
A Constraint Programming Approach for Allocation
and Scheduling on the CELL Broadband Engine

Luca Benini, Michele Lombardi, Michela Milano, and Martino Ruggiero

(1) DEIS, University of Bologna
V.le Risorgimento 2, 40136, Bologna, Italy

{lbenini,mmilano,mlombardi,mruggiero}@deis.unibo.it

Abstract. The Cell BE processor provides both scalable computation power and
flexibility, and it is already being adopted for many computational intensive ap-
plications like aerospace, defense, medical imaging and gaming. Despite of its
merits, it also presents many challenges, as it is now widely known that is very
difficult to program the Cell BE in an efficient manner. Hence, the creation of an
efficient software development framework is becoming the key challenge for this
computational platform.

We have developed a novel software toolkit, called Cellflow, which enables
developers to quickly build multi-task applications for Cell-based platform. We
support programmers from the initial stage of their work, through a development-
time software infrastructure, to the final stage of the application development,
proposing a safe and easy-to-use explicit parallel programming model.

A fundamental component of the software toolkit is the off-line allocator
and scheduler that manages hardware resources while optimizing performance
metrics such as execution time, allocation costs, power. The optimization engine
receives as input a task graph representing an application, the hardware resources
and produces an optimal allocation and scheduling. We have developed various
approaches, either based on decomposition [5] or based on pure Constraint Pro-
gramming, this latter being the core of this paper. We have identified instance
features that guide toward the choice of the best solver for the instance at hand.

Experimental result show that Constraint Programming (possibly combined
with Integer Programming) is a proper tool for dealing with this kind of applica-
tions achieving very good performance.

1 Introduction

Single-chip multicore platforms are becoming widespread in high-end embedded com-
puting applications (networking, communication, graphics, signal processing). The Cell
Broadband Engine is probably one of the highest-volume multicore platforms in use
today, targeting interactive graphics and advanced signal processing1. It is a heteroge-
neous multi-core architecture composed by a standard general purpose microprocessor
(called PPE), with eight coprocessing units (called SPEs) integrated on the same chip.
The SPE is a processor designed for streaming workloads, featuring a local memory,
and a globally-coherent DMA (DIrect Memory Access) engine [15], [28].

1 Sony’s Playstation 3, powered by Cell BE, had sold more than 10M pieces at the end of 2007.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 21–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 L. Benini et al.

The heterogeneity of its processing elements and, above all, the limited explicitly-
managed on-chip memory and the multiple options for exploiting hardware parallelism,
make efficient application design and implementation on the Cell BE a major challenge.
Efficient programming requires one to explicitly manage the resources available to each
SPE, as well the allocation and scheduling of activities on them, the storage resources,
the movement of data and synchronization. As a result, even with the help of APIs
and advanced programming environments, programming Cell in an efficient fashion is
a daunting task. Therefore, significant effort is being focused on the development of
software optimization tools and methods to automate the mapping of complex parallel
applications onto the Cell BE platform.

The final goal of this work is to enable developers to quickly build multi-task appli-
cations using a high-level explicitly parallel programming model. Low-level compilers
and hardware-optimized core functions are provided by the the SDK from IBM [12].
However, the basic SDK does not offer any facility for optimizing the resource utiliza-
tion in terms of both allocation and scheduling, memory transfers and utilization. We
want to set programmers free from the issue of managing allocation and scheduling
tasks, so they can focus on developing the core algorithms of the application.

The allocation and scheduling problems that are at the core of the mapping task are
quite large and extremely challenging, and they are usually tackled using incomplete
approaches. Even though incomplete approaches can be computationally efficient, they
generally produce sub-optimal solutions. This is a significant shortcoming especially for
demanding applications with tight execution time constraints, as incomplete optimizers
may fail to find a feasible solution even when it does exist. Hence, efficient complete
approaches are of great practical interest: not only they help programmers in taking
hard design decisions, but also they can significantly extend the size and complexity of
applications that can be run on the target hardware platform while meeting performance
constraint.

For the problem at hand we have developed two approaches. One is based on Logic
Based Benders Decomposition [8], and in particular on a recursive application of the
technique. This approach has been proposed in [5] and will be recalled here for making
the paper self contained. The second approach, which is the core of the present paper,
is a pure CP model targeting both allocation and scheduling. We have experimentally
compared the two approaches and identified instance features that guide toward the
choice of the best solving strategy.

2 The Problem

The current design methodology for multicore systems on chip is hampered by a lack
of appropriate design tools, leading to low efficiency and productivity. Software opti-
mization is a key requirement for building cost- and power-efficient electronic systems,
while meeting tight real-time constraints and ensuring predictability and reliability, and
is one of the most critical challenges in today’s high-end computing.

