
Switching among Non-Weighting, Clause Weighting,
and Variable Weighting in Local Search for SAT�

Wanxia Wei1, Chu Min Li2, and Harry Zhang1

1 Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada,
E3B 5A3

{wanxia.wei,hzhang}@unb.ca
2 MIS, Université de Picardie Jules Verne 33 Rue St. Leu, 80039 Amiens Cedex 01, France

chu-min.li@u-picardie.fr

Abstract. One way to design a local search algorithm that is effective on many
types of instances is allowing this algorithm to switch among heuristics. In this
paper, we refer to the way in which non-weighting algorithm adaptG2WSAT+
selects a variable to flip, as heuristic adaptG2WSAT+, the way in which clause
weighting algorithm RSAPS selects a variable to flip, as heuristic RSAPS, and
the way in which variable weighting algorithm V W selects a variable to flip, as
heuristic V W . We propose a new switching criterion: the evenness or unevenness
of the distribution of clause weights. We apply this criterion, along with another
switching criterion previously proposed, to heuristic adaptG2WSAT+, heuris-
tic RSAPS, and heuristic V W . The resulting local search algorithm, which
adaptively switches among these three heuristics in every search step accord-
ing to these two criteria to intensify or diversify the search when necessary, is
called NCV W (Non-, Clause, and Variable Weighting). Experimental results
show that NCV W is generally effective on a wide range of instances while
adaptG2WSAT+, RSAPS, V W , and gNovelty+ and adaptG2WSAT0,
which won the gold and silver medals in the satisfiable random category in the
SAT 2007 competition, respectively, are not.

1 Introduction

Intensification refers to search strategies that intend to greedily improve solution quality
or the chances of finding a solution in the near future [5]. Diversification refers to search
strategies that help achieve a reasonable coverage when exploring the search space in
order to avoid search stagnation and entrapment in relatively confined regions of the
search space that may contain only locally optimal solutions [5]. Generally speaking,
there are three classes of local search algorithm: non-weighting, clause weighting, and
variable weighting. A non-weighting algorithm does not use any weighting and mainly
focuses on intensifying the search to greatly decrease the number of unsatisfied clauses.
A clause weighting algorithm uses clause weighting to diversify the search while a
variable weighting algorithm uses variable weighting to diversify the search.

� The work of the first author is partially supported by NSERC PGS-D (Natural Sciences and
Engineering Research Council of Canada Post-Graduate Scholarships for Doctoral students).

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 313–326, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

314 W. Wei, C.M. Li, and H. Zhang

Efforts have been made to develop non-weighting local search algorithms
[3,8,9,10,14,15]. Among these algorithms, adaptG2WSATP [9], the improved
adaptG2WSATP [10], adaptG2WSAT 0 [8], and adaptG2WSAT+ [15] combine
the use of promising decreasing variables defined in [7] with the adaptive noise mech-
anism proposed in [4]. According to the definition of promising decreasing variables,
flipping such variables not only decreases the number of unsatisfied clauses but also
probably allows local search to explore new promising regions in the search space.

Clause weighting has been used in local search algorithms to help the search es-
cape from local minima and diversify the search [6,11,12]. These algorithms include
Breakout [11], SAPS (Scaling And Probabilistic Smoothing) [6], RSAPS (Reactive
SAPS) [6], and gNovelty+ [12]. Of these algorithms, gNovelty+ combines the use
of promising decreasing variables and clause weighting techniques. Rather than using
clause weighting, the local search algorithm V W [13] employs variable weighting to
diversify the search and guide local search out of local minima.

However, each single local search heuristic is usually ineffective on many types of
instances, since the performance of a heuristic depends on the properties of the search
space and the search spaces of different types of instances have different properties.
One way to design a local search algorithm that is effective on many types of instances
is allowing this algorithm to switch among heuristics in order to adapt to search spaces
with different properties.

Several local search algorithms switch between two heuristics [2,16]. UnitWalk
0.98 [2] is improved by alternating between WalkSAT -like and UnitWalk-like frag-
ments of the random walk. Hybrid [16] switches between heuristic adaptG2WSATP

and heuristic V W according to the evenness or non-evenness of the distribution of
variable weights.1

Nevertheless, our experimental results show that the performance of Hybrid is poor
on some instances for which a local search algorithm may result in imbalanced clause
weights, and that the performance of clause weighting algorithm RSAPS [6] is poor
on some instances for which a local search algorithm may result in balanced clause
weights. In this paper, we propose a new switching criterion: the evenness or uneven-
ness of the distribution of clause weights. We refer to the ways in which non-weighting
algorithm adaptG2WSAT+ [15], clause weighting algorithm RSAPS, and variable
weighting algorithm V W [13] select a variable to flip, as heuristic adaptG2WSAT+,
heuristic RSAPS, and heuristic V W , respectively. We apply this switching crite-
rion together with another switching criterion, namely the evenness or non-evenness of
the distribution of variable weights proposed in [16], to heuristic adaptG2WSAT+,
heuristic RSAPS, and heuristic V W . The resulting local search algorithm, which
adaptively switches among these three heuristics in every search step according to
these two criteria to intensify or diversify the search when necessary, is called NCV W
(Non-, Clause, and Variable Weighting).

Given a set of instances and a fixed cutoff for each instance, if an algorithm
achieves a success rate greater than 50% for each instance, we say that this algorithm is
generally effective on these instances. Our experimental results show that NCV W is

1 The ways in which algorithms adaptG2WSATP [9] and V W [13] select a variable to flip,
are referred to as heuristic adaptG2WSATP and heuristic V W , respectively [16].

Switching among Non-Weighting, Clause Weighting, and Variable Weighting 315

generally effective on a wide range of instances while adaptG2WSAT+, RSAPS,
V W , Hybrid, and gNovelty+ and adaptG2WSAT 0, which won the gold and silver
medals in the satisfiable random category in the SAT 2007 competition,2 respectively,
are not.

