
Quantitative Cardiac SPECT Imaging 15

Magdy M. Khalil

Contents

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

15.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

15.3 Quantitative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

15.3.1 Quantitative Gated/Perfusion SPECT . . . . . . 314

15.3.2 Emory Cardiac Toolbox . . . . . . . . . . . . . . . . . . . 314

15.3.3 4D-MSPECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

15.3.4 Pfast Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

15.3.5 MultiDim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

15.3.6 Gated SPECT Cardiac Quantification . . . . . . 316

15.3.7 Left Ventricular Global Thickening

Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

15.3.8 Layer of Maximum Count . . . . . . . . . . . . . . . . . 317

15.3.9 Cardiac Function Method . . . . . . . . . . . . . . . . . . 317

15.4 Quantification of Perfusion Abnormality . . . . . . . . 318

15.4.1 Summed Perfusion Scores . . . . . . . . . . . . . . . . . 319

15.4.2 Percent Abnormality . . . . . . . . . . . . . . . . . . . . . . . 320

15.4.3 Generation of Normal Limits . . . . . . . . . . . . . . 320

15.5 Quantification of Myocardial Function . . . . . . . . . . . 321

15.5.1 Gated Cardiac SPECT . . . . . . . . . . . . . . . . . . . . . 321

15.5.2 Acquisition and Processing . . . . . . . . . . . . . . . . 322

15.5.3 Volumes and EF Estimation . . . . . . . . . . . . . . . 323

15.5.4 Regional Function . . . . . . . . . . . . . . . . . . . . . . . . . 323

15.5.5 Diastolic Function . . . . . . . . . . . . . . . . . . . . . . . . . 324

15.5.6 Phase Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

15.5.7 Tomographic ECG-Gating

in Equilibrium Radionuclide

Angiocardiography (ERNA) . . . . . . . . . . . . . . . 325

15.5.8 Transient Ischemic Dilation . . . . . . . . . . . . . . . . 326

15.6 Factors Affecting Gated SPECT . . . . . . . . . . . . . . . . . . 326

15.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

15.1 Introduction

Nuclear cardiac imaging is a typical example that

image quantitation has an important role in data inter-

pretation and patient diagnosis. Reproducible and reli-

able image quantitation relies on robust techniques

and well-designed computational algorithms. This in

great part related to computer technology and various

image-processing tools. However, the principal moti-

vation for computer analysis is to evaluate an attribute

of the image as a metric in an algorithmic manner,

independent of observer bias or variability [1].

Tl-201 was one of the radionuclides that received

initial attention in cardiac scintigraphy due to its anal-

ogous properties to potassium ions. It was commer-

cially available in 1976 and utilized in patients with

intermediate likelihood of coronary artery disease

(CAD) and after that for risk stratification in patients

with known or suspected CAD [2]. Image quantitation

in myocardial perfusion imaging has passed through

several steps to reach the state-of-the-art quantitation

strategies seen today. Planar myocardial thallium-201

scintigraphy was the common mode of data acquisi-

tion before the advent of tomographic imaging. In

that imaging procedure, a number of planar views

were sequentially acquired and were known as stress

and redistribution images and acquired immediately

(10-min), 2–4 h, and 6–24 h poststress using mainly

three planar views: anterior, anterior, 45� and 70� left
anterior oblique.

Due to the planar nature of the images and absence

of correction techniques for attenuation, scatter, and

resolution compensation, images were interpreted

with significant loss of spatial and contrast resolution.

These degrading factors along with extracardiac tissue

activities served to reduce the overall accuracy of the

test. While the images were subjectively interpreted
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for possible myocardial ischemia, this was limited by

intra- and interobserver variability, and there was early

recognition for automated techniques to reproducibly

assist in image quantitation. One of the initial approaches

devised to quantify the myocardial planar images was

based on generating linear intensity profiles of the

early and late Th-201 images providing temporal and

spatial representation of the tracer distribution. The

method simply depended on coregistering the two

data sets and reduction of the 2D images into horizontal

count profiles [3]. Another approach was proposed to

use a count circumferential profile to quantify the tracer

uptake based on radial lines drawn from the center of

the heart toward the myocardial walls at certain angular

intervals [4]. Both methods are shown in Fig. 15.1.

The advent of tomographic imaging and its intro-

duction in routine nuclear medicine has significantly

improved image contrast by removing the underlying

and overlying undesired structures. This has made

marked improvements in image quality especially,

after approval of Tc-99m-based myocardial tracers.

The introduction of Tc-99m-labeled compounds

and the increase in the number of detector heads

have also improved the statistical quality of the

acquired images. Unlike Tl-201, with Tc-99m-labeled

tracers, a longer time between injection and imaging

is permitted. In addition, a relatively large dose can be

administered, which is translated into a situation of

high count rate and improved lesion detectability.

Tc-99-based compounds also allow performing elec-

trocardiograph (ECG)-gating myocardial perfusion

with substantial improvement to count statistics and

identification of true perfusion defects from those

induced by attenuation artifacts.

Further improvements to the diagnostic perfor-

mance of scintigraphic myocardial perfusion images

were achieved by adding x-ray computed tomography

(CT) to single-photon emission computed tomography

(SPECT) imaging in a new hybrid SPECT/CT or

PET/CT devices (discussed in Chap. 10). Anatomically

guided perfusion interpretations have opened a new

gate for enhancing the diagnostic capability of SPECT

imaging in providing more insights as well more infor-

mation about the stenosed vessels and the affected

myocardium.

SPECT and positron emission tomography (PET) are

the two tomographic techniques that provide three-

dimensional (3D) or four-dimensional (4D) information

about heart function and perfusion/metabolism. Many

factors have been associated with the development of

nuclear cardiac imaging since its introduction in the

field. Some of these are availability of radiopharmaceu-

ticals, fast computer processors, and imaging devices

with good characteristic performance. These develop-

ments have more progressed in the recent past because

of several features, which are summarized as follows:

1. Advances in computer technology, including high-

speed processors, storage media, and large-capacity

memory chips have facilitated the development of

various image-processing tools, providing robust

data analysis, reliable data quantitation, and better
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Fig. 15.1 Early methods for

image quantitation in

myocardial perfusion Tl-201

scintigraphy. (a) The

quantitation is based on the

peak activity determined from

a series of linear horizontal

profiles drawn over the

myocardium while in (b) is

based on collecting a number

of circumferential radial

profiles taken from a user

specified centre and then

constructed into a line profile
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image display. Another remarkable outcome was

the introduction of iterative reconstruction into the

clinic, where reconstruction time was a limiting

factor due to unavailability of powerful computer

systems.