Embedded devices are not general purpose, but run a set of predefined applications
during the entire system lifetime. Therefore software compilation can be optimized
once for all at design time thus improving the performance of the overall system. Thus,

A Constraint Programming Approach for Allocation and Scheduling 23

Fig. 1. Cell Broadband Engine Hardware Architecture

optimization is a critical component in the design of next-generation, highly program
mable, intelligent embedded devices.

We focus on a well-known multicore platform, namely the IBM Cell BE processor
(described in section 2.1), and we address the problem of allocating and scheduling its
processors, communication channels and memories. The application that runs on top of
the target platform is abstracted as a task graph (described in section 2.2). Each task
is labelled with its execution time, memory and communication requirements. Arcs in
the task graph represent data dependencies and communications between pairs of tasks.
The optimization metric we take into account is the application execution time that
should be minimized.

2.1 Cell BE Hardware Architecture

In this section we give a brief overview of the Cell hardware architecture, focusing on
the features that are most relevant for our optimization tools. Cell is a non-homogeneous
multi-core processor [32] which includes a 64-bit PowerPC processor element (PPE)
and eight synergistic processor elements (SPEs), connected by an internal high band-
width Element Interconnect Bus (EIB) [29]. Figure 1 shows a pictorial overview of the
Cell Broadband Engine Hardware Architecture. The PPE is dedicated to the operating
system and acts as the master of the system, while the eight synergistic processors are
optimized for computation-intensive applications. The PPE is a multithreaded core and
has two levels of on-chip cache. However, the main computing power of the Cell pro-
cessor is provided by the eight SPEs. The SPE is a computation-intensive coprocessor
designed to accelerate media and streaming workloads [27]. Each SPE consists of a
synergistic processor unit (SPU) and a memory flow controller (MFC). The MFC in-
cludes a DMA controller, a memory management unit (MMU), a bus interface unit, and
an atomic unit for synchronization with other SPUs and the PPE.

Efficient SPE software should heavily optimize memory usage, since the SPEs oper-
ate on a limited on-chip memory (only 256 KB local store) that stores both instructions
and data required by the program. The local memory of the SPEs is not coherent with

24 L. Benini et al.

Fig. 2. Example of task graph

the PPE main memory, and data transfers to and from the SPE local memories must be
explicitly managed by using asynchronous coherent DMA commands.

2.2 The Target Application

The target application to be executed on top of the hardware platform is input to our
methodology, and for this purpose it must be represented as a task graph. This latter
consists of a graph pointing out the parallel structure of the program. The application
workload is therefore partitioned into computation sub-units denoted as tasks, which
are the nodes of the graph. Graph edges connecting any two nodes indicate task de-
pendencies due to communication and/or synchronization. Tasks communicate through
queues and each task can handle several input/output queues. For example task T 9 in
Figure 2 reads two input queues from tasks T 6 and T 7 and writes an output queue for
task T 10.

Task execution is modeled and structured in three phases (see Figure 3): all input
communication queues are read (Input Reading), task computation activity is performed
(Task Execution) and finally all output queues are written (Output Writing). Each phase
consists of an atomic activity. Each task also has two kinds of associated memory
requirements:

1. Program Data: storage locations are required for computation data and for proces-
sor instructions;

2. Communication queues: each task needs queues to transmit and receive messages
to/from other tasks, eventually mapped on different SPEs.

Both these memory requirements can be either allocated on the local storage of each
SPE or in the shared memory (DRAM in Figure 1).

Fig. 3. Three phases behavior of Tasks

A Constraint Programming Approach for Allocation and Scheduling 25

Durations are linked to the allocation choices: the duration of an execution phase
in case of remote allocation of program data (dmaxex) is greater than in case of a
local allocation dminex. Writing (and reading) operations have their minimum possi-
ble value (dminwr, dminrd) if the communication queue is on the local memory of
the producer (resp. consumer) tasks, a higher value (dmedwr, dmedrd) if it is allo-
cated on the local memory of the consumer (resp. producer) task, an even higher value
(dmaxwr, dmaxrd) in case of remote allocation (on the on-chip DRAM memory).

3 Why CP

The main goal of this paper is to apply software optimization for maximizing the exploit
of the hardware resources of the CELL BE architecture.

Scientific literature related to our problem explores many directions: we here recall
the main research trends:

– exploitation of heterogeneous parallelism provided by the CELL architecture pos-
sibly performing automated scheduling and allocation;

– software optimization for other (yet similar) multicore platforms.

