
Back to the Complexity of Universal Programs

Alain Colmerauer

Marseilles, France

Abstract. I start with three examples illustrating my contribution to
constraint programming: the problem of cutting a rectangle into different
squares in Prolog III, a complicated constraint for Prolog IV, the opti-
mal narrowing of the sortedness constraint. Then I switch to something
quite different: to machines, in particular to Turing machines. After the
declarative aspect, the basic computational aspect!

The paper provides a framework enabling to define and determine the
complexity of various universal programs U for various machines. The
approach consists of first defining the complexity as the average number
of instructions to be executed by U , when simulating the execution of
one instruction of a program P with input x.

To obtain a complexity that does not depend on P or x, we introduce
the concept of an introspection coefficient expressing the average number
of instructions executed by U , for simulating the execution of one of its
own instructions. We show how to obtain this coefficient by computing
a square matrix whose elements are numbers of executed instructions
when running selected parts of U on selected data. The coefficient then
becomes the greatest eigenvalue of the matrix.

We illustrate the approach using two examples of particularly efficient
universal programs: one for a three-symbol Turing Machine (blank sym-
bol not included) with an introspection coefficient of 3 672.98, the other
for an indirect addressing arithmetic machine with an introspection co-
efficient of 26.27.

1 Preface

Let us review my contribution to constraint programming.

1.1 Around 1985

Around 1985 I was interested by constraints, more precisely by numerical linear
constraints, by Boolean algebra and by list constraints. That’s how Prolog III
was born [2]. A good example of a program consists in cutting a rectangle of
unknown size into n different squares also of unknown sizes. For n = 9 the
following result holds:

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 A. Colmerauer

15
18

8 7
4

14

1

109

33
36

28

5
2

9

25

7

16

Here is the program, written in the syntax of Prolog IV. The height of the
rectangle to be cut is assumed to be 1, which is not a restriction:
rectangle(A,C) :- area([V|L],[V|L],C,C) :-

gelin(A,1), gelin(V,0).
distinctSizes(C), area([V|L],Lppp,[B|C],Cpp) :-
area([-1,A,1],L,C,[]). lt(V,0),

square(B,L,Lp),
distinctSizes([]). area(Lp,Lpp,C,Cp),
distinctSizes([B|C]) :- area([V+B,B|Lpp],Lppp,Cp,Cpp).

gtlin(B,0),
distinctSizes(C), square(B,[H,0,Hp|L],Lp) :-
out(B,C). gtlin(B,H),

square(B,[H+Hp|L],Lp).
out(B,[]). square(B,[H,V|L],[-B+V|L]) :-
out(B,[Bp|C]) :- B = H.

dif(B,Bp), square(B,[H|L],[-B,H-B|L]) :-
out(B,C). ltlin(B,H).

The predicates gelin(x, y), gtlin(x, y), ltlin(x, y) correspond to the linear con-
straints x ≥ y, x > y, x < y and dif(x, y) to the constraint x �= y. We leave the
program uncommented. It is sufficient to ask the query

>> size(C)=9, rectangle(A,C).

where size(x) = y means size of the list x is y, to obtain

A = 33/32,
C = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32];
A = 69/61,
C = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61];

A = 33/32,
C = [9/16,15/32,7/32,1/4,7/16,1/8,5/16,1/32,9/32];
A = 69/61,
C = [36/61,33/61,5/61,28/61,25/61,9/61,2/61,7/61,16/61];

Back to the Complexity of Universal Programs 3

A = 33/32,
C = [9/32,5/16,7/16,1/4,1/32,7/32,1/8,9/16,15/32];
A = 69/61,
C = [28/61,16/61,25/61,7/61,9/61,5/61,2/61,36/61,33/61];

A = 69/61,
C = [25/61,16/61,28/61,9/61,7/61,2/61,5/61,36/61,33/61];
A = 33/32,
C = [7/16,5/16,9/32,1/32,1/4,1/8,7/32,9/16,15/32].

1.2 Around 1990

Prolog IV was finished in 1995 [3]. In addition to the constraints of Prolog III,
it includes numerical non-linear constraints which are approximately solved by
narrowing of intervals. It also includes the existential quantifier. Here, on the left
column, is a constraint in the usual notation and the value of the free variable
y. The formula (x > y) denotes the Boolean value true ou false. On the right
column you find the corresponding query and the answer in Prolog IV.

∃u∃v∃w∃x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y ≤ 5
∧ v1 = cos v4

∧ size(u) = 3
∧ size(v) = 10
∧ u • v = v • w
∧ y ≥ 2 + (3 × x)
∧ x = (74>�100×v1�)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

y = 5

>> U ex V ex W ex X ex
le(Y,5),
V:1 = cos(V:4),
size(U) = 3,
size(V) = 10,
U o V = V o W,
ge(Y,2.+.(3.*.X)),
X = bgt(74,floor(100.*.V:1)).

Y = 5.

1.3 Around 2000

Having been interested by the narrowing of intervals, I focused on a particular
instance, the sortedness constraint:

sort(x1, . . . , xn, xn+1, . . . , x2n) ≡

⎧⎪⎪⎨
⎪⎪⎩

(xn+1, . . . , x2n)
is equal to
(x1, . . . , xn) sorted
in non-decreasing order.

