
Quantified Constraint Optimization�

Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard

Université d’Orléans — LIFO
BP 6759 — F-45067 Orléans cedex 2

{Marco.Benedetti,Arnaud.Lallouet,Jeremie.Vautard}@univ-orleans.fr

Abstract. Solutions to valid Quantified Constraint Satisfaction Prob-
lems (QCSPs) are called winning strategies and represent possible ways
in which the existential player can react to the moves of the universal one
to “win the game”. However, different winning strategies are not neces-
sarily equivalent: some may be preferred to others. We define Quantified
Constraint Optimization Problems (QCOP) as a framework which al-
lows both to formally express preferences over QCSP strategies, and to
solve the related optimization problem. We present examples and some
experimental results. We also discuss how this framework relates to other
formalisms for hierarchical decision modeling known as von Stackelberg
games and bilevel (and multilevel) programming.

1 Introduction

QCSP (Quantified Constraint Satisfaction Problems) is a constraint-based frame-
work used to model several problems that go beyond classical CSP, such as those
involving some degree of uncertainty in the state of the modeled reality, and those
structured as game playing [1,2,3] or adversary problems [4], such as conformant
planning, model checking, testing, and robust scheduling [5], to name a few.

In QCSP variables may be universally quantified over their domains. Such
universal quantification is crucial while modeling, for example, the behavior of
a hostile adversary or some potentially harmful uncertainty about the state of
the environment. This expressive power comes at a cost: While CSP is solved
by just exhibiting values for its (existentially quantified) variables such that all
the constraints are satisfied, a QCSP is solved by exhibiting winning strategies.
A strategy is a set of functions that compute the values of each (existentially
quantified) variable in the problem as a function of all the relevant (universally
quantified) variables. A winning strategy is a strategy that, given whatever as-
signment to the universal variables, manages to satisfy all the constraints by the
values of the existential variables: then, a QCSP is true if it has at least one
winning strategy. Strategies, unlike satisfying CSP assignments, are not always
docile objects: their worst-case size is exponential in the number of variables.

Given a true QCSP instance, are all its winning strategies equally desirable?
It turns out that some strategies should be preferred over others, despite being

� This work is supported by the project ANR-06-BLAN-0383.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 463–477, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

464 M. Benedetti, A. Lallouet, and J. Vautard

equally “winning”. The contribution of this paper is to present a framework,
called Quantified Constraint Optimization (QCOP+), to express preferences over
strategies, and a reasoning engine that solves the resulting optimization problem.

In CSP we express preferences over the set of solutions by means of an ob-
jective function, and solve the related optimization problem by determining the
satisfying assignment(s) that maximize(s)/minimize(s) such objective. Similarly,
in a game-like scenario modeled in QCSP we could be interested, for example,
in playing the strategy that gives the earliest win, or in selecting strategies with
features that cannot be enforced at the level of the constraint language. As an
example, suppose that we face a game-like situation in which strategies to force
the opponent to a tie exist, though we cannot defeat him if he plays perfectly.
Out of all the strategies that prevent the opponent from winning, we prefer those
leading to our win in case the opponent plays less than perfectly. This induces
a preference over the space of winning strategies which cannot be modeled in
plain QCSP (any attempt to require a strict defeat of the opponent by additional
constraints would result in a false instance, as the opponent cannot be overcome
in general). QCOP+ is the perfect framework for modeling similar situations.

The QCOP+ language we introduce is based on QCSP+ [3] and extends it by
providing means to define compositional objective functions built along the quan-
tification structure of the problem. With each universal quantification we asso-
ciate some aggregate function, while optimization functions (e.g., minimization,
maximization) are associated with existential levels. Let us consider, for exam-
ple, the QCOP+ in Figure 1, in which the domains are numerical. We associate
the components of the optimization function with a specific scope by indenting
them at the same level as the quantifier they refer to. If we momentarily disregard

(1) ∃X ∈ DX . [C1(X)]
(2) ∀Y ∈ DY . [C2(X, Y)]
(3) ∃Z ∈ DZ . [C3(X, Y, Z)]
(4) C(X, Y, Z)
(5) min(Z)
(6) k : sum(Z)
(7) max(k)

Fig. 1. Example of QCOP+

lines (5 − 7), we recognize a standard
QCSP+ instance P = ∃X ∈ DX [C1] ∀Y ∈
DY [C2] ∃Z ∈ DZ [C3]. C, where the condi-
tions C1 to C3 are used to restrict dynam-
ically the possible values a variable may
assume. Let W ⊆ SX × SZ be the set of
winning strategies for such problem, where
SX is the space of (constant) functions
onto DX and SZ is the space of functions
sZ : DY �→ DZ , and let WX denote the
set {sX ∈ SX : ∃sZ 〈sX , sZ〉 ∈ W}. Then,

our sample QCOP+ instance asks to identify the subset W ′ ⊆ W of winning
strategies which, beyond satisfying P , optimize the objective function:

max
sX∈WX

[
∑

Y ∈DY

(min
〈sX ,sZ〉∈W

sZ(Y))]

Any QCOP+ instance is thus composed of two parts: an initial QCSP+ portion
which identifies candidate winning strategies, followed by a quantifier-by-
quantifier specification of an objective function meant to describe optimal candi-
dates. These two parts belong to conceptually different languages and manipulate

Quantified Constraint Optimization 465

different domains: the first part deals with truth assignments to the problem
variables, the second one is concerned with strategies and sub-strategies.