The Cell architecture supports a wide range of heterogeneous parallelism levels. To
our knowledge, prior work is mainly focused on trying to exploit fine grained paral-
lelism of Cell, such as at instruction and functional level, while our work is one of the
few approaches at task level. In [14] authors present a framework for the automatic
exploitation of the functional parallelism of a sequential program through the differ-
ent SPEs. Their work is based on annotation of the source code of target application.
A runtime library deals with generating threads, scheduling them on the SPEs, and
transferring data to/from them. The authors in [30] present a realtime software plat-
form for the Cell processor. It is based on the virtualization of the processing resources
and a real-time resource scheduler which runs on the PPE. The compiler described in
[20] implements techniques for optimizing the execution of scalar code in SIMD units,
subword optimization and other techniques. Authors in [19] describe several compiler
techniques that aim at automatically generating high-quality code over a wide range of
heterogeneous parallelism available on the CELL processor.

At task level, the authors in [33] propose a programming model based on micro-
tasks communicating through message passing interface. The micro-task represents a
unit of computation that causes communication at its beginning and end. They tackle
the mapping and scheduling problem by a suboptimal heuristic solver. The work in
[34] describes a multicore streaming layer whose main goal is to abstract away the
architecture-specific details that complicate the scheduling of computation and commu-
nication activities in a stream program. They propose both dynamic and static schedul-
ing facilities, but without any optimality guarantee.

The literature on optimization of other multicore architectures uses heuristic ap-
proaches for mapping and scheduling task graphs onto the target platforms. In [16]
a re-timing heuristic is used to implement pipelined scheduling, that optimizes the ini-
tiation interval, the number of pipeline stages and memory requirements of a particular
design alternative. Pipelined execution of a set of periodic activities is also addressed

26 L. Benini et al.

in [17], for the case where tasks have deadlines larger than their periods. Palazzari et
al. [31] focus on scheduling to sustain the throughput of a given periodic task set and
to serve aperiodic requests associated with hard real-time constraints. Mapping of tasks
to processors, pipelining of system specification and scheduling of each pipeline stage
have been addressed in [18], aiming at satisfying throughput constraints at minimal
hardware cost. A comparative study of well-known heuristic search techniques (ge-
netic algorithms, simulated annealing and tabu search) is reported in [21]. Eles et al.
[22] compare the use of simulated annealing and tabu search for partitioning a graph
into hardware and software parts while trying to reduce communication and synchro-
nization between parts. More scalable versions of these algorithms for large real-time
systems are introduced in [23]. Many heuristic scheduling algorithms are variants and
extensions of list scheduling [24], a scheduling algorithm coming from the real time
literature.

Heuristic approaches provide no guarantees about the quality of the final solution.
On the other hand, complete approaches which compute the optimum solution (possi-
bly, with a high computational cost), can be attractive for statically scheduled systems,
where the solution is computed once and applied throughout the entire lifetime of the
system.

Our previous work [3], [4] was aimed at optimally solving task graphs allocation
and scheduling on a different multicore platform (called MPARM and based on ARM
processors) using a Logic Based Benders Decomposition approach. The allocation part
is solved through Integer Programming and the scheduling problem via Constraint Pro-
gramming. We have applied and extended this approach for the CELL BE platform in
[5]. We will summarize this paper in section 4. In this paper we propose a pure Con-
straint Programming approach for this problem.

CP has been previously used to solve similar, yet simplified, problems. The work in
[25] is based on Constraint Logic Programming to represent system synthesis problem,
and leverages a set of finite domain variables and constraints imposed on these vari-
ables. Optimal solutions can be obtained for small problems, while large problems re-
quire the use of heuristic algorithms. The proposed framework is able to create pipelined
implementations in order to increase the design throughput. In [26] the embedded sys-
tem is represented by a set of finite domain constraints defining different requirements
on process timing, system resources and interprocess communication. The assignment
of processes to processors and interprocess communications to buses as well as their
scheduling are then defined as an optimization problem tackled by means of constraint
solving techniques.

4 How CP

For the problem of allocating and scheduling task graphs onto the CELL BE platform
we have implemented two approaches. One is based on a recursive application of Logic
Based Benders Decomposition [8] and is extensively described in [5]. We recall here
the main structure of the solution technique, while we refer to [5] for modeling details
and extensive comparison with a traditional (two-stage) decomposition approach.

The second model we propose is the core of this paper and is a pure CP model where
both allocation and scheduling are solved using a single monolithic model.

A Constraint Programming Approach for Allocation and Scheduling 27

We describe in detail this second approach and propose an experimental evaluation
in section 5 along with a comparison with the decomposition approach.