Our work for NCV W provides a solution to the algorithm heuristic selection prob-
lem. Different approaches have been proposed for this problem. CBR (Case-Based
Reasoning) was used to select a solution strategy for instances of a CP problem [1].
SATzilla-07 [17] is a per-instance solver portfolio for SAT. This solver portfolio uses
machine learning techniques to build an empirical hardness model that predicts an al-
gorithm’s runtime on a given instance based on the features of this instance and the past
performance of this algorithm, and uses this model to choose among the constituent
solvers of SATzilla-07. NCV W is different from SATzilla-07 in that NCV W
chooses heuristics for an instance dynamically during the search while SATzilla-07
first chooses an algorithm for an instance and then runs this algorithm on this instance.

2 Review of Algorithms adaptG2WSAT+, RSAPS, V W ,
and Hybrid

The local search algorithm adaptG2WSAT+ [15] combines the use of promising de-
creasing variables [7] and the adaptive noise mechanism [4]. As a result, noise p in
this algorithm is adjusted during the search. Moreover, random walk probability wp is
also adjusted and wp = p/10. This algorithm won the bronze medal in the satisfiable
random category in the SAT 2007 competition. As presented in Section 1, we refer to
the way in which algorithm adaptG2WSAT+ selects a variable to flip, as heuristic
adaptG2WSAT+.

SAPS [6] scales the weights of unsatisfied clauses and smoothes the weights of
all clauses probabilistically. It performs a greedy descent search in which a variable is
selected at random to flip, from the variables that appear in unsatisfied clauses and that
lead to the maximum reduction in the total weight of unsatisfied clauses when flipped.
RSAPS [6] is a reactive version of SAPS that adaptively tunes smoothing parameter
Psmooth during the search. RSAPS has the other parameters α, ρ, and wp whose
default values are (α, ρ, wp) = (1.3, 0.8, 0.01). As presented in Section 1, we refer to
the way in which algorithm RSAPS selects a variable to flip, as heuristic RSAPS.

In V W [13], the weight of a variable reflects both the number of flips of this variable
and the times when this variable is flipped. This algorithm initializes the weight of a
variable x, vw[x], to 0 and updates and smoothes vw[x] each time x is flipped, using
the following formula:

vw[x] = (1 − s)(vw[x] + 1) + s × t (1)

where s is a parameter and 0 ≤ s ≤ 1, and t denotes the time when x is flipped, i.e., t
is the number of search steps since the start of the search.

V W always flips a variable from a randomly selected unsatisfied clause c. If c con-
tains freebie variables,3 V W randomly flips one of them. Otherwise, with probability

2 http://www.satcompetition.org/
3 Flipping a freebie variable will not falsify any clause.

316 W. Wei, C.M. Li, and H. Zhang

p (noise p), it flips a variable chosen randomly from c, and with probability 1 − p, it
flips a variable in c according to a unique variable selection rule, which generally favors
variables with relatively low variable weights. As presented in Section 1, we refer to the
way in which algorithm V W selects a variable to flip, as heuristic V W .

A switching criterion, namely the evenness or non-evenness of the distribution of
variable weights, was proposed in [16]. This evenness or non-evenness is defined in
[16] as follows. Assume that γ is a number. If the maximum variable weight is at least
γ times as high as the average variable weight, the distribution of variable weights is
considered uneven, and the step is called an uneven step in terms of variable weights.
Otherwise, the distribution of variable weights is considered even, and the step is called
an even step in terms of variable weights. An uneven or an even distribution of variable
weights is used as a means to determine whether a search is undiversified in a step in
terms of variable weights.

Hybrid [16] switches between heuristic adaptG2WSATP and heuristic V W ac-
cording to the above switching criterion. More precisely, in each search step, Hybrid
chooses a variable to flip according to heuristic V W if the distribution of variable
weights is uneven, and selects a variable to flip according to heuristic adaptG2WSATP

otherwise. In Hybrid, the default value of parameter γ is 10.0. Hybrid updates variable
weights using Formula 1, and parameter s in this formula is fixed to 0.0.

3 Motivation

The search space of a hard SAT instance for a local search algorithm generally has a
large number of local minima in each of which flipping any variable cannot decrease
the number of unsatisfied clauses. Each local minimum is characterized by a subset
of unsatisfied clauses, which cannot be satisfied without unsatisfying other clauses. The
unsatisfied clauses in a local minimum can be considered as having attractions to draw a
local search towards this local minimum. Different clauses in a SAT instance can have
very different attractions for a local search. A local search can be frequently drawn
towards the same local minima by the same unsatisfied clauses with strong attractions.
In this case, the search is poorly diversified. Accordingly, clause weighting techniques
are introduced to diversify this poorly diversified search.

Clause weighting in a local search algorithm has two purposes. The first one is to
quantify the attraction of a clause for a local search. Different clause weights are de-
fined to measure the attractions of clauses for local searches [6,11]. The second one is
to modify the objective function, which is usually the number of unsatisfied clauses,
during the search by minimizing the total weight of unsatisfied clauses instead of the
number of unsatisfied clauses. As a result, a clause weighting algorithm usually first
satisfies clauses that have the largest attractions to diversify the search.

We hypothesize firstly that, without clause weighting techniques, Hybrid [16] ex-
hibits good performance, usually when clause weights are generally balanced, i.e., usu-
ally when all clauses have roughly equal attractions for a local search towards local
minima. We hypothesize secondly that, with clause weighting techniques, RSAPS [6]
exhibits good performance, usually when clause weights are unbalanced. To empiri-
cally verify our hypotheses, we conduct experiments with Hybrid and RSAPS on

Switching among Non-Weighting, Clause Weighting, and Variable Weighting 317

two classes of representative instance, one of which leads to balanced clauses weights
and the other of which leads to unbalanced clause weights.

