
An Application of Constraint Programming to

Superblock Instruction Scheduling

Abid M. Malik, Michael Chase, Tyrel Russell, and Peter van Beek

Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3G1
{ammalik,vanbeek}@cs.uwaterloo.ca

Abstract. Modern computer architectures have complex features that
can only be fully taken advantage of if the compiler schedules the com-
piled code. A standard region of code for scheduling in an optimiz-
ing compiler is called a superblock. Scheduling superblocks optimally
is known to be NP-complete, and production compilers use non-optimal
heuristic algorithms. In this paper, we present an application of con-
straint programming to the superblock instruction scheduling problem.
The resulting system is both optimal and fast enough to be incorporated
into production compilers, and is the first optimal superblock sched-
uler for realistic architectures. In developing our optimal scheduler, the
keys to scaling up to large, real problems were in applying and adapting
several techniques from the literature including: implied and dominance
constraints, impact-based variable ordering heuristics, singleton bounds
consistency, portfolios, and structure-based decomposition techniques.
We experimentally evaluated our optimal scheduler on the SPEC 2000
benchmarks, a standard benchmark suite. Depending on the architec-
tural model, between 98.29% to 99.98% of all superblocks were solved
to optimality. The scheduler was able to routinely solve the largest su-
perblocks, including superblocks with up to 2,600 instructions, and gave
noteworthy improvements over previous heuristic approaches.

1 The Problem

Modern computer architectures have complex features that can only be fully
taken advantage of if the compiler schedules the compiled code. This instruction
scheduling, as it is called, is one of the most important steps for improving the
performance of object code produced by a compiler as it can lead to significant
speedups [1]. As well, in VLIW (very large instruction word) architectures, in-
struction scheduling is necessary for correctness as the processor strictly follows
the schedule given by the compiler (this is not true in so-called out-of-order
processors). In the remainder of this section, we briefly review the necessary
background in computer architecture before defining the superblock instruction
scheduling problem, the problem that we address in this paper (for more back-
ground on these topics see, for example, [1,2,3]).

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 97–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 A.M. Malik et al.

We consider multiple-issue, pipelined processors. Multiple-issue and pipelin-
ing are two techniques for performing instructions in parallel and processors that
use these techniques are now standard in desktop and laptop machines. In such
processors, there are multiple functional units and multiple instructions can be
issued (begin execution) in each clock cycle. Examples of functional units in-
clude arithmetic-logic units (ALUs), floating-point units, memory or load/store
units that perform address computations and accesses to the memory hierarchy,
and branch units that execute branch and call instructions. The number of in-
structions that can be issued in each clock cycle is called the issue width of the
processor. On most architectures, including the PowerPC [4] and Intel Itanium
[5], the issue width is less than the number of available functional units.

Pipelining is a standard hardware technique for overlapping the execution of
instructions on a single functional unit. A helpful analogy is to a vehicle assembly
line [2] where there are many steps to constructing the vehicle and each step
operates in parallel with the other steps. An instruction is issued on a functional
unit (begins execution on the pipeline) and associated with each instruction is a
delay or latency between when the instruction is issued and when the instruction
has completed (exits the pipeline) and the result is available for other instructions
that use the result. Also associated with each instruction is an execution time,
the number of cycles between when the instruction is issued on a functional unit
and when any subsequent instruction can be issued on the same functional unit.
An architecture is said to be fully pipelined if every instruction has an execution
time of 1. However, most architectures are not fully pipelined and so there will
be cycles in which instructions cannot be issued on a particular functional unit,
since the unit will still be executing a previously-issued instruction.

Further, some processors, such as the PowerPC and Intel Itanium, contain
serializing instructions, instructions that require exclusive access to the processor
in the cycle in which they are issued. This can happen when an architecture has
only one of a particular resource, such as a condition register, and needs to
ensure that only one instruction is accessing that resource at a time. In the cycle
in which such instructions are issued, no other instruction can be executing or
can be issued—for that one cycle, the instruction has sole access to the processor
and its resources.

Example 1. Consider a PowerPC 603e processor [4]. The processor has four func-
tional units—an ALU, a floating-point unit, a load/store unit, and a branch
unit—and an issue width of two. On this processor a floating point addition has
an execution time of 1 cycle and a latency of 3 cycles. In contrast, a floating point
division has an execution time of 18 cycles and also a latency of 18 cycles. Thus,
once a floating-point division instruction is issued on the floating-point unit, no
other floating point instruction can be issued (because there is only one unit)
until 18 cycles have elapsed and no other instruction can use the result of that
floating-point division until 18 cycles have elapsed. Finally, on the PowerPC
603e, about 15% of the instructions executed by the processor are serializing
instructions.

An Application of Constraint Programming 99

A compiler needs an accurate architectural model of the target processor that
will execute the code in order to schedule the code in the best possible manner. In
the rest of the paper, we refer to an architectural model as idealized if it assumes
that (i) the issue width of the processor is equal to the number of functional
units, (ii) the processor is fully pipelined, and (iii) that the processor contains
no serializing instructions. An architectural model is referred to as realistic if it
does not make any of these assumptions.