4.1 Decomposition Based Approach

The problem at hand can be solved using a Logic Based Benders decomposition
approach similarly to [3], [4], [7], [6], [9], [10], and [11], where the allocation is mod-
elled and solved in the master problem (usually using Integer Programming) while the
scheduling problem is tackled as a subproblem (possibly via Constraint Programming).
This approach does not scale well and in [5] we have shown that the reason is the poor
balancing between the allocation and the scheduling components, as the first is much
more complicated.

Therefore, we have experimented a multi-stage decomposition, which is actually
a recursive application of standard Logic based Benders’ Decomposition (LBD), that
aims at obtaining balanced and lighter components. The allocation part should be de-
composed again in two subproblems, each part being easily solvable.

Fig. 4. Solver architecture: two level Logic
based Benders’ Decomposition

Fig. 5. Solver architecture with schedulability
test

In Figure 4 at level one the SPE assignment problem (SPE stage) that computes task
to processor assignment acts as the master problem, while memory device assignment
and scheduling as a whole are the subproblem. At level two (the dashed box in Figure 4)
the memory assignment (MEM stage) is the master and the scheduling (SCHED stage)
is the correspondent subproblem. The first step of the solution process is the compu-
tation of a task-to-SPE assignment; then, based on that assignment, allocation choices
for all memory requirements are taken. Finally, a scheduling problem with fixed re-
source assignments and fixed durations is solved. When the SCHED problem is solved
(no matter if a solution has been found), one or more cuts (labeled A) are generated to
forbid (at least) the current memory device allocation and the process is restarted from
the MEM stage; in addition, if the scheduling problem is feasible, an upper bound on the

28 L. Benini et al.

value of the next solution is also posted. When the MEM & SCHED subproblem ends
(either successfully or not), more cuts (labeled B) are generated to forbid the current
task-to-SPE assignment. When the SPE stage becomes infeasible the process is over,
and converges to the optimal solution for the problem overall.

We found that quite often SPE allocation choices are by themselves very relevant: in
particular, a bad SPE assignment is sometimes sufficient to make the scheduling prob-
lem unfeasible. Thus, after the task to processor allocation, we can first check whether
the SPE allocation is schedulable, as depicted in Figure 5 (SCHED TEST). In practice,
if the given allocation with minimal task durations is already infeasible for the schedul-
ing component, then it is useless to complete it with the memory assignment that cannot
lead to any feasible solution overall.

4.2 Pure CP Model

In alternative to the decomposition approach, we have implemented a pure CP model
that is solved using the commercial tool ILOG Scheduler/Solver 6.3.

Let n be the number of tasks, m the number of arcs and p the number of processing
elements.

The possible allocation choices are modeled by means of the following variables:

TPEi ∈ {0, . . . , ...p − 1} ∀i = 0, . . . , n − 1
Mi ∈ {0, 1} ∀i = 0, . . . , n − 1
APEr ∈ {−1, . . . , ...p − 1} ∀r = 0, . . . , m − 1

TPEi is the processing element assigned to task ti. Similarly, if APEr = j then the
communication buffer related to arc ar is on the local memory of the processing element
j, while if APEr = −1 the communication buffer is allocated on the remote memory.
Finally, Mi is 1 if program data of task ti are allocated locally to the same processor of
task ti.

Due to architectural restrictions, a communication buffer can be allocated either on
the local memory of the source task, or that of the target task, or on the remote memory;
therefore for the arc r connecting nodes representing tasks th and tk:

APEr = TPEh ∨ APEr = TPEk ∨ APEr = −1

From a scheduling standpoint, each task is modeled as a set of non preemptive ac-
tivities a, each with a start variable start(a) and an end variable end(a). In particular,
a task ti is split into an activity modeling its execution phase exi, and a set of activities
modeling each one the reading and writing of a communication buffer, i.e., wrr for each
outgoing arc r and rdr for each incoming arc r:

exi(EDi) ∀ti
wrr(WDr) ∀ar = (ti, tk)
rdr(RDr) ∀ar = (th, ti)

A Constraint Programming Approach for Allocation and Scheduling 29

The duration of each activity is defined by the proper variable and is reported
between round brackets after its name. It depends on the related memory allocation
choices; hence we define a variable for each execution and communication task:

EDi ∈ {0, . . . , ...eoh} ∀i = 0, . . . , n − 1
WDr ∈ {0, . . . , ...eoh} ∀r = 0, . . . , m − 1
RDr ∈ {0, . . . , ...eoh} ∀r = 0, . . . , m − 1

EDi is the duration of the communication phase of task ti, WDr and RDr respectively
are the time needed to write and read buffer r. Their range is the whole temporal horizon
(eoh is the end of horizon).

