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5.1 Introduction

One major advantage of radioactivity is its extremely

high sensitivity of detection. Regarding the medical

applicability of radioactivity, it permits non-invasive

in vivo detection of radiolabelled compounds at nano-

to picomolar levels. The use of substances at such

low concentrations usually precludes a physiological,

toxic or immunologic response of the investigated

biological system. Consequently, the considered physi-

ological process or system is examined in an unswayed

situation. Furthermore, a wide range of substances,

even those which are toxic at higher concentrations,

become considerable for the development of radiophar-

maceuticals and use in nuclear medicine. In contrast to

the wide range of employable bioactive molecules, the

range of suitable radioactive nuclides is much more

restricted by their nuclear physical and chemical prop-

erties. In particular, radionuclides for diagnostic appli-

cations should provide appropriate (short) half-lives

and radiation properties for detection and imaging,

but at the same time the radiation dose of patients and

personnel have to be kept to minimum. Nonetheless, to

date, a couple of radionuclides have proven suitable for

both nuclear medical diagnostic applications, single

photon emission computed tomography (SPECT), and

positron emission tomography (PET).

As indicated by their names, SPECT is based on

photon or g-ray emitting nuclides while PET is derived

from those nuclides which belong to the group of

neutron-deficient nuclides and emit positrons (b+-
decay). Large scale production of positron emitting

radionuclides became possible for the first time by

the invention of the cyclotron by Ernest Orlando

Lawrence in 1929 [1]. Since then, many (medical)

cyclotrons have been built and have been in use at

various nuclear medicine PET facilities. As a result,

short-lived positron emitters such as most commonly

employed fluorine-18 and carbon-11 are routinely pro-

duced at most nuclear medicine centres on a daily basis.

In the b+-decay of a neutron-deficient nucleus, a

positron (b+) and a neutrino (n) are synchronously

emitted, while in the nucleus, a proton is converted

into a neutron. Neutrinos show practically no interac-

tion with matter and thus they are not detectable by

PET cameras. In contrast, the emitted positron is able

to interact with an electron, its anti-particle. As a

result, both particles annihilate and give two g-rays
with a total energy of 1.022 MeV, the sum of the
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masses of positron and electron, 511 keV each. Both g-
rays show a nearly 180� distribution and each carries

the characteristic energy of 511 keV. Accordingly, the

decay of positron emitters which are used as label for

PET radiopharmaceuticals results in two g-rays and

as these are body-penetrating photons, they can be

detected by an appropriate PET camera. This physical

phenomenon provides the base of PET imaging.

In PET scanners, a circular ring of detector pairs,

which record only coincidence events, registers the

in vivo generated pairs of g-rays. An appropriate com-

puter-aided data acquisition provides PET images with

information about in vivo distribution and levels of

accumulation of the radionuclide and the radiophar-

maceutical, respectively. Consequently, biochemical

processes can be visualised and a dynamic data acqui-

sition further allows for registration of a temporal

component such as pharmacokinetics of a certain

drug. In combination with bio-mathematical models

and individual corrections of attenuation, transmission

and scatter effects, physiological and pharmacological

processes can be precisely acquired and quantified [2].

The most important radionuclides for PET imaging

are fluorine-18 and carbon-11. Particularly, the 18F-

labelled glucose derivative 2-deoxy-2-[18F]fluoro-D-

glucose ([18F]FDG) represents the most widely used

PET radiopharmaceutical which has contributed most

to the worldwide success of clinical PET imaging. The

combination of a highly efficient radiochemistry and

a high yielding 18O(p,n)18F nuclear reaction makes

[18F]FDG available in large amounts and also enables

shipment and distribution by commercial producers.

Since its development in the 1970s [3], [18F]FDG has

been employed in many PET studies in oncology,

neuroscience and cardiology [4–7]. However, further

substances have followed and to date, several PET

radiopharmaceuticals for specific targets have been

developed and evaluated for a wide range of applica-

tions in clinical nuclear medicine as well as in preclin-

ical research [8–11].

The following chapter deals with the develop-

ment and the use of PET radiopharmaceuticals. Here

a comprehensive overview of basic considerations

and possibilities in development of PET radio-

pharmaceuticals is given. An outline of commonly

employed clinically established PET radiopharma-

ceuticals, their most important production routes and

clinical applications follows in the next chapter, in

which also aspects of routine production and quality

control of PET radiopharmaceuticals as well as their

use in drug development are introduced and briefly

summarised. Both chapters principally cover literature

until the beginning of 2009.

5.2 Choice of the Radionuclide

There is a variety of basic functions and effects which

can generally be followed and visualised by PET such as

metabolism, pharmacokinetics, (patho)physiological

and general biochemical functions; receptor-ligand bio-

chemistry; enzyme functions and inhibition; immune

reactions and response; pharmaceutical and toxicologi-

cal effects. However, a close look into the designated

processes and the related biochemistry is necessary to

find a positron emitter with appropriate characteristics.

Although fluorine-18 is the most commonly pre-

ferred positron emitter for PET radiopharmaceuticals,

monoclonal antibodies labelled with fluorine-18 for

immuno-PET imaging are normally not useful because

the physical half-life of 110 min does not fit to the

slow accumulation (normally 2–4 days) of most mono-

clonal antibodies in solid tumours [12]. In such cases,

longer-lived PET nuclides as iodine-124 (T½ ¼ 4.18

days) and zirconium-89 (T½ ¼ 3.27 days) are more

suitable for this particular application. On the other

hand, longer half-lives increase radiation doses to the

patients and thoughtful considerations towards a

health/risk–benefit analysis are mandatory.

As a basic principle, short-lived radionuclides should

preferably be used if their suitability is similarly good

with respect to a certain application. Blood flow tracers

are a perfect example for the use of extremely short-

lived radionuclides such as oxygen-15 (T½ ¼ 2 min),

nitrogen-13 (T½ ¼ 10 min) and rubidium-82 (T½ ¼
1.3 min). The scanning times of blood flow studies

using PET are normally very short and not longer than

2–5 min. Hence, radiolabelled substances such as [15O]

water, [15O]butanol, [13N]ammonia and [82Rb]RBCl

are particularly suitable. However, the relatively short

half-lives of the these radionuclides place some con-

straints on imaging procedure and execution.

Besides half-lives, there are further physical aspects

to be considered. One is the b+-energy (Eb+) of the

emitted positrons. The Eb+ also clearly affects the radia-

tion dose to the patients and thus the lower the Eb+ the

better it is for the patients. Since the Eb+ is also
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responsible for the positron range (travelling distance of

the positron) and a short positron range enhances the

spatial resolution in PET, a low Eb+ is also very favor-

able for high resolution PET imaging. However, in

human PET scanners, the distance of the detectors to

the object is long and the positron range is no longer

significant for the absolute spatial resolution as demon-

strated in comparable studies using different positron

emitters in imaging phantoms [13, 14]. In contrast, high-

resolution small animal PET scanners show dramati-

cally degraded image quality by the use of positron

emitters with high Eb+ or complex decay schemes [15].

In comparison with most of the available positron

emitters for PET, it is already quite evident from the

nuclear properties that fluorine-18 is the most pre-

ferred radionuclide for PET. The optimal half-life of

fluorine-18 offers multi-step radiochemistry, extended

PET studies of slower biochemistry as well as the

shipment of the 18F-labelled radiopharmaceuticals to

clinics without an on-site cyclotron or a radiochemis-

try facility. Furthermore, it has one of the lowest Eb+

among the PET nuclides and provides high-resolution

PET images. An overview of the nuclear data of

important positron emitters for PET is given in

Table 5.1.

In the same way as the radionuclide must fulfil the

physical requirements of the PET imaging, it needs to

exhibit suitable chemical properties with respect to

available labelling techniques. Thereby, the labelling

strategy depends on the initial situation and attendant

restrictions. If a certain radionuclide is given by rea-

sons such as availability or imaging characteristics, the

target structure often needs to be modified towards its

suitability for corresponding labelling methods. In

contrast, if the structure of a biomolecule is stipulated,

a combination of a radionuclide with an appropriate

and efficient labelling procedure needs to be found.

However, a restricted number of PET radionuclides

and a limited selection of reactions for their intro-

duction into biomolecules generally necessitate the

approach of tailored structures. Noteworthy, those

structural modifications of the parent biomolecule are

mostly accompanied by changes in the pharmacologi-

cal behaviour and usually a compromise covering

pharmacological performance, radiochemistry, dosim-

etry and PET imaging requirements must be found.

In general, the choice for the right positron emitter

for a new PET radiopharmaceutical can be described

as the best match between efficient radiochemistry,

acceptable dosimetry and favourable pharmacological

and PET imaging properties.

5.2.1 Labelling Methods – Introduction
of the Radionuclide

Organic positron emitters: The introduction of the

radionuclide into a biomolecule or a structure of

(patho)physiological interest obviously is one of the

Table 5.1 Important positron emitters used for PET and their

nuclear data from [16, 17]

Nuclide Half-life Decay mode (%)

Eb+,max

[keV]

Organic

11C 20.4 min b+ (99.8) EC (0.2) 960

13N 9.96 min b+ (100) 1,190

15O 2.03 min b+ (99.9) EC (0.1) 1,720

30P 2.5 min b+ (99.8) EC (0.2) 3,250

Analogue

18F 109.6 min b+ (97) EC (3) 635

73Se 7.1 h b+ (65) EC (35) 1,320

75Br 98 min b+ (75.5) EC (24.5) 1,740

76Br 16.2 h b+ (57) EC (43) 3,900

77Br 2.38 days b+ (0.7) EC (99.3) 343

120I 81.1 min b+ (64) EC (36) 4,100

124I 4.18 days b+ (25) EC (75) 2,140

Metallic

38K 7.6 min b+ (100) 2,680

45Ti 3.09 h b+ (85) EC (15) 1,040

60Cu 23.7 min b+ (93) EC (7) 3,772

61Cu 3.33 h b+ (61) EC (39) 1,215

62Cu 9.7 min b+ (98) EC (2) 2,930

64Cu 12.7 h b+ (18) b� (37) EC (45) 655

68Ga 68.3 min b+ (90) EC (10) 1,900

72As 26 h b+ (88) EC (12) 2,515

82Rb 1.3 min b+ (96) EC (4) 3,350

86Y 14.7 h b+ (34) EC (66) 1,300

89Zr 3.27 days b+ (33) EC (77) 902

94mTc 52 min b+ (72) EC (28) 2,470
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essential steps in the development of radiopharmaceu-

ticals. Biomolecules and pharmaceuticals mainly con-

sist of carbon, hydrogen, oxygen, nitrogen, sulphur

and phosphorous due to that fact the so-called organic

radionuclides (see Table 5.1), carbon-11, oxygen-15,

ammonia-13 and phosphorous-30 allow the so-called

authentic labelling without any changes in (bio)chem-

ical and physiological behaviour of the radiolabelled

molecule. However, these organic radionuclides are

extremely short-lived isotopes with half-lives only

from 2 to 20 min and that strongly limits their applica-

bility. Only the half-life of 20 min of carbon-11 offers

the possibility of radiosyntheses with more than one

step and the detection of physiological processes with

slower pharmacokinetics. Besides an unchanged phar-

macology, the major advantage of such short half-lives

is a low radiation dose to the patients and possible

repeat studies within a short period.

