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Abstract. This paper presents a method for deformable registration of diffusion 
tensor (DT) images that integrates geometry and orientation features into a hier-
archical matching framework. The geometric feature is derived from the struc-
tural geometry of diffusion and characterizes the shape of the tensor in terms of 
prolateness, oblateness, and sphericity of the tensor. Local spatial distributions 
of the prolate, oblate, and spherical geometry are used to create an attribute vec-
tor of geometric feature for matching. The orientation feature improves the 
matching of the WM fiber tracts by taking into account the statistical informa-
tion of underlying fiber orientations. These features are incorporated into a  
hierarchical deformable registration framework to develop a diffusion tensor 
image registration algorithm. Extensive experiments on simulated and real brain 
DT data establish the superiority of this algorithm for deformable matching of 
diffusion tensors, thereby aiding in atlas creation. The robustness of the method 
makes it potentially useful for group-based analysis of DT images acquired in 
large studies to identify disease-induced and developmental changes.  

Keywords: Diffusion tensor imaging, structural geometry, tensor orientation, 
attribute vector, deformable registration. 

1   Introduction 

Diffusion tensor imaging (DTI) has emerged as a powerful and effective technique for 
analyzing the underlying white matter structure of brains [1]. DTI provides unique 
micro-structural and physiological insight into white matter tissue of brains, which in 
turn facilitates the study of development, aging, and disease on specific white matter 
regions of interest. In order to carry out group-based analysis and statistics, it is im-
perative to make different subjects comparable, thus requiring the spatial normaliza-
tion of diffusion tensor (DT) images. However, spatial normalization of DT images is 
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rendered challenging by the fact that the data representation is high dimensional and it 
requires not only the spatial warping, but also the tensor reorientation at each voxel 
[2, 3]. Recent advances in DT image registration either employed a combination of 
different scalar maps derived from full tensor image for a multi-channel registration 
[4], or developed registration algorithms based on the full tensor similarity measure-
ments [5, 6]. However, spatial normalization based on features extracted from full 
tensors has not been extensively researched yet. An earlier study applied oriented 3-D 
Gabor features extracted from tensors for matching [7], while a recent method em-
ployed major fiber bundles to align tensors[8]. Both methods demonstrate that regis-
tration can be improved in the white matter if features that characterize both tensor 
shape and orientation are used for matching with carefully chosen metrics. 

In this paper, we apply tensor geometry and orientation features to DTI registra-
tion. We capitalize on the structural geometry of diffusion tensor [9] and develop a 
novel attribute vector consisting of geometric moments computed from the local spa-
tial histograms of tensor geometric measures. This attribute vector is rotationally in-
variant, and integrates spatial information from local histograms computed at different 
scales. In order to improve the registration accuracy of white matter (WM) fiber 
tracts, we also incorporate the local statistical information of underlying fiber orienta-
tions for feature matching. These features provide richer anatomical information than 
merely using voxel’s tensor by integrating anisotropy, shape, and orientation from an 
entire neighborhood of a voxel. We include these features into a hierarchical deform-
able registration technique on the lines of [10], to develop a deformable registration 
method for diffusion tensor images. Extensive experiments demonstrate the robust-
ness and accuracy of DT image registration using these features.  

2   Methods 

Let 0321 ≥≥≥ λλλ  be the three eigenvalues of a symmetric tensor D , and iê  be the 

normalized eigenvector corresponding to iλ , then the tensor D  can be denoted by 

TTT
333222111

ˆˆˆˆˆˆ eeeeeeD λλλ ++= . (1) 