As stated in section 2.2, durations are linked to the allocation choices; the duration
of an execution phase in case of remote allocation of program data (dmaxex) is greater
than in case of local allocation. Writing (and reading) operations have their minimum
possible value (dminwr, dminrd) if the communication queue is on the local memory
of the producer task (resp. consumer), a higher value (dmedwr, dmedrd) if it is allo-
cated on the local memory of the consumer (resp. producer) task, an even higher value
(dmaxwr, dmaxrd) in case of remote allocation of communication queue in DRAM.
All those properties are enforced by means of the following constraints:

∀i = 0, . . . , n − 1 EDi = dminex
i +

(dmaxex
i − dminex

i)(1 − Mi)
∀r = 0, . . . , m − 1, ar = (th, tk) WDi = dminwr

r +
(dmaxwr

r −dminwr
r)(APEr =−1) +

(dmedwr
r −dminwr

r)(APEr =TPEk)
∀r = 0, . . . , m − 1, ar = (th, tk) RDi = dminrd

r +
(dmaxrd

r − dminrd
r)(APEr = −1) +

(dmedrd
r − dminrd

r)(APEr =TPEh)

All reading operations are performed immediately before the execution, and all writ-
ing operations start immediately after. Let r0, . . . , rh−1 be the indices of the ingoing
arcs of task ti and rh, . . . , rk−1 those of the outgoing arcs; then:

end(rdrj) = start(rdrj+1) ∀j = 0, h− 2
end(rdrh−1) = start(exi)
end(exi) = start(wrrh

)
end(rdrj) = start(rdrj+1) ∀j = h, k − 2

All resource constraints are triggered when the TPE allocation variables are as-
signed; in particular if TPEi = j, all reading, writing and execution activities related
to task ti require processing element j. The resource capacity constraint is enforced by
a timetable constraint and a precedence graph constraint available in ILOG Scheduler
6.3 [13].

30 L. Benini et al.

Fig. 6. A: Structure of the dynamic search strategy; B: Operation schema for phase 1

Search Strategy
The model is solved by means of a dynamic search strategy where resource allocation
and scheduling decisions are interleaved.

We chose this approach since most resource constraints are not able to effectively
prune start and end variables as long as the time windows are large and no task
(or just a few of them) has an obligatory region: in particular it is difficult, before
scheduling decisions are taken, to effectively exploit the presence of precedence re-
lations and makespan bounds. In our approach, tasks are scheduled immediately after
they are assigned to a processing element: this results in immediate updates of the time
windows for all tasks linked by precedence relations.

The main drawback with this method is that an early bad choice is likely to lead to
thrashing, due to the size of the search space resulting from the mixture of allocation
and scheduling decisions; a pure two phases allocation and scheduling approach, like
the decomposition based one presented in the previous section, would be able to recover
faster from such a situation.

Intuitively, the presence of many precedence constraints strongly shrinks the set of
good allocation choices and is likely to guide the allocation toward promising choices,
whereas if the graph mostly contains independent or loosely related tasks a two stages
approach is probably to be preferred.

A considerable difficulty is our specific case is set by the need to assign each task and
arc both to a processing element and to a storage device: this is makes the number of
possible allocations too big to completely define the allocation of each task right before
it is scheduled. Therefore we chose to postpone the memory allocation stage after the
main scheduling decisions are taken, as depicted in Figure 6A.

Since task durations directly depend on memory assignment, scheduling decisions
taken in phase 1 of Figure 6 had to be relaxed to enable the construction of a fluid
schedule with variable durations. In practice we adopted a Precedence Constraint Post-
ing approach [1,2], by just adding precedence relations to fix the order of tasks at
the time they are assigned to SPEs: they will be given a start time only once the
memory devices are assigned. Note this time setting step is done in polynomial time.
Figure 7A shows an example of fluid schedule where tasks have variable durations
and precedence relations have been added to fix the order of the tasks on each SPE;

A Constraint Programming Approach for Allocation and Scheduling 31

Fig. 7. A: A fluid schedule; B: A possible fixed schedule

Figure 7B show a corresponding schedule where all durations are decided (a grey box
means the minimum duration is used, a white box means the opposite).