2. The recognition of image-degrading factors and

their impact on image quality and quantitative accu-

racy have motivated researchers to develop and

introduce new correction strategies able to enhance

the diagnostic performance of cardiac protocols.

3. The practical implementation of resolution recov-

ery in cardiac studies has been shown to influence

significantly the acquisition time, the amount of the

injected dose, or both.

4. New camera designs with or without semiconductor

technology dedicated to cardiac imaging are rela-

tively a new trend by which better image quality,

patient convenience, and comfort as well as scanner

throughouput can be realized.

5. The relatively recent introduction of SPECT/CT

systems has improved the performance of attenua-

tion correction and added a diagnostic value to

myocardial perfusion imaging by providing more

insights into the anatomy of coronary vessels in

addition to calcium scoring and more information

beyond that.

6. Molecular cardiac imaging has also become an

interesting area of research and development and

will exploit the potential diagnostic capabilities of

radionuclide cardiac SPECT and PET tracers.

7. This last feature has encouraged a number of

research groups as well as industry to manufacture

multimodality small-animal imaging devices of

superb spatial resolution and adequate sensitivity

that could help to identify and elucidate the mole-

cular aspects of cardiovascular disorders.

15.2 Data Acquisition

SPECT myocardial perfusion imaging has been a well-

established diagnostic technique in assessment of

patients with suspected or known CAD. In cardiac

SPECT studies, two data sets are usually acquired:

stress and rest images. The former are obtained by

exercising the patient using a treadmill or by a pharma-

cological stress agent. The radiopharmaceutical is

injected at peak exercise to be an indicator of occluded

vessels when the patient undergoes tomographic scan-

ning. The rest study is performed after injection with

the patient in complete resting conditions on the same

or a different day. The imaging protocol differs among

institutions such that rest and stress examinations can be

performed on the same day using the same radionu-

clide, such as Tl-201 (stress/redistribution), or Tc-99m-

labeled compounds (stress/rest or rest/stress). Another

protocol involves performing the stress and rest studies

on two different days. The other option is to inject

the patient with two different tracers (rest Tl-201/stress

Tc-99m); the imaging procedure is performed the same

day using an appropriate energy window setting.

Data acquisition is carried out by a rotating gamma

camera equipped with one, two, or three detectors

encompassing a rotational arc of at least 180�. Data
reconstruction is usually performed using the analytical

filtered backprojection algorithm or iterative recon-

struction, with a smoothing low- pass filter applying

an appropriate cutoff frequency and order.

As mentioned, the cardiac images are subjectively

interpreted based on visual assessment of tracer distri-

bution within different myocardial segments and

depiction of hypoperfusion extent and severity.

Although this is the gold standard approach, it remains

influenced by interobserver and intraobserver variabil-

ity along with the expertise of the reading staff. To

reduce this variability and standardize the uptake

of the tracer by the various segments, a number of

software programs have been developed to aid and act

as a second observer in the reading session. These

methods vary in their theoretical assumptions; geomet-

ric modeling of the left ventricle (LV); 2D versus 3D

approaches; thresholding and segmentation; valve defi-

nition and apical sampling, degree of automation and

user intervention; whether count-based or geometric-

based; or a combination of these options.

Examples of the commercially available programs

are Quantitative Perfusion and Gated SPECT (QPS/

QGS, Cedars-Sinai Medical Center, Los Angeles,

CA); Emory Cardiac Toolbox (ECTb, Emory Univer-

sity, Atlanta, GA); 4D-MSPECT, which was developed

at the University of Michigan Medical Center; Gated

SPECT Cardiac Quantification (GSCQ, Yale, New

Haven, CT) method; and others. These methods were

evaluated in the literature and some found wide-spread

and clinical acceptance among users in quantifying

and displaying myocardial perfusion and functional

parameters.
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There are also some software tools developed to aid

in image interpretation or to determine the quality of

study interpretation. Some rely on artificial intelligence

such as neural networks and case based approaches to

provide increased confidence to the reading physician.

Expert systems were also developed to mimic human

experts and to rely on a knowledge base of heuristic

rules to yield a computer-assisted patient diagnosis. In

these approaches, the polar map or the reconstructed

images are used as inputs for reading and quantifying

the myocardial images.

15.3 Quantitative Methods

15.3.1 Quantitative Gated/Perfusion
SPECT

Thie QGS/QPS method was introduced to sample, ana-

lyze, and quantify the myocardium using an ellipsoidal

model [5, 6]. Data samples are extracted using

equally spaced points in the longitudinal and latitudinal

directions. Myocardial sampling is implemented by

averaging the wall counts from the endocardial to

epicardial borders rather than using the maximal

pixel count along the radial profile [7]. By fitting the

normal rays on the midmyocardial surface using

asymmetric Gaussian functions, the endocardium and

epicardium are estimated by certain percentages (i.e.,

65%) of the standard deviation (SD) of the Gaussian

fit. The peak of the Gaussian function is used to locate

the midmyocardial point. For outlining myocardial

areas of poor tracer uptake, the SDs are combined

with those of each of its four spatial neighboring

profiles. Further refinement is then applied by anato-

mical constraint of constant myocardial volume

throughout the cardiac cycle [5]. This approach sam-

ples the myocardial points in a 3D ellipsoidal model

through equally spaced points, regardless of the heart

size; therefore, homologous points can be extracted

and pooled to generate normal limit values. Due to

finite sampling, the collected points are scaled to rep-

resent the curvature of the myocardium from which

they are extracted [5]. This approach was developed

by Cedars Sinai Medical Center in an integrated soft-

ware package. An output display of the program is

shown in Fig. 15.2.

15.3.2 Emory Cardiac Toolbox

The Emory Cardiac Toolbox (ECTb) method works

in 3D space and uses the short-axis data set [8, 9].