Instruction scheduling is done on certain regions of a program. All compil-
ers schedule basic blocks, where a basic block is a straight-line sequence of code
with a single entry point and a single exit point. However, basic blocks alone are
considered insufficient for fully utilizing a processor’s resources and most opti-
mizing compilers also schedule a generalization of basic blocks called superblocks.
A superblock is a collection of basic blocks with a unique entrance but multiple
exit points [6]. We use the standard labeled directed acyclic graph (DAG) rep-
resentation of a superblock. Each node corresponds to an instruction and there
is an edge from i to j labeled with a non-negative integer l(i, j) if j must not
be issued until i has executed for l(i, j) cycles. In particular, if l(i, j) = 0, j
can be issued in the same cycle as i; if l(i, j) = 1, j can be issued in the next
cycle after i has been issued; and if l(i, j) > 1, there must be some intervening
cycles between when i is issued and when j is subsequently issued. These cycles
can possibly be filled by other instructions. Each node or instruction i has an
associated execution time d(i). Exit nodes are special nodes in a DAG repre-
senting the branch instructions. Each exit node i has an associated weight or
exit probability w(i) that represents the probability that the flow of control will
leave the superblock through this exit point. The probabilities are calculated by
running the instructions on representative data, a process known as profiling.

Given a labeled dependency DAG for a superblock and a target architectural
model, a schedule for a superblock is an assignment of a clock cycle to each
instruction such that the latency and resource constraints are satisfied. The
resource constraints are satisfied if, at every time cycle, the resources needed by
all the instructions issued or executing at that cycle do not exceed the limits of
the processor.

Definition 1 (Superblock Instruction Scheduling). The weighted comple-
tion time or cost of a superblock schedule is

∑n
i=1 w(i)e(i), where n is the number

of exit nodes, w(i) is the weight of exit i, and e(i) is the clock cycle in which exit
i will be issued in the schedule. The superblock instruction scheduling problem
is to construct a schedule with minimum weighted completion time.

Example 2. Consider the superblock shown in Figure 1. Nodes E and K are
branch instructions, with exit probability 0.3 and 0.7, respectively. Consider an
idealized processor with two functional units. One functional unit can execute
clear instructions and the other can execute shaded instructions. Figure 1(b)
shows two possible schedules, S1 and S2. The weighted completion time for
schedule S1 is 0.3 × 4 + 0.7 × 15 = 11.7 cycles and for schedule S2 is 0.3 × 5 +
0.7 × 14 = 11.3 cycles. Schedule S2 is an optimal solution.

100 A.M. Malik et al.

cycle S1 S2

1 A A
2 C B C D
3 D B
4 G E
5 I G E
6 I
7 F
8 F
9

10
11
12 H
13 H J
14 J K
15 K

(a) (b)

Fig. 1. (a) Superblock representation: nodes E and K are exit nodes with exit proba-
bilities 0.3 and 0.7 respectively; (b) two possible schedules for Example 2

2 Why CP?

Superblock instruction scheduling for realistic multiple-issue processors is NP-
complete [7] and currently is done using heuristic approaches in all commercial
and open-source research compilers. The most common heuristic approach is
a greedy list scheduling algorithm coupled with a priority heuristic. Many so-
phisticated heuristics have been proposed including critical path [3], dependence
height and speculative yield [8], G∗ [9], speculative hedge [10], balance scheduling
[11], and successive retirement [9]. However, even the best heuristic approaches
can produce sub-optimal solutions.

Optimal approaches for instruction scheduling have also been proposed. We
first review previous work on basic block scheduling, the easier special case of su-
perblock scheduling where there is only one exit and all of the instructions in the
block are always executed. Previous work on optimal approaches to basic block
instruction scheduling can be categorized by those approaches that are targeted
only towards idealized—i.e., unrealistic—architectural models [12,13,14,15] and
those approaches that have been developed for more realistic architectural mod-
els [16,17,18]. Broadly speaking, previous work has shown that (i) for an idealized
multi-issue processor, optimal approaches can scale up to the largest basic blocks

An Application of Constraint Programming 101

that arise in practice, and (ii) for more realistic architectures, optimal approaches
can be used but do not yet scale up beyond 10-40 instructions (the largest blocks
that arise in practice have 2,600 instructions). In our work, we present a con-
straint programming approach that applies to realistic architectures and scales
up to the largest blocks. Our work builds on a previously developed constraint
programming approach for basic block scheduling, which assumed an idealized
architecture [15].

In contrast to optimal basic block scheduling, there has been relatively little
work on optimal superblock scheduling. Winkel [19] presents an integer linear
programming model for instruction scheduling for Itanium processors. However,
the approach has two limitations. First, the model is limited to small regions with
size up to 200 instructions. Second, and more importantly, the approach mini-
mizes the length of the schedule. This measure is appropriate for basic blocks,
which consist of straight line code. But it is not appropriate for regions that
contain multiple exits and whose paths of execution may rarely fall through to
the last instruction. Shobaki and Wilken [20,21] were the first to develop a ro-
bust optimal scheduler for superblocks that scaled up to large superblocks. Their
approach is based on enumeration. However, their work is targeted to idealized
architectures and assumes that the functional units are fully pipelined, the is-
sue width of the processor is equal to the number of functional units, and there
are no serializing instructions. It is not at all clear how to successfully extend
these previously proposed enumeration and integer programming approaches to
realistic architectures and cost functions. In our constraint programming ap-
proach, we remove these assumptions and present the first optimal superblock
scheduling approach for realistic architectures. Further, even though our target
architectures are realistic, our approach scales up to more difficult and larger
superblocks than in previous work.