By mixing them in a single specification we obtain several benefits: we make
as easy as possible the task of declaring (complex) preferences over (complex)
strategies; we keep all the information about the quantified optimization problem
in a compact specification; most importantly, as we shall see, we give the solver
the possibility to exclude on-the-fly partially-formed sub-optimal candidates, in
the spirit of branch and bound algorithms.

Fig. 2. Optimum for the leader alone and re-
sponse of the follower

We have found no previous ac-
count for a general notion of op-
timization in the QCSP literature.
However, this kind of problems has
been studied since the 70’s in mathe-
matical programming under he name
of bilevel (or multi-level) program-
ming [6], a.k.a. “mathematical pro-
grams with optimization problems
in the constraints”. Bilevel programs
are used for solving decision prob-
lems of the form of Stackelberg
games, which is a model of oligopoly in game theory [7]. In this kind of
problems, there are two actors who perform decisions sequentially but have
no control on each other. The first one to act is called “leader”; the second
one, called “follower”, uses the leader decisions to adapt her own ones to-
wards her objective. The key issue here is that the leader and the follower
have different objective functions, that may be conflicting. For example, the
leader can be a government agency which divides an amount of money among
several entities which are free to use their amount for their own purpose.
The following example, taken from [8], shows that conflicting objectives can lead
to a non-optimal equilibrium. In the situation depicted in Figure 2, the choice of
(x1, y1) which would be optimal without the follower becomes considerably sub-
optimal with her response (x2, y1). The equilibrium x∗ is depicted in Figure 3,
where it can be noticed that dominating solutions exist, for both the leader and
the follower, which can never be reached without consensus. We refer to [9] for
an extensive survey of bilevel programming. The name multi-level programming
applies when more than two levels of hierarchical decisions are involved.

Fig. 3. Optimal equilibrium

The QCOP+ framework has been
prototyped in the solver QeCode [10]
based on Gecode [11]. In addition
to optimization, it includes strategy
extraction (useful also for classical
QCSP+, where a simple true/false
answer is often insufficient). The ex-
traction of strategies has been intro-
duced in [12] in the context of QBF.

466 M. Benedetti, A. Lallouet, and J. Vautard

The paper presents QCSP, QCSP+ and then QCOP+ and their evaluation. The
search algorithm is presented and its branch and bound variant studied. Finally
some examples of bilevel problems are presented.

2 QCSP

Notations. Let V be a set of variables and D = (DX)X∈V be the family of
their domains. We recall that a family is a function from an index set to a set.
For W ⊆ V , we denote by DW the set of tuples on W , namely ΠX∈W DX .
Projection of a tuple (or a set of tuples) on a variable (or a set of variables)
is denoted by |. For example, for t ∈ DV , t|W = (tX)X∈W and for E ⊆ DV ,
E|W = {t|W | t ∈ E}. For W, U ⊆ V , the join of A ⊆ DW and B ⊆ DU is
A � B = {t ∈ DA∪B | t|W ∈ A ∧ t|U ∈ B}. A sequence is a family indexed
by a prefix of N. We denote by | the sequence constructor and by [] the empty
sequence. We use a?b:c to denote if a then b else c.

Constraints and CSPs. A constraint c = (W, T) is a couple composed of a subset
W ⊆ V of variables and a relation T ⊆ DW (W and T are also respectively noted
var(c) and sol(c). An empty constraint such that sol(c) = ∅ is false and a full
constraint (which does no constrain the variables) is such that sol(c) = DW .
When W = ∅, only these two constraints exist: (∅, ∅) which has value false and
(∅, ()) which has value true.

A Constraint Satisfaction Problem (or CSP) is a set of constraints. We denote
by var(C) =

⋃
c∈C var(c) its set of variables and by sol(C) = �c∈C sol(c) its

set of solutions. The empty CSP which contains no constraint is true and will
be denoted by � while any CSP which contains a false constraint is false and
denoted by ⊥.

Prefix and QCSP. A quantified set of variables, or qset is a couple (q, W) where
q ∈ {∃, ∀} is a quantifier and W ⊆ V .

Definition 1 (Prefix). A prefix P is a sequence of qsets [(q0, W0), . . . , (qn−1,
Wn−1)] such that i �= j ⇒ Wi ∩ Wj = ∅.
We denote by P |W the prefix P restricted to the variables of a set W . A variable
X is declared in a qset Wi if X ∈ Wi. A QCSP is defined by adding a CSP to a
prefix:

Definition 2 (QCSP). A Quantified CSP, or QCSP is a couple (P, G) where
P is a prefix and G is a CSP called goal.