Analogue positron emitters: Biomolecules and phar-

maceuticals are generally relatively complex organic

compounds and claim for multi-step radiosyntheses for

their radiolabelled counterparts. In addition, many

(patho)physiological processes are slower and thus not

detectable with the extremely short-lived radionuclides.

Alternatively, the so-called analogue radionuclides with

longer half-lives from 80 min to 4 days are commonly

introduced into biomolecules. The labelling with ana-

logue radionuclides makes use of similarities in steric

demand and/or in electronic character of the substituted

atom or functional group. The steric demand of an atom

or a functional group refers to the amount of space

occupied by an atom or a functional group. Accord-

ingly, selenium-73 can be used in themanner of sulphur.

Selenium as the next homologue to sulphur has very

similar steric and chemical properties. The analogue

radiopharmaceuticals L-[73Se]selenomethionine [18]

and L-homocysteine[73,75Se]selenolactone [19] are

examples for such a selenium-sulphur-analogy. Simi-

larly, 75,76,77Br and 120,124I can be regarded as structural

analogues for methyl groups.

In the majority of cases, the analogue radionu-

clides evoke only small insignificant structural dif-

ferences, but the arising electronic changes and those

of chemical reactivity can be important. In each indi-

vidual case, the pharmacological behaviour and prop-

erties of such analogue radiotracers have to be tested

for changes in characteristics. In the last decades, the

number of new pharmaceuticals has increased rapidly

and more and more compounds have been identified as

pharmacologically relevant substances which are orig-

inally carrying fluorine, bromine or iodine [20, 21].

Consequently, the advantages of authentic labelling

and longer half-lives accrue and simplify the develop-

ment of a corresponding radiopharmaceutical.

Metallic positron emitters: In a third group, there are

also some metallic positron emitters which are suitable

for PET imaging (see Table 5.1). The half-lives vary

from minutes to days and offer a broad range of

applicability. In contrast to organic or analogue PET

nuclides, some of the metallic radionuclides are achiev-

able from generator systems (e.g. 62Zn/62Cu, 68Ge/68Ga

and 82Sr/82Rb) which make them available in places

without an on-site cyclotron. Metallic PET nuclides can

be used either directly in their free cationic forms or as

complexes. Rubidium-82 has been evaluated as a myo-

cardial perfusion PET tracer [22, 23]. In form of [82Rb]

RbCl, it is used as radiopharmaceutical for perfusion

PET imaging on the market for almost 20 years

(CardioGen-82#, approved by the FDA in 1989). The

similarities of rubidium to the potassium cation lead to

a rapid uptake of rubidium-82 into the myocardium and

allow the identification of regions of insufficient

perfusion by PET imaging [24, 25]. In complexes,

the metallic radionuclides are usually incorporated

into biomolecules which carry suitable chelators (i.e.

Fig. 5.27 for the somatostatin receptor ligand [68Ga-

DOTA, Tyr3]octreotide [26]).

In addition to differences in chemical, physical and

nuclear properties of the radionuclides, the production

routes or processes can also influence the labelling

approach. The production route as well as the work-

up provides the radionuclide in a certain chemical

form which requires suitable (radio)chemistry in the

following synthetic steps. From the production pro-

cess, PET radionuclides are obtained only in a nano- to

picomolar range while they are still very well detect-

able by their radioactive decay. As a result, the final

PET radiopharmaceuticals are so attractive to medici-

nal purposes. In the body, they can be detected with

non-invasive methods while the quantity of material is

extremely small and generally toxic and pharmacolog-

ical effects are negligible.

Specific activity: Owing to the desired insignificant

quantities, a fundamental criterion of the quality of a

radionuclide and the final radiopharmaceutical is its

specific (radio)activity (SA) which depends on the

amount of stable isotopes (carrier) present. Carrier

can be divided into:
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� Isotopic carrier: isotopes of the same element as

the radionuclide and

� Non-isotopic carrier: isotopes of other elements

mostly with very similar chemical and physical

properties to the radionuclide

On this account, SA is defined as the mass-related

radioactivity:

SA ¼ A=m Bq=g½ �

where A is the radioactivity in Becquerel and m is the

mass of the radioactive material including all impuri-

ties and carrier, respectively. In (radio)chemistry such

a specification related to the mass is inconvenient and

thus SA is generally expressed on the molar basis as

radioactivity related to the amount of substance:

SA ¼ A=n Bq=mol½ �

where m is replaced by n for the amount of substance

in moles. In the absence of impurities or isotopic

carrier, the theoretically attainable maximum molar

SA equals to:

SA ¼ NA(ln2/T1=2)[Bq/mol] or

SA ¼ 1:16� 1020=T1=2½Bq/mol�

where NA is Avogadro’s number (6.023 � 1023) in

atoms/mol and T½ is the half-life of the radionuclide

in hours. The general abundance of stable isotopes of

the PET radionuclides smaller the theoretically attain-

able SA and the quantity of material become higher

by natural isotopic carrier, but it is normally still at a

nano- to picomolar level (6.3 � 104 versus 300–

600 GBq/mmol for theoretical and practical SA, respec-

tively, for fluoride-18 produced from 18O(p,n)18F).

Most applications in molecular imaging call for high

(molar) specific activities and a lot of effort is put into

this issue. Especially for brain receptor PET imaging,

high specific activities are essential when receptor

systems of low density can be saturated by radioli-

gands with low SA. Besides poor PET imaging results,

because of an unfavourable signal-to-noise ratio, phar-

macological or toxic effects have also to be consid-

ered. In general, for radiochemical practice, the

radionuclide situations can be classified as:

� Carrier-free (c.f.)

� No-carrier-added (n.c.a.)

� Carrier-added (c.a.)

Carrier free (c.f): Ideally carrier-free systems are

not achievable with PET radionuclides as they all

have naturally occurring stable isotopes. For example,

carbon is the fourth most abundant element on earth

and it is present in almost every kind of material. Thus,

especially for carbon-11 high specific activities are an

exceptional challenge. However, in radiochemistry of

PET radionuclides, traces of stable isotopes are omni-

present and act as isotopic carrier. Sources of isotopic

carrier are the air, target and vessel materials, transport

lines and tubes, chemicals and solvents.

No carrier added (n.c.a): Contaminations in che-

micals and solvents are below normal chemical purifi-

cation limits, but they are still in the quantity of the

radionuclide. Those conditions are referred to as no-

carrier-added (n.c.a.) conditions and correspond to a

state of practically highest SA attainable.

Carrier added (c.a): On the contrary, some circum-

stances require the addition of stable isotopes what is

termed as carrier-added (c.a.). Predominantly, c.a. con-

ditions are employed to achieve weighable quantities

of a product for characterisation by non-radioactive

analytical methods or to increase radiochemical yields.

As a widely used c.a. procedure the production of

electrophilic fluorine-18 is well known. The addition

of the isotopic carrier fluorine-19 is necessary to mobi-

lise n.c.a. [18F]F2 which is too reactive and adheres to

the walls of targets and tubes.

Labelling reactions and radiosyntheses on the n.c.a.

scale mean to work at a subnanomolar level regarding

the amount of radioactive substance while all other

reactants and solvents are still present at a macro-

scopic scale. Hence, the course of reaction may differ

strongly from that of classical chemical reactions at

balanced stoichiometric ratios, where all substrates

and reagents are present in amounts in a similar

or equal range. Such labelling reactions under non-

equilibrium conditions generally proceed according

to pseudo-first-order kinetics where the precursor

amounts are in extreme excess to the radionuclide

and can approximately be set as constant. On the

other hand, the radionuclide and the labelled product

exist on a n.c.a. scale and thus a consecutive labelling

reaction or an interaction of two radioactive species

can be statistically excluded.

In labelling procedures and radiosyntheses, obvi-

ously, the decay has to be taken into account and thus

the half-life of the employed radionuclide. With res-

pect to the PET imaging, the final radiopharmaceutical
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must be obtained in reasonable amounts sufficient for

the following PET procedures. As a rule of thumb, the

radiosynthesis including purification, formulation and

quality control of a PET radiopharmaceutical should not

exceed three half-lives of the radionuclide. Conse-

quently, the extremely short-lived PET radionuclides

call for very fast chemistry and preclude multi-step

procedures.

The efficacy of radiolabelling reactions is generally

quantified by the radiochemical yield (RCY) which

corresponds to the decay-corrected yield related to

the starting activity. In contrast, the real yield reflects

the amount of isolated radioactive material, but is

not functional as an appraisal factor of the labelling

procedure.

5.2.2 Labelling Methods for Fluorine-18

The indisputable importance of fluorine-18 in PET

makes 18F-labelled radiopharmaceuticals the most

favoured ones; thus, especially procedures for the

introduction of fluorine-18 are of great interest and

several methods and strategies have been developed

[27–31]. There are many established nuclear produc-

tion pathways for fluorine-18; the most commonly

used are listed in Table 5.2 [32, 33].

The main difference between various nuclear reac-

tions is the target material which is either gas or liquid

(water) and determines the final chemical form of

fluorine-18. From gas targets, fluorine-18 is achieved

as electrophilic c.a. [18F]fluorine gas ([18F]F2) and

from the water targets, nucleophilic n.c.a. [18F]fluo-

ride in aqueous solution is obtained. As mentioned

before, in case of the electrophilic [18F]F2, adsorption

of the produced n.c.a. fluorine-18 on the walls of the

target requires the addition of non-radioactive F2

(isotopic carrier) for an isotopic exchange and removal

of the n.c.a. fluorine-18 out of the target. Due to this

fact, the procedure dramatically lowers the obtainable

specific activity which is one of the major disadvan-

tages of these production routes.

Nonetheless, many compounds of (radio)pharma-

cological interest call for electrophilic labelling meth-

ods and thus necessitate c.a. [18F]F2 or its derived

secondary labelling agents. The most popular PET

radiopharmaceutical which is routinely produced via

an electrophilic c.a. 18F-labelling (18F-fluorodestanny-

lation) is 6-[18F]fluoro-L-DOPA ([18F]F-DOPA) (see

Fig. 5.3) [34, 35]. So far, an efficient nucleophilic

approach for a n.c.a. 18F-fluorination of [18F]F-DOPA

is still lacking.

However, the nucleophilic production route using
18O-enriched water as target material is the most effi-

cient procedure and also provides the n.c.a. [18F]fluoride

in high specific activities. As a result, the 18O(p,n)18F

reaction is the most widely used method to produce

fluorine-18. The required proton energy of

16 ! 3 MeV for the nuclear reaction is achievable

without problems from small cyclotron, so-called

medical cyclotrons. Normal batches of 50–100 GBq

for the production of 18F-labelled clinically utilised

PET radiopharmaceuticals can be obtained within

30–60 min depending on the target construction and

the corresponding beam current.