The ECTb method uses Fourier analysis for wall-

thickening estimation and detects a circumferential

maximum count profile by applying an anatomically

based model accounting for wall thickening to gener-

ate theoretical endocardial and epicardial surfaces

[8, 10]. The software package integrates myocardial

perfusion and function in one application. The pro-

gram is automated with the possibility to change the

short-axis radius and center. Data sampling is per-

formed on the SPECT short-axis slices using a hybrid

cylindrical-spherical coordinate system. Cylindrical

geometry is used to sample the middle and basal part

of the myocardium; the myocardial apex is sampled

based on spherical modeling. The center of the coor-

dinate system is the LV long axis, and the search space

is limited by the LV radius, apex, and base. The valve

plane is defined by two intersecting planes: one per-

pendicular to the LV long axis in the lateral half of

the LV and one angled plane in the septal half of the

LV. The program uses eight frames per cardiac cycle

in gated myocardial perfusion SPECT studies. In case

of contouring a perfusion defect, the algorithm forces

the hypoperfused segment to be a smooth connection

between adjacent noninfarcted portions of the wall,

and because this segment is not thickening, it is pinned

to its end diastolic positions [8].

15.3.3 4D-MSPECT

4D-MSPECT is a commercially available algorithm

that was developed at the University of Michigan

Medical Center [11, 12]. The algorithm works to pro-

cess the data on the basis of a 2D gradient image from

which the initial estimates of the ventricle are made.

A series of 1D and 2D weighted splines are used to

refine the endocardial and epicardial surface estimates.

The 4D-MSPECT model also uses a cylindrical-spher-

ical coordinate system for myocardial sampling. The

former is used to sample the myocardium from the

basal wall to the distal wall, and the latter is used to

sample the apex. Weighted spline and data threshold-

ing are used to refine surface estimates, and based on
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Gaussian fitting, myocardial wall position and thickness

are estimated. It has the capability for manual proces-

sing when the automatic module fails to accurately

delineate the myocardial boundaries. 4D-MSPECT

has achieved good correlations with reference techni-

ques in evaluating the myocardial functional para-

meters [13]. Unlike QGS and ECTb, 4D-MSPECT

differs in defining the valve plane in the sense that it

permits the mitral valve plane to move as much as 20

mm inward toward the apex during systole [14]. A

snapshot of 4D-MSPECT is shown in Fig. 15.3.

15.3.4 Pfast Method

pFAST stands for Perfusion and Functional Analysis

for Gated SPECT (pFAST; Sapporo Medical Univer-

sity, Sapporo, Japan) [15, 16]. In this method, the

gravity center of each short-axis image is initially

determined. A long-axis central line is then identified

along all gated long-axis images. Spline curves and a

threshold of 30% are used to define the LV base and

the epicardial outlines to calculate the maximum cir-

cumferential profiles. The epicardial surface is defined

as the outer point with 50% of peak activity, which

shows a definite viable myocardial mass. Endocardial

volume is estimated using a geometric technique.

More refinements are performed to precisely deter-

mine the endocardial points using Fourier approxima-

tions. Finally, the ejection fraction (EF) is determined

from the standard EF formula.

15.3.5 MultiDim

MultiDim (Stanford University Medical School) is a

3D method based on calculating statistical parameters

of count distribution moments from the short-axis

image volume [17, 18]. The method requires some

Fig. 15.2 Quantitative gated/perfusion SPECT method
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operator intervention for masking the LV and image

thresholding. Masking is performed by manually

fitting an ellipsoidal mask around the LV. Threshold-

ing is performed by drawing a region of interest at the

base of the LV cavity at end diastole and subtracting

the mean value from each pixel [19]. Count sampling

is carried out by radial profiles originating from

the LV center using equally spaced longitudinal and

latitudinal angles across the short-axis images. The

endocardial wall is defined as the maxima of the first

derivative of the squared activity profiles. Regional

wall motion is derived from the phase and amplitude

of the cyclic wave, representing the temporal variation

of the first moment of the count distribution. However,

the regional thickening is derived from the phase

and amplitude of changes in the second moment of

the density distribution multiplied by the maximum

density. The volumes are calculated from the endocar-

dial surfaces for each time segment [18].

15.3.6 Gated SPECT Cardiac
Quantification

Gated SPECT Cardiac Quantification (GSCQ) is

another method that is based on k-means cluster clas-

sification to separate the cardiac region from other

extracardiac structures [20]. The myocardial surface

boundaries are determined using hybrid count-geometric

analysis for the calculation of the LV volumes and EF.

The method uses thresholding and the nongated data to

determine a cutoff value that serves to separate the LV

volume. More refinements and constraints are carried

out to remove the small remaining volumes within the

image and to accurately define and obtain a clean long-

axis LV binary image [21]. The long-axis images are

resliced to obtain the most apical and basal slices in

addition to the myocardial apex. The first apical slice

is defined as the first short-axis slice containing the LV

Fig. 15.3 4D-MSPECT
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cavity, while the position of the last basal slice is

defined as the last short-axis slice containing the

basal limit of septum plus 10 mm toward the LV

base. The algorithm models the apex as a semiellip-

soid in 3D space [21].

15.3.7 Left Ventricular Global Thickening
Fraction

The left ventricular global thickening fraction

(LVGTF) is a count-based method that relies on frac-

tional myocardial thickening to derive the EF, thereby

avoiding the step of calculating the LV volumes

[22, 23]. It depends on detection of myocardial wall

thickening during systolic contraction. The method

heavily depends on the partial volume effect, in

which the myocardial wall thickness is less than

twice the spatial resolution of the imaging system.

The pixel counts in end diastolic and end systolic

images are used to quantify the myocardial thickening

without edge detection or geometric measurements.

However, the method uses the systolic and diastolic

counts in addition to geometric assumptions to derive

a regional thickening fraction and hence to calculate

the LV EF [22].

15.3.8 Layer of Maximum Count

Layer of Maximum Count (LMC) method is a differ-

ent approach that uses the prolate-spheroid geometry

to sample the myocardium; it was developed to solve

the problem of small hearts [24, 25]. In patients with

small hearts, most of the currently available methods

tend to underestimate the LV and overestimate the EF.

