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Abstract. Nonrigid registration of contrast-enhanced MR images is a
difficult problem due to the change in pixel intensity caused by the wash-
in and wash-out of the contrast agent. In this paper we propose a novel
saliency based Markov Random Field approach for effective nonrigid
registration of contrast enhanced images. Saliency information obtained
from the neurobiology-based saliency model alongwith intensity infor-
mation is used to quantify the degree of similarity between images in
the pre- and post-contrast stages. Information from these two features
is combined by using an exponential function of the saliency difference
such that it assigns low values to small differences in saliency and at the
same time ensures that saliency information does not bias the energy
term. Rotationally-invariant edge information from edge-orientation his-
tograms was used to complement the saliency information resulting in
better registration results. Tests on real patient datasets show that our
algorithm results in accurate registration. We also simulated elastic mo-
tion on images, and the deformation field recovered by our algorithm was
nearly the inverse of the simulated field.

1 Introduction

Nonrigid image registration, also referred to as warping, is an essential step
in medical image analysis. Over the years, a number of methods have been
proposed to meet the challenges arising from registration of images where the
object of interest has been elastically deformed. Some of the earliest methods
include elastic models [1], fluid flow models [2,3] and an optical flow approach
[4]. In [5] the registration problem has been solved using thin-plate splines where
the images are deformed over a regular grid having numerous control points. The
disadvantage of thin-plate splines is that they have a global region of support
i.e., changing the position of one control point changes the entire deformation
field. Rueckert et al. in [6] overcome this problem by using B-splines which have a
local region of support. Rohde et al. in [7] introduce the adaptive bases algorithm
which uses radial basis functions instead of traditional B-splines and allows for
spatial adaptation of the displacement field in regions of misregistration only.

Recently, Markov random field (MRF) model has also been used to achieve
nonrigid image registration. In an MRF formulation of the problem of nonrigid
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image registration, the solution is obtained as the maximum a-posteriori (MAP)
configuration or equivalently, by minimizing the energy of the corresponding
MRF. Roy and Govindu in [8], applied an MRF model for the optical flow prob-
lem by modeling the flow orientation and magnitude as separate fields. The α−β
swap algorithm proposed by Boykov et al in [9] used graph cuts to find the min-
imum of an energy function in the case of 2D motion estimation. Shekhovtsov
et al. in [10] have proposed an algorithm that uses blocks of pixels to effectively
register non-rigid deformations in synthetic and real images and is computation-
ally more tractable. Tang et al. in [11] use an MRF based model to elastically
register brain images. In [12], to avoid the effects of contrast enhancement on
the process of image registration, Zheng et al. propose an MRF framework to
de-enhance dynamic contrast-enhanced MRI and then register them using the
B-Spline based algorithm in [6].

In this paper, we propose a novel saliency based approach for the nonrigid
registration of dynamic renal MR images that can effectively correct elastic defor-
mations in the presence of contrast enhancement due to wash-in of the contrast
agent. In our approach, nonrigid registration is achieved by integrating saliency
and edge information alongwith pixel intensity into the MAP-MRF framework.
Saliency information of the pre- and post-contrast stages combined with pixel
intensity are used to quantify the degree of similarity between two regions in
the presence of intensity changes. By the use of orientation histograms, edge
information has been used to complement saliency information.

The rest of the paper is organized as follows. In Section 2, we describe the
neurobiology-based saliency model and its advantage over an entropy-based
saliency model. Section 3 describes our saliency based MRF model and its opti-
mization. We present our results in Section 4 and conclude with Section 5.

2 Neurobiology-Based Saliency Model

Saliency is a concept which states that there are regions in a scene that are
more “attractive” than their neighbors and hence draw attention. Fig. 1(a)-(c)
show respectively the cropped image corresponding to the right kidney (of the
patient) in one slice, the saliency map generated by an entropy-based approach
[13], and by a neurobiology-based approach [14]. The saliency map shown in
Fig. 1 (b) gives a lot of importance (in terms of saliency values) to less important
regions surrounding the kidney. In contrast, the saliency map in Fig. 1 (c) shows
distinct salient regions corresponding to the kidney. Therefore, we opt for the
neurobiology-based saliency model described in [14] and use luminance and edge
information to calculate the saliency.