Let P = [(q0, W0), . . . , (qn−1, Wn−1)] be a prefix. We define the following nota-
tions. First, let range(P) = [0..n]. For all i in range(P), let vari(P) = Wi be
the set of variables at index i, let beforei(P) =

⋃
j≤i varj(P) (resp. afteri(P) =

beforen(P)\beforei(P)) be the set of all variables defined before (resp. after) the
index i. We also need to access to the index of the next universal block nui(P)
located after an index i. We define nui(P) = minj>i{j | qj = ∀} if such an
index exists, and n otherwise. These notions are naturally extended for QCSP

Quantified Constraint Optimization 467

Q = (P, G) in a straightforward way. Moreover, we have prefix(Q) = P and
goal(Q) = G. The QCSP is closed if var(G) = beforen(Q), i.e. all variables men-
tioned in the goal are explicitly quantified. In the sequel, we only consider closed
QCSP.

Example 3 (QCSP). The formula:

∃X ∈ {0, 1}, ∀Y ∈ {0, 1}, ∃Z ∈ {1, 2} . X + Y = Z

is represented by the following QCSP, in which the domains attached to the
variables are not mentionned:

Q = ([(∃, X), (∀, Y), (∃, Z)], {X + Y = Z})
Thus, prefix(Q) = [(∃, X), (∀, Y), (∃, Z)], goal(Q) = {X + Y = Z}, range(Q) =
[1..3], var1(Q) = {X}, before2(Q) = {X, Y }, after2(Q) = {Z}. �

Strategy and scenario. A solution, called strategy, is intuitively the way the
existential player react to every possible move of the the universal player. It is
interesting to note that a strategy is a syntactic object that does not depend
on a notion of validity. It is just a possible way to play the game as if there is
no rule. As a consequence, it can be defined for a prefix only. In [13], a strategy
was defined as a family of (Skolem) functions that give a value to an existential
variable as a function of its preceding universal ones. For the purpose of this
set-theoretic exposition, we rather define it in extension, as a set of tuples. Each
of these tuples is a scenario, i.e. a possible way the game is played. Here follows
the inductive definition of the set of strategies for a given prefix:

Definition 4 (Set of strategies). The set of strategies Strat(P) for a prefix
P = [(q0, W0), . . . , (qn−1, Wn−1)] is defined inductively as follows:

– Strat([]) = ∅
– Strat([(∃, W) | P ′]) = {t � s′ | t ∈ DW ∧ s′ ∈ Strat(P ′)}
– Strat([(∀, W, C)|P ′])={ ⋃

α(DW) | α ∈ Πt∈DW ({t � s′ | s′ ∈ Strat(P ′)})}
The set of strategies for a prefix beginning with an universal variable is defined
as follows: we build, for a tuple t ∈ DW , the set { t � s′ | s′ ∈ Strat(P ′) } of
all strategies beginning by t. Then we take the Cartesian product Πt∈DW ({ t �

s′ | s′ ∈ Strat(P ′) }) of all these sets. Each tuple α of this Cartesian product
has as value a strategy beginning by a tuple t for every t ∈ DW . Such tuple α
is also a function that associates to each tuple of DW a strategy, which is a set
of tuples. The union of the strategies of the image set α(DW) of this function
is a new strategy which contains a sub-strategy for each t ∈ DW . The set of
strategies for the prefix is the set of all strategies constructed by all tuples α.

Semantics of QCSP. A strategy is a winning strategy if all of its scenarios satisfy
the goal:

Definition 5 (Winning Strategy for QCSP). A strategy s is a winning
strategy iff s|var(G) ⊆ sol(G).

We denote by win(Q) the set of all winning strategies of Q.

468 M. Benedetti, A. Lallouet, and J. Vautard

Definition 6 (Semantics of QCSP). The semantics [[Q]] of a QCSP Q is:

[[Q]] = Win(Q)

This notion of solution generalizes exactly the classical notion of solution of CSP:
a QCSP is true if it has a winning strategy. Other weaker notions have been
proposed. The notion of outcome, which is the set of scenarios of all winning
strategies, has been used as a notion of solution for QCSP in [13] to model
filtering.

Example 7. Consider the following QCSPs:

Q1 : ∀x ∈ {0, 1}, ∃y ∈ {1}, ∃z ∈ {0, 1}. x ∨ y = z

Q2 : ∃x ∈ {0, 1}, ∀y ∈ {1}, ∀z ∈ {1}. x ∨ y = z

Q3 : ∃x ∈ {0, 1}, ∀y ∈ {0, 1}, ∃z ∈ {1}. x ∨ y = z

With the tuples defined for the values of x, y and z respectively, we have:

[[Q1]] = { {(0, 1, 1), (1, 1, 1)} }
[[Q2]] = { {(0, 1, 1)}, {(1, 1, 1)} }
[[Q3]] = { {(1, 0, 1), (1, 1, 1)} }

QCSP+. Introducing restricted quantification in QCSPs means changing the
nature of the prefix. In addition to a quantifier and a set of variables, each
scope includes a CSP whose solutions define the allowed values for the variables
of the current qset. QCSP+ have been introduced in [3] mainly for modeling
purposes. A restricted quantified set of variables, or rqset is a triple (q, W, C)
where q ∈ {∃, ∀} is a quantifier, W ⊆ V and C is a CSP. The intended meaning
is to restrict the possible values of the variables of W to those which satisfy the
CSP C. We extend the notion of prefix to rqsets. In particular, it is still required
that i �= j ⇒ Wi ∩ Wj = ∅.
Definition 8 (QCSP+). A QCSP+ is a couple Q = (P, G) where P is a prefix
of rqsets such that var(Ci) ∩ afteri(Q) = ∅ and G is a goal CSP.