The midmyocardial surface is defined by the LMCs to

determine the corresponding EF (i.e., EFmax). The

LV EF is then calculated by performing a calibration

between the EFmax and EF estimated from a reference

technique, setting the intercept to zero to calculate the

regression slope, which is then used to measure the EF

in patients with small LVs [25–27]. The method

has been evaluated in a population with small hearts

versus other quantitative methods using gated blood

pool and echocardiography as reference nuclear

and nonnuclear techniques, respectively. In the former

situation, the LMC outperformed the other methods

with moderate correlation and poor interchangeability

with gated blood pool studies in patients with small

LV. However, in comparison to echocardiography the

same method showed a lower correlation but signifi-

cant in the measurements of EF in patients with

normal LV size. A drawback of the method is its

dependency on other accurate techniques to derive

a calibration factor required to estimate the EF for

small LVs.

15.3.9 Cardiac Function Method

The cardiac function method (CAFU; Exini Diagnos-

tics, Sweden) is a nongeometric model-based tech-

nique that uses an active shape algorithm [28].

Identification and delineation of the LV is based on a

heart-shaped model, and through an iterative process

the model is adjusted to optimize the fit with the image

data. The algorithm uses 272 landmarks distributed in

17 layers from apex to base with 16 landmarks in each

layer [29]. These landmarks are also utilized to give an

estimate of myocardial wall motion and thickening. In

the former, the normal distance from the landmark to

the myocardial surface in both end diastolic and end

systolic wall is measured, while thickening calculation

is a count ratio for the landmarks in both end diastolic

and end systolic frames. The LV volume is calculated

using the endocardial surface and the LV valve plane

with no constraint placed on basal wall motion [28, 29].

Most of the commercially available quantitative

cardiac SPECT methods integrate myocardial perfu-

sion and function in the same software package, and

some have more quantitative and display features for

multimodality and image fusion using SPECT, PET,

and CT images. Quality assurance tools that allow the

user to identify patient motion, artifacts, count density,

gating problems, attenuation correction, LV segmen-

tation and identification of myocardial boundaries, and

other volumetric problems have also been embedded

in these algorithms. Among those are raw data display,

histogramming, valve plane fine-tuning, fusion con-

trols, as well as measures of quality of gated SPECT

studies. One of the display features of multimodality

imaging is the possibility of aligning the CT vascular

coronary tree on the 3D PET or SPECT functional

data so that functional perfusion mapping can be
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visualized, with superimposition of coronary anatomy

providing additional diagnostic information.

15.4 Quantification of Perfusion
Abnormality

One of the earliest approaches introduced to quantify

the distribution of myocardial activity in cardiac

tomography was reported more than two decades ago

[30]. This approach was based on quantifying the

3D activity distributions within the myocardium into

a 2D polar map or “bull’s-eye.” The polar map is

constructed through modeling the myocardium into a

cylindrical and spherical coordinate system as men-

tioned in this chapter. Sampling the counts from the

cylindrical part is implemented by drawing radial pro-

files from the center of the short-axis image normal to

the myocardial wall (36–60 radial profiles). The maxi-

mal pixel count is recorded for each profile and plotted

versus the corresponding angle to produce count

circumferential curves. The apical portion of the myo-

cardium is sampled by vertical long-axis slices to

minimize the effect of partial volume. Sampling the

apical portion of the myocardium is illustrated in

Fig. 15.4 using different sampling approaches.

The count circumferential profiles are used to con-

struct the polar map, which consists of concentric

annuli representing the LV from the apex to the base.

Furthermore, a scaling process is performed of the

sampled myocardium so that the number of data points

remains constant for all patients. However, the polar

map distorts the heart shape, size, and geometry [31].

To determine the variability and normal limits of

the tracer distribution in the myocardium, a normal

database is generated based on normal patients or

patients with low pretest likelihood (<0.5%) of

CAD. The mean value and SD are calculated from

the circumferential profile of the normal data set with

determination of a threshold value for segmental

abnormality.

Polar maps provide quantitative measures of defect

extent and severity. In QGS, myocardial sampling is

not based on a circumferential profile drawn normally

on the LV surface; the entire LV is modeled as a 3D

structure with a standard number of equally spaced

points regardless of the LV size [7]. In ECTb, the

actual defect extent is calculated from the 3D activity

distribution rather than from the polar map representa-

tion [9]. It is presented as a percentage of the abnor-

mality with respect to the total myocardial volume,

individual vascular territories, or actual mass of the

hypoperfused myocardium.
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Fig. 15.4 Various methods

used for sampling of

myocardial apex in

quantitative cardiac SPECT.

(c) and (d) is one of the earlier

methods used to sample the

mid- and basal myocardium in

addition to spherical sampling

of myocardial apex
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To localize the extent of the defect and to pinpoint

the location, myocardial segments below a defined

threshold are colored black while maintaining the

color of the normal ones [32]. Defect severity is

expressed in units of SD below the normal mean by a

measure called defect severity or total severity score

and is displayed in a polar representation referred to as

a defect severity map. On this map, severity is scaled

by the number of SDs below the normal to a color-

coding table so that the most normal region and

most abnormal region are differently colored to easily

identify the abnormality. Severity score also takes into

account the extent and severity of the abnormality and

is measured by the number of SDs below the mean of

the entire extent of the abnormality [33].

Polar maps have been a simple tool to reduce

the whole LV into a 2D image that facilitates the

interpretation process by looking at all segments

at once. It also provides a measure of defect revers-

ibility based on normalizing the rest images with

respect to the stress images and color-coding scheme.

However, volume-weighting and distance-weighting

approaches serve to improve one feature over another.

The former map tends to distort the defect location but

offers an accurate assessment of the defect size. The

latter tends to distort the defect size at the cost of

improving the accuracy of the defect location. It is

therefore recommended not to solely depend on a

polar map without paying attention to tomographic

slices [34]. Partial and significant reversibility can

be determined based on certain percentages of the

defect extent. Moreover, measurements of ischemic

or scar fractions for a given perfusion defect can be

calculated in addition to assessment of myocardial

viability [35].

