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Preface

This volume contains the proceedings of the 14th International Conference on
Principles and Practice of Constraint Programming (CP 2008) held in Sydney,
Australia, September 14–18, 2008. The conference was held in conjunction with
the International Conference on Automated Planning and Scheduling (ICAPS
2008) and the International Conference on Knowledge Representation and Rea-
soning (KR 2008). Information about the conference can be found at the web-
site http://www.unimelb.edu.au/cp2008/. Held annually, the CP conference
series is the premier international conference on constraint programming. The
conference focuses on all aspects of computing with constraints. The CP confer-
ence series is organized by the Association for Constraint Programming (ACP).
Information about the conferences in the series can be found on the Web at
http://www.cs.ualberta.ca/~ai/cp/. Information about ACP can be found
at http://www.a4cp.org/.

CP 2008 included two calls for contributions: a call for research papers, de-
scribing novel contributions in the field, and a call for application papers, de-
scribing applications of constraint technology. For the first time authors could
directly submit short papers for consideration by the committee. The research
track received 84 long submissions and 21 short submissions and the application
track received 15 long submissions. Each paper received at least three reviews,
which the authors had the opportunity to see and to react to, before the papers
and their reviews were discussed extensively by the members of the Program
Committee. Application papers were reviewed by a separate Applications Track
Committee. The Research Track Committee and the Application Track Com-
mittee then selected 27 research papers and 6 application papers to be published
as long papers in the proceedings, and an additional 23 research papers to be
published as short papers, including 8 of those submitted as short papers. The
full papers were presented at the conference in two parallel tracks and the short
papers were presented in a poster session.

A subcommittee—consisting ofmyself, LaurentMichel and Michael Trick—se-
lected the paper “A New Framework for Sharp and Efficient Resolution of NCSP
with Manifolds of Solutions” by Alexandre Goldsztejn and Laurent Granvilliers
to receive the ACP best research paper award. The subcommittee also selected
the paper “A Branch and Bound Algorithm for Numerical MAX-CSP” by Jean-
Marie Normand, Alexandre Goldsztejn, Marc Christia, and FrédéricBenhamou to
receive the ACP best student paper award. Finally the Applications Track Pro-
gram Committee selected the paper “Planning and Scheduling the Operation of a
Very Large Oil Pipeline Network” by Arnaldo Moura, Cid de Souza, André Cirè,
and Tony Lopes to receive the ACP best application paper award.

The Program Committee invited Alain Colmeraur, one of the fathers of the
field, to give a guest lecture. A paper describing the lecture is included in the
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proceedings. The Program Committee in collaboration with the ICAPS 2008
Program Committee also invited John Hooker to give a guest lecture to both
conferences simultaneously. The Program Committee in collaboration with the
KR 2008 Program Committee also invited Adnan Darwiche to give a guest lec-
ture to both conferences simultaneously. An additional invited talk was given
by the recipient of the fourth ACP Award for Research Excellence in Constraint
Programming. A presentation of the inaugural ACP Doctoral Research Award
for the best thesis in constraint programming awarded in 2006–2007 was also
made at the conference, and the winner gave a talk on their dissertation. The
Tutorial Chair selected two tutorials to be part of the program: “Current Issues
in Max-SAT” by Javier Larrosa, and “ILOG CP Optimizer Software Tutorial:
An Automatic Search and Modeling Framework for Detailed Scheduling” by
Didier Vidal.

The CP Doctoral program, established in 2003, continued at CP 2008. In the
doctoral program, PhD students are invited to present their work and discuss it
with senior researchers via a mentoring scheme, as well as hear tutorials on career
issues. This year, the doctoral program received 27 submissions and selected 20
of them for financial support. The first two days of the conference were set aside
for satellite workshops, tutorials, and the doctoral program. This year there were
eight workshops tackling active areas of research in constraint programming, one
of them was joint with ICAPS. The complete list of workshops is provided below.
Each workshop printed its own proceedings.

In conclusion, I would like to thank all the people who helped made this con-
ference a great success. Thank you to Toby Walsh the Conference Chair, who had
the huge task of organizing, budgeting, and planning the whole event. Thank you
to Maurice Pagnucco the Local Organizer for the unenviable task of coordinat-
ing the organization of the three collocated conferences CP 2008, ICAPS 2008,
and KR 2008. Thank you to the Program and Conference Chairs of ICAPS 2008
and KR 2008: Jussi Rintanen, Bernhard Nebel, Chris Beck, Eric Hansen, Patrick
Doherty, Gerhard Brewka, and Jerôme Lang; for making the sometimes difficult
task of coordinating decisions straightforward and collaborative. Thank you to
Kostas Stergiou and Roland H.C. Yap, the Doctoral Program Chairs, for orga-
nizing a wonderful program for the doctoral students. Thank you to Jimmy H.M.
Lee, the Workshop and Tutorial Chair, for his dedication in putting together an
excellent workshop and tutorial program. Thank you to Barry O’Sullivan, the
Sponsorship Chair, for tracking down sponsors in the current difficult economic
environment. Many thanks to Sebastian Brand, the Publicity Chair, for adver-
tising widely and rapidly updating material on the conference website. Thank
you to Laurent Michel and Michael Trick for all their hard work in selecting the
best research paper and best student paper. Finally, the most important people
to thank, as Program Chair, are the members of the Research Track and Appli-
cations Track Program Committees without whose tireless work in organizing,
reviewing, and discussing the submissions to the conference, the technical pro-
gram could not exist. The quality of the technical program is the result of their



Preface VII

penetrating reviews and intense discussions. I would like to thank them for all
their (unpaid) hard work!

September 2008 Peter J. Stuckey



Organization

Conference Organization

Conference Chair Toby Walsh, National ICT Australia, Australia
Program Chair Peter J. Stuckey, National ICT Australia and

The University of Melbourne, Australia
Workshop/Tutorial Chair Jimmy H.M. Lee, Chinese University of

Hong Kong, China
Doctoral Program Chairs Kostas Stergiou, University of the Aegean, Greece

Roland H.C. Yap, National University of
Singapore, Singapore

Sponsorship Chair Barry O’Sullivan, 4C, University College Cork,
Ireland

Publicity Chair Sebastian Brand, National ICT Australia,
Australia

Research Track Committee

Slim Abdennadher, Egypt
Pedro Barahona, Portugal
Nicolas Beldiceanu, France
Frédéric Benhamou, France
Christian Bessiere, France
Lucas Bordeaux, UK
David Cohen, UK
Rina Dechter, USA
Yves Deville, Belgium
Alan Frisch, UK
Warwick Harvey, UK
Hiroshi Hosobe, Japan
Zeynep Kiziltan, Italy
Arnaud Lallouet, France
Javier Larrosa, Spain
Jimmy H.M. Lee, China
Michael Maher, Australia

Laurent Michel, USA
Robert Nieuwenhuis, Spain
Gilles Pesant, Canada
Steve Prestwich, Ireland
Francesca Rossi, Italy
Michel Rueher, France
Thomas Schiex, France
Christian Schulte, Sweden
Paul Shaw, France
Barbara Smith, UK
Kostas Stergiou, Greece
Michael Trick, USA
Peter van Beek, Canada
Pascal Van Hentenryck, USA
Roland H.C. Yap, Singapore
Makoto Yokoo, Japan

Applications Track Committee

Andy Chun, China
Vitaly Lagoon, Australia
Michela Milano, Italy

Barry O’Sullivan, Ireland
Helmut Simonis, Ireland
Mark Wallace, Australia



X Organization

Additional Referees

Magnus Ågren
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Back to the Complexity of Universal Programs

Alain Colmerauer

Marseilles, France

Abstract. I start with three examples illustrating my contribution to
constraint programming: the problem of cutting a rectangle into different
squares in Prolog III, a complicated constraint for Prolog IV, the opti-
mal narrowing of the sortedness constraint. Then I switch to something
quite different: to machines, in particular to Turing machines. After the
declarative aspect, the basic computational aspect!

The paper provides a framework enabling to define and determine the
complexity of various universal programs U for various machines. The
approach consists of first defining the complexity as the average number
of instructions to be executed by U , when simulating the execution of
one instruction of a program P with input x.

To obtain a complexity that does not depend on P or x, we introduce
the concept of an introspection coefficient expressing the average number
of instructions executed by U , for simulating the execution of one of its
own instructions. We show how to obtain this coefficient by computing
a square matrix whose elements are numbers of executed instructions
when running selected parts of U on selected data. The coefficient then
becomes the greatest eigenvalue of the matrix.

We illustrate the approach using two examples of particularly efficient
universal programs: one for a three-symbol Turing Machine (blank sym-
bol not included) with an introspection coefficient of 3 672.98, the other
for an indirect addressing arithmetic machine with an introspection co-
efficient of 26.27.

1 Preface

Let us review my contribution to constraint programming.

1.1 Around 1985

Around 1985 I was interested by constraints, more precisely by numerical linear
constraints, by Boolean algebra and by list constraints. That’s how Prolog III
was born [2]. A good example of a program consists in cutting a rectangle of
unknown size into n different squares also of unknown sizes. For n = 9 the
following result holds:

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Here is the program, written in the syntax of Prolog IV. The height of the
rectangle to be cut is assumed to be 1, which is not a restriction:
rectangle(A,C) :- area([V|L],[V|L],C,C) :-

gelin(A,1), gelin(V,0).
distinctSizes(C), area([V|L],Lppp,[B|C],Cpp) :-
area([-1,A,1],L,C,[]). lt(V,0),

square(B,L,Lp),
distinctSizes([]). area(Lp,Lpp,C,Cp),
distinctSizes([B|C]) :- area([V+B,B|Lpp],Lppp,Cp,Cpp).

gtlin(B,0),
distinctSizes(C), square(B,[H,0,Hp|L],Lp) :-
out(B,C). gtlin(B,H),

square(B,[H+Hp|L],Lp).
out(B,[]). square(B,[H,V|L],[-B+V|L]) :-
out(B,[Bp|C]) :- B = H.

dif(B,Bp), square(B,[H|L],[-B,H-B|L]) :-
out(B,C). ltlin(B,H).

The predicates gelin(x, y), gtlin(x, y), ltlin(x, y) correspond to the linear con-
straints x ≥ y, x > y, x < y and dif(x, y) to the constraint x �= y. We leave the
program uncommented. It is sufficient to ask the query

>> size(C)=9, rectangle(A,C).

where size(x) = y means size of the list x is y, to obtain

A = 33/32,
C = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32];
A = 69/61,
C = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61];

A = 33/32,
C = [9/16,15/32,7/32,1/4,7/16,1/8,5/16,1/32,9/32];
A = 69/61,
C = [36/61,33/61,5/61,28/61,25/61,9/61,2/61,7/61,16/61];
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A = 33/32,
C = [9/32,5/16,7/16,1/4,1/32,7/32,1/8,9/16,15/32];
A = 69/61,
C = [28/61,16/61,25/61,7/61,9/61,5/61,2/61,36/61,33/61];

A = 69/61,
C = [25/61,16/61,28/61,9/61,7/61,2/61,5/61,36/61,33/61];
A = 33/32,
C = [7/16,5/16,9/32,1/32,1/4,1/8,7/32,9/16,15/32].

1.2 Around 1990

Prolog IV was finished in 1995 [3]. In addition to the constraints of Prolog III,
it includes numerical non-linear constraints which are approximately solved by
narrowing of intervals. It also includes the existential quantifier. Here, on the left
column, is a constraint in the usual notation and the value of the free variable
y. The formula (x > y) denotes the Boolean value true ou false. On the right
column you find the corresponding query and the answer in Prolog IV.

∃u∃v∃w∃x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y ≤ 5
∧ v1 = cos v4

∧ size(u) = 3
∧ size(v) = 10
∧ u • v = v • w
∧ y ≥ 2 + (3× x)
∧ x = (74>�100×v1�)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
y = 5

>> U ex V ex W ex X ex
le(Y,5),
V:1 = cos(V:4),
size(U) = 3,
size(V) = 10,
U o V = V o W,
ge(Y,2.+.(3.*.X)),
X = bgt(74,floor(100.*.V:1)).

Y = 5.

1.3 Around 2000

Having been interested by the narrowing of intervals, I focused on a particular
instance, the sortedness constraint:

sort(x1, . . . , xn, xn+1, . . . , x2n) ≡

⎧⎪⎪⎨⎪⎪⎩
(xn+1, . . . , x2n)
is equal to
(x1, . . . , xn) sorted
in non-decreasing order.

With Noëlle Bleuzen [1], a colleague from the department of Mathematics, we de-
veloped an algorithm of complexity O(n log n) to compute the smallest intervals
a′i from the intervals ai such that:

sort(x1, . . . , x2n) ∧ x1 ∈ a1 ∧ · · · ∧ x2n ∈ a2n

≡
sort(x1, . . . , x2n) ∧ x1 ∈ a′1 ∧ · · · ∧ x2n ∈ a′2n



4 A. Colmerauer

For 2n = 22 for example, we obtain:

=⇒

and for 2n = 100:

⇒

2 Introduction

In parallel, around 2000, I was teaching an introductory course designed to ini-
tiate undergraduate students to low level programming. My approach was to
start teaching them how to program Turing machines. The main exercise in the
course consisted of completing and testing a universal program whose architec-
ture I provided. The results were disappointing, the universal program being too
slow for executing sizeable programs. Among others it was impossible to run
the machine on its own code, in the sense explained in Section 4. In subsequent
years, I succeeded in designing considerably more efficient universal programs,
even though they became increasingly more complex. These improved programs
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were capable to execute their own code in a reasonable time. To simulate the
execution of one of its own instructions, the last program executes an average
number of 3 672.98 instructions. That is the introspection coefficient, a key con-
cept of this paper.

The rest of this paper presents this result in a more general context concerning
machines other than Turing machines. Section 2 is this introduction. In Section 3,
we formally define the concepts of programmed machine, machine, program,
transition and instruction. We illustrate this on a Turing machine, and on an
indirect addressing arithmetic machine. In Section 4, we introduce the universal
pair, program and coding function. We mention the theorem on how to check the
existence of its introspection coefficients and how to compute its value. We omit
the proof and refer the reader to [4]. Sections 5 and 6 and also Appendix are
devoted to two specially efficient universal programs: the first one, as already
mentioned, for a Turing machine, the second one for an indirect addressing
arithmetic machine. In Section 7 we conclude about a lack of restriction of our
definition of the introspection coefficient.

We are not aware of other work on the design of efficient universal programs.
Let us however mention the well known contributions of M. Minsky [5] and Y.
Rogozin [7] in the design of universal programs for Turing machines with very
small numbers of states. Surprisingly, they seem particularly inefficient in terms
of the number of executed instructions.

3 Machines

3.1 Basic Definitions

Definition 1. A machine M is a 5-tuple (Σ,C, α, ω, I), where
Σ, the alphabet of M , is a finite not empty set;
C, is a set, generally infinite, of configurations; the ordered pairs (c, c′) of ele-

ments of C are called transitions;
α, the input function, maps each element x of Σ� to a configuration α(x);
ω, the ouput function, maps each configuration c to an element ω(c) of Σ�;
I, is a countable set of instructions, an intruction being a set of compatibles

transitions, i.e., whose first components are all distinct.

Definition 2. A program P for a machine M is a finite subset of the instruc-
tions set I of M , such that the transitions of

⋃
P are compatible.1

3.2 How a Machine Operates

Let M = (Σ,C, α, ω, I) be a machine and P a program for M . The operation of
the machine (M,P ) is explained by the diagram:

x y
↓ ↑
c0 −→ c1 −→ c2 · · · cn−1 −→ cn

1 P being a set of sets
S

P denotes the set of elements which are member of at least
one element of P and thus the set of transitions involved in program P .
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and more precisely by the definition of the following functions2, where x is a
word on Σ:

orbitM (P, x)=
{

the longest sequence (c0, c1) (c1, c2) (c2, c3) . . . with
c0 = α(x) and each (ci, ci+1) an element of

⋃
P .

outM (P, x) =

{
↗, if orbit(P, x) is infinite,

ω(cn), if orbit(P, x) ends with (cn−1, cn)

.

3.3 Example: Turing Machines

Informally these are classical Turing machines with a bi-infinite tape and in-
structions written [qi, abd, qj], with d = L or d = R, meaning : if the machine
is in state qi and the symbol read by the read-write head is a, the machine re-
places a by b, then moves its head one symbol to the left or the right, depending
whether d = L or d = R, and change its state to qj .

In fact we consider a variant of the Turing machines described above with
an internal moving head direction whose initial value is equal to left-right. The
instructions are written [qi, abs, qj ], with s = + or s = −, meaning : if the
machine is in state qi and the symbol read by the read-write head is a, the
machine replaces a by b, keeps its internal direction or changes it depending
whether s = + or s = −, moves its read-write head one symbol in the new
internal direction, and changes its states to qj .

Initially the entire tape is filled with blanks except for a finite portion which
contains the initial input, the read-write head being positioned on the symbol
which precedes this input. When there are no more instructions to be executed
the machine output the longest word which contains no blank symbols and which
starts just after the position of the read-write head.

Formally one first introduces an infinite countable set {q1, q2, . . .} of states
and a special symbol u, the blank. For any alphabet word x on an alphabet of
the form Σ ∪ {u}, one writes ·x for x, with all its beginning blanks erased, and
x· for x, with all its ending blanks erased.

Definition 3. A Turing machine is a 5-tuple of the form (Σ,C, α, ω, I) where,

– Σ is a finite set not having u as an element,
– C is the set of 5-tuples of the form [d, qi, ·x, a, y·], with d ∈ {L,R}, qi being

a state, x, y taken from Σ�
u and a taken from Σu, where Σu = Σ ∪ {u},

– α(x) = [R, q1, ε, u, x], for all x ∈ Σ�,
– ω([d, qi, ·x, a, y·]) is the longest element of Σ� beginning y·,
– I is the set of instruction denoted and defined, for all states qi, qj, all ele-

ments a, b of Σu and all s ∈ {+,−}, by

[qi, abs, qj ]
def
=

{([d, qi, ·xc, a, y·], [L, qj , ·x, c, by·]) | (d, s) ∈ E1 and (x, c, y) ∈ F}}∪
{([d, qi, ·x, a, cy·], [R, qj , ·xb, c, y·]) | (d, s) ∈ E2 and (x, c, y) ∈ F},
with E1 = {(L,+), (R,−)}, E2 = {(R,+), (L,−)} and F = Σ�

u ×Σu ×Σ�
u.

2 Index M is omitted when there is no ambiguity.
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3.4 Example: Indirect Addressing Arithmetic Machine

This is a machine with an infinity of registers r0, r1, r2, . . .. Each register con-
tains an unbounded natural integer. Each instruction starts with a number and
the machine always executes the instruction whose number is contained in r0
and, except in one case, increases r0 by 1. There are five types of instructions:
assigning a constant to a register, addition and subtraction of a register to/from
another, two types of indirect assignment of a register to another and zero-testing
of a register content.

More precisely and in accordance with our definition of a machine:

Definition 4. An indirect addressing arithmetic machine is a 5-tuple of the
form (Σ,C, α, ω, I), where,

– Σ = {c1, . . . , cm}, where the ci are any symbols,
– C is the set of infinite sequences r = (r0, r1, r2, . . .) of natural integers,
– α(a1 . . . an) = (0, 25, 1, . . . , 1, r24+1, . . . , r24+n, 0, 0, . . .), with r24+i equal to

1, . . . ,m depending whether ai equals c1, . . . , cm,
– ω(r0, r1, . . .) = a1 . . . an, with ai equal to c1, . . . , cm depending whether rr1+i

equals 1, . . . ,m, and n being is the greatest integer such that rr1 , . . . , rr1+n

are elements of {1, . . . ,m},
– I is the set of instructions denoted and defined, for all natural integers i, j, k,

by:

[i, cst , j, k]
def
= {(r, s) ∈ C2 | r0 = i,s := r, sj := k, s0 := s0 + 1},

[i, plus , j, k]
def
= {(r, s) ∈ C2 | r0 = i,s := r, sj := sj +sk, s0 := s0 + 1},

[i, sub, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, sj := sj÷sk, s0 := s0 + 1},

[i, from, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, sj := ssk

, s0 := s0 + 1},

[i, to, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, srj = rk, s0 := s0 + 1},

[i, ifze, j, k]
def
= {(r, t) ∈ C2 | r0 = i, s := r, s0 :=

[
sk + 1, if sj = 0
s0 + 1, if sj �= 0

]
}.

Here sj ÷ sj stands for max{0, sj−sk}.

4 Universal Program and Universal Coding

4.1 Universal Pair

Let M = (Σ,C, α, ω, I) be a machine and let us code each program P for M by
a word code(P ) on Σ.

Definition 5. The pair (U, code), the program U and the coding function code,
are said to be universal for M , if, for all programs P of M and for all x ∈ Σ�,

out(U, code(P ) · x) = out(P, x). (1)
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If in the above formula we replace P by U , and x by code(U)n · x we obtain:

out(U, code(U)n+1 · x) = out(U, code(U)n · x)

and thus:

Property 1. If (U, code) is a universal pair, then for all n ≥ 0 and x ∈ Σ�,

out(U, code(U)n · x) = out(U, x). (2)

4.2 Introspection Coefficient

Let (U, code) be a universal pair for the machine M = (Σ,C, α, ω, I). The com-
plexity of this pair is the average number of transitions performed by U for
producing the same effect as a transition of the program P occurring in the
input of U . More precisely:

Definition 6. Given a program P for M and a word x on Σ with orbit(P, x) �=
↗, the complexity of (U, code) is the real number defined by

|orbit(U, code(P ) · x)|
|orbit(P, x)| .

The disadvantage of this definition is that the complexity depends on the input of
U . For an intrinsic complexity, independently of the input of U , we introduce the
introspection coefficient of (U, code) whose definition is justified by Property 2:

Definition 7. If for all x ∈ Σ�, with orbit(U, x) �= ↗, the real number

lim
n→∞

|orbit(U, code(U)n+1 · x)|
|orbit(U, code(U)n · x)|

exists and does not depend on x, then this real number is the introspection
coefficient of the universal pair (U, code).

4.3 Existence and Value of the Introspection Coefficient

Let (U, code) be a universal pair for a machine M = (Σ,C, α, ω, I). Given a word
x on Σ, we assume that the computation of the word y by y = out(U, x) can be
synchronized with the computation of the same word y by y = out(U, code(U) ·
x), according to the following diagram:

x y
↓ ↑

code(U)·x •
1−−−−→•

2−−−−→•
2−−−−→•

1−−−−→•
3−−−−→• y

↓ ↓ ↓ ↓ ↓ ↓ ↘ ↑
• 1→ 1→ 4→• 3→ 1→ • 2→ 3→ 3→• 2→ 3→ 3→• 3→ 1→ • 3→ 3→ 1→ 5→ 5→ •
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More precisely we make the hypothesis:

Hypothesis 1. There exists n,nb,A,B such that, for every pair of traces of the
form

(orbit(U, code(U)·x, orbit(U, x)))
itself of the form

(s1 · · · sl, r1 · · · rk),
we have

nb(s1) · · ·nb(sl) = B · A(nb(r1)) · · · A(nb(rk)),
with n positive integer, with nb(t) ∈ 1..n for each transition t of U , with A(i) a
finite sequence on 1..n for each i ∈ 1..n, with B a finite sequence on 1..n.

We then introduce the column vector B and the square matrix A:

B =

⎡⎢⎣b1...
bn

⎤⎥⎦ , bi = number of occurrences of integer i in B,

A =

⎡⎢⎣a11 · · · ann

...
...

a1n· · · ann

⎤⎥⎦ , aij = number of occurrences of integer i in A(j).

(3)

and we conclude by the theorem, where ||X || denotes the sum of the components
of X :

Theorem 1. Suppose the matrix A admits a real eigenvalue λ, whose multiplic-
ity is equal to 1, which is strictly greater to 1 and to the greatest modulus λ′ of
the other eigenvalue.

If α is a real number with λ′ < α < λ, if X0 = B and Xn+1 = 1
αAXn, then,

when n→∞, exactly one of the two properties holds:
1. ||Xn|| → 0,
2. ||Xn|| → ∞. In this case λ is the inspection coefficient.

Anyone interested in more details may consult [4].

5 Universal Pair for the Turing Machine

5.1 The Universal Pair

We now present a particularly efficient universal pair (U, code) for the Turing
machine M with alphabet Σ = {o, i, z}. The program U has 184 instructions
and 54 states and |code(U)| = 1552. Its listing and its graph can be seen in the
annexes A and B.

5.2 Coding Function of the Universal Pair

Let P be a program for M . We take code(P ) as the word on {o, i, z}
code(P ) = zI4nz . . .zIk+1zIkzIk−1z . . .zI1zoi . . . izz.
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Integer n is the number of states of P and the Ik are the coded instructions. The
size of the shuttle oi . . . iz is equal to the longest size of the Ik minus 5.

In order to assign a position to each coded instruction Ik of [qi, abs, qj], we
introduce the number:

π(i, a) = 4(i− 1) +

⎧⎪⎪⎨⎪⎪⎩
1, if a = u
2, if a = o
3, if a = i
4, if a = z

.

For all a ∈ Σu and i ∈ 1..n,

Iπ(i,a) =

{
[qi, abs, qj], if there exists b, s, j with [qi, abs, qj] ∈ P ,

oi, otherwise,

– with [qi, a, b, s, qj] =

{
iam . . . a2o, if π(i, a) < 1

2 (π(j, u) + π(j, z)),

oa2 . . . ami, if π(i, a) > 1
2 (π(j, u) + π(j, z)),

,

– with a2a3 equal to io, oi, ii, depending whether b equals u, o, i, z,
– with a4 = o or a4 = i depending whether s = + or s = − and
– with iam . . . a5 a binary number (o for 0 and i for 1) whose value is equal

to |π(j) − π(i, a)|+ 3
2 .

5.3 Operation of the Universal Pair

As already mentioned, the program U has 54 states, q1, . . . , q54, and 184 instruc-
tions. These instructions are divided in 10 modules A,B,C, . . . , J organized as
follows:

I
N
S
T
R
U
C
T
I
O
N

L
O
C
A
L
I
Z
A
T
I
O
N

I
N
S
T
R
U
C
T
I
O
N

E
X
E
C
U
T
I
O
N

0 1

2

3

5
4

6

7

8 9A Start

B Shuttle
direction
updating

C Shuttle
counter

initialization

D Writing,
moving,
reading

E Shuttle
counter
updating

F Moving
shuttle

to next z

G Shuttle
counter

decreasing

H Shuttle
reversing

I Instruc-
tion orien
tation test

J End
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The numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 denote respectively the states q1, q24, q35,
q43, q49, q15, q13, q7, q10, q23. They are called X0, X2, . . . , X9 in the program U
in the annex A. In the annex B, we also give a graph whose vertices are the states
and the edges the instructions of U : each instruction [qi, abs, qj] is represented
by an arrow, labeled abs, going from qi to qj . Note that the vertices a, b, c and
7 have two occurrences which must be merged.

Initial configurations. Initially the machines executingP is in the configuration

. . . uu

↑
R q1 P

x uu . . .

and the machine executing U is in the correponding initial configuration
code(P )︷ ︸︸ ︷

. . .uu

↑
R q1 P

|zI4nz . . . zIk+1zIkzIk−1z . . . zI1zoi . . . izz| x |uu . . .︸ ︷︷ ︸
shuttle

While the machine executing P performs no transitions, the machine executing
U performs a sequence of initial transitions, always the same, involving the
instructions of module A and some instructions already there in the modules
I,H,G, F . Then the machines executing P and U end up respectively in the
following current configurations with k = 1:

Current configurations. While the machine executing P is in the current
configuration

v a

↑
d qi P

w

the machine executing U is in the corresponding current configuration

standard shuttle︷ ︸︸ ︷
v |uzzI4nz . . .zIk+1z

↑
L q24 U

Ikzd′u . . .uzIk−1z . . . zI1zu| w
(4)

or
reversed shuttle︷ ︸︸ ︷

v |uzzI4nz · · ·zIk+1zu . . . ud′z

↑
R q22 U

IkzIk−1z · · · zI1zu| w
(5)
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depending whether Ik, with k = π(i, a), is in the standard form iam . . . a2o or
in the reversed form iam . . . a2o. The read-write points to a3 or to the z which
follows Ik when Ik is the empty instruction oi. Depending whether d is equal to
L or R, the symbol d′ is equal to u or o, if Ik is standard, and to o or u, if Ik is
reversed.

While the current configuration of P is not final, P performs one transition for
reaching the next current configuration and U performs a sequence of transitions
for reaching the next corresponding current configuration. More precisely, using
the information contained in Ik, the program U

– Updates the internal direction contained in the shuttle (module B),
– Transfers in the shuttle the binary number serving as basis for computing the

number of instructions to be jumped toward the left or the right, depending
on whether the shuttle is standard or reversed (module C),

– Simulates the writing of a symbol, the read-write head move, and then the
reading of a new symbol (module D),

– Taking into account the read symbol, updates the binary number contained
in the shuttle in order to obtain the right number of instructions to be
jumped by the shuttle for reaching the next instruction to be executed
(module E),

– Moves the shuttle and eventually reverses it, for correctly positioning it
alongside the next instruction to be executed (modules F,G,H, I).

When the current configuration of P becomes final, the corresponding current
configuration of U is of the form (5) with Ik equal to the empty instruction
oi. Then U performs a sequence of transitions (module J) for reaching the
final corresponding configurations. The machines executing P and U end up
respectively in the following final configurations:

Final configurations. While the machine executing P terminates in the final
configuration

b

↑
d qm P

y u

the machine executing U terminates in the corresponding final configuration

uzzI4nz · · · zIk+1zu . . .ud′zIkzIk−1z · · ·zI1zu
↑
R q23 U

y u

with Ik = oi, k = π(m, b) and d′ equal to o or u, depending whether d equals L
or R.
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5.4 Introspection Coefficient of Our Pair for the Turing Machine

First we have chosen a reversing program P such that, for all n ≥, one gets
out(P, a1a2 . . . an) = an . . . a2a1, with the ai taken from {o, i, z}. The program
P has 32 instructions and 9 states. We have |code(P )| = 265 and |code(U)| =
1552. We obtain the following results for the pair (U, code):

x |orbit(P, x)| |orbit(U,

code(P )·x)|
|orbit(U,

code(U)·code(P )·x)|
|orbit(U, code(U)·code(P )·x)|

|orbit(U, code(P )·x)|

ε 2 5 927 22 974 203 3 876.19
o 6 13 335 51 436 123 3 857.23
oi 12 23 095 88 887 191 3 848.76
oiz 20 35 377 136 067 693 3 846.22
oizo 30 49 663 190 667 285 3 839.22

It can be seen that we have succeeded in running the universal program U on
its own code and thus to compute a first approximation of the introspection
coefficient.

Second, after having computed the column vector B of size 184×4 = 736 and
the matrix A of size 736, using Theorem 1, we have verified that U admits an
introspection coefficient and computed its value: for all words x on Σ such that
orbit(P, x) �= ↗,

lim
n→∞

|orbit(U, code1(U)n+1 ·x)|
|orbit(U, code(U)n ·x)| = 3 672.98

Anyone interested in more details may consult [4]. There, it is also proven that
a more classical Turing machine, with 361 instructions and 106 states, has the
same introspection coefficient.

6 Universal Pair for the Indirect Addressing Arithmetic
Machine

6.1 The Universal Pair

It is interesting to compare the complexities of our universal program for a Turing
machine with the complexity of a universal program for the indirect addressing
arithmetic machine with same alphabet Σ = {c1, c2, c3}, with c1 = o, c2 = i
and c3 = z. We have written such a universal program U using 103 instructions
and with |code(U)| = 1042. It can be seen in annex C.

6.2 Operation of the Universal Pair

The universal pair (U, code) for arithmetic machine with indirect addressing
operates roughly as following:
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Current configuration

r0 r1 r2
0 3 2

Corresponding configuration

r0 r1 r2
50 code(P ) 0 3 2

Execution of one instruc-
tion of

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, plus , 2, 1],
[1, cst , 11, 1],
[2, from , 5, 2],
[3, ifze, 5, 8],
[4, sub, 5, 11],
[5, to, 2, 5],
[6, plus , 2, 11],
[7, cst , 0, 1]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Execution of several correspond-
ing instruction of

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0, cst , 8, 0],
[1, cst , 10, 2],
[2, cst , 11, 11],
. . .
[99, cst , 0, 49],
[100, plus, 9, 1],
[101, from, 9, 9],
[102, plus, 1, 9]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Next configuration

r0 r1 r2
1 3 5

Corresponding configuration

r0 r1 r2
50 code(P ) 1 3 5

6.3 Introspection Coefficient of Our Pair for the Indirect
Addressing Machine

On particular examples we obtain the following results:

x |orbit(P, x)| |orbit(U,

code(P )·x)|
|orbit(U,

code(U)·code(P )·x)|
|orbit(U, code(U)·code(P )·x)|

|orbit(U, code(P )·x)|

ε 12 2 372 72 110 30.40
o 16 2 473 74 758 30.23
oi 31 2 860 84 916 29.69
oiz 35 2 961 87 564 29.57
oizo 50 3 348 97 722 29.19

where P is a reversing program of 21 instructions, with |code(P )| = 216, such
that, for all n ≥ 0 one obtains out(P, a1a2 . . . an) = an . . . a2a1, with the ai

taken from {o, i, z}. The introspection coefficient obtained is:

lim
n→∞

|orbit(U, code(U)n+1 ·x)|
|orbit(U, code(U)n · x)| = 26.27

Anyone interested in more details may consult [4].

7 Conclusion

Unless one “cheats”, it is difficult to improve the introspection coefficient of
our universal Turing machine which took us a considerable effort to develop.
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Suppose, which is the case, that we have at our disposal a first universal pair
(U, code) for a Turing machine.

A first way of cheating consists of constructing the pair (U, code ′) from the
universal pair (U, code), with

code ′(P ) =
{
ε, if P = U ,
code(P ), if P �= U .

Then we have
|orbit(U, code′(Un+1·x)|
|orbit(U, code′(U)n·x)| = |orbit(U, x)|

|orbit(U, x)| = 1

and (U, code ′) is a universal pair with an introspection coefficient equal to 1.
There is a second more sophisticated way of cheating, without modifying

the coding function code. Starting from the universal program U we construct a
program U ′, which, after having erased as many times as possible a given word z
occurring as prefix of the input, behaves as U on the remaining input. According
to the recursion theorem [6,8], it is possible to take z equal to code(U ′) and thus
to obtain a universal program U ′ such that, for all y ∈ Σ� having not code(U)′

as prefix,
orbit(U ′, code(U ′)n · y) = nk1 + k2(y),

where k1 and k2(y) are positive integers, with k1 being independent of y. Then
we have

|orbit(U ′, code(U ′)n+1·y)|
|orbit(U ′, code(U ′)n·y)| = |orbit(U, x)|+(n+1)k1+k2(y)

|orbit(U, x)|+nk1+k2(y) =

1 + k1
|orbit(U, x)|+k2(y)+nk1

.

By letting n tend toward infinity we obtain an introspection coefficient equal to
1 for the pair (U ′, code).

Unfortunately our introspection coefficient definition, page 8, does not disal-
low these two kinds of cheating. What one really would like to prevent is that
the function code or the program U “behaves differently” on the program P ,
depending whether P is or is not equal to U . It is an open problem to express
this restriction in the definition of the introspection coefficient.

Finally we would like to mention that we tested our universal programs with a
package written in maple 8. In each case this package was also used to calculate
and manipulate the matrix A and the vectors B. Notably it was used to compute
the eigenvalues of A to obtain the introspection coefficient.
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Appendix

A Annex: Universal Turing Program

# A BEGINNING
[X0,uz+,A1], [X0,oo+,A1], [X0,ii+,A1], [X0,zu-,X7],

[A1,oo+,A1], [A1,ii+,A1], [A1,zz+,X0],
[X7,zz+,X8],

# B INSTRUCTION TAIL COPYING
[X1,oo+,B1], [X1,ii+,B1],
[B1,oo+,B5], [B1,iu-,B2],
[B2,oo+,B2], [B2,ii+,B2], [B2,zz+,B3],
[B3,oi-,B4i], [B3,io-,B4i],

[B4o,uo+,B5], [B4o,oo+,B4o], [B4o,ii+,B4o], [B4o,zz+,B4o],
[B4i,ui+,B5], [B4i,oo+,B4i], [B4i,ii+,B4i], [B4i,zz+,B4i],
[B5,uu-,B6], [B5,ou-,B4o], [B5,iu-,B4i], [B5,zz-,B7],

[B6,oo+,B4o], [B6,ii+,B4i],
# Replacement of the remaining u’s by o’s
[B7,uo+,B9], [B7,oo+,B7], [B7,ii+,B7], [B7,zz+,B7],
[B9,uo+,B9], [B9,oo+,X2], [B9,zz-,B10],

[B10,oo+,B10], [B10,ii+,B10], [B10,zz+,B9],

# C INSTRUCTION HEAD COPYING
# Creating the symbol to be written

[X2,oo+,C2], [X2,iu-,C1],
[C1,ui+,C2], [C1,oi+,C1], [C1,io+,C1], [C1,zu-,C1],

[C2,oo-,C3o], [C2,ii-,C3i],
[C3o,uo+,C4], [C3o,oo+,C3o], [C3o,ii+,C3o], [C3o,zu+,C4],
[C3i,uz+,C4], [C3i,oo+,C3i], [C3i,ii+,C3i], [C3i,zi+,C4],
# Taking in account the direction

[C4,oi-,C5], [C4,ii-,X3],
[C5,uu+,C6], [C5,oo+,C6], [C5,ii+,C6], [C5,zz+,C6],

[C6,oo-,X3],

# D WRITING, MOVING AND READING
# Writing and reading
[X3,uu-,D1u], [X3,ou-,D1o], [X3,iu-,D1i], [X3,zu-,D1z],
[D0,uu-,D1z], [D0,ou-,D1i], [D0,iu-,D1o], [D0,zu-,D1u],
[D1u,uu-,X4], [D1u,oo+,D1u], [D1u,ii+,D1u], [D1u,zz+,D1u],
[D1o,uo-,X4], [D1o,oo+,D1o], [D1o,ii+,D1o], [D1o,zz+,D1o],
[D1i,ui-,X4], [D1i,oo+,D1i], [D1i,ii+,D1i], [D1i,zz+,D1i],
[D1z,uz-,X4], [D1z,oo+,D1z], [D1z,ii+,D1z], [D1z,zz+,D1z],
# Moving

[X4,zu+,D2z],
[D2u,ou+,D2o], [D2u,iu+,D2i],

[D2o,uo+,D2u], [D2o,oo+,D2o], [D2o,io+,D2i], [D2o,zo+,D2z],
[D2i,ui+,D2u], [D2i,oi+,D2o], [D2i,ii+,D2i], [D2i,zi+,D2z],
[D2z,uz+,X3], [D2z,oz+,D2o], [D2z,iz+,D2i], [D2z,zz+,D2zz],
[D2zz,uz+,D0], [D2zz,oz+,D2o],
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# E SHUTTLE UPDATING
# Beginning of the updating

[X4,oo-,E1b], [X4,io-,E1a],
[E1a,uz-,E2a], [E1a,oz-,E2b], [E1a,iz-,X6], [E1a,zz-,X5],
[E1b,uz+,X5], [E1b,oz+,X6], [E1b,iz+,E2b], [E1b,zz+,E2a],
# End of the updating

[E2a,oo+,E2b], [E2a,iu+,E2b],
[E2b,oo+,E4], [E2b,ii+,E4],
[E4,oi+,E4], [E4,io-,E5], [E4,zz-,X7],

[E5,uu+,E5], [E5,oo+,E5], [E5,ii+,E5], [E5,zz-,X6],

# F SUTTLE MOVING TO NEXT z
[X5,uu+,X5], [X5,oo+,X5], [X5,ii+,X5], [X5,zz-,F1],
[F1,uz+,F2u], [F1,oz+,F2o],
[F2u,uu+,F2u], [F2u,ou+,F2o], [F2u,iu+,F2i], [F2u,zu+,F3],
[F2o,uo+,F2u], [F2o,oo+,F2o], [F2o,io+,F2i], [F2o,zo+,F3],
[F2i,ui+,F2u], [F2i,oi+,F2o], [F2i,ii+,F2i], [F2i,zi+,F3],

[F3,oz-,F4o], [F3,iz-,F4i], [F3,zz-,X6],
[F4o,uu+,F4o], [F4o,oo+,F4o], [F4o,ii+,F4o], [F4o,zo-,F1],
[F4i,uu+,F4i], [F4i,oo+,F4i], [F4i,ii+,F4i], [F4i,zi-,F1],

# G SHUTTLE DECREASING
[X6,uu+,G1], [X6,oo+,G1], [X6,iu+,G1],
[G1,uu-,X7], [G1,oi+,G1], [G1,io+,X5], [G1,zz-,X8],

# H SHUTTLE REVERSING AFTER BLANK SYMBOLS INTRODUCTION
[X7,uu-,E2a], [X7,ou-,E2b], [X7,iu+,X7],
[E2a,uu+,E2a], [E2a,zz-,I1],
[E2b,uu+,E2b], [E2b,zz-,I2],
[I1,uo-,X8],
[I2,ui-,X8],

# I INSTRUCTION ORIENTATION TEST AFTER BLANK SYMBOLS INTRODUCTION
[X8,ui+,X8], [X8,oo+,X8], [X8,iu+,X8], [X8,zz+,I1],

[I1,oo+,I2], [I1,ii-,I2],
[I2,oo+,X1], [I2,ii+,X1], [I2,zz+,X5],

# J END OF THE PROGRAM
[X1,zz+,X9],

[X9,oo+,X9], [X9,ii+,X9], [X9,zz+,X9]];
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B Annex: Graph of the Universal Turing Program
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C Annex: Universal Indirect Addressing Program

# INITIALISAT-
# ION OF THE
# REGISTERS
[0,cst,8,0],
[1,cst,10,2],
[2,cst,11,11],
[3,cst,12,20],
[4,cst,13,26],
[5,cst,14,33],
[6,cst,15,67],
[7,cst,16,68],
[8,cst,17,70],
[9,cst,18,76],
[10,cst,19,82],
[11,cst,20,88],
[12,cst,21,94],

# ENCODING OF
# THE EMULATED
# PROGRAM
# INITIALISAT-
# ION OF THE
# SOURCE POSIT-
# ION R[1] AND
# THE BOOLEAN
# VALUE c
[13,cst,2,24],
[14,cst,5,1],
[15,cst,0,16],
# INCREASING
# THE SOURCE
# POSITION R[1]
[16,plus,1,9],
# CASE STUDY
# ACCORDING
# TO THE VALUE
# a OF R[R[1]]
[17,from,3,1],
[18,to,1,8],
[19,plus,3,11],
[20,from,0,3],
# CASE a=1

[21,ifzero,5,24],
[22,cst,5,0],
[23,cst,4,0],
[24,plus,4,4],
[25,plus,4,9],
[26,cst,0,15],
# CASE a=2
[27,ifzero,5,30],
[28,cst,5,0],
[29,cst,4,0],
[30,plus,4,4],
[31,plus,4,9],
[32,plus,4,9],
[33,cst,0,15],
# CASE a=3
[34,ifzero,5,36],
[35,cst,0,40],
[36,plus,2,9],
[37,sub,4,9],
[38,to,2,4],
[39,cst,5,1],
[40,cst,0,15],
# END
[41,to,1,8],
[42,cst,4,1],
[43,plus,4,1],
[44,cst,6,25],
[45,to,4,6],

# PROGRAM
# EMULATION
# SKIP INCREM-
# ENTATION OF
# THE INSTRUC-
# TION COUNTER
[46,cst,0,49],
# INCREASING
# THE INSTRUC-
# TION COUNTER
[47,from,6,1],
[48,plus,6,9],
[49,to,1,6],

# COMPUTING THE
# POSITION OF
# INSTRUCTION
# NB ZERO
[50,from,7,1],
[51,cst,6,25],
[52,plus,6,7],
[53,plus,6,7],
[54,plus,6,7],
# HALTING TEST
[55,cst,7,0],
[56,plus,7,1],
[57,sub,7,6],
[58,ifzero,7,100],
# COMPUTING
# a:=R[R[6]]
[59,from,3,6],
# COMPUTING
# b:=R[R[6]]+R[1]
[60,plus,6,9],
[61,from,4,6],
[62,plus,4,1],
# COMPUTING
# c:=R[R[4]+2]
[63,plus,6,9],
[64,from,5,6],
# CASE STUDY
# ACCORDING TO
# THE VALUE OF a
[65,cst,6,15],
[66,plus,6,3],
[67,from,0,6],
# NO
# INSTRUCTION
[68,cst,0,99],
# CONSTANT
# INSTRUCTION
[69,to,4,5],
[70,cst,0,46],
# PLUS
# INSTRUCTION
[72,plus,5,1],

[73,from,5,5],
[74,plus,6,5],
[75,to,4,6],
[76,cst,0,46],
# MINUS
# INSTRUCTION
[77,from,6,4],
[78,plus,5,1],
[79,from,5,5],
[80,sub,6,5],
[81,to,4,6],
[82,cst,0,46],
# FROMINDIRECT

# INSTRUCTION
[83,plus,5,1],
[84,from,5,5],
[85,plus,5,1],
[86,from,5,5],
[87,to,4,5],
[88,cst,0,46],
# TOINDIRECT
# INSTRUCTION
[89,from,4,4],
[90,plus,4,1],
[91,plus,5,1],
[92,from,5,5],
[93,to,4,5],
[94,cst,0,46],
# IFZERO
# INSTRUCTION
[95,from,4,4],
[96,ifzero,4,98],
[97,cst,0,46],
[98,to,1,5],
[99,cst,0,49],
# END
[100,plus,9,1],
[101,from,9,9],
[102,plus,1,9].
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Abstract. The Cell BE processor provides both scalable computation power and
flexibility, and it is already being adopted for many computational intensive ap-
plications like aerospace, defense, medical imaging and gaming. Despite of its
merits, it also presents many challenges, as it is now widely known that is very
difficult to program the Cell BE in an efficient manner. Hence, the creation of an
efficient software development framework is becoming the key challenge for this
computational platform.