3 How CP?

In this section, we present our constraint programming approach for superblock
instruction scheduling. We first present the basic model—a model that is correct
but inefficient—followed by the techniques we used to improve our model and
solving approach. Our description is at a high-level; see [22] for more details.

3.1 Basic Model

Given a labeled dependency DAG G = (N, E) for a superblock and a target
architectural model, we model each instruction or node i by a variable xi. The
domain of each variable dom(xi) is a subset of {1, . . . , m}, which are the avail-
able time cycles. Assigning a value t ∈ dom(xi) to a variable xi has the in-
tended meaning that instruction i will be issued at time cycle t. The domain
dom(xi) = {a, . . . , b} of a variable xi is represented by the endpoints of the
interval [a, b].

To model the latencies of the instructions, for each pair of variables xi and
xj such that (i, j) ∈ E, a latency constraint of the form xi + l(i, j) ≤ xj is

102 A.M. Malik et al.

added to the constraint model, where l(i, j) is the latency on the edge (i, j).
Global cardinality constraints (GCC) [23] are used to model the resources of
the processor. A GCC over a set of variables and values states that the number
of variables instantiating to a value must be between a given upper and lower
bound. For each type t of functional unit, a GCC over all variables of type t
is added to the constraint model, where the lower bound is zero and the upper
bound is the number of functional units of type t. As well, a GCC over all
variables is added, where the lower bound is zero and the upper bound is the
issue width of the processor.

So far, the model assumes an idealized architecture where each unit is fully
pipelined and there are no serializing instructions. To model a non-fully pipelined
processor, we add auxiliary variables to the constraint model. Recall that in a
non-fully pipelined processor, some instructions have execution times greater
than 1. Let i be an instruction with execution time e(i) > 1 and let xi be the
corresponding variable. The auxiliary variables pi,j , 1 ≤ j ≤ e(i) − 1, are added
into the model, where each variable pi,j is of the same functional unit type as
xi. The constraints xi + j = pi,j , 1 ≤ j ≤ e(i)−1, are also added into the model.
Finally, we also add the variables pi,j, all of which are of type t, to the GCC
functional unit constraint for type t.

Serializing instructions can be modeled in a manner similar. Let i be a se-
rializing instruction and let xi be the corresponding variable. Let F be the
total number of functional units in the processor. The auxiliary variables si,j ,
1 ≤ j ≤ F − 1, are added into the constraint model. There is one auxiliary vari-
able for every functional unit except for the one on which instruction i is issued;
the functional unit type of each auxiliary variable is assigned accordingly. The
constraints xi = si,j , 1 ≤ j ≤ F − 1, are also added into the model. Finally, for
each type t, we add all auxiliary variables of type t to the corresponding GCC
functional unit constraint for type t.

Example 3. Consider again the superblock shown in Figure 1 and assume ini-
tially the same idealized processor as in Example 2. The constraint model would
have variables A, . . . , K, and the constraints,

B ≥ A + 1, . . . GCC(B, D, E, F, H, J, K),
C ≥ A + 1, K ≥ I, GCC(A, C, G, I),
D ≥ A + 1, K ≥ J + 1,

where the lower and upper bounds of each GCC constraint are 0 and 1 (the
number of functional units of each type), respectively, and the cost function is
0.3 × E + 0.7 × K. Somewhat more realistically, suppose instead that instruction
D is not fully pipelined and has an execution time e(D) = 3 and that instruction
G is a serializing instruction. The auxiliary variables pD,1, pD,2, and sG,1 would
be added to the model along with the constraints D+1 = pD,1, D+2 = pD,2, and
G = sG,1. Finally, one of the GCC constraints would incorporate the auxiliary
variables and would become GCC(B, D, E, F, H, J, K, pD,1, pD,2, sG,1).

We have described a correct, but minimal, model for the superblock schedul-
ing problem targeted towards realistic architectures. As is usual in constraint

An Application of Constraint Programming 103

programming, the minimal model cannot solve all but the smallest instances as
it does not scale beyond 40 instructions. We next describe the improvements we
made to scale up our constraint programming approach to instances with 2,600
instructions (the largest that we have found in practice).

3.2 Improving the Model and Solving Approach

In developing our optimal scheduler, the keys to scaling up to large, real
problems were in applying and adapting several techniques from the literature
including: implied and dominance constraints, impact-based variable ordering
heuristics, singleton bounds consistency, portfolios, and structure-based decom-
position techniques.

