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Abstract. Recursively defined properties are ubiquitous. We present a proof meth-
od for establishing entailment G |= H of such properties G and H over a set of
common variables. The main contribution is a particular proof rule based intuitively
upontheconceptofcoinduction.This ruleallows the inductivestepofassuming that
an entailment holds during the proof the entailment. In general, the proof method is
based on an unfolding (and no folding) algorithm that reduces recursive definitions
to a point where only constraint solving is necessary. The constraint-based proof
obligation is then discharged with available solvers. The algorithm executes the
proof by a search-based method which automatically discovers the opportunity of
applying induction instead of the user having to specify some induction schema,
and which does not require any base case.

1 Introduction

A large category of formal verification problems can be expressed as proof obligations
of the form G entails H , written G |= H , where G and H are recursively defined
properties. Such problems appear in functional and logic programs, and specification
languages such as JML, and they usually represent verification requirements for sys-
tems with infinite, or unbounded number of states, such as parameterized, or software
systems. For instance, G might represent the semantics of a program, expressed as a
formula in a suitable theory, whereas H may express a safety assertion.

Once the proof obligation G |= H is formulated, it may be discharged with the help
of a theorem prover such as Coq [1], HOL [6], or PVS [20]. While, in general, the proof
process may be very complex, these tools provide a high level of assistance, automating
parts of the process, and guaranteeing the correctness of the proof, once it is obtained.
While there is, currently, a sustained research effort towards automating the process of
discharging proof obligations, this process still requires, in general, a significant level
of manual input. In the case of inductive proofs, for instance, the inductive variable, its
base case, and the induction hypothesis need to be provided manually.

In this paper we present a proof method that establishes an entailment of the form
G |= H , where G and H are two recursively defined properties over a set of com-
mon variables. The use of a coinduction principle (which does not require a base case),
coupled with the standard operation of unfolding recursive definitions, allows the op-
portunistic discovery of suitable induction hypotheses, and makes our method amenable
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to automation. The entire framework is formalized in Constraint Logic Programming
(CLP), so that CLP predicates can be used to describe the recursive properties of inter-
est. Our method is, in fact, centered around an algorithm whose main operation is the
standard unfolding of a CLP goal. The unfolding operation is applied to both the lhs G
and the rhs H of the entailment. The principle of coinduction allows the discovery of a
valid induction hypothesis, thus terminating the unfolding process. Through the appli-
cation of the coinduction principle, the original proof obligation usually reduces to one
that no longer contains recursive predicates. The remaining proof obligation contains
only base constraints, and can be relegated to the underlying constraint solver.

Let us illustrate this process on a small example. Consider the definition of the fol-
lowing two recursive predicates

m4(0). even(0).
m4(X + 4) :- m4(X). even(X + 2) :- even(X).

whose domain is the set of non-negative integers. The predicate m4 defines the set of
multiples of four, whereas the predicate even defines the set of even numbers. We shall
attempt to prove that m4(X) |= even(X), which in fact states that every multiple of four
is even. We start the proof process by performing a complete unfolding on the lhs goal.
By “complete,” we mean that we use all the clauses whose head unify with m4(X)1.
We note that m4(X) has two possible unfoldings, one leading to the empty goal with
the answer X = 0, and another one leading to the goal m4(X ′),X ′ = X − 4. The two
unfolding operations, applied to the original proof obligation result in the following
two new proof obligations, both of which need to be discharged in order to prove the
original one.

X = 0 |= even(X) (1)
m4(X ′),X ′ = X −4 |= even(X) (2)

The proof obligation (1) can be easily discharged. Since unfolding on the lhs is no
longer possible, we can only unfold on the rhs. We choose1 to unfold with clause
even(0), which results in a new proof obligation which is trivially true, since its lhs
and rhs are identical.

For proof obligation (2), before attempting any further unfolding, we note that the
lhs m4(X ′) of the current proof obligation, and the lhs m4(X) of the original proof
obligation, are unifiable (as long as we consider X ′ a fresh variable), which enables the
application of the coinduction principle. First, we “discover” the induction hypothesis
m4(X ′) |= even(X ′), as a variant of the original proof obligation. Then, we use this
induction hypothesis to replace m4(X ′) in (2) by even(X ′). This yields the new proof
obligation

even(X ′),X ′ = X −4 |= even(X) (3)

To discharge (3), we unfold twice on the rhs, using the even(X + 2) :- even(X) clause.
The resulting proof obligation is

even(X ′),X ′ = X −4 |= even(X ′′′),X ′′′ = X ′′ −2,X ′′ = X −2 (3)

1 The requirement of a complete unfold on the lhs, and the lack of such requirement on the rhs,
is explained in Section 3.
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where variables X ′′ and X ′′′ are existentially quantified2. Using constraint simplifica-
tion, we reduce this proof obligation to even(X −4) |= even(X −4), which is obviously
true.