In order to quantify the attraction of a clause towards a local minimum at a search
point, we simply sum up the number of local minima, encountered so far, in which
this clause is unsatisfied. In fact, these summations of the numbers of local minima
are the clause weights defined in Breakout [11]. We refer to these clause weights as
clause weights defined by Breakout. We calculate these clause weights in both Hybrid
and RSAPS to make clause weights comparable for these two algorithms, although
RSAPS has its own clause weighting techniques, which are more sophisticated. Note
that the calculations of these clause weights in these two algorithms do not change the
behavior of Hybrid or RSAPS in any way, i.e., these two algorithms do not consider
the clause weights that we calculate, when choosing variables to flip.

We ran RSAPS and Hybrid on two classes of instance.4 The source code of
RSAPS was downloaded from http://www.satlib.org/ubcsat/. When experimenting
with these algorithms, we do not change the ways in which these algorithms adaptively
adjust their parameters and do not change the default values of their other parame-
ters. One class includes the 5 structured instances par16-1, par16-2, par16-3, par16-4,
and par16-5 in PARITY from the SATLIB repository,5 and the other consists of the
5 structured instances f*3995, f*3997, f*3999, f*4001, and f*4003 in Ferry from the
industrial category in the SAT 2005 competition benchmark.6 Each algorithm is run
100 times (Maxtries = 100). The cutoffs are set to 109 (Maxsteps = 109) and 108

(Maxsteps = 108) for an instance in PARITY and an instance in Ferry, respectively.
In Table 1, for each of the two algorithms Hybrid and RSAPS, we report the av-

erage coefficient of variation of distribution of clause weights (coefficient of variation
= standard deviation / mean value) (“cv”) and the average division of the maximum
clause weight by the average clause weight (“div”), over all search steps, for clause
weights defined by Breakout. All reported values are then averaged over 100 runs
(Maxtries = 100). A run is successful if an algorithm finds a solution within a cutoff
(Maxsteps). The success rate of an algorithm is the number of successful runs divided
by Maxtries. We also report success rates (“suc”). Moreover, in the last row for each
group (“avg”) in this table, we present the average of the values in each column, for
each algorithm, over all instances.

Generally speaking, the distribution of clause weights defined by Breakout reflects
the history of the attractions of clauses for local searches towards local minima. If
clauses in a small subset have drawn local searches towards local minima much more
frequently than other clauses, the weights of these clauses should be much higher than
those of others and the coefficient of variation of distribution of clause weights should
be high. Otherwise, all clauses should have approximately equal weights, and the coef-
ficient of variation of distribution of clause weights should be low. That is, the higher
the coefficient of variation is, the more clause weights far from the mean value exist,

4 All experiments reported were conducted on a computer with Intel(R) Core(TM)2 CPU 6400
@ 2.13GHz and with 2GB of memory, under Linux.

5 http://www.satlib.org/
6 http://www.lri.fr/∼simon/contest/results/

318 W. Wei, C.M. Li, and H. Zhang

Table 1. Performance and distributions of clause weights defined by Breakout for RSAPS and
Hybrid on PARITY and Ferry

RSAPS Hybrid
cutoff cv div suc cv div suc

par16-1 109 0.82 7.22 0.19 10.20 127.06 1.00
par16-2 109 0.82 7.31 0.05 10.40 131.58 1.00
par16-3 109 0.82 7.27 0.12 10.30 129.04 1.00
par16-4 109 0.82 7.22 0.16 10.23 127.75 1.00
par16-5 109 0.82 7.28 0.09 10.43 131.88 1.00

avg 109 0.82 7.26 0.12 10.31 126.46 1.00
f*3995 108 2.72 22.38 1.00 41.05 1910.94 0.06
f*3997 108 2.06 12.15 1.00 47.51 2632.37 0.02
f*3999 108 2.36 17.39 1.00 48.23 2594.44 0.00
f*4001 108 2.13 12.80 0.84 55.04 3489.75 0.00
f*4003 108 2.11 13.57 1.00 55.35 3375.36 0.00

avg 108 2.28 15.66 0.97 49.44 2800.57 0.02

the more unbalanced cause weights are, and the less well diversified, in terms of clause
weights, the search is.

According to Table 1, the distributions of clause weights of PARITY are more
balanced than the distributions of clause weights of Ferry, both for Hybrid and for
RSAPS, meaning that when solving the Ferry instances, some clauses in the Ferry
instances frequently draw local searches towards local minima so that the searches for
Ferry are less diversified than those for PARITY. Nevertheless, with its own powerful
clause weighting techniques, RSAPS diversifies the search better than does Hybrid.
As a result, the distributions of clause weights in the searches of RSAPS are more
balanced for each of the two classes of instance than the distributions of clause weights
in the searches of Hybrid.

As shown in Table 1, the average success rate of Hybrid on PARITY is 1.00, sug-
gesting that when the distributions of clause weights are generally balanced, Hybrid,
which does not use clause weighting techniques, exhibits good performance. However,
the average success rate of Hybrid on Ferry is only 0.02, suggesting that when the
distributions of clause weights are generally unbalanced, the performance of Hybrid
is poor. Conversely, RSAPS exhibits very good performance on Ferry but poor per-
formance on PARITY. Therefore, the experimental results in this table indicate that an
algorithm should ignore clause weights and concentrate on intensifying the search if
clause weights are generally balanced, and that an algorithm should use clause weight-
ing techniques, such as those introduced in RSAPS, to diversify the search to prevent
a local search from being drawn towards the same local minima.

According to Table 1, on PARITY, the averages of the values for div in RSAPS and
Hybrid are 7.26 and 126.46, respectively, while on Ferry, the averages of the values for
div in RSAPS and Hybrid are 15.66 and 2800.57, respectively. That is, the maximum
clause weight on Ferry usually deviates from the average clause weight to a greater
degree than does the maximum clause weight on PARITY. Therefore, the results in
this table suggest that, similar to the coefficient of variation of distribution of clause
weights, the division of the maximum clause weight by the average clause weight also
indicates whether clause weights are balanced. In fact, calculating the division is not
time-consuming, but calculating the coefficient of variation is.