15.4.1 Summed Perfusion Scores

Another semiquantitative approach used to quantify

tracer uptake is implemented by dividing the myocar-

dium into 20 segments or the recommended 17

segments [36]. The perfusion of each segment is

scored according to a 5-point scoring system: 0–4

(0 ¼ normal, 1 ¼ equivocal reduction, 2 ¼ definite

but moderate reduction, 3 ¼ severe reduction of tracer

uptake, 4 ¼ absent uptake of radioactivity). The

global measure of perfusion is then determined by

summing the regional scores of all segments in stress

and rest data. This scoring process results in a

Summed Stress Score (SSS) and a Summed Rest

Score (SRS). The difference between SSS and SRS

is the Summed Difference Score (SDS), which is anal-

ogous to reversibility. High values for the SSS are an

indication of large or severe defects, whereas high

values of SDS provide an indication of reversibility

and lower values indicate fixed or mostly fixed

defects. The SRS is related to the amount of infarcted

or hibernating myocardium [37]. (see Table 15.1).

These global perfusion summed scores provide a

reported measure for both defect extent and severity,

and they can be calculated either visually or by com-

puter-based methods. Reproducibility and diagnostic

performance have been reported in a number of stud-

ies, including those automated and conducted by

human observers [38]. The SSS is employed to stratify

patients into different risk groups according to the

following: Individuals with SSS < 4 are considered

normal or nearly normal, those with scores of 4–8 are

mildly abnormal, those with scores of 9–13 are mod-

erately abnormal, and those with SSS > 13 are

severely abnormal.

Table 15.1 Summary of perfusion scores and percent abnormal myocardium in 17 and 20 segment model (Adapted from Fuster V,

O’Rourke RA, Walsh RA, Poole-Wilson P. “Hurst’s The Heart,” 12th edn. 2007)

Perfusion index Definition Significance

Summed Stress Score (SSS) Total segmental scores of stress images Amount of infracted, ischemic, or jeopardized

myocardium

Summed Rest Score (SRS) Total segmental scores of rest images Amount of infracted or hibernating myocardium

Summed Difference Score (SDS) Difference between SSS and SRS Amount of ischemic or jeopardized myocardium

20 segment model 17 segment model

Percent total SSS � 100/80 SSS � 100/68

Percent ischemic SDS � 100/80 SDS � 100/68

Percent fixed SRS � 100/80 SRS � 100/68
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15.4.2 Percent Abnormality

Another global measure of perfusion abnormalities is

calculated by normalizing the summed scores to the

maximal possible score. In case of the 17-segment

model and 5-point scoring system, the maximal possi-

ble score is 17 � 4 ¼ 68 whereas for the 20-segment

model it can be calculated as 20 � 4 ¼ 80 (Table 15.1).

This percentage measure is called the percentage

abnormal myocardium and is applicable to other scor-

ing systems and different myocardial segments. For

example, a patient with summed scores of 17 in the

17-segment model will have a percentage abnormality

of 17/68 ¼ 40%, which bears diagnostic and prognos-

tic information similar to a patient with summed scores

of 20 in the 20-segment model (20/80 ¼ 40%) [39].

Expressing the amount of ischemia as percentage

myocardium by this approach provides intuitive impli-

cations that are not possible with the perfusion scoring

system and is applicable to other segmental models and

other methods that calculate the percentage of abnormal

myocardium [40]. Figure 15.5 shows a comparison

between the 17- and 20-segment models.

15.4.3 Generation of Normal Limits

Different schemes were developed to generate normal

databases to distinguish abnormal from normal

patients in the quantification approaches mentioned.

Some of these provide user-specified generation tools

for normal limits that are incorporated in the software

program with several options for myocardial radio-

tracer, patient gender, imaging protocol, processing

parameters, and so on.

The Emory method is based on collecting a number

of patients with a low likelihood of CAD (<0.5%) and

deriving a composite pool to extract the mean and SD

of the normal limits. Then, a patient study is compared

to the normal database to examine and assess the

perfusion defects. This approach goes through a num-

ber of steps to optimize the threshold value, which is

then used to quantify perfusion abnormality in a given

patient study. It has specific inherent characteristics,

making it dependent on the injected radiopharmaceu-

tical, acquisition protocol, processing parameters,

and population studied. It needs a number of normal

patients (20–30) or low likelihood of CAD from both

genders, another group of patients with significant

variation in perfusion location and severity “pilot pop-

ulation,” and a validation group of patients to assess

the performance of the algorithm in both genders with

reported coronary angiography [41, 42]. Thus, approx-

imately 150 patients are required to establish a normal

database.

The group at Cedars Sinai (Los Angeles, CA)

developed quantification techniques that are based on

various assumptions. One requires a number of normal

patients along with another group of patients with a

wide range of perfusion abnormalities. The threshold

of abnormality is determined by an optimization

step in which the computer-generated scores are max-

imized with the visual scores to obtain an individual
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segmental threshold. Because of the large number of

patients needed to represent a large data set of segmen-

tal hypoperfusion in addition to another group of those

with normal or low likelihood of the disease makes it

relatively difficult to generate on-site-specific normal

limits [6]. Further investigations have revealed another

global assessment that combines perfusion defect extent

and severity into a continuous measure referred to as the

total perfusion deficit (TPD). It provides an overall

assessment of hypoperfusion either by vascular territory

or for the entire myocardium. In this approach, a reduc-

tion in the number of patients required for generation of

normal limits is accomplished by obviating those

patients with an abnormality. Furthermore, no optimi-

zation step is required to derive a segmental threshold,

and the technique is based on patients with a low like-

lihood of the disease [43].

The methods mentioned do not permit aligning the

stress with the rest images in a specific geometric

orientation, and comparison of a patient study is

carried out for the stress and rest separately. This

perhaps limits the quantitation algorithm to precisely

determine the spatial location of ischemia in stress and

rest images. Furthermore, a comparison with database

normal values does not account for intrapatient perfu-

sion changes. Faber et al. have shown that by accurate

image alignment, changes of 10% and 15% could be

detected with false-positive rates of 15% and 10%,

respectively, concluding that the mean uptake values

can show a statistical significance if the difference

is 10% or more in single perfusion studies of single

patients [44]. On the other hand, a new measure of

ischemia was developed by Slomka et al. [45] to

coregister the stress and rest data. The rest images

are iteratively reoriented, resized, and normalized

to provide the best fit with the stress scans. They

have used a new normalization technique based on

10-parameter search criteria and allows determination

of the amount of ischemia in stress and rest images

without a normal database.