A QCSP+ Q = (P, G) is closed if ∀i ∈ range(P), var(Ci) ⊆ beforei(Q) and
var(G) ⊆ beforen(Q). It is easy to notice that a standard QCSP is a QCSP+ for
which ∀i ∈ range(P), Ci = ∅. The definition of strategy for a QCSP+ is the same
as for a QCSP. But being a winning strategy is different. A winning strategy is
a strategy for which all possible moves for the universal player end in a winning
scenario. This can happen, like in a classical QCSP, when all constraints of the
goal and of all restrictions are satisfied because all implications and conjunctions
are valid. But, it can also happen when one left-hand side of an implication is
contradicted. Then this scenario is valid whatever happens in the remaining
assignments of variables after the contradicted rqset’s CSP. The set of winning
strategies of a QCSP+ can be defined recursively as follows:

Quantified Constraint Optimization 469

Definition 9 (Set of winning strategies for a QCSP+). Let Q be a QCSP+.
The set of winning strategies win(Q) is defined by:

– win(([], G)) = sol(G)
– win(([(∃, W, C)|P ′], G)) = {t � s | t ∈ DW ∧ t|var(C) ∈ sol(C) ∧ s ∈

win(P ′, G)}
– win(([(∀, W, C)|P ′], G)) = { ⋃

α(DW) | α ∈ Πt∈DW ({ t � s | t|var(C) ∈
sol(C) ? s ∈ win(P ′, G) : s ∈ strat(P ′, G) }) }

This definition is similar to the definition of the set of strategies for a prefix.
However, classical winning sub-strategies are not the only ones to take into
account: A strategy can be winning at a universal level if it contradicts the
related restriction. It follows that any sub-strategy can be freely glued, whatever
its winning status. To reason on all the CSP restrictions at once, a kind of
propagation called cascade propagation is introduced in [3].

3 Optimization

QCOP+ is formed after QCSP+ by adding preferences and aggregates to the
rqsets. Let A be a set of aggregate names and F be a set of aggregate func-
tions. An aggregate function is defined by an associative function on a multiset
of values and a neutral element 0f which indicates the value of f({{}}). Possible
functions are sum, product, average, standard deviation, median, count, etc. If
the function is associative and commutative, it can be evaluated using an accu-
mulator initialized to 0f and the evaluation could be parallelized. An aggregate
is an atom of the form a : f(X) where a ∈ A, f ∈ F and X ∈ V ∪ A. We
call names(A) the set of aggregate names of a set of aggregates A. An aggre-
gate name has the same status as a variable, except that it cannot be part of a
constraint. An optimization condition is an atom of the form min(X), max(X)
where X ∈ V ∪ A or the atom any. An atom min(X) indicates that the user is
interested in strategies that minimize this value and not in the other ones, while
any simply indicates she does not care about the returned strategy. It is only
needed to define minimization since max(X) is a syntactic sugar for min(−X).

Definition 10 (Orqset). An ∃-orqset is a 4-uple (∃, W, C, o) where (∃, W, C)
is a rqset and o is an optimization condition. A ∀-orqset is a 4-uple (∀, W, C, A)
where (∃, W, C) is a rqset and A is a set of aggregates. An orqset is either an
∃-orqset or a ∀-orqset.
The notion of prefix and all adjoin notations defined in notation 2 are extended to
a sequence of orqsets. There is a restriction on the variables which can appear in
an optimization condition or an aggregate. Actually, it should be ensured that the
variable to be optimized will have an unique value in the current strategy. This is
the case if this variable is not in the scope of an universal quantifier located after
the optimization condition. However, it can be an aggregate of the next universal
block since it will also have an unique value. The same holds for the variable
of an aggregate: it can belong to the set of variables of any existential scope
between the aggregate declaration and the next universal block’s aggregates.

470 M. Benedetti, A. Lallouet, and J. Vautard

Definition 11 (QCOP and QCOP+). A QCOP+ is a couple (P, G) where
G is a CSP and P = [orq0, . . . , orqn−1] is a prefix of orqsets such that ∀i ∈
range(P), with k = nui(P):

– if orqi = (∃, W, C, o) with o = min(X) or o = max(X), then we must have
X ∈ beforek−1(P) ∪ (k < n ? names(Ak) : ∅)

– if orqi = (∀, W, C, A), then for all a : f(X) in A, we must have X ∈
beforek−1(P) ∪ (k < n ? names(Ak) : ∅)

A QCOP is a QCOP+ in which no orqset has restrictions.