At this point, all the proof obligations have been discharged and the proof is com-
plete. Informally, we have performed four kinds of operations: (a) left unfolding, (b)
right unfolding, (c) application of coinduction, and (d) constraint solving/simplification.
While we shall relegate to Section 3 the argument that all these steps are correct, we
would like to further emphasize several aspects concerning our proof method.

First, our method is amenable to automation, in the form of a non-deterministic al-
gorithm. The state of the proof is given by a proof tree, whose frontier has the current
proof obligations, all of which have to be discharged in order to complete the proof.
Each proof step applies non-deterministically one of the four operations given above
to one of the current proof obligations. Of these four, the lhs and rhs unfolding opera-
tions expand the tree by adding new descendants. In contrast, the coinduction operation
searches the ancestors of the current goal for a matching lhs. If one is found, then a
suitable induction hypothesis is generated, and applied to the lhs of the current goal, as
shown in the small example given above. The fourth kind of operation performs con-
straint simplification/solving, possibly discharging the current proof obligation. As our
examples show, the unfolding process and the application of the coinduction principle
require no manual intervention.

Second, our coinductive proof step is inspired from tabled logic programming [24].
The intuition behind the correctness of this step is that, since the unfolding of the lhs is
complete, we are already exploring all the possibilities of finding a counterexample, i.e.
a substitution θ for which Gθ is true while H θ is false. Whenever we find an ancestor
with lhs G ′ which is variant of the lhs G (or some subgoal thereof) of the current proof
obligation, we can immediately conclude that the current proof obligation would not
contribute counterexamples that wouldn’t already be visible from its matching ancestor.
However, for this statement to be indeed true, we need to establish a similar matching
between the rhs of the two proof obligations. This condition is expressed by the proof
obligation obtained after the application of the coinductive step.

Finally, we would like to clarify that the use of the term coinduction pertains to the
way the proof rules are employed for a proof obligation G |= H , and has no bearing on
the greatest fixed point of the underlying logic program P. In fact, our proof method,
when applied successfully, proves that G is a subset of H wrt. the least fixpoint of (the
operator associated with) the program. However, as further clarified in Section 4, the
success of the proof method is modeled as a property of a potentially infinite proof tree,
and thus coinduction, rather than induction, needs to be employed to establish it.

1.1 Related Work

Variants of our proof method have been applied in more restricted settings of timed
automata verification [10] and reasoning about structural properties of programs [12].
In the current paper, we focus on the common techniques used as well as hinting towards
greater class of applications.

2 In Section 3 we handle these variables formally.
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Among logic-programming-based proof methods, early works of [13,14] propose def-
inite clause inference and negation as failure inference (NFI) which are similar to our
unfolding rules. These inferences are applied prior to concluding a proof of an implica-
tion using a form of computational induction. A form of structural induction in a similar
framework is employed in [4]. We note that these proof methods are based on fitting in
the allowable inductive proofs into an induction schema, which is usually syntax-based.
Mesnard et al. [18] propose a CLP proof method for a system of implications, whose
consequents contain only constraints. This technique is not completely general. Craci-
unescu [3] proposed a method to prove the equivalence of CLP programs using either
induction or coinduction. The notion of coinduction here is different from ours; they
reason about the greatest fixpoint of a CLP program, while we reason about the least.

Among the more automated approaches, [21,22] used unfold/fold transformation
of logic programs to prove equivalences of goals. [22] presents a proof method for
equivalence assertions on parameterized systems. Hsiang and Srivas [7,8] propose an
inductive proof method for Prolog programs. The main feature of the proof method is a
semi-automatic generation of induction schema (in the sense, this objective is similar to
those of Kanamori and Fujita [13] mentioned above). The generation of inductive asser-
tions is by producing the reduct of the goals (unfolding). Termination of the unfolding
is implemented by a marking mechanism on the variables. Whenever an input variables
is instantiated during an unfold (in other words, we need to make a decision about its
value), it is marked. In a sense, this is similar to the use of bomblist in the Boyer-Moore
prover [2]. As is the case with Boyer-Moore prover, the induction is structural. Here,
the method requires the user to distinguish a set of input variables to structurally induct
on. In comparison, we employ no induction schema. We detect the point where we ap-
ply the induction hypothesis automatically using constraint subsumption test. In other
words, we discover the induction schema dynamically using indefinite steps of unfolds.
This approach is more complete and automatable.

The work of Roychoudhury et al. [23] systematizes induction proofs using tabled
resolution of logic programming. It is essentially based on unfolding, delaying upon
detection of potential infinite resolution, and finally a folding step to conclude similar-
ity. These serve to extend the tabled resolution engine of XSB tabled logic programming
system. Our work generalizes this idea by providing a constraint-based inductive proof
rules based on automated detection of cycles using constraints. Our rules are also based
on the notion of tabling of assertions, which are later re-used as induction hypothesis.