We have developed a novel software toolkit, called Cellflow, which enables
developers to quickly build multi-task applications for Cell-based platform. We
support programmers from the initial stage of their work, through a development-
time software infrastructure, to the final stage of the application development,
proposing a safe and easy-to-use explicit parallel programming model.

A fundamental component of the software toolkit is the off-line allocator
and scheduler that manages hardware resources while optimizing performance
metrics such as execution time, allocation costs, power. The optimization engine
receives as input a task graph representing an application, the hardware resources
and produces an optimal allocation and scheduling. We have developed various
approaches, either based on decomposition [5] or based on pure Constraint Pro-
gramming, this latter being the core of this paper. We have identified instance
features that guide toward the choice of the best solver for the instance at hand.

Experimental result show that Constraint Programming (possibly combined
with Integer Programming) is a proper tool for dealing with this kind of applica-
tions achieving very good performance.

1 Introduction

Single-chip multicore platforms are becoming widespread in high-end embedded com-
puting applications (networking, communication, graphics, signal processing). The Cell
Broadband Engine is probably one of the highest-volume multicore platforms in use
today, targeting interactive graphics and advanced signal processing1. It is a heteroge-
neous multi-core architecture composed by a standard general purpose microprocessor
(called PPE), with eight coprocessing units (called SPEs) integrated on the same chip.
The SPE is a processor designed for streaming workloads, featuring a local memory,
and a globally-coherent DMA (DIrect Memory Access) engine [15], [28].

1 Sony’s Playstation 3, powered by Cell BE, had sold more than 10M pieces at the end of 2007.
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The heterogeneity of its processing elements and, above all, the limited explicitly-
managed on-chip memory and the multiple options for exploiting hardware parallelism,
make efficient application design and implementation on the Cell BE a major challenge.
Efficient programming requires one to explicitly manage the resources available to each
SPE, as well the allocation and scheduling of activities on them, the storage resources,
the movement of data and synchronization. As a result, even with the help of APIs
and advanced programming environments, programming Cell in an efficient fashion is
a daunting task. Therefore, significant effort is being focused on the development of
software optimization tools and methods to automate the mapping of complex parallel
applications onto the Cell BE platform.

The final goal of this work is to enable developers to quickly build multi-task appli-
cations using a high-level explicitly parallel programming model. Low-level compilers
and hardware-optimized core functions are provided by the the SDK from IBM [12].
However, the basic SDK does not offer any facility for optimizing the resource utiliza-
tion in terms of both allocation and scheduling, memory transfers and utilization. We
want to set programmers free from the issue of managing allocation and scheduling
tasks, so they can focus on developing the core algorithms of the application.

The allocation and scheduling problems that are at the core of the mapping task are
quite large and extremely challenging, and they are usually tackled using incomplete
approaches. Even though incomplete approaches can be computationally efficient, they
generally produce sub-optimal solutions. This is a significant shortcoming especially for
demanding applications with tight execution time constraints, as incomplete optimizers
may fail to find a feasible solution even when it does exist. Hence, efficient complete
approaches are of great practical interest: not only they help programmers in taking
hard design decisions, but also they can significantly extend the size and complexity of
applications that can be run on the target hardware platform while meeting performance
constraint.

For the problem at hand we have developed two approaches. One is based on Logic
Based Benders Decomposition [8], and in particular on a recursive application of the
technique. This approach has been proposed in [5] and will be recalled here for making
the paper self contained. The second approach, which is the core of the present paper,
is a pure CP model targeting both allocation and scheduling. We have experimentally
compared the two approaches and identified instance features that guide toward the
choice of the best solving strategy.

2 The Problem

The current design methodology for multicore systems on chip is hampered by a lack
of appropriate design tools, leading to low efficiency and productivity. Software opti-
mization is a key requirement for building cost- and power-efficient electronic systems,
while meeting tight real-time constraints and ensuring predictability and reliability, and
is one of the most critical challenges in today’s high-end computing.

Embedded devices are not general purpose, but run a set of predefined applications
during the entire system lifetime. Therefore software compilation can be optimized
once for all at design time thus improving the performance of the overall system. Thus,
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Fig. 1. Cell Broadband Engine Hardware Architecture

optimization is a critical component in the design of next-generation, highly program
mable, intelligent embedded devices.

We focus on a well-known multicore platform, namely the IBM Cell BE processor
(described in section 2.1), and we address the problem of allocating and scheduling its
processors, communication channels and memories. The application that runs on top of
the target platform is abstracted as a task graph (described in section 2.2). Each task
is labelled with its execution time, memory and communication requirements. Arcs in
the task graph represent data dependencies and communications between pairs of tasks.
The optimization metric we take into account is the application execution time that
should be minimized.

2.1 Cell BE Hardware Architecture

In this section we give a brief overview of the Cell hardware architecture, focusing on
the features that are most relevant for our optimization tools. Cell is a non-homogeneous
multi-core processor [32] which includes a 64-bit PowerPC processor element (PPE)
and eight synergistic processor elements (SPEs), connected by an internal high band-
width Element Interconnect Bus (EIB) [29]. Figure 1 shows a pictorial overview of the
Cell Broadband Engine Hardware Architecture. The PPE is dedicated to the operating
system and acts as the master of the system, while the eight synergistic processors are
optimized for computation-intensive applications. The PPE is a multithreaded core and
has two levels of on-chip cache. However, the main computing power of the Cell pro-
cessor is provided by the eight SPEs. The SPE is a computation-intensive coprocessor
designed to accelerate media and streaming workloads [27]. Each SPE consists of a
synergistic processor unit (SPU) and a memory flow controller (MFC). The MFC in-
cludes a DMA controller, a memory management unit (MMU), a bus interface unit, and
an atomic unit for synchronization with other SPUs and the PPE.

Efficient SPE software should heavily optimize memory usage, since the SPEs oper-
ate on a limited on-chip memory (only 256 KB local store) that stores both instructions
and data required by the program. The local memory of the SPEs is not coherent with
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Fig. 2. Example of task graph

the PPE main memory, and data transfers to and from the SPE local memories must be
explicitly managed by using asynchronous coherent DMA commands.

2.2 The Target Application

The target application to be executed on top of the hardware platform is input to our
methodology, and for this purpose it must be represented as a task graph. This latter
consists of a graph pointing out the parallel structure of the program. The application
workload is therefore partitioned into computation sub-units denoted as tasks, which
are the nodes of the graph. Graph edges connecting any two nodes indicate task de-
pendencies due to communication and/or synchronization. Tasks communicate through
queues and each task can handle several input/output queues. For example task T 9 in
Figure 2 reads two input queues from tasks T 6 and T 7 and writes an output queue for
task T 10.

Task execution is modeled and structured in three phases (see Figure 3): all input
communication queues are read (Input Reading), task computation activity is performed
(Task Execution) and finally all output queues are written (Output Writing). Each phase
consists of an atomic activity. Each task also has two kinds of associated memory
requirements:

1. Program Data: storage locations are required for computation data and for proces-
sor instructions;

2. Communication queues: each task needs queues to transmit and receive messages
to/from other tasks, eventually mapped on different SPEs.

Both these memory requirements can be either allocated on the local storage of each
SPE or in the shared memory (DRAM in Figure 1).

Fig. 3. Three phases behavior of Tasks
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Durations are linked to the allocation choices: the duration of an execution phase
in case of remote allocation of program data (dmaxex) is greater than in case of a
local allocation dminex. Writing (and reading) operations have their minimum possi-
ble value (dminwr, dminrd) if the communication queue is on the local memory of
the producer (resp. consumer) tasks, a higher value (dmedwr, dmedrd) if it is allo-
cated on the local memory of the consumer (resp. producer) task, an even higher value
(dmaxwr, dmaxrd) in case of remote allocation (on the on-chip DRAM memory).

3 Why CP

The main goal of this paper is to apply software optimization for maximizing the exploit
of the hardware resources of the CELL BE architecture.

Scientific literature related to our problem explores many directions: we here recall
the main research trends:

– exploitation of heterogeneous parallelism provided by the CELL architecture pos-
sibly performing automated scheduling and allocation;

– software optimization for other (yet similar) multicore platforms.

The Cell architecture supports a wide range of heterogeneous parallelism levels. To
our knowledge, prior work is mainly focused on trying to exploit fine grained paral-
lelism of Cell, such as at instruction and functional level, while our work is one of the
few approaches at task level. In [14] authors present a framework for the automatic
exploitation of the functional parallelism of a sequential program through the differ-
ent SPEs. Their work is based on annotation of the source code of target application.
A runtime library deals with generating threads, scheduling them on the SPEs, and
transferring data to/from them. The authors in [30] present a realtime software plat-
form for the Cell processor. It is based on the virtualization of the processing resources
and a real-time resource scheduler which runs on the PPE. The compiler described in
[20] implements techniques for optimizing the execution of scalar code in SIMD units,
subword optimization and other techniques. Authors in [19] describe several compiler
techniques that aim at automatically generating high-quality code over a wide range of
heterogeneous parallelism available on the CELL processor.

At task level, the authors in [33] propose a programming model based on micro-
tasks communicating through message passing interface. The micro-task represents a
unit of computation that causes communication at its beginning and end. They tackle
the mapping and scheduling problem by a suboptimal heuristic solver. The work in
[34] describes a multicore streaming layer whose main goal is to abstract away the
architecture-specific details that complicate the scheduling of computation and commu-
nication activities in a stream program. They propose both dynamic and static schedul-
ing facilities, but without any optimality guarantee.

The literature on optimization of other multicore architectures uses heuristic ap-
proaches for mapping and scheduling task graphs onto the target platforms. In [16]
a re-timing heuristic is used to implement pipelined scheduling, that optimizes the ini-
tiation interval, the number of pipeline stages and memory requirements of a particular
design alternative. Pipelined execution of a set of periodic activities is also addressed
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in [17], for the case where tasks have deadlines larger than their periods. Palazzari et
al. [31] focus on scheduling to sustain the throughput of a given periodic task set and
to serve aperiodic requests associated with hard real-time constraints. Mapping of tasks
to processors, pipelining of system specification and scheduling of each pipeline stage
have been addressed in [18], aiming at satisfying throughput constraints at minimal
hardware cost. A comparative study of well-known heuristic search techniques (ge-
netic algorithms, simulated annealing and tabu search) is reported in [21]. Eles et al.
[22] compare the use of simulated annealing and tabu search for partitioning a graph
into hardware and software parts while trying to reduce communication and synchro-
nization between parts. More scalable versions of these algorithms for large real-time
systems are introduced in [23]. Many heuristic scheduling algorithms are variants and
extensions of list scheduling [24], a scheduling algorithm coming from the real time
literature.

Heuristic approaches provide no guarantees about the quality of the final solution.
On the other hand, complete approaches which compute the optimum solution (possi-
bly, with a high computational cost), can be attractive for statically scheduled systems,
where the solution is computed once and applied throughout the entire lifetime of the
system.

Our previous work [3], [4] was aimed at optimally solving task graphs allocation
and scheduling on a different multicore platform (called MPARM and based on ARM
processors) using a Logic Based Benders Decomposition approach. The allocation part
is solved through Integer Programming and the scheduling problem via Constraint Pro-
gramming. We have applied and extended this approach for the CELL BE platform in
[5]. We will summarize this paper in section 4. In this paper we propose a pure Con-
straint Programming approach for this problem.

CP has been previously used to solve similar, yet simplified, problems. The work in
[25] is based on Constraint Logic Programming to represent system synthesis problem,
and leverages a set of finite domain variables and constraints imposed on these vari-
ables. Optimal solutions can be obtained for small problems, while large problems re-
quire the use of heuristic algorithms. The proposed framework is able to create pipelined
implementations in order to increase the design throughput. In [26] the embedded sys-
tem is represented by a set of finite domain constraints defining different requirements
on process timing, system resources and interprocess communication. The assignment
of processes to processors and interprocess communications to buses as well as their
scheduling are then defined as an optimization problem tackled by means of constraint
solving techniques.

4 How CP

For the problem of allocating and scheduling task graphs onto the CELL BE platform
we have implemented two approaches. One is based on a recursive application of Logic
Based Benders Decomposition [8] and is extensively described in [5]. We recall here
the main structure of the solution technique, while we refer to [5] for modeling details
and extensive comparison with a traditional (two-stage) decomposition approach.

The second model we propose is the core of this paper and is a pure CP model where
both allocation and scheduling are solved using a single monolithic model.
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We describe in detail this second approach and propose an experimental evaluation
in section 5 along with a comparison with the decomposition approach.

4.1 Decomposition Based Approach

The problem at hand can be solved using a Logic Based Benders decomposition
approach similarly to [3], [4], [7], [6], [9], [10], and [11], where the allocation is mod-
elled and solved in the master problem (usually using Integer Programming) while the
scheduling problem is tackled as a subproblem (possibly via Constraint Programming).
This approach does not scale well and in [5] we have shown that the reason is the poor
balancing between the allocation and the scheduling components, as the first is much
more complicated.

Therefore, we have experimented a multi-stage decomposition, which is actually
a recursive application of standard Logic based Benders’ Decomposition (LBD), that
aims at obtaining balanced and lighter components. The allocation part should be de-
composed again in two subproblems, each part being easily solvable.

Fig. 4. Solver architecture: two level Logic
based Benders’ Decomposition

Fig. 5. Solver architecture with schedulability
test

In Figure 4 at level one the SPE assignment problem (SPE stage) that computes task
to processor assignment acts as the master problem, while memory device assignment
and scheduling as a whole are the subproblem. At level two (the dashed box in Figure 4)
the memory assignment (MEM stage) is the master and the scheduling (SCHED stage)
is the correspondent subproblem. The first step of the solution process is the compu-
tation of a task-to-SPE assignment; then, based on that assignment, allocation choices
for all memory requirements are taken. Finally, a scheduling problem with fixed re-
source assignments and fixed durations is solved. When the SCHED problem is solved
(no matter if a solution has been found), one or more cuts (labeled A) are generated to
forbid (at least) the current memory device allocation and the process is restarted from
the MEM stage; in addition, if the scheduling problem is feasible, an upper bound on the
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value of the next solution is also posted. When the MEM & SCHED subproblem ends
(either successfully or not), more cuts (labeled B) are generated to forbid the current
task-to-SPE assignment. When the SPE stage becomes infeasible the process is over,
and converges to the optimal solution for the problem overall.

We found that quite often SPE allocation choices are by themselves very relevant: in
particular, a bad SPE assignment is sometimes sufficient to make the scheduling prob-
lem unfeasible. Thus, after the task to processor allocation, we can first check whether
the SPE allocation is schedulable, as depicted in Figure 5 (SCHED TEST). In practice,
if the given allocation with minimal task durations is already infeasible for the schedul-
ing component, then it is useless to complete it with the memory assignment that cannot
lead to any feasible solution overall.

4.2 Pure CP Model

In alternative to the decomposition approach, we have implemented a pure CP model
that is solved using the commercial tool ILOG Scheduler/Solver 6.3.

Let n be the number of tasks, m the number of arcs and p the number of processing
elements.

The possible allocation choices are modeled by means of the following variables:

TPEi ∈ {0, . . . , ...p− 1} ∀i = 0, . . . , n− 1
Mi ∈ {0, 1} ∀i = 0, . . . , n− 1
APEr ∈ {−1, . . . , ...p− 1} ∀r = 0, . . . ,m− 1

TPEi is the processing element assigned to task ti. Similarly, if APEr = j then the
communication buffer related to arc ar is on the local memory of the processing element
j, while if APEr = −1 the communication buffer is allocated on the remote memory.
Finally, Mi is 1 if program data of task ti are allocated locally to the same processor of
task ti.

Due to architectural restrictions, a communication buffer can be allocated either on
the local memory of the source task, or that of the target task, or on the remote memory;
therefore for the arc r connecting nodes representing tasks th and tk:

APEr = TPEh ∨APEr = TPEk ∨APEr = −1

From a scheduling standpoint, each task is modeled as a set of non preemptive ac-
tivities a, each with a start variable start(a) and an end variable end(a). In particular,
a task ti is split into an activity modeling its execution phase exi, and a set of activities
modeling each one the reading and writing of a communication buffer, i.e., wrr for each
outgoing arc r and rdr for each incoming arc r:

exi(EDi) ∀ti
wrr(WDr) ∀ar = (ti, tk)
rdr(RDr) ∀ar = (th, ti)
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The duration of each activity is defined by the proper variable and is reported
between round brackets after its name. It depends on the related memory allocation
choices; hence we define a variable for each execution and communication task:

EDi ∈ {0, . . . , ...eoh} ∀i = 0, . . . , n− 1
WDr ∈ {0, . . . , ...eoh} ∀r = 0, . . . ,m− 1
RDr ∈ {0, . . . , ...eoh} ∀r = 0, . . . ,m− 1

EDi is the duration of the communication phase of task ti, WDr and RDr respectively
are the time needed to write and read buffer r. Their range is the whole temporal horizon
(eoh is the end of horizon).

As stated in section 2.2, durations are linked to the allocation choices; the duration
of an execution phase in case of remote allocation of program data (dmaxex) is greater
than in case of local allocation. Writing (and reading) operations have their minimum
possible value (dminwr, dminrd) if the communication queue is on the local memory
of the producer task (resp. consumer), a higher value (dmedwr, dmedrd) if it is allo-
cated on the local memory of the consumer (resp. producer) task, an even higher value
(dmaxwr, dmaxrd) in case of remote allocation of communication queue in DRAM.
All those properties are enforced by means of the following constraints:

∀i = 0, . . . , n− 1 EDi = dminex
i +

(dmaxex
i − dminex

i )(1 −Mi)
∀r = 0, . . . ,m− 1, ar = (th, tk) WDi = dminwr

r +
(dmaxwr

r −dminwr
r )(APEr =−1) +

(dmedwr
r −dminwr

r )(APEr =TPEk)
∀r = 0, . . . ,m− 1, ar = (th, tk) RDi = dminrd

r +
(dmaxrd

r − dminrd
r )(APEr = −1) +

(dmedrd
r − dminrd

r )(APEr =TPEh)

All reading operations are performed immediately before the execution, and all writ-
ing operations start immediately after. Let r0, . . . , rh−1 be the indices of the ingoing
arcs of task ti and rh, . . . , rk−1 those of the outgoing arcs; then:

end(rdrj ) = start(rdrj+1 ) ∀j = 0, h− 2
end(rdrh−1 ) = start(exi)
end(exi) = start(wrrh

)
end(rdrj ) = start(rdrj+1 ) ∀j = h, k − 2

All resource constraints are triggered when the TPE allocation variables are as-
signed; in particular if TPEi = j, all reading, writing and execution activities related
to task ti require processing element j. The resource capacity constraint is enforced by
a timetable constraint and a precedence graph constraint available in ILOG Scheduler
6.3 [13].
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Fig. 6. A: Structure of the dynamic search strategy; B: Operation schema for phase 1

Search Strategy
The model is solved by means of a dynamic search strategy where resource allocation
and scheduling decisions are interleaved.

We chose this approach since most resource constraints are not able to effectively
prune start and end variables as long as the time windows are large and no task
(or just a few of them) has an obligatory region: in particular it is difficult, before
scheduling decisions are taken, to effectively exploit the presence of precedence re-
lations and makespan bounds. In our approach, tasks are scheduled immediately after
they are assigned to a processing element: this results in immediate updates of the time
windows for all tasks linked by precedence relations.

The main drawback with this method is that an early bad choice is likely to lead to
thrashing, due to the size of the search space resulting from the mixture of allocation
and scheduling decisions; a pure two phases allocation and scheduling approach, like
the decomposition based one presented in the previous section, would be able to recover
faster from such a situation.

Intuitively, the presence of many precedence constraints strongly shrinks the set of
good allocation choices and is likely to guide the allocation toward promising choices,
whereas if the graph mostly contains independent or loosely related tasks a two stages
approach is probably to be preferred.

A considerable difficulty is our specific case is set by the need to assign each task and
arc both to a processing element and to a storage device: this is makes the number of
possible allocations too big to completely define the allocation of each task right before
it is scheduled. Therefore we chose to postpone the memory allocation stage after the
main scheduling decisions are taken, as depicted in Figure 6A.

Since task durations directly depend on memory assignment, scheduling decisions
taken in phase 1 of Figure 6 had to be relaxed to enable the construction of a fluid
schedule with variable durations. In practice we adopted a Precedence Constraint Post-
ing approach [1,2], by just adding precedence relations to fix the order of tasks at
the time they are assigned to SPEs: they will be given a start time only once the
memory devices are assigned. Note this time setting step is done in polynomial time.
Figure 7A shows an example of fluid schedule where tasks have variable durations
and precedence relations have been added to fix the order of the tasks on each SPE;
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Fig. 7. A: A fluid schedule; B: A possible fixed schedule

Figure 7B show a corresponding schedule where all durations are decided (a grey box
means the minimum duration is used, a white box means the opposite).

In deeper detail, the SPE allocation and scheduling phase operates according to the
schema of Figure 6B: first, the task with minimum start time is selected – ties are broken
looking a the (least) maximum end time and than at the task index. Second, the SPE
where the task can be allocated at its minimum start time is identified (let it be SPE∗),
then a choice point is open, with a branch for each SPE. Along each branch the task is
bound to the corresponding resource and a rank or postpone decision is taken: we try to
rank the task immediately after the last activity on the selected resource, otherwise the
task is postponed and not considered ready until its minimum start time changes due to
propagation (this is analogous to the standard schedule or postpone strategy in ILOG).
The process is reiterated as long as there are unranked tasks.

In phase 2, memory requirements are allocated to storage devices, selecting at each
step the variable with the smallest domain; in phase 3 a start time is assigned to each
task. Finally, since the processing elements are symmetric resources the procedure em-
beds quite standard symmetry breaking techniques to prevent the generation of useless
branches in the search tree.

5 Computational Efficiency

The decomposition based approach has been implemented using the state of the art
solvers ILOG Cplex 10.1 and Scheduler/Solver 6.3, while the pure CP model has been
implemented on Scheduler/Solver 6.3.

Since the main goal of the paper is to study and compare the performance of the two
approaches it would be not realistic to assume the availability of such a large benchmark
set that would allow us to sample a large variety of problem instances. Therefore we
resorted to synthetic benckmarks as follows.

A first group of 90 instances is coming from the actual execution of multi tasking
programs on a CELL BE architecture. These benckmarks have been created by syn-
thesising code (matrix multiplication) tuning the computation vs. communication effort
which is related to matrix size. For the instances in the first group the duration variability
is very small or even null depending on memory allocation (i.e., dminex and dmaxex

are very close or equal, and analogously durations of reading and writing activities are
similar).
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Table 1. Results on the set of instances where task durations are not strongly influenced by
allocation decisions

CP TD
Number of tasks Number of arcs time (sec.) SbB > TL time (sec.) SbB > TL

15 9-13 0.01 0.01 0 0.31 0.31 0
15 14-26 0.02 0.02 0 0.62 0.62 0
25 30-55 0.10 0.11 0 369.66 369.66 2
25 56-65 0.05 0.05 0 530.96 530.96 2
30 47-71 1.25 0.82 2 620.13 620.13 11
30 73-82 0.12 0.09 0 834.45 834.45 8

A second group of instances has been generated by using the same task graph struc-
ture of the first group and by changing randomly the durations of communication
activities depending on the allocation choices; we chose to generate 200 instances in-
stead of 90 to increase the reliability of the evalutation. Compared to the previous ones,
instances of this second group have a higher variability of minimal and maximal task
durations.

The first set of instances is representative of high computational intensive applica-
tions in general, like many signal processing kernels. In this scenario the overall task
duration is dominated by the data computation section, while the variability induced by
different memory allocations is negligible. On the other hand, the second set is repre-
sentative of more communication intensive applications. In this case, the overall task
duration can be drastically affected by different memory allocations. Several video and
image processing algorithms are good examples of applications which fit in this cate-
gory. The Cell configuration we used for the tests has 6 available SPEs.

Results on the first set of instances, where task duration is not much influenced by
memory allocation, are reported in table 5. Every row reports results on 15 instances.
Each instance is characterized by the number of tasks and a variable number of arcs in
the interval reported in the table. We recall that arcs in the task graph represent com-
munications and should be modelled with two communication activities (writing and
reading). For each solver the computation time is reported in seconds and is the aver-
age execution time on instances solved to optimality (in which case the two approaches
yield the same solution quality). In the column SbB the time computation is restricted
to instances solved by both methods; finally column > TL reports the number of timed
out instances (out of 15). The time limit has been set to 1800 seconds.

As we can see the CP approach achieves significant speed ups with respect to the
decomposition approach and the number of timed out instances is significantly smaller
in this case. The produced schedules were validated on the same platform used for
characterization of the instances.

On the other hand, results on the second set of instances where tasks have high
duration variability due to allocation choices are reported in table 2. Every row reports
results on 20 instances. Each instance is characterized by the number of tasks (variable
in the range reported in table) and the number of arcs. The time is reported in seconds
and is the average execution time on instances solved within the time limit; as in the
previous table in the colmn SbB the time computation is restricted to instances solved
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Table 2. Result on the set of instances where task durations are strongly influenced by allocation
decisions

CP TD
Number of tasks Number of arcs time (sec.) SbB > TL time (sec.) SbB > TL

10-11 4-11 16.70 16.70 0 3.67 3.67 0
12-13 8-14 116.92 116.92 2 11.19 4.59 0
14-15 8-15 81.50 81.50 8 10.25 7.67 0
16-17 11-17 34.66 34.66 11 29.53 18.17 0
18-19 13-19 66.47 66.47 15 72.56 33.92 1
20-21 16-22 400.41 400.41 16 248.00 82.50 2
22-23 19-26 30.78 30.78 18 355.15 395.00 3
24-25 20-29 — — 20 200.00 — 9
26-27 23-29 — — 20 425.00 — 6
28-29 25-35 — — 20 742.73 — 9

by both approaches. In the column > TL we report the number of timed out instances
(out of 20). Also in this case the time limit has been set to 1800 seconds.

As we can see, the performances of the pure CP approach now start decreasing. For
the difficult instances (last three rows), all 20 instances have achieved the time limit
while the decomposition approach is still able to produce optimal results for half of the
instances.

It appears that the CP solver, during the initial PE assignment and scheduling phase,
has difficulties in computing good makespan bounds taking into account the impact
of memory allocation choices. On the other hand those choices are anticipated, and
thus better managed, by the decomposition based solver, at the price of a weakness
in exploiting resource constraints to compute makespan bounds. Benders’ cuts seem
to be a quite robust device to partially overcome the limitations of the decomposition
approach: perhaps they could be introduced as well in the CP solver to give to it the
ability to handle memory allocation.

These results give a clear indication about the type of solver we have to use de-
pending on the instance structure. If the allocation part is predominant since it greatly
influences task durations, the decomposition approach should be used. On the contrary,
if choosing resource assignments should respect resource capacity constrains but it does
not influence significantly task durations, the pure CP approach greatly outperforms the
(more complex) decomposition approach.

6 Conclusions

The work presented in this paper is part of a wider project aimed at developing a
software development infrastructure, called Cellflow to help programmers in software
implementation on the Cell Broadband Engine processor. Although an off-line develop-
ment framework and an on-line runtime support are needed in Cellflow, the optimiza-
tion engine is a fundamental component. We are designing an algorithm portfolio and a
selection algorithm based on the instance structure.
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Abstract. Brazilian petrobras is one of the world largest oil compa-
nies. Recurrently, it faces a very difficult over-constrained planning chal-
lenge: how to operate a large pipeline network in order to adequately
transport oil derivatives and biofuels from refineries to local markets. In
spite of being more economical and environmentally safer, the use of a
complex pipeline network poses serious operational difficulties. The net-
work has a complex topology, with around 30 interconnecting pipelines,
over 30 different products in circulation, and about 14 distribution de-
pots which harbor more than 200 tanks, with a combined capacity for
storing up to 65 million barrels. The problem is how to schedule individ-
ual pumping operations, given the daily production and demand of each
product, at each location in the network, over a given time horizon. We
describe a solution based on a two-phase problem decomposition strat-
egy. A novel Constraint Programming (CP) model plays a key role in
modeling operational constraints that are usually overlooked in litera-
ture, but that are essential in order to guarantee viable solutions. The
use of CP was crucial, since it allowed the modeling of complex con-
straints, including nonlinearities. The full strategy was implemented and
produced very adequate results when tested over large real instances. In
contrast, other approaches known from the literature failed, even when
applied to much less complex networks.

1 Introduction

petrobras is ranked as the 14th largest oil company in the world (see
www.energyintel.com). One of the major sources of costs faced by petrobras

is related to transportation, specially regarding petroleum derivatives, such as
gasoline, and biofuel, like ethanol. In this context, pipeline networks are con-
sidered the main inland transportation mode in contrast to rail and road, since
they are much more economical and environmentally safer.

However, these advantages ensue a very high operational complexity. For in-
stance, the Brazilian pipeline network owned and operated by petrobras has an
extension of 7,000 kilometers, comprising 29 individual interconnecting pipelines
in which more than 30 different types of products are in circulation. There are
14 distribution depots that can store up to 65 millions barrels of these products,
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Fig. 1. petrobras pipeline networks
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Fig. 2. A pipeline network example

stocked in more than 200 tanks located at such depots. A partial illustration of
the Brazilian southeastern network is shown in Figure 1. Pipelines must always
be completely filled with products, meaning that a volume must be pushed into
a duct in order to pump out the same volume at the other extremity. Moreover,
due to chemical properties, certain products can not make contact with each
other - they are called incompatibles. Also, each product has its own flow rate
interval, and that depends on the flow direction and on the particular pipeline
being used. At depots, not all departing and arriving operations can be simulta-
neous, due to restrictions imposed both by the internal valve and ducts layout, as
well as by the number of local pumps. Tanks can store just one type of product,
and extraction or injection of volumes can not be simultaneous.

The problem is how to schedule all individual pumping operations in order
to fulfill market demands and store all the planned production. Each pumping
operation is defined by origin and destination tanks, a pipeline route, start and
end times, a specific product and its respective volume. The operations must
obey all constraints over the given time horizon. The management of all these
resources gives rise to a complex planning and scheduling problem.

Currently, the problem is solved manually by executing a trial-and-error pro-
cess with the aid of a proprietary simulator that checks whether some simple
physical constraints are being satisfied. This process is very time consuming
and, not rarely, the final results still violate some of the more complex restric-
tions. Clearly, this manual process is far from optimal and limits the efficiency
of the network operation. In fact, it is common for the company to use trucks for
transporting pending volumes, thus increasing the overall transportation costs, a
situation that could be avoided by a more intelligent use of the pipeline network.

Due to its size and complexity, as well as to its financial impact, the efficient
operation of this large oil pipeline network is one of the most strategic problems
faced by logistics at petrobras today. As will be discussed later, CP was at
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the core of a computational model devised and used to find good operational
solutions for real problem instances, in an adequate amount of computer time.

Problem Description. As an illustration, Figure 2 shows a sample network
with 4 depots, B0, B1, B2, and B3, interconnected by 5 pipelines. Between depots
B2 and B3, there are 2 pipelines, which is common to occur in practice. Each
depot also has its own tank farm. For instance, depot B1 has storage tanks for
products P0, P1 and P2. Each tank contains an initial volume. Ducts must always
be completely filled. All of these quantities are measured in standardized units.

The following constraints must be satisfied:

(1) During the whole planning horizon, a tank can store only a pre-defined
product and its capacity must always be respected. But a depot not necessar-
ily contains tanks to store all types of products. All injection and extraction
operations in a tank must be disjunctive in time.
(2) Pipelines operate in an intermittent fashion and must always be completely
filled. No interface losses between products are considered. Furthermore, volumes
pumped out can either enter a tank or move directly into another pipe in an
assigned route. The initial sequence of products inside each pipe is given.

Flows in pipelines can change direction dinamically, an event called pipeline
flow reversal. An example of reversal is illustrated in Figure 3 for a single pipeline
topology. From instants t = 0 to t = 2, a product extracted from tank B0T0P2 in
depot B0 is being used to push another product into the tank B1T0P0 in depot
B1. As soon as the first product is completely injected into its destination tank
at t = 3, the second volume must return to the first depot, since there is no tank
for it in depot B1. This is done by using the product from tank B1T0P1 to push
it back to the origin tank, changing the pipeline direction at t = 4 and t = 5.
(3) Depending on the internal arrangement of a depot, certain operations can not
be active simultaneously. Such sets of operations are called forbidden alignment
configurations. Also, each depot has an upper limit on the number of outgoing
pump operations, which depends on the number of available pumps.
(4) A route is an alternating sequence of depots and non-repeating connecting
ducts. For example, the sequence (B0, D1, B2, D3, B3) represents a valid route in
figure 2. Each product in circulation must have a route assigned to it, and a
volume can only leave its route at the final destination tank. Although there
is no restriction barring the creation of new routes, the most common choices
obtained from human experience should be preferred.
(5) Least maximum flow rates among all products in any route must be enforced.
(6) To separate two incompatible products, it is possible to use a third product,
called a plug, compatible with both products it separates.
(7) Production and demand volumes are defined per depot and per product,
each with its own duration interval.

A solution is defined by a set of pumping operations. Each such operation is
taken as a continuous and atomic pumping stream. An operation is defined by
specifying information about the product, volume, route, origin and destination
tanks, as well as start and end pumping times. Once a pumping operation starts,
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the volume must follow its designated route until it reaches the destination tank.
However, a pumping operation can be stopped at any time, as long as no pumped
volume (i.e. a volume that composes a whole operation) is interleaved with other
products at any intermediate depot along its assigned route. The main goal is
to find a solution that respects all operational and physical constrains of the
network, as well as that uses stocks and productions to satisfy all local demands,
while storing away any remaining production.

2 Why CP and Related Work

Previous studies from the literature frequently have focused on more restricted or
much smaller network topologies. Usually, they consist of a single pipe connect-
ing one origin (a refinery) to multiple depots. Different problem decompositions
together with several MILP formulations [1,2,3,4] were proposed for these cases.
Some studies also deal with variable pumping flow rates and other non-linear con-
straints [5,6]. Other approaches handle multiple origins and destinations within
a more realistic network, albeit neglecting most of the hard constraints in order
to make the problem tractable [7]. In [8], a MILP based on a network flow model
was created to solve a relaxed version of the problem, but it took more than 50
hours of computer time only to find the LP initial basis.

As our research indicated, taking advantage of the problem structure using
single MILP models is not practical for two reasons. First, most of the problem
restrictions are computationally costly, or even impossible, to model as linear
constraints, specially those related with variable flow rates and transmission be-
tween pipelines. Besides, MILP models would have to deal with multiple pipelines
and depots, and investigation showed that the number of integer variables and
constraints would increase at an unacceptable rate. On the other hand, heuristic
and meta-heuristic strategies per se are greatly impaired when too many op-
erational constraints are considered. This is particularly disturbing when slight
modifications in a solution give rise to serious collateral perturbations over the
problem structure as a whole. For example, since products can flow directly from
one pipeline to another, changing a single pumping start time may delay the ar-
rival of a number of other products that pass through connected pipelines. This
can easily render a candidate solution into an infeasible one.

In face of all these issues, the use of CP was seen to offer great advantages
for modeling and solving this problem. Firstly, its powerful modeling language
allowed for the implementation of operationally crucial constraints, besides pro-
viding enough flexibility to extend the model if new restrictions were risen by
pipeline operators. Secondly, and most importantly, it was possible to exploit spe-
cific problems patterns explicitly. This is done, for instance, by modeling multiple
subproblem representations in order to use specialized and adequate constraint
propagation mechanisms to solve each of the subproblems. In fact, such mul-
tiple perspectives played an important role in the final model, greatly improv-
ing domain reductions. Furthermore, a preliminary study [9] already indicated
that CP would be flexible and powerful enough to treat the real problem faced
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by petrobras. Finally, the use of CP was further fostered by its well-known
good performance when treating scheduling problems [10]. In addition, CP is
more suitable for our case since any feasible solution is enough.

3 How CP ?

The complete problem was solved using a hybrid approach that combined a
randomized constructive heuristic and a novel CP model. The hybridization main
cycle is schematically presented in Figure 4. The planning phase, implemented
as a constructive heuristic, is responsible for creating a set of delivery orders.
Each such order is defined by a volume, origin and destination tanks, product
type, route and a delivery deadline. The planning phase must guarantee that, if
all delivery orders are completed within their respective deadlines, local market
demands will be fulfilled and the excess production will be correctly stored away.
The scheduling phase takes the set of delivery orders generated by the planning
phase. It must both sequence the pumping operations at the initial pipeline
in each route present in a delivery order, as well as determine the start times
of each of the pumping operations, while ensuring that no network operational
constraint is violated at any time. The scheduling phase represents the problem’s
central decision process and it was implemented as a CP model. In the sequel,
each phase will be discussed, with the CP model described in more detail.