Geometrically, tensor D  can be represented by an ellipsoid with three axes oriented 
along its three eigenvectors, and three semi-axis lengths proportional to the square 
root of its three eigenvalues. Different shapes of the ellipsoid give rise to three geo-
metric structures of diffusion tensors: prolate (linear) structure, in which diffusion is 
mainly in the direction corresponding to 1ê ; oblate (planar) structure, in which diffu-

sion is restricted to a plane spanned by 1ê  and 2ê ; and spherical structure with iso-

tropic diffusion. Three geometric measures were proposed in [9] to describe how 
close the diffusion tensor is to the generic structures of prolateness, oblateness, and 
sphericity. They are respectively defined as  
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2.1   Tensor Geometric Feature for Matching 

A discriminative attribute vector is defined at each voxel from the geometric meas-
ures in (2). This attribute vector characterizes the local diffusion property by combin-
ing the local distributions of prolate, oblate, and spherical structures. For a specified 
voxel v , local histograms )(vlh  of lc , )(vph  of pc , and )(vsh  of sc  are computed 

from a spherical neighborhood region of voxel v  with a given appropriate radius r . 
These histograms roughly characterize the distribution of the tensor geometry in the 
neighborhood region. For each histogram, we compute its regular geometric moments 
as the statistical geometric features, i.e.  

;,,,),(),( splkivinvm
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where ),( ivkh  is the frequency of index i  in histogram )(vkh , and ),( nvmk  is the 

nth order moment of this histogram. Low-order geometric moments are used to repre-
sent the geometric features for a histogram and form a vector as 
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In order to improve the accuracy of matching, we include the edge strength 

)(vbedge
FA  of fractional anisotropy (FA) and the edge strength )(vbedge

ADC  of apparent dif-

fusion coefficient (ADC) into the attribute vector. These edge attributes are computed 
by a Canny edge detector [11] from FA and ADC scalar maps of DT image respec-
tively. Therefore, the complete attribute vector at voxel v  can be represented as 
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The attribute vector defined in (5) is rotationally invariant, which makes it attrac-
tive for registration. To make the feature vector more discriminative, the above attrib-
ute vector is computed at three different scales so that both global and local geometric 
features are accounted for. In each scale, the similarity of two attribute vectors, )(ua  

and )(va , of two points, u  and v , is defined as 

( )∏ −−=
i

ii vuvum |)()(|1))(),(( aaaa , (6) 

where )(⋅ia  is the ith element in the attribute vector. Due to the redundancy between 

lc , pc , and sc , we normally discard the 0th and 1st order geometric moments derived 

from pc  when computing the similarity in (6).  

We demonstrate the discrimination of the proposed attribute vector of geometric 
feature in Figs. 1 and 2 by comparing it with the FA feature [10] for diffusion tensor 
matching. Both points in major fiber tracts and small tracts have been examined. 
From the color-coded maps of similarities illustrated in Figs. 1 and 2, we can con-
clude that the geometric feature is much more discriminative than just using FA fea-
ture on both major and small fiber tracts (even on a single scale), with geometric fea-
ture being far superior on the smaller tracts.  
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2.2   Fiber Orientation Feature for Matching 

Properly aligning WM fiber tracts is a major concern in DTI registration. In order to 
further improve the registration accuracy of WM fiber tracts, we incorporate the local 
statistical information of underlying fiber orientations into the attribute vector defined 
in (5). The fiber orientation at voxel v  is approximated by the principal direction 
(PD) of tensor D  weighted by the FA value at this voxel.  Local spatial distribution 
of PD in the 3D space at voxel v , denoted by )(vPDH , can be estimated from the 

samples in a spherical neighborhood region with a radius r . The similarity of two 
points, u  and v , in terms of local PD distribution is characterized by entropy cross 
correlation (ECC) [12], a normalized form of mutual information, as 
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where E denotes the joint or marginal differential entropy of the random variables of 
local PD distribution. The similarity with the orientation features at points u  and v  is 
then determined by the combination of Eqs. (6) and (7) as 

),())(),((),( vuECCvumvuM PD⋅= aa . (8) 

  

      (a)                          (b)                      (c)                        (d)                        (e)            

Fig. 1. Similarity of the points on major fiber tracts. The attribute vector of the crossed point in 
(a) is compared with the attribute vectors of other points in the image. (b) and (c) show the re-
sulting map of similarities using the geometric feature computed at a coarse scale and a fine 
scale, respectively. (d) and (e) show the resulting map of similarities using the FA feature com-
puted at a coarse scale and a fine scale, respectively. Red indicates high similarity. 