Implied constraints do not change the set of solutions while dominance con-
straints may but preserve an optimal solution. Both types of constraints can
increase the amount of constraint propagation and so greatly improve the effi-
ciency of the search for a solution (see, e.g., [24] and references therein). In our
work, many instances of each of these constraints are added to the constraint
model in an extensive preprocessing stage that occurs once. The extensive pre-
processing effort pays off as the model is solved many times.

Two forms of implied constraints are added to the model: xi + d(i, j) ≤ xj

and xj ≤ xi +d(i, j). Roughly, the first form is added if a pair of nodes i and j in
the DAG for a superblock form a region; i.e., there is more than one path from i
to j [12]. If the region is small enough, it is solved exactly using a backtracking
algorithm; if it is large, the distance d(i, j) is estimated, making sure that the
estimate is a lower bound. Again roughly, the second form is added if i and j
define a region and are articulation nodes—an articulation node is a node which
disconnects the graph once removed—and the region defined by i and j is small
enough to be solved quickly and exactly in isolation. It can be shown that the
solution to the isolated subproblem can be used to form a tight upper bound on
the distance between i and j in any optimal schedule.

Heffernan and Wilken [14] present a set of graph transformations for depen-
dency DAGs for basic blocks and show that optimally scheduling the trans-
formed DAGs using branch-and-bound enumeration is faster and more robust.
We adapted these transformations to superblock scheduling and proved under
what conditions they preserve optimality. In our context, the transformations
add simple dominance constraints to the model of the form xi ≥ xj . Adding dom-
inance constraints requires identifying pairs of disjoint, isomorphic subgraphs A
and B in a dependency DAG for a superblock. Subgraphs A and B are isomor-
phic if there is a mapping from the node set of A to the node set of B such
that A and B are identical (identical instruction types, edges, and latencies on
the edges). We use a fast heuristic approach to find pairs of disjoint, isomorphic
subgraphs adapted from our work on basic block scheduling [15].

Example 4. Consider the DAG shown in Figure 2(a). Nodes H and I are called
speculative nodes in the compiler literature as they can be moved across exit
node G. The subgraphs with nodes {C, E} and {H, I} are isomorphic and satisfy

104 A.M. Malik et al.

1
1

2

1

1 1

2 2

2

1

0

1

2

1
A

G

B

D

C

E

F

J K

L

H

I

1
1

2

1

1 1

2 2

0

0

2

1

0

1

2

1
A

G

B

D

C

E

F

J K

L

H

I

(a) (b)

Fig. 2. Example of adding dominance constraints in a superblock: (a) actual DAG; (b)
the constraints C ≤ H and E ≤ I (zero latency edges) would be added to the constraint
model. Nodes A, G and L are exit nodes.

the conditions for adding dominance constraints. Hence, the constraints C ≤ H
and E ≤ I can be added to the model. Figure 2(b) shows the DAG with the
added constraints. Note that the added constraints do not change the speculative
characteristic of exit node G, as nodes H and I still can be moved across—i.e.,
can be scheduled either before or after—node G. Similarly, the constraint J ≤
K can be added.

Once the constraint model has been extensively preprocessed by adding implied
and dominance constraints, it is ready to be solved. Recall that the superblock
scheduling problem is an optimization problem. To turn it into a satisfaction
problem, we first establish an upper bound on the cost function using a fast
heuristic scheduling method (a list scheduling algorithm, as discussed in the
Experimental evaluation section). Given an upper bound on the cost function, we
then prune the cost variables using singleton bounds consistency and enumerate
the possible solutions to the cost function using techniques adapted from [25].
The solutions to the cost function are then stepped through in increasing order of
cost until one is found that can be extended to a solution to the entire constraint
model. Testing whether a solution to the cost function can be extended is done
using a backtracking search algorithm. Of course, once a solution to the entire
constraint model is found it is a provably optimal solution.

To reduce the brittleness or variability in performance of our backtracking
search algorithm, we use a portfolio approach. Portfolios of multiple algorithms

An Application of Constraint Programming 105

have been proposed and shown to dramatically improve performance on some
instances (see, e.g., [26]). In instruction scheduling, thousands of superblocks
arise each time a compiler is invoked on some software project and a limit needs
to be placed on the time given for solving each instance in order to keep the total
compile time to an acceptable level. Given a set of possible backtracking algo-
rithms {A1, A2, . . . } and a time deadline d, a portfolio P for a single processor
is a sequence of pairs, P = [(Ak1 , t1), (Ak2 , t2), . . . , (Akm , tm)], where each Aki is
a backtracking algorithm, each ti is a positive integer, and Σm

i=1ti = d. To apply
a portfolio to an instance, algorithm Ak1 is run for t1 steps. If no solution is
found within t1 steps, algorithm Ak1 is terminated and algorithm Ak2 is run for
t2 steps, and so on until either a solution is found or the sequence is exhausted
as the time deadline d has been reached.