Planning and Routing. To generate delivery orders, we created a randomized
constructive heuristic that makes use of the accumulated experience at petro-

bras. The purpose of the randomization is to generate diversified sets of orders
in case the main cycle restarts, increasing the chance of finding solutions. Also,
it takes into consideration other criteria that are difficult to handle manually,
such as estimating the time for product volumes to arrive at depots.

Delivery orders are created incrementally as follows: (1) randomly select a
local product demand in any depot, giving higher priority to demands that
must be fulfilled earlier in time; (2) randomly choose depots that could supply
volumes of the required products, as well as the routes that these volumes should
traverse. In order to do so, consider factors such as pipeline occupation rate,
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Fig. 3. Example of a flow reversal

Scheduling Phase

Planning Phase

Instance

Set of Orders

Solution

No Solution

Fig. 4. Solver Framework



Planning and Scheduling the Operation 41

production schedules, present product stocks and estimated time of arrivals; (3)
select origin and destination tanks, setting order volumes accordingly. Also, set
order deadlines so as to guarantee demand fulfillment.

As soon as there is no more demands to choose from, the planning phase
ends. At this point network operators can interfere adding, modifying, or re-
moving orders according to their particular needs. This flexibility is interesting
since sudden needs might unexpectedly arise. For example, there might be ex-
ceptional cases where the operators want to empty certain tanks for emergency
maintenance purposes. This could be achieved by issuing new orders that remove
products from those particular tanks.

All demands are guaranteed to be satisfied if the resulting orders can be
scheduled to arrive by their respective deadlines. Of course, at this stage, it is
not possible to know if the whole pipeline network can be operated in a way that
meets all delivery order deadlines, while satisfying all problem constraints.

Orders are indivisible, i.e., once a volume starts to be pumped in, no other
pump operation, at that same origin, can be started before the first one com-
pletes. However, orders are preemptive in the sense that they can be interrupted
and be resumed at a later time. For instance, it is possible that a segment of the
route that is being used in this pumping must also carry other products, with
more pressing deadlines, along another route that has that segment in common.
In such cases, it may be necessary to interrupt the present pumping operation,
allowing for the more urgent products to circulate in the common pipeline seg-
ment, later resuming the first pumping.

Sequencing and Scheduling Orders. The scheduling phase must determine the
pumping parameters in order to meet all delivery order deadlines, also taking
into account the network operational constraints. Or it must prove that the
present set of delivery orders can not be sequenced nor have their start times set
in a way that observe all their assigned deadlines. At this point, orders already
have their routes, volumes and origin/destination tanks assigned by the planning
and routing phase, besides their deadlines.

In a typical scenario comprising 14400 minutes (i.e. 10 days), the model is
expected to deal with around 900 delivery orders, involving dozens of products,
leaving and reaching several tanks, circulating through many interconnected
pipelines, and subject to thousands of constraints. In order to cope with this
problem complexity, the CP model was further divided into two steps. A first
model treats the sequencing of delivery orders, generating time intervals for
the start of the respective pumping operations. After one such sequencing is
completed, the most difficult constraints are guaranteed to be satisfied. Then a
second, simpler, CP model takes over and determines the number of pumping
operations for each delivery order (i.e. taking into account possible preemptions),
as well as the start time of each operation.

All time variables represent minutes, the unit currently adopted by network
operators. Therefore, all variables have integer domains. Time value roundings,
e.g. due to some particular combination of flow rate and pipeline extension, can
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be safely neglected given the large volumes that are involved. Variable domains
are easy to infer from the input data instances and are not further detailed here.

The Sequencing Model. This model must take into account product pair
incompatibilities, tank capacities, pipeline flow direction restrictions and other
essential operational constraints, such as no two products being pumped into a
pipeline simultaneously. Furthermore, it must consider order deadlines and flow
rates, in order to determine valid time bounds for the pumping operations.

The model interrelates two different viewpoints [11]. Firstly, the order viewpoint
provides a global view of the problem, dealing mainly with routes and volume
transmission between pipelines. In contrast, the operations viewpoint captures a
local view of the problem, representing the pumping operation constraints in each
pipeline. Both viewpoints are connected by channeling constraints.

The Order Viewpoint. The order viewpoint handles the problem globally, fo-
cusing on the relationship between orders and the pipelines that occur in their
assigned routes. It also enforces constraints related to flow rates, deliver dead-
lines, disjunctions of pipeline operations, product incompatibilities, and tanks.

Let P be the pipeline set, T the tank set and O = {o1, . . . , on} the set of
delivery orders received from the planning phase. For each oi ∈ O, let route(oi) =

(pl, . . . , pm) be the sequence of pipelines that order oi must traverse. For each
p ∈ route(oi), the volume specified by oi can have one of four possible pipeline
flow attributes when traversing pipeline p: N , if it follows the normative, or
preferred, pipeline flow direction; R, if it follows the reverse direction; NR, if it
starts in the normative direction, but later changes to the reverse direction, thus
leaving the pipeline through the same extremity it was pumped into; and RN ,
similar to NR but starting in the reverse direction. Let variable directi,p specify
one among such possibilities. Finally, let origin(oi), destin(oi) ∈ T be the origin
and destination tanks, respectively, for order oi.

For each oi ∈ O and p ∈ route(oi), we define two activities [12], sndi,p and
rcvi,p, each composed by start and end time variables and an inferred non-
negative duration variable. The first activity represents the time interval during
which order oi is being pumped into p, while the second represents the time
interval during which the order is being pumped out of p. Using these activities,
we can give bounds on flow rates and state delivery deadline constraints for each
oi ∈ O and each p ∈ route(oi):

EndT ime(rcvi,p) ≤ deadline(oi), (1)
Duration(sndi,p).max flow ratep,directi,p ≥ volume(oi), (2)
Duration(rcvi,p).max flow ratep,directi,p ≥ volume(oi). (3)

Before an order exits a pipeline, it must first traverse all the pipeline extension.
Thus, for each oi ∈ O and p ∈ route(oi), we require:

StartT ime(rcvi,p) ≥ StartT ime(sndi,p) +

—
volume(p)

max flow ratep,directi,p

�
. (4)

When an order is being pumped out of a pipeline, it is immediately pumped
into the next pipeline in its route, without volume loss. This can be done by
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unifying [13] send and receive activity variables in the following way. For each
oi ∈ O and for each pair (pl, pm) of consecutive pipeline pairs in route(oi), let:

StartT ime(rcvi,pl
) = StartT ime(sndi,pm

), (5)
EndT ime(rcvi,pl

) = EndT ime(sndi,pm
). (6)

Order activities in a pipeline must all be disjunctive with respect to time; a
send (or receive) activity from a certain order must not overlap with the send
(or receive) activity of other orders in the pipe. In order to guarantee this, for
each p ∈ P, we define two unary resources1: SndResourcep and RcvResourcep,
and we associate the send and receive activities to these resources, respectively.
Since an unary resource defines a mutually exclusive relationship between ac-
tivities that are linked to it, each resource constraint is ranked during the solv-
ing process, i.e., it is ordered along the time line. This ranking is explicitly
represented in our model using positional variables sndPosi,p and rcvPosi,p, ac-
counting for, respectively, the send and receive activities positions of order oi

in pipeline p ∈ route(oi). The positional variables are connected directly to the
resource’s precedence graph [10,12], expressed by the constraints:

sndi,p startsBefore sndj,p ⇐⇒ sndPosi,p < sndPosj,p, (7)
rcvi,p startsBefore rcvj,p ⇐⇒ rcvPosi,p < rcvPosj,p, (8)

∀oi, oj ∈ O, ∀p ∈ route(oi) ∩ route(oj).

We also add redundant all different global constraints [13]. For each p ∈ P,

all diff(sndPosi,p) ∧ all diff(rcvPosi,p),∀oi ∈ O s.t. p ∈ route(oi). (9)

In case two orders oi, oj ∈ O share at least one common consecutive pipeline
pair (pl, pm) ∈ route(oi) ∩ route(oj), the activities precedence relations must be
preserved in both pipelines. Here, we present the restrictions for flow directions
N and R, the other cases being similar.

sndPosi,pl
> sndPosj,pl

⇐⇒ sndPosi,pm
> sndPosj,pm

(10)
∧ rcvPosi,pl

> rcvPosj,pl
⇐⇒ rcvPosi,pm

> rcvPosj,pm
,

∀oi, oj ∈ O, ∀(pl, pm) ∈ route(oi) ∩ route(oj).

Positional variables also help discarding sequences that violate product incom-
patibilities. Given two orders oi, oj ∈ O, if product(oi) and product(oj) are incom-
patible, then they can not make contact in a pipeline. A necessary condition for
contact is that both orders enter consecutively at the same pipeline extremity,
and this can only happen if they have the same entering (or leaving) pipeline
flow direction. This scenario is represented by the following constraints, for each
oi, oj ∈ O, p ∈ route(oi) ∩ route(oj) and product(oi) incompatible product(oj).

|sndPosi,p − sndPosj,p| > 1 if (directi,p 
= N ∨ directj,p 
= RN) (11)
∧ (directi,p 
= R ∨ directj,p 
= NR),

|rcvPosi,p − rcvPosj,p| > 1 if (directi,p 
= N ∨ directj,p 
= NR) (12)
∧ (directi,p 
= R ∨ directj,p 
= RN).

1 An unary resource is a resource that allows for only one activity at a time [12].
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Next, we define two new activities: exti,origin(oi) and inji,destin(oi), representing
volume extraction and injection, respectively, from the assigned tanks associated
with order oi. The relationship between send (receive) variables and tanks ac-
tivities is the same as those for pipeline volume transmissions. For each oi ∈ O,
letting p0 and pm be the first and last pipeline in route(oi), we state:

StartT ime(sndi,p0) = StartT ime(exti,origin(oi)), (13)
EndT ime(sndi,p0) = EndT ime(exti,origin(oi)), (14)

StartT ime(rcvi,pm
) = StartT ime(inji,destin(oi)), (15)

EndT ime(rcvi,pm
) = EndT ime(inji,destin(oi)). (16)

Injecting and extracting volumes from tanks must not overlap in time as well.
Hence, activities exti,t and inji,t are associated with a new unary resource
TkDisjt, created for each tank t ∈ T. However, capacities must also be taken into
account in this case, requiring the combined use of a different type of resource
TkRest, t ∈ T, called a reservoir [12]. Such activities can both increase capacity
(volume injection) or deplete capacity (volume extraction) from reservoirs.

Finally, we must also consider production and demand volumes in order to
appropriately represent the behavior of tank capacities. Let Dem and Pr be,
respectively, the sets of demands and productions given as input. For each d ∈
Dem, an activity demd is created, with its associated constraints, considering
demand time bounds and volume extraction from tanks. Similarly, an activity
prodp is created for each p ∈ Pr, but now considering volume injection instead
of extraction. These activities are associated with the unary resources TkDisjt

and reservoirs TkRest. Additional constraints are stated as follows.

StartT ime(demd) ≥ DemandMinStartTime(d), (17)
EndT ime(demd) ≤ DemandMaxEndTime(d), ∀d ∈ Dem, (18)

StartT ime(prodp) ≥ ProductMinStartTime(p), (19)
EndT ime(prodp) ≤ ProductMaxEndTime(p), ∀p ∈ Pr. (20)

The Operations Viewpoint. The main intuition for this viewpoint is to consider
each pipeline individually (a local vision), since time variables domains will be
automatically propagated by force of constraints defined in the order viewpoint.
Although time bounds and disjunctions were already established, it is still neces-
sary to model the fact that, in order for a certain volume to leave a pipeline, the
exact amount of volume must be pumped in from the other extremity. Besides
that, restrictions such as variable flow rates which depend on the products inside
a pipeline, must also be considered. We will also use some ideas from previous
studies [2,5,6], that treated the case of a single pipeline.

Given a pipeline p ∈ P , two time-ordered sets of operation activities are de-
fined, SndP ipep and RcvP ipep, where |SndP ipep| = |RcvP ipep| = |{oi : oi ∈ O, p ∈
route(oi)}|. As in the order viewpoint, they represent send and receive activities
in p, respectively, but now with new precedence relations of the form

i < j ⇐⇒ sndOpp,i startsBefore sndOpp,j , ∀sndOpp,i, sndOpp,j ∈ SndP ipep,

i < j ⇐⇒ rcvOpp,i startsBefore rcvOpp,j , ∀rcvOpp,i, rcvOpp,j ∈ RcvP ipep.
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A volume and a product variables are additionally associated with each ac-
tivity belonging to SndP ipep and RcvP ipep. We thus say that both sequences
represent a valid ranking of undetermined delivery orders; they will only be de-
termined when orders are ranked in their unary resources. However, since they
are already time-ordered, we are able to create a more intuitive and compact
model to represent pipeline flow behavior, in which constraints will also enforce
propagation in the order viewpoint variable domains.

Let rcvOpp,j ∈ RcvP ipep be an activity. A certain volume associated with it
can only be received when an activity sndOpp,i ∈ SndP ipep is being pumped at
the other extremity of the pipe. In order to define which send activity i pushes a
receive activity j, it is necessary to consider three factors: the pipeline volume,
the volumes of the activities and the volumes between activities sndOpp,i and
rcvOpp,j , i.e., the volume still in the pipeline before sending sndOpp,i and after
receiving rcvOpp,j . For the latter, a new variable accp,i,j is created for each
sndOpp,i ∈ SndP ipep, rcvOpp,j ∈ RcvP ipep, for i ≤ j, as follows:

accp,i,j =
X
k<i

volume(sndOpp,k)−
X
k≤j

volume(rcvOpp,k). (21)

It can be shown that sndOpp,i never pushes rcvOpp,j off the pipeline, for i > j,
due to the time-ordering of the relation. If accp,i,j ≥ volume(p), then it is not
possible for sndOpp,i to push rcvOpp,j , since a quantity greater or equal than
the pipeline volume was already injected between activities i and j. On the
other hand, if accp,i,j + volume(sndOpp,i) + volume(rcvOpp,j) ≤ volume(p), then
the volume in sndOpp,i is not enough to push rcvOpp,j out of the pipeline. Thus,
a necessary and sufficient condition for activity i to push activity j out of the
pipeline (a pushi,j event), can be stated as:

pushi,j ⇐⇒ accp,i,j < volume(p) (22)
∧ accp,i,j + volume(sndOpp,i) + volume(rcvOpp,j) > volume(p).

Similar ideas can be used to determine the exact amount of volume involved
in the pumping. Let flowi,j be the volume used in sndOpp,i to push the same
volume flowi,j from rcvOpp,j out of the pipeline. We have:

pushi,j =⇒ flowi,j = min[volume(rcvOpp,j), volume(rcvOpp,j) (23)
+ volume(sndOpp,i) + accp,i,j − volume(p)]

− max[0, volume(rcvOpp,j) + accp,i,j − volume(p)],

¬pushi,j =⇒ flowi,j = 0. (24)

These flow variables can be seen as flow edges in a capacitated network. Assuming
that each operation activity represents a node, the amount of volume (flow)
pushed into a pipe must be equal to the volume pushed out it, and both are
equal to the operation’s total volume. To model this restriction, we can use a
flow global constraint [10] for send and receive variable sequences.

In order to ensure flow rate bounds consistency, it is necessary to limit the flow
rate of send and receive activities according to the products that are inside the
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pipeline when the pumping activity occurs. This can now be easily done using
the earlier condition accp,i,j + volume(sndOpp,i) + volume(rcvOpp,j) ≤ volume(p),
which is true if sndOpp,i and rcvOpp,j are both inside the pipeline at the moment
of pumping. Let MaxF li be a variable representing the maximum flow rate for
activity sndOpp,i, related to the variable product(sndOpp,i), and let MaxF lj stand
similarly for activity rcvOpp,j . We state:

accp,i,j + volume(sndOpp,i) + volume(rcvOpp,j) ≤ volume(p) (25)

=⇒
—

volume(sndOpp,i)

(EndT ime(sndOpp,i)− StartT ime(sndOpp,i)

�
≤ MaxF lj

∧
—

volume(rcvOpp,j)

(EndT ime(rcvOpp,j)− StartT ime(rcvOpp,j)

�
≤ MaxF li.

Finally, flow directions in the pipeline must be consistent as well. For instance,
if an activity has its direction attribute set to N , the next activity along the pipe
must necessarily have its direction attributes set to N or NR. Direction attributes
such as R and RN are only consistent after a sequence of NR activities whose
volume sum is equal to the pipeline volume. Attribute RN is treated similarly.
These valid pairs are enforced using a Table Constraint [12].

For the pipeline reversal, a special constraint reversal was created, encapsu-
lating the rules for the reversal of flow direction. This global constraints also
controls the relation between the sequences sndPosi,p and rcvPosi,p, since orders
do not enter and live a pipe in the same order when there is a flow reversal,
as showed in figure 3. If there is no flow reversal in a pipe p, then a constraint
sndPosi,p = rcvPosi,p is added to the model.

The Channeling Constraints. The order and operation viewpoints can be easily
connected using the element constraint [13] and positional variables. Notice that
a similar set of constraints is applied to the receive sequence.

StartT ime(sndi,p) = StartT ime(sndOp sndPosi,p, p), (26)
EndT ime(sndi,p) = EndT ime(sndOp sndPosi,p, p), (27)

volume(oi) = V olume(sndOp sndPosi,p, p), (28)
direct(oi) = Direct(sndOp sndPosi,p, p), (29)
product(oi) = Product(sndOp sndPosi,p, p), (30)

∀oi ∈ O, p ∈ route(oi).

The Scheduling Model. The second part of the complete CP model is a
simpler model which is responsible for assigning the exact times to pumping
operations, respecting forbidden alignment configurations and avoiding simulta-
neous pipe usage. The pumping operations are created by checking the flowp,i,j

variables values for each activity i and pipeline p. If flowp,i,j > 0, for a certain
j, then there is a pumping operation of volume flowp,i,j with flow rate and time
bounds already established by the sequencing step. In that case, a new activity,
pumpOp, is created and its time constraints are included in the model. Note that
the precedence among activities can be inferred from the orders’ sequence.
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Let Dep be the set of depots, and let PumpOpsd give the pumping operations
that will start at depot d, for each d ∈ Dep. The simultaneous sending constraint
can be implemented using a discrete resource, DiscSendingd, a resource which
limits the number of consecutive operations by a certain capacity [12]. Thus, we
associate each operation in PumpOpsd in its respective resource DiscSendingd,
limited by the input DepotMaxSimultaneousOperationsd. Similarly, the forbidden
alignment configurations are enforced with discrete resources AlignDisca,d, cre-
ated for each alignment restriction a. The operations associated with each re-
source are easily identifiable by checking their product type and flow direction.

Free Delivery Orders. In certain scenarios, the orders created by the plan-
ning phase are not enough to guarantee a valid pumping solution. For instance,
suppose that only two orders need to be scheduled, and they have incompati-
ble products. Consequently, one can not push the other in a pipeline. A third
product must be used between them. For that, free delivery orders are arbi-
trary created before entering the scheduling phase. In contrast to regular orders,
their volumes, products, and origin/destination tanks are treated as variables
instead of constants, and they do not have a deadline. Note also that free orders
may have a null volume associated with them. Furthermore, their routes are
previously determined by choosing among the ones typically used by pipeline
operators. Operators can change such routes by editing a configuration file.

Free orders are also used to represent products that remain in the pipeline
at the end of the process, for the purpose of ensuring that all pipes are always
completely filled. These orders do not have a destination tank, and constraints
are used to indicate they are the last ones to be pumped into the pipelines.

Only minor changes to the previous model are necessary in order to accommo-
date free orders. Among them, in the order viewpoint, constraints where volume
and product were constants should be changed to variables, and an Alternative
Resource Set [12] can be used to indicate that an origin and destination tank
must be assigned to free orders. The operation viewpoint remains unchanged.

Search Strategy. Different types of search strategies were tested for solving
both the sequencing and the scheduling models. The currently implemented
version is shown as Algorithm 1. It combines a backtracking mechanism [13] with
a special variable ordering, being divided into three consecutive parts: disjunctive
components determination, adaptive backtracking and time assignment. In the
Disjunctive Components Determination, a disjunctive component is defined as a
subset of the network which can be scheduled separately, without affecting other
regions. Two pipelines belong to the same component if they are both contained
in at least one order’s route. The same reasoning applies to tanks.

For the Adaptive Backtracking, we implemented backtracking using positional
variables for each pipeline. The term adaptive comes from the fact that it is based
on a restart strategy [14]. As such, the pipeline sequencing order is changed dy-
namically according to the number of fails that occurred during the search. The
values of positional variables are randomly chosen, giving higher probabilities to
orders with the earliest deadlines. For free orders, volumes, products and tanks
are set after their respective positional variables are labeled.
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Algorithm 1. Procedure for search strategy
begin1

Identify network disjunctive components C2

for each c ∈ C do3

Build pipe graph G(c) and sort it topologically, obtaining order N4

N ′ := N ; k := initial k5

while N ′ 
= ∅ do6

p := first element from sequence N ′; N ′ := N ′/{p}7

Label positional variables, and volumes/tanks in case of free orders8

if fails in labeling ≥ k and not cyclic condition then9

k := k+incremental factor; N ′ := N10

Move p to the beginning of sequence N ′
11

while no scheduling solution found do12

Create scheduling model and assign times as earliest as possible13

if no solution then request next sequencing solution14

end15

The initial sequencing is constructed as follows. Firstly a pipe graph is created,
in which pipelines are nodes and there is a direct arc from node p to q if there
is a consecutive pair (p, q) in some order’s route. In case there are two arcs (p, q)

and (q, p), only the one associated with the order having the earliest deadline
is maintained. Secondly, the graph is topologically sorted, the result being the
desired initial sequencing. Clearly, this strategy considers first those pipelines
with the least number of orders that come directly from other pipelines.

After the occurrence of k fails involving a pipeline, the backtrack tree is reini-
tialized with that pipeline as the first element in the topological ordering, and
k is incremented by a constant. This implementation was motivated by the fact
that, during test runs, it was observed that a fair number of fails were caused
by earlier decisions taken when instantiating variables in related pipelines in the
given sequencing. We empirically determined k = 150 and 100 as the increment.

Finally, in Time Assignment, executed after the sequencing is completed, the
CP scheduling model is created and the time variables are instantiated with the
least possible value in their domains. This forces pumping to start as soon as
possible. In case a failure ensues, a new sequencing solution is requested, most
certainly a different one due to the randomization present in the model.

4 Results

Solutions were obtained on a Intel Pentium D 3.40 Ghz CPU platform, with
4GB of memory. The planning and scheduling phases were coded in C++ and
compiled using GCC-4.0. The CP model was solved using ILOG Solver 6.2 and
ILOG Scheduler 6.2, with medium to high propagation enforcement. Part of
a typical solution is presented in Table 1. As described earlier, a solution is
a sequence of pump operations and each line in the table describes one such
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Table 1. Solution Example

Ti Tf Vol. Pd TkOr TkDt Route
2075 2362 858 G T004 T005 SUG03
4857 4868 30 N T160 T087 GUG03
4870 5111 722 D T008 T005 BUG03
... ... ... ... ... ... ...

Table 2. Solver Results

Instance 1 2 3 4
Horizon 10 days 7 days 7 days 7 days
Orders 924 645 724 693

Planning Phase Time 4 min 5 min 4 min 6 min
Planning Phase Peak Memory 78MB 61MB 67MB 63MB

Sequencing Model Variables 37,326 21,381 25,938 24,315
Sequencing Model Constraints 382,565 148,075 160,302 155,409

Sequencing Choice Points 3,355 2,462 3,417 2,518
Sequencing Fails 2,301 1,291 987 1,902
Sequencing Time 2 min 1 min 1 min 1 min

Sequencing Peak Memory 450 MB 240 MB 310 MB 270 MB
Scheduling Model Variables 12,350 7,530 8,931 8,032

Scheduling Model Constraints 27,088 16,768 19,231 18,292
Scheduling Choice Points 1,516 1,164 801 1,810

Scheduling Fails 301 429 210 120
Scheduling Time 2 min 1 min 1 min 1 min

Scheduling Peak Memory 450 MB 250 MB 290 MB 280 MB
Total Time 8 min 7 min 6 min 8 min

operation. Column headings are as follows: Ti and Tf are the start and end
times (in minutes), respectively; V ol is the pumped volume (in m3); Pd is the
product code (G is gasoline, N is naphtha and D is diesel); TkOr and TkDt are
origin and destination tank codes, respectively; and Route is the route code. A
full solution table would contain several hundred such lines.

We used four real field instances to test the models. The first two rows in
Table 2 indicate the time horizon and the number of deliver orders generated by
the planning phase, respectively, for each of the test instances. The remaining
lines give details of typical runs. All instances share the same network topology
of 14 depots, 29 pipelines, 32 different product types and 242 tanks distributed
among the depots. Pipelines volumes range from 30 to 8,000 m3, and most of
the tank capacities are between 4,000 and 30,000 m3.

In all cases the solver found a solution in a reasonable amount of computer
time, e.g., within 10 minutes. Most variables were instantiated as a result of
constraint propagation. The search heuristic, which proved crucial in the plan-
ning phase, was also instrumental to improve other important aspects of the
solution quality, as noticed by logistic engineers. For instance, usually, a typical
solution showed only a very small number of pipeline flow reversions, the kind of
operation that engineers prefer to keep to a minimum. Also, new and interesting
routes were identified. Some of them came as a surprise to logistic engineers, who
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were biased towards the same traditional routes they were using when manually
planning the network operation.

5 Added Value and Conclusions

We proposed a novel procedure for generating feasible solutions for real instances
stemming from planning and scheduling the operation of a very-large pipeline
network used do move petroleum derivatives. The operation of such a network
is subject to a complex set of physical and operational constraints, and it makes
possible the delivery of oil and biofuel to local markets, as well as the storing of
the excess production from refineries. Using the CP paradigm, these constraints
were adequately modeled. Problems of this size and complexity, as known by the
authors, would not be solved by other approaches reported in the literature to
date, in which much of the difficult constraints and topologies are overlooked.

The procedure is already integrated with a proprietary flow simulation tool
and the company is currently considering it for routine use on a daily basis.
The tool has already proved its value, showing that it can save many valuable
work hours of skilled engineers. Also, using the tool, many different planning
and scheduling scenarios can be easily setup and quickly tested, by varying local
demand needs and production schedules at refineries.

The present modeling and implementation stage was reached after 2 years of
problem specification, data gathering, model development, and testing. As work
progresses, it is expected that new constraints will be introduced. Such could
include inventory management restrictions, limitations on energy use at specific
time intervals and at specific depots, and shutdown periods or partial operation
intervals for tanks and pipelines. When modeling such new constraints, we feel
that the flexibility of the CP paradigm will again prove to be crucial.

As for future directions, one could implement more sophisticated search
heuristics for both the planning and scheduling phases, making the overall ap-
proach capable of dealing with more specific instance classes. Finally, one could
consider objective functions that would help guide the heuristics. This would
provide a yardstick that could be used to gauge solution quality.
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Abstract. Rectangle (square) packing problems involve packing all squares with
sizes 1 × 1 to n × n into the minimum area enclosing rectangle (respectively,
square). Rectangle packing is a variant of an important problem in a variety of
real-world settings. For example, in electronic design automation, the packing of
blocks into a circuit layout is essentially a rectangle packing problem. Rectangle
packing problems are also motivated by applications in scheduling. In this paper
we demonstrate that an “off-the-shelf” constraint programming system, SICStus
Prolog, outperforms recently developed ad-hoc approaches by over three orders
of magnitude. We adopt the standard CP model for these problems, and study a
variety of search strategies and improvements to solve large rectangle packing
problems. As well as being over three orders of magnitude faster than the current
state-of-the-art, we close eight open problems: two rectangle packing problems
and six square packing problems. Our approach has other advantages over the
state-of-the-art, such as being trivially modifiable to exploit multi-core comput-
ing platforms to parallelise search, although we use only a single-core in our
experiments. We argue that rectangle packing is a domain where constraint pro-
gramming significantly outperforms hand-crafted ad-hoc systems developed for
this problem. This provides the CP community with a convincing success story.

1 Introduction

Rectangle (square) packing problems involve packing all squares with sizes 1 × 1 to
n × n into an enclosing rectangle (square) of minimum area. Rectangle packing is an
important problem in a variety of real-world settings. For example, in electronic design
automation, the packing of blocks into a circuit layout is essentially a rectangle pack-
ing problem [12, 14]. Rectangle packing problems are also motivated by applications
in scheduling [10, 11, 13]. Rectangle packing is an important application domain for
constraint programming, with significant research into improved constraint propagation
methods reported in the literature [1, 2, 3, 4, 5, 6, 7, 15].

The objective of this paper was to demonstrate that a current “off-the-shelf” con-
straint programming system, in our case SICStus Prolog [8], is competitive with the
hand-crafted ad-hoc solutions to rectangle packing that have been reported in the lit-
erature. Our methodology was to consider the standard formulation of the rectangle
packing problem, and study the performance of SICStus Prolog using several appro-
priate search strategies that we explore in this paper. We have developed no new con-
straint programming technology, such as ad-hoc global constraints, restricting ourselves

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 52–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

{h.simonis,b.osullivan}@4c.ucc.ie
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entirely to the facilities provided by the standard solver. The surprising, and extremely
encouraging, result is that rather than being simply competitive on this problem class,
SICStus Prolog outperforms recently developed ad-hoc approaches [10, 11, 13] by over
three orders of magnitude. In addition, we close eight open problems in this area: two
rectangle packing problems and six square packing problems. Therefore, we claim that
rectangle (square) packing provides the CP community with a convincing success story.

We consider rectangle packing to be a more attractive benchmark for general place-
ment problems than the perfect square placement problems considered in [1, 2, 3, 4,
5, 6, 7, 15] for several reasons. Firstly, the perfect square placement problem contains
no wasted space (slack), a situation rarely found in practical problems. It is tempting
to improve the reasoning for this special case [4], while most practical problems ob-
tain little benefit from such reasoning. Secondly, by providing a single parameter n,
it is easy to create increasingly more complex problems. Note though, that problem
complexity does not necessarily increase directly with problem size, as the amount of
unused space varies with n. Thirdly, for the specific case of rectangle packing, we may
choose to solve the problem by testing different combinations of the width and height
of candidate rectangles, each with different slack values. This nicely tests the generality
of a search method. Finally, for some candidate rectangle sizes, there is no solution that
packs all n rectangles into the candidate solution, although the simple lower bounds on
required area are satisfied. This means that the proof of optimality for these cases is
non-trivial, and may require significant enumeration.

Our future work is to develop a fully constraint-based solution to circuit placement
and routing where we pack the blocks of a circuit into a bounding rectangle such that
the linear sum of the rectangle area and the total length of wiring is minimised. This is
an extremely important problem in electronic design automation [14].

2 Constraint Programming Model

We use the established constraint model [2, 6] for the rectangle packing problem. Each
item to be placed is defined by domain variables X and Y for the origin in the x and y

DISJOINT2

CUMULATIVE

CUMULATIVE

X,Y

W
H

Width

Height

Fig. 1. The basic constraint programming model
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dimension respectively, and two integer constants W and H for the width and the height
of the rectangle, respectively. In the particular case of packing squares, W and H are
identical. The constraints are expressed by a non-overlapping constraint in two dimen-
sions and two (redundant) CUMULATIVE constraints that work on the projection of the
packing problem in x or y direction. This is illustrated by Figure 1. We use SICStus
Prolog 4.0.2, which provides both CUMULATIVE [1] and DISJOINT2 [3] constraints.

2.1 Problem Decomposition

To find the enclosing rectangle with smallest area, we need a decomposition strategy
that generates sub-problems with fixed enclosing rectangle sizes. We enumerate on de-
mand all pairs Width, Height in order of increasing area Width× Height that satisfy

[Width,Height] :: n..∞,Width ≥ Height

n∑
i=1

i2 ≤ Width ∗ Height

k =
⌊
Height+ 1

2

⌋
,Width ≥

n∑
j=k

j (1)

Equation 1 provides a simple bound on the required area, considering all large
squares that cannot be stacked on top of each other, which, thus, must fit horizontally.
For solutions with the same area, we try them by increasing Height, i.e. for two solu-
tions with the same surface we try the “less square-like” solution first. We then solve the
rectangle packing problem for each such rectangle in turn, until we find the first feasible
solution. By construction, this is an optimal solution. The number of candidates seems
to grow linearly with the amount of slack allowed.

Figure 2 shows possible candidate rectangles for n = 26. The diagram plots surface
area on the x-axis, and height of the rectangle on the y-axis. The lower bound (LB) is
marked by a line on the left, the optimal solution is marked by the label Optimal. We
also show an arrow between two rectangles R1 and R2 if one subsumes the other, i.e.
W1 ≤ W2, H1 ≤ H2. Unfortunately, none of the candidates to the left of the optimal
solution subsumes another, we therefore have to check each candidate individually.

This decomposition approach differs from both [11] and [13]. Moffit and Pollack
do not impose a-priori limits on the rectangle to be filled, while Korf builds solutions
starting from an initial wide rectangle. Both methods are anytime algorithms, while
our method is not. Whether this distinction is important will depend on the intended
application. Korf will have to show infeasibility of the same or larger, more difficult
rectangles to prove optimality, while the search space for Moffit and Pollack looks very
different. An advantage of our method is it can be trivially extended to multiple pro-
cessor cores by exploring candidates in parallel. Korf’s method is inherently sequential.
A more fine grain parallelization can be applied to both Moffit and Pollack’s, and our
approaches by unfolding the top choices in the search tree to run as different processes.
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Fig. 2. Candidate plot for n = 26

2.2 Symmetry Removal

The model so far contains a number of symmetries, which we need to remove as we
may have to explore the complete search space. We restrict the domain of the largest
square of size n× n to be placed in an enclosing rectangle of size Width × Height to

X :: 1..1 +
⌊
Width− n

2

⌋
, Y :: 1..1 +

⌊
Height− n

2

⌋
.

For the square packing problem we can apply a slightly stronger restriction, due to the
increased number of symmetries. For an enclosing square of size Size× Size we use the
following restriction for the largest square to be placed

X :: 1..1 +
⌊
Size− n

2

⌋
, Y ≤ X.

3 Search Strategies

For finite domain constraint problems, the choice of a search strategy usually follows
naturally from the model. We first need to decide which variables to enumerate (model),
we then have to consider the order in which they are assigned (variable selection),
and the order in which possible values are tried (value selection). In case the default,
complete, depth-first search is not sufficient, we also may have to decide on a incom-
plete search strategy. For the problem considered here, the choice is much simpler. The
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squares should be assigned by decreasing size, so that the largest squares are assigned
early on; there is no need for a dynamic variable ordering. Note that this is not necessar-
ily true for the general rectangle placement problem, where items may be incomparable.
As we may have to explore the complete search space for many subproblems, the choice
of a good value ordering is not so critical, since it will only have an effect on feasible
sub-problems and, as we need to explore the search space completely for the infeasible
subproblems, there is little that incomplete search strategies can contribute. Given these
restrictions, it is surprising how many different search methods can be applied to this
problem type. The following paragraphs describe the nine alternatives we considered.

3.1 Naive

The most basic routine places the squares one after the other, in order of decreasing size,
by choosing a value for the x and y variables. On backtracking, the next alternative
position is tested. The fundamental problem with this method is the large number of
alternative values to be tested.

3.2 X Then Y

An alternative method would assign all x variables first, before assigning any of the y
variables. The advantage is that after fixing the x values, there are few if any choices
left for the y values, reducing the effective depth of the search tree to n. Unfortunately,
if this does not work, this method will lead to deep backtracking (thrashing), making
finding a solution all but impossible.

3.3 Disjunctive

An alternative way of placing the rectangles is deciding on the relative position of each
pair. A rectangle can be placed to the left, to the right, above or below another rectangle,

X2, Y2

W2

H2

X1, Y1

W1
H1

left
X2 ≥ X1 + W1

Y1 ≥ Y2 + H2 above

X1 ≥ X2 + W2

right

Y2 ≥ Y1 + H1below

Fig. 3. Relative positioning of pairs of squares
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X2 ≥ X1 + W1

X1 ≥ X2 + W2

Y1 ≥ Y2 + H2, X2 < X1 + W1, X1 < X2 + W2

Y2 ≥ Y1 + H1, X2 < X1 + W1, X1 < X2 + W2

Fig. 4. Semantic disjunctive: showing four branches. Note some constraints appear twice.

X2 ≥ X1 + W1

X2 < X1 + W1

X1 ≥ X2 + W2

X1 < X2 + W2

Y1 ≥ Y2 + H2

Y2 ≥ Y1 + H1

Fig. 5. Semantic disjunctive with binary choices

as shown in Figure 3. Each choice is enforced by imposing a constraint on the x or y
variables of the two rectangles.

3.4 Semantic Disjunctive

A problem with the above disjunctive strategy is that the alternative cases are not exclu-
sive: a rectangle can be, for example, both to the left and above another one. This means
that we will consider some alternatives twice in the search, that is not a good idea given
the overall size of the search space. One possible way of dealing with this overlap is
to exclude left and right choices for the placement above and below. This leads to the
four alternatives shown in Figure 4. This method is called semantic4 in the experiments.
Instead of trying these four alternatives for one choice, we can also split the decision
into three binary choices. This maximizes the information that is available at each point
and can help to reduce the number of choices to be explored. These binary decisions
are shown in Figure 5. This method is called semantic in the experiments. The name
semantic disjunctive is taken from [13], although it is not clear which variant is used in
that paper.

3.5 Dual

This strategy is an example of a non-deteriministic variable selection, followed by a
deterministic value selection. This version, called dual, first assigns all the x variables,
and then the y variables. It is the strategy used for the perfect square placement problems
in [2, 6]. It works by choosing increasing values for the variables, and then deciding for
each variable whether it should take that value or not. Once all x variables have been
fixed, finding values for the y variables should be straightforward. There is a risk that
due to a lack of propagation no valid assignment for the y variables exists, which will
cause deep backtracking.
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3.6 Forcing Obligatory Parts

The following strategies try to avoid the large branching factor caused by choosing
individual values for the variables by splitting the domain into intervals first. The key
idea is to make the size of the interval dependent on the size of the rectangle, it should be
chosen large enough so that obligatory parts are generated for the CUMULATIVE and
possibly the DISJOINT constraint. Figure 6 shows the effect of changing the interval
size. Beldiceanu et al. [4] suggest the interval size

⌊
S
2

⌋
+1 for a square of size S, which

creates obligatory parts of at least half the size of the item. We show below that for
the problem and constraints considered here this value is too aggressive, and smaller
interval sizes lead to better performance. We tested three variants of this approach:

Xl Xr

Xl Xr

Number of intervals: large

Number of intervals: small

Obligatory parts

Large Interval

Small Interval

Fig. 6. Forcing obligatory parts

Interval. First split the x variables into intervals, then fix values for them, followed by
splitting the y variables into intervals, and finally fixing the values of the y variables.
This method is proposed in [4] for the perfect square packing problem. It is quite a risky
strategy. But by ignoring the y variables when assigning the x variables, we can again
possibly reduce the height of the search tree by a factor of 2, dramatically reducing the
overall search space. Unfortunately, there is no guarantee that this will work in general,
in particular if there is significant slack and/or the constraint propagation is weak.

Split. First split the x variables into intervals, then the y variables, before fixing the x
variables, and then the y variables. This is even more risky than the previous strategy.

XY Intervals. For each rectangle, split the x and y variables into intervals, creating an
obligatory part for both CUMULATIVE and the DISJOINT constraint. Once this is done
for all rectangles, fix the values for x and y variables for each rectangle. This method is
less aggressive, but, by interleaving x and y variables, may create larger search trees.
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4 Model Improvements

We consider some runtime performance enhancing improvements.

4.1 Empty Strip Dominance

In [10] one of the pruning methods is a dominance criterion that eliminates certain
partial placements from consideration, since an equivalent placement has already been
investigated. This is a special case of symmetry breaking, a very active field of research
for constraint programming [9]. Such reasoning cannot be directly put inside a DIS-
JOINT or CUMULATIVE constraint, as it removes feasible, but dominated assignments;
it has to be added either as a modification of the search routine, or a specific constraint.

We do not use the same problem representation as [10], and therefore have to adapt
the approach to the possibilities of our model. We introduce two variants, one dealing
with the border of the problem space, the other dealing with interaction of two squares.
We do not consider the case where multiple squares form a “wall”.

Initial Domain Reduction. Following the reasoning in [10], we can remove some values
from the domain of the X and Y variables for a square with edge size k. Suppose the
square is placed d units from the border. Then the gap can only be used by squares
up to length d. If all squares 1 × 1, 2 × 2, . . . , d × d fit into the space k × d, then
it would be possible to shift the larger square to the border, moving all these smaller
squares into the now vacant space. As we will consider the placement of the big square
on the border, we do not have to consider the placement d units from the border, this
value can be removed from the domain a priori. For each size k, we can easily compute
all values that can be removed, by considering the placement problem of d squares of
increasing size in a k × d area. Note that this can be easily solved by hand, checking
which squares cannot be placed on top of each other. This leads to the generic domain
reductions shown in Table 1 for squares from size 2 up to size 45. These reductions
(called domain) can be applied when setting up the problem, and are independent of
the size of the enclosing space. For the problem of packing squares considered in this
paper we can strengthen the bounds slightly, as shown in the specific row in Table 1.
This uses the fact that each square occurs only once, so for the square of size 3 we can
remove gap 3 as well, as only squares 1× 1 and 2× 2 can fill the gap.