Switching among Non-Weighting, Clause Weighting, and Variable Weighting 319

4 A New Switching Criterion

We propose a new switching criterion. Additionally, we introduce a new local search
algorithm that uses this criterion along with another switching criterion.

4.1 Evenness or Unevenness of Distribution of Clause Weights

Assume that δ is a number. If the maximum clause weight is at least δ times as high
as the average clause weight, the distribution of clause weights is considered uneven,
and the step is called an uneven step in terms of clause weights. Otherwise, the distri-
bution of clause weights is considered even, and the step is called an even step in terms
of clause weights. An uneven distribution and an even distribution of clause weights
correspond to the situations in which clause weights are unbalanced and balanced,
respectively. We use an uneven or an even distribution of clause weights as a means
to determine whether a search is undiversified in a step in terms of clause weights.

4.2 Algorithm NCV W

To evaluate the effectiveness of the proposed switching criterion, we apply it together
with another switching criterion, namely the evenness or non-evenness of the distri-
bution of variable weights proposed in [16], to heuristic adaptG2WSAT+, heuris-
tic RSAPS, and heuristic V W . The resulting local search algorithm, which switches
among these three heuristics according to these two criteria, is called NCV W (Non-,
Clause, and Variable Weighting).

NCV W exploits the information about the structure of an instance when choosing a
variable to flip by first examining the distribution of variable weights of this instance and
then examining the distribution of clause weights of this instance. This algorithm adap-
tively switches among heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic
V W in every search step according to the distributions of variable and clause weights,
to intensify or diversify the search when necessary. When the distribution of variable
weights is uneven, i.e., when a search is undiversified in terms of variable weights,
NCV W uses heuristic V W to choose a variable to flip to diversify the search by using
variable weights. Otherwise, NCV W selects a variable to flip according to heuris-
tic RSAPS or heuristic adaptG2WSAT+, depending on whether the distribution of
clause weights is uneven. If the distribution of clause weights is uneven, i.e., if a search
is undiversified in terms of clause weights, NCV W uses heuristic RSAPS to select
a variable to flip to diversify the search by using clause weights; otherwise, i.e., if a
search is diversified in terms of both variable and clause weights, NCV W uses heuris-
tic adaptG2WSAT+ to select a variable to flip to intensify the search.

NCV W is described in Fig. 1. In this figure, flip time[i], vw[i], max vw, ave vw,
cw[j], max cw, and ave cw are the time when variable i is flipped, the weight of
variable i, maximum variable weight, average variable weight, the weight of clause
j, maximum clause weight, and average clause weight, respectively.

NCV W has its own parameters γ, δ, and π, which are used to choose one heuris-
tic from NCV W ’s constituent heuristics in every step. Parameter γ determines whether

320 W. Wei, C.M. Li, and H. Zhang

Algorithm: NCV W (SAT-formula F)

1: A← randomly generated truth assignment;
2: for each variable i do initialize flip time[i] and vw[i] to 0;
3: initialize max vw and ave vw to 0;
4: for each clause j do initialize cw[j] to 1; initialize max cw and ave cw to 1;
5: for flip←1 to Maxsteps do
6: if A satisfies F then return A;
7: if (max vw ≥ γ × ave vw)
8: then heuristic←“V W”;
9: else

10: if ((ave cw ≤ π) or (max cw ≥ δ × ave cw))
11: then heuristic←“RSAPS”;
12: else heuristic←“adaptG2WSAT + ”;
13: y← use heuristic to choose a variable;
14: if (y �= −1)
15: then A←A with y flipped; update flip time[y], vw[y], max vw, and ave vw;
16: if (heuristic = “RSAPS”)
17: then if (y = −1) then update clause weights, max cw, and ave cw;
18: return Solution not found;

Fig. 1. Algorithm NCV W

the distribution of variable weights is uneven, δ determines whether the distribution of
clause weights is uneven, and π represents a threshold for average clause weight.

In algorithm NCV W , heuristic RSAPS is used both for gathering information
about the distribution of clause weights and for selecting a variable to flip when the dis-
tribution of clause weights is uneven. In this algorithm, the n variables of an instance are
represented as n integers from 0 to n − 1. When NCV W uses heuristic RSAPS and
when this heuristic returns−1, NCV W performs a null flip and updates clause weights
in the same way as does RSAPS. To avoid frequent time-consuming clause weight up-
dating, NCV W does not update clause weights if it uses heuristic adaptG2WSAT+
or heuristic V W . NCV W uses Formula 1 to update variable weights after it selects
any heuristic from its three constituent heuristics and after NCV W performs a non-
null flip.

We have three objectives in NCV W . The first objective is to ensure that every vari-
able in a SAT instance has an approximately equal chance of being flipped to diversify
the search in terms of variable weights, i.e., to ensure that the distribution of variable
weights is even. When the distribution of variable weights is uneven, NCV W chooses
heuristic V W to balance variable weights. Whether the distribution of variable weights
is even is determined at line 7 using the condition (max vw ≥ γ × ave vw), in which
parameter γ > 1.0, in Fig. 1.

The second objective is to avoid the same local minima or to avoid exploring the
same regions in the search space, i.e., to ensure that the distribution of clause weights
is even. Since NCV W updates clause weights only when heuristic RSAPS is used
to choose a variable to flip, parameter π, which represents a threshold for average
clause weight ave cw, is introduced. When the distribution of variable weights is even,

Switching among Non-Weighting, Clause Weighting, and Variable Weighting 321

NCV W chooses heuristic RSAPS to build up the distribution of clause weights
whenever the average clause weight is lower than parameter π. When the average clause
weight is higher than π, clause weights are considered meaningful to determine whether
the distribution of clause weights is even, and heuristic RSAPS is chosen to balance
the distribution of clause weights and to diversify the search in terms of clause weights
if the distribution of clause weights is uneven. This building up of distribution of clause
weights and this balancing of distribution of clause weights are realized through line 10
using the condition ((ave cw ≤ π) or (max cw ≥ δ × ave cw)), in which parameter
δ > 1.0, in Fig. 1.