With Noëlle Bleuzen [1], a colleague from the department of Mathematics, we de-
veloped an algorithm of complexity O(n log n) to compute the smallest intervals
a′

i from the intervals ai such that:

sort(x1, . . . , x2n) ∧ x1 ∈ a1 ∧ · · · ∧ x2n ∈ a2n

≡
sort(x1, . . . , x2n) ∧ x1 ∈ a′

1 ∧ · · · ∧ x2n ∈ a′
2n

4 A. Colmerauer

For 2n = 22 for example, we obtain:

=⇒

and for 2n = 100:

⇒

2 Introduction

In parallel, around 2000, I was teaching an introductory course designed to ini-
tiate undergraduate students to low level programming. My approach was to
start teaching them how to program Turing machines. The main exercise in the
course consisted of completing and testing a universal program whose architec-
ture I provided. The results were disappointing, the universal program being too
slow for executing sizeable programs. Among others it was impossible to run
the machine on its own code, in the sense explained in Section 4. In subsequent
years, I succeeded in designing considerably more efficient universal programs,
even though they became increasingly more complex. These improved programs

Back to the Complexity of Universal Programs 5

were capable to execute their own code in a reasonable time. To simulate the
execution of one of its own instructions, the last program executes an average
number of 3 672.98 instructions. That is the introspection coefficient, a key con-
cept of this paper.

The rest of this paper presents this result in a more general context concerning
machines other than Turing machines. Section 2 is this introduction. In Section 3,
we formally define the concepts of programmed machine, machine, program,
transition and instruction. We illustrate this on a Turing machine, and on an
indirect addressing arithmetic machine. In Section 4, we introduce the universal
pair, program and coding function. We mention the theorem on how to check the
existence of its introspection coefficients and how to compute its value. We omit
the proof and refer the reader to [4]. Sections 5 and 6 and also Appendix are
devoted to two specially efficient universal programs: the first one, as already
mentioned, for a Turing machine, the second one for an indirect addressing
arithmetic machine. In Section 7 we conclude about a lack of restriction of our
definition of the introspection coefficient.

We are not aware of other work on the design of efficient universal programs.
Let us however mention the well known contributions of M. Minsky [5] and Y.
Rogozin [7] in the design of universal programs for Turing machines with very
small numbers of states. Surprisingly, they seem particularly inefficient in terms
of the number of executed instructions.

3 Machines

3.1 Basic Definitions

Definition 1. A machine M is a 5-tuple (Σ, C, α, ω, I), where
Σ, the alphabet of M , is a finite not empty set;
C, is a set, generally infinite, of configurations; the ordered pairs (c, c′) of ele-

ments of C are called transitions;
α, the input function, maps each element x of Σ� to a configuration α(x);
ω, the ouput function, maps each configuration c to an element ω(c) of Σ�;
I, is a countable set of instructions, an intruction being a set of compatibles

transitions, i.e., whose first components are all distinct.

Definition 2. A program P for a machine M is a finite subset of the instruc-
tions set I of M , such that the transitions of

⋃
P are compatible.1

3.2 How a Machine Operates

Let M = (Σ, C, α, ω, I) be a machine and P a program for M . The operation of
the machine (M, P) is explained by the diagram:

x y
↓ ↑
c0 −→ c1 −→ c2 · · · cn−1 −→ cn

1 P being a set of sets
S

P denotes the set of elements which are member of at least
one element of P and thus the set of transitions involved in program P .

6 A. Colmerauer

and more precisely by the definition of the following functions2, where x is a
word on Σ:

orbitM (P, x)=
{

the longest sequence (c0, c1) (c1, c2) (c2, c3) . . . with
c0 = α(x) and each (ci, ci+1) an element of

⋃
P .

outM (P, x) =

{
↗, if orbit(P, x) is infinite,

ω(cn), if orbit(P, x) ends with (cn−1, cn)

.

3.3 Example: Turing Machines

Informally these are classical Turing machines with a bi-infinite tape and in-
structions written [qi, abd, qj], with d = L or d = R, meaning : if the machine
is in state qi and the symbol read by the read-write head is a, the machine re-
places a by b, then moves its head one symbol to the left or the right, depending
whether d = L or d = R, and change its state to qj .

In fact we consider a variant of the Turing machines described above with
an internal moving head direction whose initial value is equal to left-right. The
instructions are written [qi, abs, qj], with s = + or s = −, meaning : if the
machine is in state qi and the symbol read by the read-write head is a, the
machine replaces a by b, keeps its internal direction or changes it depending
whether s = + or s = −, moves its read-write head one symbol in the new
internal direction, and changes its states to qj .

Initially the entire tape is filled with blanks except for a finite portion which
contains the initial input, the read-write head being positioned on the symbol
which precedes this input. When there are no more instructions to be executed
the machine output the longest word which contains no blank symbols and which
starts just after the position of the read-write head.

Formally one first introduces an infinite countable set {q1, q2, . . .} of states
and a special symbol u, the blank. For any alphabet word x on an alphabet of
the form Σ ∪ {u}, one writes ·x for x, with all its beginning blanks erased, and
x· for x, with all its ending blanks erased.

Definition 3. A Turing machine is a 5-tuple of the form (Σ, C, α, ω, I) where,

– Σ is a finite set not having u as an element,
– C is the set of 5-tuples of the form [d, qi, ·x, a, y·], with d ∈ {L, R}, qi being

a state, x, y taken from Σ�
u and a taken from Σu, where Σu = Σ ∪ {u},

– α(x) = [R, q1, ε, u, x], for all x ∈ Σ�,
– ω([d, qi, ·x, a, y·]) is the longest element of Σ� beginning y·,
– I is the set of instruction denoted and defined, for all states qi, qj, all ele-

ments a, b of Σu and all s ∈ {+,−}, by

[qi, abs, qj]
def
=

{([d, qi, ·xc, a, y·], [L, qj , ·x, c, by·]) | (d, s) ∈ E1 and (x, c, y) ∈ F}}∪
{([d, qi, ·x, a, cy·], [R, qj , ·xb, c, y·]) | (d, s) ∈ E2 and (x, c, y) ∈ F},
with E1 = {(L, +), (R,−)}, E2 = {(R, +), (L,−)} and F = Σ�

u × Σu × Σ�
u.