Table 1. Forbidden gaps due to dominance

size 2 3 4 5-8 9-11 12-17 18-21 22-29 30-34 34-44 45
generic 1 2 2 3 4 5 6 7 8 9 10
specific 2 3

Interaction of two squares. A similar pruning (called gap) can be used to eliminate
the placement of squares that face a larger square at a certain distance. As the search
routines do not just place one square after the other, this check has to be data-driven,
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Fig. 7. Dominance condition between squares

it will be tested as soon as both squares are placed. The situation is shown in Figure 7
(case A). Square 2 is to the right of the larger square 1, and facing it, i.e.

Y2 ≥ Y1, Y2 + H2 ≤ Y1 + H1.

The distance D = X2−(X1 +W1) between the squares cannot be any of the forbidden
gap values for H2. The same argument can be made if square 2 is above square 1 and
facing it (Figure 7, case B): X2 ≥ X1, X2 + W2 ≤ X1 + W1, D = Y2 − (Y1 + H1).

4.2 Ignoring Size 1 Squares

The square of size 1 can be placed in any available location. We therefore do not need
to include it in the constraint model (we call this method notone), saving the cost of
constantly updating its domains and checking its interaction with the other squares.
Contrary to [4] we observe a significant improvement in performance when the smallest
square is removed. For their problem of perfect square placement, the opposite occurs:
execution times increase dramatically by a factor of 7. The probable cause is that the
step from no slack in the perfect placement problem to a single unit of slack in the prob-
lem without the 1×1 square reduces the effectiveness of some propagation mechanism.
In our case, most problems already contain a significant amount of slack, so the reduc-
tion in propagation overhead becomes more visible. Note that we still have to consider
the 1 × 1 square when calculating the required area to fill, so that there is room for it
even if it is not represented in the constraints.

4.3 Ignoring Size 2 Squares

We can also try to ignore the 2×2 square when setting up the constraints. If the resulting
problem is infeasible, then the original problem is also infeasible. If it is feasible, then
we might get lucky, and the solution leaves place for both 2×2 and 1×1 squares. If this
is not the case, we have to check the candidate again, with the 2×2 square included. For
the candidates studied, only one instance (size 21, 37×90) is feasible when ignoring the
2× 2 square, and infeasible for the original problem. We do not use this simplification
in our experiments.
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5 Results

We now report some experimental results for our programs using SICStus Prolog 4.0.2
on a 3GHz Intel Xeon E5450 with 3.25Gb of memory running WindowsXP SP2. We
use a single processor core for the experiments.

We first compare the different strategies in Table 2, showing the execution times (in
seconds) required for problem sizes 15 to 27. Missing entries indicate that times were
significantly exceeding competing methods. The disj strategy is performing worst, even
slower than the naive enumeration. This is not surprising, considering that the choices
are not exclusive. We also include the combination of naive strategy with the gap im-
provement. This is the only case where this redundant constraint improves results sig-
nificantly. Enumerating all x and then the y variables (xtheny strategy) achieves a much
better result than the naive enumeration which interleaves their enumeration. The dual
strategy performs badly when solving all candidate problems, but is competitive for
some instances with no or very little slack, even for large problem sizes. The semantic
branching works quite well up to problem size 21, with the binary choices leading to
a slightly better result. The clear winners are the branching methods based on inter-
vals, where the more conservative xy strategy is out-performed by the interval and split
strategies, which split the x variables before the y variables. For each method we use
the interval size (indicated as a fraction of the square length) which produces the most
stable results over all problem instances.

Even when we consider individual candidates, we find that the interval strategy per-
forms best for nearly all cases. There are some exceptions for problems with no slack,
where the dual method sometimes wins, and for some feasible problems, for which the
split strategy seems to work well.

Figure 8 presents the result in graphical form, and adds the times for previous ap-
proaches (Korf and BlueBlocker results from [13]) for comparison. Note the logarith-
mic scale for the execution time. With the exception of the naive strategies, all other
methods outperform the previously known approaches.

Figure 9 shows the impact of the interval length for the interval strategy. The interval
length (as a fraction of the length of the square to be placed) is plotted on the x-axis, the

Table 2. Strategy comparison

n naive naive xtheny disj semantic4 semantic dual interval split xy
+gap 0.3 0.2 0.75

15 2.92 2.16 0.09 12.12 0.55 0.45 2.63 - 0.05 -
16 10.44 7.02 0.11 98.25 1.31 1.03 0.89 - 0.05 -
17 20.75 13.81 0.27 23.57 1.48 1.13 0.33 0.05 0.05 0.81
18 667.33 325.56 18.37 - 30.53 23.05 118.58 1.83 1.13 13.94
19 4140.09 1823.15 13.73 - 83.42 63.25 80.66 1.11 1.88 36.78
20 - - 13.08 - 216.07 167.61 149.79 2.14 1.47 108.28
21 - - 143.72 - 1138.98 865.13 - 8.09 10.59 619.45
22 - - 1708.89 - - - - 52.21 32.36 1668.59
23 - - - - - - - 245.07 265.54 9521.73
24 - - - - - - - 452.73 545.82 37506.20
25 - - - - - - - 2533.64 4127.41 -
26 - - - - - - - 14158.15 - -
27 - - - - - - - 43529.87 - -
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Table 3. Rectangle placement overview

n Surface K Width Height Area Loss Back Time Clautiaux Korf BlueBlocker
18 2109 14 31 69 2139 1.42 25781 00:01 31:33 1:08 1:29
19 2470 12 47 53 2491 0.85 18747 00:01 72:53:18 8:15 4:11
20 2870 14 34 85 2890 0.70 28841 00:02 - 13:32 15:03
21 3311 19 38 88 3344 1.00 128766 00:07 - 1:35:08 1:32:01
22 3795 15 39 98 3822 0.71 566864 00:51 - 6:46:15 4:51:23
23 4324 19 64 68 4352 0.65 2802479 03:58 - 36:54:50 29:03:49
24 4900 18 56 88 4928 0.57 4541284 05:56 - 213:33:00 146:38:48
25 5525 17 43 129 5547 0.40 28704074 40:38 - see text -
26 6201 21 70 89 6230 0.47 143544214 03:41:43 - - -
27 6930 21 47 148 6956 0.38 420761107 11:30:02 - - -

execution time on the y-axis. Time points missing indicate that no solution was found
within a timeout of 120 seconds. The impact of the interval size is more pronounced
for the larger problem sizes, where values 0.2-0.3 seem to provide the best results.
Values 0.4 and higher lead to thrashing in some instances, and can therefore not be
recommended.

Table 3 shows the best results with the interval strategy for the rectangle packing
problem of sizes 18 to 27, problem sizes 26 and 27 were previously open. Diagrams of the
solutions can be found on our website (http://www.4c.ucc.ie/∼hsimonis).
The columns have the following meaning:

– n is the problem size;
– Surface is the total surface area of all squares to be packed;
– K is the number of subproblems that had to be checked;
– Width and Height are the size of the optimal rectangle;
– Area is its surface area;
– Loss is the spare space in the optimal rectangle as a percentage;
– B is the number of backtrack steps as reported by SICStus Prolog;
– Time is the time (in HH:MM:SS) required.

For ease of comparison, we also include in Table 3 the results reported in [13]. The
times for Clautiaux, Korf and BlueBlocker were obtained on a Linux Opteron 2.2GHz
machine with 8Gb of RAM. Our results use SICStus 4.0.2 on a 3GHz Intel Xeon 5450
with 3.25Gb of memory, we estimate that our hardware is about twice faster. The pre-
vious best time for size 25 in [11] was over 42 days, although on a significantly slower
machine.

Table 4 shows the impact of the different improvements to our model, giving the
required runtime as a percentage of the pure model. The best combination ignores the
square of size 1 × 1 (option notone), and uses the initial domain reduction from the
dominance criterion (domain), but does not use the additional constraint about the gap
between squares (gap). The massive improvement when ignoring the 1×1 square cannot
be completely explained by reduced propagation. It is most likely caused by reducing
bad choices at the end of the x interval splitting. We noted that it pays off not to include
the small squares in this part of the search.

In our decomposition approach, we have to show infeasibility of multiple subprob-
lems before reaching the optimal solution. The times required for the subproblems vary

http://www.4c.ucc.ie/~hsimonis
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Table 4. Method comparison

n pure gap domain notone all best
18 100.00 99.37 78.96 12.93 9.77 9.78
19 100.00 101.61 87.14 48.55 38.26 37.31
20 100.00 105.26 92.24 18.93 16.20 15.39
21 100.00 100.94 81.90 63.57 50.82 49.58
22 100.00 100.24 90.56 23.66 19.46 19.00
23 100.00 99.81 78.92 30.33 23.18 22.80
24 100.00 101.77 77.69 36.43 29.16 28.58

widely. For the interval strategy, this does not seem to be caused by the amount of slack
in the problem, the shape of the enclosing rectangle has a much more direct impact.
Although not uniform, Figure 10 shows a clear connection between the “squareness”
of the rectangle and the runtime. It is much harder to show infeasibility for near-square
rectangles. For the dual strategy, the opposite happens. Runtimes explode when the
slack increases, but there is little impact from the “squareness”.

6 Incomplete Heuristics

We also considered incomplete heuristics to find good solutions for the problem and
evaluated these on the square packing problem. They are based on the well-known
observation that good packing solutions place the large items in the corner and on the
edges of the enclosing field without any lost space. The smaller items and the slack
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Table 5. New optimal solutions for square packing

Problem Size 26 27 29 30 31 35
Optimal Solution 80 84 93 98 103 123
Topt 12:26 00:04 11:06 2:07 00:18 1:10:07
Tproof 1:25:22 - - - - -

space are used inside the packing area. We only consider one side, say the bottom one,
of the board for our heuristic, and assume that the biggest square is placed in the bottom
left corner. We then try to find combinations of K − 1 other squares that fill the bottom
edge completely, not considering very small squares.

We precompute all possible solutions with a small finite domain constraint program.
Once all solutions are found, we order them by decreasing area of the selected squares,
and use them as initial branches in our packing model, setting the y coordinate of the
selected squares to 1, as well as fixing the biggest square in position (1, 1). Note that
we do not fix the relative placement in the x direction, this is determined by the remain-
der of the search routine. If no solution for the given Size is found, we backtrack and
recompute the heuristic for the next larger value.

Optimal solutions for the square packing problem up to size 25 are already known
from [11]. We find six new optimal values shown in Table 5, Topt is the time required
to find the optimal solution, Tproof the time for the proof of optimality with the full
model. A dash indicates that a lower bound is reached and no further proof is required.

7 Conclusion

In this paper we have demonstrated that in the domains of optimal rectangle and square
packing an “off-the-shelf” constraint programming system, SICStus Prolog, outper-
forms recently developed ad-hoc approaches by over three orders of magnitude. We
have also closed eight open problems: two rectangle packing problems and six square
packing problems. We argue that rectangle packing is a domain in which current con-
straint programming technology significantly outperforms hand-crafted ad-hoc systems
developed for this problem. This provides the CP community with a convincing success
story.
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Abstract. Call control features (e.g., call-divert, voice-mail) are primitive op-
tions to which users can subscribe off-line to personalise their service. The con-
figuration of a feature subscription involves choosing and sequencing features
from a catalogue and is subject to constraints that prevent undesirable feature in-
teractions at run-time. When the subscription requested by a user is inconsistent,
one problem is to find an optimal relaxation. In this paper, we show that this prob-
lem is NP-hard and we present a constraint programming formulation using the
variable weighted constraint satisfaction problem framework. We also present
simple formulations using partial weighted maximum satisfiability and integer
linear programming. We experimentally compare our formulations of the differ-
ent approaches; the results suggest that our constraint programming approach is
the best of the three overall.

1 Introduction

Information and communication services, from news feeds to internet telephony, are
playing an increasing, and potentially disruptive, role in our daily lives. As a result,
providers seek to develop personalisation solutions allowing customers to control and
enrich their service. In telephony, for instance, personalisation relies on the provisioning
of call control features. A feature is an increment of functionality which, if activated,
modifies the basic service behaviour in systematic or non-systematic ways, e.g., do-not-
disturb, multi-media ring-back tones, call-divert-on-busy, credit-card-calling, find-me.

Modern service delivery platforms provide the ability to implement features as mod-
ular applications and compose them on demand when setting up live sessions, that is,
consistently with the feature subscriptions preconfigured by participants. In this con-
text, a personalisation approach consists of exposing feature catalogues to subscribers
and letting them select and sequence the features of their choice.

Not all sequences of features are acceptable though due to the possible occurrence
of feature interactions. A feature interaction is “some way in which a feature modifies
or influences the behaviour of another feature in generating the system’s overall be-
haviour” [1]. For instance, a do-not-disturb feature will block any incoming call and
cancel the effect of any subsequent feature subscribed by the callee. This is an unde-
sirable interaction: as shown in Figure 1, the call originating from X will never reach
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c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. An example of an undesirable feature interaction

call-logging. However, if call-logging is placed before do-not-disturb then both features
will play their role.

Distributed Feature Composition (DFC) provides a method and a formal architecture
model to address feature interactions [1,2,3]. The method consists of constraining the
selection and sequencing of features by prescribing constraints that prevent undesirable
interactions. These feature interaction resolution constraints are represented in a feature
catalogue as precedence or exclusion constraints. A precedence constraint, fi ≺ fj ,
means that if the features fi and fj are part of the same sequence then fi must precede
fj in the sequence. An exclusion constraint between fi and fj means that they cannot
be together in any sequence. Undesirable interactions are then avoided by rejecting any
sequence that does not satisfy the catalogue constraints.

A feature subscription is defined by a set of features, a set of user specified prece-
dence constraints and a set of feature interaction constraints from the catalogue. The
main task is to find a sequence of features that is consistent with the constraints in the
catalogue. It may not always be possible to construct a sequence of features that consists
of all the user selected features and respect all user specified precedence constraints. In
such cases, the task is to find a relaxation of the feature subscription that is closest to
the initial requirements of the user.

In this paper, we shall show that checking the consistency of a feature subscription
is polynomial in time, but finding an optimal relaxation of a feature subscription, when
inconsistent, is NP-hard. We shall then present the formulation of finding an optimal re-
laxation using constraint programming. In particular, we shall use the variable weighted
constraint satisfaction problem framework. In this framework, a branch and bound al-
gorithm that maintains some level of consistency is usually used for finding an optimal
solution. We shall investigate the impact of maintaining three different levels of con-
sistency. The first one is Generalised Arc Consistency (GAC) [4], which is commonly
used. The others are mixed consistencies. Here, mixed consistency means maintaining
different levels of consistency on different sets of variables of a given problem. The first
(second) mixed consistency enforces (a restricted version of) singleton GAC on some
variables and GAC on the remaining variables of the problem.

We shall also consider partial weighted maximum satisfiability, an artificial intelli-
gence technique, and integer linear programming, an operations research approach. We
shall present the formulations using these approaches and shall discuss their differences
with respect to the constraint programming formulation.

We have conducted experiments to compare the different approaches. The experi-
ments are performed on a variety of random catalogues and random feature subscrip-
tions. We shall present empirical results that demonstrate the superiority of maintaining
mixed consistency on the generalised arc consistency. For hard problems, we see a
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difference of up to three orders of magnitude in terms of search nodes and one order
of magnitude in terms of time. Our results suggest that, when singleton generalised arc
consistency is used, the constraint programming approach considerably outperforms
our integer linear programming and partial weighted maximum satisfiability formula-
tions. We highlight the factors that deteriorate the scalability of the latter approaches.

The rest of the paper is organised as follows. Section 2 provides an overview of the
DFC architecture, its composition style and subscription configuration method. Sec-
tion 3 presents the relevant definitions and theorems. Section 4 describes the constraint
programming formulation for finding an optimal relaxation and discusses branch and
bound algorithms that maintain different levels of consistency. The integer linear pro-
gramming and partial weighted maximum satisfiability formulations of the problem
are described in Section 5. The empirical evaluation of these approaches is shown in
Section 6. Finally our conclusions are presented in Section 7.

2 Configuring Feature Subscriptions in DFC

In DFC each feature is implemented by one or more modules called feature box types
(FBT) and each FBT has many run-time instances called feature boxes. We assume
in this paper that each feature is implemented by a single FBT and we associate fea-
tures with FBTs. As shown in Figure 2, a call session between two end-points is set up
by chaining feature boxes. The routing method decomposes the connection path into
a source and a target region and each region into zones. A source (target) zone is a
sequence of feature boxes that execute for the same source (target) address.
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Fig. 2. DFC: Catalogues, subscriptions and sessions

The first source zone is associated
with the source address encapsulated
in the initial setup request, e.g., zone
of X in Figure 2. A change of source
address in the source region, caused
for instance by an identification fea-
ture, triggers the creation of a new
source zone [5]. If no such change oc-
curs in a source zone and the zone
cannot be expanded further, routers
switch to the target region. Likewise,
a change of target address in the tar-
get region, as performed by Time-
Dependent-Routing (TDR) in Figure
2, triggers the creation of a new target
zone. If no such change occurs in a target zone and the zone cannot be expanded further
(as for Z in Figure 2), the request is sent to the final box identified by the encapsulated
target address.

DFC routers are only concerned with locating feature boxes and assembling zones
into regions. They do not make decisions as to the type of feature boxes (the FBTs)
appearing in zones or their ordering. They simply fetch this information from the fea-
ture subscriptions that are preconfigured for each address in each region based on the
catalogue published by the service provider.
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A catalogue is a set of features subject to precedence and exclusion constraints. Fea-
tures fall into three classes: source, target and reversible, i.e., a subset of features that
are both source and target. Constraints are formulated by designers on pairs of source
features and pairs of target features to prevent undesirable feature interactions in each
zone [6]. Specifically, a precedence constraint imposes a routing order between two
features, as for the case of Terminating-Call-Screening (TCS) and Call-Logging (CL)
in Figure 2. An exclusion constraint makes two features mutually exclusive, as for the
case of CL and Call-Forwarding-Unconditional (CFU) in Figure 2.

A subscription is a subset of catalogue features and a set of user precedence con-
straints between features in each region. For instance, the subscription of Y in the target
region includes the user precedence TDR≺TCS. Configuring a subscription involves
selecting, parameterising and sequencing features in each region consistently with the
catalogue constraints and other integrity rules [3]. In particular, the source and target
regions of a subscription must include the same reversible features in inverse order, i.e.
source and target regions are not configured independently.

3 Formal Definitions

Let fi and fj be features, we write a precedence constraint of fi before fj as 〈fi, fj〉, or
as fi ≺ fj . An exclusion constraint between fi and fj expresses that these features can-
not appear together in a sequence of features. We encode this as the pair of precedence
constraints 〈fi, fj〉 and 〈fj , fi〉.

Definition 1 (Feature Catalogue). A catalogue is a tuple 〈F, P 〉, where F is a set of
features that are available to users and P is a set of precedence constraints on F .

The transpose of a catalogue 〈F, P 〉 is the catalogue 〈F, PT 〉 such that ∀〈fi, fj〉 ∈ F 2 :
〈fi, fj〉 ∈ P ⇔ 〈fj , fi〉 ∈ PT . In DFC the precedence constraints between the features
in the source (target) catalogue are specified with respect to the direction of the call. For
the purpose of configuration, we combine the source catalogue 〈Fs, Ps〉 and the target
catalogue 〈Ft, Pt〉 into a single catalogue 〈Fc, Pc〉 ≡ 〈Fs ∪ Ft, Ps ∪ Pt

T 〉.

Definition 2 (Feature Subscription). A feature subscription S of catalogue 〈Fc, Pc〉
is a tuple 〈F,C, U,WF ,WU 〉, where F ⊆ Fc, C is the projection of Pc on F , i.e.,
Pc ↓F = {fi ≺ fj ∈ Pc : {fi, fj} ⊆ F}, U is a set of (user defined) precedence
constraints on F , WF : F → N is a function that assigns weights to features and
WU : U → N is a function that assigns weights to user precedence constraints. The
value of S is defined by Value(S) =

∑
f∈F WF (f) +

∑
p∈U WU (p).

Note that a weight associated with a feature signifies its importance for the user. These
weights could be elicited directly, or using data mining or analysis of user interactions.

Definition 3 (Consistency). A feature subscription 〈F,C, U,WF ,WU 〉 of some cata-
logue is defined to be consistent if and only if the directed graph 〈F,C ∪ U〉 is acyclic.
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Due to the composition of the source and target catalogues into a single catalogue, a
feature subscription S is consistent if and only if both source and target regions are
consistent in the DFC sense.

Theorem 1 (Complexity of Consistency Checking). Determining whether a feature
subscription 〈F,C, U,WF ,WU 〉 is consistent or not can be checked in O(|F | + |C|+
|U |).

Proof. We use Topological Sort [7]. In Topological Sort we are interested in ordering
the nodes of a directed graph such that if the edge 〈i, j〉 is in the set of edges of the
graph then node i is less than node j in the order. In order to use Topological Sort for
detecting whether a feature subscription is consistent, we associate nodes with features
and edges with precedence constraints. Then, the subscription is consistent iff for all
edges 〈i, j〉 in the graph associated with the subscription we have that i ≺ j in the order
computed by Topological Sort. As the complexity of Topological Sort is linear with
respect to the size of the graph, detecting whether a feature subscription is consistent is
O(|F |+ |C|+ |U |). ��

If an input feature subscription is not consistent then the task is to relax the given fea-
ture subscription by dropping one or more features or user precedence constraints to
generate a consistent feature subscription with maximum value.

Definition 4 (Relaxation). A relaxation of a feature subscription 〈F,C, U,WF ,WU 〉
is a subscription 〈F ′, C′, U ′,W ′

F ,W
′
U 〉 such that F ′ ⊆ F , C′ = Pc↓F ′ , U ′ ⊆ U↓F ′ ,

WF ′ is WF restricted to F ′, and WU ′ is WU restricted to U ′.

Definition 5 (Optimal Relaxation). Let RS be the set of all consistent relaxations of
a feature subscription S. We say that Si ∈ RS is an optimal relaxation of S if it has
maximum value among all relaxations, i.e., if and only if there does not exist Sj ∈ RS

such that Value(Sj) > Value(Si).

Theorem 2 (Complexity of Finding an Optimal Relaxation). Finding an optimal
relaxation of a feature subscription is NP-hard.

Proof. Given a directed graph 〈V,E〉, the Feedback Vertex Set Problem is to find a
smallest V ′ ⊆ V whose deletion makes the graph acyclic. This problem is known
to be NP-hard [8]. We prove that finding an optimal relaxation is NP-hard by reducing
the feedback vertex set problem to the latter. Given a feature subscription
S = 〈F,C, U,WF ,WU 〉, the feedback vertex set problem can be reduced to our prob-
lem by associating the nodes of the directed graph V with features F , the edges E with
catalogue precedence constraints C, the empty set ∅ with U , and the constant function
that maps every element of its domain to 1 (λx.1) with both WF and WU . Notice that,
as U = ∅, the only way of finding an optimal relaxation of S is by removing a set of fea-
tures from F . Assuming that an optimal relaxation is S′ = 〈F ′, C′, U ′,W ′

F ,W
′
U 〉, the

set of features F −F ′ corresponds to the smallest set of nodes V ′ whose deletion makes
the directed graph acyclic. Thus, we can conclude that finding an optimal relaxation S′

is NP-hard. ��
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4 A Constraint Programming Approach

Constraint programming has been successfully used in many applications such as plan-
ning, scheduling, resource allocation, routing, and bio-informatics [9]. Here problems
are primarily stated as a Constraint Satisfaction Problems (CSP), that is a finite set of
variables, together with a finite set of constraints. A solution to a CSP is an assignment
of a value to each variable such that all constraints are satisfied simultaneously. The
basic approach to solving a CSP instance is to use a backtracking search algorithm that
interleaves two processes: constraint propagation and labeling. Constraint propagation
helps in pruning values that do not lead to a solution of the problem. Labeling involves
assigning values to variables that may lead to a solution.

Various generalisations of the CSP have been developed to find a solution that is
optimal with respect to certain criteria such as costs, preferences or priorities. One of
the most significant is the Constraint Optimisation Problem (COP). Here the goal to
find an optimal solution that maximises (minimises) the objective function. The sim-
plest COP formulation retains the CSP limitation of allowing only hard Boolean-valued
constraints but adds an objective function over the variables.

4.1 Formulation

In this section we model the problem of finding an optimal relaxation of a feature sub-
scription 〈F,C, U,WF ,WU 〉 as a COP .

Variables and Domains. We associate each feature fi ∈ F with two variables: a
Boolean variable bfi and an integer variable pfi. A Boolean variable bfi is instan-
tiated to 1 or 0 depending on whether fi is included in the subscription or not, re-
spectively. The domain of each integer variable pfi is {1, . . . , |F |}. Assuming that the
computed subscription is consistent, an integer variable pfi corresponds to the posi-
tion of the feature fi in a sequence. We associate each user precedence constraint
pij ≡ (fi ≺ fj) ∈ U with a Boolean variable bpij . A Boolean variable bpij is in-
stantiated to 1 or 0 depending on whether pij is respected in the computed subscription
or not respectively.

Constraints. A catalogue precedence constraint pij ∈ C that feature fi should be
before feature fj can be expressed as follows:

bfi ∧ bfj ⇒ (pfi < pfj).

Note that the constraint is activated only if the selection variables bfi and bfj are instan-
tiated to 1. A user precedence constraint pij ∈ U that fi should be placed before fj can
be expressed as follows:

bpij ⇒ (bfi ∧ bfj ∧ (pfi < pfj)).

Note that if a user precedence constraint holds then the features fi and fj are included
in the subscription and also the feature fi is placed before fj , that is, the selection
variables bfi and bfj are instantiated to 1 and pfi < pfj is true.
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Objective Function. The objective of finding an optimal relaxation of a feature sub-
scription can be expressed as follows:

Maximise
∑
fi∈F

bfi ×WF (fi) +
∑

pij∈U

bpij ×WU (pij).

4.2 Solution Technique

A depth-first branch and bound algorithm (BB) is generally used to find an optimal solu-
tion. In case of maximisation, BB keeps the current optimal value of the solution while
traversing the search tree. This value is a lower bound (lb) of the objective function. At
each node of the search tree BB computes an overestimation of the global value. This
value is an upper bound (ub) of the best solution that can be found as long as the current
search path is maintained.If ub ≤ lb, then a solution of a greater value than the current
optimal value cannot be found below the current node, so the current branch is pruned
and the algorithm backtracks.

Enforcing local consistency enables the computation of ub(i,a), which is a special-
isation of ub for a value a of an unassigned variable i. If ub(i,a) ≤ lb, then value a
can be removed because it will not be present in any solution better than the current
one. Removed values are restored when BB backtracks above the node where they were
eliminated. The quality of the upper bound can be improved by increasing the level
of local consistency that is maintained at each node of the search tree. The different
levels of local consistencies that we have considered are generalised Arc Consistency
(GAC) [4] and mixed consistency [10].

A problem is said to be generalised arc consistent if it has non-empty domains and
for any assignment of a variable each constraint in which that variable is involved can
be satisfied. A problem is said to be singleton generalised arc consistent [11] if it has
non-empty domains and for any assignment of a variable, the resulting subproblem can
be made GAC. Enforcing Singleton generalised Arc Consistency (SGAC) in a SAC-1
manner [12] works by having an outer loop consisting of variable-value pairs of the
form (x, a). For each a in the domain of x if there is a domain wipeout while enforcing
arc consistency then a is removed from the domain of x and arc consistency is enforced.
The main problem with SAC-1 is that deleting a single value triggers the outer loop
again. The Restricted SAC (RSAC) algorithm avoids this triggering by considering each
variable-value pair only once [13].

Mixed consistency means maintaining different levels of consistency on different
variables of a problem. In [14] it has been shown that maintaining mixed consistency, in
particular maintaining SAC on some variables and maintaining arc consistency on some
variables, can reduce the solution time for some CSPs. In this paper we shall study the
effect of maintaining different levels of consistency on different sets of variables within
a branch and bound search. We shall investigate the effect of Maintaining generalised
Singleton Arc Consistency (MGSAC) on the Boolean variables and Maintaining gener-
alised Arc Consistency (MGAC) on the remaining variables of the problem. We shall
also investigate the effect of Maintaining Restricted Singleton generalised Arc Consis-
tency (MRSGAC) on the Boolean variables and MGAC on the remaining variables. The
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former shall be denoted by MSGACb and the latter by MRGSACb. Results presented in
Section 6 suggest that maintaining singleton generalised arc consistency on the Boolean
variables of the random instances of the feature subscription configuration problem
reduces the search space and time of the branch and bound algorithm significantly.

5 Other Approaches

We present a partial weighted maximum Boolean satisfiability and an integer linear
programming formulation for finding an optimal relaxation of a feature subscription.

5.1 Partial Weighted Maximum Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) is a decision problem whose instance is an
expression in propositional logic written using only ∧, ∨, ¬, variables and parenthe-
ses. The problem is to decide whether there is an assignment of true and false values
to the variables that will make the expression true. The expression is normally writ-
ten in conjunctive normal form. The Partial Weighted Maximum Boolean Satisfiability
Problem (PWMSAT) is an extension of SAT that includes the notions of hard and soft
clauses. Any solution should respect the hard clauses. Soft clauses are associated with
weights. The goal is to find an assignment that maximises the sum of the weights of the
satisfied clauses. The PWMSAT formulation of finding an optimal relaxation of a feature
subscription 〈F,C, U,WF ,WU 〉 is outlined below.

Variables. Let PrecDom be the set of possible precedence constraints that can be de-
fined on F , i.e., {fi ≺ fj : {fi, fj} ⊆ F ∧ fi �= fj}). For each feature fi ∈ F there
is a Boolean variable bfi, which is true or false depending on whether feature fi is in-
cluded or not in the computed subscription. For each precedence constraint pij there is
a Boolean variable bpij , which is true or false depending on whether the precedence
constraint fi ≺ fj holds or not in the computed subscription.

Clauses. In our model, clauses are represented with a tuple 〈w, c〉, where w is the
weight of clause and c is the clause itself. Note that the hard clauses are associated
with weight �, which represents an infinite penalty for not satisfying the clause. Each
precedence constraint pij ∈ C must be satisfied if the features fi and fj are included in
the computed subscription. We model this by adding the following clause

〈�, (¬bfi ∨ ¬bfj ∨ bpij)〉.

The precedence relation should be transitive and asymmetric in order to ensure that the
subscription graph is acyclic. In order to ensure this, for every {pij, pjk} ⊆ PrecDom,
we add the following clause:

〈�, (¬bpij ∨ ¬bpjk ∨ bpik)〉. (1)

Note that Rule (1) need only be applied to 〈i, j, k〉 such that i �= k because of Rule (2)
below. In our model, both bpij and bpji can be false. However, if one of them is true
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the other one is false. As this should be the case for any precedence relation, we add the
following clause for every pij ∈ PrecDom:

〈�, (¬bpij ∨ ¬bpji)〉. (2)

We make sure that each precedence constraint pij ∈ PrecDom is only satisfied when its
features are included by considering the following clauses:

〈�, (bfi ∨ ¬bpij)〉 〈�, (bfj ∨ ¬bpij)〉.

We need to penalise any solution that does not include a feature fi ∈ F or a user
precedence constraint pij ∈ U . This is done by adding the following clauses:

〈wfi, (bfi)〉 〈wpij , (bpij)〉,

where wfi = WF (fi) and wpij = WU (〈fi, fj〉). The cost of violating these clauses is
the weight of the feature fi and the weight of the precedence constraint pij respectively.

The number of Boolean variables in the PWMSAT model (approximately |F |2) is
greater than the number of Boolean variables in the CP model (|F |+ |U |). These extra
variables are used by Rule (1) and (2) to avoid cycles in the final subscription graph. We
remark that the subscription contains a cycle if and only if the transitive closure of C∪U
contains a cycle. Therefore, it is sufficient to associate Boolean variables only with the
precedence constraints in the transitive closure of C ∪U . Reducing these variables will
also reduce the transitive clauses, especially when the input subscription graph is not
dense. Otherwise, Rule (1) will generate |F |× (|F |−1)× (|F |−2) transitivity clauses.
For example, for the subscription 〈F,C, U,WF ,WU 〉 with F = {f1, f2, f3, f4, f5, f6},
C = {p12, p21, p34, p43, p56, p65}, and U = ∅, Rule (1) will generate 120 transitive
clauses. Since any relaxation of the given subscription respecting the clauses generated
by Rule (2) is acyclic, the 120 transitive clauses are useless. Thus, if PrecDom is instead
set to be the transitive closure of C ∪ U , then Rule (1) would not generate any clause
for the mentioned example. Another way to reduce the number of transitive clauses is
by not considering the ones where {pji, pkj , pik} ∩ C �= ∅, especially when the input
subscription graph is not sparse. The reason is that these transitive clauses are always
entailed due to the enforcement of the catalogue precedence constraints.

Note that the two techniques described before for reducing the number of transitive
clauses complement each other. This reduction in the number of clauses might have an
impact on the runtime of the PWMSAT approach, since less memory might be needed.
Even though it is sufficient to associate a Boolean variable with each precedence con-
straint in the transitive closure of C∪U , it is still greater than |F |+ |U |. Another way of
reducing the number of variables is to associate a feature with a finite domain variable
representing its position (as done in the CP model), log-encode the finite domain vari-
ables, and express the precedence constraints using a lexicographical comparator [15].
This approach indeed uses fewer variables than the implemented approach since only
|F | × log |F | variables are needed for encoding the position variables. However, it is
not so straightforward to automatically translate the resulting Boolean formula into its
corresponding conjunctive normal form.
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5.2 Integer Linear Programming

In Linear Programming the goal is to optimise an objective function subject to linear
equality and inequality constraints. When all the variables are forced to be integer-
valued, the problem is an Integer Linear Programming (ILP) problem. The standard
way of expressing these problems is by presenting the function to be optimised, the
linear constraints to be respected and the domain of the variables involved. Both the CP

and the PWMSAT formulations for finding an optimal relaxation of a feature subscription
〈F,C, U,WF ,WU 〉 can be modeled in ILP. The translation of the PWMSAT formulation
into ILP formulation is straightforward. For this particular model, we observed that
CPLEX was not able to solve even simple problems within a time limit of 4 hours. Due
to the lack of space we shall describe neither the formulation nor its corresponding
results. The ILP formulation that is equivalent to the CP formulation is outlined below.

Variables. For each fi ∈ F , we use a binary variable bfi and an integer variable pfi. A
binary variable bfi is equal to 1 or 0 depending on whether feature fi is included or not.
An integer variable pfi is the position of feature fi in the final subscription. For each
user precedence constraint pij ∈ U , we use a binary variable bpij . It is instantiated to 1
or 0 depending on whether the precedence constraint fi ≺ fj holds or not.

Linear Inequalities. If the features fi and fj are included in the computed subscription
and if pij ∈ C then the position of feature fi must be less than the position of feature fj .
To this effect, we need to translate the underlying implication (bfi ∧ bfj ⇒ (pfi < pfj))
into the following linear inequality:

pfi − pfj + n ∗ bfi + n ∗ bfj ≤ 2n− 1 . (3)

Here, n is a constant that is used to refer to the number of features |F | selected by the
user. When both bfi and bfj are 1, Inequality (3) will force (pfi < pfj). Note that this is
not required for any user precedence constraint pij ∈ U , since it can be violated.

A user precedence pij ∈ U is equivalent to the implication bpij ⇒ pfi < pfj ∧ bfi ∧
bfj , which in turn is equivalent to the conjunction of the three implications (bpij ⇒
(pfi < pfj)), (bpij ⇒ bfi) and (bpij ⇒ bfj). These implications can be translated into
the following inequalities:

pfi − pfj + n ∗ bpij ≤ n− 1 (4)

bpij − bfi ≤ 0 (5)

bpij − bfj ≤ 0 . (6)

Inequality (4) means that bpij = 1 forces pfi < pfj to be true. Also, if bpij = 1 then
both bfi and bfj are equal to 1 from Inequalities (5) and (6) respectively.

Objective Function. The objective is to find an optimal relaxation of a feature sub-
scription configuration problem 〈F,C, U,WF ,WU 〉 that maximises the sum of the
weights of the features and the user precedence constraints that are selected:

Maximise
∑
fi∈F

wfi bfi +
∑

pij∈U

wpij bpij .
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6 Experimental Results

In this section, we shall describe the empirical evaluation of finding an optimal relax-
ation of randomly generated feature subscriptions using constraint programming, partial
weighted maximum Boolean satisfiability and integer linear programming.

6.1 Problem Generation and Solvers

We generated and experimented with a variety of random catalogues and many classes
of random feature subscriptions. All the random selections below are performed with
uniform distributions. A random catalogue is defined by a tuple 〈fc, Bc, Tc〉. Here, fc

is the number of features, Bc is the number of binary constraints and Tc ⊆ {<,>,<>}
is a set of types of constraints. Note that fi <> fj means that in any given subscription
both fi and fj cannot exist together. A random catalogue is generated by selecting
Bc pairs of features randomly from fc(fc − 1)/2 pairs of features. Each selected pair
of features is then associated with a type of constraint that is selected randomly from
Tc. A random feature subscription is defined by a tuple 〈fu, pu, w〉. Here, fu is the
number of features that are selected randomly from fc features, pu is the number of
user precedence constraints between the pairs of features that are selected randomly
from fu(fu − 1)/2 pairs of features, and w is an integer greater than 0. Each feature
and each user precedence constraint is associated with an integer weight that is selected
randomly between 1 and w inclusive.

We generated catalogues of the following forms: 〈50, 250, {<,>}〉, 〈50, 500, {<,>,
<>}〉 and 〈50, 750, {<,>}〉. For each random catalogue, we generated classes of fea-
ture subscriptions of the following forms: 〈10, 5, 4〉, 〈15, 20, 4〉, 〈20, 10, 4〉, 〈25, 40, 4〉,
〈30, 20, 4〉, 〈35, 35, 4〉, 〈40, 40, 4〉, 〈45, 90, 4〉 and 〈50, 5, 4〉. Note that 〈50, 250, {<,>}〉
is the default catalogue by and the value ofw is 4 by default, unless stated otherwise. For
the catalogue 〈50, 250, {<,>}〉we also generated 〈5, 0, 1〉, 〈10, 0, 1〉, . . . , 〈50, 0, 1〉 and
〈5, 5, 1〉, 〈10, 10, 1〉, . . . , 〈50, 50, 1〉 classes of random feature subscriptions. For each
class 10 instances were generated and their mean results are reported in this paper.

The CP model was implemented and solved using CHOCO [16], a Java library for
constraint programming systems. The PWMSAT model of the problem was implemented
and solved using SAT4J [17], an efficient library of SAT solvers in Java. The ILP model of
the problem was solved using ILOG CPLEX [18]. All the experiments were performed
on a PC Pentium 4 (CPU 1.8 GHz and 768MB of RAM) processor. The performances
of all the approaches are measured in terms of search nodes (#nodes) and runtime in
milliseconds (time). We used the time limit of 4 hours to cut the search.

6.2 Maintaining Different Levels of Consistency in CP

For the CP model, we first investigated the effect of Maintaining generalised Arc Con-
sistency (MGAC) during branch and bound search. We then studied the effect of main-
taining different levels of consistency on different sets of variables within a problem. In
particular we investigated, (1) maintaining generalised singleton arc consistency on the
Boolean variables and MGAC on the remaining variables, and (2) maintaining restricted
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singleton generalised arc consistency on the Boolean variables and MGAC on the re-
maining variables; the former is denoted by MSGACb and the latter by MRSGACb. The
results are presented in Table 1 for these three branch and bound search algorithms.

Table 1. Average results of MGAC, MRSGACb and
MSGACb

MGAC MRSGACb MSGACb

〈f, p〉 time #nodes time #nodes time #nodes
〈10, 5〉 17 21 23 16 26 16
〈15, 20〉 92 726 34 41 42 41
〈20, 10〉 203 1,694 39 47 50 46
〈25, 40〉 14,985 88,407 595 187 678 169
〈30, 20〉 6,073 29,211 653 184 768 161
〈35, 35〉 124,220 481,364 7,431 1,279 8,379 1,093
〈40, 40〉 1,644,624 5,311,838 67,798 9,838 76,667 8,475

Table 1 clearly shows that main-
taining (R)SGAC on the Boolean vari-
ables and GAC on the integer variables
dominates maintaining GAC on all the
variables. To the best of our knowl-
edge this is the first time that such a
significant improvement has been ob-
served by maintaining a partial form of
singleton arc consistency. We also see
that there is no difference in the num-
ber of nodes visited by MRSGACb and
MSGACb for the first two classes of feature subscriptions. However, as the problem size
increases the difference in terms of the number of nodes also increases significantly.
Note that in the remainder of the paper the results that correspond to the CP approach
are obtained by using MSGACb algorithm.