In contrast to previous work, where the differences in the possible backtrack-
ing algorithms {A1, A2, . . . } often involves the variable ordering heuristic, we
created variability in solving performance by increasing levels of constraint prop-
agation from light-weight to heavy-weight. For our approach, we used a deter-
ministic backtracking algorithm capable of performing three levels of constraint
propagation,

Level = 1 bounds consistency,
Level = 2 singleton bounds consistency, and
Level = 3 singleton bounds consistency to a depth of two.

and the portfolio involved three phases in increasing order. We chose bounds
consistency—instead of the more usual arc consistency—as in our problem it is
equivalent but more efficient. In bounds consistency, one ensures that each upper
and lower bound of the domain of a variable is consistent with each constraint
(see, e.g., [27] and references therein). In singleton bounds consistency, one tem-
porarily assigns a value to a variable and then performs bounds consistency. In
singleton bounds consistency to a depth of two, one temporarily assigns a value
to a variable and then performs singleton consistency. In each, if the value is
found to be inconsistent it is not part of any solution and can be removed from
the domain of the variable.

During phase one, a standard dynamic variable ordering heuristic based on
minimum domain size is used. However, in the next two phases which involve
singleton consistency a variation of an impact-based variable ordering heuristic
[28] is used. The idea in impact-based heuristics is to measure the importance of
a variable for reducing the search space. Here, we record the number of changes
that are made due to each variable during the singleton consistency propagation.
This information is then used to select the next variable to branch on with the
goal being to branch on a variable that causes the most reductions in the domains
of the other variables. The impact-based heuristic is very effective and essentially
comes for free as a side-effect of enforcing singleton consistency.

As a final technique for scaling up our constraint programming approach to
the largest instances, we also adapted a structure-based decomposition technique
[29]. For some of the largest superblock instances, all of the exit nodes were
articulation nodes. We showed that such instances could be solved optimally by

106 A.M. Malik et al.

solving them progressively. Let e1, . . . , en be the exit nodes. We first solve the
subproblem consisting of e1 and all of its predecessor nodes. Variable e1 is then
fixed using the optimal solution to the subproblem and we then in turn solve
the subproblem consisting of e2 and all of its predecessor nodes, and so on. The
proof that this procedure preserves optimality requires careful attention to the
resource contention at each exit node.

3.3 Experimental Evaluation

The constraint programming model was implemented and evaluated on all of
the 154,651 superblocks from the SPEC 2000 integer and floating point bench-
marks (www.spec.org). This benchmark suite consists of source code for software
packages that are chosen to be representative of a variety of programming lan-
guages and types of applications. The benchmarks were compiled using IBM’s
Tobey compiler [30] targeted towards the IBM PowerPC processor [4], and the
superblocks were captured as they were passed to Tobey’s instruction sched-
uler. The Tobey compiler performs instruction scheduling before register al-
location and once again afterward, and our test suite contains both versions
of the superblocks. The compilations were done using Tobey’s highest level of
optimization, which includes aggressive optimization techniques such as software
pipelining and loop unrolling.

The following table shows the four realistic architectural models we used in
our evaluation. In these architectures, the functional units are not fully pipelined,
the issue width of the processor is not equal to the number of functional units,
and there are serializing instructions.

issue simple complex memory branch floating
architecture width int. units int. units units units pt. units
1r-issue 1 1
PowerPC 603e (ppc603e) 2 1 1 1 1
PowerPC 604 (ppc604) 4 2 1 1 1 1
6r-issue 6 2 2 3 2

The following table shows the total time (hh:mm:ss) to schedule all super
blocks in the SPEC 2000 benchmark suite and the percentage of superblocks
that were solved to optimality, for various realistic architectural models and
time limits for solving each superblock.

1 sec. 10 sec. 1 min. 10 min.
time % time % time % time %

1r-issue 1:30:20 97.34 7:15:46 99.38 10:22:36 99.96 15:08:44 99.98
ppc603e 3:57:13 91.83 30:53:56 93.90 108:50:01 97.18 665:31:00 97.70
ppc604 2:17:44 95.47 17:09:48 96.60 61:29:31 98.43 343:04:46 98.87
6r-issue 3:04:18 93.59 25:03:44 94.76 87:04:34 97.78 511:19:14 98.29

An Application of Constraint Programming 107

Table 1. Superblock scheduling after register allocation. For the SPEC 2000 benchmark
suite, number of cycles saved (×109) by the optimal scheduler over a list scheduler
using the dependence height and speculative yield heuristic and using the critical path
heuristic, and the percentage reduction (%), for various realistic architectural models.
The time limit for solving each superblock was 10 minutes.