2 Index M is omitted when there is no ambiguity.

Back to the Complexity of Universal Programs 7

3.4 Example: Indirect Addressing Arithmetic Machine

This is a machine with an infinity of registers r0, r1, r2, Each register con-
tains an unbounded natural integer. Each instruction starts with a number and
the machine always executes the instruction whose number is contained in r0

and, except in one case, increases r0 by 1. There are five types of instructions:
assigning a constant to a register, addition and subtraction of a register to/from
another, two types of indirect assignment of a register to another and zero-testing
of a register content.

More precisely and in accordance with our definition of a machine:

Definition 4. An indirect addressing arithmetic machine is a 5-tuple of the
form (Σ, C, α, ω, I), where,

– Σ = {c1, . . . , cm}, where the ci are any symbols,
– C is the set of infinite sequences r = (r0, r1, r2, . . .) of natural integers,
– α(a1 . . . an) = (0, 25, 1, . . . , 1, r24+1, . . . , r24+n, 0, 0, . . .), with r24+i equal to

1, . . . , m depending whether ai equals c1, . . . , cm,
– ω(r0, r1, . . .) = a1 . . . an, with ai equal to c1, . . . , cm depending whether rr1+i

equals 1, . . . , m, and n being is the greatest integer such that rr1 , . . . , rr1+n

are elements of {1, . . . , m},
– I is the set of instructions denoted and defined, for all natural integers i, j, k,

by:

[i, cst , j, k]
def
= {(r, s) ∈ C2 | r0 = i,s := r, sj := k, s0 := s0 + 1},

[i, plus , j, k]
def
= {(r, s) ∈ C2 | r0 = i,s := r, sj := sj +sk, s0 := s0 + 1},

[i, sub, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, sj := sj÷sk, s0 := s0 + 1},

[i, from, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, sj := ssk

, s0 := s0 + 1},
[i, to, j, k]

def
= {(r, t) ∈ C2 | r0 = i, s := r, srj = rk, s0 := s0 + 1},

[i, ifze, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, s0 :=

[
sk + 1, if sj = 0
s0 + 1, if sj �= 0

]
}.

Here sj ÷ sj stands for max{0, sj−sk}.

4 Universal Program and Universal Coding

4.1 Universal Pair

Let M = (Σ, C, α, ω, I) be a machine and let us code each program P for M by
a word code(P) on Σ.

Definition 5. The pair (U, code), the program U and the coding function code,
are said to be universal for M , if, for all programs P of M and for all x ∈ Σ�,

out(U, code(P) · x) = out(P, x). (1)

8 A. Colmerauer

If in the above formula we replace P by U , and x by code(U)n · x we obtain:

out(U, code(U)n+1 · x) = out(U, code(U)n · x)

and thus:

Property 1. If (U, code) is a universal pair, then for all n ≥ 0 and x ∈ Σ�,

out(U, code(U)n · x) = out(U, x). (2)

4.2 Introspection Coefficient

Let (U, code) be a universal pair for the machine M = (Σ, C, α, ω, I). The com-
plexity of this pair is the average number of transitions performed by U for
producing the same effect as a transition of the program P occurring in the
input of U . More precisely:

Definition 6. Given a program P for M and a word x on Σ with orbit(P, x) �=
↗, the complexity of (U, code) is the real number defined by

|orbit(U, code(P) · x)|
|orbit(P, x)| .

The disadvantage of this definition is that the complexity depends on the input of
U . For an intrinsic complexity, independently of the input of U , we introduce the
introspection coefficient of (U, code) whose definition is justified by Property 2:

Definition 7. If for all x ∈ Σ�, with orbit(U, x) �= ↗, the real number

lim
n→∞

|orbit(U, code(U)n+1 · x)|
|orbit(U, code(U)n · x)|

exists and does not depend on x, then this real number is the introspection
coefficient of the universal pair (U, code).

4.3 Existence and Value of the Introspection Coefficient

Let (U, code) be a universal pair for a machine M = (Σ, C, α, ω, I). Given a word
x on Σ, we assume that the computation of the word y by y = out(U, x) can be
synchronized with the computation of the same word y by y = out(U, code(U) ·
x), according to the following diagram:

x y
↓ ↑

code(U)·x • 1−−−−→• 2−−−−→• 2−−−−→• 1−−−−→• 3−−−−→• y
↓ ↓ ↓ ↓ ↓ ↓ ↘ ↑
• 1→ 1→ 4→• 3→ 1→ • 2→ 3→ 3→• 2→ 3→ 3→• 3→ 1→ • 3→ 3→ 1→ 5→ 5→ •

Back to the Complexity of Universal Programs 9

More precisely we make the hypothesis:

Hypothesis 1. There exists n,nb,A,B such that, for every pair of traces of the
form

(orbit(U, code(U)·x, orbit(U, x)))
itself of the form

(s1 · · · sl, r1 · · · rk),
we have

nb(s1) · · ·nb(sl) = B · A(nb(r1)) · · · A(nb(rk)),
with n positive integer, with nb(t) ∈ 1..n for each transition t of U , with A(i) a
finite sequence on 1..n for each i ∈ 1..n, with B a finite sequence on 1..n.

