedora
Core 5 that runs as a guest VM (with 512MB memory) on top of our system. Our test-
ing platform was a modest system, a Dell PowerEdge 2950 server with Xeon 3.16Ghz
and 4GB memory running Scientific Linux 4.4. As mentioned earlier, the way to choose
these programs is based on the intuition that to hide a file (, a process, or a network
connection), a persistent kernel rootkit needs to compromise the kernel-side execution
of the ls (, ps, or netstat) program.

In our evaluation, we focus on those portions of collected traces that are related to
the normal functionality of the security program (e.g., the querying of system states of
interest as well as the final result output) and exclude other unrelated ones. For example,
if some traces are part of the loading routine that prepares the process memory layout,

8 Different versions of ps invokes different system calls to list files under a directory. In our
evaluation, the 3.2.7 version of ps uses the sys getdents system call while the version 3.2.3
uses another system call – sys getdents64. Both system calls work the same way except one
has a kernel hook sys call table[141] while another has sys call table[220].

34 Z. Wang et al

we consider them not related to the normal functionality of the chosen program and
thus simply ignore them. Further, we assume that the chosen security program as well
as those dependent libraries are not compromised. Tables 1, 2, and 3 contain our results,
including those specific execution contexts of related system calls. Encouragingly, for
each encountered HAP instruction, we can always locate the corresponding kernel
hook and our manual analysis on Linux kernel source code further confirms that each
identified kernel hook is indeed from a meaningful kernel object or data structure.

More specifically, these three tables show that most identified kernel hooks are part
of jump tables defined in various kernel objects. In particular, there are three main kernel
objects containing a large collection of function pointers that can be hooked for hiding
purposes: the system call table sys call table, the SELinux-related security operations
table selinux ops, as well as the capability-based operations table capability ops. There
are other kernel hooks that belong to a particular dynamic kernel object. One exam-
ple is the function pointer get unmapped area (in the sys mmap2 execution path of
Table 2) inside the mm kernel object that manages the process memory layout. Note
that this particular kernel hook cannot be determined by static analysis.

More in-depth analysis also reveals that an HAP instruction executed in different
execution contexts can be associated with different kernel hooks. One example is the
HAP instruction located in the system call dispatcher (Figure 1(a)) where around 300
system call service routines are called by the same HAP instruction. A kernel hook can
also be associated with multiple HAP instructions. This is possible because a function
pointer (contained in a kernel hook) can be invoked at multiple locations in a function.
One such example is selinux ops[47], a kernel hook that is invoked a number of times
in the sys open execution context of the ps command. In addition, we observed many
one-to-one mappings between an HAP instruction and its associated kernel hook. Un-
derstanding the relationship between HAP instructions and kernel hooks is valuable for
real-time accurate enforcement of kernel control-flow integrity [14].

5.2 Case Studies

To empirically evaluate those identified kernel rootkits, we manually analyzed the
source code of eight real-world Linux rootkits (Table 4). For each rootkit, we first
identified what kernel hooks are hijacked to implement a certain hiding feature and
then checked whether they are a part of the results shown in Tables 1, 2, and 3. It is
encouraging that for every identified kernel hook9, there always exists an exact match
in our results. In the following, we explain two rootkit experiments in detail:

The Adore Rootkit. This rootkit is distributed in the form of a loadable kernel
module. If activated, the rootkit will implant 15 kernel hooks in the system call table
by replacing them with its own implementations. Among these 15 hooks, only three of
them are responsible for hiding purposes10. More specifically, two system call table en-

9 Our evaluation focuses on those kernel data hooks. As mentioned earlier, for kernel code
hooks, they can be scattered over every kernel instruction in the corresponding system call
execution path.

10 The other 12 hooks are mainly used to provide hidden backdoor accesses. One example is the
sys call table[6] (sys close), which is hooked to allow the attacker to escalate the privilege to
root without going through the normal authorization process.

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 35

Table 4. Kernel hooks used by real-world rootkits (‡ means a code hook)

rootkit kernel hooks based on the hiding features
file-hiding process-hiding network-hiding

adore sys call table[141] sys call table[141] sys call table[4]
sys call table[220] sys call table[220]

adore-ng ext3 dir operations[6] proc root operations[6] tcp4 seq fops[12]
hideme.vfs sys getdents64‡ proc root operations[6] N/A

override sys call table[220] sys call table[220] sys call table[3]
Synapsys-0.4 sys call table[141] sys call table[141] sys call table[4]

Rial sys call table[141] sys call table[141] sys call table[3], sys call table[5]
sys call table[6]

knark sys call table[141] sys call table[141] sys call table[3]
sys call table[220] sys call table[220]

kis-0.9 sys call table[141] sys call table[141] tcp4 seq fops[12]

tries – sys getdents (sys call table[141]) and sys getdents64 (sys call table[220]) – are
hijacked for hiding files and processes while another one – sys write (sys call table[4])
– is replaced to hide network activities related to backdoor processes protected by
the rootkit. A customized user-space program called ava is provided to send hiding
instructions to the malicious LKM so that certain files or processes of attackers’ choices
can be hidden. All these three kernel hooks are uncovered by our system, as shown in
Tables 1, 2, and 3, respectively.

The Adore-ng Rootkit. As the name indicates, this rootkit is a more advanced suc-
cessor from the previous adore rootkit. Instead of directly manipulating the system call
table, the adore-ng rootkit subverts the jump table of the virtual file system by replacing
the directory listing handler routines with its own ones. Such replacement allows it
to manipulate the information about the root file system as well as the /proc pseudo-
file system to achieve the file-hiding or process-hiding purposes. More specifically, the
readdir function pointer (ext3 dir operations[6]) in the root file system operations table
is hooked for hiding attack files, while the similar function (proc root operations[6])
in the /proc file system operations table is hijacked for hiding attack processes. The
fact that the kernel hook ext3 dir operations[6] is located in the loadable module space
(ext3.ko) indicates that this rootkit is more stealthier and these types of kernel hooks are
much more difficult to uncover than those kernel hooks at static memory locations (e.g.,
the system call table). Once again, our system successfully identified these stealth kernel
hooks, confirming our observation in Section 1. Further, the comparisons between those
hooks used by rootkits (Table 4) and the list of hooks from our system (Tables 1, 2,
and 3) indicate that only a small subset of them have been used.

6 Discussion

Our system leverages the nature of persistent kernel rootkits to systematically discover
those kernel hooks that can potentially be exploited for hiding purposes. However, as

36 Z. Wang et al

a rootkit may implant other kernel hooks for other non-hiding features as its payload,
our current prototype is ineffective in identifying them. However, the prototype can
be readily re-targeted to those non-hiding features and apply the same techniques to
identify those kernel hooks. Also, our system by design only works for persistent kernel
rootkits but could be potentially extended for other types of rootkits as well (e.g,.
persistent user-level rootkits).

Our current prototype is developed to identify those kernel hooks related to the
execution of a chosen security program, either an anti-rootkit software or a system
utility program. However, with different programs as the input, it is likely that different
running instances will result in different sets of kernel hooks. Fortunately, for the rootkit
author, he faces the challenge in hiding itself from all security programs. As a result, our
defense has a unique advantage in only analyzing a single instantiated execution path
of a rootkit-detection program. In other words, a persistent kernel rootkit cannot evade
its detection if the hijacked kernel hooks are not a part of the corresponding kernel-side
execution path. There may exist some “in-the-wild” rootkits that take chances in only
evading selected security software. However, in response, we can monitor only those
kernel hooks related to an installed security software. As mentioned earlier, to hide
from it, persistent kernel rootkits will hijack at least one of these kernel hooks.

Meanwhile, it may be argued that our results from monitoring a running instance
of a security program could lead to false positives. However, the fact that these kernel
hooks exist in the kernel-side execution path suggest that each one could be equally
exploited for hooking purposes. From another perspective, we point out that the scale
of our results is manageable since it contains tens, not hundreds, of kernel hooks.

Finally, we point out that our current prototype only considers those kernel objects
or variables that may contain kernel hooks of interest to rootkits. However, there also
exist other types of kernel data such as non-control data [9] (e.g., the uid field in
the process control block data structure or the doubly-linked process list), which can
be manipulated to contaminate kernel execution. Though they may not be used to
implement a persistent kernel rootkit for control-flow modifications, how to extend the
current system to effectively address them (e.g., by real-time enforcing kernel control
flow integrity [10]) remains as an interesting topic for future work.

7 Related Work
Hook Identification. The first area of related work is the identification of kernel hooks
exploitable by rootkits for hiding purposes. Particularly, HookFinder [23] analyzes a
given rootkit example and reports a list of kernel hooks that are being used by the mal-
ware. However, by design, it does not lead to the identification of other kernel hooks that
are not being used but could still be potentially exploited for the same hiding purposes.
From another perspective, SBCFI [14] performs static analysis of Linux kernel source
code and aims to build a kernel control-flow graph that will be followed by a legitimate
kernel at run-time. However, the graph is not explicitly associated with those kernel
hooks for rootkit hiding purposes. Furthermore, the lack of run-time information could
greatly limit its accuracy. In comparison, our system complements them with the unique
capability of exhaustively deriving those kernel hooks for a given security program,
which could be potentially hijacked by a persistent rootkit to hide from it.

Countering Persistent Kernel Rootkits through Systematic Hook Discovery 37

Hook-based Rootkit Detection. The second area of related work is the detection
of rootkits based on the knowledge of those specific hooking points that may be used
by rootkits. For example, existing anti-rootkit tools such as VICE [8], IceSword [16],
System Virginity Verifier [17] examine known memory regions occupied by these spe-
cific hooking points to detect any illegitimate modification. Our system is designed
with a unique focus in uncovering those specific kernel hooks. As a result, they can be
naturally combined together to build an integrated rootkit-defense system.

Other Rootkit Defenses. There also exist a number of recent efforts [12,13,15,20,21]
[22] that defend against rootkits by detecting certain anomalous symptoms likely caused
by rootkit infection. For example, The Strider GhostBuster system [21] and VMwatcher
[12] apply the notion of cross-view detection to expose any discrepancy caused by
stealth rootkits. CoPilot [15] as well as the follow-up work [13] identify rootkits by
detecting possible violations in kernel code integrity or semantic constraints among
multiple kernel objects. SecVisor [20] aims to prevent unauthorized kernel code from
execution in the kernel space. Limbo [22] characterizes a number of run-time features
that can best distinguish between legitimate and malicious kernel drivers and then
utilizes them to prevent a malicious one from being loaded into the kernel. Our system
is complementary to these systems by pinpointing specific kernel hooks that are likely
to be chosen by stealth rootkits for manipulation.

8 Conclusion

To effectively counter persistent kernel rootkits, we have presented a systematic ap-
proach to uncover those kernel hooks that can be potentially hijacked by them. Our
approach is based on the insight that those rootkits by their nature will tamper with
the execution of deployed rootkit-detection software. By instrumenting and recording
possible control-flow transfer instructions in the kernel-side execution paths related to
the deployed security software, we can reliably derive all related kernel hooks. Our
experience in building a prototype system as well as the experimental results with real-
world rootkits demonstrate the effectiveness of the proposed approach.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful comments
that helped to improve the presentation of this paper. This work was supported in part
by NSF Grants CNS-0716376, CNS-0524286, and CCF-0728771.

References

1. The adore Rootkit, http://lwn.net/Articles/75990/
2. The Hideme Rootkit,

http://www.sophos.com/security/analyses/
viruses-and-spyware/trojhidemea.html

http://lwn.net/Articles/75990/
http://www.sophos.com/security/analyses/viruses-and-spyware/trojhidemea.html
http://www.sophos.com/security/analyses/viruses-and-spyware/trojhidemea.html

38 Z. Wang et al

3. The Strange Decline of Computer Worms,
http://www.theregister.co.uk/2005/03/17/f-secure websec/
print.html

4. VMware, http://www.vmware.com/
5. Agrawal, H., Horgan, J.R.: Dynamic Program Slicing. In: Proceedings of ACM SIGPLAN

1990 Conference on Programming Language Design and Implementation (1990)
6. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator. In: Proc. of USENIX Annual

Technical Conference 2005 (FREENIX Track) (July 2005)
7. Butler, J.: R2̂: The Exponential Growth of Rootkit Techniques,

http://www.blackhat.com/presentations/bh-usa-06/
BH-US-06-Butler.pdf

8. Butler, J.: VICE 2.0,
http://www.infosecinstitute.com/blog/README VICE.txt

9. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.: Non-Control-Data Attacks Are Realistic
Threats. In: Proc. USENIX Security Symposium (August 2005)

10. Grizzard, J.B.: Towards Self-Healing Systems: Re-Establishing Trust in Compromised
Systems. Ph.D. thesis, Georgia Institute of Technology (May 2006)

11. Jiang, X., Wang, X.: “Out-of-the-Box” Monitoring of VM-Based High-Interaction Honey-
pots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
198–218. Springer, Heidelberg (2007)

12. Jiang, X., Wang, X., Xu, D.: “Out-of-the-Box” Semantic View Reconstruction. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security (CCS 2007)
(October 2007)

13. Petroni, N., Fraser, T., Walters, A., Arbaugh, W.: An Architecture for Specification-Based
Detection of Semantic Integrity Violations in Kernel Dynamic Data. In: Proc. of the 15th
USENIX Security Symposium (August 2006)

14. Petroni, N., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow Attacks. In:
Proc. of ACM CCS 2007 (October 2007)

15. Petroni, N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a Coprocessor-based Kernel
Runtime Integrity Monitor. In: Proc. of the 13th USENIX Security Symposium (August 2004)

16. PJF. IceSword, http://www.antirootkit.com/software/IceSword.htm,
http://pjf.blogcn.com/

17. Rutkowska, J.: System Virginity Verifier,
http://invisiblethings.org/papers/hitb05 virginity verifier.
ppt

18. Rutkowska, J.: Rootkits vs. Stealth by Design Malware,
http://invisiblethings.org/papers/rutkowska bheurope2006.ppt

19. sd.: Linux on-the-fly kernel patching without LKM. Phrack 11(58), article 7 of 15 (2001)
20. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Guarantee Lifetime

Kernel Code Integrity for Commodity OSes. In: Proc. of the ACM SOSP 2007 (October 2007)
21. Wang, Y., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Software with

Strider GhostBuster. In: Proc. of the 2005 International Conference on Dependable Systems
and Networks (June 2005)

22. Wilhelm, J., Chiueh, T.-c.: A Forced Sampled Execution Approach to Kernel Rootkit
Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637,
pp. 219–235. Springer, Heidelberg (2007)

23. Yin, H., Liang, Z., Song, D.: HookFinder: Identifying and Understanding Malware Hooking
Behaviors. In: Proc. of ISOC NDSS 2008 (February 2008)

24. Zhang, X., Gupta, R., Zhang, Y.: Precise Dynamic Slicing Algorithms. In: Proc. of the
IEEE/ACM International Conference on Software Engineering (May 2003)

http://www.theregister.co.uk/2005/03/17/f-secure_websec/print.html
http://www.theregister.co.uk/2005/03/17/f-secure_websec/print.html
http://www.vmware.com/
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Butler.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Butler.pdf
http://www.infosecinstitute.com/blog/README_VICE.txt
http://www.antirootkit.com/software/IceSword.htm
http://pjf.blogcn.com/
http://invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://invisiblethings.org/papers/hitb05_virginity_verifier.ppt
http://invisiblethings.org/papers/rutkowska_bheurope2006.ppt

Tamper-Resistant, Application-Aware Blocking

of Malicious Network Connections

Abhinav Srivastava and Jonathon Giffin

School of Computer Science, Georgia Institute of Technology
{abhinav,giffin}@cc.gatech.edu

Abstract. Application-level firewalls block traffic based on the process
that is sending or receiving the network flow. They help detect bots,
worms, and backdoors that send or receive malicious packets without
the knowledge of users. Recent attacks show that these firewalls can
be disabled by knowledgeable attackers. To counter this threat, we de-
velop VMwall, a fine-grained tamper-resistant process-oriented firewall.
VMwall’s design blends the process knowledge of application-level fire-
walls with the isolation of traditional stand-alone firewalls. VMwall uses
the Xen hypervisor to provide protection from malware, and it correlates
TCP or UDP traffic with process information using virtual machine in-
trospection. Experiments show that VMwall successfully blocks numer-
ous real attacks—bots, worms, and backdoors—against a Linux system
while allowing all legitimate network flows. VMwall is performant, im-
posing only a 0–1 millisecond delay on TCP connection establishment,
less than a millisecond delay on UDP connections, and a 1–7% slowdown
on network-bound applications. Our attack analysis argues that with the
use of appropriate external protection of guest kernels, VMwall’s intro-
spection remains robust and helps identify malicious traffic.

Keywords: Firewall, virtual machine introspection, attack prevention.

1 Introduction

Application-level firewalls are an important component of a computer system’s
layered defenses. They filter inbound and outbound network packets based on
an access policy that includes lists of processes allowed to make network con-
nections. This fine-grained filtering is possible because application-level firewalls
have a complete view of the system on which they execute. In contrast, network-
or host-level firewalls provide coarse-grained filtering using ports and IP ad-
dresses. Application-level firewalls help detect and block malicious processes,
such as bots, worms, backdoors, adware, and spyware, that try to send or re-
ceive network flows in violation of the fine-grained policies. To be successful,
these firewalls must be fast, mediate all network traffic, and accurately identify
executing processes.

The conventional design of application-level firewalls has a deficiency that may
prevent filtering of malicious traffic. The architectures pass packet information

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 39–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 A. Srivastava and J. Giffin

from a kernel-level network tap up to a user-level firewall process that executes
alongside malicious software. The firewall is both performant and able to identify
the processes attached to a network flow, but it is exposed to direct attack by
any malicious software aware of the firewall. Baliga et al. [1] demonstrated the
ease of such attacks by manipulating the netfilter framework inside the Linux
kernel to remove the hooks to packet filtering functions. Similarly, attackers can
disable the Windows Firewall by halting particular services normally running on
the system. Once the firewall fails, then all network traffic will be unmediated
and the malware can send and receive data at will.

An alternative design isolates firewalls from vulnerable systems to gain protec-
tion from direct attack. Virtual machines allow construction of firewall appliances
that execute outside of operating systems under attack. Such firewalls dispense
with application-level knowledge and filter inbound and outbound packets us-
ing coarse-grained rules over IP addresses and port numbers. Attacks can easily
evade these firewalls by using allowed ports directly or via tunneling.

This paper leverages the benefits of both application-level firewalls and vir-
tual machine isolation to develop tamper-resistant application-oriented firewalls.
Such a firewall needs good visibility of the system so that it can correlate net-
work flows with processes, but it also needs strong isolation from any user-level
or kernel-level malware that may be present. We architect an application-level
firewall resistant to direct attack from malicious software on the system. Our
design isolates the application-level firewall in a trusted virtual machine (VM)
and relies on the hypervisor to limit the attack surface between any untrusted
VM running malware and the trusted VM. Our firewall, executing in the trusted
VM, becomes an application-level firewall by using virtual machine introspec-
tion (VMI) [10] to identify the process in another VM that is connected to a
suspicious network flow.

Our prototype implementation, VMwall, uses the Xen [2] hypervisor to remain
isolated from malicious software. VMwall executes entirely within Xen’s trusted
virtual machine dom0; it operates with both paravirtualized and fully virtualized
domains. A dom0 kernel component intercepts network connections to and from
untrusted virtual machines. A user-space process performs introspection to cor-
relate each flow to a sending or receiving process, and it then uses a predefined
security policy to decide whether the connection should be allowed or blocked.
Policies are straightforward whitelists of known software in the untrusted VM
allowed to communicate over the network. To correlate network flows with pro-
cesses, VMwall’s user-space component maps the untrusted operating system’s
kernel memory into its own address space and uses programmed knowledge of
kernel data structures to extract the identity of the process attached to the flow.

VMwall is effective at identifying and blocking malicious network connections
without imposing significant performance degradation upon network traffic. Us-
ing a Linux system and a collection of known attacks that either send or re-
ceive network traffic, we show that VMwall identifies all malicious connections
immediately when the first packet is sent or received. In particular, VMwall
blocked 100% of the malicious connections when tested against bots, worms,

Tamper-Resistant, Application-Aware Blocking of Malicious Network 41

and backdoors, and it correctly allowed all legitimate network traffic. In our
design, VMwall only performs introspection for the first packet of a new con-
nection, so network performance remains high. Our tool adds only about 0–1
milliseconds of overhead to the first packet of a session. This is a latency cost to
network connection creation that will not impact the subsequent data transfer
of legitimate connections.

VMwall looks into the state of the untrusted operating system’s memory to
find the process bound to a network connection. The system monitors network
flows, and it is not an intrustion detection system designed to detect an attack
against the OS. Hence, an attacker may try to evade VMwall either by hijacking
a process or by subverting the inspected kernel data structures. In Sect. 6.4, we
study this problem, provide an in-depth security analysis of VMwall, and suggest
appropriate measures to thwart these attacks.

We believe that our tamper-resistant application-oriented firewall represents
an appropriate use of virtualization technology for improved system security. We
feel that our paper provides the following contributions:

– Correlation between network flows and processes from outside the virtual
machine (Sect. 4).

– VMwall, an implementation of a tamper-resistant application-oriented fire-
wall (Sect. 5).

– Evidence that application-aware firewalls outside the untrusted virtual ma-
chine can block malicious network connections successfully while maintaining
network performance (Sect. 6).

2 Related Work

Prior research has contributed to the development of conventional host-based
firewalls. Mogul et al. [21] developed a kernel-resident packet filter for UNIX
that gave user processes flexibility in selecting legitimate packets. Venema [29]
designed a utility to monitor and control incoming network traffic. These tra-
ditional firewalls performed filtering based on restrictions inherent in network
topology and assumed that all parties inside the network were trusted. As part
of the security architecture of the computer system, they resided in kernel-space
and user-space, and hence were vulnerable to direct attack by malicious software.

Administration of firewalls can be cumbersome, and distributed firewalls have
been proposed to ease the burden [3,15]. In distributed firewalls, an administra-
tor manages security policies centrally but pushes enforcement of these policies
out to the individual hosts. Although we have not implemented support for dis-
tributed management, we expect VMwall to easily fit into this scheme. VMwall
policies dictate which processes can legitimately make use of network resources.
In a managed environment where administrators are knowledgeable of the soft-
ware running on the machines in the local network, preparing and distributing
VMwall policies from a central location may be an appealing solution.

42 A. Srivastava and J. Giffin

The recent support for virtual machines by commodity hardware has driven
development of new security services deployed with the assistance of VMs [27,
9, 30]. Garfinkel et al. [11] showed the feasibility of implementing distributed
network-level firewalls using virtual machines. In another work [10], they pro-
posed an intrusion detection system design using virtual machine introspection
of an untrusted VM. VMwall applies virtual machine introspection to a different
problem, using it to correlate network flows with the local processes bound to
those flows.

Other research used virtual machines for malware detection. Borders et al. [4]
designed a system, Siren, that detected malware running within a virtual ma-
chine. Yin et al. [33] proposed a system to detect and analyze privacy-breaching
malware using taint analysis. Jiang et al. [17] presented an out-of-the-box VMM-
based malware detection system. Their proposed technique constructed the inter-
nal semantic views of a VM from an external vantage point. In another work [16],
they proposed a monitoring tool that observes a virtual machine based honey-
pot’s internal state from outside the honeypot. As a pleasant side-effect of mali-
cious network flow detection and process correlation, VMwall can often identify
processes in the untrusted system that comprise portions of an attack.

Previous research has developed protection strategies for different types of
hardware-level resources in the virtualized environment. Xu et al. [32] proposed
a VMM-based usage control model to protect the integrity of kernel memory.
Ta-Min et al. [28] proposed a hypervisor based system that allowed applications
to partition their system call interface into trusted and untrusted components.
VMwall, in contrast, protects network resources from attack by malware that
runs inside the untrusted virtual machine by blocking the illegitimate network
connections attempts.

These previous hypervisor-based security applications generally take either
a network-centric or host-centric view. Our work tries to correlate activity at
both levels. VMwall monitors network connections but additionally peers into
the state of the running, untrusted operating system to make its judgments
about each connection’s validity. Moreover, VMwall easily scales to collections
of virtual machines on a single physical host. A single instance of VMwall can
act as an application-level firewall for an entire network of VMs.

3 Overview

We begin with preliminaries. Section 3.1 explains our threat model, which as-
sumes that attackers have the ability to execute the real-world attacks infecting
widespread computer systems today. Section 3.2 provides a brief overview of
Xen-based virtual machine architectures and methods allowing inspection of a
running VM’s state.

3.1 Threat Model

We assume that attackers have abilities commonly displayed by real-world at-
tacks against commodity computer systems. Attackers can gain superuser priv-

Tamper-Resistant, Application-Aware Blocking of Malicious Network 43

ilege from remote. Attackers are external and have no physical access to the
attacked computers, but they may install malicious software on a victim system
by exploiting a software vulnerability in an application or operating system or
by enticing unsuspecting users to install the malware themselves. The software
exploit or the user often executes with full system privileges, so the malware
may perform administrative actions such as kernel module or driver installation.
Hence, malicious code may execute at both user and kernel levels. For ease of
explanation, we initially describe VMwall’s architecture in Sect. 4 under the as-
sumption that kernel data structure integrity is maintained. This assumption
is not valid in our threat model, and Sect. 6.4 revisits this point to describe
technical solutions ensuring that the assumption holds.

The installed malware may periodically make or receive network connections.
Many examples exist. Bots make network connections to a command and con-
trol channel to advertise their presence and receive instruction, and they send
bulk network traffic such as denial-of-service packets and email spam. Spyware
programs collect information, such as keystrokes and mouse clicks, and then
transmit the confidential data across a network to the attacker. Worms may
generate network connections to scan the network in search of additional vic-
tims suitable for infection. Backdoors open holes in machines by listening for
incoming connections from the attacker. One common feature of these different
classes of attacks is their interest in the network.

In a typical system, malware can directly affect an application-level firewall’s
execution. The architecture of these malware instances frequently combines a
user-level application performing network activity with a kernel-level module
that hides the application from the view of host-level security software. The
malicious application, likely running with full system privileges, may halt the
execution of the firewall. Similarly, the malicious kernel component may alter
the hooks used by an in-kernel module supporting the user-level firewall so that
the firewall is simply never invoked as data passes to and from the network. Con-
ventional application-level firewalls fail under these direct attacks. Our goal is to
develop a system that withstands direct attack from malware at the application
layer or the kernel layer.

Our system has requirements for correct execution. As with all requirements,
an attacker who is able to violate any requirement is likely able to escape de-
tection. Our two requirements of note center on basic expectations for the in-
memory data structures used by the kernel that may be infected by an attack.

First, we expect to be able to find the head of linked data structures, often
by extracting a kernel symbol value at boot time. An attacker could conceivably
cause our firewall to inspect the incorrect kernel information by replicating the
data structure elsewhere in kernel memory and by altering all code references to
the original structure to instead refer to the new structure. Our firewall would
then analyze stale data. It is not immediately clear that such an attack is plausi-
ble; moreover, our tool could periodically verify that code references to the data
match the symbol value extracted at boot.

44 A. Srivastava and J. Giffin

Physical Hardware

Xen Hypervisor

NIC
Driver

Bridge

VNI
Backend

VNI
Frontend

I/O Channel

Dom0 Virtual Machine DomU Virtual Machine

User Space

Kernel Space

User Space

Kernel Space

NIC Physical Hardware

Xen Hypervisor

NIC
Driver

Bridge

QEMU Network
Device Model

Network
Driver

Dom0 VM DomU VM

User Space

Kernel Space

User Space

Kernel Space

NIC

VM Exit &
VM Enter

Paravirtualized domain Fully virtualized domain

Fig. 1. Xen networking architecture

Second, we expect that attacks do not alter the ordering or length of fields in
aggregate data structures. Our firewall is preprogrammed with type information
about kernel structures, and an attack that alters the structure types would
cause our system to read incorrect information from kernel memory. Successfully
executing this attack without kernel recompilation appears to be complex, as all
kernel code that accesses structure fields would need to be altered to use the
attacker’s structure layout. As a result, we believe that relying upon known
structure definitions is not a limiting factor to our design.

3.2 Virtual Machine Introspection

Our design makes use of virtual machine technology to provide isolation be-
tween malicious code and our security software. We use Xen [2], an open source
hypervisor that runs directly on the physical hardware of a computer. The vir-
tual machines running atop Xen are of two types: unprivileged domains, called
domU or guest domains, and a single fully-privileged domain, called dom0. We
run normal, possibly vulnerable software in domU and deploy our application-
level firewall in the isolated dom0.

Xen virtualizes the network input and output of the system. Dom0 is the de-
vice driver domain that runs the native network interface card driver software.
Unprivileged virtual machines cannot directly access the physical network card,
so Xen provides them with a virtualized network interface (VNI). The driver do-
main receives all the incoming and outgoing packets for all domU VMs executing
on the physical system. Dom0 provides an Ethernet bridge connecting the phys-
ical network card to all virtual network devices provided by Xen to the domU
VMs. (Xen offers other networking modes, such as network address translation,
that are not used in our work and will not be considered further.) Dom0 uses its
virtual bridge to multiplex and demultiplex packets between the physical net-
work interface and each unprivileged virtual machine’s VNI. Figure 1 shows the
Xen networking architecture when the virtual machines’ network interfaces are

Tamper-Resistant, Application-Aware Blocking of Malicious Network 45

connected through a virtual Ethernet bridge. The guest VMs send and receive
packets via either an I/O channel to dom0 or emulated virtual devices.

The strong isolation provided by a hypervisor between dom0 and the guest
domains complicates the ability to correlate network flows with software execut-
ing in a guest domain. Yet, dom0 has complete access to the entire state of the
guest operating systems running in untrusted virtual machines. Virtual machine
introspection (VMI) [10] is a technique by which dom0 can determine execution
properties of guest VMs by monitoring their runtime state, generally through di-
rect memory inspection. VMI allows security software to remain protected from
direct attack by malicious software executing in a guest VM while still able to
observe critical system state.

Xen offers low-level APIs to allow dom0 to map arbitrary memory pages
of domU as shared memory. XenAccess [31] is a dom0 userspace introspection
library developed for Xen that builds onto the low-level functionality provided by
Xen. VMwall uses XenAccess APIs to map raw memory pages of domU’s kernel
inside dom0. It then builds higher-level memory abstractions, such as aggregate
structures and linked data types, from the contents of raw memory pages by
using the known coding semantics of the guest operating system’s kernel. Our
application-level firewall inspects these meaningful, higher-level abstractions to
determine how applications executing in the guest VM use network resources.

4 Tamper Resistant Architecture of VMwall

VMwall is our application-level firewall designed to resist the direct attacks pos-
sible in our threat model. The architecture of VMwall is driven by the following
three goals:

– Tamper Resistance: VMwall should continue to function reliably and ver-
ify all network connections even if an attacker gains entry into the monitored
system. In particular, the design should not rely on components installed in
the monitored host as processes or kernel modules, as these have been points
of direct attack in previous application-level firewalls.

– Independence: VMwall should work without any cooperation from the
monitored system. In fact, the system may not be aware of the presence of
the firewall.

– Lightweight Verification: Our intent is to use VMwall for online verifi-
cation of network connections to real systems. The design should allow for
efficient monitoring of network traffic and correlation to applications sending
and receiving that traffic.

Our firewall design satisfies these goals by leveraging virtual machine iso-
lation and virtual machine introspection. Its entire software runs within the
privileged dom0 VM, and it hooks into Xen’s virtual network interface to col-
lect and filter all guest domains’ network packets. Since the hypervisor provides
strong isolation among the virtual machines, this design achieves the first goal
of tamper-resistance.

46 A. Srivastava and J. Giffin

Physical
Hardware

Xen

Dom0 Virtual Machine

User Space

Kernel Space

Network

VMwall
Kernel Component

1

2

3

4

5

VMwall
User Component

Fig. 2. VMwall’s high-level architecture. (1) Packets inbound to and outbound from a
guest domain are processed by dom0. (2) The VMwall kernel component intercepts the
packets and passes them to a user-space component for analysis. (3) The user-space
component uses virtual machine introspection to identify software in a guest domain
processing the data. (4) The user-space component instructs the kernel component
to either allow or block the connection. (5) Packets from allowed connections will be
placed on the network.

In order to provide application-level firewalling, VMwall must identify the pro-
cess that is sending or receiving packets inside domU. VMwall correlates packet
and process information by directly inspecting the domU virtual machine’s mem-
ory via virtual machine introspection. It looks into the kernel’s memory and
traverses the data structures to map process and network information. This
achieves our second design goal of independence, as there are no components of
VMwall inside domU. Our introspection procedure rapidly analyzes the kernel’s
data structures, satisfying the third goal of lightweight verification.

The high-level design of VMwall has two components: a kernel module and
user agent, both in dom0 (Fig. 2). The VMwall kernel component enforces a
per-packet policy given by the user agent and either allows or drops each packet.
The user agent determines policy by performing introspection to extract infor-
mation about processes executing in guest VMs and evaluating the legitimacy
of those processes. Sections 4.1 and 4.2 present detailed information about the
two components.

4.1 Kernel Component

VMwall’s kernel component is a module loaded inside the dom0 Linux kernel.
It intercepts all network packets to or from untrusted virtual machines and uses
security policies to decide whether each packet should be allowed or dropped.
Interception occurs by hooking into Xen’s network bridge between the physical
interface card and virtual network interface. When the kernel component inter-
cepts a packet, it checks a rule table to see if a firewall rule already exists for
the packet, as determined by the local endpoint IP address and port. If so, it
takes the allow or block action specified in the rule. If there is no rule, then it

Tamper-Resistant, Application-Aware Blocking of Malicious Network 47

Fig. 3. VMwall’s kernel module architecture. (1) Packets inbound to and outbound
from a guest domain are intercepted and passed to the kernel module. (2) The module
receives each packet and looks into its rule table to find the rule for the packet. (3) The
kernel module queues the packet if there is no rule present. (4) VMwall sends an
introspection request to the user agent and, after the agent completes, receives the
dynamically generated rule for the packet. (5) The kernel module adds the rule into its
rule table to process future packets from the same connection. (6) The kernel module
decides based on the action of the rule either to accept the packet by reinjecting it into
the network or to drop it from the queue.

invokes the VMwall user agent to analyze the packet and create a rule. The user
agent performs introspection, generates a rule for the packet, and sends this rule
back to the kernel module. The kernel module adds this new rule to its policy
table and processes the packet. Further packets from the same connection are
processed using the rule present in the kernel component without invoking the
user agent and without performing introspection.

As kernel code, the kernel component cannot block and must take action on a
packet before the user agent completes introspection. VMwall solves this problem
for packets of unknown legitimacy by queuing the packets while waiting for the
user agent’s reply. When the user agent sends a reply, the module adds a rule
for the connection. If the rule’s action is to block the connection, then it drops
all the packets that are queued. Otherwise, it re-injects all the packets into the
network.

Figure 3 presents the kernel module’s complete architecture. It illustrates the
steps involved in processing the packet inside the kernel. It shows the queue
architecture, where packets are stored inside the kernel during introspection.

4.2 User Agent

The VMwall user agent uses virtual machine introspection to correlate network
packets and processes. It receives introspection requests from the kernel com-
ponent containing network information such as source port, source IP address,

48 A. Srivastava and J. Giffin

Xen Hypervisor

Dom0 Virtual Machine DomU Virtual Machine

User Space

Kernel Space

User Space

Kernel Space

Kernel
Data

Structures

Page Directory
Page Table

CR3
System.map

Whitelist VMwall
User
Agent

Shared
Memory

1

2 3

4

5

6

3
3 3

Fig. 4. VMwall’s user agent architecture. (1) The VMwall user agent receives the
introspection request. (2) The user agent reads the System.map file to extract the
kernel virtual addresses corresponding to known kernel symbols. (3) The user agent
uses Xen to map the domU kernel memory pages containing process and network data
structures. (4) VMwall traverses the data structures to correlate network and process
activity. (5) The agent searches for the recovered process name in the whitelist. (6) The
user agent sends a filtering rule for the connection to the VMwall kernel module.

destination port, destination IP address, and protocol. It first uses the packet’s
source (or destination) IP address to identify the VM that is sending (or receiv-
ing) the packet. When it finds the VM, it then tries to find the process that is
bound to the source (or destination) port.

VMwall’s user agent maps a network port to the domU process that is bound
to the port, shown in Fig. 4. As needed, it maps domU kernel data structures
into dom0 memory. Process and network information is likely not available in a
single data structure but instead is scattered over many data structures. VMwall
works in steps by first identifying the domU kernel data structures that store IP
address and port information. Then, VMwall identifies the process handling this
network connection by iterating over the list of running processes and checking
each process to see if it is bound to the port. When it finds the process bound
to the port, it extracts the process’ identifier, its name, and the full path to its
executable. If the user agent does not find any process bound to the port, it
considers this to be an anomaly and will block the network connection.

VMwall uses information about the process to create a firewall rule enforceable
by the kernel component. The user agent maintains a whitelist of processes that
are allowed to make network connections. When the user agent extracts the name
of a process corresponding to the network packet, it searches the whitelist for
the same name. VMwall allows the connection if it finds a match and blocks the
connection otherwise. It then generates a rule for this connection that it passes
to the VMwall kernel component. This rule contains the network connection
information and either an allow or block action. The kernel component then
uses this rule to filter subsequent packets in this attempted connection.

5 Implementation

We have implemented a prototype of VMwall using the Xen hypervisor and
a Linux guest operating system. VMwall supports both paravirtualized and

Tamper-Resistant, Application-Aware Blocking of Malicious Network 49

fully-virtualized (HVM) Linux guest operating systems. Its implementation con-
sists of two parts corresponding to the two pieces described in the previous
section: the kernel module and the user agent. The following sections describe
specific details affecting implementation of the two architectural components.

5.1 Extending Ebtables

Our kernel module uses a modified ebtables packet filter to intercept all pack-
ets sent to or from a guest domain. Ebtables [7] is an open source utility that
filters packets at an Ethernet bridge. VMwall supplements the existing coarse-
grained firewall provided by ebtables. Whenever ebtables accepts packets based
on its coarse-grained rules, we hook the operation and invoke the VMwall ker-
nel module for our additional application-level checks. We modified ebtables to
implement this hook, which passes a reference to the packet to VMwall.

Ebtables does not provide the ability to queue packets. Were it present, queu-
ing would enable filters present inside the kernel to store packets for future
processing and reinjection back into the network. To allow the VMwall kernel
module to queue packets currently under inspection by the user agent, we altered
ebtables to incorporate packet queuing and packet reinjection features.

5.2 Accessing DomU Kernel Memory

VMwall uses the XenAccess introspection library [31] to accesses domU kernel
memory from dom0. It maps domU memory pages containing kernel data struc-
tures into the virtual memory space of the user agent executing in the trusted
VM. XenAccess provides APIs that map domU kernel memory pages identi-
fied either by explicit kernel virtual addresses or by exported kernel symbols. In
Linux, the exported symbols are stored in the file named System.map. VMwall
uses certain domU data structures that are exported by the kernel and hence
mapped with the help of kernel symbols. Other data structures reachable by
pointers from the known structures are mapped using kernel virtual addresses.
The domU virtual machine presented in Fig. 4 shows the internal mechanism in-
volved to map the memory page that contains the desired kernel data structure.

5.3 Parsing Kernel Data Structures

To identify processes using the network, VMwall must be able to parse high-
level kernel data structures from the raw memory pages provided by XenAccess.
Extracting kernel data structures from the mapped memory pages is a non-trivial
task. For example, Linux maintains a doubly-linked list that stores the kernel’s
private data for all running processes. The head pointer of this list is stored in
the exported kernel symbol init task. If we want to extract the list of processes
running inside domU, we can map the memory page of domU that contains the
init task symbol. However, VMwall must traverse the complete linked list and
hence requires the offset to the next member in the process structure. We extract
this information offline directly from the kernel source code and use these values

50 A. Srivastava and J. Giffin

file

Processes:

Ports: inet_hashinfo

task_struct task_struct task_struct

files_struct fdtable file

hlist_node

sock

hlist_head

hlist_head

hlist_head

hlist_nodehlist_node

Match
Return:
Process information
from task_struct

file

Array iteration

Array iteration

Linked list iteration

Linked list iteration

Fig. 5. DomU Linux kernel data structures traversed by the VMwall user agent during
correlation of the process and TCP packet information

in the user agent. This source code inspection is not the optimal way to identify
offsets because the offset values often change with the kernel versions. However,
there are other automatic ways to extract this information from the kernel binary
if it was compiled with a debug option [18].

This provides VMwall with sufficient information to traverse kernel data struc-
tures. VMwall uses known field offsets to extract the virtual addresses of pointer
field members from the mapped memory pages. It then maps domU memory
pages by specifying the extracted virtual addresses. This process is performed
recursively until VMwall traverses the data structures necessary to extract the
process name corresponding to the source or destination port of a network com-
munication. Figure 5 shows the list of the kernel data structures traversed by
the user agent to correlate a TCP packet and process information. First, it tries
to obtain a reference to the socket bound to the port number specified in the
packet. After acquiring this reference, it iterates over the list of processes to find
the process owning the socket.

5.4 Policy Design and Rules

VMwall identifies legitimate connections via a whitelist-based policy listing
processes allowed to send or receive data. Each process that wants to communi-
cate over the network must be specified in the whitelist a priori. This whitelist
resides inside dom0 and can only be updated by administrators in a manner
similar to traditional application-level firewalls. The whitelist based design of
VMwall introduces some usability issues because all applications that should be
allowed to make network connections must be specified in the list. This limita-
tion is not specific to VMwall and is inherent to the whitelist based products
and solutions [6, 12].

VMwall’s kernel module maintains its own rule table containing rules that
are dynamically generated by the user agent after performing introspection. A
rule contains source and destination port and IP address information, an action,
and a timeout value used by the kernel module to expire and purge old rules
for UDP connections. In the case of TCP connections, the kernel module purges
TCP rules automatically whenever it processes a packet with the TCP fin or

Tamper-Resistant, Application-Aware Blocking of Malicious Network 51

rst flag set. In an abnormal termination of a TCP connection, VMwall uses the
timeout mechanism to purge the rules.

6 Evaluation

The basic requirement of an application-level firewall is to block connections to
or from malicious software and allow connections to or from benign applications.
We evaluated the ability of VMwall to filter out packets made by several dif-
ferent classes of attacks while allowing packets from known processes to pass
unimpeded. We tested VMwall against Linux-based backdoors, worms, and bots
that attempt to use the network for malicious activity. Section 6.1 tests VMwall
against attacks that receive inbound connections from attackers or connect out to
remote systems. Section 6.2 tests legitimate software in the presence of VMwall.
We measure VMwall’s performance impact in Sect. 6.3, and lastly analyze its
robustness to a knowledgeable attacker in Sect. 6.4.

6.1 Illegitimate Connections

We first tested attacks that receive inbound connections from remote attackers.
These attacks are rootkits that install backdoor programs. The backdoors run as
user processes, listen for connections on a port known to the attacker, and receive
and execute requests sent by the attacker. We used the following backdoors:

– Blackhole runs a TCP server on port 12345 [22].
– Gummo runs a TCP server at port 31337 [22].
– Bdoor runs a backdoor daemon on port 8080 [22].
– Ovas0n runs a TCP server on port 29369 [22].
– Cheetah runs a TCP server at the attacker’s specified port number [22].

Once installed on a vulnerable system, attacks such as worms and bots may
attempt to make outbound connections without prompting from a remote at-
tacker. We tested VMwall with the following pieces of malware that generate
outbound traffic:

– Apache-ssl is a variant of the Slapper worm that self-propagates by opening
TCP connections for port scanning [23].

– Apache-linux is a worm that exploits vulnerable Apache servers and spawns
a shell on port 30464 [23].

– BackDoor-Rev.b is a tool that is be used by a worm to make network
connections to arbitrary Internet addresses and ports [20].

– Q8 is an IRC-based bot that opens TCP connections to contact an IRC
server to receive commands from the botmaster [14].

– Kaiten is a bot that opens TCP connections to contact an IRC server [24].
– Coromputer Dunno is an IRC-based bot providing basic functionalities

such as port scanning [13].

52 A. Srivastava and J. Giffin

Table 1. Results of executing legitimate software in the presence of VMwall. “Allowed”
indicates that the network connections to or from the processes were passed as though
a firewall was not present.

Name Connection Type Result
rcp Outbound Allowed

rsh Outbound Allowed

yum Outbound Allowed

rlogin Outbound Allowed

ssh Outbound Allowed

scp Outbound Allowed

wget Outbound Allowed

tcp client Outbound Allowed

thttpd Inbound Allowed

tcp server Inbound Allowed

sshd Inbound Allowed

VMwall successfully blocked all illegitimate connections attempted by mal-
ware instances. In all cases, both sending and receiving, VMwall intercepted the
first SYN packet of each connection and passed it to the userspace component.
Since these malicious processes were not in the whitelist, the VMwall user space
component informed the VMwall kernel component to block these malicious con-
nections. As we used VMwall in packet queuing mode, no malicious packets were
ever passed through VMwall.

6.2 Legitimate Connections

We also evaluated VMwall’s ability to allow legitimate connections made by
processes running inside domU. We selected a few network applications and
added their name to VMwall’s whitelist. We then ran these applications inside
domU. Table 1 shows the list of processes that we tested, the type of connections
used by the processes, and the effect of VMwall upon those connections. To be
correct, all connections should be allowed.

VMwall allowed all connections made by these applications. The yum applica-
tion, a package manager for Fedora Core Linux, had runtime behavior of interest.
In our test, we updated domU with the yum update command. During the pack-
age update, yum created many child processes with the same name yum and these
child processes made network connections. VMwall successfully validated all the
connections via introspection and allowed their network connections.

6.3 Performance Evaluation

A firewall verifying all packets traversing a network may impact the performance
of applications relying on timely delivery of those packets. We investigated the
performance impact of VMwall as perceived by network applications running
inside the untrusted virtual machine. We performed experiments both with and

Tamper-Resistant, Application-Aware Blocking of Malicious Network 53

Table 2. Introspection time (µs) taken by VMwall to perform correlation of network
flow with the process executing inside domU

Configuration TCP Introspection Time UDP Introspection Time
Inbound Connection to domU 251 438

Outbound Connection from domU 1080 445

without VMwall running inside dom0. All experiments were conducted on a
machine with an Intel Core 2 Duo T7500 processor at 2.20 GHz with 2 GB RAM.
Both dom0 and domU virtual machines ran 32 bit Fedora Core 5 Linux. DomU
had 512 MB of physical memory, and dom0 had the remaining 1.5 GB. The
versions of Xen and XenAccess were 3.0.4 and 0.3, respectively. We performed our
experiments using both TCP and UDP connections. All reported results show
the median time taken from five measurements. We measured microbenchmarks
with the Linux gettimeofday system call and longer executions with the time
command-line utility.

VMwall’s performance depends on the introspection time takenby the user com-
ponent. Since network packets are queued inside the kernel during introspection,
the introspection time is critical for the performance of the complete system. We
measured the introspection time both for incoming and outgoing connections to
and from domU. Table 2 shows the results of experiments measuring
introspection time.

It is evident that the introspection time for incoming TCP connections is very
small. Strangely, the introspection time for outgoing TCP connections is notably
higher. The reason for this difference lies in the way that the Linux kernel stores
information for TCP connections. It maintains TCP connection information for
listening and established connections in two different tables. TCP sockets in a
listening state reside in a table of size 32, whereas the established sockets are
stored in a table of size 65536. Since the newly established TCP sockets can be
placed at any index inside the table, the introspection routine that iterates on
this table from dom0 must search half of the table on average.

We also measured the introspection time for UDP data streams. Table 2 shows
the result for UDP inbound and outbound packets. In this case, the introspection
time for inbound and outbound data varies little. The Linux kernel keeps the
information for UDP streams in a single table of size 128, which is why the
introspection time is similar in both cases.

To measure VMwall’s performance overhead on network applications that run
inside domU, we performed experiments with two different metrics for both in-
bound and outbound connections. In the first experiment, we measured VMwall’s
impact on network I/O by transferring a 175 MB video file over the virtual net-
work via wget. Our second experiment measured the time necessary to establish
a TCP connection or transfer UDP data round-trip as perceived by software in
domU.

We first transferred the video file from dom0 to domU and back again with
VMwall running inside dom0. Table 3 shows the result of our experiments. The

54 A. Srivastava and J. Giffin

Table 3. Time (seconds) to transfer a 175 MB file between dom0 and domU, with and
without VMwall

Direction Without VMwall With VMwall Overhead
File Transfer from Dom0 to DomU 1.105 1.179 7%

File Transfer from DomU to Dom0 1.133 1.140 1%

Table 4. Single TCP connection setup time (µs) measured both with and without
VMwall inside dom0

Direction Without VMwall With VMwall Overhead
Connection from Dom0 to DomU 197 465 268

Connection from DomU to Dom0 143 1266 1123

median overhead imposed by VMwall is less than 7% when transferring from
dom0 to domU, and less than 1% when executing the reverse transfer.

Our second metric evaluated the impact of VMwall upon connection or data
stream setup time as perceived by applications executing in domU. For processes
using TCP, we measured both the inbound and outbound TCP connection setup
time. For software using UDP, we measured the time to transfer a small block
of data to a process in the other domain and to have the block echoed back.

We created a simple TCP client-server program to measure TCP connec-
tion times. The client program measured the time required to connect to the
server, shown in Table 4. Inbound connections completed quickly, exhibiting
median overhead of only 268 µs. Outbound connections setup from domU to
dom0 had a greater median overhead of 1123 µs, due directly to the fact that
the introspection time for outbound connections is also high. Though VMwall’s
connection setup overhead may look high as a percentage, the actual overhead
remains slight. Moreover, the introspection cost occurring at connection setup
is a one-time cost that gets amortized across the duration of the connection.

We lastly measured the time required to transmit a small block of data and
receive an echo reply to evaluate UDP stream setup cost. We wrote a simple
UDP echo client and server and measured the round-trip time required for the
echo reply. Note that only the first UDP packet required introspection; the echo
reply was rapidly handled by a rule in the VMwall kernel module created when
processing the first packet. We again have both inbound and outbound measure-
ments, shown in Table 5. The cost of VMwall is small, incurring slowdowns of
381 µs and 577 µs, respectively.

VMwall currently partially optimizes its performance, and additional improve-
ments are clearly possible. VMwall performs introspection once per connection
so that further packets from the same connection are allowed or blocked based
on the in-kernel rule table. VMwall’s performance could be improved in future
work by introducing a caching mechanism to the introspection operation. The
VMwall introspection routine traverses the guest OS data structures to perform
correlation. In order to traverse a data structure, the memory page that contains
the data structure needs to be mapped, which is a costly operation. One possi-

Tamper-Resistant, Application-Aware Blocking of Malicious Network 55

Table 5. Single UDP echo-reply stream setup time (µs) with and without VMwall. In
an inbound-initiated echo, dom0 sent data to domU and domU echoed the data back
to dom0. An outbound-initiated echo is the reverse.

Direction Without VMwall With VMwall Overhead
Inbound Initiated 434 815 381

Outbound Initiated 271 848 577

ble improvement would be to support caching mechanisms inside VMwall’s user
agent to cache frequently used memory pages to avoid costly memory mapping
operations each time.

6.4 Security Analysis

VMwall relies on particular data structures maintained by the domU kernel. An
attacker who fully controls domU could violate the integrity of these data struc-
tures in an attempt to bypass VMwall’s introspection. To counter such attacks,
we rely on previous work in kernel integrity protection. Petroni et al. [26] pro-
posed a framework for detecting attacks against dynamic kernel data structures
such as task struct. Their monitoring system executed outside the monitored
kernel and detected any semantic integrity violation against the kernel’s dynamic
data. The system protected the integrity of the data structures with an external
monitor that enforced high-level integrity policies. In another work, Loscocco
et al. [19] introduced a system that used virtualization technology to monitor a
Linux kernel’s operational integrity. These types of techniques ensure that the
kernel data structures read by VMwall remain valid.

Attackers can also try to cloak their malware by appearing to be whitelisted
software. An attacker can guess processes that are in VMwall’s whitelist by ob-
serving the incoming and outgoing traffic from the host and determining them-
selves what processes legally communicate over the network. They can then
rename their malicious binary to the name of a process in the whitelist. VMwall
counters this problem by extracting the full path to the process on the guest
machine. Attackers could then replace the complete program binary with a tro-
janed version to evade the full path verification. VMwall itself has no defenses
against this attack, but previous research has already addressed this problem
with disk monitoring utilities that protect critical files [8, 25].

An attacker could hijack a process by exploiting a vulnerability, and they
could then change its in-memory image. To address this problem, VMwall user-
space process can perform checksumming of the in-memory image of the process
through introspection and compare it with previously stored hash value. How-
ever, this process is time consuming and may affect the connection setup time
for an application.

An attacker could also hijack a connection after it has been established and
verified by VMwall as legitimate. They could take control of the process bound
to the port via a software exploit, or they could use a malicious kernel module to

56 A. Srivastava and J. Giffin

alter packet data before sending it to the virtual network interface. VMwall can
counter certain instances of connection hijacking by timing out entries in its ker-
nel rule table periodically. Subtle hijacking may require deep packet inspection
within VMwall.

VMwall’s kernel module internally maintains a small buffer to keep a copy of
a packet while performing introspection. An attacker may try to launch a denial
of service (DoS) attack, such as a SYN flood [5], against VMwall by saturating
its internal buffer. VMwall remains robust to such attempted attacks because
its buffer is independent of connection status. As soon as VMwall resolves the
process name bound to a connection, it removes the packet from the buffer and
does not wait for a TCP handshake to complete.

7 Conclusions and Future Work

We set out to design an application-oriented firewall resistant to the direct at-
tacks that bring down these security utilities today. Our system, VMwall, re-
mains protected from attack by leveraging virtual machine isolation. Although
it is a distinct virtual machine, it can recover process-level information of the vul-
nerable system by using virtual machine introspection to correlate network flows
with processes bound to those flows. We have shown the efficacy of VMwall by
blocking backdoor, bot, and worm traffic emanating from the monitored system.
Our malicious connection detection operates with reasonable overheads upon
system performance.

Our current implementation operates for guest Linux kernels. VMwall could
be made to work with Microsoft Windows operating systems if it can be pro-
grammed with knowledge of the data structures used by the Windows kernel.
Since VMwall depends on the guest operating system’s data structures to per-
form network and process correlation, it currently cannot be used for Windows-
based guest systems. Recently, XenAccess started providing the ability to map
Windows kernel memory into dom0 in the same way as done for Linux. If we
have a means to identify and map Windows kernel data structures, then network
and process correlation becomes possible.

Acknowledgment of Support and Disclaimer. This material is based upon
work supported by the Defense Advanced Research Projects Agency and the
United States Air Force under contract number FA8750-06-C-0182. Any opin-
ions, findings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the Defense
Advanced Research Projects Agency and the United States Air Force.

We thank the anonymous reviewers for their comments that improved the
quality of the paper. We thank Steve Dawson of SRI International for his as-
sistance with this project. Portions of this work were performed while Abhinav
Srivastava was at SRI International.

Tamper-Resistant, Application-Aware Blocking of Malicious Network 57

References

[1] Baliga, A., Kamat, P., Iftode, L.: Lurking in the shadows: Identifying systemic
threats to kernel data. In: IEEE Symposium on Security and Privacy, Oakland,
CA (May 2007)

[2] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium
on Operating Systems Principles (SOSP), Bolton Landing, NY (October 2003)

[3] Bellovin, S.: Distributed firewalls. login (November 1999)
[4] Borders, K., Zhao, X., Prakash, A.: Siren: Catching evasive malware. In: IEEE

Symposium on Security and Privacy, Oakland, CA (May 2005)
[5] CERT. TCP SYN Flooding and IP Spoofing Attacks. CERT Advisory CS-1996-

21 (Last accessed April 4 , 2008),
http://www.cert.org/advisories/CA-1996-21.html

[6] Check Point. ZoneAlarm (Last accessed April 4, 2008),
http://www.zonealarm.com/store/content/home.jsp

[7] Community Developers. Ebtables (Last accessed November 1, 2007),
http://ebtables.sourceforge.net/

[8] Community Developers. Tripwire (Last accessed November 1, 2007),
http://sourceforge.net/projects/tripwire/

[9] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual
machine-based platform for trusted computing. In: ACM Symposium on Operat-
ing Systems Principles (SOSP), October 2003, Bolton Landing, NY (2003)

[10] Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feburary (2003)

[11] Garfinkel, T., Rosenblum, M., Boneh, D.: Flexible OS support and applications
for trusted computing. In: 9th Hot Topics in Operating Systems (HOTOS), Lihue,
HI (May 2003)

[12] Oskoboiny, G.: Whitelist-based spam filtering (Last accessed April 4, 2008),
http://impressive.net/people/gerald/2000/12/spam-filtering.html

[13] Grok. Coromputer Dunno (Last accessed April 4, 2008),
http://lists.grok.org.uk/pipermail/full-disclosure/attachments/
20070911/87396911/attachment-0001.txt

[14] Honeynet Project. Q8 (Last accessed April 4, 2008),
http://www.honeynet.org/papers/bots/

[15] Ioannidis, S., Keromytis, A., Bellovin, S., Smith, J.: Implementing a distributed
firewall. In: ACM Conference on Computer and Communications Security (CCS),
Athens, Greece (November 2000)

[16] Jiang, X., Wang, X.: Out-of-the-box monitoring of VM-based high-interaction
honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

[17] Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based
‘out-of-the-box’ semantic view. In: 14th ACM Conference on Computer and Com-
munications Security (CCS), Alexandria, VA (November 2007)

[18] LKCD Project. LKCD - Linux Kernel Crash Dump (Last accessed April 4, 2008),
http://lkcd.sourceforge.net/

[19] Loscocco, P.A., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux kernel
integrity measurement using contextual inspection. In: 2nd ACM Workshop on
Scalable Trusted Computing (STC), Alexandria, VA (November 2007)

http://www.cert.org/advisories/CA-1996-21.html
http://www.zonealarm.com/store/content/home.jsp
http://ebtables.sourceforge.net/
http://sourceforge.net/projects/tripwire/
http://impressive.net/people/gerald/2000/12/spam-filtering.html
http://lists.grok.org.uk/pipermail/full-disclosure/attachments/20070911/87396911/attachment-0001.txt
http://lists.grok.org.uk/pipermail/full-disclosure/attachments/20070911/87396911/attachment-0001.txt
http://www.honeynet.org/papers/bots/
http://lkcd.sourceforge.net/

58 A. Srivastava and J. Giffin

[20] McAfee. BackDoor-Rev.b. (Last accessed April 4, 2008),
http://vil.nai.com/vil/Content/v 136510.htm

[21] Mogul, J., Rashid, R., Accetta, M.: The packet filter: An efficient mechanism for
user-level network code. In: ACM Symposium on Operating Systems Principles
(SOSP), Austin, TX (November 1987)

[22] Packet Storm (Last accessed April 4, 2008),
http://packetstormsecurity.org/UNIX/penetration/rootkits/
bdoor.c,blackhole.c,cheetah.c,server.c,ovas0n.c

[23] Packet Storm (Last accessed April 4, 2008),
http://packetstormsecurity.org/0209-exploits/
apache-ssl-bug.c,apache-linux.txt

[24] Packet Storm. Kaiten (Last accessed April 4, 2008),
http://packetstormsecurity.org/irc/kaiten.c

[25] Payne, B.D., Carbone, M., Lee, W.: Secure and flexible monitoring of virtual
machines. In: 23rd Annual Computer Security Applications Conference (ACSAC),
Miami, FL (December 2007)

[26] Petroni Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: 15th USENIX Security Symposium, Vancouver, BC, Canada (August
2006)

[27] Petroni Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: 14th ACM Conference on Computer and Communications Security
(CCS), Alexandria, VA (November 2007)

[28] Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: Making trust between applica-
tions and operating systems configurable. In: Symposium on Operating System
Design and Implementation (OSDI), Seattle, WA (October 2006)

[29] Venema, W.: TCP wrapper: Network monitoring, access control and booby traps.
In: USENIX UNIX Security Symposium, Baltimore, MD (September 1992)

[30] Whitaker, A., Cox, R.S., Shaw, M., Gribble, S.D.: Constructing services with
interposable virtual hardware. In: 1st Symposium on Networked Systems Design
and Implementation (NSDI), San Francisco, CA (March 2004)

[31] XenAccess Project. XenAccess Library (Last accessed April 4, 2008),
http://xenaccess.sourceforge.net/

[32] Xu, M., Jiang, X., Sandhu, R., Zhang, X.: Towards a VMM-based usage control
framework for OS kernel integrity protection. In: 12th ACM Symposium on Access
Control Models and Technologies (SACMAT), Sophia Antipolis, France (June
2007)

[33] Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: ACM Conference on
Computer and Communications Security (CCS), Arlington, VA (October 2007)

http://vil.nai.com/vil/Content/v_136510.htm
http://packetstormsecurity.org/UNIX/penetration/rootkits/bdoor.c,blackhole.c,cheetah.c,server.c,ovas0n.c
http://packetstormsecurity.org/UNIX/penetration/rootkits/bdoor.c,blackhole.c,cheetah.c,server.c,ovas0n.c
http://packetstormsecurity.org/0209-exploits/apache-ssl-bug.c,apache-linux.txt
http://packetstormsecurity.org/0209-exploits/apache-ssl-bug.c,apache-linux.txt
http://packetstormsecurity.org/irc/kaiten.c
http://xenaccess.sourceforge.net/

A First Step towards Live Botmaster Traceback

Daniel Ramsbrock1, Xinyuan Wang1, and Xuxian Jiang2

1 Department of Computer Science
George Mason University Fairfax, VA 22030, USA

{dramsbro,xwangc}@gmu.edu
2 Department of Computer Science

North Carolina State University, Raleigh,
NC 27606, USA

jiang@cs.ncsu.edu

Abstract. Despite the increasing botnet threat, research in the area
of botmaster traceback is limited. The four main obstacles are 1) the
low-traffic nature of the bot-to-botmaster link; 2) chains of “stepping
stones;” 3) the use of encryption along these chains; and 4) mixing with
traffic from other bots. Most existing traceback approaches can address
one or two of these issues, but no single approach can overcome all of
them. We present a novel flow watermarking technique to address all four
obstacles simultaneously. Our approach allows us to uniquely identify
and trace any IRC-based botnet flow even if 1) it is encrypted (e.g.,
via SSL/TLS); 2) it passes multiple intermediate stepping stones (e.g.,
IRC server, SOCKs); and 3) it is mixed with other botnet traffic. Our
watermarking scheme relies on adding padding characters to outgoing
botnet C&C messages at the application layer. This produces specific
differences in lengths between randomly chosen pairs of messages in a
network flow. As a result, our watermarking technique can be used to
trace any interactive botnet C&C traffic and it only requires a few dozen
packets to be effective. To the best of our knowledge, this is the first
approach that has the potential to allow real-time botmaster traceback
across the Internet.

We have empirically validated the effectiveness of our botnet flow
watermarking approach with live experiments on PlanetLab nodes and
public IRC servers on different continents. We achieved virtually a 100%
detection rate of watermarked (encrypted and unencrypted) IRC traffic
with a false positive rate on the order of 10−5. Due to the message
queuing and throttling functionality of IRC servers, mixing chaff with
the watermarked flow does not significantly impact the effectiveness of
our watermarking approach.

1 Introduction

Botnets are currently one of the most serious threats to computers connected
to the Internet. Recent media coverage has revealed many large-scale botnets
worldwide. One botnet [22,23] has reportedly compromised and controlled over
400,000 computers – including computers at the Weapons Division of the U.S.
Naval Air Warfare Center, U.S. Department of Defense Information Systems

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 59–77, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

60 D. Ramsbrock, X. Wang, and X. Jiang

Agency. Another recently discovered botnet is suspected to have controlled 1.5
million computers around the globe [9]. It has been estimated [20] that more than
5 percent of all computers connected to the Internet have been compromised and
used as bots. Currently, botnets are responsible for most spam, adware, spyware,
phishing, identity theft, online fraud and DDoS attacks on the Internet.

The botnet problem has recently received significant attention from the re-
search community. Most existing work on botnet defense [1,2, 3, 6, 11, 14, 15, 18]
has focused on the detection and removal of command and control (C&C) servers
and individual bots. While such a capability is a useful start in mitigating the
botnet problem, it does not address the root cause: the botmaster. For exam-
ple, existing botnet defense mechanisms can detect and dismantle botnets, but
they usually cannot determine the identity and location of the botmaster. As a
result, the botmaster is free to create and operate another botnet by compro-
mising other vulnerable hosts. Botmasters can currently operate with impunity
due to a lack of reliable traceback mechanisms. However, if the botmaster’s risk
of being caught is increased, he would be hesitant to create and operate botnets.
Therefore, even an imperfect botmaster traceback capability could effectively
deter botmasters. Unfortunately, current botmasters have all the potential gains
from operating botnets with minimum risk of being caught. Therefore, the bot-
net problem cannot be solved until we develop a reliable method for identifying
and locating botmasters across the Internet. This paper presents a substantial
first step towards achieving the goal of botmaster traceback.

Tracking and locating the botmaster of a discovered botnet is very challenging.
First, the botmaster only needs to be online briefly to issue commands or check
the bots’ status. As a result, any botmaster traceback has to occur in real-
time. Second, the botmaster usually does not directly connect to the botnet
C&C server and he can easily launder his connection through various stepping
stones. Third, the botmaster can protect his C&C traffic with strong encryption.
For example, Agobot has built-in SSL/TLS support. Finally, the C&C traffic
from the botmaster is typically low-volume. As a result, a successful botmaster
traceback approach must be effective on low-volume, encrypted traffic across
multiple stepping stones.

To the best of our knowledge, no existing traceback methods can effectively
track a botmaster across the Internet in real-time. For example, methods [33,
32, 8, 31, 4, 29, 30] have been shown to be able to trace encrypted traffic across
various stepping stones and proxies, but they need a large amount of traffic (at
least hundreds of packets) to be effective. During a typical session, each bot
exchanges only a few dozen packets with the botmaster. Due to this low traffic
volume, the above techniques are not suitable for botmaster traceback.

In this paper, we address the botmaster traceback problem with a novel packet
flow watermarking technique. Our goal is to develop a practical solution that can
be used to trace low-volume botnet C&C traffic in real-time even if it is encrypted
and laundered through multiple intermediate hosts (e.g., IRC servers, stepping
stones, proxies). We assume that the tracer has control of a single rogue bot in
the target botnet, and this bot can send messages in response to a the query from

A First Step towards Live Botmaster Traceback 61

the botmaster. To trace the response traffic back to the botmaster, the rogue bot
transparently injects a unique watermark into its response. If the injected wa-
termark can survive the various transformations (e.g., encryption/decryption,
proxying) of the botnet C&C traffic, we can trace the watermark and locate
the botmaster via monitoring nodes across the Internet. To embed the water-
mark, we adjust the lengths of randomly selected pairs of packets such that
the length difference between each packet pair will fall within a certain range.
To track encrypted botnet traffic that mixes messages from multiple bots, we
developed a hybrid length-timing watermarking method. Compared to previous
approaches [31,29,30], our two proposed methods require far less traffic volume
to encode high-entropy watermarks. We empirically validated the effectiveness
of our watermarking algorithms using real-time experiments on live IRC traf-
fic through PlanetLab nodes and public IRC servers across different continents.
Both of our watermarking approaches achieved a virtually 100% watermark de-
tection rate and a 10−5 false positive rate with only a few dozen packets. To the
best of our knowledge, this is the first approach that has the potential to allow
real-time botmaster traceback across the Internet.

The remainder of the paper is structured as follows: Section 2 introduces
the botmaster traceback model. Section 3 presents the design and analysis of
our flow watermarking schemes. Section 4 describes our experiments and their
results, while section 5 discusses limitations and future work. Finally, Section 6
surveys related literature and Section 7 summarizes our findings.

2 Botmaster Traceback Model

According to [17, 21, 28], most botnets currently in the wild are IRC-based.
Therefore, we will focus on tracing the botmaster in the context of IRC-based
botnets. Nevertheless, our flow watermarking trace approach is applicable to any
interactive botnet traffic.

2.1 Botnets and Stepping Stones

Bots have been covered extensively in the existing literature, for example [2,6,7,
16,21] provide good overviews. The typical bot lifecycle starts with exploitation,
followed by download and installation of the bot software. At this point, the bot
contacts the central C&C server run by the botmaster, where he can execute
commands and receive responses from his botnet.

Botmasters rarely connect directly to their C&C servers since this would reveal
their true IP address and approximate location. Instead, they use a chain of
stepping stone proxies that anonymously relay traffic. Popular proxy software
used for this purpose is SSH, SOCKS, and IRC BNCs (such as psyBNC). Since
the stepping stones are controlled by the attacker, they do not have an audit
trail in place or other means of tracing the true source of traffic. However, there
are two properties of stepping stones that can be exploited for tracing purposes:
1) the content of the message (the application-layer payload) is never modified

62 D. Ramsbrock, X. Wang, and X. Jiang

and 2) messages are passed on immediately due to the interactive nature of IRC.
Consequently, the relative lengths of messages and their timings are preserved,
even if encryption is used. In the case of encryption, the message lengths are
rounded up to the nearest multiple of the block size. This inherent length and
timing preservation is the foundation of our botmaster traceback approach.

2.2 Tracking the Botmaster by Watermarking Botnet Traffic

Our botmaster traceback approach exploits the fact that the communication
between the IRC-based bots and the botmaster is bidirectional and interactive.
Whenever the botmaster issues commands to a bot, the response traffic will
eventually return to the botmaster after being laundered and possibly trans-
formed. Therefore, if we can watermark the response traffic from a bot to the
botmaster, we can eventually trace and locate the botmaster. Since the response
traffic we are tracking may be mixed with other IRC traffic, we need to be able
to isolate the target traffic. With unencrypted traffic, this can be achieved by
content inspection, but encrypted traffic presents a challenge which we address
with our hybrid length-timing algorithm.

Fig. 1. Botmaster traceback by watermarking the botnet response traffic

Figure 1 shows the overall watermarking traceback model. We assume that we
control a rogue bot, which could be a honeypot host that has been compromised
and has joined a botnet. The rogue bot watermarks its outgoing PRIVMSG
traffic in response to commands from the botmaster. As with any traceback ap-
proach, our watermark tracing scheme needs support from the network. Specifi-
cally, we assume there are cooperating monitor nodes across the Internet, which
will inspect the passing traffic for the specified watermark and report back to us
whenever they find it. Note that our approach does not require a global moni-
toring capability. If there are uncooperative or unmonitored areas, we would lose
one or more links along the traceback path. However, we can pick up the trail
again once the watermarked traffic re-enters a monitored area. In general, this

A First Step towards Live Botmaster Traceback 63

appears to be the best possible approach in the absence of a global monitoring
capability. We assume that the tracer can securely share the desired watermark
with all monitor nodes prior to sending the watermarked traffic. This enables the
monitors to report ‘sightings’ of the watermark in real-time and requires only a
single watermarked flow to complete the trace.

3 Length-Based Watermarking Scheme

Our watermarking scheme was specifically designed for a low-traffic, text-based
channel such as the one between a bot and its botmaster. This section describes
the design and analysis of both the length-only (unencrypted traffic) and the
length-timing hybrid algorithms (encrypted traffic). We describe the encoding
and decoding formulas for both algorithms and address the issue of false positives
and false negatives.

The terms ‘message’ and ‘packet’ are used interchangeably since a typicalbotnet
C&C message is usually small (less than 512 bytes) and fits into a single packet).

3.1 Basic Length-Based Watermarking Scheme

Watermark Bit Encoding. Given a packet flow f of n packets P1, . . . , Pn, we
want to encode an l-bit watermark W = w0, . . . , wl−1 using 2l ≤ n packets. We
first use a pseudo-random number generator (PRNG) with seed s to randomly
choose 2l distinct packets from P1, . . . , Pn, we then use them to randomly form
l packet pairs: 〈Pri , Pei〉 (i = 0, . . . , l − 1) such that ri ≤ ei. We call packet
Pri a reference packet and packet Pei an encoding packet. We further use the
PRNG to randomly assign watermark bit wk (0 ≤ k ≤ l−1) to packet pair 〈Pri ,
Pei〉, and we use 〈ri, ei, k〉 to represent that packet pair 〈Pri , Pei 〉 is assigned to
encode watermark bit wk.

To encode the watermark bit wk into packet pair 〈Pri , Pei 〉, we modify the
length of the encoding packet Pei by adding padding characters to achieve a
specific length difference to its corresponding reference packet Pri . The padding
characters could be invisible (such as whitespace) or visible characters and they
can be inserted in random locations within the message. This would make it
difficult for the adversary to detect the existence of the padding. Let le and lr be
the packet lengths of the watermark encoding and reference packets respectively,
Z = le − lr be the length difference, and L > 0 be the bucket size. We define the
watermark bit encoding function as

e(lr, le, L, w) = le + [(0.5 + w)L − (le − lr)] mod 2L (1)

which returns the increased length of watermark encoding packet given the
length of the reference packet lr, the length of the encoding packet le, the bucket
size L, and the watermark bit to be encoded w.

Therefore,

(e(lr, le, L, w) − lr) mod 2L (2)

64 D. Ramsbrock, X. Wang, and X. Jiang

= {(le − lr) + [(0.5 + w)L − (le − lr)] mod 2L} mod 2L

= {(0.5 + w)L} mod 2L

= (w + 0.5)L

This indicates that the packet length difference Z = le− lr, after le is adjusted
by the watermark bit encoding function e(lr, le, L, w), falls within the middle of
either an even or odd numbered bucket depending on whether the watermark
bit w is even or odd.

Watermark Bit Decoding. Assuming the decoder knows the watermarking
parameters: PRNG, s, n, l, W and L, the watermark decoder can obtain the
exact pseudo-random mapping 〈ri, ei, k〉 as that used by the watermark encoder.
We use the following watermark bit decoding function to decode watermark bit
wk from the packet lengths of packets Pri and Pei

d(lr , le, L) = � le − lr
L

� mod 2 (3)

The equation below proves that any watermark bit w encoded by the encod-
ing function defined in equation (1) will be correctly decoded by the decoding
function defined in equation (3).

d(lr, e(lr, le, L, w), L) (4)

= �e(lr, le, L, w) − lr
L

� mod 2

= � (le − lr) mod 2L + [(0.5 + w)L − (le − lr)] mod 2L

L
� mod 2

= � (0.5 + w)L
L

� mod 2
= w

Assume the lengths of packets Pr and Pe (lr and le) have been increased
for xr ≥ 0 and xe ≥ 0 bytes respectively when they are transmitted over the
network (e.g., due to padding of encryption), then xe − xr is the distortion over
the packet length difference le − lr. Then the decoding with such distortion is

d(lr + xr, e(lr, le, L, w) + xe, L) (5)

= �e(lr, le, L, w) − lr + (xe − xr)
L

� mod 2

= w + �0.5 +
xe − xr

L
� mod 2

Therefore, the decoding with distortion will be correct if and only if

(−0.5 + 2i)L ≤ xe − xr < (0.5 + 2i)L (6)

Specifically, when the magnitude of the distortion |xe −xr| < 0.5L, the decoding
is guaranteed to be correct.

A First Step towards Live Botmaster Traceback 65

Watermark Decoding and Error Tolerance. Given a packet flow f and
appropriate watermarking parameters (PRNG, s, n, l, W and L) used by the
watermark encoder, the watermark decoder can obtain a l-bit decoded water-
mark W ′ using the watermark bit decoding function defined in equation (3). Due
to potential distortion of the packet lengths in the packet flow f , the decoded W ′

could have a few bits different from the encoded watermark W . We introduce
a Hamming distance threshold h ≥ 0 to accommodate such partial corruption
of the embedded watermark. Specifically, we will consider that packet flow f
contains watermark W if the Hamming distance between W and W ′: H(W, W ′)
is no bigger than h.

Watermark Collision Probability (False Positive Rate). No matter what
watermark W and Hamming distance threshold h we choose, there is always a
non-zero possibility that the decoding W ′ of a random unwatermarked flow hap-
pens to have no more than h Hamming distance to the random watermark W
we have chosen. In other words, watermark W is reported found in an unwater-
marked flow; we refer to this case as a watermark collision.

Intuitively, the longer the watermark and the smaller the Hamming distance
threshold, the smaller the probability of a watermark collision. Assume we have
randomly chosen a l-bit watermark, and we are decoding l-bits from random
unwatermarked flows. Any particular bit decoded from a random unwatermarked
flow should have 0.5 probability to match the corresponding bit of the random
watermark we have chosen. Therefore, the collision probability of l-bit watermark
from random unwatermarked flows with Hamming distance threshold h is

h∑

i=0

(
l
i

)
(
1
2
)l (7)

We have empirically validated the watermark collision probability distribution
with the following experiment. We first use a PRNG and a random seed number
s to generate 32 packet pairs 〈ri, ei〉 and pseudo-randomly assign each bit of a
32-bit watermark W to the 32 packet pairs, we then encode the 32 bit watermark
W into a random packet flow f . Now we try to decode the watermarked flow
f ′ with 1,000 wrong seed numbers. Given the pseudo-random nature of our
selection of the packet pairs, decoding a watermarked flow with the wrong seed
is equivalent of decoding an unwatermarked flow, which can be used to measure
the watermark collision probability.

The left side of Figure 2 illustrates the number of matched bits from the
decoding with each of the 1,000 wrong seed numbers. It shows that the numbers
of matched bits are centered around the expected value of 16 bits, which is half
of the watermark length. Based on these results and the experimental data in
Section 4.2, we can choose a Hamming distance threshold of h = 4 (28 bits) as
shown on the graph, yielding an expected false positive rate (FPR) of 9.64×10−6

according to equation (7). The right side of Figure 2 shows the distributions of
the measured and the expected number of matched bits. It illustrates that the
distribution of the measured number of matched bits is close to the expected
binomial distribution with p = 0.5 and n = 32.

66 D. Ramsbrock, X. Wang, and X. Jiang

(a) (b)

Fig. 2. 32-bit watermark collision probability and distribution

Watermark Loss (False Negative). Our length-only encoding scheme (with-
out the hybrid timing approach) is highly sensitive to having the correct sequence
of messages. If any messages are added or deleted in transit, the watermark will
be lost in that flow. However, the chance of this happening is very remote since
the encoding takes place at the application layer, on top of TCP. By its na-
ture, TCP guarantees in-order delivery of all packets and their contents, so a
non-intentional watermark loss is very unlikely.

In the case of active countermeasures, our scheme can tolerate distortion as
long as |xe − xr| < 0.5L, as described by inequality (6). This property is the
result of aiming for the center of each bucket when encoding. However, if an
active adversary drops, adds, or reorders messages, the watermark will be lost
unless additional redundancy is in place or the length-timing algorithm is used.

3.2 Hybrid Length-Timing Watermarking for Encrypted Traffic

By their nature, IRC-based botnets have many bots on one channel at once,
many of them joining, parting, or sending data to the botmaster simultaneously.
In this case, the watermarked messages from our rogue bot will be mixed with
unwatermarked messages from other bots. We call these unwatermarked mes-
sages from others chaff messages. In order to reliably decode the embedded
watermark, we need to filter out chaff messages as much as possible.

When the C&C traffic is unencrypted, it is easy for the watermark decoder
to filter out chaff based on the sender nicks in the messages. However, if the
traffic is encrypted (e.g., using SSL/TLS), we cannot rely on content inspection
to identify chaff messages. To address this new challenge in filtering out chaff,
we propose to use another dimension of information – the packet timing – to
filter out chaff.

The basic idea is to send the watermark encoding packets at a specific time
(e.g., ti). Assuming the network jitter δ is limited, we can narrow the range of

A First Step towards Live Botmaster Traceback 67

potential packets used for decoding to [tei − δ
2 , tei + δ

2]. If δ > 0 is small, then the
chances that some chaff packet happens to fall within the range [tei − δ

2 , tei + δ
2]

is small. This means we can decode the watermark correctly even if there are
substantial encrypted chaff packets.

Watermark Encoding. The watermark bit encoding process is exactly the
same as that of the basic length-based watermarking scheme. The difference is
that now we send out each watermarked packet Pei at a precise time. Specifically,
we use the watermark bit encoding function defined in equation (1) to adjust the
length of the watermark encoding packet Pei . We use a pseudo-random number
generator PRNG and seed st to generate the random time tei at which Pei will
be sent out.

An implicit requirement for the hybrid length-timing watermarking scheme
is that we need to know when each watermark encoding packet Pei will be
available. In our watermark tracing model, the tracer owns a rogue bot who can
determine what to send out and when to send it. Since we have full control over
the outgoing traffic, we can use the hybrid length-timing scheme to watermark
the traffic in real-time.

Watermark Decoding. When we decode the encrypted botnet traffic, we do
not know which packet is a watermark encoding packet Pei . However, given the
PRNG and st we do know the approximate time tei at which the watermark
encoding packet Pei should arrive. We then use all packets in the time interval
[tei − δ

2 , tei + δ
2] to decode. Specifically, we use the sum of the lengths of all

the packets in the time interval [tei − δ
2 , tei + δ

2] as the length of the watermark
encoding packet and apply that to the watermark bit decoding function (3).

Due to network delay jitter and/or active timing perturbation by the adver-
sary, the exact arrival time of watermark encoding packet Pei may be differ-
ent from tei . Fortunately, the decoding can self-synchronize with the encoding
by leveraging an intrinsic property of our hybrid length-timing watermarking
scheme. Specifically, if the decoding of a watermarked flow uses the wrong offset
or wrong seeds (s and st), then the decoded l-bit watermark W ′ will almost
always have about l

2 bits matched with the true watermark W . This gives us an
easy way to determine if we are using the correct offset, and we can try a range
of possible offsets and pick the best decoding result.

4 Implementation and Experiment

To validate the practicality of our watermarking scheme, we implemented both
the length-only algorithm (unencrypted traffic) and the length-timing hybrid
algorithm (encrypted traffic). To let our watermarking proxy interact with a
realistic but benign IRC bot, we obtained a sanitized version of Agobot from
its source code, containing only benign IRC communication features. We ran
the sanitized Agobot on a local machine to generate benign IRC traffic to test
the effectiveness of our watermarking scheme across public IRC servers and
PlanetLab nodes. At no time did we send malicious traffic to anyone in the
course of our experiments.

68 D. Ramsbrock, X. Wang, and X. Jiang

4.1 Length-Only Algorithm (Unencrypted Traffic)

We implemented the length-only algorithm in a modified open-source IRC proxy
server and ran a series of experiments using the sanitized Agobot and public
Internet IRC servers. We were able to recover the watermark successfully from
unencrypted traffic in all ten of our trials.

Modified IRC Bouncer. To achieve greater flexibility, we added our wa-
termarking functionality to an existing IRC bouncer (BNC) package, psyBNC.
Having the watermarking implemented on a proxy server allows us to use it on
all bots conforming to the standard IRC protocol. It eliminates the need to have
access to a bot’s source code to add the watermarking functionality: outgoing
traffic is modified by the BNC after the bot sends it.

In order for psyBNC to act as a transparent proxy, it needs to be configured
identically to the bot. The information required consists of the C&C server’s
hostname, the port, and an IRC nick consistent with the bot’s naming scheme.
This information can be gathered by running the bot and monitoring the outgo-
ing network traffic. In order to trick the bot into connecting to the BNC rather
than to the real C&C host, we also need to update our local DNS cache so that
a lookup of the C&C server’s hostname resolves to the IP of our BNC.

Once it has been configured with this information, the BNC is completely
transparent to the bot: when it starts up, the bot is automatically signed into
the real C&C server by the BNC. The bot now joins the botnet channel as if
it were directly connected and then waits for the botmaster’s instructions. All
PRIVMSG traffic from the bot to the C&C server (and by extension, to the
botmaster) is watermarked by the transparent BNC in between.

Experiment and Results. To test our watermarking scheme, we devised an
experiment that emulates the conditions of an Internet-wide botnet as closely
as possible. To simulate the botmaster and stepping stones, we used PlanetLab
nodes in California and Germany. We used a live, public IRC server in Arizona
to act as a C&C host, creating a uniquely-named channel for our experiments.
Our channel consisted of two IRC users: the Test Bot was running a copy of the
sanitized Agobot and the Botmaster was acting as the botmaster (see Figure 3).
As the diagram indicates, all traffic sent by the Test Bot passes through the
psyBNC server (WM Proxy) where the watermark is injected. The distances
involved in this setup are considerable: the watermarked traffic traverses liter-
ally half the globe (12 time zones) before reaching its ultimate destination in
Germany, with a combined round-trip time of 292 milliseconds on average (at
the time of our experiment).

The objective is to be able to decode the full watermark in the traffic captured
at the Stepping Stone and Botmaster. Since only PRIVMSG traffic from the
Test Bot is watermarked, all other traffic (chaff) must be filtered out before
decoding. Most of this chaff consists of messages from other users on the channel,
PING/PONG exchanges, and JOIN/PART notifications from the channel. There
could be additional chaff on the same connection if the botmaster is logged into
multiple channels on the same IRC server. However, filtering out the chaff is

A First Step towards Live Botmaster Traceback 69

Fig. 3. Experiment setup for unencrypted traffic

trivial in the absence of encryption since all IRC messages contain the sender’s
nick. Therefore, we can easily isolate the watermarked packets based on the Test
Bot’s nick.

During our experiments, the psyBNC proxy was configured to inject a 32-bit
watermark into a 64-packet stream. To generate traffic from the Test Bot, the
Botmaster logged in and issued the commands.list command, causing the bot
to send a list of all valid bot commands and their descriptions. We captured
all traffic leaving the WM Proxy, arriving at the Stepping Stone, and arriving
at the Botmaster. In ten trials with different (random) 32-bit watermarks, we
were able to correct decode the full 32-bit watermark at all three monitoring
locations: the WM Proxy in Maryland, the Stepping Stone in California, and
Botmaster in Germany.

4.2 Hybrid Length-Timing Algorithm (Encrypted Traffic)

To test the hybrid length-timing algorithm, we implemented a simple IRC bot
that sends length-watermarked messages out at specific intervals. We used a
“chaff bot” on the channel to generate controlled amounts of chaff. We were
able to recover the watermark with a high success rate, even when high amounts
of chaff were present.

Hybrid Length-Timing Encoder. We implemented the hybrid encoding al-
gorithm as a Perl program which reads in a previously length-only watermarked
stream of messages and sends them out at specific times. To achieve highly pre-
cise timing, we used the Time::HiResPerl package, which provides microsecond-
resolution timers. At startup, the program uses the Mersenne Twister PRNG
(via the Math::Random::MT package) to generate a list of departure times for all
messages to be sent. Each message is sent at a randomly chosen time between
2 and 2.35 seconds after the previous message. The 2-second minimum spacing
avoids IRC server packet throttling (more details are discussed in Section 4.2).

Hybrid Length-Timing Decoder. The hybrid decoding script was also writ-
ten in Perl, relying on the PCAP library to provide a standardized network traffic

70 D. Ramsbrock, X. Wang, and X. Jiang

Fig. 4. Offset Self-Synchronization via Offset Sliding-Window

capture mechanism (via the Net::Pcap module). The program reads in a stream
of packets (either from a live interface or from a PCAP file), then performs a
sliding-window offset self-synchronization process to determine the time t1 of
the first watermarked packet. To find the correct t1, the program steps through
a range of possible values determined by the offset, max, and step parameters.
It starts with t1 =offset, incrementing t1 by step until t1 =(offset + max).
It decodes the full watermark sequence for each t1, recording the number of bits
matching the sought watermark W . It then chooses the t1 that produced the
highest number of matching bits. If there are multiple t1 values resulting in the
same number of matching bits, it uses the lowest value for t1. Figure 4 illus-
trates the synchronization process, showing that the correct t1 is near 6 seconds:
5.92 sec has 32 correct bits. For all incorrect t1 values, the decoding rate was
significantly lower, averaging 14.84 correct bits.
Experiment and Results. The experiment setup in this case was similar to
the unencrypted experiment described in Section 4.1. The three main differences
were: 1) a single Source computer producing watermarked traffic on its own
replaced the Test Bot and WM Proxy; 2) the connection between the Botmaster
and the IRC server (via StepStone) was encrypted using SSL/TLS; and 3) we
used a different IRC server because the one in Arizona does not support SSL/TLS
connections. The IRC server in this case happens to be located in Germany, but
not in the same place as the Botmaster. Please refer to Figure 5 for the full
experiment setup. In this configuration, the distances involved are even greater,
with the watermarked traffic traversing the equivalent of the entire globe (24
time zones). The combined round-trip time from Source to Botmaster was 482
milliseconds (on average) at the time of our experiment.

To handle encryption, the parameters for the length-only algorithm were ad-
justed to ensure that the bucket size matched or exceeded the encryption block
size. Most SSL/TLS connections use a block size of 128 bits (16 bytes), though
192 and 256 bits are also common. To ensure that each added bucket also causes
another encrypted block to be added to the message, the bucket size has to be
greater than or equal to the block size. For our experiment, we used a bucket size
of 16 bytes, which was sufficient for the 128-bit block size used in the SSL/TLS

A First Step towards Live Botmaster Traceback 71

Fig. 5. Experiment setup for encrypted traffic

connection. For compatibility with the larger block sizes (192 and 256 bits), a
bucket size of 32 bytes can be used.

For the experiments, the Source produced a stream of 64 packets, containing
a randomly generated 32-bit watermark. The Chaff Bot produced a controlled
amount of background traffic, spacing the packets at random intervals between 1
and 6 seconds (at least 1 second to avoid throttling). In addition to our Control
run (no chaff), we ran five different chaff levels (Chaff 1 to 5). The number refers
to the maximum time between packets (not including the minimum 1-second
spacing). For example, for the Chaff 1 run, packets were sent at a random time
between 1 and 2 seconds. Thus, one packet was sent on average every 1.5 seconds,
resulting in a chaff rate of approximately 1/1.5 = 0.667 packets/sec.

We captured network traffic in three places: 1) traffic from Source and Chaff
Bot to IRC Server; 2) traffic arriving at StepStone from IRC Server; and 3) traffic
arriving at Botmaster from StepStone. Traffic in all three locations includes both
watermark and chaff packets. We decoded the traffic at each location, recording
the number of matching bits. For decoding, we used a value of 200 milliseconds
for the timing window size δ and a sliding offset range from 0 to 10 seconds. This
δ value was large enough to account for possible jitter along the stepping stone
chain but small enough to make it unlikely that a chaff packet appears within
δ of an encoding packet. We also measured the actual chaff rate based on the
departure times of each chaff packet, and these were very close to the expected
rates based on an even distribution of random departure times. We repeated
this process three times for each chaff level, resulting in a total of 18 runs. Our
experiment results are summarized in Table 1, with each column representing
the average values from three trials.

We had near-perfect decoding along the stepping-stone chain for all chaff rates
of 0.5 packets/sec and below. Only when the chaff rate rose above 0.5 packets/sec
did the chaff start having a slight impact, bringing the decoding rate down to
an average of 31 bits. The overall average decoding rate at the StepStone and
Botmaster was 31.69 bits, or 99.05 percent. The lowest recorded decoding rate

72 D. Ramsbrock, X. Wang, and X. Jiang

Table 1. Experiment results for encrypted traffic: Recovered watermark bits (out of
32) at each monitoring station along the watermark’s path (averaged from three trials)

Monitoring Location Chaff 1 Chaff 2 Chaff 3 Chaff 4 Chaff 5 Control
Chaff Rate (packets/sec) 0.6719 0.4976 0.4274 0.3236 0.2872 no chaff

Source - Maryland 29.67 30.33 29.67 30.33 30.33 32
StepStone - California 31 32 31.67 31.67 32 32
Botmaster - Germany 31 31.67 32 31.67 31.67 32

during our experiments was 28 bits, so we can use a Hamming distance threshold
of h = 4 to obtain a 100 percent true positive rate (TPR) and a false positive
rate (FPR) of 9.64 × 10−6.

The most surprising result is that in all cases where chaff was present, the
decoding rate was worse at the Source than downstream at the StepStone and
Botmaster. After examining the network traces in detail, we realized that this
behavior was due to the presence of traffic queuing and throttling on the IRC
Server. To avoid flooding, IRC servers are configured to enforce minimum packet
spacings, and most will throttle traffic at 0.5 to 1 packets/sec. To confirm this
behavior, we sent packets to the IRC Server in Germany at random intervals
of 100 to 300 milliseconds. For the first 5 seconds, packets were passed on im-
mediately, but after that the throttling kicked in, limiting the server’s outgoing
rate to 1 packet/sec. After about 2 minutes, the server’s packet queue became
full with backlogged packets, and it disconnected our client. Figure 6 illustrates
the effect of throttling on the packet arrival times, including the 5-second “grace
period” at the beginning.

In the context of our hybrid encoding scheme, IRC message queuing is highly
beneficial because it dramatically reduces the chances that chaff and encoding
packets will appear close to each other. At the Source, packets appear at the exact
intervals they are sent, which could be less than δ and therefore affect decoding.
However, this interval will be increased due to queuing by the IRC server. By
the time the packets reach the StepStone and Botmaster, they no longer affect
decoding because they are more than δ apart. In our experiments, we observed

Fig. 6. IRC server throttling causes packets to be spaced apart further upon arrival

A First Step towards Live Botmaster Traceback 73

that the IRC server introduced a distance of at about 130 milliseconds between
packets due to queuing. Since our δ value was 200 milliseconds, this made it
unlikely that two packets would arrive in the same slot.

5 Discussion and Future Work

Our experiments show that our watermarking scheme is effective in tracing the
botmaster of IRC-based botnets, which are still the predominant type in the
wild [17,21,28]. Our watermark can be recovered with a high degree of accuracy
even when the watermarked botnet C&C traffic is encrypted across multiple
stepping stones and mixed with other flows.

In theory, our flow watermarking technique could be applied to trace any real-
time and interactive botnet C&C traffic. Therefore, it could be used to track the
botmaster of peer-to-peer (P2P) botnets which have started appearing recently
[13]. However, HTTP-based botnets present a much higher level of traceback
difficulty: the messages do not get passed from the bot to the botmaster in real-
time. They are typically stored on the C&C server until the botmaster retrieves
them in bulk, usually over an encrypted connection such as SSH. Due to this,
any approach that relies on properties of individual packets (such as length and
timing) will be unsuccessful.

When SSH is used as the final hop in a chain of stepping stones, it presents
unique challenges. In this case, the botmaster uses SSH to log into a stepping
stone, launches a commandline-based IRC client on that host, and uses this IRC
client to connect to his botnet (possibly via more stepping stones). In this capac-
ity, SSH is not acting as a proxy, passing on messages verbatim like psyBNC or
SOCKS. Instead, it transfers the “graphical” screen updates of the running IRC
client, which is not necessarily correlated to the incoming IRC messages. This
situation is challenging for our approach because the application-layer content
is transformed, altering the relative lengths of packets. We are working on this
problem, but we have been unable to explore it in detail. Notice that if SSH is
used in a tunnelling capacity (such as port forwarding or a SOCKS proxy) in
the middle of a stepping stone chain, this limitation does not apply.

Once the botmaster become aware of the flow watermarking tracing approach,
he may want to corrupt the embedded watermark from intermediate stepping
stones. However, since the padding characters could be almost any character and
they are inserted randomly in the botnet message, it would be difficult for any
intermediate stepping stone to identify and remove the padding characters with-
out knowing the original unwatermarked message. The botmaster may be able
to detect and identify the padding if he knows exactly what he is expecting for.
However, once he receives the watermarked message, the watermarked message
has already left the complete trail toward the botmaster. The botmaster could
have intermediate stepping stones to perturb the length of the passing botnet
messages by adding random padding such as white space. Since the watermark
is embedded in the length difference between randomly chosen packets, the neg-
ative impact of the padding by the adversary tends to cancel each other. We
can further mitigate the negative impact by using redundant pairs of packets

74 D. Ramsbrock, X. Wang, and X. Jiang

to encode the watermark. However, this would increase the number of packets
needed. So this is essentially a tradeoff between the robustness and the efficiency.

As previously discussed in Section 2.2, our approach requires at least partial
network coverage of distributed monitoring stations. This is a common require-
ment for network traceback approaches, especially since the coverage does not
need to be global. The accuracy of the trace is directly proportional to the num-
ber and placement of monitoring nodes.

Our work is a significant step in the direction of live botmaster traceback, but
as the title implies, it is indeed a first step. Our future work in this area includes
the exploration of several topics, including optimal deployment of monitoring
nodes, SSH traffic on the last hop, further data collection with longer stepping
stone chains, and traceback experiments on in-the-wild botnets.

6 Related Work

The botnet research field is relatively new, but many papers have been published
in the last few years as the botnet threat has accelerated. As one of the first in
the botnet arena, the Honeynet Project [1] provided a starting point for future
exploration of the problem. A comprehensive study at Johns Hopkins Univer-
sity [21] constructed a honeypot-based framework for acquiring and analyzing
bot binaries. The framework can automatically generate rogue bots (drones) to
actively infiltrate botnets, which is the first step in injecting a watermark and
tracing the botmaster.

Most early botnet work focused on defining, understanding, and classifying
botnets. Some examples are papers by Cooke et al. [6], Dagon et al. [7], Ianelli and
Hackworth [17], Barford and Yegneswaran [2], and Holz’s summary in Security
& Privacy [16]. Since then, bot detection has become more of a focal point
and many techniques have been proposed. Binkley and Singh [3] presented an
anomaly-based detection algorithm for IRC-based botnets. Goebel and Holz [11]
reported success with their Rishi tool, which evaluates IRC nicknames for likely
botnet membership. Karasaridis et al. [18] described an ISP-level algorithm for
detecting botnet traffic based on analysis of transport-layer summary statistics.
Gu et al. [15] detailed their BotHunter approach, which is based on IDS dialog
correlation techniques. They also published a related paper in 2008 [14] where
they introduce BotSniffer, a tool for detecting C&C traffic in network traces.

Despite a large amount of literature regarding botnet detection and removal,
relatively little work has been done on finding and eliminating the root cause:
the botmaster himself. An earlier paper by Freiling et al. [10] describes a manual
method of infiltrating a botnet and attempting to locate the botmaster, but the
approach does not scale well due to lack of automation.

In the general traceback field, there are two main areas of interest: 1) network-
layer (IP) traceback and 2) tracing approaches resilient to stepping stones. The
advent of the first category dates back to the era of fast-spreading worms,
when no stepping stones were used and IP-level traceback was sufficient. A
leading paper in this area is Savage et al. [25], which introduced the proba-
bilistic packet marking technique, embedding tracing information an IP header

A First Step towards Live Botmaster Traceback 75

field. Two years later, Goodrich [12] expounded on this approach, introducing
“randomize-and-link” with better scalability. A different technique for IP trace-
back is the log/hash-based one introduced by Snoeren et al. [26], and enhanced
by Li et al. [19].

There are a number of works on how to trace attack traffic across stepping
stones under various conditions. For example, [33,34,8,32,31,4,29,30] used inter-
packet timing to correlate encrypted traffic across the stepping stones and/or
low-latency anonymity systems. Most timing-based correlation schemes are pas-
sive, with the exception of the three active methods [31, 29, 30]. Our proposed
method is based on the same active watermarking principle used in these three
works. However, our method differs from them in that it uses the packet length,
in addition to the packet timing, to encode the watermark. As a result, our
method requires much fewer packets than methods [31,29,30] to be effective.

7 Conclusion

The key contribution of our work is that it addresses the four major obstacles
in botmaster traceback: 1) stepping stones, 2) encryption, 3) flow mixing and 4)
a low traffic volume between bot and botmaster. Our watermarking traceback
approach is resilient to stepping stones and encryption, and it requires only
a small number of packets in order to embed a high-entropy watermark into
a network flow. The watermarked flow can be tracked even when it has been
mixed with randomized chaff traffic. Due to these characteristics, our approach
is uniquely suited for real-time tracing of the interactive, low-traffic botnet C&C
communication between a bot and its botmaster. We believe that this is the first
viable technique for performing live botmaster traceback on the Internet.

We validated our watermarking traceback algorithm both analytically and
experimentally. In trials on public Internet IRC servers, we were able to achieve
virtually a 100 percent TPR with an FPR of less than 10−5. Our method can
successfully trace a watermarked IRC flow from an IRC botnet member to the
botmaster’s true location, even if the watermarked flow 1) is encrypted with
SSL/TLS; 2) passes through several stepping stones; and 3) travels tens of thou-
sands of miles around the world.

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful com-
ments that helped to improve the presentation of this paper. This work was par-
tially supported by NSF Grants CNS-0524286, CCF-0728771 and CNS-0716376.

References

1. Bächer, P., Holz, T., Kötter, M., Wicherski, G.: Know Your Enemy: Tracking
Botnets, March 13 (2005), http://www.honeynet.org/papers/bots/

2. Barford, P., Yegneswaran, V.: An Inside Look at Botnets. In: Proc. Special Work-
shop on Malware Detection, Advances in Info. Security, Springer, Heidelberg (2006)

http://www.honeynet.org/papers/bots/

76 D. Ramsbrock, X. Wang, and X. Jiang

3. Binkley, J., Singh, S.: An Algorithm for Anomaly-based Botnet Detection. In:
Proc. 2nd Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI), San Jose, CA, July 7, 2006, pp. 43–48 (2006)

4. Blum, A., Song, D., Venkataraman, S.: Detection of Interactive Stepping Stones:
Algorithms and Confidence Bounds. In: Jonsson, E., Valdes, A., Almgren, M.
(eds.) RAID 2004. LNCS, vol. 3224, pp. 258–277. Springer, Heidelberg (2004)

5. Chi, Z., Zhao, Z.: Detecting and Blocking Malicious Traffic Caused by IRC Pro-
tocol Based Botnets. In: Proc. Network and Parallel Computing (NPC 2007).
Dalian, China, pp. 485–489 (September 2007)

6. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup: Understanding,
Detecting, and Disturbing Botnets. In: Proc. Steps to Reducing Unwanted Traffic
on the Internet (SRUTI), Cambridge, MA, July 7, 2005, pp. 39–44 (2005)

7. Dagon, D., Gu, G., Zou, C., Grizzard, J., Dwivedi, S., Lee, W., Lipton, R.: A
Taxonomy of Botnets (unpublished paper, 2005)

8. Donoho, D.L., Flesia, A.G., Shankar, U., Paxson, V., Coit, J., Staniford, S.: Mul-
tiscale Stepping Stone Detection: Detecting Pairs of Jittered Interactive Streams
by Exploiting Maximum Tolerable Delay. In: Wespi, A., Vigna, G., Deri, L. (eds.)
RAID 2002. LNCS, vol. 2516, pp. 17–35. Springer, Heidelberg (2002)

9. Evers, J.: ‘Bot herders’ may have controlled 1.5 million PCs.
http://news.com.com/2102-7350 3-5906896.html?tag=st.util.print

10. Freiling, F., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause
Methodology to Prevent DoS Attacks. In: Proc. 10th European Symposium on
Research in Computer Security (ESORICS), Milan, Italy (September 2005)

11. Goebel, J., Holz, T.: Rishi: Identify Bot Contaminated Hosts by IRC Nickname
Evaluation. In: Proc. First Workshop on Hot Topics in Understanding Botnets
(HotBots), Cambridge, MA, April 10 (2007)

12. Goodrich, M.T.: Efficient Packet Marking for Large-scale IP Traceback. In: Proc.
9th ACM Conference on Computer and Communications Security (CCS 2002),
October 2002, pp. 117–126. ACM, New York (2002)

13. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-Peer Botnets:
Overview and Case Study. In: Proc. First Workshop on Hot Topics in Understand-
ing Botnets (HotBots), Cambridge, MA (April 2007)

14. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting Botnet Command and Control
Channels in Network Traffic. In: Proc. 15th Network and Distributed System
Security Symposium (NDSS), San Diego, CA (February 2008)

15. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detect-
ing Malware Infection Through IDS-Driven Dialog Correlation. In: Proc. 16th
USENIX Security Symposium, Boston, MA (August 2007)

16. Holz, T.: A Short Visit to the Bot Zoo. Sec. and Privacy 3(3), 76–79 (2005)
17. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. In: Proc. 18th

Annual Forum of Incident Response and Security Teams (FIRST), Baltimore,
MD, June 25-30 (2006)

18. Karasaridis, A., Rexroad, B., Hoein, D.: Wide-Scale Botnet Detection and Char-
acterization. In: Proc. First Workshop on Hot Topics in Understanding Botnets
(HotBots), Cambridge, MA, April 10 (2007)

19. Li, J., Sung, M., Xu, J., Li, L.: Large Scale IP Traceback in High-Speed Internet:
Practical Techniques and Theoretical Foundation. In: Proc. 2004 IEEE Sympo-
sium on Security and Privacy. IEEE, Los Alamitos (2004)

20. Naraine, R.: Is the Botnet Battle Already Lost?
http://www.eweek.com/article2/0,1895,2029720,00.asp

http://news.com.com/2102-7350_3-5906896.html?tag=st.util.print
http://www.eweek.com/article2/0,1895,2029720,00.asp

A First Step towards Live Botmaster Traceback 77

21. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to un-
derstanding the botnet phenomenon. In: Proc. 6th ACM SIGCOMM on Internet
Measurement, October 25-27, 2006. Rio de Janeiro, Brazil (2006)

22. Roberts, P.F.: California Man Charged with Botnet Offenses,
http://www.eweek.com/article2/0,1759,1881621,00.asp

23. Roberts, P.F.: Botnet Operator Pleads Guilty,
http://www.eweek.com/article2/0,1759,1914833,00.asp

24. Roberts, P.F.: DOJ Indicts Hacker for Hospital Botnet Attack,
http://www.eweek.com/article2/0,1759,1925456,00.asp

25. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Practical Network Support
for IP Traceback. In: Proc. ACM SIGCOMM 2000, September 2000, pp. 295–306
(2000)

26. Snoeren, A., Patridge, C., Sanchez, L.A., Jones, C.E., Tchakountio, F., Kent,
S.T., Strayer, W.T.: Hash-based IP Traceback. In: Proc. ACM SIGCOMM 2001,
September 2001, pp. 3–14. ACM Press, New York (2001)

27. Symantec. Symantec Internet Security Threat Report – Trends for January 06 -
June 06. Volume X (September 2006)

28. Micro, T.: Taxonomy of Botnet Threats. Trend Micro Enterprise Security Library
(November 2006)

29. Wang, X., Chen, S., Jajodia, S.: Tracking Anonymous, Peer-to-Peer VoIP Calls on
the Internet. In: Proc. 12th ACM Conference on Computer and Communications
Security (CCS 2005) (October 2007)

30. Wang, X., Chen, S., Jajodia, S.: Network Flow Watermarking Attack on Low-
Latency Anonymous Communication Systems. In: Proc. 2007 IEEE Symposium
on Security and Privacy (S&P 2007) (May 2007)

31. Wang, X., Reeves, D.: Robust Correlation of Encrypted Attack Traffic Through
Stepping Stones by Manipulation of Interpacket Delays. In: Proc. 10th ACM
Conference on Computer and Communications Security (CCS 2003), October
2003, pp. 20–29. ACM, New York (2003)

32. Wang, X., Reeves, D., Wu, S.: Inter-packet Delay Based Correlation for Tracing
Encrypted Connections Through Stepping Stones. In: Gollmann, D., Karjoth,
G., Waidner, M. (eds.) ESORICS 2002. LNCS, vol. 2502, pp. 244–263. Springer,
Heidelberg (2002)

33. Yoda, K., Etoh, H.: Finding a Connection Chain for Tracing Intruders. In: Cup-
pens, F., Deswarte, Y., Gollmann, D., Waidner, M. (eds.) ESORICS 2000. LNCS,
vol. 1895, pp. 191–205. Springer, Heidelberg (2000)

34. Zhang, Y., Paxson, V.: Detecting Stepping Stones. In: Proc. 9th USENIX Security
Symposium, pp. 171–184. USENIX (2000)

http://www.eweek.com/article2/0,1759,1881621,00.asp
http://www.eweek.com/article2/0,1759,1914833,00.asp
http://www.eweek.com/article2/0,1759,1925456,00.asp

A Layered Architecture for Detecting Malicious

Behaviors

Lorenzo Martignoni1, Elizabeth Stinson2, Matt Fredrikson3, Somesh Jha3,
and John C. Mitchell2

1 Università degli Studi di Milano
2 Stanford University

3 University of Wisconsin

Abstract. We address the semantic gap problem in behavioral moni-
toring by using hierarchical behavior graphs to infer high-level behav-
iors from myriad low-level events. Our experimental system traces the
execution of a process, performing data-flow analysis to identify mean-
ingful actions such as “proxying”, “keystroke logging”, “data leaking”,
and “downloading and executing a program” from complex combinations
of rudimentary system calls. To preemptively address evasive malware
behavior, our specifications are carefully crafted to detect alternative se-
quences of events that achieve the same high-level goal. We tested eleven
benign programs, variants from seven malicious bot families, four tro-
jans, and three mass-mailing worms and found that we were able to
thoroughly identify high-level behaviors across this diverse code base.
Moreover, we effectively distinguished malicious execution of high-level
behaviors from benign by identifying remotely-initiated actions.

Keywords: Dynamic, Semantic Gap, Malware, Behavior, Data-Flow.

1 Introduction

In the first half of 2007, Symantec observed more than five million active, distinct
bot-infected computers [1]. Botnets are used to perform nefarious tasks, such as:
keystroke logging, spyware installation, denial-of-service (DoS) attacks, hosting
phishing web sites or command-and-control servers, spamming, click fraud, and
license key theft [2,3,4,5,6,7]. Malicious bots are generally installed as applica-
tions on an infected (Windows) host and have approximately the same range of
control over the compromised host as its rightful owner. A botmaster can flexibly
leverage this platform in real-time by issuing commands to his botnet. Several
characteristics typical of botnets increase the difficulty of robust network-based
detection; in particular, bots may: exhibit high IP diversity, have high-speed,
always-on connections, and communicate over encrypted channels. Since a bot-
master controls both the bots and the command-and-control infrastructure, these
can be arbitrarily designed to evade network-based detection measures.

It is widely recognized that malware defenders operate at a fundamental dis-
advantage: malware producers can generate malware variants by simple measures
such as packing transformations (encryption and/or compression) and may evade

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 78–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Layered Architecture for Detecting Malicious Behaviors 79

existing AV signatures by systematic means [8]. For the signature purveyors,
moreover, analyzing a novel malware instance and creating a detection signature
requires substantially greater effort than that required by evasion. The source
of this asymmetry is the signature scanners’ emphasis on malware’s infinitely
mutable syntax, rather than on the actions taken by malware. As a result, even
the most effective signature-scanners fail to detect more than 30% of malware
seen in the wild [9,10]. Therefore, it is essential to develop effective methods that
identify the behaviors that make malware useful to their installers.

1.1 Our Approach

We propose, develop, and evaluate a behavior-based approach that targets the
high-level actions that financially motivate malware distribution. For bots, these
actions include “proxying”, “keystroke logging”, “data leaking”, and “program
download and execute.” We build representations of these high-level actions hi-
erarchically, taking care to identify only the essential components of each action.
The lowest level event in our behavior specifications are system call invocations.
Since any specific operating system kernel exports a finite set of operations, we
can expect to be able to enumerate all possible ways to interface with that kernel
in order to achieve a certain effect (e.g., send data over the network). Since there
are a finite number of ways to achieve each high-level action, we can expect to
create representations that encode all such ways. Consequently, we can hope to
correct the asymmetry present in syntax-based approaches to malware detection.

In this paper we propose and evaluate a behavior-based malware detector that
takes as input the behavior specifications introduced above and an event stream
provided by our system-wide emulator (Qemu), which monitors process execu-
tion. A system-wide emulator provides a rich source of information but infers
no higher-level effects or semantics from the observed events. This disconnect
between a voluminous stream of low-level events and any understanding of the
aggregate effect of those events [13] is referred to as the semantic gap. We address
the semantic-gap by decomposing the problem of specifying high-level behaviors
into layers, making our specifications composable, configurable, less error-prone,
and easy to update. Our system compares a monitored process’s event stream
to behavior specifications and generates an event when there is a match. This
generated event may then be used in the specification of a higher-layer behavior.

Fig. 1 provides a subset of the hierarchy of events used to specify our sam-
ple target high-level behavior: downloading and executing a program, which is
used in malware distribution. Events are represented via rectangles, with di-
rected edges between them indicating dependencies; e.g., the tcp client event
depends upon the sync tcp client and async tcp client events. At the low-
est layer of the hierarchy, L0, we identify successful system call invocations.
Each L1 event aggregates L0 events that have a common side effect, as is the
case with the L1 net recv event which is generated whenever any of the L0
events recv, recvfrom, or read occur. Consequently, we can represent “all ways
to receive data over the network” using a single event. Events at layers L2
and higher identify correlated sequences of lower-layer events that have some

80 L. Martignoni et al.

Fig. 1. A subset of the hierarchy of events used to specify download exec

aggregate, composite effect; e.g., sync tcp client identifies when a synchro-
nous TCP socket has been successfully created, bound, and connected upon.

Correlating low-level events generally entails specifying constraints on those
events’ arguments. In some cases, we need to specify that data used in one event
is dependent upon data used in another event. Consequently, Qemu performs
instruction-level data-flow analysis (tainting) and exports two related operations:
set tainted designates a memory region tainted with a particular label; and
tainted determines whether a memory region contains data received from a
particular source (as identified by its taint label). An important class of tainted
data is that which is derived from local user input; this clean data is used to
differentiate locally-initiated from remotely-initiated actions. Both tainted and
set tainted can be used in our behavior specifications; consequently, we can
designate novel taint sources without changing our system implementation.