The third objective is to intensify the search when the distributions of both variable
and clause weights are even. In this case, the search is considered diversified in terms of
both variable and clause weights, and heuristic adaptG2WSAT+ is used to intensify
the search.

NCV W is an example that uses the proposed switching criterion along with the
switching criterion proposed in [16]. These switching criteria can be used in other local
search algorithms that combine intensification strategies with diversification strategies.

5 Evaluation

We present the default values of parameters in NCV W . Moreover, we evaluate
NCV W on a wide range of instances and justify the switching strategy in NCV W .

5.1 Groups of Instances

We evaluate NCV W on 11 groups of benchmark SAT problems (36 instances shown
in Table 2). They generally consist of hard problems from those widely used to
evaluate local search algorithms in the literature and constitute a wide range of in-
stances, including structured instances, instances from the industrial and crafted cat-
egories in a SAT competition benchmark, and hard random instances. Due to space
limits, we do not present the performance of algorithms on the instances that are
easy for most algorithms discussed in this paper. Structured problems come from the
SATLIB repository and the SAT 2005 competition benchmark. The structured prob-
lems from SATLIB include instances in ais, blocksworld, Beijing, GCP, PARITY,
and QG. The structured problems from the SAT 2005 competition benchmark in-
clude instances from the industrial category and instances from the crafted category.
The former consist of f*3995, f*3997, f*3999, f*4001, and f*4003 in Ferry. The lat-
ter consist of g*1334, g*1337, g*1339, g*1340, and g*1341 in grid-pebbling/sat, and
p*1318, p*1319, p*1320, p*1321, and p*1322 in random-pebbling/sat. Random prob-
lems come from the SAT 2007 competition benchmark,7 and they are hard problems,
including *v10000*03, *v10000*04, *v10000*05, *v10000*06, and *v10000*10 in
3SAT/v10000, and *v1100*04, *v1100*06, *v1100*08, *v1100*10, and *v1100*14
in 5SAT/v1100.

Each instance is executed 100 times (Maxtries = 100). As shown in Table 2, the
search step cutoff (Maxsteps) for each instance is set to a fixed value, to ensure that

7 http://www.satcompetition.org/

322 W. Wei, C.M. Li, and H. Zhang

Table 2. Experimental results for NCV W , adaptG2WSAT+, RSAPS, and V W on the 11
groups of instances

NCV W adaptG2WSAT+ RSAPS V W
cutoff suc #steps time suc #steps time suc #steps time suc #steps time

ais12 107 0.93 249576 0.2 0.94 2568069 2.4 1.00 159617 0.2 1.00 962263 1.4
bw large.d 107 0.96 955185 2.5 0.70 5786347 8.1 0.06 > 107 n/a 0.94 2554959 5.4
e0ddr2*1 107 1.00 119631 0.5 0.96 2219658 3.3 1.00 120139 0.7 0.71 6656635 10.7
g250.29 107 0.79 3483743 76.9 1.00 728358 6.3 0.00 > 107 n/a 0.15 > 107 n/a
par16-1 109 1.00 96371225 48.3 1.00 45395657 14.9 0.16 > 109 n/a 0.00 > 109 n/a
par16-2 109 0.88 329217086 166.7 1.00 96745059 32.5 0.07 > 109 n/a 0.00 > 109 n/a
par16-3 109 1.00 115526876 58.8 1.00 87203523 28.9 0.08 > 109 n/a 0.00 > 109 n/a
par16-4 109 0.96 183854606 92.8 0.98 170022013 55.7 0.10 > 109 n/a 0.01 > 109 n/a
par16-5 109 0.93 264988982 133.5 0.99 111417125 37.0 0.13 > 109 n/a 0.00 > 109 n/a
qg2-08 107 0.83 2832886 12.7 1.00 1766643 4.9 0.08 > 107 n/a 0.12 > 107 n/a
qg7-13 108 1.00 3663127 31.9 0.20 > 108 n/a 0.07 > 108 n/a 0.00 > 108 n/a
f*3995 108 1.00 56405 0.1 0.04 > 108 n/a 1.00 66907 0.1 1.00 5346194 4.2
f*3997 108 0.95 4830154 3.3 0.01 > 108 n/a 1.00 6348614 5.8 0.69 55768455 29.8
f*3999 108 1.00 336040 0.4 0.00 > 108 n/a 1.00 269670 0.3 0.38 > 108 n/a
f*4001 108 0.66 51971463 41.8 0.00 > 108 n/a 0.80 39945421 40.3 0.18 > 108 n/a
f*4003 108 1.00 1514236 1.9 0.00 > 108 n/a 1.00 1575665 1.9 0.05 > 108 n/a
g*1334 108 1.00 248515 0.2 0.11 > 108 n/a 1.00 385746 0.2 1.00 165058 0.1
g*1337 108 1.00 1411026 1.2 0.51 52247390 24.7 1.00 4188026 3.1 1.00 334304 0.2
g*1339 108 1.00 2325027 3.5 0.70 1656358 1.9 1.00 19332961 27.5 1.00 1090780 1.1
g*1340 108 0.76 3579295 7.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 9592247 10.3
g*1341 108 0.98 4507419 10.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 6911453 8.5
p*1318 108 1.00 1411992 6.2 0.19 > 108 n/a 1.00 1109307 5.3 1.00 1023732 37.8
p*1319 108 1.00 1039612 4.1 0.64 1283571 3.5 1.00 361676 0.9 1.00 202640 2.3
p*1320 108 1.00 4264494 13.4 0.00 > 108 n/a 1.00 3167791 8.7 1.00 555636 9.1
p*1321 108 1.00 8401861 27.4 0.01 > 108 n/a 1.00 3512466 6.8 1.00 925001 12.8
p*1322 108 0.94 18686150 85.0 0.02 > 108 n/a 0.99 11563065 39.5 1.00 1203442 45.8