The semantics of a QCOP+ is defined as a set of strategies which include the
computation of the aggregates and which respect the optimization conditions.
We first define the function val which computes the value of an aggregate a:f(X)
for a strategy s. We have val(a:f(X), s) = f({{t|X | t ∈ s}}).
Definition 12 (Semantics of QCOP+). The semantics of a QCOP+ is a set
of strategies defined as follows:

– win(([], G)) = sol(G)
– win(([(∃, W, C, any)|P ′], G)) = win(([(∃, W, C)|P ′], G))
– win(([(∃, W, C, min(X))|P ′], G)) =

{s ∈ win(([(∃, W, C)|P ′], G)) | s|X = mins′∈win(([(∃,W,C)|P ′],G))(s′|X)}
– win(([(∀, W, C, A)|P ′], G)) =

{(val(a:f(X), s))a∈names(A) � s | s ∈ win(([(∀, W, C, A)|P ′], G))}
After the aggregates are evaluated, their value are glued to the scenarios of the
strategy and they appear as if they were existential variables of the preceding
level. As for CSP which can have multiple optimal solutions, a QCOP+ may
have multiple optimal strategies. It can happen with the use of any, but also
when multiple strategies have the same optimal value. They may differ a lot on
subsequent optimal values found in sub-strategies. However, the search algorithm
described in the next section returns one of these optimal strategies only.

4 Algorithms

This section presents a search algorithm to evaluate QCOP+ and its version
based on branch and bound. It is implemented in the solver QeCode [10] based
on Gecode [11]. The solving technique is based on the QCSP+ search procedure
that recursively explores the quantified structure. A mechanism for strategy ex-
traction and its recording in a tree is implemented. This feature also benefits
to QCSP+ because in many cases the user is interested not only in the decision
problem but also in the way the game can be played. An explicit representation
of strategies—called certificate in [12]—has numerous applications, the first one
being to be able to verify the solution in a solver-independent way. In the current

Quantified Constraint Optimization 471

Procedure Solve ([o|P ′], G)

if o = existential orqset then
return Solve e ([o|P ′], G)

else
return Solve u ([o|P ′], G)

end if

Procedure
Solve e ([(∃, W, C, min(X))|P ′], G)

BEST STR := null
BEST Xvalue := +∞
for all t ∈ DW s.t. t is a solution of C
do

CUR STR := Solve((P ′, G)[W ← t])
if CUR STR �= null then

CUR Xvalue := CUR STR|X
if CUR Xvalue < BEST Xvalue
then

BEST STR := CUR STR
BEST Xvalue := CUR Xvalue

end if
end if

end for
return tree(t,{ BEST STR })

Procedure Solve u ([(∀, W, C, A)|P ′], G)

for all ∀a:f(X) ∈ A do
VAL a := ∅

end for
STR := ∅
for all t ∈ DW s.t. t is a solution of C
do

CUR STR := Solve((P ′, G)[W ← t])
if CUR STR = null then

return null
else

for all a:f(X) ∈ A do
VAL a := VAL a 	

{{ CUR STR|X}}
end for
STR := STR

S
CUR STR

end if
end for
return tree((f(VAL a))a:f(X)∈A, STR)

Fig. 4. Search procedure

prototype implementation, the tree is recorded without compression, and this
could eventually put limits to the size of the examples that can be handled.

The main search procedure is composed of two mutually recursive evaluation
functions, one for an ∃-orqset and one for a ∀-orqset. They return a strategy
described by a tree which can either be the empty tree null or tree(a,B) where
a is a tuple and B a set of trees. The general algorithm, the algorithm for
a minimization condition in an ∃-orqset and the one for a ∀-orqset are given
in Figure 4. For an ∃-orqset, the function maintains the best strategy found
so far BEST STR and returns it, or null if the orqset is failed. All strategies
are successively explored and compared on their X value. The max and any
aggregates are defined similarly. Adding branch and bound to this procedure
can be done simply by adding the constraint X < BEST Xvalue (resp. >) to
the rest of the minimization (resp. maximization) problem. This can be seen as
an adaptation of the algorithm of [14] for which the lower/upper bounds are
directed by the optimization condition and associated to their own optimization
variable instead of to the whole problem. Once a solution has been found, the
algorithm for a ∀-orqset first evaluates the sub-strategies for every universal
tuple. For each of them it computes the set of aggregates. Then it collects all of
them in a set STR and returns it at the end.

Branch and Bound. Interestingly, the branch and bound algorithm may be in-
correct in the case of overlapping optimization conditions. This happens if there

472 M. Benedetti, A. Lallouet, and J. Vautard

exists two orqsets orqi = (∃, Wi, Ci, min(X)) with X ∈ Wk and orqj =(∃, Wj , Cj ,
min(Y)) with Y ∈ Wl such that i < j < k. Any number of condition any may
appear in between.

Example 13. A sample problem incorrect for branch and bound is in Figure 5.

