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Abstract. We present an incremental refinement algorithm for approximate
compilation of constraint satisfaction models into multivalued decision diagrams
(MDDs). The algorithm uses a vertex splitting operation that relies on the detec-
tion of equivalent paths in the MDD. Although the algorithm is quite general, it
can be adapted to exploit constraint structure by specializing the equivalence tests
for partial assignments to particular constraints. We show how to modify the al-
gorithm in a principled way to obtain an approximate MDD when the exact MDD
is too large for practical purposes. This is done by replacing the equivalence test
with a constraint-specific measure of distance. We demonstrate the value of the
approach for approximate and exact MDD compilation and evaluate its benefits
in one of the main MDD application domains, interactive configuration.

1 Introduction

Compiling a constraint satisfaction model into a tractable representation is useful for
a number of tasks related to model analysis and decision support. Various forms of
tractable structures have been suggested as target compilation languages, including au-
tomata [1], binary decision diagrams [2], and/or decision diagrams [3], and determinis-
tic decomposable negation normal form (d-DNNF) [4].

In this paper we focus on compiling CSP models into multivalued decision dia-
grams (MDDs), as they are well suited for a number of decision support tasks [2,5]. We
identify the tests of infeasibility, entailment and equivalence as critical for reasoning
about the properties of various compilation schemes. We recognize that the semantics
of global constraints can be utilized to enhance the compilation, and suggest using in-
cremental refinement as a way of dealing with the weaknesses of semantic tests when
compiling multiple constraints. Our incremental scheme generalizes both the search
based BDD compilation of [9] and standard bottom-up compilation of [10]. We repre-
sent two different algorithms for achieving this, one that constructs a new MDD and
one that refines the input MDD. The later algorithm makes use of the concept of vertex
splitting which was first introduced in [8].

Because the full MDD can grow too large for practical use, we are particularly con-
cerned with generating approximate MDDs that are limited in size but useful in appli-
cations. Additionally we are also concerned with generating approximate MDDs under
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tight time requirements, since some of the constraints might be known only during
user interaction. We show how equivalence checking offers a principled way to create
approximate MDDs (approximate in the sense that they represent a superset of the fea-
sible solutions). Rather than check for equivalence, we measure the “distance” between
two partial assignments and view them as equivalent for algorithmic purposes when the
distance is below a threshold. The distance measure is specialized to each constraint
type, thus again allowing us to exploit special structure in the problem. The refinement
process is an iterative one in which the threshold is gradually reduced. This injects a
learning element, because the algorithm refines equivalence detection as it refines the
MDD, thus allowing the next MDD to be more accurate. An exact MDD can be obtained
by reducing the threshold to zero, or an approximate MDD by reducing the threshold
to a positive number or terminating when the MDD exceeds a size limit. Terminating
before obtaining the exact MDD still provides bounds on the degree of violation of each
individual constraint.

We are not aware of related work utilizing explicitly the semantics of highly struc-
tured constraints for the purpose of compilation. The related compilation techniques
enhance compilation by exploiting independencies among variables [3,9]. The idea is
to recognize two partial assignments p1, p2 as equivalent when they assign same values
to critical variables. In [9] the critical variables are determined by a cutset and in [3] by
a context with respect to a pseudo-tree extracted from a constraint graph. We note how-
ever, that neither technique can enhance equivalence detection when presented when
individual global constraints span all variables.

Some work has already been done on generic techniques for approximate compila-
tion [6,7], but these techniques have two major drawbacks in relation to constraint mod-
els. Firstly, they conjoin individual constraints precisely until a threshold is reached, and
only then start approximating. Therefore, they do not take all constraints into consider-
ation. Secondly, since they are not relying on semantic information captured by highly
structured constraints, they provide no guarantees regarding the degree of violation of
individual constraints.

2 Preliminaries

A multivalued decision diagram (MDD) can be viewed as a branching tree in which
isomorphic subtrees have been merged. The tree is constructed to find feasible solutions
of a constraint set containing finite-domain variables x1, . . . , xn. The tree branches on
the variables in a fixed order x1, . . . , xn. The branches at each node correspond to
possible values of some variable xj , or more generally, to disjoint subsets of possible
values. To form the MDD, subtrees containing no feasible solutions are first deleted, and
subtrees having the same shape are then merged to remove redundancy from the tree.
Additional edges connect each vertex in the bottom layer to a single terminal vertex 1.