DHASY heuristic critical path heuristic

1r-issue ppc603e ppc604 6r-issue 1r-issue ppc603e ppc604

benchmark ×109 % ×109 % ×109 % ×109 % ×109 % ×109 % ×109 %

ammp 47.4 0.2 669.3 3.2 225.9 1.1 221.2 1.3 457.5 1.8 949.9 4.5 243.9 1.2
applu 5.2 0.4 0.3 0.0 0.6 0.1 0.1 0.0 23.7 1.9 4.1 0.4 0.5 0.0
apsi 52.4 1.1 43.6 1.0 45.8 1.1 31.8 1.0 341.5 7.1 89.0 2.0 84.9 2.0
art 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.1 1.1 0.0 1.1 0.0
bzip2 51.8 0.3 282.1 1.8 281.6 1.9 137.5 0.9 300.1 1.5 405.0 2.5 356.7 2.3
crafty 50.9 0.7 67.8 1.2 30.1 0.6 32.0 0.6 162.1 2.3 119.6 2.1 53.9 1.0
eon 303.1 2.7 65.7 0.7 47.1 0.5 124.7 1.5 610.6 5.5 127.0 1.3 150.1 1.6
equake 22.4 0.5 12.1 0.3 11.8 0.3 0.1 0.0 20.6 0.5 1.5 0.0 1.1 0.0
facerec 19.4 0.3 27.0 0.5 3.6 0.1 1.6 0.0 28.7 0.5 32.9 0.7 3.6 0.1
fma3d 36.4 0.4 48.4 0.6 86.2 1.1 18.6 0.3 51.8 0.5 49.2 0.6 73.4 1.0
galgel 1.6 0.1 0.7 0.1 0.5 0.1 0.0 0.0 4.9 0.5 2.2 0.2 1.3 0.1
gap 18.9 0.0 67.6 0.0 43.2 0.0 31.0 0.0 99.9 0.0 69.3 0.0 38.8 0.0
gcc 28.7 0.6 33.4 0.8 18.8 0.5 16.6 0.4 65.9 1.3 51.2 1.2 26.3 0.6
gzip 11.2 0.1 36.8 0.3 22.1 0.2 29.9 0.2 158.1 1.0 50.6 0.4 22.2 0.2
lucas 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 4.5 1.2 0.5 0.2 0.0 0.0
mcf 54.1 1.5 43.9 1.4 38.9 1.2 0.0 0.0 89.0 2.5 93.7 2.9 94.9 3.0
mesa 34.0 0.2 53.3 0.4 31.0 0.3 306.5 3.3 85.3 0.6 32.2 0.3 31.0 0.3
mgrid 1.7 0.5 0.3 0.1 0.0 0.0 0.0 0.0 3.1 0.9 0.5 0.2 0.0 0.0
parser 483.1 1.9 530.8 2.6 507.9 2.6 277.5 1.5 956.8 3.8 808.8 3.9 526.0 2.7
perlbmk 67.8 0.2 386.4 1.5 117.6 0.5 76.6 0.3 181.7 0.6 439.6 1.7 141.3 0.6
sixtrack 122.6 3.5 6.3 0.2 4.0 0.1 1.5 0.0 655.4 18.6 19.9 0.6 5.0 0.1
swim 0.0 0.2 0.1 1.7 0.1 1.9 0.0 0.0 8.5 99.8 6.6 102.3 3.2 58.1
twolf 288.5 1.5 43.9 0.3 88.6 0.6 69.7 0.5 689.0 3.5 378.3 2.3 198.1 1.3
vortex 41.7 0.4 252.9 3.1 274.6 3.7 220.3 3.3 212.3 2.0 310.6 3.9 306.5 4.1
vpr 57.6 0.5 26.8 0.3 41.1 0.5 6.1 0.1 227.1 2.1 64.4 0.7 38.2 0.4
wupwise 83.5 1.0 30.8 0.4 20.8 0.3 22.6 0.4 523.6 6.3 211.5 2.9 69.3 1.0

We also evaluated our optimal scheduler with respect to how much it improves
on previous heuristic approaches. Most production compilers use a greedy list
scheduling algorithm coupled with a heuristic priority function for scheduling.
Here we compare against a list scheduler with a realistic resource model using
the dependence height and speculative yield (DHASY) heuristic [8] and a critical
path heuristic [3]. We chose the former heuristic as it is considered one of the
best available (it is the default heuristic used in the Trimaran compiler [31], for
example) and the latter heuristic because it is a standard reference point.

Table 1 gives the number of cycles saved (×109) by the optimal scheduler over
the list scheduler using the dependence height and speculative yield heuristic and
using the critical path heuristic, and the percentage reduction (%), for various

108 A.M. Malik et al.

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 s

up
er

bl
oc

ks

Upper bound on percentage from optimal

1r-issue
ppc603e
ppc604
6r-issue

 88

 90

 92

 94

 96

 98

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 s

up
er

bl
oc

ks

Upper bound on percentage from optimal

1r-issue
ppc603e
ppc604
6r-issue

(a) (b)

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 s

up
er

bl
oc

ks

Upper bound on percentage from optimal

1r-issue
ppc603e
ppc604
6r-issue

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 s

up
er

bl
oc

ks

Upper bound on percentage from optimal

1r-issue
ppc603e
ppc604
6r-issue

(c) (d)

Fig. 3. Performance of optimal scheduler versus list scheduler, for various realistic
architectures: (a) before register allocation using DHASY heuristic; (b) after register
allocation using DHASY heuristic; (c) before register allocation using critical path
heuristic; and (d) after register allocation using critical path heuristic

realistic architectural models after register allocation. We compiled the SPEC
2000 benchmark with the training data set associated with the benchmark using
the Tobey compiler. The compiler uses the training data to construct a profile
for each branch instruction. The profile is used to calculate the information
regarding the number of times each instruction is executed.