Commonly, malware variants are generated by: (i) applying packing transfor-
mations (compression and/or encryption) to a binary, (ii) applying instruction-
level obfuscation such as nop insertion as in [15], (iii) applying source-level
obfuscations as in [8], (iv) using a bot-development kit, which provides a point-
and-click interface for specifying bot configuration details and builds the re-
quested bot, or (v) directly modifying the source of an existing bot to add novel
functionality and/or commands. Our behavioral graphs are insensitive to the
type of changes entailed in (i) – (iii) since the semantics of a malware’s behavior
are unchanged. The changes in (iv) also do not affect the bot’s implementa-
tion of a particular command, only whether that command is available or not.
Moreover, since we identify the fundamental system-call signatures for high-
level behaviors, even changing the implementation as in (v) without changing
the overall semantic effect would not suffice to evade detection.

The contributions of this paper include:

– A behavior-specification language (described in Section 2) that can be used
to describe novel, semantically meaningful behaviors.

– A detector (described in Section 3) that identifies when a process performs
a specified high-level action, regardless of the process’s source-code imple-
mentation of the action.

– Our evaluation (described in Section 4) demonstrates that our detector can
distinguish malicious execution of high-level behaviors from benign.

A Layered Architecture for Detecting Malicious Behaviors 81

2 Representing High-Level Behaviors

In this section, we define our behavior graphs, each of which describes a cor-
related sequence of events that has some particular semantic effect (such as
connect or tcp client). The graph for a behavior B identifies only the funda-
mental component events required to achieve B and constrains these events as
minimally as possible. Matching a behavior graph generates an event that can
be used as a component within another graph; e.g., matching the tcp client
graph generates the tcp client event, which can be used in specifying other
behaviors, such as tcp proxy. In this way, we compose graphs hierarchically,
which enables us to recognize complex process behaviors.

2.1 Behavior Graphs

A behavior graph is a directed graph of a form that is adapted from and extends
AND/OR graphs [26]. A behavior graph can be thought of as a template; mul-
tiple different sequences of events can be bound to this template subject to the
edge constraints; binding and matching are described more precisely in sect. 2.1.
Fig. 2 contains the behavior graph for our running example, download exec.

Each behavior graph has a start point, drawn as a single point at the top of
the graph, internal nodes, and an output event, which is represented via a shaded
rectangle. Each internal node in the graph has a name, such as create file, and
formal parameters, such as fh0, fname, fname len, as in fig. 2. Together, a node’s
name and formal parameters characterize a set of events, namely those events
whose name is the same as the node’s name. Whereas internal nodes represent
input events needed in order to continue graph traversal, the special output event
represents an action taken by our system; hence no additional input is required to
traverse an edge from a penultimate node to the output event. For example, any
sequence of events that matches the graph in fig. 2 up to the create proc node
will also reach the download exec node and generate a download exec event.
When we match a graph and generate an output event e, the parameters for e
are obtained from e’s constituent events; e.g., the socket descriptor, rem ip, and
rem port arguments for the download exec output event in fig. 2 are obtained
from its constituent tcp client event.

AND-edge sets and OR-edge sets. A behavior graph may have AND-edges
and OR-edges. OR-edges are drawn simply as directed edges, while AND-edges
are drawn using a horizontal line to form an AND-edge set. In fig. 2, a sequence
of events can reach the net recv node by either of the two OR-edges leading
into this node. In contrast, the AND-edges into write file indicate that both
net recv and create file are required to match this portion of the graph. If a
node’s in-edge set contains AND-edges and OR-edges, this expresses an OR of
ANDs. We use AND-edge sets to identify events which can occur in any relative
order but must all precede some other event.

Annihilator and Replicator Nodes. We correlate events by specifying pred-
icates on their parameters; thus, it’s important to know when a parameter has

82 L. Martignoni et al.

Fig. 2. AND/OR graph for downloading a file and executing it

been destroyed or duplicated. Annihilator nodes are used to represent that cer-
tain events destroy objects; e.g., calling closesocket on a socket descriptor
sd releases sd, rendering it unable to be used in subsequent events. Annihila-
tor nodes are represented via shaded ellipses, as with the close(fh) node in
fig. 2. The edge from create file(fh0, ...) to close(fh2) imposes the con-
dition that close cannot be called on the newly-created file handle prior to
write file(...) being called on that same handle. Certain events, which we
refer to as replicators, duplicate objects, such as socket descriptors or files. For
example, calling dup on a socket descriptor or file handle creates a copy of the

A Layered Architecture for Detecting Malicious Behaviors 83

passed object; any operation that could be called on the original object can
equivalently be called on the duplicate. We represent this via replicator nodes as
with dup(...) and copy file(...) in fig. 2. Since a replicator operation can
be called repeatedly on its own output, replicator nodes contain a self-loop. For
succinctness, some annihilators and replicators are excluded from the figures.

Edge Predicates. A directed edge can be labeled with predicates that must
be satisfied to traverse the edge. Our system provides three predicate types:
argument-value comparison, regular expression matching, and the tainted pred-
icate. In argument-value comparison, we can apply any of the standard relational
operators (=,
=, >, <) to compare an argument value to a constant or to an-
other argument. Fig. 2 contains several argument-value predicates, such as (sd1
== sd0) between the tcp client and net recv events. We can also specify that
a string or buffer argument value must match a constant regular expression as
used in the send email behavior graph to identify transmission of SMTP pro-
tocol messages (e.g., MAIL FROM). The tainted predicate identifies data-flow
relationships that must hold; we can require that an argument be derived from a
general taint source (e.g., the network) or a specific taint source (e.g., a particular
network connection). Fig. 2 includes a data-flow dependency; namely, the data
written to the newly-created file (fdata) must be derived from data received
over the specified network connection as indicated by its taint label (sd1).

On-reach Actions. Our monitoring system can perform an action in response
to reaching a given node. An on reach action is represented in the graph via a
rectangle – connected to its corresponding node via dashed lines – containing
the action to be performed. Fig. 2 shows that, upon reaching the net recv node,
the received buffer will be marked tainted with the taint label sd1.

Fig. 3. Graph G with (a) OR-ed edges, (b) AND-ed edges, (c) an annihilator

Summary. A behavior graph defines a set of event sequences that match the
graph, and may specify one or more on-reach events that will be generated
when events match the graph in certain ways. These properties may be captured
precisely in a rigorous definitions that allow us to prove properties of various
algorithms. For example, a sequence E = e1, e2, . . . , ek of events matches a
behavior graph G if there is a function f from a subset of the nodes of G to
events in E and a substitution S on variables that appear in formal parameters
of the graph that satisfy the following conditions:

1. If there is an OR-edge set into a node n with f(n) ∈ E, as illustrated in
fig. 3(a), then ∃i. f(ni) ∈ E.

84 L. Martignoni et al.

2. If there is an AND-edge set into a matched node n with f(n) ∈ E, as
illustrated in fig. 3(b), then ∀i. f(ni) ∈ E.

3. If there are matched nodes nr → n with an annihilator node as illustrated in
fig. 3(c), then
 ∃ event e ∈ E with f(nr) < e < f(n) and e matches ev(nann)
by any S′ ⊇ S.

4. If predicate P appears on an edge between nodes n and n′ with f(n) ∈ E
and f(n′) ∈ E, then the substitution instance S(P) of P is true.

2.2 Behavior-Specification Language

A major contribution of our work is our behavior-specification language and
monitoring system. Together, these can be used to specify then identify novel
semantically-meaningful behaviors. The substrate consists of the graphs at each
layer. Each of the behaviors specified by these graphs is a primitive that can
be used in defining additional behaviors. Table 1 contains some primitives from
our resulting behavior-specification language. We can describe “log keystrokes
then send them in an email” using two of these primitives (keylogging and
send email) and correlating their arguments in a particular way, which illus-
trates the powerful, high-level expressiveness of our language.

2.3 Graph Construction

We developed our graphs manually and iteratively through domain knowledge
and analysis of tens of gigabytes of execution traces, obtained from multiple runs
of (i) around fifteen standard applications (including Googletalk, Filezilla, Fire-
fox, putty, mIRC, Internet Explorer, Outlook, Thunderbird, SecureFX, Windows
Media Player, SecureCRT, Unreal IRCd, Apple Software Update, Quicktime,
etc.), (ii) over one hundred specially-crafted programs, and (iii) several mali-
cious programs. We present our evaluation of these graphs’ coverage in sect. 4.2.

Constructing L0 Graphs. Recall that L0 graphs represent successful system
call invocations. The challenges here are as follows, (i) Windows implements
the sockets API through a single system call, NtDeviceIoControlFile, (ii) we
do not have source access to the target OS, and (iii) we need to be able to
differentiate invocations of listen from invocations of accept and so on. We
rely on analysis of process execution traces in order to identify commonalities

Table 1. Some primitives in our resulting behavior-specification language

Event Arguments

tcp client sd, loc ip, loc port, rem ip, rem port
tcp server sd, loc ip, loc port, cli ip, cli port
net send sd, buf, buf len
net recv sd, buf, buf len
send email sd, targ ip, from addr, to addr, data
keylogging data, data len

A Layered Architecture for Detecting Malicious Behaviors 85

Fig. 4. L2 AND/OR graph for an asynchronous TCP client

(in arguments) across all invocations of a sockets function s1 but which are
not present in any invocations of all other sockets functions, s2, s3, ..., sk. These
commonalities are the basis of our L0 behavior graphs. The coverage of any graph
then relies upon the diversity of process traces. Our process traces delineate entry
to and return from each sockets function and identify all system calls invoked
therein, including each system call’s arguments and return value.

For some functions, such as socket, we crafted a suite of programs that in-
voked the function using all possible combinations of valid arguments. The exe-
cution of other sockets functions, however, is stateful in that it depends directly
upon previous actions performed on the same socket descriptor; e.g. recv. Hence,
it is not enough to provide different argument combinations to recv, we must
also precede the invocation of recv with different combinations of particular
sockets functions, such as socket, bind, listen, connect, and so on.

Pending System Call Invocations. A system call sc may not immediately return
success or failure but rather return STATUS PENDING; NtWaitForSingleObject
is subsequently invoked on sc’s associated event object. We encode this path in
our L0 graphs so as to identify eventually successful system call invocations.

Constructing L1 Graphs. Recall that L1 graphs aggregate L0 events that
have a similar side effect. Since the system call interface is finite, we can enu-
merate the “relevant” effects of each system call and construct an L1 graph

86 L. Martignoni et al.

Virtual network

Windows XP guest

Qemu system emulator

Analyzed
program

Process-generated events

Extract arguments
Get/set taint labels

B
eh

av
io

r
m

a
tc

h
er

Behavior
specifications

Fig. 5. Architecture of the system

for each such effect, where by “relevant” we mean “of interest”. In our case,
there were two effects that required L1 graphs: net send and net recv. These
were immediately identifiable through domain knowledge. Note that aggregation
graphs can exist at higher layers as well; e.g., we use an L3 graph to aggregate
async tcp client and sync tcp client so that we may identify generally any
tcp client.

Constructing L2 Graphs. The graphs at L2 identify correlated sequences of
lower-layer events which have some aggregate, composite effect, e.g. create -
write file. For each target L2 behavior, we identify the events essential to that
behavior and any dependencies between those constituent events. This identi-
fication comes through (i) domain knowledge, such as encoding that in order
to connect or listen on a socket, that socket must first have been (explic-
itly or implicitly) bound, and (ii) analysis of process traces, as used to con-
struct the graphs for asynchronous network interaction. Windows exports a rich
API for performing asynchronous network interaction, including the standard
polling model using select on a socket as well as event-based approaches, such
as via WSAEventSelect and WSAAsyncSelect. We are able to represent all of
these through a single asynchronous TCP client graph as in fig. 4. This graph
was built by examining process traces of existing applications which use the
Windows asynchronous API as well as augmenting this analysis with traces of
specially-crafted programs designed to capture more execution diversity.

3 System Implementation

Figure 5 depicts the architecture of our system, which has two main components:
a system-wide emulator (Qemu) and a behavior matcher. Qemu emulates and
traces the execution of analyzed programs in an isolated virtual environment.
We use a hybrid emulated/virtualized approach, where the execution of the
process under analysis is emulated while the execution of all other processes
in the system is virtualized using KQemu [38]. The behavior matcher obtains
information about process events from the emulator and attempts to match
this input event stream to the behavior graphs. The behavior matcher operates

A Layered Architecture for Detecting Malicious Behaviors 87

independently of the particular monitoring technique and, as such, could be used
in concert with, e.g., a process emulator. We use system-wide rather than process
emulation for reasons relating to ease of experiment execution and cleanup. In
particular, Qemu offers built-in support for rollback of system state and enables
easy isolation of the monitored process from the external world.

3.1 System Emulator

Our system-wide emulator extends Qemu [39], an open-source emulator based
on dynamic binary translation, by adding guest-OS-aware virtual machine in-
trospection and taint analysis capabilities [25]. Guest-OS awareness is essential
as we must be able to determine: which system call was invoked, which process
invoked it, and the format of the system call’s argument buffers. Our system
currently emulates the IA-32 architecture and supports Microsoft Windows XP.

Process-generated Events. We instrument the code executed in the emulator
by hooking the sysenter and sysexit instructions, which identify, respectively,
invocation of and return from system calls. The instrumentation causes the em-
ulator to provide this event stream to the behavior matcher in real-time.

Taint Analysis. The code executed in the emulator is also instrumented to
perform taint analysis. In order to propagate taint labels through data depen-
dencies, we extend the semantics of instructions that assign a value to a register
or memory location, excluding floating point operations. We set the label of
an assignment instruction’s destination operand to be the union of the source
operands’ labels. Instructions instrumented in this manner are referred to as
taint propagation instructions. To reduce overhead, we perform taint analysis on
user-space code only. Our system also includes support for custom taint propa-
gation rules over operations at a higher level than machine code instructions. In
particular, we use this support to propagate taint across system calls that par-
ticipate in hostname resolution; we assign the labels from the input hostname
buffer to the location storing the resolved IP address.

Local User Input Tracking. Our local user input tracking module is de-
signed for Win32 GUI applications, which receive messages indicating keyboard
or mouse input events. The receiving application invokes its handler for the in-
put event via a call to DispatchMessage. Mouse input messages do not provide
the data value associated with the event; hence, identifying this data is a chal-
lenge. We address this by entering clean mode whenever the monitored process is
handling receipt of a mouse click or keystroke; we define that period as starting
with select invocations of DispatchMessage and ending with the corresponding
returns. During clean mode, all taint propagation instructions unconditionally
set the labels of their destination operands to be the special clean label. We
present evaluation details related to user input tracking in sect. 4.6.

3.2 Behavior Matcher

At startup, the behavior matcher loads the provided set of behavior graphs. The
matcher maintains some state for each graph, including the graph’s current set

88 L. Martignoni et al.

of active nodes. A node nact in graph G is active when we have received some
event sequence <ev1, ev2, ..., evk> which causes us to transition from the start
state of G to nact. There may be multiple event sequences corresponding to
any particular active node; these event sequences (including each event’s actual
parameters) are also part of a graph’s state. For brevity, certain details of the
matching algorithm are omitted.

The behavior matcher is notified in real-time by the emulator every time the
monitored process invokes or returns from a system call. Given a new event e
with name namee, for each behavior graph, the matcher: (i) checks whether
there is a transition from an active node to a node nnew whose name is the same
as namee; if not, discard e, (ii) extracts e’s actual parameters and binds them to
nnew’s formal parameters; (iii) evaluates the predicates on (nact,nnew); if they
do not hold, discard e; (iv) if there is an on-reach action associated with nnew,
then execute it; (v) if there is an edge from nnew to this graph’s output event,
the matcher generates the appropriate synthetic event.

4 Evaluation

This section provides the results of testing our dynamic specification-driven sys-
tem monitor on seven malicious and eleven benign applications. After describing
the experimental setup, we provide results demonstrating our ability to fill the
semantic gap. Additionally, in testing the bots and benign applications against
seven behavior graphs (referred to as malspecs) corresponding to bots’ most
threatening behaviors, there were no false negatives and seven false positives.

4.1 Experimental Setup

We performed our evaluation of the system in the environment depicted in Fig. 5.
The evaluation framework consists of a victim Qemu virtual machine V Mvict,
which is connected to a second virtual machine V Mgway, which is acting as
a network gateway. On V Mvict, the system-wide emulator monitors the target
malicious or benign process. The purpose of V Mgway is three-fold: it isolates the
emulator from the external network to prevent further infection; it provides a
realistic network environment for the execution of network-aware malware; and
it hosts the command-and-control (C&C) server used to direct bots’ activities.

4.2 Graph Validation

To determine whether our behavior graphs adequately cover semantically
-equivalent but programmatically-different execution paths, we ran a diverse
suite of applications within our monitoring framework and performed matching
against a set of behavior graphs corresponding to generally innocuous actions.
The column headings in Table 3 identify the tested behavior graphs. We drove
each application’s execution via performing the actions described in Table 2.

A Layered Architecture for Detecting Malicious Behaviors 89

Table 2. Actions over which benign programs were exercised

Application Interaction
ftp.exe, FTP
Wanderer

Connect to server, authenticate, get a file, get multiple files

Internet Explorer Access google.com, perform FTP access, download and execute
a program.

Outlook Express Download and read email containing an external image, reply
to email, download and execute an attachment.

PuTTy Connect and authenticate with server, send commands, use as
SSH tunnel.

WinSCP, pSCP Copy a file from server to client (and vice versa) using wildcards,
download and execute a program.

SDK Installer Download and install debugging tools from Microsoft server.
mIRC Chat on a typical channel, DCC send, DCC get.
Google Talk Chat, start a voice call, attempt a file transfer.
EasyProxy Start proxy, route HTTP traffic.

Table 3. Graph validation results. Blank entries indicate that the software did not
perform the tested behavior.

T
C

P
C

li
en

t

T
C

P
S
er

v
er

N
et

S
en

d

N
et

R
ec

v

C
re

at
e

P
ro

c

D
w

n
ld

F
il
e

D
w

n
ld

&
E
x
ec

S
en

d
E
m

ai
l

T
C

P
P

ro
x
y

ftp.exe � � � � �
Internet Explorer � � � � � �
Outlook Express � � � � � � �
PuTTy � � � � �
pSCP � � � �
WinSCP � � � � � �
FTP Wanderer � � � � � � �
SDK Installer � � � �
mIRC � � � � �
Google Talk � � � �
Easy Proxy � � � � �

Moreover, during process execution, we performed manual analysis of network
traffic and OS state in order to obtain “ground truth” about a process’s actions.
In this way, we were able to determine which behavior specifications any par-
ticular process should match at any point in time. Table 3 shows the output of
our behavior matcher on each application and for each behavior graph. In all
instances, the behavior matcher’s output comported with ground truth, demon-
strating that our graphs identify the fundamental components of the tested be-
haviors. Recall that graphs at L2 and higher compose lower-layer graphs. Hence,
our evaluation was performed over more than forty distinct graphs.

90 L. Martignoni et al.

Table 4. Malspecs used for evaluation. Recall that “RI” stands for remotely-initiated.
Use of “tainted” in the below refers to data received over the network.

Name Description
M1 RI Create and

Execute File
A file with a tainted name is created, tainted data is written
to the file, and a process is created from the file.

M2 RI Net Download A connection to a tainted address or port is created, a file
with a tainted name is created, and tainted data is written
to the file.

M3 RI Send Email A sequence of messages is matched using regular expressions,
and found to correspond to an SMTP message sent to a
tainted email address.

M4 RI Sendto A UDP packet is sent to a tainted port or address.
M5 RI TCP Proxy An application binds to a tainted port number, connects to

a tainted address, and relays information from the tainted
port to the tainted address.

M6 Keylogging An application captures keystrokes destined for another
process.

M7 Data Leak An application sends data from either the filesystem or the
registry over a network connection.

Table 5. Results on malicious bots. Blank entries denote behaviors not matched be-
cause the bot did not implement them; † entries denote behaviors which, when exer-
cised, caused the bot to crash.

M1 M2 M3 M4 M5 M6 M7
rBot � � † � � �
Agobot � � � � � �
DSNX � � � � �
SpyBot � � � �
gSys � � � � �
rxBot � � � � � �
SDBot � � � � �

4.3 Specifications of Malicious Behavior

The malicious behavior specifications used in our evaluation (malspecs) reflect
the targeted class of malware: bots. We targeted bots because their diverse range
of behaviors encompasses the full range of behaviors performed by some other
types of malware. Our malspecs (described briefly in Table 4) correspond to
the most alarming threats posed by bots [2,3,4,5,6,7], including: malware install
(M1, M2), spamming (M3), DoS attacks (M4), proxying (M5), and identity theft
(M6, M7). Since bots act at the behest of a remote entity (the botmaster), we
describe their actions as remotely-initiated (RI), which occurs when the values
used to perform an action depend on data received over the network [16].

A Layered Architecture for Detecting Malicious Behaviors 91

Table 6. Results on benign applications. “UI” refers to an experiment in which user
input tracking was not used, and “UI” to one with it enabled.

M1 M2 M3 M4 M5 M6 M7
UI UI UI UI UI UI UI UI UI UI UI UI UI UI

ftp.exe � �
FTP Wanderer � �
Internet Explorer � � � �
Outlook Express � � � �
PuTTy � �
pSCP � �
WinSCP � � �
SDK Installer �
mIRC � �
Google Talk � � � �
EasyProxy

4.4 Malware Results

We evaluated our system against seven malicious bots: rbot, Agobot, DSNX,
Spybot, gSys, rxbot, and SDBot. When run in V Mvict, the bot connected to its
C&C server (hosted in V Mgway), received a series of commands, and executed
each. Table 5 shows the malspecs matched by each bot. From this, two conclu-
sions can be drawn: first, we can detect when a process performs a high-level,
semantically meaningful action, such as Remotely-Initiated Net Download
(M2); and secondly, a single malspec can be used to identify a malicious behav-
ior in a variety of bots. In one case, a command fed to a bot caused the bot to
crash; consequently, we don’t have results of executing the email command on
rBot, which we expected would match RI Send Email malspec (M3).

4.5 Benign Application Results

To determine whether our malspecs sufficiently encode the difference between
malicious behavior and benign, we tested eleven benign applications against
these malspecs. We chose benign applications and actions over which to drive
each application by favoring those with the greatest perceived likelihood of trig-
gering a match on at least one malspec. Due to the black-box nature of many
Win32 applications, this selection process is imperfect. Since we favored network-
intensive applications and since our malspecs define remotely-initiated actions
as those which use network-supplied parameters, we expect some false positives.

Table 6 provides the results of evaluating each of our benign programs against
the set of malspecs. We ran each program under two scenarios: first, with user-
input tracking disabled, which corresponds to the UI column; and second, with
user-input tracking enabled, which correspond to the UI column. What this
means is that, e.g., GoogleTalk matched M2, M4, and M7 when we performed
no user input tracking and only matched M7 when this tracking was enabled.

92 L. Martignoni et al.

We note that, in general, we are better able to distinguish malicious from benign
when we take local user input into consideration in the manner described in 3.1.

The malspec matched by most benign programs (regardless of whether user in-
put was taken into consideration) is Leak (M7). Leak identifies when data read
from a file or the registry is subsequently sent on the network. This manifests in
malicious applications when sensitive user data or product keys are transmitted
to the botmaster. The deficiency of this malspec is its coarse granularity; i.e.,
reading data from any file on the system and sending any portion of that causes
a match. In actuality, we would prefer to encode that, when an application reads
data that does not belong to that application, this is considered a breach. So,
in a sense, a more finely-tuned Leak malspec would retrofit fine-grained access
control for applications on Windows systems, enabling application X to read
from files and registry keys belonging to X. As proof of concept, we tuned the
Leak malspec to exclude cookie files and certain registry keys belonging Internet
Explorer (IE), which explains why IE does not match M7.

4.6 Tracking Local User Input

Since our benign results make clear the importance of identifying and tracking
data which is dependent upon local user input, it is important to understand how
often the system is cleaning data in response to local user input (as described
in 3.1). If it is the case that our system is in “clean mode” the vast majority of the
time, one might question the validity of our distinction between malicious and
benign. We identified the number of instructions executed by a benign process
over its lifetime as well as the number of instructions executed by that process
while it was in clean mode. The percent of instructions executed in clean mode
for three representative applications was: mIRC, 1%; Outlook, 3%; and IE, 9%.
Thus, user-input tracking is performed for a very small portion of a process’s
lifetime and, hence, our designation of data as clean is conservative.

4.7 Additional Malware

Though our sample malspecs target malicious bots, high-level specifications can
be generated to identify other classes of malware. To demonstrate this, we eval-
uated four Trojans (Bancos, two variants of Banker, and Delf) and three mass-
mailing worms (all variants of Bagle) using our previous malspecs plus a new mal-
spec designed to detect self-propagation through email. With no modifications
to the Leak malspec (M7), each Trojan matched it. To identify self-propagation
through email, we modified the Remotely-Initiated Send Email malspec
(M3). Rather than requiring that the data-flow be from the network to an SMTP
message, we specified that the data-flow must be from the code of the executable
itself to an SMTP message, which corresponds to a process sending its own code
in an email. This demonstrates that specifying signatures for entirely new classes
of malware can be straightforward and intuitive.

A Layered Architecture for Detecting Malicious Behaviors 93

Table 7. Performance overhead of the system. The Tainting column identifies the
factor slowdown of running Qemu with tainting over vanilla Qemu. Each MX column
identifies the factor slowdown (over vanilla Qemu) of performing both tainting and
behavior matching for the given malspec. Startup time is not included and is on the
order of ten seconds.

Tainting M1 M3 M6
Internet Explorer 5.25 11.53 7.19 5.64
pSCP 7.32 8.08 19.62 7.42
Agobot 3.01 16.40 23.73 16.84
rBot 9.50 11.20 11.08 9.62

4.8 Performance Overhead

We evaluated the performance overhead of our system on a subset of the ma-
licious and benign applications used in the evaluation, including Agobot, rBot,
pSCP, and Internet Explorer. We ran each application under three different sce-
narios: (i) Qemu with no tainting; (ii) Qemu with tainting; (iii) Qemu with
tainting and behavior matching for each of three different malspecs. For each
application under each scenario, we measured the amount of wall clock time
elapsed between a set of events captured in system logs. We selected events that
did not depend on user input, so as to preserve as much determinism as possible.

The Tainting column in Table 7 identifies the factor slowdown of using Qemu
with tainting over Qemu without tainting, which we refer to as vanilla Qemu.
We rely on previous work to determine the overhead of vanilla Qemu relative to
native execution, which is substantial: on the order of a 7X to 23X [12]. Each
MX column identifies the factor slowdown of performing both tainting and be-
havior matching for the given malspec. To obtain the total slowdown over native
execution, we add the MX value to the numbers in [12]; e.g., running behav-
ior matching using the M3 malspec on rBot exacts an 18X to 34X performance
penalty over native execution. Our system yields rich information and would ease
the analysis performed in applications which may be less performance sensitive.

5 Limitations and Future Work

Limitations. There are several approaches to evasion that we can imagine
attackers would adapt against a system such as ours. In particular, since we
identify correlated sequences of system calls, efforts to disrupt our ability to
correlate are an obvious choice. This disruption could take the form of splitting
the work required to achieve some high-level action across multiple processes or
across different instantiations of the same process. Another high-level approach
at evasion relates to our assumption that the malicious process interacts with the
kernel. Malware that expropriate kernel functionality would disrupt our ability
to see and thus correlate their events. For example, an application could use raw
sockets and write its own IP and transport-layer headers rather than calling the

94 L. Martignoni et al.

standard sockets functions such as connect, accept, and so on. Malicious soft-
ware could also attempt to subvert our user-input tracking. Another approach to
evasion relates to breaking our assumption about data-flow; in particular, mal-
ware could convert data-flow dependencies into control-flow dependencies thus
defeating our mechanism for determining when an action is remotely-initiated.
Finally, because we are interposing on a process, we are vulnerable to Time-Of-
Check-Time-Of-Use (TOCTOU) bugs as in [24].

Future Work. We are very interested in exploring automated ways of gen-
erating the behavior graphs at various layers of the hierarchy. At L0, perhaps
given source code access, we could ascertain precisely the set of low-level events
(and the constraints on those events) that corresponds to each sockets opera-
tion. Moving up the hierarchy, such access would also presumably enable us to
determine all possible sequences of events which achieve some semantic effect,
such as tcp client. An alternative approach may be to use symbolic execution
to infer these behavior graphs. In this way, we would still achieve our semantic
understanding of the aggregate effect of a process’s actions but would have more
confidence in our coverage than can be obtained through even rigorous testing.

6 Related Work

Behavior-Based Malware Detection. Host-based behavior-based research
has been done to identify rootkits, spyware, and bots [22,23,20,19,16]. In [19],
Cui et al identify extrusions: stealthy outgoing network connections made by
malicious processes. In the commercial sector, Sana Security’s ActiveMDT [21]
correlates a process’s exhibition of various mostly stateless behaviors to deter-
mine whether the process is likely to be malicious. The simple behaviors include:
whether a process spawns or terminates other processes, the directory from which
a process executes, whether the process attempts to hide, and so on.

Egele et al present a method and system for detecting spyware implemented
as a Browser Helper Object (BHO) in [30]. The method identifies malicious in-
formation access and processing when sensitive information flows (such as the
list of URLs visited) are written by a BHO to the network, file system, or shared
memory. Moreover, they perform static analysis to identify instructions that are
control-dependent on sensitive information. Since spyware-writers could prevent
the static analysis in [30] from identifying the post-dominator node, they con-
sider failure of their static analysis to be indicative of malicious intent. This
control-flow tracking is only performed for BHO code so it’s unclear whether
such tracking, if applied to general-purpose programs, would blur the ability to
distinguish between malicious and benign. Yin et al developed a related malware
detector, Panorama [18], which performs full-system, instruction level tainting
and can express more diverse leakage policies than [30]. We can express the be-
havior identified by these systems using our specification language. As with [18],
we do not currently track implicit information flows.

The behavioral specifications developed by Christodorescu et al [11] are sim-
ilar to ours. Our specifications differ in three important ways. First, we use

A Layered Architecture for Detecting Malicious Behaviors 95

AND-edges which enables expressing concurrent behaviors. Second, we intro-
duce synthetic event nodes, in order to identify complex behaviors hierarchically.
Additionally, the specifications used in Christodorescu’s work were generated au-
tomatically using data mining techniques, as opposed to the manual techniques
we used. This has a few significant implications. Most importantly, their speci-
fications identify sequences of actions which happen to occur in some malicious
software; the aggregate effect of such sequences is unknown as is the value to the
malware of performing those actions. That is, their specifications may identify
incidental, rather than fundamental or mission-critical, behaviors as are targeted
by our work. Additionally, no effort is made to cover semantically equivalent se-
quences. Consequently, there may be alternative sequences of system calls which
have the same effect as a mined sequence but are not identified in their graphs.

Dynamic Code Analysis. Some systems use emulation to monitor the exe-
cution of suspicious executables [27,33,34]; however, rather than attempting to
infer high-level behaviors, these systems merely report the numerous low-level
events, such as system calls and API invocations, generated during execution.
Other research has focused on addressing the shortcomings of dynamic analysis,
including using symbolic execution to explore multiple execution paths [31,32].

Semantic Gap Problem. The semantic gap problem was explored by Garfinkel
et al, as part of an attempt to embed an intrusion detector into a virtual machine
monitor [25]. Related systems include honeypots [29,28], where introspective ca-
pabilities are used to examine the state of the filesystem in order to detect hidden
files. Rather than encoding semantic information about the system, Jones [35] ap-
plied implicit techniques to infer relevant state. One notable result was the use of
these techniques to detect processes hidden by rootkits [36].

7 Conclusion

Bots are an extremely widespread and serious problem, allowing remote bot mas-
ters to direct the activities of millions of compromised hosts. We develop new
behavioral monitoring techniques that are effective for identifying meaningful
high-level actions, based on hierarchical behavior graphs. Behavior graphs pro-
vide a high-level specification language that can be used to describe semantically
meaningful behaviors such as “proxying”, “keystroke logging”, “data leaking”,
and “downloading and executing a program.” To address evasive malware be-
havior, our specifications are carefully crafted to detect alternate sequences of
events that achieve the same goal.

Our experimental emulation-based detector identifies when a process performs
a specified high-level actions, regardless of the process’s source-code implemen-
tation of the action. We tested multiple malicious bots and benign programs
and found that we were able to thoroughly identify high-level behaviors across a
diverse code base. In addition, we are able to distinguish malicious execution of
high-level behaviors from benign ones by distinguishing remotely-initiated from
locally-initiated actions.

96 L. Martignoni et al.

References

1. Symantec Internet Security Threat Report, Trends for January-June 07, Volume
XII (September 2007)

2. Keizer, G.: Bot Networks Behind Big Boos. In: Phishing Attacks. TechWeb (No-
vember 2004)

3. Parizo, E.: New bots, worm threaten AIM network. SearchSecurity (December
2005)

4. Naraine, R.: Money Bots: Hackers Cas. In on Hijacked PCs. eWeek (September
2006)

5. Overton, M.: Bots and Botnets: Risks, Issues, and Prevention. In: Virus Bulletin
Conference (October 2005)

6. Ianelli, N., Hackworth, A.: Botnets as a Vehicle for Online Crime. CERT Coor-
dination Center (December 2005)

7. Ilett, D.: Most spam generated by botnets, says expert. ZDNet UK (September
22, 2004)

8. Christodorescu, M., Jha, S.: Testing Malware Detectors. In: Proc. of the Interna-
tional Symposium on Software Testing and Analysis (July 2004)

9. SRI Honeynet and BotHunter Malware Analysis Automatic Summary Analysis

10. Jevans, D.: The Latest Trends in Phishing, Crimeware and Cash-Out Schemes.
Private correspondence

11. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious behav-
ior. In: Proc. of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (August 2007)

12. NoAH Foundation: Containment Environment Design

13. Chen, P., Noble, B.: When Virtual is Better than Real. In: Proceedings of HotOS-
VIII: 8th Workshop on Hot Topics in Operating Systems

14. Petritsch, H.: Understanding and Replaying Network Traffic in Windows XP for
Dynamic Malware Analysis. Master’s Thesis (February 2007)

15. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-Aware
Malware Detection. In: IEEE Symposium on Security and Privacy (May 2005)

16. Stinson, E., Mitchell, J.: Characterizing Bots’ Remote Control Behavior. In: Proc.
of the 4th DIMVA Conference (July 2007)

17. Newsome, J., Song, D.: Dynamic Taint Analysis for Automatic Detection, Analy-
sis, and Signature Generation of Exploits on Commodity Software. In: Network
and Distributed Systems Symposium (February 2005)

18. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proc. of the 14th
ACM conference on Computer and communications security (October 2007)

19. Cui, W., Katz, R., Tan, W.: BINDER: An Extrusion-based Break-in Detector for
Personal Computers. In: Proc. of the 21st Annual Computer Security Applications
Conference (December 2005)

20. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based
Spyware Detection. In: Proc. of the 15th USENIX Security Symposium (August
2006)

21. United States Patent Application 20070067843 M̈ethod and apparatus for remov-
ing harmful software: Williamson, Matthew; Gorelik, Vladimir (March 22, 2007)

22. Strider GhostBuster Rootkit Detection

A Layered Architecture for Detecting Malicious Behaviors 97

23. Wang, Y., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Soft-
ware with Strider GhostBuster. Microsoft Technical Report MSR-TR-2005-25

24. Garfinkel, T.: Traps and Pitfalls: Practical Problems in System Call Interposition
Based Security Tools. In: Network and Distributed System Security (Feburary
2003)

25. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Network and Distributed Systems Symp. (Febu-
rary 2003)

26. Nilsson, N.: Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
New York (1971)

27. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic Analysis of Malicious Code.
Journal in Computer Virology 2(1) (August 2006)

28. Jiang, X., Xu, D., Wang, X.: Stealthy Malware Detection Through VMM-
Based ”Out-of-the-Box” Semantic View Reconstruction. In: Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS 2007),
Alexandria, VA (November 2007)

29. Jiang, X., Wang, X.: ’Out-of-the-box’ Monitoring of VM-based High-Interaction
Honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007)

30. Egele, M., Kruegel, C., Kirda, E., Yin, H., Son, D.: Dynamic Spyware Analysis.
In: Proceedings of Usenix Annual Technical Conference, USA (June 2007)

31. Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Mal-
ware Analysis. In: Proceedings of IEEE Symposium on Security and Privacy, May
2007, IEEE Computer Society Press, USA (2007)

32. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Poosankam, P., Song, D., Yin,
H.: In: Lee, W., et al. (eds.) Botnet Analysis (2007)

33. Norman Sandbox
34. Willems, C.: Automatic Behaviour Analysis of Malware. Master Thesis. University

of Mannheim
35. Jones, S.: Implicit Operating System Awareness in a Virtual Machine Monitor.

Ph.D. Thesis, University of Wisconsin - Madison (April 2007)
36. Jones, S., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: VMM-based Hidden Process

Detection and Identification using Lycosid. In: ACM International Conference on
Virtual Execution Environments (March 2008)

37. Vasudevan, A., Yerraballi, R.: Cobra: Fine-grained Malware Analysis using
Stealth Localized-executions. In: Proceedings of IEEE Symposium on Security
and Privacy, May 2006, IEEE Computer Society Press, USA (2006)

38. Bellard, F.: QEMU Accelerator (KQEMU)
39. Bellard, F.: QEMU, a Fast and Portable Dynamic Translator

A Study of the Packer Problem and Its Solutions

Fanglu Guo, Peter Ferrie, and Tzi-cker Chiueh

Symantec Research Laboratories

Abstract. An increasing percentage of malware programs distributed
in the wild are packed by packers, which are programs that transform
an input binary’s appearance without affecting its execution semantics,
to create new malware variants that can evade signature-based malware
detection tools. This paper reports the results of a comprehensive study
of the extent of the packer problem based on data collected at Syman-
tec and the effectiveness of existing solutions to this problem. Then the
paper presents a generic unpacking solution called Justin (Just-In-Time
AV scanning), which is designed to detect the end of unpacking of a
packed binary’s run and invoke AV scanning against the process image
at that time. For accurate end-to-unpacking detection, Justin incorpo-
rates the following heuristics: Dirty Page Execution, Unpacker Memory
Avoidance, Stack Pointer Check and Command-Line Argument Access.
Empirical testing shows that when compared with SymPack, which con-
tains a set of manually created unpackers for a collection of selective
packers, Justin’s effectiveness is comparable to SymPack for those bina-
ries packed by these supported packers, and is much better than SymPack
for binaries packed by those that SymPack does not support.

1 The Packer Problem

1.1 Overview

Instead of directly obfuscating malware code, malware authors today heavily rely
on packers, which are programs that transform an executable binary into another
form so that it is smaller and/or has a different appearance than the original,
to evade detection of signature-based anti-virus (AV) scanners. In many cases,
malware authors recursively apply different combinations of multiple packers to
the same malware to quickly generate a large number of different-looking binaries
for distribution in the wild. The fact that more and more malware binaries are
packed seriously degrades the effectiveness of signature-based AV scanners; it
also results in an exponential increase in AV signature size, because when an AV
vendor cannot effectively unpack a packed threat, it has no choice but to create
a separate signature for the threat.

The percentage of malicious programs (malware) and benign applications
(goodware) that are packed is hard to measure accurately. The numbers re-
ported vary from vendor to vendor, but it is generally accepted that over 80%
of malware is packed. These malware samples are often “wrapped” rather than

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 98–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Study of the Packer Problem and Its Solutions 99

packed, because many packers alter the original form of input binaries in ways
that don’t necessarily involve compression.

Not all packed programs are malware. We took a random sample of tens of
thousands of executable files that were collected over a period of several months
and were packed by packers that Symantec recognizes and knows how to unpack,
and ran a set of commercial anti-virus (AV) scanners from multiple vendors
against them. About 65% of these executable files are known malware. The
remaining 35% most likely falls into the goodware category because these samples
were collected more than a year ago and today’s AV scanners should be able to
capture most malware programs during that period of time. Clearly, the use of
packers to protect goodware is quite common too.

The number of known packers is also hard to measure accurately. Symantec
has collected a large number of packers - more than 2000 variants in more than
200 families. Among them, Symantec currently can identify nearly 1200 packers
spread among approximately 150 families. However, among the 150 packer fami-
lies Symantec knows about, it can only unpack about 110 of them, which contain
approximately 800 members. This means that Symantec has a backlog of approx-
imately 1200 members in 90 families, and this number increases day by day.

Without doubt, UPX [1] remains the most widely used packer. The rest of the
list depends on how files are collected, but it always includes the old favorites like
ASPack [2], FSG [3], and UPack [4]. In addition to those known packers, analysis of
the above randomly sampled file set revealed at least 30 previously unknown pack-
ers. Some were minor variations of known packers, but most were custom packers.
Amazingly, some of the clean files were packed with these custom packers.

The traditional way an AV vendor such as Symantec handles packers involves
the following steps:

1. Recognize a packer’s family. This is not as simple as it sounds. There are
plenty of packers whose code is constant, and these can be recognized using
simple strings. But many packers use polymorphic code to alter their ap-
pearance, and some packers intentionally use fake strings from other packers
or standard compiler code, in order to fool the recognizers.

2. Identify a packer’s version. A packer is classified into an existing version or
is assigned to a new version. Being able to identify a packer is essential
for successful unpacking, because there can be enough variations among
members of the same family such that an unpacker for one member of a
family cannot be used for another member for the same family.

3. Create a recognizer. The previous two steps are usually handled by a human,
or applications such as neural net programs that have been trained on packers
that are assigned to known families. This step, in contrast, is the act of
writing a program whose function is solely to recognize that family, and
perhaps that particular member/version.

4. Create an unpacker. Unlike the recognizer, whose goal is just to recognize
the packer, the unpacker actually performs the reverse actions of the cor-
responding packer, and restores a packed binary as much as possible to its
original form, including its metadata such as PE header for Win32 binaries.

100 F. Guo, P. Ferrie, and T.-c. Chiueh

PE Header

Data Section

Code Section

PE Header

Empty

Hello_upx.exe

Data Section

Code Section

Loading

Hello.exe

UPX1

Packed Data

Unpacker Code

UPX0

rsrc

Fig. 1. A diagram that shows how an example program Hello.exe is packed by packer
UPX and the layout of the resulting packed binary Hello upx.exe

It requires a non-trivial amount of efforts to develop packer recognizers and
unpackers. As noted above, Symantec has a backlog of approximately 1200 mem-
bers in 90 families. To add unpacking support for a typical packer takes about
six hours, on average. This means that it would take five full-time engineers
about six months to clear the backlog if two unpackers are developed per day.
However, in the case of complex packers such as Themida [5], it alone may take
an experienced engineer up to six months to develop its unpacker. Packers with
this level of complexity are not rare.

Due to these obvious disadvantages, the Justin (Just-In-Time AV scanning)
solution presented in this paper takes a totally different approach. Justin lever-
ages generic behaviors of unpacking and unpacks arbitrary packers without the
need of knowing any information that is specific to the particular packer. Thus
Justin doesn’t have to go through any steps of the above traditional approach.

1.2 How Packers Work

Let’s start with UPX, which arguably is among the most straightforward packers
in use today. Figure 1 shows how UPX packs an example program Hello.exe.

When UPX compresses a PE binary, it begins by merging all of its sections
into a single section, with the exception of the resource section. The combined
data is then compressed into a single section of the resulting packed binary. In
Figure 1, the code section and data section of hello.exe is compressed and stored
in the Packed Data area of section UPX1 of the resulting binary Hello upx.exe.

The resulting binary Hello upx.exe contains three sections. The first section
UPX0 is entirely virtual - it contains no physical data and is simply a placeholder.

A Study of the Packer Problem and Its Solutions 101

It reserves the address range when Hello.exe is loaded to memory. At run time,
Hello.exe will be restored to section UPX0. The second section contains the
Packed Data, followed immediately by the Unpacker Code. The entry point in
the PE header of Hello upx.exe is changed to point directly to the Unpacker
Code. The third section contains the resource data, if the original binary had
a resource section, and a partial import table, which contains some essential
imports from kernel32.dll as well as one imported function from every DLL
used by the original binary.

The first two sections are set to read/write/execute, regardless of what they
were before, and are not changed at run time. Therefore UPX is NX compatible,
but it loosens up the protection for the original binary’s read-only sections. The
third section is simply set to read/write, since no execution should happen within
that section.

After unpacking, UPX write-enables the header of the resulting binary, then
changes the first two sections of the section table to read-only, and write-protects
the header again. This ensures compatibility with some application programs
that check in-memory section table instead of the actual section attributes, be-
cause these sections are supposed to be non-writable.

More sophisticated packers use a variety of techniques that virus writers use to
defeat attempts to reverse-engineer, bypass, and disable the unpackers included
in packed binaries. We discuss some of them in the following.

Multi-layer packing uses a combination of potentially different packers to pack
a given binary, and makes it really easy to generate a large number of packed bi-
naries from the same input binary. In practice, packed binaries produced by some
packers may not be packed again by other packers. Also, the use of multi-layer
packing itself could be used as an indication of malware, so the very presence of
multiple layers - supported or not - could allow for a heuristic detection.

Anti-unpacking techniques are designed to make it difficult to uncover the logic
of an unpacker, and fall into two major categories: passive and active. Passive
anti-unpacking techniques are intended to make disassembly difficult, which in
turns makes it difficult to identify and reverse the unpacking algorithm. Active
techniques are intended to protect the running binary against having the fully
unpacked image intercepted and extracted, and can be further classified into
three subcategories: anti-dumping, anti-debugging, and anti-emulating. There are
several commercial packers, such as Enigma and Themida, which promote their
use of all of these techniques.

The simplest way to capture an unpacked image is to dump the address space
of a running process. The simplest form of anti-dumping involves changing the
value of the image size in the process environment block, and makes it difficult
for a debugger to attach to the process or to dump the correct number of pages.
More advanced anti-dumping methods include page-level protections, where each
page is packed individually and unpacked only when accessed. It can even be
packed again afterwards. This technique is used by packers such as Armadillo [6].
Shrinker [7] uses a variation of this method, by unpacking regions when they are

102 F. Guo, P. Ferrie, and T.-c. Chiueh

accessed, but it is perhaps for performance reasons rather than an anti-dumping
mechanism, since the unpacked pages remain in memory.

A very common way to capture an unpacked image is to use a debugger
to step through the code, or to set breakpoints at particular locations. Two
common forms of anti-debugging involve checking some values that the oper-
ating system supplies in the presence of a debugger. The first uses a public
API, called IsDebuggerPresent(), which returns a Boolean value that corre-
sponds to the presence or absence of a debugger. This technique is defeated
by always setting the value to FALSE. The second anti-debugging technique
checks if certain bits are set within the NtGlobalFlag field. The values of in-
terest are heap tail checking (0x10), heap free checking (0x20), and heap para-
meter checking (0x40). They get their values from the GlobalFlag field of the
HKLM/System/CurrentControlSet/Control/Session Manager registry key. A
debugged process always has these values set in memory, regardless of the values
in the registry. This technique can be defeated by clearing the bits in the process
environment block.

Another way to capture an unpacked image to use an emulator to execute it
in a protected environment. There are many ways to attack an emulator. The
most common is to attempt to detect the emulator, since it is very hard to
make an emulator whose behavior matches closely to real machine. However,
each emulator has different capabilities, so there are multiple methods to detect
different emulators [8].

Not all protection methods restore the host to its original form when executed.
In particular, wrappers such as VMProtect [9] replace the host code with byte-
code, and attach an interpreter to execute that byte-code. The result is that
the original host code no longer exists anywhere, making it hard to analyze
and essentially impossible to reverse. In addition, the byte-code have different
meanings in different files. That is, the value 0x01 might mean “add” in one
VMProtect-packed binary, but “xor” in another, and only the corresponding
embedded interpreter knows for sure.

2 Unpacking Solutions from the Anti-Virus Industry

The AV industry has developed several approaches to tackle the packer problem,
which satisfy different combinations of the following requirements:

– Effective: An ideal unpacker should restore packed binaries to their original
form.

– Generic: An ideal unpacker should cover as many different types of packed
binaries as possible.

– Safe: Execution of an ideal unpacker should not leave any undesirable side
effects.

– Portability: An ideal unpacker should be able to run on multiple operating
systems.

The first requirement enables existing signature-based AV scanners to be di-
rectly applied to an unpacker’s output and detect the embedded malware if

A Study of the Packer Problem and Its Solutions 103

applicable. The second requirement decreases the amount of efforts required
to keep up with new packers. The third requirement is crucial for at-rest file
scanning, where the AV scanner initiates the unpacker and therefore has to be
absolutely sure that the unpacker itself does not cause any harm. The final re-
quirement is relevant for in-network scanning, where the unpacker and the AV
scanner may need to run on different platforms than that required by the packed
binaries.

The first solution to the packer problem is to the traditional way which man-
ually creates recognizers and unpackers by reverse-engineering the unpackers
in packed binaries by following steps as outlined in Section 1.1. The Sym-
Pack library [10] from Symantec falls into this category. This solution is safe,
portable, largely effective but not generic. That is, one needs to develop a
packer recognizer and an unpacker for each distinct packer. Given a set of
packer recognizers and unpackers, one can classify packed binaries into four
categories: (1) packed binaries whose packer can be recognized and that can be
unpacked, (2) packed binaries whose packer can be recognized but that cannot
be unpacked, (3) packed binaries whose packer cannot be recognized, and (4)
non-packed binaries. Assuming all the packers that goodware programs use fall
into the first category, then one can black-list all packed binaries belonging to
the second and third category. To be able to distinguish between packed and
non-packed binaries, one needs a technique to detect packed files generically.
This can be done by, for example, calculating the entropy [11] of a particular
region of an executable binary that most likely contains compressed data.

However, this general approach of handling packed binaries has several prob-
lems. First, it entails significant investments in engineering efforts, and the level
of investment required is expected to increase over time as more packers appear
in the wild. Second, if goodware decides to use packers in the second and third
category above, false positives in the form of blocking legitimate goodware may
arise. The same problem may also occur when packer recognizers and unpack-
ers contain design or implementation bugs that, for example, treat variants of
packers used by goodware as unknown packers. Finally, this approach requires
continuing maintenance for existing packer recognizers and unpackers. Old pack-
ers never die. They just get rediscovered and reused, and never quite go away.
For example, the self-extractor stub for RAR - the world’s second-most popular
archiving format after ZIP - is packed by UPX v0.50, which dates from 1999.

The second solution to the packer problem is to run a packed binary inside
an emulator for a sufficiently long period of time so that the embedded binary is
fully unpacked, and then invoke signature-based AV scanners against the mem-
ory image to check if it contains any malware. The x86 Emulator [12] take this
approach. This solution is safe, portable and generic, but is not always effec-
tive [13] for two reasons. First, a packed binary can terminate itself before the
embedded binary is unpacked if it detects that it is running inside an emulator.
Second, so far there is no good heuristic to decide when it is safe to stop the
emulation run of a packed binary, because it is difficult to distinguish between
the following two cases: (1) the embedded binary is benign and (2) the embedded

104 F. Guo, P. Ferrie, and T.-c. Chiueh

binary is malicious but is not fully unpacked. Another disadvantage of this ap-
proach is that it takes a non-trivial amount of effort to develop a high-fidelity
and high-performance emulator.

The third solution to the packer problem is to invoke AV scanning against
a suspicious running process’s memory image either periodically or at certain
security-sensitive events. Symantec’s Eraser dump [10] takes this approach. This
solution is generic, somewhat effective, but neither safe nor portable. Its effec-
tiveness is compromised by the facts that certain information required by AV
scanners, such as the entry point, is not available, and that the memory image
being scanned is not the same as that of an embedded binary immediately after
it is loaded. For example, a malware program may contain an encrypted string
in its binary file, and decrypt it at run time. If the encrypted string is part of
its signature, periodic memory scanning may fail to detect the malware because
the encrypted string is no longer in its memory image.

PolyUnpack [14] is a generic approach to the problem. It detects newly gen-
erated code by comparing if the current instruction sequence exists in the orig-
inal program. Instructions are disassembled and single stepped to achieve the
detection. Because both disassembling and single stepping are expensive, this
approach incurs significant performance overhead.

Renovo [15] monitors each instruction and tracks if any the memory is over-
written. If any overwritten memory is executed, it is treated as one layer of
unpacking. This approach instruments instructions and also incurs significant
performance overhead.

OllyBone [16] tracks write and execution too. It improves performance by
overloading the user/supervisor bit and exploiting the separation of data TLB
and instruction TLB in the X86 architecture. Saffron [17] combines OllyBone’s
technique with Intel’s PIN to build a tool that detects control transfers to dy-
namically created or modified pages, and dumps memory images at that time.

OmniUnpack [18] also relies on OllyBone for identifying executed pages and
invokes AV scanning before every “dangerous” system call. In addition, it incor-
porates two additional optimizations to reduce the total number of AV scans.
First, it invokes an AV scan only when there is a control transfer to a dynam-
ically modified page between the previous and current dangerous system calls.
Second, whenever an AV scanner is invoked, it only scans those pages that are
modified since the last dangerous system call. OmniUnpack is generic and largely
effective, but neither safe nor portable. In particular, the fact that it requires
whole-binary scanning is incompatible with almost all existing commercial AV
scanners, which scans only a selective portion of each binary. Moreover, it only
works for running processes, but is not suitable for at-rest file scanning.

One common heuristic shared among PolyUnpack, Renovo, OllyBone, Saf-
fron, OmniUnpack and Justin (descibed in the next section) is that a necessary
condition of the end of unpacking is a control transfer to a dynamically cre-
ated or modified page. However, there are important differences between Justin
and these previous efforts. First, Justin includes a more complete set of heuris-
tics to detect the end of unpacking, including unpacked code region make-up,

A Study of the Packer Problem and Its Solutions 105

stack pointer check, and command line argument check. Second, Justin includes
several counter-measures that are designed to fend off evasion techniques that
existing packers use. Finally, Justin leverages NX support rather than overloads
the supervisor/user bit, and is more efficient to track page executions.

3 Justin: Just-in-Time AV Scanning

3.1 Design

Justin is designed to be generic, effective and safe, but is not portable. The key
idea of Justin is to detect the end of unpacking during the execution of a packed
binary and invoke AV scanning at that instant. In addition to triggering AV
scanning at the right moment, Justin also aims to provide the AV scanner a
more complete picture about the binary being scanned, specifically its original
entry point.

A packed binary logically consists of three components, the unpacker, the
packed binary, and the area to hold the output of the unpacker. Different packers
arrange these components into different number of PE sections. The section
containing the unpacker’s output typically is relatively easy to identify because
its reserved size is larger than that of its initialized data contained in the binary.

The initial design goal of Justin is to enforce the invariant that no code page
can be executed without being scanned first. Its design is relatively straightfor-
ward: it first scans a packed binary at load time, runs the binary, keeps track of
pages that are dynamically modified or created, and scans any such page when
the program’s control is transferred to it. This design relies on an AV scanner
that does whole-binary scanning, and is not compatible with existing commer-
cial AV scanners, which employ a set of heuristics (e.g., file type) to select a
portion of a binary and scan only bytes in that portion.

To work with commercial AV scanners, the design goal of Justin is shifted
to detecting the end of unpacking during the execution of a packed binary.
In addition, it makes the following two assumptions about packers: (1) The
address space layout of the program embedded within a packed binary after it is
unpacked is the same as that if the program is directly loaded into memory, and
(2) the unpacker in a packed binary completely unpacks the embedded program
before transferring control to it. The majority of packers satisfy Assumption
(1) because they are supposed to work on commercially distributed executable
binaries, which generally do not come with a relocation table. They also satisfy
Assumption (2) because they cannot guarantee 100% static disassembly accuracy
and coverage [19]. Some packers do perform simple metamorphic transformation
to the input binaries before packing them. These packers inherently can evade
signature-based AV scanners even without packing and are thus outside the scope
of Justin. These two assumptions make it feasible to apply standard file-based
AV scanners with selective scanning to a packed binary’s memory image at the
end of unpacking.

When the unpacker in a packed binary completes unpacking the embedded
program, it sets up the import address table, unwinds the stack, and transfers

106 F. Guo, P. Ferrie, and T.-c. Chiueh

control to the embedded program’s entry point. Therefore the necessary condi-
tions for the execution of a packed binary to reach the end of unpacking are

– A control transfer to a dynamically created/modified page occurs.
– The stack is similar to that when a program is just loaded into memory.
– The command-line input arguments are properly set up on the stack.

Accordingly, Justin combines these conditions into a composite heuristic for
detecting the end of unpacking during the execution of a packed binary as fol-
lows. Given a binary, Justin loads it, marks all its pages as executable but non-
writeable, and starts its execution. During the execution, if a write exception
occurs on a non-writeable page, Justin marks this page as dirty, turns it into
non-executable and writeable and continues; if a execution exception occurs on
a non-executable page, Justin invokes an AV scanner to scan the whole mem-
ory image, and turns the page into executable and non-writeable if the end-of-
unpacking check concludes that the unpacking is not done. Note that the whole
memory image is presented as a file and scanned by the AV scanner. This is
different from OmniUnpack [18] which only scans dirty pages. By presenting the
whole memory image as a file, Justin’s output is compatible with existing com-
mercial AV scanners and avoids the problem in which signature straddles page
boundaries. For a non-packed binary, because no code page is generated or mod-
ified during its execution, it is impossible for an execution exception to occur on
a dirty page and no AV scan will be triggered at run time. So the performance
overhead of Justin for non-packed binaries is insignificant. The performance over-
head of Justin for packed binaries, on the other hand, depends on the number
of times in which the program’s control is transferred to a newly created page
during its execution.

The current Justin prototype leverages virtual memory hardware to identify
control transfers to dynamically created pages. More specifically, it manipulates
write and execute permissions of virtual memory pages to guarantee that a page
is either writeable or executable, but never both. With write protection, Justin
can track which pages are modified. With execute protection, Justin can detect
which pages are executed. If a binary Justin tracks needs to modify the protection
attributes of its pages in ways that conflict with Justin’s setting, Justin records
the binary’s intentions but physically keeps Justin’s own setting. If the binary
later on queries the protection attributes of its pages, Justin should respond with
the binary’s intentions, rather than the physical settings.

Whenever a virtual memory protection exception occurs, Justin takes control
and first checks if this exception is owing to its setting. If not, Justin simply
delivers the exception to the binary being monitored; otherwise Justin modifies
the protection attributes according to the above algorithm. To ensure that Justin
is the first to respond to an exception, the exception handler component of Justin
must be the first in the binary’s vectored exception handler list.

To ensure that the original program in a packed binary can execute in the same
environment, most unpackers unwind the stack so that when the embedded pro-
gram is unpacked and control is transferred to it, the stack looks identical to that
when the embedded program is loaded into memory directly. For example, assume

A Study of the Packer Problem and Its Solutions 107

that the initial ESP at the time when a packed binary is started is 0x0012FFC4,
then right after the unpacking is done and the unpacked code is about to be ex-
ecuted, the ESP should point to 0x0012FFC4 again. This rule applies to many
unpackers and is widely used in manually unpacking practice. Justin automates
this method by recording ESP’s value at the entry point of a packed binary, and
compares the ESP at every exception in which the program’s control is transferred
to a dynamically created page. The exception context of an exception contains all
CPU registers at the time when the binary raises the exception.

When a PE binary is run with a set of command-line arguments, these argu-
ments are first placed in heap by the loader and later copied to the stack by a
piece of compiler-generated code included in the binary at the program start-up
time. Based on this observation, one can detect the start of execution of the
original binary embedded in a packed binary, which occurs short after the end
of unpacking.

3.2 Implementation Details

Justin currently is implemented for Windows only. But the idea will also work on
other operating systems. The core logic of Justin is implemented in an exception
handler that is registered in every binary at the time when it starts. In addition,
Justin contains a kernel component that intercepts system calls related to page
protection attribute manipulation and query and “lies” properly so that its page
status tracking mechanism is as transparent to the binary being monitored as
possible. Justin leverages NX support [20] in modern Intel X86 processors and
Windows OS to detect pages that are executed at run time. In theory, it is
possible to use other bits such as supervisor bits for this purpose, as is the case
with OmniUnpack [18] and OllyBone [16].

Because Justin enforces the invariant that a page is either executable or write-
able but not both, it could lead to a live lock for a program that contains an
instruction which modifies data in the same page. The live lock is an infinite
loop of interleaved execution and write exceptions. To address this issue, Justin
checks if a memory-modifying instruction and its target address are in the same
page when a write exception occurs. If so, Justin sets the page writeable, single-
steps this instruction, and sets the page non-writeable again. This mechanism
allows a page to be executable and writeable simultaneously for one instruction,
but after that Justin continues to enforce the invariant.

One way to escape Justin’s invariant is to map two virtual pages to the same
physical page, and set one of them as executable and non-writeable and the
other as writeable and non-executable. With this set-up, the unpacker can mod-
ify the underlying physical page through the writeable virtual page and jump
to the underlying physical page through the executable virtual page, without
triggering exceptions. To defeat this evasion technique, Justin makes sure that
the protection attributes of virtual pages which are mapped to the same physical
page are set in the same way.

Instead of a PE section, an unpacker can put its output in a dynamically al-
located heap area. To prevent unpacked binaries from escaping Justin’s tracking,

108 F. Guo, P. Ferrie, and T.-c. Chiueh

Justin tracks pages in the heap, even when it grows. Similarly when a file is mapped
into a process’s address space, the mapped area needs to be tracked as well.

An unpacker can also put its output in a file, and spawns a process from the
file later on. In this case, Justin will not detect any execution exception, because
the generated code is invoked through a process creation mechanism rather than
a jump instruction. Fortunately, standard AV scanners can detect this unpacked
binary file when it is launched.

After recreating the embedded binary, some packers fork a new process and
in the new process jumps to the embedded binary. This evasion technique is
effective because page status tracking of a process is not necessarily propagated
to all other processes it creates. Justin defeats this technique by tracking the
page protection status of a process and that of all of its descendant processes.

Some unpackers include anti-emulation techniques that attempt to determine
if they run inside an emulator or are being monitored in any way. Because Justin
modifies page protection attributes in ways that may differ from the intentions
of these unpackers, sometimes it triggers their anti-emulation techniques and
results in program termination. For example, one unpacker detects if a page
is writeable by passing a buffer that is supposedly writeable and Justin marks
as non-writeable into the kernel as a system call argument. When the kernel
attempts to write to the buffer, a kernel-level protection exception occurs and
the program terminates. Justin never has a chance to handle this exception
because it is a kernel-level exception and never gets delivered to the user level.
To solve this problem, Justin intercepts this kernel-level protection exception,
modifies the page protection attribute appropriately to allow it to continue, and
changes it back before the system call returns.

When Justin detects the end of unpacking, it treats the target address of the
control transfer instruction as the entry point of the embedded binary. However,
some packers obfuscate the original entry point by replacing the first several
instructions at the main entry point with a jump instruction, say Y, to a separate
piece of code, which contains the original entry point instructions and a jump
back to the instruction following Y. Because an unpacker can only safely replace
the first several instructions, Justin can single-step the first several instructions
at the supposedly entry point to specifically detect this evasion technique.

Some packers significantly transform an input binary before packing it. In
general, these transformations are not always safe, because it requires 100%
disassembly accuracy and coverage, which is generally not possible. Therefore,
although these packers may evade signature-based AV scanners after Justin cor-
rectly produces the unpacked binary, we generally consider these packers to be
too unreliable to be a real threat.

4 Evaluation

4.1 Effectiveness of Justin

To assess the effectiveness of Justin, we collect a set of known malware samples
that are not packed by any known packers, then use different packers to pack

A Study of the Packer Problem and Its Solutions 109

Table 1. Effectiveness comparison between Justin and manually created unpackers
from SymPack when they are used together with an AV scanner

Packers Packed Justin Justin Justin SymPack Justin
Unpack Detection Detection Detection Detection
Failure Failure Improvement

ASPack 182 4 0 178 182 -4

BeroPacker 178 0 4 174 161 13

Exe32Pack 176 32 0 144 176 -32

Mew 180 1 8 171 171 0

PE-Pack 176 1 0 175 171 4

UPack 181 1 5 175 173 2

them, and run the packed binaries under Justin and Symantec’s AV scanner to
see if they together can detect these samples. As a comparison, we used the same
procedure but replaced Justin with Symantec’s SymPack library, which contains
a set of unpacker routines created manually by reverse engineering the logic
of known packer programs. This experiment tests if Justin can unpack packed
binaries to the extent that AV signatures developed for non-packed versions of
malware samples still work.

There are totally 183 malware samples used in this study. As shown in Table 1,
most packers cannot pack every malware program in the test suite successfully.
So only successfully packed malware programs are unpacked. The number of
successfully packed malware programs for each packer is listed in Column 2 of
Table 1.

Justin cannot unpack certain packed samples. By manually examining each
failure case, we identify two reasons. First, some samples simply cannot run any
more after being packed. Being a run-time detection technology, Justin cannot
unpack something that does not run. From malware detection’s standpoint, these
packed samples are no longer a threat as they won’t be able to cause any harm.
Second, the packer Exe32Pack sometimes doesn’t really modify the original bi-
nary when it produces a packed binary. For these packed binaries, no unpacking
occurs at run time and Justin does not have a chance to step in and trigger the
AV scan. From malware detection’s standpoint, these packed samples are not
a problem either. The original program in these samples are in plain-text and
AV scanner can detect them without Justin. The number of packed malware
programs that Justin fails to unpack is listed in Column 3 of Table 1.

Among those malware samples that Justin successfully unpacks, not all of
them can be detected. By manually analyzing these undetected samples, we find
that most detection failures arise because signatures developed for non-packed
versions of malware programs do not work for their unpacked versions. Although
Justin can detect the end of unpacking, the unpacked result it produces is not
exactly the same as the original program. Because some AV signatures are too
stringent to accommodate these minor differences, they fail to detect Justin’s
outputs. For the same reasons, none of these undetected samples cannot be

110 F. Guo, P. Ferrie, and T.-c. Chiueh

detected by SymPack either. The number of unpacked but undetected samples
is listed in Column 4 of Table 1.

Overall, Justin’s detection rate (Column 5) is slightly higher than SymPack’s
(Column 6) among the malware samples that can be successfully unpacked,
because Justin relies on the unpackers embedded in the packed binaries, which
are generally more reliable than the manually created unpackers in SymPack, to
capture the execution state of a malware before it starts to run.

To test Justin’s generic unpacking capability, we select a set of 13 packers that
are not supported by SymPack. Justin can successfully unpack binaries packed
by 12 out of these 13 packers. The packer whose packed binaries Justin cannot
unpack detects Justin’s API call interception and terminates the packed binary’s
execution without unpacking the original program. We also test a set of malware
samples packed by a packer that is not well supported by SymPack against Justin
and an AV scanner. The number of these packed malware samples that can be
detected by Justin/AV scanner is almost twice the number of SymPack/AV
scanner.

To summarize, as long as a packed binary can run and requires unpacking at
run time, Justin can unpack it successfully. Moreover, for the same malware sam-
ples packed by packers supported in SymPack, the unpacked outputs produced
by Justin are more amenable to AV scanning than those produced by SymPack,
thus resulting in a higher detection rate than SymPack. Finally, Justin is able
to detect twice as many packed malware samples than SymPack when they are
packed by packers not supported in SymPack.

4.2 Number of Spurious End-of-Unpacking Detections

When Justin detects an end of unpacking during a packed binary’s execution,
it invokes the AV scanner to scan the process image at that instant. The main
heuristic that Justin uses to detect the end of unpacking is to monitor the first
control transfer to a dirty page (called Dirty Page Execution). Unfortunately
this heuristic triggers many spurious end-of-unpacking detections for binaries
packed by certain packers and thus incurs a significant AV scanning overhead
even for goodware packed by these packers. The same observation was made by
Martignoni et al. [18]. Their solution to this problem is to defer AV scanning
until the first “dangerous” system call. Even though this technique drastically
decreases the number of spurious end-of-unpacking detections, it also loses the
entry-point information, which plays an important role for commercial signature-
based AV scanners.

Instead, Justin incorporates three addition heuristics to reduce the number of
spurious end-of-unpacking detections. Unpacker Memory Avoidance limits the
Dirty Page Execution technique to pages that are not likely to contain the un-
packer code. Stack Pointer Check checks if the current stack pointer at the time
of a first control transfer to a dirty page during a packed binary’s run is the same
as that at the very start of the run. Command-Line Argument Access checks if
the command-line arguments supplied with a packed binary’s run is moved to
the stack at the time of a first control transfer to a dirty page. Each of these

A Study of the Packer Problem and Its Solutions 111

Table 2. Comparison among four heuristics in their effectiveness to detect the end
of unpacking, as measured by the number of times it thinks the packed binary run
reaches the end of unpacking. The last three heuristics, Unpacker Memory Avoidance,
Stack Pointer Check and Command-Line Argument Detection, are used together with
the first heuristic, which monitors first control transfers to dirty pages.

Packers Dirty Unpacker Stack Command-Line
Page Memory Pointer Argument

Execution Avoidance Check Access
ACProtect 186 11 1 2

ASPack 96 12 2 3

ASProtect 1633 12 12 3

Exe32Pack 394 11 1 2

eXPressor 15 11 1 2

FSG 12 12 1 2

Molebox 3707 11 1 2

NsPack 19 11 1 2

Obsidium not work 14 4 6

PECompact 16 12 2 3

UPack 442084 12 2 3

UPX 11 11 1 2

WWPack 12 11 1 2

three heuristics is meant to work in conjunction with the Dirty Page Execution
heuristic.

We apply a set of packers to a set of test binaries, run these packed binaries
under Justin, and measure the number of end-of-unpacking detections. Table 2
shows the average number of end-of-unpacking detections for each of these four
heuristics. Used together, the three additional heuristics in Justin successfully
reduces the number of spurious end-of-unpacking detections to the same level
as Martignoni et al. [18], but in a way that still preserves the original program’s
entry point information.

Although the number of spurious end-of-unpacking detections produced by
Unpacker Memory Avoidance is higher than the other two heuristics, it is more
reliable and resilient to evasion. If Justin mistakes a normal page as an unpacker
page, it will not monitor this page, and the worst that can happen is that Justin
loses the original program’s entry point if this page happens to contain the
original entry point. If Justin mistakes an unpacker page as a normal page, it
will monitor this page, and the worst that can happen is additional spurious end-
of-unpacking detections. Currently, Justin is designed to err on the conservative
side and therefore is tuned to treat unpacker pages as normal pages rather than
the other way around.

We test the Stack Pointer Check heuristic using the packers listed in Table 2.
Column 4 of Table 2 shows the average number of end-of-unpacking detections for
each packer tested is decreased to just one or two for most packers. Unfortunately,

112 F. Guo, P. Ferrie, and T.-c. Chiueh

this heuristic generates false negatives but no false positive. A false positive
occurs when a certain execution point passes the stack pointer check but it is not
the end of unpacking. This happens when the unpacker intentionally manipulates
the stack pointer to evade this heuristic. None of the packers we tested exhibit
this evasion behavior. A false negative happens when Justin thinks an execution
point is not the end of unpacking when in fact it is. This happens when the
unpacker does not clean up the stack to the exactly same state when the unpacker
starts. The unpacker in ASProtect-packed binaries doesn’t completely clean up
the stack before transferring control to the original binary. It is possible to loosen
up the stack pointer check, i.e., as long as the stack pointers are roughly the same,
to mitigate this problem, but this is not a robust solution and may cause false
positives.

The key idea in Command-Line Argument Access is that when the original
binary embedded in a packed binary starts execution, there is a piece of compiler-
generated code that will prepare the stack by fetching command-line arguments.
Therefore, if at an execution point the command-line arguments supplied to a
packed binary’s run are already put on the stack, that execution point must
have passed the end of unpacking. This command-line argument access behavior
exists event if the original binary is not designed to accept any command-line ar-
guments. Because Justin gets to choose the values for command-line arguments,
it detects command-line argument access by searching the stack for pointers that
point to values that it chooses as command-line arguments.

We test the Command-Line Argument Access heuristic using the packers listed
in Table 2. Column 5 of Table 2 list the average number of end-of-unpacking
detections for each packer tested, which is generally higher than the Stack Pointer
Check heuristic for the following reason. To put command-line arguments on
the stack, the original program needs to execute a couple of new generated code
pages. The execution of the new generated pages causes one or two more end-
of-unpacking detections. Even though its reported number of end-of-unpacking
detections is slightly higher, the Command-Line Argument Access heuristic does
not generate any false positive or false negative. For example, it can accurately
detect the end of unpacking for ASProtect-packed binaries, but the Stack Pointer
Check heuristic cannot.

4.3 Performance Overhead of Justin

Justin is designed to work with an AV scanner to monitor the execution of
binaries. Its performance penalty comes from two sources: (1) additional virtual
memory protection exceptions that are triggered during dirty page tracking, and
(2) AV scans invoked when potential ends of unpacking are detected. We packed
Microsoft Internet Explorer, whose binary size is 91KB, with a set of packers,
ran the packed version, and measured its start-up delay with and without Justin
on a 3.2GHz Pentium-4 machine running Windows XP. The start-up delay is
defined as the interval between when the IE process is created and when it calls
the Win32 API CreateWindowEx function, which creates the first window. The
start-up time excludes the program load time, which involves disk access, so

A Study of the Packer Problem and Its Solutions 113

Table 3. The average additional start-up delays for Microsoft Internet Explorer (IE)
when it is packed by a set of packers and run under Justin and an AV scanner. The
additional delay is dominated by AV scanning, which is mainly determined by the
number of AV scans invoked during a packed binary’s run.

Packers Number of Original Delay Extra Delay Extra
AV Scans (msec) (msec) Delay %

ACProtect 2 46 4.2 9.1

ASProtect 3 62 9.0 14.6

eXPressor 2 62 5.5 8.8

FSG 2 62 4.2 6.8

Molebox 2 31 4.2 13.5

NsPack 2 46 4.5 9.9

Obsidium 6 31 12.1 38.7

PECompact 3 62 5.8 9.3

UPX 2 31 4.1 13.1

that we can focus on the CPU overhead. After the first window is created, a
packed GUI application must have been fully unpacked, and there will not be
any additional protection exceptions or AV scans from this point on. The AV
scanner used in this study runs at 40 MB/sec on the test machine, and is directly
invoked as a function call.

Table 3 shows the base start-up delay and the additional start-up delay for
IE when it is packed by a set of packers and runs under Justin and an AV
scanner. Overall, the absolute magnitude of the additional start-up delay is quite
small. Justin only introduces several milliseconds of additional delay under most
packers. The largest additional delay occurs under Obsidium and is only around
12 msec. At least for IE, the additional start-up delay that Justin introduces is
too small to be visible to the end user.

Most of the additional start-up delay comes from AV scanning, because the
additional delay becomes close to zero when the AV scan operation is turned into
a no-op. This is why the additional start-up delay correlates very well with the
number of AV scans invoked. More specifically, the additional start-up delay for
a packer is the product of the AV scanning speed, the number of scans, and the
size of the memory being scanned. Because the amount of memory scanned in
each AV scan operation may be different for binaries packed by different packers,
the additional delay is different for different packers even though they invoke the
same number of AV scans.

We also try other GUI programs such as Microsoft NetMeeting, whose binary
is around 1 MB, and the additional delay results are consistent with those asso-
ciated with IE. The performance overhead associated with additional protection
exceptions is still negligible. Because of a larger binary size, the performance
cost of each AV scan is higher. On a typical Windows desktop machine, more
than 80% of its executable binaries is smaller than 100 KB. This means that
the additional start-up delay when they are packed and run under Justin will be

114 F. Guo, P. Ferrie, and T.-c. Chiueh

similar to that of IE and thus not noticeable. Finally, for legitimate programs
that are not packed, no AV scanning will be triggered when they run under
Justin, so there is no performance overhead at all.

5 Conclusion

Packer poses a serious problem for the entire AV industry because it signifi-
cantly raises the bar for signature-based malware detection. Existing solutions
to the packer problem do not scale because they require either expensive manual
reverse engineering efforts or creation of separate signatures for variants of the
same malware. In this paper, we report the result of a detailed study of the
packer problem and its various solutions described in the literature, taking into
account practical requirements and design considerations when integrating such
solutions with commercial AV products. In particular, we describe a solution to
the packer problem called Justin (JUST-IN-time AV scanning), which aims to
detect the end of unpacking during the execution of a packed binary in a packer-
independent way and invoke AV scanning against the binary’s run-time image
at that moment. Towards that end, Justin incorporates the following heuristics:
first control transfer to dirty pages, avoiding tracking unpacker pages, checking
for stack unwinding, and detection of command-line input argument access. More
concretely, this paper makes the following contributions to the field of malware
detection:

– A detailed analysis of the extent of the packer problem and the packing and
evasion technologies underlying state-of-the-art packers,

– A set of heuristics that collectively can effectively detect the end of unpacking
during the execution of packed binaries without any a priori knowledge about
their packers,

– A comprehensive set of countermeasures against anti-unpacking evasion tech-
niques built into modern packers, and

– A fully working Justin prototype and a thorough evaluation of its effective-
ness and performance overhead.

Overall, Justin’s effectiveness at detecting packed malware is excellent and its
performance overhead for packed goodware is minimal. However, this paper will
not be the final chapter on the packer problem. If anything, experiences tell us
that the packer community will sooner or later shift to a different set of tactics
to evade Justin’s detection techniques. So the search for better solutions to the
packer problem is expected to continue for the next few years.

References

1. Oberhumer, M.F., Molnár, L., Reiser, J.F.: UPX: the Ultimate Packer for eXe-
cutables (2007), http://upx.sourceforge.net/

2. ASPACK SOFTWARE, ASPack for Windows, (2007),
http://www.aspack.com/aspack.html

http://upx.sourceforge.net/
http://www.aspack.com/aspack.html

A Study of the Packer Problem and Its Solutions 115

3. bart, FSG: [F]ast [S]mall [G]ood exe packer, (2005),
http://www.xtreeme.prv.pl/

4. Dwing, WinUpack 0.39final, (2006), http://dwing.51.net/
5. Oreans Technology, Themida: Advanced Windows Software Protection System,

(2008), http://www.oreans.com/themida.php
6. Silicon Realms, Armadillo/SoftwarePassport (2008),

http://www.siliconrealms.com/
7. Blinkinc,Shrinker 3.4, (2008), http://www.blinkinc.com/shrinker.htm
8. Ferrie, P.: Attacks on Virtual Machines. In: Proceedings 9th Annual AVAR Inter-

national Conference (2006)
9. VMProtect, VMProtect (2008), http://www.vmprotect.ru/

10. Symantec Corporation (2008), http://www.symantec.com/
11. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed mal-

ware. IEEE Security and Privacy 5(2), 40–45 (2007)
12. Prakash, C.: Design of X86 Emulator for Generic Unpacking. In: Proceedings of

10th Annual AVAR International Conference (2007)
13. Tan, X.: Anti-unpacker Tricks in Malicious Code. In: Proceedings of 10th Annual

AVAR International Conference (2007)
14. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automat-

ing the hidden-code extraction of unpack-executing malware. In: ACSAC 2006:
Proceedings of the 22nd Annual Computer Security Applications Conference on
Annual Computer Security Applications Conference, pp. 289–300 (2006)

15. Kang, M.G., Poosankam, P., Yin, H.: Renovo: A hidden code extractor for packed
executables. In: Proceedings of the 5th ACM Workshop on Recurring Malcode
(WORM) (Oct. 2007)

16. Stewart, J.: OllyBonE v0.1, Break-on-Execute for OllyDbg (2006),
http://www.joestewart.org/ollybone/

17. Quist, D., Valsmith,: Covert Debugging: Circumventing Software Armoring. In:
Proceedings of Black Hat USA (2007)

18. Martignoni, L., Christodorescu, M., Jha, S.: OmniUnpack: Fast, Generic, and Safe
Unpacking of Malware. In: 23rd Annual Computer Security Applications Confer-
ence (ACSAC) (2007)

19. Nanda, S., Li, W., chung Lam, L., cker Chiueh, T.: BIRD: Binary Interpretation
using Runtime Disassembly. In: Proceedings of the 4th IEEE/ACM Conference on
Code Generation and Optimization (CGO 2006) (2006)

20. NX bit, http://en.wikipedia.org/wiki/NX bit

http://www.xtreeme.prv.pl/
http://dwing.51.net/
http://www.oreans.com/themida.php
http://www.siliconrealms.com/
http://www.blinkinc.com/shrinker.htm
http://www.vmprotect.ru/
http://www.symantec.com/
http://www.joestewart.org/ollybone/
http://en.wikipedia.org/wiki/NX_bit

Gnort: High Performance Network Intrusion

Detection Using Graphics Processors

Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis,
Evangelos P. Markatos, and Sotiris Ioannidis

Institute of Computer Science, Foundation for Research and Technology – Hellas,
N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

{gvasil,antonat,mikepo,markatos,sotiris}@ics.forth.gr

Abstract. The constant increase in link speeds and number of threats
poses challenges to network intrusion detection systems (NIDS), which
must cope with higher traffic throughput and perform even more complex
per-packet processing. In this paper, we present an intrusion detection
system based on the Snort open-source NIDS that exploits the underuti-
lized computational power of modern graphics cards to offload the costly
pattern matching operations from the CPU, and thus increase the over-
all processing throughput. Our prototype system, called Gnort, achieved
a maximum traffic processing throughput of 2.3 Gbit/s using synthetic
network traces, while when monitoring real traffic using a commodity
Ethernet interface, it outperformed unmodified Snort by a factor of two.
The results suggest that modern graphics cards can be used effectively
to speed up intrusion detection systems, as well as other systems that
involve pattern matching operations.

Keywords: GPU, pattern matching, intrusion detection systems, net-
work security, SIMD, parallel programming.

1 Introduction

Network security architectures such as firewalls and Network Intrusion Detec-
tion Systems (NIDS) attempt to detect break-in attempts by monitoring the
incoming and outgoing traffic for suspicious payloads. Most modern network in-
trusion detection and prevention systems rely on a set of rules that are compared
against network packets. Usually, a rule consists of a filter specification based
on packet header fields, a string that must be contained in the packet payload,
the approximate or absolute location where that string should be present, and
an associated action to take if all the conditions of the rule are met.

Signature matching is a highly computationally intensive process, accounting
for about 75% of the total CPU processing time of modern NIDSes [2,7]. This
overhead arises from the fact that most of the time, every byte of every packet
needs to be processed as part of the string searching algorithm that searches for
matches among a large set of strings from all signatures that apply for a partic-
ular packet. For example, the rule set of Snort [26], one of the most widely used

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 116–134, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Gnort: High Performance Network Intrusion Detection 117

open-source NIDS, contains about 10000 strings. Searching every packet for all
of these strings requires significant resources, both in terms of the computation
capacity needed to process a packet, as well as the amount of memory needed
to store the rules.

Several research efforts have explored the use of parallelism for improving
the packet processing throughput [25,8,14,4,37]. Specialized hardware devices
can be used to inspect many packets concurrently, and such devices include
ASICs and Network Processors. Both are very efficient and perform well, however
they are complex to modify and program. Moreover, FPGA-based architectures
have poor flexibility since most of the approaches are usually tied to a specific
implementation.

As Graphics Processing Units (GPUs) are becoming increasingly powerful
and ubiquitous, researchers have begun exploring ways to tap their power for
non-graphic or general-purpose (GPGPU) applications. The main reason behind
this evolution is that GPUs are specialized for computationally-intensive and
highly parallel operations—required for graphics rendering—and therefore are
designed such that more transistors are devoted to data processing rather than
data caching and flow control [23]. The release of software development kits
(SDKs) from big vendors, like NVIDIA1 and ATI,2 has started a trend of using
GPUs as a computational unit to offload the CPU.

In addition, many attempts have been made to use graphics processors for
security purposes, including cryptography [11], data carving [20] and intrusion
detection [17]. Specifically, it has been shown that GPU support can substan-
tially increase the performance of digital forensics software that relies on binary
string searches [20]. Jacob and Brodley were the first that tried to use the GPU
as a pattern matching engine for NIDS in PixelSnort [17]. They used a sim-
plified version of the Knuth-Morris-Pratt (KMP) algorithm [18], however, their
performance results indicated marginal improvement.

In this paper, we explore how GPUs can be used to speed up the process-
ing throughput of intrusion detection systems by offloading the string matching
operations to the GPU. We show that single pattern matching algorithms, like
KMP, do not perform well when executed on the GPU, especially when us-
ing an increased number of patterns. However, porting multi-pattern matching
algorithms, like the Aho-Corasick algorithm can boost overall performance by
a factor of three. Furthermore, we take advantage of DMA and the asynchro-
nous execution of GPUs to impose concurrency between the operations handled
by the CPU and the GPU. We have implemented a prototype intrusion detec-
tion system that effectively utilizes GPUs for pattern matching operations in
real time.

The paper is organized as follows: In the remainder of the Introduction we
will give an overview of the GPU architecture that we used for this research.
In Section 2 we will briefly present a survey of related work. Section 3 and 4
presents our prototype architecture and the implementation details respectively.

1 http://developer.nvidia.com/object/cuda.html
2 http://ati.amd.com/technology/streamcomputing/index.html

118 G. Vasiliadis et al.

In Section 5 we evaluate our implementation and we compare with the previous
work. Finally, in Section 6 we present some conclusions as well as some ideas for
future work.

1.1 Overview of the GeForce 8 Series Architecture

In this Section we briefly describe the architecture of the NVIDIA GeForce 8
Series (G80) cards, which we have used for this work, as well as the programming
capabilities it offers through the Compute Unified Device Architecture (CUDA)
SDK. The G80 architecture is based on a set of multiprocessors, each of which
contains a set of stream processors operating on SIMD (Single Instruction Multi-
ple Data) programs. When programmed through CUDA, the GPU can be used as
a general purpose processor, capable of executing a very high number of threads
in parallel.

A unit of work issued by the host computer to the GPU is called a kernel,
and is executed on the device as many different threads organized in thread
blocks. Each multiprocessor executes one or more thread blocks, with each group
organized into warps. A warp is a fraction of an active group, which is processed
by one multiprocessor in one batch. Each of these warps contains the same
number of threads, called the warp size, and is executed by the multiprocessor
in a SIMD fashion. Active warps are time-sliced: A thread scheduler periodically
switches from one warp to another to maximize the use of the multiprocessors’
computational resources.

Stream processors within a processor share an instruction unit. Any control
flow instruction that causes threads of the same warp to follow different execution
paths reduces the instruction throughput, because different executions paths
have to be serialized. When all the different execution paths have reached a
common end, the threads converge back to the same execution path.

A fast shared memory is managed explicitly by the programmer among thread
blocks. The global, constant, and texture memory spaces can be read from or writ-
ten to by the host, are persistent across kernel launches by the same application,
and are optimized for different memory usages [23]. The constant and texture
memory accesses are cached, so a read from them costs much less compared to
device memory reads, which are not being cached. The texture memory space is
implemented as a read-only region of device memory.

GPGPU programming on G80 series and later is feasible using the CUDA
SDK. CUDA consists of a minimal set of extensions to the C language and a
runtime library that provides functions to control the GPU from the host, as
well as device-specific functions and data types. CUDA exposes several hardware
features that are not available via the graphics API. The most important of these
features is the read and write access to the shared memory shared among the
threads, and the ability to access any memory location in the card’s DRAM
through the general memory addressing mode it provides. Finally, CUDA also
offers highly optimized data transfers to and from the GPU.

Gnort: High Performance Network Intrusion Detection 119

2 Related Work

Pattern matching is the most critical operation that affects the performance
of network intrusion detection systems. Pattern matching algorithms can be
classified into single- and multi-pattern algorithms.

In single pattern matching algorithms, each pattern is searched in a given
text individually. This means that if we have k patterns to be searched, the al-
gorithm must be repeated k times. Knuth-Morris-Pratt [18] and Boyer-Moore [6]
are some of the most widely used single pattern matching algorithms. Knuth-
Morris-Pratt is able to skip characters when a mismatch occurs in the compar-
ison phase using a partial-match table for each pattern. Each table is built by
preprocessing every pattern separately. Boyer-Moore is the most widely used
single-pattern algorithm. Its execution time can be sublinear if the suffix of the
string to be searched for appears infrequently in the input stream, due to the
skipping heuristics that it uses.

Multi-pattern string matching algorithms search for a set of patterns in a body
of text simultaneously. This is achieved by preprocessing the set of patterns and
building an automaton that will be used in the matching phase to scan the text.
The automaton can be thought of as a state machine that is represented as a
trie, a table or a combination of the two. Each character of the text will be
searched only once. Multi-pattern matching scales much better than algorithms
that search for each pattern individually. Multi-pattern string matching algo-
rithms include Aho-Corasick [1], Wu-Manber [36] and Commentz-Walter [10].

Most Network Intrusion Detection Systems (NIDS) use finite automata and
regular expressions [26,24,16] to match patterns. Coit et al. [9] improved the
performance of Snort by combining the Aho-Corasick keyword trie with the
skipping feature of the Boyer-Moore algorithm. Fisk and Vaghese enhance the
Boyer-Moore-Horspool algorithm to simultaneously match a set of rules. The new
algorithm, called Set-wise Boyer-Moore-Horspool [15], was shown to be faster
than both Aho-Corasick and Boyer-Moore for sets with less than 100 patterns.
Tuck et al. [31] optimized the Aho-Corasick algorithm by applying bitmap node
and path compression.

Snort from version 2.6 and onwards uses only flavors of the Aho-Corasick for
exact-match pattern detection. Specifically, it contains a variety of implementa-
tions that are differentiated by the type of the finite automaton they use (NFA
or DFA), and the storage format they use to keep it in memory (full, sparse,
banded, trie, etc.). It should be mentioned, however, that the best performance
is achieved with the full version that uses a deterministic finite automaton (DFA)
at the cost of high memory utilization [30].

To speed-up the inspection process, many IDS implementations are based on
specialized hardware. By using content addressable memory (CAM), which is
suitable to perform parallel comparison for its contents against the input value,
they are very well suited for use in intrusion detection systems [37,38]. However
they have a high cost per bit.

Many reconfigurable architectures have been implemented for intrusion detec-
tion. Most approaches involve building an automaton for a string to be searched,

120 G. Vasiliadis et al.

generating a specialized hardware circuit using gates and flip-flops for the au-
tomaton, and then instantiating multiple such automata in the reconfigurable
chip to search the streaming data in parallel. However, the circuit implemented
on the FPGA to perform the string matching is designed based on the underlying
hardware architecture to adjust to a given specific rule set. To adjust to a new
rule set, one must program a new circuit (usually in a hardware description lan-
guage), which is then compiled down through the use of CAD tools. Any changes
in the rule set requires the recompilation, regeneration of the automaton, resyn-
thesis, replacement and routing of the circuits which is a time consuming and
difficult procedure.

Sidhu and Prasanna implemented a regular expression matching architecture
for FPGAs [28]. Baker et al. also investigated efficient pattern matching as a
signature based method [4]. In [13], the authors used hardware bloom filters to
match multiple patterns against network packets at constant time. Attig et al.
proposed a framework for packet header processing in combination with payload
content scanning on FPGAs [3].

Several approaches attempt to reduce the amount of memory required to eco-
nomically fit it in on-chip memory [4,31,14]. However, the on-chip hardware re-
source consumption grows linearly with the number of characters to be searched.
In [29], the authors convert a string set into many tiny state machines, each of
which searches for a portion of the strings and a portion of the bits of each
string.

Other approaches involve the cooperation with network processors in order
to pipeline the processing stages assigned to each hardware resource [8], as well
as the entire implementation of an IDS on a network processor [5,12]. Com-
puter clusters have also been proposed to offload the workload of a single com-
puter [19,34,33,27]. The cost however remains high, since it requires multiple
processors, a distribution network, and a clustered management system.

On the contrary, modern GPUs have low design cost while their increased
programmability makes them more flexible than ASICs. Most graphic cards
manufacturers provide high-level APIs that offer high programming capabili-
ties and are further ensure forward compatibility for future releases, in contrast
with most FPGA implementations that are based on the underlying hardware
architecture and need to be reconfigured whenever a change occurs in the rule
set. Furthermore, their low design cost, the highly parallel computation and the
potential that are usually underutilized, especially in hosts used for intrusion de-
tection purposes, makes them suitable for use as an extra low-cost coprocessor
for time-consuming problems, like pattern matching.

The work most related to ours is PixelSnort [17]. It is a port of the Snort IDS
that offloads packet matching to an NVIDIA 6800GT. The GPU programming
was complicated, since the 6800GT did not support a general purpose program-
ming model for GPUs (as the G80 used in our work). The system encodes Snort
rules and packets to textures and performs the string searching using the KMP
algorithm on the 16 fragment shaders in parallel. However, PixelSnort does not
achieve any speed-up under normal-load conditions. Furthermore, PixelSnort

Gnort: High Performance Network Intrusion Detection 121

Packet

Capture
Decoder

Packet

Texture

GPUPacket

Classification
Preprocessors

Port

Group

State Table

Texture

Process

Matches

Output

Plug-ins

Multiprocessor 1

Multiprocessor N

Port

Group

Packet Collection on CPU

Detection on GPU

P0 P1 PM

Fig. 1. Overall architecture of Gnort

did not have any multi-pattern matching algorithms ported to GPU. This is a
serious limitation since multi-pattern matching algorithms are the default for
Snort. In a more recent work, Marziale et al. [20] evaluated the effectiveness of
offloading the processing of a file carving tool to the GPU. The system was im-
plemented on the G80 architecture and the results show that GPU support can
substantially increase the performance of digital forensics software that relies on
binary string search.

3 Architecture

The overall architecture of Gnort, which is based on the Snort NIDS, is shown
in Figure 1. We can separate the architecture of our system in three different
tasks: the transfer of the packets to the GPU, the pattern matching processing
on the GPU, and finally the transfer of the results back to the CPU.

3.1 Transferring Packets to the GPU

The first thing to consider is how the packets will be transferred from the network
interface to the memory space of the GPU. The simplest approach would be to
transfer each packet directly to the GPU for processing. However, due to the
overhead associated with a data transfer operation to the GPU, batching many
small transfers into a larger one performs much better than making each transfer
separately [23]. Thus, we have chosen to copy the packets to the GPU in batches.

Snort organizes the content signatures in groups, based on the source and
destination port numbers of each rule. A separate detection engine instance is
used to search for the patterns of a particular rule group. Table 1 shows the
number of rules that come with the latest versions of Snort and are enabled by
default, as well as the number of groups in which they are organized. We use a
separate buffer for temporarily storing the packets of each group. After a packet
has been classified to a specific group, it is copied to the corresponding buffer.

122 G. Vasiliadis et al.

Table 1. Snort Data Structures

Snort version # Groups # Rules

2.6 249 7179
2.7 495 8719
2.8 495 8722

Whenever the buffer gets full, all packets are transferred to the GPU in one
operation. In case a buffer is not yet full after 100ms, its packets are explicitly
transferred to the GPU.

The buffers are allocated as a special type of memory, called page-locked or
“pinned down” memory. Page-locked memory is a physical memory area that
does not map to the virtual address space, and thus cannot be swapped out
to secondary storage. The use of pinned down memory results to higher data
transfer throughput between the host and the device [23]. Furthermore, the
copy from page-locked memory to the GPU is performed using DMA, without
occupying the CPU. Thus, the CPU can continue working and collecting the
next batch of packets at the same time the GPU is processing the packets of the
previous batch.

To further improve parallelism, we use a double buffering scheme. When the
first buffer becomes full, it is copied to a texture bounded array that can be read
later by the GPU through the kernel invocation. While the GPU is performing
pattern matching on the packets of the first buffer, the CPU will copy newly
arrived packets in the second buffer.

3.2 Pattern Matching on the GPU

Once the packets have been transferred to the GPU, the next step is to perform
the pattern matching operation. We have ported the Aho-Corasick algorithm [1]
to run on the graphics card. The Aho-Corasick algorithm seems to be a perfect
candidate for SIMD processors like a GPU. The algorithm iterates through all the
bytes of the input stream and moves the current state to the next correct state
using a state machine that has been previously constructed during initialization
phase. The loop lacks any control flow instructions that would probably lead to
thread divergence.

In our GPU implementation, the deterministic finite automaton (DFA) of the
state machine is stored as a two-dimensional array. The dimensions of the array
are equal to the number of states and the size of the alphabet (256 in our case),
respectively, and each cell consists of four bytes. The first two bytes contain
the next state to move, while the other two contain an indication whether the
state is a final state or not. In case the state is final, the corresponding cell will
contain the unique identification number (ID) of the matching pattern, otherwise
zero. A drawback of this structure is that state machine tables will be sparsely
populated, containing a significant number of zero elements and only a few non-
zero elements. However, the use of more efficient storage structures, like those
proposed in [22], are much more complex to map in the memory space of a GPU.

Gnort: High Performance Network Intrusion Detection 123

During the initialization phase, the state machine table of each rule group is
constructed in host memory by the CPU, and is then copied to texture mem-
ory that is accessible directly from the GPU. At the searching phase, all state
machine tables reside only in GPU memory. The use of GPU texture mem-
ory instead of generic GPU memory has the benefit that memory fetches are
cached. A cache hit consumes only one cycle, instead of several hundreds in case
of transfers from generic device memory. Since the Aho-Corasick algorithm ex-
hibits strong locality of references [12], the use of texture memory for storing
the state machine tables boosts GPU execution time about 19%.

We have implemented two different parallelization methods for the Aho-
Corasick searching phase. In the first, each packet is splitted into fixed equal
parts and each thread searches each portion of the packet in parallel. In the sec-
ond, each thread is assigned a whole packet to search in parallel. Both techniques
have advantages and disadvantages that will be discussed in Section 4.

3.3 Transferring the Results to the CPU

Every time a thread matches a pattern inside a packet, it reports it by appending
it in an array that has been previously allocated in the device memory. The
reports for each packet will be written in a separate row of the array, following
the order they were copied to the texture memory. That means that the array
will have the same number of rows as the number of packets contained in the
batch. Each report is constituted by the ID of the pattern that was matched
and the index inside the packet where it was found.

After the pattern matching execution has finished, the array that contains
the matching pairs is copied to the host memory. Before raising an alert for
each matching pair, the following extra cases should be examined in case they
apply:

– Case-sensitive patterns. Since Aho-Corasick cannot distinguish between cap-
ital and low letters, an extra, case-sensitive, search should be made at the
index where the pattern was found.

– Offset-oriented rules. Some patterns must be located in specific locations
inside the payload of the packet, in order for the rule to be activated. For
example, it is possible to look for a specified pattern within the first 5 bytes
of the payload. Such ranges are specified in Snort with special keywords,
like offset, depth, distance, etc. The index where the match was found is
compared against the offset to argue if the match is valid or not.

– Patterns with common suffix. It is possible that if two patterns have the same
suffix will also share the same final state in the state machine. Thus, for each
pattern, we keep an extra list that contains the “suffix-related” IDs in the
structure that holds its attributes. If this list is not empty for a matching
pattern, the patterns that contained in the list have to be verified to find
the actual matching pattern.

124 G. Vasiliadis et al.

4 Implementation

We have implemented Gnort on the GeForce 8 Series architecture using CUDA.
NVIDIA states that programs developed for the GeForce 8 series will also work
without modification on all future NVIDIA video cards.

To facilitate concurrent execution between the host and the device, we asso-
ciate GPU execution into streams. A stream is a sequence of operations that
execute in order. It is created by the host and in our case includes the copy-
ing of the packets to the device memory, the kernel launch, and the transfer of
the results back to the host memory. While the stream is executing, the CPU
is able to collect the next batch of packets. The CPU work includes the exe-
cution flow of Snort to capture, decode, and classify the incoming packets, as
well as the extra packet copies to the page-locked memory buffer that we have
introduced.

The page-locked memory buffers that are used to collect the packets in batches
are allocated by the CUDA runtime driver. The driver tracks the relevant virtual
memory ranges and automatically accelerates calls to functions that are used to
copy data to the device. The copying of the buffers to the device is asynchronous
and is associated to the stream. The device memory where the packets are copied
is bound to a texture reference of type unsigned char and dimensionality 2.
Texture fetches are cached using a proprietary 2D caching scheme and cost only
one clock cycle when a cache hit occurs; otherwise a fetch can take 400 to 600
clock cycles. The cache size for texture fetches is 8 KB per multiprocessor. Only
the packet payloads are copied to the device, and each payload is stored in a
separate row of fixed size. The actual length of the payload is stored in the first
two bytes of the row.

The state machine tables that are used for each group of rules are stored in
a texture reference of type unsigned short and dimensionality 2. CUDA does
not support dynamic allocation of textures yet. To overcome this limitation,
all state table arrays are copied to the device at start-up and each of them is
dynamically bound to the texture reference, every time a batch of packets have
to be matched against.

Once the packets have been copied to the texture bound array, the kernel is
initiated by the host to perform the pattern matching. The 8-Series (G8X)—as
well as the 9-Series (G9X) which was recently released—contain many inde-
pendent multiprocessors, each comprising eight processors that run on a SIMD
fashion. However, every multiprocessor has an independent instruction decoder,
so they can run different instructions.

The Aho-Corasick algorithm performs multi-pattern search, which means that
all patterns of a group are searched concurrently. We have explored two different
approaches for parallelizing the searching phase by splitting the computation
in two ways: assigning a single packet to each multiprocessor at a time, and
assigning a single packet to each stream processor at a time. The two approaches
are illustrated in Figure 2.

Gnort: High Performance Network Intrusion Detection 125

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Shared Memory

Device Memory

pkt 1

pkt X #matches

#matches

patrnID index

patrnID index

patrnID index

patrnID index

Processor1

Instruction

Unit
Aho-Corasick

Search Function

Texture

Cache

Processor2 ProcessorM

Packets Buffer

State Table

pkt 1

pkt 2

pkt X

len data
len data

len data

Input Character
0xff
s,pID
s,pID

s0
s1
s2

sY

s,pID

s,pIDC
u

rr
en

t
S

ta
te

0x00
s,pID
s,pID
s,pID

s,pID

0x01
s,pID
s,pID
s,pID

s,pID

Texture Memory

(a) Packet per multiprocessor

Device Memory

pkt 1

pkt X #matches

#matches

patrnID index

patrnID index

patrnID index

patrnID index

Multiprocessor N

Multiprocessor 2
Multiprocessor 1

Processor1

Instruction

Unit
Aho-Corasick

Search Function

Texture

Cache

Processor2 ProcessorM

Packets Buffer

State Table

pkt 1

pkt 2

pkt X

len data
len data

len data

Input Character
0xff
s,pID
s,pID

s0
s1
s2

sY

s,pID

s,pIDC
u

rr
en

t
S

ta
te

0x00
s,pID
s,pID
s,pID

s,pID

0x01
s,pID
s,pID
s,pID

s,pID

Texture Memory

(b) Packet per stream processor

Fig. 2. Different pattern matching parallelization approaches. In (a), a different packet
is processed by each multiprocessor. All stream processors in the multiprocessor search
the packet payload concurrently. In (b), a different packet is processed by each stream
processor independently of the others.

4.1 Assigning a Single Packet to each Multiprocessor

In this approach, each packet is processed by a specific thread block, exe-
cuted by one multiprocessor. The number of threads in the thread block that
searchthe packet payload is fixed and equal to the warp size (currently 32). Even

126 G. Vasiliadis et al.

though each multiprocessor consists of eight stream processors, the warp size en-
sures that the multiprocessor’s computational resources are maximized by hiding
arithmetic pipeline and memory delays.

Each thread searches a different part of the packet, and thus the packet is
divided in 32 equal chunks. The 32 chunks of the packet are processed by the 32
threads of the wrap in parallel. To correctly handle matching patterns that span
consecutive chunks of the packet, each thread searches in additional X bytes
after the chunk it was assigned to search, where X is the maximum pattern
length in the state table. To reduce further communication costs due to the
overlapping computations, each packet is also copied to the shared memory of
the multiprocessor (besides the texture memory)—all threads copy a different
chunk in parallel, so this additional copy does not add significant overhead.

An advantage of this method is that all threads are assigned the same amount
of work, so execution does not diverge, which would hinder the SIMD execution.
Moreover, the texture cache is entirely used for the state tables, as shown in
Figure 2(a). A drawback of this approach is that extra processing is needed for
the chunk overlaps, especially in case of small packets.

4.2 Assigning a Single Packet to each Stream Processor

In this approach, each packet is processed by a different thread. The number of
blocks that are created is equal to the number of multiprocessors the GPU has,
so all are working. Each thread block processes X /N packets using an equal
number of threads, where X is the number of packets in the batch sent to the
GPU, and N is the number of multiprocessors. However, the maximum number
of threads that can be created per block is currently 512. So if the number of
threads per thread block is greater, more thread blocks are created to keep the
number of threads under this limit. The disadvantage of this method is that the
amount of work per thread will not be the same since packet sizes will vary. This
means that threads of a warp will have to wait until all have finished searching
the packet that was assigned to them. However, no additional computation will
occur since every packet will be processed in isolation.

Whenever a match occurs, regardless of the implementation used, the cor-
responding ID of the pattern and the index where the match was found are
stored in an array allocated in device memory. Each row of the array contain
the matches that were found per packet. We use the first position of each row
as a counter to know where to put the next match. Every time a match occurs,
the corresponding thread increments the counter and writes the report where
the counter points to. The increment is performed using an atomic function sup-
plied by CUDA, to overcome possible race conditions for the first parallelization
method.

5 Evaluation

In this section, we explore the performance of our implementation. First, we
measure the scalability of the various algorithms for different number of patterns

Gnort: High Performance Network Intrusion Detection 127

and packet sizes, and how they affect overall performance. We then examine how
these algorithms perform in a realistic scenario as a function of the traffic load.

In our experiments we used an NVIDIA GeForce 8600GT card, which contains
32 stream processors organized in 4 multiprocessors, operating at 1.2GHz with
512 MB of memory. The CPU in our system was a 3.40 GHz Intel Pentium 4
processor with 2 GB of memory.

In order to directly compare with prior work, we re-implemented the KMP
algorithm on the NVIDIA G80 GPU architecture using CUDA. In our imple-
mentation, the patterns to be searched, and the partial-match tables that KMP
uses, are stored in two 2D texture arrays. Each packet is assigned to a different
thread block, while each thread in a block is responsible for searching a specific
pattern in the entire packet. This way, each warp of threads performs pattern
matching against each packet in parallel, as long as the number of patterns is
equal with the number of processors. If the number of patterns is greater than
512, the pattern matching is bundled in groups of 512 patterns each time, due
to the limitation of the 512 threads that can be created per block.

We also did a GPU implementation of the Boyer-Moore algorithm, which
performs better than KMP. The patterns to be searched, as well as the bad-
character shift tables, are stored in two 2D texture arrays similarly to the KMP
implementation. Each packet is assigned to a different thread block, while each
thread in a block is responsible for searching a specific pattern in the whole
packet.

For all experiments conducted, we disregard the time spent in the initialization
phase of Snort as well as the logging of the alerts to the disk. Even though it
only takes less than just a few seconds to load the patterns and build its internal
structures in all cases, there is no practical need to include this time in our
graphs. For all experiments we measure the performance of the default Snort
using the full Aho-Corasick implementation. We conducted experiments with
other implementations as well, however they performed worse in every case.
Some information on the different implementations of Aho-Corasick that Snort
uses can be found in [30].

5.1 Microbenchmarks

We start by investigating the effect that the size of the batch of packets that are
transferred to the GPU has on the overall system performance. We used a syn-
thetic payload trace that contains 1344330 UDP packets with random payload,
each 800 bytes in length. The detection engine was disabled, so no execution
would take place on the GPU. This way, we measured the time needed for the
packets to transferred to the device in batches using the double buffer technique
described in Section 3. The times include the capture, decode and classification
phases performed by Snort as well as the copying of each packet to our buffer.
Table 2 shows the time needed for a packet to copied to the memory of the
device for various buffer sizes. We can see that the cost per packet increased as
the size of the buffer decreased. For bigger sizes the cost remained somewhat
constant. This may be due to the PCI startup overhead of each transaction. As

128 G. Vasiliadis et al.

Table 2. Transfer times per packet as a function of the buffer size for 800-bytes packets

Buffer size (# packets) Transfer time (ms)

4 0.035547

32 0.008218

512 0.004626

1024 0.004472

4096 0.004326

32768 0.004296

the size of the buffer increases, the number of transaction decreases, resulting
in lower startup overheads. For all subsequent experiments we used a buffer of
1024 packets size, which we think is optimal considering the available memory
of the host computer we used for the evaluation.

In the next experiment we evaluated how each detection algorithm scales with
the number of patterns. We created Snort rules of randomly generated patterns
which size varied between 5 and 25 bytes and gave as input to Snort a pay-
load trace that contains UDP packets with random payload, each of 800 bytes
in length. All rules are matched against every packet. This is the worst case
scenario for a pattern matching engine, as in most cases each packet has to be
checked only against a few hundred rules. Figures 3 and 4 show the maximum
throughput achieved for single- and multi-pattern matching algorithms respec-
tively, to perform string searches through rule-sets of sizes 10 up to 4000 rules.
As shown in Figure 3, single pattern algorithms do not scale as the rule-set size
increases. Performance of the CPU implementations of both KMP and BM de-
creases linearly with the number of patterns. KMP achieves nearly 100 Mbit/s
for 10 patterns but its performance for 4000 patterns drops under 1 Mbit/s.
BM presents better results but still for a large number of patterns it can only
achieve up to 5 Mbit/s. The GPU implementation of these algorithms boosts
their performance by up to an order of magnitude. For the case of 50, 100 and 250

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

1

10

100

1000

Number of random patterns

10 50 100 250 500 1000 2000 4000

KMP

KMP (GPU)

BM

BM (GPU)

Fig. 3. Throughput sustained for single-
pattern matching algorithms

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

0

200

400

600

800

1000

1200

1400

1600

1800

Number of random patterns

10 50 100 250 500 1000 2000 4000

AC

AC1 (GPU)

AC2 (GPU)

Fig. 4. Throughput sustained for multiple-
pattern matching algorithms

Gnort: High Performance Network Intrusion Detection 129

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

1

10

100

Packet size (bytes)

50 100 200 400 800 1500

KMP

KMP (GPU)

BM

BM (GPU)

Fig. 5. Throughput sustained for single-
pattern matching algorithms

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

 0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Packet size (bytes)

50 100 200 400 800 1500

AC

AC1 (GPU)

AC2 (GPU)

Fig. 6. Throughput sustained for multiple-
pattern matching algorithms

patterns we can see that GPU versions of algorithms are an order of magnitude
faster than the CPU ones, while for the case of 4000 patterns the improvements
reaches a factor of 3.

An interesting observation is that the throughput of the GPU implementations
for both KMP and BM remained constant for up to 100 patterns. Even though
there are 32 processors available, the thread scheduler can pipeline threads ex-
ecution to effectively utilizes available resources. To verify it, we changed the
kernels to return immediately performing a null computation and we observed
the same behavior. Performance of the system remained constant for up to 100
patterns and then began decreasing linearly.

In the case of Aho-Corasick algorithm, the throughput remains constant in-
dependently of the number of patterns, a behavior expected for a multi-pattern
approach. The results are shown in Figure 4. For the CPU implementation, Aho-
Corasick achieves nearly 600 Mbit/s throughput, while the GPU implementation
reaches up to 1.4 Gbit/s, yielding a 2.4 times improvement. Our two different
approaches for implementing Aho-Corasick (displayed as AC1 and AC2 in the
graph) do not present significant differences in performance.

Figures 5 and 6 show the throughput achieved for various UDP packet sizes.
Snort was loaded with 1000 random patterns which size varied between 5 and
25 bytes. Each packet contains random data, a property that favors the BM
algorithm as it will skip most of the payload. CPU implementations of KMP
and BM presented a stable performance of around 1 and 10 Mbit/s respectively,
independently of the packet size. Their GPU implementations yield a speedup
from 2 up to 10 times. The throughput of Aho-Corasick reached over 2.3 Gbit/s
for 1500-byte packets, giving a total speed-up of 3.2 compared to the respective
CPU implementation. It is important to notice that it is worthless to process
small packets on GPU. As it can be seen in Figure 6, for small packet sizes
(under 100), the CPU implementation performs better than the GPU. However,
for sizes larger than 100 bytes, the GPU implementation outperforms the CPU
one in all cases.

130 G. Vasiliadis et al.

Replay rate (Mbit/sec)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

D
ro

pp
ed

 p
ac

ke
ts

 (
%

)

0

20

40

60

80

100

AC
AC1 (GPU)

AC2 (GPU)
BM

BM (GPU)
KMP

KMP (GPU)

(a) simple pcap

Replay rate (Mbit/sec)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

D
ro

pp
ed

 p
ac

ke
ts

 (
%

)

0

20

40

60

80

100

AC
AC1 (GPU)

AC2 (GPU)
BM

BM (GPU)
KMP

KMP (GPU)

(b) pcap-mmap

Fig. 7. Packet loss ratio as a function of the traffic speed

Replay rate (Mbit/sec)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
P

U
 u

til
iz

at
io

n
(%

)

0

20

40

60

80

100

AC
AC1 (GPU)

AC2 (GPU)
BM

BM (GPU)
KMP

KMP (GPU)

(a) simple pcap

Replay rate (Mbit/sec)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

C
P

U
 u

til
iz

at
io

n
(%

)

0

20

40

60

80

100

AC
AC1 (GPU)

AC2 (GPU)
BM

BM (GPU)
KMP

KMP (GPU)

(b) pcap-mmap

Fig. 8. CPU utilization as a function of the traffic speed

5.2 Macrobenchmarks

In this section we present the evaluation of our prototype implementation using
real rules from the current Snort rule set on real network traffic. Our experimen-
tal environment consists of two PCs connected via a 1 Gbit/s Ethernet switch.
The first PC is equipped with a NVIDIA GeForce 8600GT card and runs our
modified version of Snort, while the second is used for replaying real network
traffic traces using tcpreplay [32]. We used a full payload trace captured at the
access link that connects an educational network with thousands of hosts to the
Internet. By rewriting the source and destination MAC addresses in all packets,
the generated traffic can be sent to the first PC.

