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Abstract. In this paper, we present a novel method for extracting
center axis representations (centerlines) of blood vessels in contrast en-
hanced (CE)-CTA/MRA, robustly and accurately. This graph-based
optimization algorithm which employs multi-scale medialness filters ex-
tracts vessel centerlines by computing the minimum-cost paths. Specif-
ically, first, new medialness filters are designed from the assumption
of circular/elliptic vessel cross-sections. These filters produce contrast
and scale independent responses even the presence of nearby structures.
Second, they are incorporated to the minimum-cost path detection al-
gorithm in a novel way for the computational efficiency and accuracy.
Third, the full vessel centerline tree is constructed from this optimiza-
tion technique by assigning a saliency measure for each centerline from
their length and radius information. The proposed method is computa-
tionally efficient and produces results that are comparable in quality to
the ones created by experts. It has been tested on more than 100 coro-
nary artery data set where the full coronary artery trees are extracted
in 21 seconds in average on a 3.2GHz PC.

1 Introduction

Modeling of vascular structures from contrast enhanced (CE) Computer Tomog-
raphy Angiography(CTA) and Magnetic Resonance Angiography (MRA) is often
a necessary task for diagnosis, treatment planning and follow-up studies in clini-
cal applications. While recent technological advances in image acquisition devices
e.g., new multi-detector CT machines, increase the spatial resolution of image
data significantly, accurate and timely modeling of blood vessels is a still chal-
lenging task in many applications. Specifically, (i) intensity contrast may change
drastically along a single vessel; (ii) vessels may touch nearby bright structures
such as bone or other vessels; (iii) a single vessel tree can have large and small
vessels i.e., significant scale change; (iv) local vessel structure may deviate from
a tubular structure due to the presence of pathologies such as stenosis. In clinical
applications, a vessel modeling algorithm must be able to handle these imaging
issues and still produce robust and accurate results in short time e.g. in few
seconds for a single vessel, which are the main goals of our work. Some of the
previous work on vessel centerline modeling methods include vesselness-based
methods [6,5,12,11] and medialness filters based methods [2,1,11,8].

In this paper, we propose a new framework for the extraction of center-axis
representation of vessels from CTA, MRA and 3D-X ray. Specifically, first, a
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novel medialness measure based on 2D multi-scale cross-sectional models is in-
troduced. This new measure is contrast and scale independent and it works well
in the presence of nearby bright structures such as bones or other vessels. Second,
we present a minimal path detection method working on a discrete grid where
the cost of graph edges are computed from multi-scale medialness filters. Third,
the full vessel centerline tree from a single seed is extracted by a post-processing
algorithm which uses the length and scale of vessel centerlines. In general, the
proposed method can produce centerline model(s) for a vessel segment as well as
the full vessel tree. In addition, it is capable of capturing different size of vessel
branches, crossing over stenosis. Moreover, it is computationally efficient, i.e., it
takes less than 21 seconds in average on a typical PC to obtain the centerlines of
the full coronary artery trees including smaller branches. Furthermore, it works
well for different types of vessels such as carotid, peripheral, aorta obtained from
different imaging modalities such as CTA, MRA and 3D-X ray. We have tested
it on more than 100 coronary CTA data as well as on several other types of
vessels and the computed results were comparable to the expert created ones.

2 Medialness Measure from 2D Cross-Sectional Models

In this paper, our goal is to obtain the centerline representations of vessels di-
rectly from images without creating a binary vessel mask. Specifically, we propose
a novel technique for computing medialness measure which is based on multi-
scale cross-sectional vessel modeling. Blood vessels in CTA/MRA have typically
circular/elliptic shapes in cross-sectional views even though local variations on
them are not too uncommon due to the presence of nearby vessels or patholo-
gies. Ideally, 2D cross-sectional vessel profile consists of a circular/elliptic bright
disk and darker ring around it. Our medialness measure uses this circularity as-
sumption and edge responses obtained from multi-scale filters. Specifically, our
medialness response, m(x0) at x0, is computed from a circle C(x0, R) centered
at x0, with radius R, and is given by

m(x0) = max
R

{ 1
N

N−1∑

i=0

E(x0 + Ru(2πi/N))} (1)

where u(α) = sin(α)u1 + cos(α)u2 and u1 and u1 defines a 2D plane. E
measures the normalized edge response which is described below. Krissian et.
al., [7] proposed a similar medialness measure where the cross-sectional plane is
computed from the eigenvectors of Hessian matrix.