Regarding the chemical concepts for the introduc-

tion of fluorine-18 into organic molecules, the meth-

ods of the macroscopic organic chemistry could be

principally transferred. In general chemistry, the com-

monly used fluorination procedures are based on the

Wallach reaction [36] and the Balz–Schiemann reac-

tion [37]. However, in n.c.a. 18F-radiosyntheses, these

procedures led only to very low radiochemical yields

[38, 39]. Effects of the unusual stoichiometric ratios

under n.c.a. conditions as well as principle aspects of

Table 5.2 Most common nuclear reactions for production of fluorine-18

Reaction 18O(p,n)18F 16O(3He,p)18F 20Ne(d,a)18F 18O(p,n)18F

Target filling H2
18O H2O Ne (200 mmol F2)

18O2, Kr (50 mmol F2)

Particle energy [MeV] 16 ! 3 36 ! 0 14 ! 0 16 ! 3

Chemical product form [18F]fluoride (aq) [18F]fluoride (aq) [18F]F2 [18F]F2

Yield [GBq/mAh] 2.22 0.26 0.37–0.44 ~0.35

Specific activity [GBq/mmol] 40 � 103 40 � 103 ~0.04–0.40 ~0.35–2.00
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the reactions’ mechanisms and reactants led to these

results. Both reaction types revealed inappropriate for

fluorine-18 chemistry under n.c.a. conditions.

Generally, radiofluorination methods can be divided

into electrophilic and nucleophilic reactions (substitu-

tions) according to the chemical form of fluorine-18

and thus the production route. Both methods represent

direct 18F-fluorinations and can be completed by two

additionally indirect methods, the 18F-fluorinations via

prosthetic groups and the 18F-fluorinations via built-up

syntheses. In general, the indirect methods are based

on direct methods for the 18F-labelling of the required

prosthetic group or synthon. Frequently, the nucleo-

philic 18F-methods are employed here due to higher

specific activities, higher radiochemical yields and a

better availability of n.c.a. [18F]fluoride.

5.2.2.1 Electrophilic Substitutions

Fluorine-18 for electrophilic substitution reactions is

available as c.a. [18F]F2 directly from targets. 20Ne and

enriched [18O]O2 can be used as target materials (cf.

Table 5.2). Both alternatives come along with an

adsorption of the fluorine-18 on the target walls and

entail an addition of [19F]F2 to mobilise the produced

fluorine-18 by isotopic exchange. In the 18O(p,n)18F

reaction, the enriched [18O]O2 target filling is removed

after bombardment and the target is filled with 0.1%

[19F]F2 in Kr and repeatedly irradiated for the [18F]F2
formation [40]. In comparison, the 20Ne(d,a)18F reac-

tion is more practical as 0.1% [19F]F2 is directly added

with the neon and an additional step for recovery of

the enriched material and the consecutive irradiation is

saved. Furthermore, the process does not require

enriched material and is less expensive. Therefore,

the 20Ne(d,a)18F reaction is the commonly employed

process for electrophilic fluorine-18, although its pro-

duction rates are lower [32, 33]. As all production

processes for electrophilic fluorine-18 require carrier

addition, c.a. [18F]F2 or milder reagents derived from

it cannot be used in preparations of PET radiopharma-

ceuticals where high specific activities are mandatory

[41, 42].

Generally, the methods of electrophilic fluorina-

tions from organic chemistry can be directly trans-

ferred into c.a. fluorine-18 chemistry. Due to the fact

that carrier is added here, the stoichiometric ratios are

more balanced than under n.c.a. conditions and thus

closer to macroscopic chemistry. In organic chemistry,

elemental fluorine is known for its high reactivity and

its poor selectivity. Therefore c.a. [18F]F2 is often

transferred into less reactive and more selective elec-

trophilic fluorination agents such as [18F]acetyl hypo-

fluoride ([18F]CH3COOF) [43], [
18F]xenon difluoride

([18F]XeF2) [44, 45] or [
18F]fluorosulfonamides [46].

The maximum radiochemical yield in electrophilic

radiofluorinations is limited to 50% as only one fluo-

rine in [18F]F2 is substituted by a 18F atom. Conse-

quently, that is also the situation for all secondary

electrophilic radiofluorination agents derived from

c.a. [18F]F2.

The most popular example of electrophilic radio-

fluorinations using c.a. [18F]F2 is the first method to

produce 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG)

by Ido et al. in 1978 (see Fig. 5.1) [3]. [18F]F2 was used

in an electrophilic addition to the double bond of

triacetoxyglucal and gave [18F]FDG in a radiochemi-

cal yield of 8%. As a radioactive side product 3% of

the 18F-labelled mannose derivative (2-deoxy-2-[18F]

fluoro-D-mannose, [18F]FDM) was obtained. In 1982,

a higher RCY of 20% and an improved product-to-

byproduct-ratio of 7:1 were achieved in the approach

of Shiue et al. using the milder radiofluorination agent

[18F]acetyl hypofluoride [47]. Many other approaches

O
AcO

AcO

OAc

1. c.a. [18F ]F2

2. Hydrolysis

O
HO

HO

OH

18F OH

[18F]FDG

O
HO

HO

OH

OH

18F

[18F]FDM

+

Fig. 5.1 Original radiosynthesis of [18F]FDG (RCY ¼ 8%) by Ido et al. using c.a. [18F]F2. As a side product, the 18F-labelled

mannose derivative ([18F]FDM) was obtained in a RCY of 3%
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were made to increase radiochemical yields of [18F]

FDG in electrophilic procedures [48–50], including

also attempts with [18F]XeF2 [51–53].

Another example for a direct electrophilic 18F-

fluorination is 5-[18F]fluorouracil which is the 18F-

labelled analogue of 5-fluorouracil. 5-Fluorouracil is

a chemotherapeutic and thus its 18F-labelled analogue

can be used for therapy control, for visualisation of

various tumours and for prediction of therapy response

in liver metastases [54, 55]. 5-[18F]fluorouracil can be

prepared by direct 18F-fluorination of uracil using c.a.

[18F]F2 [56].

The most important PET radiopharmaceutical which

is routinely produced via electrophilic 18F-fluorination

methods is 6-[18F]fluoro-L-DOPA ([18F]F-DOPA).

After [18F]FDG, [18F]F-DOPA ranks second in its

frequency of clinical use. The direct radiofluorination

of 3,4-dihydroxyphenyl-L-alanine using [18F]F2 leads

to three possible 18F-labelled regioisomers namely

2-[18F]F-DOPA (12%), 5-[18F]F-DOPA (1.7%) and

6-[18F]F-DOPA (21%) (see Fig. 5.2) and requires a

complex HPLC purification to obtain the desired

6-[18F]F-DOPA in only 3% RCY [57].

Several attempts have been made to improve radio-

chemical yields and regioselectivity in the direct

radiofluorination of L-DOPA [58, 59]. So far, the

most efficient procedures for 6-[18F]F-DOPA which

provide adequate RCY of up to 33% for clinical

PET imaging are based on 18F-fluorodemetallation

reactions [60–62]. Among the 18F-demetallation reac-

tions, to date, the 18F-fluorodestannylation is the

most commonly used reaction for routinely produced

6-[18F]F-DOPA (see Fig. 5.3) [34, 63]. An automation

of this radiosynthesis and recently improved precursor

synthesis and quality control allows reliable routine

productions for clinical PET imaging using 6-[18F]

fluoro-L-DOPA [35, 64].

To date, the 18F-fluorodestannylations are generally

the preferred methods for electrophilic 18F-labelling of

complex molecules as they provided satisfactory

radiochemical yields and high regioselectivity.

For higher specific activities in electrophilic 18F-

fluorinations, [18F]F2 can be obtained from n.c.a.

[18F]CH3F via an electric gaseous discharge reaction

in the presence of [19F]F2 (150 nmol) (see Fig. 5.4).

This provides specific activities of up to 55 GBq/mmol

1.  c.a.  [18F]F2

2. HBr, 130°C
OBoc

OBoc

COOEt

NHBoc

OH

OH

COOH

NH2

6-[18F]Fluoro-L-DOPA
RCY = 26–30 %

18FMe3Sn

Fig. 5.3 Electrophilic

radiofluorination of 6-[18F]F-

DOPA by regioselective 18F-

fluorodestannylation. After

45–50 min 6-[18F]F-DOPA is

obtained in RCY of 26–33%

c.a. [18F]F2

-65°C, HF

OH

OH

COOH

NH2

5-[18F]F-DOPA
1.7%

18F

2- [18F]F-DOPA
12%

OH

OH

COOH

NH2
18F

OH

OH

COOH

NH2

6-[18F]F-DOPA
21%

18F

OH

OH

COOH

NH2

L- DOPA

+ +

Fig. 5.2 Direct electrophilic radiofluorination of [18F]F-DOPA using c.a. [18F]F2. The product mixture contains 21% of the desired
18F-labelled regioisomer 6-[18F]F-DOPA
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in case of the [18F]F2 which leads to SA of ~15 GBq/m
mol of final 18F-labelled products [65].

However, electrophilic substitution reactions using

[18F]F2 and secondary milder fluorination agents

derived from it can be used in clinically routine pro-

duction of PET radiopharmaceuticals where low spe-

cific activities and moderate radiochemical yields are

not essential. PET imaging of receptor systems and

other PET imaging investigations which require high

specific activities, still necessitate 18F-radiopharma-

ceuticals produced under no-carrier-added conditions

and thus derive from nucleophilic substitution using

n.c.a. [18F]fluoride.

5.2.2.2 Nucleophilic Substitutions

As mentioned earlier, the 18O(p,n)18F reaction using

enriched [18O]water as target material is the most

efficient and most widely used production route for

(nucleophilic) fluorine-18. The required proton energy

of 16 MeV can be easily generated by medial cyclo-

trons and so 50–100 GBq of n.c.a. fluorine-18 can be

produced within 30–60 min. The fluorine-18 is

obtained directly from the target as nucleophilic n.c.a.

[18F]fluoride in aqueous solution without any carrier

addition.

For saving the costly, enriched material, the

first step after the irradiation is the separation of

the [18F]fluoride from the [18O]water. Commonly,

[18F]fluoride is trapped on an anionic exchange resin

(solid phase extraction cartridge systems) while the

[18O]water is recovered. [18F]Fluoride in aqueous

solution is strongly hydrated and inactivated for nucle-

ophilic reactions. For an activation of the [18F]fluo-

ride, generally, the water is removed by azeotropic

distillation with acetonitrile and the remaining dry

[18F]fluoride is available for nucleophilic substitution

reaction as an activated nucleophile.