Another form of tabling is also employed in Prolog Technology Theorem Prover
(PTTP) [25]. Here the proof process is basically Prolog’s search for refutation with
several extensions, including a model elimination reduction (ME reduction), which
memoes literals, and whenever a new goal which is contradictory to a stored literal
is found, we stop because this constitutes a refutation. The part of PTTP that is akin
to our coinduction is the detection when there is an occurrence of the same literal in
which case, the system backtracks. Our work departs from PTTP mainly by the use of
constraints.

Recursive definitions are also encountered in data structure verification area. [17]
presents an algorithm for specification and verification of data structure using equal-
ity axioms. In [19] user-defined recursive definitions are allowed to specify “shape”
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properties. Proofs are carried out via fold/unfold transformations. As we will exemplify
later, our algorithm can be used to automatically perform proofs of assertions containing
recursive data structure definitions.

Finally, we mention the work in [5], which uses a coinductive interpretation of logic
programming rules to express properties of infinite or circular data structures. The term
coinductive is used here to refer to the greatest fixed point of the program at hand. We
re-emphasize at this point that, in contrast with [5], our use of the term “coinductive”
refers to the way our proof rules are employed, and bears no direct relationship to the
greatest fixed point of the logic program.

2 Constraint Logic Programs

We use CLP [9] definitions to represent our verification conditions. To keep our paper
self-contained, we provide a minimal background on the constraint logic programming
framework.

An atom is of the form p(t̃) where p is a user-defined predicate symbol and t̃ a tuple
of terms, written in the language of an underlying constraint solver. A clause is of the
form A:-Ψ, B̃ where the atom A is the head of the clause, and the sequence of atoms B̃
and constraint Ψ constitute the body of the clause. The constraint Ψ is also written in
the language of the underlying constraint solver, which is assumed to be able to decide
(at least reasonably frequently) whether Ψ is satisfiable or not. In our examples, we
assume an integer and array constraint solver, as described below.

A program is a finite set of clauses. A goal has exactly the same format as the body
of a clause. A goal that contains only constraints and no atoms is called final.

A substitution θ simultaneously replaces each variable in a term or constraint e into
some expression, and we write eθ to denote the result. A renaming is a substitution
which maps each variable in the expression into a distinct variable. A grounding is
a substitution which maps each integer or array variable into its intended universe of
discourse: an integer or an array. Where Ψ is a constraint, a grounding of Ψ results in
true or false in the usual way.

A grounding θ of an atom p(t̃) is an object of the form p(t̃θ) having no variables. A
grounding of a goal G ≡ (p(t̃),Ψ) is a grounding θ of p(t̃) where Ψθ is true. We write
[[G ]] to denote the set of groundings of G .

Let G ≡ (B1, · · · ,Bn,Ψ) and P denote a non-final goal and program respectively. Let
R ≡ A:-Ψ1,C1, · · · ,Cm denote a clause in P, written so that none of its variables appear
in G . Let the equation A = B be shorthand for the pairwise equation of the corresponding
arguments of A and B. A reduct of G using a clause R, denoted reduct(G ,R), is of the
form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A,Ψ,Ψ1)

provided the constraint Bi = A∧Ψ∧Ψ1 is satisfiable.
A derivation sequence for a goal G0 is a possibly infinite sequence of goals G0,G1,

· · · where G i, i > 0 is a reduct of G i−1. If the last goal Gn is a final goal, we say that
the derivation is successful. A derivation tree for a goal is defined in the obvious way.
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Definition 1 (Unfold). Given a program P and a goal G , UNFOLD(G) is {G ′|∃R ∈ P :
G ′ = reduct(G ,R)}. �	
In the formal treatment below, we shall assume, without losing generality, that goals are
written so that atoms contain only distinct variables as arguments.

2.1 An Integer and Array Constraint Language

In this section we provide a short description of constraint language allowed by the
underlying constraint solver assumed in all our examples. We consider three kinds of
terms: integer and array terms. Integer terms are constructed in the usual way, with
one addition: the array element. The latter is defined recursively to be of the form a[i]
where a is an array expression and i an integer term. An array expression is either an
array variable or of the form 〈a, i, j〉 where a is an array expression and i, j are integer
terms. A term is either constructed from an array “segment”: a{i.. j} where a is an array
expression and i, j integer variables.

The meaning of an array expression is simply a map from integers into integers, and
the meaning of an array expression a′ = 〈a, i, j〉 is a map just like a except that a′[i] = j.
The meaning of array elements is governed by the classic McCarthy [16] axioms:

i = k → 〈a, i, j〉[k] = j
i = k → 〈a, i, j〉[k] = a[k]

A constraint is either an integer equality or inequality, an equation between array
expressions. The meaning of a constraint is defined in the obvious way.