Figures 3(a–d) summarizes the performance of the optimal scheduler versus
the list scheduler, for various architectures. For example, consider the 1r-issue ar-
chitecture and the DHASY heuristic. The list scheduler finds an optimal schedule
(i.e. is within 0% of optimal) for approximately 84% of all superblocks before
register allocation and approximately 88% of all superblocks after register al-
location. In other words, the optimal scheduler improves on 16% and 12% of
superblocks, respectively. Further, the list scheduler is within 10% of optimal
for approximately 95% of all superblocks before register allocation and approxi-
mately 97% of all superblocks after register allocation, for this architecture. The
graph also shows that, although quite rare, there exists superblocks for which the
optimal scheduler finds improvements of up to 50% over the DHASY heuristic.
As a second example, consider the 1r-issue architecture and the critical path

An Application of Constraint Programming 109

heuristic. The list scheduler finds an optimal schedule (i.e. is within 0% of
optimal) for approximately 54% of all superblocks before register allocation and
approximately 65% of all superblocks after register allocation. Further, the list
scheduler is within 10% of optimal for approximately 70% of all superblocks be-
fore register allocation and approximately 80% of all superblocks after register
allocation, for this architecture.

4 Added Value of CP?

Using constraint programming brought added value in two ways.
The first value added by constraint programming is that it allowed us to

achieve the primary goal of our project, which was to develop a superblock
instruction scheduler that was realistic yet fast enough to be incorporated into
a production compiler. Using constraint programming, it was relatively easy to
add additional constraints to model realistic architectures and it is not clear how
to similarly extend previously proposed enumeration and integer programming
approaches. As well, we had previously shown that constraint programming could
be much faster than integer programming on a restricted form of these types of
problems [13]. But perhaps the most important reason we were able to achieve
our goal is that constraint programming allows and facilitates programming in
the computer science sense of the word. This was crucial to scaling up to large
instances, as it allowed us to design and implement domain-specific structure-
based decomposition techniques and to incorporate and fine-tune ideas such as
portfolios and impact-based variable ordering heuristics into our solver.

The second value added by constraint programming is that it allowed us
to find optimal solutions. Although heuristic approaches have the advantage
that they are very fast, a scheduler that finds optimal schedules can be useful
in practice when longer compiling times are tolerable such as when compiling
for software libraries, digital signal processing or embedded applications [1]. As
well, an optimal scheduler can be used to evaluate the performance of heuristic
approaches. Such an evaluation can tell whether there is a room for improvement
in a heuristic or not.

5 Conclusions

We presented a constraint programming approach to superblock instruction
scheduling for realistic architectural models. Our approach is optimal and robust
on large, real instances. The keys to scaling up to large, real problems were in
applying and adapting several techniques from the literature including: implied
and dominance constraints, impact-based variable ordering heuristics, singleton
bounds consistency, portfolios, and structure-based decomposition techniques.
We experimentally evaluated our optimal scheduler on the SPEC 2000 integer
and floating point benchmarks. On this benchmark suite, the optimal scheduler
scaled to the largest superblocks. Depending on the architectural model, between
98.23% to 99.98% of all superblocks were solved to optimality. The scheduler

110 A.M. Malik et al.

was able to routinely solve the largest superblocks, including blocks with up to
2,600 instructions. The schedules produced by the optimal schedule showed an
improvement of 0%-3.8% on average over a list scheduler using the dependence
height and speculative yield heuristic, considered one of the best heuristics avail-
able, and an improvement of 0%-102% on average over a critical path heuristic.
One final conclusion we draw from our work is that constraint programming can
be a fruitful approach for solving NP-hard compiler optimization problems.

Acknowledgments

This research was supported by an IBM Center for Advanced Studies (CAS)
Fellowship, an NSERC Postgraduate Scholarship, and an NSERC CRD Grant.

References

1. Govindarajan, R.: Instruction scheduling. In: Srikant, Y.N., Shankar, P. (eds.) The
Compiler Design Handbook, pp. 631–687. CRC Press, Boca Raton (2003)

2. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach, 3rd
edn. Morgan Kaufmann, San Francisco (2003)

3. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

4. Hoxey, S., Karim, F., Hay, B., Warren, H.: The PowerPC Compiler Writer’s Guide.
Warthman Associates (1996)

5. Intel: Intel Itanium Architecture Software Developer’s Manual, Volume 2: System
Architecture (2002)

6. Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann,
R.A., Ouellette, R.G., Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., Lavery,
D.M.: The superblock: An effective technique for VLIW and superscalar compila-
tion. The Journal of Supercomputing 7(1), 229–248 (1993)

7. Hennessy, J., Gross, T.: Postpass code optimization of pipeline constraints. ACM
Transactions on Programming Languages and Systems 5(3), 422–448 (1983)

8. Bringmann, R.A.: Enhancing Instruction Level Parallelism through Compiler-
Controlled Speculation. PhD thesis, U. of Illinois at Urbana-Champaign (1995)