Note from this discussion that developers vary in

their representation for the defect extent and severity

and differ in their definition and optimization for the

threshold value on which segmental abnormality is

determined [46, 47]. This has been examined by

some comparative studies conducted to look at the

variations that exist among the quantitative cardiac

SPECT methods and to investigate their diagnostic

performance versus reference techniques. These

reports included evaluation for the degree of automa-

tion, summed scores (SSS, SDS, SRS), regional and

total defect extent using receiver operating character-

istic curves and appropriate correlation and agreement

statistical tests. Some studies were also performed

in comparison to coronary angiography; hence, the

sensitivity, specificity, accuracy, and normalcy rates

for detection of CAD were estimated for the algo-

rithms. The absence of institutional normal limits as

a cause for those variations was also investigated by

some researchers if institution-specific normal data-

bases were used. The results, however, demonstrated

that significant differences among the various methods

do exist in estimating the myocardial perfusion para-

meters [46–48].

15.5 Quantification of Myocardial
Function

15.5.1 Gated Cardiac SPECT

The introduction of ECG gating to SPECT myocardial

perfusion imaging has potentially improved the diag-

nostic and prognostic information in assessing patients

with suspected or known CAD [49]. The improvement

of count statistics by use of Tc-99m-based tracers,

multiple detector systems, advances in computer tech-

nology and development of automated quantitative

methods has allowed simultaneous acquisition of

myocardial perfusion combined with ECG gated

imaging in a feasible manner. As a result, assessment

of patient global and regional LV function together

with perfusion quantification can be carried out on a

routine basis. This in turn has led to a tremendous

amount of clinically relevant and valuable information

for decision making in patients with CAD [50].

Figure 15.6 summarizes the steps involved in the

calculation of myocardial perfusion and functional

parameters.

Further diagnostic information can be obtained by

coregistering data obtained from CT angiography and

the metabolic/perfusion images using hybrid SPECT/

CT or PET/CT systems. This allows for integrating a

large amount of information that was not possible to

obtain in a single imaging session. Global functional

measures such as end diastolic volume (EDV), end
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systolic volume (ESV), and EF, in addition to the

regional parameters such as regional wall motion and

wall thickening, can be evaluated by most of the

commercially available quantitative gated SPECT

methods.

15.5.2 Acquisition and Processing

Myocardial perfusion gated SPECT imaging is carried

out using three ECG leads placed on the patient’s chest

and connected to an ECG trigger device. This helps the

computer system identify the beginning of the cardiac

cycle (the R-R interval) and thereby it can divide the

temporal changes of the heart contraction into small

time intervals determined by the number of frames/

cycle selected during acquisition setup. The number

8 or 16 frames per cardiac cycle is often chosen since

the former provides better count statistics while the

latter provides better temporal resolution. Figure 15.7

shows an acquisition for eight frames per cycle. It is

also possible to use 32 frames per cardiac cycle to

determine the diastolic function. However, this occurs

with significant reduction of counts collected over the

cardiac frames given the same acquisition time.

The commercial methods provide several tools to

process gated and ungated projection data to extract

perfusion as well as functional information from gated

myocardial perfusion SPECT studies. Functional

information obtained from the reconstructed images

1-Count profiles
2-Defect extent
3-Defect severity
4-Reversibility
5-Summed scores
      – SSS
      – SRS
      – SDS
6-Total perfusion deficit

Perfusion

Others

Function

Each projection has 8 images
expressing gated intervals

1-TID
2-Lung/Heart Ratio
3-myocardial mass

1-EDV
2-ESV
3-EF
4-Diastolic Function
5-Phase analysis
6-Wall motion
7-Wall Thickening

Quality control

–Image reconstrution
       –Filtering
       –Reorientation
–Image quantification
       –Segmentation
       –Analysis
       –Display
           –orthogonal Slices
           –2D polar map
           –3D surface rendering

Quantitative
Algorithm

Fig. 15.6 Steps involved in acquiring, processing, and quantifying myocardial perfusion gated SPECT studies using the quantita-

tive algorithms
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Fig. 15.7 This diagram shows the R-R interval for one heart

cycle and the corresponding change in the blood volume. ECG-

gating provides a mean for recording the volume change over

the heart cycle. This happens by dividing the cycle into gates or

frames (e.g., eight frames) or even higher 16 or 32
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are LV volumes (EDV and ESV), regional and global

EF, myocardial wall motion, and wall thickening.

15.5.3 Volumes and EF Estimation

The underlying notion of ECG gating myocardial per-

fusion SPECT studies is to obtain several pictures of

the heart during the periodic contraction. The higher

the accuracy in modeling and outlining the LV in

these different phases, the better is the reliability of

the quantitative results. As mentioned, methods vary

in their assumptions for LV geometry. Some are based

on a ellipsoidal, cylindrical-spherical, or prolate-

spheroidal model, and others are purely count-based

techniques. One common step is the segmentation

process, by which the LV should be identified and

separated from other structures. Methods also vary in

their segmentation for the LV as the inclusion of

extracardiac tissues can confound the quantitative

results [51].

Once the LV has been segmented and the valve

plane defined together with determination of myocar-

dial base and apex, outlining of myocardial boundaries

can then be estimated. Different approaches have been

suggested and implemented to identify endocardial

and epicardial boarders as well as myocardial base

and apex. Automated modes are often used to delin-

eate the myocardial boundaries; however, in case

of contouring errors, operator intervention could be

helpful. This also depends on user expertise in addi-

tion to interobserver variability. Automated quality

control approaches were also developed to judge the

quality of the LV shape segmentation as well as valve

plane definition in some software programs [52]. These

quality control algorithms could provide high accuracy

in identifying failure cases of LV segmentation, leading

to an improvement in perfusion quantitation.

Volume-based techniques calculate the ventricular

volumes by constructing a time-volume curve using

either 8 or 16 frames/cycle. The maximum and mini-

mum points on the volume curve correspond to EDV

and ESV, respectively. The EF can then be calculated

as a percentage:

EF ¼ (EDV – ESV)/EDV*100

Figure 15.8 shows the output display of the ECTb

for stress and rest studies together with EDV, ESV,

and EF calculations.