Due to the strong tendency of fluoride ions to form

hydrogen fluoride, the 18F-labelling reactions must be

carried out under dry and aprotic conditions. Hence,

nucleophilic 18F-labelling is usually performed in

dipolar aprotic organic solvents. For further activation

and increased nucleophilicity of the [18F]fluoride, it is

used in combination with weak and soft cations, those

of caesium or rubidium. As a result, a so-called

‘naked’ [18F]fluoride of high nucleophilicity is pro-

duced. Similarly, phase transfer catalyst such as tetra-

alkylammonium salts, mainly as their carbonates,

hydroxides or hydrogen carbonates, can be used. One

of the most efficient and commonly applied system in

radiofluorinations is the combination of a cryptand, the

aminopolyether Kryptofix#2.2.2, and potassium car-

bonate (see Figs. 5.5 and 5.6) [66, 67]. In case of base-

Anionic
exchanger
separation

H2
18O

Target 

18F–

H2
18O

Protons 16 Mev 
Elution

Kryptofix
K2CO3

Azeotropic
distillation

(acetonitrile)

Labelling
~4min 85°C

Precursor

(TATM)

Hydrolysis
(base or acid)

Formulation
Neutralisation

and
purification

Sterile

filter

[18F]FDG
RCY ~60%

H2
18O

Recovery

Fig. 5.5 Steps of the [18F]FDG routine production. TATM ¼ 1,3,4,6-tetra-O-acetyl-2-O-trifluoro-methanesulfonyl-beta-D-
mannopyranose

n.c.a. [18F]Fluoride
CH3I [18F]CH3F [18F]F2

F2/Ne

Electric discharge

Fig. 5.4 Production of c.a. [18F]F2 of higher specific activities derived from electric gaseous discharge of n.c.a. [18F]fluoromethane

under carrier-added conditions. [18F]F2 is obtained with specific activities of 55 GBq/mmol
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sensitive compounds the carbonate can be exchanged

by oxalate which provides less basic conditions. In

another method, the [18F]fluoride is separated from

[18O]water by an electrochemical anodic adsorption

[68]. For drying the cell is flushed two times with

acetonitrile or dimethylamide. A polarity change of

the electrical field provides a subsequent desorption

and release of the [18F]fluoride into a dipolar aprotic

solvent containing a phase transfer catalyst system

[69]. In recent studies, the use of ionic liquids showed

very high 18F-labelling efficiency of up to 90% RCY

without previous drying procedures [70]. Small

volumes of aqueous 18F-solution are directly added

to the reaction mixture containing a base, precursor

and ionic liquid. The best results were obtained from

the combination of caesium carbonate and the ionic

liquid 1-butyl-3-methylimidazolium triflate ([bmim]

[OTf]). This method was also applied for [18F]FDG

productions and showed good RCY of 50–60%, but

so far, it has been tested just with small amounts of

[18F]fluoride of less than 1 GBq [71].

Generally, the most important procedures to get
18F-labelled radiopharmaceuticals are based on the

nucleophilic substitution using n.c.a. [18F]fluoride

which is so far also the only way to get 18F-radio-

pharmaceuticals of high specific activities. Nucleo-

philic substitution reactions can be divided into

aliphatic and aromatic substitutions.

Aliphatic substitution: In case of aliphatic nucleo-

philic substitutions, the reactions follow the SN2

mechanism and suitable leaving groups are required.

The most efficient leaving groups are sulphonic

acid esters such as the methane sulphonic acid ester

(mesylate), the trifluoromethane sulphonic acid ester

(triflate), the para-toluene sulphonic acid ester (tosy-

late) and the para-nitrobenzene sulphonic acid ester

(nosylate). Further suitable leaving groups are halo-

gens. The most important and prominent example

of such an aliphatic nucleophilic substitution using

n.c.a. [18F]fluoride is the synthesis of [18F]FDG using

an acetyl-protected mannose precursor (1,3,4,6-tetra-

O-acetyl-2-O-trifluoro-methanesulfonyl-beta-D-man-

nopyranose, TATM) carrying a triflate leaving group

which was developed by Hamacher et al. in 1986 (see

Fig. 5.7) [67]. This procedure provides [18F]FDG after

deprotection and purification in very high radiochemi-

cal yields of 50–70% with high specific activities of

~300–500 GBq/mmol. To date, this is the most widely

used method for the production of [18F]FDG towards

preclinical and clinical applications.

Regarding the reaction conditions for aliphatic

nucleophilic substitutions using n.c.a. [18F]fluoride,

best results are typically obtained from acetonitrile as

solvent and the Kryptofix#2.2.2/potassium carbonate

system. Applied reaction temperatures vary from 80�C
to 110�C and depend on the individual precursor mol-

ecule. Due to the low boiling point of acetonitrile of

82–84�C, temperatures higher than 110�C are not

practical. Further suitable solvents are dimethylfor-

mamide, dimethylsulfoxide and dimethylacetamide

O
AcO

AcO

OAc
1. n.c.a. [18F]Fluoride,

K2.2.2/K2CO3

2. Hydrolysis

O
HO

HO

OH

18F

[18F]FDG

OAc

TfO

OH

Fig. 5.7 Most commonly

used radiosynthesis of n.c.a.

[18F]FDG (RCY = 50–70%)

by Hamacher et al.

K2.2.2/K2CO3

Azeotropic distillation

[18F]Fluoride
“naked”

[18F]Fluoride
hydrated

18F
H

O

H

H
O

H

H

O

H

H
O

H
O

N

O

OO

N

O

O

K
18F
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[18F]fluoride activation by

removal of water in

combination with the

Kryptofix#2.2.2/potassium

carbonate system
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which also allow higher temperatures up to 160–

190�C. In recent studies, Kim et al. found increased

radiochemical yields in aliphatic nucleophilic 18F-

labelling by the use of tert-alcohols (frequently tert-

butanol) as co-solvents to acetonitrile. A beneficial

effect was shown for a number of clinically important
18F-labelled PET radiopharmaceuticals [72].

Generally, the aliphatic nucleophilic substitution is

high yielding and does not take much longer than 10–

15 min for completion. Often, a subsequent deprotec-

tion step is necessary, but can also be accomplished

within short reaction times of 5–10 min. As a result,

aliphatic nucleophilic substitution is widely applied in
18F-labelling chemistry and several routinely pro-

duced 18F-labelled PET radiopharmaceuticals are

obtained from this reaction type. Besides [18F]FDG,

the most popular examples are 3-deoxy-30-[18F]fluoro-
L-thymidine ([18F]FLT) [73], [18F]fluoromisonidazole

([18F]FMISO) [74], O-(2-[18F]fluoroethyl-L-tyrosine)

([18F]FET) [75, 76] and [18F]fluorocholine ([18F]FCH)

[77].

Aromatic substitution: The nucleophilic aromatic

n.c.a. 18F-fluorinations require an activated aromatic

system, an electron deficient system. Otherwise, the

desired target ring is not attractive for a nucleophilic

attack by n.c.a. [18F]fluoride. Such activation can be

reached by strong electron-withdrawing groups

(EWG) such as nitro, cyano, carbonyl functionalities

and halogens in ortho- or para-position to the substi-

tution (see Fig. 5.8).

Suitable leaving groups (LG) are nitro, halogens

and especially trimethylammonium salts as their

triflate, tosylate, perchlorate or iodide [30, 31, 78].

Generally, dimethylsulfoxide is the solvent of choice

for the nucleophilic aromatic substitution, but also

dimethylamide and dimethylacetamide or solvent

mixtures have been found beneficial. The nucleophilic

aromatic substitution usually requires higher energy

than its aliphatic variant, especially in case of the

fluoro-for-nitro exchange. Therefore, the dipolar apro-

tic solvents with higher boiling points are preferred

and the use of acetonitrile is rare.

An example of a nucleophilic aromatic substitution

is the direct 18F-fluorination of the butyrophenone

neuroleptic N-methyl-[18F]fluorospiperone using the

corresponding nitro-precursor which gave a RCY of

~20% (isolated product) after 70 min synthesis time

(see Fig. 5.9) [79]. The aromatic system is activated by

the electron-withdrawing effect of the para-ketone

functionality. However, butyrophenones are base sen-

sitive and the direct 18F-labelling of N-methyl-[18F]

fluorospiperone could be realised only with the less

basic Kryptofix#2.2.2/potassium carbonate/oxalate

buffer system. In the same manner, [18F]haloperidol

[79, 80], [18F]altanserin [81] and p-[18F]MPPF (4-

[18F]fluoro-N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]

n.c.a. [18F]Fluoride

K2.2.2/K2CO3/K2C2O4

N-methyl-[18F]fluorospiperone

O

O2N

N

N
O

N

O

18F

N

N
O

N

Fig. 5.9 Nucleophilic aromatic 18F-fluorination of n.c.a. N-methyl-[18F]fluorospiperone

LG

o-/p-EWG

18F

n.c.a. [18F]Fluoride

o-/p-EWG

EWG = NO2, CN, COR, CHO, COOR, Br, Cl
LG = NO2, Alkyl3N+ (OTs-, OTf-, OCl4

- or I-), Br, Cl, I

Fig. 5.8 Nucleophilic

aromatic substitution using

n.c.a. [18F]fluoride
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ethyl]-N-2-pyridinyl-benzamide) [82, 83] have been

successfully labelled with n.c.a. [18F]fluoride by the

fluoro-for-nitro exchange.

Another possibility for nucleophilic aromatic sub-

stitutions is given by electron-deficient heteroaromatic

systems such as pyridines which do not need further

activating electron-withdrawing groups [84–86]. 18F-

fluoroanalogues of epibatidine have been labelled via

a nucleophilic (hetero)aromatic substitution in the

ortho-position of the pyridinyl group (see Fig. 5.10)

and gave radiochemical yields of 55–65% using the

trimethylammonium triflate leaving group [87–89].

However, the 18F-labelled epibatidines revealed very

toxic [88, 90] and further less toxic 18F-labelled

ligands for the nicotine acetylcholine receptor system

have been developed, again via the nucleophilic

(hetero)aromatic substitution on the ortho-position of

a pyridinyl group [91, 92]. In case of meta-substitu-

tions, the activation of the pyridine is normally not

efficient enough and additional activating groups are

necessary to obtain sufficient 18F-incorporation [86] as

shown by the 18F-labelling of a MAO-B inhibitor in

the meta-position of the pyridinyl moiety using the

fluoro-for-nitro exchange (see Fig. 5.11); 10% RCY

after 120 min total synthesis time [93].

Using the direct nucleophilic aromatic substitution,

several 18F-labelled PET radiopharmaceuticals have

been successfully synthesized including 18F-labelled

butyrophenone neuroleptics [79, 80], [18F]altanserin

[81], [18F]methylbenperidol [94], p-[18F]MPPF [82,

83], [18F]flumazenil [95], 18F-labelled MAO-B inhibi-

tor [93], 18F-labelled epibatidine analogues [87–89]

and further ligands for the nicotine acetylcholine

receptor system (nAChR) [91, 92].

In general, radiolabelling chemistry benefits

from microwave heating which usually dramatically

enhances reaction (labelling) kinetics and provides

products within minutes and often with higher (radio-

chemical)yields [96]. However, the aromatic fluoro-

for-nitro exchange, particularly, benefits usually from

microwave heating and increased radiochemical

yields within markedly reduced reaction times can be

obtained [81, 97, 98].

If an aromatic system is somehow non-activated

or even deactivated (electron-rich) for nucleophilic
18F-fluorination, a possible strategy is the introduction

of auxiliary activating groups transferring the deacti-

vated arene into an activated system. Such supple-

mentary groups or functions need to be removed or

modified after the 18F-labelling which implies a multi-

step radiosynthesis. Aldehydes and ketone functions

are particularly suitable as activating groups as they

can be removed by reductive decarbonylation [99–

101]. This method has been applied for nucleo-

philic 18F-labelling approaches towards n.c.a.