6.3 Comparison between the Alternative Approaches

The performances of using constraint programming (CP), partial weighted maximum
satisfiability (PWMSAT) and integer linear programming (CPLEX) approaches are pre-
sented in Tables 2 and 3. If any approach failed to find and prove an optimal relaxation
within a time limit of 4 hours then that time limit is used as the runtime of the algorithm
and the number of nodes visited in that time limit is used as the number of nodes of the
algorithm in order to compute the average runtime and average search nodes of a given
problem class. In the tables, the column labelled as #us is used to denote the number
of instances for which the time limit was exceeded. If this column is not present for
any approach then it means that all the instances of all the problem classes were solved
within the time limit. In general finding an optimal relaxation is NP-hard. Therefore,
we need to investigate which approach can do it in reasonable time.

Tables 2 and 3 suggest that our CP approach performs better than our ILP and PWM-
SAT approaches. Although in very few cases the CP approach is outperformed by the
other two approaches, it performs significantly better in all other cases. Nevertheless,

Table 2. Catalogue 〈50, 250, {<, >}〉

optimal PWMSAT CPLEX CP
〈f, p〉 value #nodes time #us #nodes time #us #nodes time
〈10, 5〉 36 167 345 0 0 11 0 16 23
〈15, 20〉 69 721 1,039 0 51 61 0 41 34
〈20, 10〉 62 1,295 1,619 0 50 47 0 47 39
〈25, 40〉 115 5,039 4,391 0 3,482 1,945 0 187 595
〈30, 20〉 93 5,415 6,397 0 1,901 1,025 0 184 653
〈35, 35〉 118 30,135 23,955 0 35,247 22,763 0 1,279 7,431
〈40, 40〉 123 186,913 282,760 0 299,829 247,140 0 9,838 67,798
〈45, 90〉 173 6,291,957 12,638,251 8 5,280,594 7,690,899 2 104,729 1,115,515
〈50, 4〉 96 165,928 195,717 0 1,164,755 1,010,383 0 60,292 413,611
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it is also true that a remarkable improvement in our CP approach is due to maintaining
(restricted) singleton arc consistency on the Boolean variables. For example, for feature
subscription 〈40, 40〉 and catalogue 〈50, 250, {<,>}〉 constraint programming (with
MSGACb), on average, requires approximately only 1 minute whereas MGAC requires
approximately half an hour.

The CP approach solved all the instances
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within the time limit. CPLEX could not solve
2 instances. More precisely, it could not
prove their optimality within the time limit.
SAT4J exceeded the time limit for 9 instances.
This could be a consequence of O(n3) tran-
sitive clauses, where n = |F |. Figure 3 de-
picts a plot between the number of clauses
and the runtime of SAT4J. This plot clearly
suggests that the runtime of SAT4J increases
as the number of clauses increases. The high
number of clauses restricts the scalability of the PWMSAT approach. For large instances
SAT4J also runs out of the default memory (64MB). For instance, for catalogue 〈50, 250,
{<,>}〉 and feature subscription 〈45, 90〉, SAT4J runs out of memory when solving one
of the instances. Note that the results for SAT4J presented in this section correspond to
the instances that are generated after reducing the variables and the clauses by applying
the techniques described in Section 5.1. The application of these techniques reduces
the runtime up to 65%. However, this only enabled one of the previously unsolvable
instances to be solved.

Figure 4 presents the comparison of the different approaches in terms of their run-
times for the subscriptions, when U = ∅ and the weight of each feature is 1. The
runtimes of the approaches for the instances when |F | = |U | are presented in Figure 5.
Overall, the CP approach performs best. Although, the SAT4J solver performs best when
|F | > 35 and U = ∅, it would be interesting to find out whether its performance will
deteriorate when |F | > 50. In Figure 5, when |F | = 50, neither the ILP approach nor
the PWMSAT approach managed to solve all the instances. This is the reason that their
average runtimes, for the case of 50 features, are close to the timeout. If the timeout
was higher, the gap between the CP approach and the other approaches, for the case of
50 features in Figure 5 would be even more significant.

Table 3. Results for more dense catalogues

Catalogue 〈50, 500, {<, >, <>}〉 Catalogue 〈50, 750, {<, >}〉
PWMSAT CPLEX CP PWMSAT CPLEX CP

〈f, p〉 #nodes time #nodes time #nodes time #nodes time #us #nodes time #nodes time
〈10, 5〉 326 528 0 10 13 3 246 500 0 28 33 16 7
〈15, 20〉 1,066 1,173 4 53 31 28 1,111 985 0 306 261 40 45
〈20, 10〉 2,583 1,981 18 85 49 59 2,484 1,542 0 798 540 82 145
〈25, 40〉 5,753 2,961 76 554 110 250 6,904 3,158 0 7,043 5,741 236 910
〈30, 20〉 9,738 4,092 90 447 158 417 11,841 5,025 0 22,253 18,461 591 2,381
〈35, 35〉 12,584 6,841 300 1,824 461 1,643 31,214 18,278 0 109,472 126,354 2,288 12,879
〈40, 40〉 22,486 11,310 711 3,018 892 3,914 68,112 92,105 0 354,454 514,275 6,363 42,268
〈45, 90〉 60,504 59,267 2,130 17,452 2,286 14,803 602,192 2,443,228 1 1,969,716 3,780,539 19,909 188,826
〈50, 4〉 43,765 21,472 1,500 3,771 4,208 16,921 184,584 319,531 0 1,646,752 3,162,084 51,063 342,492



80 D. Lesaint et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

504540353025201510

T
im

e 
in

 m
ill

is
ec

on
ds

Number of Features

SAT
CP

CPLEX

Fig. 4. Results for 〈fu, 0, 1〉,where fu varies
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Fig. 5. Results for 〈fu, pu, 1〉, where fu = pu

and fu varies from 5 to 50 in steps of 5

7 Conclusions

We presented, and evaluated, three optimisation-based approaches to finding optimal
reconfigurations of call-control features when the user’s preferences violate the techni-
cal constraints defined by a set of DFC rules. We proved that finding an optimal relax-
ation of a feature subscription is NP-hard. For the constraint programming approach, we
studied the effect of maintaining generalised arc consistency and two mixed consisten-
cies during branch and bound search. Our experimental results suggest that maintaining
(restricted) generalised singleton arc consistency on the Boolean variables and gener-
alised arc consistency on the integer variables outperforms MGAC significantly. Our
results also suggest that the CP approach when applied with stronger consistency, is
able to scale well compared to the other approaches. Finding an optimal relaxation for
a reasonable size catalogue (e.g., [19] refers to a catalogue with up to 25 features) is
feasible using constraint programming.
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Abstract. Protein structure predictions is regarded as a highly challenging prob-
lem both for the biology and for the computational communities. Many
approaches have been developed in the recent years, moving to increasingly com-
plex lattice models or even off-lattice models. This paper presents a Large Neigh-
borhood Search (LNS) to find the native state for the Hydrophobic-Polar (HP)
model on the Face Centered Cubic (FCC) lattice or, in other words, a self-
avoiding walk on the FCC lattice having a maximum number of H-H contacts.
The algorithm starts with a tabu-search algorithm, whose solution is then im-
proved by a combination of constraint programming and LNS. This hybrid
algorithm improves earlier approaches in the literature over several well-known
instances and demonstrates the potential of constraint-programming approaches
for ab initio methods.

1 Introduction

In 1973, Nobel laureat C.B. Anfinsen [2] denatured the 124 residue protein, bovine
ribonuclease A, by the addition of urea. Upon removal of the denaturant, the ribonu-
clease, an enzyme, was determined to be fully functional, thus attesting the successful
reformation of functional 3-dimensional structure. Since no chaperone molecules were
present, Anfinsen’s experiment was interpreted to mean that the native state of a protein
is its minimum free energy conformation, and hence that protein structure determination
is a computational problem which can in principle be solved by applying a combinato-
rial search strategy to an appropriate energy model.

Protein structure prediction is historically one of the oldest, most important, yet stub-
bornly recalcitrant problems of bioinformatics. Solution of this problem would have
an enormous impact on medicine and the pharmaceutical industry, since successful
tertiary structure prediction, given only the amino acid sequence information, would
allow the computational screening of potential drug targets, in that a drug (small chem-
ical ligand) must dock to a complementary portion of the protein surface (such as a
G-coupled protein receptor, the most common drug target)1 of successful drug. In-
deed, it has been stated that: “Prediction of protein structure in silico has thus been
the ‘holy grail’ of computational biologists for many years” [39]. Despite the quantity
of work on this problem over the past 30 years, and despite the variety of methods de-
veloped for structure prediction, no truly accurate ab initio methods exist to predict the

1 The design of HIV protease inhibitors, first described in [29], exploited the target structure.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 82–96, 2008.
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3-dimensional structure from amino acid sequence. Indeed, Helles (2008) [24] bench-
marked the accuracy of 18 ab initio methods, whose average normalized root mean
square deviation ranged from 11.17 Å to 3.48 Å, while Dalton and Jackson (2007) [19]
similarly benchmarked five well-known homology modeling programs and three com-
mon sequence-structure alignment programs. In contrast, computational drug screening
requires atomic scale accuracy, since the size of a single water molecule is about 1.4 Å.

In this paper, we describe a combination of constraint programming and Large
Neighborhood Search (LNS) to determine close-to-optimal conformations for the Lau-
Dill HP-model on the face-centered cubic lattice. Before describing our contribution,
we first present an overview of computational methods for protein structure prediction.
In general, methods are classified as homology (comparative) modeling, threading, lat-
tice model, and ab initio. Protein structure prediction is an immense field that cannot
be adequately surveyed in this introduction. Numerous books (e.g., [50]) and excellent
reviews, (e.g., [21]) are available. Nevertheless, to situate the contribution of our work
within the broader scope of protein structure prediction, we briefly describe each of the
methods – homology, threading, ab initio –, before focusing on lattice models.

In homology modeling, the amino acid sequence of a novel protein P is aligned
against sequences of proteins Q, whose tertiary structure is available in the Protein
Data Bank (PDB) [10]. Regions of P aligned to regions of Q are assumed to have the
same fold, while non-aligned regions are modeled by interconnecting loops. Examples
of comparative modeling software are SWISS-MODEL, developed by M. Peitsch, T.
Schwede et al., and recently described in [3], as well as MODELER developed by
the Šali Lab [26]. Comparative modeling relies on the assumption that evolutionarily
related (homologous) proteins retain high sequence identity and adopt the same fold.

Threading [31,40], though known to be NP-complete [30], is a promising de novo
protein structure approach, which relies on threading portions ai, . . . , aj of the amino
acid sequence a1, . . . , an onto a fragment library, which latter consists of frequently
adopted partial folds. Pseudo-energy (aka knowledge-based potential) is computed from
the frequency of occurrence of certain folds with certain types of amino acid sequence.
Impressive results have been obtained with the Skolnick Lab program I-TASSER [47]
with web server [51], which yielded the best-ranked structure predictions in the blind
test CASP-7 (Critical Assessment of Techniques for Protein Structure Prediction) in
2006. Success of threading hinges on two things: energetics, i.e., that the PDB is rela-
tively saturated and contains occurrences of almost all protein folds, and search strat-
egy, i.e., usually Monte-Carlo or some type of branch-and-bound algorithm. According
to a study of Zhang and Skolnick [52], the PDB is currently sufficiently saturated to
permit adequate threading approaches, albeit with insufficient accuracy for the require-
ments of computational drug design.2

Despite advances in comparative modeling and threading, there is an interest in
ab initio protein structure prediction, since this is the only method that attempts to
understand protein folding from basic principles, i.e., by applying a search strategy
with (generally) a physics-based energy function. Moreover, only ab initio methods
can be applied for proteins having no homology with proteins of known structure. In

2 According to [52], using the TASSER algorithm, “in 408 cases the best of the top five full-
length models has a RMSD < 6.5 Ångstroms.”



84 I. Dotu et al.

Fig. 1. Lattices used in protein structure modeling. (a) Points (x, y, z) in cubic lattice, satisfying
0 ≤ x, y, z ≤ 1. (b) Points (x, y, z) in FCC lattice, satisfying 0 ≤ x, y, z ≤ 2. (c) Points
(x, y, z) in tetrahedral lattice, satisfying 0 ≤ x, y, z ≤ 1. (d) Points (x, y, z) in 210 (knight’s
move) lattice, satisfying 0 ≤ x, y, z ≤ 2.

molecular dynamics (MD), protein structure is predicted by iteratively solving New-
ton’s equations for all pairs of atoms (possibly including solvent) using mean force
potentials, that generally include pairwise (non-contact) terms for Lennard-Jones, elec-
trostatic, hydrogen bonding, etc. Well-known MD software CHARMM [14] and Am-
ber [20], as well as variant Molsoft ICM [1], the latter employing internal coordinates
(dihedral angle space) and local optimization, are used to simulate protein docking,
protein-ligand interactions, etc. since molecular dynamics generally is too slow to allow
ab initio folding of any but the smallest proteins. Other ab initio methods include the
Baker Lab program Rosetta [12], benchmarked in [24] with comparable accuracy as the
Skolnick Lab program I-TASSER [47]. Search strategies of ab initio methods include
molecular dynamics simulation, Metropolis Monte-Carlo (Rosetta [12]), Monte-Carlo
with replica exchange (I-TASSER [47]), branch-and-bound (ASTROFOLD [27]), inte-
ger linear programming (ASTROFOLD [27]), Monte-Carlo with simulated annealing,
evolutionary algorithms, and genetic algorithms.

2 Problem Formalization

A lattice is a discrete integer approximation to a vector space, formally defined to be
the set of integral linear combinations of a finite set of vectors in Zn; i.e.,

L =

{
k∑

i=1

aivi : ai ∈ Z

}
(1)

where v1, . . . ,vk ∈ Zn. If k is the minimum value for which (1) holds, then v1, . . . ,vk

form a basis, and k is said to be the dimension (also called coordination or contact
number) of L. Two lattice points p, q ∈ L are said to be in contact if q = p + vi

for some vector vi in the basis of L. Historically, many different lattices have been
considered, some of which are depicted in Figure 1. For more details on properties of
these and other lattices, see the book by Conway and Sloane [16]. In this paper, we
consider the face-centered cubic (FCC) lattice which is generated by the following 12
basis vectors (identified with compass directions [46]):

N : (1, 1, 0) S : (−1,−1, 0) W : (−1, 1, 0)
E : (1,−1, 0) NW+ : (0, 1, 1) NW− : (0, 1,−1)
NE+ : (1, 0, 1) NE− : (1, 0,− 1) SE+ : (0,−1, 1)
SW+ : (−1, 0, 1) SE− : (0,−1,−1) SW− : (−1, 0,−1).



Protein Structure Prediction with Large Neighborhood 85

H P
H -1 0
P 0 0

H P N X
H -4 0 0 0
P 0 +1 -1 0
N 0 -1 +1 0
X 0 0 0 0

Fig. 2. Energy for HP- and HPNX-model

It follows that the FCC lattice consists of all integer points (x, y, z), such that (x+ y+
z) mod 2 = 0, and that lattice points p = (x, y, z) and q = (x′, y′, z′) are in contact,
denoted by co(p, q), if (x − x′) + (y − y′) + (z − z′) mod 2 ≡ 0, |x − x′| ≤ 1,
|y− y′| ≤ 1, and |z− z′| ≤ 1. We will sometimes state that lattice points p, q are at unit
distance, when we formally mean that they are in contact. Since the distance between
two successive alpha-carbon atoms is on average 3.8Å with a standard deviation of
0.04Å, a reasonable coarse-grain approach is to model an n-residue protein by a self-
avoiding walk p1, . . . , pn on a lattice.

In 1972, Lau and Dill [32] proposed the hydrophobic-hydrophilic (HP) model, which
provides a coarse approximation to the most important force responsible for the hy-
drophobic collapse which has been experimentally seen in protein folding. Amino acids
are classified into either hydrophobic (e.g. Ala, Gly, Ile, Leu, Met, Phe, Pro, Trp, Val) or
hydrophilic (e.g. Arg, Asn, Asp, Cys, Glu, Gln, His, Lys, Ser, Thr, Tyr) residues. In the
HP-model, there is an energy of−1 contributed by any two non-consecutive hydropho-
bic residues that are in contact on the lattice. For this reason, the HP-model is said to
have a contact potential, depicted in the left panel of Figure 2, where ‘H’ designates
hydrophobic, while ‘P’ designates polar (i.e., hydrophilic). To account for electrostatic
forces involving negatively charged residues (Asp, Glu) and positively charged residues
(Arg, His, Lys), the HP-model has been extended to the HPNX-model, with hydrophobic
(H), positively charged (P), negatively charged (N) and neutral hydrophilic (X) terms.
The right panel of Figure 2 depicts the HPNX-potential used in [11].

Though Lau and Dill [32] originally considered only the 2-dimensional square lat-
tice, their model allowed the formulation of the following simply stated combinatorial
problem. For a given lattice and an arbitary HP-sequence, determine a self-avoiding
walk on the lattice having minimum energy, i.e., a minimum energy lattice conforma-
tion. This problem was shown to be NP-complete for the 2-dimensional square lattice
by [17] and for the 3-dimensional cubic lattice by Berger and Leighton [9].

3 Related Work

Approaches to the HP Model. We first survey some search strategies for the HP-model.
In [48], Yue and Dill applied “constraint-based exhaustive search”3 to determine the
minimum energy conformation(s) of several small proteins including crambin, when
represented as HP-sequences on the cubic lattice. Necessarily, any exhaustive search
is limited to very small proteins, since the number of conformations for an n-mer on
the 3-dimensional cubic lattice is estimated to be approximately 4.5n [33]. In [43],

3 Despite the name, the method of Yue and Dill did not did not involve constraint programming.
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Unger and Moult described a genetic algorithm for the HP-model on the 2-dimensional
square lattice, where pointwise mutation corresponds to a conformation pivot move.
This approach was extended in Backofen, Will, and Clote [6] to a genetic algorithm on
the FCC lattice, in order to quantify hydrophobicity in protein folding.

In [4,5,7], Backofen applied constraint programming to the HP-model and to the
HPNX-model, thus providing an exact solution for small HP- and HPNX-sequences
beyond the reach of exhaustive methods. In [8,45], Will and Backofen precomputed hy-
drophobic cores, maximally compact face-centered cubic self-avoiding walks of (only)
hydrophobic residues. By threading an HP-sequence onto hydrophobic cores, the op-
timum conformation could be found for certain examples; however, if threading is not
possible (which is often the case), no solution is returned.

Dal Palu et al. [18] use secondary structure and disulfide bonds used as constraints
using constraint logic programming over finite domains to compute a predicted struc-
ture on the face-centered cubic lattice. They describe tests ranging from the 12 residue
fragment (PDB code 1LE0) with RMSD of 2.8 Å achieved in 1.3 seconds, to the 63
residue protein (PDB code 1YPA) with RMSD of 17.1 Å in 10 hours. Further optimiza-
tion was performed after the alpha-carbon trace was replaced by an all-atom model
(presumably using well-known Holm-Sander method [25]), thus achieving an all-atom
prediction of the 63 residue protein (PDB code 1YPA) with RMSD of 9.2 Å within
116.9 hours computation time. This study suggests that protein structure prediction
might best proceed in a hierarchical fashion, first taking into account secondary struc-
ture on a coarse-grain lattice model and subsequently performing all-atom refinement.

Beyond the HP Model. The HP-model can be viewed as a coarse approximation of
more complex contact potentials. In [35], Miyazawa and Jernigan introduced two kinds
of contact potential matrices, i.e., 20× 20 matrices that determine a residue-dependent
energy potential to be applied in the case that two residues are in contact (either on the
lattice, or within a fixed threshold such as 7 Åfrom each other). Recently, Pokarowski
et al. [37] analyzed 29 contact matrices and showed that in essence all known contact
potentials are one of the two types they introduced in [35]. Their first contact potential is
given by the formula e(i, j) = h(i)+h(j), where 1 ≤ i ≤ 20 ranges over the 20 amino
acids and h is a residue-type dependent factor that is highly correlated with frequency of
occurrence of a given amino acid type in a non-redundant collection of proteins. Their
second contact potential is given by the formula e(i, j) = c0 − h(i)h(j) + q(i)q(j),
where c0 is a constant, h is highly correlated with the Kyte-Doolittle hydrophobicity
scale [28], and a residue-type dependent factor q is highly correlated isoelectric points
pI. The “knight’s move” 210 lattice was used by Skolnick and Kolinski [41] to fold the
99-residue beta protein, apoplastocyanin, to within 2 Åof its crystal structure with PDB
accession code 2PCY.

4 Why Constraint Programming?

Our earlier work [13] applied a tabu-search algorithm to obtain approximate solutions
for protein folding for the HP-model on FCC lattice. The goal of this paper is to evaluate
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a similar model using a large neighborhood search based on constraint programming,
both to improve earlier results and to assess their quality. The improvements obtained
by the CP-based LNS indicate that this approach provides significant benefits over a
pure local search algorithm. More generally, as explained in the introduction, protein
structure prediction can be viewed as the application of a search engine (Monte-Carlo,
Monte-Carlo with replica exchange, genetic algorithm, integer programming, ...) to
a physics-based or knowledge-based energy function. This paper evaluates CP-Based
large neighborhood search on the Harvard instances, a standard benchmark for assess-
ing accuracy of structure prediction for the HP-model. Our successful application of
LNS to the face-centered cubic lattice suggests the potential of using this constraint-
programming strategy in a hierarchical manner with successive refinements to perform
all-atom structure prediction – a task for future research.

5 The Implementation

5.1 The CP Model

The CP model receives as input a sequence of binary values Hi (0 ≤ i < n) denoting
whether aminoacid i is hydrophobic (Hi = 1). Its output associates each aminoacid i
with a point (xi, yi, zi) in the FCC lattice. Recall that the FCC lattice is the closure of
12 vectors V = {v0, . . . , v11} defined as follows:

v0 = {1, 1, 0} v1 = {−1,−1, 0} v2 = {−1, 1, 0} v3 = {1,−1, 0}
v4 = {1, 0, 1} v5 = {−1, 0,−1} v6 = {−1, 0, 1} v7 = {1, 0,−1}
v8 = {0, 1, 1} v9 = {0,−1,−1} v10 = {0,−1, 1} v11 = {0, 1,−1}.

Decision Variables. Although the output maps each aminoacid i into a FCC lattice
point, the model uses move vectors as decision variables. These vectors (mx

i ,m
y
i ,m

z
i )

specify how to move from point i − 1 to point i in the self-avoiding walk. The use of
move variables greatly simplifies the modeling: Self-avoidance is maintained through
the lattice points, but move vectors along with a lexicographical variable ordering allow
us to implicitly check chain connection and drastically reduces the search space.

The Domain Constraints. Each move variable (mx
i ,m

y
i ,m

z
i ) has a finite domain con-

sisting of the FCC lattice vectors {v0, . . . , v11}, that is

(mx
i ,m

y
i ,m

z
i ) ∈ {v0, . . . , v11}.

Each coordinate xi, yi, and zi in the 3D point (xi, yi, zi) associated with aminoacid i
has a finite domain 0..2n.

The Lattice Constraints. The lattice constraints link the move variables and the points
in the FCC lattice. They are specified as follows:

∀ 0 < i < n : xi = xi−1 + mx
i & yi = yi−1 + my

i & zi = zi−1 + mz
i .

The model also uses the redundant constraints (xi + yi + zi) mod 2 = 0 which are
implied by the FCC lattice. In addition, the initial point is fixed.
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The Self-Avoiding Walk Constraints. To express that all aminoacids are assigned differ-
ent points in the FCC lattice, the model uses a constraint

abs(
∑

k∈i..j

mx
k) + abs(

∑
k∈i..j

my
k) + abs(

∑
k∈i..j

mz
k) �= 0

for each pair (i, j) of aminoacids, ensuring the moves from the position of aminoacid i
do not place j at the same position as i. Indeed, the two points (xi, yi, zi) and (xj , yj , zj)
are at the same position if each of the sums in the above expression is zero.

The Objective Function. The objective function maximizes the number of contacts be-
tween hydrophobic aminoacids

∑
i,j|i+1<j(dij = 2)×Hi ×Hj where dij denotes the

square of Euclidean distance between aminoacids i and j. Since the minimal distance in
the FCC lattice is

√
2, the condition dij = 2 holds when there exists a contact between

aminoacids i and j.

5.2 The Search Procedure

The search procedure assigns positions to the aminoacids in sequence by selecting
moves in their domains. The only heuristic choice thus concerns which moves to se-
lect, which uniquely determines the position of the next aminoacid. In the course of this
research, a number of move selection heuristics were evaluated. Besides the traditional
lexicographic and random value selections, the heuristics included

1. Minimizing the distance to the origin: Choosing the move minimizing the dis-
tance of the corresponding aminoacid to the origin.

2. Minimizing the distance to the centroid: Choosing the move minimizing the dis-
tance of the corresponding aminoacid to the centroid.

3. Maximizing density: Choosing the move maximizing the density of the structure.
4. Maximizing hydrophobic density: Choosing the move that maximizing the den-

sity of the structure consisting only of the hydrophobic aminoacids.

The centroid of the conformation is defined as ( 1
n

∑n−1
i=0 xi,

1
n

∑n−1
i=0 yi,

1
n

∑n−1
i=0 zi).

Most of the dedicated heuristics bring significant improvements in performance, al-
though those minimizing the distance to the origin and the centroid seem to be most
effective. Our implementation randomly selects one of the two heuristics.

5.3 Strengthening the Model during Search

We now describe a number of tightenings of the model which are applied during search.
Their main benefit is to strengthen the bound on the objective function.

Linking FCC Moves and Distance Constraints. In the model described so far, the dis-
tance between two aminoacids ignores the fact that the points are placed on the FCC
lattice. The model may be improved by deriving the fact that two aminoacids are neces-
sarily placed at a distance greater than

√
2 and thus cannot be in contact. Such derived

information directly improves the bound on the objective function.
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However computing the possible distances between two aminoacids is quite com-
plex in general. As a result, our constraint-programming algorithm only generates rele-
vant distances each time a new aminoacid is positioned. More precisely, assuming that
aminoacid i has just been positioned on the FCC lattice, the algorithm determines which
unassigned aminoacids cannot be in contact with already placed aminoacids (only for
H-type aminoacids). The key idea is to compute the shortest path spij in the FCC lattice
between aminoacid i and an already placed aminoacid j: It then follows that unassigned
aminoacids i + 1, . . . , i + spij − 2 cannot be in contact with j. Formally, after placing
aminoacid i, the model is augmented with the constraints

∀0 ≤ j ≤ i− 2, i + 1 ≤ l ≤ i + spij − 2 : djl > 2

which ensures that aminoacids j and l cannot be in contact.

Bounding the Number of Contacts. The expression of the objective function also does
not take into account how the aminoacids are placed in the FCC lattice. As a result, it
typically gives weak bounds on the objective value. This section shows how to bound
the objective value at a search node more effectively.

The key idea to bound the objective value is to compute the maximum number of
contacts for each unassigned aminoacid independently, thus ignoring their interactions
through the self-avoiding walk. Consider a node of search tree where the sequence can
be partitioned into the concatenation A :: U , where A is the subsequence of already
positioned aminoacids in which i is the last assigned one (also, we only consider a ∈
A‖Ha == 1 and k ∈ U‖Hk == 1). The objective function can then be bounded by

obj ≤ contact(A) +
∑
kinU

min(maxContact(k), bcontact(k,A) + fcontact(k, U))

where contact(A) denotes the number of contacts in subsequence A, bcontact(k,A)
bounds the number of contacts of an aminoacid k ∈ U with those aminoacids in A, and
fcontact(k, U) bounds the number of contacts of k with those aminoacids in U occur-
ring later in the sequence. The contacts of each aminoacid k ∈ U , maxContact(k), are
bounded by 10, since a point in the FCC lattice has 12 neighbors and there cannot be any
contact between two successive aminoacid in the sequence. However, if k == n − 1,
i.e., if k is the last aminoacid of the sequence then maxContact(k) == 11, since that
k has no successor aminoacid.

To bound the contact of aminoacid k with A, the idea is to consider the neighbors of
each aminoacid a ∈ A and to find the one maximizing the contacts with k, i.e.,

bcontact(k,A) = maxa∈A bcontact(k, a,A)
bcontact(k, a,A) = #{j ∈ A | j ∈ N(a) ∧ j ∈ R(k, a)}.

where N(a) denotes the neighbors of aminoacid a and R(k, a) denotes the aminoacid
in A reachable from k, i.e., R(k,A) = {a ∈ A | spai ≤ (k − i) + 1}. Recall that i
is the last aminoacid assigned. Finally, to bound the number of contacts of k with those
aminoacids occurring later in the sequence, we use

fcontact(k, U) =
∑

l∈U :l≥k+2

Hl
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1. LNS PSP(σ)
2. limit ← limit0
3. fraction ← fraction0

4. for m iterations do
5. uniform select i ∈ 1..n − 1
6. size ← n · fraction
7. j ← i + size
8. 〈σ∗, explored 〉 = CPSolve(σ, i..j, limit)
9. if σ∗ 
= ⊥ then
10. σ ← σ∗

11. limit ← limit0
12. fraction ← fraction0

13. else if explored then
14. fraction ← fraction + Δfraction
15. else
16. limit ← limit + Δlimit
17. return σ

Fig. 3. LNS for Protein Structure Prediction (limit0=500 failures, fraction0 = 3
100

,
Δfraction = 1

1000
and Δlimit=100 failures).

to count the number of hydrophobic aminoacids occurring later in U that can be in
contact with k. This bound can be computed in time O(n2) and is quite tight when the
number of aminoacids in U is reasonably small.

5.4 Large Neighborhood Search

Structure prediction is a highly complex combinatorial optimization problem. As a
result, constraint programming search may spend considerable time in suboptimal re-
gions of the search space. To remedy this limitation, our algorithm uses the idea of
large neighborhood search (LNS) [38] which focuses on reoptimizing subparts of a so-
lution. Given a feasible walk σ, the idea is to solve the structure prediction problem for
a subsequence of the original sequence, assuming that the remaining aminoacids are
positioned like in σ. More precisely, given an interval i..j, an LNS optimization step
consists of solving the original model with the additional constraints

∀ k : 0 ≤ k < i : xi = σ(xi) ∧ yi = σ(yi) ∧ zi = σ(zi)

∀ k : j < k < n : xi = σ(xi) ∧ yi = σ(yi) ∧ zi = σ(zi)

where σ(x) denotes the value of variable x in solution σ.
The complete LNS algorithm is depicted in Figure 3. It receives as input a high-

quality solution produced by the tabu-search algorithm described in [13] and uses a
subroutine CPSolve(σ, i..j, l) which solves augmented models using constraint pro-
gramming and terminates after at most limit failures had occurred or when the entire
search space has been explored. It returns a pair 〈σ∗, explored〉, where σ∗ is either a
new best solution or ⊥ if no such solution was found, and explored is a boolean which
is true when the entire search space has been explored for the augmented model. Lines
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Table 1. Results for the Harvard instances

Seq. Lowest LS E median time Lowest LNS E time Improvement %
H1 -68 114 sec. -69 5.32 sec. 1.47
H2 -69 265 sec. Not improv. 0
H3 -68 72 sec. -71 28.64 sec. 4.41
H4 -66 44 sec. -69 26.55 sec. 4.55
H5 -66 53 sec. -67 4.18 sec. 1.52
H6 -70 149 sec. Not improv. 0
H7 -68 8 sec. -69 9.86 sec. 1.47
H8 -64 10 milisec. -65 18.3 sec. 1.56
H9 -69 89 sec. Not improv. 0
H10 -66 30 sec. -67 9.74 mins. 1.52

2–3 initialize two parameters: the limit on the number of failures and the fraction of
the subsequence to (re)-position on the FCC lattice. Line 8 is the call to the constraint-
programming solver. After this call there are three possibilities. First, that the search is
successful: then the best solution is updated and the parameters are re-initialized (lines
9–12). Second, the search space has been explored entirely with no improvement; the
fraction of the sequence to re-position is increased at a certain rate Δfraction (lines
13–14). Finally, CPSolve reached limitwithout an improvement: the number of failures
is increased in Δlimit to give it more time to succeed in the next trial (lines 15–16).

6 Experimental Results

All the results presented in this section have been produced by a COMET [34,44] im-
plementation of the LNS algorithm, run on a single core of a 60 Intel based, dual-core,
dual processor, Dell Poweredge 1855 blade server. Each blade has 8G of memory and
a 300G local disk. Each of the considered benchmarks was run for about 48 hours.

The Harvard Instances. Reference [49] contains a comparison of several methods to
fold 10 different proteins, called the ”Harvard instances”, on the cubic lattice. The cubic
lattice has been heavily studied as pointed out in the introduction, but the FCC lattice
has been shown to admit the tightest packing of spheres [15], indicating that it allows for
more complex 3D structures. The first results for these instances on the FCC lattice were
presented in [13] and confirmed that the FCC lattice allows for structures with much
lower energy than the cubic lattice. Table 1 depicts the results of our hybrid algorithm,
starting with a local-search algorithm and improving the result with LNS. Note that the
energy shown in the table corresponds to minus the number of HH contacts. The LNS
step improves 7 out of 10 solutions quickly. Since no complete search algorithms have
been applied to these instances on the FCC lattice, the energy of the optimal structure is
not known. However, given the consistency in the energies of all the sequences (which
all have 48 aminoacids and 24 hydrophobic aminoacids), it is probably the case that
these results are near-optimal.
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Table 2. Results for the Will’s instances

Seq. Native E Lowest LS E median time Lowest LNS E time Improvement %
S1 -357 -325 15.98 min. -346 1.61 hour 6.46
S2 -360 -315 19.18 min. -343 4.48 hours 8.89
S3 -367 -307 1.14 min. -341 54.18 mins. 11.07
S4 -370 -318 13.14 min. -340 7.4 hours 6.92

R1 -384 -284 2.09 min. -337 1.3 hours 18.66
R2 -383 -290 18.8 min. -325 7.67 hours 12.07
R3 -385 -282 6.45 min. -317 2.08 hours 12.41

Other Instances. We also evaluated our algorithm with the only FCC foldings available
in the literature. Table 2 depicts a comparison for 7 instances found in [46]. All instances
contain 100 H aminoacids, and the R instances have a total of 200 aminoacids, while
the S instances range between 130 and 180 aminoacids. Table 2 also shows optimal
energies for these instances. The results demonstrate that LNS significantly improves
the local search algorithm, with improvements ranging from 6% to 18%. The largest
improvements occur on the R instances, which is explained by the lower quality of
local search for these instances. The results on the S instances are within 8% of the
optimal solution, while the algorithm is within 18% of the optimal solutions on the R
instances. Figure 4 depicts a 3D view of the best configuration found for S2 for the local
search in [13], the LNS algorithm, and the native state.

It is also important to stress how the optimal solutions were obtained in [46]. Will’s
algorithm solves a substantially different problem which consists of threading a se-
quence into a pre-calculated H core. The algorithm relies on a set of precomputed (op-
timal and suboptimal) cores and tries to map the protein on these cores. Such threading
for the protein may not exist for any of these cores or may not be found within the
given time limit, in which case the threading algorithm may not provide any solution.
There is thus a fundamental conceptual difference between the algorithm presented
in this paper and the hydrophobic-core constraint-programming method of Will and
Backofen [8,45], which can be captured using the concepts of Monte-Carlo and Las Ve-
gas algorithms from theoretical computer science [36]. Monte-Carlo algorithms always
converge, but have a (small) probability of error in the solution proposed; in contrast,
Las Vegas algorithms always return the correct solution, but have a (small) probability

(a) Lowest E. Config. (LS) (b) Low. E. Con. (LS+LNS) (c) Native Configuration

Fig. 4. Lowest Energy Configurations for Instance S2. Native is the Optimal Configuration
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Table 3. LS and LNS over unsolved instances by Will’s apporach

sequence after 180 sec. of LS 180 sec. of LS + 5 min. of LNS 180 sec. of LS + 2 hours of LNS
F90 1 -127 -149 -157
F90 2 -136 -151 -154
F90 3 -131 -150 -156
F90 4 -134 -153 -157
F90 5 -132 -144 -148

sequence after 300 sec. of LS 300 sec. of LS + 5 min. of LNS 300 sec of LS + 2 hours of LNS
F160 1 -216 -231 -272
F160 2 -241 -264 -295
F160 3 -226 -242 -278

of not converging. By analogy, our approach (LNS with constraint programming) is
akin to a Monte-Carlo method, in that an approximate solution is always returned. In
contrast, hydrophobic-core constraint programming is akin to a Las Vegas method, in
that any solution returned is an exact (optimal) solution; however, in many cases, the
hydrophobic-core method fails to return any answer. Reference [46, p. 129] includes a
table indicating that the threading algorithm only solves 50% of the instances with an H
core of size 100 within the given time limit. The instances for which they report a solu-
tion are those which can be threaded in an optimal H core. These instances are heavily
biased against our algorithm and none of the other sequences are available. Thus, a
fair comparison of the algorithms is not possible at this stage, since only the above 7
sequences are available and they belong to the 50% the threading algorithm can solve.

Table 3 shows results on instances for which Will’s approach did not yield any solu-
tion within the given time limits (180 secs for sequences with 90 aminoacids and 300
secs for sequences with 160 aminoacids). It can be seen how the local search achieves
initial solutions which are then quickly improved by the LNS. Running LNS for longer
time improves the solutions substantially, demonstrating the potential of this approach.
Note also that Will’s algorithm relies heavily on the definition of energy and it is hard to
generalize to other energy models. Our algorithm solves the problem ab-initio and has
the potential of obtaining near-optimal solution for general proteins. In addition, our ap-
proach is completely general and may encompass different notions of energies at very

(a) Behaviour over 5 hours of LS + LNS (b) Zoom on LNS behaviour

Fig. 5. Algorithm Behavior over Time for Will’s instance S2
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small cost of implementation. Moreover, some preliminary results indicate that it can
be applied to problems such as RNA structure prediction with minimal modifications.

Finally, figure 5 depicts the improvement of the solutions of our algorithm over time.
The algorithm exhibits a steep descent, followed by a long plateau, and then another
steep descent. It is interesting to see how the local search, the LNS (on their own) and
the complete process (local search + LNS), they all present the same behavior.

7 Conclusions and Future Work

This paper presented an LNS algorithm for finding high-quality self avoiding walk for
the Hydrophobic-Polar (HP) energy model on the Face Centred Cubic (FCC) lattice.
The algorithm relies on a local search initial solution which is then improved by a
constraint-programming LNS strategy. Experimental results on the standard Harvard
instances show improvements over previously presented results, while significant im-
provements are achieved in other larger instances. The result shows that the hybridiza-
tion of local search and constraint programming has great potential to approach the
highly combinatorial problem of structure prediction.

The goal of our paper is to apply CP to compute approximations for solutions to in-
stances of the NP-complete problem of protein structure prediction for the HP-model on
the FCC lattice. Experimental results are meant only to benchmark the LNS algorithm.
Our long term interest is the application of local search and CP to real biomolecular
structure prediction. Bradley et al. [12] argue that protein structure prediction consists
of two aspects: (1) a good search strategy (2) adequate fragment library. Skolnick and
others have argued that due to the Structural Genome Initiative (high-throughput X-ray
diffraction studies of proteins having less than 30% homology to any existent proteins),
the fragment library is essentially currently adequate. While most search strategies (in-
cluding that of Bradley, Misura and Baker) are Monte Carle (possibly with simulated
annealing, possibly with replicate exchange), our goal is to develop algorithms such as
LNS that ultimately will play a role in biomolecular structure prediction. This is the
ultimate justification of the current work.
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Abstract. Modern computer architectures have complex features that
can only be fully taken advantage of if the compiler schedules the com-
piled code. A standard region of code for scheduling in an optimiz-
ing compiler is called a superblock. Scheduling superblocks optimally
is known to be NP-complete, and production compilers use non-optimal
heuristic algorithms. In this paper, we present an application of con-
straint programming to the superblock instruction scheduling problem.
The resulting system is both optimal and fast enough to be incorporated
into production compilers, and is the first optimal superblock sched-
uler for realistic architectures. In developing our optimal scheduler, the
keys to scaling up to large, real problems were in applying and adapting
several techniques from the literature including: implied and dominance
constraints, impact-based variable ordering heuristics, singleton bounds
consistency, portfolios, and structure-based decomposition techniques.
We experimentally evaluated our optimal scheduler on the SPEC 2000
benchmarks, a standard benchmark suite. Depending on the architec-
tural model, between 98.29% to 99.98% of all superblocks were solved
to optimality. The scheduler was able to routinely solve the largest su-
perblocks, including superblocks with up to 2,600 instructions, and gave
noteworthy improvements over previous heuristic approaches.