We ran Snort with a custom configuration in which preprocessors and regular
expression pattern matching were disabled, as both processes are executed only
on the CPU. Snort loaded 5467 rules that contain about 7878 content patterns.

Figure 7 shows the packet loss ratio while replaying the trace at different
speeds for two versions of pcap: the default one [21] and the pcap-mmap [35]. The
pcap-mmap is a modified version of libpcap that implements a shared memory
ring buffer to store captured packets. In this fashion user-space applications are
able to read them directly, without trapping to kernel mode and copying them
to a user buffer. The use of pcap-mmap gave both unmodified Snort and our
system an increase of 50 to 100 Mbit/s to the overall performance. We can

Gnort: High Performance Network Intrusion Detection 131

Replay rate (Mbit/sec)

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

D
ro

pp
ed

 p
ac

ke
ts

 (
%

)

0

20

40

60

80

100

AC
AC1 (GPU)

AC2 (GPU)
BM

BM (GPU)
KMP

KMP (GPU)

Fig. 9. Packet loss ratio as a function of the traffic speed under heavy CPU load

see that conventional Snort cannot process all packets in rates higher than 300
Mbit/s, so a significant percentage of packets is being lost. On the other hand,
our GPU-assisted Snort is twice as fast as the original one. Packet loss for our
approach starts at 600 Mbit/s, a 200% improvement to the processing capacity of
Snort. The two different GPU implementations of the Aho-Corasick algorithm
achieve almost the same performance. For completeness, in Figure 8, we plot
the corresponding CPU utilization. Packet loss starts when CPU reaches 100%
utilization.

Figure 9 plots the packets dropped by the kernel when CPU was overloaded
synthetically. We used a simple program in an infinite tight loop, performing ba-
sic math operations to increase CPU usage to 100%. Snort was executing simul-
taneously. We observe that the performance decreased even when the matching
process was executing on GPU. This can be explained by the fact that as the
CPU controls the execution of the GPU, by overloading the former the execution
flow is affected directly. However, performance degradation did not converge to
that of default Snort, in contrast with [17].

6 Conclusions

In this paper, we presented Gnort, an intrusion detection system that utilizes
the GPU to offload pattern matching computation. We ported the classic Aho-
Corasick algorithm to run on the GPU exploiting the SIMD instructions. Our pro-
totype system was able to achieve a maximum throughput of 2.3 Gbit/s, while in
a real world scenario outperformed conventional Snort by a factor of two.

As future work we plan on eliminating the extra copy we introduced in order
to transfer the packets to the GPU in batches. One way to accomplish this, is to
transfer the packets directly from the kernel buffer. This would require that the
buffer will be allocated from the application and will be shared between the user
and kernel spaces. We believe that by modifying the pcap-mmap, that already
implements this shared buffer capability, we can benefit from the lack of copies

132 G. Vasiliadis et al.

of both from kernel to user space as well as the one to our defined buffer. An
even more efficient way would be to DMA directly the packets from the NIC to
the GPU, without occupying the CPU at all. Currently, this is not supported
but it may be in the future.

Finally, we plan on utilizing multiple GPUs instead of a single one. Modern
motherboards support dual GPUs, and there are PCI Express backplanes that
support multiple slots. We believe that building such “clusters” of GPUs will be
able to support multiple Gigabit per second Intrusion Detection Systems.

Acknowledgments

This work was supported in part by the project CyberScope, funded by the
Greek Secretariat for Research and Technology under contract number PENED
03ED440 and by the Marie Curie Actions - Reintegration Grants project PASS.
G. Vasiliadis, S. Antonatos, M. Polychronakis, E. P. Markatos and S. Ioannidis
are also with the University of Crete.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Communications of the ACM 18(6), 333–340 (1975)

2. Antonatos, S., Anagnostakis, K., Markatos, E.: Generating realistic workloads for
network intrusion detection systems. In: Proceedings of the 4th ACM Workshop
on Software and Performance (January 2004)

3. Attig, M., Lockwood, J.: A framework for rule processing in reconfigurable net-
work systems. In: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2005), Washington, DC,
USA, 2005, pp. 225–234. IEEE Computer Society Press, Los Alamitos (2005)

4. Baker, Z.K., Prasanna, V.K.: Time and area efficient pattern matching on FPGAs.
In: Proceedings of the 2004 ACM/SIGDA 12th International Symposium on Field
Programmable Gate Arrays (FPGA 2004), pp. 223–232. ACM, New York (2004)

5. Bos, H., Huang, K.: Towards software-based signature detection for intrusion
prevention on the network card. In: Valdes, A., Zamboni, D. (eds.) RAID 2005.
LNCS, vol. 3858, pp. 102–123. Springer, Heidelberg (2006)

6. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of
the Association for Computing Machinery 20(10), 762–772 (1977)

7. Cabrera, J.B.D., Gosar, J., Lee, W., Mehra, R.K.: On the statistical distribution
of processing times in network intrusion detection. In: 43rd IEEE Conference on
Decision and Control, December 2004, pp. 75–80 (2004)

8. Clark, C., Lee, W., Schimmel, D., Contis, D., Kone, M., Thomas, A.: A hardware
platform for network intrusion detection and prevention. In: Proceedings of the
3rd Workshop on Network Processors and Applications (NP3) (2004)

9. Coit, C., Staniford, S., McAlerney, J.: Towards faster string matching for intrusion
detection or exceeding the speed of Snort. In: Proceedings of DARPA Information
Survivability Conference & Exposition II (DISCEX 2001) (June 2001)

10. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Pro-
ceedings of the 6th International Colloquium on Automata, Languages and Pro-
gramming, pp. 118–131.

Gnort: High Performance Network Intrusion Detection 133

11. Cook, D.L., Ioannidis, J., Keromytis, A.D., Luck, J.: Cryptographics: Secret key
cryptography using graphics cards. In: Proceedings of RSA Conference, Cryptog-
rapher’s Track (CT-RSA), pp. 334–350 (2005)

12. de Bruijn, W., Slowinska, A., van Reeuwijk, K., Hruby, T., Xu, L., Bos, H.:
SafeCard: a Gigabit IPS on the network card. In: Zamboni, D., Krügel, C. (eds.)
RAID 2006. LNCS, vol. 4219, pp. 311–330. Springer, Heidelberg (2006)

13. Dharmapurikar, S., Krishnamurthy, P., Sproull, T.S., Lockwood, J.W.: Deep
packet inspection using parallel bloom filters. IEEE Micro 24(1), 52–61 (2004)

14. Dharmapurikar, S., Lockwood, J.: Fast and scalable pattern matching for con-
tent filtering. In: Proceedings of the 2005 ACM symposium on Architecture for
networking and communications systems (ANCS 2005), pp. 183–192. ACM, New
York (2005)

15. Fisk, M., Varghese, G.: Applying fast string matching to intrusion detection.
Technical Repor In preparation, successor to UCSD TR CS2001-0670, University
of California, San Diego (2002)

16. C. IOS. IPS deployment guide, http://www.cisco.com
17. Jacob, N., Brodley, C.: Offloading IDS computation to the GPU. In: Security

Applications Conference on Annual Computer Security Applications Conference
(ACSAC 2006), Washington, DC, USA, pp. 371–380. IEEE Computer Society,
Los Alamitos (2006)

18. Knuth, D.E., Morris, J., Pratt, V.: Fast pattern matching in strings. SIAM Journal
on Computing 6(2), 127–146 (1977)

19. Kruegel, C., Valeur, F., Vigna, G., Kemmerer, R.: Stateful intrusion detection for
high-speed networks. In: Proceedings of the IEEE Symposium on Security and
Privacy, May 2002, pp. 285–294 (2002)

20. Lodovico Marziale, G.G.R.I., Roussev, V.: Massive threading: Using GPUs to
increase the performance of digital forensics tools. Digital Investigation 1, 73–81
(2007)

21. McCanne, S., Leres, C., Jacobson, V.: libpcap. Lawrence Berkeley Laboratory,
Berkeley, http://www.tcpdump.org/

22. Norton, M.: Optimizing pattern matching for intrusion detection (July 2004),
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf

23. NVIDIA. NVIDIA CUDA Compute Unified Device Architecture Programming
Guide, version 1.1,
http://developer.download.nvidia.com/compute/cuda/1 1/
NVIDIA CUDA Programming Guide 1.1.pdf

24. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Pro-
ceedings of the 7th conference on USENIX Security Symposium (SSYM 1998),
Berkeley, CA, USA, p. 3. USENIX Association (1998)

25. Paxson, V., Sommer, R., Weaver, N.: An architecture for exploiting multi-core
processors to parallelize network intrusion prevention. In: Proceedings of the IEEE
Sarnoff Symposium (May 2007)

26. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings
of the 1999 USENIX LISA Systems Administration Conference (November 1999)

27. Schaelicke, L., Wheeler, K., Freeland, C.: SPANIDS: a scalable network intru-
sion detection loadbalancer. In: CF 2005: Proceedings of the 2nd conference on
Computing frontiers, pp. 315–322. ACM, New York (2005)

28. Sidhu, R., Prasanna, V.: Fast regular expression matching using FPGAs. In: IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM 2001)
(2001)

http://www.cisco.com
http://www.tcpdump.org/
http://docs.idsresearch.org/OptimizingPatternMatchingForIDS.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf

134 G. Vasiliadis et al.

29. Tan, L., Brotherton, B., Sherwood, T.: Bit-split string-matching engines for in-
trusion detection and prevention. ACM Transactions on Architecture and Code
Optimization 3(1), 3–34 (2006)

30. The Snort Project. Snort users manual 2.8.0,
http://www.snort.org/docs/snort manual/2.8.0/snort manual.pdf

31. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient
string matching algorithms for intrusion detection. In: Proceedings of the IEEE
Infocom Conference, pp. 333–340 (2004)

32. Turner, A.: Tcpreplay, http://tcpreplay.synfin.net/trac/
33. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS

cluster: Scalable, stateful network intrusion detection on commodity hardware.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
107–126. Springer, Heidelberg (2007)

34. Watanabe, K., Tsuruoka, N., Himeno, R.: Performance of network intrusion de-
tection cluster system. In: Proceedings of The 5th International Symposium on
High Performance Computing (ISHPC-V) (2003)

35. Wood, P.: libpcap-mmap, http://public.lanl.gov/cpw/
36. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Technical Re-

port TR-94-17 (1994)
37. Yu, F., Katz, R.H., Lakshman, T.V.: Gigabit Rate Packet Pattern-Matching Using

TCAM. In: Proceedings of the 12th IEEE International Conference on Network
Protocols (ICNP 2004), Washington, DC, USA, October 2004, pp. 174–183. IEEE
Computer Society, Los Alamitos (2004)

38. Yusuf, S., Luk, W.: Bitwise optimised CAM for network intrusion detection sys-
tems. In: Proceedings of International Conference on Field Programmable Logic
and Applications, pp. 444–449 (2005)

http://www.snort.org/docs/snort_manual/2.8.0/snort_manual.pdf
http://tcpreplay.synfin.net/trac/
http://public.lanl.gov/cpw/

Predicting the Resource Consumption of
Network Intrusion Detection Systems

Holger Dreger1, Anja Feldmann2, Vern Paxson3,4, and Robin Sommer4,5

1 Siemens AG, Corporate Technology
2 Deutsche Telekom Labs / TU Berlin

3 UC Berkeley
4 International Computer Science Institute
5 Lawrence Berkeley National Laboratory

Abstract. When installing network intrusion detection systems (NIDSs), opera-
tors are faced with a large number of parameters and analysis options for tuning
trade-offs between detection accuracy versus resource requirements. In this work
we set out to assist this process by understanding and predicting the CPU and
memory consumption of such systems. We begin towards this goal by devising a
general NIDS resource model to capture the ways in which CPU and memory us-
age scale with changes in network traffic. We then use this model to predict the re-
source demands of different configurations in specific environments. Finally, we
present an approach to derive site-specific NIDS configurations that maximize the
depth of analysis given predefined resource constraints. We validate our approach
by applying it to the open-source Bro NIDS, testing the methodology using real
network data, and developing a corresponding tool, nidsconf, that automati-
cally derives a set of configurations suitable for a given environment based on a
sample of the site’s traffic. While no automatically generated configuration can
ever be optimal, these configurations provide sound starting points, with promise
to significantly reduce the traditional trial-and-error NIDS installation cycle.

1 Introduction

Operators of network intrusion detection systems (NIDSs) face significant challenges
in understanding how to best configure and provision their systems. The difficulties
arise from the need to understand the relationship between the wide range of analy-
ses and tuning parameters provided by modern NIDSs, and the resources required by
different combinations of these. In this context, a particular difficulty regards how re-
source consumption intimately relates to the specifics of the network’s traffic—such as
its application mix and its changes over time—as well as the internals of the particular
NIDS in consideration. Consequently, in our experience the operational deployment of
a NIDS is often a trial-and-error process, for which it can take weeks to converge on an
apt, stable configuration.

In this work we set out to assist operators with understanding resource consumption
trade-offs when operating a NIDS that provides a large number of tuning options. We
begin towards our goal by devising a general NIDS resource model to capture the ways
in which CPU and memory usage scale with changes in network traffic. We then use

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 135–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

136 H. Dreger et al.

this model to predict the resource demands of different configurations for specific envi-
ronments. Finally, we present an approach to derive site-specific NIDS configurations
that maximize the depth of analysis given predefined resource constraints.

A NIDS must operate in a soft real-time manner, in order to issue timely alerts and
perhaps blocking directives for intrusion prevention. Such operation differs from hard
real-time in that the consequences of the NIDS failing to “keep up” with the rate of
arriving traffic is not catastrophe, but rather degraded performance in terms of some
traffic escaping analysis (“drops”) or experiencing slower throughput (for intrusion pre-
vention systems that forward traffic only after the NIDS has inspected it). Soft real-time
operation has two significant implications in terms of predicting the resource consump-
tion of NIDSs. First, because NIDSs do not operate in hard real-time, we seek to avoid
performance evaluation techniques that aim to prove compliance of the system with
rigorous deadlines (e.g., assuring that it spends no more than T microseconds on any
given packet). Given the very wide range of per-packet analysis cost in a modern NIDS
(as we discuss later in this paper), such techniques would severely reduce our estimate
of the performance a NIDS can provide in an operational context. Second, soft real-
time operation means that we also cannot rely upon techniques that predict a system’s
performance solely in terms of aggregate CPU and memory consumption, because we
must also pay attention to instantaneous CPU load, in order to understand the degree
to which in a given environment the system would experience degraded performance
(packet drops or slower forwarding).

When modeling the resource consumption of a NIDS, our main hypothesis concerns
orthogonal decomposition: i.e., the major subcomponents of a NIDS are sufficiently
independent that we can analyze them in isolation and then extrapolate aggregate be-
havior as the composition of their individual contributions. In a different dimension, we
explore how the systems’ overall resource requirements correlate to the volume and the
mix of network traffic. If orthogonal decomposition holds, then we can systematically
analyze a NIDS’ resource consumption by capturing the performance of each subcom-
ponent individually, and then estimating the aggregate resource requirements as the sum
of the individual requirements. We partition our analysis along two axes: type of analy-
sis, and proportion of connections within each class of traffic. We find that the demands
of many components scale directly with the prevalence of a given class of connections
within the aggregate traffic stream. This observation allows us to accurately estimate
resource consumption by characterizing a site’s traffic “mix.” Since such mixes change
over time, however, it is crucial to consider both short-term and long-term fluctuations.

We stress that, by design, our model does not incorporate a notion of detection qual-
ity, as that cannot reasonably be predicted from past traffic as resource usage can. We
focus on identifying the types of analyses which are feasible under given resource con-
straints. With this information the operator can assess which option promises the largest
gain for the site in terms of operational benefit, considering the site’s security policy and
threat model.

We validate our approach by applying it to Bro, a well-known, open-source
NIDS [7]. Using this system, we verify the validity of our model using real network
data, and develop a corresponding prototype tool, nidsconf, to derive a set of config-
urations suitable for a given environment. The NIDS operator can then examine these

Predicting the Resource Consumption of NIDSs 137

configurations and select one that best fits with the site’s security needs. Given a rela-
tively small sample of a site’s traffic, nidsconf performs systematic measurements on
it, extrapolates a set of possible NIDS configurations and estimates their performance
and resource implications. In a second stage the tool is also provided with a longer-term
connection-level log file (such as produced by NetFlow). Given this and the results from
the systematic measurements, the tool can project resource demands of the NIDS’ sub-
components without actually running the NIDS on long periods of traffic. Thus the
tool can be used not only to derive possible NIDS configurations but also to estimate
when, for a given configuration and a given estimation of traffic growth, the resources
of the machine running the NIDS will no longer suffice. While we do not claim that
nidsconf always produces optimal configurations, we argue that it provides a sound
starting point for further fine-tuning.

We structure the remainder of this paper as follows. In §2 we use an example to
demonstrate the impact of resource exhaustion. In §3 we introduce our approach, and
validate its underlying premises in §4 by using it to predict the resource usage of the Bro
NIDS. In §5 we present our methodology for predicting the resource consumption of a
NIDS for a specific target environment, including the automatic derivation of suitable
configurations. We discuss related work in §6 and conclude in §7.

2 Impact of Resource Exhaustion

We begin with an examination of how resource exhaustion affects the quality of network
security monitoring, since this goes to the heart of the problem of understanding the onset
and significance of degraded NIDS performance. We do so in the context of the behavior
of the open-source Bro NIDS [7] when it runs out of available CPU cycles or memory.

CPU Overload. The primary consequence of CPU overload are packet drops, and thus
potentially undetected attacks. As sketched above, a NIDS is a soft real-time system:
it can buffer packets for a certain (small) amount of time, which enables it to tolerate
sporadic processing spikes as long as traffic arriving in the interim fits within the buffer.
On average, however, processing needs to keep up with the input stream to avoid chronic
overload and therefore packets drops. To understand the correlation between packet
drops and CPU load, we run the Bro NIDS live on a high-volume network link (see §4)
using a configuration that deliberately overloads the host CPU in single peaks. We then
correlate the system’s CPU usage with the observed packet drops.

Figure 1 shows the real-time (Y-axis) that elapses while Bro processes each second
of network traffic (X-axis). The vertical lines denote times at which the packet capture
facility (libpcap) reports drops; the corresponding CPU samples are shown with a filled
circle.

The NIDS can avoid drops as long as the number of processing outliers remains
small—more precisely, as long as they can be compensated by buffering of captured
packets. For example, the 20MB buffer used in our evaluations enabled us to process
an extreme outlier—requiring 2.5 s for one real-time second worth of network traffic—
without packet drops. Accordingly, we find that the first packet drop occurs only after
a spike in processing real time of more than 4s. Closer inspection shows that the loss

138 H. Dreger et al.

0 200 400 600 800 1000 1200

0
1

2
3

4

Network time elapsed [s]

R
ea

l t
im

e
[s

] e
la

ps
ed

 p
er

 s
ec

. t
ra

ffi
c normal sample

sample with packet drops

Fig. 1. Relation between elapsed real-time and packet drops

does not occur immediately during processing the “expensive” traffic but rather six
network seconds later. It is only at that point that the buffer is completely full and
the lag (i.e., how far the NIDS is behind in its processing) exceeds 5.5s. Such a large
amount of buffering thus makes it difficult to predict the occurrence of drops and their
likely magnitude: (i) the buffer can generally absorb single outliers, and (ii) the buffer
capacity (in seconds) depends on the traffic volume yet to come. But clearly we desire
to keep the lag small.

Memory Exhaustion. When a stateful NIDS completely consumes the memory avail-
able to it, it can no longer effectively operate, as it cannot store additional state. It can,
however, try to reclaim memory by expiring existing state. The challenges here are
(i) how to recognize that an exhaustion condition is approaching prior to its actual on-
set, (ii) in the face of often complex internal data structures [3], and then (iii) locating
apt state to expire that minimizes the ability for attackers to leverage the expiration for
evading detection.

One simple approach for limiting memory consumption imposes a limit on the size
of each internal data structure. Snort [8], for example, allows the user to specify a
maximum number of concurrent connections for its TCP preprocessor. If this limit is
reached, Snort randomly picks some connections and flushes their state to free up mem-
ory. Similarly, Snort addresses the issue of variable stream reassembly size by providing
an option to limit the total number of bytes in the reassembler. Bro on the other hand
does not provide a mechanism to limit the size of data structures to a fixed size; its state
management instead relies on timeouts, which can be set on a per-data structure basis,
and with respect to when state was first created, or last read or updated. However, these
do not provide a guarantee that Bro can avoid memory exhaustion, and thus it can crash
in the worst case. Bro does however include extensive internal memory instrumenta-
tion [3] to understand its consumption, which we leverage for our measurements.

Memory consumption and processing lag can become coupled in two different ways.
First, large data structures can take increasingly longer to search as they grow in size,
increasing the processing burden. Second, in systems that provide more virtual memory
than physical memory, consuming the entire physical memory does not crash the system
but instead degrades its performance due to increased paging activity. In the worst case,
such systems can thrash, which can enormously diminish real-time performance.

Predicting the Resource Consumption of NIDSs 139

3 Modeling NIDS Resource Usage

In this section we consider the high-level components that determine the resource usage
of a NIDS. We first discuss the rationale that leads to our framing of the components,
and then sketch our resulting distillation. The next section proceeds to evaluate the
framework against the Bro NIDS.

3.1 The Structure of NIDS Processing

Fundamental to a NIDS’s operation is tracking communication between multiple net-
work endpoints. All major NIDS’s today operate in a stateful fashion, decoding network
communication according to the protocols used, and to a degree mirroring the state
maintained by the communication endpoints. This state naturally grows proportional to
the number of active connections1, and implementations of stateful approaches are nat-
urally aligned with the network protocol stack. To reliably ascertain the semantics of an
application-layer protocol, the system first processes the network and transport layers of
the communication. For example, for HTTP the NIDS first parses the IP header (to ver-
ify checksums, extract addresses, determine transport protocol, and so on) and the TCP
header (update the TCP state machine, checksum the payload), and then reassembles
the TCP byte stream, before it can finally parse the HTTP protocol.

A primary characteristic of the network protocol stack is its extensive use of en-
capsulation: individual layers are independent of each other; while their input/output
is connected, there ideally is no exchange of state between layers. Accordingly, for
a NIDS structured along these lines its protocol-analyzing components can likewise
operate independently. In particular, it is plausible to assume that the total resource
consumption, in terms of CPU and memory usage, is the sum of the demands of the
individual components. This observation forms a basis for our estimation methodology.

In operation, a NIDS’s resource usage primarily depends on the characteristics of
the network traffic it analyzes; it spends its CPU cycles almost exclusively on analyzing
input traffic, and requires memory to store results as it proceeds. In general, network
packets provide the only sustained stream of input during operation, and resource usage
therefore should directly reflect the volume and content of the analyzed packets.2

We now hypothesize that for each component of a NIDS that analyzes a partic-
ular facet or layer of network activity—which we term an analyzer—the relation-
ship between input traffic and the analyzer’s resource demands is linear. Let t0 be
the time when NIDS operation begins, and Pt the number of input packets seen up
to time t ≥ t0. Furthermore, let Ct be the total number of transport-layer connec-
tions seen up to time t, and ct the number of connections currently active at time t.
Then we argue: Network-layer analyzers operate strictly on a per-packet basis, and so
should require O(Pt) CPU time, and rarely store state. (One exception concerns re-
assembly of IP fragments; however, in our experience the memory required for this is

1 For UDP and ICMP we assume flow-like definitions, similar to how NetFlow abstracts
packets.

2 In this work, we focus on stand-alone NIDSs that analyze traffic and directly report alerts. In
more complex setups (e.g., with distributed architectures) resource consumption may depend
on other sources of input as well.

140 H. Dreger et al.

negligible even in large networks.) Transport-layer analyzers also operate packet-wise.
Thus, their amortized CPU usage will scale as O(Pt). However, transport-layer analyz-
ers can require significant memory, such as tracking TCP sequence numbers, connection
states, and byte streams. These analyzers therefore will employ data structures to store
all currently active connections, requiring O(max(ct)) memory. For stream-based pro-
tocols, the transport-layer performs payload reassembly, which requires memory that
scales with O(max(ct · mt)), where mt represents the largest chunk of unacknowl-
edged data on any active connection at time t (cf. [1]). Finally, application-layer ana-
lyzers examine the payload data as reconstructed by the transport layer. Thus, their CPU
time scales proportional to the number of connections, and depends on how much of the
payload the analyzer examines. (For example, an HTTP analyzer might only extract the
URL in client requests, and skip analysis of the much larger server reply.) The total size
of the connection clearly establishes an upper limit. Accordingly, the state requirements
for application analyzers will depend on the application protocol and will be kept on a
per-connection basis, so will scale proportional to the protocol mix (how prevalent the
application is in the traffic stream) and the number of connections ct.

In addition to protocol analyzers, a NIDS may perform inter-connection correlation.
For example, a scan detector might count connections per source IP address, or an FTP
session analyzer might follow the association between FTP client directives and subse-
quent data-transfer connections. In general, the resource usage of such analyzers can be
harder to predict, as it will depend on specifics of the analysis (e.g., the scan detector
above requires O(Ct) CPU and memory if it does not expire any state, while the FTP
session analyzer only requires CPU and memory in proportion to the number of FTP
client connections). However, in our experience it is rare that such analyzers exceed
CPU or memory demands of O(Ct), since such analysis quickly becomes intractable
on any high-volume link. Moreover, while it is possible that such inter-connection an-
alyzer may depend on the results of other analyzers, we find that such analyzers tend
to be well modular and decoupled (e.g., the scan detector needs the same amount of
memory independent of whether the NIDS performs HTTP URL extraction or enables
FTP session-tracking).

3.2 Principle Contributors to Resource Usage

Overall, it appears reasonable to assume that for a typical analyzer, resource usage
is (i) linear with either the number of input packets or the number of connections it
processes, and (ii) independent of other analyzers. In this light, we can frame two main
contributors to the resource usage of a NIDS:

1. The specific analyzers enabled by the operator for the system’s analysis. That these
contribute to resource usage is obvious, but the key point we want to make is that
most NIDSs provide options to enable/disable certain analyzers in order to trade off
resource requirements. Yet NIDSs give the operators almost no concrete guidance
regarding the trade-offs, so it can be extremely hard to predict the performance of
a NIDS when enabling different sets of analyzers. This difficulty motivated us to
build our tool nidsconf (per §5.2) that provides an understanding of resource
usage trade-offs to support configuration decisions.

Predicting the Resource Consumption of NIDSs 141

2. The traffic mix of the input stream—i.e., the prevalence of different types of appli-
cation sessions—as this affects the number of connections examined by each type
of analyzers.

The above reasoning need not hold universally. However, we examined the architec-
ture of two popular open source NIDS, Snort and Bro, and found that their resource
consumption indeed appears consistent with the model discussed above. We hypothe-
size that we can characterize most operational NIDSs in this fashion, and thus they will
lend themselves well to the kind of performance prediction we outline in §5. To support
our claims, we now explore the resource usage of the Bro NIDS in more depth.

4 Example NIDS Resource Usage

To assess our approach of modeling a NIDS’s resource demands as the sum of the
requirements of its individual analyzers, and scaling linearly with the number of ap-
plication sessions, we now examine an example NIDS. Among the two predominant
open-source NIDSs, Snort and Bro, we chose to examine Bro for two reasons: (i) Bro
provides a superset of Snort’s functionality, since it includes both a signature-matching
engine and an application-analysis scripting language; and (ii) it provides extensive,
fine-grained instrumentation of its internal resource consumption; see [3] for the
specifics of how the system measures CPU and memory consumption in real-time. Snort
does not provide similar capabilities. For our examination we have to delve into details
of the Bro system, and we note that some of the specifics of our modeling are neces-
sarily tied to Bro’s implementation. While this is unavoidable, as discussed above we
believe that similar results will hold for Snort and other modern NIDSs.

For our analysis we captured a 24-hour full trace at the border router of the
Münchener Wissenschaftsnetz (MWN). This facility provides 10 Gbps upstream ca-
pacity to roughly 50,000 hosts at two major universities, along with additional research
institutes, totaling 2-4 TB a day. To avoid packet drops, we captured the trace with a
high-performance Endace DAG card. The trace encompasses 3.2 TB of data in 6.3 bil-
lion packets and 137 million connections. 76% of all packets are TCP. In the remainder
of this paper, we refer to this trace as MWN-full .

4.1 Decomposition of Resource Usage

We first assess our hypothesis that we can consider the resource consumption of the
NIDS’s analyzers as independent of one another. We then check if resource usage gen-
erally scales linearly with the number of connections on the monitored network link.

Independence of Analyzer Resource Usage. For our analysis we use Bro version
1.1, focusing on 13 analyzers: finger, frag, ftp, http-request, ident, irc, login, pop3,
portmapper, smtp, ssh, ssl, and tftp. To keep the analyzed data volume tractable, we use
a 20-minute, TCP-only excerpt of MWN-full, which we refer to as Trace-20m,

We run 15 different experiments. First, we establish a base case (BROBASE), which
only performs generic connection processing. In this configuration, Bro only analyzes
connection control packets, i.e., all packets with any of the TCP flags SYN, FIN or

142 H. Dreger et al.

0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

CPU time [s], all analyzers loaded

C
P

U
 ti

m
e

[s
],

al
l a

na
ly

ze
rs

 s
um

m
ed

 u
p

sum of analyzer workloads
sum of normalized analyzer workloads
no error
+0.2s absolute error

Fig. 2. Scatter plot of accumulated CPU usages vs. measured CPU usage

RST set. This suffices for generating one-line summaries of each TCP connection in
the trace. BROBASE thus reflects a minimal level of still-meaningful analysis. Next,
we run a fully loaded analysis, BROALL, which enables all analyzers listed above, and
by far exceeds the available resources. Finally, we perform 13 additional runs where we
enable a single one of the analyzers on top of the BROBASE configuration. For each test,
Bro is supplied with a trace prefiltered for the packets the configuration examines. This
mimics live operation, where this filtering is usually done in the kernel and therefore
not accounted to the Bro process.

We start with examining CPU usage. For each of the 13 runs using BROBASE plus
one additional analyzer, we calculate the contribution of the analyzer as the difference
in CPU usage between the run and that for the BROBASE configuration. We then form
an estimate of the time of the BROALL configuration as the sum of the contributions
of the individual analyzers plus the usage of the BROBASE configuration. We term this
estimate BROAGG.

Figure 2 shows a scatter plot of the measured CPU times. Each point in the plot
corresponds to the CPU time required for one second of network input. The circles
reflect BROAGG (Y-axis) versus BROALL (X-axis), with five samples between 1.7s and
2.6s omitted from the plot for legibility. We observe that there is quite some variance
in the matching of the samples: The mean relative error is 9.2% (median 8.6%) and
for some samples the absolute error of BROAGG’s CPU time exceeds 0.2s (20% CPU
load). There is also a systematic bias towards slight underestimation by BROAGG, with
about 64% of its one-second intervals being somewhat lower than the value measured
during that interval for BROALL.

To understand the origin of these differences, we examine the relative contribution
of the individual analyzers. We find that there are a number of analyzers that do not
add significantly to the workload, primarily due to those that examine connections that
are not prevalent in the analyzed network trace (e.g., finger). The resource consumption
with these analyzers enabled is very close to that for plain BROBASE. Furthermore, due
to the imprecision of the operating system’s resource accounting, two measurements
of the same workload are never exactly the same; in fact, when running the BROBASE

configuration ten times, the per-second samples differ by MR = 18 msec on aver-
age. This means that if an analyzer contributes very little workload, we cannot soundly

Predicting the Resource Consumption of NIDSs 143

distinguish its contribution to CPU usage from simple measurement variation. The
fluctuations of all individual runs with just one additional analyzer may well accumulate
to the total variation seen in Figure 2.

To compensate for these measurement artifacts, we introduce a normalization of
CPU times, as follows. For each single-analyzer configuration, we first calculate the dif-
ferences of all its CPU samples with respect to the corresponding samples of BROBASE.
If the mean of these differences is less than the previously measured value of MR then
we instead predict its load based on aggregation across 10-second bins rather than 1-
second bins. The ’+’ symbols in Figure 2 show the result: we both reduce overall fluc-
tuation considerably, and no sample of BROAGG exceeds BROALL by more than 0.2s.
The mean relative error drops to 3.5% (median 2.8%), indicating a good match. As in
the non-normalized measurements, for most samples (71%) the CPU usage is extrapo-
lated to slightly lower values than in the actual BROALL measurement. The key point
is we achieve these gains solely by aggregating the analyzers that introduce very light
additional processing. Thus, we conclude that (i) these account for the majority of the
inaccuracy, (ii) correcting them via normalization does not diminish the soundness of
the prediction, and (iii) otherwise, analyzer CPU times do in fact sum as expected.

Turning to memory usage, we use the same approach for assessing the additivity of
the analyzers. We compute the difference in memory allocation between the instance
with the additional analyzer enabled versus that of BROBASE. As expected, summing
these differences and adding the memory consumption of BROBASE yields 465 MB,
closely matching the memory usage of BROALL (461 MB).

Overall, we conclude that we can indeed consider the resource consumption of the
analyzers as independent of one another.

Linear Scaling with Number of Connections. We now assess our second hypothesis:
that a NIDS resource consumption scales linearly with the number of processed connec-
tions. For this evaluation, we run Bro with identical configurations on traces that differ
mainly in the number of connections that they contain at any given time. To construct
such traces, we randomly subsample an input trace using per-connection sampling with
different sampling factors, run Bro on the subtrace, and compare the resulting resource
usage in terms of both CPU and memory. To then extrapolate the resource usage on the
full trace, we multiply by the sample factor.

To sample a trace with a sample factor P , we hash the IP addresses and port num-
bers of each packet into a range [0; P − 1] and pick all connections that fall into a
particular bucket. We choose a prime for the sample factor to ensure we avoid aliasing;
this approach distributes connections across all buckets in a close to uniform fashion as
shown in [11]. For our analysis we sampled Trace-20m with sampling factors P = 7
(resulting in STRACE7) and P = 31 (resulting in STRACE31).

CPU Usage. Figure 3 shows a scatter plot of the CPU times for BROBASE on
Trace-20mwithout sampling, vs. extrapolating BROBASE on STRACE7 (circles) and
STRACE31 (triangles). We notice that in general the extrapolations match well, but are
a bit low (the mean is 0.02 sec lower). Unsurprisingly, the fluctuation in the deviation
from the originally measured values grows with the sampling factor (further measure-
ments not included in Figure 3 with sampling factors between 7 and 31 confirm this).

144 H. Dreger et al.

0.2 0.3 0.4 0.5

0.
2

0.
3

0.
4

0.
5

user time for analyzing unsampled trace

us
er

 ti
m

e
sa

m
pl

ed
 tr

ac
es

sampling factor 7
sampling factor 31

Fig. 3. Scatter plot of BROBASE configuration on sampled traces vs. non-sampled trace

0.5 1.0 1.5 2.0 2.5

1
2

3
4

Quantile values w/o connection sampling

Q
ua

nt
ile

 v
al

ue
s

w
/ c

on
n.

 s
am

pl
in

g

80% 95%

sampling factor 7
sampling factor 11
sampling factor 17
sampling factor 31

Fig. 4. QQ plot of analyzer workload without sampling vs. with different sampling factors

Naturally, the measured CPU times are very small if only a few connections are
analyzed. For example, in the unsampled trace Bro consumes on average 370 msec
for one second of network traffic when analyzing all the connections. With a sampling
factor of 31, we would expect consumption to drop to 370/31 = 12 msec, at which
point we are at the edge of the OS’s accounting precision. In fact, however, we find that
extrapolation still works fairly well: for sample factor 31, the median of the extrapolated
measurements is only 28 msec lower than the median of the measurements for the full
trace. We have verified that similar observations hold for other segments of MWN-full,
as well as for other traces.

Next we check if this finding still holds for more complex configurations. To this
end, the QQ-plot in Figure 4 compares the distribution of CPU times for BROALL

(i.e., 13 additional analyzers) on the full Trace-20m (X-axis) vs. sub-sampled traces

Table 1. Memory scaling factors: 10 BROBASE runs (left) / 10 BROALL runs (right)

Sampling factor 1 7 11 17 31

Memory ratio 1 7.0 11.0 16.6 30.7

Sampling factor 1 7 11 17 31

Memory ratio 1 3.64 4.87 6.30 9.34

Predicting the Resource Consumption of NIDSs 145

(Y-axis, with sample factors of 7, 11, 17, and 31). Overall, the majority of the samples
match fairly well, though with a bias for smaller values towards underestimation (left
of the 80th percentile line), and with unstable upper quantiles (usually overestimates).

Memory Usage. Turning to memory consumption, for each sampling factor we con-
ducted 10 runs with BROBASE on Trace-20m, measuring the maximum consump-
tion figures on the sampled traces as reported by the OS.3 Table 1 (left) shows the ratio
between the memory consumption on the entire trace versus that for the sampled traces.
Ideally, this figure would match the sampling factor, since then we would extrapolate
perfectly from the sample. We see that in general the ratio is close, with a bias towards
being a bit low. From this we conclude that for BROBASE, predicting memory use from
a sampled trace will result in fairly accurate, though sometimes slightly high, estimates.

As discussed in Section 3, we would not expect memory usage of application-layer
analyzers to always scale linearly with the number of connections, since some analyzers
accumulate state not on a per-connection basis but rather according to some grouping
of the connections (e.g., Bro’s HTTP analyzer groups connections into “sessions”). In
such cases the memory estimate we get by scaling with the connection sample factor
can be a (potentially significant) overestimation. This effect is visible in Table 1 (right),
which shows the same sort of analysis as above but now for BROALL. We see that the
extrapolation factors can be off by more than a factor of three. By running each ana-
lyzer separately, we identified the culprits: both the HTTP and SSL analyzers associate
their state per session, rather than per connection. However, we note that at least the
required memory never exceeds the prediction, and thus we can use the prediction as a
conservative upper bound.

In summary, we find that both CPU and memory usage can generally be predicted
well with a model linear in the number of connections. We need to keep in mind how-
ever that it can overestimate the memory demand for some analyzers.

5 Resource Prediction

After confirming that we can often factor NIDS resource usage components with per-
analyzer and per-connection scaling, we now employ these observations to derive sug-
gestions of reasonable configurations for operating in a specific network environment.

We start by devising a methodology for finding a suitable configuration based on
a snapshot of an environment’s network traffic. Then we turn to estimating the long-
term performance of such a configuration given a coarser-grained summary of the net-
work traffic that contains the time-of-day and day-of-week effects. The latter is crucial,
as traffic characteristics, and therefore resource consumption, can change significantly
over time.

5.1 From Traffic Snapshots to Configurations

In this section we consider the degree to which we can analyze a short sample trace
from a given environment in order to identify suitable NIDS configurations, in terms of

3 As in the case of CPU usage, we find inherent fluctuation in memory usage as well: running
instances under identical conditions exhibits some noticeable, though not huge, variation.

146 H. Dreger et al.

maximizing the NIDS’s analysis while leaving enough “head room” to avoid exhausting
its resources. More generally, we wish to enable the network operator to make informed
decisions about the prioritization of different types of analysis. Alternatively, we can
help the operator decide whether to upgrade the machine if the available resources do
not allow the NIDS to perform the desired analysis.

We stress that due to the variability inherent in network traffic, as well as the mea-
surement limitations discussed in §4, no methodology can aim to suggest an optimal
configuration. However, automating the process of exploring the myriad configuration
options of a NIDS provides a significant step forward compared to having to assess
different configurations in a time-consuming, trial-and-error fashion.

Capturing an Appropriate Trace. Our approach assumes access to a packet trace
from the relevant network with a duration of some tens of minutes. We refer to this as
the main analysis trace. At this stage, we assume the trace is “representative” of the
busiest period for the environment under investigation. Later in this section we explore
this issue more broadly to generalize our results.

Ideally, one uses a full packet trace with all packets that crossed the link during the
sample interval. However, even for medium-sized networks this often will not be feasi-
ble due to disk capacity and time constraints: a 20-minute recording of a link transfer-
ring 400 Mbit/s results in a trace of roughly 60 GB; running a systematic analysis on
the resulting trace as described below would be extremely time consuming. In addition,
full packet capture at these sorts of rates can turn out to be a major challenge on typical
commodity hardware [9].

We therefore leverage our finding that in general we can decompose resource usage
on a per-connection basis and take advantage of the connection sampling methodology
discussed in Section 4. Given a disk space budget as input, we first estimate the link’s
usage via a simple libpcap application to determine a suitable sampling factor, which
we then use to capture an accordingly sampled trace. We can perform the sampling
itself using an appropriate kernel packet filter [2], so it executes quite efficiently and
imposes minimal performance stress on the monitoring system.

Using this trace as input, we then can scale our results according to the sample factor,
as discussed in §4, while keeping in mind the most significant source of error in this
process, which is a tendency to overestimate memory consumption when considering a
wide range of application analyzers.

Finding Appropriate Configurations. We now leverage our observation that we can
decompose resource usage per analyzer to determine analysis combinations that do not
overload the system when analyzing a traffic mix and volume similar to that extrapo-
lated from the captured analysis trace. Based on our analysis of the NIDS resource us-
age contributors (§3.2) and its verification (§4), our approach is straight-forward. First
we derive a baseline of CPU and memory usage by running the NIDS on the sampled
trace using a minimal configuration. Then, for each potentially interesting analyzer,
we measure its additional resource consumption by individually adding it to the mini-
mal configuration. We then calculate which combinations of analyzers result in feasible
CPU and memory loads.

The main challenge for determining a suitable level of CPU usage is to find the right
trade-off between a good detection rate (requiring a high average CPU load) and leaving

Predicting the Resource Consumption of NIDSs 147

sufficient head-room for short-term processing spikes. The higher the load budget, the
more detailed the analysis; however, if we leave only minimal head-room then the sys-
tem will likely incur packet drops when network traffic deviates from the typical load,
which, due to the long-range dependent nature of the traffic [12] will doubtlessly hap-
pen. Which trade-off to use is a policy decision made by the operator of the NIDS, and
depends on both the network environment and the site’s monitoring priorities. Accord-
ingly, we assume the operator specifies a target CPU load c together with a quantile q
specifying the percentage of time the load should remain below c. With, for example,
c = 90% and q = 95%, the operator asks our tool to find a configuration that keeps the
CPU load below 90% for 95% of all CPU samples taken when analyzing the trace.

Two issues complicate the determination of a suitable level of memory usage. First,
some analyzers that we cannot (reasonably) disable may consume significant amounts
of memory, such as TCP connection management as a precursor to application-level
analysis for TCP-based services. Thus, the option is not whether to enable these ana-
lyzers, but rather how to parameterize them (e.g., in terms of setting timeouts). Sec-
ond, as pointed out in §4, the memory requirements of some analyzers do not scale di-
rectly with the number of connections, rendering their memory consumption harder to
predict.

Regarding the former, parameterization of analyzers, previous work has found that
connection-level timeouts are a primary contributor to a NIDS’s memory consump-
tion [3]. Therefore, our first goal is to derive suitable timeout values given the connec-
tion arrival rate in the trace. The main insight is that the NIDS needs to store different
amounts of state for different connection types. We can group TCP connections into
three classes: (i) failed connection attempts; (ii) fully established and then terminated
connections; and (iii) established but not yet terminated connections. For example, the
Bro NIDS (and likely other NIDSs as well) uses different timeouts and data structures
for the different classes [3], and accordingly we can examine each class separately
to determine the corresponding memory usage. To predict the effect of the individual
timeouts, we assume a constant arrival rate for new connections of each class, which is
reasonable given the short duration of the trace. In addition, we assume that the mem-
ory required for connections within a class is roughly the same. (We have verified this
for Bro.) This then enables us to estimate appropriate timeouts for a given memory
budget.

To address the second problem, analyzer memory usage which does not scale linearly
with the sampling factor, we can identify these cases by “subsampling” the main trace
further, using for example an additional sampling factor of 3. Then, for each analyzer,
we determine the total memory consumption of the NIDS running on the subsampled
trace and multiply this by the subsampling factor. If doing so yields approximately the
memory consumption of the NIDS running the same configuration on the main trace,
then the analyzer’s memory consumption does indeed scale linearly with the sampling
factor. If not, then we are able to flag that analysis as difficult to extrapolate.

5.2 A Tool for Deriving NIDS Configurations

We implemented an automatic configuration tool, nidsconf, for the Bro NIDS based
on the approach discussed above. Using a sampled trace file, it determines a set of Bro

148 H. Dreger et al.

configurations, including sets of feasible analyzers and suitable connection timeouts.
These configurations enable Bro to process the network’s traffic within user-defined
limits for CPU and memory.

We assessed nidsconf in the MWN environment on a workday afternoon with a
disk space budget for the sampled trace of 5 GB; a CPU limit of c = 80% for q =
90% of all samples; a memory budget of 500 MB for connection state; and a list of
13 different analyzers to potentially activate (mostly the same as listed previously, but
also including http-reply which examines server-side HTTP traffic).

Computed over a 10-second window, the peak bandwidth observed on the link was
695 Mbps. A 20-minute full-packet trace would therefore have required approximately
100 GB of data. Consequently, nidsconf inferred a connection sampling factor of 23
as necessary to stay within the disk budget (the next larger prime above the desired sam-
pling factor of 21). The connection-sampled trace that the tool subsequently captured
consumed almost exactly 5 GB of disk space. nidsconf then concluded that even
by itself, full HTTP request/reply analysis would exceed the given c and q constraints.
Therefore it decided to disable server-side HTTP analysis. Even without this, the com-
bination of all other analyzers still exceeded the constraints. Therefore, the user was
asked to chose one to disable, for which we selected http-request. Doing so turned out
to suffice. In terms of memory consumption,nidsconf determined that the amount of
state stored by three analyzers (HTTP, SSL, and the scan detector) did not scale linearly
with the number of connections, and therefore could not be predicted correctly. Still,
the tool determined suitable timeouts for connection state (873 secs for unanswered
connection attempts, and 1653 secs for inactive connections).

Due to the complexity of the Bro system, there are quite a few subtleties involved in
the process of automatically generating a configuration. Due to limited space, here we
only outline some of them, and refer to [2] for details. One technical complication is that
not all parts of Bro are sufficiently instrumented to report their resource usage. Bro’s
scripting language poses a more fundamental problem: a user is free to write script-
level analyzers that consume CPU or memory in unpredictable ways (e.g., not tied
to connections). Another challenge arises due to individual connections that require
specific, resource-intensive analysis. As these are non-representative connections any
sampling-based scheme must either identify such outliers, or possibly suggest overly
conservative configurations. Despite these challenges, however, nidsconf provides a
depth of insight into configuration trade-offs well beyond what an operator otherwise
can draw upon.

5.3 From Flow Logs to Long-Term Prediction

Now that we can identify configurations appropriate for a short, detailed packet-level
trace, we turn to estimating the long-term performance of such a configuration. Such
extrapolation is crucial before running a NIDS operationally, as network traffic tends to
exhibit strong time-of-day and day-of-week effects. Thus, a configuration suitable for a
short snapshot may still overload the system at another time, or unnecessarily forsake
some types of analysis during less busy times.

For this purpose we require long-term, coarser-grained logs of connection informa-
tion as an abstraction of the network’s traffic. Such logs can, for example, come from

Predicting the Resource Consumption of NIDSs 149

NetFlow data, or from traffic traces with tools such as tcpreduce [10], or perhaps the
NIDS itself (Bro generates such summaries as part of its generic connection analysis).
Such connection-level logs are much smaller than full packet traces (e.g., � 1% of the
volume), and thus easier to collect and handle. Indeed, some sites already gather them
on a routine basis to facilitate traffic engineering or forensic analysis.

Methodology. Our methodology draws upon both the long-term connection log and
the systematic measurements on a short-term, (sampled) full-packet trace as described
above. We proceed in three steps: First, we group all connections (in both the log and
the packet trace) into classes, such that the NIDS resource usage scales linearly with the
class size. Second, for different configurations, we measure the resources used by each
class based on the packet trace. In the last step, we project the resource usage over the
duration of the connection log by scaling each class according to the number of such
connections present in the connection log.

In the simplest case, the overall resource usage scales linearly with the total number
of connections processed (for example, this holds for TCP-level connection processing
without any additional analyzers). Then we have only one class of connections and can
project the CPU time for any specific time during the connection log proportionally: if
in the packet trace the analysis of N connections takes P seconds of CPU time, we esti-
mate that the NIDS performing the same analysis for M connections uses P

N M seconds
of CPU time. Similarly, if we know the memory required for I concurrent connections
at some time T1 for the packet trace, we can predict the memory consumption at time
T2 by determining the number of active connections at T2.

More complex configurations require more than one connection class. Therefore we
next identify how to group connections depending on the workload they generate. Based
on our observation that we can decompose a NIDS’s resource requirements into that
of its analyzers (§3), along with our experience validating our approach for Bro (§4),
we identified three dimensions for defining connection classes: duration, application-
layer service, and final TCP state of the connection (e.g., whether it was correctly es-
tablished). Duration is important for determining the number of active connections in
memory at each point in time; service determines the analyzers in use; and the TCP
state indicates whether application-layer analysis is performed.

As we will show, this choice of dimensions produces resource-consumption predic-
tions with reasonable precision for Bro. We note, however, that for other NIDSs one
might examine a different decomposition (e.g., data volume per connection may have a
strong impact too). Even if so, we anticipate that a small number of connection classes
will suffice to capture the principle components of a NIDS’s resource usage.

Predicting Long-Term Resource Use. We now show how to apply our methodology
to predict the long-term resource usage of a NIDS, again using Bro as an example. We
first aggregate the connection-level data into time-bins of length T , assigning attributes
reflecting each of the dimensions: TCP state, service, and duration. We distinguish be-
tween five TCP states (attempted, established, closed, half-closed, reset), and consider
40 services (one for each Bro application-layer analyzer, plus a few additional well-
known service ports, plus the service “other”). We discretize a connection’s duration D
by assigning it to a duration category C ← �log10D�. Finally, for each time-bin we
count the number of connections with the same attributes.

150 H. Dreger et al.

local time

C
P

U
 ti

m
e

pe
r

se
co

nd

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Tue 14:00 Tue 18:00 Tue 22:00 Wed 2:00 Wed 6:00 Wed 10:00

measured CPU time
predicted CPU time

Fig. 5. Measured CPU time vs. predicted CPU time with BROBASE

Simple CPU Time Projection. To illustrate how we then project performance, let
us first consider a simple case: the BROBASE configuration. As we have seen (§4),
for this configuration resource consumption directly scales with the total number of
connections. In Figure 5 we plot the actual per-second CPU consumption exhibited by
running BROBASE on the complete MWN-full trace (circles) versus the per-second
consumption projected by using connection logs plus an independent 20-minute trace
(crosses). We see that overall the predicted CPU time matches the variations in the
measured CPU time quite closely. The prediction even correctly accounts for many
of the outliers. However, in general the predicted times are somewhat lower than the
measured ones with a mean error of -25 msec of CPU time per second, and a mean
relative error of -9.0%.

CPU Time Projection for Complex Configurations. Let us now turn to predicting
performance for more complex configurations. We examine BROALL−, the BROALL

configuration except with ssl deactivated (since the analyzer occasionally crashes the
examined version of Bro in this environment). In this case, we group the connections
into several classes, as discussed above. To avoid introducing high-variance effects from
minimal samples, we discard any connections belonging to a service that comprises less
than 1% of the traffic. (See below for difficulties this can introduce.) We then predict
overall CPU time by applying our projection first individually to each analyzer and
for each combination of service and connection state, and then summing the predicted
CPU times for the base configuration and the predicted additional CPU times for the
individual analyzers.

Figure 6 shows the resulting predicted CPU times (crosses) and measured BROALL−

CPU times (circles). Note that this configuration is infeasible for a live setting, as the
required CPU regularly exceeds the machine’s processing capacity. We see, however,
that our prediction matches the measurement fairly well. However, we underestimate
some of the outliers with a mean error of -29 msec of CPU time and a mean relative
error of -4.6%. Note that the mean relative error is smaller than for predicting BROBASE

performance since the absolute numbers of the measured samples are larger for the
complex configuration.

Above we discussed how we only extrapolate CPU time for connections that con-
tribute a significant portion (> 1%) of the connections in our base measurement. Doing

Predicting the Resource Consumption of NIDSs 151

local time

C
P

U
 ti

m
e

pe
r

se
co

nd

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Tue 14:00 Tue 18:00 Tue 22:00 Wed 2:00 Wed 6:00 Wed 10:00

measured CPU time
predicted CPU time

Fig. 6. Measured CPU time vs. predicted CPU time with BROALL−

so can result in underestimation of CPU time when these connection types become
more prominent. For example, during our experiments we found that SSH and Telnet
connections did not occur frequently in the 20-minute trace on which the systematic
measurements are performed. Yet the long-term connection log contains sudden surges
of these connections (likely due to brute-force login attempts). nidsconf detects such
cases and reports a warning, but at this point it lacks sufficient data to predict the CPU
time usage, since it does not have an adequate sample in the trace from which to work.

Memory Projection. Our approach for predicting memory consumption is to derive
the number of active connections per class at any given time in the connection log, and
then extrapolate from this figure to the overall memory usage. However, Bro’s resource
profiling is not currently capable of reporting precise per-connection memory usage
for application-layer analyzers, so here we limit ourselves to predicting the number of
TCP connections in memory, rather than the actual memory consumption. To do so,
we draw upon the dimensions of connection duration and state. These two interplay
directly since Bro keeps its per connection state for the lifetime of the connection plus
a timeout that depends on the state. To determine the relevant timeout, we use the states
discussed above (attempted, established, etc.), binning connections into time intervals
of length T and then calculating their aggregate memory requirements.

However, a problem with this binning approach arises due to connections with dura-
tions shorter than the bin size (since we use bin sizes on the order of tens of seconds,
this holds for the majority of connections). Within a bin, we cannot tell how many of
these are concurrently active. Therefore, we refine our basic approach, as follows. We
pick a random point in the base trace and compute the average number N of short-lived
connections per second occurring in the trace up to that point. We also measure the
number F of these short-lived connections instantaneously in memory at the arbitrary
point. Let Ni be the number of short-lived connections per second for each bin i in the
connection log. Assuming that F is representative, we can then scale Ni/N by F to
estimate the number of short-lived connections concurrently active in each bin.

Figure 7 shows the results of our prediction for the number of established connec-
tions in memory (crosses) assuming Bro’s default inactivity timeout of 300s, along with
the the actual number of in-memory connections when running on MWN-full (circles).

152 H. Dreger et al.

local time

co

nn
ec

tio
ns

 in
 m

em
or

y

0
50

00
10

00
0

15
00

0

Tue 18:00 Wed 0:00 Wed 6:00 Wed 12:00

measured
predicted

Fig. 7. Predicted number of established connections in memory for MWN-full

We observe that the prediction matches the measurements well, with a mean relative er-
ror of +5.0%. While not shown on the plot, we obtain similar prediction results for other
classes of connections, e.g., unanswered connection attempts.

6 Related Work

Numerous studies in the literature investigate IDS detection quality, generally analyzing
the trade-off between false positives and false negatives. Some studies [6,4,5] take steps
towards analyzing how the detection quality and detection coverage depends on the cost
of the IDS configuration and the attacks the network experiences. Gaffney and Ulvila [4]
focus on the costs that result from erroneous detection, developing a model for finding
a suitable trade-off between false positives and false negatives dependent on the cost of
each type of failure. In contrast, Lee et al. [6,5] focus on developing and implementing
high-level cost models for operating an IDS, enabling dynamic adaptation of a NIDS’s
configuration to suit the current system load. The models take as input both metrics
of the benefits of a successful detection and (self-adapting) metrics reflecting the cost
of the detection. Such metrics may be hard to define for large network environments,
however. To adapt to the cost metrics, they monitor the performance of their prototype
systems (Bro and Snort) using a coarse-grained instrumentation of packet counts per
second. As was shown by Dreger et al. [3], this risks oversimplifying a complex NIDS.
While the basic idea of adapting NIDS configurations to system load is similar to ours,
we focus on predicting resource usage of the NIDS depending on both the network
traffic and the NIDS configuration.

In the area of general performance prediction and extrapolation of systems (not nec-
essarily NIDSs), three categories of work exam (i) performance on different hardware
platforms, (ii) distribution across multiple systems, and (iii) predicting system load.
These studies relate to ours in the sense that we use similar techniques for program de-
composition and for runtime extrapolation. We omit details of these here due to limited
space, but refer the reader to [2] for a detailed discussion. In contrast to this body of
work, our contributions are to predict performance for soft real-time systems, both at a
fine-grained resolution (prediction of “head room” for avoiding packet drops) and over

Predicting the Resource Consumption of NIDSs 153

long time scales (coupling a short, detailed trace with coarse-grained logs to extrapo-
late performance over hours or days), with an emphasis on memory and CPU trade-offs
available to an operator in terms of depth of analysis versus limited resources.

7 Conclusion

In this work we set out to understand and predict the resource requirements of net-
work intrusion detection systems. When initially installing such a system in a network
environment, the operator often must grapple with a large number of options to tune
trade-offs between detection rate versus CPU and memory consumption. The impact
of such parameters often proves difficult to predict, as it potentially depends to a large
degree on the internals of the NIDS’s implementation, as well as the specific charac-
teristics of the target environment. Because of this, the installation of a NIDS often
becomes a trial-and-error process that can consume weeks until finding a “sweet spot.”

We have developed a methodology to automatically derive NIDS configurations that
maximize the systems’ detection capabilities while keeping the resource load feasi-
ble. Our approach leverages the modularity likely present in a NIDS: while complex
systems, NIDSs tend to be structured as a set of subcomponents that work mostly inde-
pendently in terms of their resource consumption. Therefore, to understand the system
as a whole, we can decompose the NIDS into the main contributing components. As
our analysis of the open-source Bro NIDS shows, the resource requirements of these
subcomponents are often driven by relatively simple characteristics of their input, such
as number of packets or number and types of connections.

Leveraging this observation, we built a tool that derives realistic configurations for
Bro. Based on a short-term, full-packet trace coupled with a longer-term, flow-level
trace—both recorded in the target environment—the tool first models the resource usage
of the individual subcomponents of the NIDS. It then simulates different configurations
by adding together the contributions of the relevant subcomponents to predict configu-
rations whose execution will remain within the limits of the resources specified by the
operator. The operator can then choose among the feasible configurations according to
the priorities established for the monitoring environment. While no automatically gen-
erated configuration can be optimal, these provide a sound starting point, with promise
to significantly reduce the traditional trial-and-error NIDS installation cycle.

Acknowledgments

We would like to thank Christian Kreibich for his feedback and the fruitful discussions
that greatly helped to improve this work. We would also like to thank the Leibnitz-
Rechenzentrum München. This work was supported by a grant from the Bavaria Cal-
ifornia Technology Center, and by the US National Science Foundation under awards
STI-0334088, NSF-0433702, and ITR/ANI-0205519, for which we are grateful. Any
opinions, findings, conclusions or recommendations expressed in this material are those
of the authors or originators and do not necessarily reflect the views of the National Sci-
ence Foundation.

154 H. Dreger et al.

References

1. Dharmapurikar, S., Paxson, V.: Robust TCP Stream Reassembly In the Presence of Adver-
saries. In: Proc. USENIX Security Symposium (2005)

2. Dreger, H.: Operational Network Intrusion Detection: Resource-Analysis Tradeoffs.
PhD thesis, TU München (2007), http://www.net.in.tum.de/∼hdreger/
papers/thesis dreger.pdf

3. Dreger, H., Feldmann, A., Paxson, V., Sommer, R.: Operational Experiences with High-
Volume Network Intrusion Detection. In: Proc. ACM Conference on Computer and Com-
munications Security (2004)

4. Gaffney Jr., J.E., Ulvila, J.W.: Evaluation of Intrusion Detectors: A Decision Theory Ap-
proach. In: Proc. IEEE Symposium on Security and Privacy (2001)

5. Lee, W., Cabrera, J.B., Thomas, A., Balwalli, N., Saluja, S., Zhang, Y.: Performance Adap-
tation in Real-Time Intrusion Detection Systems. In: Proc. Symposium on Recent Advances
in Intrusion Detection (2002)

6. Lee, W., Fan, W., Miller, M., Stolfo, S.J., Zadok, E.: Toward Cost-sensitive Modeling for
Intrusion Detection and Response. Journal of Computer Security 10(1-2), 5–22 (2002)

7. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. Computer Net-
works 31(23–24), 2435–2463 (1999)

8. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: Proc. Systems Admin-
istration Conference (1999)

9. Schneider, F., Wallerich, J., Feldmann, A.: Packet Capture in 10-Gigabit Ethernet Environ-
ments Using Contemporary Commodity Hardware. In: Proc. Passive and Active Measure-
ment Conference (2007)

10. tcp-reduce, http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html
11. Vallentin, M., Sommer, R., Lee, J., Leres, C., Paxson, V., Tierney, B.: The NIDS Cluster:

Scalable, Stateful Network Intrusion Detection on Commodity Hardware. In: Proc. Sympo-
sium on Recent Advances in Intrusion Detection (2007)

12. Willinger, W., Taqqu, M.S., Sherman, R., Wilson, D.V.: Self-Similarity Through High-
Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. IEEE/ACM
Transactions on Networking 5(1) (1997)

http://www.net.in.tum.de/~hdreger/
papers/thesis_dreger.pdf
http://ita.ee.lbl.gov/html/contrib/tcp-reduce.html

High-Speed Matching of Vulnerability Signatures

Nabil Schear1, David R. Albrecht2, and Nikita Borisov2

1 Department of Computer Science
2 Department of Electrical and Computer Engineering

University of Illinois at Urbana–Champaign
{nschear2,dalbrech,nikita}@uiuc.edu

Abstract. Vulnerability signatures offer better precision and flexibility than ex-
ploit signatures when detecting network attacks. We show that it is possible to
detect vulnerability signatures in high-performance network intrusion detection
systems, by developing a matching architecture that is specialized to the task of
vulnerability signatures. Our architecture is based upon: i) the use of high-speed
pattern matchers, together with control logic, instead of recursive parsing, ii) the
limited nature and careful management of implicit state, and iii) the ability to
avoid parsing large fragments of the message not relevant to a vulnerability.

We have built a prototype implementation of our architecture and vulnerabil-
ity specification language, called VESPA, capable of detecting vulnerabilities in
both text and binary protocols. We show that, compared to full protocol pars-
ing, we can achieve 3x or better speedup, and thus detect vulnerabilities in most
protocols at a speed of 1 Gbps or more. Our architecture is also well-adapted to
being integrated with network processors or other special-purpose hardware. We
show that for text protocols, pattern matching dominates our workload and great
performance improvements can result from hardware acceleration.

1 Introduction

Detecting and preventing attacks is a critical aspect of network security. The dominant
paradigm in network intrusion detection systems (NIDS) has been the exploit signature,
which recognizes a particular pattern of misuse (an exploit). An alternative approach is
to use a vulnerability signature, which describes the class of messages that trigger a
vulnerability on the end system, based on the behavior of the application. Vulnerability
signatures are exploit-generic, as they focus on how the end host interprets the message,
rather than how the particular exploit works, and thus can recognize polymorphic and
copycat exploits.

Exploit signatures are represented using byte-string patterns or regular expressions.
Vulnerability signatures, on the other hand, usually employ protocol parsing to recover
the semantic content of the communication and then decide whether it triggers a vulner-
ability. The semantic modeling allows vulnerability signatures to be both more general
and more precise than exploit signatures. However, this comes at a high performance
cost. To date, vulnerability signatures have only been considered for user on end hosts,
severely limiting their deployment.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 155–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 N. Schear, D.R. Albrecht, and N. Borisov

In our work, we observe that full and generic protocol parsing is not necessary for
detecting vulnerability signatures. Using custom-built, hand-coded vulnerability signa-
ture recognizers, we show that these signatures can be detected 3 to 37 times faster than
the speed of full protocol parsing. Therefore, there is no inherent performance penalty
for using vulnerability signatures instead of exploit signatures.

Motivated by this, we design an architecture, called VESPA1, for matching vulner-
ability signatures at speeds adequate for a high-performance enterprise NIDS, around
1 Gbps. We build our architecture on a foundation of fast string and pattern matchers,
connected with control logic. This allows us to do deep packet inspection and model
complex behavior, while maintaining high performance. We also minimize the amount
of implicit state maintained by the parser. By avoiding full, in-memory semantic rep-
resentation of the message, we eliminate much of the cost of generic protocol parsing.
Finally, in many cases we are able to eliminate the recursive nature of protocol analysis,
allowing us to skip analysis of large subsections of the message.

We have implemented a prototype of VESPA; tests show that it matches vulnerability
signatures about three times faster than equivalent full-protocol parsing, as implemented
in binpac [1]. Our architecture matches most protocols in software at speeds greater
than 1 Gbps. Further, we show that our text protocol parsing is dominated by string
matching, suggesting that special-purpose hardware for pattern matching would permit
parsing text protocols at much higher speeds. Our binary protocol parsing is also well-
adapted to hardware-aided implementation, as our careful state management fits well
with the constrained memory architectures of network processors.

The rest of this paper is organized as follows: Section 2 gives some background
on vulnerability signatures and discusses the context of our work. Sections 3 and 4
describe the design of VESPA and the vulnerability signature language. We present
the implementation details of VESPA in Section 5. Section 6 contains a performance
evaluation of our prototype. We discuss some future directions in Section 7 and related
work in Section 8. Finally, Section 9 concludes.

2 Background

2.1 Vulnerability Signatures

Vulnerability signatures were originally proposed by Wang et al. [2] as an alternative to
traditional, exploit-based signatures. While exploit signatures describe the properties of
the exploit, vulnerability signatures describe how the vulnerability gets triggered in an
application. Consider the following exploit signature for Code Red [3]:

urlcontent:"ida?NNNNNNNNNNNN..."

The signature describes how the exploit operates: it uses the ISAPI interface (invoked
for files with extension “.ida”) and inserts a long string of N’s, leading to a buffer over-
flow. While effective against Code Red, this signature would not match Code Red II [4];
that variant used X’s in place of the N’s. A vulnerability signature, on the other hand,
does not specify how the worm works, but rather how the application-level vulnerability
is triggered. An extract from the CodeRed signature in Shield [2] is:

1 VulnErability Signature Parsing Architecture.

High-Speed Matching of Vulnerability Signatures 157

c = MATCH_STR_LEN(>>P_Get_Request.URI,"id[aq]\?(.*)$",limit);
IF (c > limit)

Exploit!

This signature captures any request that overflows the ISAPI buffer, making it effec-
tive against Code Red, Code Red II, and any other worm or attack that exploits the
ISAPI buffer overflow. In fact, this signature could well have been written before the
release of either of the Code Red worms, as the vulnerability in the ISAPI was pub-
lished a month earlier [5]. Thus, while exploit signatures are reactive, vulnerability
signatures can proactively protect systems with known vulnerabilities until they are
patched (which can take weeks or months [6]).

2.2 Protocol Parsing

Traditionally, exploit signatures are specified as strings or regular expressions. Vulnera-
bility signatures, on the other hand, involve some amount of protocol parsing. Shield [2]
used a language for describing C-like binary structures, and an extension for parsing text
protocols. The follow-on project, GAPA [7], designed a generic application-level pro-
tocol analyzer to be used for matching vulnerability signatures. GAPA represented both
binary and text protocols using a recursive grammar with embedded code statements.
The generated GAPA parser, when guided by code statements, performed context-
sensitive parsing. GAPA aimed to provide an easy-to-use and safe way to specify pro-
tocols and corresponding vulnerabilities.

Binpac [1], another protocol parser, was designed to be used in the Bro intrusion
detection system [8]. Binpac is similar to GAPA: both use a recursive grammar and
embedded code for parsing network protocols, and both are intended to minimize the
risks of protocol parsing. Binpac, however, is designed only for parsing, with other
parts of Bro performing checks for alarms or vulnerabilities. Binpac uses C++ for its
embedded code blocks, and compiles the entire parser to C++ (similar to yacc), whereas
GAPA uses a restricted, memory-safe interpreted language capable of being proven free
of infinite loops. Binpac trades some of GAPA’s safety for parsing speed; consequently,
it achieves speeds comparable to hand-coded parsers written for Bro.

Since the implementation of GAPA is not freely available, we use binpac as our
prototypical generic protocol parser generator in comparing to our work. Binpac is sig-
nificantly faster than GAPA, yet it is not able to parse many protocols at speeds of 1
Gbps (though sparing use of binpac, where most data passing through the NIDS is not
analyzed, can be supported.)

2.3 Vulnerability Complexity

Although Shield and GAPA used protocol parsing for vulnerability signatures, Brum-
ley et al. suggest that vulnerability signatures could be represented across a spectrum
of complexity classes [9]. They consider the classes of regular expressions, constraint
satisfaction languages, and Turing machines, and provide algorithms to derive auto-
matic vulnerability signatures of each class. As increasingly complex specifications of
signatures are used, the precision of signature matching improves.

158 N. Schear, D.R. Albrecht, and N. Borisov

We make a different observation: most vulnerability signatures can be matched pre-
cisely without full protocol parsing. And such precise matching can be carried out at
much greater speeds. In Table 1, we compare the performance of binpac to hand-coded
implementations of several vulnerability signatures. We wrote the hand-coded imple-
mentations in C and designed them to match one specific vulnerability only. These
would fall into the Turing machine class according to Brumley et al., but they are opti-
mized for speed. Notice that the hand-coded implementations operate about 3x to 37x
faster than equivalent binpac implementation.

Table 1. The throughput (Mbits/s) of binpac parsers vs. hand-coded vulnerability matchers

Protocol binpac hand-coded

CUPS/HTTP 5,414 20,340
DNS 71 2,647
IPP 809 7,601
WMF 610 14,013

To see why this is the case, consider the following CUPS vulnerability (CVE-2002-
1368 [10]). CUPS processes the IPP protocol, which sends messages embedded inside
HTTP requests. CUPS would crash if a negative Content-Length were specified, pre-
senting a denial-of-service opportunity. Our binpac implementation to check for this
vulnerability is based on the binpac HTTP specification, which parses the HTTP header
into name–value pairs. We add a constraint that looks for header names that match
Content-Length and verifies that a non-negative value is used. Our hand-coded imple-
mentation, on the other hand, is built upon an Aho–Corasick [11] multi-string matcher,
which looks for the strings “Content-Length:” and “\r\n\r\n” (the latter indicating
the end of the headers). If “Content-Length:” is found, the following string is parsed
as an integer and checked for being non-negative.

The parsers operate with equal precision when identifying the vulnerability, yet the
hand-coded approach performs much less work per message, and runs more than 3 times
as quickly. Of course, not all vulnerabilities can be matched with a simple string search.
However, what this vulnerability demonstrates is that an efficient vulnerability signa-
ture matching architecture must be able to handle such simple vulnerabilities quickly,
rather than using heavy-weight parsing for all vulnerabilities, regardless of complexity.
The architecture will surely need to support more complex constructs as well, but they
should only be used when necessary, rather than all the time. We next present a new
architecture for specifying and matching vulnerability signatures that follows this prin-
ciple. Our architecture shares some of the goals of binpac and GAPA; however, it puts
a stronger focus on performance, rather than generality (GAPA) or ease-of-authoring
(binpac).

3 Design

To make vulnerability signatures practical for use in network intrusion detection sys-
tems, we developed VESPA, an efficient vulnerability specification and matching

High-Speed Matching of Vulnerability Signatures 159

architecture. The processes of writing a protocol specification and writing a vulnera-
bility signature are coupled to allow the parser generator to perform optimizations on
the generated code that specialize it for the vulnerabilities the author wishes to match.

Our system is based on the following design principles:

– Use of fast matching primitives
– Explicit state management
– Avoiding parsing of irrelevant message parts

Since text and binary protocols require different parsing approaches, we describe
our design of each type of parser and how we apply the design principles listed above.
We first give a brief outline of how the system works, and then go into detail in the
subsequent sections on how our approach works.

We use fast matching primitives—string matching, pattern matching (regular ex-
pressions), and binary traversal—that may be easily offloaded to hardware. The signa-
ture author specifies a number of matcher primitive entries, which correspond to fields
needed by the signature to evaluate the vulnerability constraint. Each matcher contains
embedded code which allows the matching engine to automatically extract a value from
the result of the match. For example, the HTTP specification includes a string matcher
for “Content-Length:”, which has an extraction function that converts the string rep-
resentation of the following number to a integer.

Along with each matcher, the author also specifies a handler function that will be
executed following the extraction. The handlers allow the signature author to model
the protocol state machine and enable additional matchers. For example, if a matcher
discovers that an HTTP request message contains the POST command, it will in turn
enable a matcher to parse and extract the message body. We also allow the author to
define handlers that are called when an entire message has been matched.

The author checks vulnerability constraints inside the handler functions. Therefore
constraint evaluation can be at the field level, intra-message level, and inter-message
level. Depending on the complexity of the vulnerability signature, the author can choose
where to evaluate the constraint most efficiently.

3.1 Text Protocols

We found that full recursive parsing of text protocols is both too slow and unnecessary
for detecting vulnerabilities. However, simple string or regular expression matching
is often insufficient to express a vulnerability constraint precisely in cases where the
vulnerability depends on some protocol context. In our system, we combine the benefits
of the two approaches by connecting multiple string and pattern matching primitives
with control logic specialized to the protocol.

Matching Primitives. To make our design amenable to hardware acceleration we
built it around simple matching primitives. At the core, we use a fast multi-string
matching algorithm. This allows us to approximate the performance of simple pattern-
based IDSes for simple vulnerability signatures. Since our system does not depend on
any specific string matching algorithm, we have identified several well-studied algo-
rithms [11,12] and hardware optimizations [13] that could be employed by our system.

160 N. Schear, D.R. Albrecht, and N. Borisov

Furthermore, hardware-accelerated regular expression matching is also becoming a re-
ality [14]. As discussed later, this would further enhance the signature author’s ability
to locate protocol fields.

Minimal Parsing and State Managment. We have found that protocol fields can be
divided into two categories: core fields, which define the structure and semantics of
the protocol, and application fields, which have meaning to the application, but are
not necessary to understand the rest of the message. An example of a core field is
the Content-Length in HTTP, as it determines the size of the message body that fol-
lows in the protocol, whereas a field such as Accept-Charset is only relevant to the
application.

Our approach in writing vulnerability signatures is to parse and store only the core
fields, and the application fields relevant to the vulnerability, while skipping the rest.
This allows us to avoid storing irrelevant fields, focusing our resources on those fields
that are absolutely necessary.

Although many text protocols are defined in RFCs using a recursive BNF grammar,
we find that protocols often use techniques that make identification of core fields possi-
ble without resorting to a recursive parse. For example, HTTP headers are specified on
a separate line; as a result, a particular header can be located within a message by a sim-
ple string search. Header fields that are not relevant to a vulnerability will be skipped by
the multi-string matcher, without involving the rest of the parser. Other text protocols
follow a similar structure; for example, SMTP uses labeled commands such as “MAIL
FROM” and “RCPT TO”, which can readily be identified in the message stream.

3.2 Binary Protocols

While some of the techniques we use for text protocol parsing apply to binary protocols
as well, binary protocols pose special challenges that must be handled differently from
text.

Matching Primitives. Unlike text protocols, binary protocols often lack explicit field
labeling. Instead, a parser infers the meaning of a field from its position in the message—
relative to either the message start, or to other fields. In simple cases, the parser can
use fixed offsets to find fields. In more complicated cases, the position of a field varies
based on inter-field dependencies (e.g., variable-length data, where the starting offset
of a field in a message varies based on the length of earlier fields), making parsing data-
dependent. Thus, parsers must often traverse many or all of the preceding fields. This
is still simpler than a full parse, since the parser only examines the lengths and values
of structure-dependent fields.

Since binary protocols are more heavily structured than text protocols, we need a
matching primitive that is sufficiently aware of this structure while still maintaining
high performance. We call this type of parser a binary traverser.

Designing an efficient binary protocol traverser is difficult because binary protocol
designs do not adhere to any common standard. In our study of many common binary
protocols, we found that they most often utilize the following constructs: C structures,

High-Speed Matching of Vulnerability Signatures 161

arrays, length-prefixed buffers, sentinel-terminated buffers, and field-driven case evalu-
ation (switch). The binpac protocol parser generator uses variations on these constructs
as building blocks for creating a protocol parser. We found binpac to have sufficient
expressive power to generate parsers for complex binary protocols. However, binpac
parsers perform a full protocol parse rather than a simple binary traversal, so we use a
modification to improve their performance.

Minimal Parsing and State Management. We reduced overhead of original binpac
parsers for state management and skipped parsing unimportant fields. Because binpac
carefully separates the duties of the protocol parser and the traffic analysis system which
uses it, we were able to port binpac specifications written for the Bro IDS to our sys-
tem. We retain the protocol semantics and structure written in the Bro versions but use
our own system for managing state and expressing constraints. While we feel that ad-
ditional improvements may be made in generating fast binary traversers, we were able
to obtain substantial improvements in the performance of binpac by optimizing it to the
task of traversal rather than full parsing. Furthermore, the binpac language provides ex-
ceptional expressiveness for a wide range of protocols, allowing our system to be more
easily deployed on new protocols.

3.3 Discussion

By flattening the protocol structure, we can ignore any part of a message which does not
directly influence properly processing the message or matching a specific vulnerability.
However, some protocols are heavily recursive and may not be flattened completely
without significantly reducing match precision. We argue that it is rarely necessary to
understand and parse each and every field and structural construct of a protocol mes-
sage to match a vulnerability. Consider an XML vulnerability in the skin processing of
Trillian (CVE-2002-2366 [10]). An attacker may gain control of the program by passing
an over-length string in a file attribute, leading to a traditional buffer overflow. Only
the file attribute, in the prefs/control/colors entity can trigger the vulnerability,
while instances of file in other entities are not vulnerable. To match this vulnerability
with our system, the signature author can use a minimal recursive parser which only
tracks entity open and close tags. The matcher can use a stack of currently open tags
to tell whether it is in the prefs/control/colors entity and match file attributes
which will cause the buffer overflow. The generated parser is recursive but only for the
specific fields that are needed to match the vulnerability. This type of signature is a
middle-ground for our system—it will provide higher performance than a full parser
while requiring the user to manipulate more state than a simpler vulnerability.

In rare cases it may be necessary to do full protocol parsing to properly match a
vulnerability signature. While our system is designed to enhance the performance of
simpler vulnerability signatures, it is still able to generate high-performance full recur-
sive parsers. The drawback to our approach versus binpac or GAPA in this situation is
that the user must manage the parser state manually, which may be error prone.

We do not yet address the problem of protocol detection. However, our system can
be integrated with prior work [15] in an earlier stage of the intrusion detection system.

162 N. Schear, D.R. Albrecht, and N. Borisov

1 parser HTTP Request {
2 d i s p a t c h () %{ d e p l o y (v e r s) ; d e p l o y (i s p o s t) ; d e p l o y (c r l f) ; }%
3
4 i n t v e r s = s tr matcher "HTTP/1."
5 handler h a n d l e v e r s ()
6 %{ end = n e x t w h i t e s p a c e (r e s t) ;
7 v e r s = s t r t o i n t (r e s t , end) ; }%
8
9 h a n d l e v e r s () %{ / / hand le d i f f e r e n t l y depend ing on v e r s i o n . . . }%

10
11 boo l i s p o s t = s tr matcher "POST"
12 handler h a n d l e p o s t ()
13 %{ i s p o s t = t r u e ; }%
14
15 h a n d l e p o s t () %{ i f (i s p o s t) { d e p l o y (c o n t e n t l e n g t h) ; } }%
16
17 i n t c o n t e n t l e n g t h = s tr matcher "Content -Length:"
18 handler h a n d l e c l ()
19 %{ end = n e x t l i n e (r e s t) ;
20 c o n t e n t l e n g t h = s t r t o i n t (r e s t , end) ; }%
21
22 h a n d l e c l () %{ i f (t h i s −>c o n t e n t l e n g t h < 0) { / / EXPLOIT ! }
23 e l s e { d e p l o y (body) ; } }%
24
25 boo l c r l f = s tr matcher "\r\n\r\n" | | "\n\n"
26 %{ / / do n o t h i n g e x p l i c i t he r e }%
27
28 Bu f fe r body = extended matcher c r l f
29 handler h a n d l e b o dy ()
30 %{ body = Bu f fe r (r e s t , t h i s −>c o n t e n t l e n g t h) ;
31 s topMach ine () ; }%
32
33 h a n d l e b o dy () %{ / / p r o c e s s body u s i n g a n o t h e r l a y e r }%
34 }

Fig. 1. Sample Specification for HTTP Requests (simplified)

Furthermore, the high-speed matching primitives used by VESPA may also be used to
match protocol detection signatures.

4 Language

We have developed a vulnerability signature expression language for use with our sys-
tem. We give an example vulnerability specification for the CUPS negative content
length vulnerability in Figure 1.

Writing a signature involves specifying the matchers for the core fields of the pro-
tocol message and then specifying additional matchers to locate the vulnerability. We
specify a single protocol message using a parser type. The code generator maps this
message parser to a C++ class that will contain each state field as a member variable.
Inside a message parser, the vulnerability signature author defines handler function
declarations and field variable declarations with matching primitives. The author can
specify additional member variables that are not directly associated with a matcher us-
ing member vars %{ ... }%.

Each underlying matching primitive always searches for all the requested strings
and fields with which the matcher is initialized. For example, an HTTP matcher might

High-Speed Matching of Vulnerability Signatures 163

search for “Content-Type:” in a message even though this string should only be ex-
pected in certain cases. This allows the primitive matcher to run in parallel with the
state machine and constraint evaluation, though we have not yet implemented this. It
also prevents the matching primitives from needing to back up to parse a newly de-
sired field. We provide a utility for keeping track of which fields the matcher should
expect and perform extraction and which to ignore. This state is controlled using the
deploy(var) function. This function may be called from any handler function, and
initially by the dispatch function. deploy marks a variable as expected in a state mask
stored inside the parser. This will cause the matcher to execute the variable extraction
function and handler when it is matched. A handler function may in turn enable ad-
ditional matchers (including re-enabling itself) using the deploy function. The parser
ignores any primitive match that is not set to be active using deploy.

The parser automatically calls the dispatch function each time the parser starts
parsing a new protocol message. This allows the author to define which fields should
be matched from the start of parsing. It also allows the initialization of member vari-
ables created using member vars. Conversely, the parser automatically calls destroy
to allow any resources allocated in dispatch to be freed.

4.1 Matcher Primitives

Protocol fields and matcher primitives are the heart of a vulnerability specification. The
format of matcher primitive specification is:

var_type symbol = matching_primitive meta-data
handler handler_func_name()
%{

// embedded C++ code to extract the value
}%

The var type specifies the storage type of the field; e.g., uint32. The symbol is the
name of the field that will be stored as a member of the C++ parser class. There are
three types of matching primitives.

1. str matcher (string matcher primitive): The meta-data passed to this matcher are a
string or sequence of strings separated by ||, and this instructs the underlying multi-
string matching engine to match this string and then execute its extraction function.
It supports matching multiple different strings that are semantically identical using
or (“||”).

2. bin matcher (binary traversal primitive): The meta-data passed to this matcher are
the file name of a binpac specification. This is followed by a colon and the name of a
binpac record type. The meta-data end with the name of a field inside that record
that the author wishes to extract (e.g., IPP.binpac: IPP Message.version num). The
generated binpac parser will then call back to our system to perform the extraction
and run the handler for the requested field.

3. extended matcher (extension to another matcher): This construct allows us to
perform additional extractions after matching a single string or binary field. This is
often useful when multiple fields are embedded after a single match. It also allows

164 N. Schear, D.R. Albrecht, and N. Borisov

the author to specify a different extraction function depending on which state is
expected. The meta-data passed to this primitive are the name of another variable
that uses a standard matching primitive.

Each variable match also specifies an extraction function within braces, %{ and }%,
which extracts a relevant field from the message. We have provided a number of helper
functions that the author can use in the extraction function, such as string conversion
and white space elimination. In a string matcher extraction function, there are two pre-
defined variables the signature author can use and modify: rest and end. The rest
variable points to the first byte of input after the string that was matched. The parser also
defines end, which allows the extraction function to store where the extraction ends. Ex-
tended matchers run immediately following the extraction function of the string matcher
on which they depend and in the same context. Hence, any changes to the state of rest
and end should be carefully accounted for in extended matcher extraction functions.

There are two additional functions that the author can use inside the extraction func-
tion of a string matcher: stopMachine() and restartMachine(ptr). These func-
tions suspend and restart pattern matching on the input file. This is useful, for example,
to prevent the system from matching spurious strings inside the body of an HTTP mes-
sage. The restartMachine(ptr) function restarts the pattern matching at a new offset
specified by ptr. This allows the matcher to skip portions of the message.

4.2 Handlers

Each matcher may also have an associated handler function. The handler function is
executed after the extraction and only if the matcher is set to be active with deploy. The
signature author defines the body of the handler function using C++ code. In addition
to calling the deploy function, handler bodies are where vulnerability constraints can
be expressed. We do not yet address the reporting mechanism when a vulnerability is
matched. However, since any C++ code may be in the handler, the author may use a
variety of methods, such as exceptions or integer codes. The author may also use the
handler functions to pass portions of a protocol message to another parser to implement
layering and encapsulation.

While structurally different from existing protocol parser generators like GAPA and
binpac, our language is sufficiently expressive to model many text and binary protocols
and vulnerabilities. Porting a protocol specification from an RFC or an existing spec
in another language (like binpac or GAPA) is fairly straightforward once the author
understands the protocol semantics.

5 Implementation

5.1 Compiler

We designed a compiler to generate machine-executable vulnerability signature match-
ers from our language. We implemented the compiler using the Perl programming lan-
guage. Our implementation leverages the “Higher Order Perl” [16] Lexer and Parser
classes, which kept down the implementation complexity: the entire compiler is 600

High-Speed Matching of Vulnerability Signatures 165

lines. Approximately 70% of the compiler code specifies the lexical and grammatical
structures of our language; the balance performs symbol rewriting, I/O stream manage-
ment, and boilerplate C++ syntax.

Our compiler operates on a single parser file (e.g., myparser.p), which defines a
signature matcher. The generated code is a C++ class which extends one of the parser
super classes. The class definition consists of two files (following the example above,
myparser.h and myparser.cc), which jointly specify the generated parser subclass.

5.2 Parser Classes

Generated C++ classes for both binary and text parsers are structurally very similar, but
differ in how they interface with the matching primitives. We have optimized the layout
and performance of this code. We use inlined functions and code whenever possible.
Many extraction helper functions are actually macros to reduce unnecessary function
call overhead. We store the expected state set with deploy using a bit vector.

For string matchers, we use the sfutil library from Snort [17], which efficiently imple-
ments the Aho–Corasick (AC) algorithm [11]. Because the construction of a keyword
trie for the AC algorithm can be time-consuming, we generate a separate reusable class
which contains the pre-built AC trie. Our text matcher is not strongly tied to this par-
ticular multi-string matching implementation, and we have also prototyped it with the
libSpare AC implementation [18].

We use binpac to generate a binary traverser for our parsers. As input, the com-
piler expects a binpac specification for the binary protocol. This should include all the
record types in the protocol as well as the basic analyzer, connection, and flow
binpac types. We then use the refine feature of binpac to embed the extraction func-
tions and callbacks to our parser. Since binpac does simple extractions automatically,
it is often unnecessary to write additional code that processes the field before it is as-
signed. Like the AC algorithm for text parsers, the binary parser is not heavily tied to the
binary traversal algorithm or implementation. For a few protocols, we have developed
hand-coded replacements for binpac binary traversal.

5.3 Binary Traversal-Optimized Binpac

We have made several modifications to the binpac parser generator to improve its per-
formance for binary traversal. The primary enhancement we made is to change the
default model for the in-memory structures binpac keeps while parsing. The original
binpac allocated a C++ class for each non-primitive type it encountered while parsing.
This resulted in an excessive number of calls to new, even for small messages. To alle-
viate this problem, we changed the default behavior of binpac to force all non-primitive
types to be pre-allocated in one object. We use the datauint type in binpac to store
all the possible subtypes that binpac might encounter. To preserve binpac semantics,
we added a new function, init(params...), to each non-primitive type in binpac.
The init function contains the same code as the constructor, and we call it wherever a
new object would have been created. It also accepts any arguments that the constructor
takes to allow fields to be propagated from one object to another. We restrict binpac
specifications to be able to pass only primitive types from object to object. While this

166 N. Schear, D.R. Albrecht, and N. Borisov

reduces our compatibility with existing binpac specifications, it is easy to change them
to support this limitation.

Some objects in binpac must be specified using a pointer to a dynamically created
object and cannot be pre-allocated. For example, in the Bro DNS binpac specification,
a DNS name is composed of DNS labels. A DNS label type also contains a DNS name
object if the label is a pointer to another name. This circular dependency is not possible
with statically sized classes. We added the &pointer attribute modifier to the binpac
language to allow the author to specifically mark objects that must be dynamically
allocated.

The final modification we made to binpac was to change the way that it handled
arrays of objects. The original version of binpac created a vector for each array and
stored each element separately. Because binary traversal only needs to access the data
as it is being parsed, we do not need to store the entire array, only the current element.
We eliminated the vector types entirely and changed binpac to only store the current
element in the array using a pre-allocated object. If the author needs to store data from
each element in the array, he must explicitly store it outside of binpac in the VESPA
parser class using a handler function.

6 Evaluation

We evaluated VESPA with vulnerabilities in both text and binary protocols. We imple-
mented matchers for vulnerabilities in the HTTP, DNS, and IPP protocols. We searched
for exploitable bugs in network-facing code, focusing especially on scenarios where
traditional exploit signatures would fail. Like Cui et al. did with GAPA [19], we found
the process of writing a vulnerability signature for a protocol very similar to writing one
for a file format. Thus, we used our system develop to a binary parser for the Windows
Meta-file Format (WMF).

We ran all our experiments on an Ubuntu 7.10 Linux (2.6.22-14-x86 64) system with
a dual-core 2.6 GHz AMD Athlon 64 processor and 4GB of RAM (our implementation
is single-threaded so we only utilized one core). We ran the tests on HTTP and DNS on
traces of real traffic collected from the UIUC Coordinated Science Laboratory network.
We collected WMF files from freely available clipart websites. Since we did not have
access to large volumes of IPP traffic, we tested using a small set of representative
messages. We repeated the trace tests 10 times, and we repeated processing the IPP
messages 1 million times to normalize any system timing perturbations. We show the
standard deviation of these runs using error bars in the charts.

6.1 Micro-benchmarks of Matching Primitives

To evaluate the performance of using fast string matching primitives, we implemented
our parser using two different implementations of the Aho–Corasick (AC) algorithm
and compared their performance (Figure 2a). We used the sfutil library, which is part
of the Snort IDS [17], and the Spare Parts implementation of AC [18]. We used those
base implementations to search for the same strings as our vulnerability matcher does,
but without any of the control logic or constraint checking. We found that for either AC

High-Speed Matching of Vulnerability Signatures 167

implementation, the performance of a basic HTTP vulnerability matcher (which handles
optional bodies and chunking) was very close to that of the string matching primitive.

The performance of string matching alone approximates (generously) the perfor-
mance of a simple pattern-based IDS. If the vulnerability signature is simple enough
to be expressed using a simple string match (e.g., the IPP vulnerability for a negative
Content-Length), our system is able to match it with comparable performance to a
pattern based IDS.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

Snort SpareParts

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

VESPA
string matching alone

(a) Comparison between string matching
primitive and parsing for HTTP requests

Parser Type Bytes
allocated

Num calls
to new

DNS (binpac) 15,812 539
DNS (traversal) 2,296 14

IPP (binpac) 1,360 33
IPP (traversal) 432 6

WMF (binpac) 3,824 94
WMF (traversal) 312 6

(b) Dynamic memory usage for a sin-
gle message for standard binpac
vs. binary traversal

Fig. 2. Micro-benchmarks

We next investigated the performance of binary traversal in binpac. One of the pri-
mary changes we made to binpac was to change its default memory and allocation
behavior. We instrumented the original version of binpac and a parser built with our bi-
nary traversal-optimized version to assess the effectiveness of this change (Figure 2b).
We saw an overall reduction in memory usage despite pre-allocating types that may
not be present in the message. We were also able to cut the number of calls to new by
a substantial factor for all three binary protocols we implemented. Our IPP and WMF
traversers do not contain any explicit pointer types (specified with &pointer), so the
number of allocated blocks is constant for any protocol message. The number of times
the DNS parser calls the new allocator is proportional to the number of name pointers
in the message.

6.2 Signature Matching Performance

We evaluated the throughput of our vulnerability signature matching algorithms com-
pared to the binpac parser generator. Binpac is the most efficient freely available au-
tomated protocol parser generator. We do not evaluate against GAPA because it has
not been publicly released. Furthermore, binpac far exceeds GAPA in performance be-
cause it directly generates machine code rather than being interpreted [1]. Since binpac is
not specifically designed for vulnerability signatures, we added vulnerability constraint
checking to the binpac protocol specifications. In each of the following sections we de-
scribe the protocol and vulnerabilities we tested against. We show the results in Figure 3.

168 N. Schear, D.R. Albrecht, and N. Borisov

HTTP/IPP. The Common Unix Printing System (CUPS), with its protocol encapsula-
tion and chunk-capable HTTP parser, illustrates several design choices which confound
exploit-signature writers. The vulnerability given in CVE-2002-0063 [10] occurs be-
cause of the way the Internet Printing Protocol (IPP) specifies a series of textual key–
value pairs, called attributes. The protocol allows attribute lengths to vary, requiring the
sender to use a 16-bit unsigned integer to specify the length of each attribute. CUPS
reads the specified number of bytes into a buffer on the stack, but the buffer is only
8192 bytes long, allowing an attacker to overflow the buffer and execute arbitrary code
with the permissions of the CUPS process. A signature for this attack must check that
each attribute length is less than 8192. IPP is a binary protocol but it is encapsulated
inside of chunked HTTP for transport. Attackers can obfuscate the exploit by splitting
it across an arbitrary number of HTTP chunks, making it very hard to detect this attack
with pattern-based signatures. We also tested the negative content length vulnerability
that we have discussed previously.

We designed a text-based vulnerability signature matcher for HTTP. In addition to
vulnerabilities in HTTP itself, many protocols and file formats which are encapsulated
inside of HTTP also have vulnerabilities. We use VESPA to match the Content-Length
vulnerability in CUPS/IPP, as well as to extract the body of the message to pass it to an-
other layer for processing. We support standard and chunked message bodies and pass
them to a null processing layer. Unfortunately, we were unable to make a direct compar-
ison to binpac for chunked HTTP messages due to a bug in binpac’s buffering system:
binpac will handle such a message but fail to extract data from each individual chunk.
Despite this, we found that VESPA was considerably faster than the equivalent binpac
parser. Since much of the HTTP message body is ignored by both VESPA and binpac,
the throughputs we observed are very high because the size of the body contributes to
the overall number of bytes processed. We also measured the message processing rates
for various types of HTTP messages and found them to be adequate to process the traffic
of a busy website (Table 2).

We implemented a binary IPP vulnerability matcher to be used in conjunction with
our HTTP parser. The VESPA IPP matcher ran four times as fast as the binpac ver-
sion, largely due to the improved state management techniques we described earlier.
We also developed a hand-coded drop-in replacement for our binpac binary traverser
of the IPP protocol. Using this replacement, we were able to achieve an order of mag-
nitude improvement over the performance of the binpac binary traversal (see Table 1).

Table 2. HTTP Message Rate

HTTP Message Type Message Rate
(msgs per sec)

Requests 370,005
Responses 196,897
Chunked 41,644
Overall 314,797

High-Speed Matching of Vulnerability Signatures 169

 0

 100

 200

 300

 400

 500

DNS

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

(a) DNS Throughput
(Mbps)

 0

 5

 10

 15

 20

HTTP IPP WMF

T
hr

ou
gh

pu
t (

G
bi

ts
/s

) VESPA
binpac

(b) Parser Throughput (Gpbs)

Fig. 3. Vulnerability Signature Matcher Performance

Therefore, our architecture stands to benefit from further improvements of the base
matching primitives of binary traversal as well.

DNS. The DNS protocol includes a compression mechanism to avoid including a com-
mon DNS suffix more than once in the same message. Parsing these compressed suf-
fixes, called name pointers, is best done with a recursive parser, but doing so introduces
the possibility of a “pointer cycle,” where a specially-crafted message can force a parser
to consume an infinite amount of stack space, leading to a denial of service [20].

DNS name pointers can occur in many different structures in DNS, so the binary
traversal must parse and visit many of the fields in the protocol. Therefore, parsing
DNS is usually much slower than other protocols. Indeed, DNS is the worst-performing
of our vulnerability signature matchers, though it is still several times faster than binpac,
as can be seen in Figure 3. Pang et al. suggest that this is due to an inherent difficulty
of parsing DNS, pointing to the comparable performance of their hand-implemented
parser to binpac [1]. We have found this not to be the case, as our hand-implemented
DNS parser that finds pointer cycles can operate at nearly 3 Gbps (see Table 1). As part
of our future work, we will investigate what part of our current design is responsible
for the much worse performance of DNS; our hope is that we will be able to achieve
speeds in excess of 1 Gbps with an automatically-generated parser.

WMF. Vulnerabilities are increasingly being found in file formats (so called “data-
driven attacks”) rather than just network messages. The WMF format allows specifi-
cation of a binary “abort procedure,” called if the rendering engine is interrupted. At-
tackers began to misuse this feature in late 2005, using the abort handler for “drive-by
downloads,” where an attacker could run arbitrary code on a victim’s computer by sim-
ply convincing them to render a WMF, requiring only a website visit for clients using
Internet Explorer (CVE-2005-4560 [10]).

This vulnerability has been problematic for intrusion detection systems, Snort in par-
ticular. Snort normally processes only the first few hundred bytes of a message when
looking for vulnerabilities; however, a WMF vulnerability can be placed at the end
of a very large media file. However, matching the Snort rule set over an entire mes-
sage exhausts the resources of most intrusion detection systems, requiring most sites

170 N. Schear, D.R. Albrecht, and N. Borisov

to resort to a convoluted configuration with two Snort processes running in concert.
Our architecture allows for a much cleaner approach: after an HTTP header has been
parsed, the WMF vulnerability matcher would be called in the body handler, while other
string matchers and handlers would be turned off. Figure 3 shows that WMF files can
be parsed at multi-gigabit rates, so this would not put a significant strain on the CPU
resources of the NIDS.

7 Future Directions

Although our prototype shows that high-performance vulnerability signature match-
ing is possible in software, to achieve speeds in excess of 1 Gbps for all protocols, a
hardware-accelerated approach is likely needed. Our plan is to use hardware implemen-
tations of fast pattern-matching algorithms [14,21] to replace the software implemen-
tations. This should dramatically increase the performance of text protocol parsing, as
discussed in Section 6.1. We will also investigate the use of network processors, such as
the Intel IXP family [22], to bring vulnerability processing closer to the network inter-
face, and to exploit the inherent parallelism in matching signatures. Previous work has
shown that using network processors can be nearly two orders of magnitude faster than
similar implementations in software [23]. Network processors achieve such speedups
in part by using a complex memory hierarchy; our careful management of limited state
makes our architecture well-adapted to being ported to a network processor.

There are also performance gains yet to be realized in software matching as well.
Our hand-coded matchers for vulnerabilities in binary protocols, in particular, are sig-
nificantly fasters than those implemented using VESPA (see Table 1). The extra per-
formance is likely due to eliminating the abstractions that ensue from representing a
binary protocol structure in binpac. Our future work includes faster implementation of
those abstractions, as well as the design of abstractions better suited to fast matching.
One challenge that we will face is the fact that binary protocols exhibit much less con-
sistency of design than text protocols.

Our eventual goal is to create a network intrusion prevention system (NIPS), which
will sit as a “bump in the wire” and filter attacking traffic. In addition to throughput,
another challenge that a NIPS will face is reducing latency, since, unlike intrusion de-
tection systems, filtering decisions must be complete before the traffic can be forwarded
to its destination. Furthermore, a NIPS must be able to recognize a large collection of
vulnerability signatures at once. Our use of multi-pattern search as a base primitive will
make parallel matching of several signatures easier to implement, but our design will
need to incorporate constructs that will allow the reuse of common components (e.g.,
HTTP Content-Length extraction) between multiple signatures.

Authoring of effective signatures is a complex and error-prone process; this is true for
exploit signatures, and more so for vulnerability signatures. Although our architecture
was optimized for performance, rather than ease of authorship, we have found that ex-
pressing vulnerability constraints using VESPA was not appreciably more difficult than
using binpac or GAPA. However, as we gain more experience with VESPA, we plan
to improve the interface between the programmer and our architecture by, for example,

High-Speed Matching of Vulnerability Signatures 171

introducing more reusable constructs and modularity. We also plan to develop better
architectures for testing vulnerability signatures, to ensure that they do not generate
false positives or false negatives.

Finally, automatic generation of vulnerability signatures can make them useful for
not only known vulnerabilities, but new ones just observed (“zero-day”). Previous work
has used annotated protocol structure [24,19], program analysis [9,25], or data flow
analysis [26] to automatically generate vulnerability signatures. We will explore to what
extent these approaches may be used to automatically generate signatures in our archi-
tecture. This will present a significant challenge to an automated approach, given that
our architecture relegates more of state management to the programmer.

8 Related Work

8.1 Pattern Matching

The Wu–Manber [12], Boyer–Moore [27], and Aho–Corasick [11] algorithms provide
fast searching for multiple strings. Their superior performance has made them natural
candidates for IDS pattern-matching; in addition to our system, Snort [17] uses Aho–
Corasick to match static strings.

Although slower than string matching, regular expression-based matching provides
considerably more expressive power. Regular-expression matching is well-studied in
the literature; broadly, deterministic matching (e.g., flex [28]) offers linear time but
exponential space complexity, while nondeterministic matching (e.g., pcre [29]) of-
fers linear space but exponential time complexity. Smith et al. attempt to combine
the advantages of deterministic and nondeterministic matching using Extended Finite
Automata [30]. Rubin et al. have developed protomatching to heuristically reduce match-
ing complexity by discarding non-matching packets as quickly as possible, while keep-
ing a low memory footprint [31]. Special-purpose hardware achieves sustained pattern
matching at 4 Gbps [14]. Clark et al. [13] used application-specific FPGA cores to ex-
ploit the parallelism inherent in searching for many patterns simultaneously in a single
body of text.

8.2 Vulnerability Signatures

The Shield project at Microsoft Research [2] pioneered the idea of vulnerability sig-
natures; Borisov et al. extended the idea with a generic protocol parser generator [7].
Brumley et al. explained the complexity of various approaches to matching [9].

The binpac project at UC Berkeley and the International Computer Science Insti-
tute [1] focused on implementing a yacc-like tool for generating efficient protocol
parsers from high-level definitions. binpac abstracts away much error-inducing com-
plexity (e.g., network byte ordering). Its performance for many protocols is adequate
for many intrusion detection tasks, but the VESPA architecture significantly improves
on it, as shown in our evaluation.

The ongoing NetShield project [32] shares our goals of high-speed vulnerability sig-
nature detection. It has resulted in novel techniques for fast binary traversal, as well
as efficient multi-signature matching, which may provide promising approaches for ad-
dressing some of the same challenges in VESPA.

172 N. Schear, D.R. Albrecht, and N. Borisov

8.3 Intrusion Detection

Intrusion detection requires attention to both algorithmic efficiency, and systems / im-
plementation issues. Ptacek and Newsham [33] have detailed several strategies for
evading intrusion detection by shifting packet TTLs, among others. Snort [34,17] and
Bro [8], two popular IDS platforms, have addressed many systems-level issues, but are
intended only to detect, not prevent intrusion. So-called intrusion prevention systems go
further, by being deployed inline with the forwarding path; these systems take a more
active stance against hostile traffic by dropping malicious or otherwise anomalous pack-
ets. The SafeCard [35] project used an Intel IXP network processor to perform intrusion
protection in real-time up to 1 Gbps. It used high-speed matching of regular expressions,
as well as an early implementation of Prospector [26] signatures, finding vulnerabilities
within HTTP headers. The project shows that special-purpose hardware is a promising
direction for high-performance intrusion prevention systems.

9 Conclusion

We have proposed an architecture, called VESPA, for fast matching of vulnerability
signatures. VESPA relies on the fact that full protocol parsing is often not necessary to
match vulnerability signatures and as a result is able to match signatures several times
faster than existing work. We have built a prototype implementation of our architec-
ture, and we showed that we can match vulnerabilities in many protocols at speeds in
excess of 1 Gbps, thus demonstrating that vulnerability signatures are practical for high-
performance network intrusion detection systems. We plan to continue to improve the
performance of our system by improved implementation of base primitives and hard-
ware acceleration, and to develop a full-fledged implementation of a high-performance
network intrusion prevention system based on vulnerability signatures.

Acknowledgments

We would like to thank David Nicol and William Sanders for their guidance on this
project and the anonymous referees for their suggestions on an earlier version of this
draft. This work was supported by NSF grant CNS 06–27671.

References

1. Pang, R., Paxson, V., Sommer, R., Peterson, L.: binpac: A yacc for Writing Application
Protocol Parsers. In: Proceedings of the Internet Measurement Conference (2006)

2. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits. In: ACM SIGCOMM Computer Com-
munications Review (2004)

3. CERT: “Code Red” Worm Exploiting Buffer Overflow in IIS Indexing Service DLL. CERT
Advisory CA-2001-19 (July 2001),
www.cert.org/advisories/CA-2001-19.html

4. Friedl, S.: Analysis of the New “Code Red II” Variant (August 2001),
http://www.unixwiz.net/techtips/CodeRedII.html

www.cert.org/advisories/CA-2001-19.html
http://www.unixwiz.net/techtips/CodeRedII.html

High-Speed Matching of Vulnerability Signatures 173

5. Microsoft: Unchecked Buffer in ISAPI Extension Could Enable Compromise of IIS 5.0
Server. Microsoft Security Bulletin MS01-033 (June 2001),
www.microsoft.com/technet/security/bulletin/ms01-023.mspx

6. Rescorla, E.: Security Holes... Who Cares?. In: Paxson, V. (ed.) USENIX Security Sympo-
sium (August 2003)

7. Borisov, N., Brumley, D.J., Wang, H.J., Dunagan, J., Joshi, P., Guo, C.: A Generic
Application-Level Protocol Parser Analyzer and its Language. In: Proceedings of the 14th
Annual Network and Distributed System Security Symposium (2007)

8. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-time. Comput.
Netw. 31(23-24), 2435–2463 (1999)

9. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards Automatic Generation of
Vulnerability-Based Signatures. In: Proceedings of the 2006 IEEE Symposium on Security
and Privacy (2006)

10. CVE: Common Vulnerabilities and Exposures, http://cve.mitre.org/
11. Aho, A.V., Corasick, M.J.: Efficient String Matching: an Aid to Bibliographic Search. Com-

mun. ACM 18(6), 333–340 (1975)
12. Wu, S., Manber, U.: A Fast Algorithm for Multi-Pattern Searching. Technical Report TR-94-

17, Department of Computer Science, University of Arizona (1994)
13. Clark, C., Lee, W., Schimmel, D., Contis, D., Koné, M., Thomas, A.: A Hardware Platform

for Network Intrusion Detection and Prevention. In: Proceedings of the Third Workshop on
Network Processors and Applications (2004)

14. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A Scalable Architecture For High-Throughput
Regular-Expression Pattern Matching. In: ISCA, pp. 191–202 (2006)

15. Dreger, H., Feldmann, A., Mai, M., Paxson, V., Sommer, R.: Dynamic Application-layer
Protocol Analysis for Network Intrusion Detection. In: USENIX-SS 2006: Proceedings of
the 15th conference on USENIX Security Symposium, Berkeley, CA, USA, p. 18. USENIX
Association (2006)

16. Dominus, M.J.: Higher Order Perl: Transforming Programs with Programs. Morgan Kauf-
mann, San Francisco (2005)

17. Sourcefire, Inc.: Snort, www.snort.org
18. Watson, B.W., Cleophas, L.: SPARE Parts: a C++ Toolkit for String Pattern Recognition.

Softw. Pract. Exper. 34(7), 697–710 (2004)
19. Cui, W., Peinado, M., Wang, H.J., Locasto, M.E.: ShieldGen: Automatic Data Patch Gener-

ation for Unknown Vulnerabilities with Informed Probing. In: Pfitzmann, B., McDaniel, P.
(eds.) IEEE Symposium on Security and Privacy, May 2007, pp. 252–266 (2007)

20. NISCC: Vulnerability Advisory 589088/NISCC/DNS (May 2005),
http://www.cpni.gov.uk/docs/re-20050524-00432.pdf

21. Clark, C.R., Schimmel, D.E.: Scalable Pattern Matching for High-Speed Networks. In: IEEE
Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, Califor-
nia, pp. 249–257 (2004)

22. Intel: Intel Network Processors,
www.intel.com/design/network/products/npfamily/index.htm

23. Turner, J.S., Crowley, P., DeHart, J., Freestone, A., Heller, B., Kuhns, F., Kumar, S., Lock-
wood, J., Lu, J., Wilson, M., Wiseman, C., Zar, D.: Supercharging PlanetLab: A High Per-
formance, Multi-application, Overlay Network Platform. SIGCOMM Computing Commu-
nications Review 37(4), 85–96 (2007)

24. Liang, Z., Sekar, R.: Fast and Automated Generation of Attack Signatures: A Basis for Build-
ing Self-protecting Servers. In: Meadows, C. (ed.) ACM Conference on Computer and Com-
munications Security, November 2005, pp. 213–222. ACM, New York (2005)

www.microsoft.com/technet/security/bulletin/ms01-023.mspx
http://cve.mitre.org/
www.snort.org
http://www.cpni.gov.uk/docs/re-20050524-00432.pdf
www.intel.com/design/network/products/npfamily/index.htm

174 N. Schear, D.R. Albrecht, and N. Borisov

25. Brumley, D., Wang, H., Jha, S., Song, D.: Creating Vulnerability Signatures Using Weakest
Pre-conditions. In: Proceedings of the 2007 Computer Security Foundations Symposium,
Venice, Italy (July 2007)

26. Slowinska, A., Bos, H.: The Age of Data: Pinpointing Guilty Bytes in Polymorphic Buffer
Overflows on Heap or Stack. In: Samarati, P., Payne, C. (eds.) Annual Computer Security
Applications Conference (December 2007)

27. Boyer, R.S., Moore, J.S.: A Fast String Searching Algorithm. Commun. ACM 20(10), 762–
772 (1977)

28. Flex: The Fast Lexical Analyzer, http://www.gnu.org/software/flex
29. PCRE: Perl Compatible Regular Expression Library, http://www.pcre.org
30. Smith, R., Estan, C., Jha, S.: XFA: Faster Signature Matching with Extended Automata. In:

Proceedings of the 2008 IEEE Symposium on Security and Privacy (2008)
31. Rubin, S., Jha, S., Miller, B.P.: Protomatching Network Traffic for High Throughput Net-

work Intrusion Detection. In: Proceedings of the 13th ACM conference on Computer and
communications security (2006)

32. Li, Z., Xia, G., Tang, Y., He, Y., Chen, Y., Liu, B., West, J., Spadaro, J.: NetShield: Match-
ing with a Large Vulnerability Signature Ruleset for High Performance Network Defense
(manuscript) (2008)

33. Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service: Eluding Network
Intrusion Detection. Technical report, Secure Networks, Inc., Suite 330, 1201 5th Street S.W,
Calgary, Alberta, Canada, T2R-0Y6 (1998)

34. Roesch, M.: Snort—Lightweight Intrusion Detection for Networks. In: Parter, D. (ed.) Pro-
ceedings of the 1999 USENIX LISA Systems Administration Conference, Berkeley, CA,
USA, November 1999, pp. 229–238. USENIX Association (1999)

35. de Bruijn, W., Slowinska, A., van Reeuwijk, K., Hruby, T., Xu, L., Bos, H.: SafeCard: A
Gigabit IPS on the Network Card. In: Proceedings of the 9th International Symposium On
Recent Advances in Intrusion Detection (2006)

http://www.gnu.org/software/flex
http://www.pcre.org

Swarm Attacks against Network-Level

Emulation/Analysis

Simon P. Chung and Aloysius K. Mok�

Department of Computer Sciences,
University of Texas at Austin, Austin TX 78712, USA

{phchung,mok}@cs.utexas.edu

Abstract. It is always assumed that if the attackers can achieve their
goal by exploiting a vulnerability once, they won’t exploit it twice. This
assumption shapes our view of what attacks look like, and affects the
design of many security systems. In this work, we propose the swarm
attack, in which the attacker deliberately exploits the same vulnerability
multiple times, each intended to carry out only a small part of the attack
goal. We have studied eight systems that detect attacks using network-
level emulation/analysis, and find them surprisingly vulnerable to attacks
based on this strategy.

Keywords: Decoder detection; network-level emulation; network IDS;
evasion; swarm attacks.

1 Introduction

In its simplest, most common form, a control hijacking attack works as follow: the
attacker sends in one single malicious input with the proper “protocol frame”
to trigger the targeted vulnerability, together with a self contained payload
that will achieve the attacker’s goal once executed. When the malicious input is
processed, certain control data structure will be overwritten, and this results in
an almost instant transfer of control to the attacker’s payload. We believe
many security systems are designed with this simple model of attacks in mind,
and it is usually implicitly assumed that the attacker gains nothing by making
the attack more complicated (or less “efficient”). In other word, if they can get
all their attack code executed with one instance of control hijacking, they will
not divide their code into multiple pieces and execute them through multiple
exploitations of the vulnerability. Similarly, the attacker will overwrite the piece
of control data that leads to the control hijacking with the minimum delay.