Thus an MDD for a constraint set S is a directed acyclic graph whose vertices are
arranged in layers corresponding to the variables x1, . . . , xn in S. If vertex u lies in
layer j (corresponding to xj), we say var(u) = xj , and each edge (u, v) leaving u
corresponds to a subset Duv of the domain Dj of xj . The top layer consists only of the
root vertex r, with var(r) = x1. Each path p = (u1, . . . , un+1) from r to 1 is identified
with the cartesian product

∏n
j=1 Dj,j+1, where u1 = r and un+1 = 1. Every path p
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x1 layer: u1
.................................................................................................

{0} ..............................................................................................

{1, 2}

x2 layer: u2
..............................................................................................
{0, 1}

u3
..............................................................................................

{0}
1

Fig. 1. MDD for 2x1 + 3x2 ≤ 4 with domains xi ∈ {0, 1, 2}

from r to 1 in the MDD must satisfy S, meaning that every tuple (x1, . . . , xn) in p is
a feasible solution of S. Conversely, every feasible solution of S belongs to some path
from r to 1. For example, the MDD for the constraint 2x1 + 3x2 ≤ 4 (with domains
xi ∈ {0, 1, 2}) appears in Fig. 1.

We assume that the MDD is reduced, meaning that all isomorphic subtrees have been
merged. To make this precise, let each vertex u in layer j of the MDD correspond to the
function fu : Dj×· · ·×Dn → {0, 1} defined by f(xj , . . . , xn) = 1 when (x1, . . . , xn)
belongs to a path from u to 1. Then fr(x1, . . . , xn) = 1 if and only if (x1, . . . , xn)
satisfies S. Two vertices u, v in a given layer are equivalent if fu = fv , and the MDD
is reduced if no two vertices in any layer are equivalent. When the variable ordering is
fixed, there is a unique reduced MDD representing a given constraint set. It is common
in the literature to remove vertex u in layer j (and join the two edges incident to u)
when there is a single outgoing edge (u, v), and it has the property that Duv = Dj .
This results in “long edges” that skip one or more layers, but to simplify notation we do
not remove any vertices in this fashion.

For convenience in describing the algorithms we further assume that the operation
of choosing the edge corresponding to value α returns the special vertex False if no
such edge exists. When this vertex is included as a child in constructing a node, the
semantics is to simply ignore this child. Furthermore we use True(i) to indicate the
MDD corresponding to the set of solutions Di × . . .Dn. Given an MDD M and a
partial assignment p to variables x1, . . . , xk we use Mp to denote the vertex reached in
M when following the path corresponding to p. Given a constraint C, we also use C to
denote the set of solutions to C. For a partial assignment p to variables x1, . . . , xk we
use C(p) to represent the solution space of C(p) restricted to the assignments in p.

3 Top-Down Compilation of MDDs

An MDD is a compact representation of a branching tree for a given constraint set. The
naive MDD construction based on first constructing the tree and then reducing it can be
significantly improved by performing reductions during search. This has already been
recognized in a more specific context, where a CNF formula is compiled into a binary
decision diagram (BDD) using DPLL search with caching [9]. As a starting point in
this paper, we suggest a generalized approach for compiling CSPs into MDDs. It is im-
portant to realize that the general compilation algorithm is based on three fundamental
tests: recognizing when partial assignments encountered during search lead to infeasi-
ble, (domain) entailed or equivalent subbranches. Algorithm 1 emphasizes these tests
during a depth first search (DFS) traversal of the branching tree.
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Algorithm 1. CompileDFS(path p, int i, constraints S): A generic backtracking
algorithm constructing an MDD for a set of constraints in a cached top-down manner. It is
initiated with the call Compile(S) which just executes CompileDFS(∅, 0, S).

if p ≡S 0 then
return False;

if p ≡S 1 then
return True(i);

key = idS(p);
result = cache-lookup(key);
if result �= null then

return result;
Let v1, . . . , vk be the values in Di;
result =
get-vertex(i,CompileDFS(p× {v1}, i + 1), . . . , CompileDFS(p× {vk}, i + 1);
cache-insert(key, result);
return result ;

We define a partial assignment p to be infeasible for a constraint set S (p ≡S 0) if it
cannot be completed to an assignment in p × ∏n

i=k Di satisfying all constraints in S.
In that case, the above algorithm returns False indicating infeasibility. We say that p is
domain entailed (p ≡S 1) if every completion of p satisfies S. In this case, we return
True(i) representing an MDD for the entire set of solutions Di × . . . × Dn.