*v10000*03 109 0.93 195343618 310.3 0.38 > 109 n/a 0.00 > 109 n/a 1.00 51325928 70.1
*v10000*04 109 0.78 445825231 703.0 0.12 > 109 n/a 0.00 > 109 n/a 1.00 73729009 99.9
*v10000*05 109 0.56 928751054 1407.3 0.00 > 109 n/a 0.00 > 109 n/a 0.96 140754923 188.4
*v10000*06 109 0.92 287233505 427.6 0.22 > 109 n/a 0.00 > 109 n/a 0.99 52498950 70.6
*v10000*10 109 0.84 340420147 536.8 0.10 > 109 n/a 0.00 > 109 n/a 0.99 71314104 95.9
*v1100*04 109 0.99 160716875 692.8 0.99 154199134 454.7 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*06 109 0.96 254443055 1082.3 0.97 181909223 538.3 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*08 109 0.94 271460435 1159.5 0.94 274281212 810.0 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*10 109 0.98 201335004 852.7 0.94 244056999 723.9 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*14 109 1.00 48218593 205.9 1.00 56308880 166.8 0.00 > 109 n/a 0.02 > 109 n/a

at least one algorithm discussed achieves a success rate greater than 50% in order to
calculate median number of search steps and median run time based on these 100 runs.
We report success rates (“suc”), median numbers of search steps (“#steps”), and median
run times (“time”) in seconds. If an algorithm cannot achieve a success rate greater than
50% on an instance within the specified cutoff, we use “> Maxsteps” (greater than
Maxsteps) and “n/a” to denote the median number of search steps and median run
time, respectively. Results in bold indicate the best results for an instance.

5.2 Default Values of Parameters in NCV W

Like V W , NCV W updates variable weights using Formula 1. To adapt to NCV W ,
which is set up to solve a wide range of instances, parameter s in this formula is fixed
to 0.0. When s is 0.0, the weight of a variable is just a counter of the number of flips
of this variable. Conversely, in V W , s is adjusted during the search (s > 0.0). That

Switching among Non-Weighting, Clause Weighting, and Variable Weighting 323

is, NCV W does not smooth variable weights while V W does. This non-smoothing of
variable weights makes uneven distributions of variable weights and even distributions
of variable weights more distinguishable.

In addition to its own parameters γ, δ, and π, NCV W has all parameters from
its constituent heuristics. According to our experiments, on a wide range of instances,
NCV W with (γ, δ, π, s, wp) = (7.5, 3.0, 15.0, 0.0, 0.05) (wp is from RSAPS) ex-
hibits generally good performance. Thus, in NCV W , the default values of γ, δ, π,
s, and wp are (γ, δ, π, s, wp) = (7.5, 3.0, 15.0, 0.0, 0.05). For the other parameters in
NCV W from its constituent heuristics, NCV W adaptively adjusts these parameters
as do the constituent heuristics or uses the same default values as do the constituent
heuristics.

5.3 Comparison of Performance

We compare the performance of NCV W , adaptG2WSAT+, RSAPS, and V W on
the 11 groups of instances (36 instances) in Table 2, and compare the performance
of NCV W , gNovelty+, adaptG2WSAT 0, and Hybrid on these instances in Ta-
ble 3. The source code of adaptG2WSAT+, gNovelty+, and adaptG2WSAT 0
was downloaded from http://www.satcompetition.org/, and that of RSAPS was down-
loaded from http://www.satlib.org/ubcsat/. The source code of V W was obtained from
the organizer of the SAT 2005 competition. When experimenting with these algorithms,
we do not change the ways in which these algorithms adaptively adjust their parameters
and do not change the default values of the other parameters in these algorithms either.

According to our experiments, the 36 instances include those that, for NCV W , usu-
ally lead to the following four combinations of the distributions of variable and clause
weights: the distributions of both variable and clause weights are even, the distributions
of variable weights are even while the distributions of clause weights are uneven, the
distributions of variable weights are uneven while the distributions of clause weights
are even, and the distributions of both variable and clause weights are uneven. Specifi-
cally, for NCV W , the instances in PARITY and 5SAT/v1100 generally result in even
distributions of both variable and clause weights. The instances in Ferry and QG usually
lead to even distributions of variable weights but uneven distributions of clause weights.
The instances g*1340 and g*1341 in grid-pebbling/sat usually result in uneven distri-
butions of variable weights but even distributions of clause weights. The instances in
blocksworld and Beijing generally lead to uneven distributions of both variable and
clause weights.

According to Table 2, within the specified cutoffs, NCV W is generally effective
on these 11 groups. Conversely, within the designated cutoffs, adaptG2WSAT+,
RSAPS, and V W are effective on only 6, 4, and 6 groups, respectively.

NCV W exhibits good performance on qg7-13 although adaptG2WSAT+,
RSAPS, V W all show poor performance on this instance. There are two reasons for
this good performance. First, like adaptG2WSAT+, NCV W conducts preprocessing
using unit propagation to simplify an instance before searching. Second, NCV W
usually chooses heuristic RSAPS automatically to select a variable to flip for the
simplified qg7-13 because this simplified qg7-13 results in even distribution of variable

324 W. Wei, C.M. Li, and H. Zhang

Table 3. Experimental results for NCV W , gNovelty+, adaptG2WSAT0, and Hybrid on the
11 groups of instances