∃X ∈ DX

∃Y ∈ DY

∃A ∈ DA

∃B ∈ DB

. . .
any

any
min(B)

min(A)

Fig. 5. Incorrect B&B

Suppose there exists three strategies s0 =
{(X0, Y0, A0, B0)}, s1 = {(X1, Y1, A1, B1)}
and s2 = {(X1, Y2, A2, B2)} such that A1 >
A0, A2 < A0 and B1 < B2. Having found the
strategy s0, the constraint A < A0 is added
to the search of subsequent strategies. Thus,
s1 is cut. We find s2 which has a better value
A2 for A and the optimal strategy is s2. With-
out branch and bound, optimization at the
level of Y would have preferred strategy s1

because of its better value on B and would
have returned the value A1. The best strat-
egy at the upper level would have been s0.

Proposition 14. Branch and bound is correct if optimization conditions are
non-overlapping.

Proof. With the same notations as above, conditions are non-overlaping if k ≤ j.
Then it is ensured that any branch cut by B&B will be cut before the level of
Y will be reached, hence only strategies worse for X will be cut.

5 Examples

In this section, we give several examples of use of quantified constraint optimiza-
tion, ranging from toy examples to real-world problems taken from the bilevel
programming literature. In order to give a readable presentation of the exam-
ples, we use a pseudo-code syntax in which the aggregates/optimization part is
placed at the end. In a similar way, we allow the use of constants and arrays.
For example, the following QCOP+ which returns a strategy in which X = 0 if
the sum of odd indices of the array A is less than the sum of its even indices
and X = 1 otherwise is depicted on the right as pseudo-code:

([(∃, {X}, ∅, min(s)),
(∀, {i}, {i mod 2 = X}, {s : sum(Z)}),
(∃, {Z}, ∅, any)],

{Z = A[i]})

const A[0..9]

\exists X in {0..1}

| \forall i in {0..9} [i mod 2 = X]

| | \exists Z in {0..+oo}

| | | Z = A[i]

| | any

| s:sum(Z)

min(s)

Quantified Constraint Optimization 473

Minimax in adversary scheduling. Often, the objectives of the existential and
universal players conflict completely. This situation can be dealt with by a clas-
sical minimax algorithm (and in this case the branch and bound implements
alpha-beta pruning). We illustrate this case by an extension of the adversary
scheduling example introduced in [4]. In this problem, two opponents are in-
volved: the scheduler tries to build a schedule that satisfies all the (temporal
and resource) constraints, while the adversary tries to prevent the formation of
a valid schedule by inflicting some (limited) deterioration on the problem setting.
In the QCSP+ version, the scheduler was trying to build a schedule such that the
ending date was below a given threshold. In QCOP+ it is possible to capture the
more realistic variant in which the scheduler aims to minimize the ending time
of the robust schedule, while the adversary tries to maximize the same ending
time. Let us consider an example with three activities a1, a2, a3 and a resource
r. An activity ai has a starting date of si, a duration of di and requires ci units
of the resource r of maximal capacity 5. The precedence is a1 ≺ a2 and the data
are d1 = 1, d2 = 2, d3 = 3, c1 = 3, c2 = 2 and c3 = 1. The adversary is able to
add one unit to the resource consumption of at most two activities. We add a
fictitious activity end whose purpose is to minimize the length of the schedule.
The model in QCOP+ is as follows:

const d[1..3], c[1..n]

\exists k1 in {0,1}, k2 in {0,1}, k3 in {0,1}

| [k1+k2+k3 =< 2]

| \exists S1 in D1, S2 in D2, S3 in D3, Send in Dend,

| | c’1 in Dc1, c’2 in Dc2, c’3 in Dc3

| | [S1+d1 =< Send, S2+d2 =< Send, S3+d3 =< Send, S1+D1 =< S2,

| | c’1=c1+k1, c’2=c2+k2, c’3=c3+k3]

| | cumulative([S1,S2,S3], [d1,d2,d3], [c’1,c’2,c’3], 5)

| minimize(Send)

maximize(Send)

Since there are only existential variables, the strategy is reduced to a single
branch which gives the best attack and the corresponding scheduler response.

Network links pricing. Here is an example from the telecom industry, taken
from [15]. The problem is to set a tariff on some network links in a way that
maximizes the profit of the owner of the links (the leader). The network, as
depicted in Figure 6, is composed of NCustomer customers (the followers) that
route their data independently at the smallest possible cost. Customer i wishes
to transmit di amount of data from source xi to target yi. Each path from a
source to a target has to cross a tolled arc aj . On the way from xi to aj , the cost
of the links (owned by other providers) is cij . It is assumed that each customer
i wishes to minimize the cost to route her data and that he can always choose
another provider at a cost ui. The purpose of the problem is to determine the
cost tj to cross a tolled arc aj in order to maximize the revenue of the telecom
operator. In Figure 6, there are 2 customers and 3 tolled arcs. This problem can
be expressed as a QCOP as follows:

const NCustomer

const NArc

const c[NCustomer,NArc] // c[i,j] = fixed cost for Ci to reach Aj

474 M. Benedetti, A. Lallouet, and J. Vautard

const d[NCustomer] // d[i] = demand for customer i

const u[NCustomer] // u[i] = maximal price for customer i

\exists t[1], ..., t[NArc] in [0,max]

| \forall k in [1,NCustomer]

| | \exists a in [1,NArc],

| | | cost in [1,max],

| | | income in [0,max]

| | | cost = (c[k,a]+t[a])*d[k]

| | | income = t[a]*d[k]

| | | cost =< u[k]

| | minimize(cost)

| s:sum(income)

maximize(s)