In this paper, we propose the attack strategy where the attacker violates the
above assumption and be deliberately “inefficient” in their attacks, and study
the implications of such strategy to systems that try to locate executable code
within network traffic and determine if those are attack payload. We call our
proposed attack the swarm attack, and will refer to target systems described
� The research reported here is supported partially by a grant from the Office of Naval

Research under contract number N00014-03-1-0705.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 175–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 S.P. Chung and A.K. Mok

above network-level emulation/analysis systems. Surprisingly, we find that
by deliberately dividing the attack code into many pieces and have each executed
through a different exploitation of the same vulnerability, the attacker can evade
at least seven out of the eight network-level emulation/analysis systems that we
have studied [1,3,13,14,15,21,24,25] (we believe the third one, [13], may detect
our attack if specifically trained to, but can only do so at the cost of high false
positives). The design of our attack is simple; the attack will be divided into
n+1 instances of control hijacking. Each of the first n instances will have a small
payload to write part of the real decoder to a predetermined area in the attacked
process’ address space, and the (n+1)st instance will direct the hijacked control
to the decoder we just constructed. Under this attack, the number of unencoded
instructions in each attack instance can be reduced to below 10, and all these
unencoded payload will appear to serve no useful purpose for an attack. Note
that the need to have multiple instances of control hijacking on the target system
places certain constraints on our swarm attack. However, we will argue in Sect.
4.1 that the attack can be used against many vulnerable network servers, and
there are techniques to overcome this constraint even if the target system is
single-threaded. Finally, we believe if network-level emulation/analysis systems
continue to consider traffic separately, such small, simple payload will be very
hard to detect with low false positives; the payload behavior is so simple that the
chance of finding such behavior in random data by coincidence is non-negligible.

The rest of the paper will be organized as follow: in Sect. 2, we will present
related work in the area of network-level emulation/analysis based detection, and
attacks against other types of network intrusion detection systems. In Sect. 3, we
will present the details of the proposed swarm attack, and address some practical
issues that may arise in the implementation of the attack in Sect. 4. Analysis of
how the proposed attack evade network-level emulation/analysis will be given in
Sect. 5, and in Sect. 6, we will discuss whether it is possible to improve existing
systems to detect the attack. Finally, we conclude in Sect. 7.

2 Related Work

There are generally three approaches for network intrusion detection, and the
most traditional of which is signature matching. The second approach is anom-
aly detection, which compares properties of observed traffic against properties of
known good traffic. Network anomaly detection systems usually treat the traffic
under analysis as a bag of bytes, and use statistical methods to determine if this
bag of bytes appears to be an attack. For example, PAYL [23] distinguishes nor-
mal traffic from attacks based on byte frequency distribution. The last approach,
which we call the network-level emulation/analysis, is the focus of our work. The
main idea behind this approach is to locate executable code within the incoming
traffic, and analyze the extracted code to determine if it is random data that
coincidentally appears to be syntactically correct machine instructions or actual
attack code. We note that any useful attack strategy must be able to defeat all
three kinds of detectors. However, in this work, we will focus on evading systems

Swarm Attacks against Network-Level Emulation/Analysis 177

based on network-level emulation/analysis, which is the least attacked among
the three approaches. As for the evasion of the other two mechanisms, we will
rely on existing techniques against them.

2.1 Analyzing Code within Network Traffic

The earliest network-level emulation/analysis systems are designed specifically
for buffer overflow attacks. In particular, they are designed to detect the sled in
these attacks; since the attacker does not know the exact address where their
payload will be found, the hijacked control is usually directed to an area filled
with NOPs that precedes the actual payload. This technique allows the attack
to succeed even though the attackers only have a rough estimate of where their
payload will be located on the stack or the heap, and the area of NOP is called
the sled. Sled-detection systems are usually very simple. For example, [21] scans
through the incoming traffic and declares it as malicious if it finds 30 or more
consecutive valid instructions in the traffic. Similarly, [1] considers the incoming
traffic malicious if it contains an instruction sequence that spans at least 230
bytes, with each of its suffix also being a valid instruction sequence.

The obvious problem with sled-detection is that not all attacks contain sleds.
In fact, with the use of register springs, many buffer overflow attacks can avoid
using sled. Thus a second generation of detection systems is developed to iden-
tify “meaningful” code within network traffic. For example, [24] will classify
incoming traffic as malicious if: (1) it contains two or more separate instruction
sequences for function calls (including the instructions for placing arguments
on the stack and the actual control transfer), or (2) it contains a sequence of
14 or more “useful” instructions that does not cause any data flow anomaly
(i.e. they define data values once before use). As another example, [3] defines
malicious traffic as one that contains either obvious library/system calls (identi-
fied by hardcoded jump target and interrupt instructions after initializing eax),
return/indirect control transfer with target address being properly set up by
preceding instructions found in the traffic, or a proper loop structure that ap-
pears to be a decoding routine in polymorphic shellcode. The weakness of this
second generation of systems is that they are not very effective against polymor-
phic shellcode, in which only the decoder appears as valid instructions in the
network traffic, and the rest of the attack code is encoded. To address this prob-
lem, systems are designed to target properties specific to the decoding routines
of polymorphic shellcode. The most commonly used property is the presence
of GetPC code, which allows a position-independent shellcode to find out its
own location, as well as the address of the payload to be decoded. In both
[14,25], the presence of GetPC code (e.g. call, fnstenv) is used both as a pre-
condition for further analysis, and an indicator of the beginning of the decoding
routine. With this location of the GetPC code, [25] confirms that the identi-
fied code is indeed a decoder if it is self modifying and involves a loop which
contains indirect write instructions with target addresses that are different in
each iteration. On the other hand, after identifying the GetPC code, [14] char-
acterizes the decoder by a significant number (6 or more) of reads from different

178 S.P. Chung and A.K. Mok

locations within the analyzed traffic itself. A machine learning based approach
is used in [13], where a neural network is employed to determine if a sequence of
instructions is a decoder, based on the frequency at which different types of in-
structions appears in that sequence. Even though [13] shows that neural network
trained with decoder from one polymorphic engine can identify decoder routines
from another polymorphic engine, we believe retraining is necessary if there is
a drastic change in the decoding algorithm. Finally, as an extension of [14], [15]
argued that some non-self-contained polymorphic shellcode does not have any
GetPC code or reads to bytes within the traffic itself. [15] thus proposed two new
properties for identifying polymorphic shellcode: writing to a significant number
of different memory locations, and then executing those locations that has been
written to.

2.2 Evading Signature-Based and Statistics-Based Detectors

Polymorphic shellcode, which is the focus of many systems described in the pre-
vious section, is originally designed to evade signature-based defenses. The idea
is simple, to avoid being matched by signatures generated based on previous in-
stances of the same attack, the attacker will make every attack instance appears
differently. This goal is usually achieved by having the attack code encoded by
some very simple “keyed-encryption” algorithm, and has the code for each attack
instance encoded under a different key. In order to allow correct execution of the
attack code, we need to attach a decoder to each attack instance, provide it with
the correct key and execute it to decode the real payload. This way, only the
decoding routine will remain constant throughout all attack instances. To avoid
the decoder from being targeted by signature-matching, various “polymorphic”1

engines have been developed to make the routine slightly different in every at-
tack instance. Common techniques for achieving this goal include instruction
substitution [6,10] and insertion of junk instructions [10].

Even though the encoding of the actual payload, together with the metamor-
phism applied on the decoder will successfully evade a signature-based detector,
the resulting attack instances may still have very different properties from nor-
mal traffic, and thus can be detected by some kind of anomaly detection. In [8],
a technique is proposed to encode the payload so that it will have the same byte
frequency distribution as the observed normal traffic, and evade anomaly detec-
tion systems based on byte frequency (e.g. PAYL [23]). The idea is extended in
[7] so that encoded payload (using either xor-based or byte-substitution-based
encoding) which satisfies any normal traffic profile (expressed in a finite-state
machine) can be found.

The difficulties of detecting the decoder of a polymorphic attack with either
a signature-based or statistical-based approach are also demonstrated in [20],
but in an unconventional way. Instead of showing concrete ways to defeat the
studied defenses, [20] only presents an “existential proof”, showing that n-byte
sequences that exhibit decoder-like behavior are distributed over a very large

1 Which are actually “metamorphic” engines.

Swarm Attacks against Network-Level Emulation/Analysis 179

span of all possible n-byte sequences, and uses this as an evidence to suggest
the actual decoder population may have a similar span, and thus it will be very
difficult to characterize all of them with signatures or statistical model. What is
of interest are the properties [20] used to define decoder behavior: self-writing
(containing instructions that write to nearby locations) and self-modification
(containing instructions that write to nearby locations using values read from
another nearby location). This further illustrates the general perception of what
decoders should look like, and can be very useful when we design our attack to
evade systems that detect instruction sequences which appear to be decoding
routines.

2.3 Other Related Attacks

In general, attacks for evading data-non-executable defenses can achieve the
same goal as ours; they carry out the attack without executing (or placing)
any code within the network traffic, thus there will be nothing for network-level
emulation/analysis systems to detect. However, these attacks are usually much
more difficult to construct than those that use highly obfuscated/polymorphed
shellcode. For example, [18] makes extensive use of the ret-to-libc technique,
and allows the attacker to “execute” arbitrary code by chaining up “gadgets”,
each being code fragment within libc which contains instructions for achieving
some primitive binary-level operations (e.g. data movement), followed by a re-
turn instruction that will pass the control to the next gadget. However, there
seems no easy way to automatically locate all the gadgets needed for some set
of primitive operations, and these gadgets can only be invoked by using hard-
coded addresses, which may harm the portability of the resulting attack, and can
provide a lot of materials for signature matching. As for the non-control-data
attack in [2], the logic of the attacked program is altered through the manipu-
lation of its critical data, and such attacks cannot be designed without intimate
knowledge of the internals of the victim program, as well as the whereabouts
of its critical data. Once again, it is unclear to us whether [2] can be effec-
tive against signature-based or statistics-based defenses. Furthermore, standard
techniques (like [6,8,10]) for evading detection, that mostly focus on code mor-
phing/encoding, are not applicable to attacks against data-non-executable, since
they don’t involve any code at all. Finally, an attack of similar flavor but dif-
ferent objective to ours is [17], where a technique for evading signature-based
detection systems is presented. The idea in [17] is similar to ours in the sense
that evasion is achieved through breaking up the attack into many small pieces,
and inserting some useless pieces in between (though the attacks generated by
[17] still exploit the target vulnerability only once).

To conclude our discussion of related work, we note that techniques for evading
the three types of detection systems can be easily combined; while the technique
in [7] only works for certain types of encryption/decryption routine, both the
technique we are going to present and the metamorphism employed in [6,10] can
work on any kind of decoders. Thus, [7] will determine the decryption routine we
can use, and provide an encrypted payload that can blend in with normal traffic,

180 S.P. Chung and A.K. Mok

our swarm attack will modify the routine to remove any behavior expected of a
decoder (or any non-polymorphic malicious code), and the metamorphism will
be applied to the modified routine so that it appears differently in every attack
instance.

3 Swarm Attack against Network-level
Emulation/Analysis

As we have mentioned in the introduction, the idea of swarm attack against
network-level emulation/analysis systems is tomodify a controlhijacking attack so
that the decoder in its polymorphic shellcode will not appear in any attack traffic.
We achieve this goal by creating the decoder inside the attacked process’ address
space using multiple instances of the attack, with each attack instance writing a
small part of the decoder at the designated location. When we have finished build-
ing the decoder, we will send in one last attack instance which serves two purposes;
first of all, it will hijack the control of the attacked process to start executing the
decoder, and secondly, it will carry the encoded actual payload.

Note that the decoder under this swarm attack will have to be modified to
locate the actual payload (which may not be found using the same method as in
the original exploit where both the decoder and the encoded payload appear in
the same attack traffic). However, this is not a serious difficulty; we can construct
our last attack instance by modifying the original self-contained exploit so that
the encoded payload is placed at where the decoder will have appeared in the
original case. As such, the decoder can locate the payload based on how we direct
the hijacked control to the right location in our original attack. If a hardcoded
address is used in the original exploit, the decoder in the swarm attack will
locate the payload using this same hardcoded value. If the original attack used a
register spring, the address of the payload will be found in the register involved
(remember that the last attack instance is constructed from the original attack
by replacing the decoder with the encoded payload; if the register points to the
beginning of the decoder in the old attack, it will point to the encoded payload
in the new one).

Now let’s consider the design of the attack instances responsible for building
the decoder. If the vulnerability exploited allows writing arbitrary value to arbi-
trary address (e.g. a format string vulnerability), our task is trivial: we only have
to build exploits to write the right value to the right place. Also, in this case,
we can avoid putting any executable code into traffic generated, and it would
be quite impossible for a detector based on network-level emulation/analysis to
identify this attack. However, care must be taken to have some of the attack
instances write to slightly overlapping addresses; otherwise, the attack instances
responsible for building up the decoder may become easy target for signature
matching. For example, suppose the vulnerability allows us to overwrite 4 bytes
at a time, and the first four bytes of the decoder we are building are b1b2b3b4; if
we build the decoder by always writing to non-overlapping bytes, we will always
have an attack instance that contains the bytes b1b2b3b4. To avoid this problem,

Swarm Attacks against Network-Level Emulation/Analysis 181

we can have one attack instance writing b1r1r2r3 to address i, and the next in-
stance writing b2r4r5r6 to address i+1, so on so forth. Since we know r1r2r3 will
be overwritten by the second attack instance, we can put random values there.
Of course, the byte b1 will still appear in the first attack instance of every swarm
attack that employs the same decoder, but this property that involves only one
byte will not be very useful to the defender.

If the exploited vulnerability only allows direct control hijacking (e.g. stack
based buffer overflow), the design of the attack instances which build up the
decoder is much more interesting. In this case, we will need to put some exe-
cutable code into each attack instance, and have each instance hijack the control
to execute its attached code and write the correct value to the right address. As
opposed to the previous case, the attack traffic will now contain some executable
code. In order to evade detection by network-level emulation/analysis systems,
we need to craft the code visible to these systems carefully. Nonetheless, we note
that the task to be performed by this code snippet is very simple, and should not
involve much behavior that is typically considered “decoder-like” (e.g. no GetPC
or self-modification, minimal read/write). Thus the design should be quite easy.
We have also taken care to have a design that is easily polymorphed, and does
not have long sequence of bytes that remains constant over different attack in-
stances, or always appears in an instance responsible for writing a particular part
of the decoder. This precludes using the bytes we want to write as immediate
operands or reading it directly from the attack traffic; i.e. we have to somehow
“generate” what we are writing as a product of executing some instructions, and
we used the xor operation for this purpose. We note that this design also allows
us to use decoder that contains bytes forbidden for successful exploitation of the
vulnerability (e.g. the presence of byte 0x00 is not allowed in many exploits).
Similar constraints apply to the target of the write operations, and the same ap-
proach can be used for “generating” it in our attack. The code we have designed
for building the decoder is given in Fig. 1.

As we can see on the left of Fig 1, we assume the initial value of ebp is under
our control, which is true for almost all stack-based buffer overflows. Also, as
shown in the right part of Fig. 1, by using some very simple metamorphism (re-
placing registers, using slightly different instructions and randomizing exxOffset,
exxMask, ebpMask and ebpOffset) , we can achieve such degree of polymorphism
that no two instances of the code we have for building the decoder will share
any common byte sequence that is more than one byte long. Further polymor-
phism/metamorphism is possible by re-ordering some of the instructions, or
inserting junk instructions. Finally, note that the last instruction in our code
snippet will put the execution into a dead-loop. This is only necessary when
we cannot crash the attacked thread without killing the entire process. In case
we are attacking a serve-type process that handles thread failure gracefully, we
can simply put some junk bytes after the instructions that write the value to
the right location. This way, the code snippet will look even more innocuous
to network-level emulation/analysis systems, since they all assume the attacker
will not crash the target.

182 S.P. Chung and A.K. Mok

sub ebp, ebpMask \x81\xed ebpMask (6 bytes)
mov ecx, [esp+ecxOffset] \x8b\x4c\x24 ecxOffset (4 bytes)
xor ecx, ecxMask \x81\xf1 ecxMask (5 bytes)
mov [ebp+ebpOffset], ecx \x89\x4d ebpOffset (3 bytes)
jmp -2 \xeb\xfe (2 bytes)

add ebp, ebpMask \x81\xc5 ebpMask (6 bytes)
mov ebx, [esp+ebxOffset] \x8b\x5c\x24 ecxOffset (4 bytes)
xor ebx, ebxMask \x81\xf3 ecxMask (5 bytes)
mov [ebp+ebpOffset], ebx \x89\x5d ebpOffset (3 bytes)
jnz -2 \x75\xfe (2 bytes)

Fig. 1. Two possible versions of the attack code for building the decoder. All ebpMask,
exxOffset, exxMask and ebpOffset are variable. The binary representation of the code
are given on the right, with bytes that remain the same despite the use of different
registers/operations highlighted. Note that condition used in the “jnz -2” is set by the
xor. Since we know the result of that xor operation, we can choose the right kind of
conditional branch, and there are many different condition codes that we can use in
this branch instruction.

We have tested our swarm attack by modifying an exploit against a stack
based buffer overflow in the Savant web server [11]. In our experiments, we used
as our decoder a simple 27-byte routine which xor each DWORD of the encoded
payload with a fixed key, and this requires 7 attack instances to build up the
decoder, and one last instance to execute it. As for the real payload, we used
a 198 byte shellcode that starts notepad.exe. More complicated shellcode are
easily accommodated, we only choose this one for its very visible result (which
makes it easy to determine that the attack is successful). As of the location of
the decoder, we choose to build it at the end of Savant’s data area. This makes
our attack quite portable across machines running different versions of Windows,
as long as Savant is loaded at the same place. However, since the address of this
data area starts with 0x00, we cannot use a hardcoded address in the last attack
instance to jump to the decoder. Instead, we execute a small (2-instruction, 8-
byte long) code snippet in this last attack instance to “generate” the address of
the decoder in some register (the same way we “generate” the target address for
the write in the instances responsible for building the decoder) and jump to this
address using a register indirect control transfer. By transferring the hijacked
control to the decoder using a small, easily poly/meta-morphed payload in the
last attack instance, we can also avoid the hardcoded address for the decoder
from appearing in every swarm attack and being used as a signature. We believe
this “trampoline” payload in the last attack instance is necessary if we cannot
have too much variation in the location where we place the decoder. Finally, we
report that all our experiments successfully lead to the execution of the decoded
payload and launch notepad as expected.

Swarm Attacks against Network-Level Emulation/Analysis 183

4 Practical Concerns

In this section, we will address some possible difficulties that may arise during
the implementation of the swarm attack. Our main focus is, given an exploit
that allows us to execute arbitrary code on the attacked machine, what are the
extra problems that we will have to face in order to build a swarm attack based
on this exploit?

4.1 Multiple Exploitations

The biggest constraint in implementing a swarm attack is that we need a vulner-
ability that can be exploited multiple times, with the effect of each exploitation
being persistent and visible to all later exploitations until the actual payload
execution starts. The above constraint is automatically satisfied if the target is
a multi-threaded program that will continue to function (i.e. accept further traf-
fic/input) while under attack, and we note that many network servers have this
nice property. We believe even the simplest of such servers will be multi-threaded
(especially true under the Windows environment), and it is very likely that the
port concerned will be freed to accept further traffic once the processing of the
incoming request starts. In case we are attacking a single-threaded program (or
one with only one thread performing the vulnerable processing), swarm attacks
are still possible if:

1. the vulnerable program processes multiple inputs that may cause the control
hijacking

2. we can have a way to continue the normal processing in the attacked process
after accomplishing the current step in the decoder construction process.

Since we believe the first of the above conditions will be satisfied by many
programs (and there is very little we can do otherwise), we will focus on ways
to restore normal processing of the target program after each attack instance in
our swarm attack. Though it first appears very complicated, we find this task
quite achievable for the most common types of exploits.

If the targeted vulnerability is a stack buffer overflow, techniques similar to
the “error-virtualization” in [19] can be applied to “return to normal execution”
after an attack instance has accomplished its goal. The idea is to prevent the
attacked process from crashing by rolling the execution forward to the point
where some function x higher up in the “call tree” than the vulnerable function
returns a value that signifies failure/error, with the caller of function x equipped
to handle the error. This technique should be feasible in many cases because the
attackers usually have very accurate knowledge of the size of the few activation
records on the top of the stack when the injected code starts execution, and
thus can properly adjust the stack for the return. Also note that such “recovery”
from the attack can be achieved with very few instructions; it only involves an
addition to esp, a single write (if we need to fake a return value) and a return.
Furthermore, since the return address used does not come with the attack traffic,

184 S.P. Chung and A.K. Mok

most network-level emulation/analysis systems will ignore the return (e.g. [3]),
considering it to have too high a chance of crashing the process to be any part of
a robust attack. The only system that may find this recovery suspicious is [24],
which specifically looks for “push-call” patterns. However, two such patterns
are needed to trigger an alert in [24], and we will only have one in our attacks.
Another very favorable scenario appears when the control hijacking occurs within
code that handles exceptions; in this case, the attacker simply executes an invalid
instruction, and the attacked program will return to normal execution. Unlikely
as it may sound, there is indeed one real life example of this favorable situation:
the ANI vulnerability in Windows XP/Vista [16].

Format string vulnerabilities are also very suitable for a swarm attack: their
exploitations generally do not contaminate any of the target program’s data
structures “by accident”; once the vulnerable function has finished processing
the malicious format string, it will return properly. Thus the target program can
usually carry on with its normal execution after every attack instance in a swarm
attack built on top of a format string vulnerability (e.g. we have confirmed that
it is possible to exploit the format string vulnerability in the wu-ftpd server [22]
multiple times, through a single connection to the server). Finally, we admit
that the feasibility of a swarm attack is more questionable in the case of a heap
buffer overflow; in many cases, the corruption in the heap will crash the attacked
program shortly. However, the technique in [9] may be improving the situation.

4.2 Where to Put the Decoder?

Another difficulty that we may face when implementing a swarm attack is that
we need to find an area in the attacked process’ address space that: (1) will
be reliably writable in every instance of the program, even if it’s running on
different OSs, using different versions of libraries, and (2) will remain untouched
until the decoding of the real payload is completed.

In most scenarios, the first condition can be easily satisfied given the original
exploit for control hijacking. In particular, if the original exploit used a register
spring to direct the hijacked control, we can easily derive an address within the
data area of the module which holds the exploited register spring instruction
(this is true even when some address space layout randomization is applied,
if only the base of a module is randomized). In this case, we will argue that
having to find a writable location to place the decoder does not make the swarm
attack any more difficult to implement than the original. However, if the original
exploit used a hardcoded address (which is less common nowadays), a different
approach is needed. One solution is to use another hardcoded address (as we did
in our experiments on Savant). Given our success in finding register springs that
remain at the same address throughout various versions of OS/library, finding
hardcoded addresses that are writable across different target machines should
be very feasible. Another possibility is to see if any register is pointing to some
global data area at the time of control hijacking.

As of storing the decoder in an area that will not be modified until we’ve
finished building it, we note that since memory protection is applied at the

Swarm Attacks against Network-Level Emulation/Analysis 185

granularity of a page, the last parts of many writable regions are never used (they
do not correspond to any variable/data structure in the underlying program).
Thus, the last part of all writable regions should be very good starting point
in our search for places to hold the decoder, and we can always test the target
program to “estimate” if it is safe to store the decoder at one of these candidate
areas. Some other possible locations for persistent storage of injected code have
been proposed in Sect. 3.1 of [12].

5 How Swarm Attacks Evade?

5.1 Sled-Detection Systems

To see how our swarm attack evades the sled-detection systems described in Sect.
2.1, we note that our attack against Savant used a register spring, and contains
no sled. Thus the only executable code that a sled-detection system can find is
that for building the decoder or transferring the control to the decoder.

Recall that [21] considers incoming traffic malicious if it contains a valid se-
quence of 30 instructions or more. For the swarm attack against Savant, the
attack instances for building up the decoder consists of 6 instructions, with one
to jump over junk bytes (not shown in Fig. 1 since it is specific to the attack
against Savant), 4 for actually writing part of the decoder to the right place,
and one that puts the execution in dead loop. As for the last attack instance
that transfers control to the decoder we’ve built, it consists of one instruction to
jump over junk bytes, one for setting up the target of the jump and one for the
jump itself. Finally, note that [21] counts jumps targeting address outside the
attack traffic as two instructions; any other jump instructions will be counted
as one, and a jump targeting instructions that appear earlier in the instruction
sequence will mark the end of that sequence. Obviously, [21] will not be able
to discover any valid sequence that contains more than 6 instructions in all our
attack instances, and thus will pass them all as benign. Similarly, [1] tries to
locate the longest byte sequence in traffic such that any suffix of the sequence is
a valid chain of instructions, and consider the traffic as malicious if the longest
of such sequences found is 230 byte or longer. The longest sequence that [1] can
find in our attack will be of 22 byte long (with 2 bytes for jumping over junk,
and 20 bytes as shown in Fig. 1). Thus, the swarm attack will evade [1] also.

5.2 “Meaningful Code” Detection

As for systems that try to detect code that appears to serve some “meaningful”
purpose in an attack, recall that [24] looks for push-call sequences and instruc-
tions that do not cause any data flow anomaly. All attack instances in our swarm
attack contain no push-call sequence (there will be one if we try to continue with
normal execution after the attack using the method described in Sect. 4.1), and
contains at most 6 “useful” instructions. Since the number of useful instructions
needed for [24] to sound the alarm is 10, [24] will not be able to detect our at-
tack. As for [3], the detector only considers control transfers at the end of every

186 S.P. Chung and A.K. Mok

chain of basic blocks it identifies with static analysis of the incoming traffic. As
such, only the jump that forms a dead loop in the earlier attack instances and
the jump to the decoder in the last instance will be used by [3] to determine
whether the traffic is malicious. Since an empty loop is considered benign, and
register indirect jumps are only malicious to [3] if they target instructions within
the analyzed traffic, our attack will certainly evade [3].

5.3 Decoder Detection

As we’ve mentioned in Sect. 2.1, almost all network-level emulation/analysis
systems designed to specifically detect decoders in polymorphic shellcode will
only consider incoming traffic malicious if it contains some GetPC code. Since
our attack does not contain any such code, it will evade all detection systems
that use GetPC as a precondition for further analysis. For the sake of argument,
even if some GetPC code is added to our attack instances, they still won’t
be sufficiently “decoder like” to be detected. For example, [25] requires a loop
containing indirect writes for traffic to be classified as malicious, but the only
loop in our attack instances is empty. As for [14], more than 6 reads to different
locations within the analyzed traffic have to be found before it will be flagged
as an attack, while our attack instances perform at most one read operation.

The successful evasion of [13] by our swarm attack is less certain. When pre-
sented traffic from our swarm attack, we believe [13] will successfully identify
the code involved (either for building the decoder or for executing the decoder).
Whether [13] can detect our attack will then be determined by its model for
a shellcode decoder (i.e. the frequency at which different types of instructions
appear in a decoder), and in the worst case, if [13] is trained to recognize code in
our attack instances, it is quite likely that our attack will be detected. However,
we can always polymorph our attack to introduce noise for the classification in
[13] (i.e. introduce various types of instructions). Furthermore, it is questionable
if [13] can maintain a low false positive if it’s trained to recognize the small
“decoder” in our attack (we will elaborate on this point in Sect. 6).

Finally, [15] used a negative heuristic that if the code recovered from the traffic
contains fewer than 8 write instructions, it will be considered benign. Since all
our attack instances contain only one write operation, they will all successfully
bypass [15].

6 Can Network-Level Emulation/Analysis Detects
Swarm Attacks?

In this section, we will try to answer the following question:

Can network-level emulation/analysis systems be improved to detect the
swarm attack we’ve proposed?

The answer to this question depends on our ability to characterize the kind
of write operations that allows one to build the decoder, as well as the amount

Swarm Attacks against Network-Level Emulation/Analysis 187

of false positives that will result from our best characterization of such “useful
writes”. We focus our discussion on characterizing the write operations used
for building the decoder because it is the most essential feature of the visible
payload in a swarm attack. The way of generating both the value to be written
and the target address can be easily changed to evade detection, and as we will
argue below, we maybe able to design swarm attacks in which these values are
not “generated” by any instructions. As of the payload for the control transfer
to the decoder in the last attack instance, we note that it may not be necessary
in some swarm attacks. If we can build the decoder at many different places, we
can have the last instance of attack direct the hijacked control to a hardcoded
address (without executing any code), and still evade signature-based detection
targeting that hardcoded value; due to the large number of choices we have for
this address, any signature targeting a particular address will be useless. Even
if it turns out that the executable payload in the last instance is unavoidable,
we believe the difficulties in the characterization of this small payload, as well
as the false positives resulting from detecting it, will be similar to that of the
“useful write” discussed below.

Let’s start our discussion by considering our attack against the Savant server
once again. In the attack code in Fig. 1, the write operations involved have some
very specific properties; in particular, both the value written and the address to
write are direct products of previous instructions. However, we can easily avoid
the dynamic generation of the former by using immediate values instead. This
is especially true if we can afford to construct the decoder with more attack
instances. For example, if we can double the number of attack instances used
in building the decoder, we can specify the values to be written as immediate
operands, and still leave no constant byte sequence for signature-based detec-
tion. This is because we can “write” each 4-byte of the decoder using two attack
instances, the first writes an immediate value to the target location directly, and
the second performs some arithmetic/bitwise operation between another imme-
diate value and the previously written value, such that the result of the operation
will be the right value for the decoder. This way, we can avoid having the values
written in useful writes from being defined in previous instructions. To push the
idea even further, if we can afford to build the decoder one byte at a time, and
if we have control over an extra register when the control hijacking occurs, we
can simply put the value to write in the register we control. As such, the value
written will appear entirely undefined to the network-level emulation/analysis.
When coupled with the overlapping-writes technique in Sect. 3, there will only
be one byte that’s constant across all attack instances responsible for building a
particular part of the decoder.

If it turns out that there are so many locations in the attacked process’ address
space where the decoder can be safely built, we can avoid generating the target
of the write operations used in building the decoder also; instead, we can include
the immediate value of the write target in our attacks and still be able to evade
any signature-matching by building the decoder at different place in different
attacks. In fact, from our experience with attacking Savant, at least the least

188 S.P. Chung and A.K. Mok

significant two bytes of the address where we place our decoder can show a high
level of entropy, leaving only the most significant two bytes useful for signature
matching (if we leave the write target unencoded in our attack instances). Thus,
it is possible to design our attack such that the “useful writes” we use for building
the decoder will appear to have both the value and the address written undefined
to the network-level emulation/analysis.

It is also quite unlikely that we can keep the false positives of the network-level
emulation/analysis low while we try to detect attack code as simple as those in
the swarm attack. We based this pessimistic prediction on two pieces of data
from [15]:

1. when tested against artificial binary data, the system in [15] found that
0.01% of the data writes to 8 unique addresses, and contain one control
transfer to one of those written locations.

2. almost 1% of random binary/printable data will contain code that writes to
a certain address and then an instruction that jumps to it.

We note that if we phrase a “useful write” in a swarm attack as “defining
certain register and then use it as the target of a register indirect write”, the
behavior involved in the second item will be quite similar to a useful write in
terms of the level of sophistication: both involve two related operations. Thus, it
is not unreasonable to use the figure given to predict the level of false positives
resulted from detecting traffic that contains one “useful write” operation.

7 Conclusions

In this paper, we have studied an attack strategy where the attacker deliber-
ately makes his attack less efficient; instead of achieving their goal through one
instance of control hijacking, they hijack the control of the target process mul-
tiple times, and achieve some minimal objective in each hijacking. Surprisingly,
such swarm attack is very effective in evading detection systems that are based
on network-level emulation/analysis, which is the least challenged approach for
network intrusion detection. The swarm attack evades these systems by exposing
a very small, simple piece of code in each attack instance, and slowly building up
a decoder somewhere in the attacked process’ memory using this minimal pay-
load. Once the decoder is complete, one last instance of attack will be launched
to carry the encoded payload and hijack the control to execute the decoder. We
argue that since the exposed code in the swarm attack can be made so short and
simple, it would be virtually impossible to detect such attack without incurring
a high false positive. We have also noted that the need to hijack the control of
the attacked process multiple times may constraint the type of vulnerabilities
that can be exploited in a swarm attack, but we believe vulnerabilities in net-
work servers are generally suitable for us, and there are techniques to exploit
vulnerabilities that are less favorable to our swarm attacks.

As we have mentioned in the introduction, many security systems are built
based on the assumption that the attackers will gain nothing by being inefficient

Swarm Attacks against Network-Level Emulation/Analysis 189

and make their attacks “unnecessarily complicated”. Thus, the swarm attack
can have significant impact to other systems too. For example, a similar “multi-
threaded” attack as the one we have presented can open up new avenue for
mimicry attacks against system-call based IDS: in this new attack, not only
can the attacker insert null calls into the sequence of system calls observed by
the IDS, he can also issue system calls from another thread that’s at a more
favorable state. Our preliminary analysis also shows that some form of swarm
attack can have significant impact on intrusion prevention systems which analyze
information collected from the attacked host. In particular, with separation of
the attack traffic that overwrites the targeted control structure and that hijacks
the control using those contaminated structures, together with careful control of
the time delay between the two parts of the attack, an attacker can make IPSs
like Vigilante [5] vulnerable to allergy attacks [4], or force them into generating
signatures/execution filters that are useless in stopping attacks. In our future
work, we plan to further experiment with the swarm attacks against these two
types of systems, and study their real impact.

References

1. Akritidis, P., Markatos, E.P., Polychronakis, M., Ananostakis, K.: Stride: Polymor-
phic sled detection through instruction sequence analysis. In: Proceedings of the
20th IFIP International Information Security Conference (IFIP/SEC 2005), Chiba,
Japan (May 2005)

2. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control data attacks
are realistic threats. In: Proceedings of the 14th conference on USENIX Security
Symposium (USENIX Security 2005), Madison (July 2005)

3. Chinchani, R., Van Den Berg, E.: A fast static analysis approach to detect exploit
code inside network flows. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 284–308. Springer, Heidelberg (2006)

4. Chung, S.P., Mok, A.K.: Allergy Attack Against Automatic Signature Genera-
tion. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 61–80.
Springer, Heidelberg (2006)

5. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: End-to-end containment of internet worms. In: Proceedings of 20th
ACM Symposium on Operating Systems Principles, Brighton (October 2005)

6. Detristan, T., Ulenspiegel, T., Malcom, Y., von Underduk, M.S.: Polymorphic shell-
code engine using spectrum analysis. In: Phrack, vol. 11 (2003)

7. Fogla, P., Lee, W.: Evading network anomaly detection systems: Formal reasoning
and practical techniques. In: Proceedings of the 13th Conference on Computer and
Communication Security (CCS 2006), Virginia (October 2006)

8. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: Proceedings of 15th USENIX Security Symposium Abstract (USENIX
Security 2006), Vancouver (July 2006)

9. jp. Advanced Doug lea’s malloc exploits,
http://doc.bughunter.net/buffer-overflow/ advanced-malloc-exploits.html

10. K2. ADMmutate documentation (2003),
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

http://doc.bughunter.net/buffer-overflow/advanced-malloc-exploits.html
http://doc.bughunter.net/buffer-overflow/advanced-malloc-exploits.html
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

190 S.P. Chung and A.K. Mok

11. mati@see security.com. Savant 3.1 Web Server Buffer Overflow Tutorial,
http://www.securinfos.info/english/security-whitepapers-hacking-
tutorials/Savant-BO-tutorial.pdf

12. Parampalli, C., Sekar, R., Johnson, R.: A practical mimicry attack against powerful
system-call monitors. In: Proceedings of the ACM Symposium on Information,
Computer and Communications Security (ASIACCS 2008), Tokyo (March 2008)

13. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymorphic shellcode de-
tection. In: Julisch, K., Krügel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 19–31.
Springer, Heidelberg (2005)

14. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Network-level polymorphic
shellcode detection using emulation. In: Büschkes, R., Laskov, P. (eds.) DIMVA
2006. LNCS, vol. 4064, pp. 54–73. Springer, Heidelberg (2006)

15. Markatos, E.P., Anagnostakis, K.G., Polychronakis, M.: Emulation-Based Detec-
tion of Non-self-contained Polymorphic Shellcode. In: Kruegel, C., Lippmann, R.,
Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 87–106. Springer, Heidelberg
(2007)

16. Determina Security Research. Windows Animated Cursor Stack Overflow Vul-
nerability, http://www.determina.com/security.research/vulnerabilities/
ani-header.html

17. Rubin, S., Jha, S., Miller, B.: Automatic generation and analysis of nids attacks.
In: Proceedings of the Annual Computer Security Applications Conference 2004
(ACSAC 2004), California (December 2004)

18. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of the 14th Conference on Computer
and Communication Security (CCS 2007), Virginia (October 2007)

19. Sidiroglou, S., Locasto, M.E., Boyd, S.W., Keromytis, A.D.: Building a reactive
immune system for software services. In: Proceedings of the USENIX Annual Tech-
nical Conference 2005, California (April 2005)

20. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the infea-
sibility of modeling polymorphic shellcode. In: Proceedings of the 13th Conference
on Computer and Communication Security (CCS 2007), Virginia (October 2007)

21. Toth, T., Kruegel, C.: Accurate buffer overflow detection via abstract payload
execution. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516.
Springer, Heidelberg (2002)

22. US-CERT. Vulnerability Note VU#29823: Format string input validation error in
wu-ftpd site exec() function, http://www.kb.cert.org/vuls/id/29823

23. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and
signature generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 227–246. Springer, Heidelberg (2006)

24. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow
attack blocker. In: Proceedings of 15th USENIX Security Symposium Abstract
(USENIX Security 2006), Vancouver (July 2006)

25. Zhang, Q., Reeves, D.S., Ning, P., Iyer, S.P.: Analyzing network traffic to detect
self-decryption exploit code. In: Proceedings of the 2nd ACM Symposium on In-
formAtion, Computer and Communications Security (ASIACCS 2007), Singapore
(March 2007)

http://www.securinfos.info/english/security-whitepapers-hacking-tutorials/Savant-BO-tutorial.pdf
http://www.securinfos.info/english/security-whitepapers-hacking-tutorials/Savant-BO-tutorial.pdf
http://www.determina.com/security.research/vulnerabilities/ani-header.html
http://www.determina.com/security.research/vulnerabilities/ani-header.html
http://www.kb.cert.org/vuls/id/29823

Leveraging User Interactions for

In-Depth Testing of Web Applications

Sean McAllister1, Engin Kirda2, and Christopher Kruegel3

1 Secure Systems Lab, Technical University Vienna, Austria
sean@seclab.tuwien.ac.at
2 Institute Eurecom, France

kirda@eurecom.fr
3 University of California, Santa Barbara

chris@cs.ucsb.edu

Abstract. Over the last years, the complexity of web applications has
grown significantly, challenging desktop programs in terms of function-
ality and design. Along with the rising popularity of web applications,
the number of exploitable bugs has also increased significantly. Web ap-
plication flaws, such as cross-site scripting or SQL injection bugs, now
account for more than two thirds of the reported security vulnerabilities.

Black-box testing techniques are a common approach to improve soft-
ware quality and detect bugs before deployment. There exist a number of
vulnerability scanners, or fuzzers, that expose web applications to a bar-
rage of malformed inputs in the hope to identify input validation errors.
Unfortunately, these scanners often fail to test a substantial fraction of a
web application’s logic, especially when this logic is invoked from pages
that can only be reached after filling out complex forms that aggressively
check the correctness of the provided values.

In this paper, we present an automated testing tool that can find
reflected and stored cross-site scripting (XSS) vulnerabilities in web ap-
plications. The core of our system is a black-box vulnerability scanner.
This scanner is enhanced by techniques that allow one to generate more
comprehensive test cases and explore a larger fraction of the application.
Our experiments demonstrate that our approach is able to test more
thoroughly these programs and identify more bugs than a number of
open-source and commercial web vulnerability scanners.

1 Introduction

The first web applications were collections of static files, linked to each other by
means of HTML references. Over time, dynamic features were added, and web
applications started to accept user input, changing the presentation and content
of the pages accordingly. This dynamic behavior was traditionally implemented
by CGI scripts. Nowadays, more often then not, complete web sites are created
dynamically. To this end, the site’s content is stored in a database. Requests are
processed by the web application to fetch the appropriate database entries and
present them to the user. Along with the complexity of the web sites, the use

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 191–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 S. McAllister, E. Kirda, and C. Kruegel

cases have also become more involved. While in the beginning user interaction
was typically limited to simple request-response pairs, web applications today
often require a multitude of intermediate steps to achieve the desired results.

When developing software, an increase in complexity typically leads to a grow-
ing number of bugs. Of course, web applications are no exception. Moreover,
web applications can be quickly deployed to be accessible to a large number of
users on the Internet, and the available development frameworks make it easy
to produce (partially correct) code that works only in most cases. As a result,
web application vulnerabilities have sharply increased. For example, in the last
two years, the three top positions in the annual Common Vulnerabilities and
Exposures (CVE) list published by Mitre [17] were taken by web application
vulnerabilities.

To identify and correct bugs and security vulnerabilities, developers have a
variety of testing tools at their disposal. These programs can be broadly cate-
gorized as based on black-box approaches or white-box approaches. White-box
testing tools, such as those presented in [2, 15, 27, 32], use static analysis to
examine the source code of an application. They aim at detecting code frag-
ments that are patterns of instances of known vulnerability classes. Since these
systems do not execute the application, they achieve a large code coverage, and,
in theory, can analyze all possible execution paths. A drawback of white-box
testing tools is that each tool typically supports only very few (or a single) pro-
gramming language. A second limitation is the often significant number of false
positives. Since static code analysis faces undecidable problems, approximations
are necessary. Especially for large software applications, these approximations
can quickly lead to warnings about software bugs that do not exist.

Black-box testing tools [11] typically run the application and monitor its exe-
cution. By providing a variety of specially-crafted, malformed input values, the
goal is to find cases in which the application misbehaves or crashes. A significant
advantage of black-box testing is that there are no false positives. All problems
that are reported are due to real bugs. Also, since the testing tool provides only
input to the application, no knowledge about implementation-specific details
(e.g., the used programming language) is required. This allows one to use the
same tool for a large number of different applications. The drawback of black-box
testing tools is their limited code coverage. The reason is that certain program
paths are exercised only when specific input is provided.

Black-box testing is a popular choice when analyzing web applications for
security errors. This is confirmed by the large number of open-source and com-
mercial black-box tools that are available [1, 16, 19, 29]. These tools, also called
web vulnerability scanners or fuzzers, typically check for the presence of well-
known vulnerabilities, such as cross-site scripting (XSS) or SQL injection flaws.
To check for security bugs, vulnerability scanners are equipped with a large
database of test values that are crafted to trigger XSS or SQL injection bugs.
These values are typically passed to an application by injecting them into the
application’s HTML form elements or into URL parameters.

Leveraging User Interactions for In-Depth Testing of Web Applications 193

Web vulnerability scanners, sharing the well-known limitation of black-box
tools, can only test those parts of a web site (and its underlying web application)
that they can reach. To explore the different parts of a web site, these scanners
frequently rely on built-in web spiders (or crawlers) that follow links, starting
from a few web pages that act as seeds. Unfortunately, given the increasing
complexity of today’s applications, this is often insufficient to reach “deeper”
into the web site. Web applications often implement a complex workflow that
requires a user to correctly fill out a series of forms. When the scanner cannot
enter meaningful values into these forms, it will not reach certain parts of the
site. Therefore, these parts are not tested, limiting the effectiveness of black-box
testing for web applications.

In this paper, we present techniques that improve the effectiveness of web vul-
nerability scanners. To this end, our scanner leverages input from real users as a
starting point for its testing activity. More precisely, starting from recorded, ac-
tual user input, we generate test cases that can be replayed. By following a user’s
session, fuzzing at each step, we are able to increase the code coverage by explor-
ing pages that are not reachable for other tools. Moreover, our techniques allow
a scanner to interact with the web application in a more meaningful fashion.
This often leads to test runs where the web application creates a large number
of persistent objects (such as database entries). Creating objects is important
to check for bugs that manifest when malicious input is stored in a database,
such as in the case of stored cross-site scripting (XSS) vulnerabilities. Finally,
when the vulnerability scanner can exercise some control over the program un-
der test, it can extract important feedback from the application that helps in
further improving the scanner’s effectiveness.

We have implemented our techniques in a vulnerability scanner that can ana-
lyze applications that are based on the Django web development framework [8].
Our experimental results demonstrate that our tool achieves larger coverage and
detects more vulnerabilities than existing open-source and commercial fuzzers.

2 Web Application Testing and Limitations

One way to quickly and efficiently identify flaws in web applications is the use
of vulnerability scanners. These scanners test the application by providing mal-
formed inputs that are crafted so that they trigger certain classes of vulnerabili-
ties. Typically, the scanners cover popular vulnerability classes such as cross-site
scripting (XSS) or SQL injection bugs. These vulnerabilities are due to input
validation errors. That is, the web application receives an input value that is
used at a security-critical point in the program without (sufficient) prior vali-
dation. In case of an XSS vulnerability [10], malicious input can reach a point
where it is sent back to the web client. At the client side, the malicious input
is interpreted as JavaScript code that is executed in the context of the trusted
web application. This allows an attacker to steal sensitive information such as
cookies. In case of a SQL injection flaw, malicious input can reach a database

194 S. McAllister, E. Kirda, and C. Kruegel

query and modify the intended semantics of this query. This allows an attacker
to obtain sensitive information from the database or to bypass authentication
checks.

By providing malicious, or malformed, input to the web application under
test, a vulnerability scanner can check for the presence of bugs. Typically, this is
done by analyzing the response that the web application returns. For example,
a scanner could send a string to the program that contains malicious JavaScript
code. Then, it checks the output of the application for the presence of this string.
When the malicious JavaScript is present in the output, the scanner has found
a case in which the application does not properly validate input before sending
it back to clients. This is reported as an XSS vulnerability.

To send input to web applications, scanners only have a few possible injection
points. According to [26], the possible points of attack are the URL, the cookie,
and the POST data contained in a request. These points are often derived from
form elements that are present on the web pages. That is, web vulnerability
scanners analyze web pages to find injection points. Then, these injection points
are fuzzed by sending a large number of requests that contain malformed inputs.

Limitations. Automated scanners have a significant disadvantage compared to
human testers in the way they can interact with the application. Typically, a
user has certain goals in mind when interacting with a site. On an e-commerce
site, for example, these goals could include buying an item or providing a rating
for the most-recently-purchased goods. The goals, and the necessary operations
to achieve these goals, are known to a human tester. Unfortunately, the scanner
does not have any knowledge about use cases; all it can attempt to do is to collect
information about the available injection points and attack them. More precisely,
the typical workflow of a vulnerability scanners consists of the following steps:

– First, a web spider crawls the site to find valid injection points. Commonly,
these entry points are determined by collecting the links on a page, the action
attributes of forms, and the source attributes of other tags. Advanced spiders
can also parse JavaScript to search for URLs. Some even execute JavaScript
to trigger requests to the server.

– The second phase is the audit phase. During this step, the scanner fuzzes the
previously discovered entry points. It also analyzes the application’s output
to determine whether a vulnerability was triggered.

– Finally, many scanners will start another crawling step to find stored XSS
vulnerabilities. In case of a stored XSS vulnerability, the malicious input is
not immediately returned to the client but stored in the database and later
included in another request. Therefore, it is not sufficient to only analyze the
application’s immediate response to a malformed input. Instead, the spider
makes a second pass to check for pages that contain input injected during
the second phase.

The common workflow outlined above yields good results for simple sites
that do not require a large amount of user interaction. Unfortunately, it often
fails when confronted with more complex sites. The reason is that vulnerability

Leveraging User Interactions for In-Depth Testing of Web Applications 195

scanners are equipped with simple rules to fill out forms. These rules, however,
are not suited well to advance “deeper” into an application when the program
enforces constraints on the input values that it expects. To illustrate the problem,
we briefly discuss an example of how a fuzzer might fail on a simple use case.

The example involves a blogging site that allows visitors to leave comments
to each entry. To leave a comment, the user has to fill out a form that holds the
content of the desired comment. Once this form is submitted, the web application
responds with a page that shows a preview of the comment, allowing the user
to make changes before submitting the posting. When the user decides to make
changes and presses the corresponding button, the application returns to the
form where the text can be edited. When the user is satisfied with her comment,
she can post the text by selecting the appropriate button on the preview page.

The problem in this case is that the submit button (which actually posts the
message to the blog) is activated on the preview page only when the web ap-
plication recognizes the submitted data as a valid comment. This requires that
both the name of the author and the text field of the comment are filled in.
Furthermore, it is required that a number of hidden fields on the page remain
unchanged. When the submit button is successfully pressed, a comment is cre-
ated in the application’s database, linked to the article, and subsequently shown
in the comments section of the blog entry.

For a vulnerability scanner, posting a comment to a blog entry is an entry
point that should be checked for the presence of vulnerabilities. Unfortunately,
all of the tools evaluated in our experiments (details in Section 5.2) failed to
post a comment. That is, even a relatively simple task, which requires a scanner
to fill out two form elements on a page and to press two buttons in the correct
order, proved to be too difficult for an automated scanner. Clearly, the situation
becomes worse when facing more complex use cases.

During our evaluation of existing vulnerability scanners, we found that, com-
monly, the failure to detect a vulnerability is not due to the limited capabilities
of the scanner to inject malformed input or to determine whether a response in-
dicates a vulnerability, but rather due to the inability to generate enough valid
requests to reach the vulnerable entry points. Of course, the exact reasons for
failing to reach entry points vary, depending on the application that is being
tested and the implementation of the scanner.

3 Increasing Test Coverage

To address the limitations of existing tools, we propose several techniques that
allow a vulnerability scanner to detect more entry points. These entry points can
then be tested, or fuzzed, using existing databases of malformed input values.
The first technique, described in Section 3.1, introduces a way to leverage inputs
that are recorded by observing actual user interaction. This allows the scanner
to follow an actual use case, achieving more depth when testing. The second
technique, presented in Section 3.2, discusses a way to abstract from observed
user inputs, leveraging the steps of the use case to achieve more breadth. The

196 S. McAllister, E. Kirda, and C. Kruegel

third technique, described in Section 3.3, makes the second technique more ro-
bust in cases where the broad exploration interferes with the correct replay of a
use case.

3.1 Increasing Testing Depth

One way to improve the coverage, and thus, the effectiveness of scanners, is to
leverage actual user input. That is, we first collect a small set of inputs that were
provided by users that interacted with the application. These interactions corre-
spond to certain use cases, or workflows, in which a user carries out a sequence
of steps to reach a particular goal. Depending on the application, this could be a
scenario where the user purchases an item in an on-line store or a scenario where
the user composes and sends an email using a web-based mail program. Based on
the recorded test cases, the vulnerability scanner can replay the collected input
values to successfully proceed a number of steps into the application logic. The
reason is that the provided input has a higher probability to pass server-side
validation routines. Of course, there is, by no means, a guarantee that recorded
input satisfies the constrains imposed by an application at the time the values
are replayed. While replaying a previously recorded use case, the scanner can
fuzz the input values that are provided to the application.

Collecting input. There are different locations where client-supplied input data
can be collected. One possibility is to deploy a proxy between a web client and
the web server, logging the requests that are sent to the web application. Another
way is to record the incoming requests at the server side, by means of web server
log files or application level logging. For simplicity, we record requests directly
at the server, logging the names and values of all input parameters.

It is possible to record the input that is produced during regular, functional
testing of applications. Typically, developers need to create test cases that are
intended to exercise the complete functionality of the application. When such
test cases are available, they can be immediately leveraged by the vulnerability
scanner. Another alternative is to deploy the collection component on a produc-
tion server and let real-world users of the web application generate test cases. In
any case, the goal is to collect a number of inputs that are likely correct from the
application’s point of view, and thus, allow the scanner to reach additional parts
of the application that might not be easily reachable by simply crawling the site
and filling out forms with essentially random values. This approach might raise
some concerns with regards to the nature of the captured data. The penetration
tester must be aware of the fact that user input is being captured and stored in
clear text. This is acceptable for most sites but not for some (because, for ex-
ample, the unencrypted storage of sensitive information such as passwords and
credit card numbers might be unacceptable). In these cases, it is advisable to
perform all input capturing and tests in a controlled testbed.

Replaying input. Each use case consists of a number of steps that are carried out
to reach a certain goal. For each step, we have recorded the requests (i.e., the

Leveraging User Interactions for In-Depth Testing of Web Applications 197

input values) that were submitted. Based on these input values, the vulnerability
scanner can replay a previously collected use case. To this end, the vulnerability
scanner replays a recorded use case, one step at a time. After each step, a fuzzer
component is invoked. This fuzzer uses the request issued in the previous step
to test the application. More precisely, it uses a database of malformed values
to replace the valid inputs within the request sent in the previous step. In other
words, after sending a request as part of a replayed use case, we attempt to fuzz
this request. Then, the previously recorded input values stored for the current
step are used to advance to the next step. This process of fuzzing a request and
subsequently advancing one step along the use case is repeated until the test
case is exhausted. Alternatively, the process stops when the fuzzer replays the
recorded input to advance to the next page, but this page is different from the
one expected. This situation can occur when a previously recorded input is no
longer valid.

When replaying input, the vulnerability scanner does not simply re-submit a
previously recorded request. Instead, it scans the page for elements that require
user input. Then, it uses the previously recorded request to provide input values
for those elements only. This is important when an application uses cookies or
hidden form fields that are associated with a particular session. Changing these
values would cause the application to treat the request as invalid. Thus, for such
elements, the scanner uses the current values instead of the “old” ones that were
previously collected. The rules used to determine the values of each form field
aim to mimic the actions of a benign user. That is, hidden fields are not changed,
as well as read-only widgets (such as submit button values or disabled elements).
Of course security vulnerabilities can also be triggered by malicious input data
within these hidden fields, but this is of no concern at this stage because the
idea is to generate benign and valid input and then apply the attack logic to
these values. Later on, during the attacking stage, the fuzzer will take care that
all parameters will be tested.

Guided fuzzing. We call the process of using previously collected traces to step
through an application guided fuzzing. Guided fuzzing improves the coverage of
a vulnerability scanner because it allows the tool to reach entry points that were
previously hidden behind forms that expect specific input values. That is, we
can increase the depth that a scanner can reach into the application.

3.2 Increasing Testing Breadth

With guided fuzzing, after each step that is replayed, the fuzzer only tests the
single request that was sent for that step. That is, for each step, only a single
entry point is analyzed. A straightforward extension to guided fuzzing is to not
only test the single entry point, but to use the current step as a starting point
for fuzzing the complete site that is reachable from this point. That is, the fuzzer
can use the current page as its starting point, attempting to find additional entry
points into the application. Each entry point that is found in this way is then
tested by sending malformed input values. In this fashion, we do not only increase

198 S. McAllister, E. Kirda, and C. Kruegel

the depth of the test cases, but also their breadth. For example, when a certain
test case allows the scanner to bypass a form that performs aggressive input
checking, it can then explore the complete application space that was previously
hidden behind that form. We call this approach extended, guided fuzzing.

Extended, guided fuzzing has the potential to increase the number of entry
points that a scanner can test. However, alternating between a comprehensive
fuzzing phase and advancing one step along a recorded use case can also lead to
problems. To see this, consider the following example. Assume an e-commerce
application that uses a shopping cart to hold the items that a customer intends
to buy. The vulnerability scanner has already executed a number of steps that
added an item to the cart. At this point, the scanner encounters a page that
shows the cart’s inventory. This page contains several links; one link leads to the
checkout view, the other one is used to delete items from the cart. Executing
the fuzzer on this page can result in a situation where the shopping cart remains
empty because all items are deleted. This could cause the following steps of the
use case to fail, for example, because the application no longer provides access to
the checkout page. A similar situation can arise when administrative pages are
part of a use case. Here, running a fuzzer on a page that allows the administrator
to delete all database entries could be very problematic.

In general terms, the problem with extended, guided fuzzing is that the fuzzing
activity could interfere in undesirable ways with the use case that is replayed.
In particular, this occurs when the input sent by the fuzzer changes the state
of the application such that the remaining steps of a use case can no longer be
executed. This problem is difficult to address when we assume that the scanner
has no knowledge and control of the inner workings of the application under
test. In the following Section 3.3, we consider the case in which our test system
can interact more tightly with the analyzed program. In this case, we are able
to prevent the undesirable side effects (or interference) from the fuzzing phases.

3.3 Stateful Fuzzing

The techniques presented in the previous sections work independently of the
application under test. That is, our system builds black-box test cases based on
previously recorded user input, and it uses these tests to check the application
for vulnerabilities. In this subsection, we consider the case where the scanner
has some control over the application under test.

One solution to the problem of undesirable side effects of the fuzzing step when
replaying recorded use cases is to take a snapshot of the state of the application
after each step that is replayed. Then, the fuzzer is allowed to run. This might
result in significant changes to the application’s state. However, after each fuzzing
step, the application is restored to the previously taken snapshot. At this point,
the replay component will find the application in the expected state and can
advance one step. After that, the process is repeated - that is, a snapshot is
taken and the fuzzer is invoked. We call this process stateful fuzzing.

In principle, the concrete mechanisms to take a snapshot of an application’s
state depend on the implementation of this application. Unfortunately, this could

Leveraging User Interactions for In-Depth Testing of Web Applications 199

be different for each web application. As a result, we would have to customize
our test system to each program, making it difficult to test a large number of
different applications. Clearly, this is very undesirable. Fortunately, the situation
is different for web applications. Over the last years, the model-view-controller
(MVC) scheme has emerged as the most popular software design pattern for
applications on the web. The goal of the MVC scheme is to separate three layers
that are present in almost all web applications. These are the data layer, the
presentation layer, and the application logic layer. The data layer represents the
data storage that handles persistent objects. Typically, this layer is implemented
by a backend database and an object (relational) manager. The application logic
layer uses the objects provided by the data layer to implement the functional-
ity of the application. It uses the presentation layer to format the results that
are returned to clients. The presentation layer is frequently implemented by an
HTML template engine. Moreover, as part of the application logic layer, there
is a component that maps requests from clients to the corresponding functions
or classes within the program.

Based on the commonalities between web applications that follow an MVC
approach, it is possible (for most such applications) to identify general interfaces
that can be instrumented to implement a snapshot mechanism. To be able to
capture the state of the application and subsequently restore it, we are interested
in the objects that are created, updated, or deleted by the object manager in
response to requests. Whenever an object is modified or deleted, a copy of this
object is serialized and saved. This way, we can, for example, undelete an object
that has been previously deleted, but that is required when a use case is replayed.
In a similar fashion, it is also possible to undo updates to an object and delete
objects that were created by the fuzzer.

The information about the modification of objects can be extracted at the in-
terface between the application and the data layer (often, at the database level).
At this level, we insert a component that can serialize modified objects and later
restore the snapshot of the application that was previously saved. Clearly, there
are limitations to this technique. One problem is that the state of an application
might not depend solely on the state of the persistent objects and its attributes.
Nevertheless, this technique has the potential to increase the effectiveness of the
scanner for a large set of programs that follow a MVC approach. This is also
confirmed by our experimental results presented in Section 5.

Application feedback. Given that stateful fuzzing already requires the instrumen-
tation of the program under test, we should consider what additional information
might be useful to further improve the vulnerability scanning process.

One piece of feedback from the application that we consider useful is the
mapping of URLs to functions. This mapping can be typically extracted by an-
alyzing or instrumenting the controller component, which acts as a dispatcher
from incoming requests to the appropriate handler functions. Using the mappings
between URLs and the program functions, we can increase the effectiveness of
the extended, guided fuzzing process. To this end, we attempt to find a set of
forms (or URLs) that all invoke the same function within the application. When

200 S. McAllister, E. Kirda, and C. Kruegel

we have previously seen user input for one of these forms, we can reuse the
same information on other forms as well (when no user input was recorded for
these forms). The rationale is that information that was provided to a certain
function through one particular form could also be valid when submitted as part
of a related form. By reusing information for forms that the fuzzer encounters,
it is possible to reach additional entry points.

When collecting user input (as discussed in Section 3.1), we record all input
values that a user provides on each page. More precisely, for each URL that
is requested, we store all the name-value pairs that a user submits with this
request. In case the scanner can obtain application feedback, we also store the
name of the program function that is invoked by the request. In other words,
we record the name of the function that the requested URL maps to. When the
fuzzer later encounters an unknown action URL of a form (i.e., the URL where
the form data is submitted to), we query the application to determine which
function this URL maps to. Then, we search our collected information to see
whether the same function was called previously by another URL. If this is the
case, we examine the name-value pairs associated with this other URL. For each
of those names, we attempt to find a form element on the current page that has
a similar name. When a similar name is found, the corresponding, stored value
is supplied. As mentioned previously, the assumption is that valid data that was
passed to a program function through one form might also be valid when used
for a different form, in another context. This can help in correctly filling out
unknown forms, possibly leading to unexplored entry points and vulnerabilities.

As an example, consider a forum application where each discussion thread
has a reply field at the bottom of the page. The action URLs that are used for
submitting a reply could be different for each thread. However, the underlying
function that is eventually called to save the reply and link it to the appropriate
thread remains the same. Thus, when we have encountered one case where a user
submitted a reply, we would recognize other reply fields for different threads
as being similar. The reason is that even though the action URLs associated
with the reply forms are different, they all map to the same program function.
Moreover, the name of the form fields are (very likely) the same. As a result, the
fuzzer can reuse the input value(s) recorded in the first case on other pages.

4 Implementation Details

We developed a vulnerability scanner that implements the techniques outlined
above. As discussed in the last section, some of the techniques require that a web
application is instrumented (i) to capture and restore objects manipulated by
the application, and (ii) to extract the mappings between URLs and functions.
Therefore, we were looking for a web development framework that supports the
model-view-controller (MVC) scheme. Among the candidates were most popular
web development frameworks, such as Ruby on Rails [7], Java Servlets [28], or
Django [8], which is based upon Python. Since we are familiar with Python,
we selected the Django framework. That is, we extended the Django framework

Leveraging User Interactions for In-Depth Testing of Web Applications 201

such that it provides the necessary functionality for the vulnerability scanner.
Our choice implies that we can currently only test web applications that are
built using Django. Note, however, that the previously introduced concepts are
general and can be ported to other development frameworks (i.e., with some
additional engineering effort, we could use our techniques to test applications
based upon other frameworks).

Capturing web requests. The first task was to extend Django such that it can
record the inputs that are sent when going through a use case. This makes it nec-
essary to log all incoming requests together with the corresponding parameters.
In Django, all incoming requests pass through two middleware classes before
reaching the actual application code. One of these classes is a URL dispatcher
class that determines the function that should be invoked. At this point, we can
log the complete request information. Also, the URL dispatcher class provides
easy access to the mapping between URLs and the functions that are invoked.

Replaying use cases. Once a use case, which consists of a series of requests,
has been collected, it can be used for replaying. To this end, we have developed
a small test case replay component based on twill [30], a testing tool for web
applications. This component analyzes a page and attempts to find the form
elements that need to be filled out, based on the previously submitted request
data.

Capturing object manipulations. Our implementation uses the Django middle-
ware classes to attach event listeners to incoming requests. These event listeners
wait for signals that are raised every time an object is created, updated, or
deleted. The signals are handled synchronously, meaning that the execution of
the code that sent the signal is postponed until the signal handler has finished.
We exploit this fact to create copies of objects before they are saved to the
backend storage, allowing us to later restore any object to a previous state.

Fuzzer component. An important component of the vulnerability scanner is the
fuzzer. The task of the fuzzer component is to expose each entry point that it
finds to a set of malformed inputs that can expose XSS vulnerabilities. Typically,
it also features a web spider that uses a certain page as a starting point to reach
other parts of the application, checking each page that is encountered.

Because the focus of this work is not on the fuzzer component but on tech-
niques that can help to make this fuzzer more effective, we decided to use an
existing web application testing tool. The choice was made for the “Web Appli-
cation Attack and Audit Framework,” or shorter, w3af [31], mainly because the
framework itself is easy to extend and actively maintained.

5 Evaluation

For our experiments, we installed three publicly available, real-world web appli-
cations based on Django (SVN Version 6668):

202 S. McAllister, E. Kirda, and C. Kruegel

– The first application was a blogging application, called Django-basic-blog [9].
We did not install any user accounts. Initially, the blog was filled with three
articles. Comments were enabled for each article, and no other links were
present on the page. That is, the comments were the only interactive com-
ponent of the site.

– The second application was a forum software, called Django-Forum [23]. To
provide all fuzzers with a chance to explore more of the application, every
access was performed as coming from a privileged user account. Thus, each
scanner was making requests as a user that could create new threads and
post replies. Initially, a simple forum structure was created that consisted of
three forums.

– The third application was a web shop, the Satchmo online shop 0.6 [24]. This
site was larger than the previous two applications, and, therefore, more chal-
lenging to test. The online shop was populated with the test data included
in the package, and one user account was created.

We selected these three programs because they represent common archetypes of
applications on the Internet. For our experiments, we used Apache 2.2.4 (with
pre-forked worker threads) and mod python 3.3.1. Note that before a new scan-
ner was tested on a site, the application was restored to its initial state.

5.1 Test Methodology

We tested each of the three aforementioned web applications with three existing
web vulnerability scanners, as well as with our own tool. The scanners that we
used were Burp Spider 1.21 [5], w3af spider [31], and Acunetix Web Vulnerability
Scanner 5.1 (Free Edition) [1]. Each scanner is implemented as a web spider that
can follow links on web pages. All scanners also have support for filling out forms
and, with the exception of the Burp Suite Spider, a fuzzer component to check for
XSS vulnerabilities. For each page that is found to contain an XSS vulnerability,
a warning is issued. In addition to the three vulnerability scanners and our tool,
we also included a very simple web spider into the tests. This self-written spider
follows all links on a page. It repeats this process recursively for all pages that
are found, until all available URLs are exhausted. This web spider serves as the
lower bound on the number of pages that should be found and analyzed by each
vulnerability scanner.

We used the default configuration for all tools. One exception was that we
enabled the form filling option for the Burp Spider. Moreover, for the Acunetix
scanner, we activated the “extensive scan feature,” which optimizes the scan for
mod python applications and checks for stored XSS.

When testing our own tool, we first recorded a simple use case for each of
the three applications. The use cases included posting a comment for the blog,
creating a new thread and a post on the forum site, and purchasing an item
in the online store. Then, we executed our system in one of three modes. First,
guided fuzzing was used. In the second run, we used extended, guided fuzzing
(together with application feedback). Finally, we scanned the program using
stateful fuzzing.

Leveraging User Interactions for In-Depth Testing of Web Applications 203

There are different ways to assess the effectiveness or coverage of a web vul-
nerability scanner. One metric is clearly the number of vulnerabilities that are
reported. Unfortunately, this number could be misleading because a single pro-
gram bug might manifest itself on many pages. For example, a scanner might
find a bug in a form that is reused on several pages. In this case, there is only
a single vulnerability, although the number of warnings could be significantly
larger. Thus, the number of unique bugs, or vulnerable injection points, is more
representative than the number of warnings.

Another way to assess coverage is to count the number of locations that a
scanner visits. A location represents a unique, distinct page (or, more precisely,
a distinct URL). Of course, visiting more locations potentially allows a scanner
to test more of the application’s functionality. Assume that, for a certain appli-
cation, Scanner A is able to explore significantly more locations than Scanner B.
However, because Scanner A misses one location with a vulnerability that Scan-
ner B visits, it reports fewer vulnerable injection points. In this case, we might
still conclude that Scanner A is better, because it achieves a larger coverage.
Unfortunately, this number can also be misleading, because different locations
could result from different URLs that represent the same, underlying page (e.g.,
the different pages on a forum, or different threads on a blog).

Finally, for the detection of vulnerabilities that require the scanner to store
malicious input into the database (such as stored XSS vulnerabilities), it is more
important to create many different database objects than to visit many locations.
Thus, we also consider the number and diversity of different (database) objects
that each scanner creates while testing an application.

Even though we only tested for XSS vulnerabilities, many other attacks can
be performed against web applications. XSS is a very common and well under-
stood vulnerability and, therefore, we selected this type of attack for our testing.
However, the techniques presented in this paper apply to other injection attacks
as well (for example, SQL injection and directory traversal attacks).

5.2 Experimental Results

In this section, we present and discuss the results that the different scanners
achieve when analyzing the three test applications. For each application, we
present the number of locations that the scanner has visited, the number of
reported vulnerabilities, the number of injection points (unique bugs) that these
reports map to, and the number of relevant database objects that were created.

Blogging application. Table 1 shows the results for the simple blog application.
Compared to the simple spider, one can see that all other tools have reached
more locations. This is because all spiders (except the simple one) requested
the root of each identified directory. When available, these root directories can
provide additional links to pages that might not be reachable from the initial
page. As expected, it can be seen that extended, guided fuzzing reaches more
locations than guided fuzzing alone, since it attempts to explore the application
in breadth. Moreover, there is no difference between the results for the extended,

204 S. McAllister, E. Kirda, and C. Kruegel

Table 1. Scanner effectiveness for blog application

Locations POST/GET Comments XSS Warnings Injection Points
Requests Reflected Stored Reflected Stored

Spider 4 4 - - - - -
Burp Spider 8 25 0 - - - -
w3af 9 133 0 0 0 0 0
Acunetix 9 22 0 0 0 0 0

Use Case 4 4 1 - - - -
Guided Fuzzing 4 64 12 0 1 0 1
Extended Fuzz. 6 189 12 0 1 0 1
Stateful Fuzz. 6 189 12 0 1 0 1

guided fuzzing and the stateful fuzzing approach. The reason is that, for this
application, invoking the fuzzer does not interfere with the correct replay of the
use case.

None of the three existing scanners was able to create a valid comment on the
blogging system. This was because the posting process is not straightforward:
Once a comment is submitted, the blog displays a form with a preview button.
This allows a user to either change the content of the comment or to post it.
The problem is that the submit button (to actually post the message) is not part
of the page until the server-side validation recognizes the submitted data as a
valid comment. To this end, both comment fields (name and comment) need to
be present. Here, the advantage of guided fuzzing is clear. Because our system
relies on a previously recorded test case, the fuzzer can correctly fill out the
form and post a comment. This is beneficial, because it is possible to include
malicious JavaScript into a comment and expose the stored XSS vulnerability
that is missed by the other scanners. Concerning the number of injection points,
which are higher for some tested scanners, it has to be noted that this is caused
by the way in which some scanners attempt to find new attack points. When
discovering a new URL, these scanners also issue requests for all subdirectories
of the injection point. Depending on the application, this might lead to the
discovery of new pages (injection points), redirects, or page-not-found errors. As
our fuzzer focuses on following use cases, we did not implement this heuristics
for our scanner (of course, it could be easily added).

Forum application. For the forum application, the scanners were able to gener-
ate some content, both in the form of new discussion threads and replies. Table 2
shows that while Burp Spider [5] and w3af [31] were able to create new discus-
sion threads, only the Acunetix scanner managed to post replies as well. w3af
correctly identified the form’s action URL to post a reply, but failed to gener-
ate valid input data that would have resulted in the reply being stored in the
database. However, since the vulnerability is caused by a bug in the routine that
validates the thread title, posting replies is not necessary to identify the flaw in
this program.

Leveraging User Interactions for In-Depth Testing of Web Applications 205

Table 2. Scanner effectiveness for the forum application

Locations POST/GET Threads Replies XSS Warnings Inject. Points
Requests Created Created Reflect Stored Reflect Stored

Spider 8 8 - - - - - -
Burp Spider 8 32 0 0 - - - -
w3af 14 201 29 0 0 3 0 1
Acunetix 263 2,003 687 1,486 63 63 0 1

Use Case 6 7 1 2 - - - -
Guided Fuzzing 16 48 12 22 0 1 0 1
Extended Fuzz. 85 555 36 184 0 3 0 1
Stateful Fuzz. 85 555 36 184 0 3 0 1

Both the number of executed requests and the number of reported vulnera-
bilities differ significantly between the vulnerability scanners tested. It can be
seen that the Acunetix scanner has a large database of malformed inputs, which
manifests both in the number of requests sent and the number of vulnerabili-
ties reported. For each of the three forum threads, which contain a link to the
unique, vulnerable entry point, Acunetix sent 21 fuzzed requests. Moreover, the
Acunetix scanner reports each detected vulnerability twice. That is, each XSS
vulnerability is reported once as reflected and once as stored XSS. As a result,
the scanner generated 126 warnings for a single bug. w3af, in comparison, keeps
an internal knowledge base of vulnerabilities that it discovers. Therefore, it re-
ports each vulnerability only once (and the occurrence of a stored attack replaces
a previously found, reflected vulnerability).

The results show that all our techniques were able to find the vulnerability
that is present in the forum application. Similar to the Acunetix scanner (but
unlike w3af), they were able to create new threads and post replies. Again,
the extended, guided fuzzing was able to visit more locations than the guided
fuzzing alone (it can be seen that the extended fuzzing checked all three forum
threads that were present initially, while the guided fuzzing only analyzed the
single forum thread that was part of the recorded use case). Moreover, the fuzzing
phase was not interfering with the replay of the use cases. Therefore, the stateful
fuzzing approach did not yield any additional benefits.

Online shopping application. The experimental results for the online shopping
application are presented in Tables 3 and 4. Table 3 presents the scanner effec-
tiveness based on the number of locations that are visited and the number of
vulnerabilities that are detected, while Table 4 compares the number of data-
base objects that were created by both the Acunetix scanner and our approaches.
Note that the Acunetix scanner offers a feature that allows the tool to make use
of login credentials and to block the logout links. For this experiment, we made
two test runs with the Acunetix scanner: The first run (#1) as anonymous user
and the second test run (#2) by enabling this feature.

Both w3af and Acunetix identified a reflected XSS vulnerability in the login
form. However, neither of the two scanners was able to reach deep into the

206 S. McAllister, E. Kirda, and C. Kruegel

Table 3. Scanner effectiveness for the online shopping application

Locations POST/GET XSS Warnings Injection Points
Requests Reflected Stored Reflected Stored

Spider 18 18 - - - -
Burp Spider 22 52 - - - -
w3af 21 829 1 0 1 0
Acunetix #1 22 1,405 16 0 1 0
Acunetix #2 25 2,564 8 0 1 0

Use Case 22 36 - - - -
Guided Fuzzing 22 366 1 8 1 8
Extended Fuzz. 25 1,432 1 0 1 0
Stateful Fuzz. 32 2,078 1 8 1 8

Table 4. Object creation statistics for the online shopping application

Object Acunetix Acunetix Use Case Guided Extended Stateful
Class #1 #2 Fuzzing Fuzzing Fuzzing

OrderItem - - 1 1 - 2
AddressBook - - 2 2 - 7
PhoneNumber - - 1 3 - 5
Contact 1 - 1 1 1 2
CreditCardDetail - - 1 1 - 2
OrderStatus - - 1 1 - 1
OrderPayment - - 1 1 - 2
Order - - 1 1 - 2
Cart 2 1 1 1 3 3
CartItem 2 1 1 1 5 5
Comment - - 1 21 11 96
User 1 - 1 1 1 1

application. As a result, both tools failed to reach and correctly fill out the form
that allows to change the contact information of a user. This form contained
eight stored XSS vulnerabilities, since none of the entered input was checked
by the application for malicious values. However, the server checked the phone
number and email address for their validity and would reject the complete form
whenever one of the two values was incorrect.

In contrast to the existing tools, guided fuzzing was able to analyze a large
part of the application, including the login form and the user data form. Thus,
this approach reported a total of nine vulnerable entry points. In this experi-
ment, we can also observe the advantages of stateful fuzzing. With extended,
guided fuzzing, the fuzzing step interferes with the proper replay of the use case
(because the fuzzer logs itself out and deletes all items from the shopping cart).
The stateful fuzzer, on the other hand, allows to explore a broad range of entry
points, and, using the snapshot mechanism, keeps the ability to replay the test

Leveraging User Interactions for In-Depth Testing of Web Applications 207

case. The number of database objects created by the different approaches (as
shown in Table 4) also confirms the ability of our techniques to create a large
variety of different, valid objects, a result of analyzing large portions of the
application.

Discussion. All vulnerabilities that we found in our experiments were previously
unknown, and we reported them to the developers of the web applications. Our
results show that our fuzzing techniques consistently find more (or, at least,
the same amount) of bugs than other open-source and commercial scanners.
Moreover, it can be seen that the different approaches carry out meaningful
interactions with the web applications, visiting many locations and creating a
large variety of database objects. Finally, the different techniques exhibit differ-
ent strengths. For example, stateful fuzzing becomes useful especially when the
tested application is more complex and sensitive to the fuzzing steps.

6 Related Work

Concepts such as vulnerability testing, test case generation, and fuzzing are
well-known concepts in software engineering and vulnerability analysis [3, 4, 11].
When analyzing web applications for vulnerabilities, black-box fuzzing tools [1,
5, 31] are most popular. However, as shown by our experiments, they suffer from
the problem of test coverage. Especially for applications that require complex
interactions or expect specific input values to proceed, black-box tools often fail
to fill out forms properly. As a result, they can scan only a small portion of the
application. This is also true for SecuBat [16], a web vulnerability scanner that
we developed previously. SecuBat can detect reflected XSS and SQL injection
vulnerabilities. However, it cannot fill out forms and, thus, was not included in
our experiments.

In addition to web-specific scanners, there exist a large body of more gen-
eral vulnerability detection and security assessment tools. Most of these tools
(e.g., Nikto [19], Nessus [29]) rely on a repository of known vulnerabilities that
are tested. Our tool, in contrast, aims to discover unknown vulnerabilities in
the application under analysis. Besides application-level vulnerability scanners,
there are also tools that work at the network level, e.g., nmap [14]. These tools
can determine the availability of hosts and accessible services. However, they are
not concerned with higher-level vulnerability analysis. Other well-known web
vulnerability detection and mitigation approaches in literature are Scott and
Sharp’s application-level firewall [25] and Huang et al.’s [13] vulnerability de-
tection tool that automatically executes SQL injection attacks. Moreover, there
are a large number of static source code analysis tools [15, 27, 32] that aim to
identify vulnerabilities.

A field that is closely related to our work is automated test case generation.
The methods used to generate test cases can be generally summarized as random,
specification-based [20, 22], and model-based [21] approaches. Fuzzing falls into
the category of random test case generation. By introducing use cases and guided
fuzzing, we improve the effectiveness of random tests by providing some inputs

208 S. McAllister, E. Kirda, and C. Kruegel

that are likely valid and thus, allow the scanner to reach “deeper” into the
application.

A well-known application testing tool, called WinRunner, allows a human tester
to record user actions (e.g., input, mouse clicks, etc.) and then to replay these ac-
tions while testing. This could be seen similar to guided fuzzing, where inputs are
recorded based on observing real user interaction. However, the testing with Win-
Runner is not fully-automated. The developer needs to write scripts and create
check points to compare the expected and actual outcomes from the test runs.
By adding automated, random fuzzing to a guided execution approach, we com-
bine the advantages provided by a tool such as WinRunner with black-box fuzzers.
Moreover, we provide techniques to generalize from a recorded use case.

Finally, a number of approaches [6, 12, 18] were presented in the past that
aim to explore the alternative execution paths of an application to increase the
analysis and test coverage of dynamic techniques. The work we present in this
paper is analogous in the sense that the techniques aim to identify more code to
test. The difference is the way in which the different approaches are realized, as
well as their corresponding properties. When exploring multiple execution paths,
the system has to track constraints over inputs, which are solved at branching
points to determine alternative paths. Our system, instead, leverages known,
valid input to directly reach a large part of an application. Then, a black-box
fuzzer is started to find vulnerabilities. This provides better scalability, allowing
us to quickly examine large parts of the application and expose it to black-box
tests.

7 Conclusions

In this paper, we presented a web application testing tool to detect reflected
and stored cross-site scripting (XSS) vulnerabilities in web applications. The
core of our system is a black-box vulnerability scanner. Unfortunately, black-
box testing tools often fail to test a substantial fraction of a web application’s
logic, especially when this logic is invoked from pages that can only be reached
after filling out complex forms that aggressively check the correctness of the
provided values. To allow our scanner to reach “deeper” into the application,
we introduce a number of techniques to create more comprehensive test cases.
One technique, called guided fuzzing, leverages previously recorded user input
to fill out forms with values that are likely valid. This technique can be further
extended by using each step in the replay process as a starting point for the fuzzer
to explore a program more comprehensively. When feedback from the application
is available, we can reuse the recorded user input for different forms during this
process. Finally, we introduce stateful fuzzing as a way to mitigate potentially
undesirable side-effects of the fuzzing step that could interfere with the replay
of use cases during extended, guided fuzzing. We have implemented our use-
case-driven testing techniques and analyzed three real-world web applications.
Our experimental results demonstrate that our approach is able to identify more
bugs than several open-source and commercial web vulnerability scanners.

Leveraging User Interactions for In-Depth Testing of Web Applications 209

Acknowledgments

This work has been supported by the Austrian Science Foundation (FWF) under
grant P-18764, the FIT-IT project SECoverer (Detection of Application Logic Er-
rors in Web Applications), and the Secure Business Austria Competence Center.

References

[1] Acunetix. Acunetix Web Vulnerability Scanner (2008),
http://www.acunetix.com/

[2] Balzarotti, D., Cova, M., Felmetsger, V., Jovanov, N., Kirda, E., Kruegel, C., Vi-
gna, G.: Saner: Composing Static and Dynamic Analysis to Validate Sanitization
in Web Applications. In: IEEE Security and Privacy Symposium (2008)

[3] Beizer, B.: Software System Testing and Quality Assurance. Van Nostrand Rein-
hold (1984)

[4] Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold (1990)
[5] Spider, B.: Web Application Security (2008), http://portswigger.net/spider/
[6] Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE: Automatically

Generating Inputs of Death. In: ACM Conference on Computer and Communica-
tion Security (2006)

[7] Hannson, D.: Ruby on Rails (2008), http://www.rubyonrails.org/
[8] Django. The Web Framework for Professionals with Deadlines (2008),

http://www.djangoproject.com/
[9] Basic Django Blog Application,

http://code.google.com/p/django-basic-blog/
[10] Endler, D.: The Evolution of Cross Site Scripting Attacks. Technical report, iDE-

FENSE Labs (2002)
[11] Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering.

Prentice-Hall International, Englewood Cliffs (1994)

[12] Godefroid, P., Klarlund, N., Sen, K.: DART. In: Programming Language Design
and Implementation (PLDI) (2005)

[13] Huang, Y., Huang, S., Lin, T.: Web Application Security Assessment by Fault
Injection and Behavior Monitoring. In: 12th World Wide Web Conference (2003)

[14] Insecure.org. NMap Network Scanner (2008), http://www.insecure.org/nmap/
[15] Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A Static Analysis Tool for Detecting

Web Application Vulnerabilities (Short Paper). In: IEEE Symposium on Security
and Privacy (2006)

[16] Kals, S., Kirda, E., Kruegel, C., Jovanovic, N.: SecuBat: A Web Vulnerability
Scanner. In: World Wide Web Conference (2006)

[17] Mitre. Common Vulnerabilities and Exposures, http://cve.mitre.org/
[18] Moser, A., Kruegel, C., Kirda, E.: Exploring Multiple Execution Paths for Mal-

ware Analysis. In: IEEE Symposium on Security and Privacy (2007)
[19] Nikto. Web Server Scanner (2008), http://www.cirt.net/code/nikto.shtml
[20] Offutt, J., Abdurazik, A.: Generating Tests from UML Specifications. In: Second

International Conference on the Unified Modeling Language (1999)
[21] Offutt, J., Abdurazik, A.: Using UML Collaboration Diagrams for Static Checking

and Test Generation. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS,
vol. 1939, pp. 383–395. Springer, Heidelberg (2000)

http://www.acunetix.com/
http://portswigger.net/spider/
http://www.rubyonrails.org/
http://www.djangoproject.com/
http://code.google.com/p/django-basic-blog/
http://www.insecure.org/nmap/
http://cve.mitre.org/
http://www.cirt.net/code/nikto.shtml

210 S. McAllister, E. Kirda, and C. Kruegel

[22] Offutt, J., Liu, S., Abdurazik, A., Ammann, P.: Generating Test Data from State-
based Specifications. In: Journal of Software Testing, Verification and Reliability
(2003)

[23] Poulton, R.: Django Forum Component,
http://code.google.com/p/django-forum/

[24] Satchmo, http://www.satchmoproject.com/
[25] Scott, D., Sharp, R.: Abstracting Application-level Web Security. In: 11th World

Wide Web Conference (2002)
[26] WhiteHat Security. Web Application Security 101 (2005),

http://www.whitehatsec.com/articles/webappsec101.pdf
[27] Su, Z., Wassermann, G.: The Essence of Command Injection Attacks in Web

Applications. In: Symposium on Principles of Programming Languages (2006)
[28] Sun. Java Servlets (2008), http://java.sun.com/products/servlet/
[29] Tenable Network Security. Nessus Open Source Vulnerability Scanner Project

(2008), http://www.nessus.org/
[30] Twill. Twill: A Simple Scripting Language for Web Browsing (2008),

http://twill.idyll.org/
[31] Web Application Attack and Audit Framework,

http://w3af.sourceforge.net/
[32] Xie, Y., Aiken, A.: Static Detection of Security Vulnerabilities in Scripting Lan-

guages. In: 15th USENIX Security Symposium (2006)

http://code.google.com/p/django-forum/
http://www.satchmoproject.com/
http://www.whitehatsec.com/articles/webappsec101.pdf
http://java.sun.com/products/servlet/
http://www.nessus.org/
http://twill.idyll.org/
http://w3af.sourceforge.net/

Model-Based Covert Timing Channels:

Automated Modeling and Evasion

Steven Gianvecchio1, Haining Wang1, Duminda Wijesekera2,
and Sushil Jajodia2

1 Department of Computer Science
College of William and Mary, Williamsburg, VA 23187, USA

{srgian,hnw}@cs.wm.edu
2 Center for Secure Information Systems

George Mason University, Fairfax, VA 22030, USA
{dwijesek,jajodia}@gmu.edu

Abstract. The exploration of advanced covert timing channel design
is important to understand and defend against covert timing channels.
In this paper, we introduce a new class of covert timing channels, called
model-based covert timing channels, which exploit the statistical proper-
ties of legitimate network traffic to evade detection in an effective man-
ner. We design and implement an automated framework for building
model-based covert timing channels. Our framework consists of four main
components: filter, analyzer, encoder, and transmitter. The filter charac-
terizes the features of legitimate network traffic, and the analyzer fits the
observed traffic behavior to a model. Then, the encoder and transmitter
use the model to generate covert traffic and blend with legitimate net-
work traffic. The framework is lightweight, and the overhead induced by
model fitting is negligible. To validate the effectiveness of the proposed
framework, we conduct a series of experiments in LAN and WAN envi-
ronments. The experimental results show that model-based covert timing
channels provide a significant increase in detection resistance with only
a minor loss in capacity.

Keywords: covert timing channels, traffic modeling, evasion.

1 Introduction

A covert channel is a “communication channel that can be exploited by a process
to transfer information in a manner that violates a system’s security policy” [1].
There are two types of covert channels: covert storage channels and covert timing
channels. A covert storage channel manipulates the contents of a storage location
(e.g., disk, memory, packet headers, etc.) to transfer information. A covert timing
channel manipulates the timing or ordering of events (e.g., disk accesses, memory
accesses, packet arrivals, etc.) to transfer information. The focus of this paper is
on covert timing channels.

The potential damage of a covert timing channel is measured in terms of its
capacity. The capacity of covert timing channels has been increasing with the

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 211–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 S. Gianvecchio et al.

development of high-performance computers and high-speed networks. While
covert timing channels studied in the 1970s could transfer only a few bits per
second [2], covert timing channels in modern computers can transfer several
megabits per second [3]. To defend against covert timing channels, researchers
have proposed various methods to detect and disrupt them. The disruption of
covert timing channels manipulates traffic to slow or stop covert timing channels
[4,5,6,7,8]. The detection of covert timing channels mainly uses statistical tests to
differentiate covert traffic from legitimate traffic [9,10,11,12,13]. Such detection
methods are somewhat successful, because most existing covert timing channels
cause large deviations in the timing behavior from that of normal traffic, making
them relatively easy to detect.

In this paper, we introduce model-based covert timing channels, which en-
deavor to evade detection by modeling and mimicking the statistical properties
of legitimate traffic. We design and develop a framework for building model-
based covert timing channels, in which hidden information is carried through
pseudo-random values generated from a distribution function. We use the inverse
distribution function and cumulative distribution function for encoding and de-
coding. The framework includes four components, filter, analyzer, encoder, and
transmitter. The filter profiles the legitimate traffic, and the analyzer fits the
legitimate traffic behavior to a model. Then, based on the model, the encoder
chooses the appropriate distribution functions from statistical tools and traffic
generation libraries to create covert timing channels. The distribution functions
and their parameters are determined by automated model fitting. The process
of model fitting proves very efficient and the induced overhead is minor. Lastly,
the transmitter generates covert traffic and blends with legitimate traffic.

The two primary design goals of covert timing channels are high capacity and
detection resistance. To evaluate the effectiveness of the proposed framework,
we perform a series of LAN and WAN experiments to measure the capacity
and detection resistance of our model-based covert timing channel. We estimate
the capacity with a model and then validate the model with real experiments.
Our experimental results show that the capacity is close to that of an opti-
mal covert timing channel that transmits in a similar condition. In previous
research, it is shown that the shape [9, 10] and regularity [11, 12] of network
traffic are important properties in the detection of covert timing channels. We
evaluate the detection resistance of the proposed framework using shape and reg-
ularity tests. The experimental results show that both tests fail to differentiate
the model-based covert traffic from legitimate traffic. Overall, our model-based
covert timing channel achieves strong detection resistance and high capacity.

There is an arms race between covert timing channel design and detection. To
maintain the lead, researchers need to continue to improve detection methods
and investigate new attacks. The goal of our work is to increase the under-
standing of more advanced covert timing channel design. We anticipate that our
demonstration of model-based covert timing channels will ultimately lead to the
development of more advanced detection methods.

Model-Based Covert Timing Channels: Automated Modeling and Evasion 213

The remainder of the paper is structured as follows. Section 2 surveys related
work. Section 3 provides background information on covert timing channels and
describes two base cases in their design. Section 4 details the design and imple-
mentation of the proposed framework. Section 5 validates the effectiveness of the
model-based covert timing channel through live experiments over the Internet.
Finally, we conclude the paper and discuss future directions in Section 6.

2 Related Work

To defend against covert timing channels, researchers have proposed different
solutions to detect and disrupt covert traffic. The disruption of covert timing
channels adds random delays to traffic, which reduces the capacity of covert
timing channels but reduces the network performance as well. The detection of
covert timing channels is mainly accomplished using statistical tests to differenti-
ate covert traffic from legitimate traffic. While the focus of earlier work is on the
disruption of covert timing channels [4,5,6,7,8], more recent research has begun
to investigate the design and detection of covert timing channels [9,10,11,12,14].

Kang et al. [5] designed a device, known as “The Pump,” which reduces the
capacity of covert timing channels by disrupting the timing of communication.
This device increases the number of errors by randomly manipulating the timing
values. The basic version of “The Pump” is designed to address covert timing
channels within systems. A network version was later designed and developed
[6,7]. Giles et al. [8] studied the disruption of covert timing channels from a game
theoretic perspective. The authors takes the point of view of both the jammer
and the covert timing channel, and discusses the strategies for both optimal
jammers and optimal input processes. Fisk et al. [4] investigated the concept
of Active Wardens in relation to covert channels. The authors introduced the
quantity of Minimal Requisite Fidelity (MRF), which is the minimum fidelity
needed to support the communication channel, and proposed a system to identify
and eliminate unneeded fidelity in traffic that could be used for covert channels.

Cabuk et al. [11] designed and implemented a simple covert timing channel
and showed that the regularity of the covert timing channel can be used in
its detection. To disrupt the regularity, the authors tried two approaches. The
first is to change the timing intervals, which is still successfully detected. The
second is to introduce noise in the form of legitimate traffic. However, the covert
timing channel is still sometimes detected, even with 50% of the inter-packet
delays being legitimate traffic. This covert timing channel has similar regularity
test scores to Fixed-average Packet Rate (FPR) and OPtimal Capacity (OPC)
(described in Section 3) but transmits information more slowly.

Berk et al. [9, 10] proposed a scheme for detecting binary and multi-symbol
covert timing channels. The detection method measures the distance between
the mean and modes, with a large distance indicating a potential covert timing
channel. The detection test assumes a normal distribution for the inter-packet
delays and, as a result, is not applicable to the covert timing channels we dis-
cussed. The authors used the Arimoto-Blahut algorithm [15, 16] in the binary

214 S. Gianvecchio et al.

case without considering the cost. In contrast, we use the Arimoto-Blahut al-
gorithm in the multi-symbol case but with a cost constraint, to formulate the
optimal input distribution for FPR.

Shah et al. [12] developed a keyboard device, called JitterBug, to create a
loosely-coupled covert channel capable of leaking information typed on a key-
board over the network. Such a covert timing channel takes advantage of small
delays in key-presses to affect the inter-packet delays of a networked application.
As a result, the keyboard slowly leaks information to an observer outside of the
network. The authors showed that the initial scheme leaves a regular pattern
in the inter-packet delays, which can be removed by rotating the position of
the window. The JitterBug transmits information much more slowly than our
model-based covert timing channel, but does so under tighter constraints on the
transmission mechanism.

Borders et al. [17] developed a system, called Web Tap, to detect covert tun-
nels in web traffic based on header fields, inter-request delays, request sizes,
capacity usage, request regularity, and request time. Such a system is successful
in detecting several spyware and backdoor programs. However, the technique
used by our model-based covert timing channel to mimic the inter-request de-
lays and request regularity of traffic, could be used by spyware and backdoor
programs to evade the Web Tap.

While some recent research has taken steps to better hide covert timing chan-
nels [11, 12], these works focus on removing regularity rather than making the
covert timing channel look like legitimate traffic. Moreover, removing regularity
is the last step in the covert channel design process, instead of a consideration
up front. In contrast, our framework is designed from the ground up to provide
high detection resistance. As a result, the proposed model-based covert timing
channel is able to provide much stronger detection resistance than most practical
implementations of covert timing channel presented in the literature.

There are recent works on using timing channels to watermark traffic [18, 19]
and on detecting such timing-based watermarks [20]. Wang et al. [18] developed
a robust watermarking scheme for tracing encrypted attack traffic through step-
ping stones. The scheme, through the use of redundancy, can resist arbitrarily
large timing perturbations, if there are a sufficient number of packets to water-
mark. Peng et al. [20] investigated how to detect such watermarks, as well as
methods for removing or duplicating the watermarks. Yu et al. [19] developed
a sophisticated technique for hiding watermarks by disguising them as pseudo-
noise. There are some interesting differences between timing-based watermarking
and traditional covert timing channels, such as the fact that the defender, not
the attacker, uses the timing channel in the watermarking schemes.

3 Background

In this section, we describe basic communication concepts and relate them to
covert timing channels. Then, based on these concepts, we formulate two base
cases in covert timing channel design. The basic problem of communication,

Model-Based Covert Timing Channels: Automated Modeling and Evasion 215

producing a message at one point and reproducing that message at another
point, is the same for both overt and covert channels, although covert channels
must consider the additional problem of hiding communication.

3.1 Basic Communication Concepts

The capacity of a communication channel is the maximum rate that it can reli-
ably transmit information. The capacity of a covert timing channel is measured
in bits per time unit [21]. The capacity in bits per time unit Ct is defined as:

Ct = max
X

I(X ; Y)
E(X)

,

where X is the transmitted inter-packet delays or input distribution, Y is the
received inter-packet delays or output distribution, I(X ; Y) is the mutual infor-
mation between X and Y , and E(X) is the expected time of X .

The mutual information measures how much information is carried across the
channel from X to Y . The mutual information I(X ; Y) is defined as:

I(X ; Y) =

⎧
⎪⎨

⎪⎩

∑
X

∑
Y

P (y | x)P (x)logP (y|x)P (x)
P (x)P (y) , (discrete)

∫

X

∫

Y

P (y | x)P (x)logP (y|x)P (x)
P (x)P (y) dx dy, (continuous)

The noise, represented by the conditional probability in the above definitions,
is defined as:

P (y | x) = fnoise(y, x),

where fnoise is the noise probability density function, x is the transmitted inter-
packet delays, and y is the received inter-packet delays.

The noise distribution fnoise is the probability that the transmitted inter-
packet delay x results in the received inter-packet delay y. The specific noise
distribution for inter-packet delays is detailed in Section 5.2.

3.2 Base Cases in Design

The two main goals of covert timing channel design are high capacity and detec-
tion resistance. There are few examples of practical implementations of covert
timing channels in the literature, so we begin to explore the design space in
terms of both capacity and detection resistance. The focus of our model-based
covert timing channel is to achieve high detection resistance. In the following
section, we formulate two base cases in covert channel design as comparison to
the model-based covert timing channel.

The first case, optimal capacity, transmits as much information as possible,
sending hundreds or more packets per second. Such a design might not be able
to achieve covert communication, but is useful as a theoretical upper bound. The
second case, fixed average packet rate, sends packets at a specific fixed average
packet rate, encoding as much information per packet as possible. The fixed
average packet rate is mainly determined by the packet rate of legitimate traffic.

216 S. Gianvecchio et al.

Optimal Capacity Channel. The first design, OPtimal Capacity (OPC), uses
the discrete input distribution that transmits information as fast as possible. The
optimal capacity is dependent on the optimal distance between two symbols. The
first symbol is (approximately) zero and the second symbol is non-zero, so the
use of more symbols (i.e., four or eight) will introduce more non-zero symbols
and decrease the symbol rate. The use of smaller distances between the two
symbols increases the symbol rate and the error rate. The optimal distance is
the point at which the increase in error rate balances the increase in symbol
rate.

The code operates based on two functions. The encode function is defined as:

Fencode(s) = ds =

{
0, s = 0
d, s = 1

where s is a symbol, ds is an inter-packet delay with a hidden symbol s, and d is
the optimal distance between the two symbols. The decode function is defined
as:

Fdecode(ds) = s =

{
0, ds < 1

2d

1, 1
2d ≤ ds

where ds is an inter-packet delay with a hidden symbol s.

Channel Capacity: The channel capacity of OPC is dependent on the optimal
input distribution and noise. The input distribution is defined as:

P (x) =

⎧
⎪⎨

⎪⎩

p, x = d

1 − p, x = 0
0, otherwise

where p is the probability of the symbol s = 1, and 1 − p is the probability of
the symbol s = 0.

Therefore, the capacity of OPC is the maximum of the mutual information
with respect to the parameters d and p of the input distribution over the expected
time d · p:

Ct = max
d,p

1
d · p

∑

X

∑

Y

P (y | x)P (x)log
P (y | x)P (x)

P (x)P (y)
.

Fixed-Average Packet Rate Channel. The second design, Fixed-average
Packet Rate (FPR), uses the input distribution that encodes as much information
per packet as possible with a constraint on the average cost of symbols. The cost
is measured in terms of the time required for symbol transmission. Therefore,
the optimal input distribution is subject to the constraint on the average packet
rate, i.e., the cost of symbol transmission.

The optimal input distribution for FPR is computed with the Arimoto-Blahut
algorithm generalized for cost constraints [16]. The Arimoto-Blahut algorithm

Model-Based Covert Timing Channels: Automated Modeling and Evasion 217

computes the optimal input distribution for capacity in bits per channel usage.
The capacity in bits per channel usage Cu is defined as:

Cu = max
X

I(X ; Y).

In general, Cu and Ct do not have the same input distribution X . However, if
the input distribution is constrained so that E(X) = c (where c is a constant),
then the optimal input distribution X is optimal for both Cu and Ct, and Cu =
Ct · c. Thus, FPR transmits as much information per packet (channel usage)
and per second (time unit) as possible with a fixed average packet rate. We
use the Arimoto-Blahut algorithm to compute the optimal input distribution for
FPR. The capacity results for FPR, based on the Arimoto-Blahut algorithm, are
detailed in Section 5.

4 The Framework

The covert timing channel framework, as shown in Figure 1, is a pipeline that fil-
ters and analyzes legitimate traffic then encodes and transmits covert traffic. As
the output of the pipeline, the covert traffic mimics the observed legitimate traf-
fic, making it easy to evade detection. The components of the framework include
filter, analyzer, encoder, and transmitter, which are detailed in the following
paragraphs.

Fig. 1. Framework for building model-based covert timing channels

The filter monitors the background traffic and singles out the specific type
of traffic to be mimicked. The more specific application traffic the filter can
identify and profile, the better model we can have for generating covert traffic.
For example, FTP is an application protocol based on TCP, but generating a
series of inter-packet delays based on a model of all TCP traffic would be a poor
model for describing FTP behaviors. Once the specified traffic is filtered, the
traffic is further classified into individual flows based on source and destination IP
addresses. The filter then calculates the inter-packet delay between subsequent
pair of packets from each flow, and forwards the results to the analyzer.

The analyzer fits the inter-packet delays in sets of 100 packets with the Ex-
ponential, Gamma, Pareto, Lognormal, Poisson, and Weibull distributions. The

218 S. Gianvecchio et al.

Table 1. The scores for different models for a sample of HTTP inter-packet delays

model parameters root mean squared error

Weibull 0.0794, 0.2627 0.0032

Gamma 0.1167, 100.8180 0.0063

Lognormal -4.3589, 3.5359 0.0063

Pareto 3.6751, 0.0018 0.0150

Poisson 11.7611 0.0226

Exponential 11.7611 0.0294

fitting process uses maximum likelihood estimation (MLE) to determine the pa-
rameters for each model. The model with the smallest root mean squared error
(RMSE), which measures the difference between the model and the estimated
distribution, is chosen as the traffic model. The model selection is automated.
Other than the set of models provided to the analyzer, there is no human input.
The models are scored based on root mean squared errors, as shown in Table 1.
The model with the lowest root mean squared error is the closest to the data
being modeled. Since most types of network traffic are non-stationary [22], the
analyzer supports piecewise modeling of non-stationary processes by adjusting
the parameters of the model after each set of 100 covert inter-packet delays.
The analyzer refits the current model with new sets of 100 packets to adjust the
parameters. The analyzer can take advantage of a larger selection of models to
more accurately model different types of application traffic. For example, if we
know that the targeted traffic is well-modeled as an Erlang distribution, we will
add this distribution to the set of models. For each of the current models, the
computational overhead is less than 0.1 milliseconds and the storage overhead
for the executable is less than 500 bytes, so the induced resource consumption
for supporting additional models is not an issue.

The filter and analyzer can be run either offline or online. In the offline mode,
the selection of the model and parameters is based on traffic samples. The offline
mode consumes less resources, but the model might not represent the current
network traffic behavior well. In the online mode, the selection of the model and
parameters is based on live traffic. The online mode consumes more resources
and requires that the model and parameters be transmitted to the decoder with
the support of a startup protocol, but the model better represents the current
network traffic behavior. The startup protocol is a model determined in advance,
and is used to transmit the online model (1 byte) and parameters (4-8 bytes) to
the decoder.

The encoder generates random covert inter-packet delays that mimic legit-
imate inter-packet delays. The input to the encoder includes the model, the
message, and a sequence of random numbers. Its output is a sequence of covert
random inter-packet delays. The message to be sent is separated into symbols.
The symbols map to different random timing values based on a random code
that distributes symbols based on the model.

Model-Based Covert Timing Channels: Automated Modeling and Evasion 219

Using a sequence of random numbers r1, r2, ..., rn., we transform the discrete
symbols into continuous ones. The continuization function is

Fcontinuize(s) = (
s

| S | + r)mod 1 = rs,

where S is the set of possible symbols, s is a symbol and r is a Uniform(0,1)
random variable. The corresponding discretization function is:

Fdiscretize(rs) =| S | ·((rs − r)mod 1) = s,

where rs is a Uniform(0,1) random variable with a hidden symbol s.
The encoder and decoder start with the same seed and generate the same

sequence of random numbers, r1, r2, ..., rn. To maintain synchronization, the
encoder and decoder associate the sequence of symbols with TCP sequence
numbers, i.e., s1 with the first TCP sequence number, s2 with the second TCP
sequence number, and so on. 1 Therefore, both the encoder and decoder have
the same values of r through the sequence of symbols. The inverse distribution
function F−1

model takes a Uniform(0,1) random number as input and generates a
random variable from the selected model as output. The sequence of transformed
random numbers rs1, rs2, ..., rsn is used with the inverse distribution function to
create random covert inter-packet delays ds1, ds2, ..., dsn. The encode function
is:

Fencode = F−1
model(rs) = ds,

where F−1
model is the inverse distribution function of the selected model. The

decode function is:
Fdecode = Fmodel(ds) = rs,

where Fmodel is the cumulative distribution function of the selected model, and
ds is a random covert inter-packet delay with a hidden symbol s.

The transmitter sends out packets to produce the random covert inter-packet
delays ds1, ds2, ..., dsn. The receiver then decodes and discretizes them to recover
the original symbols s1, s2, ..., sn.

4.1 Model-Based Channel Capacity

The model-based channel capacity is also dependent on the input distribution
and noise. The input distribution is defined as:

P (x) = fmodel(x)

where fmodel is the probability density function of the selected model.
Therefore, the capacity of the model-based channel is the mutual information

over the expected time E(X):

Ct =
1

E(X)

∫

X

∫

Y

P (y | x)P (x)log
P (y | x)P (x)

P (x)P (y)
.

1 With this mechanism, repacketization can cause synchronization problems, so other
mechanisms such as “bit stuffing” [12] could be useful for synchronization.

220 S. Gianvecchio et al.

4.2 Implementation Details

We implement the proposed framework using C and MATLAB in Unix/Linux envi-
ronments. The components run as user-space processes, while access to tcpdump
is required. The filter is written in C and runs tcpdump with a user-specified
filtering expression to read the stream of packets. The filter processes the traffic
stream and computes the inter-packet delays based on the packet timestamps.
The analyzer is written in MATLAB and utilizes the fitting functions from the
statistics toolbox for maximum likelihood estimation.

The encoder is written in C, and uses random number generation and random
variable models from the Park-Leemis [23] simulation C libraries. The transmit-
ter is also written in C, with some inline assembly, and uses the Socket API. The
timing mechanism used is the Pentium CPU Time-Stamp Counter, which is ac-
cessed by calling the RDTSC (Read Time-Stamp Counter) instruction. The RDTSC
instruction has excellent resolution and low overhead, but must be calibrated
to be used as a general purpose timing mechanism. The usleep and nanosleep
functions force a context switch, which delays the packet transmission with small
inter-packet delays, so these functions are not used.

5 Experimental Evaluation

In this section, we evaluate the effectiveness of a model-based covert timing
channel built from our framework. The OPC and FPR covert timing channels,
discussed in Section 3, are used as points of comparison. In particular, we ex-
amine the capacity and detection resistance of each covert timing channel.

5.1 Experimental Setup

The defensive perimeter of a network, composed of firewalls and intrusion de-
tection systems, is responsible for protecting the network. Typically, only a few
specific application protocols, such as HTTP and SMTP, are commonly allowed
to pass through the defensive perimeter. We utilize outgoing HTTP inter-packet
delays as the medium to build model-based covert timing channels, due to the
wide acceptance of HTTP traffic for crossing the network perimeter. We refer to
the model-based HTTP covert timing channel as MB-HTTP.

Testing Scenarios. There are three different testing scenarios in our experi-
mental evaluation. The first scenario is in a LAN environment, a medium-size
campus network with subnets for administration, departments, and residences.
The LAN connection is between two machines, located in different subnets. The
connection passes through several switches, the routers inside the campus net-
work, and a firewall device that protects each subnet.

The other two scenarios are in WAN environments. The first WAN connection
is between two machines, both are on the east coast of the United States but
in different states. One is on a residential cable network and the other is on

Model-Based Covert Timing Channels: Automated Modeling and Evasion 221

Table 2. The network conditions of each test scenario

LAN WAN E-E WAN E-W

distance 0.3 miles 525 miles 2660 miles

RTT 1.766ms 59.647ms 87.236ms

IPDV 2.5822e-05 2.4124e-03 2.1771e-04

hops 3 18 13

IPDV - inter-packet delay variation

a medium-size campus network. The second WAN connection is between two
machines on the opposite coasts of the United States, one on the east coast and
the other on the west coast. Both machines are on campus networks.

The network conditions for different experiment scenarios are summarized in
Table 2. The two-way round-trip time (RTT) is measured using the ping com-
mand. We compute the one-way inter-packet delay variation based on the delays
between packets leaving the source and arriving at the destination. The inter-
packet delay variations of the three connections span three orders of magnitude,
from 1×10−3 to 1×10−5. The LAN connection has the lowest inter-packet delay
variation and the two WAN connections have higher inter-packet delay variation,
as expected. The WAN E-E connection is shorter and has smaller RTT time
than the WAN E-W connection. However, WAN E-E has higher inter-packet
delay variation than WAN E-W, due to more traversed hops. This implies that
the inter-packet delays variation is more sensitive to the number of hops than
the physical distance and RTT between two machines.

Building MB-HTTP. We install the components of the framework on the
testing machines. The filter distinguishes the outgoing HTTP traffic from back-
ground traffic. The analyzer observes 10 million HTTP inter-packet delays, then
fits the HTTP inter-packet delays to the models, as described in Section 4. The
fitting functions use maximum likelihood estimation (MLE) to determine the
parameters for each model. The model with the best root mean squared error
(RMSE), a measure of the difference between the model and the distribution
being estimated, is chosen as the traffic model.

For the HTTP inter-packet delays, the analyzer selects the Weibull distribu-
tion based on the root mean squared error. Note that HTTP inter-packet delays
have been shown to be well approximated by a Weibull distribution [22]. The
Weibull probability distribution function is:

f(x, λ, k) =
k

λ
(
x

λ
)(k−1)e−(x

λ)k

.

The parameters, which vary for each set of 100 packets, have a mean scale
parameter λ of 0.0371 and a mean shape parameter k of 0.3010. With these
parameters, the mean inter-packet delay is 0.3385, approximately 3 packets per
second.

222 S. Gianvecchio et al.

Table 3. The mean packets per second and mean inter-packet delay for OPC

LAN WAN E-E WAN E-W
channel PPS IPD PPS IPD PPS IPD

OPC 12,777.98 7.87e-05 137.48 7.31e-03 1,515.56 6.63e-04

PPS - mean packets per second, IPD - mean inter-packet delay

Formulating OPC and FPR. The average packet rate for FPR is fixed at
1

0.3385 = 2.954 packets per second, based on the average packet rate of HTTP
traffic. We use the Arimoto-Blahut algorithm to compute the optimal input
distribution, with the average packet rate of 2.954 as the cost constraint. The
optimal input distribution balances high cost symbols with low probabilities
and low cost symbols with high probabilities, such that the average cost con-
straint is satisfied. The constraint can be satisfied for infinitely large symbols
with infinitely small probabilities, and hence, the optimal input distribution de-
cays exponentially to infinity. The results of the Arimoto-Blahut algorithm, as
the number of intervals increases, reduce to an Exponential distribution with an
inverse scale parameter of λ = 2.954. The Exponential probability distribution
function is:

f(x, λ) = λe−λx.

We compute the optimal distance between packets for OPC based on the noise
distribution. The optimal distance between packets and the average packet rate
for OPC is shown in Table 3. For connections with higher inter-packet delay
variation, OPC increases the time elapse between packets to make the inter-
packet delays easier to distinguish, and, as a result, lowers the average number
of packets per second.

5.2 Capacity

The definition of capacity allows us to estimate the capacity of each covert
timing channel based on the network conditions of each connection. In pre-
vious research [24], the inter-packet delay differences have been shown to be
well-modeled by a Laplace distribution. The probability density function of the
Laplace distribution is:

f(x, μ, b) =
1
2b

e−
|x−μ|

b .

The setting of the scale parameter b is based on the inter-packet delay varia-
tion for each connection. The variation of the Laplace distribution is σ2 = 2b2.
Therefore, we set b to:

b =

√
1
2
σ2,

where σ2 is the inter-packet delay variation for each connection.

Model-Based Covert Timing Channels: Automated Modeling and Evasion 223

Table 4. The theoretical capacity of each covert timing channel

LAN WAN E-E WAN E-W
channel CPP CPS CPP CPS CPP CPS

MB-HTTP 9.39 27.76 4.12 12.19 6.84 20.21

FPR 12.63 37.32 6.15 18.17 9.59 28.35

OPC 0.50 6395.39 0.50 68.80 0.50 758.54

CPP - capacity per packet, CPS - capacity per second

The results, in terms of capacity per packet and capacity per second, are
shown in Table 4. While OPC has the highest capacity, it is the least efficient
in terms of capacity per packet. Furthermore, with the large number of packets
per second, it can be easily detected by most intrusion detection systems.

The capacity of MB-HTTP is 67% to 74% of that of FPR, with larger differ-
ences for connections with high inter-packet delay variation than for those with
low inter-packet delay variation. The Weibull distribution has a larger proportion
of very small values than the Exponential distribution. As a result, MB-HTTP
uses more small values than FPR and benefits more from lower inter-packet
delay variation.

The theoretical capacity is somewhat optimistic. The model only considers
the noise introduced after packets leave the transmitter. With the real covert
timing channels, noise is introduced before packets leave the transmitter. The
transmitter is sometimes not able to transmit at the appropriate times, due
to slow processing, context switches, etc. Thus, the actual distance between
packets can increase or decrease from the intended distance as the packets are
transmitted.

Empirical Capacity. To evaluate the channel capacity in practice, we run
covert timing channels on each connection. The channels are configured to trans-
mit 16,000 random bits of information. For FPR and MB-HTTP, the number of
bits encoded per packet is set to 16 (i.e., 216 = 65, 536 different values), while
OPC transmits a single bit per packet.