Finally, p1 and p2 are said to be equivalent (p1 ≡S p2) if they have the same comple-
tions satisfying S. The equivalence test induces a set of equivalence classes among all
partial assignments, and we use idS(p) to denote a unique identifier key for the equiva-
lence class to which p belongs. An MDD is stored as a cache of keys that is maintained
during search. A new node is created (using cache-insert and get-vertex)
only if the current key cannot be found (using cache-lookup). While the equiva-
lence class identifiers might be prohibitively large in general, in practice they are usually
compact.

We say that tests for infeasibility, entailment, and equivalence are sound if every
“yes” answer is correct, complete if every “yes” answer is recognized, and efficient if
the test can be computed in polynomial time (with respect to the size of the MDD). The
performance of Algorithm 1 critically depends on these three properties. Unsound tests
lead to MDDs not representing the desired solution space. Incomplete tests make the
algorithm traverse equivalent or infeasible parts of the search space. Inefficient tests in-
crease the running time. Ideally, if we have sound and complete tests requiring constant
time, and it is possible to represent equivalence classes efficiently then Algorithm 1
builds an MDD in output-optimal time and space. In the remainder of the paper we
will use these tests as a basis for discussing the efficiency of various MDD compilation
schemes.

4 Semantic Caching

Previous approaches that enhance equivalence tests are based on identifying variable in-
dependencies in the underlying model. Two partial assignments to variablesx1, . . . , xi−1
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are equivalent if they assign the same values to variables on which xi critically depends.
The set of such variables might be much smaller than {x1, . . . , xi−1} and therefore,
equivalence detection could be enhanced [3,9]. However, these approaches cannot be
applied if all variables depend on each other. It suffices to introduce just a single global
constraint, spanning over all variables, to get to this situation.

We argue that in addition to looking at the variable independencies, we should also
consider the semantics of well-structured constraints. Namely, the CSP modeling vo-
cabulary is full of constraints with rich structure, which is normally exploited during
search through efficient filtering algorithms.

We illustrate how the same can be exploited for designing better compilation tests
for inequality, equality, and Alldiff constraints. We will then discuss how to extend this
to multiple constraints.

Inequality. An inequality constraint C has the form
∑

i fi(xi) ≤ b, where each xi

is a finite domain integer variable and fi is some cost function. For a given partial
assignment p = (v1, . . . , vk−1) to variables (x1, . . . , xk−1), we denote the cost of p

with respect to C as a(p) =
∑k−1

i=1 fi(vi). A simple equivalence test for an inequality
constraint C is

p1 ≡C p2 ⇔ a(p1) = a(p2).

The test is efficient but incomplete, because two equivalent partial assignments can be
identified as nonequivalent. For example, p1 = (0) and p2 = (1) are equivalent for
x1 + 2x2 ≤ 3 (where x1, x2 ∈ {0, 1}), but they fail the above test for equivalence.
We can formulate a complete equivalence test that requires pseudo-polynomial time.
Assuming without loss of generality that a(p1) < a(p2), the test is

p1 ≡C p2 ⇔ a(p1) ≤ b − a(p) < a(p2) for no p ∈ Dk × . . . × Dn.

The following infeasibility test is both complete and efficient:

p ≡C 0 ⇔ a(p) + SP(p) > b. (1)

where SP(p) =
∑n

i=k min{fi(v) | v ∈ Di} is the shortest path in Dk × . . . × Dn.
An analogous entailment test is also complete and efficient:

p ≡C 1 ⇔ a(p) + LP(p) ≤ b. (2)

where LP(p) =
∑n

i=k max{fi(v) | v ∈ Di} is the longest path in Dk × . . . × Dn.

Equality. The equivalence test

p1 ≡C p2 ⇔ a(p1) = a(p2). (3)

for an equality constraint C (defined as
∑

i fi(xi) = b) is complete and efficient. The
infeasibility test is essentially a subset sum problem:

p ≡C 0 ⇔ a(p) + a(p′) �= b for all p′ ∈ Dk × . . . × Dn. (4)

which is complete but inefficient (pseudo-polynomial). A complete and efficient domain
entailment test checks whether all completions of the path have the same cost:

p ≡C 1 ⇔ SP(p) = LP(p). (5)
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Alldiff. Given a partial assignment p = (v1, . . . , vk−1) we define D(p) =
⋃k−1

i=1 vi.
We can now define a complete and efficient equivalence test for an Alldiff constraint C:

p1 ≡C p2 ⇔ D(p1) = D(p2).