9. Chekuri, C., Johnson, R., Motwani, R., Natarajan, B., Rau, B.R., Schlansker, M.:
Profile-driven instruction level parallel scheduling with application to superblocks.
In: Proc. of the 29th Annual IEEE/ACM International Symposium on Microarchi-
tecture (Micro-29), Paris, pp. 58–67 (1996)

10. Deitrich, B., Hwu, W.: Speculative hedge: Regulating compile-time speculation
against profile variations. In: Proc. of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture (Micro-29), Paris (1996)

11. Eichenberger, A.E., Meleis, W.M.: Balance scheduling: Weighting branch tradeoffs
in superblocks. In: Proc. of the 32nd Annual IEEE/ACM International Symposium
on Microarchitecture (Micro-32), Haifa, Israel (1999)

12. Wilken, K., Liu, J., Heffernan, M.: Optimal instruction scheduling using integer
programming. In: Proc. of the SIGPLAN 2000 Conference on Programming Lan-
guage Design and Implementation, Vancouver, pp. 121–133 (2000)

13. van Beek, P., Wilken, K.: Fast optimal instruction scheduling for single-issue pro-
cessors with arbitrary latencies. In: Proc. of the 7th Int’l Conf. on Principles and
Practice of Constraint Programming, Paphos, Cyprus, pp. 625–639 (2001)

An Application of Constraint Programming 111

14. Heffernan, M., Wilken, K.: Data-dependency graph transformations for instruction
scheduling. Journal of Scheduling 8, 427–451 (2005)

15. Malik, A.M., McInnes, J., van Beek, P.: Optimal basic block instruction scheduling
for multiple-issue processors using constraint programming. In: Proc. of the 18th
IEEE Int’l Conf. on Tools with AI, Washington, DC, pp. 279–287 (2006)

16. Ertl, M.A., Krall, A.: Optimal instruction scheduling using constraint logic pro-
gramming. In: Proc. of 3rd International Symposium on Programming Language
Implementation and Logic Programming, Passau, Germany, pp. 75–86 (1991)

17. Kästner, D., Winkel, S.: ILP-based instruction scheduling for IA-64. In: Proc. of
the SIGPLAN 2001 Workshop on Languages Compilers, and Tools for Embedded
Systems, Snowbird, Utah, pp. 145–154 (2001)

18. Liu, J., Chow, F.: A near-optimal instruction scheduler for a tightly constrained,
variable instruction set embedded processor. In: Proc. of the Int’l Conf. on Com-
pilers, Architectures, and Synthesis for Embedded Systems, Grenoble, pp. 9–18
(2002)

19. Winkel, S.: Exploring the performance potential of Itanium processors with ILP-
based scheduling. In: 2nd IEEE/ACM International Symposium on Code Genera-
tion and Optimization, pp. 189–200 (2004)

20. Shobaki, G., Wilken, K.: Optimal superblock scheduling using enumeration. In:
Proc. of the 37th Annual IEEE/ACM International Symposium on Microarchitec-
ture (Micro-37), Portland, Oregon, pp. 283–293 (2004)

21. Shobaki, G.: Optimal Global Instruction Scheduling Using Enumeration. PhD the-
sis, University of California, Davis (2006)

22. Malik, A.M.: Constraint Programming Techniques for Optimal Instruction
Scheduling. PhD thesis, University of Waterloo (2008)

23. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In:
Proc. of the 13th National Conference on AI, Portland, Oregon, pp. 209–215 (1996)

24. Smith, B.M.: Modelling. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of
Constraint Programming. Elsevier, Amsterdam (2006)

25. Trick, M.: A dynamic programming approach for consistency and propagation of
knapsack constraints. In: Proc. of Third International Workshop on Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (2001)

26. Gomes, C., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial
search. In: Proc. of the 3rd Int’l Conf. on Principles and Practice of Constraint
Programming, Linz, Austria, pp. 121–135 (1997)

27. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

28. Refalo, P.: Impact-based search strategies for constraint programming. In: Proc. of
the 10th Int’l Conf. on Principles and Practice of Constraint Programming,
Toronto, pp. 557–571 (2004)

29. Freuder, E.C.: Exploiting structure in constraint satisfaction problems. In: Mayoh,
B., Tyugo, E., Penjam, J. (eds.) Constraint Programming. Springer, Heidelberg
(1994)

30. Blainey, R.J.: Instruction scheduling in the TOBEY compiler. IBM J. Res. De-
velop. 38(5), 577–593 (1994)

31. Chakrapani, L.N., Gyllenhaal, J., Hwu, W.W., Mahlke, S.A., Palem, K.V., Rabbah,
R.M.: Trimaran: An infrastructure for research in instruction-level parallelism. In:
Proc. of the 17th International Workshop on Languages and Compilers for High
Performance Computing, West Lafayette, Indiana, USA, pp. 32–41 (2005)

	An Application of Constraint Programming to Superblock Instruction Scheduling
	The Problem
	Why CP?
	How CP?
	Basic Model
	Improving the Model and Solving Approach
	Experimental Evaluation

	Added Value of CP?
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