Let us consider a 1-D intensity profile I(x) along a ray uα on a cross-sectional
plane of a vessel starting from the location x0. Suppose that x0 is the center
of the vessel with a radius R. Then the cross-sectional boundary of the vessel
along the ray should occur at (x0 + Ruα) where the gradient of I(x) has a
maxima and the second derivative of I(x) has a zero-crossing. We propose to
use the gradient, ∇σI(x) for measuring responses at vessel boundaries, in which
σ corresponds to the spatial scale of the vessel boundary. These gradients are
normalized based on their filter sizes, σ to obtain comparable results between
different scales. In general, filter sizes are often selected from the size of vessels
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for computing gradient responses [7], i.e., larger spatial filters for large vessels. It
should be noted that vessel scale, namely R and boundary scale, σ are not always
related. For example, the boundary of a large vessel can be detected better with
small size filters when such vessels are surrounded by other bright structures.
Similarly, it is possible that small scale vessels can have long diffused boundaries
which cannot be accurately detected via small scale filters.

Let us now define the boundary measure along a ray uα at the location x,

b(x) = maxσ{(|∇σI(x)|)}sign(∇σI(x)) (2)

where sign(x) is used to distinguish the rising (dark to bright changes) and
falling edges (bright to dark changes). Observe that this boundary measure, ∇σI
is contrast dependent, i.e., it obtains higher values from high contrast vessels
and lower values from low contrast vessels, respectively. Unfortunately, vessels
may have significant intensity variations on them - especially vessels in MRA
and small size vessels in CTA. In addition, boundaries of bones, calcifications in
CTA and vessels next to airways can have strong gradients which usually effect
the response of medialness filters. We, in fact, believe that medialness responses
should be contrast independent, which can be accomplished by normalizing the
boundary measure via the highest gradient obtained for different R values along
the ray. Mathematically, we define a normalized boundary measure as b̂(x) =
b(x)/bmax where bmax is the maximum falling edge response along I(x) for x =
{x0 + Rminuα, .., x0 + Rmaxuα} and Rmin and Rmax are the minimum and
maximum vessel scales, respectively.

Since the size of vessels to be modeled is not known a priori, our method
searches for strong edge responses at the different locations along the ray uα

with different R, R ∈ [Rmin, Rmax]. However, observe that for large values of
R this produces strong boundary responses at locations which are outside the
vessel. In general, there should not be any strong rising edge between x0 and
x0 + Ruα where the boundary is searched. If there exists such a strong rising
edge, it probably means that the point x0 is outside the vessel, thus it should
have a lower medialness measure. This is accomplished by first computing the
maximum rising boundary response up to the location x0 + Ruα along the ray
and then subtracting this value from the response obtained at x0 +Ruα. Based
on these modifications, the final edge response along a ray, uα, starting from at
x0, E(x0 + Ruα) is given as

E(x0 + Ruα) =
max(−b(x0 + Ruα) − minx∈{x0,x0+Ruα}(b(x), 0), 0)

maxx∈(x0+Rminuα,x0+Rmaxuα)(−b(x), 1)
(3)

Observe that our medialness measure integrates edge responses along differ-
ent size circles, thus, it is not sensitive to the isolated noise on a particular
location. In general, this proposed technique has two major contributions: First,
its response characteristics are very close to the ones that may be expected from
an ideal medialness filter. Specifically, the proposed medialness measure gives
strong responses at the center of a vessel and responses drop rapidly towards
vessel boundaries and very small responses are obtained in non-vascular areas,
Figure 1. Also, the presence of bright structures does not have strong impact on
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Fig. 1. This figure illustrates the medialness responses along a ray on two different
examples obtained from our method (middle column) and the Hessian-based method
(right column). Observe that unlike Hessian based methods, our technique gives low
responses between two nearby vessels.