Additionally we have the following complete and efficient infeasibility test.

p ≡C 0 ⇔ |
n⋃

i=k

Di| < n − k + 1.

Finally, a complete and efficient entailment test is given by

p ≡C 1 ⇔ D(p), Dk, . . . , Dn are disjoint and nonempty. (6)

The above equivalence detection rules directly indicate how to compute idC(p) for
a constraint C. In case of inequality or equality constraints, id(p) = a(p), and for an
Alldiff constraint it is D(p).

Multiple Constraint Caching. The semantic tests described above can be directly
generalized to a set of constraints S = {C1, . . . , Cm}:

p ≡S 0 ⇔
m∨

i=1

(p ≡Ci 0), p ≡S 1 ⇔
m∧

i=1

(p ≡Ci 1), p1 ≡S p2 ⇔
m∧

i=1

(p1 ≡Ci p2).

The equivalence class identifier, idS(p), can be generically constructed as a tuple of
individual keys, id×S (p) = (idC1(p), . . . , idCn(p)). In this case, Algorithm 1 detects
the equivalence of two paths p1, p2 as soon as idCi(p1) = idCi(p2) for each Ci ∈ S.
This way of combining the individual tests ensures soundness but not completeness
of the generic test even if individual tests are complete. Namely, the test allows for a
number of ”fake” equivalence classes that appear to be different even though they are
the same. The potential number of fake classes explodes exponentially if individual
tests are incomplete or as we add more constraints to S. For example, if idS allows for
Kf fake equivalence classes and Ke exact equivalence classes, and if we add to S a
constraint C′ with K ′ equivalence classes (all exact), then the resulting number of fake
equivalence classes is at least Kf ·K ′. Even among remaining Ke ·K ′ pairs, there could
be many fake classes.

We could partially remedy this if we could uncover interactions amongst the set of
constraints rather than treating them independently. For example, infeasibility detection
p ≡S 0 of a set of integer inequalities could be enhanced by checking for feasibility
of their linear relaxation. In addition, if we can detect that some constraints become
entailed by the remaining ones, we could ignore them when denoting the equivalence
classes. In the following section we will show how this can be done efficiently in a very
interesting special case.

5 Incremental Refinement

In the previous section we saw that the performance of Algorithm 1 critically depends
on completeness of semantic tests, and that these tests become significantly weaker
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when dealing with multiple constraints. In order to avoid the explosion of “fake” equiv-
alence classes, we can make the compilation process incremental. We compile only a
subset S′ of S into an MDD M and insert this intermediate MDD into S instead of
S′. Each vertex in the MDD represents an exact equivalence class for S′ and we can
take idS′(p) = idM (p) = Mp, allowing us to compute idS(p) as idM (p) × id×S\S′(p)
which can provide a reduction in the number of fake equivalence classes that is expo-
nential in |S′|. This approach is illustrated in Algorithm 2. In each step it compiles a
subset of constraints S′ in the manner discussed above. We effectively have a number
of different compilation approaches, ranging from compiling all constraints in one pass
(S′ = S), similar to [9], to pairwise conjunctions (|S′| = 1), which resembles the
standard bottom-up compilation approach to building BDDs [10].

Algorithm 2. IncrementalRefine(M, S)
Data: Constraint set S
Result: MDD Representation of the Solution Space of S
M ← True(1);
while S �= ∅ do

S′ ← some subset of S;
M ← Compile(S′ ∪ {M});
S ← S \ S′;

return M ;