We then introduce the column vector B and the square matrix A:

B =

⎡
⎢⎣
b1

...
bn

⎤
⎥⎦ , bi = number of occurrences of integer i in B,

A =

⎡
⎢⎣
a11 · · · ann

...
...

a1n· · · ann

⎤
⎥⎦ , aij = number of occurrences of integer i in A(j).

(3)

and we conclude by the theorem, where ||X || denotes the sum of the components
of X :

Theorem 1. Suppose the matrix A admits a real eigenvalue λ, whose multiplic-
ity is equal to 1, which is strictly greater to 1 and to the greatest modulus λ′ of
the other eigenvalue.

If α is a real number with λ′ < α < λ, if X0 = B and Xn+1 = 1
αAXn, then,

when n → ∞, exactly one of the two properties holds:
1. ||Xn|| → 0,
2. ||Xn|| → ∞. In this case λ is the inspection coefficient.

Anyone interested in more details may consult [4].

5 Universal Pair for the Turing Machine

5.1 The Universal Pair

We now present a particularly efficient universal pair (U, code) for the Turing
machine M with alphabet Σ = {o, i, z}. The program U has 184 instructions
and 54 states and |code(U)| = 1552. Its listing and its graph can be seen in the
annexes A and B.

5.2 Coding Function of the Universal Pair

Let P be a program for M . We take code(P) as the word on {o, i, z}
code(P) = zI4nz . . .zIk+1zIkzIk−1z . . .zI1zoi . . . izz.

10 A. Colmerauer

Integer n is the number of states of P and the Ik are the coded instructions. The
size of the shuttle oi . . . iz is equal to the longest size of the Ik minus 5.

In order to assign a position to each coded instruction Ik of [qi, abs, qj], we
introduce the number:

π(i, a) = 4(i − 1) +

⎧⎪⎪⎨
⎪⎪⎩

1, if a = u
2, if a = o
3, if a = i
4, if a = z

.

For all a ∈ Σu and i ∈ 1..n,

Iπ(i,a) =

{
[qi, abs, qj], if there exists b, s, j with [qi, abs, qj] ∈ P ,

oi, otherwise,

– with [qi, a, b, s, qj] =

{
iam . . . a2o, if π(i, a) < 1

2 (π(j, u) + π(j, z)),

oa2 . . . ami, if π(i, a) > 1
2 (π(j, u) + π(j, z)),

,

– with a2a3 equal to io, oi, ii, depending whether b equals u, o, i, z,
– with a4 = o or a4 = i depending whether s = + or s = − and
– with iam . . . a5 a binary number (o for 0 and i for 1) whose value is equal

to |π(j) − π(i, a)| + 3
2 .

5.3 Operation of the Universal Pair

As already mentioned, the program U has 54 states, q1, . . . , q54, and 184 instruc-
tions. These instructions are divided in 10 modules A, B, C, . . . , J organized as
follows:

I
N
S
T
R
U
C
T
I
O
N

L
O
C
A
L
I
Z
A
T
I
O
N

I
N
S
T
R
U
C
T
I
O
N

E
X
E
C
U
T
I
O
N

0 1

2

3

5
4

6

7

8 9A Start

B Shuttle
direction
updating

C Shuttle
counter

initialization

D Writing,
moving,
reading

E Shuttle
counter
updating

F Moving
shuttle

to next z

G Shuttle
counter

decreasing

H Shuttle
reversing

I Instruc-
tion orien
tation test

J End

Back to the Complexity of Universal Programs 11

The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 denote respectively the states q1, q24, q35,
q43, q49, q15, q13, q7, q10, q23. They are called X0, X2, . . . , X9 in the program U
in the annex A. In the annex B, we also give a graph whose vertices are the states
and the edges the instructions of U : each instruction [qi, abs, qj] is represented
by an arrow, labeled abs, going from qi to qj . Note that the vertices a, b, c and
7 have two occurrences which must be merged.

Initial configurations. Initially the machines executing P is in the configuration

. . . uu

↑
R q1 P

x uu . . .

and the machine executing U is in the correponding initial configuration
code(P)︷ ︸︸ ︷

. . .uu

↑
R q1 P

|zI4nz . . . zIk+1zIkzIk−1z . . . zI1zoi . . . izz| x |uu . . .︸ ︷︷ ︸
shuttle

While the machine executing P performs no transitions, the machine executing
U performs a sequence of initial transitions, always the same, involving the
instructions of module A and some instructions already there in the modules
I, H, G, F . Then the machines executing P and U end up respectively in the
following current configurations with k = 1:

Current configurations. While the machine executing P is in the current
configuration

v a

↑
d qi P

w

the machine executing U is in the corresponding current configuration

standard shuttle︷ ︸︸ ︷
v |uzzI4nz . . .zIk+1z

↑
L q24 U

Ikzd′u . . .uzIk−1z . . . zI1zu| w
(4)

or
reversed shuttle︷ ︸︸ ︷

v |uzzI4nz · · ·zIk+1zu . . . ud′z
↑
R q22 U

IkzIk−1z · · · zI1zu| w
(5)

12 A. Colmerauer

depending whether Ik, with k = π(i, a), is in the standard form iam . . . a2o or
in the reversed form iam . . . a2o. The read-write points to a3 or to the z which
follows Ik when Ik is the empty instruction oi. Depending whether d is equal to
L or R, the symbol d′ is equal to u or o, if Ik is standard, and to o or u, if Ik is
reversed.