(a) (b) (c)

Fig. 2. (a) This figure illustrates the vessel direction obtained from the Hessian-based
method. Observe that the presence of bone erroneously effects the direction of the
vessel. (b) and (c) Medialness measure of a point when our medialness filters are applied
on different orientations.

the responses. In fact, unlike Hessian based techniques [6,5,12,11], our approach
gives low response between two nearby vessels, Figure 1. Second, our technique
does not require the estimation of the vessel direction. Other techniques often
uses the eigenvectors of the Hessian matrix to determine the vessel direction.
However, bright structures such as bone, vessels, calcification, which are close
to the vessel of interest can erroneously effect the direction of the vessel, thus
medialness measure, as well, Figure 2a. Our proposed filtering technique pro-
duces higher responses when they are computed from orthogonal planes and
lower responses when they are computed from oblique planes, Figure 2b, c.

3 Local Center-Axis from Graph-Based Optimization

Medialness map of an image alone cannot be used in analyzing vessels with-
out additional post-processing. Instead, they are constructed to obtain vessel
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center axis representations which are very useful in visualizing vessels in curved
(or ribbon - flattened) multi-planar reformatting (MPR), in quantification of
pathologies, in navigation during endovascular interventional treatments, etc.
Local vessel center axis between two user selected points is often sufficient for
analyzing a segment of a vessel quickly in clinical applications. Thus, in this
section, we propose a method for extracting such local center axis representa-
tions by integrating the medialness map in a discrete optimization framework.
Specifically, we seek to obtain a curve C(s) (center axis) between points p0 and
p1 which travels through the center of a vessel. This problem can be successfully
solved by the minimum-cost path detection algorithms [3,8,10]: Let E(C) be the
total energy along a curve C

E(C) =
∫

Ω

(P (C(s)) + w)ds (4)

where P (C) is called potential, w is the regularization term and s is the arch
length, i.e., ||C(s)||2 = 1. In vessel centerline extraction methods, potential
P (x) at x corresponds to the inverse of a medialness measure at that location,
namely, P (x) = 1

m(x) . Let Ap0,p1 represents the set of all curves between p0 and
p1. The curve with total minimum energy can be computed from the minimum-
accumulative cost, φ(p) which measures the minimal energy at p integrated along
a curve starting from the point p0:

φ(p) = inf
Ap0,p1

{E(C)} (5)

This type of minimization problems has been studied extensively in computer
vision for different problems, e.g., segmentation. They are usually solved by
either Dijkstra’s algorithm [4] or Fast Marching methods [9]. In this paper, we
propose to use Dijkstra’s algorithm for solving equation (5) in a discrete domain.
Specifically, let G = (N, E) be a discrete graph where N and E represent nodes
and edges, respectively. The minimum-accumulative cost at the node Pij for a
four connected 2D graph is then given by

φ(Pij) = min(φ(Pi−1j) + Cij
(i−1)j , φ(Pi+1j) + Cij

(i+1)j , φ(Pij−1) + Cij
i(j−1), φ(Pij+1) + Cij

i(j+1))

(6)
where, for example, Cij

(i−1)j corresponds to the cost of propagation from point
P(i−1)j to Pij which is obtained from the inverse of medialness measure. This
above algorithm can be easily implemented by first setting minimum-
accumulative cost of all nodes to infinity (or a large value) and then using an ex-
plicit discrete front propagation method where propagation always takes places
from the minimum value to its neighboring nodes. In our implementation, we
use 27-connected lattice in 3D, i.e., diagonal propagations are also included for
better accuracy. In addition, the medialness measure is computed orthogonal to
the direction of propagation instead of computing at nodes. The discrete path
(curve) from a point Pij to source P0 can then be easily obtained by traversing
(backtracking) along the propagation.
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Fig. 3. This figure illustrates the local center axis
models of vessels from CTA and MRA. Our algo-
rithm works well even in the presence of nearby
vessels, strong calcification and strong contrast
change along a vessel.