In the remainder of the paper we will focus on pair-wise operations, where one con-
straint C is combined with one MDD M in each step. This case is especially interesting
as it allows us to create some very efficient tests for S = {M, C}, while in many
cases retaining completeness. In particular, all individual constraint tests described pre-
viously relying on shortest or longest path computations of C can easily be generalized
efficiently for S = {M, C} in such a way to preserve completeness. This is achievable
because it is easy to compute shortest and longest paths through an MDD as long as
the cost function is separable [2]. For the Alldiff the domain entailment test remains
complete, but the infeasibility test of Alldiff is no longer complete since it is an NP-
complete problem to determine if an MDD contains a solution satisfying an external
Alldiff constraint [8]. In addition, it is efficient to detect whether the MDD entails an
inequality or equality since we can compute longest and shortest paths efficiently in
the MDD, thereby providing a further reduction in the fake equivalence classes. The
same is possible for the Alldiff. For each MDD vertex u in layer l(u) we can efficiently
compute the set D(u) of values occuring on all paths to u. The MDD then entails the
Alldiff constraint iff |D(u)| = l(u)− 1 for all nodes u, that is iff a distinct set of values
leads to each node.

As previously mentioned the above approach of pair-wise compilation closely resem-
bles standard bottom-up compilation. We do however have two significant advantages.
Firstly, the standard approach requires each constraint to be represented as an MDD.
To see why this is a problem in itself, consider an Alldiff constraint combined with
a lexical ordering constraint. The conjunction of these only allows a single solution,
but if we build the Alldiff separately, we will require exponential time and space. If
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we on the other hand, build the MDD for the lexical ordering constraint first (yield-
ing a polynomial size MDD), we can efficiently compute the conjunction as most of
the equivalence classes from the Alldiff need never be considered since they are dis-
allowed by the lexical ordering constraint. Secondly, the semantic information allows
us to detect domain- and general-entailment of some interesting constraint types more
efficiently. For example, detecting that an inequality is entailed by an MDD is more
efficient if it is represented symbolically rather than as an MDD.

5.1 Vertex Splitting

The algorithm described above operates by always constructing an entirely new MDD,
instead of updating the input MDD, even when differences between them are only mi-
nor. We can try to minimize redundant work by modifying the input MDD rather than
creating a new one. We do this by identifying non-equivalent paths ending in the same
vertex, and then splitting it.

Figure 2 illustrates a vertex-split and the separation of nonequivalent paths for an
Alldiff constraint. The edge (u4, u5) is, for algorithmic purposes, regarded as two edges
that correspond respectively to values 1, 2. If two or more paths coming into u5 are
nonequivalent, we will split u5 into two vertices in order to refine the MDD. In this
case, the paths (u1, u2, u5) and (u1, u3, u5) are equivalent, but other pairs of paths
are nonequivalent. We therefore split u5 into three vertices and distribute the incoming
edges between these two vertices in such a way that no two edges coming into a vertex
are nonequivalent. No fewer than three vertices will accomplish this.

This algorithm is shown in Algorithm 3 and replaces Compile. It traverses the
MDD in a breadth-first manner (BFS) manner. Instead of considering the equivalence
classes of partial assignments (correspond to paths), it considers equivalence classes of
edges (considering an edge (u, v) where |Duv| > 1 as |Duv| seperate edges). Since
the algorithm always splits the previous layer completely before splitting nodes in the
next layer, it is guaranteed that all partial assignments ending in a given edge in the
next layer belong to the same equivalence class. Therefore the edge can be considered
to be identical to any of these paths for the purpose of equivalence, entailment and
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...........................................................................................................
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Fig. 2. (a) Part of an MDD just before splitting vertex u5 with respect to an Alldiff constraint.
(b) The edges coming into vertex u5 have been partitioned into three equivalence classes, and u5

split into three vertices to receive them. (c) After the split we can prune some infeasible values.
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Algorithm 3. SplitCompile(M, C)
Data: MDD M , constraint C
Result: Refined MDD
if M ⇒ C then

return M ;

foreach vertex u ∈M in layer-by-layer top-down order do
foreach e ∈ In(u) do

if e ≡C 0 then
delete e from M and from In(u);

if In(u) = ∅ then
delete u from M ;

else if In(u) �≡C 1 then
Partition In(u) into sets E1, . . . , Em such that for each e, e′ ∈ Ei, e ≡C e′;
Split(M,u, E1, . . . , Em);

return Reduce(M);

Algorithm 4. Split(M, u, E1, . . . , Em)
Data: MDD M , vertex u
for i = 1 . . . m do

Create a new vertex ui in u’s layer of M ;
for edges (u, u′) of M do

Add edge (ui, u
′) to M with Duiu′ = Duu′ ;

for (u′, u) ∈ Ei do
Remove edge (u′, u) from M ;
Add edge (u′, ui) to M with Du′ui

= DEi ;

for edges (u, u′) of M do
Remove edge (u, u′) from M ;

infeasibility detection. The previously described entailment detection is now done prior
to the vertex splitting. Since reduction is not done during splitting, this is performed
just before returning the MDD. In our experiments we will rely on this vertex splitting
based algorithm to implement the pair-wise conjunction of Algorithm 2.