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbol ψ or Ψ, with or without subscripts, to
denote a constraint.

3 Proof Method for Recursive Assertions

3.1 Overview

In this key section, we consider proof obligations of the form G |= H where var(H )
⊆ var(G). The validity of this formula expresses the fact that H θ succeeds w.r.t. the
CLP program at hand whenever Gθ succeeds, for any grounding θ of G . They are the
central concept of our proof system, by being expressive enough to capture interesting
properties of data structures, and yet amenable to automatic proof process.

Intuitively, we proceed as follows: unfold G completely a finite number of steps in
order to obtain a “frontier” containing the goals G1, . . . ,Gn. Then unfold H , but this
time not necessarily completely, that is, not necessarily obtaining all the reducts each
time, obtain goals H 1, . . . ,Hm. This situation is depicted in Figure 1. Then, the proof
holds if

G1 ∨ . . .∨Gn |= H1 ∨ . . .∨Hm

or alternatively, Gi |= H1 ∨ . . .∨Hm for all 1 ≤ i ≤ n. This follows from the fact that
G |= G1 ∨ . . .∨Gn, (which is not true in general, but true in the least-model semantics
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G1, . . . Gn

H
?
|=G

Complete

H1 ∨ . . .∨Hm

G1 ∨ . . .∨Gn |=
To Prove:

Hm

Hj

. . .

. . .

H1

. . .

. . .

Unfold
Partial

Coinduction

Unfold

Fig. 1. Informal Structure of Proof Process

of CLP), and the fact Hj |= H for all j such that 1 ≤ j ≤ m. More specifically, but with
some loss of generality, the proof holds if

∀i : 1 ≤ i ≤ n,∃ j : 1 ≤ j ≤ m : Gi |= Hj

and for this reason, our proof obligation shall be defined below to be simply a pair of
goals, written Gi |= Hj .

3.2 The Proof Rules

We now present a formal calculus for the proof of G |= H . To handle the possibly infi-
nite unfoldings of G and H , we shall depend on the use of a key concept: coinduction.
Proof by coinduction allows us to assume the truth of a previous obligation. The proof
proceeds by manipulating a set of proof obligations until it finally becomes empty or a
counterexample is found. Formally, a proof obligation is of the form Ã � G |= H where
the G and H are goals and Ã is a set of assumption goals. The role of proof obligations
is to capture the state of a proof. The set Ã contains goals whose truth can be assumed
coinductively to discharge the proof obligation at hand. This set is implemented in our
algorithm using a table as described in the next section.

(LU+I)
Π�{Ã � G |= H }

Π ∪
Sn

i=1{Ã∪{G |= H } � G i |= H }

UNFOLD(G) =
{G1, . . . ,Gn}

(RU)
Π�{Ã � G |= H }

Π∪{Ã � G |= H ′
}

H ′
∈ UNFOLD(H )

(CO)
Π�{Ã � G |= H }

Π∪{ /0 � H ′θ |= H }

G ′ |= H ′
∈ Ã and there exists

a substitution θ s.t. G |= G ′θ.

(CP)
Π�{Ã � G ∧ p(x̃) |= H ∧ p(ỹ)}

Π∪{Ã � G |= H ∧ x̃ = ỹ}
(DP)

Π�{G |= H }

Π
G |= H holds by
constraint solving

Fig. 2. Proof Rules
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Our proof rules are presented in Figure 2. The � symbol represents the disjoint union
of two sets, and emphasizes the fact that in an expression of the form A�B, we have
that A∩B = /0. Each rule operates on the (possibly empty) set of proof obligations Π,
by selecting one of its proof obligations and attempting to discharge it. In this process,
new proof obligations may be produced.

The left unfold with new induction hypothesis (LU+I) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligation, producing a new set of
proof obligations. The original assertion, while removed from Π, is added as an assump-
tion to every newly produced proof obligation, opening the door to using coinduction
later in the proof.

The rule right unfold (RU) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systematically interleaved. The resulting
proof obligations are then discharged either coinductively or directly, using the (CO)
and (CP) rules, respectively.

The rule coinduction application (CO) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligation via the direct proof (CP)
rule. Since assumptions can only be created using the (LU+I) rule, the (CO) rule real-
izes the coinduction principle. The underlying principle behind the (CO) rule is that a
“similar” assertion G ′ |= H ′ has been previously encountered in the proof process, and
assumed as true.

Note that this test for coinduction applicability is itself of the form G |= H . However,
the important point here is that this test can only be carried out using constraints, in the
manner prescribed for the CP rule described below. In other words, this test does not
use the definitions of assertion predicates.

Finally, the rule constraint proof (CP), when used repeatedly, discharges a proof obli-
gation by reducing it to a form which contains no assertion predicates. Note that one
application of this removes one occurrence of a predicate p(ỹ) appearing in the rhs of
an obligation. Once a proof obligation has no predicate in the rhs, a direct proof (DP)
may be attempted by simply removing any predicates in the corresponding lhs.