1 The Problem

Modern computer architectures have complex features that can only be fully
taken advantage of if the compiler schedules the compiled code. This instruction
scheduling, as it is called, is one of the most important steps for improving the
performance of object code produced by a compiler as it can lead to significant
speedups [1]. As well, in VLIW (very large instruction word) architectures, in-
struction scheduling is necessary for correctness as the processor strictly follows
the schedule given by the compiler (this is not true in so-called out-of-order
processors). In the remainder of this section, we briefly review the necessary
background in computer architecture before defining the superblock instruction
scheduling problem, the problem that we address in this paper (for more back-
ground on these topics see, for example, [1,2,3]).
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We consider multiple-issue, pipelined processors. Multiple-issue and pipelin-
ing are two techniques for performing instructions in parallel and processors that
use these techniques are now standard in desktop and laptop machines. In such
processors, there are multiple functional units and multiple instructions can be
issued (begin execution) in each clock cycle. Examples of functional units in-
clude arithmetic-logic units (ALUs), floating-point units, memory or load/store
units that perform address computations and accesses to the memory hierarchy,
and branch units that execute branch and call instructions. The number of in-
structions that can be issued in each clock cycle is called the issue width of the
processor. On most architectures, including the PowerPC [4] and Intel Itanium
[5], the issue width is less than the number of available functional units.

Pipelining is a standard hardware technique for overlapping the execution of
instructions on a single functional unit. A helpful analogy is to a vehicle assembly
line [2] where there are many steps to constructing the vehicle and each step
operates in parallel with the other steps. An instruction is issued on a functional
unit (begins execution on the pipeline) and associated with each instruction is a
delay or latency between when the instruction is issued and when the instruction
has completed (exits the pipeline) and the result is available for other instructions
that use the result. Also associated with each instruction is an execution time,
the number of cycles between when the instruction is issued on a functional unit
and when any subsequent instruction can be issued on the same functional unit.
An architecture is said to be fully pipelined if every instruction has an execution
time of 1. However, most architectures are not fully pipelined and so there will
be cycles in which instructions cannot be issued on a particular functional unit,
since the unit will still be executing a previously-issued instruction.

Further, some processors, such as the PowerPC and Intel Itanium, contain
serializing instructions, instructions that require exclusive access to the processor
in the cycle in which they are issued. This can happen when an architecture has
only one of a particular resource, such as a condition register, and needs to
ensure that only one instruction is accessing that resource at a time. In the cycle
in which such instructions are issued, no other instruction can be executing or
can be issued—for that one cycle, the instruction has sole access to the processor
and its resources.

Example 1. Consider a PowerPC 603e processor [4]. The processor has four func-
tional units—an ALU, a floating-point unit, a load/store unit, and a branch
unit—and an issue width of two. On this processor a floating point addition has
an execution time of 1 cycle and a latency of 3 cycles. In contrast, a floating point
division has an execution time of 18 cycles and also a latency of 18 cycles. Thus,
once a floating-point division instruction is issued on the floating-point unit, no
other floating point instruction can be issued (because there is only one unit)
until 18 cycles have elapsed and no other instruction can use the result of that
floating-point division until 18 cycles have elapsed. Finally, on the PowerPC
603e, about 15% of the instructions executed by the processor are serializing
instructions.
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A compiler needs an accurate architectural model of the target processor that
will execute the code in order to schedule the code in the best possible manner. In
the rest of the paper, we refer to an architectural model as idealized if it assumes
that (i) the issue width of the processor is equal to the number of functional
units, (ii) the processor is fully pipelined, and (iii) that the processor contains
no serializing instructions. An architectural model is referred to as realistic if it
does not make any of these assumptions.

Instruction scheduling is done on certain regions of a program. All compil-
ers schedule basic blocks, where a basic block is a straight-line sequence of code
with a single entry point and a single exit point. However, basic blocks alone are
considered insufficient for fully utilizing a processor’s resources and most opti-
mizing compilers also schedule a generalization of basic blocks called superblocks.
A superblock is a collection of basic blocks with a unique entrance but multiple
exit points [6]. We use the standard labeled directed acyclic graph (DAG) rep-
resentation of a superblock. Each node corresponds to an instruction and there
is an edge from i to j labeled with a non-negative integer l(i, j) if j must not
be issued until i has executed for l(i, j) cycles. In particular, if l(i, j) = 0, j
can be issued in the same cycle as i; if l(i, j) = 1, j can be issued in the next
cycle after i has been issued; and if l(i, j) > 1, there must be some intervening
cycles between when i is issued and when j is subsequently issued. These cycles
can possibly be filled by other instructions. Each node or instruction i has an
associated execution time d(i). Exit nodes are special nodes in a DAG repre-
senting the branch instructions. Each exit node i has an associated weight or
exit probability w(i) that represents the probability that the flow of control will
leave the superblock through this exit point. The probabilities are calculated by
running the instructions on representative data, a process known as profiling.

Given a labeled dependency DAG for a superblock and a target architectural
model, a schedule for a superblock is an assignment of a clock cycle to each
instruction such that the latency and resource constraints are satisfied. The
resource constraints are satisfied if, at every time cycle, the resources needed by
all the instructions issued or executing at that cycle do not exceed the limits of
the processor.

Definition 1 (Superblock Instruction Scheduling). The weighted comple-
tion time or cost of a superblock schedule is

∑n
i=1 w(i)e(i), where n is the number

of exit nodes, w(i) is the weight of exit i, and e(i) is the clock cycle in which exit
i will be issued in the schedule. The superblock instruction scheduling problem
is to construct a schedule with minimum weighted completion time.

Example 2. Consider the superblock shown in Figure 1. Nodes E and K are
branch instructions, with exit probability 0.3 and 0.7, respectively. Consider an
idealized processor with two functional units. One functional unit can execute
clear instructions and the other can execute shaded instructions. Figure 1(b)
shows two possible schedules, S1 and S2. The weighted completion time for
schedule S1 is 0.3 × 4 + 0.7 × 15 = 11.7 cycles and for schedule S2 is 0.3 × 5 +
0.7× 14 = 11.3 cycles. Schedule S2 is an optimal solution.
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cycle S1 S2

1 A A
2 C B C D
3 D B
4 G E
5 I G E
6 I
7 F
8 F
9

10
11
12 H
13 H J
14 J K
15 K

(a) (b)

Fig. 1. (a) Superblock representation: nodes E and K are exit nodes with exit proba-
bilities 0.3 and 0.7 respectively; (b) two possible schedules for Example 2

2 Why CP?

Superblock instruction scheduling for realistic multiple-issue processors is NP-
complete [7] and currently is done using heuristic approaches in all commercial
and open-source research compilers. The most common heuristic approach is
a greedy list scheduling algorithm coupled with a priority heuristic. Many so-
phisticated heuristics have been proposed including critical path [3], dependence
height and speculative yield [8], G∗ [9], speculative hedge [10], balance scheduling
[11], and successive retirement [9]. However, even the best heuristic approaches
can produce sub-optimal solutions.

Optimal approaches for instruction scheduling have also been proposed. We
first review previous work on basic block scheduling, the easier special case of su-
perblock scheduling where there is only one exit and all of the instructions in the
block are always executed. Previous work on optimal approaches to basic block
instruction scheduling can be categorized by those approaches that are targeted
only towards idealized—i.e., unrealistic—architectural models [12,13,14,15] and
those approaches that have been developed for more realistic architectural mod-
els [16,17,18]. Broadly speaking, previous work has shown that (i) for an idealized
multi-issue processor, optimal approaches can scale up to the largest basic blocks
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that arise in practice, and (ii) for more realistic architectures, optimal approaches
can be used but do not yet scale up beyond 10-40 instructions (the largest blocks
that arise in practice have 2,600 instructions). In our work, we present a con-
straint programming approach that applies to realistic architectures and scales
up to the largest blocks. Our work builds on a previously developed constraint
programming approach for basic block scheduling, which assumed an idealized
architecture [15].

In contrast to optimal basic block scheduling, there has been relatively little
work on optimal superblock scheduling. Winkel [19] presents an integer linear
programming model for instruction scheduling for Itanium processors. However,
the approach has two limitations. First, the model is limited to small regions with
size up to 200 instructions. Second, and more importantly, the approach mini-
mizes the length of the schedule. This measure is appropriate for basic blocks,
which consist of straight line code. But it is not appropriate for regions that
contain multiple exits and whose paths of execution may rarely fall through to
the last instruction. Shobaki and Wilken [20,21] were the first to develop a ro-
bust optimal scheduler for superblocks that scaled up to large superblocks. Their
approach is based on enumeration. However, their work is targeted to idealized
architectures and assumes that the functional units are fully pipelined, the is-
sue width of the processor is equal to the number of functional units, and there
are no serializing instructions. It is not at all clear how to successfully extend
these previously proposed enumeration and integer programming approaches to
realistic architectures and cost functions. In our constraint programming ap-
proach, we remove these assumptions and present the first optimal superblock
scheduling approach for realistic architectures. Further, even though our target
architectures are realistic, our approach scales up to more difficult and larger
superblocks than in previous work.

3 How CP?

In this section, we present our constraint programming approach for superblock
instruction scheduling. We first present the basic model—a model that is correct
but inefficient—followed by the techniques we used to improve our model and
solving approach. Our description is at a high-level; see [22] for more details.

3.1 Basic Model

Given a labeled dependency DAG G = (N,E) for a superblock and a target
architectural model, we model each instruction or node i by a variable xi. The
domain of each variable dom(xi) is a subset of {1, . . . ,m}, which are the avail-
able time cycles. Assigning a value t ∈ dom(xi) to a variable xi has the in-
tended meaning that instruction i will be issued at time cycle t. The domain
dom(xi) = {a, . . . , b} of a variable xi is represented by the endpoints of the
interval [a, b].

To model the latencies of the instructions, for each pair of variables xi and
xj such that (i, j) ∈ E, a latency constraint of the form xi + l(i, j) ≤ xj is
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added to the constraint model, where l(i, j) is the latency on the edge (i, j).
Global cardinality constraints (GCC) [23] are used to model the resources of
the processor. A GCC over a set of variables and values states that the number
of variables instantiating to a value must be between a given upper and lower
bound. For each type t of functional unit, a GCC over all variables of type t
is added to the constraint model, where the lower bound is zero and the upper
bound is the number of functional units of type t. As well, a GCC over all
variables is added, where the lower bound is zero and the upper bound is the
issue width of the processor.

So far, the model assumes an idealized architecture where each unit is fully
pipelined and there are no serializing instructions. To model a non-fully pipelined
processor, we add auxiliary variables to the constraint model. Recall that in a
non-fully pipelined processor, some instructions have execution times greater
than 1. Let i be an instruction with execution time e(i) > 1 and let xi be the
corresponding variable. The auxiliary variables pi,j , 1 ≤ j ≤ e(i)− 1, are added
into the model, where each variable pi,j is of the same functional unit type as
xi. The constraints xi + j = pi,j , 1 ≤ j ≤ e(i)−1, are also added into the model.
Finally, we also add the variables pi,j, all of which are of type t, to the GCC
functional unit constraint for type t.

Serializing instructions can be modeled in a manner similar. Let i be a se-
rializing instruction and let xi be the corresponding variable. Let F be the
total number of functional units in the processor. The auxiliary variables si,j ,
1 ≤ j ≤ F − 1, are added into the constraint model. There is one auxiliary vari-
able for every functional unit except for the one on which instruction i is issued;
the functional unit type of each auxiliary variable is assigned accordingly. The
constraints xi = si,j , 1 ≤ j ≤ F − 1, are also added into the model. Finally, for
each type t, we add all auxiliary variables of type t to the corresponding GCC
functional unit constraint for type t.

Example 3. Consider again the superblock shown in Figure 1 and assume ini-
tially the same idealized processor as in Example 2. The constraint model would
have variables A, . . . ,K, and the constraints,

B ≥ A + 1, . . . GCC(B, D, E, F, H, J, K),
C ≥ A + 1, K ≥ I, GCC(A, C, G, I),
D ≥ A + 1, K ≥ J + 1,

where the lower and upper bounds of each GCC constraint are 0 and 1 (the
number of functional units of each type), respectively, and the cost function is
0.3 × E + 0.7 × K. Somewhat more realistically, suppose instead that instruction
D is not fully pipelined and has an execution time e(D) = 3 and that instruction
G is a serializing instruction. The auxiliary variables pD,1, pD,2, and sG,1 would
be added to the model along with the constraints D+1 = pD,1, D+2 = pD,2, and
G = sG,1. Finally, one of the GCC constraints would incorporate the auxiliary
variables and would become GCC(B, D, E, F, H, J, K, pD,1, pD,2, sG,1).

We have described a correct, but minimal, model for the superblock schedul-
ing problem targeted towards realistic architectures. As is usual in constraint
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programming, the minimal model cannot solve all but the smallest instances as
it does not scale beyond 40 instructions. We next describe the improvements we
made to scale up our constraint programming approach to instances with 2,600
instructions (the largest that we have found in practice).

3.2 Improving the Model and Solving Approach

In developing our optimal scheduler, the keys to scaling up to large, real
problems were in applying and adapting several techniques from the literature
including: implied and dominance constraints, impact-based variable ordering
heuristics, singleton bounds consistency, portfolios, and structure-based decom-
position techniques.

Implied constraints do not change the set of solutions while dominance con-
straints may but preserve an optimal solution. Both types of constraints can
increase the amount of constraint propagation and so greatly improve the effi-
ciency of the search for a solution (see, e.g., [24] and references therein). In our
work, many instances of each of these constraints are added to the constraint
model in an extensive preprocessing stage that occurs once. The extensive pre-
processing effort pays off as the model is solved many times.

Two forms of implied constraints are added to the model: xi + d(i, j) ≤ xj

and xj ≤ xi +d(i, j). Roughly, the first form is added if a pair of nodes i and j in
the DAG for a superblock form a region; i.e., there is more than one path from i
to j [12]. If the region is small enough, it is solved exactly using a backtracking
algorithm; if it is large, the distance d(i, j) is estimated, making sure that the
estimate is a lower bound. Again roughly, the second form is added if i and j
define a region and are articulation nodes—an articulation node is a node which
disconnects the graph once removed—and the region defined by i and j is small
enough to be solved quickly and exactly in isolation. It can be shown that the
solution to the isolated subproblem can be used to form a tight upper bound on
the distance between i and j in any optimal schedule.

Heffernan and Wilken [14] present a set of graph transformations for depen-
dency DAGs for basic blocks and show that optimally scheduling the trans-
formed DAGs using branch-and-bound enumeration is faster and more robust.
We adapted these transformations to superblock scheduling and proved under
what conditions they preserve optimality. In our context, the transformations
add simple dominance constraints to the model of the form xi ≥ xj . Adding dom-
inance constraints requires identifying pairs of disjoint, isomorphic subgraphs A
and B in a dependency DAG for a superblock. Subgraphs A and B are isomor-
phic if there is a mapping from the node set of A to the node set of B such
that A and B are identical (identical instruction types, edges, and latencies on
the edges). We use a fast heuristic approach to find pairs of disjoint, isomorphic
subgraphs adapted from our work on basic block scheduling [15].

Example 4. Consider the DAG shown in Figure 2(a). Nodes H and I are called
speculative nodes in the compiler literature as they can be moved across exit
node G. The subgraphs with nodes {C, E} and {H, I} are isomorphic and satisfy
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Fig. 2. Example of adding dominance constraints in a superblock: (a) actual DAG; (b)
the constraints C ≤ H and E ≤ I (zero latency edges) would be added to the constraint
model. Nodes A, G and L are exit nodes.

the conditions for adding dominance constraints. Hence, the constraints C ≤ H
and E ≤ I can be added to the model. Figure 2(b) shows the DAG with the
added constraints. Note that the added constraints do not change the speculative
characteristic of exit node G, as nodes H and I still can be moved across—i.e.,
can be scheduled either before or after—node G. Similarly, the constraint J ≤
K can be added.

Once the constraint model has been extensively preprocessed by adding implied
and dominance constraints, it is ready to be solved. Recall that the superblock
scheduling problem is an optimization problem. To turn it into a satisfaction
problem, we first establish an upper bound on the cost function using a fast
heuristic scheduling method (a list scheduling algorithm, as discussed in the
Experimental evaluation section). Given an upper bound on the cost function, we
then prune the cost variables using singleton bounds consistency and enumerate
the possible solutions to the cost function using techniques adapted from [25].
The solutions to the cost function are then stepped through in increasing order of
cost until one is found that can be extended to a solution to the entire constraint
model. Testing whether a solution to the cost function can be extended is done
using a backtracking search algorithm. Of course, once a solution to the entire
constraint model is found it is a provably optimal solution.

To reduce the brittleness or variability in performance of our backtracking
search algorithm, we use a portfolio approach. Portfolios of multiple algorithms
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have been proposed and shown to dramatically improve performance on some
instances (see, e.g., [26]). In instruction scheduling, thousands of superblocks
arise each time a compiler is invoked on some software project and a limit needs
to be placed on the time given for solving each instance in order to keep the total
compile time to an acceptable level. Given a set of possible backtracking algo-
rithms {A1, A2, . . . } and a time deadline d, a portfolio P for a single processor
is a sequence of pairs, P = [(Ak1 , t1), (Ak2 , t2), . . . , (Akm , tm)], where each Aki is
a backtracking algorithm, each ti is a positive integer, and Σm

i=1ti = d. To apply
a portfolio to an instance, algorithm Ak1 is run for t1 steps. If no solution is
found within t1 steps, algorithm Ak1 is terminated and algorithm Ak2 is run for
t2 steps, and so on until either a solution is found or the sequence is exhausted
as the time deadline d has been reached.

In contrast to previous work, where the differences in the possible backtrack-
ing algorithms {A1, A2, . . . } often involves the variable ordering heuristic, we
created variability in solving performance by increasing levels of constraint prop-
agation from light-weight to heavy-weight. For our approach, we used a deter-
ministic backtracking algorithm capable of performing three levels of constraint
propagation,

Level = 1 bounds consistency,
Level = 2 singleton bounds consistency, and
Level = 3 singleton bounds consistency to a depth of two.

and the portfolio involved three phases in increasing order. We chose bounds
consistency—instead of the more usual arc consistency—as in our problem it is
equivalent but more efficient. In bounds consistency, one ensures that each upper
and lower bound of the domain of a variable is consistent with each constraint
(see, e.g., [27] and references therein). In singleton bounds consistency, one tem-
porarily assigns a value to a variable and then performs bounds consistency. In
singleton bounds consistency to a depth of two, one temporarily assigns a value
to a variable and then performs singleton consistency. In each, if the value is
found to be inconsistent it is not part of any solution and can be removed from
the domain of the variable.

During phase one, a standard dynamic variable ordering heuristic based on
minimum domain size is used. However, in the next two phases which involve
singleton consistency a variation of an impact-based variable ordering heuristic
[28] is used. The idea in impact-based heuristics is to measure the importance of
a variable for reducing the search space. Here, we record the number of changes
that are made due to each variable during the singleton consistency propagation.
This information is then used to select the next variable to branch on with the
goal being to branch on a variable that causes the most reductions in the domains
of the other variables. The impact-based heuristic is very effective and essentially
comes for free as a side-effect of enforcing singleton consistency.

As a final technique for scaling up our constraint programming approach to
the largest instances, we also adapted a structure-based decomposition technique
[29]. For some of the largest superblock instances, all of the exit nodes were
articulation nodes. We showed that such instances could be solved optimally by
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solving them progressively. Let e1, . . . , en be the exit nodes. We first solve the
subproblem consisting of e1 and all of its predecessor nodes. Variable e1 is then
fixed using the optimal solution to the subproblem and we then in turn solve
the subproblem consisting of e2 and all of its predecessor nodes, and so on. The
proof that this procedure preserves optimality requires careful attention to the
resource contention at each exit node.

3.3 Experimental Evaluation

The constraint programming model was implemented and evaluated on all of
the 154,651 superblocks from the SPEC 2000 integer and floating point bench-
marks (www.spec.org). This benchmark suite consists of source code for software
packages that are chosen to be representative of a variety of programming lan-
guages and types of applications. The benchmarks were compiled using IBM’s
Tobey compiler [30] targeted towards the IBM PowerPC processor [4], and the
superblocks were captured as they were passed to Tobey’s instruction sched-
uler. The Tobey compiler performs instruction scheduling before register al-
location and once again afterward, and our test suite contains both versions
of the superblocks. The compilations were done using Tobey’s highest level of
optimization, which includes aggressive optimization techniques such as software
pipelining and loop unrolling.

The following table shows the four realistic architectural models we used in
our evaluation. In these architectures, the functional units are not fully pipelined,
the issue width of the processor is not equal to the number of functional units,
and there are serializing instructions.

issue simple complex memory branch floating
architecture width int. units int. units units units pt. units
1r-issue 1 1
PowerPC 603e (ppc603e) 2 1 1 1 1
PowerPC 604 (ppc604) 4 2 1 1 1 1
6r-issue 6 2 2 3 2

The following table shows the total time (hh:mm:ss) to schedule all super
blocks in the SPEC 2000 benchmark suite and the percentage of superblocks
that were solved to optimality, for various realistic architectural models and
time limits for solving each superblock.

1 sec. 10 sec. 1 min. 10 min.
time % time % time % time %

1r-issue 1:30:20 97.34 7:15:46 99.38 10:22:36 99.96 15:08:44 99.98
ppc603e 3:57:13 91.83 30:53:56 93.90 108:50:01 97.18 665:31:00 97.70
ppc604 2:17:44 95.47 17:09:48 96.60 61:29:31 98.43 343:04:46 98.87
6r-issue 3:04:18 93.59 25:03:44 94.76 87:04:34 97.78 511:19:14 98.29
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Table 1. Superblock scheduling after register allocation. For the SPEC 2000 benchmark
suite, number of cycles saved (×109) by the optimal scheduler over a list scheduler
using the dependence height and speculative yield heuristic and using the critical path
heuristic, and the percentage reduction (%), for various realistic architectural models.
The time limit for solving each superblock was 10 minutes.

DHASY heuristic critical path heuristic

1r-issue ppc603e ppc604 6r-issue 1r-issue ppc603e ppc604

benchmark ×109 % ×109 % ×109 % ×109 % ×109 % ×109 % ×109 %

ammp 47.4 0.2 669.3 3.2 225.9 1.1 221.2 1.3 457.5 1.8 949.9 4.5 243.9 1.2
applu 5.2 0.4 0.3 0.0 0.6 0.1 0.1 0.0 23.7 1.9 4.1 0.4 0.5 0.0
apsi 52.4 1.1 43.6 1.0 45.8 1.1 31.8 1.0 341.5 7.1 89.0 2.0 84.9 2.0
art 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.1 1.1 0.0 1.1 0.0
bzip2 51.8 0.3 282.1 1.8 281.6 1.9 137.5 0.9 300.1 1.5 405.0 2.5 356.7 2.3
crafty 50.9 0.7 67.8 1.2 30.1 0.6 32.0 0.6 162.1 2.3 119.6 2.1 53.9 1.0
eon 303.1 2.7 65.7 0.7 47.1 0.5 124.7 1.5 610.6 5.5 127.0 1.3 150.1 1.6
equake 22.4 0.5 12.1 0.3 11.8 0.3 0.1 0.0 20.6 0.5 1.5 0.0 1.1 0.0
facerec 19.4 0.3 27.0 0.5 3.6 0.1 1.6 0.0 28.7 0.5 32.9 0.7 3.6 0.1
fma3d 36.4 0.4 48.4 0.6 86.2 1.1 18.6 0.3 51.8 0.5 49.2 0.6 73.4 1.0
galgel 1.6 0.1 0.7 0.1 0.5 0.1 0.0 0.0 4.9 0.5 2.2 0.2 1.3 0.1
gap 18.9 0.0 67.6 0.0 43.2 0.0 31.0 0.0 99.9 0.0 69.3 0.0 38.8 0.0
gcc 28.7 0.6 33.4 0.8 18.8 0.5 16.6 0.4 65.9 1.3 51.2 1.2 26.3 0.6
gzip 11.2 0.1 36.8 0.3 22.1 0.2 29.9 0.2 158.1 1.0 50.6 0.4 22.2 0.2
lucas 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 4.5 1.2 0.5 0.2 0.0 0.0
mcf 54.1 1.5 43.9 1.4 38.9 1.2 0.0 0.0 89.0 2.5 93.7 2.9 94.9 3.0
mesa 34.0 0.2 53.3 0.4 31.0 0.3 306.5 3.3 85.3 0.6 32.2 0.3 31.0 0.3
mgrid 1.7 0.5 0.3 0.1 0.0 0.0 0.0 0.0 3.1 0.9 0.5 0.2 0.0 0.0
parser 483.1 1.9 530.8 2.6 507.9 2.6 277.5 1.5 956.8 3.8 808.8 3.9 526.0 2.7
perlbmk 67.8 0.2 386.4 1.5 117.6 0.5 76.6 0.3 181.7 0.6 439.6 1.7 141.3 0.6
sixtrack 122.6 3.5 6.3 0.2 4.0 0.1 1.5 0.0 655.4 18.6 19.9 0.6 5.0 0.1
swim 0.0 0.2 0.1 1.7 0.1 1.9 0.0 0.0 8.5 99.8 6.6 102.3 3.2 58.1
twolf 288.5 1.5 43.9 0.3 88.6 0.6 69.7 0.5 689.0 3.5 378.3 2.3 198.1 1.3
vortex 41.7 0.4 252.9 3.1 274.6 3.7 220.3 3.3 212.3 2.0 310.6 3.9 306.5 4.1
vpr 57.6 0.5 26.8 0.3 41.1 0.5 6.1 0.1 227.1 2.1 64.4 0.7 38.2 0.4
wupwise 83.5 1.0 30.8 0.4 20.8 0.3 22.6 0.4 523.6 6.3 211.5 2.9 69.3 1.0

We also evaluated our optimal scheduler with respect to how much it improves
on previous heuristic approaches. Most production compilers use a greedy list
scheduling algorithm coupled with a heuristic priority function for scheduling.
Here we compare against a list scheduler with a realistic resource model using
the dependence height and speculative yield (DHASY) heuristic [8] and a critical
path heuristic [3]. We chose the former heuristic as it is considered one of the
best available (it is the default heuristic used in the Trimaran compiler [31], for
example) and the latter heuristic because it is a standard reference point.

Table 1 gives the number of cycles saved (×109) by the optimal scheduler over
the list scheduler using the dependence height and speculative yield heuristic and
using the critical path heuristic, and the percentage reduction (%), for various
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Fig. 3. Performance of optimal scheduler versus list scheduler, for various realistic
architectures: (a) before register allocation using DHASY heuristic; (b) after register
allocation using DHASY heuristic; (c) before register allocation using critical path
heuristic; and (d) after register allocation using critical path heuristic

realistic architectural models after register allocation. We compiled the SPEC
2000 benchmark with the training data set associated with the benchmark using
the Tobey compiler. The compiler uses the training data to construct a profile
for each branch instruction. The profile is used to calculate the information
regarding the number of times each instruction is executed.

Figures 3(a–d) summarizes the performance of the optimal scheduler versus
the list scheduler, for various architectures. For example, consider the 1r-issue ar-
chitecture and the DHASY heuristic. The list scheduler finds an optimal schedule
(i.e. is within 0% of optimal) for approximately 84% of all superblocks before
register allocation and approximately 88% of all superblocks after register al-
location. In other words, the optimal scheduler improves on 16% and 12% of
superblocks, respectively. Further, the list scheduler is within 10% of optimal
for approximately 95% of all superblocks before register allocation and approxi-
mately 97% of all superblocks after register allocation, for this architecture. The
graph also shows that, although quite rare, there exists superblocks for which the
optimal scheduler finds improvements of up to 50% over the DHASY heuristic.
As a second example, consider the 1r-issue architecture and the critical path
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heuristic. The list scheduler finds an optimal schedule (i.e. is within 0% of
optimal) for approximately 54% of all superblocks before register allocation and
approximately 65% of all superblocks after register allocation. Further, the list
scheduler is within 10% of optimal for approximately 70% of all superblocks be-
fore register allocation and approximately 80% of all superblocks after register
allocation, for this architecture.

4 Added Value of CP?

Using constraint programming brought added value in two ways.
The first value added by constraint programming is that it allowed us to

achieve the primary goal of our project, which was to develop a superblock
instruction scheduler that was realistic yet fast enough to be incorporated into
a production compiler. Using constraint programming, it was relatively easy to
add additional constraints to model realistic architectures and it is not clear how
to similarly extend previously proposed enumeration and integer programming
approaches. As well, we had previously shown that constraint programming could
be much faster than integer programming on a restricted form of these types of
problems [13]. But perhaps the most important reason we were able to achieve
our goal is that constraint programming allows and facilitates programming in
the computer science sense of the word. This was crucial to scaling up to large
instances, as it allowed us to design and implement domain-specific structure-
based decomposition techniques and to incorporate and fine-tune ideas such as
portfolios and impact-based variable ordering heuristics into our solver.

The second value added by constraint programming is that it allowed us
to find optimal solutions. Although heuristic approaches have the advantage
that they are very fast, a scheduler that finds optimal schedules can be useful
in practice when longer compiling times are tolerable such as when compiling
for software libraries, digital signal processing or embedded applications [1]. As
well, an optimal scheduler can be used to evaluate the performance of heuristic
approaches. Such an evaluation can tell whether there is a room for improvement
in a heuristic or not.

5 Conclusions

We presented a constraint programming approach to superblock instruction
scheduling for realistic architectural models. Our approach is optimal and robust
on large, real instances. The keys to scaling up to large, real problems were in
applying and adapting several techniques from the literature including: implied
and dominance constraints, impact-based variable ordering heuristics, singleton
bounds consistency, portfolios, and structure-based decomposition techniques.
We experimentally evaluated our optimal scheduler on the SPEC 2000 integer
and floating point benchmarks. On this benchmark suite, the optimal scheduler
scaled to the largest superblocks. Depending on the architectural model, between
98.23% to 99.98% of all superblocks were solved to optimality. The scheduler



110 A.M. Malik et al.

was able to routinely solve the largest superblocks, including blocks with up to
2,600 instructions. The schedules produced by the optimal schedule showed an
improvement of 0%-3.8% on average over a list scheduler using the dependence
height and speculative yield heuristic, considered one of the best heuristics avail-
able, and an improvement of 0%-102% on average over a critical path heuristic.
One final conclusion we draw from our work is that constraint programming can
be a fruitful approach for solving NP-hard compiler optimization problems.
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Abstract. Submodular constraints play an important role both in
theory and practice of valued constraint satisfaction problems (VCSPs).
It has previously been shown, using results from the theory of combinato-
rial optimisation, that instances of VCSPs with submodular constraints
can be minimised in polynomial time. However, the general algorithm
is of order O(n6) and hence rather impractical. In this paper, by us-
ing results from the theory of pseudo-Boolean optimisation, we identify
several broad classes of submodular constraints over a Boolean domain
which are expressible using binary submodular constraints, and hence
can be minimised in cubic time. We also discuss the question of whether
all submodular constraints of bounded arity over a Boolean domain are
expressible using only binary submodular constraints, and can therefore
be minimised efficiently.

1 Introduction

The Constraint Satisfaction Problem (CSP) is a general framework which
can be used to model many different problems [11,17,21]. However, the CSP

model considers only the feasibility of satisfying a collection of simultaneous
requirements (so-called hard constraints).

Various extensions have been proposed to this model to allow it to deal with
different kinds of optimisation criteria, or preferences, between different feasible
solutions (so-called soft constraints). Two very general extended frameworks that
have been proposed are the SCSP (semi-ring CSP) framework and the VCSP

(valued CSP) framework [2]. The SCSP framework is slightly more general1,
but the VCSP framework is simpler, and yet sufficiently powerful to model a
wide range of optimisation problems [2,21,22].

Informally, in the Valued Constraint Satisfaction Problem (VCSP)

framework, an instance consists of a set of variables, a set of possible values, and
a set of (soft) constraints. Each constraint has an associated cost function which
assigns a cost (or a degree of violation) to every possible tuple of values for the

1 The main difference is that costs in VCSPs represent violation levels and have to be
totally ordered, whereas costs in SCSPs represent preferences and might be ordered
only partially.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 112–127, 2008.
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variables in the scope of the constraint. The goal is to find an assignment of
values to all of the variables which has the minimum total cost. We remark that
infinite costs can be used to indicate infeasible assignments (hard constraints),
and hence the VCSP framework includes the standard CSP framework as a
special case and is equivalent to the Constraint Optimisation Problem

(COP) framework [21], which is widely used in practice.
One significant line of research on the VCSP is to identify restrictions which

ensure that instances are solvable in polynomial time. There are two main types
of restrictions that have been studied in the literature. Firstly, we can limit the
structure of the instances. We will not deal with this approach in this paper.

Secondly, we can restrict the forms of the valued constraints which are al-
lowed in the problem, giving rise to so-called language restrictions. Several lan-
guage restrictions which ensure tractability have been identified in the literature,
(see e.g., [8]). One important and well-studied restriction on valued constraints is
submodularity. In fact the class of submodular constraints is the only non-trivial
tractable case in the dichotomy classification of the Boolean VCSP [8].

The concept of submodularity not only plays an important role in theory,
but is also very important in practice. For example, many of the problems that
arise in computer vision can be expressed in terms of energy minimisation [16].
The problem of energy minimisation is NP-hard in general, and therefore a lot
of research has been devoted to identifying instances which can be solved more
efficiently. Kolmogorov and Zabih identified classes of instances for which the en-
ergy minimisation problem can be solved efficiently [16], and which are applicable
to a wide variety of vision problems, including image restoration, stereo vision
and motion tracking, image synthesis, image segmentation, multi-camera scene
reconstruction and medical imaging. The so-called regularity condition, which
specifies the efficiently solvable classes in [16], is equivalent to submodularity.

The notion of submodularity originally comes from combinatorial optimisation
where submodular functions are defined on subsets of a given base set [14,18].
The time complexity of the fastest known algorithm for the problem of Submod-

ular Function Minimisation (SFM) is roughly O(n6) [19]. However, there
are several known special classes of SFM that can be solved more efficiently
than the general case (see [3] for a survey).

Cohen et al. showed that VCSPs with submodular constraints over an arbi-
trary finite domain can be reduced to the SFM problem over a special family of
sets known as a ring family [8]. This problem is equivalent to the general SFM

problem [23], thus giving an algorithm of order O(n6 + n5L), where L is the
look-up time (needed to evaluate an assignment to all variables), for any VCSP

with submodular constraints. This tractability result has since been generalised
to a wider class of valued constraints over arbitrary finite domains known as
tournament-pair constraints [6]. An alternative approach can be found in [9].

In this paper we focus on submodular constraints over a Boolean domain
{0, 1}, which correspond precisely to submodular set functions [8]. We describe
an algorithm based on graph cuts which can be used to solve certain VCSPs
with submodular constraints over a Boolean domain much more efficiently than
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the general case. Some of our results are closely related to known efficient cases
of SFM, and other previous results from different areas of computer science,
but we present them here in a unified and constraints-based framework which
allows us to make the proofs more consistent and often simpler. Moreover, we
explicitly discuss for the first time the expressive power of binary submodular
constraints, and use this powerful idea in a consistent way to identify new classes
of submodular constraints which can be solved efficiently.

The paper is organised as follows. In Section 2, we define the VCSP frame-
work and submodular constraints, and note that submodular constraints over a
Boolean domain can be represented by polynomials. In Section 3, we show that
the standard (s, t)-Min-Cut problem can be expressed in the VCSP framework
with a restricted constraint language Γcut, and that any instance of VCSP(Γcut)
is solvable in cubic time. Moreover, we show that Γcut can express all binary
submodular constraints. In Section 4, we show that any instance of the VCSP

with constraints whose corresponding polynomials have only non-positive coef-
ficients for terms of degree ≥ 2 can be expressed in VCSP(Γcut). We show the
same for all {0, 1}-valued submodular constraints, and also for all ternary sub-
modular constraints. In Section 5, we present a necessary condition for a quartic
polynomial to be submodular. Moreover, for every k ≥ 4, we identify new classes
of k-ary submodular constraints which can be expressed over VCSP(Γcut), and
thus solved efficiently. We then discuss the question of whether all submodular
constraints of bounded arity can be expressed over Γcut. Finally, in Section 6, we
summarise our work and discuss related and future work.

2 Definitions

2.1 Valued Constraint Satisfaction and Expressibility

In this section we define the valued constraint satisfaction problem

(VCSP). In the original definition of this problem, given in [22], costs were
allowed to lie in any positive totally ordered monoid called a valuation struc-
ture. For our purposes, it is sufficient to consider costs which lie in the set Q+

consisting of all non-negative rational numbers together with infinity2.
Given a fixed set D, a function from Dk to Q+ will be called a cost function.

If the range of φ is {0,∞}, then φ is called a crisp cost function. Note that
crisp cost functions correspond precisely to relations, so we shall use these terms
interchangeably. If the range of φ lies entirely within Q+, the set of non-negative
rationals, then φ is called a finite-valued cost function.

Definition 1. An instance P of VCSP is a triple 〈V,D, C〉, where V is a finite
set of variables, which are to be assigned values from the set D, and C is a set of
valued constraints. Each c ∈ C is a pair c = 〈σ, φ〉, where σ is a tuple of variables
of length |σ|, called the scope of c, and φ : D|σ| → Q+ is a cost function. An

2 See [10] for a discussion of why limiting ourselves to the Q+ valuation structure is
not a severe restriction.
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assignment for the instance P is a mapping s from V to D. The cost of an
assignment s is defined as follows:

CostP (s) =
∑

〈〈v1,v2,...,vm〉,φ〉∈C
φ(〈s(v1), s(v2), . . . , s(vm)〉).

A solution to P is an assignment with minimum cost.

Any set Γ of cost functions is called a valued constraint language. The class
VCSP(Γ ) is defined to be the class of all VCSP instances where the cost func-
tions of all valued constraints lie in Γ .

In any VCSP instance, the variables listed in the scope of each valued con-
straint are explicitly constrained, in the sense that each possible combination of
values for those variables is associated with a given cost. Moreover, if we choose
any subset of the variables, then their values are constrained implicitly in the
same way, due to the combined effect of the valued constraints. This motivates
the concept of expressibility for cost functions, which is defined as follows:

Definition 2. For any VCSP instance I = 〈V,D, C〉, and any list of variables
of I, l = 〈v1, . . . , vm〉, the projection of I onto l, denoted πl(I), is the m-ary
cost function defined as follows:

πl(I)(x1, . . . , xm) = min
{s:V →D|〈s(v1),...,s(vm)〉=〈x1,...,xm〉}

CostI(s).

We say that a cost function φ is expressible over a valued constraint language Γ
if there exists an instance I ∈ VCSP(Γ ) and a list l of variables of I such that
πl(I) = φ. We call the pair 〈I, l〉 a gadget for expressing φ over Γ . Variables
from V \ l are called extra or hidden variables.

Note that in the special case of relations (crisp cost functions) this notion of ex-
pressibility corresponds to the standard notion of expressibility using conjunction
and existential quantification (primitive positive formulas) [4].

We denote by 〈Γ 〉 the expressive power of Γ which is the set of all cost
functions expressible over Γ up to additive and multiplicative constants.

2.2 Submodular Functions and Polynomials

A function ψ : 2V → Q defined on subsets of a set V is called a submodular
function [18] if, for all subsets S and T of V , ψ(S∩T )+ψ(S∪T ) ≤ ψ(S)+ψ(T ).
The problem of Submodular Function Minimisation (SFM) consists in
finding a subset S of V for which the value of ψ(S) is minimal.

For any lattice-ordered set D, a cost function φ : Dk → Q+ is called submodu-
lar if for every u, v ∈ Dk, φ(min(u, v))+φ(max(u, v)) ≤ φ(u)+φ(v) where both
min and max are applied coordinate-wise on tuples u and v. Note that express-
ibility preserves submodularity: if every φ ∈ Γ is submodular, and φ′ ∈ 〈Γ 〉,
then φ′ is also submodular.

Using results from [8] and [24], it can be shown that any submodular cost func-
tion φ can be expressed as the sum of a finite-valued submodular cost function
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φfin, and a submodular relation φcrisp, that is, φ = φfin + φcrisp. Moreover, it
is known that all submodular relations are binary decomposable [15], and hence
expressible using only binary submodular relations. Therefore, when consider-
ing which cost functions are expressible over binary submodular cost functions,
we can restrict our attention to finite-valued cost functions without any loss of
generality.

In this paper we focus on problems over Boolean domains. We denote by
Γsub,k the set of all finite-valued submodular cost functions of arity at most k on
a Boolean domain D = {0, 1}, and we set Γsub =

⋃
k Γsub,k. We will show below

that VCSP(Γsub,2) can be solved in cubic time, and hence we will be concerned
with what other cost functions are expressible over Γsub,2, and so can also be
solved efficiently.

A cost function of arity k can be represented as a table of values of size Dk.
Alternatively, a (finite-valued) cost function φ : Dk → Q+ on a Boolean domain
D = {0, 1} can be uniquely represented as a polynomial in k (Boolean) variables
with coefficients from Q [3] (such functions are sometimes called pseudo-Boolean
functions). Hence, in what follows, we will often represent a finite-valued cost
function on a Boolean domain by a polynomial.

Note that if Γ is a set of cost functions on a Boolean domain, with arity at most
k, then any instance of VCSP(Γ ) with n variables can be uniquely represented
as a polynomial p in n Boolean variables, of degree at most k. Conversely, any
such polynomial represents an n-ary cost function which can be expressed over
a set of cost functions on a Boolean domain, with arity at most k. Note that
x2 = x, so p has at most 2n terms which correspond to subsets of variables.

For polynomials over Boolean variables there is a standard way to define
derivatives of each order (see [3]). For example, the second order derivative of
a polynomial p, with respect to the first two indices, denoted δ1,2(x), is defined
as p(1, 1,x)− p(1, 0,x)− p(0, 1,x)+ p(0, 0,x). Analogously for all other pairs of
indices.