In deeper detail, the SPE allocation and scheduling phase operates according to the
schema of Figure 6B: first, the task with minimum start time is selected – ties are broken
looking a the (least) maximum end time and than at the task index. Second, the SPE
where the task can be allocated at its minimum start time is identified (let it be SPE∗),
then a choice point is open, with a branch for each SPE. Along each branch the task is
bound to the corresponding resource and a rank or postpone decision is taken: we try to
rank the task immediately after the last activity on the selected resource, otherwise the
task is postponed and not considered ready until its minimum start time changes due to
propagation (this is analogous to the standard schedule or postpone strategy in ILOG).
The process is reiterated as long as there are unranked tasks.

In phase 2, memory requirements are allocated to storage devices, selecting at each
step the variable with the smallest domain; in phase 3 a start time is assigned to each
task. Finally, since the processing elements are symmetric resources the procedure em-
beds quite standard symmetry breaking techniques to prevent the generation of useless
branches in the search tree.

5 Computational Efficiency

The decomposition based approach has been implemented using the state of the art
solvers ILOG Cplex 10.1 and Scheduler/Solver 6.3, while the pure CP model has been
implemented on Scheduler/Solver 6.3.

Since the main goal of the paper is to study and compare the performance of the two
approaches it would be not realistic to assume the availability of such a large benchmark
set that would allow us to sample a large variety of problem instances. Therefore we
resorted to synthetic benckmarks as follows.

A first group of 90 instances is coming from the actual execution of multi tasking
programs on a CELL BE architecture. These benckmarks have been created by syn-
thesising code (matrix multiplication) tuning the computation vs. communication effort
which is related to matrix size. For the instances in the first group the duration variability
is very small or even null depending on memory allocation (i.e., dminex and dmaxex

are very close or equal, and analogously durations of reading and writing activities are
similar).

32 L. Benini et al.

Table 1. Results on the set of instances where task durations are not strongly influenced by
allocation decisions

CP TD
Number of tasks Number of arcs time (sec.) SbB > TL time (sec.) SbB > TL

15 9-13 0.01 0.01 0 0.31 0.31 0
15 14-26 0.02 0.02 0 0.62 0.62 0
25 30-55 0.10 0.11 0 369.66 369.66 2
25 56-65 0.05 0.05 0 530.96 530.96 2
30 47-71 1.25 0.82 2 620.13 620.13 11
30 73-82 0.12 0.09 0 834.45 834.45 8

A second group of instances has been generated by using the same task graph struc-
ture of the first group and by changing randomly the durations of communication
activities depending on the allocation choices; we chose to generate 200 instances in-
stead of 90 to increase the reliability of the evalutation. Compared to the previous ones,
instances of this second group have a higher variability of minimal and maximal task
durations.

The first set of instances is representative of high computational intensive applica-
tions in general, like many signal processing kernels. In this scenario the overall task
duration is dominated by the data computation section, while the variability induced by
different memory allocations is negligible. On the other hand, the second set is repre-
sentative of more communication intensive applications. In this case, the overall task
duration can be drastically affected by different memory allocations. Several video and
image processing algorithms are good examples of applications which fit in this cate-
gory. The Cell configuration we used for the tests has 6 available SPEs.

Results on the first set of instances, where task duration is not much influenced by
memory allocation, are reported in table 5. Every row reports results on 15 instances.
Each instance is characterized by the number of tasks and a variable number of arcs in
the interval reported in the table. We recall that arcs in the task graph represent com-
munications and should be modelled with two communication activities (writing and
reading). For each solver the computation time is reported in seconds and is the aver-
age execution time on instances solved to optimality (in which case the two approaches
yield the same solution quality). In the column SbB the time computation is restricted
to instances solved by both methods; finally column > TL reports the number of timed
out instances (out of 15). The time limit has been set to 1800 seconds.

As we can see the CP approach achieves significant speed ups with respect to the
decomposition approach and the number of timed out instances is significantly smaller
in this case. The produced schedules were validated on the same platform used for
characterization of the instances.

On the other hand, results on the second set of instances where tasks have high
duration variability due to allocation choices are reported in table 2. Every row reports
results on 20 instances. Each instance is characterized by the number of tasks (variable
in the range reported in table) and the number of arcs. The time is reported in seconds
and is the average execution time on instances solved within the time limit; as in the
previous table in the colmn SbB the time computation is restricted to instances solved

A Constraint Programming Approach for Allocation and Scheduling 33

Table 2. Result on the set of instances where task durations are strongly influenced by allocation
decisions

CP TD
Number of tasks Number of arcs time (sec.) SbB > TL time (sec.) SbB > TL

10-11 4-11 16.70 16.70 0 3.67 3.67 0
12-13 8-14 116.92 116.92 2 11.19 4.59 0
14-15 8-15 81.50 81.50 8 10.25 7.67 0
16-17 11-17 34.66 34.66 11 29.53 18.17 0
18-19 13-19 66.47 66.47 15 72.56 33.92 1
20-21 16-22 400.41 400.41 16 248.00 82.50 2
22-23 19-26 30.78 30.78 18 355.15 395.00 3
24-25 20-29 — — 20 200.00 — 9
26-27 23-29 — — 20 425.00 — 6
28-29 25-35 — — 20 742.73 — 9

by both approaches. In the column > TL we report the number of timed out instances
(out of 20). Also in this case the time limit has been set to 1800 seconds.