During these tests, we measure the bit error rate of each covert timing channel
from the most significant bit to the least significant bit of each packet. The most
significant bit represents a large part of the inter-packet delay, where the least
significant bit represents a small part of the inter-packet delay. While flipping the
most significant bit causes a difference in seconds or tenths of seconds, changing
the least significant bit means a difference only in milliseconds or microseconds.
In other words, the higher the number of bits encoded per packet, the smaller the
precision of the lowest order bits. Interestingly, encoding at 16 bits per packet
and decoding at 8 bits per packet produces the most significant 8 bits of the 16
bit code.

To determine the transmission rate with error correction, we measure the em-
pirical capacity of each bit as a binary symmetric channel. The binary symmetric
channel is a special case where the channel has two symbols of equal probability.

224 S. Gianvecchio et al.

Fig. 2. The empirical capacity and bit error rates for WAN E-E and WAN E-W

The capacity of a binary symmetric channel is:

C = I(X ; Y) = 1 − (p log p + q log q),

where p is the probability of a correct bit and q = 1 − p is the probability of an
incorrect bit.

The empirical capacity and bit error rate for each bit, from the most significant
to the least significant, are shown in Figure 2. The empirical capacity per bit
degrades as the bit error rates increase. The total capacity of the channel is
the summation of the capacity for each bit. For MB-HTTP, the bit error rate
increases somewhat linearly. For FPR, the bit error rate accelerates gradually,
eventually overtaking the bit error rates of MB-HTTP, though at this point the
capacity per bit is insignificant.

The empirical capacity of each covert timing channel is shown in Table 5.
The empirical capacity of MB-HTTP is still about 46% to 61% of that of FPR,
somewhat lower than the case in the theoretical model. This is because a larger
proportion of MB-HTTP traffic has small inter-packet delays than that of FPR,
and small inter-packet delays are more sensitive to noise caused by transmis-
sion delays (i.e., slow processing, context switches, etc.) than large inter-packet
delays, which is not represented in the theoretical model.

Model-Based Covert Timing Channels: Automated Modeling and Evasion 225

Table 5. The empirical capacity of each covert timing channel

LAN WAN E-E WAN E-W
channel ECPP ECPS ECPP ECPS ECPP ECPS

MB-HTTP 6.74 19.93 2.15 6.35 5.18 15.31

FPR 10.95 32.35 4.63 13.67 9.37 27.69

OPC 0.85 10,899.62 0.66 91.28 0.98 1,512.53

ECPP - empirical capacity per packet, ECPS - empirical capacity per second

5.3 Detection Resistance

The detection resistance, as described in Section 3, is estimated based on the
shape and regularity tests. To examine the shape of the distribution, we use the
Kolmogorov-Smirnov test [25], which is a non-parametric goodness-of-fit test.
To examine the regularity of the traffic, we use the regularity test [11], which
studies the variance of the traffic pattern. In this section, we detail these two
tests and show the detection resistance of MB-HTTP against both tests.

Shape Tests. The two-sample Kolmogorov-Smirnov test determines whether or
not two samples come from the same distribution. The Kolmogorov-Smirnov test
is distribution free, meaning the test is not dependent on a specific distribution.
Thus, it is applicable to a variety of types of traffic with different distributions.
The Kolmogorov-Smirnov test statistic measures the maximum distance between
two empirical distribution functions.

KSTEST = max | S1(x) − S2(x) |,

where S1 and S2 are the empirical distribution functions of the two samples.
In our experiments, we test a large set of legitimate inter-packet delays against

a sample of either covert or legitimate inter-packet delays. The large set is a
training set of 10,000,000 HTTP inter-packet delays. The training set is used to
represent the normal behavior of the HTTP protocol.

The test score by comparing the two sets is used to determine if the sample is
covert or legitimate. A small score indicates that the behavior is close to normal.
However, if the test score is large, i.e., the sample does not fit the normal behavior
of the protocol, it indicates a potential covert timing channel.

Table 6. The mean and standard deviation of the Kolmogorov-Smirnov test scores

LEGIT-HTTP MB-HTTP FPR OPC
sample size mean stdev mean stdev mean stdev mean stdev

100x 2,000 .193 .110 .196 .093 .925 .002 .999 .000

100x 10,000 .141 .103 .157 .087 .925 .001 .999 .000

100x 50,000 .096 .088 .122 .073 .924 .000 .999 .000

100x 250,000 .069 .066 .096 .036 .924 .000 .999 .000

226 S. Gianvecchio et al.

Fig. 3. The distribution of Kolmogorov-Smirnov test scores

The Kolmogorov-Smirnov test is run 100 times for each of 2,000, 10,000,
50,000, and 250,000 packet samples of legitimate and covert traffic from each
covert timing channel. The mean and standard deviation of the test scores are
shown in Table 6. For FPR and OPC, the mean scores are over 0.90 and the
standard deviations are extremely low, indicating that the test can reliably dif-
ferentiate both covert timing channels from normal HTTP traffic. By contrast,
the mean scores for MB-HTTP samples are very close to those of legitimate
samples. The mean scores are for 100 tests, which in total include as many as 25
million (250,000 x 100) inter-packet delays. The distribution of individual test
scores is illustrated in Figure 3.

The detection resistance based on the Kolmogorov-Smirnov test is shown in
Table 7. The targeted false positive rate is 0.01. To achieve this false positive
rate, the cutoff scores—the scores that decide whether samples are legitimate or

Table 7. The false positive and true positive rates for the Kolmogorov-Smirnov test

LEGIT-HTTP MB-HTTP FPR OPC

sample size cutoff false pos. true pos. true pos. true pos.

100x 2,000 KSTEST ≥ .66 .01 .01 1.00 1.00

100x 10,000 KSTEST ≥ .65 .01 .01 1.00 1.00

100x 50,000 KSTEST ≥ .41 .01 .01 1.00 1.00

100x 250,000 KSTEST ≥ .21 .01 .02 1.00 1.00

Model-Based Covert Timing Channels: Automated Modeling and Evasion 227

covert—are set at the 99th percentile of legitimate sample scores. The true positive
rates, based on the cutoff scores, are then shown for each covert timing channel.
Since the true positive rates in all 100 tests are 1.00, the Kolmogorov-Smirnov test
detects FPR and OPC easily. However, the true positive rates for MB-HTTP are
approximately the same as the false positive rates. The Kolmogorov-Smirnov test
cannot differentiate between MB-HTTP and legitimate samples. Such a result can
be explained based on the distribution of individual test scores, which is shown in
Figure 3. While the mean scores of MB-HTTP traffic in Table 6 are slightly higher
than those of LEGIT-HTTP, the distributions of individual scores overlap so that
the false positive rate and true positive rate are approximately equal.

Regularity Tests. The regularity test [11] determines whether the variance of
the inter-packet delays is relatively constant or not. This test is based on the
observation that for most types of network traffic, the variance of the inter-packet
delays changes over time. With covert timing channels, the code used to transmit
data is a regular process and, as a result, the variance of the inter-packet delays
remains relatively constant over time.

In our experiments, we test the regularity of a sample of either covert or
legitimate inter-packet delays. The sample is separated into sets of w inter-packet
delays. Then, for each set, the standard deviation of the set σi is computed. The
regularity is the standard deviation of the pairwise differences between each σi

and σj for all sets i < j.

regularity = STDEV (
| σi − σj |

σi
, i < j, ∀i, j)

The regularity test is run 100 times for 2,000 packet samples of legitimate and
covert samples from each covert timing channel. The window sizes of w = 100
and w = 250 are used. The mean regularity scores are shown in Table 8. If the
regularity is small, the sample is highly regular, indicating a potential covert
timing channel.

Table 8. The mean of the regularity test scores

sample size LEGIT-HTTP MB-HTTP FPR OPC

100x 2,000 w=100 43.80 38.21 0.34 0.00

100x 2,000 w=250 23.74 22.87 0.26 0.00

The mean regularity scores for OPC are 0.0 for both tests, indicating reg-
ular behavior. There are two values, each with 0.5 probability. Therefore, the
standard deviation within sets is small σ = 0.5d = 3.317e − 4, and there is no
detectable change in the standard deviation between sets. The mean regularity
score for FPR is small as well, showing that the test is able to detect the regular
behavior. While the standard deviation of FPR, which is based on the Exponen-
tial distribution, is σ = λ = 0.3385, the code is a regular process, so the variance
of the inter-packet delays remains relatively constant.

228 S. Gianvecchio et al.

The mean regularity scores for MB-HTTP are close to those of legitimate
samples. This is because the parameters are recalibrated after each set of 100
packets, as described in Section 4. The parameters of the distribution determine
the mean and standard deviation, so adjusting the parameters changes the vari-
ance after each set of 100 inter-packet delays. As a result, like legitimate traffic,
the variance of the inter-packet delays appears irregular.

Table 9. The false positive and true positive rates for the regularity test

LEGIT-HTTP MB-HTTP FPR OPC

sample size cutoff false pos. true pos. true pos. true pos.

100x 2,000 w=100 reg. ≤ 6.90 .01 .00 1.00 1.00

100x 2,000 w=250 reg. ≤ 5.20 .01 .00 1.00 1.00

The detection resistance based on the regularity test is shown in Table 9. The
targeted false positive rate is 0.01. The cutoff scores are set at the 1st percentile
of legitimate sample scores, in order to achieve this false positive rate. The true
positive rates, based on the cutoff scores, are then shown for each covert timing
channels. The regularity test is able to detect FPR and OPC in all 100 tests.
The resulting true positive rates for MB-HTTP are approximately the same as
the false positive rate. Basically, the test is no better than random guessing at
detecting MB-HTTP.

6 Conclusion

We introduced model-based covert timing channels, which mimic the observed
behavior of legitimate network traffic to evade detection. We presented a frame-
work for building such model-based covert timing channels. The framework con-
sists of four components: filter, analyzer, encoder, and transmitter. The filter
characterizes the specific features of legitimate traffic that are of interest. The
analyzer fits the traffic to several models and selects the model with the best
fit. The encoder generates random covert inter-packet delays that, based on the
model, mimic the legitimate traffic. The transmitter then manipulates the timing
of packets to create the model-based covert timing channel.

Using channel capacity and detection resistance as major metrics, we evalu-
ated the proposed framework in both LAN and WAN environments. Our capacity
results suggest that model-based covert timing channels work efficiently even in
the coast-to-coast scenario. Our detection resistance results show that, for both
shape and regularity tests, covert traffic is sufficiently similar to legitimate traf-
fic that current detection methods cannot differentiate them. In contrast, the
Kolmogorov-Smirnov and regularity tests easily detect FPR and OPC.

Our future work will further explore the detection of model-based covert tim-
ing channels. There are other non-parametric goodness-of-fit tests, such as the
Anderson-Darling and Cramer-Von Mises tests [25], that are less general than

Model-Based Covert Timing Channels: Automated Modeling and Evasion 229

the Kolmogorov-Smirnov test but might be more effective in measuring certain
types of traffic. We will also further consider the regularity test at different lev-
els of granularity. We believe that a scheme capable of detecting model-based
covert timing channels will be effective in detecting other types of covert timing
channels as well.

Acknowledgments

We would like to thank Cheng Jin and Lachlan Andrew at CalTech for assisting
us in the coast-to-coast experiments. We also thank the anonymous reviewers
for their insightful comments. This work was partially supported by NSF grants
CNS-0627340 and CNS-0627493.

References

1. Department of Defense, U.S.: Trusted computer system evaluation criteria (1985)
2. Lampson, B.W.: A note on the confinement problem. Communications of the

ACM 16(10) (October 1973)
3. Wang, Z., Lee, R.: Covert and side channels due to processor architecture. In:

Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186, Springer, Heidelberg
(2006)

4. Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in inter-
net traffic with active wardens. In: Proc. of the 2002 International Workshop on
Information Hiding (October 2002)

5. Kang, M.H., Moskowitz, I.S.: A pump for rapid, reliable, secure communication.
In: Proc. of ACM CCS 1993 (November 1993)

6. Kang, M.H., Moskowitz, I.S., Lee, D.C.: A network version of the pump. In: Proc.
of the 1995 IEEE Symposium on Security and Privacy (May 1995)

7. Kang, M.H., Moskowitz, I.S., Chincheck, S.: The pump: A decade of covert fun.
In: Srikanthan, T., Xue, J., Chang, C.-H. (eds.) ACSAC 2005. LNCS, vol. 3740.
Springer, Heidelberg (2005)

8. Giles, J., Hajek, B.: An information-theoretic and game-theoretic study of timing
channels. IEEE Trans. on Information Theory 48(9) (September 2002)

9. Berk, V., Giani, A., Cybenko, G.: Covert channel detection using process query
systems. In: Proc. of FLOCON 2005 (September 2005)

10. Berk, V., Giani, A., Cybenko, G.: Detection of covert channel encoding in network
packet delays. Technical Report TR2005-536, Department of Computer Science,
Dartmouth College, Hanover, NH., USA (August 2005)

11. Cabuk, S., Brodley, C., Shields, C.: IP covert timing channels: Design and detec-
tion. In: Proc. of ACM CCS (October 2004)

12. Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: Proc. of the
2006 USENIX Security Symposium (July–August, 2006)

13. Gianvecchio, S., Wang, H.: Detecting covert timing channels: An entropy-based
approach. In: Proceedings of the 2007 ACM Conference on Computer and Com-
munications Security (October 2007)

14. Luo, X., Chan, E.W.W., Chang, R.K.C.: Cloak: A ten-fold way for reliable covert
communications. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734,
pp. 283–298. Springer, Heidelberg (2007)

230 S. Gianvecchio et al.

15. Arimoto, S.: An algorithm for computing the capacity of arbitrary discrete mem-
oryless channels. IEEE Trans. on Information Theory 18(1) (January 1972)

16. Blahut, R.E.: Computation of channel capacity and rate-distortion functions. IEEE
Trans. on Information Theory 18(4) (July 1972)

17. Borders, K., Prakash, A.: Web tap: Detecting covert web traffic. In: Proc. of ACM
CCS 2004 (October 2004)

18. Wang, X., Reeves, D.S.: Robust correlation of encrypted attack traffic through
stepping stones by manipulation of interpacket delays. In: Proc. of ACM CCS
2003 (October 2003)

19. Yu, W., Fu, X., Graham, S., Xuan, D., Zhao, W.: Dsss-based flow marking tech-
nique for invisible traceback. In: Proc. of the 2007 IEEE Symposium on Security
and Privacy, Washington, DC, USA (May 2007)

20. Peng, P., Ning, P., Reeves, D.S.: On the secrecy of timing-based active watermark-
ing trace-back techniques. In: Proc. of the 2006 IEEE Symposium on Security and
Privacy (May 2006)

21. Moskowitz, I.S., Kang, M.H.: Covert channels - here to stay? In: Proc. of the 1994
Annual Conf. on Computer Assurance (June 1994)

22. Cao, J., Cleveland, W.S., Lin, D., Sun, D.X.: On the nonstationarity of internet
traffic. In: Proc. of SIGMETRICS/Performance 2001 (June 2001)

23. Leemis, L., Park, S.K.: Discrete-Event Simulation: A First Course. Prentice-Hall,
Upper Saddle River (2006)

24. Zheng, L., Zhang, L., Xu, D.: Characteristics of network delay and delay jitter and
its effect on oice over IP (VoIP). In: Proc. of the 2001 IEEE International Conf.
on Communications (June 2001)

25. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley-Interscience, New York
(2001)

Optimal Cost, Collaborative, and Distributed

Response to Zero-Day Worms - A Control
Theoretic Approach

Senthilkumar G. Cheetancheri1,�, John-Mark Agosta2, Karl N. Levitt1,
Felix Wu1, and Jeff Rowe1

1 Security Lab, Dept. of Computer Science, Univ. of California, One Shields Ave.,
Davis, CA - 95616, USA

{cheetanc,levitt,wu,rowe}@cs.ucdavis.edu
2 Intel Research. 2200, Mission College Blvd., Santa Clara, CA - 95052, USA

{john.m.agosta}@intel.com

Abstract. Collaborative environments present a happy hunting ground
for worms due to inherent trust present amongst the peers. We present a
novel control-theoretic approach to respond to zero-day worms in a sig-
nature independent fashion in a collaborative environment. A federation
of collaborating peers share information about anomalies to estimate the
presence of a worm and each one of them independently chooses the most
cost-optimal response from a given set of responses. This technique is de-
signed to work when the presence of a worm is uncertain. It is unique in
that the response is dynamic and self-regulating based on the current en-
vironment conditions. Distributed Sequential Hypothesis Testing is used
to estimate the extent of worm infection in the environment. Response
is formulated as a Dynamic Programming problem with imperfect state
information. We present a solution and evaluate it in the presence of an
Internet worm attack for various costs of infections and response.

A major contribution of this paper is analytically formalizing the
problem of optimal and cost-effective response to worms. The second
contribution is an adaptive response design that minimizes the variety
of worms that can be successful. This drives the attacker towards kinds
of worms that can be detected by other means; which in itself is a suc-
cess. Counter-intutive results such as leaving oneself open to infections
being the cheapest option in certain scenarios become apparent with our
response model.

Keywords: Worms, Collaboration, Dynamic Programming, Control
Theory.

1 Introduction

Computer worms are a serious problem. Particularly in a collaborative envi-
ronment, where the perimeter is quite secure but there is some amount of trust
and implicit security within the environment. Once a worm breaks the perimeter

� Corresponding Author.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 231–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

232 S.G. Cheetancheri et al.

defense, it essentially has a free run within the collaborative environment. An
enterprise environment is a typical example of a network with this ‘crunchy on
the outside – chewy on the inside’ characteristic. In this paper, we try to leverage
the collaboration to collectively defend against such worm attacks. Dealing with
known worms is a solved problem – signatures to be used by Intrusion Preven-
tion Systems(IPSs) are developed to prevent further infections, and patches are
developed to fix vulnerabilities exploited by these worms. Dealing with unknown
worms – worms that exploit zero-day vulnerabilities or vulnerabilities for which
patches have either not been generated or not applied yet – is still a research
question. Several ingenious proposals to detect them automatically exist. Many
sophisticated counter measures such as automatic signature generation and dis-
tribution [17,13,16,20] and automatic patch generation to fix vulnerabilities [18]
have also been developed.

Often times, even if automated, there is not much time to either generate or
distribute signatures or patches. Other times, system administrators are skepti-
cal about applying patches. During instances when response based on the above
mentioned techniques are not feasible, the only option left is to either completely
shut-down the vulnerable service or run it risking infection. It is usually pre-
ferred to shut-down the service briefly until a mitigating response is engineered
manually.

However, making a decision becomes hard when one is not certain if there
is really a worm, and if the service being offered is vulnerable to it. It is not
desirable to shut-down a service only to realize later that such an action was
unwarranted because there is no worm. However, suspending the service in an
attempt to prevent infection is not considered bad. Intuitively, it is desired to
suspend the service briefly until it is clear whether there is an attack or not.
Balancing the consequences of providing the service risking infection against
that of not providing the service is of the essence.

This paper captures this intuition and devises an algorithm using Dynamic
Programming(DP) techniques to minimize the overall cost of response to worms.
Cost is defined as some mathematical expression of an undesirable outcome.

These algorithms use information about anomalous events that are poten-
tially due to a worm from other co-operating peers to choose optimal response
actions for local application. Such response can be later rolled-back in response
to changes to the environment such as a curtailed worm. Since peers decide to
implement response independently, the response is completely decentralized.

We surprisingly found that in certain scenarios, leaving oneself open to in-
fection by the worm might be the least expensive option. We also show that
these algorithms do not need large amounts of information to make decisions.
One of the key achievements here is that we use weak Intrusion Detection Sys-
tems(IDSs) as sensors that have high false positive rates. By corroborating alerts
raised by them with other collaborating sensors, we are able to minimize the false
positives and achieve better fidelity in detecting worms.

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 233

2 Dynamic Programming

This section provides a brief introduction to the theory behind Dynamic Pro-
gramming [6]. DP as applied to the current problem balances the low costs
presently associated with operating a system against the undesirability of high
future costs. The basic model of such a system is dynamic and discrete with an
associated cost that is additive over time. The evolution of such a system can
be described as:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 , (1)

where k indexes discrete time, xk is the state of the system and summarizes
past information that is relevant for future optimization, uk is the control or
decision variable to be selected at time k, wk is a random parameter, also called
disturbance or noise depending on the context, N is the horizon or the number of
times control is applied and fk is the mechanism by which the state is updated.
The cost incurred at time k is denoted by gk(xk, uk, wk), which is a random
function because it depends on wk. The goal is to minimize the total expected
cost

Jπ(x0) = E
wk

{
gN (xN) +

N−1∑

k=0

gk(xk, uk, wk)

}
.

This is achieved by finding a sequence of functions called the policy or control
law, π = {μ0, . . . , μN−1}, where each μk(xk) → uk when applied to the system
takes it from state xk to xk+1 and minimizes the total expected cost. In general,
for a given π, we use Jk(xk) to denote the cost-to-go from state xk at time k to
the final state at time N .

Dynamic Programming Algorithm: The optimal total cost is given by J0(x0) in
the last step of the following algorithm, which proceeds backwards in time from
period N − 1 to period 0:

JN (xN) = gN (xN), (2)

Jk(xk) = min
uk

E
wk

{
gk(xk, uk, wk) + Jk+1(xk+1)

}
, k = 0, 1, . . . , N − 1 .(3)

2.1 Imperfect Information Problems

DP problems as described above have perfect information about the state of the
system, xk. Often, xk cannot be determined accurately; only an estimate,

zk = hk(xk, vk) , (4)

can be made, where hk is a sensor that maps xk and a random disturbance vk,
into an observation, zk. Such problems are solved by reformulating them into a
perfect state information problem by introducing an augmented state variable
Ik, which is a vector of the past observations and controls applied.

Ik+1 = (Ik, zk+1, uk), k = 0, 1, . . . , N − 2 ,

I0 = z0 . (5)

234 S.G. Cheetancheri et al.

3 Response Formulation with Imperfect State
Information

In this section we formulate the computer worm response problem as a DP
problem with imperfect state information. We assume that there could be only
one worm and that the worm is a random scanning worm. We also assume that
there is a sensor, such as an IDS albeit not very accurate. This DP formulation
tells us which control should be applied to minimize the costs incurred until the
worm detection process is complete.

3.1 Problem Statement

System Evolution: Consider a machine that provides some service. This machine
needs to be operated for N steps or N time units. This machine can be in one
of two states, P or P , corresponding to the machine being in proper(desired
state) or improper(infected by a worm) state respectively. During the course of
operating the machine, it goes from state P to P with a certain probability λ
and remains in state P with a probability λ = (1−λ). If the machine enters state
P , it remains there with probability 1. The infectious force λ, is an unknown
quantity and depends on how much of the Internet is infected with the worm, if
at all a worm is present.

Sensor: The machine also has a sensor, which inspects the machine for worm
infections. However, it cannot determine the exact state of the machine. Rather,
it can only determine the state of a machine with a certain probability. There
are two possible observations; denoted by G (good, probably not infected) and
B(bad, probably worm infected). Alternatively, instead of infections, we can
imagine that the sensor looks for infection attempts and anomalies. The outcome
would then indicate that there is probably a worm on the Internet (B) or not
(G) as opposed to whether the host machine is infected or not. It is this latter
interpretation we adopt for the rest of this paper. For the time being, let us
assume that the inspections happen proactively at random intervals and also
when alerts are received from peers. We also assume that the sensor’s integrity
is not affected by the worm.

Controller: The machine also includes a controller that can continue(C) or
stop(S) operating the machine. The machine cannot change states by itself if it
is stopped. Thus the controller can stop the machine to prevent a worm infec-
tion and start it when it deems it safe to operate the machine. There are certain
costs involved with each of these actions under different conditions as described
in the next paragraph. The controller takes each action so that the overall cost
of operating the machine for N steps is minimized.

Costs: Continuing(C) to operate the machine when it is in state P costs noth-
ing. It is the nominal. We incur a cost of τ1 for each time step the machine is
stopped(S) irrespective of whether it is infected or not, and a cost τ2 for each
step an infected machine is operated. One might argue that τ1 and τ2 should be

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 235

Fig. 1. Alert Sharing Protocol. The laptop is our machine of interest. It uses informa-
tion, z0 and z1, from different chains to choose, actions, u0 and u1. It may or may not
have seen an anomaly while the machines shown with a blast have seen an anomaly.

the same because an infected machine is as bad as a stopped machine. If that
argument is true, the problem becomes trivial and it can be stated right away
that the most cost effective strategy is to operate the machine uninterrupted un-
til it is infected. On the contrary, we argue that operating an infected machine
costs more as it can infect other machines also. Hence, τ2 > τ1.

Alert Sharing Protocol: Since a computer worm is a distributed phenomenon,
inspection outcomes at one machine is a valid forecast of the outcome from a
later inspection at another identical machine. (This is an assumption we make
to develop the formulation and will be relaxed later on when we discuss a prac-
tical application.) Hence, a collection of such machines with identical properties
seek to co-operate and share the inspection outcomes. Under this scheme, an
inspection outcome at one machine is transmitted to another co-operating peer
chosen randomly. The controller on the randomly chosen machine uses such re-
ceived messages to select the optimal control to apply locally. This has the effect
of a machine randomly polling several neighbors to know the state of the en-
vironment. This gives the uninfected machines an opportunity to take actions
that prevent infection. Refer to Fig. 1. In addition to the inspection outcome,
peers share information about the anomaly observed in what we call an anomaly
vector – the structure, form and generation of which we leave undefined. Any
two peers observing the same anomaly generate identical anomaly vectors.

Goal: Now, the problem is to determine the policy that minimizes the total ex-
pected cost of operating the machine for N time periods in an environment that
could possibly be infected with a worm. DP problems are generally plagued with
state space explosion with increasing number of stages to the horizon. However,
since we solve the DP formulation of our problem offline, the value of N does
not have any impact on the operational efficiency of the model. Moreover, DP
problems can be solved approximately, or analytically for larger Ns significantly
reducing the computational needs of the original formulation. The rest of this
section develops the formulation for the current problem and provides a solution
for N = 3. Computer generated results for larger Ns are presented and discussed
in later sections.

236 S.G. Cheetancheri et al.

3.2 Problem Formulation

The above description of the problem fits the general framework of Sect. 2.1,
“Problems with imperfect state information.” The state, control and observation
variables take values as follows:

xk ∈ {P, P }, uk ∈ {C, S }, zk ∈ {G, B} .

The machine by itself does not transit from one state to another. Left to itself,
it remains put. It is transferred from P to P only by a worm infection, a ran-
dom process – an already infected victim chooses this machine randomly. The
evolution of this system follows (1), and is shown in Fig. 2. The function fk of
(1) can be derived from Fig. 2 as follows:

P (xk+1 = P | xk = P, uk = C) = λ ,
P (xk+1 = P | xk = P, uk = C) = λ ,
...
P (xk+1 = P | xk = P , uk = S) = 1 .

(6)

The random disturbance, wk is provided by λ and is rolled in xk. λ is the infec-
tious force, a function of the number of the machines infected on the Internet.
Assuming the machine initially starts in state P , the probability distribution of
x0 is

P (x0 = P) = λ , P (x0 = P) = λ . (7)

(This assumption is for exposition only. In practice, we do not have to know the
initial state the machine starts in.) Recollect that the outcome of each inspection
of the machine is an imperfect observation of the state of the system. Thus,

P (zk = G | xk = P) = fn ,
P (zk = B | xk = P) = (1 − fn) ,
P (zk = G | xk = P) = (1 − fp) ,
P (zk = B | xk = P) = fp ,

(8)

where fp and fn are properties of the sensors denoting the false positive and false
negative (miss) rates.

Assuming the cost function remains the same regardless of time, the sub-script
k can be dropped from gk. We define the cost function as follows:

g(P, C) = 0, g(P , C) = τ2,
g(P, S) = g(P , S) = τ1,
g(xN) = 0.

(9)

g(xN) = 0 because uN is chosen with accurate knowledge of the environment,
(i.e) whether there is a worm or not. If there is a worm, uN = S, else uN = C.

Our problem now is to find functions μk(Ik) that minimize the total expected
cost

E
xk,zk

{
g(xN) +

N−1∑

k=0

g
(
xk, μk(Ik)

)
}

.

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 237

PP

PP

C/λ

C/λ, S/1

C, S/1

fp

fp

fn

fn

State Transition Inspection

G

B

Fig. 2. The left half of the figure shows the state transition probabilities for each
action. For example, the system goes from state P to P with a probability of λ when
action C is applied. The right half of the figure shows the observation probabilities for
each state. For example, when the system is in state P , the sensors output a G with a
probability of fp.

We now apply the DP algorithm to the augmented system (refer Sect. 2.1). It
involves finding the minimum cost over the two possible actions, C and S, and
has the form:

Jk(Ik) = min
{C,S}

[(
P (xk = P | Ik, C) · g(P, C) + P (xk = P | Ik, C) · g(P , C)

)

+ E
zk+1

{
Jk+1(Ik, C, zk+1) | Ik, C

}
,

(
P (xk = P | Ik, S) · g(P, S) + P (xk = P | Ik, S) · g(P , S)

)

+ E
zk+1

{
Jk+1(Ik, S, zk+1) | Ik, S

}]
(10)

where k = 0, 1, . . .N − 1 and the terminal condition is JN (IN) = 0. Applying
the costs (9), and noticing that P (xk = P | Ik, S) + P (xk = P | Ik, S) is the sum
of probabilities of all elements in a set of exhaustive events, which is 1, we get

Jk(Ik) = min
{C,S}

[
τ2 · P (xk = P | Ik, C) + E

zk+1

{
Jk+1(Ik, C, zk+1) | Ik, C

}
,

τ1 + E
zk+1

{
Jk+1(Ik, S, zk+1) | Ik, S

}]
. (11)

This is the required DP formulation of response to worms. Next, we demonstrate
a solution derivation to this formulation for N = 3.

3.3 Solution

Here we show a solution assuming that we expect to know with certainty about
the presence of a worm at the receipt of the third message, that is, N = 3. The
same procedure can be followed for larger Ns.

238 S.G. Cheetancheri et al.

With that assumption, control u2 can be determined without ambiguity. If
the third message says there is a worm, we set u2 = S, else we set it to C. This
also means that the cost to go at that stage is

J2(I2) = 0 . (Terminal Condition)

Penultimate Stage: In this stage we determine the cost J1(I1). Applying the
terminal condition to the DP formulation (11), we get

J1(I1) = min
[
τ2 · P (x1 = P | I1, C) , τ1

]
. (12)

The probabilities P (x1 = P |I1, C) can be computed using Bayes’ rule and (6–8),
assuming the machine starts in state P . (See Sect. B for exposition.) The cost for
each of the eight possible values of I1 = (z0, z1, u0) under each possible control,
u1 ∈ {C, S} is computed using (11). Then, the control with the smallest cost is
chosen as the optimal one to apply for each z1 observed. The cost-to-go, J1(I1),
thus calculated are used for the zeroth stage.

Stage 0: In this stage we determine the cost J0(I0). We use (11) and values of
J1(I1) calculated during the previous stage to compute this cost. As before this
cost is computed for each of the two possible values of I0 = (z0) = {G, B}, under
each possible control, u1 = {C, S}. Then, the control with the smallest cost is
chosen as the optimal one to apply for the observed state of the machine. Thus
we have,

J0(I0) = min
[
τ2 · P (x0 = P | I0, C) + E

z1

{
J1(I1) | I0, C

}
,

τ1 + E
z1

{
J1(I1) | I0, S

}]
. (13)

The optimal cost for the entire operation is finally given by

J∗ = P (G)J0(G) + P (B)J0(B) .

We implemented a program that can solve the above formulation for various
values of λ, fp, and fn. A sample rule-set generated by that program is given in
Table 1. Armed with this solution, we now show a practical application.

4 A Practical Application

4.1 Optimal Policy

Table 1 shows the optimal policies for a given set of operational parameters.
The table is read bottom up. At start, assuming the machine is in state P , the
optimal action is to continue, C. In the next time step, stage 0, if the observation
is B, the optimal action is to stop, S. If z0 = B is followed by z1 = G, the op-
timal action is to operate the machine, C. This is denoted by the second line in

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 239

Table 1. An optimal policy table

λ = 0.50, fp = 0.20, fn = 0.10
τ1 = 1, τ2 = 2

Ik Jk uk

Stage 1 (G, G, S) 0.031 C
(B, G, S) 0.720 C
(G, B, S) 0.720 C
(B, B, S) 1.000 S
(G, G, C) 0.270 C
(B, G, C) 1.000 S
(G, B, C) 1.000 S
(B,B, C) 1.000 S

Stage 0 (G) 0.922 C
(B) 1.936 S

Start 1.480 C

stage 1. This shows that an undesirable response is rolled back when the envi-
ronment is deemed not dangerous. In a practical application, such a table will be
looked up for a given λ and observation to choose the optimal action. Note that
the first, third, sixth and eighth states are unreachable because, for the given z0,
the control u0 mentioned in the vector is never applied if the system operates in
good faith.

4.2 Choosing λ

The value of λ varies with the extent of infection in the Internet. Given we are
uncertain that there is a worm in the Internet, λ cannot be determined with any
accuracy. Rather, only estimates can be made. Hence the distributed Sequential
Hypothesis Testing developed earlier is used to estimate λ [9].

Given a sequence of observations y = {y0, y1, . . . , yn}, made by a sequence of
other participating nodes, and two contradicting hypotheses that there is a worm
on the Internet(H1) and not(H0), the former is chosen when the likelihood ratio
L(y) of these hypotheses is greater than a certain threshold η [9]. This threshold η
is determined by the performance conditions required of the algorithm. Assuming
the observations are independent, L(y) and η are defined as follows:

L(y) =
n∏

i=1

P (yi|H1)
P (yi|H0)

, η =
DD

DF
, (14)

where DD is the minimum desired detection rate and DF is the maximum toler-
able false positive rate of the distributed Sequential Hypothesis Testing(dSHT)
algorithm. We define each of the above probabilities as follows:

P (yk = B | H1) = [λ (1 − fn) + (1 − λ) fp] ,
P (yk = G | H1) = [(λ fn) + (1 − λ)(1 − fp)] ,

240 S.G. Cheetancheri et al.

P (yk = B | H0) = fp , (15)
P (yk = G | H0) = (1 − fp) .

The first equation in the above set is the probability of observing a B given
hypothesis H1 is true. It is the sum of probability of getting infected (λ) times
the probability of detection, and the probability of not getting infected(1 − λ)
times the probability of false positives. The others in (15) are defined similarly.

For a received sequence of observations, a node calculates L(y) for several
values of λ – say for ten different values in steps of 0.1 starting at 0.1. The
lowest λ for which the L(y) exceeds η is then taken as the current levels of
infection and used in determining the optimal response. The reason for choosing
discrete values of λ will be apparent shortly.

An observation at a node can be conveyed to another by transmitting the
observation vector, y = {y0}. The recepient can add its own observation to this
vector making it y = {y0, y1}. Such a sequence accumulates information leading
to larger vectors with each hop. Given L(y) in (14) is essentially a digest of such
vectors, no node has to transmit a whole vector. Instead, it suffices to transmit
just one number, L(y). A recepient can update the received L(y) using (14),
(15), and its own observations. It is indeed a conundrum to estimate λ using
(15), which is a function of λ itself. This problem is solved as described in the
previous paragraph – the lowest λ for which L(y) exceeds η is taken as the
current operating λ.

In operational practice, a policy in the form of a table is calculated offline for
several candidate values of λ. Each row in these tables gives a uk for a given
Ik. For each new λ estimated, the corresponding table is consulted to choose
uk given Ik, where Ik is the node’s own past observations and corresponding
actions. Thus, each node only receives a likelihood ratio of the worm’s presence
from its peers and also has to remember only its own Ik. Limiting the number of
such tables is the reason for choosing discrete λs in the preceeding paragraphs.

4.3 Larger Ns

As N increases, the dimensions of Ik increases, which in turn increases the
number of the calcuations involved exponentially. This problem can be overcome
by reducing Ik to smaller dimensions containing only the Sufficient Statistics yet
summarizing all essential contents of Ik as far as control is concerned. There are
many different functions that can serve as sufficient statitics. The one we use
here is the conditional probability distribution Pxk|Ik

of the state xk, given the
information vector Ik [6]. Discrete-time stochastic systems can be described by
the evolution

Pxk+1|Ik+1 = Φk(Pxk|Ik
, uk, zk+1) , (16)

where Φk is a function that estimates the probalistic state of the system Pxk|Ik

based on Pxk−1|Ik−1 , zk and uk−1 , and can be determined from the data of the
problem [5]. Figure 3 explains this concept. The actuator μk then selects the
optimal response based on Pxk|Ik

.

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 241

Actuator

System Measurement

Delay

Estimator

wk vk

uk xk
xk+1 = fk(xk, uk, wk) zk = hk(xk, uk−1, vk)

uk−1

μ
k

Pxk|Ik zk

Φk−1

Fig. 3. The controller split into an Estimator and an Actuator. The Estimator Φk−1

estimates the probabilistic state of the system Pxk|Ik
while the Actuator μk picks the

appropriate control uk.

This re-formulation makes it easy to apply the response model for larger Ns.
We implement this model and evaluate it in a simulation. The evaluation and
the results are discussed in the next section.

5 Evaluation

The sufficient statistics formulation discussed in the previous section was imple-
mented and evaluated with a discrete event simulation. The simulation consisted
of a world of 1000 participants with 10% of the machines being vulnerable. We
set the number of stages to operate the machine, N = 4 to calculate the rule-sets.
Note that N = 4 is used only to calculate the rule-sets but the machines can
be operated for any number of steps. N is essentially the number of past obser-
vations and actions that each machine remembers. The local IDSes were set to
have a false positive and false negative rates of 0.1. These characteristics of the
local IDS is used to calculate the probability of infection, λ with a desired worm
detection rate of 0.9 and failure rate of 0.1. In all the following experiments, we
used a random scanning worm that scans for vulnerable machines once every
unit-time.

5.1 Experiments

Parameters of Evaluation: A set of experiments was designed to understand the
effect of various parameters on the effectiveness of the model in controlling the
spread of the worm. The only free variable we have here is the ratio τ2/τ1. There
is no one particular parameter that can measure or describe the effectiveness
of the response model. Rather, the effectiveness is described by the number of
vulnerable machines that are not infected and of those the number that provide
service, i. e. in state C.

Algorithm: The algorithm for the discrete-event simulation is as follows. At each
time cycle.

242 S.G. Cheetancheri et al.

0

20

40

60

80

100

0 50 100 150 200

of

 h
os

ts

Time(no units)

Spread of a worm with no response - tau2 / tau1 = 1

Infected
Stopped

Fig. 4. No machines are stopped when the cost of being infected is the same as cost of
shutting down the machine. fp = fn = 0.1, DD = 0.9, DF = 0.1

– all infected machines attempt one infection,
– all machines that had an alert to share, share the likelihood ratio that there

is a worm on the Internet with another randomly chosen node,
– and all vulnerable machines that received an alert earlier take a response

action based on the information received and the current local observations.

Results: In the first experiment, we want to make sure that we have a worm that
behaves as normal random scanning worm and validate the response model for

0

20

40

60

80

100

0 50 100 150 200 250 300

of

 h
os

ts

Time(no units)

System behaviour for various ratios of tau2 / tau1 with infinte memory

tau2 / tau1 ratio
(Infected) 1

30
50

(Stopped) 1
30
50

Fig. 5. When nodes are set to remember infection attempts forever, they never back-off
their defensive posture. Once entered the S state, a machine stays there. fp = fn =
0.1, DD = 0.9, DF = 0.1.

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 243

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000

of

 h
os

ts

Time(no units)

System behaviour for various ratios of tau2 / tau1 costs

tau2 / tau1 ratio
(Infected) 1

30
50

(Stopped) 1
30
50

Fig. 6. Higher costs of being infected invoke stricter responses. fp = fn = 0.1, DD =
0.9, DF = 0.1.

the degenerate cases. We verify this by providing no response. This response can
be achieved by setting the cost ratio to 1 – the cost of stopping the service is the
same as getting infected. In this scenario, we expect the response model not to
take any defensive measures against suspected infection attempts. As expected,
we see in Fig. 4, that none of the machines are stopped (S state). The worm
spreads as it would spread when there is no response in place. This validates our
worm and also our response model.

As another sanity check we set the machines to remember infection attempts
forever. Under this policy, once a machine enters the S state, it remains in that
state forever. We see that in this case (Fig. 5) the number of machines infected
are very low except when τ2/τ1 = 1.

In the next experiment, we try to understand the behavior of our response
model in various situations. Since the only free variable is the ratio τ2/τ1, we
repeat the previous experiment with various values for that ratio. The results
for this set of experiments is shown in Fig. 6. This graph shows behavior of our
response model in three different tests. There are two different curves for each
test indicating the number of vulnerable machines being infected and the number
of machines that are stopped. We can see that when the ratio is 1, the number of
machines that are in S state is 0. As the ratio τ2/τ1 rises, the response becomes
stricter. We see that the number of machines in the stopped(S) state is higher
when the cost of being infected is higher. Also the worms spreads significantly
slower than without any response in place or with a lower τ2/τ1 ratio.

5.2 Effects of Increasing N

The experiments shown earlier in this section were all conducted with N = 4.
An interesting question to ask here, “What happens if we increase the value of

244 S.G. Cheetancheri et al.

0

20

40

60

80

100

1 10 100 1000

of

 h
os

ts

Time(no units, Log scale)

System behaviour for various Ns

Various Ns
(Infected) 3

5
7

10
(Stopped) 3

5
7

10

Fig. 7. Larger Ns do not contribute much to improve performance due to the small
number of dimensions to the state, xk ∈ {P, P}. fp = fn = 0.1, DD = 0.9, DF = 0.1

N?”. Fig. 7 shows the performance of the system for various values of N while
holding the ratio of τ2/τ1 constant at 30. The set of sigmoidal curves that increase
monotonically trace the growth of the worm, while the other set of curves trace
the number of nodes that are shut-down at any given instant. We notice that
there is no appreciable slowing of the worm with increased values of N – all the
worm growth curves are bunched up together. This is due to the small number
of dimensions to the state, xk ∈ {P, P}. A larger observation space does not
contribute much to improve the performance of the system.

6 Conclusion

This section concludes this paper by reflecting on the strengths and weaknesses of
the approach discussed so far. Assumptions are identified. Arguments are made
for the choice of certain design and evaluation decisions. Where appropriate,
future directions are provided to address the limitations identified.

6.1 Limitations and Redress

There are several topics in this paper yet to be addressed. There are issues to
be addressed from three different perspectives – one, problems that would arise
during the practical adoption of this model; two, in the evaluation; and three,
in the model itself.

Adoption Impediments: This is a collaborative response model. As with any
collaborative effort, there is a host of issues such as privacy, confidentiality,
non-repudiation, etc, that will need to be addressed during practical adop-
tion. Thankfully, these are issues for which there are solutions available already

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 245

through cryptography and Ipsec. In a co-operative or collaborative environment,
we expect these issues to be either easily resolved or already addressed. Re-
gardless, co-operation amongst various entities on the Internet such as amongst
different corporate networks pose more legal, political, and economic problems
than technical. In such cases where sharing anomaly information with networks
outside of the corporation is not feasible, applying this response model within
the corporate network itself can provide valuable protection.

Assigning realistic values to τ1 and τ2 is another major impediment to adop-
tion. However, that is a separate problem requiring independent study. There
are indeed prior work that attempt to assign costs to various responses that can
be used [14,4]. Whereas, this paper focusses on optimizing those costs for overall
operation of a system.

Evaluation Issues: Integral and faithful scaling down of the Internet is a difficult
problem [22], which makes evaluating worm defenses more so [8]. At one extreme
we have realistic evaluation possible only on the Internet, which is infeasible. At
the other extreme, we have pure mathematical models. In between these two
extremes, we have simulations such as the one used in this paper and emulation
as used in one of our previous studies for worm detection [9].

With the availability of data about Internet traffic during worm outbreaks,
it may be possible to evaluate the defense model on a network testbed such as
Emulab [23] or Deter [3] by replaying the traffic for a scaled down version of
the Internet. Such an experiment would need the available data to be carefully
replayed with tools such as TCP Replay,TCP Opera [12], etc. This is a future
task. Nevertheless, such emulation experiments can only scale up to a certain
level and after that we would have to resort to mathematics or simulations to
extrapolate the results to Internet scales.

We avoid emulation experiments by choice. Emulations can provide details
about exploit behavior, traffic patterns, etc. As important as those issues are,
they lie outside the scope of our present interest and are considered for later
study. Focus for this paper is primarily on the cost optimization models. As
mentioned in the previous paragraph, experiment population sizes are limited
in emulations while simulations can support larger number of nodes. Given that
stochastic processes are involved in our model, we need a large population to
achieve fidelity in results. Consequently, simulations form a natural choice for
our experiments.

An issue to be studied is the behavior of this model in the face of false alarms
and isolated intrusions. For example, consider one and only participant raising an
alarm for an isolated event and several other participants choosing the S control.
We would like to know when these participants would apply the C control.
Trivially, we can set a time-out for the defense to be turned-off. However, the
time-out should be chosen carefully and probably be dynamic to guard against
exposing oneself to slow-worm attacks.

In our experiments we have showed only one worm operating at a time. While
this might seem like a limitation of the model, it is not. As mentioned in Sect. 3.1,
there is an anomaly vector associated with each suspected worm incident. When

246 S.G. Cheetancheri et al.

multiple worms operate simultaneously, each will be associated with a different
anomaly vector. In operational practice, we expect a different process to be asso-
ciated with each anomaly vector so multiple worms can be handled independently
and concurrently.

Limitations and Extensions to the Model: When there is a cost to sampling
packets, this model can be extended to optimally stop the sampling process
and declare either that there is a worm or that there is no worm – essentially
a distributed worm detector. Interestingly, this extension would lead us to the
distributed Sequential Hypothesis Testing that we discussed in our previous
paper [9].

One of the assumptions in our model is that the worm is a random scanning
worm. This model will not work against more intelligent worms such as hit-list
or flash worms but will likely be moderately successful against sub-net scanning
worms [19]. Evaluating and extending the model against such other kinds of
worms is a future work.

Integrity of the sensors, and absence of wilful malfeasance are assumed in our
model. After all, in the real world we do assume the safety and security of the
firewalls and Idses we use. Nevertheless, if a few of the sensors are compromised
by the attackers, we expect the stochastic nature of our model to act as a cushion
absorbing some of the ill-effects. This needs to be evaluated. If numerous sensors
are affected, our assumption about collaboration is not valid any more and the
results are undefined.

Actions such as C and S if applied frequently could lead to a very unstable
system. We need to evaluate this factor in light of ambient anomaly levels in
different environments. This is a problem with the model itself. However, this
can be alleviated to some extent during adoption in various ways. For example,
the set of response options, {C, S}, can be made larger by introducing several
levels of reduced functionality. This will however increase the complexity of the
DP formulation but can be tolerated as we solve the formulation offline.

When all participants behave identically each participant knows exactly how
the others will behave. In such a scenario, each one can make a better decision
about the optimal control to be applied taking into account the others’ behavior.
For example, if participant A determines that the optimal policy to be applied
is S, it now knows that all other participants will also apply the same control.
Then, there is no need for A to apply S. Instead A could apply C as there is no
opportunity for a worm to spread when all others participants are stopped. The
problem now enters the realm of game theory.

6.2 Strengths

One question that needs to be answered for any defensive technique is this: “If
the attacker knows about the approach being used for defense, will s/he be able
to write a new generation of worms that can overcome the defense?”

There are two different goals that an attacker with knowledge about our
system can try to achieve. One, try to circumvent the defense and spread the
worm. Two, trick the defense into over-reacting.

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 247

The second goal cannot be achieved because of the dynamic and self-regulating
nature of our approach, which is based on the current environmental conditions
as depicted in Fig. 3. The attacker may force our system to react to an initial
stimulus that is not a true worm, but once the stimulus has reduced, the defence
pulls back too. If the sensors are compromised, however, the results are unde-
fined as mentioned in the previous section. However, compromising sensors are
extraneous to the model and is not a tenable argument against the model.

To achieve the first goal, the worm needs to either spread very slowly such
that information about anomalous incidents are forgotten by the participants, or
attack pre-selected victims that may not be alerted by its peers. However, since
the alerts are shared with randomly chosen peers while the worm is spreading,
there can be no effective pre-selection that can overcome the defense. Whereas
a slow spreading worm might be successful to a certain extent.

Nevertheless, we believe that a slow spreading worm can be identified by other
means such as manual trouble-shooting prompted by the ill-effects of the worm;
unless the worm installs a time-bomb that is set to trigger after the worm has
spread to most vulnerable nodes. We also believe that such slow worms will be
circumvented by routine maintenance patches – most worms we know so far have
exploited only known, but unpatched, vunlerabilities.

Moreover, there is a heightened awarness about security issues amongst the
information technology community than ever before. Laws related to data se-
curity are being tightened and enforced more vigorosly than in the past. Patch
generation and deployment techniques have advanced tremendously recently. In
such an environment, we expect that steps to patch or workaround known vulner-
abilities will be taken with more urgency than ever before effectively thwarting
extremely slow worms discussed in the preceeding paragraphs.

Thus, the worm has a very narrow window between spreading too slow and
spreading too fast – the window where our response mechanism works to thwart
the worm. In conclusion, to answer the question above, knowledge of our ap-
proach does not provide much value to the attacker or new generation of
worms.

6.3 Summary

This paper presents a novel control-theoretic approach toward worm response.
We showed how to formalize a response strategy as a Dynamic Programming
problem and solve this formulation to yield a practically applicable response
solution. This formalization has been one of the key contributions of this pa-
per. We show how this model severely curtails the worm options available to
attackers. Several interesting directions in which this work could be extended
are identified.

Acknowledgments. We would like to thank Branislav Kveton of Intel Research
and Jed Crandall of University of New Mexico for providing early critique on
the work.

248 S.G. Cheetancheri et al.

References

1. Anagnostakis, K.G., et al.: A cooperative immunization system for an untrusting
internet. In: Proc. of IEEE ICON, October 2003, pp. 403–408 (2003)

2. Anagnostakis, K.G., Greenwald, M.B., Ioannidis, S., Keromytis, A.D.: Robust re-
actions to potential day-zero worms through cooperation and validation. In: Kat-
sikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS,
vol. 4176, pp. 427–442. Springer, Heidelberg (2006)

3. Bajcsy, R., et al.: Cyber defense technology networking and evaluation. Commun.
of the ACM 47(3), 58–61 (2004)

4. Balepin, I., Maltsev, S., Rowe, J., Levitt, K.: Using specification-based intrusion
detection for automated response. In: Vigna, G., Krügel, C., Jonsson, E. (eds.)
RAID 2003. LNCS, vol. 2820, pp. 136–154. Springer, Heidelberg (2003)

5. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete Time Case.
Academic Press, N.Y (1978)

6. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. 1.
Athena Scientific (2005)

7. Cai, M., Hwang, K., Kwok, Y.-K., Song, S., Chen, Y.: Collaborative internet worm
containment. IEEE Security and Privacy 4(3), 34–43 (2005)

8. Cheetancheri, S.G., et al.: Towards a framework for worm defense evaluation. In:
Proc. of the IPCCC Malware Workshop on Swarm Intelligence, Phoenix (April
2006)

9. Cheetancheri, S.G., Agosta, J.M., Dash, D.H., Levitt, K.N., Rowe, J., Schooler,
E.M.: A distributed host-based worm detection system. In: Proc. of SIGCOMM
LSAD, pp. 107–113. ACM Press, New York (2006)

10. Costa, M., et al.: Vigilante: end-to-end containment of internet worms. In: Proc.
of the SOSP, pp. 133–147. ACM Press, New York (2005)

11. Dash, D., Kveton, B., Agosta, J.M., Schooler, E., Chandrashekar, J., Bachrach, A.,
Newman, A.: When gossip is good: Distributed probabilistic inference for detection
of slow network intrusions. In: Proc. of AAAI, AAAI Press, Menlo Park (2006)

12. Hong, S.-S., Felix Wu, S.: On Interactive Internet Traffic Replay. In: Valdes, A.,
Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 247–264. Springer, Heidelberg
(2006)

13. Kim, H.-A., Karp, B.: Autograph: Toward automated, distributed worm signature
detection. In: Proc. of the USENIX Security Symposium (2004)

14. Lee, W., Fan, W., Miller, M., Stolfo, S.J., Zadok, E.: Towards cost-sensitive mod-
eling for intrusion detection and response. J. of Computer Security 10(1,2) (2002)

15. Malan, D.J., Smith, M.D.: Host-based detection of worms through peer-to-peer
cooperation. In: Proc. of the WORM, pp. 72–80. ACM Press, New York (2005)

16. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proc. of the IEEE Symposium on Security and Privacy,
pp. 226–241. IEEE, Los Alamitos (2005)

17. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:
Proc. of OSDI, San Francisco, CA (December 2004)

18. Sidiroglou, S., Keromytis, A.D.: Countering network worms through automatic
patch generation. IEEE Security and Privacy 3(6), 41–49 (2005)

19. Staniford, S., Paxson, V., Weaver, N.: How to 0wn the Internet in Your Spare
Time. In: Proc. of the Summer USENIX Conf., Berkeley, August 2002. USENIX
(2002)

Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms 249

20. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and
signature generation. In: Proc. of RAID. ACM Press, New York (2005)

21. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In:
Proc. of RAID, September 2004. ACM Press, New York (2004)

22. Weaver, N., Hamadeh, I., Kesidis, G., Paxson, V.: Preliminary results using scale-
down to explore worm dynamics. In: Proc. of WORM, pp. 65–72. ACM Press, New
York (2004)

23. White, B., et al.: An integrated experimental environment for distributed systems
and networks. In: OSDI, Boston, December 2002, pp. 255–270. USENIX (2002)

24. Zou, C.C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning for
internet worms. In: Proc. of the CCS, pp. 190–199. ACM Press, New York (2003)

A DP Example

We provide a short, classical inventory control example to help readers unfamiliar
with DP to formulate a DP problem. This is an example from Bertsekas [6].

Consider the problem of stocking store shelves for N days. The state of the
system is denoted by the quantity (xk) of a certain item available on the store
shelves at the beginning of a day. Shelves are stocked(with uk units) at day break
while demand(wk) for the item is stochastic during the day. Both wk and uk are
non-negative. There is no change overnight. It is clear that this system evolves
according to:

xk+1 = max(0, xk + uk − wk) .

While there is an upper bound of, say, 2 units on the stock that can be on the
shelves, demand in excess of stocks is lost business. Say, the storage costs for a
day is (xk + uk − wk)2 implying penalty for both lost business and for excess
inventory at the end of the day. Assuming the purchase cost incurred by the
store is 1 per unit stock, the operating cost per day is

gk(xk, uk, wk) = uk + (xk + uk − wk)2 .

The terminal cost at the end of N days is assumed to be 0. Say the planning
horizon N is 3 days and the initial stock x0 = 0. Say, the demand wk has the
same probability distribution for all three days and is given by

p(wk = 0) = 0.1 p(wk = 1) = 0.7 p(wk = 2) = 0.2 .

The problem now is to determine the optimal policy for reordering of stocks so
as to minimize the total operational cost. Applying (3), the DP algorithm for
this problem is

Jk(xk) = min
0≤uk≤2−xk

uk=0,1,2

E
wk

{
uk + (xk + uk − wk)2 + Jk+1(xk+1)

}
, (17)

where k = 0, 1, 2, and xk, uk, wk can take the values of 0, 1, 2 while the terminal
condition J3(x3) = 0 .

Now starting with J3(x3) = 0 and solving (17) backwards for J2(xk), J1(xk)
and J0(xk) for k = 0, 1, 2, we find that the optimal policy is to reorder one unit
if the shelves are empty and nothing otherwise.

250 S.G. Cheetancheri et al.

B Applying Bayes’ Rule

The probabilities, P (x1 = P | I1, C) for (12) can be calculated using Bayes’ rule
and (6–8). We show the calculations for one of them here for exposition.

P (x1 = P | G, G, S)

=
P (x1 = P , G, G, | S)

P (G, G, | S)

=

∑

i={P,P}

P (G|x0 = i) · P (x0 = i) · P (G|x1 = P) · P (x1 = P |x0 = i, u0 = S)

∑

i={P,P}

∑

j={P,P}

P (G|x0 = i) · P (x0 = i) · P (G|x1 = j) · P (x1 = j|x0 = i, u0 = S)

=
(fp · λ · fn · 0) + (fn · λ · fn · 1)

(fp · λ · fp · 1) + (fp · λ · fn · 0) + (fn · λ · fp · 0) + (fn · λ · fn · 1)

On the Limits of Payload-Oblivious

Network Attack Detection

M. Patrick Collins1 and Michael K. Reiter2

1 RedJack
michael.collins@redjack.com�

2 Department of Computer Science,
University of North Carolina at Chapel Hill

reiter@cs.unc.edu

Abstract. We introduce a methodology for evaluating network intru-
sion detection systems using an observable attack space, which is a pa-
rameterized representation of a type of attack that can be observed in
a particular type of log data. Using the observable attack space for log
data that does not include payload (e.g., NetFlow data), we evaluate the
effectiveness of five proposed detectors for bot harvesting and scanning
attacks, in terms of their ability (even when used in conjunction) to de-
ter the attacker from reaching his goals. We demonstrate the ranges of
attack parameter values that would avoid detection, or rather that would
require an inordinately high number of false alarms in order to detect
them consistently.

Keywords: network intrusion detection, ROC curve, evaluation.

1 Introduction

We address the problem of evaluating network intrusion detection systems,
specifically against scan and harvesting attacks. In the context of this work,
a harvesting attack is a mass exploitation where an attacker initiates communi-
cations with multiple hosts in order to control and reconfigure them. This type
of automated exploitation is commonly associated with worms, however, modern
bot software often includes automated buffer-overflow and password exploitation
attacks against local networks1. In contrast, in a scanning attack, the attacker’s
communication with multiple hosts is an attempt to determine what services
they are running; i.e., the intent is reconnaissance.

While harvesting attacks and scanning may represent different forms of at-
tacker intent (i.e., reconnaissance vs. host takeover), they can appear to be sim-
ilar phenomena in traffic logs. More specifically, a single host, whether scanning
� This work was done while the author was affiliated with the CERT/NetSA group at

the Software Engineering Institute, Carnegie Mellon University.
1 A representative example of this class of bot is the Gaobot family, which uses a

variety of propagation methods including network shares, buffer overflows and pass-
word lists. A full description is available at http://www.trendmicro.com/vinfo/
virusencyclo/default5.asp?VName=WORM AGOBOT.GEN.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 251–270, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.trendmicro.com/vinfo/
virusencyclo/default5.asp?VName=WORM_AGOBOT.GEN

252 M.P. Collins and M.K. Reiter

or harvesting, will open communications to an unexpectedly large number of ad-
dresses within a limited timeframe. This behavior led to Northcutt’s observation
that in the absence of payload—either due to the form of log data, encryption
or simply a high connection failure rate—methods for detecting these attacks
tend to be threshold-based [19]. That is, they raise alarms after identifying some
phenomenon that exceeds a threshold for normal behavior.

Historically, such IDS have been evaluated purely as alarms. Lippmann et
al. [16] established the standard for IDS evaluation in their 1998 work on com-
paring IDS data. To compare intrusion detectors, they used ROC curves to
compare false positive and false negative rates among detectors. Since then, the
state of the practice for IDS evaluation and comparison has been to compare
IDS’ ROC curves [9].

The use of ROC curves for IDS evaluation has been criticized on several
grounds. For our purposes, the most relevant is the base rate fallacy described
by Axelsson [2]. Axelsson observes that a low relative false positive rate can result
in a high number of actual false positives when a test is frequently exercised. For
NIDS, where the test frequency may be thousands or tens of thousands of per
day, a false positive rate as low as 1% may still result in hundreds of alarms.

In this paper, we introduce an alternative method of evaluating IDS that
focuses on an IDS’ capacity to frustrate an attacker’s goals. In order to do
so, we develop a model for evaluating IDS that captures the attacker’s payoff
over an observable attack space. The observable attack space represents a set of
attacks an attacker can conduct as observed by a particular logging system. The
role of logging in the observable attack space is critical; for example, NetFlow,
the logging system used in this paper, does not record payload. As such, for
this paper, we define an observable attack space that classifies attacks by the
attacker’s aggressiveness (the number of addresses to which they communicate
in a sample period) and their success (the probability that a communication
opened to an address actually contacts something).

To evaluate the payoff, we construct a detection surface, which is the prob-
ability of detection over the observable attack space, and then apply a payoff
function to this detection surface. The payoff function is a function representing
the rate at which an attacker achieves the strategic goal of that attack, which is
either occupying hosts (in a harvesting attack) or scouting network composition
(in a scanning attack).

We use the payoff function to evaluate the impact of various IDS on attacker
strategy. We can model payoff as a function of the number of viable hosts in a
network that an attacking bot communicates with — the more hosts a bot can
contact without being detected, the higher his payoff. We show in this paper that
several methods which are good at raising alarms primarily identify low-payoff
attacks; with these detectors, an attacker can achieve a high payoff simply by
limiting his behavior.

By combining detection surfaces with a payoff function, we are able to com-
pare IDS with greater insight about their relative strengths and weaknesses. In
particular, we are able to focus on the relationship between detection capacity

On the Limits of Payload-Oblivious Network Attack Detection 253

and attacker payoff. Instead of asking what kind of false positive rate we get for a
specific true positive rate, we are able to relate false positive rates to the attacker
goals. By doing so, we are able to determine how high a false positive rate we
must tolerate in order to prevent an attacker from, say, substantially compro-
mising a network via a harvesting attack. Our work therefore extends the ROC
framework into a model of the attacker’s own goals. By doing so, we can reframe
questions of IDS designs by evaluating their impact on attacker behavior, on the
grounds that a rational attacker will attempt to maximize payoff.

Using this approach, we compare the efficacy of five different detection tech-
niques: client degree (i.e., number of addresses contacted); protocol graph size
and protocol graph largest component size [6]; server address entropy [15]; and
Threshold Random Walk [11]. We train these systems using traffic traces from a
large (larger than /8) network. Using this data, we demonstrate the configura-
tions of aggressiveness and success rate with which an attack will go undetected
by any of these techniques. Furthermore, we show that when configured to be
sufficiently sensitive to counter attackers’ goals, these anomaly detection systems
will result in more than ten false alarms per hour, even when alarms are limited
to occur only once per 30-second interval.

To summarize, the contributions of this paper are the following. First, we
introduce a new methodology for evaluating NIDS that do not utilize payload.
Second, we apply this methodology to evaluate several attack detection methods
previously proposed in the literature, using data from a very large network. And
third, we demonstrate via this evaluation the limits that these techniques face
in their ability to prevent attackers from reaching harvesting or scanning goals.

The remainder of this paper is structured as follows. §2 is a review of relevant
work in IDS evaluation and anomaly detection. §3 describes the IDS that we
evaluate in this paper, and how we configure them for analysis. §4 describes
the observable attack space and detection surface. §5 describes the first of our
two attack scenarios, in this case the acquisition of hosts by an attacker with a
hit list. §6 describes the second scenario: reconnaissance by attackers scanning
networks. §7 concludes this work.

2 Previous Work

Researchers have conducted comparative IDS evaluations in both the host-based
and network-based domains. In the host-based domain, Tan and Maxion [25,17]
developed an evaluation methodology for comparing the effectiveness of multiple
host-based IDS. Of particular importance in their methodology is the role of the
data that an IDS can actually analyze, an idea further extended in Killourhy et
al.’s work on a defense-centric taxonomy [13]. The methods of Tan and Maxion
and of Killourhy et al. informed our experimental methodology and the concept
of an observable attack space. However, their approach is focused on host-based
IDS and they consequently work with a richer dataset then we believe feasible
for NIDS.

254 M.P. Collins and M.K. Reiter

A general approach to evaluating IDS was proposed by Cárdenas et al. [4], who
developed a general cost-based model for evaluating IDS based on the work of
Gaffney and Ulvila [8] and Stolfo et al. [24]. However, these approaches all model
cost from a defender-centric viewpoint — the defensive mechanism is assumed
to have no impact on the attacker. In contrast, our models treat the attacker as
economically rational, meaning that the attacker attempts to maximize payoff
within the rules given by the model.

The general problem of NIDS evaluation was first systematically studied by
Lippmann et al. [16]. Lippmann’s comparison first used ROC curves to measure
the comparative effectiveness of IDS. The ROC-based approach has been cri-
tiqued on multiple grounds [18,9,2]. Our evaluation model is derived from these
critiques, specifically Axelsson’s [2] observations on the base-rate fallacy. Our
work uses a ROC-based approach (specifically, comparing Type I and Type II
errors) as a starting point to convert the relative error rates into payoffs.

3 IDS Construction and Training

In the context of this work, an IDS is an anomaly detection system that compares
the current state of a network against a model of that network’s state developed
from historical data. In this section, we describe our candidate IDS, and our
method for training and configuring them. This section is divided as follows: §3.1
describes the raw data, §3.2 describes the types of IDS used, and §3.3 describes
the detection thresholds used for our IDS.

3.1 Raw Data

Every IDS in this paper is trained using a common data source over a common
period of time. The source data used in this paper consists of unsampled NetFlow
records2 generated by internal routers in a large (in excess of 16 million distinct
IP address) network. For training and evaluation, we use SSH traffic.

NetFlow records approximate TCP sessions by grouping packets into flows,
sequences of identically addressed packets that occur within a timeout of each
other [5]. NetFlow records contain size and timing information, but no payload.
For the purposes of this paper, we treat NetFlow records as tuples of the form
(clntip, srvip, succ, stime).

The elements of this tuple are derived from the fields available in CISCO
NetFlow. The clntip, srvip, succ and stime fields refer, respectively, to the client
address, server address, whether a session was successful, and the start time for
the session. Since SSH is TCP based, we rely on the port numbers recorded in
the original flow record both for protocol identification and classifying the role
a particular address played in the flow. Any flow which is sent to or from TCP
port 22 is labeled an SSH flow, srvip is the address corresponding to that port
2 CISCO Systems, “CISCO IOS NetFlow Datasheet”, http://www.cisco.com/en/US/
products/ps6601/products data sheet0900aecd80173f71.html, last fetched Octo-
ber 8th, 2007.

http://www.cisco.com/en/US/
products/ps6601/products_data_sheet0900aecd80173f71.html

On the Limits of Payload-Oblivious Network Attack Detection 255

and clntip the other address3. stime, the start time, is derived directly from the
corresponding value in the flow record, and is the time at which the recording
router observed the flow’s earliest packet.

The succ element is a binary-valued descriptor of whether the recorded flow
describes a legitimate TCP session. succ is 0 when the flow describes a TCP
communication that was not an actual session (e.g., the target communicated
with a nonexistent host), 1 when the flow describes a real exchange between a
client and a server.

succ is an inferred property in the sense that it can be truly determined only
by the receiving host — a sufficiently perverse attacker could generate one side
of a session without the others’ involvement. In situ, we can approximate succ
using other flow properties, such as the number of packets in the flow or TCP
flag combinations. In our work on IDS training [7], we approximate succ by
setting it to 1 when a flow has 4 or more packets, on the grounds that a TCP
session has at least 3 packets of overhead. Other methods for calculating succ
include looking for indicators such as total payload, the presence of ACK flags,
or aggregate measures such as Binkley and Singh’s TCP work weight [3].

In our simulations we generate the succ values as part of the process of gen-
erating attack flows. During the simulations, attackers choose their targets from
a hit list generated from the training data; the attack’s success rate determines
how many addresses come from this hit list, and how many addresses are cho-
sen from a pool of dark addresses. For flows communicating with the hit list,
succ = 1, and for flows communicating with the pool of dark addresses, succ = 0.

IDS properties are generated using 30 second (s) samples of traffic data. We
refer to a distinct sample as a log file, Λ, consisting of all the flows λ1 . . . λl whose
stime values occur in the same 30s period. The use of 30s periods comes from
our previous work on protocol graphs [6].

3.2 IDS State Variables

In the context of this paper, an IDS is a threshold-based alarm that triggers
if a value derived from a log file Λ exceeds a threshold derived from a set of
training data. Each IDS in this paper is based around a single state variable
which, when evaluated against a log file produces a scalar state value. For this
paper, we evaluate the state of a log file using five distinct state variables: g, c,
h, d and r. Each state variable is used by one IDS; we will refer to each IDS by
its state variable (e.g., “g is an IDS”).

g(Λ) and c(Λ) are, respectively, the total graph size and the largest component
size of a protocol graph constructed from Λ. A protocol graph, described in our
previous work on hit-list detection, is an undirected graph constructed from a log
of traffic for a single protocol over a limited observation period [6]. In a protocol
graph, the nodes represent hosts communicating using that protocol, and the
links represent that a communication between these two hosts happened during

3 We constrain the flows used in this paper to flows which used an ephemeral port
between 1024 and 5000.

256 M.P. Collins and M.K. Reiter

that time. In a protocol graph, the graph size is equivalent to the total number
of hosts communicating using a particular protocol. The largest component size
is the size of the largest connected component of the graph.

h(Λ) is the entropy of server addresses in Λ. This metric is derived from work
by Lakhina et al. [15] on mining traffic features. The entropy is defined as:

h(Λ) = −
∑

i∈srvs(Λ)

(
|{λ ∈ Λ|λ.srvip = i}|

|Λ|

)
log2

(
|{λ ∈ Λ|λ.srvip = i}|

|Λ|

)
(1)

where srvs(Λ) =
⋃

λ∈Λ λ.srvip is the set of all server addresses observed in the
log file. During a harvesting attack, an attacker will increase |srvs(Λ)|, which
reduces the probability of any one server being the target of a communication
and therefore increases the entropy.

d(Λ), the maximum degree of Λ, is the number of servers with which the
busiest client in Λ communicated. d(Λ) is arguably the simplest form of scan
detection and consequently has been used by a variety of anomaly detection
systems, notably GrIDS [23] and Bro [20].

r(Λ) is the maximum failed connection run observed in Λ. A failed connection
run is a sequence of flow records λ1 . . . λn where each λ in the run has the same
client address and λi.succ = 0. This method is used by TRW scan detection [11]
to determine if an address is actively scanning. We use the maximum failed
connection run measure to indicate whether TRW would have detected at least
one attack during the sample period.

3.3 IDS Thresholds

In order to calculate detection thresholds for four of the IDS we consider (g,
c, h and d), we first must train the IDS using log files of benign traffic from
the monitored network. However, SSH traffic is prone to constant scanning [1]
which, unless aggressively filtered, will result in artificially high thresholds.

To address the problem of constant clumsy scanning, we use a two-stage
filtering method developed in previous work [7]. This approach is based on our
previous observations that certain graph attributes of major protocols (graph
size and largest component size) can be modeled using a Gaussian distribution
when the traffic logs describing those attributes do not contain attacks [6]. Using
these results, we use a stateless filter that eliminates records where succ = 0.
The resulting log files are then tested using the Shapiro-Wilk normality test [22]
to identify those log files where the observed graph and largest component size
are outside the expected range for a Gaussian distribution.

The initial training data consisted of 7,200 log files for the five business
days between February 11–15, 2008. Source data was chosen exclusively from
1200GMT to 2359GMT for each day, a period corresponding to peak activity
for the network. After filtering, the resulting set consisted of 5,619 log files from
a source set of 7,200.

On the Limits of Payload-Oblivious Network Attack Detection 257

Table 1. Summary of Gaussian state variables in SSH training set

State variable x Range μX ± σX

g 299.27±42.49

c 35.13±21.32

h 6.88±0.35

Applying this filtering technique in order to isolate benign traffic yields a
vector Λ1 . . . Λm of log files, each representing benign traffic in a 30s interval.
State values are calculated for each log file in this vector; we refer to the resulting
vector of state values using the same subscript notation, e.g., r(Λi) = ri. We
refer to the complete vector of values for a vector of log files by the corresponding
capital letter (e.g., G = {g(Λ1) . . . g(Λm)}).

We examined the H and D distributions in the filtered data to see if they could
be modeled via a Gaussian distribution. (Our previous work already established
that G and C are Gaussian for the monitored network [6].) Using the Shapiro-
Wilk statistic (W) [22], we found that H had W = 0.97 and negligible p-value,
and so we treated entropy as Gaussian. D had a Shapiro-Wilk statistic of W =
0.77 with negligible p-value, and consequently was not considered Gaussian.

Table 1 summarizes the Gaussian state variables, i.e., g, c, and h. This table
shows the summary data (left hand column), the mean and standard deviation
(right side) and a sparkline for each data set. The sparkline is a time series plot
of the activity over the training period. We plot the mean and shade an area
one standard deviation from the mean in each sparkline.

For these three state variables, we can use (2) to calculate the detection
threshold. For a given false positive rate, FPR, the corresponding threshold for
a Gaussian IDS x is given by:

θx = μX +
√

2erf−1(FPR)σX (2)

where erf is the error function [14], μX is the arithmetic mean of the vector of
observations X , and σX is the standard deviation of the same vector.

The detection threshold for d is computed differently since, as shown above, d
is not normally distributed over the sample space. We use d’s maximum observed
value over the benign log files as the detection threshold:

θd = max(D) (3)

The detection threshold for r is prescribed by Jung et al. to be

θr =
β ln β

α + (1 − β) ln 1−β
1−α

t1 ln t1
t0

+ (1 − t1) ln 1−t1
1−t0

(4)

258 M.P. Collins and M.K. Reiter

Here, α and β are user-configured thresholds for the maximum false positive rate
(α) and the minimum true positive rate (β). For this work, we set β = 1 − α,
and set α to our acceptable FPR (see below). t0 and t1 are, respectively, the
probabilities that a normal user will successfully communicate with a target, and
the probability that a randomly scanning attacker will successfully communicate
with a target. Per these definitions, t0 and t1 depend on a variety of factors
including the density of targets in the network, the type of protocol involved,
and dynamic addressing, some of which are difficult to accurately evaluate for
the monitored network due to our limited view of it. However, Jung’s simulation
analysis of TRW [10] suggest that choices of t0 and t1 have relatively little impact
on performance. As such, we generally adopt Jung’s original values of t0 = 0.8
and t1 = 0.2 and will examine the impact of alternative θr values in §5.2.

Recall that based on our previous work on graph-based anomaly detection [6],
we monitor traffic over 30s periods. This 30s period governs the effective response
time of the entire intrusion detection and response mechanism — an IDS sends
out at most one alert in a period, and defenders respond to changes at that time.
If we constrain the aggregate false positives for all of the detectors to one false
alarm per eight hours (i.e., the duration of a typical network analyst’s shift), this
yields a combined rate of 0.1% for the five IDS together. We solve for individual
false positive rates FPR using

0.001 = 1 − (1 − FPR)5 (5)

Plugging this value of FPR into (2) yields detection thresholds θg = 447, θc =
110, and θh = 8.105, and setting α = FPR in (4) yields θr = 6. We also use
the value θd = 150, computed directly from (3). These are the thresholds we
use in our evaluations in subsequent sections. Equation 5 treats each IDS as a
statistically independent. While not true, this simplifies our exploratory analysis.

4 Observable Attack Spaces and Detection Probability

In §3, we developed and configured a combined IDS based around five different
state variables: graph size g, largest component size c, server address entropy h,
maximum client degree d and maximum failed connection run r. In doing so, we
specifically configured these systems to yield a low false positive rate, resulting
in one false positive per eight-hours as predicted by our training data. Now that
we have developed this hybrid IDS, we can evaluate its efficacy for deterring
attackers.

In order to do this, we develop a method for describing attacker utility which
we call the observable attack space (OAS). An observable attack space describes
the range of attacks that an attacker can conduct as observed by a particular
logging mechanism. In this section, we develop an observable attack space com-
mon to our logging system (NetFlow) and our five candidate IDS. Using this
approach, we model the aggregate detection surface of the OAS and use this to
evaluate both our combined IDS and the constituent IDS individually.

On the Limits of Payload-Oblivious Network Attack Detection 259

This section is structured as follows. §4.1 describes OAS, IDS and the es-
timation of detection surfaces. §4.2 then compares the effectiveness of our five
detection methods both in aggregate and as individual detection schemes.

4.1 OAS and Detection Surface

The type of log data that an IDS uses strongly impacts the types of attacks
that an IDS can detect. An example of this is the impact of choosing NetFlow.
NetFlow is a compact representation of traffic that is viable to collect on large
networks, but since it lacks payload, signature-matching techniques are not possi-
ble with this log format. An observable attack space is therefore a parameterized
representation of all possible forms of a particular attack, as observable using
a particular form of log data. For this work, the observable attack space has
two attributes: aggressiveness (a) and success (s). The aggressiveness is a nat-
ural number describing the number of distinct addresses with which the attacker
communicates in the observation period. The success of an attack is the fraction
of these communications that were successful, and is within the range [0, 1].

When conducting simulations, we limit a to the range of (0, θd) because we
treat the d IDS as deterministic — it will trigger if and only if a ≥ θd. In doing so,
we ignore the possibility that during an attack, a benign host contacts more than
θd addresses, thus “accidentally” causing a true detection even though a < θd.
This treatment also presumes that the attack is launched from a bot that is not
also contributing benign traffic at the same time, i.e., a < θd implies that the bot
host does, in fact, contact fewer than θd addresses in a 30s interval. The other
IDS’ chances of detecting attacks are not so directly dependent on an attack’s
characteristics within the OAS.

Consider a particular IDS x ∈ {g, c, h, r}. Given an arbitrary log file of control
data Λctl that we are confident does not contain an attack, Px

det(a, s) is the
probability that the IDS x raises an alarm for the log file resulting from Λctl

merged with an attack Λatk with aggressiveness a and success s. That is,

Px
det(a, s) = P

[
x(Λatk ∪ Λctl) ≥ θx

]
(6)

where the probability is taken with respect to the selection of Λctl and the gen-
eration of Λatk with aggressiveness a and success rate s. For a particular IDS x,
the detection surface of x is the surface of values Px

det(a, s) for a ∈ (0, θd) and
s ∈ [0, 1].

More specifically, to estimate the probability of detection and the corre-
sponding detection surface, we evaluate the distribution of state variables for
normal behavior merged with randomly generated attacks meeting the aggres-
siveness and success requirements specified by a and s. For this paper, we
limit our simulations to a ∈ {10, 20, 30, 40, . . . , 140} (recall θd = 150) and
s ∈ {0.1, 0.2, 0.3, . . . , 1.0}. At each point, we conduct 100 simulations, each us-
ing one of fifty randomly selected 30s periods from the week of February 18–22
(the week following that used for training) for Λctl. Λatk is randomly generated for

260 M.P. Collins and M.K. Reiter

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

 0
 20

 40
 60

 80
 100

 120
 140

 10
 20

 30
 40

 50
 60

 70
 80

 90

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Detection

AggressivenessSuccess

Detection

Fig. 1. Detection surface (Pall
det(a, s), as a percentage) for combined IDS

each simulation. Λatk contains a unique records, where each record has the same
client address, and a different server address. The composition of the server
addresses is a function of s: a · s addresses are chosen from a hit list of internal
SSH servers identified in the training data4 in order to approximate hit-list
attacks; the remainder are sent to addresses with no listening server. We then
merge Λatk with a randomly selected control log Λctl and then calculate the state
variables.

Four of the IDS examined by this paper (g, c, h, and d) are unaffected by
the order of log records within the monitored 30s period. The fifth, r, is order-
sensitive, however, in that TRW triggers an alert if any host is observed making
more than θr failed connections in a row. This order sensitivity is a weakness,
since an attacker can interleave scanning with connections to known hosts in
order to avoid a failed connection run greater than θr [12]. To address this
particular exploit, we randomly permute the records originating in each 30s
interval. After this permutation, r is calculated for each host in the network.

Figure 1 plots the detection surface for all the IDS combined. As this figure
shows, the combined detection mechanism generally increases proportionally to
the aggressiveness of the attack and inversely relative to the success of the attack.
Furthermore, the detection mechanisms tend to vary more as a function of the
aggressiveness than due to the success rate.

The effectiveness of the aggregate IDS may be considered low, in the sense that
an attacker with a relatively small hit list (a = 40, s = 0.5) can communicate with
the network with little fear of detection. However, we should note that the attacks
represented by this OAS are the most subtle space of attacks available. Our
own experience indicates that the majority of attacks are orders of magnitude
more aggressive than these hypothetical SSH scans, at which point any IDS will
identify them. This latter point is particularly critical. As Figure 1 shows, once
a ≥ 100, the combined IDS will raise an alarm.

4 This hit list is composed of all internal addresses in the training data which had one
flow originating from them on port 22 and with a payload of greater than 1kB.

On the Limits of Payload-Oblivious Network Attack Detection 261

4.2 Detection Surface Comparison

In addition to the detection surface for the aggregate IDS, we have also calculated
the detection surfaces for each component IDS in this system. We can use these
results to evaluate the comparative effectiveness of each IDS.

Figure 2 plots detection surfaces for each IDS x ∈ {g, c, h, r} as contour plots.
A contour plot maps a 3-dimensional surface into a 2-dimensional representation
using contour lines. Each contour line represents the axis coordinates where the
surface takes on its labeled value.

These plots show that the most successful individual IDS are c and r : these
IDS are the only ones to have significant (≥ 10%) detection rates over the
majority of the OAS. In contrast, the h IDS has a very low detection rate,
less than 6% over the entire OAS. Of particular interest with c and r is their
relative disconnectedness to each other: r’s detection rate is dependent on s and
less dependent on a. Conversely, c is largely independent of s, while a plays
larger role in detection.

These IDS are calibrated to have an effective false positive rate of zero. As a
result, they are largely insensitive to anomalies and have a relatively low detec-
tion rate. In addition, as noted above, the attacks represented here are extremely
subtle. More aggressive attackers would be identified and eliminated regardless
of the detection strategy used — by the time an attacker communicates with
θd = 150 addresses, the d IDS will raise an alarm, making other approaches
effectively moot.

This phenomenon is partly observable in our models in Table 1. Recall that,
for example, the model of graph size g, was 299 ± 42.47 hosts. If g(Λ) = 299
for some log file Λ, then an attacker will not trigger an anomaly until he has
communicated with at least 149 hosts, at which point he is close to triggering d
as well as g.

5 Modeling Acquisition

In §4.2 we examined the efficacy of the detection mechanisms purely as detectors:
for a fixed false positive rate, we calculated the effective true positive rate. In this
section, we use the detection surface in Figure 1 to examine the impact of IDS on
acquisition attacks. We evaluate the efficacy of the detection surface by building a
mathematical model for attacker payoff during an acquisition attack. Applying
this model to the surface, we can determine how many hosts an attacker can
expect to take over, and from these results determine how effective an IDS has
to be in order to keep attackers from taking over hosts.

This section is divided as follows: §5.1 describes our model for acquisition
attacks. §5.2 compares IDS efficiency using our payoff function. §5.3 considers the
problem of IDS evaluation from a different perspective — instead of calculating
efficiency in terms of true and false positives, we determine the minimum false
positive rate required to counter an attacker.

262 M.P. Collins and M.K. Reiter

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

5% 10% 15%

(a) Total graph size g

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

20% 30% 40% 50% 60% 70%

(b) Largest component size c

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

3%

3.5%

4%

4.5%

(c) Server entropy h

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
pe

rc
en

ta
ge

)

Aggressiveness

60%

50%

40%

30%

20%

10%

(d) Maximum failed connection run r

Fig. 2. Detection surfaces (Px
det(a, s), as a percentage) for individual IDS

5.1 Acquisition Payoff Model

We define an acquisition attack as a game between two parties who are com-
peting for ownership of a single network. The two parties in the game are the
attacker, who attempts to take over hosts on the network, and the defender, who
attempts to prevent takeover of hosts on the network. In this game, the attacker
uses a single bot to perform a series of attempts, during each of which the bot
communicates with multiple hosts within the network using a hit list acquired
previous to the attack.

In each attempt, the attacker communicates with some number of addresses
(specified by the attacker’s a), each of which has s chance of succeeding. For the
purposes of the simulations, a successful attack is one that communicates with a
real host, and a failed attack is one that communicates with a nonexistent host.
That is, we assume that if an attacker talks with a host, the attacker takes the
host over. The payoff of an attempt, Hacq, is the expected number of hosts with
which the attacker communicates during an attempt.

The goal of the defender is to minimize Hacq, and the goal of the attacker
to maximize the same. To do so, the defender deploys an IDS x, and so the
probability of detecting a particular attempt with aggressiveness a and success
rate s is Px

det(a, s). We assume that once the defender successfully identifies an

On the Limits of Payload-Oblivious Network Attack Detection 263

 0

 50

 100

 150

 200

 250

 0
 20

 40
 60

 80
 100

 120
 140 10

 20
 30

 40
 50

 60
 70

 80
 90

 0

 50

 100

 150

 200

 250

Payoff

Aggressiveness

Success

Payoff

Fig. 3. Payoff Hall
acq(a, s, kall

max(a, s)) for acquisition attacks for combined IDS

attacker, it will block the attacker’s bot, ending all further acquisition attempts
by that bot. Furthermore, the defender will then recover all of the hosts that the
bot communicated with during the game.

We note that this model assumes that the attacker and defender are perfect.
That is, the probability that an attacker takes over a host that it contacts, and
the probability that a defender correctly identifies an occupied host after being
notified of an attack, are both one. The model can be modified by incorporating
additional probabilities for measuring the attacker’s takeover success per host
contact and the defender’s vigilance.

Let owned be a random variable indicating the number of hosts taken over,
and let alarmed be the event that the bot is detected. Below, we assume that
the probability of detection in each attempt is independent. If such is the case,
then we can derive the payoff for an attack comprised of k attempts and for an
IDS x as:

Hx
acq(a, s, k) = E [owned]

= P [alarmed] E [owned | alarmed] + P [¬alarmed] E [owned | ¬alarmed]
= (1 − Px

det(a, s))k(ask) (7)

The last step follows by taking E [owned | alarmed] = 0, since we presume that if
the defender detects an attacker during an attempt, then the defender recovers all
of the hosts the attacker has communicated with using that particular bot. Note
that the attacker maximizes his payoff by maximizing k subject to Hacq(a, s, k)−
Hacq(a, s, k − 1) > 0 or, in other words,

k <
1 − Px

det(a, s)
Px

det(a, s)
(8)

We denote this value of k by kx
max(a, s).

Figure 3 plots the payoff over the observed attack space using (7) with the max-
imum k satisfying (8). As this figure shows, aggressive attacks have a minimal

264 M.P. Collins and M.K. Reiter

payoff, a result that can be expected based on Figure 1. Above approximately a ≥
80, the attacker is consistently identified and stopped regardless of their success
rate.

This behavior is the result of the interaction of two detectors: c and r. As s
increases, the probability of the attacker combining previously separate compo-
nents of the protocol graph increases, increasing the likelihood of detection by
the c IDS. As the attacker’s success rate decreases, he is more likely to generate
a sufficiently long failed connection run to trigger the r detector. The other de-
tectors will identify attackers, however their effectiveness is limited for attacks
that are this subtle — an attacker who does disrupt g or h will typically already
have disrupted d.

5.2 Calculating IDS Efficiency

We can use (7) to also calculate a comparative efficiency metric for IDS. The
volume under the surface specified by (7) is the ability of the attacker to take over
hosts in the presence of a particular IDS. The efficiency of an IDS x is therefore
the indicator of how much x reduces an attacker’s payoff. We can express IDS
efficiency as the ratio between the number of hosts an attacker expects to take
over in the presence of an IDS x and the number of hosts the attacker can take
over (in the same number of attempts) in that IDS’ absence.

Ex
acq = 1 −

∑
a∈(0,θd)

∑
s∈(0,1] Hx

acq(a, s, kx
max(a, s))

∑
a∈(0,θd)

∑
s∈(0,1] askx

max(a, s)
(9)

The subtraction in (9) is included simply to provide an intuitive progression
for efficiency: if E is greater for IDS A than IDS B, then A is a better IDS than
B. Based on (9), we can calculate an efficiency of 0.14 for g, 0.0099 for h, 0.73
for c and 0.22 for r. The effectiveness of the combined detector is 0.80.

Using Equation 9 we can examine the impact of alternative values for θr.
Recall from §3.3 that θr is based on models of normal behavior and attacker
behavior that can vary as a function of the protocol, the density of the ob-
served network and other behaviors. Without revisiting the model, we can sim-
ply change the values of θr and examine how that changes the efficiency. In this
case, we find that for θr = 3, 4, and 5, Ex

acq = 0.50, 0.37, and 0.29, respectively.
The most interesting result from these calculations is the relatively low efficiency
of r as an IDS for acquisition attacks, despite its relatively good true positive
rates (Figure 2). Because the detection mechanism relies on attacker failures, it
is better at detecting attacks which have a relatively low s. IDS r is therefore
very good at detecting attacks with low payoff.

We expect that the comparative efficiency of these IDS will differ from one
protocol to the next. g and h are affected by the aggregate traffic for one protocol,
e.g., the total number of hosts using a particular protocol. Conversely, r relies
exclusively on per-host behavior. Consequently, using protocols with more clients
or servers (such as HTTP) should result in less g and h efficiency, while r should
have the same efficiency regardless of protocol.

On the Limits of Payload-Oblivious Network Attack Detection 265

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

32%

62%

(a) Total graph size g

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

5%

32%

(b) Largest component size c

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

1.2%

5%

13%

(c) Server entropy h

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

3%

4%

(d) Maximum failed connection run r

Fig. 4. False positive rates required to limit Hx
acq(a, s, k) = 1

5.3 Determining a Minimum False Positive Rate

As Figure 3 implies, even with all the detection mechanisms operating, attackers
can still acquire a high rate of return with a sufficiently subtle hit-list attack.
In this section, we will now address the question of detection from a different
perspective: how high a false positive rate do we have to tolerate in order to
prevent the attacker from seriously compromising the monitored network?

To do so, we invert (7) so that instead of calculating the attacker’s payoff as a
function of detectability, we calculate the probability of detection as a function
of payoff. Solving for Px

det(a, s) in (7) yields

Px
det(a, s) = 1 − k

√
Hx

acq(a, s, k)
ask

(10)

Suppose the defender wishes to minimize Px
det(a, s) (and hence also the false

alarm rate) while restricting Hx
acq(a, s, k) ≤ 1, and so the attacker wishes to

maximize Px
det(a, s) in order to achieve Hx

acq(a, s, k) = 1. The attacker does so
by choosing k so as to minimize (ask)−1/k, for any a and s.

266 M.P. Collins and M.K. Reiter

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140

S
uc

ce
ss

 (
P

er
ce

nt
ag

e)

Aggressiveness

Hacq = 10

Hacq = 5

Hacq = 15

Fig. 5. Values of a and s for which Hc
acq(a, s, k)

can be limited to at most the specified value,
using a threshold θc = μC + 3.5σC

Using this strategy, we calculate
the detection probability required
to identify and stop attackers at
points within the OAS. To calcu-
late the resulting detection thresh-
olds for each IDS, we use our sim-
ulated attacks with parameters a
and s to calculate the threshold
needed to filter off Px

det(a, s) of the
attacks when overlaid on our train-
ing data.

The results of these runs are
given in Figure 4. These figures are
contour plots over the OAS as be-
fore. However, the contours for the
figure are the false positive rates
that would result from this analy-
sis. For the g, c and h detectors, these values are calculated using (2). For r, this
value is calculated by using (4).

As Figure 4 indicates, anomaly detection systems that are capable of defending
against subtle attacks will require extremely high false positive rates. Recall that
our measurement system conducts a test every 30s; for every 1% false positive
rate we accept, we pay 10 alerts per eight-hour shift. As such, this figure indicates
that the false positive rates for building systems that can limit the attacker to
Hx

acq(a, s, k) ≤ 1 are much higher than we can consider accepting.
One way to avoid such high false positive rates would be to not place such

a stringent limit of Hx
acq(a, s, k) ≤ 1. For example, if the defender insists on a

near-zero false positive rate, we can determine if there is a higher threshold for
the payoff that can accommodate this rate, such as Hx

acq(a, s, k) ≤ 5. Figure 5
shows this for the c IDS, for Hc

acq(a, s, k) ∈ {5, 10, 15}. Specifically, each contour
line shows the values of a and s for which Hc

acq(a, s, k) can be limited to at most
the specified value, using a threshold θc = μC + 3.5σC , which is large enough to
ensure a false positive rate very close to zero. As this figure shows, the defender
can effectively impose an upper limit on the attacker’s payoff, but unfortunately
this limit must be rather large (Hc

acq(a, s, k) = 15) in order to cover the majority
of the attack space.

From Figures 4 and 5, we conclude that in order for an anomaly detection
system to be a viable deterrent to host compromise, it must either use finer
resolution data than NetFlow, develop mechanisms for coping with a high false
positive rate, or permit higher attacker payoff than would be ideal.

6 Modeling Reconnaissance

In this section, we develop an alternative attack scenario, reconnaissance, where
the attacker scouts out the network with his bots. In each attack, he communicates

On the Limits of Payload-Oblivious Network Attack Detection 267

with addresses to simply determine the presence of hosts at certain addresses.
The reconnaissance scenario differs from the acquisition scenario by the attacker’s
knowledge and goals. Specifically, the attacker’s goal is to contact as many ad-
dresses as possible within a short period. To do so, the attacker uses a chaff hit list
consisting of hosts that the attacker already knows about, and a target space of
addresses to probe. The chaff hit list reduces the attacker’s probability of detec-
tion by lowering his failure rate. However, it also reduces the attacker’s payoff by
requiring him to “sacrifice” a certain number of targets every round.

Let alarmed = i be the event that the bot is detected at the end of attempt
i (and before attempt i + 1); as before, an attempt is comprised of contacting
a addresses with success rate of s (in this case, owing to the chaff hit list).
Let scanned denote a random variable indicating the number of scans that one
bot performs successfully (i.e., determines whether the scanned address has a
listening service or not), not counting the “chaff” that it introduces to avoid
detection. Note that we suppose that the number of listening services the bot
finds is sufficiently small that it does not relieve the bot from introducing a
fraction s of chaff scans. We also presume that the probability the bot is detected
in each attempt is independent.

Hx
rec(a, s) = E [scanned]

=
∞∑

i=1

P [alarmed = i]E [scanned | alarmed = i]

=
∞∑

i=1

(
(1 − Px

det(a, s))i−1Px
det(a, s)

)
(ia(1 − s))

= a(1 − s)
Px

det(a, s)
1 − Px

det(a, s)

∞∑

i=1

i(1 − Px
det(a, s))i

= a(1 − s)
Px

det(a, s)
1 − Px

det(a, s)
1 − Px

det(a, s)
Px

det(a, s)2

= a(1 − s)
1

Px
det(a, s)

(11)

Applying (11) to the detection matrix over our OAS results in the payoff
plot shown in Figure 6. This figure plots the aggregate payoff over the OAS
for reconnaissance. Of particular note with this result is that it demonstrates
that a sufficiently motivated and subtle attacker can scan a network by subtly
exploiting attacks with high s rates. In this case, the attacker can slowly scan the
network for an extended period — the observed peak at the a = 20 segment of
the graph implies that the attacker scans for 25 minutes before being detected.

However, the attacker can achieve just as effective results by aggressively scan-
ning the network. Recall that the effective aggressiveness of the attacker is bound
by θd to less than 150 nodes. In the reconnaissance scenario, the attacker faces

268 M.P. Collins and M.K. Reiter

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

 0
 20

 40
 60

 80
 100

 120
 140 10

 20
 30

 40
 50

 60
 70

 80
 90

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Payoff

Aggressiveness

Success

Payoff

Fig. 6. Payoff Hall
rec(a, s) for reconnaissance attacks for combined IDS

no penalty for scanning at a higher aggressiveness rate, since the defender can
only block an address. Consequently, this plot can continue out to whatever the
practical upper limit for a is, a result which would correspond to the aggressive
scanning we observe right now.

7 Conclusion

In this paper we have developed a new method for evaluating the performance
of IDS based on an observable attack space, specifically the view of a harvesting
or scanning attack that is available in flow logs that lack payload data. Our
approach complements ROC-based analysis by enabling the creation of detection
surfaces — models of an IDS’ ability to detect different attacks. Moreover, we
augment this analysis with a payoff-based metric. By incorporating payoffs, we
are better able to characterize the deterrence offered by an IDS. In particular,
instead of describing the detection of a system in terms of pure false positive
and false negative rates, we are able to use payoff functions to calculate the gain
that an attacker can expect from a certain type of attack. This also enables us
to determine how high a false positive rate we must endure in order to limit the
attacker’s payoff to a target value.

Future work will focus on expanding the OAS approach to address different
scenarios and parameters. First, our previous work on graph-based intrusion
detection [6] considered the possibility of multiple bots being active simulta-
neously, and extending our OAS to account for this is a natural direction of
future work. Second, generalizing from 30-second traffic samples to an approach
considering multiple sample durations may provide additional detection capa-
bility [21]. Third, this work outlines two initial attack scenarios: harvesting and
reconnaissance. However, a variety of other attacks may be considered and eval-
uated. In particular, different scanning strategies (such as topological scanning),
bot command-and-control, and DDoS attacks all merit further investigation and
similar payoff-based evaluation.

On the Limits of Payload-Oblivious Network Attack Detection 269

Several useful and, in some cases, discouraging results fall out of our analy-
sis techniques as applied to SSH traffic observed on a very large network. For
example, in §4.2 our analysis elucidated the complementary capabilities of de-
tection using the size c of the largest component of a protocol graph [6] and
the TRW scan detector r [11]. Consequently, there is good reason to use both
simultaneously. Moreover, we showed that these detectors significantly outper-
form the server address entropy detector h, the graph-size detector g, and the
degree-based detector d, for the stealthy attacks that form our observable attack
space. That said, using our payoff analysis for acquisition attacks, we showed
in §5.2 that r detection is primarily effective at detecting acquisition attacks
with low payoff for the attacker, and so its utility for acquisition attacks is less
compelling. In addition, we showed in §5.3 that to severely limit the attacker’s
acquisitions, the false positive rates that would need to be endured by any of the
detectors we considered would be significant and, for a network of the size we
studied, impractical. We showed how to derive more relaxed payoff limits that
would enable near-zero false positive rates for an IDS.

References

1. Alata, E., Nicomette, V., Kaaniche, M., Dacier, M., Herrb, M.: Lessons learned
from the deployment of a high-interaction honeypot. In: Proceedings of the 2006
European Dependable Computing Conference (2006)

2. Axelsson, S.: The base rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security 3(3), 186–205 (2000)

3. Binkley, J.: An algorithm for anomaly-based botnet detection. In: Proceedings
of the 2006 USENIX Workshop on Steps for Reducing Unwanted Traffic on the
Internet (SRUTI) (2006)

4. Cárdenas, A., Baras, J., Seamon, K.: A framework for evaluation of intrusion de-
tection systems. In: Proceedings of the 2006 IEEE Symposium on Security and
Privacy (2006)

5. Claffy, K., Braun, H., Polyzos, G.: A parameterizable methodology for internet
traffic flow profiling. IEEE Journal on Selected Areas in Communications 13(8),
1481–1494 (1995)

6. Collins, M.P., Reiter, M.: Hit-list worm detection and bot identification in large
networks using protocol graphs. In: Kruegel, C., Lippmann, R., Clark, A. (eds.)
RAID 2007. LNCS, vol. 4637, pp. 276–295. Springer, Heidelberg (2007)

7. Collins, M.P., Reiter, M.K.: Anomaly detection amidst constant anomalies: Train-
ing IDS on constantly attacked data. Technical Report CMU-CYLAB-08-006,
Carnegie Mellon University, CyLab (2008)

8. Gaffney, J., Ulvila, J.: Evaluation of intrusion detectors: A decision theory ap-
proach. In: Proceedings of the 2001 IEEE Symposium on Security and Privacy
(2001)

9. Gates, C., Taylor, C.: Challenging the anomaly detection paradigm, a provocative
discussion. In: Proceedings of the 2006 New Security Paradigms Workshop, pp.
22–29 (2006)

10. Jung, J.: Real-Time Detection of Malicious Network Activity Using Stochastic
Models. PhD thesis, Massachuesetts Institute of Technology (2006)

270 M.P. Collins and M.K. Reiter

11. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection
using sequential hypothesis testing. In: Proceedings of the 2004 IEEE Symposium
on Security and Privacy (2004)

12. Kang, M., Caballero, J., Song, D.: Distributed evasive scan techniques and counter-
measures. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579,
pp. 157–174. Springer, Heidelberg (2007)

13. Killourhy, K., Maxion, R., Tan, K.: A defense-centric taxonomy based on attack
manifestations. In: Proceedings of the 2004 Conference on Dependable Systems
and Networks (DSN) (2004)

14. Kreyszig, E.: Advanced Engineering Mathematics, 9th edn. J. Wiley and Sons,
Chichester (2005)

15. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distribu-
tions. In: Proceedings of the 2005 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM), pp. 217–228
(2005)

16. Lippmann, R., Fried, D., Graf, I., Haines, J., Kendall, K., McClung, D., Weber, D.,
Webster, S., Wyschogrod, D., Cunningham, R., Zissman, M.: Evaluating intrusion
detection systems: The 1998 DARPA off-line intrusion detection evaluation. In:
Proceedings of the DARPA Information Survivability Conference and Exposition
(2000)

17. Maxion, R., Tan, K.: Benchmarking anomaly-based detection systems. In: Proceed-
ings of the 2000 Conference on Dependable Systems and Networks (DSN) (2000)

18. McHugh, J.: Testing intrusion detection systems: A critique of the 1998 and 1998
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory. ACM Transactions on Information and Systems Security 3(4), 262–294 (2000)

19. Northcutt, S.: Network Intrusion Detection: An Analyst’s Handbook. New Riders
(1999)

20. Paxson, V.: Bro: A system for detection network intruders in real time. In: Pro-
ceedings of the 2008 Usenix Security Symposium (1998)

21. Sekar, V., Xie, Y., Reiter, M.K., Zhang, H.: A multi-resolution approach for worm
detection and containment. In: Proceedings of the 36th International Conference
on Dependable Systems and Networks, June 2006, pp. 189–198 (2006)

22. Shapiro, S., Wilk, M.: An analysis of variance test for normality (complete sam-
ples). Biometrika 52(3–4), 591–611 (1965)

23. Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J.,
Levitt, K., Wee, C., Yip, R., Zerkle, D.: GrIDS – A graph-based intrusion detec-
tion system for large networks. In: Proceedings of the 19th National Information
Systems Security Conference, pp. 361–370 (1996)

24. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based modeling for
fraud and intrusion detection: Results from the JAM project. In: Proceedings of
the 2000 DARPA Information Survivability Conference and Exposition (2000)

25. Tan, K., Maxion, R.: The effects of algorithmic diversity on anomaly detector
performance. In: Proceedings of the 2005 Conference on Dependable Systems and
Networks (DSN) (2005)

Determining Placement of Intrusion Detectors

for a Distributed Application
through Bayesian Network Modeling

Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon

School of Electrical and Computer Engineering, Purdue University
465 Northwestern Avenue, West Lafayette, IN 47907 USA

{gmodeloh,sbagchi,lebanon}@purdue.edu

Abstract. To secure today’s computer systems, it is critical to have dif-
ferent intrusion detection sensors embedded in them. The complexity of
distributed computer systems makes it difficult to determine the appro-
priate configuration of these detectors, i.e., their choice and placement.
In this paper, we describe a method to evaluate the effect of the detector
configuration on the accuracy and precision of determining security goals
in the system. For this, we develop a Bayesian network model for the
distributed system, from an attack graph representation of multi-stage
attacks in the system. We use Bayesian inference to solve the problem of
determining the likelihood that an attack goal has been achieved, given
a certain set of detector alerts. We quantify the overall detection perfor-
mance in the system for different detector settings, namely, choice and
placement of the detectors, their quality, and levels of uncertainty of
adversarial behavior. These observations lead us to a greedy algorithm
for determining the optimal detector settings in a large-scale distributed
system. We present the results of experiments on Bayesian networks rep-
resenting two real distributed systems and real attacks on them.

Keywords: Intrusion detection, detector placement, Bayesian networks,
attack graph.

1 Introduction

It is critical to provide intrusion detection to secure today’s distributed com-
puter systems. The overall intrusion detection strategy involves placing multiple
detectors at different points of the system, at network ingress or combination
points, specific hosts executing parts of the distributed system, or embedded in
specific applications that form part of the distributed system. At the current
time, the placement of the detectors and the choice of the detectors are more an
art than a science, relying on expert knowledge of the system administrator.

The impact of the choice is significant on the accuracy and precision of the
overall detection function in the system. The detectors are of different qualities,
in terms of their false positive (FP) and false negative (FN) rates, some may
have overlapping functionalities, and there may be many possible positions for

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 271–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

272 G. Modelo-Howard, S. Bagchi, and G. Lebanon

deploying a detector. Therefore the entire space of exploration is large and yet
not much exists today to serve as a scientific basis for the choices. This paper is
a step in that direction.

In the choice of the number of detectors, more is not always better. There
are several reasons why an extreme design choice of a detector at every possible
network point, host, and application may not be ideal. First, there is the eco-
nomic cost of acquiring, configuring, and maintaining the detectors. Detectors
are well-known to need tuning to achieve their best performance and to meet
the targeted needs of the application (specifically in terms of the false positive-
false negative performance balance). Second, a large number of detectors would
mean a large number of alert streams under attack as well as benign conditions.
These could overwhelm the manual or automated process in place to respond
to intrusion alerts. Third, detectors impose a performance penalty on the dis-
tributed system that they are meant to protect. The penalty arises because the
detectors typically share the computational cycles and the bandwidth along with
the application. Fourth, a system owner may have specific security goals, e.g.,
detecting a security goal may be very important and requires high sensitivity,
while another may need to be done with less tolerance for false positives.

The problem that we address in this paper is, given the security goals in a
system and a model for the way multi-stage attacks can spread in the system,
how can we automatically and based on scientific principles, select the right set
of detectors and their placements. Right is determined by an application-specific
requirement on the true positive (TP) - true negative (TN) rate of detection in
the system. We explore the space of the configuration of the individual detectors,
their placement on the different hosts or network points, and their number.

Our solution approach starts with attack graphs, which are a popular repre-
sentation for multi-stage attacks [9]. Attack graphs are a graphical representation
of the different ways multi-stage attacks can be launched against system. The
nodes depict successful intermediate attack goals with the end nodes represent-
ing the ultimate goal of an attack. The edges represent the relation that one
attack goal is a stepping stone to another goal and will thus have to be achieved
before the other. The nodes can be represented at different levels of abstraction,
thus the attack graph representation can bypass the criticism that detailed at-
tack methods and steps will need to be known a priori to be represented (which
is almost never the case for reasonably complex systems). Research in the area
of attack graphs has included automation techniques to generate these graphs
[11], [25], to analyze them [14], [21], and to reason about the completeness of
these graphs [14].

We model the probabilistic relation between attack steps and the detectors
using the statistical Bayesian network formalism. Bayesian network is particu-
larly appealing in this setting since it enables computationally efficient inference
for the unobserved nodes—the attack goals—based on the observed nodes—the
detector alerts. The important question that Bayesian inference can answer for
us is, given a set of detector alerts, what is the likelihood that an attack goal
has been achieved. Further the Bayesian network can be relatively easily created

Determining Placement of Intrusion Detectors 273

from an attack graph structure for the system, which we assume is given by
existing methods.

We design an algorithm to systematically perform Bayesian inference and de-
termine the accuracy and precision for determining that attack goals have been
achieved. The algorithm then chooses the number, placement, and choice of de-
tectors that gives the highest value of an application-specific utility function. We
apply our technique to two specific systems—a distributed e-commerce system
and a Voice-over-IP (VoIP) system and demonstrate the optimal choice under
different conditions. The conditions we explore are different qualities of detec-
tors, different level of knowledge of attack paths, and different threshold settings
by the system administrator for determining if an attack goal is reached. Our
exploration also shows that the value of a detector for determining an attack
step degrades exponentially with distance from the site of the attack.

The rest of this document is organized as follows. Section 2 introduces the
attack graphs model and provides a brief presentation of inference in Bayesian
networks. Section 3 describes the model and algorithm used to determine an
appropriate location for detectors. Section 4 provides a description of the sys-
tems used in our experiments. Section 5 presents a complete description of the
experiments along with their motivations to help determine the location of the
intrusion detectors. Section 6 presents related work and section 7 concludes the
paper and discusses future work.

2 Background

2.1 Attack Graphs

An attack graph is a representation of the different methods by which a distrib-
uted system can be compromised. It represents the intermediate attack goals for
a hypothetical adversary leading up to some high level attack goals. The attack
goal may be in terms of violating one or more of confidentiality, integrity, or
availability of a component in the system. It is particularly suitable for repre-
senting multi-stage attacks, in which a successful attack step (or steps) is used
to achieve success in a subsequent attack step. An edge will connect the an-
tecedent (or precondition) stage to the consequent (or postcondition) stage. To
be accurate, this discussion reflects the notion of one kind of attack graph, called
the exploit-dependency attack graph [11], [14], [25], but this is by far the most
common type and considering the other subclass will not be discussed further in
this paper.

Recent advances in attack graph generation have been able to create graphs
for systems of up to hundreds and thousands of hosts [11], [25].

For our detector-location framework, exploit-dependency attack graphs are
used as the base graph from which we build the Bayesian network. For the rest
of this paper, the vertex representing an exploit in the distributed system will
be called an attack step.

274 G. Modelo-Howard, S. Bagchi, and G. Lebanon

Fig. 1. Attack graph model for a sample web server. There are three starting vertices,
representing three vulnerabilities found in different services of the server, from where
the attacker can elevate the privileges in order to reach the final goal of compromising
the password file.

2.2 Inference in Bayesian Networks

Bayesian networks [13] provide a convenient framework for modeling the re-
lationship between attack steps and detector alerts. Using Bayesian networks
we can infer which unobserved attack steps have been achieved based on the
observed detector alerts.

Formally, a Bayesian network is a joint probabilistic model for n random
variables (x1, . . . , xn) based on a directed acyclic graph G = (V, E) where V is
a set of nodes corresponding to the variables V = (x1, . . . , xn) and E ⊆ V xV
contains directed edges connecting some of these nodes in an acyclic manner.
Instead of weights, the graph edges are described by conditional probabilities of
nodes given their parents that are used to construct a joint distribution P (V)
or P (x1, . . . , xn).

There are three main tasks associated with Bayesian networks. The first is in-
ferring values of variables corresponding to nodes that are unobserved given val-
ues of variables corresponding to observed nodes. In our context this corresponds
to predicting whether an attack step has been achieved based on detector alerts.
The second task is learning the conditional probabilities in the model based on
available data which in our context corresponds to estimating the reliability of
the detectors and the probabilistic relations between different attack steps. The
third task is learning the structure of the network based on available data. All
three tasks have been extensively studied in the machine learning literature and,
despite their difficulty in the general case, may be accomplished relatively easily
in the case of a Bayesian network.

We focus in this paper mainly on the first task. For the second task, to es-
timate the conditional probabilities, we can use characterization of the quality
of detectors [20] and the perceived difficulty of achieving an attack step, say
through risk assessment. We consider the fact that the estimate is unlikely to
be perfectly accurate and provide experiments to characterize the loss in perfor-
mance due to imperfections. For the third task, we rely on extensive prior work
on attack graph generation and provide a mapping from the attack graph to the
Bayesian network.

In our Bayesian network, the network contains nodes of two different types
V = Va

⋃
Vb. The first set of nodes Va corresponds to binary variables in-

dicating whether specific attack steps in the attack graph occurred or not.
The second set of nodes Vb corresponds to binary variables indicating whether
a specific detector issued an alert. The first set of nodes representing attack

Determining Placement of Intrusion Detectors 275

Fig. 2. Simple Bayesian network with two types of nodes: an observed node (u) and
an unobserved node (v). The observed node correspond to the detector alert in our
framework and its conditional probability table includes the true positive (α) and false
positive (β).

steps are typically unobserved while the second set of nodes corresponding to
alerts are observed and constitute the evidence. The Bayesian network defines
a joint distribution P (V) = P (Va, Vb) which can be used to compute the mar-
ginal probability of the unobserved values P (Va) and the conditional probability
P (Va|Vb) = P (Va, Vb)/P (Vb) of the unobserved values given the observed val-
ues. The conditional probability P (Va|Vb) can be used to infer the likely values
of the unobserved attack steps given the evidence from the detectors. Compar-
ing the value of the conditional P (Va|Vb) with the marginal P (Va) reflects the
gain in information about estimating successful attack steps given the current
set of detectors. Alternatively, we may estimate the suitability of the detectors
by computing classification error rate, precision, recall and Receiver Operating
Characteristic (ROC) curve associated with the prediction of Va based on Vb.

Note that the analysis above is based on emulation done prior to deploy-
ment with attacks injected through the vulnerability analysis tools, a plethora
of which exist in the commercial and research domains, including integrated
infrastructures combining multiple tools.

Some attack steps have one or more detectors that specifically measure whether
an attack step has been achieved while other attack steps do not have such de-
tectors. We create an edge in the Bayesian network between nodes representing
attack steps and nodes representing the corresponding detector alerts. Consider
a specific pair of nodes v ∈ Va, u ∈ Vb representing an attack step and a corre-
sponding detector alert. The conditional probability P (v|u) determines the val-
ues P (v = 1|u = 0), P (v = 0|u = 1), P (v = 0|u = 0), P (v = 1|u = 1). These
probabilities representing false negative, false positive, and correct behavior (last
two) can be obtained from an evaluation of the detectors quality.