6 Approximate Compilation

Even when we can compile an MDD for a constraint set using iterative refinement, the
MDD may be too large or too hard to compute for practical purposes. This may occur,
for example, in an online setting where there is insufficient time or memory to compute
an exact MDD. We therefore propose to modify iterative refinement for approximate
semantic compilation. For given memory and time restrictions we compile an MDD
that represents a superset of the solution space. In particular, we produce a sequence of
approximate MDDs, each a refinement of the last in the sense that it represents a smaller
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superset of the solution space. Each approximate MDD is created by taking all
constraints into consideration, thus taking advantage of interactions among the con-
straints. We also provide approximation guarantees with respect to each constraint.

The basic idea is to regard two partial assignments p1, p2 as equivalent for algorith-
mic purposes when their distance is below a threshold dC

max. Thus the equivalence test
becomes

p1 ≡C p2 ⇔ distanceC(p1, p2) ≤ dC
max.

A definition of edge equivalence is induced from equivalence of partial assignments in
the same way as before. Distance measures are specialized to each type of constraint.
For an inequality constraint

∑n
i=1 f(xi) ≤ b, the distance will be

distance≤(p1, p2) = |a(p1) − a(p2)|

and similarly for an equality constraint. For Alldiff constraints we can use symmetric
difference as a measure of distance:

distanceA(p1, p2) = |D(p1) � D(p2)|.

where S1�S2 = (S1 \S2)∪ (S2 \S1). Other distance measures could be used as well.
When equivalence is detected in this fashion, Algorithm 1,2 and 3 becomes approx-

imate MDD compilers. The resulting MDD guarantees that any two paths entering the
same vertex differ by at most dC

max with respect to constraint C. If the infeasibility
test is complete, then we create no infeasible vertices, and the number of redundant
equivalence classes can be limited as desired by adjusting the bound dC

max.
The overall procedure for approximate compilation begins with a trivial MDD M

(consisting of the single vertex True(1)) and some initial large distance. It then refines
M using SplitCompile for each of the constraints in S using the distance based
equivalence tests. The process is then repeated with lower distance thresholds, obtained
from the previous thresholds by, for example, a multiplicative or additive factor.

The advantage of this approach, regardless of whether the goal is exact or approxi-
mate compilation, is that after one distance is processed, the resulting MDD takes all
constraints into consideration. This means that we at any time have a bound on the de-
gree of violation on each constraint in the current MDD. In addition, it allows obvious
inconsistencies to be removed from the solution space at an earlier time, preventing the
corresponding equivalence classes from taking up computatation time in subsequent
steps. Therefore it can in fact be advantageous to compute an exact MDD through a
sequence of approximations in which the distance thresholds are gradually reduced to
zero.

7 Experiments

In this section we will show how the presented techniques perform in practice for a
selection of applications. Implementation of techniques discussed in this paper is us-
ing our own MDD compiler and generic MDD-manipulation package, written in Java.
Comparisons to standard compilation techniques makes use of CLab [11].
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7.1 Approximation Quality Tradeoff

In the first set of experiments we evaluate the overall quality of our approximation
scheme. For an MDD M , and a constraint C we create an approximate MDD Mapx

with increasing precision (decreasing maximal distance threshold dC
max) and without

size limit (Tmax = ∞). For each dC
max we generate the approximate MDD and report

its number of edges and solutions. The results are shown in Figure 3, and we can for
example see that the solution count decreases super-linearly as a function of MDD size.
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Fig. 3. The two plots above tracks the progress of the approximate compilation process of 5 ran-
dom separable inequalities, with 15 variables over domains of size 3 and matrix elements from the
range−100 to 100. The leftmost plot shows the approximatedistance achieved on the horizontal-
axis and the size of the MDD on the vertical axis. Since the instance consists of inequalities, the
distance corresponds to an upper bound on how much the longest path can violate the bound. The
rightmost plot shows the trade-off achieved between solution count and MDD size.