As we can see, the performances of the pure CP approach now start decreasing. For
the difficult instances (last three rows), all 20 instances have achieved the time limit
while the decomposition approach is still able to produce optimal results for half of the
instances.

It appears that the CP solver, during the initial PE assignment and scheduling phase,
has difficulties in computing good makespan bounds taking into account the impact
of memory allocation choices. On the other hand those choices are anticipated, and
thus better managed, by the decomposition based solver, at the price of a weakness
in exploiting resource constraints to compute makespan bounds. Benders’ cuts seem
to be a quite robust device to partially overcome the limitations of the decomposition
approach: perhaps they could be introduced as well in the CP solver to give to it the
ability to handle memory allocation.

These results give a clear indication about the type of solver we have to use de-
pending on the instance structure. If the allocation part is predominant since it greatly
influences task durations, the decomposition approach should be used. On the contrary,
if choosing resource assignments should respect resource capacity constrains but it does
not influence significantly task durations, the pure CP approach greatly outperforms the
(more complex) decomposition approach.

6 Conclusions

The work presented in this paper is part of a wider project aimed at developing a
software development infrastructure, called Cellflow to help programmers in software
implementation on the Cell Broadband Engine processor. Although an off-line develop-
ment framework and an on-line runtime support are needed in Cellflow, the optimiza-
tion engine is a fundamental component. We are designing an algorithm portfolio and a
selection algorithm based on the instance structure.

34 L. Benini et al.

Acknowledgement

The work described in this publication was supported by the PREDATOR Project
funded by the European Community’s 7th Framework Programme, Contract FP7-ICT-
216008.

References

1. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting to partial
order schedulesA CSP approach to Robust Scheduling. AI Communications 20(3), 163–180
(2007)

2. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained Project
Scheduling. In: Proc. of IJCAI 2005, pp. 181–186 (2005)

3. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSOCs via
decomposition and no-good generation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709,
pp. 107–121. Springer, Heidelberg (2005)

4. Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation, Scheduling and Voltage Scal-
ing on Energy Aware MPSoCs. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS,
vol. 3990, pp. 44–58. Springer, Heidelberg (2006)

5. Benini, L., Lombardi, M., Mantovani, M., Milano, M., Ruggiero, M.: Multi-stage Benders
Decomposition for Optimizing Multicore Architectures. In: Perron, L., Trick, M.A. (eds.)
CPAIOR 2008. LNCS, vol. 5015, pp. 36–50. Springer, Heidelberg (2008)

6. Bockmayr, A., Pisaruk, N.: Detecting infeasibility and generating cuts for MIP using CP.
In: Int. Workshop Integration AI OR Techniques Constraint Programming Combin. Optim.
Problems CP-AI-OR 2003, Montreal, Canada (2003)

7. Grossmann, I.E., Jain, V.: Algorithms for hybrid milp/cp models for a class of optimization
problems. INFORMS Journal on Computing 13, 258–276 (2001)

8. Hooker, J.N., Ottosson, G.: Logic-based benders decomposition. Mathematical Program-
ming 96, 33–60 (2003)

9. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004.
LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004)

10. Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 314–327. Springer, Heidelberg (2005)

11. Sadykov, R., Wolsey, L.A.: Integer Programming and Constraint Programming in Solving
a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates. IN-
FORMS Journal on Computing 18(2), 209–217 (2006)

12. Ibm CELL Broadband Engine software development kit,
http://www.alphaworks.ibm.com/tech/cellsw/download

13. Laborie, P.: Algorithms for propagating resource constraints in AI planning and scheduling:
Existing approaches and new results. Journal of Artificial Intelligence 143, 151–188 (2003)

14. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model for the cell
be architecture. In: SC 2006: Proceedings of the 2006 ACM/IEEE conference on Supercom-
puting, p. 86. ACM Press, New York (2006)

15. Chen, T., Raghavan, R., Dale, J., Iwata, E.: Cell broadband engine architecture and its first
implementation. In: IBM White paper (2005)

16. Chatha, K.S., Vemuri, R.: Hardware-software partitioning and pipelined scheduling of trans-
formative applications, vol. 10, pp. 193–208 (2002)