NCV W gNovelty+ adaptG2WSAT0 Hybrid
cutoff suc #steps time suc #steps time suc #steps time suc #steps time

ais12 107 0.93 249576 0.2 0.32 > 107 n/a 1.00 1181980 1.1 1.00 1534609 2.0
bw large.d 107 0.96 955185 2.5 0.60 6561933 16.7 0.49 > 107 n/a 0.96 661253 2.1
e0ddr2*1 107 1.00 119631 0.5 0.00 > 107 n/a 0.96 2013651 3.0 1.00 117320 1.7
g250.29 107 0.79 3483743 76.9 1.00 590941 10.7 1.00 806380 7.0 0.88 1360491 22.6
par16-1 109 1.00 96371225 48.3 0.51 985564819 231.1 1.00 78289718 26.1 1.00 69932292 29.6
par16-2 109 0.88 329217086 166.7 0.38 > 109 n/a 0.99 105017111 35.8 0.99 119600333 52.2
par16-3 109 1.00 115526876 58.8 0.52 955707228 224.5 1.00 113814551 39.0 1.00 92166515 40.2
par16-4 109 0.96 183854606 92.8 0.26 > 109 n/a 0.98 142059581 47.7 0.99 95694408 40.8
par16-5 109 0.93 264988982 133.5 0.55 924073354 219.7 1.00 113484583 38.8 0.99 81990858 35.4
qg2-08 107 0.83 2832886 12.7 0.02 > 107 n/a 0.98 1757920 4.8 0.99 1440339 6.1
qg7-13 108 1.00 3663127 31.9 0.00 > 108 n/a 0.20 > 108 n/a 0.40 > 108 n/a
f*3995 108 1.00 56405 0.1 0.00 > 108 n/a 0.06 > 108 n/a 0.15 > 108 n/a
f*3997 108 0.95 4830154 3.3 0.00 > 108 n/a 0.00 > 108 n/a 0.01 > 108 n/a
f*3999 108 1.00 336040 0.4 0.00 > 108 n/a 0.00 > 108 n/a 0.00 > 108 n/a
f*4001 108 0.66 51971463 41.8 0.00 > 108 n/a 0.00 > 108 n/a 0.00 > 108 n/a
f*4003 108 1.00 1514236 1.9 0.00 > 108 n/a 0.00 > 108 n/a 0.00 > 108 n/a
g*1334 108 1.00 248515 0.2 0.04 > 108 n/a 0.01 > 108 n/a 1.00 69867 0.1
g*1337 108 1.00 1411026 1.2 0.47 > 108 n/a 0.31 > 108 n/a 1.00 146414 0.2
g*1339 108 1.00 2325027 3.5 0.67 23436378 32.7 0.49 > 108 n/a 1.00 602498 2.0
g*1340 108 0.76 3579295 7.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 2542104 6.4
g*1341 108 0.98 4507419 10.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 2875184 9.8
p*1318 108 1.00 1411992 6.2 0.49 > 108 n/a 0.05 > 108 n/a 0.85 828436 4.2
p*1319 108 1.00 1039612 4.1 0.16 > 108 n/a 0.00 > 108 n/a 0.26 > 108 n/a
p*1320 108 1.00 4264494 13.4 0.63 58348721 135.6 0.03 > 108 n/a 0.79 507350 2.2
p*1321 108 1.00 8401861 27.4 0.02 > 108 n/a 0.00 > 108 n/a 0.15 > 108 n/a
p*1322 108 0.94 18686150 85.0 0.09 > 108 n/a 0.00 > 108 n/a 0.17 > 108 n/a

*v10000*03 109 0.93 195343618 310.3 1.00 55787237 93.0 0.12 > 109 n/a 0.98 162732471 229.1
*v10000*04 109 0.78 445825231 703.0 1.00 69007926 111.5 0.02 > 109 n/a 0.88 262272862 345.4
*v10000*05 109 0.56 928751054 1407.3 1.00 134839615 219.3 0.00 > 109 n/a 0.77 516289640 735.8
*v10000*06 109 0.92 287233505 427.6 1.00 53678135 84.1 0.10 > 109 n/a 1.00 134103486 208.1
*v10000*10 109 0.84 340420147 536.8 1.00 69535298 110.0 0.00 > 109 n/a 0.92 260197067 370.4
*v1100*04 109 0.99 160716875 692.8 0.04 > 109 n/a 1.00 134579805 390.1 0.88 298792644 1410.6
*v1100*06 109 0.96 254443055 1082.3 0.08 > 109 n/a 0.98 189797513 544.4 0.75 468379966 2194.6
*v1100*08 109 0.94 271460435 1159.5 0.08 > 109 n/a 0.94 219521877 627.1 0.69 643453270 3039.1
*v1100*10 109 0.98 201335004 852.7 0.06 > 109 n/a 0.96 219480345 629.1 0.73 547026001 2556.3
*v1100*14 109 1.00 48218593 205.9 0.26 > 109 n/a 1.00 54801707 157.2 1.00 112659869 525.2

weights and uneven distribution of clause weights, and heuristic RSAPS is effective
on the simplified qg7-13 although this heuristic is not effective on the original qg7-13.

As shown in Table 3, within the specified cutoffs, NCV W is generally effective on
these 11 groups of instances while gNovelty+, adaptG2WSAT 0, and Hybrid are
effective on only 3, 5, and 8 groups, respectively.

5.4 Justification for Switching Strategy Used in NCV W

To justify the proposed switching strategy used in NCV W , we implement two other
switching strategies in two algorithms NCV W diff and NCV W rand, which are
described as follows. If the distribution of variable weights is uneven or the distribu-
tion of clause weights is uneven, NCV W diff chooses a variable to flip according
to heuristic adaptG2WSAT+. Otherwise, i.e., if the distributions of both variable and

Switching among Non-Weighting, Clause Weighting, and Variable Weighting 325

Table 4. Experimental results for NCV W , NCV W diff , and NCV W rand on the hardest
instances in the 11 groups

NCV W NCV W diff NCV W rand
cutoff suc #steps time suc #steps time suc #steps time

ais12 107 0.93 249576 0.2 0.94 3068730 4.5 1.00 340597 0.5
bw large.d 107 0.96 955185 2.5 0.70 7040081 16.2 0.90 2061289 5.2
e0ddr2*1 107 1.00 119631 0.5 0.96 2206478 4.3 1.00 193154 0.7
g250.29 107 0.79 3483743 76.9 1.00 771854 11.6 1.00 994184 13.9
par16-2 109 0.88 329217086 166.7 1.00 131330419 65.8 0.98 198219412 118.2
qg7-13 108 1.00 3663127 31.9 0.20 > 108 n/a 0.32 > 108 n/a
f*4001 108 0.66 51971463 41.8 0.00 > 108 n/a 0.00 > 108 n/a
g*1341 108 0.98 4507419 10.3 0.00 > 108 n/a 1.00 28817283 66.2
p*1322 108 0.94 18686150 85.0 0.01 > 108 n/a 1.00 1932060 18.5

*v10000*05 109 0.56 928751054 1407.3 0.02 > 109 n/a 0.14 > 109 n/a
*v1100*08 109 0.94 271460435 1159.5 0.94 253006754 1056.5 0.39 > 109 n/a

clause weights are even, NCV W diff first randomly selects a heuristic from heuristic
RSAPS and heuristic V W , and then chooses a variable to flip according to the ran-
domly selected heuristic. In each search step, NCV W rand randomly selects a heuris-
tic from heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic V W , and then
uses this randomly selected heuristic to choose a variable to flip.