While the current configuration of P is not final, P performs one transition for
reaching the next current configuration and U performs a sequence of transitions
for reaching the next corresponding current configuration. More precisely, using
the information contained in Ik, the program U

– Updates the internal direction contained in the shuttle (module B),
– Transfers in the shuttle the binary number serving as basis for computing the

number of instructions to be jumped toward the left or the right, depending
on whether the shuttle is standard or reversed (module C),

– Simulates the writing of a symbol, the read-write head move, and then the
reading of a new symbol (module D),

– Taking into account the read symbol, updates the binary number contained
in the shuttle in order to obtain the right number of instructions to be
jumped by the shuttle for reaching the next instruction to be executed
(module E),

– Moves the shuttle and eventually reverses it, for correctly positioning it
alongside the next instruction to be executed (modules F, G, H, I).

When the current configuration of P becomes final, the corresponding current
configuration of U is of the form (5) with Ik equal to the empty instruction
oi. Then U performs a sequence of transitions (module J) for reaching the
final corresponding configurations. The machines executing P and U end up
respectively in the following final configurations:

Final configurations. While the machine executing P terminates in the final
configuration

b

↑
d qm P

y u

the machine executing U terminates in the corresponding final configuration

uzzI4nz · · · zIk+1zu . . .ud′zIkzIk−1z · · ·zI1zu

↑
R q23 U

y u

with Ik = oi, k = π(m, b) and d′ equal to o or u, depending whether d equals L
or R.

Back to the Complexity of Universal Programs 13

5.4 Introspection Coefficient of Our Pair for the Turing Machine

First we have chosen a reversing program P such that, for all n ≥, one gets
out(P, a1a2 . . . an) = an . . . a2a1, with the ai taken from {o, i, z}. The program
P has 32 instructions and 9 states. We have |code(P)| = 265 and |code(U)| =
1552. We obtain the following results for the pair (U, code):

x |orbit(P, x)| |orbit(U,

code(P)·x)|
|orbit(U,

code(U)·code(P)·x)|
|orbit(U, code(U)·code(P)·x)|

|orbit(U, code(P)·x)|
ε 2 5 927 22 974 203 3 876.19
o 6 13 335 51 436 123 3 857.23
oi 12 23 095 88 887 191 3 848.76
oiz 20 35 377 136 067 693 3 846.22
oizo 30 49 663 190 667 285 3 839.22

It can be seen that we have succeeded in running the universal program U on
its own code and thus to compute a first approximation of the introspection
coefficient.

Second, after having computed the column vector B of size 184×4 = 736 and
the matrix A of size 736, using Theorem 1, we have verified that U admits an
introspection coefficient and computed its value: for all words x on Σ such that
orbit(P, x) �= ↗,

lim
n→∞

|orbit(U, code1(U)n+1 ·x)|
|orbit(U, code(U)n ·x)| = 3 672.98

Anyone interested in more details may consult [4]. There, it is also proven that
a more classical Turing machine, with 361 instructions and 106 states, has the
same introspection coefficient.

6 Universal Pair for the Indirect Addressing Arithmetic
Machine

6.1 The Universal Pair

It is interesting to compare the complexities of our universal program for a Turing
machine with the complexity of a universal program for the indirect addressing
arithmetic machine with same alphabet Σ = {c1, c2, c3}, with c1 = o, c2 = i
and c3 = z. We have written such a universal program U using 103 instructions
and with |code(U)| = 1042. It can be seen in annex C.

6.2 Operation of the Universal Pair

The universal pair (U, code) for arithmetic machine with indirect addressing
operates roughly as following:

14 A. Colmerauer

Current configuration

r0 r1 r2

0 3 2

Corresponding configuration

r0 r1 r2

50 code(P) 0 3 2

Execution of one instruc-
tion of

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, plus , 2, 1],
[1, cst , 11, 1],
[2, from , 5, 2],
[3, ifze, 5, 8],
[4, sub, 5, 11],
[5, to, 2, 5],
[6, plus , 2, 11],
[7, cst , 0, 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Execution of several correspond-
ing instruction of

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, cst , 8, 0],
[1, cst , 10, 2],
[2, cst , 11, 11],
. . .
[99, cst , 0, 49],
[100, plus, 9, 1],
[101, from, 9, 9],
[102, plus, 1, 9]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Next configuration

r0 r1 r2

1 3 5

Corresponding configuration

r0 r1 r2

50 code(P) 1 3 5

6.3 Introspection Coefficient of Our Pair for the Indirect
Addressing Machine

On particular examples we obtain the following results:

x |orbit(P, x)| |orbit(U,

code(P)·x)|
|orbit(U,

code(U)·code(P)·x)|
|orbit(U, code(U)·code(P)·x)|

|orbit(U, code(P)·x)|
ε 12 2 372 72 110 30.40
o 16 2 473 74 758 30.23
oi 31 2 860 84 916 29.69
oiz 35 2 961 87 564 29.57
oizo 50 3 348 97 722 29.19

where P is a reversing program of 21 instructions, with |code(P)| = 216, such
that, for all n ≥ 0 one obtains out(P, a1a2 . . . an) = an . . . a2a1, with the ai

taken from {o, i, z}. The introspection coefficient obtained is:

lim
n→∞

|orbit(U, code(U)n+1 ·x)|
|orbit(U, code(U)n · x)| = 26.27

Anyone interested in more details may consult [4].

7 Conclusion

Unless one “cheats”, it is difficult to improve the introspection coefficient of
our universal Turing machine which took us a considerable effort to develop.

Back to the Complexity of Universal Programs 15

Suppose, which is the case, that we have at our disposal a first universal pair
(U, code) for a Turing machine.