3 System Design

3.1 Framework Description

Our framework uses a Bayesian network to represent the causal relationships be-
tween attack steps and also between attack steps and detectors. Such relation-
ships are expressed quantitatively, using conditional probabilities. To produce

276 G. Modelo-Howard, S. Bagchi, and G. Lebanon

Fig. 3. A block diagram of the framework to determine placement of intrusion detec-
tors. The dotted lines indicate a future component, controller, not included currently
in the framework. It would provide for a feedback mechanism to adjust location of
detectors.

the Bayesian network1, an attack graph is used as input. The structure of the
attack graph maps exactly to the structure of the Bayesian network. Each node
in the Bayesian network can be in one of two states. Each attack stage node
can either be achieved or not by the attacker. Each detector node can be in one
of two states: alarm generated state or not. The leaf nodes correspond to the
starting stages of the attack, which do not need any precondition, and the end
nodes correspond to end goals for an adversary. Typically, there are multiple leaf
nodes and multiple end nodes.

The Bayesian network requires that the sets of vertices and directed edges
form a directed acyclic graph (DAG). This property is also found in attack
graphs. The idea is that the attacker follows a monotonic path, in which an
attack step does not have to be revisited after moving to a subsequent attack
step. This assumption can be considered reasonable in many scenarios according
to experiences from real systems.

A Bayesian network quantifies the causal relation that is implied by an edge
in an attack graph. In the cases when an attack step has a parent, determined
by the existence of an edge coming to this child vertex from another attack
step, a conditional probability table is attached to the child vertex. As such,
the probability values for each state of the child are conditioned by the state(s)
of the parent(s). In these cases, the conditional probability is defined as the
probability of a packet from an attacker that already achieved the parent attack
step, achieving the child attack step. All values associated to the child are in-
cluded in a conditional probability table (CPT). As an example, all values for
node u in Figure 2 are conditioned on the possible states of its parent, node
v. In conclusion, we are assuming that the path taken by the attacker is fully
probabilistic. The attacker is following a strategy to maximize the probability of
success, to reach the security goal. To achieve it, the attacker is well informed
about the vulnerabilities associated to a component of the distributed system

1 Henceforth, when we refer to a node, we mean a node in the Bayesian network, as
opposed to a node in the attack graph. The clarifying phrase is thus implied.

Determining Placement of Intrusion Detectors 277

and how to exploit it. The fact that an attack graph is generated from databases
of vulnerabilities support this assumption.

The CPTs have been estimated for the Bayesian networks created. Input
values are a mixture of estimates based on testing specific elements of the system,
like using a certain detector such as IPTables [12] or Snort [28], and subjective
estimates, using judgment of a system administrator. From the perspective of the
expert (administrator), the probability values reflect the difficulty of reaching a
higher level attack goal, having achieved some lower level attack goal.

A potential problem when building the Bayesian network is to obtain a good
source for the values used in the CPTs of all nodes. The question is then how
to deal with possible imperfect knowledge when building Bayesian networks. We
took two approaches to deal with this issue: (1) use data from past work and
industry sources and (2) evaluate and measure in our experiments the impact
such imperfect knowledge might have.

For the purposes of the experiments explained in section 5, we have chosen
the junction tree algorithm to do inference, the task of estimating probabilities
given a Bayesian network and the observations or evidence. There are many
different algorithms that could be chosen, making different tradeoffs between
speed, complexity, and accuracy. Still, the junction tree engine is a general-
purpose inference algorithm well suited for our experiments since it works under
our scenario: allows discrete nodes, as we have defined our two-states nodes, in
direct acyclic graphs such as Bayesian networks, and does exact inference. This
last characteristic refers to the algorithm computing the posterior probability
distribution for all nodes in network, given some evidence.

3.2 Algorithm

We present here an algorithm to achieve an optimal choice and placement of
detectors. It takes as input (i) a Bayesian network with all attack vertices, their
corresponding CPTs and the host impacted by the attack vertex; (ii) a set of
detectors, the possible attack vertices each detector can be associated with, and
the CPTs for each detector with respect to all applicable attack vertices.

Input: (i) Bayesian network BN = (V, CPT (V), H(V)) where V is the set of
attack vertices, CPT (V) is the set of conditional probability tables associated
with the attack vertices, and H(V) is the set of hosts affected if the attack vertex
is achieved.

(ii) Set of detectors D = (di, V (di), CPT [i][j]) where di is the ith detec-
tor, V (di) is the set of attack vertices that the detector di can be attached to
(i.e., the detector can possibly detect those attack goals being achieved), and
CPT [i][j] ∀j ∈ V (di) is the CPT tables associated with detector i and attack
vertex j.

Output: Set of tuples θ = (di, πi) where di is the ith detector selected and πi

is the set of attack vertices that it is attached to.

278 G. Modelo-Howard, S. Bagchi, and G. Lebanon

DETECTOR-PLACEMENT (BN, D)
1 System-Cost = 0
2 Sort all (di, aj), aj ∈ V (di), ∀i by BENEFIT(di, aj). Sorted list = L
3 Length(L) = N
4 for (i = 1toN)
5 System-Cost = System-Cost + COST(di, aj)
6 /* COST(di, aj) can be in terms of economic cost, cost due

to false alarms and missed alarms, etc. */
7 if (System-Cost > Threshold τ) break
8 if (di ∈ θ) add aj to πi ∈ θ
9 else add (di, πi = aj) to θ
10 end for
11 return θ

BENEFIT (d, a)
/* This is to calculate the benefit from attaching detector d
to attack vertex a */

1 Let the end attack vertices in the BN be F = fi, i = 1, . . . , M
2 For each fi, the following cost-benefit table exists
3 Perform Bayesian inference with d as the only detector

in the network and connected to attack vertex a
4 Calculate for each fi, the precision and recall, call them,

Precision(fi, d, a), Recall(fi, d, a)
5 System-Benefit =

∑M
i=1 [Benefitfi(True Negative) × Precision(fi, d, a)

+ Benefitfi(True Positive) × Recall(fi, d, a)]
6 return System-Benefit

The algorithm starts by sorting all combinations of detectors and their asso-
ciated attack vertices according to their benefit to the overall system (line 2).
The system benefit is calculated by the BENEFIT function. This specific design
considers only the end nodes in the BN, corresponding to the ultimate attack
goals. Other nodes that are of value to the system owner may also be considered.
Note that a greedy decision is made in the BENEFIT calculation each detector
is considered singly. From the sorted list, (detector, attack vertex) combinations
are added in order, till the overall system cost due to detection is exceeded (line
7). Note that we use a cost-benefit table (line 2 of BENEFIT function), which is
likely specified for each attack vertex at the finest level of granularity. One may
also specify it for each host or each subnet in the system.

The worst-case complexity of this algorithm is O(dv B(v, CPT (v))+dv log(dv)
+ dv), where d is the number of detectors and v is the number of attack ver-
tices. B(v, CPT (v)) is the cost of Bayesian inference on a BN with v nodes and
CPT (v) defining the edges. The first term is due to calling Bayesian inference
with up to d times v terms. The second term is the sorting cost and the third
term is the cost of going through the for loop dv times. In practice, each detector
will be applicable to only a constant number of attack vertices and therefore the

Determining Placement of Intrusion Detectors 279

dv terms can be replaced by a constant times d, which will be only d considering
order statistics.

The reader would have observed that the presented algorithm is greedy-choice
of detectors is done according to a pre-computed order, in a linear sweep through
the sorted list L (the for loop starting in line 4). This is not guaranteed to provide
an optimal solution. For example, detectors d2 and d3 taken together may provide
greater benefit even though detector d1 being ranked higher would have been
considered first in the DETECTOR-PLACEMENT algorithm. This is due to
the observation that the problem of optimal detector choice and placement can
be mapped to the 0-1 knapsack problem which is known to be NP-hard. The
mapping is obvious, consider D × A (D: Detectors and A: Attack vertices). We
have to include as many of these tuples so as to maximize the benefit without
the cost exceeding, the system cost of detection.

4 Experimental Systems

We created three Bayesian networks for our experiments modeling two real sys-
tems and one synthetic network. These are a distributed electronic commerce (e-
commerce) system, a Voice-over-IP (VoIP) network, and a synthetic generic
Bayesian network that is larger than the other two. The Bayesian networks were
manually created from attack graphs that include several multi-step attacks for
the vulnerabilities found in the software used for each system. These vulnerabili-
ties are associated with specific versions of the particular software, and are taken
frompopular databases [6], [23]. An explanation for eachBayesiannetwork follows.

4.1 E-Commerce System

The distributed e-commerce system used to build the first Bayesian network is a
three tier architecture connected to the Internet and composed of an Apache web
server, the Tomcat application server, and the MySQL database backend. All
servers are running a Unix-based operating system. The web server sits in a de-
militarized zone (DMZ) separated by a firewall from the other two servers, which
are connected to a network not accessible from the Internet. All connections from
the Internet and through servers are controlled by the firewall. Rules state that
the web and application servers can communicate, as well as the web server
can be reached from the Internet. The attack scenarios are designed with the
assumption that the attacker is an external one and thus her starting point is
the Internet. The goal for the attacker is to have access to the MySQL database
(specifically access customer confidential data such as credit card information
node 19 in the Bayesian network of Figure 4).

As an example, an attack step would be a portscan on the application server
(node 10). This node has a child node, which represents a buffer overflow vulner-
ability present in the rpc.statd service running on the application server (node
12). The other attack steps in the network follow a similar logic and represent
other phases of an attack to the distributed system. The system includes four

280 G. Modelo-Howard, S. Bagchi, and G. Lebanon

Firewall

Internet

Database
Server

Application
Server

Web Server

DMZ

Internal
Network

3 1

4

2

57

6

8

9

10 11

12

15

16

14

17 18

19

13

20

b

Fig. 4. Network diagram for the e-commerce system and its corresponding Bayesian
network. The white nodes are the attack steps and the gray nodes are the detectors.

detectors: IPtables, Snort, Libsafe, and a database IDS. As shown in Figure 4,
each detector has a causal relationship to at least one attack step.

4.2 Voice-over-IP (VoIP) System

The VoIP system used to build the second network has a few more components,
making the resulting Bayesian network more complex. The system is divided
into three zones: a DMZ for the servers accessible from the Internet, an internal
network for local resources such as desktop computers, mail server and DNS
server, and an internal network only for VoIP components. This separation of
the internal network into two units follows the security guidelines for deploying
a secure VoIP system [18].

The VoIP network includes a PBX/Proxy, voicemail server and software-based
and hardware-based phones. A firewall provides all the rules to control the traffic
between zones. The DNS and mail servers in the DMZ are the only accessible
hosts from the Internet. The PBX server can route calls to the Internet or to a
public-switched telephone network (PSTN). The ultimate goal of this multi-stage

DNS Mail

Firewall

PBX/Proxy

Internal User

VoiceMailVoIP Phone
(hardware)

VoIP Phone
(software)

VoIP
Network

DMZ

Internal
Network

PSTN

Internet
MailDNS

1

2

5

8

10

13

14

19

4

7

21

9

3

11

15

17

12

20

16

6

18

22

Fig. 5. VoIP system and its corresponding Bayesian network

Determining Placement of Intrusion Detectors 281

TNFNDetection = False

FPTPDetection = True

Attack = FalseAttack = True

FNTP

TP
Recall

FPTP

TP
Precision

Fig. 6. Parameters used for our experiments: True Positive (TP), False Positive (FP),
True Negative (TN), False Negative (FN), precision, and recall

attack is to eavesdrop on VoIP communication. There are 4 detectors Iptables,
and three network IDSs on the different subnets.

A third synthetic Bayesian network was built to test our framework for exper-
iments where a larger network, than the other two, was required. This network
is shown in Figure 7(a).

5 Experiments

The correct number, accuracy, and location of the detectors can provide an ad-
vantage to the systems owner when deploying an intrusion detection system.
Several metrics have been developed for evaluation of intrusion detection sys-
tems. In our work, we concentrate on the precision and recall. Precision is the
fraction of true positives determined among all attacks flagged by the detection
system. Recall is the fraction of true positives determined among all real posi-
tives in the system. The notions of true positive, false positive, etc. are shown
in Figure 6. We also plot the ROC curve which is a traditional method for char-
acterizing detector performanceit is a plot of the true positive against the false
positive.

For the experiments we create a dataset of 50,000 samples or attacks, based
on the respective Bayesian network. We use the Matlab Bayesian network tool-
box [3] for our Bayesian inference and sample generation. Each sample consists
of a set of binary values, for each attack vertex and each detector vertex. A one
(zero) value for an attack vertex indicates that attack step was achieved (not
achieved) and a one (zero) value for a detector vertex indicates the detector
generated (did not generate) an alert. Separately, we perform inference on the
Bayesian network to determine the conditional probability of different attack
vertices. The probability is then converted to a binary determination whether
the detection system flagged that particular attack step or not, using a thresh-
old. This determination is then compared with reality, as given by the attack
samples which leads to a determination of the systems accuracy. There are sev-
eral experimental parameters which specific attack vertex is to be considered,
the threshold, CPT values, etc. and their values (or variations) are mentioned
in the appropriate experiment. The CPTs of each node in the network are man-
ually configured according to the authors experience administering security for
distributed systems and frequency of occurrences of attacks from references such
as vulnerability databases, as mentioned earlier.

282 G. Modelo-Howard, S. Bagchi, and G. Lebanon

5.1 Experiment 1: Distance from Detectors

The objective of experiment 1 was to quantify for a system designer what is the
gain in placing a detector close to a service where a security event may occur.
Here we used the synthetic network since it provided a larger range of distances
between attack steps and detector alerts.

The CPTs were fixed to manually determined values on each attack step.
Detectors were used as evidence, one at a time, on the Bayesian network and
the respective conditional probability for each attack node was determined. The
effect of the single detector on different attack vertices was studied, thereby
varying the distance between the node and the detector. The output metric is
the difference of two terms. The first term is the conditional probability that
the attack step is achieved, conditioned on a specific detector firing. The second
term is the probability that the attack step is achieved, without use of any
detector evidence. The larger the difference is, the greater is the value of the
information provided by the detector. In Figure 7(b), we show the effect due
to detector corresponding to node 24 and in Figure 7(c), we consider all the
detectors (again one at a time). The effect of all the detectors shows that the
conclusions from node 24 are general.

1

4222

24

3

65

97 8

10 11

1412 13

1715 16

b

2018 19

21

26

28

27

25

23

0 2 4 6 8

0

0.2

0.4

0.6

0.8

Distance(X
24

,X
i
)

P
(X

i=
1|

X
24

=
1)

 −
 P

(X
i=

1)

0 2 4 6 8

0

0.2

0.4

0.6

0.8

Distance(X
detector

, X
i
)

|P
(X

i=
1

| X
de

te
ct

or
=

1)
 −

 P
(X

i=
1)

|

Fig. 7. Results of experiment 1: Impact of distance to a set of attack steps. (a) Generic
Bayesian network used. (b) Using node 24 as the detector (evidence), the line shows
mean values for rate of change. (c) Comparison between different detectors as evidence,
showing the mean rate of change for case.

The results show that a detector can affect nodes inside a radius of up to
three edges from the detector. The change in probability for a node within this
radius, compared to one outside the radius, can be two times greater when the
detector is used as evidence. For all Bayesian networks tested, the results were
consistent to the three edges radius observation.

5.2 Experiment 2: Impact of Imperfect Knowledge

The objective of experiment 2 was to determine the performance of the detection
system in the face of attacks. In the first part of the experiment (Exp 2a), the

Determining Placement of Intrusion Detectors 283

0.6 0.8
0

20

40

60

80

100
Node 1

0.6 0.8
0

50

100
Node 4

0.6 0.8
0

20

40

60

80

100
Node 9

0.6 0.8
0

50

100
Node14

0.6 0.8
0

50

100
Node 17

0.6 0.8
0

50

100
Node 19

Fig. 8. Precision and recall as a function of detection threshold, for the e-commerce
Bayesian network. The line with square markers is recall and other line is for precision.

effect of the threshold, that is used in converting the conditional probability of
an attack step into a binary determination, is studied. This corresponds to the
practical situation that a system administrator has to make a binary decision
based on the result of a probabilistic framework and there is no oracle at hand
to help. For the second part of the experiment (Exp 2b), the CPT values in
the Bayesian network are perturbed by introducing variances of different magni-
tudes. This corresponds to the practical situation that the system administrator
cannot accurately gauge the level of difficulty for the adversary to achieve attack
goals. The impact of the imperfect knowledge is studied through a ROC curve.

For Exp 2a, precision and recall were plotted as a function of the threshold
value. This was done for all the attack nodes in the Bayesian network and the
results for a representative sample of six nodes are shown in Figure 8. We used
threshold values from 0.5 to 0.95, since anything below 0.5 would imply the
Bayesian network is useless in its predictive ability.

Expectedly, as the threshold is increased, there are fewer false positives and the
precision of the detection system improves. The opposite is true for the recall of the
system since there aremore falsenegatives. However, an illuminating observation is
that the precision is relatively insensitive to the threshold variation while the recall
has a sharp cutoff. Clearly, the desired threshold is to the left of the cutoff point.
Therefore, this provides a scientific basis for an administrator to set the threshold
for drawing conclusions from a Bayesian network representing the system.

In experiment 2b we introduced variance to the CPT values of all the at-
tack nodes, mimicking different levels of imperfect knowledge an admin may

284 G. Modelo-Howard, S. Bagchi, and G. Lebanon

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Node 6

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

var = 0.05
var = 0.15
var = 0.25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Node 1

var = 0.05
var = 0.15
var = 0.25

Fig. 9. ROC curves for two attack steps in e-commerce Bayesian network. Each curve
corresponds to a different variance added to the CTP values.

0 1 2 3 4 5

0.71

0.72

0.73

0.74

Number of CPTs changed

P
(X

19
=

1
| X

20
=

1)

0 1 2 3 4 5

0.69

0.7

0.71

0.72

Number of CPTs changed

P
(X

21
=

1
| X

28
 =

 1
)

Fig. 10. Impact of deviation from correct CPT values, for the (a) e-commerce and (b)
generic Bayesian networks

have about the adversary’s attack strategies. When generating the samples corre-
sponding to the attacks, we used three variance values: 0.05, 0.15, and 0.25. Each
value could be associated with a different level of knowledge from an adminis-
trator: expert, intermediate, and nave, respectively. For each variance value, ten
batches of 1,000 samples were generated and the detection results were averaged
over all batches.

In Figure 9, we show the ROC curves for nodes 1 and 6 of the e-commerce
system, with all four detectors in place. Expectedly, as the variance increases,
the performance suffers. However, the process of Bayesian inference shows an
inherent resilience since the performance does not degrade significantly with the
increase in variance. For node 1, several points are placed so close together that
only one marker shows up. On the contrary, for node 6, multiple well spread out
TP-FP value pairs are observed. We hypothesize that since node 1 is directly
connected to the detector node 3, its influence over node 1 dominates that of all
other detectors. Hence fewer number of sharp transitions are seen compared to
node 6, which is more centrally placed with respect to multiple detectors.

Experiment 2c also looked at the impact of imperfect knowledge when defining
the CPT values in the Bayesian network. Here we progressively changed the CPT
values for several attack steps in order to determine how much we would deviate
from the correct value. We used two values 0.6 and 0.8 for each CPT cell (only
two are independent) giving rise to four possible CPT tables for each node. We

Determining Placement of Intrusion Detectors 285

plot the minimum and maximum conditional probabilities for a representative
attack node for a given detector flagging. We change the number of CPTs that
we perturb from the ideal values. Expectedly as the number of CPTs changed
increases, the difference between the minimum and the maximum increases, but
the range is within 0.03. Note that the point at the left end of the curve for zero
CPTs changed gives the correct value.

Both experiments indicate that the BN formalism is relatively robust to im-
perfect assumptions concerning the CPT values. This is an important fact since
it is likely that the values determined by an experienced system administra-
tor would still be somewhat imperfect. Overall, as long as the deviation of the
assumed CPTs from the truth is not overwhelming, the network performance
degrades gracefully.

5.3 Experiment 3: Impact on Choice and Placement of Detectors

The objective of experiment 3 was to determine the impact of selecting the
detectors and their corresponding locations. To achieve this, we ran experiments
on the e-commerce and the VoIP Bayesian networks to determine a pair of
detectors that would be most effective. This pair, called the optimal pair, is
chosen according to the algorithm described in Section 3.2. The performance of
the optimal pair is compared against additional pairs selected at random. We
show the result using the ROC curve for the two ultimate attack goals, namely
node 19 and node 21 in the e-commerce and the VoIP systems.

To calculate the performance of each pair of detectors, we created 10,000
samples from each Bayesian network, corresponding to that many actual attacks.
Then we performed Bayesian inference and calculated the conditional probability
of the attack step, given the pair of detectors. We determined the true positive
rate and false positive rate by sweeping across threshold values.

Results show that the pair of detectors determined from the algorithm performs
better than the other randomly selected pairs. Figure 11a shows the situation in
which a single detector (d20) attached to two attack nodes (x19, x18) performs bet-
ter than two detectors (d13 and d7, or d12 and d3). The placement of the detector
d20 affects the performance. This can be explained by the fact that node 18 is more

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(d
20

,x
19

),(d
20

,x
18

)

(d
20

,x
19

),(d
20

,x
16

)

(d
13

,x
12

),(d
7
,x

6
)

(d
13

,x
12

),(d
3
,x

2
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(d
22

,x
20

),(d
18

,x
17

)

(d
18

,x
17

),(d
18

,x
14

)

(d
18

,x
12

),(d
18

,x
14

)

(d
18

,x
12

),(d
6
,x

4
)

Fig. 11. ROC curves for detection of attack steps, using pairs of detectors, in the
e-commerce network (left) and the VoIP network (right)

286 G. Modelo-Howard, S. Bagchi, and G. Lebanon

highly connected in the attack graph and therefore attaching detector d20 to that
node, rather than node 16, provides better predictive performance.

There is a cost of adding detectors to a system, but there is also a cost of
having a detector attached to more attack nodes, in terms of the bandwidth
and computation. Thus adding further edges in the Bayesian network between a
detector node and an attack node, even if feasible, may not be desirable. For the
VoIP network, detector pair d22 and d18 performs best. This time two separate
detectors outperform a single high quality detector (d18) connected to two nodes.

Further details on all experiments performed, including all the probability
values used for the Bayesian networks, are available at [22]. These are omitted
here due to space constraints and the interested party is welcome to further
read. All the experiments validate the intuition behind our algorithm that the
greedy choice of the detectors also gives good results when multiple detectors
are considered together and over the entire Bayesian network.

6 Related Work

Bayesian networks have been used in intrusion detection to perform classifica-
tion of events. Kruegel et al. [17] proposed the usage of Bayesian networks to
reduce the number of false alarms. Bayesian networks are used to improve the
aggregation of different model outputs and allow integration of additional in-
formation. The experimental results show an improvement in the accuracy of
detections, compared to threshold-based schemes. Ben Amor et al. [4] studied
the use of nave Bayes in intrusion detection, which included a performance com-
parison with decision trees. Due to similar performance and simpler structure,
nave Bayes is an attractive alternative for intrusion detection. Other researchers
have also used nave Bayesian inference for classifying intrusion events [29].

To the best of our knowledge, the problem of determining an appropriate
location for detectors has not been systematically explored by the intrusion
detection community. However, analogous problems have been studied to some
extent in the physical security and the sensor network fields.

Jones et al. [15] developed a Markov Decision Process (MDP) model of how an
intruder might try to penetrate the various barriers designed to protect a physical
facility. The model output includes the probability of a successful intrusion and
the most likely paths for success. These paths provide a basis to determine the
location of new barriers to deter a future intrusion.

In the case of sensor networks, the placement problem has been studied to
identify multiple phenomena such as determining location of an intrusion [1],
contamination source [5], [27], and atmospheric conditions [16]. Anjum et al.
[1] determined which nodes should act as intrusion detectors in order to pro-
vide detection capabilities in a hierarchical sensor network. The adversary is
trying to send malicious traffic to a destination node (say, the base node). In
their model, only some nodes called tamper-resistant nodes are capable of exe-
cuting a signature-based intrusion detection algorithm and these nodes cannot
be compromised by an adversary. Since these nodes are expensive, the goal is

Determining Placement of Intrusion Detectors 287

to minimize the number of such nodes and the authors provide a distributed
approximate algorithm for this based on minimum cut-set and minimum domi-
nating set. The solution is applicable to a specific kind of topology, widely used
in sensor networks, namely clusters with a cluster head in each cluster capable
of communicating with the nodes at the higher layer of the network hierarchy.

In [5], the sensor placement problem is studied to detect the contamination
of air or water supplies from a single source. The goal is to detect that contami-
nation has happened and the source of the contamination, under the constraints
that the number of sensors and the time for detection are limited. The authors
show that the problem with sensor constraint or time constraint are both NP-
hard and they come up with approximation algorithms. They also solve the
problem exactly for two specific cases, the uniform clique and rooted trees. A
significant contribution of this work is the time efficient method of calculating the
sensor placement. However, several simplifying assumptions are made—sensing
is perfect and no sensor failure (either natural or malicious) occurs, there is a
single contaminating source, and the flow is stable.

Krause et al. [16] also point out the intractability of the placement prob-
lem and present a polynomial-time algorithm to provide near-optimal placement
which incurs low communication cost between the sensors. The approximation
algorithm exploits two properties of this problem: submodularity, formalizing the
intuition that adding a node to a small deployment can help more than adding
a node to a large deployment; and locality, under which nodes that are far from
each other provide almost independent information. In our current work, we also
experienced the locality property of the placement problem. The proposed solu-
tion learns a probabilistic model (based on Gaussian processes) of the underlying
phenomenon (variation of temperature, light, and precipitation) and for the ex-
pected communication cost between any two locations from a small, short-term
initial deployment.

In [27], the authors present an approach for determining the location in an
indoor environment based on which sensors cover the location. The key idea is
to ensure that each resolvable position is covered by a unique set of sensors,
which then serves as its signature. They make use of identifying code theory
to reduce the number of active sensors required by the system and yet provide
unique localization for each position. The algorithm also considers robustness,
in terms of the number of sensor failures that can be corrected, and provides
solutions in harsh environments, such as presence of noise and changes in the
structural topology. The objective for deploying sensors here is quite different
from our current work.

For all the previous work on placement of detectors, the authors are looking to
detect events of interest, which propagate using some well-defined models, such
as, through the cluster head en route to a base node. Some of the work (such as
[16]) is focused on detecting natural events, that do not have a malicious motive
in avoiding detection. In our case, we deal with malicious adversaries who have
an active goal of trying to bypass the security of the system. The adversaries’
methods of attacking the system do not follow a well-known model making our

288 G. Modelo-Howard, S. Bagchi, and G. Lebanon

problem challenging. As an example of how our solution handles this, we use
noise in our BN model to emulate the lack of an accurate attack model.

There are some similarities between the work done in alert correlation and
ours, primarily the interest to reduce the number of alerts to be analyzed from
an intrusion. Approaches such as [24] have proposed modeling attack scenarios
to correlate alerts and identify causal relationships among the alerts. Our work
aims to closely integrate the vulnerability analysis into the placement process,
whereas the alert correlation proposals have not suggested such importance.

The idea of using Bayes theorem for detector placement is suggested in [26].
No formal definition is given, but several metrics such as accuracy, sensitivity,
and specificity are presented to help an administrator make informed choices
about placing detectors in a distributed system. These metrics are associated to
different areas or sub-networks of the system to help in the decision process.

Many studies have been done on developing performance metrics for the eval-
uation of intrusion detection systems (IDS), which have influenced our choice of
metrics here. Axelsson [2] showed the applicability of estimation theory in the
intrusion detection field and presented the Bayesian detection rate as a metric
for the performance of an IDS. His observation that the base rate, and not only
the false alarm rate, is an important factor on the Bayesian detection rate, was
included in our work by using low base rates as part of probability values in
the Bayesian network. The MAFTIA Project [8] proposed precision and recall
to effectively determine when a vulnerability was exploited in the system. A dif-
ference from our approach is that they expand the metrics to consider a set of
IDSes and not only a single detector. The idea of using ROC curves to measure
performance of intrusion detectors has been explored many times, most recently
in [7], [10].

Extensive work has been done for many years with attack graphs. Recent work
has concentrated on the problems of generating attack graphs for large networks
and automating the process to describe and analyze vulnerabilities and system
components to create the graphs. The NetSPA system [11] uses a breath-first
technique to generate a graph that grows almost linearly with the size of the
distributed system. Ou et al. [25] proposed a graph building algorithm using a
formal logical technique that allows to create graphs of polynomial size to the
network being analyzed.

7 Conclusions and Future Work

Bayesian networks have proven to be a useful tool in representing complex prob-
ability distributions, such as in our case of determining the likelihood that an
attack goal has been achieved, given evidence from a set of detectors. By us-
ing attack graphs and Bayesian inference, we can quantify the overall detection
performance in the systems by looking at different choices and placements of
detectors and the detection parameter settings. We also quantified the informa-
tion gain due to a detector as a function of its distance from the attack step.
Also, the effectiveness of the Bayesian networks can be affected by imperfect

Determining Placement of Intrusion Detectors 289

knowledge when defining the conditional probability values. Nevertheless, the
Bayesian network exhibits considerable resiliency to these factors as our experi-
ments showed.

Future work should include looking at the scalability issues of Bayesian net-
works and its impact on determining the location for a set of detectors in a
distributed system. The probability values acquisition problem can be handled
by using techniques such as the recursive noisy-OR modeling [19] but experi-
mentation is required to determine its benefits and limitations for our scenario.

Acknowledgments. Gaspar Modelo-Howard was partly supported by an
IFARHU-SENACYT Scholarship from the Republic of Panama. Saurabh Bagchi
was partly supported in this work by an endowment grant from Purdue’s Center
for Education and Research in Information Assurance and Security (CERIAS).

References

1. Anjum, F., Subhadrabandhu, D., Sarkar, S., Shetty, R.: On Optimal Placement
of Intrusion Detection Modules in Sensor Networks. In: 1st IEEE International
Conference on Broadband Networks, pp. 690–699. IEEE Press, New York (2004)

2. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion detection. ACM
Trans. Inf. Syst. Secur. 3-3, 186–205 (2000)

3. Bayes Net Toolbox for Matlab, http://www.cs.ubc.ca/∼murphyk/Software
4. Ben Amor, N., Benferhat, S., Elouedi, Z.: Naive Bayes vs decision trees in intrusion

detection systems. In: 19th ACM Symposium on Applied computing, pp. 420–424.
ACM Press, New York (2004)

5. Berger-Wolf, T., Hart, W., Saia, J.: Discrete Sensor Placement Problems in Dis-
tribution Networks. J. Math. and Comp. Model. 42, 1385–1396 (2005)

6. Bugtraq Vulnerability Database,
http://www.securityfocus.com/vulnerabilities

7. Cardenas, A., Baras, J., Seamon, K.: A Framework for the Evaluation of Intrusion
Detection Systems. In: 27th IEEE Symposium on Security and Privacy, p. 15. IEEE
Press, New York (2006)

8. Dacier, M. (ed.): Design of an Intrusion-Tolerant Intrusion Detection System. Re-
search Report, Maftia Project (2002)

9. Foo, B., Wu, Y., Mao, Y., Bagchi, S., Spafford, E.: ADEPTS: Adaptive Intrusion
Response using Attack Graphs in an E-Commerce Environment. In: International
Conference on Dependable Systems and Networks, pp. 508–517 (2005)

10. Gu, G., Fogla, P., Dagon, D., Lee, W., Skoric, B.: Measuring Intrusion Detection
Capability: An Information-Theoretic Approach. In: 1st ACM Symposium on In-
formation, Computer and Communications Security, pp. 90–101. ACM Press, New
York (2006)

11. Ingols, K., Lippmann, R., Piwowarski, K.: Practical Attack Graph Generation for
Network Defense. In: 22nd Annual Computer Security Applications Conference,
pp. 121–130. IEEE Press, New York (2006)

12. IPTables Firewall, http://www.netfilters.org/projects/iptables
13. Jensen, F.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
14. Jha, S., Sheyner, O., Wing, J.: Two Formal Analyses of Attack Graphs. In: 15th

IEEE Computer Security Foundations Workshop, pp. 49–63. IEEE Press, New
York (2002)

http://www.cs.ubc.ca/~murphyk/Software
http://www.securityfocus.com/vulnerabilities
http://www.netfilters.org/projects/iptables

290 G. Modelo-Howard, S. Bagchi, and G. Lebanon

15. Jones, D., Davis, C., Turnquist, M., Nozick, L.: Physical Security and Vulnerability
Modeling for Infrastructure Facilities. Technical Report, Sandia National Labora-
tories (2006)

16. Krause, A., Guestrin, C., Gupta, A., Kleinberg, J.: Near-optimal Sensor Place-
ments: Maximizing Information while Minimizing Communication Cost. In: 5th
International Conference on Information Processing in Sensor Networks, pp. 2–10.
ACM Press, New York (2006)

17. Krügel, C., Mutz, D., Robertson, W., Valeyr, F.: Bayesian Event Classification for
Intrusion Detection. In: 19th Annual Computer Security Applications Conference,
pp. 14–23. IEEE Press, New York (2003)

18. Kuhn, D., Walsh, T., Fires, S.: Security Considerations for Voice Over IP Systems.
Special Publication 800-58, National Institute of Standards and Technology (2005)

19. Lemmer, J., Gossink, D.: Recursive Noisy OR - A Rule for Estimating Com-
plex Probabilistic Interactions. IEEE Trans. Syst. Man. Cybern. B. 34, 2252–2261
(2004)

20. Lippmann, R., et al.: Evaluating Intrusion Detection Systems: The 1998 DARPA
Off-line Intrusion Detection Evaluation. In: 1st DARPA Information Survivability
Conference and Exposition, pp. 81–89 (2000)

21. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking Attack Graphs. In:
Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 127–144. Springer,
Heidelberg (2006)

22. Modelo-Howard, G.: Addendum to Determining Placement of Intrusion Detectors
for a Distributed Application through Bayesian Network Modeling,
http://cobweb.ecn.purdue.edu/ dcsl/publications/
detectors-location addendum.pdf

23. National Vulnerability Database, http://nvd.nist.gov/nvd.cfm
24. Ning, P., Cui, Y., Reeves, D.: Constructing Attack Scenarios through Correlation

of Intrusion Alerts. In: 9th ACM Conference on Computers & Communications
Security, pp. 245–254 (2002)

25. Ou, X., Boyer, W., McQueen, M.: A Scalable Approach to Attack Graph Gener-
ation. In: 13th ACM Conference on Computer & Communications Security, pp.
336–345 (2006)

26. Peikari, C., Chuvakin, A.: Security Warrior. O’Reilly, New York (2004)
27. Ray, S., Starobinski, D., Trachtenberg, A., Ungrangsi, R.: Robust Location Detec-

tion with Sensor Networks. IEEE J. on Selected Areas in Comm. 22, 1016–1025
(2004)

28. Snort Intrusion Detection System, http://www.snort.org
29. Valdes, A., Skinner, K.: Adaptive, Model-based Monitoring for Cyber Attack De-

tection. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp.
80–92. Springer, Heidelberg (2000)

http://cobweb.ecn.purdue.edu/~dcsl/publications/detectors-location_addendum.pdf
http://cobweb.ecn.purdue.edu/~dcsl/publications/detectors-location_addendum.pdf
http://nvd.nist.gov/nvd.cfm
http://www.snort.org

A Multi-Sensor Model to Improve

Automated Attack Detection

Magnus Almgren1, Ulf Lindqvist2, and Erland Jonsson1

1 Department of Computer Science and Engineering
Chalmers University of Technology

SE-412 96 Göteborg, Sweden
2 Computer Science Laboratory

SRI International
333 Ravenswood Ave

Menlo Park, CA 94025, USA

Abstract. Most intrusion detection systems available today are using a
single audit source for detection, even though attacks have distinct mani-
festations in different parts of the system. In this paper we investigate
how to use the alerts from several audit sources to improve the accuracy
of the intrusion detection system (IDS). Concentrating on web server at-
tacks, we design a theoretical model to automatically reason about alerts
from different sensors, thereby also giving security operators a better un-
derstanding of possible attacks against their systems. Our model takes
sensor status and capability into account, and therefore enables reason-
ing about the absence of expected alerts. We require an explicit model
for each sensor in the system, which allows us to reason about the qual-
ity of information from each particular sensor and to resolve apparent
contradictions in a set of alerts.

Our model, which is built using Bayesian networks, needs some initial
parameter values that can be provided by the IDS operator. We apply
this model in two different scenarios for web server security. The scenarios
show the importance of having a model that dynamically can adapt to
local transitional traffic conditions, such as encrypted requests, when
using conflicting evidence from sensors to reason about attacks.

Keywords: intrusion detection, alert reasoning.

1 Introduction

The accuracy of an intrusion detection system (IDS), meaning the degree to
which the security officer can trust the IDS to recognize attacks and at the same
time not produce false alarms, can be considered the most important property of
an IDS (a general definition of detector accuracy can be found in [19]). However,
many IDSs do not provide a very high degree of accuracy, because of two common
shortcomings. First, the IDS tends to rely on a single detection method applied to
a single audit source such as network packets, which is not sufficient to accurately
recognize all types of attacks. Second, many IDSs have a propensity for producing

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 291–310, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

292 M. Almgren, U. Lindqvist, and E. Jonsson

massive amounts of alerts, many of which are irrelevant or false. Over time, the
security officer monitoring the alerts from the IDS could learn which types of
alerts can be safely ignored, and even which combinations of alerts indicate a
more serious incident.

A significant amount of research has been conducted to improve the accuracy
of IDSs. Some of that work has been focused on the implementation of detectors,
such as speed improvements or techniques to detect obfuscated attacks. Other
work has been focused on alert processing techniques in the form of alert aggre-
gation and correlation, such as root-cause analysis. Diversity has been proposed
as a principle to be adopted to improve detection coverage. One form of diversity
is to use a combination of detection techniques, for example, signature-based de-
tection combined with statistical anomaly detection. Another form of diversity
is to simultaneously use input from different audit streams, for example, network
packets and application event logs.

While diversity is a promising approach to increasing IDS accuracy, comple-
mentary sensors are currently not widely developed or deployed. This happens
because without automated procedures to take advantage of multiple diverse
alert sources and make the correct inferences, the burden on the security officer
will increase rather than decrease, especially in the cases of conflicting sensor
reports. This paper proposes and investigates a model upon which such auto-
mated reasoning can be based, ultimately presenting the security officer with
actionable and highly accurate information about ongoing attacks, and reducing
the need for operator experience and expertise.

The model presented in this paper is applied to the output of traditional
correlators—we assume that these techniques preprocess the alert stream and
present us with an aggregated set of related alerts concerning an attack (see
Section 7 for a discussion of correlation techniques). We propose a model to
combine the alerts from several intrusion detection systems using different audit
sources. We show how our model can resolve seemingly conflicting evidence about
possible attacks as well as properly account for transient failure modes of the
sensors in the system, such as the network IDS being blind when analyzing
encrypted traffic.

Our approach would benefit from sensors having an intrinsic knowledge of
their own detection capability as well as having modes to specifically monitor
the outcomes of certain attacks. However, our approach also works with tra-
ditional sensors. By using correlated alerts as input, we benefit from previous
research into correlation. As we present them with further refined information,
the security officers can spend their time actively protecting the system instead
of trying to understand the mixed message from intrusion detection sensors.

The rest of the paper is organized as follows. In Section 2 we describe the
notation used in the paper and outline the problem we are investigating. We
then formally describe the assumptions and requirements we need before we
introduce our decision framework in Section 3. We use two scenarios to exemplify
the model, and these are presented in Section 4. The test bed and the experiments

A Multi-Sensor Model to Improve Automated Attack Detection 293

are described in Section 5. We summarize our findings in Section 6 and discuss
related work in Section 7. The paper is concluded in Section 9.

2 Theory

2.1 Notation

We use the term sensor to denote a component that monitors an event stream
(audit source) for indications of suspicious activity according to a detection algo-
rithm and produces alerts as a result. A simple IDS, such as a typical deployment
of the popular tool Snort, in most cases constitutes a single sensor. We therefore
use the terms sensor and IDS interchangeably in this paper. More advanced
IDS deployments could be composed of several sensors that feed into a common
alerting framework.

Let us assume that we use a set of intrusion detection sensors, S, to detect
attacks, and in particular the attack, A. A sensor Si may alert for ongoing
attacks but sometimes gives false alerts. We denote such alerts by Aai

j , where
each sensor may give several alerts for each attack (j-index). If Si is present in
the system and alerts for the attack A, we denote this by Si : Aai

j . For simplicity,
we are going to concentrate on a single attack in the discussion below, so the
index A is not shown explicitly. When the attack A does not trigger any alert
in the sensor Si, we denote this by Si : ¬Aai

j or simpler as Si : ¬ai
j . To simplify

the discussion, we show only the missing alerts that are actually relevant for the
current situation. Finally, a sensor may temporarily be missing in a system or
a specific sensor may not work as intended. Following the same notation as for
alerts, we denote such a malfunctioning or missing sensor with ¬Si. Observing
this state directly is very difficult in current intrusion detection systems, and
often we can only indirectly assume that a sensor is not working correctly. For
example, a heartbeat message may tell us that a network IDS is still running,
but if the traffic is encrypted, the sensor cannot properly analyze it.

Following this notation, we have the four separate cases shown in Table 1.
Each alert for these cases may be true or false, but if the sensor is not working
(iii and iv) we treat all alerts as being false, as they would only coincidentally
be true. We consider case (iv) to be uncommon with more sophisticated sen-
sors, but if it happens the security officer will investigate the (false) alert and
discover the malfunctioning sensor. Finally, as the sensor status cannot directly
be observed, cases (i) and (iv) would look similar to a security operator without
further investigation, as would cases (ii) and (iii).

2.2 Example with Two Sensors

Now consider a particular system with two sensors S1 and S2, where each sensor
can output a single alert for the A-attack (we drop the j-index in this example).

294 M. Almgren, U. Lindqvist, and E. Jonsson

Table 1. The four possible sensor / alert states

(i) Si: ai
j

Si is working correctly and outputs
alert ai

j .

(ii) Si:¬ai
j

Si is working correctly and has not
found any signs that warrant the
output of alert ai

j .

(iii) ¬Si:¬ai
j

Si is not working correctly and does
not output alert ai

j regardless of the
attack status.

(iv) ¬Si: ai
j

Si is not working correctly but still
outputs an alert regardless of the
attack status, for example, when
traffic is encrypted but happens to
contain a pattern that triggers the
alert ai

j .

Table 2. An example us-
ing two sensors with one
alert each

¬a1 ¬a2 (2a)

a1 a2 (2b)

¬a1 a2 (2c)

a1 ¬a2 (2d)

As hinted earlier, the sensor status is seldom directly measured, so with such a
setup only the four cases shown in Table 2 can be directly observed.

The interpretations of (2a) (i.e., the first case in Table 2) and (2b) are straight-
forward. In the first case, no sensor reports anything so we do not investigate
further. In the second case, both sensors warn for an attack and for that reason
it is worth investigating further. However, cases (2c) and (2d) are interesting,
as only one of the two sensors reports the possible ongoing attack. How should
these two cases be interpreted?

Clearly, we need more information to draw any conclusions for cases (2c) and
(2d). The burden of collecting this extra information, and using it to reason
about the attack status for these cases, has often fallen on the security operator.
In our opinion, many correlator techniques have so far taken a simplified but
safe view: if any sensor reports an attack, it should be treated as an attack, i.e.,
the security operator needs to investigate this issue manually. The problem we
are investigating is whether we can improve the automatic analysis and provide
a more refined answer to the security operator. In the remainder of this section,
we describe some reasons for why traditional correlation technologies may have
used the simplified view described above. These reasons are used as a basis for
the discussion in Section 3, where we set up the necessary framework to provide a
model that aids the security operator by solving cases with seemingly conflicting
evidence.

2.3 The Problem of Conflicting Evidence

In Section 2.2, we showed the possible outputs of two sensors, which in cer-
tain cases may be conflicting. Here, we discuss how to interpret those cases of

A Multi-Sensor Model to Improve Automated Attack Detection 295

conflicting sensor output. This discussion serves as a background to understand
the requirements of our model that we introduce in Section 3.

No Complementary Sensors Deployed. First we note that in many typical
environments, cases (2c) and (2d) described above may not be very common,
because the same type of sensor is duplicated across the network to allow for
some partial redundancy in the monitoring capacity. For example, a company
may have two instances of Snort analyzing almost the same traffic. In this case,
the only reason the identical sensors would disagree is if one is broken. Thus,
the only recourse is to interpret both (2c) and (2d) as a sign of an attack. We
would like to point out that even though it may be common to have only one
type of sensor, research shows the benefits of using several different sensors for
attack detection ([3]).

Ambiguity between ‘No Attack’ and a Broken Sensor. Even when we
use different types of sensors we are still faced with the problem of what a
missing alert means. The sensor state is often unknown, and as we showed in
Table 1, a sensor reporting no alert may signify one of two conditions: Si : ¬ai

or ¬Si : ¬ai. In the first case, the sensor is working as intended and does not
detect any signs of an attack. In the second case, the sensor is broken, and for
that reason it cannot reliably detect attacks. Not only is it difficult to determine
the stationary state of a sensor through direct observation, but the conditions for
when a sensor may detect attacks may also change dynamically; a network IDS
is blind to the single encrypted web request, or a request that is routed around
it, and so on. Not knowing the sensor state, the operator cannot confidently
disregard an alert just because only one sensor produced it.

Detailed Sensor Alert Information Missing. Let us say that we do know
that both sensors are working as intended but they report conflicting evidence
as in (2c). Without any detailed information about the particulars of a sensor
and its proclivity to produce false alerts, one cannot automatically decide which
sensor to believe. One might not even know that a1 is missing in (2c). Unless we
have a sensor model, this decision must be left to the human operator.

Generality Has Been Prioritized. Many correlation techniques try to group
alerts belonging to the same attack to make the security operator’s task easier.
As correlation techniques have been developed after most intrusion detection
techniques, the developers of correlation techniques have not had much influence
on the operation of IDS sensors; instead, the focus has been to work with any
sensor.

3 Intrusion Detection Sensor Model

We first describe our assumptions and our requirements. With these clearly in
mind, we then describe our proposed model and its advantages and disadvantages.

296 M. Almgren, U. Lindqvist, and E. Jonsson

3.1 Assumptions and Requirements

As shown in the previous section, we need more information to be able to handle
cases with conflicting information from different sensors. We make the following
assumption in our work:

Assumption 1. We assume that the absence of a particular alert may consti-
tute evidence that an attack is not taking place. At first glance this assump-
tion may look strange, but this is already the case in any IDS deployment
today; with no alert, one assumes that all is well and one does not follow up
with an investigation (this is case (2a) in Section 2.2).

We can then formulate the following requirements.
Requirement 1. We require a sensor model, which tells us whether an alert

for a particular attack is in the set of possible alerts that this sensor can
produce. Such a model could possibly be created by automatic tools [15].

Requirement 2. Furthermore, we require that this sensor model describe the
sensor’s accuracy with respect to detecting a particular attack. Knowing the
sensor’s accuracy helps us resolve cases with conflicting evidence.

Requirement 3. We require sensors to have some degree of functional inde-
pendence. Additional identical sensors analyzing the same event stream do
not provide added value beyond redundancy. However, independence is a
difficult requirement to satisfy and to verify. More work is needed to de-
velop different types of sensors and to measure the functional independence
between them.

Requirement 4. We require knowledge of the sensor status to draw the correct
conclusion. There are two reasons why a sensor may not produce an alert; the
sensor is either functioning normally and has concluded that an attack is not
in progress, or the sensor is malfunctioning. Only in the former case should
we consider a missing alert to be evidence that an attack is not occurring.
The sensor model needs to describe under what conditions a sensor will not
work (for example, when it encounters encrypted traffic).

Now let us return to case (2c) described in Section 2.2 with conflicting in-
formation: ¬a1 , a2. Using assumption 1 above (and knowing to look for the
missing alert from req. 1), we can conclude that one of the sensors is not reliable
in this case. There are two possible interpretations:
– An attack is indeed in progress

• S1 is not working correctly, and therefore did not produce an alert, or
• the attack detection mechanism in S1 does not cover all variants of this

attack.
– There is no attack in progress

• S2 is not working correctly and produced this alert as a result of mal-
functioning, or

• the attack detection mechanism in S2 falsely concluded that an attack
was in progress based on its analysis of the audit source (a traditional
false alarm).

Thus, we are faced with first deciding if all sensors are working in the system
(req. 4). Clearly, if a sensor is malfunctioning in an easily discernible way, we

A Multi-Sensor Model to Improve Automated Attack Detection 297

Fig. 1. A template of the Bayesian model we use.
Each IDS is treated as somewhat independent of
the others, but the complete details are given in
Section 3.2.

Fig. 2. An example of the model
using Snort with the rule for de-
tecting the phf attack (sid=1762).
We use conditional probability ta-
bles with labels (where l-m stands
for low-medium), which are later
replaced with actual probabilities.

can differentiate between these situations. However, if all sensors seem to work
correctly we need to weigh the evidence given by one sensor for this particular
attack against the evidence given by another sensor (req. 2). Simply put, if it
is known that S2 is prone to false alarms for this particular attack, while S1

is more accurate, we can ignore the combined alert for now. This analysis is
possible only if the sensors are somewhat independent (req. 3). Thus, our model
needs to account for the sensor status (and its known weaknesses) as well as the
detection capability of the sensor (rule) for this particular attack.

3.2 Model Description

We use a Bayesian framework to model the sensors and their interdependence.
Such a framework has several advantages, and among them is the intuitive mix
between the graphical model with the underlying formal reliance on probabil-
ity. The model is shown in Figure 1. As shown, the model consists of a series
of nodes and the directional connections between these nodes. The model can
graphically be represented as a DAG (directionally acyclic graph). The nodes
represents variables, and the edges between nodes signify a dependence between
these particular variables. There are efficient algorithms to calculate the poste-
rior probability of a variable, given the observed evidence of other variables.

We use the model to find out whether an attack that should be further in-
vestigated (node investigate-A) is occurring, based on evidence in the form of
alerts (nodes a∗∗) collected from a set of intrusion detection sensors. Based on
several parameters and observations (nodes r∗∗), a sensor may accurately detect
an attack or fail to do so, and this is accounted for in the model (nodes w∗).
The value of each node may be observed in some circumstances (for example, a
specific alert is triggered). In this particular application domain, some nodes will

298 M. Almgren, U. Lindqvist, and E. Jonsson

probably almost always be observed while some others will never be observed.
In Figure 1, the observable nodes are shaded, while the white nodes are seldom
observed directly.

To summarize, in the model we use four types of nodes:
Node inv-A is used to determine if the ongoing attack is serious enough to

be further investigated. Obviously, the value of this node is never directly
observed.

Nodes a∗∗ signify whether we have received particular alerts, and thus serve as
the basis to calculate the node inv-A.

Nodes w∗ model the sensor status, as a missing alert may mean two different
conditions: no attack or a broken sensor. These nodes cannot directly be
observed.

Nodes r∗∗ are used to calculate the sensor status (nodes w∗) in a fashion sim-
ilar to how the nodes a∗

∗ are used to calculate inv-A. These nodes are of-
ten observed and populated with particular observations from the sensor
environment.

The nodes are informally organized into groups based on which intrusion
detection system they belong to. Keeping each IDS as isolated from others as
possible leads to a simpler model and below we elaborate on this topic and
describe the dotted edge with the x found in Figure 1.

Even though each IDS has its own particular failure modes, some observations
are important to several IDSs. For that reason, there are both global (r0) and
local r-nodes. Furthermore, some of the r-nodes report transient observations
while others may report more stationary conditions where a value is sticky,
i.e., remains until explicitly changed. We describe the implementation in further
detail in Section 5. Below we expand on the features of the model.

Parameter Estimation. As with any other probability model, one needs to
estimate parameters for each node. This is difficult, but there are several reasons
why we believe it is feasible for our model.
Using Independence Assumptions: the model takes advantage of the inde-

pendence assumptions visible in the graphical structure and thus reduces
the number of estimates that are necessary as compared with a full joint
distribution without explicit independence assumptions.

Robust Parameter Estimation: furthermore, it is many times enough to
capture the ratio between the parameters while their actual values are less
important [5].

Local Parameters: the model parameters are expressed as something the se-
curity officer is already familiar with, e.g., false positives and false negatives
for each rule.

We envision that most of these parameters have reasonable default values that
can be estimated by the IDS vendor, and that the security officer then only
needs to fine-tune the settings at the local site. It is possible that some of this
fine-tuning can be performed by machine learning algorithms based on current
traffic seen at the site.

A Multi-Sensor Model to Improve Automated Attack Detection 299

Problematic Interdependence between IDSs. We would like to highlight
the problem concerning independence assumptions. Clearly, the model in Fig-
ure 1 is simplified. Keeping a simple and modular structure introduces some
incorrect independence assumptions. For example, let us assume that IDS i and
IDS j are both signature-based IDSs. IDS i has one alert for A while IDS j has
two alerts. In Figure 1, we show that the two alerts from IDS j are dependent,
but that the alert from IDS i is independent of the others. In reality, it is likely
that aj

2 is dependent on, for example, ai
1 as indicated in Figure 1 with the dotted

line with the x. Even different commercial IDSs many times use similar signa-
tures to detect attacks. As will be seen in the examples shown in Section 4, we
sometimes ignore this particular dependence. The reasons are the following:
– First, a model may work very well despite some broken independence as-

sumptions; consider for example the Naive Bayes model, which works surpris-
ingly well despite being very inaccurate in terms of independence
assumptions [11].

– Second, excluding the inter-IDS dependence simplifies the model. If we in-
clude these dependencies between IDSs, it would mean that the inclusion of
a new IDS to the whole system would necessitate a re-evaluation of many
parameters (and thus invalidate the opportunity to have pre-set default
values).

– Third, estimating this dependence is difficult. Someone would have to be an
expert on both IDSs to be able to set the level of dependence between two
alerts.

For these reasons, we sometimes explicitly ignore the inter-IDS dependencies
even though we acknowledge that they exist. Thus, we balance the simplicity of
the model against its accuracy.

3.3 Model Example: Estimating the Parameters

In Figure 2 we show a simplified example of the model, where we have limited the
number of nodes to make it more understandable. In this case, we concentrate
on the phf attack [12]. The background and execution of the attack can be found
in Almgren et al. [3]. By sending a request to run the vulnerable cgi script phf
and including the newline character in hex encoding (%0a), the attacker may
be able to execute arbitrary commands. The script passes control to the shell
without removing the newline character, which has special meaning to the shell.

The open-source IDS Snort has several potential ways to detect this attack
([3]). For example, one can use rule 1762, which detects the string “/phf”
matched with a newline character within the URI. Snort is a network-based
IDS, and for that reason it cannot detect attacks in encrypted traffic (among
other things).

Now let us consider how to estimate the necessary parameters for the model
shown in Figure 2. The structure is given from Figure 1 and we have restricted
each node to be either true (T) or false (F). Even though one can give probability
distributions over each node, we use conditional probability tables (CPTs) in
this paper. A full joint probability distribution would need 16 parameters, but

300 M. Almgren, U. Lindqvist, and E. Jonsson

taking advantage of the independence shown in the figure, we are left with only
8 parameters. As we will show, several of these parameters are easy to specify
and we can also use some conditional independence not visible in the structure.
For example, there is no need to compare the effectiveness of different IDSs,
but all values are set in relation to the current IDS and the underlying attack
it tries to detect. In principle, one needs to consider the following three areas:
the underlying risk of the attack, the likelihood of IDS degrading tricks, and the
false positive / false negative rate. These are discussed in detail below.

Underlying Risk of the Attack. Starting with inv-A, being the node that
signifies whether the attack is serious enough to warrant an investigation, we need
to set a value for the probability P (inv-A = T), known as the prior probability
in a Bayesian model. We consider this to be the most difficult value to specify in
the model. Axelsson [4] has discussed the problems of setting certain parameters
for an anomaly detection system. If false positives are more acceptable than false
negatives one should exaggerate the risk of the attack, which we have done in
our example.

Likelihood of IDS Degrading Tricks. In Section 3.2, we introduced the
r-nodes for observations that may affect the IDS’s detection capability. For a
network-based IDS, this may include encrypted traffic, different types of obfus-
cating techniques, a heartbeat message, and so on. In Figure 2, we have only
one such node, r0

1 . This node signifies whether the web request is encrypted (a
typical failure mode for a network IDS). Thus, we estimate how often the web
requests are encrypted.

We can then move on to w1, a node that signifies whether the sensor is working
correctly but which is never directly observed. If the traffic is encrypted, we
consider it very unlikely that the sensor is working. However, the sensor may fail
for conditions other than encrypted traffic, and thus we let this be reflected in
the estimate for P (w1|¬r0

1).

False Positive / False Negative Rate. For the node a1
1, which signifies

whether the sensor outputs an alert from rule 1762, the first two parameters are
easy to set. When the sensor is not working (the first two rows), we do not expect
to see any alerts. Formally, a1

1 is conditionally independent of inv-A, given that
the sensor is broken (¬w1). For the last two rows, we need to determine the
value of these parameters:
The false positive rate, P (a1

1|w1, ¬inv-A), i.e., the probability that the alert
is triggered when there is no attack.

The power, P (a1
1|w1, inv-A), i.e., how likely the attack will trigger the rule

1762 in Snort. This is easily calculated from the false negative rate (FNR)
of the rule: 1 − FNR.

Both of these values are well known to the security officer and already indirectly
used when manually deciding whether an alert is worth extra examination. If
the alert comes from a rule that has many false alarms, the security officer will
probably not follow up unless there is further evidence.

A Multi-Sensor Model to Improve Automated Attack Detection 301

To summarize, we need to specify eight parameters, but because of the domain
and the inherent structure we are left with four values that the security officer is
already familiar with. These values can be estimated by the IDS vendor, and then
fine-tuned at the local site. As we specified in Section 3.2, parameter estimation
for Bayesian networks is quite robust and a correct absolute number is seldom
necessary as long as the magnitude of the numbers correspond. To emphasize
this fact, we have used a set of predefined ranges to define our model: never, low,
low-medium, medium, medium-high, high, and always. In Section 5 we replace
these labels with their corresponding numerical probabilities and show that the
model is robust against some error when estimating these values. When running
the examples with real traffic, one would rather tune the values according to
knowledge of the network environment and the specifics of the actual alert rule.

4 Example Scenarios

We use two scenarios to exemplify the model. We limit our discussion to attacks
directed at web servers and related software. The web server is a complex piece
of software, often outside the perimeter defense and accessible to anyone in the
world. To complicate matters, the web server often forwards requests to inside
resources (legacy databases) that were never designed with a robust security
model. Being the analogy of the front door to a company, numerous attacks
have been directed toward web servers and the resources with which they com-
municate. There also exist open-source web server alternatives that are mature
enough to allow direct instrumentation (to collect security-relevant events). We
use the basic phf attack to illustrate the principles of our model (see Section 3.3).
Example 1 is how we foresee the typical use of our model: using several comple-

mentary sensors together to increase the accuracy of the system as a whole.
This is also the easiest application of the models, as the parameters can be
reused.

Example 2 shows a deployment that is fairly common among users of IDSs,
with one sensor on the outside of a firewall and another one on the inside.
Even though it is more complicated than the typical use of our model (exam-
ple 1), one can easily foresee how some of the settings could automatically
be set by an automatic tool.

4.1 Example 1: Two Sensors Using Different Audit Streams

In this scenario we deploy two sensors using different audit sources (Figure 3).
The first is the networked-based IDS Snort used previously, and the other one
is developed by us and called webIDS in this paper. webIDS uses events from
within the web server for its analysis. It is a variant of the system described by
Almgren et al. [2], i.e., a signature-based system using pattern matching similar
to that in Snort.

Using two complementary systems improves the attack detection capability,
as shown by Almgren [3]. The Snort system uses rule 1762 described above, while
the webIDS has the following rule for this scenario:

302 M. Almgren, U. Lindqvist, and E. Jonsson

Fig. 3. Model for using Snort together with a sensor within the web server (example 1)

webIDS 1: detects whether the phf program is run successfully by the web
server.

Clearly, this rule will have some false positives if the phf program is normally
used in the environment. However, an alert from webIDS 1 coupled with an alert
from Snort 1762 means that an attack was launched and the script executed
successfully.

The model is shown in Figure 3. Adding independent IDSs to the model does
not change the already-existing parts. For that reason, the Snort part remains
the same and we reuse the values from Figure 2. We only need to add parameters
for w2 and a2

1. To simplify the model, we assume that the webIDS is very resistant
to failures and set P (w2 = T) to be close to one (always). We define the CPT for
a2
1 in a similar fashion as was done for a1

1 in Section 3.3. Note that we exclude
any dependency between the IDSs to simplify the model.

4.2 Example 2: Two Sensors on Opposite Sides of a Firewall Proxy

In this scenario we monitor an internal web server, protected by a firewall / web
proxy. We use one instance of Snort (S2) to monitor traffic outside the proxy
and another instance of Snort for the inside traffic (S1). The resulting model is
shown in Figure 4. The proxy should block all web-related traffic. As long as
the proxy works as expected, we expect that all attacks are blocked. Thus, even
if S2 reports about attacks, these can safely be ignored as long as S1 is quiet.
However, if S1 is broken or taken offline, one should ensure that the proxy is
working as expected.

In this scenario, we want to show how two (identical) versions of Snort still
can be seen as somewhat independent given that they analyze different traffic
streams and thus are used in collaboration in our model.

We show the resulting model in Figure 4. For this scenario, we made several
changes compared to the model shown in Figure 2. First, we replaced the type of
failure observation node from an observation of encrypted traffic to an observation
of a heartbeat message. This change is done to show that one should use a diversity
of r-nodes, even though we restrict them in this paper for clarity. Having S1 inside
of the proxy implies that alerts from this sensor are more serious than alerts from
a sensor without a filtering proxy (as the one in Example 1, shown in Figure 3).

A Multi-Sensor Model to Improve Automated Attack Detection 303

Fig. 4. Model for using two versions of Snort with one outside a proxy and the other
one inside (example 2)

Thus, we lowered the probability for P (a1
1|w1, ¬inv-A), meaning that we expect

fewer false alarms (in the sense that they are not worth further investigation) from
this sensor. For this example, we say that all alerts from the inside sensor should
be investigated.

Furthermore, we have added an explicit dependence between a1
1 and a2

1. As we
run two versions of Snort, we expect that any alert-raising traffic on the inside
also exists outside, i.e., S1 sees a subset of all the traffic passing by S2. The
CPT for a2

1 is shown in the figure. We omitted special r-nodes for w2 to keep
the model simple and to the point.

5 Experiment

We base the simulations and experiments on the two examples described in
Section 4. We first simulated the models presented in Figure 3 and Figure 4,
and then we implemented the models on our test bed. As described above, we
concentrate on the phf attack described in Section 3.3. Even though this may
seem limiting at first glance, it clearly illustrates the principles of our approach.
Other attacks can easily be added later.

5.1 Experiment Setup

The models for Example 1 and Example 2 each have three observable nodes. The
test series used for the simulations are shown in Table 3. When we refer to the
different experiments, we replace the x in the first column with the corresponding
example number. As we noted in Section 2.1, we consider case (iv) in Table 1
uncommon with modern sensors. For example, as Snort cannot rebuild the HTTP
transaction for an encrypted request, the string matching on the URI fails for
rule 1762 and Snort does not produce an alert. Hence, the case TT* for example 1
is unusual in practice and is not included in the test series. Similar reasoning
goes for FT* for example 2.

304 M. Almgren, U. Lindqvist, and E. Jonsson

Table 3. Results of the simulation of example 1 and example 2

Example 1 Example 2

Exp # P(inv-A r1
1a1

1a
1
2) P (w1| . . .) Comment P(inv-A r1

1a
1
1a

1
2) P (w2| . . .)

x-1 0.01 FFF 0.89 no attack / script run 0.02 TFF 0.87

x-2 0.20 FFT 0.80 normal phf (no attack) 0.19 TFT 1.00

x-3 0.30 FTF 0.99
phf attack against
server without the
script

0.96 TTF 0.08

x-4 0.91 FTT 1.00 attack and script run 0.96 TTT 1.00

x-5 0.05 TFF 0.01
broken sensor, but no
script invocation

0.08 FFF 0.84

x-6 0.54 TFT 0.01
broken sensor, and
script run

0.54 FFT 1.00

As our focus is on alert reasoning, normal traffic causing no alerts is quite
uninteresting. Normal web traffic can be used to track down false alarms on a
sensor-per-sensor basis, but it adds little to our analysis of reasoning with the
available alerts. Rather, the analysis of these false alarms would be used to tune
the parameter estimation of our model. For these reasons, we do not use any
normal web requests in our experiment.

In the Comment column in Table 3, we explain what the node status implies
and we use this as a basis to decide what type of traffic to use in the experi-
ment for that particular case. Based on the observable events, we then calculate
the posterior probability for node inv-A. In a real system, we would most likely
collapse this posterior to either investigate or do not investigate using a deci-
sion function. In this paper, we use a simple decision function with a threshold
parameter, 0 ≤ τ ≤ 1, where all values that are less than τ are not considered
worthy of investigation. We let τ = 0.5, thus choosing the most probable class.

For the simulation and the experiment, we map our labels to actual prob-
abilities. Instead of a range (represented by our labels), a Bayesian network
needs an actual probability (as we have shown in Section 3.3). Thus, we collapse
the ranges and let never, low, low-medium, medium, medium-high, high, and
always map to the following values (in order): [0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99].
These values could be fine-tuned. However, in Section 5.4 we show that such
fine-tuning is not always necessary because the model is robust against minor
estimation errors.

5.2 Simulation

We simulated the models used in Examples 1 and 2 by setting the observable
nodes (columns 3 and 7) to a specific value and then calculating the posterior
probability for the other nodes. The simulation results of Examples 1 and 2
are presented in Table 3. Each experimental series is prefixed with the scenario
number when we discuss it in the text.

A Multi-Sensor Model to Improve Automated Attack Detection 305

5.3 Experiment

We implemented the two scenarios in our test bed. The implementation used
the SMILE reasoning engine [10].

For Example 1, we ran normal phf requests and attack phf requests past a
Snort sensor to a web server that either had a script called phf installed, or no
such script. We repeated the experiment with encrypted traffic. The alerts were
collected, and analyzed by our reasoning engine. The results correspond to the
values shown in Table 3.

For Example 2, we sent normal phf requests and attack phf requests to a web
proxy. The proxy either forwarded the result to a web server (proxy broken)
or returned a message stating that the script did not exist (proxy working cor-
rectly). We used two versions of Snort to monitor the traffic. The first version
monitored the traffic to the proxy, while the second monitored the traffic to the
web server. We added a special rule to simulate a heartbeat for Snort. We sim-
ulated the failure of the inside Snort sensor by simply killing the process. All
alerts were collected and analyzed. The results correspond to the values shown
in Table 3. Not shown in the table is P (w1 = T | . . .) for Example 2. These values
are similar to the ones shown in column 4 for Example 1. For example, when
there is no heartbeat the probability of S1 working is only 0.01.

Based on our decision function, we would thus further investigate case 1-4
and case 1-6 for Example 1 and case 2-3, case 2-4, and case 2-6 for Example 2.

5.4 Sensitivity Analysis

One weakness of the model is the difficulty of accurately estimating the para-
meters. For that reason, we exhaustively perturbed each estimate in the models
by 20% and then recalculated the probability for node inv-A. In Example 1, we
have 13 independent parameters and the option of subtracting or adding 20% to
each estimate gives a total of 213 test cases. For each test case, we then compared
the outcome of the decision function (i.e., investigate or do not investigate) with
the outcome from the unperturbed network. There was no difference, implying
that the model is relatively robust against estimation errors.

6 Discussion

Column 2 and column 6 in Table 3 show the probability of having a serious
attack that needs investigation, given the observable evidence in the network. In
a real system, as we specified above, we would most likely collapse the values to
investigate or do not investigate using a decision function. Now let us go through
the results in detail.

6.1 Analysis of Scenario 1

In the upper half of Table 3 for Scenario 1, we do not encrypt the requests.
Thus, both sensors work and we require alerts from both sensors to investigate

306 M. Almgren, U. Lindqvist, and E. Jonsson

the attack. If only the web sensor raises an alert, (1-2), no attack code was
detected by Snort and it was most likely a normal request. This is reflected in
the relatively low value of P (inv-A| . . .) for this case. The same holds for case
1-3. Here, only Snort raises an alert so no phf script was run on the server and
thus the attack did not propagate within the web server. If both sensors alert,
we should investigate further as illustrated by the high value for case 1-4.

In the lower part of Table 3, we encrypt all requests. There is no alert, but
observed encrypted traffic is not regarded as very sensitive, and thus case 1-5
is rather low. However, note that it is five times that of case 1-1 as we have
only one working sensor. If we have an alert from the webIDS when the traffic
is encrypted (case 1-6), the system indicates that we should investigate further.
The missing alert from Snort is either because there is no attack, or because Snort
is not working. Looking closer at the model for this case, we can determine that
P (w1 = T | . . .) = 0.01, i.e., that the Snort IDS cannot properly analyze the
request.

6.2 Analysis of Scenario 2

Now let us have a look at the results for Scenario 2 in Table 3. In the upper half
of the table, we receive a heartbeat from the Snort sensor placed inside the proxy,
meaning that it should work. When we have no alert (case 2-1) or when only the
outside sensor raises an alert (case 2-2), the risks are relatively low as indicated
in Table 3. Case 2-3, on the other hand, is interesting. We have an alert only
on the inside, which seems impossible as the outside Snort sensor should see all
traffic that the inside sensor can see. The only explanation, properly deducted
in the model, is that the outside sensor is broken (P (w2 = T | . . .) = 0.08). The
alert should be investigated as indicated in the table, and sensor 2 should most
likely be restarted. In case 2-4, we have alerts from both sensors and thus the
alert should be investigated.

In the lower part of Table 3, there is no heartbeat from the Snort sensor placed
inside the proxy. For that reason, an alert from the outside sensor is deemed to
be much more serious, as can be seen for case 2-6. In this case, the lack of alert
from the inside sensor is explained by a broken sensor (S1) as there is no longer
a heartbeat (not explicitly shown in the table but discussed in Section 5.3).

6.3 Summary

The interesting cases are thus how the model can directly adapt to changes in the
environment. The evaluation of case 1-2 is very different from case 1-6, despite
the fact that we in both these cases have an alert only from the webIDS. The
same goes for case 2-2 and case 2-6. The model can also make predictions for
when a sensor is broken, as in case 1-5, case 1-6, case 2-3, case 2-5, and case 2-6.

The examples we used were designed to illustrate the basic principles of our
model while being easy to understand. In real operational settings, the mod-
els would be slightly more complex. For example, when using Snort, it would
be prudent to have indicators of both encrypted traffic (as in Example 1) and

A Multi-Sensor Model to Improve Automated Attack Detection 307

heartbeats (as in Example 2). It would be easy to modify the model to incor-
porate information from two such nodes. One can also imagine using the results
from a vulnerability scan to adjust the weight of the evidence—indications of an
attack for which the target is not vulnerable would be given lower weight.

7 Related Work

Several research groups have presented correlation techniques that are able to
cluster related alerts, thus presenting the security operator with sets of related
alerts belonging to (it is hoped) a single attack. Even though these techniques
reduce the number of alerts the security officer needs to consider at a single time,
they do not alleviate the actual analysis of the alerts to decide whether an attack
is in progress. As we stated in Section 1, we find our approach complementary and
we even assume that such a traditional correlator preprocesses the data before
it is given to the model presented in this paper. See the excellent overview given
by Kruegel et al. [14] and the references therein.

Other correlation efforts have tried to recognize predefined attack scenar-
ios (Debar et al. [9]) or correlating based on the capabilities gained by the at-
tacker from each attack step (Ning et al. [18], Cheung et al. [6], Cuppens et al. [7],
and Zhou et al. [23]). Even though some of these approaches account for an im-
perfect alert stream with missed attack steps, they do not resolve conflicting
evidence or model the IDS failure modes as we do. Our approach increases the
accuracy of the alert stream and would thus also increase the performance of
these higher-level correlation efforts.

Other researchers have focused on using several sensors to collect information
about attacks. Abad et al. [1] use a data mining approach to correlate information
from different logs on a single host. The underlying ideas are similar to those of
our approach. However, we include negative information (no alert) when judging
whether an attack is in progress and also try to explain the missing information.

Dagorn [8] discusses a cooperative intrusion detection system for web applica-
tions. Thresholds are avoided and instead a Bayesian framework is used, where
each node has a twin to measure its confidence level. In our approach, we use a
much more constrained view of the sensors and their capabilities but in return
we can then reason more about alerts we have.

Tombini et al. [20] combine an anomaly-based IDS with a misuse IDS. They
have an enlightening discussion concerning combinations of alerts from the two
systems but they focus on a serial combination of the IDSs as opposed to our
approach, and they do not consider sensor failure.

Morin et al. [17] introduce a formal model for correlation and discuss some
scenarios where this model can be used. Even though Morin et al. describe the
need to solve inconsistencies in the output from several IDSs, they do not show
any model to do so. Morin et al. [16] also show an application of Chronicles to
IDS. However, in this paper they explicitly state that they only use available
alerts. In our approach, we also take advantage of false negatives.

308 M. Almgren, U. Lindqvist, and E. Jonsson

Kruegel et al. [13] describe an IDS for analyzing operating system calls to
detect attacks against programs. They use the same decision framework from
artificial intelligence (i.e., Bayesian networks) as we do, but explore a different
problem from the one presented here.

The two approaches most similar to ours are Yu et al. [21] and Zhai et al. [22].
The former tries to predict the intruder’s next goal with hidden colored petri
nets. They infer missing alerts and reason about alerts using an exponentially
weighted Dempster-Shafer theory of confidence. They do not, as we do, explicitly
model an IDS weakness to use missing alerts as evidence against an ongoing
attack.

Zhai et al. [22] use Bayesian networks to combine event-based evidence (in-
trusion detection alerts) with state-based evidence (observations in the environ-
ment) by chaining them together in a causal structure. Even though their model
considers false negatives in a limited way, they do not account for the failure
modes of the IDS and thus cannot explain why or how an attack was missed. A
consequence is that they also do not use true negatives as evidence against an
attack in the same way we do.

Finally, we would like to mention tools such as Thor (Marty [15]). An extension
to Thor, for example, would automate the need to manually build correlation
tables and set the parameters that are needed for our model.

8 Future Work

We would like to extend the sensor models we have started to build. We would
also like to run the system in more challenging environments to learn more
about its limitations and how the model can be improved. For example, we have
considered adding a general threat node. This would allow the system to increase
its sensitivity in certain scenarios and lower it in others, based on input from
the security operator. In addition, we would like to investigate how to build a
sensor that is better tailored to the requirements posed by our model.

9 Conclusions

We have proposed and investigated an intrusion detection model that can ana-
lyze alerts from several audit sources to improve the detection accuracy of the
intrusion detection system (IDS) as a whole. Our model, expressed in the form
of a Bayesian network, can resolve seemingly conflicting evidence collected from
different audit sources, thus making it different from other cluster-based correla-
tion approaches. We explicitly model the transitory state of the IDS sensor and
can therefore reason about the case when an alert is not produced (a negative)
in addition to the case when an alert is produced (a positive).

We validate our model in two scenarios in our test bed. We show that not
only can the model correctly reason about evidence collected from several audit
sources, but it can also point out when a sensor seems to have failed.

A Multi-Sensor Model to Improve Automated Attack Detection 309

Acknowledgments. The authors are grateful for valuable comments from our
colleagues Daniel Hedin, Marina Papatriantafilou, David Sands and Alfonso
Valdes. This material is based upon work supported by the Swedish Emergency
Management Agency.

References

1. Abad, C., Taylor, J., Sengul, C., Yurcik, W., Zhou, Y., Rowe, K.: Log correlation
for intrusion detection: A proof of concept. In: ACSAC 2003: Proceedings of the
19th Annual Computer Security Applications Conference, p. 255. IEEE Computer
Society, Los Alamitos (2003)

2. Almgren, M., Debar, H., Dacier, M.: A lightweight tool for detecting web server
attacks. In: Tsudik, G., Rubin, A. (eds.) Network and Distributed System Secu-
rity Symposium (NDSS 2000), San Diego, USA, Feburary 3–4, 2000, pp. 157–170.
Internet Society (2000)

3. Almgren, M., Jonsson, E., Lindqvist, U.: A comparison of alternative audit sources
for web server attack detection. In: Erlingsson, Ú., Sabelfeld, A. (eds.) 12th Nordic
Workshop on Secure IT Systems (NordSec 2007), October 11–12, pp. 101–112.
Reykjav́ık University, Iceland (2007)

4. Axelsson, S.: The base-rate fallacy and its implications for the difficulty of in-
trusion detection. In: Proceedings of the 6th ACM Conference on Computer and
Communications Security, November 1999. Kent Ridge Digital Labs (1999)

5. Breese, J., Koller, D.: Tutorial on Bayesian Networks. Internet (1997),
http://robotics.stanford.edu/∼koller/BNtut/BNtut.ppt

6. Cheung, S., Lindqvist, U., Fong, M.W.: Modeling multistep cyber attacks for sce-
nario recognition. In: DARPA Information Survivability Conference and Exposition
(DISCEX III), Washington, DC, April 22–24, 2003, vol. I, pp. 284–292 (2003)

7. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection
framework. In: Proceedings of the IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2002, pp. 202–215. IEEE Press, Los Alamitos (2002)

8. Dagorn, N.: Cooperative intrusion detection for web applications. In: Pointcheval,
D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS, vol. 4301, pp. 286–302. Springer,
Heidelberg (2006)

9. Debar, H., Wespi, A.: Aggregation and correlation of intrusion-detection alerts. In:
RAID 2000: Proceedings of the 4th International Symposium on Recent Advances
in Intrusion Detection, pp. 85–103. Springer, Heidelberg (2001)

10. Decision Systems Laboratory, University of Pittsburgh. SMILE reasoning engine
for graphical probabilistic model (2008), http://dsl.sis.pitt.edu

11. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29(2-3), 103–130 (1997)

12. Hernan, S.V.: ‘phf’ CGI script fails to guard against newline characters. CERT/CC;
Internet (January 2001), http://www.kb.cert.org/vuls/id/20276

13. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for
intrusion detection. In: ACSAC 2003: Proceedings of the 19th Annual Computer
Security Applications Conference, p. 14. IEEE Computer Society, Los Alamitos
(2003)

14. Kruegel, C., Valeur, F., Vigna, G.: Intrusion Detection and Correlation. Advances
in Information Security, vol. 14. Springer, Heidelberg (2005)

http://robotics.stanford.edu/~koller/BNtut/BNtut.ppt
http://dsl.sis.pitt.edu
http://www.kb.cert.org/vuls/id/20276

310 M. Almgren, U. Lindqvist, and E. Jonsson

15. Marty, R.: Thor - a tool to test intrusion detection systems by variations of attacks.
Master’s thesis, Swiss Federal Institute of Technology (ETH), Institut für Tech-
nische Informatik und Kommunikationsnetze (TIK), Zurich, Switzerland (2002),
http://www.raffy.ch/projects/ids/thor.ps.gz

16. Morin, B., Debar, H.: Correlation of intrusion symptoms: An application of Chron-
icles. In: Vigna, G., Jonsson, E., Kruegel, C. (eds.) RAID 2003. LNCS, vol. 2820,
pp. 94–112. Springer, Heidelberg (2003)

17. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2: A formal data model for IDS
alert correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS,
vol. 2516, pp. 115–137. Springer, Heidelberg (2002)

18. Ning, P., Cui, Y., Reeves, D.S.: Analyzing intensive intrusion alerts via correlation.
In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 74–94.
Springer, Heidelberg (2002)

19. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 240(4857),
1285–1293 (1988)

20. Tombini, E., Debar, H., Mé, L., Ducassé, M.: A serial combination of anomaly
and misuse IDSes applied to HTTP traffic. In: ACSAC 2004: Proceedings of the
20th Annual Computer Security Applications Conference (ACSAC 2004). IEEE
Computer Society, Los Alamitos (2004)

21. Yu, D., Frincke, D.: Improving the quality of alerts and predicting intruder’s next
goal with hidden colored petri-net. Comput. Netw. 51(3), 632–654 (2007)

22. Zhai, Y., Ning, P., Iyer, P., Reeves, D.S.: Reasoning about complementary intrusion
evidence. In: ACSAC 2004: Proceedings of the 20th Annual Computer Security Ap-
plications Conference, Washington, DC, USA, pp. 39–48. IEEE Computer Society,
Los Alamitos (2004)

23. Zhou, J., Heckman, M., Reynolds, B., Carlson, A., Bishop, M.: Modeling network
intrusion detection alerts for correlation. ACM Trans. Inf. Syst. Secur. 10(1), 4
(2007)

http://www.raffy.ch/projects/ids/thor.ps.gz

Monitoring SIP Traffic Using Support Vector
Machines

Mohamed Nassar, Radu State, and Olivier Festor

Centre de Recherche INRIA Nancy - Grand Est
615, rue du jardin botanique, 54602

Villers-Lès-Nancy, France

Abstract. We propose a novel online monitoring approach to distin-
guish between attacks and normal activity in SIP-based Voice over IP
environments. We demonstrate the efficiency of the approach even when
only limited data sets are used in learning phase. The solution builds
on the monitoring of a set of 38 features in VoIP flows and uses Sup-
port Vector Machines for classification. We validate our proposal through
large offline experiments performed over a mix of real world traces from
a large VoIP provider and attacks locally generated on our own testbed.
Results show high accuracy of detecting SPIT and flooding attacks and
promising performance for an online deployment are measured.

1 Introduction

The voice over IP world is facing a large set of threats. SPAM on email systems
takes a new and very annoying form on IP telephony advertising. This threat is
known as SPIT (Spam over Internet Telephony). However, SPIT is not the only
threat vector. The numerous software flaws in IP phones and servers affect their
reliability and open the door to remotely attack previously unseen in the “stable”
world of telecommunication operators (PSTN), which was based on mutual trust
among few peers. Leveraging the IP to support voice communications exposes
this service (voice) to the known denial of service attacks that can be easily
implemented by service or network request flooding on the Internet. Resource
exhaustion thus automatically finds its place against SIP proxies and back-to-
back user agents, which are essential to support this critical infrastructure. The
list of potential threats is huge and ranges from VoIP bots (that could spread
by malware and perform distributed attacks, perform SPIT or toll fraud), to
eavesdropping and Vishing (similar attack to the Phishing are using VoIP as the
transport vehicle) [1].

Securing VoIP infrastructures constitutes one of the major challenges for both
the operational and research communities because security by design was not
a key component in the early phases of both VoIP research and development.
VoIP-specific security solutions are currently required by the market because the
research and standardization efforts are still trying hard to address the issues of
securing and monitoring VoIP infrastructures.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 311–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

312 M. Nassar, R. State, and O. Festor

Our work fits into these efforts and addresses a new monitoring approach for
VoIP specific environments. Our monitoring scheme is based on Support Vector
Machines for efficient classification. We continuously monitor a set of 38 features
in signaling time slices and use these features as the raw input to the classification
engine. A threshold based alarm generator is placed on top of the classification
engine. We show that the system is both efficient and accurate and study the
impact of the various features on the efficiency.

We start the presentation with a short survey on VoIP security with focus on
flooding attacks and SPIT. We then give a functional description of our moni-
toring solution together with the definition of the 38 features computed in our
system for classification (section 3). In section 4, we provide a short mathemat-
ical background of the SVM learning machine model used in the monitoring
process. Offline traces inspection is presented in section 5 where we also describe
the data set. Section 6 demonstrates the performances of our approach to de-
tect different types of attacks. Related work is addressed in section 7. Section 8
concludes the paper and enumerates some future work.

2 The Threat Model

2.1 Flooding Attacks

Denial of service attacks can target the signaling plane elements (e.g. proxy,
gateway, etc.) with the objective to take them down and produce havoc in the
VoIP network. Such attacks are launched by either flooding the signaling plane
with a large quantity of messages, malformed messages or executing exploits
against device specific vulnerabilities.

The authors of [2] categorize some of these attacks based on the request URI
and perform a comparative study of these ones against popular open source VoIP
equipment. We adopt the same categorization, i.e.:

– UDP flooding: Since the vast majority of SIP systems use UDP as the trans-
port protocol, a large amount of random UDP packets are sent in an attempt
to congest the network bandwidth. Such attacks produce a high packet loss.
Legitimate call signaling has thus a reduced probability to reach the target
and to be processed.

– INVITE flooding with a valid SIP URI: The attacker calls one user/phone
registered at a server/proxy. The proxy relays the calls to the phone. If the
proxy is stateful it will manage a state machine for every transaction. The
phone is quickly overloaded by the high rate of calls and is no more able to
terminate the calls. As a result, the server is allocating resources for a long
time and it will run out of memory.

– INVITE flooding with a non existent SIP URI: If the attacker doesn’t know a
valid SIP URI registered on the target, it can send calls to an invalid address.
The proxy/server responds with an error response like “user not found”.
When the attack rate is higher than the server capabilities, the resources are
exhausted. This type of flooding is less disturbing than the previous one but

Monitoring SIP Traffic Using Support Vector Machines 313

the target CPU is loaded with useless transactions and legitimate requests
may be rejected.

– INVITE flooding with an invalid IP domain address: The attacker calls a
user with a rogue IP address of the destination domain. The target is led
to connect several times to an unreachable host/network while keeping the
state of the current SIP transaction. This attack is efficient on some proxies
like OpenSER [2].

– INVITE flooding with an invalid domain name: The attacker calls a user
with a false destination domain name. The target is trapped to send DNS
requests to resolve the domain name. The target may issue different DNS
types (A, AAAA, SRV, NAPTR, ENUM) and repeat them multiple times.
In the same time, the target is managing the transactions waiting for a
valid DNS response to proceed. Memory is quickly exhausted. The effect of
this attack on the performance of OpenSER is shown in Fig. 1. The impact
is evaluated in terms of duration, number of messages exchanged and final
state of sessions or transactions. The behavior of the server can be divided in
two successive phases. In the first phase, the first few requests are correctly
handled (REJECTED) but the session duration is increasing and the proxy
is slowing down. The number of messages is increasing because of response
retransmissions (no ACK is sent by the attacker). In the second phase, the
proxy is no more able to handle the requests (still in CALLSET state) so the
proxy is taken down. The take down time is about 20 seconds for an attack
having just one INVITE/s rate.

– INVITE flooding with an invalid SIP URI in another domain: The attacker
calls a user/phone located in another domain than the target’s one. The
target relays all requests to the server/proxy of the other domain. The latter
replies with an error response. In this way, multiple targets are hit at the
same time and cascading failures occur.

– INVITE flooding with a valid SIP URI in another domain: The attacker calls
a user/phone registered in another domain. The target relays all requests
to the server/proxy of the other domain which sends them to the phone.
The phone gets quickly out of service and maintaining the state by the
intermediary servers will exhaust the resources from all the servers in the
forwarding chain.

– INVITE/REGISTER flooding when authentication is enabled: The attacker
sends INVITE or REGISTER messages and then stops the handshaking
process. The proxy/registrar responds with a challenge and waits for the
request to be send again with the proper authentication credentials. This
process is costly for the proxy/registrar in term of computing (generating
challenges and nonces) and memory (dialogs/transaction state machines).

2.2 Social Threats and SPIT

Social threats are attacks ranging from the generation of unsolicited commu-
nications which are annoying and disturbing for the users to more dangerous
data stealing (Vishing) attacks. The threat is classified as social since the term

314 M. Nassar, R. State, and O. Festor

Fig. 1. OpenSER Response to an INVITE Flooding with Invalid Domain Name

“unsolicited” depends on user-specific preferences. This makes this kind of at-
tack difficult to identify. An example of this is a threat commonly referred to
as SPam over Internet Telephony (SPIT). This threat is similar to spam in the
email systems but is delivered by means of voice calls. This leverages the cheap
cost of VoIP when compared with legacy phone systems. It’s currently estimated
that generating VoIP calls is three order of magnitude cheaper than generating
PSTN calls. Such SPIT calls can be telemarketing calls that sell products. A sub-
tle variant of SPIT is the so-called Vishing (VoIP phishing) attack, which aims
either to make the callees dial expensive numbers in order to get the promised
prize or to collect personal data redirecting the users towards an Interactive
Voice Responder (IVR) pretended to be trusted. Most of these attacks are going
to be generated by machines (bot-nets) programmed to do such a job. Unso-
licited communications (like SPIT or Vishing) are, from a signalling point of
view, technically correct transactions. It is not possible to determine from the
INVITE message (in the case of SIP) if a VoIP transaction is SPIT or not. From
a technical point of view, the challenge is actually higher since the content is not
available to help in the detection until the phone rings (disturbing the user) and
the callee answers the call. For this reason, techniques successfully used against
e-mail spam like text filtering are hardly applicable in the VoIP sphere. Even if
a transaction is identified as unsolicited how to handle such a transaction highly
depends on the legal environment in the country of the caller.

3 Our Monitoring Solution

When facing the mentioned threats, monitoring of the signalling traffic can de-
tect anomalous situations and prevent them. The monitoring scheme can be
quite simple and flexible to support different techniques. Thus, our approach
follows these principles. As shown in Fig. 2, we track SIP messages in a queue
of predefined size. Once the queue is full, this slice of messages is used to com-
pute a vector of statistics/features. The classifier decides if a vector represents a
certain anomaly and issues an alarm event if necessary. This approach is based
on a learning phase in which couples (vector, class Id) have been used to feed
the engine for learning. This learning process can be made on the fly during the

Monitoring SIP Traffic Using Support Vector Machines 315

operational phase of the monitoring system by allowing it to update the pre-
diction model over time. Finally, an event correlator or decider has to filter and
correlate the events. It generates an alarm for a group of events if they trigger
one of the rules/conditions. e.g. if the number of events of type i bypasses a
certain threshold in a period of time t.

The architecture is modular and enables experimenting with different classi-
fication and artificial intelligence techniques ranging from statistics and infor-
mation theory to pattern classification and machine learning. The pace of the
system tpace is the time it takes to make a decision about one slice without
accounting for the time needed by the event correlation stage. This time is com-
posed of two components: the analysis time of the processor and the machine
time of the classifier. The design achieves real time pace if tpace is less than the
size of the slice S divided by the arrival rate of messages λ:

tpace = tanalysis + tmachine

tpace <
S

λ

We define in the following the important features that characterize a slice of
SIP traffic and motivate why we collect them. We divide these features in four
groups:

– General Statistics: are number of requests, number of responses, number
of requests carrying an SDP (Session Description Protocol) body, average
inter requests arrival time, average inter response arrival time and average
inter requests arrival time for requests having SDP bodies; these statistics
represent the general shape of the traffic and indicate the degree of conges-
tion. The fraction of requests carrying SDP bodies (normally INVITE, ACK
or UPDATE) is a good indicator because it will not exceed a certain thresh-
old. An excessive use of re-INVITE or UPDATE for media negotiation or
maybe QoS theft increases the number of SDP bodies exchanged and decre-
ments the average inter-arrival of them. Flooding attacks are associated with
peaks of all these statistics.

– Call-Id Based Statistics: are number of Call-Ids, average of the duration
between the first and the last message having the same Call-Id, the average
number of messages having the same Call-Id, the number of different senders
(the URI in the From header of a message carrying a new Call-Id) and the
number of different receivers (the URI in the To header of a message carrying
a new Call-Id). Similar to the Erlang model used in the telecommunication
networks, where the arrival rate of calls and the average duration of a call
characterize the underling traffic, the arrival rate of Call-Ids (can be starting
a call or any kind of SIP dialog) and the interval time of messages having the
same Call-Ids, can be used to characterize the overlay SIP traffic. Neverthe-
less, we notice that non-INVITE dialogs have shorter durations and fewer
number of messages than INVITE dialogs. Thus their Call-Id statistics can
be taken as different features.

316 M. Nassar, R. State, and O. Festor

Fig. 2. Real-time Online SIP Traffic Monitoring

– Distribution of Final State of Dialogs/Call-Ids: Since we are using a
limited number of messages in the traffic analysis unit, dialogs can be par-
titioned into two or several units/slices. The final state of a dialog at the
analysis moment is considered and this one is not necessarily the final state
when all the messages of the dialog can be taken into account. The following
states are defined: NOTACALL: for all non-INVITE dialogs, CALLSET: for
all calls/INVITE dialogs that do not complete the initiation, CANCELED:
when the call is cancelled before it is established, REJECTED: for all redi-
rected or erroneous sessions, INCALL: when the call is established but not
realized yet, COMPLETED: for a successful and ended call and RESIDUE:
when the dialog does not start with a request. This latter is a residual of mes-
sages in a previous slice. In a normal situation where the size of the unit is
large enough, NOTACALL, COMPLETED and REJECTED (in busy or not
found situations) dominate this distribution. Major deviations may indicate
an erroneous situation.

– Distribution of SIP Requests: are INVITE, REGISTER, BYE, ACK,
OPTIONS, CANCEL, UPDATE, REFER, SUBSCRIBE, NOTIFY, MES-
SAGE, INFO, PRACK. Although the first five types represent the main meth-
ods used in SIP, every other type may point out a specified application running
above. The number of REGISTER sent by a user within a time interval is indi-
rect proportional to the period of registration (expires parameter or Expires
header). Obviously, the total number of REGISTER messages is proportional
to the number of users of the domain and inversely proportional to the average
period of registration among all users. The existence of SUBSCRIBE and NO-
TIFY messages indicates SIP presence services. Instant messaging can also be
revealed by MESSAGE requests. REFER requests may reveal a SIP peer to
peer application or some call transfer running above. INFO requests are nor-
mally used to carry out of band DTMF tones within PSTN-VoIP calls. Finally,
PRACK requests may reveal VoIP to PSTN activity.

– Distribution of SIP Responses: are Informational, Success, Redirection,
Client Error, Server Error, Global Error. An unexpected high rate of error
responses is a good indication for error situations.

Among the different scientific approaches in the area of classification (Bayesian
networks, decision trees, neural networks), we have chosen the support vector
machines approach for their superior ability to process high dimensional

Monitoring SIP Traffic Using Support Vector Machines 317

data [3,4]. SVM is a relatively novel (1995) technique for data classification
and exploration. It has demonstrated good performance in many domains like
bioinformatics and pattern recognition (e.g. [5] and [6]). SVM has been used
in network-based anomaly detection and has demonstrated better performance
than neural networks in term of accuracy and processing proficiency [7]. In the
next section, we give a short description of the SVM concept and methodology.

4 Support Vector Machines

Principle. Given a set of couples S = (−→xl , yl)1≤l≤p, with yl ∈ {−1, +1}, which
denotes the correct classification of the training data, the SVM method tries to
distinguish between the two classes by mean of a dividing hyperplane which has
as equation −→w .−→x +b = 0. If the training data are linearly separable, the solution
consists in maximizing the margin between the two hyperplanes, −→w .−→x + b = +1
and −→w .−→x + b = −1, such that for all points either −→w .−→x + b ≥ +1 (1) or
−→w .−→x + b ≤ −1 (2). This is equivalent to minimizing the module |−→w | because
the distance between the two mentioned hyperplanes is 2/|−→w |. The resulting
quadratic problem where the conditions (1) and (2) are aggregated is formulated
as:

Find −→w and b to minimize 1
2
−→w .−→w

so that yl(−→w .−→xl) + b ≥ 1∀(−→xl , yl) ∈ S

The non linear separation has a similar formulation except that we replace the
dot product by a non-linear kernel function. The kernel function takes the data
set to a transformed feature space where it searches the optimal classifier. The
transformation may be non-linear and the transformed space high dimensional.
The maximum-margin hyperplane in the high-dimensional feature space may be
non-linear in the original input space. The following kernels can be used :

– linear Kl(−→x , −→z) = −→x .−→z
– polynomial Kd(−→x , −→z) = (γ−→x .−→z + r)d , γ > 0
– radial basis function krbf (−→x , −→z) = exp(−γ|−→x − −→z |2) where γ > 0
– sigmoid ks(−→x , −→z) = tanh(γ−→x .−→z + r), γ > 0 and r < 0

The C-SVC (C parameter - Support Vector Classification) approach is particu-
larly interesting when the training data is not linearly separable.

C-SVC. For the general case where the data S is not separable, the solution
allows some points to be mislabeled by the separating hyperplane. This method,
so called soft margin, is expressed by the introduction of slack variables ξl where
ξl measures the degree of misclassification of a point xl. The objective function
is then increased by a function which penalizes non-zero ξl, and the optimization
becomes a trade off between a large margin, and a small error penalty.

318 M. Nassar, R. State, and O. Festor

Find −→w , b and ξ to minimize 1
2
−→w .−→w + C

∑
l ξl

so that
{

yl(−→w .−→xl) + b ≥ 1 − ξl, ∀(−→xl , yl) ∈ S
ξl ≥ 0, ∀l

5 Monitoring SIP

We aim to detect anomalies within a SIP traffic capture, demonstrate the accu-
racy of the learning machine to identify attacks and non-attacks and distinguish
between different types of attacks. We have performed an extensive analysis on
offline VoIP traces in order to assess the performance of our approach.

We use the popular LibSVM tool [8] which contains several algorithms for
classification and regression. In addition, the tool provides support for multi-
class classification and probability estimates (so a test vector xi seems to be
of class i with a probability pi) as well as support for one class SVM training.
LibSVM is bound to other several tools such as an algorithm that performs a
grid search over the SVM parameters space and optimizes their values by cross
validation (divide the data into n subsets, for i going from 1 until n, learn over all
the subsets except subset number i then test over subset number i). At the end,
we can measure the test accuracy for each subset. The aggregation of all results
is the accuracy given by the selected parameters. In Fig. 3 we illustrate this tool’s
flow. The data we use in this study originates from two different sources. The
first source is traffic from a real-world VoIP provider and it is supposed to be
completely normal. The second source is signaling traffic from a small test-bed
installed by us to generate different forms of SIP attacks. We have three types
of data files: clean and normal trace, clean attack trace, and mixed trace which
is a normal trace where attack is injected.

To be processed by the SVM tool, each data file is cut into slices and entered
into the analyzer. For each slice, the analyzer evaluates a set of predefined fea-
tures (38 variables are defined in our study) and builds a vector for the LibSVM.
All vectors are assembled in one file and annotated as either attack vector or
normal vector. In Fig. 4, this process is shown for a mixed trace.

Fig. 3. SVM Flow Chart Fig. 4. Analysis Flow Chart

Monitoring SIP Traffic Using Support Vector Machines 319

Fig. 5. Long Term Statistics over Real World Traces

5.1 Normal Traffic

The input data is a SIP trace from a two days continuous capture at a real
world VoIP provider server. We performed a preliminary long term analysis of
the traces with a two hours step. We depict the results in the four charts of
Fig. 5. If we consider the distribution of different SIP messages, we can remark
the following:

– The two main components of the traffic are the OPTIONS messages in the
first place and then the REGISTER messages.

– Some methods are absent from the capture such a MESSAGE, PRACK and
UPDATE.

– Some methods like NOTIFY have constant statistics over all periods of the
day which reveal SIP devices remaining always connected and periodically
sending notifications.

– The three main components of the call signalling (INVITE, BYE and ACK)
have practically constant ratios over all the slots, with an average ratio
#INV ITE/#BY E = 2.15 and #INV ITE/#ACK = 0.92.

Response distribution is dominated by the 2nd response class (most of them be-
long to OPTIONS and REGISTER transactions). 3xx, 5xx and 6xx are very rare
while informational responses (1xx) follow INVITE messages because they are
exclusively used in INVITE transactions (the average ratio #INV ITE/#1xx =
0.59 can be explained by the fact that a call probably regroups one 100 Trying
and one 180 Ringing so two 1xx responses). Average inter-request arrival and
average inter-response arrival seem to be constant over all periods and they
are about 20 ms. While average inter-request carrying SDP bodies which are
exchanged in call dialogs move inversely to the quadruple (INVITE-BYE-ACK-
1xx) curve, they reach 3s in quiet hours and decrease to 0.5s in rush hours.

320 M. Nassar, R. State, and O. Festor

Fig. 6. Testbed of Attack Generation

5.2 The Testbed

The testbed consists of one OpenSER server and three other machines: the
first machine plays the role of the attacker and uses a number of hacking tools
(scanning, flooding, SPIT). The two other machines play the role of victims
where one hundred SIP bots are equally distributed and running. The bots are
programmable SIP agents and are controlled by an IRC channel1. All SIP bots
and a GrandStream hardphone are registered to the OpenSER server and all
machines belong to the same domain. Traces of attacks performed by the attacker
machine are collected at the OpenSER server.

6 Performance and Accuracy

All experiments are done in a machine which has an Intel Pentium 4 CPU
3.40GHz and 2GB RAM memory running a Linux kernel 2.6.18-1. In term of
performance, experiments show that a file containing 2449 slices/vectors of 38
features takes between 196 and 994 ms in the SVM prediction stage (depending
on the used kernel).

Coherence Test

The first question we addressed was how many of the normal traces are self-
similar and consistent. For example, is traffic from 22:00 to 02:00 from a day
similar to traffic of the same period in another day? To test the coherence be-
tween two given traces, we used the following procedure: the analyzer evaluates
feature vectors from each trace. Vectors are then labeled with respect to the
origin trace and scaled. We make a 2-fold training test over all the vectors. In
a 2-fold test, training is done over one part of the file and the testing is per-
formed over the second. We define the coherence to be indirect proportional
to the resulting accuracy of the 2-fold cross training. As long as the SVM can
not distinguish between the two traces, they are tagged to the same class. In
Table 1, we summarize some results:
1 http://www.loria.fr/~nassar/readme.html

http://www.loria.fr/~nassar/readme.html

Monitoring SIP Traffic Using Support Vector Machines 321

Table 1. Coherence Test for two Successive Days

Day 1 06-10 10-14 14-18 18-22
Day 2 06-10 10-14 14-18 18-22
Accuracy(%) 55.91 53.72 52.83 56.90

Table 2. Coherence Test for Different Periods of the Same Day

Day 1 02-06 02-06 02-06 02-06 22-02
Day 1 06-10 10-14 14-18 18-22 22-02
Accuracy(%) 51.82 62.79 63.72 63.76 60.80

We tested the coherence of a period with respect to other periods. In Table 2,
we show the results of the same procedure for a period of 2-6 of Day 1 compared
to other periods of the same day. SVM is not able to label 50% of vectors in
the correct class while proceeding with the same period of two successive days
and 40% of vectors during different periods of the same day. The second table
reveals that period 02-06 is more coherent with neighboring periods (06-10 and
22-02) than with other periods of the day. In conclusion, the coherence of the
data is acceptable.

Multi-Class Detection Experiment

We also tested SVM’s ability to distinguish between different classes of traffic:
for instance traces coming form different VoIP platforms. We built a group of
four traces, each representing a different traffic class : normal traffic, a burst
of flooding DoS, a trace generated by the KIF stateful fuzzer [9], and a trace
generated by an unknown testbed as shown in Table 3. The size of the analyzed
slice is fixed to 30 messages. After analysis, a 2-fold training/testing cross test is
performed over all respectively labeled vectors (2449 vectors). The test Accuracy
is defined as the percentage of correctly classified vectors over all test vectors.
When the RBF (Radial Basis Function) kernel is used with default parameters
(C=1 and γ = 1/38), the accuracy is 98.24%.

Table 3. Multi-Class SIP Traffic Data Set

Trace Normal DoS KIF Unknown
SIP pkts 57960 6076 2305 7033
Duration 8.6(min) 3.1(min) 50.9 (min) 83.7(day)

Comparison between Different Kernel Experiments

The RBF kernel is a reasonable first choice if one can assume that the classes are
not linearly separable and because it has few numerical settings (small number of

322 M. Nassar, R. State, and O. Festor

Table 4. Testing Results for Different Kernels

Kernel Parameters Accuracy(%) Time(ms)
Linear C = 1 99.79 196

C = 1;
Polynomial γ = 1/38; 79.09 570

r = 0; d = 3

C = 1;
Sigmoid γ = 1/38; 93.83 994

r = 0

C = 1;RBF
γ = 1/38

98.24 668

Linear C = 2 99.83 157
C = 2;RBF
γ = 0.5

99.83 294

parameters, exponential function bounded between 0 and 1). On the other hand,
linear and RBF kernels have comparable performance if the number of features
is significantly higher than the number of instances or if both are to large [8].
Therefore, we have tested all kernels with their default parameters over our
dataset. The accuracy (defined as the percentage of correctly classified messages
over all the test results) for 2-fold cross and machine dependent running time are
shown in Table 4. The last two lines of the table are for RBF and linear kernels
after parameter selection. Machine running time is given for comparison purpose
only and it is averaged over ten runs. RBF and linear kernels have clearly better
accuracy and execution time. We expect that RBF kernel will bypass linear
kernel performance when dealing with larger sets of data.

Size of SIP Slice Experiment

The analyzer window is an important parameter in the feature evaluation pro-
cess. The size of the slice can be fixed or variable with respect to other moni-
toring parameters. In this experiment, we report the accuracy of our solution,
when changing the size of the analyzed slice. The results shown in Table 5 were
obtained using a 5-fold cross test using a RBF kernel and the default parameters.
The time the analyzer takes to process the packets is critical in online monitor-
ing. This is the reason why we show the analysis time of the overall trace: (note
that values are for comparison purpose). As expected, the accuracy improves
with larger window size, which incurs an increased analysis time.

Feature Selection

The 38 features are chosen based on domain specific knowledge and experience,
but other features might be also relevant. The selection of highly relevant features
is essential in our approach. In the following experiments, we rank these features
with respect to their relevance. We can thus reduce the number of features by
gradually excluding less important features from the analysis. In Table 6, the

Monitoring SIP Traffic Using Support Vector Machines 323

Table 5. Testing Results for Different Kernels

Window size 5 15 30 60 90 120 150
Accuracy (%) 95.4 99.32 99.30 99.67 99.63 100 100
Analysis Time (min) 1.12 2.40 2.56 4.31 6.39 7.42 8.51

Table 6. Results for Decreasing Size of Features Set

of features 38 31 18 12 7
Accuracy (%) 99.30 99.39 98.90 98.65 98.22
Machine Time (s) 1.85 1.59 1.42 1.28 0.57

results of a preliminary experiment, where we exclude one group of features at
each column in the following order: the distribution of final state of dialogs, the
distribution of SIP requests, the distribution of SIP responses, and the Call-
Id based statistics are given. The last column of the table represents only the
general statistics group of features. Experiments use a 5-fold cross test over our
data set with RBF kernel and its default parameters. The test accuracy is the
percentage of correctly classified vectors over all the vectors in the test data set.

Although we notice a sudden jump between 12 and 7 features, the associated
accuracy is not strictly decreasing as a function of number of features used. It is
thus reasonable to inquire on the dependencies among the features.

Detection of Flooding Attacks

We have used the Inviteflood tool [2] to launch SIP flooding attacks. We have
used INVITE flooding with an invalid domain name (which is the most impacting
on the OpenSER server). We have generated five attacks at five different rates,
where each attack lasts for one minute. After adaptation (we assume that one
machine of the real world platform is performing the attack), each one minute
attack period is injected into a normal trace of two hours duration. The time of
the attack is fixed to five minutes after the start of the two hours period. Each
mixed trace is then analyzed and labeled properly (positively along the period
of attack and negatively in all the remaining time).

We have trained the system with the mixed trace (flooding at 100 INVITE/s
- normal trace) in the learning stage. This means that 100 INVITE messages are
taken as a critical rate (the rate we consider as threshold to launch an alarm).

As shown in Fig. 7 (for simplification and clarity sake a slice is sized to only
three packets), we take the period of attack and we calculate the correspond-
ing SVM estimation. The estimated probability is the average of the estimated
probabilities for the elementary slices composing the attack traffic. This granular
probability is given by the LibSVM tool and is useful for both the probability
estimate option in both learning and testing stages. We define the detection ac-
curacy as the percentage of vectors correctly classified as attack over all vectors
of the attack period. The results are in Table 7: the detection accuracy-1 is ob-
tained without a parameter selection (Default parameters : C = 1, γ = 1/38,

324 M. Nassar, R. State, and O. Festor

Fig. 7. Attack Detection in a Mixed Trace

Table 7. Attack Estimation for Different Rates of Flooding

Flooding Rate (INVITE/s) 0.5 1 10 100 1000
Detection Accuracy-1 (%) 0 0 5.47 67.57 97.36
Detection Accuracy-2 (%) 0 1.48 30.13 88.82 98.24
Pr(Normal) 0.96 0.95 0.73 0.24 0.07
Pr(Attack) 0.04 0.05 0.27 0.76 0.93

training accuracy: 90.95), detection accuracy-2 and calculated probabilities are
after parameter selection (C = 32, γ = 0.5, training accuracy is of 93.93). We
tested the coherence of a period with respect to other periods. In Table 2, we
show the results of the same procedure for a period of 2-6 of Day 1 compared to
other periods of the same day.

Even though stealthy attacks cannot to be detected, the results show a promis-
ing opportunity to fine-tune the defensive solution. The threshold rate can be
learnt by a dual trace : the ongoing normal/daily traffic and a stress condition
where the server was troubleshooted or was noticed to be under-operating. In
this way, SVM is promising for an adaptive online monitoring solution against
flooding attacks.

Detection of SPIT Attacks

SPIT mitigation is one of the open issues in VoIP security today. Detection of
SPIT alone is not sufficient if it is not accompanied by a prevention system.
In-depth search in the suspicious traffic is needed to build a prevention system
to block the attack in the future. Elements like IP source and URI in the SIP
headers can be automatically extracted.

To generate SPIT calls, we used a well known tool which is the Spitter/
Asterisk tool [2]. Spitter is able to generate call instances described in a “.call” file
using the open source Asterisk PBX. The rate of simultaneous concurrent calls
can also be specified as an option of the attack. We profiled our programmable
bots to receive SPIT calls. Once an INVITE is received, the bot chooses randomly
between three different responses :

Monitoring SIP Traffic Using Support Vector Machines 325

– the first choice is to ring for a random time interval between one and six
seconds and then to pick up the phone. This emulates two cases : a voice
mail which is dumping a message or a human which is responding. The bot
then listens during a random time between five and ten seconds and hangs
up,

– the second choice is to respond with ‘Busy’,
– the last choice is to ring for some time and then to send a redirection response

informing the caller that the call has to be directed to another destination
(destination that we assume to not be served by this proxy). Other similar
scenarios like forking (by the proxy) or transferring (by the bot) can also be
supported.

We have performed two experiments with two different hit rates. The former is
a partial SPIT: Spitter targets the proxy with hundred destinations and among
these only ten are actually registered bots. In this case the hit rate is just 10%.
This emulates the real world scenario where attackers are blindly trying a list of
extensions. The latter is a total SPIT: we assume that attackers knew already
the good extensions so the hit rate is 100%. This emulates the real world sce-
nario where attackers knew already the good extensions either by a previous
enumerating attack or from a web crawler.

In the partial SPIT experiment (SPIT not covering all the domain extensions,
hit rate < 100 %), we send four successive campaigns with respectively one, ten,
fifty and hundred concurrent calls. In the first campaign, Spitter does not start a
dialog before the previous dialog is finished. In the second campaign, ten dialogs
go on at the same time and only when a dialog is finished, a new dialog is started.

The four resulting traces (duration about two minutes each) are injected - after
adaptation (we assume that one agent of the real trace is performing the attack
against the hundred other agents) - in four different normal traces (duration
of two hours each). The traces are then cut into slices of thirty messages and
analyzed. These are annotated positively for the period of attack and negatively
in all the remaining duration. The mixed trace with fifty concurrent calls SPIT
is used in the training stage. The SVM prediction results are shown in Table 8.
True positives are the percentage of vectors correctly classified as attack over
all the vectors of the attack period. True negatives are the percentage of vectors
correctly classified as normal over all the vectors of the normal period. These
results should be considered under the larger umbrella of event correlation. For
instance, the example with ten concurrent calls:

– Most of the two hours traffic is normal and is correctly detected (47436
slices).

– 16 out of the 766 slices that compose the attack traffic are detected. This
means that we have ten correct events in a period of two minutes, because
the detection of one slice is highly relevant to all ongoing traffic around this
slice.

In addition, the attacks are partial since they target a small fraction of the users
of the VoIP server (more than 3000 users are identified in the two hours period).

326 M. Nassar, R. State, and O. Festor

Table 8. Detection of Partial SPIT in Four Mixed Traces With Different Intensities

of Concurrent Calls True Positives (%) True Negatives (%)
RBF; C= 1; γ = 1/38; Training accuracy = 99.0249

1 0 (0/3697)
10 1.30 (10/766)
50 10.01 (62/619)
100 18.31 (102/557)

100

Linear ; C=1 ; Training accuracy = 99.0197
1 0 (0/3697)
10 2.09 (16/766)
50 10.66 (66/619)
100 19.39 (108/557)

100

We agree that a stealthy SPIT of the magnitude of one concurrent call is never
detected, but in the case of hundred concurrent calls, one over five positives is
successfully detected when training was done using a half of this intensity attack.

With the help of a set of deterministic event correlation rules, our online
monitoring system is able to detect the attacks efficiently:

Predicate SPIT intensity
10 distributed positives in a 2 minutes period Low
Multiple Series of 5 Successive Positives Medium
Multiple Series of 10 Successive Positives High

Table 9. Detection of Full SPIT in Four Mixed Traces With Different Intensities

of Concurrent calls 1 10 50 100
RBF; C= 1; γ = 1/8; Training accuracy = 98.9057

True Positives 0.03 3.05 12.18 23.41
2/7015 15/492 85/698 184/786

True Negatives 100

In the full SPIT experiment, we request the hundred bots to register with
the proxy. Spitter hits all the bots in four successive campaigns with increas-
ing intensity. Results are slightly better than in the partial SPIT experiment
(Table 9). Partial SPIT generates an abnormal traffic at the same level as full
SPIT does.