Proposition 3 ([3]). A polynomial p(x1, . . . , xn) over Boolean variables
x1, . . . , xn represents a submodular cost function if and only if its second or-
der derivatives δi,j(x) are non-positive for all 1 ≤ i < j ≤ n and all x ∈ Dn−2.

Corollary 4. A quadratic polynomial a0 +
∑n

i=1 aixi +
∑

1≤i<j≤n aijxixj over
Boolean variables x1, . . . , xk, represents a submodular cost function if and only
if aij ≤ 0 for every 1 ≤ i < j ≤ n.

3 Binary Submodular Constraints

In this section we show that a constraint language Γcut, consisting of certain
simple binary and unary cost functions over a Boolean domain, has cubic time
complexity. We also show that Γcut can express any binary submodular cost
function over a Boolean domain, that is, Γsub,2 ⊆ 〈Γcut〉. It follows that any
instance of VCSP(Γsub,2) can also be solved in cubic time.
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For any w ∈ Q+, we define the binary cost function χw as follows:

χw(x, y) =

{
w if (x, y) = (0, 1),
0 otherwise.

For any d ∈ D and c ∈ Q+, we define the unary cost function μc
d as follows:

μc
d =

{
c if x �= d,
0 if x = d.

It is straightforward to check that all χw and μc
d are submodular.

We define the constraint language Γcut to be the set of all cost functions χw

and μc
d over a Boolean domain, for c, w ∈ Q+ and d ∈ {0, 1}.

Theorem 5. The problems (s, t)-Min-Cut and VCSP(Γcut) are linear-time
equivalent.

Proof. Consider any instance of (s, t)-Min-Cut with (directed) graph G =
〈V,E〉 and weight function w : E → Q+. Define a corresponding instance I
of VCSP(Γcut) as follows:

I = 〈V, {0, 1}, {〈〈i, j〉, χw(i,j)〉 | 〈i, j〉 ∈ E} ∪ {〈s, μ∞
0 〉, 〈t, μ∞

1 〉}〉.

Note that in any solution to I the source and target nodes, s and t, must
take the values 0 and 1, respectively. Moreover, the weight of any cut containing
s and not containing t is equal to the cost of the corresponding assignment to
I. Hence we have shown that (s, t)-Min-Cut can be reduced to VCSP(Γcut) in
linear time.

On the other hand, given an instance I = 〈V,D, C〉 of VCSP(Γcut), construct
a graph on V ∪ {s, t} as follows: any unary constraint on variable v with cost
function μc

0 (respectively μc
1) is represented by an edge of weight c from the

source node s to node v (respectively, from node v to the target node t). Any
binary constraint on variables 〈v1, v2〉 with cost function χw is represented by
an edge of weight w from node v1 to v2. It is straightforward to check that a
solution to I corresponds to a minimum (s, t)-cut of this graph. ��

Corollary 6. VCSP(Γcut) can be solved in cubic time.

Proof. By Theorem 5, VCSP(Γcut) has the same time complexity as (s, t)-Min-

Cut, which is known to be solvable in cubic time [13]. ��

Using a standard reduction (see, for example, [3]), we now show that all binary
submodular cost functions over a Boolean domain can be expressed over Γcut.

Theorem 7. Γsub,2 ⊆ 〈Γcut〉.

Proof. By Corollary 4, any cost function from Γsub,2 can be represented by a
quadratic Boolean polynomial p(x1, x2) = a0 + a1x1 + a2x2 + a12x1x2 where
a12 ≤ 0. This can then be re-written as



118 S. Zivný and P.G. Jeavons

p(x1, x2) = a′0 +
∑
i∈P

a′ixi +
∑
j∈N

a′j(1 − xj) + a′12(1− x1)x2,

where P ∩ N = ∅, P ∪ N = {1, 2}, a′12 = −a12, and a′i, a
′
j , a

′
12 ≥ 0. (This is

known as a posiform [3].)
Hence p can be expressed over Γcut (up to the constant a′0) by the gadget

〈I, 〈x1, x2〉〉, where I is the instance 〈{x1, x2, s, t}, {0, 1}, C〉 of VCSP(Γcut) and

C = {〈〈s, xi〉, χa′
i〉 | i ∈ P} ∪ {〈〈xj , t〉, χa′

j 〉 | j ∈ N}
∪{〈〈s〉, μ∞

0 〉, 〈〈t〉, μ∞
1 〉, 〈〈x1, x2〉, χa′

12〉}. ��

Corollary 8. VCSP(Γsub,2) can be solved in cubic time.

Proof. By Theorem 7, any instance of VCSP(Γsub,2) can be reduced to
VCSP(Γcut) in linear time by replacing each constraint with a suitable gad-
get of fixed size. The result then follows from Corollary 6. (Note that we can use
the same vertices s and t for all constraints.) ��

4 Negative Higher Degree Terms, {0, 1}-Valued and
Ternary Submodular Constraints

In this section we extend the results from Section 3 to three further classes of
constraints over a Boolean domain: submodular constraints whose corresponding
polynomials have negative coefficients for all terms of degree ≥ 2; {0, 1}-valued
submodular constraints; and ternary submodular constraints. We show that the
cost functions for these three classes of submodular constraints can all be ex-
pressed over Γsub,2, and hence can be minimised in cubic time in the number of
variables plus the number of higher-order (non-binary) constraints.

Define Γneg,k to be the set of all cost functions over a Boolean domain, of
arity at most k, whose corresponding polynomials have negative coefficients for
all terms of degree greater than or equal to 2. It is easy to check that these
cost functions, sometimes called negative-positive, are submodular. Set Γneg =⋃

k Γneg,k. The minimisation of cost functions chosen from Γneg using min-cuts
was first studied in [20].

Theorem 9. Γneg ⊆ 〈Γsub,2〉.

Proof. Consider the following polynomial:

p0(x1, . . . , xn) = min
y∈{0,1}

{−y + y
∑
i∈A

(1− xi)}.

It is straightforward to check that for a given A ⊆ {1, . . . , n}, p0(x) = −1 if
A ⊆ x and p0(x) = 0 otherwise (where A ⊆ x means ∀i ∈ A, xi = 1).

Now, given any polynomial of the form p1(x1, . . . , xn) = −aklmxkxlxm + Q,
where Q consists of terms of degree ≤ 2, we can use a similar construction to p0

to obtain
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p1(x1, . . . , xn) = min
y∈{0,1}

{Q + aklm(−y + y
∑

i∈{k,l,m}
(1− xi))}.

Given any polynomial p, we can use a similar construction to replace each term
of degree ≥ 3 in turn, introducing a distinct new variable y each time.

Proceeding in this way, we can express any polynomial p representing a cost
function in Γneg as a quadratic polynomial with non-positive quadratic coeffi-
cients, introducing k new variables, where k is the total number of terms of degree
≥ 3. Such a quadratic polynomial can be expressed over Γsub,2, by Corollary 4. ��
Corollary 10. For any fixed k, VCSP(Γneg,k) can be solved in cubic time.

Proof. By Theorem 9, any instance of VCSP(Γneg,k) can be reduced to
VCSP(Γsub,2) in linear time by replacing each constraint with a suitable gadget.
For any fixed k, the number of new variables introduced in any of these gadgets
is bounded by a constant. The result then follows from Corollary 8.

Next we consider the class of submodular constraints over a Boolean domain which
take only the cost values 0 and 1. (Such constraints can be used to model optimi-
sation problems such as Max-CSP, see [7].) Define Γ{0,1},k to be the set of all
{0, 1}-valued submodular cost functions over a Boolean domain, of arity at most
k, and set Γ{0,1} = ∪kΓ{0,1},k. The minimisation of submodular cost functions
from Γ{0,1} was studied in [11], where they were called 2-monotone functions. The
equivalence of 2-monotone and submodular cost functions and a generalisation of
2-monotone functions to non-Boolean domains was shown in [7].

Definition 11. A cost function φ is called 2-monotone if there exist two sets
A,B ⊆ {1, . . . , n} such that φ(x) = 0 if A ⊆ x or x ⊆ B and φ(x) = 1 otherwise
(where A ⊆ x means ∀i ∈ A, xi = 1 and x ⊆ B means ∀i �∈ B, xi = 0).

Theorem 12. Γ{0,1} ⊆ 〈Γsub,2〉.
Proof. Any 2-monotone cost function φ can be expressed over Γsub,2 using 2
extra variables, y1, y2:

φ(x) = min
y1,y2∈{0,1}

{(1−y1)y2 +y1

∑
i∈A

(1−xi)+(1−y2)
∑
i�∈B

xi}. ��

Corollary 13. For any fixed k, VCSP(Γ{0,1},k) can be solved in cubic time.

Finally, we consider the class Γsub,3 of ternary submodular cost functions over a
Boolean domain. This class was studied in [1], from where we obtain the following
useful characterisation of cubic submodular polynomials.
Lemma 14 ([1]). A cubic polynomial p(x1, . . . , xn) over Boolean variables rep-
resents a submodular cost function if and only if it can be written as

p(x1, . . . , xn) = a0 +
∑

{i}∈C+
1

aixi −
∑

{i}∈C−
1

aixi −
∑

{i,j}∈C2

aijxixj

+
∑

{i,j,k}∈C+
3

aijkxixjxk −
∑

{i,j,k}∈C−
3

aijkxixjxk,
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where

1. ai, aij , aijk ≥ 0 ({i} ∈ C+
1 ∪ C−

1 , {i, j} ∈ C2, {i, j, k} ∈ C+
3 ∪ C−

3 ),

2. ∀{i, j} ∈ C2, aij +
∑

k|{i,j,k}∈C+
3
aijk ≤ 0.

Theorem 15. Γsub,3 ⊆ 〈Γsub,2〉.

Proof. Let p be a polynomial representing an arbitrary cost function in Γsub,3.
By Lemma 14, the quadratic terms in p are non-positive. We already know how
to express a negative cubic term using a gadget over Γsub,2 (Theorem 9). To
express a positive cubic term, consider the following identity:

xixjxk − xixj − xixk − xjxk = min
y∈{0,1}

{(1− xi − xj − xk)y}.

We can replace a positive cubic term aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

It remains to check that all quadratic coefficients of the resulting polynomial are
non-positive. However, this is ensured by the second condition from Lemma 14.

��

Corollary 16. VCSP(Γsub,3) can be solved in cubic time.

5 Submodular Constraints of Arity 4 and Higher

In this section we investigate the question of which submodular constraints of
arity 4 or higher can be expressed by binary submodular constraints. We de-
rive a necessary condition for a 4-ary constraint over a Boolean domain to be
submodular. We also present some sufficient conditions, which give rise to new
classes of submodular constraints which can be expressed over Γsub,2, and hence
minimised efficiently. First, we prove the sufficient condition for 4-ary submodu-
lar cost functions. Next, we generalise it to k-ary submodular cost functions for
every k ≥ 4. Finally, we discuss the general question of which submodular cost
functions over a Boolean domain can be expressed with binary submodular cost
functions.

5.1 4-ary Constraints

One might hope to obtain a nice characterisation of 4-ary submodular cost func-
tions over a Boolean domain similar to Lemma 14. However, it has been shown
that testing whether a given quartic Boolean polynomial is submodular is co-
NP-complete [12]. Hence, one is unlikely to find a “simple” characterisation; any
characterisation is likely to involve an exponential blow-up (e.g., quantification
over a non-constant number of variables). However, we can obtain the following
necessary condition.
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Lemma 17. If a quartic polynomial p(x1, . . . , xn) over Boolean variables rep-
resents a submodular cost function, then it can be written such that, for all
{i, j} ∈ C2:

1. aij ≤ 0, and
2. aij +

∑
k|{i,j,k}∈C+

3
aijk +

∑
k,l|{i,j,k,l}∈C+

4
aijkl + Fij ≤ 0

where Fi,j is a non-positive value which is equal to the sum of the coefficients
of certain non-positive cubic and quartic terms, C2 denotes the set of quadratic
terms, and C+

i denotes the set of terms of degree i with positive coefficients, for
i = 3, 4.

Proof. Let p be a quartic submodular polynomial and let i and j be given, then
p can always be put in a form so that the second order derivative is:

δi,j = ai,j +
∑

k|{i,j,k}∈C+
3

aijkxk +
∑

k,l|{i,j,k,l}∈C+
4

aijklxkxl

−
∑

k|{i,j,k}∈C−
3

aijkxk −
∑

k,l|{i,j,k,l}∈C−
4

aijklxkxl.

Consider an assignment which sets xi = xj = 1 and xk = 0 ∀k �= i �= j. By
Proposition 3, aij ≤ 0, which proves the first condition. By setting xk = 1 for all
k such that {i, j, k} ∈ C+

3 and xk = xl = 1 for all k, l such that {i, j, k, l} ∈ C+
4 ,

we get the second condition. We set to 1 all variables which occur in some positive
cubic or quartic term. The second condition then says that the sum of all these
positive coefficients minus those which are forced, by our setting of variables, to
be 1 (Fij), is at most 0. (Note that this also proves Lemma 14.) ��

Next we show a useful example of a 4-ary submodular cost function which can
be expressed over the binary submodular cost functions using one extra variable.

Example 18. Let φ be the 4-ary cost function defined as follows: φ(x) =
min{2k, 5}, where k is the number of 0s in x ∈ {0, 1}4. The corresponding
quartic polynomial representing φ is

p(x1, x2, x3, x4) = 5 + x1x2x3x4 − x1x2 − x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

Is is easy to check that p is submodular. It can be shown by simple case analysis
that p cannot be expressed as a quadratic polynomial with non-positive quadratic
coefficients (from the definition of p, the polynomial would have to be 5−x1x2−x

1x3 − x1x4 − x2x3 − x2x4 − x3x4 which is not equal to p on x1 = x2 = x3

= x4 = 1).
However, p can be expressed over Γsub,2 using just one extra variable, via the

following gadget:

p(x1, x2, x3, x4) = min
y∈{0,1}

{5 + (3− 2x1 − 2x2 − 2x3 − 2x4)y}.
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Using the same notation as in Lemma 17, define Γnew,4 to be the set of all 4-ary
submodular cost functions over a Boolean domain whose corresponding quartic
polynomials satisfy, for every i < j,

aij +
∑

k|{i,j,k}∈C+
3

aijk +
∑

k,l|{i,j,k,l}∈C+
4

aijkl ≤ 0. (1)

Theorem 19. Γnew,4 ⊆ 〈Γsub,2〉.
Proof. Let φ ∈ Γnew,4 and let p be the corresponding polynomial which represents
φ. First, replace all negative cubic and quartic terms using the construction in
Theorem 9. As in the proof of Theorem 15, replace every positive cubic term
aijkxixjxk in p with

min
y∈{0,1}

{aijk(1− xi − xj − xk)y + aijk(xixj + xixk + xjxk)}.

Using the same construction as in Example 18, replace every positive quartic
term aijklxixjxkxl with

min
y∈{0,1}

{aijkl(3− 2xi − 2xj − 2xk − 2xl)y

+ aijkl(xixj + xixk + xixl + xjxk + xjxl + xkxl)}.

It only remains to check that all quadratic coefficients in the resulting polynomial
are non-positive. However, this is ensured by the definition of Γnew,4 and by the
choice of the gadgets. ��
Corollary 20. VCSP(Γnew,4) can be solved in cubic time.

Unfortunately, our next example shows that Γnew,4 � Γsub,4, and it remains an
open question whether all 4-ary submodular constraints over a Boolean domain
can be expressed over Γsub,2.

Example 21. Define a 4-ary submodular cost function φ as follows: φ(x) =
min(3k, 7)+2y+ z, where k is the number of 0s in x ∈ {0, 1}4, y = 1 if and only
if x = 〈1, 1, 1, 0〉, and z = 1 if and only if x = 〈1, 1, 0, 0〉. The corresponding
polynomial representing φ is

p(x1, x2, x3, x4) = 7 + 2x1x2x3x4 − 2x1x2x4 − x1x3x4 − x2x3x4

− x1x3 − x1x4 − x2x3 − x2x4 − x3x4.

It is easy to check that φ is submodular, but φ �∈ Γnew,4 (e.g., for i = 1 and j = 2,
the expression in Equation 1 gives 2), so Theorem 19 does not apply.

As in Example 18, by a simple case analysis, it can be shown that φ cannot
be expressed over Γsub,2 without extra variables. However, the following gadget
shows that φ is in fact expressible over Γsub,2 using just two extra variables:

p(x1, x2, x3, x4) = 7− x1x4 − x2x4 − x3x4

+ min
y1,y2∈{0,1}

{2y1 + 3y2 − y1y2 − y1(x1 + x2 + 2x3)− y2(x1 + x2 + 2x4)}.
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5.2 The General Case

We now generalise the result from the previous section to subclasses of sub-
modular constraints of arbitrary arities. We define Γnew,k to be the set of all
k-ary submodular cost functions over a Boolean domain whose corresponding
polynomials satisfy, for every 1 ≤ i < j ≤ k,

aij +
k−2∑
s=1

∑
{i,j,i1,...,is}∈C+

s+2

ai,j,i1,...,is ≤ 0.

In other words, for any 1 ≤ i < j ≤ k, the sum of aij and all positive coefficients
of cubic and higher degree terms which include xi and xj is non-positive.

Theorem 22. For every k ≥ 4, Γnew,k ⊆ 〈Γsub,2〉.

Proof. Note that the case k = 4 is proved by Theorem 19. First we show that
in order to prove the statement of the theorem, it is sufficient to have a uniform
way of generating gadgets over Γsub,2 for polynomials of the following type:

pk(x1, . . . , xk) =
k∏

i=1

xi −
∑

1≤i<j≤k

xixj .

Note that pk(x) = −
(
m
2

)
, where m is the number of 1s in x, and

(
0
2

)
=
(
1
2

)
= 0,

unless m = k (x consists of 1s only), in which case pk(x) = −
(
m
2

)
+ 1.

Assume that for any k ≥ 5, we can construct a gadget Pk for pk over Γsub,2.
Given a cost function φ ∈ Γnew,k, let p be the corresponding polynomial which
represents φ. By the construction in Theorem 9, we can replace all negative
terms of degree ≥ 3. By the constructions in Theorem 15 and Theorem 19, we
can replace all positive cubic and quartic terms. Now for any positive term of
degree d, 5 ≤ d ≤ k, we replace it with the gadget Pd. This construction works if
all quadratic coefficients of the resulting polynomial are non-positive. However,
this is ensured by the definition of Γnew,k and by the choice of the gadgets.

It remains to show how to uniformly generate gadgets for pk, where k ≥ 5.
We claim, that for any k ≥ 4, the following, denoted by Pk, is a gadget for pk:

pk(x1, . . . , xk) = min
y0,...,yk−4∈{0,1}

{y0(3− 2
k∑

i=1

xi) +
k−4∑
j=1

yj(2 + j −
k∑

i=1

xi)}.

Notice that in the case of k = 4, the gadget corresponds to the gadget used in
the proof of Theorem 19, and therefore the base case is proved. We proceed by
induction in k. Assume that Pi is a gadget for pi for every i ≤ k. We prove that
Pk+1 is a gadget for pk+1.

Firstly, take the gadget Pk for pk, and replace every sum
∑k

i=1 xi with∑k+1
i=1 xi. We denote the new gadget P ′. It is not difficult to see that P ′ is a

valid gadget for pk+1 on all assignments with at most k − 1 1s. Also, on any
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assignment with exactly k 1s, P ′ returns −
(
k
2

)
+1. On the assignment consisting

of 1s only, P ′ returns: −
(
k
2

)
+ 1− 2− 1(k− 4). This can be simplified as follows:

−
(
k
2

)
+1− 2− k+4 = −

(
k
2

)
+1− k+2 = −(

(
k
2

)
+
(
k
1

)
)+1+2 = −

(
k+1
2

)
+1+2.

Hence P ′ is almost a gadget for pk+1: we only need to subtract 1 on an assign-
ment which has exactly k 1s, and subtract 2 on the assignment consisting of 1s
only. But this is exactly what minyk−3∈{0,1}{yk−3(2 + (k− 3)−

∑k+1
i=1 xi)} does.

Therefore, we have established that Pk+1 is a gadget for pk+1, which finishes the
proof of the theorem. ��

Corollary 23. For any k ≥ 4, VCSP(Γnew,k) can be solved in cubic time.

The general question we are investigating is what can be expressed over Γsub,2.
Denote by 〈Γsub,2〉m the set of all (submodular) cost functions expressible over
Γsub,2 with at most m extra variables. Clearly, 〈Γsub,2〉m ⊆ 〈Γsub,2〉m+1 for every
m ≥ 0.

In the proof of Theorem 22, we proved that, for any k ≥ 4, Γnew,k ⊆ 〈Γsub,2〉m
where m = k − 3. We have since found out that a slightly stronger result was
obtained independently by Zalesky. He has shown that Γnew,k ⊆ 〈Γsub,2〉m where
m = �k−1

2 � (see the unpublished manuscript [25]). This result yields the same
cubic time complexity for VCSP(Γnew,k).

We saw in Section 5 that 〈Γsub,2〉1 is strictly larger than 〈Γsub,2〉0 (see Exam-
ple 18). In other words, allowing a single hidden variable strictly increases the
expressive power of Γsub,2. On the other hand, we do not know whether allow-
ing further hidden variables increases the expressive power any further. In other
words, it is an open question whether 〈Γsub,2〉m � 〈Γsub,2〉m+1 for any m ≥ 1. We
suspect that some of these inclusions are strict (see Example 21), as we carried
out a computer-assisted search for gadgets, using the constraint-solver MINION3,
and for some cost function we were not able to find a gadget with a given number
of extra variables.

However, we do know that there is a limit to the additional expressive power
that can be gained by allowing an arbitrary number of hidden variables. This is a
consequence of the following result, which is a general result about expressibility,
and not specific to submodular constraints or Boolean domains.

Proposition 24. If a cost function φ : Dk → Q+ is expressible over Γ , then φ

is expressible over Γ using at most |D||D|k hidden variables.

Proof. If φ ∈ 〈Γ 〉, then by Definition 2, there is a gadget 〈P , l〉, where l =
〈v1, . . . , vk〉, for expressing φ over Γ . For the gadget 〈P , l〉 to express φ, it has
to define φ on each of the |D|k different assignments to l. Let each of these
|D|k assignments be extended to a complete assignment to all variables of P
(including hidden variables) in a way that minimises the total cost. For each
hidden variable v of 〈P , l〉, we can use the list of |D|k values assigned to v
by these complete assignments to label the variable v. If there are more then
|D||D|k hidden variables, then two of them will receive the same label. However,

3 Available from http://minion.sourceforge.net/
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this implies that one of the two is redundant, as all constraints involving that
variable can replace it with the other variable without changing the overall cost.
Hence we require at most |D||D|k distinct hidden variables to express φ. ��

6 Conclusion

In this paper we first considered binary submodular constraints over a Boolean
domain, and showed that they can be minimised in cubic time via a reduction to
the minimum cut problem for graphs. We then investigated which other submodu-
lar constraints are expressible using binary submodular constraints over a Boolean
domain, and hence can also be minimised efficiently using minimum cuts.

Using known results from combinatorial optimisation, we identified several
such classes of constraints, including all ternary submodular constraints, and
all {0, 1}-valued submodular constraints of any arity. By constructing suitable
gadgets, we identified certain new classes of k-ary submodular constraints, where
k ≥ 4, which can also be expressed by binary submodular constraints.

The main open problem raised by this paper is whether all bounded-arity
submodular constraints over a Boolean domain can be expressed by binary sub-
modular constraints, and hence solved in cubic time. In terms of polynomials,
this is equivalent to the following problem: can any Boolean polynomial with non-
positive second order derivatives be expressed as the projection of a quadratic
polynomial with non-positive quadratic coefficients?

The results presented in this paper provide a partial answer to this question
using constructive methods which can be used to obtain concrete reductions to
problems such as (s, t)-Min-Cut. We note that an alternative general approach
to the problem of determining the expressive power of valued constraints was
developed in [5]. It was shown there that the expressive power of any valued
constraint language is characterised by a collection of algebraic properties called
fractional polymorphisms [5]. In order to show that Γsub,k ⊆ 〈Γsub,2〉 it would
therefore be sufficient to show that Γsub,2 and Γsub,k have the same fractional
polymorphisms. However, this algebraic approach is non-constructive, and hence
has certain limitations: even if it could be established in this way that Γsub,k ⊆
〈Γsub,2〉, this would not directly provide us with a gadget for any given problem
(and hence an efficient algorithm). Conversely, if it could be established using the
algebraic approach that Γsub,k �⊆ 〈Γsub,2〉, that would still leave open the question
of identifying which subclasses of Γsub,k can be expressed over Γsub,2, and hence
solved efficiently. This paper provides a first step in answering that question
using constructive techniques that could be implemented in valued constraint
solvers.
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Abstract. Table constraints play an important role within constraint program-
ming. Recently, many schemes or algorithms have been proposed to propagate
table constraints or/and to compress their representation. We show that simple tab-
ular reduction (STR), a technique proposed by J. Ullmann to dynamically main-
tain the tables of supports, is very often the most efficient practical approach to
enforce generalized arc consistency within MAC. We also describe an optimiza-
tion of STR which allows limiting the number of operations related to validity
checking or search of supports. Interestingly enough, this optimization makes STR
potentially r times faster where r is the arity of the constraint(s). The results of
an extensive experimentation that we have conducted with respect to random and
structured instances indicate that the optimized algorithm we propose is usually
around twice as fast as the original STR and can be up to one order of magnitude
faster than previous state-of-the-art algorithms on some series of instances.

1 Introduction

Arc Consistency (AC) plays a central role in Constraint Programming (CP). It is a
property of constraint networks which can be exploited to identify and remove some
inconsistent values, i.e. values which cannot lead to any solution. It is an essential com-
ponent of the Maintaining Arc Consistency (MAC) algorithm, which is commonly used
to solve binary instances of the Constraint Satisfaction Problem (CSP). It is also at the
heart of stronger consistencies that have recently received some attention such as, e.g.,
singleton arc consistency [3,11], weak k-singleton arc consistency [19] and conserva-
tive dual consistency [12].

For non-binary constraints, which arise naturally in many applications, Generalized
AC (GAC) replaces AC. Instead of using GAC extensions of generic AC algorithms,
efficiency may be improved by exploiting the semantics/structure of the constraints.
Indeed, enforcing GAC is NP-hard [4] and the best worst-case time complexity [2] that
can be obtained with a generic GAC algorithm is O(erdr) where e denotes the number
of constraints, d the greatest domain size and r the greatest constraint arity.

This paper is concerned with GAC algorithms for positive table constraints. A posi-
tive (resp. negative) table constraint is a constraint that is defined in extension by a set
of allowed (resp. disallowed) tuples. Table constraints are commonly used in configura-
tion applications or applications related to databases. Moreover, table constraints play
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a particular role in constraint programming since they are easily handled by end-users
of CP systems. Because any constraint can be theoretically translated into a table one
(except that, in practice, this can lead to a time and space explosion), tables can be
considered as the universal way of representing constraints.

In the last few years, many works have been devoted to table constraints. Many
schemes or algorithms have been proposed to enforce GAC on table constraints or/and
to compress their representation. In particular, one line of research (see [8,13,15]) aims
to combine the two concepts of validity and acceptability of tuples of values. Signifi-
cant formal and practical results have been obtained with respect to the very classical
schemes [5]. Another recent proposal, called simple tabular reduction (STR) [18], sig-
nificantly differs from previous methods: the principle is to dynamically maintain tables
in order to only keep supports.

Our contribution in this paper is two-fold. First, we present the results of an exten-
sive experimentation including both random and structured CSP instances which show
that STR is quite competitive with respect to state-of-the-art algorithms (results in [18]
were essentially given for random instances in the context of partition search). We can
conclude that when GAC is maintained on table constraints during search, very often,
STR is the most efficient approach. Second, we present an optimization of STR which
allows limiting the number of validity checking and support search operations. Inter-
estingly, we show that this optimization makes STR potentially r times faster where r
is the arity of the constraint(s). It means that the algorithm we propose is particularly
adapted to table constraints of large arity.

The paper is organized as follows. After introducing some technical background and
related work, we present STR. Then, we describe how STR can be optimized. Before
concluding, we present the results of an extensive experimentation.

2 Technical Background

A Constraint Network (CN) P is a pair (X ,C ) where X is a finite set of n variables
and C a finite set of e constraints. Each variable X ∈ X has an associated domain,
denoted dom(X), that contains the set of values allowed for X . Each constraint C ∈ C
involves an ordered subset of variables of X and has an associated relation, denoted
rel(C), which is the set of tuples allowed for this subset of variables. This subset of
variables is the scope of C and is denoted scp(C). The arity of a constraint is the
number of variables in its scope. A binary constraint has arity 2.

A solution to a CN is an assignment of a value to each variable such that all the
constraints are satisfied. A CN is said to be satisfiable iff it admits at least one solution.
The Constraint Satisfaction Problem (CSP) is the NP-hard task of determining whether
a given CN is satisfiable or not. A CSP instance is defined by a CN which is solved either
by finding a solution or by proving unsatisfiability. In many cases, a CSP instance can
be solved by using a combination of search and inferential simplification.

A central example of inferential simplification is enforcement of GAC, which re-
moves inconsistent values from domains without reducing the set of solutions of the
CN. Values are inconsistent if they cannot occur in any solution. In some cases, en-
forcement of GAC can yield a solution directly, without any search.
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Before giving a technical definition of GAC, we introduce the notion of support.
Given an ordered set {X1, . . . , Xi, . . . , Xk} of k variables and a k-tuple τ=(a1, . . . , ai,
. . . , ak) of values, the individual value ai will be denoted by τ [i] and also τ [Xi] by
abuse of notation. If C is a k-ary constraint, then the k-tuple τ is said to be allowed by
C iff τ ∈ rel(C) ; a valid tuple of C iff ∀X ∈ scp(C), τ [X ] ∈ dom(X) ; a support of
C iff τ is a valid tuple of C which is allowed by C.

A pair (X, a) with X ∈ X and a ∈ dom(X) will be called a value (of P ). A
tuple τ is a support for a value (X, a) in C iff X ∈ scp(C) and τ is a support of
C such that τ [X ] = a. Determining if a tuple is allowed is called a constraint check
and determining if a tuple is valid is called a validity check. A value (X, a) of P is
generalized arc-consistent (GAC) iff for every constraint C involving X , there exists a
support for (X, a) in C. A variableX of P is GAC iff dom(X) �= ∅ and ∀a ∈ dom(X),
(X, a) is GAC. P is GAC iff every variable of P is GAC.

It is easy to see that a value (X, a) of P which is not GAC cannot be included in
any solution of P and is therefore inconsistent. Enforcing GAC means making the CN
GAC by removing inconsistent values from domains. Many algorithms are available for
enforcing GAC (or for enforcing AC when the constraints are binary) [2].

In this paper we use MAC which is a complete algorithm that is considered to pro-
vide the most efficient generic approach to the solution of CSP instances. MAC explores
the search space depth-first, backtracks when dead-ends occur, and enforces (general-
ized) arc consistency after each decision taken (variable assignment or value refutation)
during search. The depth of a node ν is the number of variable assignments performed
along the path leading from the root of the search tree to ν. A past variable is (explic-
itly) assigned whereas a future variable is not (explicitly) assigned. fut(C) is the set
of future variables belonging to scp(C). Finally, we emphasise that when GAC is en-
forced at a given step of the search, values can be removed only from domains of future
variables.

3 Related Work on GAC for Table Constraints

A positive table constraint is a constraint given in extension and defined by a set of
allowed tuples. Such constraints arise in practice in configuration problems, and more
generally, in problems whose data come from databases. The set of allowed tuples as-
sociated with any constraint C is a table denoted by C.table. The worst-case space
complexity of this table is O(tr) where t = |C.table| denotes the size of the table (i.e.
the number of allowed tuples) and r denotes the arity of C.

GAC can be enforced by focusing in turn on each value in each domain; a value
(X, a) is removed from its domain unless it is included in a support in every constraint
that involves X . The classical generic GAC-valid scheme [5] seeks support by iterating
over valid tuples (i.e. tuples that can be built from the current domains of constraint
variables) until one is found that is allowed (i.e. accepted by the constraint). When
working with table constraints we can instead seek support by iterating over allowed
tuples until one is found to be valid [5]. From now on, these two schemes will be
denoted by GACv and GACa, respectively. The efficiency of both approaches highly
depends on the size of visited lists.
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Recently, new schemes have been proposed, combining the exploitation of both valid
and allowed tuples. In [15], it is shown that it is possible to skip over an exponential (in
the arity) number of allowed tuples by reasoning from the current domains of variables.
The key point is to know for each allowed tuple and each value the next tuple of the
table that contains this value. To limit the space complexity of this approach which is
in O(trd), a sophisticated data structure, called hologram [14], can be used. To further
improve the method, the authors propose to exploit lower bounds on supports such as,
e.g., the last structure employed in AC2001/3.1.

Another approach, proposed in [13], involves visiting, in turn, lists of valid and al-
lowed tuples. The principle is to avoid considering irrelevant tuples (when a support
is looked for) by jumping over sequences of valid tuples containing no allowed tuple
and over sequences of allowed tuples containing no valid tuple. This approach admits
on some instances a behaviour quadratic in the arity of the constraints whereas clas-
sical schemes (GACv and GACa) admit an exponential behaviour. Interestingly, this
approach whose worst-case space complexity is O(tr) can be easily grafted to any
generic GAC algorithm.

More recently, two additional data structures have been introduced [8] for table con-
straints. The most promising one corresponds to the tree structure called trie. A trie is a
multi-way tree structure useful for storing strings over an alphabet. It can then be used
to store large dictionaries of words. The original proposal in [8] is to represent the set
of tuples of a constraint by a trie, and to explore this trie when looking for supports. In
order to keep cheap the search of supports, the authors suggest to build one trie per vari-
able (of the scope of the constraint), the first level being dedicated to it. The worst-case
space complexity of the trie approach is O(tr2) but as tuples are compressed at the top
of each trie, one can expect a better memory usage in practice.

Finally, in a recent work [10], an algorithm has been proposed to compress table
constraints. The principle is to represent the initial set of tuples by subsets of the Carte-
sian product of the domains of the variables involved in the constraint. Interestingly,
this approach is also suitable to negative table constraints. Indeed, from an initial set of
disallowed tuples, the authors show it is possible to build a set of compressed allowed
tuples, whose size is at most nd times the size of the original set. Among related ap-
proaches, one can cite the use of directed acyclic graphs (DAGs) [6] and binary decision
diagrams (BDDs) [7].

4 Simple Tabular Reduction

Simple tabular reduction (STR) [18] is another original approach to enforce GAC on
positive table constraints. The principle of STR is to dynamically maintain the tables of
allowed tuples. More precisely, whenever a value is removed from the domain of a vari-
able, the table associated with a constraint involving this variable is updated, removing
all tuples that have become invalid. Values which are no more GAC are then (easily)
identified and removed. To summarize, GAC is enforced while removing invalid tuples,
and consequently, only supports are kept in tables. One related work [16] is the AC
algorithm proposed for the hidden variable encoding.

We now formulate in more detail an implementation of STR in which each con-
straint is an object. Recall that C.table contains the initial set of tuples allowed by the
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constraint C. Without any loss of generality, we hold this set within an array. The tuple
that is the ith element of C.table, denoted by C.table[i], can be accessed in constant
time. Within C.table, every tuple is a member of exactly one of a set of linked lists
of tuples. One of these lists links all tuples that are currently valid (and consequently
are supports): tuples in this list constitute the contents of the current table of C. Any
tuple of the current table of C will be called a current tuple. To provide access to the
disjoint lists of tuples within C.table we introduce the following additional fields for
each constraint object C:

– C.first is the position (i.e. the subscript) of the first current tuple in C.table.
C.first = −1 if the current table of C is empty.

– removedHead is an array of size n such that C.removedHead[d] is the position
of a first invalid tuple of C.table that was removed when the search was at depth d.
C.removedHead[d] = −1 if none was removed at depth d.

– removedTail is an array of size n such that C.removedTail[d] gives the position
of a last invalid tuple removed at depth d. C.removedTail[d] is relevant only if
C.removedHead[d] �= −1.

– next is an array of size t = |C.table| that is used for linking lists of tuples. More
precisely, if i is the position of a current tuple of C, then C.next[i] indicates the
position of the next tuple in the current table. C.next[i] = −1 if i is the position
of the last current tuple. Similarly, if i is the position of a tuple removed at depth d,
then C.next[i] indicates the position of the next tuple removed at depth d, except
that C.next[i] = −1 if i is now the position of the last invalid tuple removed at
depth d.

Besides, corresponding to each variable X , we provide a set gacV alues[X ] [17] that
will contain all values in dom(X) which are proved to have a support when enforcing
GAC on a constraint C. With a O(d) space consumption per variable, one can guarantee
that all elementary operations (determining if a value is present, adding/removing a
value, etc.) are performed in constant time (see [9,13]).

To enforce GAC at a given depth on a (positive table) constraint C using STR, Al-
gorithm 1 is called. The loops at lines 1, 7 and 15 only iterate over future variables
because it is only for these variables that it is possible to remove values from domains.
This is an optimization wrt the original algorithm given in [18]. The sets gacV alues
are emptied at lines 1 and 2 of Algorithm 1 because no value is initially guaranteed
to be GAC. Then, all current tuples of the table of C are considered in turn by the
loop at lines 4 − 14. When a tuple τ is proved to be valid (see Algorithm 2), we know
that it is necessarily a support since it is (by definition) allowed. Values that have been
proved to be GAC are collected at lines 7 to 9. In constant time (see Algorithm 3), at
line 13 an invalid tuple τ is removed from the current table and put (at first position)
into the list of invalid tuples that were removed at the current depth d. Note that τ is
removed without actually being moved in memory. Once all current tuples have been
considered, unsupported values are removed (lines 15 to 20): these are the values in
dom(X) \ gacV alues[X ]. If a domain becomes empty then false is returned at line
18 because of inconsistency.

To enforce GAC on the constraint network, some events must be recorded: here,
a variable is put in a queue dedicated to propagation (see line 20 of Algorithm 1)
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Algorithm 1. GACstr(C: Constraint, depth: Integer): Boolean

foreach variable X ∈ fut(C) do1

gacV alues[X] ← ∅2

prev ← −1 ; curr ← C.first3

while curr 
= −1 do4

τ ← C.table[curr]5

if isV alid(C, τ ) then6

foreach variable X ∈ fut(C) do7

if τ [X] /∈ gacV alues[X] then8

add τ [X] to gacV alues[X]9

prev ← curr ; curr ← C.next[curr]10

else11

next ← C.next[curr]12

removeTuple(C,prev, curr, depth)13

curr ← next14

foreach variable X ∈ fut(C) do15

if |gacV alues[X]| 
= |dom(X)| then16

if gacV alues[X] = ∅ then17

return false18

dom(X) ← gacV alues[X]19

add X to propagationQueue20

return true21

Algorithm 2. isValid(C: Constraint, τ : Tuple): Boolean

foreach variable X ∈ scp(C) do1

if τ [X] /∈ dom(X) then2

return false3

return true4

Algorithm 3. removeTuple(C: Constraint, prev, curr, depth: Integers)

if prev = −1 then C.first ← C.next[curr]1

else C.next[prev] ← C.next[curr]2

C.next[curr] ← C.removedHead[depth]3

if C.removedHead[depth] = −1 then C.removedTail[depth]← curr4

C.removedHead[depth]← curr5

Algorithm 4. restoreTuples(C: Constraint, depth: Integer)

if C.removedHead[depth] 
= −1 then1

C.next[C.removedTail[depth]] ← C.first2

C.first ← C.removedHead[depth]3

C.removedHead[depth]← −14
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whenever its domain is reduced. Later, this variable will be picked from the queue,
and all constraints involving this variable will be enforced to be GAC (a call to GAC-
str will be performed for a positive table constraint). Also, the code given here can be
easily adapted to take into account finer propagation events.

The worst-case time complexity of GACstr (Algorithm 1) is O(r′d+ rt′) where, for
a given constraint C, r′ = |fut(C)| denotes the number of future variables in C and t′

the size of the current table of C. Indeed, loops at lines 1, 4 and 15 are O(r′), O(rt′)
and O(r′d), respectively. The worst-case space complexity of GACstr is O(n+ rt) per
constraint since removedHead and removedTail are O(n), table is O(rt) and next
is O(t).

Importantly, when backtracking occurs, values must be restored to domains, as is
well known, and because of domain restoration, tuples that were invalid may now be
valid. If a tuple τ was removed from the current table of C at depth d, then τ must be
restored to the current table of C when the search backtracks to depth d or assigns a
new value at depth d. In our implementation, tuples are restored by calling Algorithm 4.
This algorithm puts the list of invalid tuples removed at the given depth at the head of
the current table. Restoration is achieved in constant time (for each constraint) without
traversing either list and without moving any tuple in memory [18].