6-[18F]FDOPA which resulted in only 3–5% RCY

1. n.c.a. [18F]Fluoride,
    K2.2.2/K2CO3, DMSO

2. HCl (20%)

N-(2-aminoethyl)-5-[18F]fluoro-
pyridine-2-carboxamide

N

NO2

H
NBocHN

O

N

18F

H
NH2N

O

Fig. 5.11 18F-labelling of N-(2-aminoethyl)-5-[18F]fluoropyridine-2-carboxamide, a MAO-B inhibitor, using nucleophilic (hetero)

aromatic substitution in pyridine’s meta-position

1. n.c.a. [18F]Fluoride,
    K2.2.2/K2CO3, DMSO

2. TFA

Norchloro-[18F]fluoroepibatidine

N

Boc N N(CH3)3OTf

N

H N
18F

Fig. 5.10 18F-Fluoroanalogue of epibatidine. 18F-labelling via nucleophilic (hetero)aromatic substitution
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after a three-step radiosynthesis [102] and towards n.

c.a. 2-[18F]fluoroestradiol which could be achieved

in 10–24% RCY [103].

Another method which allows a direct nucleophilic

aromatic 18F-labelling of deactivated systems is the use

of diaryliodonium or aryl(heteroaryl)iodonium salts

(see Fig. 5.12) [104, 105]. The resulting product distri-

bution after the nucleophilic attack of the n.c.a. [18F]

fluoride strongly depends on the electronic and steric

character of each aryl ring and its substituents, respec-

tively. Generally, the more electron-deficient ring of

the iodonium salt is preferred for the 18F-introduction.

Thus, the use of electron-rich heteroaryl systems as one

iodonium moiety such as the 2-thienyl group leads to a

regioselective 18F-labelling on the counter ring [105].

So far, some attempts of using diaryliodonium salts as

precursors for complex structures towards 18F-labelled

radiopharmaceuticals have been made, but the
18F-labelling of complex structures via diaryliodonium

salts still remains a challenge [103, 106]. One success-

ful example is the PBR ligand [18F]DAA1106 which

was recently 18F-labeled in radiochemical yields of

46% from a diaryliodonium precursor [107].

5.2.2.3 18F-Fluorinations Via Prosthetic Groups

18F-labelling via prosthetic groups is based on small

molecules which are first 18F-labelled and then intro-

duced into appropriate biomolecules [31, 108–110]. As

mentioned before, the direct nucleophilic 18F-labelling

methods which usually provide the 18F-labelled PET

radiopharmaceutical fast and in high RCY are generally

inappropriate for multifunctionalised structures such as

peptides, oligonucleotides or antibodies. For that rea-

son, small organic molecules are labelled with fluorine-

18 using a direct method and subsequently, they are

conjugated to the target structure forming the final 18F-

labelled PET radiopharmaceutical. Principally, both

electrophilic and nucleophilic 18F-labelling are suitable

for the 18F-introduction into prosthetic groups, but due

to high specific activities, higher RCY and better avail-

ability of n.c.a. [18F]fluoride, the nucleophilic methods

clearly outperform the electrophilic procedures.

The prosthetic group: A variety of prosthetic groups

have been developed so far, whereas only limited

methods for their introduction into biomolecules are

available: acylation [111–122], alkylation [123–125],

amidation [126–130], imidation [125], thiol-coupling

[131, 132], oxime-formation [133, 134] and photo-

chemical conjugation [122, 135] (see Fig. 5.13).

Most of the procedures for preparation of prosthetic

groups are multi-step radiosyntheses and with the final

coupling step to bioactive molecules they end as 4–5 –

step radiosynthesis. Furthermore, the methods for

introduction of certain prosthetic groups require cer-

tain functionalities in the target structure and some

suffer from low RCY or poor in vivo stability, but

prosthetic groups are still indispensable, because of

the limitations of direct nucleophilic 18F-labelling.

[18F]SFB: The most commonly applied 18F-labelled

prosthetic group is N-succinimidyl-4-[18F]fluorobenzo-

ate ([18F]SFB) which cannot be obtained in a single step

[116, 117]. Generally, [18F]SFB derives from n.c.a.
18F-labelling of the triflate salt of 4-trimethylammo-

nium-ethylbenzoate yielding 4-[18F]fluorobenzoic acid

([18F]FBA) after basic hydrolysis; in the next step,

[18F]FBA is converted into activated succinimidyl esters

using activating agents like N-hydroxysuccinimidine/

1,3-dicyclohexalcarbodiimide (NHS/DCC) [118],

N,N0-disuccinimidyl carbonate (DSC) [119] or O-

(N-succinimidyl)-N-N,N0,N0-tetramethyluroniumtetra-

fluoroborate (TSTU) [121] to give [18F]SFB. To date,

the TSTU-mediated procedure is the fastest and most

n.c.a. [18F]Fluoride

K2.2.2/K2CO3

[18F]fluoroarene

18F

R

X-

SI+

+

S 18F

X = Br , I , OTs, OTf

R = 2-OCH3, 3-OCH3, 4-OCH3 , 4-CH3, 4-OBn, H, 4-I, 4-Br, 4-Cl

R

Fig. 5.12 Nucleophilic aromatic 18F-labelling of various arenes including electron-rich systems using aryl(2-thienyl)iodonium

salts as precursors
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convenient method to produce [18F]SFB (see Fig. 5.14)

[121]. [18F]SFB can then be coupled to an amino func-

tion of the target structure.

Recently, the Cu(I)-catalysed 1,3-dipolar cycload-

dition between alkynes and azides which is the

most prominent representative of the so-called ‘click

chemistry’ [136] has been applied to fluorine-18

chemistry [137–139]. Very mild reaction conditions

accompanied by high efficiency, high selectivity and

excellent yields make this click reaction particularly

suitable for biological applications as well as for the

synthesis of PET radiopharmaceuticals.
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Prosthetic groups for amidation:
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O
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Fig. 5.13 Examples of prosthetic groups and their application in n.c.a. 18F-labelling of biomolecules. References are given in
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18F-labelled peptide

O O

N+(CH3)3
-OTf

1. [18F]f luoride
    K2.2.2/K2CO3
    DMSO

2. Hydrolysis
   (OH-)

O OH

18F

[18F]FBA [18F]SFB

TSTU

O O

18F

NO O

Peptide
NH2

O NH

18F

Peptide
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As an example, the hexapeptide neurotensin(8–13)

was successfully n.c.a. 18F-labelled using the click reac-

tion of the 18F-alkyne n.c.a. 4-[18F]fluoro-N-(prop-2-
ynyl)benzamide and the azide-functionalised

N3(CH2)4CO-neurotensin(8–13) (see Fig. 5.15) [140].

Under very mild conditions of only 40�C reaction tem-

perature and in borax buffer solution, radiochemical

yields of 66% were achieved within 20 min.

In each individual case, the choice of the prosthetic

group, and therewith the method of conjugation,

depends on the chemical and pharmacological proper-

ties of the target structure. Furthermore, the in vivo

stability of the prosthetic group and the influence

on the pharmacological behaviour of the 18F-labelled

compound has to be considered. In terms of the most

important requirements for prosthetic group 18F-label-

ling, to date, the [18F]SFB group seems to be the most

suitable prosthetic group. However, the wide scope

and the very mild conditions of the 18F-click cycload-

dition have added a new and wide flexibility to the
18F-labelling prosthetic groups.

5.2.2.4 Direct 18F-Labelling of Multifunctional

Molecules

As mentioned above, the method of choice to intro-

duce the 18F-label into structures like peptides is the

use of small 18F-labelled prosthetic groups which

are coupled to the biomolecule (see previous para-

graph). Recently, the first successful approaches of

direct nucleophilic 18F-labelling were reported. Pep-

tides can be selectively functionalised with a highly

activated aromatic system bearing a trimethylammo-

nium leaving group which enables a direct one-step

nucleophilic aromatic n.c.a. 18F-labelling under very

mild conditions [141]. Another new strategy of direct

18F-labelling is based on organoboron and organosili-

con bioconjugates which can be labelled with n.c.a.

[18F]fluoride in one step under aqueous conditions

with high RCY [142–144]. In a similar approach,

organosilicon building blocks were introduced into a

peptide structure and facilitated direct nucleophilic

n.c.a. 18F-labelling of peptides in one step under very

mild aqueous and even slightly acidic conditions with-

out the need for protection group chemistry (see

Fig. 5.16) [145]. Depending on the type of precursor,

either 45% RCY or 53% RCY is achieved after 15 min
18F-labelling of the silane precursor or the silanol

precursor, respectively.

5.2.2.5 18F-Labelled Synthons for Built-Up

Radiosyntheses

The growing number of complex and multifunctional

pharmaceuticals poses a particular challenge to radi-

olabelling methods. Frequently, the target structure is

not suitable for direct 18F-labelling and only an indi-

rect 18F-labelling method can be applied. Besides the

prosthetic group 18F-labelling, the 18F-labelling via

built-up radiosynthesis offers another indirect alterna-

tive [27–31, 86, 146]. Both methods are very similar as

they are based on 18F-labelled small organic molecules

and indeed the lines between them are often blurred.

Generally, the 18F-labelling via built-up radiosynth-

eses using synthons are used in the direction of small

monomeric radiotracers while the 18F-labelled pros-

thetic groups are mostly applied towards 18F-labelling

of macromolecular structures such as peptides or anti-

body fragments. Obviously, the indirect 18F-labelling

methods imply multi-step radiosyntheses of minimum

two steps.
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Fig. 5.15 N.c.a. 18F-labelling of neurotensin(8-13) using click chemistry
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The Synthons: The built-up radiosynthesis approach

is based on small activated organic molecules which

are subsequent to the 18F-fluorination used for a

built-up synthesis of the final target compound. Such
18F-labelled synthons are generally derivatives of

[18F]fluorobenzene or similar 18F-labelled aryls.

Regarding the 18F-introduction they usually bear a

leaving group and an activating group. In addition,

they need to be functionalised towards further coupling

or built-up reactions. Either the activation group is

modified or the synthons bear additional substituents

which provide further derivatisation and allow coupling

reactions. Frequently, the activation group is modified

for following coupling or built-up reaction steps.

[18F]Fluorobenzaldehydes give several possibilities

for built-up syntheses and represent the most versatile

class of synthons. The aldehyde moiety can be easily

transferred into other functionalities. Thus, [18F]fluoro-

benzaldehydes can be reduced to their [18F]fluoro-

benzamines or –amides and subsequently used in

amination reactions towardsN-[18F]fluorobenzylamines

[147–152]. Recently, the AChE inhibitor 5,7-Dihydro-

3-[2-[1-(2-[18F]fluorobenzyl)-4-piperidinyl]ethyl]-6H-

pyrrolo[3,2,f]-1,2-benzisoxazol-6-one (2-[18F]fluoro-CP-

118,954) has been labelled with fluorine-18 via reduc-

tive amination using 2-[18F]fluorobenzaldehyde (see

Fig. 5.17) [152].

