
Efficiently Solving Problems Where the

Solutions Form a Group

Karen E. Petrie and Christopher Jefferson�

Computing Laboratory, University of Oxford, UK
karen.petrie@comlab.ox.ac.uk, chris.jefferson@comlab.ox.ac.uk

Abstract. Group theory is the mathematical study of symmetry. This
paper presents a CP method of efficiently solving group-theoretic prob-
lems, where each of the solutions is an element of a group. This method
allows us to answer questions in group theory which are computationally
unfeasible with traditional CP techniques.

1 Introduction

Many problems arising in group theory can be naturally expressed as constraint
problems but current solvers are often unable to solve instances of an interesting
size. Our aim is to create a constraint programming based tool for mathemati-
cians, that allows group theorists to search for groups with a specific property. It
will allow counter example generation by answering for example: “Does a group
exist with a given subgroup, and a given element of a certain order”.

This paper provides the fundamental basis for such a system; by providing
a constraint programming method for solving group-theoretic problems, where
each of the solutions is an element of a group. This algorithm works by finding
only a small subset of solutions which are sufficient to generate every other
solution. As we will see our method allows group-theoretic problems to be solved
which can not be solved using traditional constraint techniques.

2 Overview of Method

In this section we will briefly define a number of common group-theoretic con-
cepts, for a more complete introduction see [1]. Stabiliser chains provide an
algorithmic method of constructing a small generating set [2] for any group and
provide the inspiration for our algorithm. The stabiliser chain relies on the con-
cept of the point wise stabiliser. We start by giving the definition of a stabiliser.

Definition 1. Let G be a permutation group acting on the set of points Ω.
Let β ∈ Ω be any point. The stabiliser of β is the subgroup of G defined by:
StabG(β) = {g ∈ G | βg = β}, which is the set of elements in G which fixes or

� Chris Jefferson was supported by EPSRC Grant EP/D032636/1 and Karen Petrie by
a Royal Society Fellowship. We would like to thank the referees for their comments.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 529–533, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

530 K.E. Petrie and C. Jefferson

stabilises the point β. The stabiliser of any point in a group G is a subgroup of
G. The stabiliser of a set of points, denoted StabG(i, j, . . .), is the elements of
G which move none of the points.

The definition of the stabiliser chain follows.

Definition 2. Stabiliser chains are built in an recursive fashion. Given a per-
mutation group G and a point p, the first level of the stabiliser chain is built from
an element of G which represents each of the places p can be mapped to. The
next level of the stabiliser chain is built from applying this same algorithm to
StabG(p), again choosing representative elements for all the places some point
q �= p can be mapped to. The stabiliser chain is finished when the stabiliser
generated contains only the identity element.

Stabiliser chains, in general, collapse quickly to the subgroup containing only
the identity since the order of each new stabiliser must divide the order of the
stabilisers above it. The following example is given to crystallise the stabiliser
chain concept.

Example 1. Consider the symmetric group consisting of the 24 permutations of
{1, 2, 3, 4}. We compute a chain of stabilisers of each point, starting arbitrarily
with 1 (denoted StabS4(1)). 1 can be mapped to 2 by [2, 1, 3, 4], 3 by [3, 1, 2, 4] and
4 by [4, 1, 2, 3]. These group elements form the first level of the stabiliser chain.

The second level is generated by looking at the orbit and stabiliser of 2 in
StabS4(1). In the stabiliser of 1, 2 can be mapped to both 3 and 4 by the group
elements [1, 3, 2, 4] and [1, 4, 2, 3]. We now stabilise both 1 and 2, leaving only
the group elements [1, 2, 3, 4] and [1, 2, 4, 3]. Here 3 can be mapped to 4 by the
second group element, and once 1, 2 and 3 are all stabilised the only element left
is the identity and the algorithm finishes.