15.5.4 Regional Function

Assessment of regional myocardial function has incre-

mental diagnostic and prognostic information over

myocardial perfusion parameters alone [53]. Myocar-

dial wall motion and thickening are relatively not

uniform as compared to myocardial perfusion. Wall

motion is the excursion of the endocardium from end

diastole to end systole. A 6-point scoring system

is generally used to assess motion abnormality: 0 ¼
normal, 1 ¼ mildly hypokinetic, 2 ¼ moderately

hypokinetic, 3 ¼ severely hypokinetic, 4 ¼ akinetic,

5 ¼ dyskinetic. Visual assessment of wall thickening

is often based on the partial volume phenomenon, in

which the intensity of the myocardial wall is propor-

tional to the size or degree of wall thickening during

cardiac contraction. A 4-point scoring system is used

to assess wall thickening: 0 ¼ normal, 1 ¼ mildly

reduced, 2 ¼ moderately to severely reduced,

3 ¼ no thickening.

Computer scoring for wall motion and thickening

was also developed to reduce observer variability.

It calculates the regional function on a segment-

by-segment basis in a similar way to calculation of

myocardial perfusion. In QGS, regional motion is

measured as the distance (in millimeters) between a

given endocardial point at end diastole and end systole

perpendicular to the average midmyocardial surface

between end diastole and end systole [54].

Myocardial thickening is calculated as the percent-

age increase in myocardial thickness and can be quan-

tified by geometric-based, count-based, or combined

methods using geometric count-based techniques [55].

The first detects the spatial position of endocardial

and epicardial surfaces to calculate the myocardial

thickness in both end diastole and end systole.

However, count-based techniques rely on the partial

volume effect.

It should be noted that normal wall motion and

thickening are not always concomitant since in some

pathological conditions a discordance can take place,

resulting in abnormal wall motion and preserved

thickening or vice versa [56].

The European guidelines stated that

Visual interpretation of myocardial wall motion and

thickening remain up to the moment the conventional

tool in assessing myocardial contractility in myocardial

perfusion SPECT and quantitative measures provided
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by software programs shouldn’t be used as the sole

determinant [57].

15.5.5 Diastolic Function

In addition to the determination of the systolic func-

tion by myocardial perfusion gated SPECT, myocar-

dial diastolic function can also be estimated which is a

useful clinical indicator of LV function and precedes

systolic dysfunction in many cardiac diseases. It is

advisable that early diagnosis and an appropriate ther-

apy be performed before further progression to dia-

stolic heart failure and cardiac death [58]. Diastolic

function can be evaluated by nuclear methods and

with other radiographic techniques [59]. Parameters

of diastolic function are peak to filling rate (PFR),

which is a clinically useful parameter describing LV

filling properties; time to peak filling rate (TTFR); and

the mean filling fraction (MFR/3), which is the mean

filling rate over the first third of diastole.

Parameters of diastolic function require a signifi-

cantly larger number of gating intervals than often are

used. This higher temporal resolution is needed to

accurately determine volume changes over a short

period of time. The derivatives of the time-volume

curve yield information about the rates of emptying

and filling. Fourier fitting with three or four harmonics

is often used to smooth the time-activity and deriva-

tive curves to reduce the statistical fluctuations of the

acquired data.

Fig. 15.8 Emory cardiac toolbox display for stress and rest studies where left ventricular volumes and EF in addition to wall

thickening polar map are shown
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Peak rates and average rates are usually measured

in units of end diastolic volumes per second (EDV/s).

Per cardiac cycle, 12, 16, or 32 frames may be

employed; however, better estimation can be achieved

with the highest possible framing rate. One study

compared the diastolic and systolic functions using

32 frames versus 8 and 16 frames/cycle taking the

gated blood pool as a reference [60]. Accurate assess-

ment of the diastolic as well systolic function was

obtained when 32 frames/cycle was applied. Further-

more, lower systematic errors for both measures

were found with the highest temporal sampling. In a

population of 90 patients, Akincioglu et al. derived the

normal limits for PFR and TTFR as 2.62 � 0.46 EDV/

s and 164.6 � 21.7 ms, respectively, with abnormality

thresholds of PFR < 1.71 EDV/s and TTFR > 216.7

ms, respectively, applying 16 frames/cycle, and mea-

surements were performed using the QGS software

program [61].

15.5.6 Phase Analysis

Assessment of cardiac mechanical dyssynchrony is an

important step for patients scheduled to undergo or

who have undergone cardiac resynchronization ther-

apy (CRT) [62]. CRT is used to improve heart func-

tion by restoring the heart rhythm contraction in

patients with an irregular heartbeat, called LV dys-

synchrony. Chen et al. [63] developed a tool for

measuring the onset of mechanical contraction based

on phase analysis of the cardiac cycle in gated myo-

cardial SPECT imaging using Fourier transform. A

phase array is extracted from the 3D count distribu-

tion in the eight bins of the gated short-axis slices.

This phase array conveys information about the

regional mechanical contraction in a 3D fashion,

and a number of quantitative indices are derived

from the phase array histogram, such as the peak of

the histogram, SD of phase distribution, and phase

histogram bandwidth (95% confidence interval).

Phase histogram skewness and kurtosis can also be

calculated, which indicate the symmetry and peaked-

ness of the distribution, respectively. These measures

correspond to specific attributes of the histogram curve

and in turn should have clinical relevance in the over-

all assessment [9, 63] (see Fig. 12.26 in Chap. 12).

15.5.7 Tomographic ECG-Gating
in Equilibrium Radionuclide
Angiocardiography (ERNA)

In planar gated blood pool imaging, the anatomical

geometry of the cardiac chambers limits a clear sepa-

ration between right ventricle (RV) and LV. The over-

lapping atrial and ventricular structures obscure an

accurate outlining of the RV. However, tomographic

equilibrium radionuclide angiocardiography (ERNA)

should be able to estimate the RV parameters more

accurately than planar imaging. Adding the tomo-

graphic option to the planar gated blood pool imaging

allows for better visualization of cardiac chambers and

depiction of contractile motion. In this instance,

SPECT data can provide better separation of the LV

and RV together with information about the contrac-

tile function. ERNA can also provide an estimate

of the LV and RV volumes and EF in addition to

ventricular filling and emptying parameters [64]. A

number of research studies were conducted to measure

the normal limits for global and regional parameters of

diastolic and systolic function using gated blood pool

tomographic imaging [65, 66]. Figure 15.9 shows

many functional parameters that can be obtained

from tomographic ERNA.