17. Fohler, G., Ramamritham, K.: Static scheduling of pipelined periodic tasks in distributed
real-time systems. In: Procs. of the 9th EUROMICRO Workshop on Real-Time Systems -
EUROMICRO-RTS 1997, Toledo, Spain, pp. 128–135. IEEE, Los Alamitos (1997)

http://www.alphaworks.ibm.com/tech/cellsw/download

A Constraint Programming Approach for Allocation and Scheduling 35

18. Bakshi, S., Gajski, D.D.: A scheduling and pipelining algorithm for hardware/software sys-
tems. In: Proceedings of the 10th international symposium on System synthesis - ISSS 1997,
Washington, DC, USA, pp. 113–118. IEEE Computer Society, Los Alamitos (1997)

19. Eichenberger, A., et al.: Optimizing compiler for the cell processor. In: PACT 2005: Pro-
ceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques, Washington, DC, USA, pp. 161–172. IEEE Computer Society, Los Alamitos
(2005)

20. Eichenberger, A.E., et al.: Using advanced compiler technology to exploit the performance
of the cell broadband enginetm architecture. IBM Syst. J. 45(1), 59–84 (2006)

21. Axelsson, J.: Architecture synthesis and partitioning of real-time synthesis: a compari-
son of 3 heuristic search strategies. In: Procs. of the 5th Intern. Workshop on Hard-
ware/Software Codesign (CODES/CASHE 1997), Braunschweig, Germany, pp. 161–166.
IEEE, Los Alamitos (1997)

22. Eles, P., Peng, Z., Kuchcinski, K., Doboli, A.: System level hardware/software partitioning
based on simulated annealing and tabu search. Design Automation for Embedded Systems 2,
5–32 (1997)

23. Kodase, S., Wang, S., Gu, Z., Shin, K.: Improving scalability of task allocation and schedul-
ing in large distributed real-time systems using shared buffers. In: Procs. of the 9th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2003), Toronto,
Canada, pp. 181–188. IEEE, Los Alamitos (2003)

24. Eles, P., Peng, Z., Kuchcinski, K., Doboli, A., Pop, P.: Scheduling of conditional process
graphs for the synthesis of embedded systems, Paris, France, pp. 132–139 (1998)

25. Kuchcinski, K., Szymanek, R.: A constructive algorithm for memory-aware task assign-
ment and scheduling. In: Procs of the Ninth International Symposium on Hardware/Software
Codesign - CODES 2001, Copenhagen, Denmark, pp. 147–152. ACM Press, New York
(2001)

26. Kuchcinski, K.: Embedded system synthesis by timing constraint solving. IEEE Transactions
on CAD 13, 537–551 (1994)

27. Flachs, B., et al.: A streaming processing unit for a cell processor. In: IEEE International
Solid-State Circuits Conference, 2005 (ISSCC 2005). Digest of Technical Papers, pp. 134–
135 (2005)

28. Hofstee, H.: Cell broadband engine architecture from 20,000 feet. In: IBM White paper
(2005)

29. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: Built for
speed. IEEE Micro. 26(3), 10–23 (2006)

30. Maeda, S., Asano, S., Shimada, T., Awazu, K., Tago, H.: A real-time software platform for
the cell processor. IEEE Micro. 25(5), 20–29 (2005)

31. Palazzari, P., Baldini, L., Coli, M.: Synthesis of pipelined systems for the contemporaneous
execution of periodic and aperiodic tasks with hard real-time constraints. In: 18th Interna-
tional Parallel and Distributed Processing Symposium - IPDPS 2004, pp. 121–128 (2004)

32. Pham, D., et al.: The design and implementation of a first-generation cell processor. In: IEEE
International Solid-State Circuits Conference ISSCC 2005, vol. 1, pp. 184–592 (2005)

33. Ohara, M., Inoue, H., Sohda, Y., Komatsu, H., Nakatani, T.: MPI microtask for programming
the Cell Broadband Engine processor. IBM System Journal 45(1) (2006)

34. Zhang, D., Li, Q.J., Rabbah, R., Amarasinghe, S.: A Lightweight Streaming Layer forMul-
ticore Execution. In: Proceedings of Workshop on Design, Architecture and Simulation of
Chip Multi-Processors, dasCMP 2007 (2007)

	A Constraint Programming Approach for Allocation and Scheduling on the CELL Broadband Engine
	Introduction
	The Problem
	Cell BE Hardware Architecture
	The Target Application

	Why CP
	How CP
	Decomposition Based Approach
	Pure CP Model

	Computational Efficiency
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