Given a proof obligation G |= H , a proof shall start with Π = { /0 � G |= H }, and
proceed by repeatedly applying the rules in Figure 2 to it.

3.3 The Algorithm

We now describe a strategy so as to make the application of the rules automated. Here
we propose systematic interleaving of the left-unfold (LU+I) and right-unfold (RU)
rules, attempting a constraint proof along the way. As CLP can be execution by res-
olution, we can also execute our proof rules, based on an algorithm which has some
resemblance to tabled resolution.

We present our algorithm in pseudocode in Figure 3. Note that the presentation is in
the form of a nondeterministic algorithm, and thus each of the nondeterministic operator
choose needs to be implemented by some form of systematic search. Note also that when
applying coinduction step, we test that some assertion G ′ |= H ′ is stored in some table.

In Figure 3, by a constraint proof of a obligation, we mean to repeatedly apply the
CP rule in order to remove all occurrences of assertion predicates in the obligation, in
an obvious way. Then the constraint solver is applied to the resulting obligation.
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REDUCE(G |= H ) returns boolean

• Constraint Proof: (CP) + Constraint Solving (DP)
Apply a constraint proof to G |= H .
If successful, return true, otherwise return false

• Memoize (G |= H ) as an assumption
• Coinduction: (CO)

if there is an assumption G ′ |= H ′ such that
REDUCE(G |= G ′θ) = true and REDUCE(H ′θ |= H ) = true then return true.

• Unfold:
choose left or right
case: Left: (LU+I)

choose an atom A in G to reduce
for all reducts GL of G using A:

if REDUCE(GL |= H ) = false return false
return true

case: Right: (RU)
choose an atom A in H to reduce, obtaining GR
return REDUCE(G |= GR)

Fig. 3. The Algorithm

3.4 Correctness

Given a proof obligation G |= H , a proof starts with Π = {Ã � G |= H }, and proceeds
by repeatedly applying the rules in Figure 2. The omission of negative literals in the
body of the clauses of program P ensures that it has a unique least model, denoted
lm(P).

Theorem 1 (Soundness). A proof obligation G |= H holds, that is, lm(P)→ (G |= H )
for the given program P, if, starting with the proof obligation /0 � G |= H , there exists
a sequence of applications of proof rules that results in proof obligations Ã � G ′ |= H ′

such that (a) H ′ contains only constraints, and (b) G ′ |= H ′ can be discharged by the
constraint solver. �	
Proof Outline. The rule (RU) is sound because by the semantics of CLP, when H ′ ∈
UNFOLD(H ) then H ′ |= H . Therefore, the proof of the obligation Ã � G |= H can be
replaced by the proof of the obligation Ã � G |= H ′ since G |= H ′ is stronger than
G |= H . Similarly, the rule (CP) is sound because G |= H ∧ x̃ = ỹ is stronger than the
G ∧ p(x̃) |= H ∧ p(ỹ).

The rule (LU+I) is partially sound in the sense that when UNFOLD(G)={G1, . . . ,Gn},
then proving G |= H can be substituted by proving G1 |= H , . . . ,Gn |= H . This is be-
cause in the least-model semantics of CLP, G is equivalent to G1 ∨ . . .∨Gn. However,
whether the addition of G |= H to the set of assumed assertions Ã is sound depends on
the use of the set of assumed assertions in the application of (CO).

Notice that in the rule (CO) we require the proofs of both G |= G ′θ and H ′θ |= H
for some substitution θ. These proofs establish subsumption, that is the implication
(G ′ |= H ′) → (G |= H ).
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Assume that using our method, given a program P, we managed to conclude G |= H
where G and H are goals possibly containing atoms and it is not the case that G |= H
can be proved without the application of (LU+I) (since otherwise trivial by soundness
of (RU) and (CP)). Assume that in the proof, there are a number of assumed assertions
A1, . . . ,An used coinductively as induction hypotheses. This means that in the proof of
G |= H the left unfold rule (LU+I) has been applied at least once (possibly interleaved
with the applications of (RU) and (CP)) obtaining two kinds of assertions:

1. Assertions C which are directly proved using (RU), (CP), and constraint solving
(DP).

2. Assertions B which are proved using (CO) step using some assumed assertion A j

as hypothesis for 1 ≤ j ≤ n.

We may conclude that G |= H holds. We now outline the proof of this.
First, define a refutation to an assertion G |= H as a successful derivation of one

or more atoms in G whose answer Ψ has an instance (ground substitution) θ such that
Ψθ∧H θ is false. A finite refutation corresponds to a such derivation of finite length.
A nonexistence of finite refutation means that lm(P) → (G |= H ). A derivation of an
atom is obtainable by left unfold (LU+I)) rule only. Hence a finite refutation of length k
implies a corresponding k left unfold (LU+I) applications that results in a contradiction.