  

     (a)                          (b)                        (c)                       (d)                       (e)   

Fig. 2. Similarity of the points on small fiber tracts. Legends are the same as those in Fig. 1.  
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),( vuM  ranges from 0 to 1 where 1 indicates the most similar features. Since the PD 

of a tensor is meaningful only in high anisotropic anatomies such as WM fiber tracts, 
we consider the matching of orientation feature only for voxels with a high FA value. 

2.3   Deformable Registration with Geometry and Orientation Features 

The attribute vector of tensor geometry and orientation features described above is used 
in conjunction with the deformable techniques on the lines of the intensity histogram 
based HAMMER algorithm [10] to develop a DTI registration algorithm. In this algo-
rithm, the input DT images are pre-registered linearly. In a first step, only the geometric 
feature is used for registration. Features are extracted once and not recalculated during 
registration, which requires features being rotationally invariant. Next, both tensor ge-
ometry and orientation features are included in registration. It serves to further refine the 
matching of WM fiber tracts. Due to the orientation feature applied, feature extraction is 
performed in each iteration and the tensors are warped and reoriented accordingly. The 
deformation field obtained as part of the spatial warping is used to determine the tensor 
reorientation, based on a spatially adaptive procedure that estimates the underlying fiber 
orientation [2], to produce properly reoriented tensors. 

This algorithm employs a hierarchical structure to select distinct features, thus re-
ducing ambiguity in finding correspondences. The edge strengths of FA and ADC 
maps are the criteria for choosing active points to drive the registration. In the initial 
stages of matching, only a few points with high edge strength are selected for match-
ing in order to avoid local minima. As the matching progresses, more and more points 
with lower edge strengths become reliable and thus are selected to drive the registra-
tion. This hierarchical structure assists in achieving a robust and accurate registration. 

3   Results 

We have demonstrated the high matching accuracy of the geometric feature in differ-
ent parts of the white matter fiber tracts in Figs. 1 and 2. In this section, we applied 
our method to register both human brains and mouse brains to demonstrate the effi-
ciency of our method by comparing with two alternative deformable registration algo-
rithms, intensity histogram based HAMMER [10] and Demons algorithm [13], when 
applied to FA maps. For the sake of simplicity and fairness, we compare FA feature-
based registration with the geometric feature, establishing the superiority of the latter. 
In the next stage we also demonstrate that the orientation feature together with the 
geometric feature improves the matching of the WM fiber tracts. 

3.1   Matching Accuracy Comparison: Geometric Feature and FA Feature 

Ten simulated human brain DT images are generated by applying ten simulated de-
formation fields [14] to warp a real DT image that is regarded as the template. These 
ten simulated DT images are then registered back to the template space by our method 
using geometric feature and the intensity histogram based HAMMER using FA fea-
ture, respectively. The deformation errors between the registration results and the 
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simulated ground truth are calculated for both methods. Fig. 3 shows the average reg-
istration error and the variance in each subject computed from the whole brain and 
WM fiber tracts, respectively. It demonstrates that using the geometric feature yields 
more accurate registration than using the FA feature, with respective population 
means as 0.89 voxels and 1.11 voxels for the whole brain. Comparing Figs. 3(a) and 
(b) shows the registration to be superior in the WM fiber tracts. The respective popu-
lation means using geometric feature and FA feature are 0.75 voxels and 0.93 voxels 
in the regions with FA > 0.25.  