We generated sets of random instances of this problem. These sets differ from
each other as a consequence of different values assigned to two parameters: (1)
the number of links the network operator owns, and (2) the number of clients
who want to use these links. The network operator can choose between five prices
for each link. For each instance, the maximum price each customer is willing to
pay and the initial costs (to go from home to the starting point of a given link)
are randomly chosen. Each set contains 100 instances. These tests were run on
machines equipped with two dual-core opteron and 4 GB of RAM. QeCode being
mono-threaded, each core was assigned one instance. No timeout has been set.
The branch and bound is not activated because the condition is not met.

Figure 7 shows the average and median resolution times of these tests. In-
stances with a number of links smaller than 7 are not shown, as most of them
were solved in less than one second. It is noteworthy that the number of clients
has a very small impact on the resolution time, contrary to the number of links.
This effect can be explained considering that adding clients simply requires to
choose the link in which their data will transit, while adding links adds one pos-
sible choice to every client, and multiplies the pricing alternatives of the network
operator.

Virtual network pricing. Telecom infrastructure requires very large investments,
supported by one or a few network operators (NO). To increase competition,

Fig. 6. A network pricing problem

Quantified Constraint Optimization 475

 1

 10

 100

1000

 2 3 4 5 6 7 8 9 10

Network pricing average times

7 links
8 links
9 links

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10

Network pricing median times

7 links
8 links
9 links

Fig. 7. Average and median resolution times (Y-axis, in seconds) on the Network Link
Pricing problem for 7, 8 and 9 links, and for between 2 and 9 clients (X-axis)

governments have fostered the introduction of virtual network operators (VNO),
who provide the same services except that they do not own their network. They
rent capacity on the network of NO instead. To some extent, fixed by a regulat-
ing authority, network operators are simultaneously competing and cooperating.
Taking good decisions in such an environment requires a model of oligopoly
which is complex and far from Walras’ pure and perfect competition. The fol-
lowing example is taken from [16].

Fig. 8. Virtual network pricing

Figure 8 depicts the relations between the
NO, the VNO and the customers, each ac-
tor being modeled as in [16]. Let us assume
the point of view of NO. Our main purpose
is to determine the decisions y = (y1, y2), y1

being the service provision to our own cus-
tomers and y2 the price for capacity leased to
the VNO. The decisions taken by the VNO
are z = (z1, z2), z1 being the price for service
provision to VNO’s customers and z2 the ca-
pacity leased from the NO. The customer are
modeled by n = (n1, n2) (total number of
customers of NO and VNO respectively) according to the prices set for ser-
vice provision: ni = ki + ri,1y1 + ri,2y2, the parameters ki, ri,1 and ri,2 being
determined by analysis of market data. The profit of VNO is given by the rev-
enue of the customers minus the cost of leasing, i.e. (q − e2z1)n2 − y2z2 − g2,
where q, e2 and g2 are respectively the fixed and variable costs by customer
and the fixed service provision cost. The profit of the NO is given by the rev-
enue from service provision to the customers and by the capacity allocated to
the VNO, i.e. g1 + (q + y1 + e1)n1 + y2z2 where e1 and g1 are respectively
the variable costs by customer and the fixed service provision cost. Note that
the revenue of NO depends on decisions taken by VNO. In addition, the price
for service to customers is comprised between the limits d and D, the price
of leasing has an upper limit of U1 fixed by the authority, and the maximal

476 M. Benedetti, A. Lallouet, and J. Vautard

capacity available for VNO is less than a limit U2. We construct the following
QCOP+ model (in which the universal quantifier is not used since there is only
one virtual operator). Note that the non-overlapping condition is not met.

const d, D, U1, U2, k1, r11, r12, r21, r22, g1, q

\exists y1 in Dy1, y2 in Dy2

| [d =< y1, y1 =< D, y2 =< U1]

| \exists z1 in Dz1, z2 in Dz2

| | [d =< z1, z1 =< D, z2 =< U2]

| | \exists n1 in Dn1, n2 in Dn2, rno in Drno, rvno in Drvno

| | | n1 = k1 - r11 * y1 + r12 * z1

| | | n2 = k2 + r21 * y1 - r22 * z1

| | | rvno = (q - e2 * z1) * n2 - y2 * z2 - g2

| | | rno = g1 + (q + y1 + e1) * n1 + y2 * z2

| maximize(rvno)

maximize(rno)

6 Related Work and Conclusion

Closely related works are the framework of Plausibility-Feasibility-Utility (PFU)
[17], a work on iterated expressions [18], and the language of Stochastic CSPs [14].
The PFU framework aims at providing an algebraic unification of QBF, QCSP,
Stochastic CSP, Bayesian networks, and Markov Decision Processes, while the
purpose of iterated expressions is to model resource allocation in workflows. They
both introduce expressions of the form

⊕
x1∈D1

. . .
⊕

xn∈Dn
expr(x1, . . . xn)

where
⊕ ∈ {min, max,

∑
, Π}. It is not possible to express bilevel models in these

frameworks because the optimization condition has to apply on an expression in-
volving the result of an immediate subexpression. However, some constructions
like min(

∑
x e1(x) +

∑
y e2(y)) are expressible by a PFU or iterated expression

and not by a QCOP+. Moreover, the branch and bound condition is always veri-
fied by construction. In [19] it is proposed to find a boolean QCSP strategy which
maximizes the weighted sum of its existential variables set to 1. A dichotomy the-
orem is also proved (to identify tractable and intractable language classes).