A first way of cheating consists of constructing the pair (U, code ′) from the
universal pair (U, code), with

code ′(P) =
{

ε, if P = U ,
code(P), if P �= U .

Then we have
|orbit(U, code′(Un+1·x)|
|orbit(U, code′(U)n·x)| = |orbit(U, x)|

|orbit(U, x)| = 1

and (U, code ′) is a universal pair with an introspection coefficient equal to 1.
There is a second more sophisticated way of cheating, without modifying

the coding function code. Starting from the universal program U we construct a
program U ′, which, after having erased as many times as possible a given word z
occurring as prefix of the input, behaves as U on the remaining input. According
to the recursion theorem [6,8], it is possible to take z equal to code(U ′) and thus
to obtain a universal program U ′ such that, for all y ∈ Σ� having not code(U)′

as prefix,
orbit(U ′, code(U ′)n · y) = nk1 + k2(y),

where k1 and k2(y) are positive integers, with k1 being independent of y. Then
we have

|orbit(U ′, code(U ′)n+1·y)|
|orbit(U ′, code(U ′)n·y)| = |orbit(U, x)|+(n+1)k1+k2(y)

|orbit(U, x)|+nk1+k2(y) =

1 + k1
|orbit(U, x)|+k2(y)+nk1

.

By letting n tend toward infinity we obtain an introspection coefficient equal to
1 for the pair (U ′, code).

Unfortunately our introspection coefficient definition, page 8, does not disal-
low these two kinds of cheating. What one really would like to prevent is that
the function code or the program U “behaves differently” on the program P ,
depending whether P is or is not equal to U . It is an open problem to express
this restriction in the definition of the introspection coefficient.

Finally we would like to mention that we tested our universal programs with a
package written in maple 8. In each case this package was also used to calculate
and manipulate the matrix A and the vectors B. Notably it was used to compute
the eigenvalues of A to obtain the introspection coefficient.

References

1. Bleuzen, N., Colmerauer, A.: Optimal Narrowing of a Block of Sortings in Optimal
time. Constaints 5(1-2), 85–118 (2000), http://alain.colmerauer@free.fr

2. Colmerauer, A.: An Introduction to Prolog III. Communications of the ACM 33(7),
68–90 (1990), http://alain.colmerauer@free.fr

http://alain.colmerauer@free.fr
http://alain.colmerauer@free.fr

16 A. Colmerauer

3. Colmerauer, A.: Prolog IV (1995), http://alain.colmerauer@free.fr
4. Colmerauer, A.: On the complexity of universal programs. In: Machine, Computa-

tions and Universality (Saint-Petersburg 2004). LNCS, pp. 18–35 (2005),
http://alain.colmerauer@free.fr

5. Minsky, M.: shape Computations: Finite and Infinite Machines. Prentice-Hall, En-
glewood Cliffs (1967)

6. Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-
Hill, New York (1967); fifth printing. MIT Press (2002)

7. Rogozin, Y.: Small universal Turing machines. Theoretical Computer Science 168(2)
(November 1996)

8. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company
(1997)

http://alain.colmerauer@free.fr
http://alain.colmerauer@free.fr

Back to the Complexity of Universal Programs 17

Appendix

A Annex: Universal Turing Program

A BEGINNING
[X0,uz+,A1], [X0,oo+,A1], [X0,ii+,A1], [X0,zu-,X7],

[A1,oo+,A1], [A1,ii+,A1], [A1,zz+,X0],
[X7,zz+,X8],

B INSTRUCTION TAIL COPYING
[X1,oo+,B1], [X1,ii+,B1],
[B1,oo+,B5], [B1,iu-,B2],
[B2,oo+,B2], [B2,ii+,B2], [B2,zz+,B3],
[B3,oi-,B4i], [B3,io-,B4i],

[B4o,uo+,B5], [B4o,oo+,B4o], [B4o,ii+,B4o], [B4o,zz+,B4o],
[B4i,ui+,B5], [B4i,oo+,B4i], [B4i,ii+,B4i], [B4i,zz+,B4i],
[B5,uu-,B6], [B5,ou-,B4o], [B5,iu-,B4i], [B5,zz-,B7],

[B6,oo+,B4o], [B6,ii+,B4i],
Replacement of the remaining u’s by o’s
[B7,uo+,B9], [B7,oo+,B7], [B7,ii+,B7], [B7,zz+,B7],
[B9,uo+,B9], [B9,oo+,X2], [B9,zz-,B10],

[B10,oo+,B10], [B10,ii+,B10], [B10,zz+,B9],

C INSTRUCTION HEAD COPYING
Creating the symbol to be written

[X2,oo+,C2], [X2,iu-,C1],
[C1,ui+,C2], [C1,oi+,C1], [C1,io+,C1], [C1,zu-,C1],

[C2,oo-,C3o], [C2,ii-,C3i],
[C3o,uo+,C4], [C3o,oo+,C3o], [C3o,ii+,C3o], [C3o,zu+,C4],
[C3i,uz+,C4], [C3i,oo+,C3i], [C3i,ii+,C3i], [C3i,zi+,C4],
Taking in account the direction