Due to:

1. The soundness of other rules (RU) and (CP) and the partial soundness of (LU+I)
with the fact that Ai for all 1 ≤ i ≤ n is obtained from G |= H by applying these
rules, and

2. All assertions C are proved by (RU), (CP) and constraint solving (DP) alone,

we have: G |= H holds if Ai holds for all 1 ≤ i ≤ n, and this holds iff for all i such that
1 ≤ i ≤ n, and for all k ≥ 0 : Ai has no finite refutation of length k.

We prove inductively:

• Base case: When k = 0, for all i such that 1 ≤ i ≤ n, Ai trivially has no finite
refutation of length 0.

• Inductive case: Assume that for all i such that 1 ≤ i ≤ n, Ai has no finite refutation
of length k or less (∗), we want to prove that for all i such that 1 ≤ i ≤ n, Ai has no
finite refutation of length k + 1 or less (∗∗).

Notice again in our assumptions above that assertions B are proved by applying
(CO) using A j for some 1 ≤ j ≤ n. Because subsumption holds in every application
of (CO), this means that for such B, A j → B. (∗ ∗ ∗).

The proof is by contradiction. Now suppose that (∗∗) is false, that is, Ai for
some i such that 1 ≤ i ≤ n has a finite refutation of length k + 1 or less. But due to
our hypothesis (∗), Ai has no finite refutation of length k or less. Therefore it must
be the case that Ai has a finite refutation of length k + 1.

Again, note that we have applied (LU) to Ai at least once on the resulting asser-
tions, possibly interleaved with applications of (RU) and (CP) obtaining the follow-
ing two kinds of assertions:
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X = X ′ +2,X ′ = 2×Z |= X = 2×?Y
Direct proof

X = X ′ +2,even(X ′) |= X = 2×?Y

Coinduction
Direct proof
X = 0 |= X = 2×?Y

Unfold

even(X) |= X = 2×?Y

Fig. 4. Proof Tree Example

1. Assertions C which are proved by applications of (RU) and (CP) and constraint
solving alone.

2. Assertions B which are proved by (CO) using some A j for 1 ≤ j ≤ n in the set
of assumed assertions as induction hypothesis.

Then in the above set of assertions, either:

1. Some assertion of type C is a refutation to Ai of length k +1. However, regard-
less of the length, since all such assertions C are already proved by (RU), (CP),
and constraint solving, this case is not possible.

2. Since Ai has to have a finite refutation of length k +1, therefore there has to be
at least one assertion of type B that is reached in k or less unfolds. Therefore,
B has to have a refutation of length k or less. Now since subsumption (∗ ∗ ∗)
holds, then it should be the case that some A j for 1 ≤ j ≤ n such that A j → B
also has a finite refutation of length k or less. But this contradicts our hypothesis
(∗) that Ai for all 1 ≤ i ≤ n has no finite refutation of length k or less. �	

We finally mention that the proof rules are not complete. For example, when we have a
program

p(X) :- 0 ≤ X ≤ 3.
q(X) :- 0 ≤ X ≤ 2.
q(X) :- 1 ≤ X ≤ 3.

obviously p(X) |= q(X) holds, but we cannot prove this using our rules. The reason is
that 0 ≤ X ≤ 3 (obtained from the unfold of p(X)) does not imply either 0 ≤ X ≤ 2 or
1 ≤ X ≤ 3 (both obtained by right unfolding q(X)). It is possible, however, to introduce
new rules toward achieving completeness. For proving the above assertion, we could
introduce a splitting of an assertion. For instance, we may split G |= H into G ,φ |= H
and G ,¬φ |= H (φ in our example would be, say, X ≤ 1). However, this is beyond the
scope of this paper.

4 On the Coinduction Rule

Consider again the predicate even presented in Section 1. We now demonstrate a sim-
ple application of our rules to prove a property on the predicate. Consider proving the
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assertion even(X) |= X = 2×?Y, call it A (we denote existentially-quantified variables
with the query symbol “?”). The proof process starts by applying the (LU+I) rule un-
folding the even(X) goal, resulting in two new proof obligations, each with the original
goal A as its assumption. On the left branch, after unfolding with the base-case clause,
we are left with X = 0 |= X = 2×?Y , which can be discharged by direct proof using a
constraint solver. On the right branch of the proof, the unfolding rule produces the proof
obligation even(X ′),X = X ′+2 |= X = 2×?Y . Here we apply the coinduction (CO) rule
using even(X) |= X = 2×?Y as induction hypothesis, spawning an obligation to prove
X ′ = 2×Z,X = X ′ +2 |= X = 2×?Y. This can then be proved using constraint solving.