Fig. 4. (left) The discrete front
and centerlines from these front
points. (right) The branch removal
process. Observe that front point
B is kept while front points A are
C are removed.

Our major contribution of this minimum-cost path finding algorithm is the use
of medialness measure as the cost of a graph edge and its orthogonal computa-
tion to the graph edge during propagations. In fact, this orthogonal computation
is the key factor for accuracy and increased computational efficiency since the
costs obtained on vessel cross-sections are small, i.e., high medialness response.
In other words, fronts propagates much faster in the center of vessels and much
slower to towards vessel walls due to this fact. In fact, the proposed centerline
extraction algorithm may also be viewed as the minimum-cost cross-sectional
plane estimation algorithm since the propagation prefers directions which pro-
duce better cross-sections. Figure 3 illustrates some centerlines obtained between
two seeds from this algorithm. This algorithm works well even in the presence of
nearby vessels, strong calcification and strong contrast change along a vessel and
it is computationally efficient. For example, a centerline segment of a coronary
artery can be obtained from this algorithm in 3 seconds via two seed placements.

4 Vessel Centerline Tree Extraction

In this section, we extend the local centerline detection algorithm to recover the
full vessel tree from a single point, a source which may be initialized by an user
or another process. Recall that the above algorithm terminates when the front
propagation reaches to a sink, an end point. When there is no sink point defined
for an explicit stopping, the propagation should continue until it reaches to all
the branches. The stopping criteria that we choose in our algorithm is based on
the medialness measure along a discrete front. Specifically, propagation is forced
to stop when the minimum medialness measure along a discrete front at any time
drops below a threshold. In our experiments, we found this stopping criteria to
be very reliable in clinical applications since our medialness measure is designed
to be very low outside vessels. However, the total occlusion cases, where piece
of a vessel is totally closed, require starting the propagation on the other side
of an occlusion, manually or automatically. We first illustrate how to determine
the correct vessel centerline tree from the converged propagation.

Suppose that the propagation has converged at time tf with a set of graph
nodes, F = (P1, ..., PK), representing a discrete front F , Figure 4. A
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minimum-cost path between each point Pi of a discrete front, F and the source
P0 can be computed from the minimum accumulative cost map, φ, resulting in K
different paths. It is obvious that most of these paths are redundant, i.e., a single
vessel branch should represented by a single centerline or a single front point. In
addition, the existence of a vessel branch can be determined by its length, LB

and its approximate radius, RB along its centerline, C, i.e., LB >>RB
1. Let

us illustrate the basic idea of selecting one centerline for each vessel branch via
an example, in Figure 4b which depicts three points A, B, C on a vessel bound-
ary and their corresponding minimum-cost paths. It is clear that the point B
with its path CB represents a branch while the front point A does not since the
length of its path is similar to its radius. The front point C may be considered
as representing a vessel branch since the length of its minimal path to the source
P0 is significant relative to its average radius. However, the path CB represents
the vessel branch better than the path CC starting from C. These observations
suggest that a front point with the longest path represents a vessel branch better
when there are several front points on the same vessel boundary, which is the
case after stopping the propagation. This can be implemented very efficiently
with the following algorithm:

1. compute the minimum-cost path Ci and the length Li for each point Pi in
the discrete front set F .

2. compute the average radius, RC along the each path Ci from the scale infor-
mation contained in the medialness filters.

3. order the paths based on their length and store them in a queue, QC, i.e.,
maximum is on top.