All these works, along with QCOP+, pose the problem of finding an adequate
language for expressing preferences over strategies. In this respect, the QCOP+

framework is general enough to model bi and multi-level problems whose impor-
tance is confirmed by several studies of the game theory and operations research.

Several unanswered questions remains: Should the objective function be com-
positionally defined or not? What is the analog of weighted CSP in this context?
When several strategies are optimal at the first level, it can happen that they
differ considerably as to sub-strategies. The language of QCOP+ does not allow
to capture such subtle differences. Enabling constraints on aggregate values is
another issue. It is for example impossible to require that strategies should take
different values of an existential variable for all values of an universal variable:
It would require an “all-different” aggregate that may fail. A last open question
concerns the evaluation of partial and/or non-winning strategies, which could
open the way to both relaxation and local search in quantified problems.

Quantified Constraint Optimization 477

References

1. Nightingale, P.: Consistency for quantified constraint satisfaction problems. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 792–796. Springer, Heidelberg (2005)

2. Bessière, C., Verger, G.: Strategic constraint satisfaction problems. In: Miguel, I.,
Prestwich, S. (eds.) Workshop on Constraint Modelling and Reformulation, Nantes,
France, pp. 17–29 (2006)

3. Benedetti, M., Lallouet, A., Vautard, J.: QCSP Made Practical by Virtue of Re-
stricted Quantification. In: Veloso, M. (ed.) International Joint Conference on Ar-
tificial Intelligence, Hyderabad, India, pp. 38–43. AAAI Press, Menlo Park (2007)

4. Benedetti, M., Lallouet, A., Vautard, J.: Modeling adversary scheduling with
QCSP+. In: ACM Symposium on Applied Computing, Fortaleza, Brazil. ACM
Press, New York (2008)

5. Nightingale, P.: Consistency and the Quantified Constraint Satisfaction Problem.
PhD thesis, University of St Andrews (2007)

6. Bracken, J., McGill, J.: Mathematical programs with optimization problems in the
constraints. Operations Research 21, 37–44 (1973)

7. Stackelberg, H.: The theory of market economy. Oxford University Press, Oxford
(1952)

8. Bialas, W.F.: Multilevel mathematical programming, an introduction. Slides (2002)
9. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals

of Operations Research 153, 235–256 (2007)
10. QeCode Team: QeCode: An open QCSP+ solver (2008),

http://www.univ-orleans.fr/lifo/software/qecode/

11. Gecode Team: Gecode: Generic constraint development environment (2006),
http://www.gecode.org

12. Benedetti, M.: Extracting certificates from quantified boolean formulas. In: Kael-
bling, L.P., Saffiotti, A. (eds.) International Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, pp. 47–53. Professional Book Center (2005)

13. Bordeaux, L., Cadoli, M., Mancini, T.: CSP properties for quantified constraints:
Definitions and complexity. In: Veloso, M.M., Kambhampati, S. (eds.) National
Conference on Artificial Intelligence, pp. 360–365. AAAI Press, Menlo Park (2005)

14. Walsh, T.: Stochastic constraint programming. In: ECAI, pp. 111–115 (2002)
15. Bouhtou, M., Grigoriev, A., van Hoesel, S., van der Kraaij, A.F., Spieksma, F.C.,

Uetz, M.: Pricing bridges to cross a river. Naval Research Logistics 54(4), 411–420
(2007)

16. Audestad, J.A., Gaivoronski, A.A., Werner, A.: Extending the stochastic program-
ming framework for the modeling of several decision makers: pricing and competi-
tion in the telecommunication sector. Annals of Operations Research 142(1), 19–39
(2006)

17. Pralet, C., Verfaillie, G., Schiex, T.: An algebraic graphical model for decision
with uncertainties, feasibilities, and utilities. Journal of Artificial Intelligence Re-
search 29, 421–489 (2007)

18. Bordeaux, L., Hamadi, Y., Quimper, C.G., Samulowitz, H.: Expressions Itérées
en Programmation par Contraintes. In: Fages, F. (ed.) Journées Francophones de
Programmationpar Contraintes, pp. 98–107 (2007)

19. Chen, H., Pál, M.: Optimization, games, and quantified constraint satisfaction.
In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp.
239–250. Springer, Heidelberg (2004)

http://www.univ-orleans.fr/lifo/software/qecode/
http://www.gecode.org

	Quantified Constraint Optimization
	Introduction
	QCSP
	Optimization
	Algorithms
	Examples
	Related Work and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