The stabiliser chain shows how a generating set of elements can be generated
from a limited number of simple calculations. Our method is based around split-
ting search into a number of pieces, and finding only the first solution in each of
these pieces. Each of these pieces is equivalent to a step in the stabiliser chain. We
state without proof due to space restrictions that an arbitrary solution, should
one exist, to each member of the split we define, form a stabiliser chain, and
therefore a set of generators for the group of solutions. The precise split we use
is given in Definition 3.

Definition 3. Given a CSP P where the projection of the solutions onto some
list of variables V of length n forms a permutation group, then the generator
split of P is the following set of CSPs, each equal to P with a list of additional
constraints: ∀1 ≤ i < j ≤ n. Pi,j = P ∧ (∀1 ≤ k ≤ i − 1.Vk = k) ∧ Vi = j.

Our algorithm is very simple. It requires creating a generator split of a CSP and
then finding the first solution, if one exists, to each of the CSPs in the generator
split by whichever means we wish. The major strength of this algorithm is that it
can be implemented with no changes to the constraint solver. This does however

Efficiently Solving Problems Where the Solutions Form a Group 531

create a small overhead due to having to start the solver many times. In our
Minion implementation, we instead create the CSP once in the solver, and then
solve it multiple times. This is possible as the extra conditions imposed by the
generator split are only variable assignments. No other changes were necessary
to implement the algorithm.

3 Experimental Results

We consider a number of experiments, each of which involves solving a CSP
whose solutions form a group. These will show that the gains made from iden-
tifying that the solutions to a problem form a group often provides massive
advantages, and almost no loss in even the worst case.

3.1 Graph Automorphism

Probably the most famous problem whose solutions form a group is graph au-
tomorphism. Our model does not use the propagators given in [3] due to lack of
an implementation in the Minion constraint solver.

We will consider finding the symmetries of two families of graphs, randomly
generated graphs and the grid graph, given in Definition 4.

Definition 4. The l × w grid graph is a graph on l × w vertices arranged in a
grid of height l and width w, where two vertices are connected by an edge if they
are either in the same row or same column.

The symmetry group of the grid graph arises frequently in constraint program-
ming, as this is the symmetry group of problems with “row and column” matrix
symmetry [4], a commonly occurring group in constraint programming. There-
fore being able to quickly identify this group would be an important and useful
property for any system which would be used to identify the graph automor-
phisms which occur in CP.

Table 1 shows a comparison of our algorithm against a traditional complete
search for identifying the automorphism group of grid graphs of various sizes.
It is clear from these results that using a traditional search quickly becomes
unfeasible. Using the generators found by our algorithm, a computational group
theory package such as GAP can almost instantly produce the total size of the
group, which we fill in for the two largest instances. Clearly no constraint solver
could enumerate this many solutions.

Note that while our algorithm takes a non-trivial period of time for large
graphs, the size of the search is still very small. Given a more efficient propagator
for graph automorphism, we expect these times would drop dramatically.

We also conducted experiments to compares finding the symmetries of a small
selection of random graphs. In general we expect such graphs to have no symme-
tries except for the identity symmetry, and indeed all the graphs we considered
did only have this symmetry. As these graphs have no symmetries, we do not
expect our algorithm to perform any better than a complete search. The aim
therefore of these experiments is to investigate the overhead which is introduced.

532 K.E. Petrie and C. Jefferson

Table 1. Comparing algorithms for finding the automorphisms of a grid graph

Size Traditional New

Solutions Nodes Time Generators Nodes Time

3 × 3 72 143 0.007 12 31 0.07
4 × 4 1,152 2303 0.26 24 103 0.08
5 × 5 28,800 57599 9.64 40 238 0.12
6 × 6 1,036,800 2073599 711.8 60 455 0.31
10 × 10 2.6×1013 - - 180 2523 11.61
15 × 15 3.4×1024 - - 420 9233 297.6

The results show that there is almost no measurable overhead introduced by our
algorithm.