Let us now recall our example in Section 1. In Section 1 we have applied (LU+I) to
unfold the predicate m4(X) resulting in the two obligations (1) and (2). We apply (RU)
to perform right unfold on (1). We apply (CO) to (2) obtaining (3). We then apply (RU)
to (3) twice to establish it.

Our system does not require the user to manually specify induction hypothesis and/or
construct induction schema. Instead, any induction hypothesis used is obtained dynam-
ically during the proof process. Let us now exemplify this concept by considering the
program

p(X) :- q(X).
q(X) :- q(X).
r(X).

Here we want to prove p(X) |= r(X). Call this A1. We first apply (LU+I) to the assertion
obtaining q(X) |= r(X). Call this assertion A2. At this point, our algorithm tests whether
A1 can be used as a induction hypothesis to establish A2. This fails, and we again apply
(LU+I) obtaining another assertion A3 which is equivalent to A2. Upon obtaining A3,
the set of assumed assertions contain both A1 and A2. The algorithm now tests whether
any of these can be used in a (CO) application. Indeed, we can use the assertion A2

which is identical to A3. In this way induction hypotheses are chosen dynamically.
In the preceding examples we have demonstrated the use of the rule (CO) to conclude

proofs. Moreover, the last example illustrates the fact that, in contrast to most inductive
proof methods, our proof process may be successful even in the absence of a base case.
While the lack of a base case requirement justifies the qualifier “coinductive” being
applied to our proof method, the fact that this term has been somewhat overused in the
logic programming community warrants further clarification.

In our view, induction and coinduction are two flavours of one general proof scheme,
which is used to prove properties of objects defined by means of recursive rules. This
general scheme proves properties of such objects by assuming that the property of inter-
est already (inductively) holds for the “smaller” object on which the definition recurses.
Now, recursive definitions may be interpreted in an inductive or coinductive manner,
and each of these interpretations would lead to the general proof scheme being con-
strued as either induction or coinduction.

The crux of our proof method is to automatically generate an induction hypothesis
for the goal at hand, in an attempt to produce a successful application of the general
proof scheme mentioned above. The method works correctly irrespective of whether
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Program:
F(x) ⇐ if p(x) then x

else F(F(h(x)))

CLP Model:
s(X ,X) :– X = error.
s(X ,Xf ) :– X 
= error, p(X) = 1,Xf = X .

s(X ,Xf ) :– X 
= error, p(X) = 0, s(h(X),Y), s(Y,Xf ).

Fig. 5. Idempotent Function

the rules defining the properties of interest are intepreted inductively or coinductively3.
Since our proof method does not explicitly look for base cases, and since it can also
handle the situation where a recursive definition of a property would be interpreted
coinductively, we have chosen to use the qualifier “coinductive.” However, this qualifier
bears no direct relationship to the greatest fixed point of the logic program at hand.
Throughout this paper, our recursive definitions are meant to be interpreted inductively,
and the meaning of the goal G |= H is that whenever a grounding Gθ lies in the least
fixed point of the program at hand P, it follows that the grounding H θ is also in lfp(P).
Our proof method will be successful only when this interpretation of a goal holds.

5 Proof Examples

In our driving examples area of program verification, most of the entailment problems
we have encountered can be proved by our algorithm automatically. We believe they
cannot be automatically discharged by any existing systematic method. In this section,
we present two examples.

5.1 Function Idempotence

Suppose that we have the function in Figure 5 [15] with its CLP representation. Note
that error represents the return value of the function on divergent termination. Here
we want to prove idempotence, that is F(x) = F(F(x)), or that both the assertions A)
s(X ,Y ),s(Y,Xf ) |= s(X ,Xf ) and B) s(X ,Xf ) |= s(X ,?Y ),s(?Y,Xf ) holds. The mechan-
ical proof of Assertion A requires coinduction and will be exemplified here. The algo-
rithm first applies (LU+I) obtaining the assertions 1) s(error,Xf ) |= s(error,Xf ), 2) X =
error, p(X) = 1,X = Y,s(Y,Xf ) |= s(X ,Xf ), and 3) X = error, p(X) = 0, s(h(X),Z),
s(Z,Y ), s(Y,Xf ) |= s(X ,Xf ). Assertions 1 and 2 are proved by (CP) and (DP), and
the algorithm attempts to apply (CO) to Assertion 3 using the ancestor Assertion A as
hypothesis.

The application of (CO) obtains the obligation X = error, p(X) = 0, s(h(X),Y ),
s(Y,Xf ) |= s(X ,Xf ). This assertion cannot be proved by constraint proof nor by coin-
duction (since the set of assumed assertions are empty), and the algorithm proceeds
to proving by unfolding. Here it applies right unfold (RU) rule obtaining X = error,
p(X) = 0, s(h(X),Y ), s(Y,Xf ) |= X = error, p(X) = 0, s(h(X),?Z), s(?Z,Xf ), which
can be proved directly. Since the application of (CO) to Assertion 3 has been successful,
the proof concludes.