[C4,oi-,C5], [C4,ii-,X3],
[C5,uu+,C6], [C5,oo+,C6], [C5,ii+,C6], [C5,zz+,C6],

[C6,oo-,X3],

D WRITING, MOVING AND READING
Writing and reading
[X3,uu-,D1u], [X3,ou-,D1o], [X3,iu-,D1i], [X3,zu-,D1z],
[D0,uu-,D1z], [D0,ou-,D1i], [D0,iu-,D1o], [D0,zu-,D1u],
[D1u,uu-,X4], [D1u,oo+,D1u], [D1u,ii+,D1u], [D1u,zz+,D1u],
[D1o,uo-,X4], [D1o,oo+,D1o], [D1o,ii+,D1o], [D1o,zz+,D1o],
[D1i,ui-,X4], [D1i,oo+,D1i], [D1i,ii+,D1i], [D1i,zz+,D1i],
[D1z,uz-,X4], [D1z,oo+,D1z], [D1z,ii+,D1z], [D1z,zz+,D1z],
Moving

[X4,zu+,D2z],
[D2u,ou+,D2o], [D2u,iu+,D2i],

[D2o,uo+,D2u], [D2o,oo+,D2o], [D2o,io+,D2i], [D2o,zo+,D2z],
[D2i,ui+,D2u], [D2i,oi+,D2o], [D2i,ii+,D2i], [D2i,zi+,D2z],
[D2z,uz+,X3], [D2z,oz+,D2o], [D2z,iz+,D2i], [D2z,zz+,D2zz],
[D2zz,uz+,D0], [D2zz,oz+,D2o],

18 A. Colmerauer

E SHUTTLE UPDATING
Beginning of the updating

[X4,oo-,E1b], [X4,io-,E1a],
[E1a,uz-,E2a], [E1a,oz-,E2b], [E1a,iz-,X6], [E1a,zz-,X5],
[E1b,uz+,X5], [E1b,oz+,X6], [E1b,iz+,E2b], [E1b,zz+,E2a],
End of the updating

[E2a,oo+,E2b], [E2a,iu+,E2b],
[E2b,oo+,E4], [E2b,ii+,E4],
[E4,oi+,E4], [E4,io-,E5], [E4,zz-,X7],

[E5,uu+,E5], [E5,oo+,E5], [E5,ii+,E5], [E5,zz-,X6],

F SUTTLE MOVING TO NEXT z
[X5,uu+,X5], [X5,oo+,X5], [X5,ii+,X5], [X5,zz-,F1],
[F1,uz+,F2u], [F1,oz+,F2o],
[F2u,uu+,F2u], [F2u,ou+,F2o], [F2u,iu+,F2i], [F2u,zu+,F3],
[F2o,uo+,F2u], [F2o,oo+,F2o], [F2o,io+,F2i], [F2o,zo+,F3],
[F2i,ui+,F2u], [F2i,oi+,F2o], [F2i,ii+,F2i], [F2i,zi+,F3],

[F3,oz-,F4o], [F3,iz-,F4i], [F3,zz-,X6],
[F4o,uu+,F4o], [F4o,oo+,F4o], [F4o,ii+,F4o], [F4o,zo-,F1],
[F4i,uu+,F4i], [F4i,oo+,F4i], [F4i,ii+,F4i], [F4i,zi-,F1],

G SHUTTLE DECREASING
[X6,uu+,G1], [X6,oo+,G1], [X6,iu+,G1],
[G1,uu-,X7], [G1,oi+,G1], [G1,io+,X5], [G1,zz-,X8],

H SHUTTLE REVERSING AFTER BLANK SYMBOLS INTRODUCTION
[X7,uu-,E2a], [X7,ou-,E2b], [X7,iu+,X7],
[E2a,uu+,E2a], [E2a,zz-,I1],
[E2b,uu+,E2b], [E2b,zz-,I2],
[I1,uo-,X8],
[I2,ui-,X8],

I INSTRUCTION ORIENTATION TEST AFTER BLANK SYMBOLS INTRODUCTION
[X8,ui+,X8], [X8,oo+,X8], [X8,iu+,X8], [X8,zz+,I1],

[I1,oo+,I2], [I1,ii-,I2],
[I2,oo+,X1], [I2,ii+,X1], [I2,zz+,X5],

J END OF THE PROGRAM
[X1,zz+,X9],

[X9,oo+,X9], [X9,ii+,X9], [X9,zz+,X9]];