7 Related Works

VoIP security is a recent research domain that emerged over the last few years
with the increasing use of this technology by enterprises and individuals. Com-
bating SPIT and DoS is the subject of many research proceedings. Quittek

Monitoring SIP Traffic Using Support Vector Machines 327

et al. [10] apply hidden Turing tests and compare the resulting patterns with
typical human communication patterns. Passing these tests causes significant
resource consumption in the SPIT generation side. The authors of [11] pro-
pose a call rank mechanism based on call duration, social networks and global
reputation to filter SPIT calls. Other ideas include a progressive and multi
(short term -long term) grey level algorithm [12] and incorporating active stack
fingerprinting [13].

The authors of [14] design application and transport sensors to protect en-
terprise networks from VoIP DoS attacks based on previous works on TCP DoS
protection and study different recovery algorithms. The authors of [15] modify
the original state machine of SIP transactions to detect transaction anomalies
and apply different thresholds to detect flooding attacks. More adaptive to such
attacks is the work of Sengar et al. [16] where the Hellinger distance between
learning and testing periods is used to detect TCP SYN, SIP INVITE and RTP
floods. Their approach shows good performances. There have many papers in
the community on generic intrusion detection methods [17,18,19] without to ex-
tend to the fine tuned session, dialog, transaction related parameters found in
SIP. Over the past, many security related applications have leveraged machine
learning techniques and the reader is referred to [20] and [21] for an overview.

The closest work to ours is the study of [22] where the authors have presented
a traffic behavior profiling methodology and demonstrated its applications in
problem diagnosis and anomaly detection. Our work is more oriented towards
attack detection and classification rather than proposing a global and multi level
profiling methodology. We have addressed the VoIP specific event correlation and
honeypots in previous published work [23] and [24], which did not cover SIP-level
monitoring.

8 Conclusion and Future Works

As attacks on VoIP are popping-up in different forms with increasing impact on
both the users and infrastructure, more monitoring and security management is
needed. In this paper, we proposed an online monitoring methodology based on
support vector machines. Our idea is to cut the ongoing signalling (SIP) traffic
into small slices and to extract a vector of defined features characterizing each
slice. Vectors are then pushed into a SVM for classification based on a learning
model. We then use a deterministic event correlator to raise an alarm when
suspicious and abnormal situations occur.

We validated our approach by offline tests over a set of real world traces and
attacks which are generated in our customized testbed and inserted in the normal
traffic traces. Results showed a real time performance and a high accuracy of
detecting flooding and SPIT attacks especially when coupled with efficient event
correlation rules. Detection of other types of attacks are future work.

Unsupervised learning techniques are appealing because they don’t need a
priori knowledge of the traffic and can detect new and previously unknown at-
tacks. We consider currently to redefine and reorder our set of features based

328 M. Nassar, R. State, and O. Festor

on different features selection algorithms. We will extend the current event cor-
relation and filtering algorithm in order to reveal attack strategies and improve
intrusion prevention/detection accuracy.

Acknowledgment. We would like to thank Mr Dorgham Sisalem and Mr. Sven
Ehlert, both from Fraunhofer Institute in Berlin for their comments and feedback
on discussing the analysis of SIP traces.

References

1. VoIPSA: VoIP security and privacy threat taxonomy. Public Realease 1.0 (October
2005), http://www.voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf

2. Endler, D., Collier, M.: Hacking Exposed VoIP: Voice Over IP Security Secrets and
Solutions. McGraw-Hill Professional Publishing, New York (2007)

3. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)
4. Vapnik, V.: Statistical Learning Theory, New York (1998)
5. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-

cation using support vector machines. Mach. Learn. 46(1-3), 389–422 (2002)
6. Romano, R.A., Aragon, C.R., Ding, C.: Supernova recognition using support vec-

tor machines. In: ICMLA 2006: Proceedings of the 5th International Conference
on Machine Learning and Applications, Washington, DC, USA, pp. 77–82. IEEE
Computer Society, Los Alamitos (2006)

7. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection: Support vector machines
and neural networks. The IEEE Computer Society Student Magazine 10(2) (2002)

8. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

9. Abdelnur, H.J., State, R., Festor, O.: KiF: a stateful SIP fuzzer. In: IPTComm
2007: Proceedings of the 1st international conference on Principles, systems and
applications of IP telecommunications, pp. 47–56. ACM, New York (2007)

10. Quittek, J., Niccolini, S., Tartarelli, S., Stiemerling, M., Brunner, M., Ewald, T.:
Detecting SPIT calls by checking communication patterns. In: IEEE International
Conference on Communications (ICC 2007) (June 2007)

11. Balasubramaniyan, V.A., Ahamad, M., Park, H.: CallRank: Combating SPIT using
call duration, social networks and global reputation. In: Fourth Conference on
Email and Anti-Spam (CEAS 2007). Mountain View, California (2007)

12. Shin, D., Shim, C.: Progressive multi gray-leveling: A voice Spam protection algo-
rithm. IEEE Network 20

13. Yan, H., Sripanidkulchai, K., Zhang, H., Shae, Z.Y., Saha, D.: Incorporating active
fingerprinting into SPIT prevention systems. In: Third annual security workshop
(VSW 2006), June 2006, ACM Press, New York (2006)

14. Reynolds, B., Ghosal, D.: Secure IP Telephony using Multi-layered Protection.
In: Proceedings of The 10th Annual Network and Distributed System Security
Symposium, San Diego, CA, USA (February 2003)

15. Chen, E.: Detecting DoS attacks on SIP systems. In: Proceedings of 1st IEEE
Workshop on VoIP Management and Security, San Diego, CA, USA, April 2006,
pp. 53–58 (2006)

16. Sengar, H., Wang, H., Wijesekera, D., Jajodia, S.: Detecting VoIP Floods using
the Hellinger Distance. Transactions on Parallel and Distributed Systems (acepted
for future publication, September 2007)

http://www.voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Monitoring SIP Traffic Using Support Vector Machines 329

17. Valdes, A., Skinner, K.: Adaptive, model-based monitoring for cyber attack de-
tection. In: Debar, H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp.
80–92. Springer, Heidelberg (2000)

18. Denning, D.E.: An intrusion-detection model. In: IEEE Symposium on Security
and Privacy, April 1986, pp. 118–133. IEEE Computer Society Press, Los Alamitos
(1986)

19. Krügel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network
intrusion detection. In: SAC 2002: Proceedings of the 2002 ACM symposium on
Applied computing, pp. 201–208. ACM Press, New York (2002)

20. Ning, P., Jajodia, S.: Intrusion Detection in Distributed Systems: An Abstraction-
Based Approach. Springer, Heidelberg (2003)

21. Maloof, M.: Machine Learning and Data Mining for Computer Security: Methods
and Applications. Springer, Heidelberg (2005)

22. Kang, H.J., Zhang, Z.L., Ranjan, S., Nucci, A.: Sip-based voip traffic behavior
profiling and its applications. In: MineNet 2007: Proceedings of the 3rd annual
ACM workshop on Mining network data, pp. 39–44. ACM, New York (2007)

23. Nassar, M., State, R., Festor, O.: Intrusion detections mechanisms for VoIP appli-
cations. In: Third annual security workshop (VSW 2006), June 2006. ACM Press,
New York (2006)

24. Nassar, M., State, R., Festor, O.: VoIP honeypot architecture. In: Proc. of 10 th.
IEEE/IFIP Symposium on Integrated Management. (June 2007)

330 M. Nassar, R. State, and O. Festor

Table 10. Appendix: List of features

Number Name Description
Group 1 - General Statistics

1 Duration Total time of the slice
2 NbReq # of requests / Total # of messages
3 NbResp # of responses / Total # of messages
4 NbSdp # of messages carrying SDP / Total # of messages
5 AvInterReq Average inter arrival of requests
6 AvInterResp Average inter arrival of responses
7 AvInterSdp Average inter arrival of messages carrying SDP bodies

Group 2 - Call-ID Based Statistics
8 NbSess # of different Call-IDs
9 AvDuration Average duration of a Call-ID
10 NbSenders # of different senders / Total # of Call-IDs
11 NbReceivers # of different receivers / Total # of Call-IDs
12 AvMsg Average # of messages per Call-ID

Group 3 - Dialogs Final State Distribution
13 NbNOTACALL # of NOTACALL/ Total # of Call-ID
14 NbCALLSET # of CALLSET/ Total # of Call-ID
15 NbCANCELED # of CANCELED/ Total # of Call-ID
16 NbREJECTED # of REJECTED/ Total # of Call-ID
17 NbINCALL # of INCALL/ Total # of Call-ID
18 NbCOMPLETED # of COMPLETED/ Total # of Call-ID
19 NbRESIDUE # of RESIDUE/ Total # of Call-ID

Group 4 - Requests Distribution
20 NbInv # of INVITE / Total # of requests
21 NbReg # of REGISTER/ Total # of requests
22 NbBye # of BYE/ Total # of requests
23 NbAck # of ACK/ Total # of requests
24 NbCan # of CANCEL/ Total # of requests
25 NbOpt # of OPTIONS / Total # of requests
26 Nb Ref # of REFER/ Total # of requests
27 NbSub # of SUBSCRIBE/ Total # of requests
28 NbNot # of NOTIFY/ Total # of requests
29 NbMes # of MESSAGE/ Total # of requests
30 NbInf # of INFO/ Total # of requests
31 NbPra # of PRACK/ Total # of requests
32 NbUpd # of UPDATE/ Total # of requests

Group 5 - Responses Distribution
33 Nb1xx # of Informational responses / Total # of responses
34 Nb2xx # of Success responses / Total # of responses
35 Nb3xx # of Redirection responses / Total # of responses
36 Nb4xx # of Client error responses / Total # of responses
37 Nb5xx # of Server error responses / Total # of responses
38 Nb6xx # of Global error responses / Total # of responses

The Effect of Clock Resolution

on Keystroke Dynamics

Kevin Killourhy and Roy Maxion

Dependable Systems Laboratory
Carnegie Mellon University

5000 Forbes Ave,
Pittsburgh PA, 15213

{ksk,maxion}@cs.cmu.edu

Abstract. Keystroke dynamics—the analysis of individuals’ distinctive
typing rhythms—has been proposed as a biometric to discriminate le-
gitimate users from impostors (whether insiders or external attackers).
Anomaly detectors have reportedly performed well at this discrimination
task, but there is room for improvement. Detector performance might be
constrained by the widespread use of comparatively low-resolution clocks
(typically 10–15 milliseconds).

This paper investigates the effect of clock resolution on detector perfor-
mance. Using a high-resolution clock, we collected keystroke timestamps
from 51 subjects typing 400 passwords each. We derived the timestamps
that would have been generated by lower-resolution clocks. Using these
data, we evaluated three types of detectors from the keystroke-dynamics
literature, finding that detector performance is slightly worse at typical
clock resolutions than at higher ones (e.g., a 4.2% increase in equal-error
rate). None of the detectors achieved a practically useful level of perfor-
mance, but we suggest opportunities for progress through additional, con-
trolled experimentation.

Keywords: Anomaly detection; Insider-attack detection; Keystroke dy-
namics; Digital biometrics.

1 Introduction

Compromised passwords, shared accounts, and backdoors are exploited both by
external attackers and insiders. Lists of default passwords and password-cracking
programs are a staple in the toolbox of external attackers. In a study of insider
attacks (i.e., those conducted by people with legitimate access to an organiza-
tion), Keeney et al. [11] found that the majority of insiders exploited shared
or compromised passwords, as well as backdoor accounts. However, if we had
some sort of “digital fingerprint” with which to identify exactly who is logging
into an account, and to discriminate between the legitimate user of an account
and an impostor, we could significantly curb the threats represented by both
insiders and external attackers. Of the various potential solutions to this prob-
lem, one technique that has been popular within the research community is

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 331–350, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 K. Killourhy and R. Maxion

keystroke dynamics—the analysis of individual typing rhythms for use as a bio-
metric identifier. Compared to other biometric data, typing times are relatively
easy to collect. When a user logs into a computer by typing his or her password,
the program authenticating the user could save not just the characters of the
password, but the time at which each key was pressed and released. One could
imagine a keystroke-dynamics detection algorithm that analyzes these typing
times, compares them to a known profile of the legitimate user of the account,
and makes a decision about whether or not the new typist is an impostor. In
fact, detectors have been designed to use typing rhythms as a biometric, not just
during password entry (which is our focus in this work), but also for free-text
typing [17].

In terms of accuracy, the European standard for access-control systems (EN-
50133-1) specifies a false-alarm rate of less than 1%, with a miss rate of no more
than 0.001% [3]. In other words, in order for a keystroke-dynamics detector to
be practical, it must correctly identify a legitimate user 99% of the time, and
it must correctly identify an impostor 99.999% of the time. At this point, no
proposed detector has obtained such numbers in repeated evaluations. When a
detector comes up short in evaluation, the common strategy is to go back to the
drawing board and try a new detector. However, it may be possible to boost the
performance of an existing detector by giving it better data.

Imagine the effect that timing noise might have on a detector. With enough
noise, subtle differences between typists will be masked, and even a good detector
will be ineffective. One obvious source of noise comes from the resolution of
the clock supplying timestamps for each keystroke. For instance, our testing
shows that the clock used by Microsoft Windows XP to timestamp keystroke-
event messages [15] (which we call the Windows-event clock) has a resolution
of 15.625 milliseconds (ms), corresponding to 64 updates per second. Figure
1 shows how the clock resolution affects the calculation of keydown–keydown
digram latencies. Specifically, if every time reported by the clock is a multiple of
15.625 ms (truncated to the nearest millisecond), then all latencies will appear
to fall in bands separated by 15 ms. The calculated latencies could differ from
the true latencies by as much as the resolution of the clock (approximately
±15 ms). If two typists differ in their typing times by less than 15 ms, then
the difference could be lost. This investigation empirically measures the effect of
clock resolution on the performance of a detector. Specifically, we look at whether
the performance of a detector can be boosted by increasing the resolution of the
clock, and whether or not detectors are robust to low-resolution clocks.

2 Background and Related Work

Detectors for discriminating between users’ and impostors’ keystroke dynamics
have been investigated for over 30 years. They were first considered in 1977 by
Forsen et al. [6], who distinguished a legitimate user from an impostor on the
basis of how each one typed the user’s name. In 1980, Gaines et al. [7] compared

The Effect of Clock Resolution on Keystroke Dynamics 333

10
0

12
0

14
0

16
0

18
0

20
0

Subject

K
ey

do
w

n−
K

ey
do

w
n

La
te

nc
ie

s
(m

s)

5 10 15 20 25 30 35 40 45 50

Fig. 1. The spacing between each horizontal band of keystroke latencies reveals that
the Windows-event clock has a resolution of 15.625 milliseconds. Any fine-grained dif-
ferences between the subjects are masked when all latencies are coarsened to a nearby
multiple of the clock resolution. Data are keydown–keydown digram latencies (between
100 and 200 ms) recorded by the 15.625 ms resolution clock when each of 51 subjects
typed a password 400 times. Double bands occur because Windows reports the time-
stamps as a whole number of milliseconds, sometimes rounding up and sometimes
rounding down.

several users’ keystrokes on a transcription task. Both studies presented positive
findings, but cautioned that their results were only preliminary.

Joyce and Gupta [10] were some of the earliest researchers to study the key-
stroke dynamics of passwords. They developed a detector that compared typing
characteristics of a new presentation of a password against the average (mean)
typing characteristics of the legitimate user. Cho et al. [4] developed and com-
pared two new detectors, inspired by techniques from machine learning. One
was based on the nearest-neighbor algorithm, and the other used a multilayer
perceptron. A full survey of keystroke-dynamics detectors has been conducted
by Peacock et al. [17], but we focus here on the work of Joyce and Gupta, and
Cho et al. Their work shows a diversity among available detection techniques,
and our investigation uses detectors similar to theirs.

In terms of timing considerations, Forsen et al. and Gaines et al. collected
data on a PDP-11. Forsen et al. reported times in 5-millisecond intervals, while
Gaines et al. reported millisecond accuracy. Both Joyce and Gupta, and Cho et
al. collected data on a Sun workstation. Cho et al. specified that they used X11,
which provides keystroke timestamps with a 10 ms resolution. The X11 clock
is typically used by researchers on UNIX-based platforms, while Windows users
typically use the Windows-event clock (e.g., Sheng et al. [19]). Our testing shows
that the timestamps reported through this clock have a 15.625 ms resolution (see
Figure 1).

334 K. Killourhy and R. Maxion

3 Problem and Approach

Keystroke-dynamics detectors—programs designed to distinguish between a le-
gitimate user and an impostor on the basis of typing rhythms—will almost cer-
tainly be affected by the resolution of the clock that is used for timing the
keystrokes. However, the extent of this effect has never been quantified or mea-
sured. In this work, we investigate the effect that clock resolution has on the
performance of keystroke-dynamics detectors. We hope to boost detector per-
formance by using better clocks, and to quantify the error introduced by typical
clocks.

3.1 Investigative Approach

Our approach is outlined in the following four steps:
1. Password-data collection: We choose a password, and we implement a

data-collection apparatus that records high-resolution timestamps. We recruit
subjects to type the password. We collect keystroke timestamps simultane-
ously with a high-resolution clock and with a typical low-resolution clock.

2. Derived clock resolutions: We coarsen the high-resolution timestamps, in
order to calculate the timestamps that would be generated by a range of lower-
resolution clocks; we derive password-timing data at a range of resolutions.

3. Detector implementation: We develop three types of keystroke-dynamics
detectors similar to those reported in the literature: a mean-based detector,
a nearest-neighbor detector, and a multilayer perceptron.

4. Performance-assessment method: We construct evaluation data sets
from our password-timing data, and we use them to measure the performance
of the three detectors. We verify the correctness of our derivations (in step 2)
by comparing a detector’s performance on derived low-resolution data to its
performance on data from a real clock operating at that resolution. Finally,
we examine how the performance changes as a function of clock resolution.

In the end, we are able to quantify the effect that clock resolution has on several
diverse detectors. We show a small but significant improvement from using high-
resolution clocks. We describe the four steps of our investigation in Sections 4–7.

3.2 Controlling for Potential Confounding Factors

Our approach departs from typical keystroke-dynamics evaluations, where real-
ism is considered to have higher importance than control. A reason for designing
a controlled experiment is to remove confounding factors—variables that may
distort the effect of the variable of interest on the experimental outcome [5].

In our investigation, the variable of interest is the clock resolution, and the
experimental outcome is the performance of a detector. The clock might affect
detector performance because it subtly changes the keystroke times analyzed
by the detectors. All other factors that change these keystroke times are poten-
tial confounding factors that might obscure or distort this effect. They might

The Effect of Clock Resolution on Keystroke Dynamics 335

change a detector’s performance, or even change how clock resolution affects the
detector’s performance. The presence of such a factor would compromise our
investigation by offering an alternative explanation for our results.

Ideally, we would test all potential confounding factors, to see whether they
actually do confound the experiment. However, to do so would require an ex-
ponential amount of data (in the number of factors). Practically, we control for
potential confounding factors by keeping them constant.

4 Password-Data Collection

The first step in our investigation was to collect a sample of keystroke-timing
data using a high-resolution clock. We chose a single password to use as a typing
sample. Then we designed a data-collection apparatus for collecting subjects’
keystrokes and timestamps. Finally, we recruited 51 subjects, and collected the
timing information for 400 passwords from each one (over 8 sessions).

4.1 Choosing a Password

Password selection is the first potential confounding factor we identified. Some
passwords can be typed more quickly than others. The choice of password may
affect a subject’s keystroke times, distorting the effect of clock resolution. To
control for the potential confounding factor, we chose a single fixed but repre-
sentative password to use throughout the experiment.

To make the password representative of a typical, strong password, we em-
ployed a publicly available password generator [21] and password-strength checker
[13]. We generated a 10-character password containing letters, numbers, and punc-
tuation and then modified it slightly, interchanging some punctuation and casing
to better conform with the general perception of a strong password. The result of
this procedure was the following password:

.tie5Roanl

The password-strength checker rates this password as strong because it con-
tains at least 8 characters, a capital letter, a number, and punctuation. The best
rating is reserved for passwords with at least 14 characters, but we decided to
maintain a 10-character limit on our password so as not to exhaust our subjects’
patience. (Other researchers used passwords as short as 7 characters [4].)

4.2 Data-Collection Apparatus

We wrote a Windows application that prompts a subject to type the password
50 times. Of course, in the real world, users do not type their password 50 times
in a row; they might only type it a few times each day. However, the amount
of practice a subject has at typing a particular password represents another po-
tential confounding factor (see Section 3.2). Practiced typists are usually faster,
and the amount of practice a subject has may affect his or her keystroke times.

336 K. Killourhy and R. Maxion

By having our subjects type the password in fixed-length sessions, we controlled
how much (and under what circumstances) our subjects became practiced at
typing the password.

The application displays the password in a screen along with a text-entry
field. In order to advance to the next screen, the subject must type the 10
characters of the password correctly in sequence and then type Return. If the
subject makes a mistake, the application immediately detects the error, clears
the text-entry field, and after a short pause, it prompts the subject to type
the password again. For instance, if a subject typed the first three characters
of the password correctly (.ti) but mistyped the fourth (w instead of e), the
application would make the subject type the whole password over again. In this
way, we ensure that the subject correctly types the entire password as a sequence
of exactly 11 keystrokes (corresponding to the 10 characters of the password and
the Return key). Forcing subjects to type the password without error is a typical
constraint when analyzing keystroke dynamics [4, 19].

When a subject presses or releases a key, the application records the event
(i.e., whether a key was pressed or released, and what key was involved), and
also the time at which the event occurred. Two timestamps are recorded: one is
the timestamp reported by the 15.625 ms resolution Windows-event clock; the
other is the timestamp reported by a high-resolution external reference clock.
The resolution of the reference clock was measured to be 200 microseconds by
using a function generator to simulate key presses at fixed intervals. This clock
reported the timestamps accurately to within ±200 microseconds. We used an
external reference instead of the high-precision performance counter available
through Windows [16] because of concerns that factors such as system load
might decrease the accuracy of the timestamps.

The data-collection application was installed on a single laptop with no net-
work connection and with an external keyboard. We identified keyboard selec-
tion as another potential confounding factor (see Section 3.2). If subjects used
different keyboards, the difference might affect their keystroke times. We con-
trol for the potential confounding factor by using one keyboard throughout the
experiment.

4.3 Running Subjects

We recruited 51 subjects, many from within the Carnegie Mellon Computer
Science Department, but some from the university at large. We required that
subjects wait at least 24 hours between each of their 8 sessions, so each session
was recorded on a separate day (ensuring that some day-to-day variation existed
within our sample). All 51 subjects remained in the study, contributing 400
passwords over the 8 sessions.

Our sample of subjects consisted of 30 males and 21 females. We had 8 left-
handed and 43 right-handed subjects. We grouped ages by 10-year intervals. The
median group was 31–40, the youngest group was 11–20, and the oldest group
was 61–70. The subjects’ sessions took between 1.25 minutes and 11 minutes,
with the median session taking 3 minutes. Subjects took between 9 days and 35

The Effect of Clock Resolution on Keystroke Dynamics 337

10
0

12
0

14
0

16
0

18
0

20
0

Subject

K
ey

do
w

n−
K

ey
do

w
n

La
te

nc
ie

s
(m

s)

5 10 15 20 25 30 35 40 45 50

Fig. 2. The absence of horizontal bands demonstrates that the high-resolution clock has
a resolution of less than 1 millisecond (200 microseconds, specifically). The keystrokes
are the same as in Figure 1, but the latencies in this figure are based on the high-
resolution clock.

days to complete all 8 sessions. The median length of time between the first and
last session was 23 days.

5 Derived Clock Resolutions

The second step in our investigation was to use the high-resolution data to
reconstruct the data that would have been collected with lower-resolution clocks.
We developed a procedure to derive the timestamp of a low-resolution clock from
the corresponding timestamp of a high-resolution clock.

First, we examine the keydown–keydown latencies based on the high-resolution
timestamps. The latencies are shown in Figure 2. Compare these latencies to the
equivalent latencies from Figure 1. Whereas the horizontal bands in Figure 1 re-
veal that the Windows-event clock cannot capture any timing variation smaller
than 15.625 milliseconds, the absence of such bands in Figure 2 demonstrates that
very subtle variations (smaller than 1 millisecond) can be captured by the high-
resolution clock.

Next, to determine what would have happened if the data had been collected
with a lower-resolution clock, we need to artificially decrease the resolution of
this clock. Consider how timestamps are normally assigned to keystroke events:
1. The operating system is notified of the pending key event by an interrupt

from the keyboard controller.
2. The operating system reads the key event from the keyboard device into

memory.
3. During the handling of the key event, the operating system queries a clock

for the current time.
4. The timestamp returned by the clock is included in the description of the

keystroke event and is delivered to any applications waiting on the event.

338 K. Killourhy and R. Maxion

10
0

12
0

14
0

16
0

18
0

20
0

Subject

K
ey

do
w

n−
K

ey
do

w
n

La
te

nc
ie

s
(m

s)

5 10 15 20 25 30 35 40 45 50

Fig. 3. The presence of horizontal bands 15 ms apart suggests that the derived 15 ms
clock exhibits the same behavior as a real clock with a 15 ms resolution. The keystrokes
are the same as in Figures 1 and 2, but the derived 15 ms clock was used to calculate
the latencies. The bands resemble those of the real 15.625 ms clock in Figure 1, but
without double bands because the 15 ms clock resolution has no fractional part being
rounded to a whole millisecond.

For example, if we have a clock with a resolution of 15 ms (i.e., it is updated
every 15 ms), then the timestamp returned by the clock will be divisible by 15
ms. Specifically, it will be the largest multiple of 15 ms smaller than the actual
time at which the clock was queried. In general, if the clock was queried at time
thi-res, and we want to reproduce the behavior of a lower-resolution clock (with
a resolution of r), the low-resolution timestamp would be

tlo-res ← �thi-res/r� × r

where �x� is the largest integer smaller than x (floor function).
Finally, with this formula and the high-resolution data, we can derive the

timestamps that would have been collected with lower-resolution clocks. For
instance, Figure 3 shows keystroke latencies calculated from a clock with a de-
rived 15 ms resolution. Note the similarity to Figure 1, which shows latencies
calculated from a real Windows-event clock with a 15.625 ms resolution. (The
fractional part of the real clock’s resolution accounts for the slight differences.)

One limitation of this procedure is that we can only derive clock resolutions
that are evenly divisible by that of our high-resolution clock. This criteria allows
the small but non-zero inaccuracy of our high-resolution clock to be absorbed into
the inaccuracy of the lower-resolution clock. For instance, we should be able to
accurately derive a 1 ms clock resolution since 1 ms is evenly divisible by 200 mi-
croseconds (the resolution of the high-resolution clock). However, we could not
accurately derive a 1.5 ms clock resolution (or a 15.625 ms resolution) because it is
not evenly divided. Regardless of this limitation, the accuracy of results obtained
with these derived clock resolutions will be established by comparing detector per-
formance on derived 15 ms resolution data to that on the 15.625 ms resolution
Windows-event clock data. We derive data at the following 20 clock resolutions:

The Effect of Clock Resolution on Keystroke Dynamics 339

Milliseconds: 1 2 5 10 15 20 30 50 75 100 150 200 500 750
Seconds: 1 2 5 10 15 30

The specific resolutions were chosen arbitrarily, but with the intent of includ-
ing a range of typical values (on the first line), and a range of extremely low-
resolution values (on the second line) in order to identify the point at which
detector performance degrades completely. In total, we have data at 22 different
clock resolutions: the 20 derived clocks, the high-resolution clock, and the 15.625
ms resolution Windows-event clock.

6 Detector Implementation

The third step in our investigation was to create detectors to test using our
data. We identified three different types of detector from the literature, and
implemented a detector of each type:
1. a mean-based detector,
2. a nearest-neighbor detector, and
3. a multilayer-perceptron detector.
By ensuring that we have diversity in the set of detectors we evaluate, we can
examine whether or not an observed effect is specific to one type of detector or
more generally true for a range of detectors.

6.1 Detector Overview

We constrained our attention to detectors that behave similarly in terms of their
input and output. For instance, each of our detectors must analyze password-
timing data, and aims to discriminate between a legitimate user and an impostor.
Each of the detectors expects the password data to be encoded in what is called
a password-timing vector. A password-timing vector is a vector of hold times
and intervals. A hold time is the difference between the key-press timestamp
and the key-release timestamp for the same key. An interval time is the (signed)
difference between the key-release timestamp of the first key in a digram and
the key-press timestamp of the second key.

The password-timing vector is 21 elements long for the password we chose
(.tie5Roanl). Each element is either a hold time for one of the 11 keys in the
password (including the Return key), or the interval between one of the 10
digrams, arranged as follows:

Index Element name

1 Hold(period)
2 Interval(period-t)
3 Hold(t)
4 Interval(t-i)
5 Hold(i)
...

...
19 Hold(l)
20 Interval(l-Return)
21 Hold(Return)

340 K. Killourhy and R. Maxion

where Hold(period) is the hold time of the period key, and Interval(period-t) is
the interval between the period key-release and the t key-press.

Each detector has two phases: training and testing. During training, a set
of password vectors from a legitimate user is used to build a profile of that
user. Different detectors build this profile in different ways, but the objective
of a successful detector is to build a profile that uniquely distinguishes the user
from all other typists (like a fingerprint). During testing, a new password-timing
vector (from an unknown typist) is provided, and the detector compares the
new vector against the profile. The detector produces an anomaly score that
indicates whether the way the new password was typed is similar to the profile
(low score) or different from the profile (high score). The procedure by which
this score is calculated depends on the detector.

In practice, the anomaly score would be compared against some pre-determined
threshold to decide whether or not to raise an alarm (i.e., whether or not the
password-typing rhythms belong to an impostor). However, in our evaluation, we
will use these scores directly to assess the detector’s performance.

The three detectors are implemented using the R statistical programming
environment (version 2.4.0) [18]. The nearest-neighbor detector leverages an im-
plementation of Bentley’s kd-trees [1] by Mount and Arya [14]. The multilayer
perceptron uses the neural-network package AMORE [12].

6.2 Mean-Based Detector

A mean-based detector models a user’s password-timing vectors as coming from
some known distribution (e.g., a multidimensional normal distribution) with an
unknown mean. During training, the mean is estimated, and during testing, a
new password-timing vector is assigned an anomaly score based on its distance
from this mean. Joyce and Gupta [10] used a detector that fits this description,
and the detector we implemented is similar to theirs, but not precisely the same.1

During training, our mean-based detector estimates the mean vector and the
covariance matrix of the training password-timing vectors. The mean vector is
a 21-element vector, whose first element is the mean of the first elements of
the training vectors, whose second element is the mean of the second elements
of the training vectors, and so on. Similarly, the covariance matrix is the 21-
by-21-element matrix containing the covariance of each pair of elements in the
21-element training vectors. These mean and covariance estimates comprise the
user’s profile.

During testing, the detector estimates the Mahalanobis distance of the new
password-timing vector from the mean vector of the training data. The
1 Our detector differs from that proposed by Joyce and Gupta in both its mean-vector

calculation and the distance measure used. We calculated the mean vector using
all the training data while Joyce and Gupta preprocessed the data to remove out-
liers. We used the Mahalanobis distance while Joyce and Gupta used the Manhattan
distance. Our mean-based detector was intended to be simple (with no preprocess-
ing) while still accommodating natural variances in the data (with the Mahalanobis
distance).

The Effect of Clock Resolution on Keystroke Dynamics 341

Mahalanobis distance is a measure of multidimensional distance that takes into
account the fact that a sample may vary more in one dimension than another,
and that there may be correlations between pairs of dimensions. These variations
and correlations are estimated using the correlation matrix of the training data.
More formally, using the matrix notation of linear algebra, if x is the mean of
the training data, S is the covariance matrix, and y is the new password-timing
vector, the Mahalanobis distance (d) is:

d ← (x − y)TS−1(x − y)
The anomaly score of a new password-timing vector is simply this distance.

6.3 Nearest-Neighbor Detector

Whereas the mean-based detector makes the assumption that the distribution
of a user’s passwords is known, the nearest-neighbor detector makes no such
assumption. Its primary assumption is that new password-timing vectors from
the user will resemble one or more of those in the training data. Cho et al. [4]
explored the use of a nearest-neighbor detector in their work, and we attempted
to re-implement their detector for our investigation.

During training, the nearest-neighbor detector estimates the covariance ma-
trix of the training password-timing vectors (in the same way as the mean-based
detector). However, instead of estimating the mean of the training data, the
nearest-neighbor detector simply saves each password-timing vector.

During testing, the nearest-neighbor detector calculates Mahalanobis dis-
tances (using the covariance matrix of the training data). However, instead of
calculating the distance from the new password-timing vector to the mean of the
training data, the distance is calculated from the new password-timing vector
to each of the vectors in the training data. The distance from the new vector to
the nearest vector from the training data (i.e., its nearest neighbor) is used as
the anomaly score.

6.4 Multilayer-Perceptron Detector

Whereas the behaviors of the mean-based and nearest-neighbor detectors allow
for an intuitive explanation, the multilayer perceptron is comparatively opaque.
A multilayer perceptron is a kind of artificial neural network that can be trained
to behave like an arbitrary function (i.e., when given inputs, its outputs will
approximate the function’s output). Hwang and Cho [8] showed how a multi-
layer perceptron could be used as an anomaly detector by training it to auto-
associate—that is, to behave like a function that reproduces its input as the
output. In theory, new input that is like the input used to train the network
will also produce similar output, while input that is different from the train-
ing input will produce wildly different output. By comparing the input to the
output, one can detect anomalies. Cho et al. [4] used an auto-associative mul-
tilayer perceptron to discriminate between users and impostors on the basis of
password-timing vectors. We attempted to re-implement that detector.

342 K. Killourhy and R. Maxion

During training, the password-timing vectors are used to create an auto-
associative multilayer perceptron. This process is a standard machine-learning
procedure, but it is fairly involved. We present an overview here, but we must
direct a reader to the works by Hwang, Cho, and their colleagues for a compre-
hensive treatment [4, 8]. A skeleton of a multilayer perceptron is first created. The
skeleton has 21 input nodes, corresponding to the 21 elements of the password-
timing vector, and 21 output nodes. In general, a multilayer-perceptron network
can have a variety of structures (called hidden nodes) between the input and the
output nodes. In keeping with earlier designs, we had a single layer of 21 hidden
nodes. This skeleton was trained using a technique called back-propagation to
auto-associate the user’s password-timing vectors. We used the recommended
learning parameters: training for 500 epochs with a 1 × 10−4 learning rate and
a 3 × 10−4 momentum term.2

During testing, the new password-timing vector is used as input to the trained
multilayer perceptron, and the output is calculated. The Euclidean distance of
the input to the output is computed and used as the anomaly score.

7 Performance-Assessment Method

Now that we have three detectors and data at a variety of clock resolutions, the
final step is to evaluate the detectors’ performance. First, we convert the data
to password-timing tables. Then we devise a procedure for training and testing
the detectors. Last, we aggregate the test results into overall measures of each
detector’s performance at each clock resolution.

7.1 Creating Password-Timing Tables

As mentioned in Section 5, we have 22 data sets that differ only in the resolution
of the clock used to timestamp the keystroke events: the high-resolution clock,
the 15.625 ms Windows-event clock, and the 20 derived clocks. For each clock,
we have timing information for 51 subjects, each of whom typed the password
(.tie5Roanl) 400 times.

We extract password-timing tables from the raw data. Hold times and di-
gram intervals are calculated. We confirm that 50 password-timing vectors are
extracted from each one of a subject’s 8 sessions, and that a total of 20,400
password-timing vectors are extracted (50 passwords×8 sessions×51 subjects).

7.2 Training and Testing the Detectors

Consider a scenario in which a user’s long-time password has been compromised
by an impostor. The user is assumed to be practiced in typing her password,
2 Note that our learning rate and momentum are 1000 times smaller than those re-

ported by Cho et al. This change accounts for a difference in units between their
password-timing vectors and ours. (We record in seconds; they used milliseconds.)

The Effect of Clock Resolution on Keystroke Dynamics 343

while the impostor is unfamiliar with it (e.g., typing it for the first time). We
measure how well each of our three detectors is able to detect the impostor,
discriminating the impostor’s typing from the user’s typing in this scenario.

We start by designating one of our subjects as the legitimate user, and the
rest as impostors. We train and test each of the three detectors as follows:
1. We train the detector on the first 200 passwords typed by the legitimate user.

The detector builds a profile of that user.
2. We test the ability of the detector to recognize the user herself by generating

anomaly scores for the remaining 200 passwords typed by the user. We record
these as user scores.

3. We test the ability of the detector to recognize impostors by generating anom-
aly scores for the first 5 passwords typed by each of the 50 impostors. We
record these as impostor scores.

This process is then repeated, designating each of the other subjects as the
legitimate user in turn. After training and testing a detector for each combination
of subject, detector, and clock-resolution data set, we have a total of 3,366 sets
of user and impostor scores (51 subjects × 3 detectors × 22 data sets).

It may seem that 200 passwords is an unrealistically large amount of training
data. However, we used 200 passwords to train because we were concerned that
fewer passwords might unfairly cause one or more detectors to under-perform
(e.g., Cho et al. [4] trained the multilayer perceptron on up to 325 passwords).
Likewise, an unpracticed impostor might seem unrealistic. If he knew that his
keystroke dynamics would be scrutinized, he might practice first. However, as
we argued in Section 4.2, the amount of practice a subject has had represents
a potential confounding factor. Consequently, all impostors in our experiment
were allowed the same level of practice. Our intuition was that the effect of clock
resolution on detector performance might be seen most clearly with unpracticed
impostors, and so we used their data (with plans to use practiced impostors’
data in future investigations).

7.3 Calculating Detector Performance

To convert these sets of user and impostor scores into aggregate measures of
detector performance, we used the scores to generate a graphical summary called
an ROC curve [20], an example of which is shown in Figure 4. The hit rate is
the frequency with which impostors’ passwords generate an alarm (a desirable
response), and the false-alarm rate is the frequency with which the legitimate
user’s passwords generate an alarm (an undesirable response). Whether or not
a password generates an alarm depends on how the threshold for the anomaly
scores is chosen. Over the continuum of possible thresholds to choose, the ROC
curve illustrates how each one would change hit and false-alarm rates. Each point
on the curve indicates the hit and false-alarm rates at a particular threshold.

The ROC curve is a common visualization of a detector’s performance, and
on the basis of the ROC curve, various cost measures can be calculated. Two
common measures are the equal-error rate and the zero-miss false-alarm rate.

344 K. Killourhy and R. Maxion

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Subject 19
Nearest Neighbor

(1 ms clock)

False−Alarm Rate

H
it

R
at

e

Equal−Error Rate
Zero−Miss False−Alarm Rate

Fig. 4. An example ROC curve depicts the performance of the nearest-neighbor de-
tector with subject 19 as the legitimate user and data from the derived 1 ms resolu-
tion clock. The curve shows the trade-off between the hit rate and false-alarm rate.
The proximity of the curve to the top-left corner of the graph is a visual measure of
performance.

The equal-error rate is the place on the curve where the false-alarm rate is equal
to the miss rate (note that miss rate = 1 − hit rate). Geometrically, the equal-
error rate is the false-alarm rate where the ROC curve intersects a line from
the top-left corner of the plot to the bottom right corner. This cost measure
was advocated by Peacock et al. [17] as a desirable single-number summary of
detector performance. The zero-miss false-alarm rate is the smallest false-alarm
rate for which the miss rate is zero (or, alternatively, the hit rate is 100%).
Geometrically, the zero-miss false-alarm rate is the leftmost point on the curve
where it is still flat against the top of the plot. This cost measure is used by Cho
et al. [4] to compare detectors.

For each combination of subject, detector, and clock resolution, we generated
an ROC curve, and we calculated these two cost measures. Then, to obtain an
overall summary of a detector’s performance at a particular clock resolution,
we calculated the average equal-error rate and the average zero-miss false-alarm
rate across all 51 subjects. These two measures of average cost were used to
assess detector performance.

8 Results and Analysis

A preliminary look at the results reveals that—while the equal-error rate and the
zero-miss false-alarm rate differ from one another—they show the same trends
with respect to different detectors and clock resolutions. Consequently, we focus
on the equal-error-rate results and acknowledge similar findings for the zero-miss
false-alarm rate.

The Effect of Clock Resolution on Keystroke Dynamics 345

Table 1. The average equal-error rates for the three detectors are compared when
using (1) the high-resolution clock, (2) the derived 15 ms resolution clock, and (3)
the 15.625 ms Windows-event clock. The numbers in parentheses indicate the percent
increase in the equal-error rate over that of the high-resolution timer. The results from
the 15 ms derived clock very closely match the results with the actual 15.625 ms clock.

Detectors

Clock Mean-based
Nearest
Neighbor

Multilayer
Perceptron

(1) High-resolution 0.1100 0.0996 0.1624
(2) Derived 15 ms resolution 0.1153 (+4.8%) 0.1071 (+7.5%) 0.1631 (+0.4%)
(3) 15.625 ms Windows-event 0.1152 (+4.7%) 0.1044 (+4.8%) 0.1634 (+0.6%)

The accuracy of our results depends on our derived low-resolution timestamps
behaving like real low-resolution timestamps. Our first step is to establish the
validity of the derived clock data by comparing a detector’s performance on
derived low-resolution data to its performance on data from a real clock operating
at that resolution. Then we proceed to examine our primary results concerning
the effect of clock resolution on detector performance.

8.1 Accuracy of the Derived Clock

Table 1 shows the average equal-error rate for each of the three detectors, using
the high-resolution clock, the derived 15 ms resolution clock, and the real 15.625
ms resolution Windows-event clock. In addition to the equal-error rates, the table
includes a percentage in parentheses for the derived clock and the Windows-event
clock. This percentage indicates the percent increase in the equal-error rate over
that from the high-resolution clock.

To verify the correctness of the results using the derived low-resolution clocks,
we compare the second and third rows of Table 1. The results are almost exactly
the same except for the nearest-neighbor detector. Since the nearest-neighbor
detector is not robust to small changes in the training data, it is not surprising
to see a comparatively large difference between the derived 15 ms clock and the
real 15.625 ms clock. The similarity in the results of the other two detectors
indicate that the derived clock results are accurate.

Even if we had been able to directly derive a 15.625 ms clock (impossible
because of the limitations of the derivation procedure described in Section 5),
small differences between the derived and real timestamps would still cause small
differences in detector performance (e.g., differences resulting from small delays
in how quickly the real clock is queried).

8.2 Effects of Clock Resolution on Detector Performance

Figure 5 depicts the effect of clock resolution on the average equal-error rate of
the three detectors. Each panel displays a curve for each of the three detectors,
but at different scales, highlighting a different result.

346 K. Killourhy and R. Maxion

0 5 10 15

0.
10

0.
12

0.
14

0.
16

Clock Resolution (ms)

E
qu

al
−

E
rr

or
 R

at
e

0 50 100 150 200 250 300

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

Clock Resolution (ms)

E
qu

al
−

E
rr

or
 R

at
e

(a) Resolutions of 0–15 ms (b) Resolutions of 0–300 ms

0 5 10 15 20 25 30

0.
1

0.
2

0.
3

0.
4

0.
5

Clock Resolution (sec)

E
qu

al
−

E
rr

or
 R

at
e

Mean Based
Nearest Neighbor
Multilayer Perceptron

(c) All resolutions (0–30 sec)

Fig. 5. The equal-error rates of the three detectors increase as clock-resolution goes
from fine to coarse. Panel (a) depicts the minor but significant change in performance
resulting from a transition from the high-resolution clock to typical 15 ms clocks. Panel
(b) shows how the error jumps significantly when the clock resolution is between 50 ms
and 300 ms. Panel (c) characterizes the variation in detector performance over the full
range of derived clock resolutions from 1 ms to 30 seconds (where the detector does no
better than randomly guessing).

Panel (a) shows the effect of clock resolutions in the range of 0–15 ms on the
equal-error rate. These are resolutions that we see in practice (e.g., in Windows
and X11 event timestamps). We observe some increase in the equal-error rate
for the mean-based and nearest-neighbor detectors, even from the 1 ms clock
to the 15 ms clock. The change from the 1 ms clock to the 15 ms clock does
not seem to have much effect on the multilayer perceptron (which could be
because that detector’s performance is already comparatively poor, rather than
because the multilayer perceptron is more robust to lower-resolution clocks). The
parenthetical percentages in Table 1 quantify the change from high resolution to
typical resolutions. When the detectors use the 15 ms clock, their equal-error rate

The Effect of Clock Resolution on Keystroke Dynamics 347

is an average of 4.2% higher than with the high-resolution clock. While this loss
may not seem significant, keystroke dynamics needs near-perfect accuracy to be
practical (1% false-alarm rate and 0.001% miss rate according to the European
standard for access control [3]), so every possible boost in performance will help.

Panel (b) examines the effect of clock resolution beyond the 15 ms range. The
graph reveals that the equal-error rates of the mean-based and nearest-neighbor
detectors increase sharply after a resolution of 50 ms, and all three detectors’
equal-error rates increase together after a resolution of 150 ms. While such low-
resolution clocks are not used for keystroke dynamics, we can consider clock
resolution to be one of many factors that might affect a detector. (Other factors
include bus contention, system load, and even networking delays.) This panel
suggests that these detectors are not particularly robust to noise in the form of
low clock resolution. By extrapolation, it suggests that tens of milliseconds of
noise from any of these sources (or any combination thereof) could be a problem.

Panel (b) also reveals a peak in the equal-error rate of the mean-based and
nearest-neighbor detectors at a resolution of 100 ms. The cause of the peak is not
obvious; it could be an artifact of our particular subjects’ typing characteristics
and would disappear with more or different subjects. More typing data and
analysis would be necessary to determine whether such peaks appear consistently
for a particular detector and clock resolution, but the existence of a peak does
suggest that the effects of factors like clock resolution are not always easy to
predict.

Panel (c) demonstrates the effect of very-low-resolution clocks on the equal-
error rate of a detector. All three detectors’ equal-error rates tend to 0.5, which
is the theoretically worst possible equal-error rate (akin to random guessing).
That the equal-error rate goes to 0.5 is not surprising, but it is surprising that
the equal-error rate converges so slowly to 0.5. With a 1-second resolution, the
three detectors all have equal-error rates of about 0.3. While not great, it is
certainly better than randomly guessing. It is surprising that key-hold times
and digram intervals retain some (weakly) discriminative information even when
expressed as a whole number of seconds. It may be that the features being used
to discriminate users from impostors are present only because our impostors are
unpracticed; they type the password a few seconds more slowly than a practiced
user would. It is possible that a curve for practiced impostors would be steeper,
more quickly ascending to 0.5 (to be investigated in future work).

9 Discussion

Based on these findings, we take away two messages from this investigation, each
of which suggests a trajectory for the future. First, we have demonstrated that
clock resolution does have an effect on the performance of keystroke-dynamics
detectors, and as a result, we should consider the potential deleterious effects
of timing noise. Fortunately, the effect appears to be small for the typical clock
resolutions we see in practice, but we do get a small boost in performance by us-
ing a high-resolution clock. However, clock-resolution granularity is not the only

348 K. Killourhy and R. Maxion

factor that affects keystroke timestamps. Given these results, it seems almost
certain that other forms of noise (e.g., system load) will cause similar problems.
In the long term, we should try to eliminate noise from our timestamps, but in
the short term we should at least acknowledge and account for its presence by
carefully evaluating our timing mechanisms (e.g., by measuring and reporting
clock resolution).

Second, even with the high-resolution timestamps, our detectors’ performance
is less than ideal. The best performance we obtained was a 9.96% equal-error
rate for the nearest-neighbor detector, which is a long way from a 1% false-alarm
rate and a 0.001% miss rate. We were surprised, since the detectors we used are
similar to those that have performed well in the literature (e.g., by Joyce and
Gupta [10], and by Cho et al. [4]). However, it would be improper to compare our
results directly to those in the literature, because there are significant differences
between our experimental method and theirs. The most obvious difference is our
control of potential confounding factors (e.g., password selection and practice
effect).

We speculate that experimental control is indeed responsible for the poorer
performance of our detectors. Furthermore, we advocate the control of potential
confounding factors in future experiments. Why? While realistic but uncontrolled
experiments can demonstrate that a detector does well (or poorly), controlled
experiments are necessary to reveal a causal connection between experimental
factors (e.g., password choice or practice) and detector performance. If we are to
use keystroke dynamics as a biometric, causal factors must be identified—why it
works is as important as whether it works. For instance, it would be significant
to discover that, regardless of other factors, every typist has an immutable,
intrinsically identifiable quality to his or her typing. It would also be significant
(but unfortunate) to find that a detector’s performance depends primarily on
the number of times an impostor practiced a password, and that with enough
practice, any impostor could pass for a legitimate user.

We intend to conduct a survey of other detectors proposed in the literature
to see whether performance remains poor on our data. We also observe that
these detection algorithms tend to treat typing data as arbitrary points in a
high-dimensional space, ignoring the fact that the data are observations about
fingers typing. Perhaps better results can be obtained by building a detector that
relies upon a model of user typing (such as those proposed by Card et al. [2] or
John [9]).

10 Summary and Conclusion

The goal of this work is to investigate the effect that clock resolution has on
the performance of keystroke-dynamics detectors, in part to determine if a high-
resolution clock would boost performance. We collected data at a high resolution,
and derived data at lower resolutions. We implemented three detectors and eval-
uated their performances over a range of clock resolutions. We found that a
high-resolution clock does provide a slight performance boost, and conversely,

The Effect of Clock Resolution on Keystroke Dynamics 349

clocks with a typical 15 ms resolution increase the equal-error rate by an average
of 4.2%. Based on results using very-low-resolution clocks, we found that detec-
tors are not particularly robust to timing noise. Finally, we discovered that none
of the detectors achieved a practically useful level of performance, and identified
significant opportunities for progress through controlled experimentation.

Acknowledgements

The authors are grateful to Rachel Krishnaswami for her insightful comments
and helpful advice, and to Patricia Loring for running the experiments that
provided the data for this paper. Fahd Arshad and Rob Reeder were responsible
for the instrumentation that presented stimuli to participants. Thanks also to
several anonymous reviewers for their comments.

This work was supported by National Science Foundation grant numbers CNS-
0430474 and CNS-0716677, and by the Army Research Office through grant
number DAAD19-02-1-0389 (Perpetually Available and Secure Information Sys-
tems) to Carnegie Mellon University’s CyLab. The views and conclusions con-
tained in this document are those of the authors, and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government, or any other entity.

References

[1] Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

[2] Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user perfor-
mance time with interactive systems. Communications of the ACM 23(7), 396–410
(1980)

[3] CENELEC. European Standard EN 50133-1: Alarm systems. Access control sys-
tems for use in security applications. Part 1: System requirements, Standard Num-
ber EN 50133-1:1996/A1:2002, Technical Body CLC/TC 79, European Commit-
tee for Electrotechnical Standardization (CENELEC) (2002)

[4] Cho, S., Han, C., Han, D.H., Kim, H.-I.: Web-based keystroke dynamics iden-
tity verification using neural network. Journal of Organizational Computing and
Electronic Commerce 10(4), 295–307 (2000)

[5] Dodge, Y.: Oxford Dictionary of Statistical Terms. Oxford University Press, New
York (2003)

[6] Forsen, G., Nelson, M., Staron Jr., R.: Personal attributes authentication tech-
niques. Technical Report RADC-TR-77-333, Rome Air Development Center (Oc-
tober 1977)

[7] Gaines, R.S., Lisowski, W., Press, S.J., Shapiro, N.: Authentication by keystroke
timing: Some preliminary results. Technical Report R-2526-NSF, RAND Corpo-
ration (May 1980)

[8] Hwang, B., Cho, S.: Characteristics of auto-associative MLP as a novelty detector.
In: Proceedings of the IEEE International Joint Conference on Neural Networks,
Washington, DC, July 10–16, 1999, vol. 5, pp. 3086–3091 (1999)

350 K. Killourhy and R. Maxion

[9] John, B.E.: TYPIST: A theory of performance in skilled typing. Human-Computer
Interaction 11(4), 321–355 (1996)

[10] Joyce, R., Gupta, G.: Identity authentication based on keystroke latencies. Com-
munications of the ACM 33(2), 168–176 (1990)

[11] Keeney, M., Kowalski, E., Cappelli, D., Moore, A., Shimeall, T., Rogers, S.: In-
sider threat study: Computer system sabotage in critical infrastructure sectors.
Technical report, U.S. Secret Service and CERT Coordination Center/SEI (May
2005), http://www.cert.org/archive/pdf/insidercross051105.pdf

[12] Limas, M.C., Meré, J.O., Gonzáles, E.V., Martinez de Pisón Ascacibar, F.J., Es-
pinoza, A.P., Elias, F.A.: AMORE: A MORE Flexible Neural Network Package
(October 2007), http://cran.r-project.org/web/packages/AMORE/index.html

[13] Microsoft. Password checker (2008),
http://www.microsoft.com/protect/yourself/password/checker.mspx

[14] Mount, D., Arya, S.: ANN: A Library for Approximate Nearest Neighbor Search-
ing (2006), http://www.cs.umd.edu/∼mount/ANN/

[15] Microsoft Developer Network. EVENTMSG structure (2008),
http://msdn2.microsoft.com/en-us/library/ms644966(VS.85).aspx

[16] Microsoft Developer Network. QueryPerformanceCounter function (2008),
http://msdn2.microsoft.com/en-us/library/ms644904(VS.85).aspx

[17] Peacock, A., Ke, X., Wilkerson, M.: Typing patterns: A key to user identification.
IEEE Security and Privacy 2(5), 40–47 (2004)

[18] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008)

[19] Sheng, Y., Phoha, V., Rovnyak, S.: A parallel decision tree-based method for user
authentication based on keystroke patterns. IEEE Transactions on Systems, Man,
and Cybernetics 35(4), 826–833 (2005)

[20] Swets, J.A., Pickett, R.M.: Evaluation of Diagnostic Systems: Methods from Sig-
nal Detection Theory. Academic Press, New York (1982)

[21] PC Tools. Security guide for windows—random password generator (2008),
http://www.pctools.com/guides/password/

http://www.cert.org/archive/pdf/insidercross051105.pdf
http://cran.r-project.org/web/packages/AMORE/index.html
http://www.microsoft.com/protect/yourself/password/checker.mspx
http://www.cs.umd.edu/~mount/ANN/
http://msdn2.microsoft.com/en-us/library/ms644966(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms644904(VS.85).aspx
http://www.pctools.com/guides/password/

A Comparative Evaluation of Anomaly

Detectors under Portscan Attacks

Ayesha Binte Ashfaq, Maria Joseph Robert, Asma Mumtaz,
Muhammad Qasim Ali, Ali Sajjad, and Syed Ali Khayam

School of Electrical Engineering & Computer Science
National University of Sciences & Technology (NUST)

Rawalpindi, Pakistan
{ayesha.ashfaq,47maria,45asma,mqasim.ali,ali,khayam}@niit.edu.pk

Abstract. Since the seminal 1998/1999 DARPA evaluations of intru-
sion detection systems, network attacks have evolved considerably. In
particular, after the CodeRed worm of 2001, the volume and sophistica-
tion of self-propagating malicious code threats have been increasing at an
alarming rate. Many anomaly detectors have been proposed, especially in
the past few years, to combat these new and emerging network attacks.
At this time, it is important to evaluate existing anomaly detectors to de-
termine and learn from their strengths and shortcomings. In this paper,
we evaluate the performance of eight prominent network-based anomaly
detectors under malicious portscan attacks. These ADSs are evaluated
on four criteria: accuracy (ROC curves), scalability (with respect to vary-
ing normal and attack traffic rates, and deployment points), complexity
(CPU and memory requirements during training and classification,) and
detection delay. These criteria are evaluated using two independently
collected datasets with complementary strengths. Our results show that
a few of the anomaly detectors provide high accuracy on one of the
two datasets, but are unable to scale their accuracy across the datasets.
Based on our experiments, we identify promising guidelines to improve
the accuracy and scalability of existing and future anomaly detectors.

1 Introduction

With an increasing penetration of broadband Internet connectivity and an ex-
ponential growth in the worldwide IT infrastructure, individuals and organiza-
tions now rely heavily on the Internet for their communication and business
needs. While such readily-available network connectivity facilitates operational
efficiency and networking, systems connected to the Internet are inherently vul-
nerable to network attacks. These attacks have been growing in their number
and sophistication over the last few years [1]. Malware, botnets, spam, phishing,
and denial of service attacks have become continuous and imminent threats for
today’s networks and hosts [1], [2]. Financial losses due to these attacks are in
the orders of billions of dollars1. In addition to the short-term revenue losses for
1 Economic losses to recover from the CodeRed worm alone are estimated at $2.6

billion [3].

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 351–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

352 A.B. Ashfaq et al.

businesses and enterprises, network attacks also compromise information confi-
dentiality/integrity and cause disruption of service, thus resulting in a long-term
loss of credibility.

Since the CodeRed worm of 2001, malware attacks have emerged as one of the
most prevalent and potent threats to network and host security2. Many network-
based anomaly detection systems (ADSs) have been proposed in the past few
years to detect novel network attacks [4]–[23]. Since malicious portscans are the
vehicle used by malware and other automated tools to locate and compromise
vulnerable hosts, some of these anomaly detectors are designed specifically for
portscan detection [4]–[11], [19], while other detectors are more general-purpose
and detect any anomalous traffic trend [12]–[18], [20]. Most of the network-
based anomaly detectors model and leverage deep-rooted statistical properties of
benign traffic to detect anomalous behavior. A variety of theoretical frameworks–
including stochastic, machine learning, information-theoretic and signal process-
ing frameworks–have been used to develop robust models of normal behavior
and/or to detect/flag deviations from that model. However, very little effort
has been expended into comparative evaluation of these recent ADSs for the
portscan detection problem.

In this paper, we evaluate and compare eight prominent network-based anom-
aly detectors on two public portscan datasets. The objectives of this study are:
1) to quantify and compare the accuracies of these detectors under varying rates
of attack and normal traffic and at different points of deployment; 2) to iden-
tify promising traffic features and theoretical frameworks for portscan anomaly
detection; 3) to investigate the accuracy of contemporary anomaly detectors
with respect to their complexity and detection delay; 4) to identify a set of
promising portscan detection guidelines that build on the strengths and avoid
the weaknesses of the evaluated anomaly detectors; and finally 5) to provide
an open-source library of anomaly detection tools that operate on public and
labeled datasets, and can be used for repeatable performance benchmarking by
future detectors3.

The anomaly detectors compared in this work were proposed in [4], [7], [8],
[12], [15], [18], [20] and [21]. These ADSs are chosen because they employ very
different traffic features and theoretical frameworks for anomaly detection. More-
over, most of these detectors are frequently used for performance benchmark-
ing in the intrusion detection research literature [6], [9]–[11], [13], [14], [16],
[17], and [19]. Some of these ADSs have been designed for and evaluated at
endpoints while others have been tailored towards organization/ISP gateways.
Similarly, some detector are designed for portscan detection, while others are
general-purpose ADSs. This diversity allows us to determine how much, if any,
performance improvement is provided by portscan ADSs over general-purpose
ADSs.

2 From 2006 to 2007, the total number of malicious code attacks reported by Symantec
DeepSightTMshowed a phenomenal increase of 468% [1].

3 Background and attack datasets are available at [24] and [25]. ADS implementations
are also available at [25].

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 353

For performance evaluation of the anomalydetectors, we use two independently-
collected datasets with complementary strengths. The first dataset is an enterprise
traffic dataset collected at the edge router of the Lawrence Berkeley National Lab
(LBNL) [24]. Attack traffic in this dataset mostly comprises high-rate background
traffic and low-rate outgoing scans. The second dataset comprises traffic data col-
lected at network endpoints in home, university and office settings. Background
traffic rates of these endpoints are relatively low as compared to the LBNL dataset,
but the endpoint attack data contains relatively high-rate outgoing scan traffic.

We evaluate these ADSs on four criteria: accuracy, scalability, complexity and
detection delay. Accuracy is evaluated by comparing ROC (false alarms per day
versus detection rate) characteristics of the ADSs. Scalability is evaluated with
respect to different background and attack traffic rates. Since the two datasets
used in this study are collected at different network entities and contain attacks
with different characteristics, evaluation over these datasets allows us to compare
the scalability of the proposed ADSs under varying traffic volumes. Complexity
is evaluated in terms of time and memory required during training and classifi-
cation steps of each ADS. Detection delay is evaluated separately for high- and
low-rate attacks.

Our results show that some of the evaluated anomaly detectors provide reason-
able accuracy with low detection delay. However, these detectors do not provide
sustained accuracy on both the datasets. For instance, the Maximum Entropy
detector [20] provides very high accuracy at the endpoints, but cannot provide
the same level of accuracy at the edge router. Similarlyl, the credit-based TRW
algorithm [8] provides reasonably high accuracy at endpoints, while its origi-
nal counterpart, the TRW algorithm [7], outperforms all other algorithms at
the edge router. The rate limiting detector [4], [5] that has been designed for
malware detection fails to provide high accuracy at endpoints or routers. In
summary, the detectors are unable to scale their accuracies for different points
of network deployment.

To improve scalability and detection accuracy, we further evaluate two anom-
aly detectors, namely the Maximum Entropy and the PHAD detectors. These
two detectors are somewhat unique because they allow more degrees of freedom
in their feature spaces; i.e. they have higher dimensional feature spaces than the
other detectors. Using these two detectors, we show that a promising approach
to improve the accuracy of a detector is to operate it across a high dimensional
feature space and/or over multiple time windows. We refer to these accuracy
improving extensions as Space-Time (ST) variants of the original detectors.

2 Related Work

In this section, we focus on prior IDS/ADS evaluation studies. Details of anomaly
detectors used in this work are deferred to subsequent sections.

Performance evaluation of IDSs received significant attention from the indus-
try and academia in the late 1990’s [30]–[45]. However, in the past few years,
only four studies have performed comparative comparison of anomaly detectors

354 A.B. Ashfaq et al.

[26]–[29]. Similarly, very few prior studies have performed ROC analysis of the
evaluated IDSs. Still fewer studies have made their evaluation datasets available
online.

DARPA-funded IDS evaluation studies by the MIT Lincoln Lab in 1998 and
1999 represent a shift in the IDS evaluation methodology [33], [38]. Datasets used
in these studies were made publicly available [39] and the ROC method used in
these studies has since become the de facto standard for IDS accuracy evaluation.
While some shortcomings of the DARPA evaluation have been highlighted [47],
[48], in the absence of other benchmarks, the results and datasets of this study
have been used extensively in subsequent works. In the present paper’s context,
the DARPA dataset is somewhat dated.

The four recent ADS evaluation studies focus on specific types of detectors
and attacks [26]–[29]. The study by Wong et al. [26] is most relevant in the
present context. Wong et al. [26] evaluated four variants of the rate limiting
detector under portscan attacks at two different network points [4]–[11]. Two
findings of this study are pertinent to the present work: 1) classical rate limiting
is not an effective technique for portscan detection, and 2) rate limiting can
operate on aggregate-level DNS traffic and hence can potentially scale to core-
level deployments. Attack and background traffic data used in this study are not
publicly available.

A comparative evaluation of bio-inspired anomaly detection algorithms was
performed recently [27]. This work proposed to improve the accuracy of bio-
inspired anomaly detectors by providing intelligent and discriminant features as
inputs to the detectors’ classification algorithms. The experimental results indi-
cated that the use of intelligent features significantly improves the true positive
and false positive rates of bio-inspired classifiers.

Ingham and Inoue [28] compared seven HTTP anomaly detection techniques
under real-world attacks reported at public databases. These authors report the
same evaluation difficulties that were faced by us: 1) Some anomaly detectors
are not described completely; 2) Implementation source code is not available;
and 3) labeled data used for algorithm evaluation are not publicly available.
Consequently, the authors in [28] make their implementation and attack data
publicly available “to encourage further experimentation”. We subscribe to the
same viewpoint and therefore all data and implementation used in this project
are available online [25]. Lazarevic et al. performed a comparative analysis of
four data mining based anomaly detection techniques in [29]. The live network
traffic data used by this study is not publicly available.

3 Evaluation Datasets

We wanted to use real, labeled and public background and attack datasets to
measure the accuracy of the evaluated anomaly detectors. Real and labeled data
allow realistic and repeatable quantification of an anomaly detector’s accuracy,
which is a main objective of this work. Moreover, as defined in the introduc-
tion, another objective is to evaluate the accuracy or scalability of the anomaly

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 355

detectors under different normal and attack traffic rates and at different points
of deployment in the network. This evaluation objective is somewhat unique to
this effort, with [26] being the only other study that provides some insight into
host versus edge deployments.

Different network deployment points are responsible for handling traffic from
varying number of nodes. For instance, an endpoint requires to cater for only
its own traffic, while an edge router needs to monitor and analyze traffic from a
variety of hosts in its subnet. In general, as one moves away from the endpoints
towards the network core, the number of nodes, and consequently the traffic
volume, that a network entity is responsible for increase considerably. We argue
that if an algorithm that is designed to detect high- or low-rate attacks at a
particular point of deployment, say an edge router, scales to and provides high
accuracy at other traffic rates and deployment points, say at endpoints, then such
an algorithm is quite valuable because it provides an off-the-shelf deployment
option for different network entities. (We show later in this paper that some
existing algorithms are able to achieve this objective.)

To test the anomaly detectors for scalability, we use two real traffic datasets
that have been independently-collected at different deployment points. The first
dataset is collected at the edge router of the Lawrence Berkeley National Lab-
oratory (LBNL), while the second dataset is collected at network endpoints by
our research lab4. In this section, we describe the data collection setups and
the attack and background traffic characteristics of the LBNL and the endpoint
datasets.

3.1 The LBNL Dataset

LBNL Background Traffic: This dataset was obtained from two international
network locations at the Lawrence Berkeley National Laboratory (LBNL) in USA.
Traffic in this dataset comprises packet-level incoming, outgoing and internally-
routed traffic streams at the LBNL edge routers. Traffic was anonymized using
the tcpmkpub tool; refer to [49] for details of anonymization.

LBNL data used in this study is collected during three distinct time periods.
Some pertinent statistics of the background traffic are given in Table 1. The
average remote session rate (i.e., sessions from distinct non-LBNL hosts) is ap-
proximately 4 sessions per second. The total TCP and UDP background traffic
rate in packets per second is shown in column 5 of the table. A large variance
can be observed in the background traffic rate at different dates. This variance
will have an impact on the performance of volumetric anomaly detectors that
rely on detecting bursts of normal and malicious traffic.

The main applications observed in internal and external traffic are Web
(HTTP), Email and Name Services. Some other applications like Windows Ser-
vices, Network File Services and Backup were being used by internal hosts;

4 We also wanted to use a traffic dataset collected at a backbone ISP network; such
datasets have been used in some prior studies [15]–[17]. However, we could not find
a publicly available ISP traffic dataset.

356 A.B. Ashfaq et al.

Table 1. Background Traffic Information for the LBNL Dataset

Date Duration(mins) LBNL Hosts Remote Hosts Backgnd Rate(pkt/sec) Attack Rate(pkt/sec)
10/4/04 10min 4,767 4,342 8.47 0.41
12/15/04 60min 5,761 10,478 3.5 0.061
12/16/04 60min 5,210 7,138 243.83 72

details of each service, information of each service’s packets and other relevant
description are provided in [50].

LBNL Attack Traffic: Attack traffic was isolated by identifying scans in the
aggregate traffic traces. Scans were identified by flagging those hosts which un-
successfully probed more than 20 hosts, out of which 16 hosts were probed in
ascending or descending order [49]. Malicious traffic mostly comprises failed in-
coming TCP SYN requests; i.e., TCP portscans targeted towards LBNL hosts.
However, there are also some outgoing TCP scans in the dataset. Most of the
UDP traffic observed in the data (incoming and outgoing) comprises successful
connections; i.e., host replies are received for the UDP flows. Table 1 [column 6]
shows the attack rate observed in the LBNL dataset. Clearly, the attack rate is
significantly lower than the background traffic rate. Thus these attacks can be
considered low rate relative to the background traffic rate. (We show later that
background and attack traffic at endpoints exhibit the opposite characteristics.)

Since most of the anomaly detectors used in this study operate on TCP, UDP
and/or IP packet features, to maintain fairness we filtered the background data
to retain only TCP and UDP traffic. Moreover, since most of the scanners were
located outside the LBNL network, to remove any bias we filter out internally-
routed traffic. After filtering the datasets, we merged all the background traffic
data at different days and ports. Synchronized malicious data chunks were then
inserted in the merged background traffic.

Since no publicly-available endpoint traffic set was available, we spent up to 14
months in collecting our own dataset on a diverse set of 13 endpoints. Complex-
ity and privacy were two main reservations of the participants of the endpoint
data collection study. To address these reservations, we developed a custom tool
for endpoint data collection. This tool was a multi-threaded MS Windows ap-
plication developed using the Winpcap API [51]. (Implementation of the tool is
available at [25].) To reduce the packet logging complexity at the endpoints, we
only logged some very elementary session-level information of TCP and UDP
packets. Here a session corresponds to a bidirectional communication between
two IP addresses; communication between the same IP address on different ports
is considered part of the same network session. To ensure user privacy, the source
IP address (which was fixed/static for a given host) is not logged, and each ses-
sion entry is indexed by a one-way hash of the destination IP with the hostname.
Most of the detectors evaluated in this work can operate with this level of data
granularity.

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 357

Table 2. Background Traffic Information for Four Endpoints with High and Low Rates

Endpoint ID Endpoint Type Duration(months) Total Sessions Mean Session Rate(/sec)
3 Home 3 373, 009 1.92
4 Home 2 444, 345 5.28
6 Univ 9 60, 979 0.19
10 Univ 13 152, 048 0.21

3.2 Endpoint Dataset

Statistics of the two highest rate and the two lowest rate endpoints are listed in
Table 25. As can be intuitively argued, the traffic rates observed at the endpoints
are much lower than those at the LBNL router. In the endpoint context, we
observed that home computers generate significantly higher traffic volumes than
office and university computers because: 1) they are generally shared between
multiple users, and 2) they run peer-to-peer and multimedia applications. The
large traffic volumes of home computers are also evident from their high mean
number of sessions per second. For this study, we use 6 weeks of endpoint traffic
data for training and testing. Results for longer time periods were qualitatively
similar.

To generate attack traffic, we infected VMs on the endpoints by the fol-
lowing malware: Zotob.G, Forbot-FU, Sdbot-AFR, Dloader-NY, SoBig.E@mm,
MyDoom.A@mm, Blaster, Rbot-AQJ, and RBOT.CCC; details of the malware can
be found at [52]. These malware have diverse scanning rates and attack
ports/applications. Table 3 shows statistics of the highest and lowest scan rate
worms; Dloader-NY has the highest scan rate of 46.84 scans per second (sps),
while MyDoom-A has the lowest scan rate of 0.14 sps, respectively. For complete-
ness, we also simulated three additional worms that are somewhat different from
the ones described above, namely Witty, CodeRedv2 and a fictitious TCP worm
with a fixed and unusual source port. Witty and CodeRedv2 were simulated us-
ing the scan rates, pseudocode and parameters given in research and commercial
literature [52], [53].

Endpoint Background Traffic: The users of these endpoints included home
users, research students, and technical/administrative staff. Some endpoints, in
particular home computers, were shared among multiple users. The endpoints
used in this study were running different types of applications, including peer-
to-peer file sharing software, online multimedia applications, network games,
SQL/SAS clients etc.

Endpoint Attack Traffic: The attack traffic logged at the endpoints mostly
comprises outgoing portscans. Note that this is the opposite of the LBNL dataset,
in which most of the attack traffic is inbound. Moreover, the attack traffic rates
5 The mean session rates in Table 2 are computed using time-windows containing one

or more new sessions. Therefore, dividing total sessions by the duration does not
yield the session rate of column 5.

358 A.B. Ashfaq et al.

Table 3. Endpoint Attack Traffic for Two High- and Two Low-rate Worms

Malware Release Date Avg. Scan Rate(/sec) Port(s) Used
Dloader-NY Jul 2005 46.84 sps TCP 135,139
Forbot-FU Sept 2005 32.53 sps TCP 445
MyDoom-A Jan 2006 0.14 sps TCP 3127 − 3198
Rbot-AQJ Oct 2005 0.68 sps TCP 139,769

(Table 3) in the endpoint case are generally much higher than the background
traffic rates (Table 2). This characteristic is also the opposite of what was ob-
served in the LBNL dataset. This diversity in attack direction and rates provides
us a sound basis for performance comparison of the anomaly detectors evaluated
in this study [7], [8].

For each malware, attack traffic of 15 minutes duration was inserted in the
background traffic of each endpoint at a random time instance. This operation
was repeated to insert 100 non-overlapping attacks of each worm inside each
endpoint’s background traffic.

4 Anomaly Detection Algorithms

In this section, we focus on network-based anomaly detectors and compare the
anomaly detectors proposed in [4], [7], [8], [12], [15], [18], [20], and [21]. Most of
these detectors are quite popular and used frequently for performance compar-
ison and benchmarking in the ID research community. Improvements to these
algorithms have also been proposed in [6], [9]–[11], [13], [14], [16], [17], [19],
and [26]6.

Before briefly describing these detectors, we highlight that some of these de-
tectors are designed specifically for portscan detection, while others are general-
purpose network anomaly detectors. More generically, based on the taxonomy
of [54], the algorithms evaluated in this study can be subdivided into the ADS
categories shown in Fig. 1. Clearly, the evaluated ADSs are quite diverse in
their traffic features as well as their detection frameworks. These ADSs range
from very simple rule modelling systems like PHAD [12] to very complex and
theoretically-inclined self-Learning systems like the PCA-based subspace method
[15] and the Sequential Hypothesis Testing technique [7]. This diversity is intro-
duced to achieve the following objectives: a) to identify promising traffic features
and theoretical frameworks for portscan anomaly detection; b) to investigate the
accuracy, complexity and delays of these anomaly detectors under different at-
tack and normal traffic scenarios and at different points of deployment in the
network; and c) to identify a set of promising portscan detection guidelines
that build on the strengths and avoid the weaknesses of the evaluated anomaly
detectors.
6 Some promising commercial ADSs are also available in the market now [22], [23].

We did not have access to these ADSs, and therefore these commercial products are
not evaluated in this study.

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 359

Anomaly Detection

Self-Learning Systems

Non-Time
Se

Descriptive Statistic
[Kalman Filter,

Maximum Entropy,
NIDES, PCA-based
Subspace Method]

Programmed

RuleModelling
[Packet Header Anomaly

Detector (PHAD)]

Descriptive
Statistic

Threshold
[Rate Limiting]

Simple Statistics
[Threshold Random Walk

(TRW), Credit-based TRW]

Fig. 1. Taxonomy of the anomaly detectors evaluated in this work [54]

Due to space constraints, we do not provide detailed descriptions of the eval-
uated algorithms. We instead focus on the algorithm adaptation and parameter
tuning for the datasets under consideration. Readers are referred to [4], [7], [8],
[12], [15], [18], [20], and [21] for details of the algorithms. For techniques op-
erating on fixed-sized time windows, we use a window of 20 seconds. All other
parameters not mentioned in this section are the same as those described in the
algorithms’ respective papers.

4.1 Rate Limiting

Rate limiting [4], [5] detects anomalous connection behavior by relying on the
premise that an infected host will try to connect to many different machines in a
short period of time. Rate limiting detects portscans by putting new connections
exceeding a certain threshold in a queue. An alarm is raised when the queue
length, ηq, exceeds a threshold. ROCs for endpoints are generated by varying
ηq = μ + kσ, where μ and σ represent the sample mean and sample standard
deviation of the connection rates in the training set, and k = 0, 1, 2, . . . is a
positive integer. Large values of k will provide low false alarm and detection
rates, while small values will render high false alarm and detection rates. In the
LBNL dataset, connection rate variance in the background traffic is more than
the variance in the attack traffic. Therefore, to obtain a range of detection and
false alarm rates for the LBNL dataset, we use a threshold of ηq = wμ, with
a varying parameter 0 ≥ w ≤ 1, and the queue is varied between 5 and 100
sessions.

4.2 Threshold Random Walk (TRW) Algorithm

The TRW algorithm [7] detects incoming portscans by noting that the probabil-
ity of a connection attempt being a success should be much higher for a benign

360 A.B. Ashfaq et al.

host than for a scanner. To leverage this observation, TRW uses sequential hy-
pothesis testing (i.e., a likelihood ratio test) to classify whether or not a remote
host is a scanner. We plot ROCs for this algorithm by setting different values of
false alarm and detection rates and computing the likelihood ratio thresholds,
η0 and η1, using the method described in [7].

4.3 TRW with Credit-Based Rate Limiting (TRW-CB)

A hybrid solution to leverage the complementary strengths of Rate Limiting
and TRW was proposed by Schechter et al. [8]. Reverse TRW is an anomaly
detector that limits the rate at which new connections are initiated by apply-
ing the sequential hypothesis testing in a reverse chronological order. A credit
increase/decrease algorithm is used to slow down hosts that are experiencing
unsuccessful connections. We plot ROCs for this technique for varying η0 and
η1 as in the TRW case.

4.4 Maximum Entropy Method

This detector estimates the benign traffic distribution using maximum entropy
estimation [20]. Training traffic is divided into 2, 348 packet classes and maximum
entropy estimation is then used to develop a baseline benign distribution for
each packet class. Packet class distributions observed in real-time windows are
then compared with the baseline distribution using the Kullback-Leibler (K-L)
divergence measure. An alarm is raised if a packet class’ K-L divergence exceeds
a threshold, ηk, more than h times in the last W windows of t seconds each.
Thus the Maximum Entropy method incurs a detection delay of at least h × t
seconds. ROCs are generated by varying ηk.

4.5 Packet Header Anomaly Detection (PHAD)

PHAD learns the normal range of values for all 33 fields in the Ethernet, IP,
TCP, UDP and ICMP headers [12]. A score is assigned to each packet header
field in the testing phase and the fields’ scores are summed to obtain a packet’s
aggregate anomaly score. We evaluate PHAD-C32 [12] using the following packet
header fields: source IP, destination IP, source port, destination port, protocol
type and TCP flags. Normal intervals for the six fields are learned from 5 days of
training data. In the test data, fields’ values not falling in the learned intervals are
flagged as suspect. Then the top n packet score values are termed as anomalous.
The value of n is varied over a range to obtain ROC curves.

4.6 PCA-Based Subspace Method

The subspace method uses Principal Component Analysis (PCA) to separate a
link’s traffic measurement space into useful subspaces for analysis, with each sub-
space representing either benign or anomalous traffic behavior [15]. The authors

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 361

proposed to apply PCA for domain reduction of the Origin-Destination (OD)
flows in three dimensions: number of bytes, packets, IP-level OD flows. The top
k eigenvectors represent normal subspaces. It has been shown that most of the
variance in a link’s traffic is generally captured by 5 principal components [15].
A recent study showed that the detection rate of PCA varies with the level and
method of aggregation [55]. It was also concluded in [55] that it may be imprac-
tical to run a PCA-based anomaly detector over data aggregated at the level
of OD flows. We evaluate the subspace method using the number of TCP flows
aggregated in 10 minutes intervals. To generate ROC results, we changed the
number of normal subspace as k = 1, 2, . . . , 15. Since the principal components
capture maximum variance of the data, as we increase k, the dimension of the
residual subspace reduces and fewer observations are available for detection. In
other words, as more and more principal components are selected as normal sub-
spaces, the detection and false alarm rates decrease proportionally. Since there
is no clear detection threshold, we could not obtain the whole range of ROC val-
ues for the subspace method. Nevertheless, we evaluate and report the subspace
method’s accuracy results for varying number of principal components.

4.7 Kalman Filter Based Detection

The Kalman filter based detector of [18] first filters out the normal traffic from
the aggregate traffic, and then examines the residue for anomalies. In [18], the
Kalman Filter operated on SNMP data to detect anomalies traversing multiple
links. Since SNMP data was not available to us in either dataset, we model
the traffic as a 2-D vector Xt. The first element of Xt is the total number of
sessions (in the endpoint dataset) or packets (in the LBNL dataset), while the
second element is the total number of distinct remote ports observed in the
traffic. We defined a threshold, ηf on the residue value r to obtain ROC curves.
Thresholding of r is identical to the rate limiting case. An alarm is raised, if
r < −ηf or r > ηf .

4.8 Next-Generation Intrusion Detection Expert System (NIDES)

NIDES [21] is a statistical anomaly detector that detects anomalies by comparing
a long-term traffic rate profile against a short-term, real-time profile. An anomaly
is reported if the Q distribution of the real-time profile deviates considerably
from the long-term values. After specific intervals, new value of Q are generated
by monitoring the new rates and compared against a predefined threshold, ηs. If
Pr(Q > q) < ηs, an alarm is raised. We vary ηs over a range of values for ROC
evaluation.

5 Performance Evaluation

In this section, we evaluate the accuracy, scalability, complexity and delay of
the anomaly detectors described in the last section on the endpoint and router
datasets.

362 A.B. Ashfaq et al.

0 50 100 150 200
0

20

40

60

80

100

↑ TRW

↑ TRW−CB
← Kalman Filter

← Max−Entropy

← Rate Limiting

↑ PHAD

↑ NIDES

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

Fig. 2. ROC analysis on the endpoint dataset; each ROC is averaged over 13 endpoints
with 12 attacks per endpoint and 100 instances per attack

0 5 10 15 20 25
0

20

40

60

80

100

← TRW

← TRW−CB

← Max−Entropy

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Endpoint dataset

0 50 100 150
0

20

40

60

80

100

← TRW

↓ TRW−CB

↑ Max−Entropy

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(b) LBNL dataset

Fig. 3. Comparison of the Maximum Entropy, TRW and TRW-CB algorithms

5.1 Accuracy and Scalability Comparison

In this section, we present ROC analysis on the endpoint dataset. The following
section explains the scalability experiments in which ROC analysis is performed
on the LBNL dataset and the results are compared with the endpoint experiments.

Averaged ROCs for the Endpoint Dataset: Fig. 2 provides the averaged
ROC analysis of the anomaly detection schemes under consideration. Clearly,
the Maximum Entropy detector provides the highest accuracy by achieving near
100% detection rate at a very low false alarm rate of approximately 5 alarms/day.
The Maximum Entropy detector is followed closely by the credit-based TRW ap-
proach. TRW-CB achieves nearly 90% detection rate at a reasonable false alarm
rate of approximately 5 alarms/day. The original TRW algorithm, however, pro-
vides very low detection rates for the endpoint dataset. Results of these three
schemes are shown more clearly in Fig. 3(a). Based on these results, the Max-
imum Entropy algorithm provides the best accuracy on endpoints, while TRW
provides the best detection on LBNL dataset.

The Kalman Filter approach is also quite accurate as it provides up to 85%
detection rates at a reasonably low false alarm cost. Rate Limiting, although
designed to detect outgoing scanning attacks, provides very poor performance.
This result substantiates the results of [26] where very high false positive rates

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 363

0 5 10 15
19

19.5

20

20.5

21

21.5

22

principal components

de
te

ct
io

n
ra

te
 (

%
)

(a) Detection rate

0 5 10 15
12

14

16

18

20

22

24

principal components

fa
ls

e
al

ar
m

 r
at

e
(%

)

(b) false alarm rate

Fig. 4. Detection and false alarm rates for the subspace method [15]

for high detection rates were reported for classical rate limiting. Hence, we also
deduce that rate limiting is ineffective for portscan detection at endpoints.

PHAD does not perform well on the endpoint data set. The detection is ac-
companied with very high false alarm rates. NIDES achieve reasonable detection
rates at very low false alarm rates, but is unable to substantially improve its de-
tection rates afterwards. PHAD relies on previously seen values in the training
dataset for anomaly detection. Therefore, if a scanner attacks a commonly-used
port/IP then PHAD is unable to detect it. On similar grounds, if the malicious
traffic is not bursty enough as compared to background traffic then NIDES will
not detect it, irrespective of how much the detection threshold is tuned.

Due to the thresholding difficulties for the subspace method explained in Sec-
tion 4, in Fig. 4 we report results for this technique for varying values of selected
principal components. The highest detection rate of 22% is observed at k = 2
principal components. This already low detection rate decreases further at k = 5
and drops to 0% at k = 15. False alarm rates show the opposite trend. Thus the
subspace method fails to give acceptable accuracy on the endpoint dataset.

The ROC results for the endpoint dataset are somewhat surprising because
two of the top three detectors are general-purpose anomaly detectors (Maxi-
mum Entropy and Kalman Filter), but still outperform other detectors designed
specifically for portscan detection, such as the TRW and the Rate Limiting de-
tectors. We, however, note that this analysis is not entirely fair to the TRW
algorithm because TRW was designed to detect incoming portscans, whereas
our endpoint attack traffic contains mostly outgoing scan packets. The credit-
based variant of TRW achieves high accuracy because it leverages outgoing scans
for portscan detection. Thus TRW-CB combines the complementary strengths
of rate limiting and TRW to provide a practical and accurate portscan detector
for endpoints. This result agrees with earlier results in [26].

ROCs for Low- and High-Rate Endpoint Attacks: To evaluate the scal-
ability of the ADSs under high- and low-rate attack scenarios, Fig. 5 plots
the ROCs for the highest rate (Dloader-NY) and lowest rate (MyDoom-A) at-
tacks in the endpoint dataset. It can be observed that for the high-rate attack
[Fig. 5(a)] Maximum Entropy, TRW, TRW-CB and Kalman Filter techniques

364 A.B. Ashfaq et al.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

← TRW

← TRW−CB

← Kalman Filter

← Max−Entropy

← Rate Limiting

← PHAD

↑ NIDES

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Dloader-NY, high scan rate

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

↑ TRW

← TRW−CB ↓ Kalman Filter
← Max−Entropy

← Rate Limiting

↑ PHAD

↓ NIDES

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(b) MyDoom-A, low scan rate

Fig. 5. ROC curves for the lowest and highest rate attack in the endpoint dataset;
results averaged over 12 endpoints with 100 instances of each attack

provide excellent accuracy by achieving 100% or near-100% detection rates with
few false alarms. NIDES’ performance also improves as it achieves approximately
90% detection rate at very low false alarm rates. This is because the high-rate at-
tack packets form bursts of malicious traffic that NIDES is tuned to detect. Rate
Limiting and PHAD do not perform well even under high attack rate scenarios.

Fig. 5(b) shows that the accuracies of all detectors except PHAD and Max-
imum Entropy degrade under a low-rate attack scenario. Maximum Entropy
achieves 100% detection rate with false alarm rate of 4-5 alarms/day. TRW-CB
recovers quickly and achieves a near-100% detection rate for a daily false alarm
rate around 10 alarms/day. NIDES, however, shows the biggest degradation in
accuracy as its detection rate drops by approximately 90%. This is because low-
rate attack traffic when mixed with normal traffic does not result in long attack
bursts. TRW’s accuracy is also affected significantly as its detection rate drops
by about 35% as compared to the high-rate attack. PHAD does not rely on
traffic rate for detection, and hence its accuracy is only dependent on the header
values observed during training.

Averaged ROCs for the LBNL Dataset: Fig. 6 shows the ROCs for the
LBNL dataset. Comparison with Fig. 3 (a) and (b) reveals that the Maximum
Entropy detector is unable to maintain its high accuracy on the LBNL dataset;
i.e., the Maximum Entropy algorithm cannot scale to different points of network
deployment. TRW’s performance improves significantly as it provides a 100%
detection rate at a negligible false alarm cost. TRW-CB, on the other hand,
achieves a detection rate of approximately 70%. Thus contrary to the endpoint
dataset, the original TRW algorithm easily outperforms the TRW-CB algorithm
on LBNL traces. As explained in Section 3.1, the LBNL attack traffic mostly
comprises failed incoming TCP connection requests. TRW’s forward sequential
hypothesis based portscan detection algorithm is designed to detect such failed
incoming connections, and therefore it provides high detection rates. Thus on
an edge router, TRW represents a viable deployment option.

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 365

0 50 100 150 200
0

20

40

60

80

100
← TRW

↓ TRW−CB

↓ Kalman Filter

← Max−Entropy ← NIDES

↑ Rate Limiting

← PHAD

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

Fig. 6. ROC analysis on the LBNL dataset

Table 4. Complexity Comparison of the Anomaly Detectors

Rate TRW TRW-CB Max NIDES PHAD Subspace Kalman
Limiting Entropy Method Filter

Training 48.58 37948.42 23185.11 50.06 2.01 17650.52 34111.89 16.56
Time(sec)
Detection 15961.75 31339.43 18226.38 22.79 5.4 25082.45 15939.27 12.58
Time(sec)
Training 22789.04 21110.86 25104.67 57223.39 3590.95 48100.35 68851.71 34515.98
Memory(KB)
Detection 14667.4 49087.78 67545.53 66930.06 4013.08 42262.46 16685.93 60314.65
Memory(KB)

Kalman Filter detector’s accuracy drops as it is unable to achieve a detection
rate above 60%. PHAD provides very high detection rates, albeit at an unac-
ceptable false alarm rate. Other detectors’ results are similar to the endpoint
case. (Results for the subspace method were similar to those reported earlier
and are skipped for brevity.) It can be observed from Fig. 6 that all algorithms
except TRW fail to achieve 100% detection rates on the LBNL dataset. This is
because these algorithms inherently rely on the high burstiness and volumes of
attack traffic. In the LBNL dataset, the attack traffic rate is much lower than
the background traffic rate. Consequently, the attack traffic is distributed across
multiple time windows, with each window containing very few attack packets.
Such low density of attack traffic in the evaluated time-windows remains unde-
tected regardless of how much the detection thresholds are decreased.

5.2 Complexity and Delay Comparison

Table 4 lists the training and classification time taken by the anomaly detectors
as well as their training and run-time memory requirements. These numbers are
computed using the hprof tool. The first observation from the table is that,
contrary to common intuition, complexity does not translate directly into ac-
curacy of an anomaly detector. For instance, the Maximum Entropy detector,
while providing the highest accuracy on endpoints, has orders of magnitude lower
training and run-time complexity than many other detectors. NIDES is by far
the least complex algorithm requiring only a few seconds for training and execu-
tion. However, NIDES’ low accuracy makes it an unsuitable choice for practical

366 A.B. Ashfaq et al.

Table 5. Detection Delay of the Anomaly Detectors

Rate TRW TRW-CB Max NIDES PHAD Subspace Kalman
Limiting Entropy Method Filter

MyDoom (msec) 310 510 40 215000 ∞ 900 79 377
Dloader-NY (msec) 140 320 20 56000 0.086 990 23 417

LBNL (msec) 660 660 290 86000 330 330 ∞ 800

deployments. The Kalman Filter based detector is also extremely low complex-
ity. Thus despite its low accuracy at edge routers, it is still a viable deployment
option at network endpoints.

The credit-based TRW algorithm has slightly lower complexity than the
originally-proposed TRW algorithm. Since TRW-CB also provides better accu-
racy than TRW at endpoints, it is a good deployment option for systems without
significant complexity constraints. Rate Limiting, while having low complexity,
is not a practical deployment option because of its poor accuracy. The subspace
method and PHAD have high complexity requirements, but still render very
poor accuracy.

Table 5 provides the detection delay for each anomaly detector. On the end-
point dataset, delay is reported for the highest and the lowest rate attacks, while
on the LBNL dataset this delay is computed for the first attack that is detected
by an anomaly detector. A delay value of ∞ is listed if an attack is not detected
altogether. It can be observed that detection delay is reasonable (less than 1 sec-
ond) for all the anomaly detectors except the Maximum Entropy detector which
incurs very high detection delays. High delays are observed for the Maximum
Entropy detector because it waits for perturbations in multiple time windows
before raising an alarm. Among other viable alternatives, TRW-CB provides the
lowest detection delays for all three experiments. Detection delay for the TRW
is also reasonably low.

6 Summary, Discussion and Future Work

6.1 Summary

In this paper, we evaluated eight prominent network-based anomaly detectors
using two portscan traffic datasets having complementary characteristics. These
detectors were evaluated on accuracy, scalability, complexity and delay crite-
ria. Based on the results of this paper, we now rephrase and summarize our
deductions pertaining to the main objectives of this study:

– Which algorithms provide the best accuracy under varying rates of attack
and normal traffic and at different points of deployment? Under the varying
attack and background traffic rates observed in the two datasets, a general-
purpose Maximum Entropy Detector [20] and variants of the Threshold
Random Walk (TRW) algorithm [7], [8] provided the best overall perfor-
mance under most evaluation criteria. In this context, TRW is suitable for

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 367

deployment at routers, while TRW-CB and Maximum Entropy are suitable
for deployment at endpoints.

– What are the promising traffic features and theoretical frameworks for
portscan anomaly detection? The Maximum Entropy and TRW detectors
use statistical distributions of failed connections, ports and IP addresses.
Furthermore, based on the results of the Maximum Entropy detector on end-
points, a histogram-based detection approach, in which baseline frequency
profiles of a set of features is compared with real-time feature frequencies,
appears very promising.

– Does complexity improve accuracy? Complexity has no relation with the ac-
curacy of an algorithm. Intelligence of traffic features and detection frame-
works determine the accuracy of an algorithm.

– What detection delays are incurred by the anomaly detectors? If an attack
is detected, detection delay is less than 1 second for all anomaly detectors,
except the Maximum Entropy Estimation method which incurs very large
delays.

– What are promising portscan detection guidelines that build on the strengths
and avoid the weaknesses of the evaluated anomaly detectors? From the high
detection rates of the Maximum Entropy and PHAD detectors, it appears
that using a higher dimensional feature space facilitates detection, with-
out compromising complexity. On the other hand, relying on specific traffic
features (e.g., rate, connection failures, etc.) can degrade accuracy as the
attack and background traffic characteristics change. In summary, a number
of statistical features used in an intelligent histogram-based classification
framework appear promising for portscan anomaly detection.

6.2 Discussion

Based on our comparative analysis and deductions, we further evaluate Maxi-
mum Entropy and PHAD detectors. Both these detectors have a high dimen-
sional feature space, thereby allowing us to improve their accuracy by evaluating
them in feature space and/or time. For instance, recall that PHAD operates on a
high dimensional feature space and detects an anomaly when a certain number
of features in a packet are perturbed. Thus PHAD leverages its large feature
space to achieve high detection rates, but the high false alarm rates render the
detector useless. To reduce PHAD’s false alarms, in addition to operating the
PHAD detector in its feature space, we also operate it in time and an alarm
is raised only when an anomaly is observed in multiple time windows/packets.
This Space-Time (ST) strategy should reduce the false alarm rate of PHAD.

Maximum Entropy, on the other hand, operates across multiple time windows
before raising an alarm. Such a strategy results in very low false alarm rates, but
compromises the detection rate and delay, as seen in Fig. 6 and Table 5. Extend-
ing this algorithm across its high dimensional feature space should improve its
detection rate and delay. Thus, instead of waiting for h windows before making

368 A.B. Ashfaq et al.

0 50 100 150
0

20

40

60

80

100

↑ PHAD

← ST−PHAD

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Endpoint dataset

0 20 40 60 80
0

20

40

60

80

100

↑ PHAD

← ST−PHAD

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(b) LBNL dataset

Fig. 7. ROC comparison of PHAD and its Space-Time variant (ST-PHAD)

0 2 4 6 8
0

20

40

60

80

100

← Max−Entropy

← ST−Max Entropy

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(a) Endpoint dataset

0 50 100 150
0

20

40

60

80

100

← Max−Entropy

← ST−Max−Entropy

False alarms per day

A
ve

ra
ge

 d
et

ec
tio

n
ra

te
 (

%
)

(b) LBNL dataset

Fig. 8. ROC comparison of Maximum Entropy and its Space-Time variant (ST-Max-
Entropy)

Table 6. Detection Delay of the ST variants of Maximum Entropy and PHAD

ST-Max Entropy ST-PHAD
MyDoom (msec) 157 900

Dloader-NY (msec) 100 990
LBNL (msec) 333 330

a decision, we modified the Maximum Entropy method to raise an alarm if the
K-L divergence of l packet classes in a given time-window exceed ηk.

Figs. 7 and 8 show a comparative analysis of the original and the Space-Time
variants of PHAD and Maximum Entropy. It can be seen that evaluating PHAD
across multiple time windows using a high dimensional feature space clearly
improves the accuracy of the detector. Similarly, evaluating Maximum Entropy
across its feature space instead of its original time domain design considerably
improves the accuracy and detection delay of the detector.

Table 6 provides the detection delay for the Space-Time variants of Maxi-
mum Entropy detector and PHAD. It can be observed that the detection delay
for ST variant of the Maximum Entropy detector is dramatically lower than the
original algorithm. This is because the ST variant of the Maximum Entropy de-
tector does not wait for multiple anomalous windows before raising an alarm. For
PHAD, the detection delay remains unaltered because the ST-PHAD variants
simultaneously operates in space and time.

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 369

6.3 Future Work

The preliminary results of this section show that operating an anomaly detector
in space and time can improve the detector’s accuracy and delay. In a future
work, we will report detailed results on this finding.

Acknowledgements

This work is supported by the National ICT R&D Fund, Ministry of Information
Technology, Government of Pakistan. The information, data, comments, and
views detailed herein may not necessarily reflect the endorsements of views of
the National ICT R&D Fund.

The authors would like to thank Aamir Shafi for providing unrestricted access
to the Solaris cluster for our experiments.

References

1. Symantec Internet Security Threat Reports I–XI (January 2002–January 2008)
2. McAfee Corp., McAfee Virtual Criminology Report: North American Study into

Organized Crime and the Internet (2005)
3. Computer Economics: Economic Impact of Malicious Code Attacks (2001),

http://www.computereconomics.com/cei/press/pr92101.html
4. Williamson, M.M.: Throttling viruses: Restricting propagation to defeat malicious

mobile code. In: ACSAC (2002)
5. Twycross, J., Williamson, M.M.: Implementing and testing a virus throttle. In:

Usenix Security (2003)
6. Sellke, S., Shroff, N.B., Bagchi, S.: Modeling and automated containment of worms.

In: DSN (2005)
7. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using

sequential hypothesis testing. In: IEEE Symp. Sec. and Priv. (2004)
8. Schechter, S.E., Jung, J., Berger, A.W.: Fast detection of scanning worm infections.

In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
59–81. Springer, Heidelberg (2004)

9. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms.
In: Usenix Security (2004)

10. Chen, S., Tang, Y.: Slowing Down Internet Worms. In: IEEE ICDCS (2004)
11. Ganger, G., Economou, G., Bielski, S.: Self-Securing Network Interfaces: What,

Why, and How. Carnegie Mellon University Technical Report, CMU-CS-02-144
(2002)

12. Mahoney, M.V., Chan, P.K.: PHAD: Packet Header Anomaly Detection for Inden-
tifying Hostile Network Traffic. Florida Tech. technical report CS-2001-4 (2001)

13. Mahoney, M.V., Chan, P.K.: Learning Models of Network Traffic for Detecting
Novel Attacks. Florida Tech. technical report CS-2002-08 (2002)

14. Mahoney, M.V., Chan, P.K.: Network Traffic Anomaly Detection Based on Packet
Bytes. In: ACM SAC (2003)

15. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide traffic anom-
alies in traffic flows. In: ACM Internet Measurement Conference (IMC) (2004)

http://www.computereconomics.com/cei/press/pr92101.html

370 A.B. Ashfaq et al.

16. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In:
ACM SIGCOMM (2004)

17. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: ACM SIGCOMM (2005)

18. Soule, A., Salamatian, K., Taft, N.: Combining Filtering and Statistical methods
for anomaly detection. In: ACM/Usenix IMC (2005)

19. Zou, C.C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning of In-
ternet worms. In: ACM CCS (2003)

20. Gu, Y., McCullum, A., Towsley, D.: Detecting anomalies in network traffic using
maximum entropy estimation. In: ACM/Usenix IMC (2005)

21. Next-Generation Intrusion Detection Expert System (NIDES),
http://www.csl.sri.com/projects/nides/

22. Peakflow-SP and Peakflow-X, http://www.arbornetworks.com/peakflowsp,
http://www.arbornetworks.com/peakflowx

23. Cisco IOS Flexible Network Flow, http://www.cisco.com/go/netflow

24. LBNL/ICSI Enterprise Tracing Project,
http://www.icir.org/enterprise-tracing/download.html

25. WisNet ADS Comparison Homepage,
http://wisnet.niit.edu.pk/projects/adeval

26. Wong, C., Bielski, S., Studer, A., Wang, C.: Empirical Analysis of Rate Limiting
Mechanisms. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp.
22–42. Springer, Heidelberg (2006)

27. Shafiq, M.Z., Khayam, S.A., Farooq, M.: Improving Accuracy of Immune-inspired
Malware Detectors by using Intelligent Features. In: ACM GECCO (2008)

28. Ingham, K.L., Inoue, H.: Comparing Anomaly Detection Techniques for HTTP.
In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
42–62. Springer, Heidelberg (2007)

29. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A Comparative
Study of Anomaly Detection Schemes in Network Intrusion Detection. In: SIAM
SDM (2003)

30. Mueller, P., Shipley, G.: Dragon claws its way to the top. In: Network Computing
(2001), http://www.networkcomputing.com/1217/1217f2.html

31. The NSS Group: Intrusion Detection Systems Group Test (Edition 2) (2001),
http://nsslabs.com/group-tests/intrusion-detection-systems-ids-group-
test-edition-2.html

32. Yocom, B., Brown, K.: Intrusion battleground evolves, Network World Fusion
(2001), http://www.nwfusion.com/reviews/2001/1008bg.html

33. Lippmann, R.P., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA
OffLine Intrusion Detection Evaluation. Comp. Networks 34(2), 579–595 (2000)

34. Durst, R., Champion, T., Witten, B., Miller, E., Spagnuolo, L.: Testing and Eval-
uating Computer Intrusion Detection Systems. Comm. of the ACM 42(7), 53–61
(1999)

35. Shipley, G.: ISS RealSecure Pushes Past Newer IDS Players. In: Network Comput-
ing (1999), http://www.networkcomputing.com/1010/1010r1.html

36. Shipley, G.: Intrusion Detection, Take Two. In: Network Computing (1999),
http://www.nwc.com/1023/1023f1.html

37. Roesch, M.: Snort – Lightweight Intrusion Detection for Networks. In: USENIX
LISA (1999)

http://www.csl.sri.com/projects/nides/
http://www.arbornetworks.com/peakflowsp
http://www.arbornetworks.com/peakflowx
http://www.cisco.com/go/netflow
http://www.icir.org/enterprise-tracing/download.html
http://wisnet.niit.edu.pk/projects/adeval
http://www.networkcomputing.com/1217/1217f2.html
http://nsslabs.com/group-tests/intrusion-detection-systems-ids-group-
test-edition-2.html
http://www.nwfusion.com/reviews/2001/1008bg.html
http://www.networkcomputing.com/1010/1010r1.html
http://www.nwc.com/1023/1023f1.html

A Comparative Evaluation of Anomaly Detectors under Portscan Attacks 371

38. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,
Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., Zissman, M.A.:
Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line Intrusion De-
tection Evaluation. In: DISCEX, vol. (2), pp. 12–26 (2000)

39. DARPA-sponsored IDS Evaluation (1998 and 1999). MIT Lincoln Lab, Cambridge,
www.ll.mit.edu/IST/ideval/data/data index.html

40. Debar, H., Dacier, M., Wespi, A., Lampart, S.: A workbench for intrusion detection
systems. IBM Zurich Research Laboratory (1998)

41. Denmac Systems, Inc.: Network Based Intrusion Detection: A Review of Technolo-
gies (1999)

42. Ptacek, T.H., Newsham, T.N.: Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection. Secure Networks, Inc. (1998)

43. Aguirre, S.J., Hill, W.H.: Intrusion Detection Fly-Off: Implications for the United
States Navy. MITRE Technical Report MTR 97W096 (1997)

44. Puketza, N., Chung, M., Olsson, R.A., Mukherjee, B.: A Software Platform for
Testing Intrusion Detection Systems. IEEE Software 14(5), 43–51 (1997)

45. Puketza, N.F., Zhang, K., Chung, M., Mukherjee, B., Olsson, R.A.: A Methodology
for Testing Intrusion Detection Systems. IEEE Trans. Soft. Eng. 10(22), 719–729
(1996)

46. Mell, P., Hu, V., Lippmann, R., Haines, J., Zissman, M.: An Overview of Issues in
Testing Intrusion Detection Systems. NIST IR 7007 (2003)

47. McHugh, J.: The 1998 Lincoln Laboratory IDS Evaluation (A Critique). In: Debar,
H., Mé, L., Wu, S.F. (eds.) RAID 2000. LNCS, vol. 1907, Springer, Heidelberg
(2000)

48. Mahoney, M.V., Chan, P.K.: An Analysis of the 1999 DARPA/Lincoln Labora-
tory Evaluation Data for Network Anomaly Detection. In: Vigna, G., Krügel, C.,
Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 220–237. Springer, Heidelberg
(2003)

49. Pang, R., Allman, M., Paxson, V., Lee, J.: The Devil and Packet Trace Anonymiza-
tion. In: ACM CCR, vol. 36(1) (2006)

50. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A First Look
at Modern Enterprise Traffic. In: ACM/USENIX IMC (2005)

51. Winpcap homepage, http://www.winpcap.org/
52. Symantec Security Response, http://securityresponse.symantec.com/avcenter
53. Shannon, C., Moore, D.: The spread of the Witty worm. IEEE Sec & Priv 2(4),

46–50 (2004)
54. Axelsson, S.: Intrusion Detection Systems: A Survey and Taxonomy. Technical

Report 99-15, Chalmers University (2000)
55. Ringberg, H., Rexford, J., Soule, A., Diot, C.: Sensitivity of PCA for Traffic Anom-

aly Detection. In: ACM SIGMETRICS (2007)

www.ll.mit.edu/IST/ideval/data/data_index.html
http://www.winpcap.org/
http://securityresponse.symantec.com/avcenter

Advanced Network Fingerprinting

Humberto J. Abdelnur, Radu State, and Olivier Festor

Centre de Recherche INRIA Nancy - Grand Est
615, rue du jardin botanique

Villers-les-Nancy, France
{Humberto.Abdelnur,Radu.State,Olivier.Festor}@loria.fr

http://madynes.loria.fr

Abstract. Security assessment tasks and intrusion detection systems do
rely on automated fingerprinting of devices and services. Most current
fingerprinting approaches use a signature matching scheme, where a set
of signatures are compared with traffic issued by an unknown entity. The
entity is identified by finding the closest match with the stored signatures.
These fingerprinting signatures are found mostly manually, requiring a
laborious activity and needing advanced domain specific expertise. In
this paper we describe a novel approach to automate this process and
build flexible and efficient fingerprinting systems able to identify the
source entity of messages in the network. We follow a passive approach
without need to interact with the tested device. Application level traf-
fic is captured passively and inherent structural features are used for
the classification process. We describe and assess a new technique for
the automated extraction of protocol fingerprints based on arborescent
features extracted from the underlying grammar. We have successfully
applied our technique to the Session Initiation Protocol (SIP) used in
Voice over IP signalling.

Keywords: Passive Fingerprinting, Feature extraction, Structural syn-
tax inference.

1 Introduction

Many security operations rely on the precise identification of a remote device
or a subset of it (e.g. network protocol stacks, services). In security assessment
tasks, this fingerprinting step is essential for evaluating the security of a remote
and unknown system; especially network intrusion detection systems might use
this knowledge to detect rogue systems and stealth intruders. Another important
applicability resides in blackbox devices/application testing for potential copy-
right infringements. In the latter case, when no access to source code is provided,
the only hints that might detect a copyright infringement can be obtained by
observing the network level traces and determine if a given copyright protected
software/source code is used unlawfully.

The work described in this paper was motivated by one major challenge that
we had to face when building a Voice over IP (VoIP) specific intrusion detection

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 372–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://madynes.loria.fr

Advanced Network Fingerprinting 373

system. We had to fingerprint VoIP devices and stacks in order to detect the
presence of a rogue system on the network. Typically, only some vendor spe-
cific devices should be able to connect, while others and potentially malicious
intended systems had to be detected and blocked. We decided that an auto-
mated system, capable to self-tune and self-deploy was the only viable solution
on the long run. Therefore, we considered that the ideal system has to be able
to process captured and labeled network traffic and detect the structural fea-
tures that serve as potential differentiators. When searching for such potential
features, there are some natural candidates: the type of individual fields and
their length or the order in which they appear. For instance, the presence of
login headers, the quantities of spaces after commas or the order presented in
the handshake of capabilities. Most existing systems use such features, but in-
dividual signatures are built manually requiring a tedious and time consuming
process.

Our approach consists in an automated solution for this task, assuming a
known syntax specification of the protocol data units. We have considered only
the signalling traffic - all devices were using Session Initiation Protocol [1] (SIP)
- and our key contribution is to differentiate stack implementations by looking
at some specific patterns in how the message processing code has been designed
and developed. This is done in two main steps. In the first step, we extract fea-
tures that can serve to differentiate among several stack implementations. These
features are used in a second phase in order to implement a decisional process.
This approach and the supporting algorithms are presented in this paper.

This paper is organized as follow. Section 2 illustrates the overall architecture
and operational framework of our fingerprinting system. Section 3 shows how
structural inference, comparison and identification of differences can be done
based on the underlying grammar of a given specified protocol. Section 4 intro-
duces the training, calibration and classification process. We provide an overview
of experimental results in Sect.5 using the signalling protocol (SIP) as an appli-
cation case. Section 6 describes the related work in the area of fingerprinting as
well as the more general work on structural similarity. Finally, Sect.7 points out
future works and concludes this paper.

2 Structural Protocol Fingerprinting

Most known application level and network protocols use a syntax specification
based on formal grammars. The essential issue is that each individual message
can be represented by a tree like structure. We have observed that stack imple-
menters can be tracked by some specific subtrees and/or collection of subtrees
appearing in the parse trees. The key idea is that structural differences between
two devices can be detected by comparing the underlying parse trees gener-
ated for several messages. A structural signature is given by features that are
extracted from these tree structures. Such distinctive features are called finger-
prints. We will address in the following the automated identification of them.

374 H.J. Abdelnur, R. State, and O. Festor

If we focus for the moment one individual productions (in a grammar rule),
the types of signatures might be given by:

– Different contents for one field. This is in fact a sequence of characters which
can determinate a signature. (e.g. a prompt or an initialization message).

– Different lengths for one field. The grammar allows the production of a
repetition of items (e.g. quantity of spaces after a symbol, capabilities sup-
ported). In this case, the length of the field is a good signature candidate.

– Different orders in one field. This is possible, when no explicit order is
specified in a set of items. A typical case is how capabilities are advertised
in current protocols.

We propose a learning method to automatically identify distinctive structural
signatures. This is done by analyzing and comparing captured messages traces
from the different devices. The overview of the learning and classification process
is illustrated in Fig.1.

Fig. 1. Fingerprinting training and classification

The upper boxes in Fig.1 constitute the training period of the system. The
output is a set of signatures for each device presented in the training set. The
lowest box represents the fingerprinting process. The training is divided in two
phases:

Advanced Network Fingerprinting 375

Phase 1 (Device Invariant Features). In this phase, the system automat-
ically classifies each field in the grammar. This classification is needed to
identify which fields may change between messages coming from the same
device.
Phase 2 (Inter Device Features Significance) identifies among the Invariant
fields of each implementation, those having different values for at least two
group of devices. These fields will constitute part of the signatures set.

When one message has to be classified, the values of each invariant field are
extracted and compared to the signature values learned in the training phase.

3 Structural Inference

3.1 Formal Grammars and Protocol Fingerprinting

The key assumption made in our approach is that an Augmented BackusNaur
Form (ABNF) grammar [2] specification is a priori known for a given protocol.
Such a specification is made of some basic elements as shown in Fig.2.

Fig. 2. Basic elements of a grammar

– A Terminal can represent a fixed string or a character to be chosen from a
range of legitimate characters.

– A Non-Terminal is reduced using some rules to either a Terminal or a
Non-Terminal.

– A Choice defines an arbitrary selection among several items.
– A Sequence involves a fixed number of items, where the order is specified.
– A Repetition involves a sequence of one item/group of items, where some

additional constraints might be specified.

A given message is parsed according to the fields defined in the grammar. Each
element of the grammar is placed in an n-ary tree which obeys the following rules:

376 H.J. Abdelnur, R. State, and O. Festor

– A Terminal becomes a leaf node with a name associated (i.e. the termi-
nal that it represents) which is associated to the encountered value in the
message.

– A Non-Terminal is an internal node associated to a name (i.e. the non-
terminal rule) and it has a unique child which can be any of the types defined
here (e.g. Terminal, non-Terminal, Sequence or Repetition).

– A Sequence is an internal node that has a fixed number of children. This
number is in-line with the rules of the syntax specification.

– A Repetition is also an internal node, but having a number of children that
may vary based on the number of items which appear in the message.

– A Choice does not create any node in the tree. However, it just marks the
node that has been elected from a choice item.

It is important to note that even if sequences and repetitions do not have a
defined name in the grammar rules, an implicit name is assigned to them that
uniquely distinguishes each instance of these items at the current rule.

Figure 3 shows a Toy ABNF grammar defined in (a), messages from differ-
ent implementation compliant with the grammar in (b/c) and (d) the inferred
structure representing one of the messages in (d).

With respect to the usage, fields can be classified in three categories:

– Cosmetics Fields: these fields are mandatory and do not really provide a
value added interest for fingerprinting purposes. The associated values do
not change in different implementations.

– Static Fields: are the fields which values never change in a same implemen-
tation. These values do however change between different implementations.
Obviously, these are the type of fields which may represent a signature for
one implementation.

– Dynamic Fields: these fields are the opposite of static fields and do change
their values in relation to semantic aspects of the message even in a single
implementation.