Additional useful derivatives from [18F]fluoroben-

zaldehydes are the [18F]fluorobenzyl halides which

can be used as alkylation agents for amino [153–

155], hydroxyl [156] or thiol [156] functions. 2-[18F]

fluoro-4,5-dimethoxybenzaldehyde was prepared from

its trimethylammonium triflate precursor and used as

synthon in a five-step enantioselective radiosynthesis

n.c.a. [18F]Fluoride,
K2.2.2/K2CO3

DMSO (1% AcOH)
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O

HN

ONH

O

NH
O

HN

O

Si
R

18F

R

Fig. 5.16 Direct nucleophilic n.c.a. 18F-labelling of a silicon tetrapeptide
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Fig. 5.17 Reductive amination with 2-[18F]fluorobenzaldehyde forming the AChE inhibitor 2-[18F]fluoro-CP-118,954
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of n.c.a. 6-[18F]fluoro-L-DOPA (see Fig. 5.18) [157,

158]. After reduction of the aldehyde group with

sodium borhydride to the benzylalkohol function, the

treatment with the corresponding hydrogen halide

leads to the 2-[18F]fluoro-4,5-dimethoxybenzyl halide.

N.c.a. 6-[18F]fluoro-L-DOPA was achieved from an

enantioselective coupling with N-(diphenylmethylene)

glycine tert-butyl ester, deprotection and semi-preparative

HPLC in RCY of 25–30% with an enantiomeric

excess of >95%.

Besides the conversion reactions of the aldehyde

group, [18F]fluorobenzaldehydes can also function as

direct reaction partner according to organic carbonyl

chemistry. Prominent representatives of such chemistry

which have also been applied to 18F-radiochemistry are

the Wittig reaction [159], the Horner–Wadsworth–

Emmons reaction [160] and the Knoevenagel conden-

sation [161].

In addition, the electrophilic character of aldehydes

also offers the possibility of nucleophilic additions.

[18F]Fluorobenzaldehydes have also been applied in

nucleophilic additions [162, 163]. In this way, the nucle-

ophilic addition of nitroethane to n.c.a 3-benzyloxy-6-

[18F]fluorobenzaldehyde and following reductive

deprotection led to n.c.a. 6-[18F]fluorometaraminol in

a diastereomeric mixture fromwhich the stereoisomers

could be separately isolated by two subsequent semi-

preparative HPLC purifications (see Fig. 5.19) [164].

In the same manner, also the n.c.a 4-[18F]fluorometar-

aminol was synthesised.

Similar to the carbonyl chemistry of [18F]fluoroben-

zaldehydes, [18F]fluoroacetophenones offer a broad

range of synthetic possibilities [164, 165]. Moreover,

secondary derived synthon/prosthetic group 4-[18F]

fluorophenacylbromide can be conjugated to peptides

and proteins via alkylation reaction or thiol-coupling

reactions [125, 134].

Another group of versatile synthons derive from

the [18F]fluoro-4-haloarenes which can be used in

palladium(0)-catalysed C–C-bond formation reactions
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Fig. 5.19 N.c.a. radiosynthesis of 6-[18F]fluorometaraminol via nucleophilic addition of nitroethane to 3-benzyloxy-6-[18F]

fluorobenzaldehyde
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such as the Stille reaction [166–170], the Sonogashira

reaction [171] and Suzuki cross-coupling reactions

[172] (see Fig. 5.20). Furthermore, 4-bromo and 4-

iodo-[18F]fluorobenzenes have been used in palla-

dium-mediated N-arylation reactions, also referred to

as Hartwig-Buchwald reactions [173, 174]. In addi-

tion, n.c.a. [18F]fluoro-4-haloarenes can also be easily

transferred into reactive species such as Grignard

reagents or into 4-[18F]fluorophenyl lithium which

can be employed in various metalorganic coupling

reactions [175].

Due to their broad applicability, [18F]fluorohalo-

benzenes and their secondary derived 18F-labelling

synthons have become more and more attractive. In

the past decade, several methods for an efficient prep-

aration of [18F]fluorohaloarenes have been developed

and make this class of 18F-labelled synthons readily

available [105, 166, 176–179].

In addition to the most widely used 18F-labelling

synthons [18F]fluorobenzaldehydes, [18F]fluorobenzyl

halides and [18F]fluorohalobenzenes, further primary

and secondary 18F-aryls have been developed and

proven to be useful for 18F-labelling via built-up radio-

synthesis. Accordingly, n.c.a. 4-cyano-1-[18F]fluoro-

benzene or 4-[18F]fluorobenzonitrile was employed

for built-up radiosyntheses of several 18F-butyrophe-

none neuroleptics [180]. On the other hand, it can

also be transferred into the secondary 18F-labelling

synthon n.c.a. 4-[18F]fluorobenzyl amine which can

be used as prosthetic group [130, 132] or further con-

verted into N-4-[18F]fluorobenzyl-a-bromoacetamide

as prosthetic group for the 18F-labelling of oligonu-

cleotides [129]. More in a sense of a prosthetic group

n.c.a. 4-[18F]fluorobenzyl amine was recently used

for the 18F-labelling of the first 18F-labelled folic

acid derivatives [132].
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N.c.a. [18F]fluoronitrobenzenes, which is available

from high-yielding 18F-labelling of the appropriate

dinitrobenzene precursors, can be easily reduced to

the corresponding [18F]fluoroanilines by the use of

common reducing agents such as NaBH4, SnCl2,

N2H2/Pd, H2/Pd-C, BH3 or LiAlH4 [181]. N.c.a.

[18F]fluoroanilines have been employed for the 18F-

labelling of several anilinoquinazolines as epidermal

growth factor receptor (EGFR) ligands [183–185] as

well as for fluorophenylureas [183]. A subsequent

treatment of the 4-[18F]fluoroaniline with nitrites

leads to the 4-[18F]fluorophenyldiazonium derivative

which was used for the preparation of 18F-labelled 5-

HT2 receptor ligands [182].

Since various biologically active compounds bear a

4-fluorophenoxy moiety [186], the secondary synthon

n.c.a. 4-[18F]fluorophenol is of great interest. The first

radiosynthesis of this versatile synthon was based on a

hydrolysis of the 4-[18F]fluorophenyldiazonium salt

[187]. In recent years, new synthetic strategies towards

4-[18F]fluorophenol and several improvements of the

radiosyntheses have made 4-[18F]fluorophenol readily

available for built-up radiosyntheses [188, 189]. Thus,

it was applied for the radiosynthesis of a highly selec-

tive dopamine D4 receptor ligand [190] as well as in a

catalysed variant of the Ullmann ether coupling to

provide 2-(4-[18F]fluorophenoxy)-benzylamines (see

Fig. 5.21) [190].

Finding the right 18F-labelling strategies for new

radiopharmaceuticals is generally limited by the target

structures themselves. Although a variety of
18F-fluorination methods have been developed, many

of them still do not provide the desirable broad appli-

cability and call for very special conditions. Thus,

there is still room for improvement and new develop-

ment of 18F-labelling methods. However, many 18F-

labelled PET radiopharmaceuticals from various clas-

ses of compounds have been prepared and some are

routinely produced and employed in nuclear medicine

practice.

5.2.3 Labelling Methods for Carbon-11

Besides fluorine-18, carbon-11 is the most commonly

used positron emitter for PET radiopharmaceuticals.

Although the short half-life of only 20.4 min of car-

bon-11 does not allow time-consuming radiosyntheses

or the shipment of produced 11C-labelled radiophar-

maceuticals, several important 11C-radiopharmaceuti-

cals are routinely employed in the clinics.

Similar to the requirements for fluorine-18 produc-

tions, the production of carbon-11 can be facilitated

with small medical cyclotrons using protons in an

energy range of 15 ! 7 MeV. The 14N(p,a)11C
nuclear reaction is applied as the general production

method [191]. The reaction is carried out with 14N-gas

targets. Small portions of oxygen (�2%) added to the

target gas cause [11C]CO2 formation and in case of

hydrogen (5–10%) addition, [11C]CH4 is the final

product form [192, 193].

Several further production routes are known for

carbon-11, but generally, they are of much less
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importance than the 14N(p,a)11C reaction [16, 32, 194,

195]. Furthermore, using the 14N(p,a)11C nuclear

reaction, carbon-11 can be obtained in high radio-

chemical yields with high specific activities.
11C precursors: Regarding the two product forms

and thus the two primary 11C-labelling synthons

[11C]CH4 and [11C]CO2, the latter is the most pre-

ferred labelling precursor. [11C]carbon dioxide offers

the possibility of direct 11C-introductions into organic

molecules. Accordingly, [11C]CO2 reacts with pri-

mary amino functions to form [11C]ureas and

[11C]isocyanates [196]. Another direct 11C-labelling

possibility is given by the reaction with organometal-

lic systems. Thus, the treatment of the Grignard

reagents CH3MgBr or CH3MGCl with [11C]CO2

gives [1-11C]acetate which is the most important
11C-labelled radiopharmaceutical derived from direct
11C-carboxylation [197, 198].

Even though the half-life of 20.4 min of carbon-

11 allows only reactions and conversions with fast

kinetics, most 11C-labelling methods are based on

secondary 11C-labelling synthons derived from

[11C]CO2 (see Fig. 5.22) [199]. Along with all the

possible pathways, the ones using [11C]CH3I are the

preferred routes for 11C-labelling. However, [11C]

HCN and [11C]CO are also important 11C-labelling

synthons. Especially, [11C]CO has been proven for its

applicability in palladium- or selenium-catalysed

reactions [200].

‘Wet method’: The first efficient radiosynthesis for
[11C]CH3I was developed by Comar et al. in 1973

[201, 202]. This so-called ‘wet’ method is based on

reduction of [11C]CO2 to [11C]CH3OH by means

of lithium aluminium hydride (LiAlH4) in solvents

such as ethyleneglycol dimethylether, tetrahydrofuran

or diethylether. [11C]CH3OH is then iodinated using

hydroiodic acid or triphenylphosphite ethyliodide (see

Fig. 5.23). Diphosphorous tetraiodide [203] and tri-

phenylphosphine diiodide [204] can also be employed

as iodination agents. Although the ‘wet’ method pro-

vides reliable and high radiochemical yields, it has one

major drawback: the use of LiAlH4. LiAlH4 is a source

of non-radioactive carbon dioxide which in turn brings

in isotopic carrier carbon-12 and thus dramatically

reduces the specific radioactivity of the [11C]CH3I

and the following products.

Dry method: More recently, a new approach to

[11C]CH3I, the so-called ‘gas phase’ or ‘dry’ method

was developed [205, 206]. Starting from [11C]CO2,

hydrogen reduction in presence of a nickel catalyst

provides [11C]CH4 which is passed through a heated

glass tube (~720�C) with iodine vapour for iodination

(see Fig. 5.24). The product [11C]CH3I is trapped on a

Porapak column and after completion of the iodin-

ation, [11C]CH3I is released by heating and a stream

of helium. The iodination process can be performed in

a single pass reaction where the [11C]CH4 slowly

passes the heated glass tube for iodination only once

[11C]CO2 [11C]CH3I[11C]CH3OH
LiAlH4

solvent

IodinationFig. 5.23 Radiosynthesis of

[11C]CH3I according to the

‘wet’ method starting from

primary [11C]CO2

[11C]CH4 

[11C]CH3I

[11C]CH3I

[11C]CO2

[11C]CO
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[11C]CH3OH

[11C]COCl2

[11C]CHCl3 
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Fig. 5.22 Secondary and

further 11C-labelling synthons

derived from the primary

[11C]CO2
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[207] or in a circulation process where the [11C]CH4 is

circularly pumped through the iodination system until

complete iodination [208].