4. continue until the queue, QC is empty
(a) select the path C from the top of the queue and remove it from the queue.
(b) recompute the path by backtracking until the source, P0 or the previously

computed path on the minimum-accumulative cost map is encountered
(c) mark the path in the minimum-accumulative cost map during the tracking

process
(d) recompute the length of the new path, LC

(e) set the saliency of the path C or its corresponding front point, P as
LC/RC

5. delete the paths whose saliency is less than a user-defined threshold,

In our experiments, the saliency threshold is set to 2.0, which means that length
of a vessel branch should be two times greater than its average radius along
its centerline, otherwise it does not appear to be a significant vessel branch.
Figure 5 illustrates some examples of vessel centerline tree for coronary arteries
and cerebral vessels and others.

5 Results and Validations

We have tested our centerline detection algorithm on coronary, carotid, aorta,
peripheral, cerebral, and other vessels obtained from CTA, MRA and 3D ro-
tational angiography data. Figure 5 illustrates some of the results which are
1 The length of a centerline, C, is given by LC =

∫
C

ds where s is the arc length.
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Fig. 5. This figure illustrates the results obtained from our algorithm. Top row: coro-
nary arteries obtained from CTA. Centerlines are drawn in blue and coronary vessel
masks are created by using the scales contained in centerline trees. Middle row: cere-
bral vessels from MRA, CTA and 3D rotational angiography Bottom row: peripheral
vessels from CTA and liver vessels after liver segmentation.

obtained by initializing a single seed on a vessel. In our validation studies, coro-
nary arteries from CTA were our main focus where the accuracy of vessel detec-
tion (structural validation) was measured and the computed centerline locations
were compared with the expert created ground-truth. Specifically, there were
100 coronary artery CTA data in the experiment. The centerline tree extraction
algorithm started from the ostia points, namely the beginning of coronary ar-
teries from aorta, which were automatically determined by an aorta detection
algorithm. If there were errors in the locations of such ostia points, the user were
given tools to correct them. In the structural validations, an expert visualized
the detected centerlines on original data and quantified the number of correctly
detected arteries. The following detection ratios were obtained: left coronary
artery (LCA) %100, right coronary artery (RCA) %100, left anterior descending
artery (LAD) %95, left circumflex branch (LCX) %93, Left Acute Marginal %94,
Obtuse Marginal, %92, where a failure is marked when a centerline went outside
a certain artery or it was not able to reach to the end of a branch. It should be
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Table 1. This table illustrates the error (mm) between computed and expert-
constructed vessel centerlines

Vessel Type - Error (mm) Average Standard Deviation Maximum No of Data Set
Coronary: LCA (CTA) 0.33 0.14 0.74 8
Coronary: RCA (CTA) 0.30 0.12 0.55 8
Coronary: LCX (CTA) 0.28 0.15 0.59 8
Coronary: LAD (CTA) 0.31 0.16 0.67 8
Carotid (CTA) 0.45 0.21 1.08 3
Cerebral (MRA) 0.49 0.29 1.13 3
peripheral (CTA) 0.64 0.42 3.59 3

noted that it took an average of 21 seconds to construct such trees from CTA
data sets on a 3.2 GHz PC.

In addition to these validations, we have also quantified the errors between ex-
pert created centerlines and the computed centerlines by measuring the distances
between each corresponding centerline. Specifically, we first designed a manual
vessel centerline construction tool where an user can easily and correctly create
vessel centerlines. Table 1 illustrates the quantitative results on different types
of vessels obtained from both CTA and MRA. Interestingly, similar errors were
observed between the results obtained from two different experts.

6 Conclusions

In this paper, we presented a novel algorithm for the extraction of center axis
representations for the blood vessels found in different imaging modalities such
as CTA, MRA and 3D X-Ray data. The algorithm is suitable for clinical ap-
plications for diagnosis, treatment planning and follow-up studies of vascular
structures.
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