3 Nevertheless, the complete unfold of the left goal ensures that correct base case proofs are
generated whenever the current recursive definition provides such base cases.
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Program:
{h = h0,p = p0 > 0}

〈0〉 while (p>0) do
[p] := 0 〈1〉
p := [p+1] 〈2〉 end 〈3〉

{∃y.allz(h0,h, p0,y),h[y+1] = 0}

Assertion Predicate:

allz(H, 〈H,L,0〉,L,L) :- L > 0.

allz(H1, 〈H2,L,0〉,L,R) :-
L > 0,allz(H1,H2,H1[L+1],R).

Fig. 6. List Reset

5.2 A Pointer Data Structure Example: List Reset

We represent pointers as indices in an array which we call the heap. We write [p] to refer
to the location referenced by the pointer p. To implement a linked list, we shall assume
that a list element is made up of two adjacent heap cells. Thus, for the list element
referenced by p, the data field is [p], and the reference to the next element is [p + 1].
In the CLP program, given an array H, which typically denotes the heap, we denote by
H[I] the element referenced by index I in the array. We also denote by 〈H, I,J〉 the array
that is identical to H for all indices, except I, where the original value is replaced by J.
The steps for solving constraints containing these constructs are discussed in [11].

Figure 6 shows a program which “zeroes” all elements of a given linked list with
head p. We prove that the program produces a nonempty null-terminating list with zero
values. Note that in Figure 6, h is a program variable denoting the current heap. The
predicate takes into consideration the memory model of the program and expresses the
relationship between the heap H before the execution of the program, and the heap H ′
obtained after the program has completed. Thus, the predicate allz(H,H ′,L,R) states
that the heap H ′ differs from H only by having zero elements in the non-empty sublist
from L to R.

In Figure 6 we provide a tail-recursive definition of allz which defines a zeroed
list segment (L,R) as one whose head contains zero, and its tail is, recursively, the
zeroed list segment (H[L+1],R)4. We could have used a sublist-recursive specification:
a zeroed list segment (L,R) is defined to be a zeroed list segment (L,T ) appended by
one extra zero element R. Clearly the program behaves in consistency with the latter
definition, and not the former. We show that despite this, our method automatically
discharges the proof.

Here we want to prove that Ψ ≡ allz(h0,h, p0,p) is a loop invariant. Formally,

allz(H0,H,P0,P),H[P+1] > 0 |= allz(H0,〈H,H[P+1],0〉,P0,H[P+1]). (Z.1)
For this assertion, constraint proof fails and coinduction (CO) is not applicable due to
an empty set of assumed assertions. The algorithm applies left unfold (LU+I) using the
definition of allz obtaining two new obligations, of which one is:
allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |=

allz(H0,〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]). (Z.2)

Now the algorithm applies (CO) using Z.1 as the hypothesis. As required by (CO), the
algorithm spawns two sub-obligations, one of which proves

allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |= allz(H0,H1,H0[P0 +1],P),H1[P+1] > 0

4 Note that we do not require that the list is acyclic (L = R).
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This is established by eliminating the predicates using (CP) and applying constraint
solving to the following assertion:

P0 > 0,H1[P+1] > 0 |= H0 = H0,H1 = H1,H0[P0 +1] = H0[P0 +1],P = P,H1[P+1] > 0.

The second sub-obligation is

allz(H0,〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=
allz(H0,〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]). (Z.3)

Here again the application of constraint proof and coinduction fails, and the algorithm
performs a right unfold using the second clause of allz resulting in

allz(H0,〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=
allz(H0,?H2,H0[P0 +1],H1[P+1]),〈〈H1,P0,0〉,H1[P+1],0〉 = 〈?H2,P0,0〉 (Z.4)

By an application of (CP) proof rule, the algorithm removes the predicates and then
solves the following implication by constraint solving (DP):

true |= H0 = H0,H0[P0 +1] = H0[P0 +1],
H1[P+1] = H1[P+1],〈〈H1,P0,0〉,H1[P+1],0〉 = 〈〈H1,H1[P+1],0〉,P0,0〉. (Z.5)

6 Conclusion

We presented an automatic proof method which is based on unfolding recursive CLP
definitions of user-specified program properties. The novel aspect is a principle of coin-
duction which is used in conjunction with a set of unfold rules in order to efficiently
dispense recursive definitions into constraints involving integers and arrays. This prin-
ciple is applied opportunistically and automatically over a dynamically generated set of
potential induction hypotheses. As a result, we can now automatically discharge many
useful proof obligations which previously could not be discharged without manual in-
tervention. We finally demonstrated our method, assuming the use of a straightforward
constraint solver over integers and integer arrays, to automatically prove two illustrative
examples.
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