Alternatively, the [11C]CH4 can be produced in situ

in the target and used directly for the iodination pro-

cess. This variant saves one reaction step and

thus time. Furthermore, the in situ production of

[11C]CH4 in the target generally provides higher spe-

cific radioactivity. To date, the highest reported spe-

cific radioactivity of [11C]CH3I was 4,700 GBq/mmol

and was obtained from iodination of in situ produced

[11C]CH4 in a single pass reaction [209, 210]. Due to

that fact, an easier automation of the process and more

convenient ongoing maintenance of the synthesis sys-

tem, the ‘dry’ method almost superseded the ‘wet’

alternative for [11C]CH3I productions. Particularly,

when high specific radioactivity is required as for

PET studies of receptor systems in the CNS,

the ‘dry’ process is the method of choice for the

[11C]CH3I production.

In some cases, [11C]CH3I is not reactive enough for

sufficient 11C-methylation and a more reactive 11C-

methylation agent is needed [211]. Hence, [11C]CH3I

can be converted to the more reactive [11C]CH3OTf

by means of silver triflate at elevated temperatures.

The 11C-methylation with [11C]CH3OTf generally

offers higher RCY in reduced reaction times and at

lower temperatures in comparison to the [11C]CH3I

methylation as it has already been demonstrated for

several important 11C-labelled PET radiopharmaceu-

ticals [212–215].

Generally, 11C-labelling via methylation is per-

formed as N-, O- or S-heteroatom 11C-methylation

using the desmethyl precursors. Accordingly, the

routinely used 11C-labelled PET radiopharmaceuticals

[N-methyl-11C]flumazenil [210, 216, 217], [O-

methyl-11C]raclopride [218, 219] or L-[S-methyl-11C]

methionine [203, 220] are prepared via N-, O- or

S-11C-methylation, respectively (see Fig. 5.25).

Heteroatom 11C-methylation reactions are usually

carried out in solvents such as dimethylformamide,

dimethylsulfoxide or acetonitrile. The 11C-methylation

agents is directly transferred into the solution which

contains the desmethyl precursor and mostly a base

such as sodium hydroxide, sodium hydride, potassium

carbonate or tetrabutylammonium hydroxide. 11C-

[11C]CO2 [11C]CH3I[11C]CH4

H2
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Iodination

I2,~720°C

Fig. 5.24 Radiosynthesis of
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Methylations are normally completed within 10 min

under elevated temperatures.

Solid phase: Over the years, the basic reaction

conditions have not been changed so much, but several

interesting and innovative technical improvements

have been developed. As a consequence, most of the

radiosyntheses of the routinely employed 11C-labelled

PET radiopharmaceuticals can be performed on solid-

phase. As resin or solid phase material, commercially

available C-18 solid-phase-extraction (SPE) car-

tridges can be applied. The cartridges are loaded

with precursor, base and small amounts of solvent

and the 11C-methylation agent is passed through the

cartridge by a gentle stream of nitrogen or helium.

The reactions are normally efficient at ambient tem-

perature and completed after short reaction times.

The 11C-labelled product is eluted from the cartridge

with an appropriate solvent and often it is directly

eluted into a loop of the HPLC system for the

subsequent purification. For example, the 5-HT1A

antagonist [11C]WAY 100635 have been prepared

and isolated within 25 min synthesis time in good

yields of ~40% (related to [11C]CH3I, not decay cor-

rected) [221]. Several important 11C-labelled PET

radiopharmaceuticals have also shown applicability

for solid-phase-supported radiosynthesis [222–224].

Loop method: A further development of the solid-

phase supported radiosyntheses is the so-called loop

method. A conventional HPLC loop is coated with

a film of the precursor solution and the 11C-methyla-

tion agent is passed through by a gentle stream of

nitrogen or helium. Subsequently, the loop content

is washed out and simultaneously injected into

the HPLC system. The method saves reaction time

and reduces the technical assembly to a bare mini-

mum. A variety of 11C-labelled radiopharmaceuticals

can be prepared by this convenient and fast method

[225–229].

Another technical advancement which has recently

entered the PET radiochemistry field is the microflui-

dic radiosyntheses systems. The systems are based on

continuous-flow microreactors and use only micro- or

nanolitre volumes. Some systems have been devel-

oped so far (see Sect. 5.2) and have already been

successfully applied for 11C-labelling of several car-

boxylic acid esters [230].
11C–C bond reactions: [11C]CH3I can also be

applied in 11C–C bond formation reactions. Due to the

short half-life, the most limiting factor is the reaction/

synthesis time of such 11C–C bond formations. None-

theless, there are several examples of C–C bond forma-

tions applied in 11C-labelling using [11C]CH3I. Some

examples can be found for the use of [11C]CH3I in

Wittig reactions as its corresponding triphenylpho-

sphorane [11C]CH2PPh3 [231] or triphenylarsonium

[11C]CH2ArPh3 [232]. Most examples of various 11C–

C bond formation reactions can be found for 11C-

labelled amino acids using methods like enzymatic
11C–C bond formations [233, 234] or enantioselective
11C–C bond formations based on Schiff-base Ni-

complexes as chiral auxiliaries [235, 236]. Further-

more, such multi-step radiosyntheses of 11C–C bond

formations towards 11C-labelled amino acids have

been shown to be transferable into automated synthesis

systems [237]. However, besides amino acids, also sev-

eral other pharmacologically relevant substances have

been 11C-labelled by C–C bond formations [238–243].

Other approaches for 11C–C bond formations are

palladium-supported cross-coupling reactions which

have been developed for various 11C-labelled radio-

pharmaceuticals. The most prominent representatives

of these reaction type are the Stille reaction [244–247],

the Suzuki cross coupling reaction [245, 247, 248] and

the Sonogashira reaction [248, 249]. The Stille reac-

tion is the most intensively employed variant of palla-

dium-catalysed 11C–C bond formations (see Fig. 5.26)

1. [11C]CH3I, Pd2dba3,
P(o-CH3C6H5)3, DMF

2. TFAN

O2N

SnBu3

N

NBoc

N

O2N

11CH3

N

NH

[11C]MNQP

Fig. 5.26 Radiosynthesis of the serotonin transporter ligand 5-[11C]methyl-6-nitroquipazine ([11C]MNQP) using [11C]CH3I in a

palladium-catalysed Stille reaction
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and has proven its applicability for many 11C-labelled

PET radiopharmaceuticals [245–248, 250–254].

Most 11C-labelling procedures are clearly based on

[11C]CH3I as the most versatile 11C-labelling synthon

or precursor. The most convenient methods are the

very fast N-, O- and S-heteroatom 11C-methylation

reactions which can be accomplished even with simple

technical equipment such as a conventional HPLC

loop in case of a [11C]CH3I loop reaction. Further-

more, also multi-step radiosyntheses like 11C–C bond

formations have been proven as useful 11C-labelling

strategy. Particularly, the palladium-promoted 11C–C

bond formations have broadened the applicability of
11C-labelling towards PET radiopharmaceuticals.

5.2.4 Fast Reactions for Oxygen-15
and Nitrogen-13

The half-lives of 2 and 10 min of the extremely short-

lived positron emitter oxygen-15 and nitrogen-13, respec-

tively, allow only very fast conversions without time-

consuming labelling procedures. Moreover, in PET

imaging using 15O- or 13N-labelled radiopharmaceuti-

cals, only simple physiological processes with very fast

kinetics such as perfusion or blood flow can be studied.

The extremely short half-life of oxygen-15 allows

only very fast online reactions in terms of radiochem-

istry. A number of nuclear reactions exist for the

production of oxygen-15, but the most commonly

used method is the 14N(d,n)15O nuclear reaction

[255]. The target material is aluminium and the target

content is a mixture of nitrogen and 0.2–1.0% of

oxygen. An example for such an online reaction is

the preparation of the perfusion tracer [15O]water.

The target release is mixed with hydrogen and passed

over a palladium/activated charcoal catalyst at 200�C
to give [15O]water [256, 257]. Another 15O-labelled

perfusion and blood flow tracer is n-[15O]butanol

[258]. In this case, a solid phase-supported (cartridge

extraction) reaction of tri-n-butylborane and the target

released c.a. [15O]O2 furnishes the n-[15O]butanol.

The radiosyntheses of 15O-labelled PET radiopharma-

ceuticals are restricted to such fast online processes

and the application of 15O-tracers in PET imaging is

limited to perfusion or blood flow studies.

The general production route to nitrogen-13 is the
16O(p,a)13N nuclear reaction [259]. The nitrogen-13 is

obtained in the form of 13N-labelled nitrites

and nitrates, which are subsequently reduced to [13N]

ammonia by titanium(III)chloride or Devarda’s alloy

in alkaline medium [260]. Another method uses addi-

tional ethanol in the target gas as radical scavenger to

avoid nitrite and nitrate formation [261]. This method

leads directly to [13N]ammonia.

[13N]NH3 is a perfusion tracer and the most com-

monly used 13N-labelled PET radiopharmaceutical in

PET imaging. In addition to the direct clinical applica-

tions of [13N]NH3, there are a few examples of
13N-labelled compounds which derive from [13N]NH3,

but generally without clinical relevance. The L-[13N]

amino acids L-[13N]LEU, L-[13N]VAL and L-[13N]

GLU were 13N-labelled via an enzyme-supported

amino acid synthesis and used for investigations of

their pharmacokinetics in the myocardium [262]. The

half-life of 10 min of nitrogen-13 offers a little bit more

flexibility than does oxygen-15, but its half-life is still

unsuitable for extensive radiosyntheses.

5.2.5 Non-standard Positron Emitters

5.2.5.1 Labelling Using Radioiodine

From more than 30 radioactive isotopes of iodine, only

iodine-120 and iodine-124 have suitable properties for

use as PET radionuclides. However, the low abun-

dance of positron emission (56% for 120I and 22%

for 124I), their high positron energies (4.1 MeV for
120I and 2.1 MeV for 124I) and an extensive production

route make them less attractive for routine PET imag-

ing. Significantly more importance in nuclear medi-

cine and general life science have iodine-123 (100%

EC, 159 keV g-line [main]) as SPECT nuclide, iodine-

125 (100% EC, 35 keV g-line [main]) for long-

term in vitro studies and radioimmunoassays and the

b�-emitter iodine-131 as nuclide in radiotherapy of

thyroid gland and tumours. Because of the conve-

nient longer half-life (T½ ¼ 8.02 days), the well-

detectable g-line of 364 keV (85.5%) and the good

availability, 131I lends itself as model isotope for

radiotracer development.

The main pathways for radioiodine labelling can be

classified into four general procedures [10, 263–264]:

� Direct electrophilic radioiodination

� Electrophilic demetallation
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� Non-isotopic exchange (nucleophilic labelling)

� Prosthetic group labelling (indirect method)

5.2.5.2 Direct Electrophilic Radioiodination

The direct electrophilic substitution is the most com-

monly used radioiodination method. A lot of various

techniques are available, which lead to high RCY in

uncomplicated labelling reactions and which can be

often carried out at room temperature. Due to its high

volatility, low reactivity and the need for carrier addi-

tion, molecular iodine (I2) is excluded for the n.c.a.

scale. These problems to achieve reactive electrophilic

species are easily circumvented by an in situ oxidation

of iodide, which is obtained straight from the target.