Saliency Map for Pre- and Post-Contrast Enhanced Images: In dynamic
contrast enhanced images, the intensity of certain areas in the image changes
with time (see Fig. 1 (d) for a post-contrast image of the same kidney shown in
Fig. 1 (a)). By increasing the intensity of an already salient region, the saliency
map does not change. Saliency being a measure of how one region differs from its



Nonrigid Registration of Dynamic Renal MR Images 773

(a) (b) (c) (d) (e)

Fig. 1. (a) Kidney in one typical frame of pre-contrast stage; (b) saliency map gen-
erated by entropy-based method; (c) by neurobiological model; (d) kidney image in
post-contrast stage; and (e) saliency map in post-contrast stage

immediate surroundings, is a relative quantity and is a good measure of estab-
lishing correspondence between regions in the pre- and post-contrast enhanced
phases. From our experiments we observe that the saliency maps for the pre-
and post- contrast stages are nearly identical, i.e., salient regions still remain
salient after contrast enhancement. To demonstrate this, we display the saliency
map of the kidney in the pre- and post-contrast stages in Fig. 1 (c) and (e),
respectively. As shown, the two saliency maps are very close in spite of changes
in image intensity due to the wash-in of the contrast agent. This suggests that
the difference between saliency values of two corresponding regions is a good
indicator of their similarity in the presence of contrast enhancement. Hence, it
is desirable to facilitate the registration of dynamic renal MR images by ex-
ploiting the saliency information. For more details about the advantages of the
neurobiology model over an entropy based approach refer [15].

3 Method

3.1 Overview of Our Algorithm

We model the displacement field of the elastic deformation as a Markov random
field. MRF models use neighborhood relations between pixels of an image to
model the interaction field. In registration of dynamic renal MR images where
the kidney could have undergone elastic displacement, the correspondence be-
tween structure in two sets of images can be improved by including neighborhood
information in the registration process. In our algorithm we use a combination of
pixel intensity, saliency information and edge-orientation histograms to register
dynamic contrast enhanced images. Integrating both saliency and edge informa-
tion into the MRF framework ensures that the resulting matching is between
pixels that are semantically as well as perceptually similar. Including saliency
and intensity information from a neighborhood ensures smoothness of the defor-
mation field. The displacements were denoted as discrete labels and the optimal
labeling was determined by graph-cuts.
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3.2 MRF Model for Nonrigid Registration

The standard energy function in MRFs takes the following form

E(x|θ) =
∑

s∈V

θs(xs) +
∑

(s,t)∈N

θst(xs, xt), (1)

where V is the set of pixels; xs denotes the label of pixel s ∈ V ; N is a neigh-
borhood system defined on V . The term θs is a unary data penalty function and
θst is a pairwise potential function that incorporates neighborhood information
into the energy function.

We introduce an additional pairwise potential term θedge, and define our en-
ergy function as

E(x|θ) =
∑

s∈V

θs(xs) +
∑

(s,t)∈N

θst(xs, xt) +
∑

(s,t)∈N

θedge(xs, xt). (2)

In our experiments, the interaction potential is defined at the level of pixel-
blocks and the neighborhood information is collected over a window comprising
of blocks of pixels. Therefore s in equation (2) denotes blocks of pixels. We detail
now each of the terms in equation (2).