A comparison between four different methods

(QBS, BP-SPECT, QUBE, and 4D-MSPECT) [67–70]

revealed that all methods tended to underestimate the

LV volumes (EDV and ESV) with a trend of greater

underestimation as the volume of the LV increased;

different trends were observed among algorithms to

estimate the RV volumes [71]. In LV EF estimation,

most algorithms showed good correlation with the

reference values with no significant trends observed

across the range of EFs studied. However, all methods

showed greater overestimation with an increase of the

RV EF [71].

The differences observed in the study just discussed

[71] are consistent with others [72], and this can

be explained as caused by several reasons. The algo-

rithmic assumptions vary among methods, which can

be fixed count threshold, derivative or gradient-based

edge detection, knowledge-based boundary detection,

watershed voxel clustering, or neural network-based

segmentation [73]. Other patient-related factors,

such as definition of pulmonary outflow tract, enlarged
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ventricles, and difficulty of the RV geometry, contribute

to suboptimal results of volume and EF estimation.

Moreover, other technical and processing parameters

are yet to be determined and practically optimized [74].

15.5.8 Transient Ischemic Dilation

Transient ischemic dilation (TID) of the LV is

measured as a ratio of the LV cavity in the stress

images and the LV cavity in rest images. This index

has its clinical significance in multivessel stenosis and

increased risk of adverse outcomes [75]. It can be

calculated from both gated and ungated data sets.

The normal limits are constrained by the protocol

used since in some circumstances the LV chamber

appears different in size, especially when different

radionuclides are used (Tc-99m- vs. Tl-201-based

images) or patient-detector distance varied greatly in

both studies. The myocardial walls in the Tl-201

images appear thicker than in the Tc-99m images,

resulting in a smaller cavity size in Tl-201 images.

This should be accounted for in interpreting the results

of TID. Normal limits and values of TID vary in the

literature (1.012–1.40), and sources of this variability

are perhaps different radionuclides (Tc-99m, Tl-201,

or both), type of stress (exercise vs. other pharmaco-

logical stressors), imaging protocol (single- or 2-day

protocol), time of imaging, or other factors [76].

15.6 Factors Affecting Gated SPECT

Many variables were found to influence the perfor-

mance of the quantitative gated SPECT methods in

estimating the LV volumes and EF. These variables

can be classified into acquisition, processing, and

patient-related factors.

Selection of the matrix size, zooming factor, count

density, framing rate (8 or 16 frames/cycle), and

angular resolution (number of projections) and rota-

tion arc (180� vs. 360�), collimators, radionuclide used

(Tc-99m vs. Tl), and other factors were found

to influence the performance of the estimation task

[77–86]. Processing parameters such as reconstruction

algorithm (FBP vs. iterative reconstruction), photon

attenuation, scatter, resolution recovery, filtering, cut-

off value, and zooming during reconstruction were

also reported [87–90]. Some other factors are related

to the patient and have been studied in the literature,
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such as irregular heart rate, gating errors (e.g. T-wave

elevation), patient motion, severe perfusion defects

and difficulty in outlining the myocardial boundaries,

small hearts (underestimation of volumes and overes-

timation of EF), and high extracardiac activity [91–94]

Nevertheless, a well-defined acquisition and pro-

cessing protocol could serve to optimize the results of

gated studies. Moreover, quality control software tools

as well as visual assessment of patient raw data are

also helpful in depicting count variation and patient

motion and detecting rejected heart beats.

The variations shown by the quantitative perfusion

software programs were also evident in estimating the

LV volumes and EF [95–97]. Relatively large agree-

ment limits were found among methods in addition to

systematic and random errors. As a result, the users

should be aware of the underlying assumptions of the

method used in clinical practice as well as understand-

ing of the sources of error and technical pitfalls.

Although most of the methods showed good correla-

tions in comparison to accurate techniques in cardiac

imaging achieving acceptable accuracy and repro-

ducibility, interchangeability of values would be of

limited clinical outcome, and patient monitoring

must be performed in adherence to a single software

program.

15.7 Conclusions

Cardiac SPECT imaging provides a tremendous

amount of information about myocardial perfusion

and function. Many factors are key and still contribut-

ing to the development of cardiac scintigraphy, such

as radiopharmaceuticals, instrumentation, and com-

puter technology. Software packages developed to

provide such quantitative indices are helpful in patient

diagnosis and have become important tools in nuclear

cardiology laboratories. The quantitative parameters

provided by those programs together with their auto-

mated features are unique among other cardiac imag-

ing modalities, and to a considerable extent this has

made nuclear cardiac imaging a well-established diag-

nostic imaging modality. Further investigations are

warranted to explore the qualitative and quantitative

capability of cardiac SPECT with use of hybrid

imaging techniques.

A number of points should be taken into consider-

ation when using the myocardial perfusion quantita-

tion methods in clinical practice:

� These algorithms assist as a second observer in

the reading session, and the visual assessment by

an experienced reading physician must be at the

forefront. Even with fully automated methods,

careful inspection should be followed to check

and verify the results of contour generation.

� Quantitative cardiac SPECT methods were shown

to differ significantly in their performance along

with the degree of automation.

� Normal limits for myocardial perfusion and func-

tion were also shown to differ among algorithms

and tended to be gender specific.

� Interchangeability of these algorithms is clinically

limited to use in patient monitoring or the decision-

making process.

� Quantitative perfusion methods were designed to

quantify the myocardial tracer uptake in a relative

sense and do not provide an absolute measure of

tracer distribution. Furthermore, they do not not

account for image-degrading factors such as photon

attenuation, scatter, and resolution effects.

� New approaches developed to evaluate perfusion

defect abnormality should be extensively validated

and assessed under a wide range of patient conditions

with the available acquisition and processing proto-

cols used in daily practice. Furthermore, validation

studies should include not only phantom experiments

but also patient data and should be compared to well-

established and accurate techniques.

� For proper implementation of the quantitative

methods in clinical practice and for better data

interpretation, users should be aware of the

basic assumptions and concepts underlying those

algorithms.
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