Both NCV W diff and NCV W rand update variable and clause weights in the
same ways as does NCV W . For an instance that leads to even distributions of variable
weights, NCV W diff will build up the distribution of clause weights, after a small
number of search steps compared with the total search steps that NCV W diff per-
forms for this instance. Thus, NCV W diff does not need parameter π. For each of
the other parameters in NCV W diff , NCV W diff adjusts this parameter as does
NCV W or uses the same default value as does NCV W . As opposed to NCV W ,
NCV W rand does not need parameters γ, δ, and π. For each of the other parame-
ters in NCV W rand, NCV W rand adjusts this parameter as does NCV W or uses
the same default value as does NCV W . In Table 4, we compare the performance of
NCV W , NCV W diff , and NCV W rand on the hardest instances in the 11 groups
for most algorithms discussed in this paper. Within the specified cutoffs, NCV W is
generally effective on these 11 instances, but NCV W diff and NCV W rand are
effective on only 6 and 7 instances, respectively.

6 Conclusion

We have proposed a new switching criterion: the evenness or unevenness of the
distribution of clause weights. We apply this criterion, along with another switching crite-
rion, to heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic V W . The result-
ing algorithm, which combines intensification strategies with diversification strategies, is
called NCV W (Non-, Clause, and Variable Weighting). Experimental results show that
NCV W is generally effective on a wide range of instances whereas adaptG2WSAT+,
RSAPS, V W , gNovelty+, adaptG2WSAT 0, and Hybrid are not.

326 W. Wei, C.M. Li, and H. Zhang

References

1. Gebruers, C., Hnich, B., Bridge, D.G., Freuder, E.C.: Using CBR to Select Solution Strate-
gies in Constraint Programming. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS
(LNAI), vol. 3620, pp. 222–236. Springer, Heidelberg (2005)

2. Hirsch, E.A., Kojevnikov, A.: UnitWalk: A New SAT Solver that Uses Local Search Guided
by Unit Clause Elimination. Ann. Math. Artif. Intell. 43(1), 91–111 (2005)

3. Hoos, H.H.: On the Run-Time Behavior of Stochastic Local Search Algorithms for SAT. In:
Proceedings of AAAI 1999, pp. 661–666. AAAI Press, Menlo Park (1999)

4. Hoos, H.H.: An Adaptive Noise Mechanism for WalkSAT. In: Proceedings of AAAI 2002,
pp. 655–660. AAAI Press, Menlo Park (2002)

5. Hoos, H.H., Stűtzle, T.: Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann, San Francisco (2004)

6. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and Probabilistic Smoothing: Efficient
Dynamical Local Search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
pp. 233–248. Springer, Heidelberg (2002)

7. Li, C.M., Huang, W.Q.: Diversification and Determinism in Local Search for Satisfiability. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 158–172. Springer, Heidelberg
(2005)

8. Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Promising Decreasing Variables
in Local Search for SAT,
http://www.satcompetition.org/2007/contestants.html

9. Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local Search for
SAT. In: Benhamou, F., Jussien, N., O’Sullivan, B. (eds.) Trends in Constraint Programming,
ch. 14, pp. 261–267. ISTE (2007)

10. Li, C.M., Wei, W., Zhang, H.: Combining Adaptive Noise and Look-Ahead in Local Search
for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–
133. Springer, Heidelberg (2007)

11. Morris, P.: The Breakout Method for Escaping from Local Minima. In: Proceedings of AAAI
1993, pp. 40–45. AAAI Press, Menlo Park (1993)

12. Pham, D.N., Gretton, C.: gnovelty+,
http://www.satcompetition.org/2007/contestants.html

13. Prestwich, S.: Random Walk with Continuously Smoothed Variable Weights. In: Bacchus, F.,
Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 203–215. Springer, Heidelberg (2005)

14. Selman, B., Kautz, H., Cohen, B.: Noise Strategies for Improving Local Search. In: Proceed-
ings of AAAI 1994, pp. 337–343. AAAI Press, Menlo Park (1994)

15. Wei, W., Li, C.M., Zhang, H.: Deterministic and Random Selection of Variables in Local
Search for SAT,
http://www.satcompetition.org/2007/contestants.html

16. Wei, W., Li, C.M., Zhang, H.: Criterion for Intensification and Diversification in Local Search
for SAT. In: Proceedings of LSCS 2007, pp. 2–16 (2007)

17. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The Design and Analysis of an
Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727.
Springer, Heidelberg (2007)

http://www.satcompetition.org/2007/contestants.html
http://www.satcompetition.org/2007/contestants.html
http://www.satcompetition.org/2007/contestants.html

	Switching among Non-Weighting, Clause Weighting, and Variable Weighting in Local Search for SAT
	Introduction
	Review of Algorithms adaptG2WSAT+, RSAPS, VW, and Hybrid
	Motivation
	A New Switching Criterion
	Evenness or Unevenness of Distribution of Clause Weights
	Algorithm NCVW

	Evaluation
	Groups of Instances
	Default Values of Parameters in NCVW
	Comparison of Performance
	Justification for Switching Strategy Used in NCVW

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