A. Unary Data Term: θs(xs)
Let x1

i denote the pixel intensity in the floating image and x2
i the pixel intensity

in the reference image. The data term is given by

θs(xs) =
m∑

i=1

wi ×
(
x1

i − x2
i

)2
. (3)

It is the sum-of-squared differences of pixel intensities for each pixel block in the
floating image and the reference image weighted by a function of the saliency
difference between the constituent pixels. The weight wi for the ith pixel in the
pixel block is defined as

wi =
exp

(
|sv1

i − sv2
i |

)

1 + exp (|sv1
i − sv2

i |) (4)

where sv1
i and sv2

i are the normalized saliency value of the corresponding pixel
in the floating and reference image respectively. In equation (3), m is the total
number of pixels in each block, i.e., m = n × n, where n is the size of the square
block.

B. Pairwise Interaction Term: θst(xs, xt)
Recall that θst(xs, xt) is the interaction term between the block and its neighbors.
Let s + (xs, xt) be the block s shifted by (xs, xt). Therefore,

θst(xs, xt) =
∑

j

d
(
xs, xs+(xs,xt)

)
, (5)
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where d
(
xs, xs+(xs,xt)

)
=

∑m
i=1 wi × |x1

i − x2
i | is the dissimilarity measure be-

tween blocks s and s + (xs, xt) and j denotes all neighboring blocks. In our
formulation, we constrain the range of allowed displacements by imposing a
large penalty for blocks with a displacement greater than 6 pixel units from the
central block.

Here we explain the rationale behind the weight function wi introduced in
equation (3). The requirement for a weighting function was that it should assign
low values to small difference in saliency and at the same time ensure that
saliency information does not bias the energy term. To avoid dealing with very
large numbers, a function is chosen so that its value lies between 0 and 1. Our
choice of the weighting function was determined empirically and is not unique.
In the scenario that the blocks of pixels being compared belong to the same
region, the difference in their normalized saliency values is very small and the
corresponding wi is small. Also, the difference in intensity values is minimum for
identical regions even in the face of intensity change due to wash-in of contrast
agent. Thus the resultant product of the two terms is minimal.

When the two blocks in question are from different regions then the saliency
values are different and a large difference results in a high value of wi. This com-
bined with the large intensity difference makes the terms θs(xs) and θst(xs, xt)
in equation (2) have a higher value. There is the possibility that we might have
pixel blocks from regions having significantly different intensities but similar
saliency values. In that case, the product of wi and |x1

i − x2
i | takes a high value

and the terms θs(xs) and θst(xs, xt) are not minimal. In the normalized saliency
map from the neurobiology based model, the salient regions are distinctly differ-
ent from their neighbors. Thus, in a local neighborhood it is highly improbable
to find pixels with identical or nearly identical values. In our experiments, the
images have been registered for rigid transformations prior to nonrigid image
matching. As a result, considering the amount of elastic motion a kidney could
undergo, we constrain the range of allowed displacements for a pixel to ±6 pixel
units in each direction. In such a setup, the scenario that pixel blocks being
compared are from vastly different locations and have nearly identical saliency
values does not arise.

C. Edge Potential Term: θedge(xs, xt)
Elastic deformations in a kidney are like local rotations. As a potential term,
θedge(xs, xt) is a rotation invariant metric that is used to match the edges of the
object of interest, i.e., the kidney. We use edge-orientation histograms to define
rotation invariant features [16] which are important for matching landmarks.
The degree of dissimilarity between two sets of edges is determined by taking
the histogram distance of the distribution of their orientations, as in equation (6).
We observe that in the post-enhancement stage, the direction of edges at certain
points is inverted due to increased intensity. In such a scenario, we ensured that
gradient directions differing by π radians are grouped in identical bins.

θedge(xs, xt) =
K∑

k=1

(
h1

k − h2
k

)2
, (6)
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where hk is the value in the kth bin of edge orientation histogram h, and K is
the number of histogram bins. K was set to 5 in our experiments.

3.3 Optimization

The range of displacements was denoted as a series of discrete labels and the
optimal labeling determined the displacement of each pixel block. Optimization
of equation (2) was carried out using graph-cuts, [9], via a sequence of alpha-
expansion (α-expansion) moves. Details of the method can be found in [9].