7.2 Approximate Refining for Exact Compilation

In the second set of experiments we illustrate how approximative refining can be a
competitive method for exact compilation. We postulated previously that the use of
approximate refinement steps with distance thresholds gradually reducing to 0 might
be beneficial for exact compilation. We therefore compared the CLab compilation ap-
proach, precise refining, and approximate refining for a single randomly generated lin-
ear inequality, as well as for a set of linear inequalities over binary variables. Compiling
a single inequality might be relevant for assisting a standard compiler (such as CLab) in
compiling individual rules, while the set of linear inequalities illustrates behavior when
we have weak equivalence detection due to a lack of strong semantics. The results are
shown in Figures 4(a) and 4(b).

For a single inequality, we can observe that the number of vertices created by CLab is
nearly unaffected by tightness. This is due to the mechanism used in CLab for construct-
ing the BDD for an inequality, which compiles a BDD for each bit of the left-hand side
and then builds the BDD by comparing these with the bit representation of the right-
hand side. We can also see that both precise and approximate compilation outperform
CLab in the number of vertices generated. With regard to time (which is not shown), the
approximate compiler outperforms CLab on tightness less than 0.2 and greater than 0.8.
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Fig. 4. (a) Total number of vertices created during compilation of a single random linear inequal-
ity over 18 variables with binary domains. The coefficients range from 0 to 100000. (b) Total
number of vertices created during compilation of 10 random linear inequalities over 18 variables
with binary domains. The coefficients range from 0 to 100000. Instances with tightness up to and
including 0.4 are unsatisfiable.

The second experiment considers a set of linear inequalities. Again we observe that
CLab is almost unaffected by the tightness of the constraints. This is again due to the
construction mechanism mentioned before. In fact more than 99% of the vertices cre-
ated by CLab are generated during the construction of BDDs for individual inequal-
ities, and most of these vertices are created before considering the right-hand side of
each constraint. The precise vertex-splitting based compiler produces far fewer vertices,
while approximate compilation reduces this number even further, clearly outperform-
ing precise compilation. With regards to time (not shown), the (approximate) vertex-
splitting compiler is fastest up to and including tightness 0.5 and again for tightness
greater than 0.8. CLab is fastest between 0.5 and 0.8. Note, however, that CLab is based
on highly optimized C code, while our Java implementation is far from optimized.

7.3 Interactive Configuration

In our final set of experiments we assess the usefulness of approximative MDD com-
pilation for one of its main application areas: interactive configuration. We consider a
scenario where an MDD M init is given for an initially compiled configuration instance
along with a set S of external (resource) constraints, which have not been compiled
either because the resulting MDD is too large, or the constraints are not known at the
time of compilation.

In the presence of external constraints, it is NP-hard to prune all non-GAC values;
that is, values that are not generalized arc consistent with respect to the conjunction
M init ∧ S of all constraints. A user is therefore exposed to backtracking, because he is
presented with non-GAC values as valid options due to incomplete (but time efficient)
pruning algorithms. This often occurs in practice1 and is regarded negatively. We there-
fore explore whether approximate compilation can be used to remove non-GAC values
while still observing strict time and memory limitations.

1 Think of buying an airplane ticket online and getting the message, “There is no flight on
selected dates. Please go back and try again.”
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After each user assignment, we compute initial valid domains, and while the user is
assessing available options we refine the existing MDD with respect to S to get refine-
ment M apx. This MDD is then additionally cost-pruned with respect to each constraint
C ∈ S, in the sense of cost-bounded configuration [2], and the domains displayed to the
user are updated. As an alternative to approximate compilation, we consider computing
valid domains only with respect to the initial MDD M init, or with respect to M init after
cost pruning. We abbreviate the first scenario as ApxP (approximation + cost pruning)
and denote the other two as Init and InitP, respectively. The approach of the last scenario
in itself leads to strictly more pruning than in the case of standard CSP propagation, in
which the MDD and the constraints in S are posted individually as global constraints.