The generally used oxidants are Chloramine-T (CAT;

para-tosylchloramide sodium), IodogenTM (1,3,4,6-

tetrachloro-3a,6a-diphenylglycouril) and N-halogen-

succinimides.

The exact chemical nature and oxidation state of

the iodinating species are not fully clarified so far. In

case of aqueous solutions with strong acidic condi-

tions, a hypoiodite, and for neutral and alkaline con-

ditions, an iodine-analogue of, for example, CAT are

postulated [265]. Due to the insignificant differences

in their redox potentials, the choice of the proper oxi-

dant is depended on the reaction conditions and the

character of the iodine substrate. CAT allows oxida-

tions in homogeneous aqueous solutions, whereas Iodo-

genTM is insoluble in water and thus it is the proper

substance for a heterogenic reaction route, which is

advantageous for oxidation-sensitive precursors. In the

group of N-halogensuccinimides N-chlorotetrafluoro-

succinimide (NCTFS), N-chlorosuccinimide (NCS)

and rarely N-bromosuccinimide (NBS) are applied

for in situ oxidation [266, 267]. When using NCS in

trifluoromethane sulphonic acid, even deactivated aro-

matic compounds can be labelled with radioiodine in

acceptable RCY [268]. Besides these oxidants, con-

ventional oxidising reagents are in use, such as hydro-

gen peroxide, respectively, peracids [269] and metal

cations (Ag+, Tl3+, Pb4+ and Ce4+) [270]. Rather

unconventional, but also useful are enzymatic [271]

or electrochemical [272] methods for oxidation. As a

disadvantage, the electrophilic radioiodination may

raise the problem of a regio-unselective attack, as a

result of which isomeric derivatives may occur.

5.2.5.3 Electrophilic Demetallation

Contrary to the direct electrophilic procedure, the elec-

trophilic demetallation provides an almost regiospecific

radioiodination. Especially for automated syntheses, it

offers simple purification and isolation of the radio-

tracer and is therefore the first choice. Nonetheless,

the syntheses of the organometallic precursors may

become complex and extensive [273]. Suitable precur-

sors for demetallation radioiodine-labelling are organo-

metallic compounds of thallium [274], boron [275],

mercury [276] and particularly, the organometallics of

the elements of the group IVb. Of these, an exceptional

position is taken by the organotins, which show, many

times, excellent RCY in very short reaction time (few

minutes); generally the RCY increases with Si < Ge <

Sn [277]. Currently, the radioiodo-destannylation is the

most suitable radioiodination procedure and thus is the

most commonly employed method.

5.2.5.4 Non-isotopic Exchange (Nucleophilic

Labelling)

Another labelling procedure for regiospecific radio-

iodine introduction is the non-isotopic exchange.

Non-isotopic exchange is generally Cu(I)-catalysed

and is suitable for electron-rich as well as for electron-

deficient aromatic molecules [278]. In case of iodine-

for-bromine exchange, high specific activities are

available. In Cu(I)-promoted reactions, the readiness

of the displacement follows the nucleofugality of the

halogens (I� > Br� > Cl�). In the Cu(I)-mediated

substitution mechanism, a quadratic-planar complex

was suggested, including Cu(I) as coordinated central

atom, whereby the activation energy for the substitu-

tion process is reduced and the iodine can be intro-

duced [279]. In variations, the Cu(I)-salts are in

situ synthesised by a mild reduction of Cu(II)-salts

(reducing agent: ascorbic acid, bisulphite or Sn(II)-

compounds). Hereby, Cu2SO4 is more applicable

than the use of copper halides, because the formation

of halogenated side products is excluded. One of the

important advantages is the much easier precursor

preparation and their high stability. Moreover, it

is again a highly regiospecific labelling route for

radioiodine. In comparison to the electrophilic radio-

iodination, disadvantages are relatively high reaction

temperatures of up to 180�C and vastly longer reaction
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times up to hours. In given cases, the separation and

isolation of the radiotracer provokes difficulties due to

its chemical and physical similarities to the bromine

precursor.

5.2.5.5 Prosthetic Group Labelling

If molecules are sensitive to oxidative reagents or

functional groups for iodination are lacking, the

above-mentioned direct radioiodination methods fail.

As an alternative, small molecules can be radioiodi-

nated as labelling synthons and subsequently coupled

with the desired compound. This is principally the

same procedure as for the 18F-labelling via prosthetic

groups (cf. Sect. 5.4.3.1).

The first approach on prosthetic groups for radio-

iodination was the so-called Bolton–Hunter reagent,

N-succinimidyl-3-(4-hydroxyphenyl)propionate (SHPP),

an activated ester as labelling synthon for proteins via

coupling with a free amino function, normally of the

amino acid lysine [280, 281]. It is still widely used

for radioiodination of proteins and macromolecules;

thus a 124I-labelled VEGF antibody (VEGF ¼ vascu-

lar endothelial growth factor) for measuring angiogen-

esis was recently radioiodinated via a derivative of the

Bolton–Hunter reagent [282]. The Bolton–Hunter

principle for radioiodination of proteins led to further

developments of prosthetic groups such as methyl-

p-hydroxybenzimidate (Wood reagent) which is an

activated imidate ester and also a versatile and conve-

nient radioiodination synthon [283]. In addition, alde-

hydes, isothiocyanates [284] and activated a-carbonyl
halides [285] are further prosthetic groups for labelling

via free amino functions.

In case of aldehydes, the radioiodo-tyramine-cello-

biose is an important compound which, for example,

was used for labelling monoclonal antibodies [286].

Several other coupling methods of prosthetic groups

with functional groups of proteins or complex mole-

cules are known. Another common example for suitable

functions is the thiol group of cysteine, where appropri-

ate prosthetic groups are malimide derivatives [287].

5.2.5.6 Labelling Using Radiobromine

In case of positron emitting radioisotopes of bromine,

three nuclides are suitable for PET imaging, 75Br

(T½ ¼ 98 min, 75% b+), 76Br (T½ ¼ 16.2 h, 57% b+)
and 77Br (T½ ¼ 57 h, 0.7% b+). Among these nucli-

des, the most preferred one is bromine-76. It has a

longer and more convenient half-life than bromine-75

and a much higher b+-abundance than bromine-77.

Bromine-77 is more attractive for radiotherapy than

for PET imaging as it decays also by Auger electron-

emission [288–291]. It has been demonstrated that

bromine-77 is highly lethal when it is incorporated

into DNA of mammalian cells [289].

In small medical cyclotrons, bromine-76 can be

produced via the 76Se(p,n)76Br nuclear reaction using

a Cu2Se target. The bromine-76 is isolated from the

target by a dry distillation process and usually trapped

in alkaline solution [292]. In the same way as radio-

iodine, for electrophilic demetallation reactions

(mostly destannylations), radiobromine can be easily

oxidised in situ using oxidants such as CAT, NCS

or simply hydrogen peroxide in combination with

acetic acid. As an example, the proliferation marker

[76Br]bromofluorodeoxyuridine has been radiobromi-

nated via in situ oxidation by CAT and electrophilic

destannylation of the corresponding trimethyltin pre-

cursor [293–295]. An alternative radiobromination

method is the nucleophilic non-isotopic exchange.

Again the conditions of nucleophilic radioiodination

reactions are transferable, thus Cu(II)-mediated

exchange reactions are particularly suitable. Accord-

ing to this, a 76Br-labelled derivative of epibatidine

was synthesised for PET imaging studies of the nico-

tinic acetylcholine receptor system [296].

In general, radiobromine is less available than radio-

iodine, due to more complicated target work-up and

isolation procedures. In the radiochemistry of radiobro-

mine, methods from radioiodine labelling can often be

directly adopted and the radiochemistry is more conve-

nient to accomplish than fluorine-18 labelling. Predom-

inantly, the electrophilic destannylation reactions are

employed for radiobromination chemistry. However, a

few 76Br-labelled radiopharmaceuticals have been

developed to date [294–301], but they have only little

relevance in clinical PET imaging.

5.2.5.7 Complexes for Labelling with Metallic

PET Radionuclides

Among the metallic positron emitters which are suit-

able for PET imaging, the production routes can be
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divided into cyclotron-produced nuclides such as

copper-64, titanium-45, yttrium-86 or zirconium-89

and generator-produced nuclides such as gallium-68,

rubidium-82, or copper-62. The main advantage of the

latter is clearly their availability which is not limited

to facilities with an on-site cyclotron. Gallium-68 (T½
¼ 68 min) is available from the 68Ge-68Ga generator.

In a similar manner, rubidium-82 (T½ ¼ 1.3 min) can

be obtained from the 82Sr-82Rb generator and copper-

62 (T½ ¼ 10 min) from the 62Zn-62Cu generator.

Especially, gallium-68 has more and more drawn the

attention of radiopharmaceutical research, due to its

favourable nuclear characteristics.

In terms of radiochemistry, labelling with metallic

nuclides is based on chelatoring systems which are

coupled to biomolecules or which have interesting

biological properties themselves. Prominent examples

of chelating systems for gallium-68 are DOTA

(1,4,7,10-tetraazacyclododecane-N,N0,N00,N000-tetraace-
tic acid), NOTA (1,4,7-triazacyclononane-N,N0,N00-
triacetic acid) and DFO (desferrioxamine-B) (see

Fig. 5.27). The latter was used as an octreotide conju-

gate forming a 68Ga-labelled octreotide derivative for

tumour imaging of somatostatin receptor-positive

tumours [302]. Octreotide was also 68Ga-labelled

using the DOTA and the NOTA system; however, of

these, the most promising candidate is the DOTA con-

jugate [68Ga-DOTA, Tyr3]octreotide ([68Ga]DOTA-

TOC) [26, 303–305].

In a similar manner, radiocopper forms complexes

such as Cu-PTSM (pyruvaldehyde-bis(N4-methy-

thiosemicarbazone)) or Cu-ATSM (diacetyl-bis(N4-

methylthiosemicarbazone)) (see Fig. 5.28) [306–309].

These Cu-complexes are both employed in the clinics.
62Cu-labelled PTSM is used as perfusion and blood

flow agent for heart and brain, whereas 62Cu-labelled

ATSM has been shown to accumulate in hypoxic

tumour cells.

5.3 Conclusions

A variety of labelling methods has already been devel-

oped, but some methods are only suitable for certain

radionuclides and they are often limited in their app-

licability. On the other hand, more and more molecules

of biological or pharmacological interest are dis-

covered and pose new challenges to radiolabelling and

radiochemistry. Consequently, the development and
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improvement of new labelling strategies and methods

for PET radiopharmaceuticals are of paramount interest.

In particular, the expansion of the labelling methods for

fluorine-18 as the most commonly used and preferred

radionuclide in PET imaging are of great importance.

However, many PET radiopharmaceuticals have

been developed and a few of them found the way

into clinical routine. PET chemistry forms the basis

of PET radiopharmaceuticals and PET imaging and

will always be a major contributor to the success of the

growing field of this molecular imaging modality.
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