4 Experimental Results

4.1 Implementation

We tested our algorithm on 5 different datasets. The MR images of the kidney
were of dimensions 256 × 256. There were 41 volumes acquired for each patient
with each volume having 40 slices. The intensity values of the images and also
that of the saliency map were normalized to lie in the range [0, 1]. All images
were pre-registered for rigid transformations before implementing our algorithm.
Non-overlapping pixel blocks of size 3 × 3 were used.

4.2 Results on Real Datasets

In registration of contrast-enhanced MR images, the difference image between
the pre- and post-contrast stages after registration should show only the renal
tissues (i.e, renal cortex) whose intensity is enhanced due to the contrast agent.
We first evaluate the registration results by visual examination. Fig. 2 (a) shows
the unregistered difference image between a reference pre-contrast image and
the floating post-contrast image. We can see the significant error due to elastic
deformation. Fig. 2 (b) shows the difference image after our registration algo-
rithm has been applied to the floating image without using saliency (by setting
wi=1 in equations (3) and (5)) or edge information. Fig. 2 (c) shows the dif-
ference image when using saliency information alone. The registration results
are not optimum with some regions improperly registered. Fig. 2 (d) shows the
difference image after edge information along with saliency information has been
used in our registration algorithm. This image clearly shows that in spite of large
intensity differences due to the wash-in of the contrast agent, our MRF based
method accomplishes registration very effectively.

4.3 Results of Simulated Deformation

In each dataset, pre-contrast images were elastically deformed using the free-
form deformation (FFD) method in [6]. These deformed images were then reg-
istered to the original undeformed image using our MRF based algorithm. The
difference images for a typical pre-contrast image are shown in Fig. 3 (a)-(b).
Fig. 3 (a) shows the difference image before registration and Fig. 3 (b) shows
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(a) (b) (c) (d)

Fig. 2. Difference images: (a) before registration; after registration (b) using only inten-
sity information; (c) saliency combined with intensity information; (d) using saliency
and edge information together with intensity information

(a) (b) (c) (d)

Fig. 3. Results of simulated elastic deformation (for pre-contrast stage): (a) difference
image before registration; (b) difference image after registration; (c) simulated dis-
placement field about the kidney region; and (d) recovered displacement field about
the kidney region

the difference image after registration. From Fig. 3 (b) we conclude that our
registration algorithm does well to recover the flow field. In Fig. 3 (c) we show
the displacement field generated by applying the FFD algorithm and Fig. 3 (d)
shows the displacement field recovered by our method. From the two images
it is apparent that our algorithm could recover the simulated flow field with a
considerable degree of accuracy. Similar results were obtained in our attempt to
recover the flow field of a post-contrast image. The average error (Euclidean dis-
tance) between the actual deformation field and recovered flow field was found
to be {0.0053, 0.0125, 0.0046, 0.0061, 0.0097} units for the datasets.

5 Conclusion

In this paper we have proposed a saliency based MRF model for registration of
dynamic contrast enhanced images in the presence of intensity changes due to
flow of contrast agent. To obtain the saliency information we used a neurobiology-
based saliency model that works better than an entropy-based saliency model.
Difference of saliency values from a normalized saliency map combined with in-
tensity information was used to quantify the degree of similarity between two
regions at different time intervals. Information from these two maps was fused
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using an exponential function of the saliency difference such that it assigns low
values to small differences in saliency and at the same time ensures that saliency
information does not bias the energy term. In the formulation of the cost func-
tion of the MRF model we used the edge-orientation histogram to incorporate
rotationally-invariant edge information. Tests on 5 real patient datasets with
different degrees of elastic deformation of the kidneys, demonstrate the effec-
tiveness and accuracy of our method. We simulated elastic deformations using
FFD and the recovered displacement field obtained using our algorithm was very
close to the inverse of the simulated field.
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