For the initial MDD M init we loaded an MDD representing the real-world config-
uration instance “PC” (a personal computer configuration problem), available in the
CLib benchmark suite [12]. It has 45 finite-domain variables of up to 33 domain val-
ues and 4875 vertices. We then generated a set S of external constraints. For each
m ∈ {2, 3, . . . , 13} we generated 10 models of m random separable inequalities, each
with a tightness t = 0.5. For a separable cost expression

∑
i ci(xi) we set the right-

hand side bound to b = minc + (maxc − minc) · t, where minc and maxc are the
minimal and the maximal value of the cost function c. We set the maximal vertex size
threshold Tmax to 5000. For each set of separable inequalities we measured a number
of parameters averaged over 100 interaction simulations (where in each simulation we
randomly simulated user assignments until there was only one solution left). In Table 1
we report, for each number of constraints m, the median of these values over the 10
generated models.

Table 1. Effect of approximate compilation on reducing the non-GAC values in user interac-
tion. Column m indicates the number of external constraints C. M apx is the maximal size of an
approximate MDD encountered. Me is the size of the MDD representing entire conjunction ex-
actly M init ∧ C. Columns Init, InitP and ApxP denote the probability of selecting non-GAC value
for the three scenarios previously described. Column Subsume indicates the average subsumption
depth, i.e. after how many assignments does approximate MDD become exact. Finally, columns
Refine and Reduce indicate the number of seconds spent for generating approximate M apx and
subsequent elimination of redundant equivalence classes.

m Mapx Me Init(%) InitP(%) ApxP(%) Subsume Refine(s) Reduce(s)
13 7894 732 18 7 0.5 1.17 1.27 0.48
12 5838 253 19 6.9 0 0 1.07 0.48
11 5616 872 18 6.3 0 0 0.75 0.43
10 6081 2471 18 6.8 0.1 1 0.89 0.39
9 5031 258 19 5.1 0 0 0.86 0.36
8 7474 3676 16 4.8 0.02 1.45 0.94 0.40
7 6925 2849 16 4.7 0.02 1.43 0.70 0.31
6 6827 7797 14 2.5 0.02 1.62 0.64 0.28
5 7112 17965 11 2.0 0.01 2.17 0.56 0.24
4 7336 25030 11 1.8 0.02 2.42 0.48 0.21
3 7957 35092 9.8 0.82 0.006 2.56 0.42 0.18
2 7231 43108 6.2 0.22 0.0002 3.08 0.29 0.13
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The probability of selecting a non-GAC value was assessed by comparing, for every
unassigned variable, the size of the domains represented to the user (Dinit, DinitP , and
DapxP ) against the actual number of non-GAC values De. More precisely, if domain
Di is shown to the user, but only a subset De

i of values are GAC, then we compute the

probability |Di|−|De
i |

|Di| of selecting a non-GAC value with respect to a single variable.
We then average the probability over all unassigned variables and repeat this for every
assignment in a simulation. If Uj was the set of unassigned variables at interaction step
j, and there were a total of k assignments when the solution was completely specified,
we compute:

1
k

k∑

j=1

1
|Uj | ·

∑

i∈Uj

|Di| − |De
i |

|Di|

as the probability of selecting a non-GAC value in an interaction simulation.
Table 1 indicates that approximate compilation almost entirely eliminates the prob-

ability of backtracking. On average, scenario ApxP using approximate compilation re-
duces by several orders of magnitude the probability of selecting a non-GAC value,
compared to the InitP and especially the Init scenario. While InitP performs well for a
smaller number of constraints (below 1% for two constraints), the probability of back-
tracking increases with the number of constraints (7% for 13 constraints). Computing
domains over initial MDD in Init scenario leads to a significant backtracking proba-
bility that increases with the number of constraints, up to 19%. Subsumption depth
for approximate compilation is very shallow. After an average of 1-3 assignments, the
MDD becomes exact. Since we fixed the tightness of individual constraints, the overall
tightness of the solution space increases with the number of constraints. As a result,
exact MDDs get increasingly smaller, while approximate MDDs are relatively stable.
The combined running time for refinement and reduction phase is usually below 1.5
seconds, which is more than acceptable in our interaction setting: we first show ini-
tial domains, and while the user is investigating those, we further refine based on an
approximate MDD.

8 Conclusions

We presented an incremental refinement algorithm based on vertex splitting, for ap-
proximate compilation of constraint satisfaction models into MDDs. The presented
approach utilizes the semantics of constraints and a notion of distance to obtain ap-
proximate MDDs. Our empirical evaluation demonstrated that approximate refinement
can be a competitive compilation method and that significant reductions in backtrack-
ing can be made by approximately compiling external constraints during interactive
configuration.
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