An additional sub-classification can be defined for Dynamic and Static fields:

– Value Type relates to the String reduction of the node (i.e. the text infor-
mation of that node),

– Choice Type relates to the selected choice from the grammar,
– Length Type corresponds to the number of items in a Repetition reduction,
– Order Type corresponds to the order in which items of a Repetition re-

duction appear.

Even if one implementation may generate different kind of values for the same
field, such values could be related by a function and then serve as a feature.
Therefore, a Function Type can be also defined to be used to compute the
value from a node of the tree and return an output useful for the fingerprinting.
Essentially, this type is used for manually tuning the training process.

Advanced Network Fingerprinting 377

Fig. 3. Parsed Structure Grammar

3.2 Node Signatures and Resemblance

Guidelines for designing a set of tree signatures (for a tree or a sub-tree) should
follow some general common sense principles like:

– As more items are shared between trees, the more similar their signatures
must be.

– Nodes that have different tags or ancestors must be considered different.
– In cases where the parent node is a Sequence, the location order in the

Sequence should be part of the tree signature.
– If the parent node is a repetition, the location order should not be part of the

tree signature, order will be captured later on in the fingerprinting features.

The closest known approach is published by D. Buttler in [3]. This method
starts by encoding the tree in a set. Each element in the set represents a partial
path from the root to any of the nodes in the tree. A resemblance method
defined by A. Broder [4] uses the elements of the set as tokens. This resemblance

378 H.J. Abdelnur, R. State, and O. Festor

is based on shingles, where a shingle is a contiguous sequence of tokens from the
document. Between documents Di and Dj the resemblance is defined as:

r(Di, Dj) =
|S(Di, w)

⋂
S(Dj, w)|

|S(Di, w)
⋃

S(Dj, w)| (1)

where S(Di, w) creates the shingles of length w for the document Di.

Definition 1. The Node Signature function is defined to be a Multi-Set of all
partial paths belonging to the sub-branch of the node.

The partial paths start from the current node rather than from the root of the
tree, but still goes through all the nodes of the subtree which has the current
element as root like it was in the original approach. However, partial paths
obtained from fields classified as Cosmetics are excluded from this Multi-Set.
The structure used is a Multi-Set rather than a Set in order to store the quantity
of occurrences for specific nodes in the sub-branch. For instance, the number of
spaces after a specific field can determinate a signature in an implementation.

Siblings nodes in a Sequence items are fixed and representative. Sibling nodes
in a Repetition can be made representative creating the partial paths of the
Multi-Set and using the respective position of a child.

Table 1 shows the Node Signature obtained from the node Header at the tree
of Fig. 3 (d).

Definition 2. The Ressemblance function used to measure the degree of sim-
ilarity between two nodes is based on the (1). The S(Ni, w) function applies the
Node Signature function over the node Ni.

Using w = 1 allows to compare the number of items these nodes have in common
though ignoring their position for a repetition.

3.3 Structural Difference Identification

Algorithm 1 is used to identify differences between two nodes which share the
same ancestor path in the two trees,

where the functions Tag, Value, Type return the name, value and respec-
tively the type of the current node. Note that Tag(nodea) = Tag(nodeb) ⇒
Type(nodea) = Type(nodeb).

The function Report Difference takes the type of difference to report and
the corresponding two nodes. Each time the function is called, it creates one
structure that stores the type of difference, the partial path from the root of the
tree to the current nodes (which is the same for both nodes) and a corresponding
value. For differences of type ’Value’ it will store the two terminal values, for
’Choice’ the two different Tags names, for ’Length’ the two lengths and for
’Order’ the matches.

The function Identify Children Matches identifies a match between chil-
dren of different repetition nodes. The similitude between each child from nodea

and nodeb (with n and m children respectively) is represented as a matrix, M,
of size n x m where:

Advanced Network Fingerprinting 379

Table 1. Partial paths obtained from Fig.3 (d)

Partial Paths Occurrences
Header.0.’Reply’ 1
Header.0.’Reply’.’Reply’ 1
Header.1.? 2
Header.1.?.SP 2
Header.1.?.SP.%x20 2
Header.1.?.SP.%x20.’ ’ 2
Header.2.Method.? 4
Header.2.Method.?.ALPHA. 4
Header.2.Method.?.ALPHA.%x41-5A 4
Header.2.Method.?.ALPHA.%x41-5A.’U’ 1
Header.2.Method.?.ALPHA.%x41-5A.’S’ 1
Header.2.Method.?.ALPHA.%x41-5A.’E’ 1
Header.2.Method.?.ALPHA.%x41-5A.’R’ 1

(strikethrough) Strikethrough paths are the ones considered as cosmetics.
(?) Quotes define that the current path may be any of the repetition items.

Algorithm 1. Node differences Location
procedure NODEDIFF(nodea, nodeb)

if Tag(nodea) = Tag(nodeb) then
if Type(nodea) = TERMINAL then

if V alue(nodea) ! = V alue(nodeb) then
Report Difference(′V alue′, nodea, nodeb)

end if
else if Type(nodea) = NON − TERMINAL then

NODEDIFF (nodea.child0, nodeb.child0)) �Non Terminals have
�an unique child

else if Type(nodea) = SEQUENCE then
for i = 1..#nodea do �In a Sequence

NODEDIFF (nodea.childi, nodeb.childi) �#nodea = #nodeb

end for
else if Type(nodea) = REPETITION then

if not (#nodea = #nodeb) then
Report Difference(′Length′, nodea, nodeb)

end if
matches := Identify Children Matches(nodea, nodeb)
if ∃ (i, j) ∈ matches : i ! = j then

Report Difference(′Order′, nodea, nodeb)
end if
forall (i, j) ∈ matches do

NODEDIFF (nodea.childi, nodeb.childj)
end for

end if
else

Report Difference(′Choice′, nodea, nodeb)
end if

end procedure

380 H.J. Abdelnur, R. State, and O. Festor

Mi,j = resemblance(nodea.childi, nodeb.childj)

To find the most adequate match, a greedy matching assignment based on the
concept of Nash Equilibrium [5] is used. Children with the biggest similarity are
bound. If a child from nodea shares the same similarity score with more than one
child from nodeb, some considerations have to be added respecting their position
in the repetitions.

Figure 4 illustrates an example match, assuming that the following matrix
was obtained using the Resemblance method with the path “Message.2.?”.
The rows in the matrix represent the children from the subtree in (a) and the
columns the children from subtree (b).

M =

⎛

⎝
.00 .00 .00
.33 .00 .00
.00 .61 .90

⎞

⎠

Fig. 4. Performed match between sub-branches of the tree

All the compared children share some common items besides the choice nodes
(colored). Those common items are Cosmetics nodes, which are required in the
message in order to be compliant with the grammar. Note that, besides the
Cosmetic fields, the first item of the subtree (a) does not share any similarity
with any of the other nodes. It should therefore not match any other node.

Advanced Network Fingerprinting 381

4 Structural Features Extraction

4.1 Fields Classification

One major activity that was not yet described is how non-invariant fields are
identified. The process is done by using all the messages coming from one device
and finding the differences between each two messages using Algorithm 1. For
each result, a secondary algorithm (Algorithm 2) is run in order to fine tune the
extracted classification.

Algorithm 2. Fields Classification Algorithm
procedure FieldClassification(differencesa,b)

forall diff ∈ differencesa,b do
if diff.type ==′ V alue′) then

Classify as Dynamic(′V alue′, diff.path)
else if diff.type ==′ Choice′ then

Classify as Dynamic(′Choice′, diff.path)
else if diff.type ==′ Length′ then

Classify as Dynamic(′Length′, diff.path)
else if diff.type ==′ Order′ then

if not (∀ (i, j), (x, z) ∈ diff.matches :
(i < x ∧ j < z) ∨ (i > x ∧ j > z)) then

�Check if a permutation exists between the matched items.
Classify as Dynamic(′Order′, diff.path)

end if
end if

end for
end procedure

The Classify as Dynamic functions store in the global list, fieldClassifi-
cations, a tuple with the type of the found difference (e.g. ’Value’, ’Choice’,
’Length’ or ’Order’) and the partial path in the tree structure that represents
the node in the message.

This algorithm recognizes only the fields that are Dynamic. The set of Static
fields will be represented by the union of all the fields not recognized as Dynamic.

Assuming a training set Msg set, of messages compliant with the grammar as

Msg =
⋃n

i=0 msg seti

where n is quantity of devices and msg seti is the set of messages generated by
device i, the total number of comparisons computed in this process is

cmps1 =
n∑

i=0

|msg seti| ∗ (|msg seti| − 1)
2

(2)

382 H.J. Abdelnur, R. State, and O. Festor

4.2 Features Recognition

Some features are essential for an inter-device classification. In contrast to the
Fields Classification, this process compares all the messages from the training
set sourced from different devices. All the Invariant Fields -for which different
implementations have different values- are identified. Algorithm 3 recognizes
these features. Its inputs are the fieldClassifications computed by the Algorithm
2, the Devices Identifier to which the compared message belongs as well as the
set of differences found by Algorithm 1 between the messages.

Algorithm 3. Features Recognition Algorithm
procedure featuresRecognition(fieldClassifications, DevIDa,b, differencesa,b)

forall diff ∈ differencesa,b do
if not (diff.type, diff.path) ∈ fieldClassifications then

if diff.type == ′V alue′ then
addFeature(′V alue′, diff.path, DevIDa,b, diff.valuea,b)

else if diff.type == ′Choice′ then
addFeature(′Choice′, diff.path, DevIDa,b, diff.namea,b)

else if diff.type == ′Length′ then
addFeature(′Length′, diff.path, DevIDa,b, diff.lengtha,b)

else if diff.type == ′Order′ then
if (∃ (x, z) ∈ diff.matches : x
= z) then

addFeature(′Order′, diff.path, DevIDa,b,
diff.match, diff.children nodesa,b)

end if
end if

end if
end for

end procedure

The add Feature function stores in a global variable, recognizedFeatures,
the partial path of the node associated with the type of difference (i.e. Value,
Name, Order or Length) and a list of devices with their encountered value.
However, the ’Order’ feature presents a more complex approach, requiring minor
improvements.

Assuming the earlier Msg set set, this process will do the following number
of comparisons:

cmps2 =
n∑

i=0

|msg seti| ∗
n∑

j=i+1

|msg setj| (3)

From the recognizedFeatures only the Static fields are used. The recognized
features define a sequence of items, where each one represents the field location
path in the tree representation and a list of Device ID with their associated
value.

Advanced Network Fingerprinting 383

The Recognized Features can be classified in:

– Features that were found with each device and at least two distinct values
are observed for a pair of devices,

– Features that were found in some of the devices for which such a location
path does not exists in messages from other implementations.

4.3 Fingerprinting

The classification of a message uses the tree structure representation introduced
in section 3.1. The set of recognized features obtained in section 4 represents all
the partial paths in a tree structure that are used for the classification process.

In some cases, the features are of type ’Value’, ’Choice’ or ’Length’. Their
corresponding value is easily obtained. However, the case of an ’Order’ represents
a more complex approach, requiring some minor improvements

Figure 5 illustrates some identified features for an incoming message.

Fig. 5. Features Identification

Once a set of distinctive features is obtained, some well known classification
techniques can be leveraged to implement a classifier. In our work, we have
leveraged the machine learning technique described in [6].

384 H.J. Abdelnur, R. State, and O. Festor

5 Experimental Results

We have implemented the Fingerprinting Framework approach in Python. A
scannerless Generalized Left-to-right Rightmost (GLR) derivation parser has
been used (Dparser[7]) in order to solve ambiguities in the definition of the
grammar. The training function could easily be parallelized.

We have instantiated the fingerprinting approach on the SIP protocol. The
SIP messages are sent in clear text (ASCII) and their structure is inspired from
HTTP. Several primitives - REGISTER, INVITE, CANCEL, BYE and OP-
TIONS - allow session management for a voice/multimedia call. Some additional
extensions do also exist -INFO, NOTIFY, REFER, PRACK- which allow the
support of presence management, customization, vendor extensions etc.

We have captured 21827 SIP messages from a real network, summarized in
Table 2.

Table 2. Tested equipment

Device Software/Firmware version
Asterisk v1.4.4
Cisco CallManager v5.1.1

Cisco 7940/7960
vP0S3-08-7-00
vP0S3-08-8-00

Grandstream Budge Tone-200 v1.1.1.14
Linksys SPA941 v5.1.5
Thomson ST2030 v1.52.1
Thomson ST2020 v2.0.4.22

SJPhone
v1.60.289
v1.60.320
v1.65

Twinkle
v0.8.1
v0.9

Snom v5.3
Kapanga v0.98
X-Lite v3.0
Kphone v4.2
3CX v1.0
Express Talk v2.02
Linphone v1.5.0
Ekiga v2.0.3

The system was trained with only 12% of the 21827 messages. These messages
were randomly sampled. However, a proportion between the number of collected
messages and the number used for the training was kept; they ranged from 50 to
350 messages per device. Table 3 shows the average and total time obtained for
the comparisons of each training phase and for the message classification process
(i.e. message fingerprinting). During both Phase 1 and 2, the comparisons were
distributed over 10 computers ranging from Pentium IV to Core Duo. As it was
expected, the average comparison time per message in Phase 2 was lower than
in the previous phase, since only the invariant fields are compared. To evaluate
the training, the system classified all the sampled messages (i.e. 21927 messages)
in only in one computer (Core Duo @ 2.93GHz).

Advanced Network Fingerprinting 385

Table 3. Performance results obtained with the system

Type of Action Average time Number of actions Total computed
per action computed time

Msg. comparisons 632 milisec 296616 5 hours(1)

for Phase 1

Msg. comparisons 592 milisec 3425740 56 hours(1)

for Phase 2
Msg. classification 100 milisec. 21827 40 minutes

(1) Computed time using 10 computers.

172 features were discovered among all the different types of messages. These
features represent items order, different lengths and values of fields where non
protocol knowledge except its syntax grammar had been used. Between two dif-
ferent devices the distance of different features ranges between 26 to 95 features,
where most of the lower values correspond to different versions of the same
device. Usually, up to 46 features are identified in one message.

Table 4 summarizes the sensitivity, specificity and accuracy. The results were
obtained using the test data set.

Table 4. Accuracy results obtained with the system

Classification

True Positive False Positive Positive Predictive
Value

18881 20 0.998
False Negative True Negative Negative Predictive

Value
2909 435780 0.993

Sensitivity Specificity Accuracy
0.866 0.999 0.993

In this table we can observe that the results are very encouraging due to the
high specificity and accuracy. However, some observations can be made about
the quantity of false negatives. About 2/5 of them belong to only one imple-
mentation (percentage that represents 50% of its messages), 2/5 belongs to 3
more device classes (representing 18% of their messages), the final 1/5 belongs
to 8 classes (representing 10% of their messages) and the 7 classes left do not
have false negatives. This issue can be a consequence of the irregularity in the
quantity from the set of messages in each device. Three of the higher mentioned
classes had been used in our test-bed to acquire most features of SIP. A second
explanation can be that in fact many of those messages do not contain valuable
information (e.g. intermediary messages). Table 5 shows all the 38 types of mes-
sages collected in our test with information concerning their miss-classification
(i.e. False Negatives).

Finally, we created a set of messages which have been manually modified.
These modifications include changing the User-Agent, Server-Agent and refer-
ences to device name. As a result, deleting a few such fields did not influence

386 H.J. Abdelnur, R. State, and O. Festor

Table 5. False Negative classification details

Type of Message False Negatives Message quantity Miss percentage
200, 100, ACK 1613 9358 17%

(710, 561, 347) (4663, 1802, 2893) (15%, 31%, 11%)
501, 180, 101 824 3414 24%

BYE, 486 �
257, 215, 148

104, 100

� �
385, 1841, 148

892, 176

� �
65%, 11%, 100%

11%, 67%

�

489, 487, 603 213 636 33%
202, 480, 481 �

� 84, 57, 28
21, 13, 6
2, 1, 1

�
�

�
� 84, 230, 118

52, 42, 18
2, 38, 51

�
�

�
� 100%, 24%, 23%

40%, 30%, 33%
100%, 2%, 2%

�
�380, 415, 400

INVITE, OPTIONS 117 5694 2%
REGISTER, CANCEL �

� 38, 34
25, 19

1

�
�

�
� 3037, 628

1323, 297
409

�
�

�
� 1%, 5%

1%, 6%
.00%

�
�SUBSCRIBE

INFO, REFER 0 2223 0%
PRACK, NOTIFY �

� 1830, 163
117, 77

36

�
�PUBLISH

11 other 0 492 0%
Response Codes

the decision of the system; neither did it changing their banners to another im-
plementation name. However, as more modifications were done, less precise the
system became and more mistakes were done.

6 Related Work

Fingerprinting became a popular topic in the last few years. It started with the
pioneering work of Comer and Lin [8] and is currently an essential activity in
security assessment tasks. Some of the most known network fingerprinting oper-
ations are done by NMAP [9], using a set of rules and active probing techniques.
Passive techniques became known mostly with the P0F [10] tool, which is capa-
ble to do OS fingerprinting without requiring active probes. Many other tools
like (AMAP, XProbe, Queso) did implement similar schemes.

Application layer fingerprinting techniques, specifically for SIP, were first de-
scribed in [11,12]. These approaches proposed active as well as passive finger-
printing techniques. Their common baseline is the lack of an automated approach
for building the fingerprints and constructing the classification process. Further-
more, the number of signatures described are minimal which leaves the systems
easily exposed to approaches as the one described by D. Watson et al. [13], that
can fool them by obfuscation of such observable signatures. Recently, the work
by J. Caballero et al. [6] described a novel approach for the automation of Active
Fingerprint generation which resulted in a vast set of possible signatures. It is one
of the few automatic approaches found in the literature and it is based in finding
a set of queries (automatically generated) that identify different responses in the
different implementations. While our work addresses specifically the automation

Advanced Network Fingerprinting 387

for passive fingerprinting, we can imagine this two complementary approaches
working together.

There have been recently similar efforts done in the research community aim-
ing however at a very different goal from ours. These activities started with
practical reverse engineering of proprietary protocols [14] and [15] and a simple
application of bioinformatics inspired techniques to protocol analysis [16]. These
initial ideas matured and several other authors reported good results of sequence
alignment techniques in [17], [18], [19] and [20]. Another major approach for the
identification of the structure in protocol messages is to monitor the execution
of an endpoint and identify the relevant fields using some tainted data [21], [22].
Recently, work on identifying properties of encrypted traffic has been reported
in [23,24]. These two approaches used probabilistic techniques based on packet
arrivals, interval, packet length and randomness in the encrypted bits to identify
Skype traffic or the language of conversation. While all these complementary
works addressed the identification of the protocol building blocks or properties
in their packets, we assumed a known protocol and worked on identifying specific
implementation stacks.

The closest approach to ours, in terms of message comparison, it is the work
developed by M. Chang and C. K.Poon [25] for collection training SPAM de-
tectors. However, in their approach as they focus in identifying human written
sentences, they only consider the lexical analysis of the messages and do not
exploit an underlying structure.

Finally, two other solutions have been proposed in the literature in this research
landscape. Flow based identification has been reported in [26], while a grammar/
probabilistic based approach is proposed in [27] and respectively in [28].

7 Conclusions

In this article we described a novel approach for generating fingerprinting sys-
tems based on the structural analysis of protocol messages. Our solution auto-
mates the generation by using both formal grammars and collected traffic traces.
It detects important and relevant complex tree like structures and leverages them
for building fingerprints. The applicability of our solution lies in the field of in-
trusion detection and security assessment, where precise device/service/stack
identification are essential. We have implemented a SIP specific fingerprinting
system and evaluated its performance. The obtained results are very encourag-
ing. Future work will consist in improving the method and applying it to other
protocols and services. Our work is relevant to the tasks of identifying the pre-
cise vendor/device that has generated a captured trace. We do not address the
reverse engineering of unknown protocols, but consider that we know the un-
derlying protocol. The current approach does not cope with cryptographically
protected traffic. A straightforward extension for this purpose is to assume that
access to the original traffic is possible. Our main contribution consists in a novel
solution to automatically discover the significant differences in the structure of

388 H.J. Abdelnur, R. State, and O. Festor

protocol compliant messages. We will extend our work towards the natural evo-
lution, where the underlying grammar is unknown.

The key idea is to use a structural approach, where formal grammars and
collected network traffic are used. Features are identified by paths and their
associated values in the parse tree. The obtained results of our approach are very
good. This is due to the fact that a structural message analysis is performed.
Most existing fingerprinting systems are built manually and require a long lasting
development process.

References

1. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol (2002)

2. Crocker, D.H., Overell, P.: Augmented BNF for Syntax Specifications: ABNF
(1997)

3. Buttler, D.: A Short Survey of Document Structure Similarity Algorithms. In:
Arabnia, H.R., Droegehorn, O. (eds.) International Conference on Internet Com-
puting, pp. 3–9. CSREA Press (2004)

4. Broder, A.Z.: On the Resemblance and Containment of Documents. In: SE-
QUENCES 1997: Proceedings of the Compression and Complexity of Sequences
1997, Washington, DC, USA, p. 21. IEEE Computer Society, Los Alamitos (1997)

5. Nash, J.F.: Non-Cooperative Games. The Annals of Mathematics 54(2), 286–295
(1951)

6. Caballero, J., Venkataraman, S., Poosankam, P., Kang, M.G., Song, D., Blum, A.:
FiG: Automatic Fingerprint Generation. In: The 14th Annual Network & Distrib-
uted System Security Conference (NDSS 2007) (February 2007)

7. DParser, http://dparser.sourceforge.net/
8. Comer, D., Lin, J.C.: Probing TCP Implementations. In: USENIX Summer, pp.

245–255 (1994)
9. Nmap, http://www.insecure.org/nmap/

10. P0f, http://lcamtuf.coredump.cx/p0f.shtml
11. Yan, H., Sripanidkulchai, K., Zhang, H.: Incorporating Active Fingerprinting into

SPIT Prevention Systems. In: Third Annual VoIP Security Workshop (June 2006)
12. Scholz, H.: SIP Stack Fingerprinting and Stack Difference Attacks. Black Hat Brief-

ings (2006)
13. Watson, D., Smart, M., Malan, G.R., Jahanian, F.: Protocol scrubbing: network

security through transparent flow modification. IEEE/ACM Trans. Netw. 12(2),
261–273 (2004)

14. Open Source FastTrack P2P Protocol (2007),
http://gift-fasttrack.berlios.de/

15. Fritzler, A.: UnOfficial AIM/OSCAR Protocol Specification (2007),
http://www.oilcan.org/oscar/

16. Beddoe, M.: The Protocol Informatics Project. Toorcon (2004)
17. Gopalratnam, K., Basu, S., Dunagan, J., Wang, H.J.: Automatically Extracting

Fields from Unknown Network Protocols. In: Systems and Machine Learning Work-
shop 2006 (2006)

18. Wondracek, G., Comparetti, P.M., Kruegel, C., Kirda, E.: Automatic Network
Protocol Analysis. In: Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS 2008) (2008)

http://dparser.sourceforge.net/
http://www.insecure.org/nmap/
http://lcamtuf.coredump.cx/p0f.shtml
http://gift-fasttrack.berlios.de/
http://www.oilcan.org/oscar/

Advanced Network Fingerprinting 389

19. Newsome, J., Brumley, D., Franklin, J., Song, D.: Replayer: automatic protocol
replay by binary analysis. In: CCS 2006: Proceedings of the 13th ACM conference
on Computer and communications security, pp. 311–321. ACM, New York (2006)

20. Cui, W., Kannan, J., Wang, H.J.: Discoverer: automatic protocol reverse engineer-
ing from network traces. In: SS 2007: Proceedings of 16th USENIX Security Sym-
posium on USENIX Security Symposium, Berkeley, CA, USA, pp. 1–14. USENIX
Association (2007)

21. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic
discovery of deviations in binary implementations with applications to error detec-
tion and fingerprint generation. In: SS 2007: Proceedings of 16th USENIX Secu-
rity Symposium on USENIX Security Symposium, Berkeley, CA, USA, pp. 1–16.
USENIX Association (2007)

22. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic Protocol Format Reverse En-
gineering through Context-Aware Monitored Execution. In: 15th Symposium on
Network and Distributed System Security (2008)

23. Bonfiglio, D., Mellia, M., Meo, M., Rossi, D., Tofanelli, P.: Revealing skype traffic:
when randomness plays with you. SIGCOMM Comput. Commun. Rev. 37(4), 37–
48 (2007)

24. Wright, C.V., Ballard, L., Monrose, F., Masson, G.M.: Language identification of
encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob? In: SS 2007: Pro-
ceedings of 16th USENIX Security Symposium on USENIX Security Symposium,
Berkeley, CA, USA, pp. 1–12. USENIX Association (2007)

25. Chang, M., Poon, C.K.: Catching the Picospams. In: Hacid, M.-S., Murray, N.V.,
Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 641–649.
Springer, Heidelberg (2005)

26. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: automated construction
of application signatures. In: MineNet 2005: Proceedings of the 2005 ACM SIG-
COMM workshop on Mining network data, pp. 197–202. ACM, New York (2005)

27. Borisov, N., Brumley, D.J., Wang, H.J.: Generic Application-Level Protocol Ana-
lyzer and its Language. In: 14th Symposium on Network and Distributed System
Security (2007)

28. Ma, J., Levchenko, K., Kreibich, C., Savage, S., Voelker, G.M.: Unexpected means
of protocol inference. In: IMC 2006: Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pp. 313–326. ACM, New York (2006)

On Evaluation of Response Cost for Intrusion
Response Systems

(Extended Abstract)

Natalia Stakhanova2, Chris Strasburg1, Samik Basu1,
and Johnny S. Wong1

1 Department of Computer Science, Iowa State University, USA
{cstras,sbasu,wong}@cs.iastate.edu

2 Faculty of Computer Science, University of New Brunswick, Canada
natalia@unb.ca,

nStakhanova@gmail.com

Abstract. In this work we present a structured and consistent method-
ology for evaluating cost of intrusion responses. The proposed approach
provides consistent basis for response evaluation across different systems
while incorporating security policy and properties of specific system en-
vironment. The advantages of the proposed cost model were evaluated
via simulation process.

The proliferation of complex and fast-spreading intrusions against computer sys-
tems brought new requirements to intrusion detection and response, demanding
the development of sophisticated and automated intrusion response systems. In
this context, the cost-sensitive intrusion response models have gained the most in-
terest mainly due to their emphasis on the balance between potential damage in-
curred by the intrusion and cost of the response. However, one of the challenges in
applying this approach is defining consistent and adaptable measurement of these
cost factors on the basis of policy of the system being protected against intrusions.

We developed a structured and consistent methodology for the evaluation of
intrusion response cost based on three parameters: (a) the impact of a response
on the system that quantifies the negative effect of the response on the system
resources, (b) the response goodness that measures the ability of the correspond-
ing response to mitigate damage caused by the intrusion to the system resources
and (c) the operational cost of a response in a given environment.

Within this methodology, we assess response impact with respect to resources
of the affected system. Our model takes into account the relative importance of
the system resources determined through the review of the system policy goals
according to the following categories: confidentiality, availability and integrity.
One of the important steps in this process is the analysis of the system resources.
Based on this analysis, the evaluation algorithm assesses the response goodness in
terms of the resources protected by the response, the response damage in terms
of the resources impaired by the action and the operational cost with respect to
its environmental impact.

This methodology does not substitute the response selection process in case
of detected intrusion, but rather allows to evaluate the available responses on
the consistent basis. The proposed methodology includes the following steps:

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 390–391, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Evaluation of Response Cost for Intrusion Response Systems 391

1. The system classification: The first step in quantifying the cost of a
response involves determining the characteristics of the computing environ-
ment where the response will be deployed which includes evaluating system
security policy priorities, defining level of tolerable risk, etc.

2. The system policy goals: The next step is to determine the importance
of the system policy goals, and subsequently, to assess the potential risks ac-
cording to the following categories: confidentiality, availability and integrity.

3. The system resources: System resources can be broadly viewed as the
system assets (e.g., host, network, etc.), services provided by the system
(e.g., HTTP, file system) and users served by the system. The analysis of
system resources includes the enumeration of the available resources and
their classification according to the importance for the system policy goals.

4. The intrusion responses: The responses are deployed to either counter
possible attacks and defend the system resources or regain secure system
state. Thus, the selection of applicable responses primarily depends on the
identified system resources.

5. The response operational cost: The assessment of operational cost is
generally independent from the system policy. We assess the involved op-
erational expenses on the basis of three requirements: human resources ,
i.e., administrator time, system resources, i.e., storage, network bandwidth,
processor time, etc., and direct expenses i.e., data processing fees by a third
party, subscription service fees, cost of components replacement, etc.

6. The response goodness: Often the detection mechanism of the intrusion
detection system (IDS) provides administrators with a set of alerts indicating
potential attacks rather than a specific intrusion. When this situation arises,
the response needs to be deployed preemptively on the basis of high likelihood
of possible intrusions. In these cases, the response goodness is evaluated
based on the number of possible intrusions it can potentially address, and
consequently, the number of resources that can be protected by the response.

7. The response impact on the system: The impact of a response on the
system is evaluated based on the defined system goals and their importance.
The impact assessment process for a specific response includes three steps:
(1) identifying the system resources affected by each response, (2) for each
resource determining the priority of responses based on their effect on the re-
source, and (3) computing the negative impact of the responses on the associ-
ated resource using the ordering obtained in step 2. Eventually, the impact of
a response on the system as a whole is an aggregation of the response’s impact
on the system resources.

The proposed methodology for assigning response costs essentially presents
the first roadmap for defining standardized metrics for response cost evaluation.
These response metrics provide a consistent basis for evaluation across systems,
while allowing the response cost to be adapted with respect to the security pol-
icy and properties of specific system environment. Importantly, this approach
is practically implementable in a real-world environment, making response cost
assessment accessible to system administrators with a range of system expertise.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 392 – 393, 2008.
© Springer-Verlag Berlin Heidelberg 2008

WebIDS: A Cooperative Bayesian Anomaly-Based
Intrusion Detection System for Web Applications

(Extended Abstract)

Nathalie Dagorn

Laboratory of Algorithmics, Cryptology and Security (LACS), Luxembourg
& ICN Business School, France

nathalie.dagorn@icn-groupe.fr,
nathalie.dagorn@orange.fr

http://www.uni.lu/
 http://www.icn-groupe.fr/

Abstract. This paper presents WebIDS, a learning-based anomaly detection
system for Web applications aiming at improving the decision process, reducing
the number of false positives, and achieving distributed detection.

Keywords: Anomaly detection, Correlation, Web application.

1 Introduction

Attacks on Web applications and services have been increasing dramatically for the
last years. Related approaches in intrusion detection are still rare. The major chal-
lenges anomaly-based systems have to solve in the field are the improvement of the
decision process, the reduction of the high number of (false) alarms caused by un-
usual activities, and the recent need of distributed intrusion detection. At the crossing
of these research areas, the aim of our work is to propose an efficient distributed
anomaly detection system dedicated to the security of Web applications.

2 Our Proposal: WebIDS

WebIDS analyzes HTTP GET requests as logged by Apache Web servers. The analy-
sis process is based on a multi-model approach [5] implementing ten statistical algo-
rithms: attribute length, attribute character distribution, structural inference, token
finder, attribute presence or absence, attribute order, access frequency, inter-request
delay, invocation order, and anomaly history (which allows, among others, keeping
track of alarms). The system requires no special configuration (autonomous learning).
A non-naive Bayesian network is used as a decision process [3], classifying the events
more accurately and incorporating information about confidence in the models. At the
root node, a specification of the event classification [6] distinguishes between a nor-
mal state and five Web attack states (authentication, XSS, command execution, denial
of service, and other attack). The system is improved after each log analysis by filter-
ing out false positives using an alarm clustering technique [2]. As part of the anomaly

 WebIDS: A Cooperative Bayesian Anomaly-Based Intrusion Detection System 393

history model, a cooperation feature enables the system to achieve alarm and event
correlation [4]. The Intrusion Detection Message Exchange Format (IDMEF) [1] is
used for sharing alarm information between systems.

3 Experimental Results

WebIDS has been implemented in an IT company based in Luxembourg and showed
good detection rates (sensitivity of 96.02 %, specificity of 99.99 %, and reliability of
99.94 %). The false positive rate (0.01422 %) is lower than the rates observed for
similar systems. Nevertheless, these results must be mitigated because only a small
number of anomalies could be observed by WebIDS over the experimental period,
and the comparison with existing systems is not based on the same dataset.

4 Conclusion and Future Work

As a conclusion, we can state that the cooperative anomaly-based intrusion detection
system proposed is both innovative and efficient. By improving the decision process,
reducing the false positive rate and enabling cooperation between systems, it meets
the defined challenges. As a follow-up to this research, the deployment of WebIDS in
a more widely distributed environment is currently considered. Some functional and
technical improvements are being carried out for that purpose.

References

1. Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message Exchange Format.
Internet Draft IETF (2005), http://www.ietf.org/internet-drafts/draft-
ietf-idwg-idmef-xml-14.txt

2. Julisch, K.: Using Root Cause Analysis to Handle Intrusion Detection Alarms. PhD Thesis,
University of Dortmund, Germany (2003)

3. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian Event Classification for Intru-
sion Detection. In: 19th Annual Computer Security Applications Conference. IEEE Com-
puter Society Press, New York (2003)

4. Kruegel, C., Valeur, F., Vigna, G.: Intrusion Detection and Correlation - Challenges and
Solutions. In: Advances in Information Security, vol. 14. Springer, Heidelberg (2005)

5. Kruegel, C., Vigna, G., Robertson, W.: A Multi-Model Approach to the Detection of Web-
Based Attacks. Computer Networks 48(5), 717–738 (2005)

6. Valdes, A., Skinner, K.: Adaptive, Model-Based Monitoring for Cyber Attack Detection. In:
3rd International Symposium on Recent Advances in Intrusion Detection, pp. 80–92.
Springer, Heidelberg (2000)

Evading Anomaly Detection through Variance

Injection Attacks on PCA

(Extended Abstract)

Benjamin I.P. Rubinstein1, Blaine Nelson1, Ling Huang2,
Anthony D. Joseph1,2, Shing-hon Lau1, Nina Taft2, and J. D. Tygar1

1 UC Berkeley
{benr,nelsonb,adj}@cs.berkeley.edu, mrvulcanpaypal@gmail.com

2 Intel Research, Berkeley
hling@cs.berkeley.edu, nina.taft@intel.com

Abstract. Whenever machine learning is applied to security problems,
it is important to measure vulnerabilities to adversaries who poison the
training data. We demonstrate the impact of variance injection schemes
on PCA-based network-wide volume anomaly detectors, when a single
compromised PoP injects chaff into the network. These schemes can in-
crease the chance of evading detection by sixfold, for DoS attacks.

1 Motivation and Problem Statement

We are broadly interested in understanding vulnerabilities associated with using
machine learning in decision-making, specifically how adversaries with even lim-
ited information and control over the learner can subvert the decision-making
process [1]. An important example is the role played by machine learning in
dynamic network anomography, the problem of inferring network-level Origin-
Destination (OD) flow anomalies from aggregate network measurements. We ask,
can an adversary generate OD flow traffic that misleads network anomography
techniques into misclassifying anomalous flows? We show the answer is yes for a
popular technique based on Principal Components Analysis (PCA) from [2].

The detector operates on the T ×N link traffic matrix Y, formed by measuring
N link volumes between PoPs in a backbone network, over T time intervals. Fig-
ure 1 depicts an example OD flow within a PoP-to-PoP topology. Lakhina et al.
observed that the rows of the normal traffic in Y lie close to a low-dimensional
subspace captured by PCA using K = 4 principal components. Their detec-
tion method involves projecting the traffic onto this normal K-dimensional sub-
space; large (small) residuals, as compared with the Q-statistic, are called positive
anomalies (negative normal traffic).

2 Results and Future Work

Consider an adversary launching a DoS attack on flow f in week w. Poisoning
aims to rotate PCA’s K-dimensional subspace so that a false negative (FN) oc-
curs during the attack. Our Week-Long schemes achieve this goal by adding high
variance chaff at the compromised origin PoP, along f , throughout week w − 1.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 394–395, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Evading Anomaly Detection through Variance Injection Attacks on PCA 395

Fig. 1. Point-of-presence (PoP)-level gra-
nularity in a backbone network, and the
links used for data poisoning

1.0 1.1 1.2 1.3 1.4 1.5

0.
0

0.
2

0.
4

0.
6

FNR vs. Relative Link Traffic Increase

Relative mean link traffic volume after attack

A
ve

ra
ge

 te
st

 F
N

 r
at

e

●●●●●
●●

●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

● Add−More−If−Bigger
Scaled Bernoulli

Fig. 2. Week-Long attacks: test FNRs are
plot against the relative increase to the
mean link volumes for the attacked flow

Figure 2 presents results for two chaff methods. Both methods add chaff ct to
each link in f at time t, depending on parameter θ: Scaled Bernoulli selects ct

uniformly from {0, θ}; Add-More-If-Bigger adds ct = (yo(t) − yo)
θ where yo(t)

and yo are the week w − 1 origin link traffic at time t and average origin link
traffic, respectively. We evaluated these methods on data from Abilene’s back-
bone network of 12 PoPs. For each week 2016 measurements were taken, each
averaged over 5 minute intervals, for each of 54 virtual links—15 bi-directional
inter-PoP links and the PoPs’ ingress & egress links.

The attacker’s chance of evasion is measured by the FN rate (FNR). We see
that the Add-More-If-Bigger chaff method, which exploits information about
origin link traffic, achieves greater FNR increases compared to Scaled Bernoulli.
The baseline FNR of 4% for PCA on clean data, can be doubled by adding on
average only 4% additional traffic to the links along the poisoned flow. The FNR
can be increased sixfold to 24% via an average increase of 10% to the poisoned
link traffic. In our Boiling Frog strategies, where poisoning is increased slowly
over several weeks, a 50% chance of successful evasion can be achieved with a
modest 5% volume increase from week-to-week over a 3 week period [3].

We have verified that simply increasing the number of principal components
is not useful in protecting against our attacks [3]. In future work we will eval-
uate counter-measures based on Robust formulations of PCA, and will devise
poisoning strategies for increasing PCA’s false positive rate.

References

1. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learn-
ing. Technical Report UCB/EECS-2008-43, UC Berkeley (April 2008)

2. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. In:
Proc. SIGCOMM 2004, pp. 219–230 (2004)

3. Rubinstein, B.I.P., Nelson, B., Huang, L., Joseph, A.D., Lau, S., Taft, N., Tygar,
J.D.: Compromising PCA-based anomaly detectors for network-wide traffic. Tech-
nical report UCB/EECS-2008-73, UC Berkeley (May 2008)

Anticipating Hidden Text Salting in Emails

(Extended Abstract)

Christina Lioma1, Marie-Francine Moens1, Juan-Carlos Gomez1,
Jan De Beer1,�, Andre Bergholz2, Gerhard Paass2, and Patrick Horkan3

1 Katholieke Universiteit Leuven, Belgium
{christina.lioma,sien.moens,juancarlos.gomez}@cs.kuleuven.be,

jan.debeer@be.ibm.com
2 Fraunhofer IAIS, Germany

{andre.bergholz,gerhard.paass}@ais.fraunhofer.de
3 Symantec, Ireland

patrick horkan@symantec.com

Abstract. Salting is the intentional addition or distortion of content,
aimed to evade automatic filtering. Salting is usually found in spam
emails. Salting can also be hidden in phishing emails, which aim to steal
personal information from users. We present a novel method that detects
hidden salting tricks as visual anomalies in text. We solely use these salt-
ing tricks to successfully classify emails as phishing (F-measure >90%).

1 Introduction

Given a text and a user who reads this text, hidden text salting is any mod-
ification of text content that cannot be seen by the user, e.g., text written in
invisible colour, or in zero font size. Hidden text salting can be applied to any
medium and content genre, e.g. emails or MMS messages, and can be common in
fraudulent phishing emails [3]. We present a novel method for detecting hidden
text salting and using it to recognise phishing emails.

Related research has focused on filtering email spam. Early spam filters used
human-coded ad-hoc rules, often optimized by machine learning, e.g. spamassas-
sin. Such filters were easy to fool, hard to maintain, and outperformed by filters
using visual features, e.g. embedded text in images [4]. Recently, statistical data
compression has been used to build separate models for compressed ham and
spam, and then classify emails according to which model they fit better when
compressed [2]. None of these studies addresses hidden salting directly.

2 Hidden Text Salting Detection

Given an email as input, a text production process, e.g. a Web browser, creates
an internal parsed representation of the email text and drives the rendering of
that representation onto some output medium, e.g. a browser window. We tap
into this rendering process to detect hidden content (= manifestations of salting).
� Jan De Beer is no longer at K.U.Leuven.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 396–397, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Anticipating Hidden Text Salting in Emails 397

Methodology. We intercept requests for drawing text primitives, and build an
internal representation of the characters that appear on the screen. This repre-
sentation is a list of attributed glyphs (positioned shapes of individual charac-
ters). Then, we test for glyph visibility (are glyphs seen by the user?) according
to these conditions: (1) clipping: glyph drawn within the bounds of the draw-
ing clip, which is a type of ‘spatial mask’; (2) concealment: glyph not concealed
by other shapes; (3) font colour: glyph’s colour contrasts with the background
colour; (4) glyph size: large enough glyph size and shape. We compute a visibil-
ity score for each feature and consolidate their product into a single confidence
score, parameterised by an empirically-tuned penalty factor. The lower the final
glyph visibility score, the stronger the indication of hidden text salting.

Evaluation. We use the above salting tricks as features for classifying emails as
ham or phishing in a real-life corpus that contains 16,364 ham and 3,636 phish-
ing emails from 04/2007-11/2007. The corpus is protected by non-disclosure
privacy-preserving terms. We use a standard Support Vector Machine (SVM)
classifier with 10-fold cross validation. We obtain 96.46% precision, 86.26% re-
call, and 91.07% F-measure. The best classification feature, found in 86% of all
phishing emails, is font colour. State-of-the-art phishing classification reaches F-
measures of 97.6% (with random forests [3]) up to 99.4% (with SVMs [1]) when
using known discriminative features, such as url length & longevity, HTML &
Javascript information on the 2002-2003 spamassassin corpus & a public phish-
ing corpus (these corpora are described in [3]). We use only salting features. If
we also combine these known discriminative features, performance may improve.

3 Conclusions

We detect hidden text salting in emails as hidden visual anomalies in text, unlike
existing methods which target spam in general. We show that hidden text salting
is used in phishing emails, and that phishing emails can be identified based on
hidden text salting features alone. Our method can be used as improved content
representation in filtering, retrieval or mining.

Acknowledgments. Partly funded by project EU-FP6-IST-027600-ANTI-
PHISH.

References

1. Bergholz, A., Paass, G., Reichartz, F., Strobel, S., Chang, J.-H.: Improvedphishingde-
tection using model-based features. In: Conf. on Email and Anti-Spam (CEAS) (2008)

2. Bratko, A., Cormack, G., Filipic, B., Lynam, T., Zupan, B.: Spam filtering using
statistical data compression models. J. of Mach. Learn. Res. 7, 2673–2698 (2006)

3. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Interna-
tional World Wide Web Conference (WWW), pp. 649–656 (2007)

4. Fumera, G., Pillai, I., Roli, F.: Spam filtering based on the analysis of text informa-
tion embedded into images. J. of Mach. Learn. Res. 7, 2699–2720 (2006)

5. Kirda, E., Kruegel, C.: Protecting users against phishing attacks. The Computer
Journal 49(5), 554–561 (2006)

Improving Anomaly Detection Error Rate by

Collective Trust Modeling

(Extended Abstract)

Martin Rehák1, Michal Pěchouček1, Karel Bartoš2,1, Martin Grill2,1,
Pavel Čeleda3, and Vojtěch Krmı́ček3

1 Department of Cybernetics, Czech Technical University in Prague
mrehak@labe.felk.cvut.cz, pechouc@labe.felk.cvut.cz

2 CESNET, z. s. p. o.
bartosk@labe.felk.cvut.cz, grillm@labe.felk.cvut.cz

3 Institute of Computer Science, Masaryk University
celeda@ics.muni.cz, vojtec@ics.muni.cz

Abstract. Current Network Behavior Analysis (NBA) techniques are
based on anomaly detection principles and therefore subject to high error
rates.Weproposeamechanismthatdeploys trustmodeling, a technique for
cooperator modeling from the multi-agent research, to improve the quality
ofNBAresults.Our system is designed as a set of agents, each of thembased
on an existing anomaly detection algorithm coupled with a trust model
based on the same traffic representation. These agents minimize the error
rate by unsupervised, multi-layer integration of traffic classification. The
system has been evaluated on real traffic in Czech academic networks.1

Network Behavior Analysis attempts to detect the attacks against computer
systems by analyzing the network traffic (flow/session) statistics. We present a
mechanism that efficiently combines several anomaly detection algorithms in or-
der to significantly reduce their error rate, especially in terms of false positives.
The mechanism is based on extended trust modeling, a method from the
multi-agent field [1], which generalizes traditional trust modeling by introduc-
tion of generalized identities and situation representation. The traditional trust
models are principally used to identify dishonest partners engaged in repetitive
interactions, such as supply chain management.

Traditionally, the alerts from multiple sources are grouped to improve the
quality of classification and reduce the number of events presented to the user [2].
Other approaches concentrate on the improvement of several distinct intrusion
detection methods, differentiated by the set of traffic features these methods
work on [3]. In our work [4], we extend the latter by introducing the collective
extended trust modeling as a supplementary layer which further improves the
quality of classification.

The system (Fig. 1) receives the flow data in batches, typically covering be-
tween 2-5 minutes of network traffic. The data is processed by several anomaly
1 This material is based upon work supported by the International Technology Center -

Atlantic of the US Army under Contract No. W911NF-08-1-0250. Also supported by
Czech Min. of Education grants 6840770038 (CTU) and 6383917201 (CESNET).

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 398–399, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improving Anomaly Detection Error Rate by Collective Trust Modeling 399

Fig. 1. Detection process overview

detection algorithms, and each algorithm determines an anomaly value for
each of the flows. The anomaly value is a real number in the [0, 1] interval, with
the values close to 0 corresponding to normal flows and the values around 1
being reserved for anomalous flows.

The anomalies provided by individual anomaly detectors are averaged to ob-
tain a single joint anomaly for each flows. At this stage, our algorithm differ-
entiates from the existing approaches by introducing another processing layer,
based on extended trust modeling. Flow description and joint anomaly value is
processed by several trust models. Each of these models represents the flows in a
distinct feature space, aggregates them into clusters, and assigns trustfulness
to these clusters. The trustfulness of the cluster (again in the [0, 1] interval) is
aggregated from the joint anomaly of the flows (from all past data sets) that
were previously assigned to the cluster.

The system than uses the trustfulness provided for each flow (aggregated from
the trustfulness of the close clusters) as its output. Use of trustfulness in lieu of
single-file dependent anomaly, together with the order-weighted combination of
the results between the models, filters most of the false positives, and significantly
reduces the error rate of the mechanism.

We validate [4] our technique on the NetFlow data from the university network
(with botnet/P2P traffic, buffer overflow attempts) and empirically show that
its use successfully reduces the rate of false positives, while not impacting the
false negatives ratio. The false positives are reduced by the factor of 10-20 when
compared to the individual anomaly detection methods, and by the factor of 2-4
when compared to joint anomalies.

References

1. Rehak, M., Pechoucek, M.: Trust modeling with context representation and gen-
eralized identities. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L.
(eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 298–312. Springer, Heidelberg (2007)

2. Valeur, F., Vigna, G., Kruegel, C., Kemmerer, R.A.: A comprehensive approach to
intrusion detection alert correlation. IEEE Transactions on Dependable and Secure
Computing 01, 146–169 (2004)

3. Giacinto, G., Perdisci, R., Rio, M.D., Roli, F.: Intrusion detection in computer
networks by a modular ensemble of one-class classifiers. Information Fusion 9, 69–
82 (2008)

4. Rehak, M., Pechoucek, M., Grill, M., Bartos, K.: Trust-based classifier combi-
nation for network anomaly detection. In: Cooperative Information Agents XII.
LNCS(LNAI), Springer, Heidelberg (to appear, 2008)

Database Intrusion Detection and Response

(Extended Abstract)�

Ashish Kamra and Elisa Bertino

Purdue University
akamra@ecn.purdue.edu, bertino@cs.purdue.edu

Why is it important to have an intrusion detection (ID) mechanism tailored for
a database management system (DBMS)? There are three main reasons for this.
First, actions deemed malicious for a DBMS are not necessarily malicious for the
underlying operating system or the network; thus ID systems designed for the
latter may not be effective against database attacks. Second, organizations have
stepped up data vigilance driven by various government regulations concerning
data management such as SOX, GLBA, HIPAA and so forth. Third, and this is
probably the most relevant reason, the problem of insider threats is being recog-
nized as a major security threat; its solution requires among other techniques
the adoption of mechanisms able to detect access anomalies by users internal to
the organization owning the data.

Our approach to an ID mechanism tailored for a DBMS consists of two main
elements: an anomaly detection (AD) system and an anomaly response system.
We have developed algorithms for detecting anomalous user/role accesses to a
DBMS [2]. Our approach considers two different scenarios. In the first scenario,
it is assumed that the DBMS has a Role Based Access Control (RBAC) model
in place. Our AD system is able to determine role intruders, that is, individuals
that while holding a specific role, behave differently than expected. The problem
in this case is treated as a supervised learning problem. The roles are used as
classes for the classification purpose. For every user request under observation,
its role is predicted by a classifier. If the predicted role is different from the role
associated with the query, an anomaly is detected. In the second case, the same
problem is addressed in the context of a DBMS without any role definitions. In
such setting, every request is associated with the user that issued it. We build
user-group profiles based on the SQL commands users submit to the database.
The specific methodology used for anomaly detection is as follows. The training
data is partitioned into clusters using standard clustering techniques. A mapping
is maintained for every user to its representative cluster (RC). For a new query
under observation, its RC is determined by examining the user-cluster mapping.
For the detection phase, two different approaches are followed. In the first ap-
proach, the classifier is applied in a manner similar to the supervised case with
the RCs as classes. In the second approach, a statistical test is used to identify
if the query is an outlier in its RC. If the result of the statistical test is positive,
the query is marked as an anomaly.

� The work reported here has been partially supported by the NSF grant 0712846
“IPS: Security Services for Healthcare Applications”.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 400–401, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Database Intrusion Detection and Response 401

In order to build profiles, the log-file entries need to be pre-processed and con-
verted into a format that can be analyzed by the detection algorithms. Therefore,
each entry in the log file is represented by a basic data unit that contains five
fields, and thus it is called a quiplet. The abstract form of a quiplet consists of five
fields (SQL Command, Projection Relation Information, Projection Attribute In-
formation, Selection Relation Information and Selection Attribute Information).
Depending on the level of details required, the quiplets are captured from the log
file entries using three different representation levels. Each level is characterized
by a different amount of recorded information. For details, we refer the reader
to [2]. Our approach towards a DBMS specific AD mechanism has several ad-
vantages. By modeling the access patterns of users based on the SQL command
syntax, the insider threat scenario is directly addressed. Our approach is able to
capture users/roles that access relations not conforming to their normal access
pattern. Second, the three different granularity levels of representation proposed
in the scheme offer alternatives for space/time/accuracy overhead. Third, the
profiles themselves can be used by the security administrators to refine existing
access control policies of the DBMS or define new ones.

The second element of our approach addresses a common shortcoming of
all other DBMS-specific ID mechanisms, that is, a limited number of possible
anomaly response options. In all such mechanisms, the response is either aggres-
sive, thus dropping the malicious request, or conservative, thus simply raising an
alarm while letting the malicious request go through. So what more can a DBMS
do to respond to a database access anomaly signaling a possible intrusion? Con-
sider an AD system in place for a DBMS. AD systems are useful for detecting
novel zero-day attacks, but they are also notorious for generating a large number
of false alarms. Taking an aggressive action on every alarm can result in poten-
tial denial of service to legitimate requests, while only logging the alarms will
nullify the advantages of the AD mechanism. We address these problems using
a two-pronged approach [1]. First we propose the notion of database response
policies that specify appropriate response actions depending on the details of
the anomalous request. Second we propose more fine-grain response actions by
introducing the concept of privilege states in the access control system. For ex-
ample, as we discuss in [1], the privilege corresponding to an anomalous action
may be moved into a suspended state until a remedial action, such as a 2nd-factor
authentication, is executed by the user. We have implemented a policy language
and extended the PostgreSQL DBMS with an engine supporting the enforcement
of the response policies. We have also extended the access control mechanism
of PostgreSQL to support privilege states. Initial performance evaluation shows
that our approach is very efficient.

References

1. Kamra, A., Bertino, E., Nehme, R.: Responding to anomalous database requests.
In: Proceedings of Secure Data Management (SDM) (to appear, 2008)

2. Kamra, A., Bertino, E., Terzi, E.: Detecting anomalous access patterns in relational
databases. VLDB Journal (2008)

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 402–403, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Empirical Approach to Identify Information
Misuse by Insiders
(Extended Abstract)

Deanna D. Caputo, Greg Stephens, Brad Stephenson, Megan Cormier,
and Minna Kim

The MITRE Corporation*
{dcaputo,gstephens,stephenson}@mitre.org

Abstract. Rogue employees with access to sensitive information can easily
abuse their access to engage in information theft. To help differentiate mali-
cious from benign behavior, this study measures how participants, given a
common search topic, seek information. This study uses double-blind proce-
dures, a stratified sample, and carefully designed control and experimental con-
ditions. We seek to validate previously identified network indicators (ELICIT),
find new host-based behaviors, and consider other human attributes that affect
the information-use of malicious insiders by comparing their behavior to
equivalent non-malicious users.

Keywords: insider threat, detection, malicious users, misuse.

1 Introduction

Malicious insiders who abuse their privileges to steal valuable information remain
largely invisible to current detection methods that rely on rule-breaking behavior. To
effectively detect this misuse, one must observe how trusted insiders interact with
information and differentiate innocuous from malicious patterns of information-use.

In prior work1, we developed ELICIT, a network-based system designed to help
analysts detect insiders who operate outside the scope of their duties but within their
privileges. The current research uses the same approach, observing information-use
and applying user and information context. This study will evaluate ELICIT’s detec-
tors across a different participant pool while adding host-based monitoring, and

* This material is based upon work supported by the U.S. Department of Homeland Security

under Grant Award Number 2006-CS-001-000001, under the auspices of the Institute for
Information Infrastructure Protection (I3P) research program. The I3P is managed by Dart-
mouth College. The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland Security, the I3P, or Dartmouth
College.

1 Maloof, M.A., and Stephens, G.D. "ELICIT: A system for detecting insiders who violate
need-to-know." Recent Advances in Intrusion: 146-166.

 An Empirical Approach to Identify Information Misuse by Insiders 403

considering baseline human behavior as well as individual differences in a controlled
environment.

Envision a labyrinth where people enter the maze (an information landscape) at dif-
ferent locations (intentions) yet seek the same prize (information). Can one’s path to the
prize tell us where they started from? We hypothesize that the information gathering
patterns of maliciously motivated users will differ in predictable ways from those of
benignly motivated users. For example, malicious insiders may attempt to hide their bad
behavior by interleaving it with separate innocuous information gathering sessions
whereas benign users may focus on a single information gathering session.

2 Methods

There will be a minimum of 50 participants in this study. They will all be MITRE
employees and the sample will be stratified by seniority in the company.

The experimental procedure is double-blind to guard against bias and placebo ef-
fects. Participants are randomly assigned to one of two conditions: Benign User (con-
trol) or Malicious User. Participants are recruited under the cover story that we are
monitoring computer use while testing the latest anti-keylogging software. Deception
is necessary so they are all unaware that we are studying insider threat behaviors. Par-
ticipants complete a pre-questionnaire asking for biographical data and other behav-
ioral questions of interest.

Each participant receives a study laptop running software that monitors their in-
formation-use behavior. They are randomly assigned one of two scenarios, based on
their condition, explaining a role and task. Both conditions are tasked to search the
MITRE intranet and deliver the most valuable information found, on an identical
topic, onto a CD and are informed that it will be evaluated by subject matter experts
(creating a performance demand). Each participant is given up to 10 hours to play the
role and complete the task over a 7 day period. Participants complete a post-
questionnaire about their experience, the role, the task, and other behaviors of interest.

The two scenarios were designed to be completely balanced, except for the ex-
perimental variable—user intent. Both roles describe a person who has fallen on hard
financial times and must complete the task in order to improve their financial
situation. In the benign condition, the person joins a high profile team and good per-
formance on that team will lead to a promotion and pay increase. In the malicious
condition, the person accepts a new, higher paying job. The offer is conditional on
bringing inside information from his old employer that would provide the new em-
ployer a competitive advantage.

Monitoring is done using the network-based ELICIT sensors and the host-based
product Verdasys’ Digital Guardian. Together, the sensors monitor information-use
events including file/directory reads, writes, moves, and deletes. They also monitor
search engine queries, cut-and-pastes, application launches, and URLs visited. Events
will be analyzed to measure statistical differences in information usage for each con-
dition. We will apply previously determined ELICIT indicators where appropriate,
and look for new behavior patterns in network and host activity. Participant responses
to pre-/post-experiment questionnaires will be analyzed across conditions.

Page-Based Anomaly Detection in Large Scale

Web Clusters Using Adaptive MapReduce
(Extended Abstract)

Junsup Lee1 and Sungdeok Cha2

1 The Attached Institute of ETRI, Daejeon, Republic of Korea
jslee@dependable.kaist.ac.kr

2 Department of CSE, Korea University, Seoul, 136-701, Republic of Korea
scha@korea.ac.kr

Abstract. While anomaly detection systems typically work on single
server, most commercial web sites operate cluster environments, and
user queries trigger transactions scattered through multiple servers. For
this reason, anomaly detectors in a same server farm should commu-
nicate with each other to integrate their partial profile. In this paper,
we describe a real-time distributed anomaly detection system that can
deal with over one billion transactions per day. In our system, base on
Google MapReduce algorithm, an anomaly detector in each node shares
profiles of user behaviors and propagates intruder information to re-
duce false alarms. We evaluated our system using web log data from
www.microsoft.com. The web log data, about 250GB in size, contains
over one billion transactions recorded in a day.

Anomaly detection systems are often considered impractical solutions because
of two major limitations. One is a difficulty of collaboration among anomaly
detectors from web servers. The other limitation is real-time consideration. Ex-
isting systems fail to deliver real-time performance and often require expensive
computational cost during training and evaluation. Conventional ADSs implic-
itly assume that all activities related to an event have been completed before the
event may be inspected. To satisfy such assumption, the systems usually have
timing windows to ensure that an event is not inspected until complete informa-
tion is available. Consequently, the systems fail to satisfy real-time constraints.

To overcome these issues, we developed a page-based anomaly detection sys-
tem (PADS). The PADS keeps track of access patterns on each service object
such as web page and generate models per pages. In this page-profile based ADS,
compare with other user-based ADS, timing windows are unnecessary during
operation. An anomaly detector in each node, base on Google MapReduce al-
gorithm [1], shares self-learned profiles and propagates intruder information to
reduce false alarms.

The PADS architecture employs a combination of self-learning and profile-
based anomaly detection techniques. Self-learning methodology enables the
PADS to study the usage and traffic patterns of web service objects over time. In

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 404–405, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Page-Based Anomaly Detection in Large Scale Web Clusters 405

Detector

Map

Reduce
Local

Reduce
Remote

Server-1

Page
Profile

Server-1
� Map(url, hit) � a.html => 1 //4 requests

� ReduceLocal(url => {“1”,”1”,”1”,”1”}) � a.html => “4”
� ReduceRemote(url => {“4”,”3”,}) � a.html => “7”

Server-2
� Map(url, hit) � a.html => 1 //3 requests

� ReduceLocal(url => {“1”,”1”,”1”}) � a.html => “3”
� ReduceRemote(url => {“3”,”4”,}) � a.html => “7”

Web Requests

Detector

Map

Reduce
Local

Reduce
Remote

Server-2

Page
Profile

Fig. 1. Overview of PADS, Example of MapReduce in PADS (Page hit)

our model, profiles that summarize statistical features (such as exchanged bytes,
query related behavior and HTTP traffic features using Chebyshev inequality,
relative frequency and clustering method) per web service objects (e.q., html,
asp, aspx, mspx and so on). Because popular web sites do experience legitimate
and sometimes unexpected surge on particular web pages, the PADS automat-
ically specifies access thresholds per web pages to understand unusual patterns
that may occur during legitimate web query operations.

To keep pace with the latest usage and traffic pattern per web pages, each
PADS node in a server farm propagates the profiles to other nodes using adaptive
MapReduce technique[2]. We redesigned the technique which aware memory and
network traffic. Using MapReduce algorithm, user requests are summarized into
page profiles and share with other server simultaneously (Fig 1). According to
our experiment on Microsoft web log data, the PADS only generate 4.44% of
network traffic compare with sharing all requests among servers. In a half hour,
a server receives 0.42 million requests on average. In the meantime, only 7.2
thousand page profiles are produced by LocalReduce. While total size of these
profiles is 3.6MB, all requests are 81MB relatively.

In our system, each web page profile is generated dynamically by the system
initially and subsequently updated and shared with other servers in real time
by Google MapReduce algorithm. Currently, we are evaluating PADS using a
web log data from ’www.microsoft.com’. While every web servers maintain same
latest web page profiles which is about million, communication overhead between
nodes is dramatically low.

References

1. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Operating Systems Design and Implementation, 137–149 (2004)

2. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating
MapReduce for Multi-core and Multiprocessor Systems. In: Proceedings of the 13th
Intl. Symposium on HPCA, Phoenix, AZ (February 2007)

Automating the Analysis of Honeypot Data

(Extended Abstract)

Olivier Thonnard1, Jouni Viinikka2, Corrado Leita1, and Marc Dacier3

1 Institut Eurecom
olivier.thonnard@rma.ac.be, Corrado.Leita@eurecom.fr

2 France Telecom R&D
jouni.viinikka@orange-ftgroup.com

3 Symantec Research Labs, France
dacier@eurecom.fr

Abstract. We describe the on-going work towards further automating
the analysis of data generated by a large honeynet architecture called
Leurre.com and SGNET. The underlying motivation is helping us to in-
tegrate the use of honeypot data into daily network security monitoring.
We propose a system based on two automated steps: i) the detection of
relevant attack events within a large honeynet traffic data set, and ii)
the extraction of highly similar events based on temporal correlation.

Keywords: Honeypots, Internet threats analysis, malicious behavior
characterization.

1 Introduction

We look to identify and characterize certain large-scale phenomena that are active
on the Internet by detecting similarities across network attack traces in an automated
manner. The analyzed data is extracted from datasets collected through Leurre.com [4]
and SGNET honeypot deployments [5]. By automating our analysis, it should help
us to integrate the use of honeypot data into daily network security monitoring. To
achieve this we need to identify relevant periods of activity on the sensors shortly after
they occurred. These periods of activity are analyzed to detect temporal and spatial
similarities within the observed attack processes.

In [2] the authors highlighted the usefulness of analyzing temporal correlations be-
tween different attacks collected through a honeynet, e.g. to highlight synchronized at-
tack patterns which are part of a very same phenomenon, or to discover stealthier attack
phenomena related to botnet propagation schemes or “multi-headed” attack tools [3].

Once groups of similar attack events are revealed, we can perform a more in-depth
analysis of those specific groups so as to characterize them with respect to other rele-
vant attack features, e.g. by analyzing the spatial and temporal characteristics of the
attackers, or by looking at other meta-information obtained from the SGNET sensors,
such as shellcode or malware characteristics when the attacks have led to a successful
upload of shellcode commands and malicious binaries.

Thanks to the extensive characterization of those similar attack events, we seek to
discover other types of similarities across attack events, even when they occurred at
different periods of time. As a result, this process should facilitate the identification of
possible root causes for new attack phenomena. The characterization and correlation
steps may currently require some manual or semi-automated work.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 406–407, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automating the Analysis of Honeypot Data 407

2 Analysis Process

The main idea of our ongoing effort consists to automatically i) detect relevant attack
events within a large honeynet traffic data set shortly after it has been collected, and
ii) group highly similar temporal events by relying on clique algorithms and appropriate
similarity metrics.

We propose to use in step i) an approach based on non-stationary autoregressive
(NAR) modeling using Kalman fixed-lag smoothers [1] and in step ii) we use clique
algorithms described in [2,6].

The strengths of the detection algorithm are its capability to flag the beginnings of
activity periods and isolated activity peaks. Our initial results show that the algorithm
is effective when applied to the three different types of time series identified in [2],
i.e. ephemeral spikes, sustained bursts and continous patterns. The shortcomings are
related to detection of the end of an activity period, the association of the end to the
beginning, and the risk of an activity peak begin masked by closely preceding peak.
We look to improve these aspects of the detection algorithm.

Then, to correlate the identified attack events, we use an approach based on max-
imal cliques [6], which are able to group all events having important similarities in
an unsupervised manner. The main advantage of this approach is that the number of
groups (or cliques) does not need to be specified before executing the clustering, and
many different feature vectors and similarity distances can be used transparently. We
currently use two different techniques: i) the dominant sets approach developed by Pa-
van and Pelillo[7], and ii) the quality-based clustering developed in [2]. While the first
approach provides a real approximation of the maximum clique problem (known to be
NP-hard), the second approach is more pragmatic and is mainly focused on finding
cliques having a high quality garantee with a low computational overhead. The choice
of one or another clique algorithm depends on the intrinsic characteristics of the data
set, as well as the feature vectors used in the data mining process.

References

1. Viinikka, J., Debar, H., Mé, L., Lehikoinen, A., Tarvainen, M.: Processing intrusion
detection alert aggregates with time series modeling. Information Fusion Journal
(2008); Special Issue on Computer Security (to appear)

2. Thonnard, O., Dacier, M.: A Framework for Attack Patterns Discovery in Honeynet
Data. In: Digital Forensic Research Workshop (DFRWS) (2008)

3. Pouget, F., Urvoy-Keller, G., Dacier, M.: Time signatures to detect multi-headed
stealthy attack tools. In: 18th Annual FIRST Conference, Baltimore, USA (2006)

4. The Leurre.com Project, http://www.leurrecom.org
5. Leita, C., Dacier, M.: SGNET: a worldwide deployable framework to support the

analysis of malware threat models. In: Proceedings of EDCC 2008, 7th European
Dependable Computing Conference, Kaunas, Lithuania, May 7-9 (2008)

6. Pouget, F., Dacier, M., Zimmerman, J., Clark, A., Mohay, G.: Internet attack knowl-
edge discovery via clusters and cliques of attack traces. Journal of Information As-
surance and Security 1(1) (March 2006)

7. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmenta-
tion. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition (2003)

http://www.leurrecom.org

Anomaly and Specification Based Cognitive

Approach for Mission-Level Detection and
Response�

(Extended Abstract)

Paul Rubel1, Partha Pal1, Michael Atighetchi1, D. Paul Benjamin2,
and Franklin Webber1

1 BBN Technologies, Cambridge MA 21038, USA
prubel@bbn.com, ppal@bbn.com, matighet@bbn.com, franklin@eutaxy.net

2 Pace University, 1 Pace Plaza, New York NY 10038, USA
benjamin@pace.edu

Abstract. In 2005 a survivable system we built was subjected to red-
team evaluation. Analyzing, interpreting, and responding to the defense
mechanism reports took a room of developers. In May 2008 we took part
in another red-team exercise. During this exercise an autonomous reason-
ing engine took the place of the room of developers. Our reasoning engine
uses anomaly and specification-based approaches to autonomously decide
if system and mission availability is in jeopardy, and take necessary cor-
rective actions. This extended abstract presents a brief summary of the
reasoning capability we developed: how it categorizes the data into an
internal representation and how it uses deductive and coherence based
reasoning to decide whether a response is warranted.

1 The Basic Idea

Requiring experts to manage a system’s defenses is an expensive undertaking,
even assuming that such operators can be found. With faster CPUs, more RAM,
faster and higher capacity networks we can transfer this tedious work to a rea-
soning engine. Our reasoning engine uses the mission concept (a model of how
the system functions in a particular context) and sensor inputs, generated while
the mission runs, to autonomously defend the system.

1.1 Challenges and Solution Approach

The main challenge is making sense of the low level observables reported by the
survivability architecture in the context of the current system and mission, and
then deciding what and when remedial actions should be taken. Additionally,
we want the reasoning to accommodate new systems and missions.

At the center of our reasoning engine is a general reasoner, bracketed by
system specific adapter logic. The input adapter takes alerts and turns them
into accusations. The general reasoner then uses these accusations to make
� This research was funded by DARPA under Navy Contract No. N00178-07-C-2003.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 408–410, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Anomaly and Specification Based Cognitive Approach 409

hypotheses and passes claims and hypotheses to the output adapter where
they are evaluated in the mission context and may be acted upon.

Accusations are abstract alerts, expressive enough to enable a wide range
of responses while not overwhelming the reasoner with unnecessary distinctions.
Accusations come in five types: value (wrong data), omission, flood, timing (right
message at the wrong time), and policy (not following a specification). From
these accusations the reasoning engine generates four types of hypotheses, which
are potential explanations of the accusation: dead host, corrupt host, flooded
host, or communication is broken between hosts. A single accusation may create
multiple hypotheses. For example, we assume that the sender may be corrupt
so accusing a host of not sending a reply creates a dead hypotheses about the
accused as well as a corrupt hypothesis about the accuser.

In order for a hypothesis to be acted upon, there needs to be sufficient sup-
port to turn that hypothesis into a claim. Claim selection relies upon four main
techniques: deductive reasoning, coherence search[1], mission knowledge, and
heuristic techniques. Deductive reasoning takes the current hypotheses and sys-
tem knowledge and attempts to logically prove hypotheses. Coherence search
takes multiple accusations, each supporting hypotheses, and aggregates the sup-
port. In this way a single source will likely not turn a hypothesis into a claim but
a collection of accusations may. Mission knowledge is used to include or exclude
some options. For example, if a host is corrupt but is critical to the mission a
reboot may initially be preferred to permanently blocking its network traffic.
Finally, we use heuristics to choose claims when the other techniques have failed
to come up with any workable claims but yet actions still need to be taken.

2 Evaluation

In May of 2008 our system was subjected to an external red-team evaluation. One
goal was to effectively respond to 50% of attacks. Preliminary results delivered
immediately after the exercise showed 89% of the attacks were detected, and of
those detected, 69% were responded to effectively. Additional analysis is ongoing.

3 Conclusion

Application of cognitive/knowledge based tools, especially in the area of spec-
ification and anomaly-based detection and response, at the mission level, is a
promising way to extend the reach of current intrusion detection technology and
enhance the overall accuracy of true detection. One issue, still left unresolved, is
the needed speed of cognitive processing component. Our goal was to respond
in 250ms. In some cases we achieved that target during evaluation, but in others
our reasoning took multiple seconds, a problem which needs further refinement.

References

1. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence, spe-
cial issue on constraint-based reasoning 58(1-3), 21–70 (1992)

Monitoring the Execution of Third-Party

Software on Mobile Devices

(Extended Abstract)

Andrew Brown and Mark Ryan

School of Computer Science, University of Birmingham, UK. B15 2TT
{A.J.Brown, M.D.Ryan}@cs.bham.ac.uk

Abstract. The current security model for a third-party application run-
ning on a mobile device requires its user to trust that application’s vendor
and whilst mechanisms exist to mediate this relationship, they cannot
guarantee complete protection against the threats posed. This work in-
troduces a security architecture that prevents a third-party application
deviating from its intended behaviour, defending devices against previ-
ously unseen malware more effectively than existing security measures.

In 2002, mobile device capabilities were expanded to permit users to install
applications from sources other than the cellular network operator and they
now mirror those of more traditional hosts. 2004 saw the first malware aimed at
mobile devices hit and today over four hundred known entities exist. By 2009, it
is estimated that 200 million “smart” mobile devices will be in operation, setting
the scene for widespread malware infection.

Mobile device architectures commonly utilise code signing, discretionary ac-
cess controls and signature-based anti-virus software to secure third-party soft-
ware installations. Digitally signing code can confirm its author and guarantee
that it has not been altered since it was signed, but does not guarantee the qual-
ity or security of code that the application will execute: determined attackers
will go to many lengths to obtain a signature for their code. Access controls con-
tribute to a systematic security framework, but are inflexible: default settings
tend to leave the device vulnerable to numerous attacks and applying stricter
controls impedes program functionality. Mobile anti-virus software can only de-
tect known malware entities whose signatures exist in a virus dictionary and
attack recovery simply deletes an application’s executable files.

We propose an architecture for mediating third-party software that uses exe-
cution monitors, which operate in parallel (as a separate thread) with the target
application in order to analyse and mitigate the events it invokes. This enables
full regulation of the target’s interaction with its host’s resources, preventing
and recovering from harmful behaviour in real-time. As most end-users do not
have the technical capability to specify or deploy such monitors, we have devel-
oped ABML – a high-level policy language in which they can express a priori
judgements about the type of application downloaded, which are translated by
our compiler into a monitor specification. An ABML policy contains a set of
rules which reason about temporally-ordered application events, sets of local

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 410–411, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Monitoring the Execution of Third-Party Software 411

and global variables, and can be categorised by the class of application it is
applied to (e.g., an editor, a browser, a game, a messenger).

Fig. 1. System architecture

A policy is compiled into Java source code
and then enforced on application bytecode
by the Polymer [1] engine. This executes on
the JVM and monitors calls the application
makes to the Java ME and native device li-
braries (Fig. 1). Policy violations are recov-
ered from by weaving a set of recovery events
into application bytecode, which are derived
from a rule at compile-time. Where a policy
denies its triggering event, that event can be
removed from the target’s instruction stream
and execution can continue. Our language is
equipped with constructs that more precisely
identify the context of an event, leading to
more fine-grained application control. It can
therefore mitigate some forms of information-
flow and ensure that only data which is not deemed sensitive is transmitted by
the application to the device’s carrier network. In addition, our architecture
ensures that an attacker cannot write application code to bypass our security
measures and control the operating system directly. Third-party applications
can only gain access to native device functions whilst an ABML policy is being
enforced on them.

We have proven this concept using the BlackBerry 8800-series mobile device,
although our work is cross-platform (for it to work on other types of device,
ABML’s libraries are re-mapped to the APIs of the target platform). An example
attack we recently studied allowed an application to intercept and forward SMS
messages to an attacker and could occur despite that application being signed.
Device access controls queried the user on the target’s first attempt to send an
SMS, but where the user agreed to this prompt, an SMS ‘channel’ to the attacker
was created. Our countermeasure to this stated: “the target may send an SMS
message only if the data that message contains was entered manually by the
user, and the recipient of that message exists as a contact in the user’s personal
information manager (PIM)”. In order to enforce such a policy, a monitor must
precisely identify the context in which the triggering event occurred: was the
data contained in that SMS message typed by the user? At some time after the
entry of this data, did the user press “send” in reference to this message? and
is that message to be sent to recipient in the device’s PIM? Where any of these
conditions evaluates to false, the device’s operating system never receives the
command to send that SMS message and the application continues executing.

Reference
1. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with Polymer. In:

PLDI 2005: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, New York, USA, pp. 305–314 (2005)

Streaming Estimation of Information-Theoretic

Metrics for Anomaly Detection�

(Extended Abstract)

Sergey Bratus, Joshua Brody, David Kotz, and Anna Shubina

Institute for Security Technology Studies
Department of Computer Science, Dartmouth College, USA
sergey@cs.dartmouth.edu, jbrody@cs.dartmouth.edu,
dfk@cs.dartmouth.edu, ashubina@cs.dartmouth.edu

Abstract. Information-theoreticmetrics hold great promise formodeling
traffic and detecting anomalies if only they could be computed in an effi-
cient, scalable way. Recent advances in streaming estimation algorithms
give hope that such computations can be made practical. We describe our
work in progress that aims to use streaming algorithms on 802.11a/b/g link
layer (and above) features and feature pairs to detect anomalies.

Information-theoretic statistics applied to monitoring of network traffic can
be useful in detecting changes in its character [7,5,4]. These metrics make few
assumptions about what constitutes normal and abnormal traffic (e.g., [3]), and
so should do well at adapting to traffic characteristics of specific networks, re-
alizing the “home network advantage” of prior knowledge that defenders have
over outside attackers.

However, necessary computations place a heavy load on both the sensor CPU
and RAM. Thus, scalability of methods that rely on precise real-time computa-
tions of entropy and other related statistics remains a challenge. Luckily, a new
class of streaming algorithms produce practically usable estimated results with
much smaller requirements to CPU and RAM [6,2]. They have the potential to
allow information-theoretic metrics to be scalably used in practice.

Several experimental systems (including Wi-Fi link layer anomaly detectors be-
ing developed at Dartmouth) apply entropy of pre-selected packet or session fea-
tures to produce alerts. Such mechanisms rely on the idea that a change in the char-
acter of a feature distribution is suspicious. In our experience, watching a set of fea-
tures as if they were independent is highly prone to false positives. A change in the
entropy of a feature may be due to factors such as normal business day and other
workflow cycles. Even the simplest cases of single protocol features require, e.g.,
some modeling of when a particular protocol is normally expected to be in use.
� This research program is a part of the Institute for Security Technology Studies,

supported by Intel Corporation, NSF grant CCF-0448277, and by Award number
NBCH2050002 from the U.S. Department of Homeland Security, Science and Tech-
nology Directorate. Points of view in this document are those of the authors and do
not necessarily represent the official position of the U.S. Department of Homeland
Security, Intel Corporation, or any other sponsor.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 412–414, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Streaming Estimation of Information-Theoretic Metrics 413

Conditional entropy between pairs of features are likely to provide a better
metric of normal use, because it relies on tracking the average “predictability”
of one feature given the knowledge of another. Such relationships are more likely
to persist through diurnal cycles, because they are less related to volumes of
traffic.

Unusual use of protocol fields is characteristic of many exploits, but sophisti-
cated attackers take pains to disguise it, as IDSes might be watching for it. It is
much harder to disguise unusual payloads in such a way that does not introduce
unusual statistical effects in pairs of protocol features. Note that rule-based IDS
evasion techniques themselves (e.g., [8]) can produce just such effects.

Streaming estimation algorithms open up the possibility of a scalable
sampling-based system that allows tracking of joint distributions, and thus of
mutual information-type statistics. Furthermore, the sampling scheme used in
the estimation algorithm can be adjusted dynamically depending on how much
precision is meaningful and practicable for a particular network.

The 802.11a/b/g link layer is feature-rich and complex. Besides the frame
type and subtype fields, the link layer header may contain one to four MAC
address fields, eight bit flags, and two 16-bit fields, frame sequence number and
duration (the distribution of which has been shown[1] to identify wireless chipset–
driver combination as a distinctive fingerprint).

Thus this link layer allows a range of interesting attacks and related statistical
distibution anomalies. We distinguish between the four levels of features, based
on the sensor RAM and CPU requirements to follow them: (a) PHY layer errors
as calculated and reported by the firmware, (b) frequency of basic events, such
as observing deauthentication frames, (c) single header field values’ frequency
distributions, and (d) joint and conditional distributions of pairs of features.
Anomalies in (a) may indicate inteference or jamming, and (b) frequency serves
as good indicators of various DoS-type flooding and resource consumption at-
tacks, whereas (c) and especially (d) expose other attacks that involve unusual
headers and payloads.

References

1. Cache, J.: Fingerprinting 802.11 implementations via statistical analysis of the du-
ration field. Uninformed Journal 5(1) (September 2006)

2. Chakrabarti, A., Cormode, G., McGregor, A.: A near-optimal algorithm for comput-
ing the entropy of a stream. In: SODA 2007: Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, pp. 328–335 (2007)

3. Gu, G., Fogla, P., Dagon, D., Lee, W., Skoric, B.: Towards an information-theoretic
framework for analyzing intrusion detection systems. In: Gollmann, D., Meier, J.,
Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp. 527–546. Springer, Hei-
delberg (2006)

4. Gu, Y., McCallum, A., Towsley, D.: Detecting anomalies in network traffic using
maximum entropy estimation. In: IMC 2005: Proceedings of the 5th ACM SIG-
COMM conference on Internet measurement, pp. 1–6 (2005)

414 S. Bratus et al.

5. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: SIGCOMM 2005: Proceedings of the 2005 Conference on Computer
Communication, pp. 217–228. ACM, New York (2005)

6. Lall, A., Sekar, V., Ogihara, M., Xu, J., Zhang, H.: Data streaming algorithms
for estimating entropy of network traffic. SIGMETRICS Performance Evaluation
Review 34(1), 145–156 (2006)

7. Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In: Proc.
of the 2001 IEEE Symposium on Security and Privacy, pp. 130–143 (2001)

8. Ptacek, T.H., Newsham, T.N.: Insertion, evasion, and denial of service: Eluding
network intrusion detection, January 1998. Secure Networks, Inc. (1998)

Bots Behaviors vs. Human Behaviors on

Large-Scale Communication Networks
(Extended Abstract)

Wei Lu1,2 and Ali A. Ghorbani1

1 Faculty of Computer Science, University of New Brunswick, Fredericton,
NB Canada

2 Department of Electrical and Computer Engineering, University of Victoria,
BC Canada

{wlu,ghorbani}@unb.ca

Abstract. In this paper we propose a hierarchical framework for de-
tecting and characterizing any types of botnets on a large-scale WiFi
ISP network. In particular, we first analyze and classify the network
traffic into different applications by using payload signatures and the
cross-associations for IP addresses and ports. Then based on specific ap-
plication community (e.g. IRC, HTTP, or Peer-to-Peer), we present a
novel temporal-frequent characteristic of flows that leads the differentia-
tion of malicious behaviors created by bots from normal network traffic
generated by human beings. We evaluate our approach with over 160 mil-
lion flows collected over five consecutive days on a large-scale network
and preliminary results show the proposed approach successfully detects
the IRC botnet flows from over 160 million flows with a high detection
rate and an acceptable low false alarm rate.

1 Problem Statement, State of the Art and Contributions

Detecting botnets behaviors on large-scale networks is a very challenging prob-
lem. This is because: (1) botnets are often hidden in existing applications, and
thus their traffic volume is not that big and is very similar with normal traf-
fic behaviors; (2) identifying network traffic into different applications becomes
more challenging and is still an issue yet to be solved due to traffic content en-
cryption and the unreliable destination port labeling method. The observation
on a large-scale WiFi ISP network over a half year period showed that even
exploring the flow content examination method, there are still about 40% net-
work flows that cannot be classified into specific applications. Investigating such
a huge number of unknown traffic is very important since they might stand for
the abnormalities in the traffic, malicious behaviors or simply the identification
of novel applications.

Current attempts on detecting botnets are mainly based on honeypots, pas-
sive anomaly analysis and traffic application classification. The anomaly analysis
for detecting botnets on network traffic is usually independent of the traffic con-
tent and has the potential to find different types of botnets. However, anomaly

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 415–416, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

416 W. Lu et al.

Step 1. Payload Signatures based
Application Classifier

Step 2. Cross-Association based
Application Classifier

unknown flows

input network flows network application communities

Step 3
Humans IRC Flows

Bots IRC Flows

P2P

IRC

WEB

Fig. 1. The proposed hierarchical framework for botnets detection

detection tends to generate a large volume of false alarms traditionally when
deployed on a large-scale communication network. The traffic application clas-
sification based botnets detection focuses on classifying traffic into IRC traffic
and non-IRC traffic, offering a potential to reduce number of false alarms, but
can detect IRC based botnets only.

In this paper, we focus on traffic classification based botnets detection. Instead
of labeling and filtering traffic into non-IRC and IRC, we propose a hierarchical
framework illustrated in Fig. 1 for discriminating malicious behaviors generated
by any types of bots from normal behaviors generated by human beings. The
major contributions of this work include: (1) a novel application discovery ap-
proach for classifying traffic into different network application communities (e.g.
P2P, Chat, Web, etc.) on a large-scale WiFi ISP network, in which the input
flows are first labeled through payload signatures (i.e. Step 1 of Fig.1) and un-
known flows are then labeled through the cross-associations of IP addresses and
port numbers (i.e. Step 2 of Fig.1); (2) a novel temporal-frequent metric based
on N-gram (frequent characteristic) of flow payload over a time period (tempo-
ral characteristic) for discriminating bots behaviors from humans behaviors on
a large-scale network (i.e. Step 3 of Fig.1).

2 Preliminary Evaluation Results and Conclusions

We implement a prototype system for the proposed hierarchical framework and
then evaluate it on a large-scale WiFi ISP network over five consecutive busi-
ness days. Our traffic classification approach can classify the unknown IRC flows
into the IRC application community with a 100% classification rate on the five
days evaluation. The detection rate for differentiating bots IRC traffic from nor-
mal human beings IRC traffic is 100% on four days testing, while an exception
happens on the third day’s testing on which our prototype obtained a 77.8%
detection rate with a 3.1% false alarm rate. The best evaluation over the five
days testing is a 100% detection rate with only 1.6% false alarm rate. Moreover,
the preliminary evaluation results show that the average standard deviation of
bytes frequency over the 256 ASCIIs on the flow payload is an important metric
to indicate normal human IRC traffic and malicious IRC traffic generated by
machine bots. In the near future, we will conduct an experimental evaluation
with the web based botnets and new appeared P2P botnets.

Anomalous Taint Detection
(Extended Abstract)�

Lorenzo Cavallaro1 and R. Sekar2

1 Department of Computer Science, University of California at Santa Barbara, USA
sullivan@cs.ucsb.edu

2 Department of Computer Science, Stony Brook University, USA
sekar@cs.sunysb.edu

Abstract. We propose anomalous taint detection, an approach that combines
fine-grained taint tracking with learning-based anomaly detection. Anomaly de-
tection is used to identify behavioral deviations that manifest when vulnerabilities
are exercised. Fine-grained taint-tracking is used to target the anomaly detector on
those aspects of program behavior that can be controlled by an attacker. Our pre-
liminary results indicate that the combination increases detection accuracy over
either technique, and promises to offer better resistance to mimicry attacks.

1 Introduction

A number of approaches have been developed for mitigating software vulnerabilities. Of
these, learning-based anomaly detection has been popular among researchers due to its
ability to detect novel attacks. Although the basic assumption behind anomaly detection,
which states that attacks manifest unusual program behaviors, is true, the converse does
not hold: unusual behaviors are not necessarily attacks. As a result, anomaly detection
techniques generally suffer from a high rate of false positives, which impact their practical
deployment.

Recently, fine-grained taint-tracking has become popular in software vulnerability de-
fense. Its strength lies in its ability to reason about the degree of control exercised by an
attacker on data values within the memory space of a vulnerable program. This enables the
development of security policies that can, with high confidence, detect dangerous uses of
such “tainted” data in security-critical operations. This technique is capable of defeating a
wide range of attacks, including code injection, command injection and cross-site script-
ing1. Its main drawback is the requirement for manual policy development, which can be
hard for some classes of attacks, e.g., non-control data attacks2 and directory traversals.

We propose a new taint-based approach in this paper that avoids the need for policies
by leveraging an anomaly detector. By targeting the anomaly detector on tainted data

� This research was supported in part by an NSF grant CNS-0627687, and performed while
the first author was a PhD student from Università degli Studi di Milano, Italy visiting Stony
Brook University.

1 See, for instance, XU, BHATKAR and SEKAR, “Taint-enhanced Policy Enforcement: a Practical
Approach to Defeat a Wide Range of Attacks,” USENIX Security Symposium, 2006.

2 These attacks corrupt security-critical data without subverting control-flow. Chen et al. (“Non-
Control-Data Attacks Are Realistic Threats,” USENIX Security Symposium, 2005) showed that
they can achieve the same results as code injection attacks, while evading many code injection
defenses.

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 417–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

418 L. Cavallaro and R. Sekar

and/or events, our approach can avoid a large fraction of false positives that occur due
to benign anomalies, i.e., behavioral deviations that are not under the attacker’s control.

2 Anomalous Taint Detection

Our starting point is a system-call based program behavior model, e.g., the one used by
Forrest et al. (“A Sense of Self for Unix Processes,” IEEE Security and Privacy ’96).
We enhance this model with information about system call arguments and taint. As in
Bhatkar et al. (“Dataflow Anomaly Detection,” IEEE Security and Privacy ’06), this
learning technique leverages the control-flow context provided by system-call models.

Our technique learns information about system calls (or other interesting functions)
and their arguments at multiple granularity. At a coarse granularity, it learns whether an
event’s argument is tainted. At a finer granularity, it learns whether structure fields (or
array elements) are tainted. Furthermore, we also generate application-specific taint-
enhanced profiles, such as expected maximum and minimum argument lengths, struc-
tural inference with character class mapping, and longest common prefix models.

We briefly illustrate our technique3 using a format-string vulnerability existing in
the WU-FTPD program. This program elevates its privileges temporarily, and then uses
the following code snippet to revert its privilege to that of a normal user. Chen et al.
demonstrated a non-control data attack that overwrites pw->pw_uid field with zero.
As a result, the server does not revert to user privilege.

1 FILE *getdatasock(...) {
2 ...
3 seteuid(0);
4 setsockopt(...);
5 ...
6 seteuid(pw->pw_uid);
7 ...
8 }

Our approach can detect this attacks in two ways. First, the attack causes this
seteuid’s argument to be tainted, whereas the argument is untainted under normal
operation. Second, the attack causes deviations in the structure of a (tainted) argument
to a printf-like function. While the latter method is tied to the specifics of the under-
lying vulnerability, the former technique is able to detect the effect of corruptions that
may be caused by other vulnerabilities as well.

By leveraging on taint information, our approach is less vulnerable to mimicry-like
attacks than, for instance, a learning-based anomaly detection approach which relies
only on statistical properties of the observed data, e.g., Mutz et al. (“Anomalous Sys-
tem Call Detection,” ACM TISSEC 2006). With a purely learning-based approach, if
a limited number of authenticated users were observed during training, then a mimicry
attack would be possible that may allow an attacker to impersonate any one of these users.

We have been able to detect other non-control data attacks described by Chen et al.
using models that reason about the structure and/or lengths of tainted arguments. Our
future work is aimed at (a) extending the technique to work on other attack types that
require application-specific taint policies (e.g., directory traversals), and (b) deriving
taint policies from the taint-enhanced behavioral models that can provide the basis for
preventing (rather than just detecting) exploits.

3 Additional details can be found in CAVALLARO AND SEKAR, “Anomalous Taint Detection”,
Tech Report SECLAB08-06 at http://seclab.cs.sunysb.edu/pubs.html.

http://seclab.cs.sunysb.edu/pubs.html

Deep Packet Inspection Using Message Passing

Networks

(Extended Abstract)

Divya Jain, K Vasanta Lakshmi, and Priti Shankar

Indian Institute of Science
divya@csa.iisc.ernet.in, kvasanta@csa.iisc.ernet.in,

priti@csa.iisc.ernet.in

Abstract. We propose a solution based on message passing bipartite
networks, for deep packet inspection, which addresses both speed and
memory issues, which are limiting factors in current solutions. We report
on a preliminary implementation and propose a parallel architecture.

1 The Problem, Our Solution and Results

Packet content scanning at high speed is crucial to network security and network
monitoring applications. In these applications, the packet payload is matched
against a given set of patterns specified as regular expressions to identify spe-
cific classes of applications, viruses, protocol definitions, etc. Unfortunately, the
speed requirement cannot be met in many existing NFA based payload scan-
ning implementations because of the inefficiency in regular expression matching.
Deterministic finite automata (DFAs) for certain regular expression types suffer
from state blow up limiting their practical implementation. To solve the problem
of state blow up we propose the following two part process.
1. In the first step the regular expressions are divided into subexpressions and
these subexpressions of all regular expressions are then categorized into “sub ex-
pression modules” depending on their type. These modules are essentially scan-
ners that run on the input and return the positions where the subparts occur in the
input. Every regular expression is composed of one of constant strings, closures,
length restrictions , a class of characters , a query or a combination of these. Thus
the regular expression can be broken down into these components and all compo-
nents of same type can be combined into a single module. For example all constant
strings occurring in all regular expressions will be in one module with a single DFA
scanning for constant strings in the input. Many of these components especially
closures and length restriction are common to several regular expressions and thus
running a single DFA for all of them is beneficial.

2. In the second step we construct pattern modules for each regular expression,
which collect events consisting of subexpression matches along with matching
positions (each such pair termed as an event) generated by the sub expression
modules in the first step and string them together to find a match for the actual
regular expression. Each such pattern module is modeled as a timed automaton.
Each subexpression knows which pattern messages it needs to send messages to

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 419–420, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 D. Jain, K. V. Lakshmi, and P. Shankar

Fig. 1. Fragmenting RE ’Authorization\s*\x3A\s*Basic\s*[∧\n]{437}’

Fig. 2. Block Diagram of our solution

so each timed automaton gets only events of potential interest to it. In a timed
automaton each symbol represents a timed event, namely a sub expression of
the regular expression along with its “time” or position in the input stream,
transitions being based on such events. The timed automaton is triggered when
the first subexpression of the regular expression is found in a position buffer
maintained for logging these events.The pattern modules are independent of
each other and hence can be run in parallel in a hardware setup or on a parallel
machine. Currently there is one pattern module per regular expression. As the
number of regular expressions is large, in future, we plan to combine multiple
regular expressions into single pattern modules based on the subexpressions they
share. As a trial setup we have run the implementation for a selected set of
32 regular expressions from more than four thousand such rules that make up
SNORT PCRE rulesets. The flex generated scanners are in C and the rest has
been implemented in C++. The expressions chosen cover almost all types of
regular expressions. The number of states for the traditional DFA for each of
the 32 regular expressions ranges from 30 to almost 2400 where 400 is the length
restriction in one of the expressions. The total number of NFA states for these
regular expressions is 11924. In our solution, the total number of states for all
DFAs in the sub expression modules is just equal to 533. The number of states
in the pattern modules is equal to total sub expressions which is 300. This
solution appears scalable though proper parallel communication protocols and
a fast simulation of a timed automaton are critical for efficient functioning. We
plan to do the simulation of the parallel implementation on the Blue Gene-L
machine and later will examine hardware implementations.

System Call API Obfuscation

(Extended Abstract)

Abhinav Srivastava1, Andrea Lanzi1,2, and Jonathon Giffin1

1School of Computer Science, Georgia Institute of Technology, USA
2Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano, Italy

{abhinav,giffin}@cc.gatech.edu, andrew@security.dico.unimi.it

Abstract. We claim that attacks can evade the comprehension of se-
curity tools that rely on knowledge of standard system call interfaces
to reason about process execution behavior. Our attack, called Illusion,
will invoke privileged operations in a Windows or Linux kernel at the re-
quest of user-level processes without requiring those processes to call the
actual system calls corresponding to the operations. The Illusion inter-
face will hide system operations from user-, kernel-, and hypervisor-level
monitors mediating the conventional system-call interface. Illusion will
alter neither static kernel code nor read-only dispatch tables, remaining
elusive from tools protecting kernel memory.

1 Illusion Attack

Honeypots and other utilities designed to audit, understand, classify, and detect
malware and software attacks often monitor process’ behavior at the system call
interface as part of their approach. Past research has developed a widespread
collection of system-call based systems operating at user or kernel level [1,5,2,4]
and at hypervisor level [3]. Employing reference monitors at the system call
interface makes intuitive sense: absent flaws in the operating system (OS) kernel,
it a non-bypassable interface, so malicious code intending to unsafely alter the
system will reveal its behavior through the series of system calls that it invokes.

Current malware increasingly makes use of kernel modules or drivers that
help the user-level process perform malicious activities by hiding the process’
side effects. For example, the rootkits adore and knark hide processes, network
connections, and malicious files by illegitimately redirecting interrupt or sys-
tem call handling into their kernel modules. Redirection can alter the semantic
meaning of a system call—a problem for any system that monitors system calls
to understand the behavior of malware. Jiang and Wang address this class of
attack:

Syscall remapping requires the modification of either the interrupt
descriptor table (IDT) or the system call handler routine... [3]

Systems like that of Jiang and Wang assume that protections against illegitimate
alteration of the IDT or system call handler will force malicious software to

R. Lippmann, E. Kirda, and A. Trachtenberg (Eds.): RAID 2008, LNCS 5230, pp. 421–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

422 A. Srivastava, A. Lanzi, and J. Giffin

always follow the standard system-call interface when requesting service from
the kernel.

Unfortunately, this assumption does not hold true. Malicious code can
obfuscate the Windows or Linux system call interface using only legitimate func-
tionality commonly used by kernel modules and drivers. Our Illusion attack will
allow malicious processes to invoke privileged kernel operations without requir-
ing the malware to call the actual system calls corresponding to those operations.
In contrast to prior attacks of the sort considered by Jiang and Wang, Illusion
will alter neither static kernel code nor read-only dispatch tables such as the
IAT or system call descriptor table (SSDT). During the execution of malware
augmented with the Illusion attack, an existing system-call analyzer will see a
series of system calls different that those actually executed by the malware.

The Illusion attack is possible because a number of system calls allow legiti-
mate dispatch into code contained in a kernel module or driver, and this permits
an attacker to alter their semantics. Consider ioctl: this system call takes an
arbitrary, uninterpreted memory buffer as an argument and passes that argu-
ment to a function in a kernel module that has registered itself as the handler for
a special file. Benign kernel modules legitimately register handler functions for
such files; a malicious module performing the same registration exhibits no be-
haviors different than the benign code. However, a call to ioctl will be directed
into the malicious module’s code together with the buffer passed to ioctl as an
argument. In user-space, we marshal a malware’s actual system call request into
this buffer, and we then use the kernel module to unmarshal the request and
invoke the appropriate kernel system call handler function. With this interface
illusion in place, the kernel still executes the same operations that the malware
instance would have executed without the obfuscation. However, system call
monitoring utilities would observe a sequence of ioctl requests and would not
realize that malicious operations had occurred.

References

1. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for UNIX
processes. In: IEEE Symposium on Security and Privacy, Oakland, CA (May 1996)

2. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In:
Network and Distributed System Security Symposium (NDSS), San Diego, CA (Feb-
ruary 2004)

3. Jiang, X., Wang, X.: Out-of-the-box monitoring of VM-based high-interaction hon-
eypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637,
pp. 198–218. Springer, Heidelberg (2007)

4. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E., Morris, R.:
Information flow control for standard OS abstractions. In: Symposium on Operating
System Principles (SOSP), Stevenson, WA (October 2007)

5. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automaton-based method
for detecting anomalous program behaviors. In: IEEE Symposium on Security and
Privacy, Oakland, CA (May 2001)

Author Index

Abdelnur, Humberto J. 372
Agosta, John-Mark 231
Albrecht, David R. 155
Ali, Muhammad Qasim 351
Almgren, Magnus 291
Antonatos, Spiros 116
Ashfaq, Ayesha Binte 351
Atighetchi, Michael 408

Bagchi, Saurabh 271
Bartoš, Karel 398
Basu, Samik 390
Beer, Jan De 396
Benjamin, D. Paul 408
Bergholz, Andre 396
Bertino, Elisa 400
Borisov, Nikita 155
Bratus, Sergey 412
Brody, Joshua 412
Brown, Andrew 410

Caputo, Deanna D. 402
Cavallaro, Lorenzo 417
Čeleda, Pavel 398
Cha, Sungdeok 404
Cheetancheri, Senthilkumar G. 231
Chiueh, Tzi-cker 98
Chung, Simon P. 175
Collins, M. Patrick 251
Cormier, Megan 402
Cui, Weidong 21

Dacier, Marc 406
Dagorn, Nathalie 392
Dreger, Holger 135

Feldmann, Anja 135
Ferrie, Peter 98
Festor, Olivier 311, 372
Fredrikson, Matt 78

Ghorbani, Ali A. 415
Gianvecchio, Steven 211
Giffin, Jonathon 39, 421
Gomez, Juan-Carlos 396

Grill, Martin 398
Guo, Fanglu 98

Horkan, Patrick 396
Huang, Ling 394

Ioannidis, Sotiris 116

Jain, Divya 419
Jajodia, Sushil 211
Jha, Somesh 78
Jiang, Xuxian 1, 21, 59
Jonsson, Erland 291
Joseph, Anthony D. 394

Kamra, Ashish 400
Khayam, Syed Ali 351
Killourhy, Kevin 331
Kim, Minna 402
Kirda, Engin 191
Kotz, David 412
Krmı́ček, Vojtěch 398
Kruegel, Christopher 191

Lanzi, Andrea 421
Lau, Shing-hon 394
Lebanon, Guy 271
Lee, Junsup 404
Leita, Corrado 406
Levitt, Karl N. 231
Lindqvist, Ulf 291
Lioma, Christina 396
Lu, Wei 415

Markatos, Evangelos P. 116
Martignoni, Lorenzo 78
Maxion, Roy 331
McAllister, Sean 191
Mitchell, John C. 78
Modelo-Howard, Gaspar 271
Moens, Marie-Francine 396
Mok, Aloysius K. 175
Mumtaz, Asma 351

Nassar, Mohamed 311
Nelson, Blaine 394

424 Author Index

Paass, Gerhard 396
Pal, Partha 408
Paxson, Vern 135
Pěchouček, Michal 398
Polychronakis, Michalis 116

Ramsbrock, Daniel 59
Rehák, Martin 398
Reiter, Michael K. 251
Riley, Ryan 1
Robert, Maria Joseph 351
Rowe, Jeff 231
Rubel, Paul 408
Rubinstein, Benjamin I.P. 394
Ryan, Mark 410

Sajjad, Ali 351
Schear, Nabil 155
Sekar, R. 417
Shankar, Priti 419
Shubina, Anna 412
Sommer, Robin 135
Srivastava, Abhinav 39, 421
Stakhanova, Natalia 390

State, Radu 311, 372
Stephens, Greg 402
Stephenson, Brad 402
Stinson, Elizabeth 78
Strasburg, Chris 390

Taft, Nina 394
Thonnard, Olivier 406
Tygar, J.D. 394

Vasanta Lakshmi, K. 419
Vasiliadis, Giorgos 116
Viinikka, Jouni 406

Wang, Haining 211
Wang, Xinyuan 21, 59
Wang, Zhi 21
Webber, Franklin 408
Wijesekera, Duminda 211
Wong, Johnny S. 390
Wu, Felix 231

Xu, Dongyan 1

	Title Page
	Preface
	Organization
	Table of Contents
	Guest-Transparent Prevention of Kernel Rootkits with VMM-Based Memory Shadowing
	Introduction
	NICKLEDesign
	Design Goals and Threat Model
	Enabling Scheme and Techniques

	NICKLE Implementation
	Memory Shadowing and Guest Memory Access Indirection
	Flexible Response
	Porting Experience

	NICKLE Evaluation
	Effectiveness Against Kernel Rootkits
	Impact on Performance

	Discussion
	Related Work
	Conclusion
	References

	Countering Persistent Kernel Rootkits through Systematic Hook Discovery
	Introduction
	Background
	SystemDesign
	Context-Aware Execution Monitor
	Kernel Hook Identifier

	Implementation
	Context-Aware Execution Logging
	Kernel Hook Identification

	Evaluation
	Kernel Hooks
	Case Studies

	Discussion
	Related Work
	Conclusion
	References

	Tamper-Resistant, Application-Aware Blocking of Malicious Network Connections
	Introduction
	Related Work
	Overview
	Threat Model
	Virtual Machine Introspection

	Tamper Resistant Architecture of VMwall
	Kernel Component
	User Agent

	Implementation
	Extending Ebtables
	Accessing DomU Kernel Memory
	Parsing Kernel Data Structures
	Policy Design and Rules

	Evaluation
	Illegitimate Connections
	Legitimate Connections
	Performance Evaluation
	Security Analysis

	Conclusions and Future Work
	References

	A First Step towards Live Botmaster Traceback
	Introduction
	Botmaster Traceback Model
	Botnets and Stepping Stones
	Tracking the Botmaster by Watermarking Botnet Traffic

	Length-Based Watermarking Scheme
	Basic Length-Based Watermarking Scheme
	Hybrid Length-Timing Watermarking for Encrypted Traffic

	Implementation and Experiment
	Length-Only Algorithm (Unencrypted Traffic)
	Hybrid Length-Timing Algorithm (Encrypted Traffic)

	Discussion and Future Work
	Related Work
	Conclusion
	References

	A Layered Architecture for Detecting Malicious Behaviors
	Introduction
	Our Approach

	Representing High-Level Behaviors
	Behavior Graphs
	Behavior-Specification Language
	Graph Construction

	System Implementation
	System Emulator
	Behavior Matcher

	Evaluation
	Experimental Setup
	Graph Validation
	Specifications of Malicious Behavior
	Malware Results
	Benign Application Results
	Tracking Local User Input
	Additional Malware
	Performance Overhead

	Limitations and Future Work
	Related Work
	Conclusion
	References

	A Study of the Packer Problem and Its Solutions
	ThePackerProblem
	Overview
	How Packers Work

	Unpacking Solutions from the Anti-Virus Industry
	Justin: Just-in-Time AV Scanning
	Design
	Implementation Details

	Evaluation
	Effectiveness of Justin
	Number of Spurious End-of-Unpacking Detections
	Performance Overhead of Justin

	Conclusion
	References

	Gnort: High Performance Network Intrusion Detection Using Graphics Processors
	Introduction
	Overview of the GeForce 8 Series Architecture

	Related Work
	Architecture
	Transferring Packets to the GPU
	Pattern Matching on the GPU
	Transferring the Results to the CPU

	Implementation
	Assigning a Single Packet to each Multiprocessor
	Assigning a Single Packet to each Stream Processor

	Evaluation
	Microbenchmarks
	Macrobenchmarks

	Conclusions
	References

	Predicting the Resource Consumption of Network Intrusion Detection Systems
	Introduction
	Impact of Resource Exhaustion
	Modeling NIDS Resource Usage
	The Structure of NIDS Processing
	Principle Contributors to Resource Usage

	Example NIDS Resource Usage
	Decomposition of Resource Usage

	Resource Prediction
	From Traffic Snapshots to Configurations
	A Tool for Deriving NIDS Configurations
	From Flow Logs to Long-Term Prediction

	Related Work
	Conclusion
	References

	High-Speed Matching of Vulnerability Signatures
	Introduction
	Background
	Vulnerability Signatures
	Protocol Parsing
	Vulnerability Complexity

	Design
	Text Protocols
	Binary Protocols
	Discussion

	Language
	Matcher Primitives
	Handlers

	Implementation
	Compiler
	Parser Classes
	Binary Traversal-Optimized Binpac

	Evaluation
	Micro-benchmarks of Matching Primitives
	Signature Matching Performance

	Future Directions
	Related Work
	PatternMatching
	Vulnerability Signatures
	Intrusion Detection

	Conclusion
	References

	Swarm Attacks against Network-Level Emulation/Analysis
	Introduction
	Related Work
	Analyzing Code within Network Traffic
	Evading Signature-Based and Statistics-Based Detectors
	Other Related Attacks

	Swarm Attack against Network-level Emulation/Analysis
	Practical Concerns
	Multiple Exploitations
	Where to Put the Decoder?

	How Swarm Attacks Evade?
	Sled-Detection Systems
	“Meaningful Code” Detection
	Decoder Detection

	Can Network-Level Emulation/Analysis Detects Swarm Attacks?
	Conclusions
	References

	Leveraging User Interactions for In-Depth Testing of Web Applications
	Introduction
	Web Application Testing and Limitations
	Increasing Test Coverage
	Increasing Testing Depth
	Increasing Testing Breadth
	Stateful Fuzzing

	Implementation Details
	Evaluation
	Test Methodology
	Experimental Results

	Related Work
	Conclusions
	References

	Model-Based Covert Timing Channels: Automated Modeling and Evasion
	Introduction
	Related Work
	Background
	Basic Communication Concepts
	Base Cases in Design

	TheFramework
	Model-Based Channel Capacity
	Implementation Details

	Experimental Evaluation
	Experimental Setup
	Capacity
	Detection Resistance

	Conclusion
	References

	Optimal Cost, Collaborative, and Distributed Response to Zero-Day Worms - A Control Theoretic Approach
	Introduction
	Dynamic Programming
	Imperfect Information Problems

	Response Formulation with Imperfect State Information
	Problem Statement
	Problem Formulation
	Solution

	A Practical Application
	Optimal Policy
	Choosing λ
	Larger {\it N}s

	Evaluation
	Experiments
	Effects of Increasing \it{N}

	Conclusion
	Limitations and Redress
	Strengths
	Summary

	References

	On the Limits of Payload-Oblivious Network Attack Detection
	Introduction
	Previous Work
	IDS Construction and Training
	Raw Data
	IDS State Variables
	IDS Thresholds

	Observable Attack Spaces and Detection Probability
	OAS and Detection Surface
	Detection Surface Comparison

	Modeling Acquisition
	Acquisition Payoff Model
	Calculating IDS Efficiency
	Determining a Minimum False Positive Rate

	Modeling Reconnaissance
	Conclusion
	References

	Determining Placement of Intrusion Detectors for a Distributed Application through Bayesian Network Modeling
	Introduction
	Background
	Attack Graphs
	Inference in Bayesian Networks

	SystemDesign
	Framework Description
	Algorithm

	Experimental Systems
	E-Commerce System
	Voice-over-IP (VoIP) System

	Experiments
	Experiment 1: Distance from Detectors
	Experiment 2: Impact of Imperfect Knowledge
	Experiment 3: Impact on Choice and Placement of Detectors

	Related Work
	Conclusions and Future Work
	References

	A Multi-Sensor Model to Improve Automated Attack Detection
	Introduction
	Theory
	Notation
	Example with Two Sensors
	The Problem of Conflicting Evidence

	Intrusion Detection Sensor Model
	Assumptions and Requirements
	Model Description
	Model Example: Estimating the Parameters

	Example Scenarios
	Example 1: Two Sensors Using Different Audit Streams
	Example 2: Two Sensors on Opposite Sides of a Firewall Proxy

	Experiment
	Experiment Setup
	Simulation
	Experiment
	Sensitivity Analysis

	Discussion
	Analysis of Scenario 1
	Analysis of Scenario 2
	Summary

	Related Work
	Future Work
	Conclusions
	References

	Monitoring SIP Traffic Using Support Vector Machines
	Introduction
	The Threat Model
	Flooding Attacks
	Social Threats and SPIT

	Our Monitoring Solution
	Support Vector Machines
	Monitoring SIP
	Normal Traffic
	The Testbed

	Performance and Accuracy
	Related Works
	Conclusion and Future Works
	References
	Appendix:

	The Effect of Clock Resolution on Keystroke Dynamics
	Introduction
	Background and Related Work
	Problem and Approach
	Investigative Approach
	Controlling for Potential Confounding Factors

	Password-Data Collection
	Choosing a Password
	Data-Collection Apparatus
	Running Subjects

	Derived Clock Resolutions
	Detector Implementation
	Detector Overview
	Mean-Based Detector
	Nearest-Neighbor Detector
	Multilayer-Perceptron Detector

	Performance-Assessment Method
	Creating Password-Timing Tables
	Training and Testing the Detectors
	Calculating Detector Performance

	Results and Analysis
	Accuracy of the Derived Clock
	Effects of Clock Resolution on Detector Performance

	Discussion
	References

	A Comparative Evaluation of Anomaly Detectors under Portscan Attacks
	Introduction
	Related Work
	Evaluation Datasets
	The LBNL Dataset
	Endpoint Dataset

	Anomaly Detection Algorithms
	Rate Limiting
	Threshold Random Walk (TRW) Algorithm
	TRW with Credit-Based Rate Limiting (TRW-CB)
	Maximum Entropy Method
	Packet Header Anomaly Detection (PHAD)
	PCA-Based Subspace Method
	Kalman Filter Based Detection
	Next-Generation Intrusion Detection Expert System (NIDES)

	Performance Evaluation
	Accuracy and Scalability Comparison
	Complexity and Delay Comparison

	Summary, Discussion and Future Work
	Summary
	Discussion
	Future Work

	References

	Advanced Network Fingerprinting
	Introduction
	Structural Protocol Fingerprinting
	Structural Inference
	Formal Grammars and Protocol Fingerprinting
	Node Signatures and Resemblance
	Structural Difference Identification

	Structural Features Extraction
	Fields Classification
	Features Recognition
	Fingerprinting

	Experimental Results
	Related Work
	Conclusions
	References

	On Evaluation of Response Cost for Intrusion Response Systems
	WebIDS: A Cooperative Bayesian Anomaly-Based Intrusion Detection System for Web Applications
	Introduction
	Our Proposal: WebIDS
	Experimental Results
	Conclusion and Future Work
	References

	Evading Anomaly Detection through Variance Injection Attacks on PCA
	Motivation and Problem Statement
	Results and Future Work
	References

	Anticipating Hidden Text Salting in Emails
	Introduction
	Hidden Text Salting Detection
	Conclusions
	References

	Improving Anomaly Detection Error Rate by Collective Trust Modeling
	References

	Database Intrusion Detection and Response
	References

	An Empirical Approach to Identify Information Misuse by Insiders
	Introduction
	Methods

	Page-Based Anomaly Detection in Large Scale Web Clusters Using Adaptive MapReduce
	References

	Automating the Analysis of Honeypot Data
	Introduction
	Analysis Process
	References

	Anomaly and Specification Based Cognitive Approach for Mission-Level Detection and Response
	The Basic Idea
	Challenges and Solution Approach

	Evaluation
	Conclusion
	References

	Monitoring the Execution of Third-Party Software on Mobile Devices
	Reference

	Streaming Estimation of Information-Theoretic Metrics for Anomaly Detection
	References

	Bots Behaviors vs. Human Behaviors on Large-Scale Communication Networks
	Problem Statement, State of the Art and Contributions
	Preliminary Evaluation Results and Conclusions

	Anomalous Taint Detection
	Introduction
	Anomalous Taint Detection

	Deep Packet Inspection Using Message Passing Networks
	The Problem, Our Solution and Results

	System Call API Obfuscation
	Illusion Attack
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