Comparison of Accuracy of Registrations (whole brain)
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                                  (a)                                                                        (b) 

Fig. 3. Comparison of the registration accuracy using the geometric feature and FA feature. (a) 
shows the registration error computed from the whole brain, and (b) shows the registration error 
computed from WM fiber tracts with FA > 0.25. 
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                                       (a)                                                                       (b) 

Fig. 4. Comparison of the registration errors on each of 10 landmark points identified by two 
raters on both major and minor WM fiber tracts, in two subjects (a) and (b), respectively 

3.2   DTI Registration of Human Brains 

To further demonstrate the efficiency of our method, we apply it to register real human 
brain DT images and compare it with the demons algorithm, which is implemented in ITK 
[15] and is applied to FA images. The same tensor reorientation scheme [2] is applied to-
gether with demons registration to produce the final warped DT image. Two subjects were 
registered to a template, each with voxel resolution as 0.9375×0.9375×2.5 mm. 
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 We had two raters pick up 10 corresponding landmarks from each subject and template. 
These landmarks reside in both major and minor WM fibers and serve to evaluate the 
matching accuracy. For each pair of corresponding landmarks, we compute the registra-
tion errors for our proposed method and the demons algorithm. These results are shown 
in Fig. 4. We also show the variation between two raters as the “rater difference” in Fig. 
4 for better understanding. Fig 4 illustrates that overall our method achieves more accu-
rate and robust registration than the demons algorithm does. To visually observe the reg-
istration of WM fiber tracts, we demonstrate the overlaid WM fiber tracts in Fig 5. In 
Fig. 5, we compare the registered fiber tracts obtained from the demons algorithm, our 
method without adding the orientation feature described in Section 2.2, and our method 
with the added orientation feature. The results show that the registration with the orien-
tation feature achieves the best matching of WM fiber tracts. The arrows point to those 
spurious fibers extracted from registered images, which might be resulted from inaccu-
rate registration. 

 

                   (a)                                 (b)                               (c)                                 (d) 

Fig. 5. Comparison of the overlaid WM fiber tracts in 3D space. (a) shows the WM fiber tracts 
extracted from the template. (b), (c), and (d) show the overlaid fiber tracts extracted from regis-
tered DT images by the demons algorithm, our method without adding orientation feature, and 
our method with added orientation feature, respectively.  

 

                                (a)                                (b)                               (c) 

Fig. 6. Spatial normalization of 5 mouse brains. (a) Color map of the template. (b) Color map 
of the group averaged image. (c) Edges extracted from FA map of group averaged image super-
imposed on the FA map of template. 
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3.3   Creating an Atlas of Murine Brains 

We apply our method to spatially normalize 5 mouse brains scanned at Day 10 in or-
der to create an atlas for this development stage by group-averaging the normalized 
DT images. One subject is identified as the template and the others are registered to it 
using the proposed method. The group-averaged image is computed by voxel-wise 
averaging the corresponding tensors in the individual warped subjects. Fig. 6 visually 
demonstrates the registration accuracy. The color map in Fig. 6 is the tensor PD 
weighted by the corresponding FA value. The color is encoded with green represent-
ing anterior-posterior, blue for feet-head, and red for left-right orientation. The sharp-
ness of the average in Fig. 6(b) as compared to the template in Fig. 6(a), as well as the 
good matching of the edge map to the underlying FA image in Fig. 6(c), shows that a 
good spatial normalization has been achieved and even the thin tracts like internal and 
external capsules have been aligned well.  

4   Conclusions 

In conclusion, we have presented a novel attribute vector that characterizes the ge-
ometry and orientation of diffusion tensors and hence obtains superior matching and 
subsequent deformable registration. The features are incorporated into a hierarchical 
deformable registration algorithm, and the orientation feature improves the matching 
of the WM fiber tracts. The extensive experiments verified the efficiency of the fea-
tures for matching of tensors and subsequently in obtaining a fully deformable regis-
tration framework for diffusion tensor images.  
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