For a static variable ordering along the permutation, we expect the searches
produced with and without our algorithm to be almost identical, except for a tiny
variance in the number of search nodes introduced from splitting the search into
pieces before beginning and this is what we see in practice. We also conducted
experiments using a dynamic variable ordering, smallest domain first. While
this does introduce some measurable differences into the resulting searches, it
is not clear if our algorithm is better or worse, and once again any variance is
small. While this by no means proves our algorithm would not interfere with
any dynamic variable ordering, it produces promising evidence that it does not
effect search even when dynamic heuristics are used.

One important step we have not taken here is comparing our algorithm against
specialised graph isomorphism systems, such as those provided in specialise
graph isomorphism tools such as NAUTY [5] and SAUCY [6]. We feel for a
fair comparison our algorithm must first be combined with a specialised propa-
gator. We note that the experiments in [3] show a specialised propagator can find
single automorphisms very competitively, giving hope that combined with our
new algorithm the result should be comparable to these systems, while allowing
a much greater degree of flexibility.

3.2 Group Intersection

One of the major advantages of designing our algorithm as a modification to
search in a traditional CP framework is that allows us to use the flexibility of
CP when modelling our problems. As an example of this flexibility, we consider
finding the intersection of the grid graph, given in Definition 4, with the alter-
nating group, given in Definition 5. Expressing this as a CSP requires simply
imposing the constraints for both in the same problem. Definition 5 does not pro-
vide an obvious method of expressing that a permutation is even. A well known
alternative method of checking if a permutation V is even is to check if the value
of the expression

∑
1≤i<j≤n(V [i] > V [j]) is even. This is the formulation which

we use to express that a permutation is alternating.

Definition 5. A permutation is even if it can be expressed as an even number
of swaps of pairs of values. The alternating group contains even permutations.

Efficiently Solving Problems Where the Solutions Form a Group 533

Table 2. Comparing algorithms for finding the intersection of the grid graph and
alternating group

Size Traditional New

Solutions Nodes Time Generators Nodes Time

3 × 3 36 107 0.02 11 30 0.04
4 × 4 1,152 2,303 0.81 24 103 0.06
5 × 5 14,400 43,199 7.5 39 237 0.13
6 × 6 518,400 1,555,199 509.4 55 274,010 109
7 × 7 25,401,600 76,204,799 40304 83 772 1.46

Table 2 gives results for this experiment. The results show how the power of
constraint programming can be used to solve complex problems. It is unclear
from where the large number of nodes for the 6 × 6 grid arise and this shows
that it is non-obvious how hard it will be to find the intersection of two groups.
Our algorithm still noticeably outperforms complete search in this instance and
performs magnitudes better on the largest instance.

4 Conclusion

We have extended the abilities of constraint programming to allow problems
in Computational Group Theory to be efficiently solved. We have, moreover,
demonstrated experimentally that constraint programming can be a useful tool
to solve group theoretic problems. Our method, allows us to solve problems which
would not be possible without this constraint based decomposition technique.
This result is important, since it shows the scope for constraint programming to
be applied to group theoretic research.

References

1. Armstrong, M.A.: Groups and Symmetry. Springer, Heidelberg (2000)
2. Jerrum, M.: A compact presentation for permutation groups. J. Algorithms 7, 71–90

(2002)
3. Sorlin, S., Solnon, C.: A parametric filtering algorithm for the graph isomorphism

problem. Journal of constraints (December 2008)
4. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:

Breaking row and column symmetries in matrix models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

5. McKay, B.: Practical graph isomorphism. In: Proc. 10th Manitoba Conf. on Numer-
ical mathematics and computing, Winnipeg/Manitoba 1980, Congr. Numerantium,
vol. 30, pp. 45–87 (1981), http://cs.anu.edu.au/people/bdm/nauty

6. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in
symmetry detection for cnf. In: DAC 2004: Proceedings of the 41st annual conference
on Design automation, pp. 530–534. ACM, New York (2004)

http://cs.anu.edu.au/people/bdm/nauty

	Efficiently Solving Problems Where the Solutions Form a Group
	Introduction
	Overview of Method
	Experimental Results
	Graph Automorphism
	Group Intersection

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