Back to the Complexity of Universal Programs 19

B Annex: Graph of the Universal Turing Program

0 7

u
z
+

o
o
+

i
i
+

zu−

oo+

ii+

z
z
+

zz+
8 c d

ui+

oo+
iu+

zz+ oo+

ii−

oo+

ii+
zz+

7

a b

c d

uu− ou−

iu+

uu+

zz−

uu+

zz−

uo− ui−

6

u
u
+

o
o
+

i
u
+

uu−
oi+

io+

zz−

5
u
u
+

o
o
+

i
i
+

zz−

uz+ oz+
uu+

ou+

iu+zu+

oo+uo+

io+

zo+

ui+

oi+

ii+zi+

oz− iz−

zz−

zo−

uu+

oo+
ii+

zi−

uu+

oo+
ii+

4ab

oo−

io−
uz−oz−

iz−

zz−uz+

oz+

iz+ zz+

oo+

iu+

oo+

ii+

o
i
+

io−

zz−

u
u
+

o
o
+

i
i
+

zz−

9
zz+ o

o
+

i
i
+

z
z
+

1

ii+oo+

iu−

oo+

o
o
+

i
i
+

z
z
+

zz+

oi−io−
o
o
+

i
i
+

z
z
+

ui+

o
o
+

i
i
+

z
z
+

uo+

iu−

ou−

uu−

zz−

iu+

ou+

o
o
+

i
i
+

z
z
+

uo+

u
o
+

zz−

oo+

o
o
+

i
i
+zz+

2

oo+

iu−

ui+

o
i
+

i
o
+

z
u−

oo− ii−

uo+
o
o
+

i
i
+

zu+

uz+
o
o
+

i
i
+

zi+

oi−

ii− u
u
+

o
o
+

i
i
+

z
z
+

oo−
3

uu− ou− iu− zu−

uu−o
u−

i
u−

zu−uu−

o
o
+

i
i
+

z
z
+

u
o−

o
o
+

i
i
+

z
z
+

u
i−

o
o
+

i
i
+

z
z
+

uz−

o
o
+

i
i
+

z
z
+

zu+

ou+

iu+

uo+

oo+

io+
zo+

ui+
oi+

ii+

zi+
uu+

oz+

iz+

zz+

uz+ oz+

20 A. Colmerauer

C Annex: Universal Indirect Addressing Program

INITIALISAT-
ION OF THE
REGISTERS
[0,cst,8,0],
[1,cst,10,2],
[2,cst,11,11],
[3,cst,12,20],
[4,cst,13,26],
[5,cst,14,33],
[6,cst,15,67],
[7,cst,16,68],
[8,cst,17,70],
[9,cst,18,76],
[10,cst,19,82],
[11,cst,20,88],
[12,cst,21,94],

ENCODING OF
THE EMULATED
PROGRAM
INITIALISAT-
ION OF THE
SOURCE POSIT-
ION R[1] AND
THE BOOLEAN
VALUE c
[13,cst,2,24],
[14,cst,5,1],
[15,cst,0,16],
INCREASING
THE SOURCE
POSITION R[1]
[16,plus,1,9],
CASE STUDY
ACCORDING
TO THE VALUE
a OF R[R[1]]
[17,from,3,1],
[18,to,1,8],
[19,plus,3,11],
[20,from,0,3],
CASE a=1

[21,ifzero,5,24],
[22,cst,5,0],
[23,cst,4,0],
[24,plus,4,4],
[25,plus,4,9],
[26,cst,0,15],
CASE a=2
[27,ifzero,5,30],
[28,cst,5,0],
[29,cst,4,0],
[30,plus,4,4],
[31,plus,4,9],
[32,plus,4,9],
[33,cst,0,15],
CASE a=3
[34,ifzero,5,36],
[35,cst,0,40],
[36,plus,2,9],
[37,sub,4,9],
[38,to,2,4],
[39,cst,5,1],
[40,cst,0,15],
END
[41,to,1,8],
[42,cst,4,1],
[43,plus,4,1],
[44,cst,6,25],
[45,to,4,6],

PROGRAM
EMULATION
SKIP INCREM-
ENTATION OF
THE INSTRUC-
TION COUNTER
[46,cst,0,49],
INCREASING
THE INSTRUC-
TION COUNTER
[47,from,6,1],
[48,plus,6,9],
[49,to,1,6],

COMPUTING THE
POSITION OF
INSTRUCTION
NB ZERO
[50,from,7,1],
[51,cst,6,25],
[52,plus,6,7],
[53,plus,6,7],
[54,plus,6,7],
HALTING TEST
[55,cst,7,0],
[56,plus,7,1],
[57,sub,7,6],
[58,ifzero,7,100],
COMPUTING
a:=R[R[6]]
[59,from,3,6],
COMPUTING
b:=R[R[6]]+R[1]
[60,plus,6,9],
[61,from,4,6],
[62,plus,4,1],
COMPUTING
c:=R[R[4]+2]
[63,plus,6,9],
[64,from,5,6],
CASE STUDY
ACCORDING TO
THE VALUE OF a
[65,cst,6,15],
[66,plus,6,3],
[67,from,0,6],
NO
INSTRUCTION
[68,cst,0,99],
CONSTANT
INSTRUCTION
[69,to,4,5],
[70,cst,0,46],
PLUS
INSTRUCTION
[72,plus,5,1],

[73,from,5,5],
[74,plus,6,5],
[75,to,4,6],
[76,cst,0,46],
MINUS
INSTRUCTION
[77,from,6,4],
[78,plus,5,1],
[79,from,5,5],
[80,sub,6,5],
[81,to,4,6],
[82,cst,0,46],
FROMINDIRECT

INSTRUCTION
[83,plus,5,1],
[84,from,5,5],
[85,plus,5,1],
[86,from,5,5],
[87,to,4,5],
[88,cst,0,46],
TOINDIRECT
INSTRUCTION
[89,from,4,4],
[90,plus,4,1],
[91,plus,5,1],
[92,from,5,5],
[93,to,4,5],
[94,cst,0,46],
IFZERO
INSTRUCTION
[95,from,4,4],
[96,ifzero,4,98],
[97,cst,0,46],
[98,to,1,5],
[99,cst,0,49],
END
[100,plus,9,1],
[101,from,9,9],
[102,plus,1,9].

	Back to the Complexity of Universal Programs
	Preface
	Around 1985
	Around 1990
	Around 2000

	Introduction
	Machines
	Basic Definitions
	How a Machine Operates
	Example: Turing Machines
	Example: Indirect Addressing Arithmetic Machine

	Universal Program and Universal Coding
	Universal Pair
	Introspection Coefficient
	Existence and Value of the Introspection Coefficient

	Universal Pair for the Turing Machine
	The Universal Pair
	Coding Function of the Universal Pair
	Operation of the Universal Pair
	Introspection Coefficient of Our Pair for the Turing Machine

	Universal Pair for the Indirect Addressing Arithmetic Machine
	The Universal Pair
	Operation of the Universal Pair
	Introspection Coefficient of Our Pair for the Indirect Addressing Machine

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