5 Optimizing STR

It is possible to improve STR in two directions. First, as soon as all values in the do-
main of a variable have been detected GAC, it is futile to continue to seek supports
for values of this variable. We therefore introduce a set, Ssup, of variables in fut(C)
whose domain contains at least one value for which a support has not yet been found.
In GACstr2 (Algorithm 5), which is an optimized version of GACstr, lines 1, 6 and
8 initialize Ssup to be the same as fut(C). Whenever a support is found for the last
unsupported value in the domain of a variable X , line 20 removes X from Ssup. If
|gacV alues[X ]| = |dom(X)| at line 19 then all values of dom(X) are supported.
Efficiency is gained by iterating only over variables in Ssup at lines 16 and 26.

The second direction of improvement avoids unnecessary validity operations. At
the end of an invocation of GACstr for constraint C, every tuple τ such that τ [X ] �∈
dom(X) (with X ∈ scp(C)) has been removed from the current table of C. If there is
no backtrack and dom(X) does not change between this invocation and the next invo-
cation, then at the time of this next invocation it is certainly true that τ [X ] ∈ dom(X)
for every tuple τ in the current table of C. In this case, there is no need to check whether
τ [X ] ∈ dom(X); efficiency is gained by omitting this check. We implement this opti-
mization by means of a set Sval, which is the set of future variables whose domain has
been reduced since the previous invocation of GACstr2. Initially, this set also contains
the last assigned variable (denoted by lastAssignedV ariable here) if it belongs to the
scope of the constraint C. Indeed, after any variable assignment X = a, some tuples
may become invalid due to the removal of some values in dom(X). This is the only
past variable for which validity operations must be performed. Algorithm 6 checks
validity only for variables in Sval. The set Sval is first initialized at lines 2 through
5 of Algorithm 5. At line 9 of this algorithm, dom(X).getLastRemovedV alue() is
the value that was most recently removed from dom(X) whilst processing this or any
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other constraint. A special value nul must be used when no value has been removed.
C.lastRemoved[X ] is the value that was most recently removed from dom(X) whilst
processing the specific constraint C (see lines 11 and 30). If these two values differ at
line 9 then dom(X) has changed since the previous invocation of Algorithm 5 for the
specific constraint C. In this case, X is included in Sval at line 10. This is how the
membership of Sval is determined.

The worst-case time complexity of GACstr2 is O(r′(d + t′)). Indeed, performing a
validity check is now O(r′) instead of O(r), as it can be observed from Algorithm 6.
Moreover, the loop starting at line 13 is in O(r′t′). Like GAcstr, the worst-case space
complexity of GACstr2 is O(n+ rt) per constraint since data structures inherited from
GACstr are O(n+rt) and lastRemoved is O(r); Ssup and Sval are also O(r) but may
be shared by all constraints.

The worst case scenarii used to develop the worst-case time complexities of both
GACstr and GACstr2 do not entirely characterize the difference in behaviour that may
occur, in practice, between the two algorithms. Let us consider a positive table con-
straint C such that scp(C) = {X1, ..., Xr} and the table initially includes:

(0,0,...,0)
(1,1,...,1)
...
(d-2,d-2,...,d-2)
(d-2,d-1,...,d-1)
...

In this example, the domain of each variable involved in C comprises all digits from
0 to d − 1. In the table, the first d − 1 tuples are sequences formed with the same
digit (from 0 to d − 2), while the dth tuple consists of the digit d − 2 followed by a
sequence of d − 1. Assume that all variables are future, that STR (either of the two
algorithms) is applied to this constraint and that no value is removed because all values
are present in domains and there also exists a support for (X1, d−1) in C (although this
is not shown above). Now, imagine that (X1, d− 1) is deleted while propagating some
other constraints, whereas all other values remain valid. If STR is applied again to this
constraint, no value will be removed (since the constraint is still GAC), but some tuples
(at least one) will be eliminated. Interestingly, calling GACstr requires O(r) constant
time operations to deal with gacV alues structures (loops starting at line 1 and 15),
O(rt) operations to perform validity checks,O(rt) operations to check GAC values and
O(rd) operations to collect GAC values. On the other hand, calling GACstr2 requires
O(r) operations to deal with gacV alues structures, O(t) operations to perform validity
checks (since Sval = {X1}), O(rd) operations to check GAC values (since Ssup = ∅
after the treatment of the first d tuples) and O(rd) operations to collect GAC values.
This is summarized as follows:

Observation 1. There exist situations where applying GACstr to a r-ary constraint C
is O(rt + rd) whereas applying GACstr2 is O(t + rd).

Most of the time, d << t since t ∈ O(dr). In this case, Observation 1 shows that
GACstr2 is potentially r times faster than GACstr. The higher the arity, the greater the
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Algorithm 5. GACstr2(C: Constraint, depth: Integer): Boolean

Ssup ← ∅1

if lastAssignedV ariable /∈ scp(C) then2

Sval ← ∅3

else4

Sval ← {lastAssignedV ariable}5

foreach variable X ∈ fut(C) do6

gacV alues[X] ← ∅7

Ssup ← Ssup ∪ {X}8

if dom(X).getLastRemovedV alue() 
= C.lastRemoved[X] then9

Sval ← Sval ∪ {X}10

C.lastRemoved[X] ← dom(X).getLastRemovedV alue()11

prev ← −1 ; curr ← C.first12

while curr 
= −1 do13

τ ← C.table[curr]14

if isV alid(C, τ ) then15

foreach variable X ∈ Ssup do16

if τ [X] /∈ gacV alues[X] then17

add τ [X] to gacV alues[X]18

if |gacV alues[X]| = |dom(X)| then19

Ssup ← Ssup \ {X}20

prev ← curr ; curr ← C.next[curr]21

else22

next ← C.next[curr]23

removeTuple(C,prev, curr, depth)24

curr ← next25

foreach variable X ∈ Ssup do26

if gacV alues[X] = ∅ then27

return false28

dom(X) ← gacV alues[X]29

C.lastRemoved[X] ← dom(X).getLastRemovedV alue()30

add X to propagationQueue31

return true32

Algorithm 6. isValid(C: Constraint, τ : Tuple): Boolean

foreach variable X ∈ Sval do1

if τ [X] /∈ dom(X) then2

return false3

return true4

benefit of using GACstr2 may be. Finally, one may wonder about backtracking issues.
A first solution, when backtracking occurs, is to reinitialize all arrays lastRemoved,
filling them with the special value nul. Alternatively, one may record the content of
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such arrays at each depth of search. Upon backtracking, one can then benefit from the
original state of the arrays. This approach, which requires an additional structure that is
O(nr) per constraint, will be denoted by GACstr2+.

6 Experimental Results

In order to show the practical interest of simple tabular reduction, and in particular
the optimization we propose, we have experimented using a cluster of Xeon 3.0GHz
with 1GiB of RAM under Linux, employing MAC with dom/ddeg and lexico as vari-
able1 and value ordering heuristics, respectively. We have compared classical schemes
to enforce GAC on (positive) table constraints with STR. More precisely, we have im-
plemented GACv and GACa (see Section 3) as well as the scheme described in [13],
denoted by GACva here. We do believe that GACva is a representative state-of-the-art
algorithm for table constraints. Our own experience confirms the results reported in [8]:
GACva and the trie approach are quite robust and close in terms of performance.

We have performed a first experimentation with random CSP instances. We have
generated different classes of instances from Model RD [20]. Each generated class
〈r, 60, 2, 20, t〉 contains 20 CSP instances involving 60 Boolean variables and 20 r-
ary constraints of tightness t. Whatever the arity r ≥ 8 is, Theorem 2 [20] holds: an
asymptotic phase transition is guaranteed at the threshold point tcr = 0.875. It means
that the hardest instances are generated when the tightness t is close to tcr. Figure 1
shows the mean cpu time required to solve 20 instances of each class 〈13, 60, 2, 20, t〉
where t ranges from 0.8 to 0.96. On these instances of intermediate difficulty, we can
observe that STR is far more efficient than classical schemes (including GACva). When
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Fig. 1. Mean search cost of solving instances in classes 〈13, 60, 2, 20, t〉 with MAC

1 In our implementation, using dom/wdeg does not guarantee exploring the same search tree
with classical and STR schemes.
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Fig. 3. Mean search cost for classes 〈14, 60, 2, 20, t〉 (left) and 〈16, 60, 2, 20, t〉 (right)

focusing on STR algorithms, Figures 2 and 3 clearly confirm the general observation
made in Section 5 about the increasing interest of using GACstr2(+) when the arity of
the constraints increases. Indeed, while GACstr2+ is about 20% faster than GACstr (at
the threshold) when the arity of constraints is 10, it becomes two times faster when the
arity of constraints is 16. Similar results have been obtained with larger domains.

Next, we have experimented on series of (random and structured) CSP instances in-
volving table constraints, that are available from http://www.cril.univ-artois.

fr/ lecoutre/. These series represent a large spectrum of instances, and importantly,

http://www.cril.univ-artois.fr/~lecoutre/
http://www.cril.univ-artois.fr/~lecoutre/
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Table 1. Mean cpu time (in seconds) to solve instances of different series (a time-out of 1, 200
seconds was set per instance)

Classical GAC schemes Simple Tabular Reduction
Series #Inst GACv GACa GACva GACstr GACstr2 GACstr2+

bdd-21-2713-15 35 69.3 386 58.8 164 94.5 52.1
bdd-21-133-18 35 37.3 (23 out) 36.0 66.1 38.3 26.2

renault-mod 45 83.8 45.7 48.0 61.6 54.9 45.4
tsp-20 15 28.4 23.3 14.9 8.80 8.95 8.35
tsp-25 15 254 273 196 119 122 118

rand-8-20-5-18 20 107 (16 out) 119 108 81.2 65.6
rand-10-20-10-5 20 (20 out) 4.49 5.61 1.00 0.77 0.53

allow anyone to easily reproduce our experimentation. The two first series [7] bdd-21-
2713-15 and bdd-21-133-18 contain 35 instances each, involving 21 Boolean variables
and large and small BDD constraints of arity 15 and 18, respectively. The series renault-
mod contains 45 real-world instances (we were unable to solve 5 of them with the
selected heuristics within a reasonable amount of time) involving domains containing
up to 42 values and constraints of various arity defined by large tables (the greatest one
contains about 50, 000 6-tuples). The two series tsp-20 and tsp-25 contain 15 instances
of the Travelling Salesperson Problem each, involving domains containing up to 1, 000
values and ternary constraints defined by large tables (about 20, 000 3-tuples). Finally,
the two series rand-8-20-5-18 and rand-10-20-10-5 contain 20 random instances each
involving 20 variables. Each instance of the series rand-8-20-5-18 (resp., rand-10-20-
10-5) involves domains containing 5 (resp., 10) values and 18 (resp., 5) constraints of
arity 8 (resp., 10). Tables contain about about 78, 000 and 10, 000 tuples, respectively.

Table 1 indicates the mean cpu time required to solve the instances of these different
series. Overall, we can observe that GACstr2+ is always the most efficient approach. In
particular, GACstr2+ is 3 times faster than GACstr on the bdd-21-2713-15 series and
10 times faster than GACva on the rand-10-20-10-5 series. Table 2 presents the results
obtained on some representative instances. Here, for each series, we show the results
for 2 or 3 instances of various difficulty. For example, the instance bdd-21-133-18-10
only requires visiting 21 nodes (to be solved) whereas the instance bdd-21-133-18-11
requires visiting 14, 716 nodes. Typically, when the instance is easy, using STR is rather
penalising. This is not really surprising since managing dynamic tables is then just an
overhead. This is particularly visible for easy instances of series bdd-21-2713-15 and
bdd-21-133-18. In terms of memory, the difference of memory consumption between all
algorithms is at most by a factor 2. Note that the additional structure in O(nd) required
by GACstr2+ has a very limited practical impact on all these series.

Finally, we have tested the series of Crossword puzzles that have been recently posted
at the web page mentioned earlier. For each grid, there is a variable per white square
which can be assigned any of the 26 letters of the Latin alphabet, and a constraint
for any sequence of white squares which corresponds to a word that we must put in
the grid. Such constraints are defined by a table which contains all words of the right
length. The series prefixed by cw-m1c are defined from blank grids and only contain
positive table constraints (contrary to model m1 in [1] where no two identical words
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Table 2. Representative results obtained on various structured and random instances. Cpu time
is given in seconds and mem(ory) in MiB. The number of nodes (#nodes) explored by MAC is
given below the name of each instance.

Classical GAC schemes Simple Tabular Reduction
Instance GACv GACa GACva GACstr GACstr2 GACstr2+

bdd-21-133-18-10 cpu 0.82 0.93 0.93 7.18 3.62 3.57
#nodes=21 mem 39M 43M 43M 63M 63M 63M

bdd-21-133-18-2 cpu 38.7 > 1, 200 38.7 68.1 38.6 25.9
#nodes=10, 660 mem 61M 72M 127M 127M 126M

bdd-21-133-18-11 cpu 58.4 > 1, 200 53.6 104 61.1 43.9
#nodes=14, 716 mem 46M 59M 100M 101M 101M

bdd-21-2713-15-22 cpu 0.81 0.74 0.81 13.8 5.85 5.97
#nodes=21 mem 91M 93M 93M 165M 166M 175M

bdd-21-2713-15-32 cpu 61.5 357 55.1 145 82.7 44.5
#nodes=1, 140 mem 73M 74M 74M 166M 167M 176M

bdd-21-2713-15-35 cpu 78.6 372 71.9 193 121 66.1
#nodes=1, 465 mem 73M 74M 74M 167M 168M 177M

renault-mod-0 cpu 11.1 1.05 1.04 1.05 0.99 1.04
#nodes=287 mem 36M 41M 41M 34M 34M 34M

renault-mod-12 cpu 149 92.2 88.9 92.4 83.7 77.6
#nodes=415K mem 39M 52M 52M 49M 49M 50M

renault-mod-14 cpu 411 321 318 384 359 302
#nodes=1, 135K mem 40M 51M 51M 66M 66M 68M

tsp-20-190 cpu 6.02 6.91 5.56 4.89 4.98 4.59
#nodes=7, 738 mem 12M 12M 12M 10M 10M 10M

tsp-20-366 cpu 37.0 41.6 32.9 25.2 25.7 23.5
#nodes=31, 701 mem 10M 10M 9, 731K 9, 115K 9, 124K 9, 261K

tsp-20-193 cpu 291 207 146 99.2 101 91.6
#nodes=80, 849 mem 16M 17M 16M 17M 17M 17M

tsp-25-13 cpu 4.23 3.2 3.03 3.03 3.07 2.86
#nodes=2, 421 mem 20M 20M 20M 17M 17M 17M

tsp-25-163 cpu 178 205 140 108 105 105
#nodes=89, 883 mem 15M 15M 14M 15M 15M 16M

tsp-25-456 cpu 1, 060 1, 140 813 643 642 683
#nodes=686K mem 28M 28M 26M 40M 40M 42M

rand-10-20-10-5-10 cpu > 1, 200 3.86 2.59 0.58 0.51 0.43
#nodes=794 mem 20M 20M 16M 16M 16M

rand-10-20-10-5-0 cpu > 1, 200 4.59 3.22 1.19 1.36 0.83
#nodes=826 mem 23M 23M 20M 20M 20M

rand-8-20-5-18-10 cpu 42.7 > 1, 200 51.8 50.9 39.4 31.8
#nodes=57, 579 mem 193M 283M 205M 205M 205M

rand-8-20-5-18-13 cpu 420 > 1, 200 403 241 186 153
#nodes=569K mem 196M 291M 221M 221M 221M
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Table 3. Representative results obtained on series of Crossword puzzles using dictionaries of dif-
ferent length. Cpu time is given in seconds and mem(ory) in MiB. The number of nodes (#nodes)
explored by MAC is given below the name of each instance.

Classical GAC schemes Simple Tabular Reduction
GACv GACa GACva GACstr GACstr2 GACstr2+

Crossword puzzles with dictionary lex (24, 974 words)
cw-m1c-lex-vg5-6 cpu > 1, 200 38.8 54.2 14.3 12.4 10.7

#nodes=26, 679 mem 2, 889K 2, 928K 2, 932K 2, 935K 2, 968K

cw-m1c-lex-vg5-7 cpu > 1, 200 357 875 134 114 96.3
#nodes=171K mem 4, 134K 4, 173K 8, 005K 8, 055K 8, 059K

cw-m1c-lex-vg6-6 cpu > 1, 200 2.98 4.29 1.28 1.05 0.91
#nodes=1, 602 mem 4, 422K 4, 344K 4, 226K 4, 203K 4, 296K

cw-m1c-lex-vg6-7 cpu > 1, 200 436 1, 174 176 143 118
#nodes=152K mem 5, 887K 5, 692K 9, 458K 9, 437K 9, 555K

Crossword puzzles with dictionary words (45, 371 words)
cw-m1c-words-vg5-5 cpu > 1, 200 0.04 0.05 0.05 0.05 0.04

#nodes=38 mem 4, 969K 4, 987K 4, 823K 4, 791K 4, 809K

cw-m1c-words-vg5-6 cpu > 1, 200 1.19 1.46 0.48 0.37 0.33
#nodes=718 mem 6, 508K 6, 526K 6, 348K 6, 273K 6, 348K

cw-m1c-words-vg5-7 cpu > 1, 200 18.6 36.0 6.61 5.21 4.03
#nodes=6, 957 mem 8, 470K 8, 489K 8, 276K 8, 145K 8, 237K

cw-m1c-words-vg5-8 cpu > 1, 200 866 > 1, 200 273 229 187
#nodes=256K mem 4, 604K 10M 10M 10M

Crossword puzzles with dictionary uk (225, 349 words)
cw-m1c-uk-vg5-5 cpu > 1, 200 0.05 0.05 0.1 0.07 0.07

#nodes=28 mem 12M 12M 12M 12M 12M

cw-m1c-uk-vg5-6 cpu > 1, 200 0.55 0.5 0.21 0.17 0.17
#nodes=145 mem 17M 17M 16M 16M 16M

cw-m1c-uk-vg5-7 cpu > 1, 200 2.97 5.18 0.51 0.37 0.34
#nodes=408 mem 22M 22M 22M 22M 22M

cw-m1c-uk-vg5-8 cpu > 1, 200 82.5 71.9 7.08 5.71 4.78
#nodes=8, 148 mem 12M 12M 11M 11M 11M

Crossword puzzles with dictionary ogd (435, 705 words)
cw-m1c-ogd-vg6-6 cpu > 1, 200 0.37 0.31 0.23 0.17 0.15

#nodes=98 mem 46M 47M 46M 46M 48M

cw-m1c-ogd-vg6-7 cpu > 1, 200 95.3 56.1 12.0 8.01 6.81
#nodes=9, 522 mem 11M 11M 11M 11M 11M

cw-m1c-ogd-vg6-8 cpu > 1, 200 53.0 6.44 2.91 2.0 1.72
#nodes=2, 806 mem 24M 23M 22M 22M 24M

cw-m1c-ogd-vg6-9 cpu > 1, 200 727 214 35.1 25.1 19.1
#nodes=23, 283 mem 42M 41M 39M 37M 40M

can be put in the grid, which is then naturally expressed in intension). The arity of the
constraints is given by the size of the grids: for example, cw-m1c-lex-vg5-6 involves
table constraints of arity 5 and 6 (the grid being 5 by 6). The results that we have
obtained (see Table 3) with respect to 4 dictionaries (lex, words, uk, ogd) of different
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length confirm our previous results. On the most difficult instances, GACstr2+ is about
two times faster than GACstr and one order of magnitude faster than GACva. Note
that we do not provide mean results for these series because many instances cannot be
solved within 1, 200 seconds.

7 Conclusion

Simple tabular reduction (STR) [18] is a simple and effective GAC algorithm for posi-
tive table constraints. In this paper, we have proposed an optimization of this algorithm
which significantly improves its efficiency. This new algorithm (GACstr2+) appears
among state-of-the-art GAC algorithms for non-binary table constraints.
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Abstract. While the efficiency and scalability of modern SAT technol-
ogy offers an intriguing alternative approach to constraint solving via
translation to SAT, previous work has mostly focused on the translation
of specific types of constraints, such as pseudo Boolean constraints, fi-
nite integer linear constraints, and constraints given as explicit listings
of allowed tuples. By contrast, we present a translation of constraint
models to SAT at language level, using the recently proposed constraint
modeling language MiniZinc, such that any satisfaction or optimization
problem written in the language (not involving floats) can be automat-
ically Booleanized and solved by one or more calls to a SAT solver. We
discuss the strengths and weaknesses of such a universal constraint solver,
and report on a large-scale empirical evaluation of it against two existing
solvers for MiniZinc: the finite domain solver distributed with MiniZinc
and one based on the Gecode constraint programming platform. Our re-
sults indicate that Booleanization indeed offers a competitive alternative,
exhibiting superior performance on some classes of problems involving
large numbers of constraints and complex integer arithmetic, in addition
to, naturally, problems that are already largely Boolean.

1 Introduction

General constraint satisfaction and optimization problems are often solved with
finite domain (FD) or linear programming (LP) techniques. When variables are
all Boolean, however, satisfiability (SAT) solvers offer a natural solution whose
efficiency and scalability in practice remain largely unmatched to date.

Booleanization of constraints has thus remained an ongoing quest in the con-
straint programming (CP) community. For example, pseudo-Boolean constraints
(integer linear constraints over the domain {0, 1}), including the special case of
Boolean cardinality constraints, have come under continual scrutiny due to their
resemblance to their Boolean cousins [1,2,3,4,5]. Restricted to finite domains,
general integer linear constraints have also been Booleanized by transforming
all constraints to primitive comparisons, of the form x ≤ c, and encoding each
of these by a distinct Boolean variable [6]. Set constraints over a finite universe
have been Booleanized by creating a Boolean variable for each possible element
of a set [7]. For other types of constraints over finite domain variables, particu-
larly extensional constraints (those given as explicit listings of allowed tuples),
it’s sometimes effective to use the well-known technique of encoding each value
of a variable’s domain with a distinct Boolean variable.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 144–158, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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0 int: z = 10;

1 array [0..z] of 0..z*z: sq = [x*x | x in 0..z];

2 array [0..z] of var 0..z: s;

3 var 0..z: k;

4 var 1..z: j;

5 constraint forall ( i in 1..z ) ( s[i] > 0 -> s[i - 1] > s[i] );

6 constraint s[0] < k;

7 constraint sum ( i in 0..z ) ( sq[s[i]] ) = sq[k];

8 constraint s[j] > 0;

9 solve maximize j;

Fig. 1. A “perfect square” problem in MiniZinc

These previous lines of work have allowed CP to directly benefit from the great
advances in SAT and related technologies over the past decade. In attempting to
further push the envelope, however, one identifies two major limitations in this
body of work. First, the types of constraints dealt with are limited; in particu-
lar, many nonlinear operations (such as multiplication/division, min/max, and
the example given below involving array access) frequently required in mod-
eling are left unsupported. Second, the techniques proposed, being specific to
the respective types of constraints they target, are not necessarily compati-
ble and are implemented for different problem specification formats, making
the Booleanization of heterogeneous constraint models a difficult task both in
theory and practice.

Both these limitations can be removed at once by a procedure that systemat-
ically Booleanizes a general constraint language, rather than special constraint
types, which is the subject of the present paper. Although the techniques we shall
present will apply as well to similar languages, our actual Booleanization proce-
dure has been developed and implemented for MiniZinc [8], a recently proposed
simple but expressive constraint modeling language. This choice of language is
ideal for us as two existing solvers for MiniZinc are available for comparison, and
the public distribution of MiniZinc [9] contains a large number of examples and
benchmarks of different types, both of which facilitate the empirical evaluation
of our new solver. An additional benefit of using MiniZinc, as we discuss in Sec-
tion 2, is that it comes with a tool that “flattens” things into a more convenient
subset of the language, without compromising its expressiveness.

Fig. 1 gives an example constraint model expressed in MiniZinc taken from the
MiniZinc distribution [9], modeling the size-10 instance of the “perfect square”
problem—finding a largest set of integers from {1, . . . , z} the sum of whose
squares is itself a square. While this example should be largely self-explanatory,1

a detailed explanation of the syntax of MiniZinc can be found in [8]. It’s worth

1 Line 0 declares a constant z = 10; line 1 declares an initialized array sq =
[0, 1, 2, 4, . . . , z2]; line 2 declares an array s of integers from domain {0, . . . , z}; lines 3
and 4 declare integers k and j from domains {0, . . . , z} and {1, . . . , z}, respectively;
line 5 asserts the logical condition (s[i] > 0) → (s[i− 1] > s[i]) for all i in {1, . . . , z};
line 7 asserts

P
i∈{0,...,z} sq[s[i]] = sq[k].
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noting here, though, that this small model, written in a natural way, already
contains a type of constraint not handled by previous Booleanization methods:
On line 7, we are summing over elements of an array (sq[ ]) using indices (s[i])
that are themselves variables, something that cannot be readily turned into a
linear constraint, nor an explicit listing of allowed tuples of a reasonable length.

We shall now begin our journey toward a Booleanization of MiniZinc, which
will allow problems such as this one to be automatically translated and solved
by a SAT solver.

2 Basis for Universal Booleanization

Booleanization of constraint models at language level naturally consists of two
parts: Boolean encoding of variables and Boolean encoding of constraints.

MiniZinc provides three scalar types: Booleans, integers, and floats; and two
compound types: sets and arrays. In this work we do not consider floats. Hence
we need to handle the following variable types: (1) integers (both bounded and
unbounded), (2) sets of integers (must be bounded, a requirement in MiniZinc),
(3) arrays of Booleans, (4) arrays of integers (both bounded and unbounded),
and (5) arrays of sets of integers. We need not directly handle multi-dimensional
arrays as MiniZinc comes with a tool that automatically flattens those, among
other things, so that the model is rephrased in a subset of MiniZinc called FlatZ-
inc [8], where the above five categories are the only possible types.

The basis for our Booleanization of an integer is to use k Boolean variables
to represent the bits of the number in binary. This ensures that the encoding
will be adequate for all possible types of constraints—as long as k is sufficiently
large (we address this later). Sets are Booleanized as in [7], by using a Boolean
variable for each possible element of the set (the boundedness helps here). Arrays
are decomposed into individual variables, one for each index, which is feasible
as MiniZinc requires that array index ranges be fixed at compile time.

The second, more substantial part of the task is to Booleanize all types of
constraints that can be written in MiniZinc. This is facilitated again by the
tool that converts MiniZinc to FlatZinc, where all user defined predicates have
been inlined, compound operators (forall, sum, and product, which range over
elements of an array) unrolled, and all constraints normalized as necessary to
conform to a pre-defined set of operators (i.e., constraint types). It then remains
for us to provide a translation for each of these operators.

The next section presents our Booleanization procedure in more detail, assum-
ing that MiniZinc models have been converted to FlatZinc in a preprocessing step
(note that this makes our Booleanization applicable not only to MiniZinc, but
potentially any language that can be translated to FlatZinc). A FlatZinc model
consists of a list of variables declarations followed by a list of constraints and
finally a specification of the nature of the problem (satisfaction/optimization)
and the desired output—all of these are known as items of the model, and we
will describe the translation of them in that order.
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3 An Itemized Procedure

It’s perhaps helpful to interpose a description of our “finished product” here, so
that the goal will be clear when we go through our translation procedure. This is
a program called FznTini, as it takes FlatZinc models as input and solves them
using an interface to the SAT solver Tinisat [10]. It also has the option of print-
ing a Boolean translation of the model (for a given k—the number of bits used
to encode an integer) without solving it, in one of two formats: Boolean FlatZinc
(the subset of FlatZinc where all variables are Boolean and all constraints are
basic Boolean operations; this is to allow the integration of the Booleanization
into the G12 platform [11] which understands FlatZinc) and the DIMACS CNF
format widely accepted by SAT solvers. For optimization problems, the trans-
lation encodes all the constraints, and information on optimization (i.e., which
Boolean variables correspond to the integer variable to be maximized/minimized,
and its lowerbound and upperbound if known) is coded as an annotation item
in the case of Boolean FlatZinc and a special comment line in the case of DI-
MACS, so that solvers accepting these translations can reconstruct the original
optimization version of the problem and solve it accordingly.

Going from Boolean FlatZinc to DIMACS will be straightforward, as it in-
volves simply converting basic Boolean operations to CNF; hence we will describe
our translation using Boolean FlatZinc as the target language. Language syntax
will be explained as we go along.

3.1 Booleanization of Variable Declarations

Declarations of Boolean variables are left untouched. Hence we have the following
five cases to handle as explained earlier.

Integers. An integer declaration in FlatZinc has the following form:

var int: x;

which translates into declarations of k Boolean variables:

var bool: x_1; ... ; var bool: x_k;

Note that the symbols x 1 through x k are meant to represent k fresh identifiers
that are not used in the source model or the translation of previous items. This
convention applies through the rest of the paper.

A bounded integer is declared as follows:

var <g>..<h>: x;

where <g> and <h> are two integer constants giving the domain (e.g., 0..10).
This translates into the same k Boolean variables as above, but we also add the
following two (less-than-or-equal-to) integer comparison constraints, which are
then Booleanized along with other constraints in the source model, as will be
described in Section 3.2 (note that depending on the values of g and h, these
constraints may fix some of the bits of x to constants, effectively reducing the
actual number of bits required to encode a bounded integer):

int_le(<g>, x); int_le(x, <h>);
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Sets of integers. A set of (bounded) integers is declared as follows:

var set of <g>..<h>: S;

which means that the value of S must be a set whose elements are from the uni-
verse {g, . . . , h}. This translates into declarations of h− g+1 Boolean variables:

var bool: S_g; ...; var bool: S_h;

where each S i encodes the proposition “<i> ∈ S.”

Arrays of Booleans. Arrays in FlatZinc are always 0-indexed.2 A declaration
of an array of Booleans has the following form:

array[0..<m>] of var bool: X;

which translates into declarations of m + 1 Boolean variables:

var bool: X_0; ...; var bool: X_m;

Arrays of integers. Each declaration of an array of integers

array[0..<m>] of var int: X;

is first decomposed (conceptually) into declarations of of m+1 integer variables:

var int: X_0; ...; var int: X_m;

which are then Booleanized the same way as other integers in the source model
(in practice, of course, the intermediate step need not take place explicitly).

Each declaration of an array of bounded integers

array[0..<m>] of var <g>..<h>: X;

translates into the same Boolean variables as in the unbounded case, plus the
translation of additional integer comparison constraints as in the case of bounded
scalar integers.

Arrays of sets of integers. Each declaration of an array of sets of integers:

array[0..<m>] of var set of <g>..<h>: X;

is first decomposed (conceptually) into declarations of m + 1 set variables:

var set of <g>..<h>: X_0; ...; var set of <g>..<h>: X_m;

which are then Booleanized the same way as other set variables in the source
model (again, the intermediate step need not actually take place).

Finally, we note that these five types of variable declarations can all take
an (initialization) assignment, in which case the “variables” effectively become
2 Subsequent to the completion of this work, the Zinc family of languages and the

MiniZinc benchmarks and examples have been modified to use 1-indexed arrays.
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constants and the var keyword in the declaration can be omitted (as in lines 0–1
of Fig. 1). These cases can be handled in one of two ways: (1) We can simply skip
the declaration, storing the value of the variable in a look-up table, and plug in
the value when later translating a constraint involving that variable. This method
can be easily implemented for Booleans, integers, arrays of Booleans, and arrays
of integers. (2) We can Booleanize the variables the same say as if they weren’t
initialized, and then add constraints equating the resulting Boolean variables to
appropriate Boolean constants corresponding to the assignment. This method
has the advantage of uniformity, in that when we later translate the constraints,
initialized and uninitialized variables need not be distinguished. This makes it
easier to implement for the more complex variables types of sets and arrays of
sets. This is a relatively unimportant choice, after all, and our implementation
uses a combination of both methods.

3.2 Booleanization of Constraints

Booleanization of constraints involving integers will depend on how an integer
is represented by the k bits. We assume the two’s complement representation
commonly used in computers, where a positive number has the usual represen-
tation and flipping all its bits and adding 1 gives its negation. For example, if
k = 4, then 3 would be 0011 and −3 would be 1101. We also assume that x k
represents the most significant, and x 1 the least significant bit of x.

Constraints in FlatZinc are instances of a pre-defined set of operators, grouped
into several categories. Below we will use these as headings to present translations
of constraints. In FlatZinc, arguments to a constraint can be either a variable,
array access, or constant. For simplicity, we will represent arguments as vari-
ables in all operators (except in linear constraints where the coefficients must be
constants). The other two cases can be handled in the following straightforward
way: (1) Any argument in the form of X[<i>] (array access with a constant
index) is replaced with X <i> before applying the relevant translation procedure
(recall that these individual variables have been invented in translating the ar-
ray declaration); note that array access with a variable index would not appear
as such in FlatZinc, but will have been normalized during flattening into ar-
ray element operators, which we will cover below. (2) Constants can be handled
by (conceptually) inventing a temporary variable in its place and plugging in
appropriate Boolean constants at the end.

Comparison operators. There are three sets of comparison operators in
FlatZinc, for Booleans, integers, and sets, respectively. Each set contains six
operators corresponding to =, �=,≤, <,≥, and >. The Boolean operators need
not be touched. Hence we consider the Booleanization of integer and set com-
parisons. For both of these, we use the ≤ as a representative as the cases of
<,≥, and > are similar and the cases of = and �= are simpler. All these opera-
tors have reified versions, which we also omit as the modifications required are
straightforward.

The ≤ comparison of two integer variables in FlatZinc, int le(x, y), can
be translated by simulating Algorithm 1, which performs the comparison of two
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Algorithm 1. Comparison (≤) of two k-bit integers (in two’s complement)
int le(x, y, k): assuming xk . . . x1 (yk . . . y1) are the bits of x (y)

1: return (xk > yk) ∨ ((xk = yk) ∧ unsigned int le(x, y, k − 1))

unsigned int le(x, y, k)

2: if k = 1 return x1 ≤ y1

3: return (xk < yk) ∨ ((xk = yk) ∧ unsigned int le(x, y, k − 1))

bool_gt_reif(x_k, y_k, a_1); % a_1 = (x_k > y_k)
bool_eq_reif(x_k, y_k, a_2); % a_2 = (x_k = y_k)

bool_lt_reif(x_k-1, y_k-1, b_1) % b_1 = (x_k-1 < y_k-1)
bool_eq_reif(x_k-1, y_k-1, b_2) % b_2 = (x_k-1 = y_k-1)
... ...
bool_lt_reif(x_2, y_2, b_2k-5) % b_2k-5 = (x_2 < y_2)
bool_eq_reif(x_2, y_2, b_2k-4) % b_2k-4 = (x_2 = y_2)

bool_le_reif(x_1, y_1, b_2k-3) % b_2k-3 = (x_1 <= y_1)

bool_or(a_1, c_1, true); % true = (a_1 or c_1)
bool_and(a_2, c_2, c_1); % c_1 = (a_2 and c_2)

% rest is recursive definition of c_i
bool_or(b_1, c_3, c_2);
bool_and(b_2, c_4, c_3);
...
bool_or(b_2k-5, c_2k-3, c_2k-4);
bool_and(b_2k-4, c_2k-2, c_2k-3);

bool_eq(c_2k-2, b_2k-3); % base case for recursion

Fig. 2. Comparison (≤) of two k-bit integers in Boolean FlatZinc

integers at bit level. Recall that in two’s complement xk = 1 signifies a negative
number and xk = 0 signifies a nonnegative number. Hence line 1 of Algorithm 1
says that x ≤ y if x < 0 and y ≥ 0, or if x and y have the same sign bit and
the remaining bits of x are ≤ those of y, both taken as unsigned numbers. The
comparison of unsigned numbers is then implemented as a recursive function on
lines 2–3, where the logic should be straightforward.

Now to convert this into a set of Boolean constraints, we unroll the recursion,
introduce auxiliary variable a1, a2, and bi for i ∈ {1, . . . , 2k − 3} to encode the
various bit comparisons on lines 1 and 3 of the algorithm, and introduce auxiliary
variables c2i to encode the value of unsigned int le(x, y, i) and c2i−1 to encode
the conjunction on line 3, for each i ∈ {1, . . . , k − 1}. Fig. 2 shows the resulting
translation in Boolean FlatZinc, where comments have been added (after the %
signs) to explain the meanings of the operators (the constraint keyword has
been omitted from the beginning of each line).

The conversion of Algorithm 1 into the Boolean FlatZinc in Fig. 2 illustrates
how such conversions may be done in general. Hence in the rest of the section
we will refrain from giving actual Boolean FlatZinc code (which would be space-
consuming) and focus on describing the bit-level algorithms or logical formulas,
and sometimes just the general ideas, behind the Booleanization.
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Algorithm 2. Comparison (≤) of two sets of integers over the universe {g, . . . , h}
set le(X, Y, g, h): assuming Xg . . . Xh (Yg . . . Yh) are the Boolean variables created in
translating the declaration of set X (Y ) as described in Section 3.1

1: if g = h return Xg ≤ Yg

2: return ((Xg < Yg) ∧ (
Vh

i=g+1 ¬Xi))

3: ∨((Xg > Yg) ∧ (
Wh

i=g+1 Xi))
4: ∨((Xg = Yg) ∧ set le(X, Y, g + 1, h)

We now turn to the ≤ comparison of sets, which in FlatZinc is defined lexico-
graphically as if a set is a “string” made up of its elements (in increasing order).
For example: {1, 2, 3} ≤ {2} ≤ {2, 3}. Note that this differs from the lexico-
graphical comparison of the characteristic bit strings of the sets (which would
be 111, 010, and 011 in this example, assuming a common universe of {1, 2, 3}),
or the “unsigned int le” function from Algorithm 1 would have sufficed.

Algorithm 2 gives a recursive bit-level implementation of the ≤ comparison
of sets over the common universe {g, . . . , h}, assuming that the set variables
have themselves been Booleanized as described in Section 3.1. Line 1 is the
straightforward base case, where there is only one possible element in both sets.
Otherwise we examine the first pair of characteristic bits (Xg and Yg), and there
are three cases. If Xg < Yg (line 2), then g �∈ X and g ∈ Y , and hence X ≤ Y iff
X is empty (the second conjunct on line 2), because any other element will be
greater than g and thus make X > Y . The second case (line 3) can be similarly
analyzed and finally if the pair are equal then we recurse (line 4).

The case of set variables defined over different universes can be handled us-
ing the trick of inventing temporary variables. Specifically, we need only let
{g, . . . , h} be the smallest range containing the universes of both sets, and con-
tinue to use Algorithm 2, with all Xi and Yj replaced with false for all i outside
X ’s universe and j outside Y ’s.

Arithmetic operators. FlatZinc provides the following arithmetic operators:
negation, addition, subtraction, multiplication, division, modulo, absolute value,
min, and max. These can all be Booleanized using standard algorithms that
perform the corresponding operations on binary numbers. We will not go into
their details, but let us use the space here to mention the more critical issue of
overflow protection.

In computers, arithmetic overflow can lead to an incorrect result; in the
Booleanization of a constraint model, it can lead to spurious solutions if not
guarded against. Our solution is analogous to what’s implemented in computer
hardware. For addition, both operands as well as the sum are extended by one
bit (at the high end) and a constraint is added requiring the leading two bits of
the sum to be identical. For multiplication, the product will temporarily have
2k bits, and we add constraints to ensure the leading k+1 bits are identical (the
lower k bits then correctly represent the result). The other cases can be similarly
handled where necessary.
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Linear equality and inequalities. An integer linear equality constraint comes
in the following form in FlatZinc:

int_lin_eq([C1, ..., Cn], [X1, ..., Xn], rhs);

where C1, ..., Cn and rhs are integer constants and X1, ..., Xn are integer
variables (can also be constants or array accesses; see paragraph 2 of Section 3.2).
This encodes the equality

∑
i

CiXi = rhs.

Inequality constraints have the same form, with the “eq” in the name of the
operator replaced by “ne, le, lt, ge, gt” respectively for �=,≤, <,≥, >. All of them
have a reified version taking a Boolean as the fourth argument.

We handle these linear constraints by breaking them down to individual mul-
tiplications and additions, followed by an integer comparison, all of which we
already know how to Booleanize (introducing auxiliary variables to encode in-
termediate results).

Set operators. FlatZinc provides the following set operators: membership,
cardinality, subset, superset, union, intersection, difference, and symmetric dif-
ference. Again, for simplicity we assume that sets involved in the same operator
are defined over the same universe {g, . . . , h} (otherwise the trick of inventing
temporary variables can be applied as described earlier).

The set membership operator, set in(x, Y), which encodes x ∈ Y , translates
into

∨h
i=g((x = i) ∧ Yi). Note that the comparison x = i is on integers, but we

already know how to Booleanize those and can easily expand the expression
into a purely Boolean one. Set cardinality, set card(X, y), can be translated
by adding up the Booleans Xi as integers, and equating the sum to y, both of
which we know how to Booleanize (if y is a constant, then a unary representation
of integers can offer more propagation power in this case [1]). Set inclusion
operators, set subset(X, Y) and set superset(X, Y), are the simplest case,
translating into

∧h
i=g(Xi ≤ Yi) and

∧h
i=g(Xi ≥ Yi), respectively.

The remaining operators all take three arguments, with the final one holding
the result of the operation. The union operator, set union(X, Y, Z), for exam-
ple, encodes X∪Y = Z, and translates into

∧h
i=g((Xi∨Yi) = Zi). Replacing the

disjunction (∨) in this formula with ∧, >, and �=, respectively, gives a translation
for the other operators, intersection, difference, and symmetric difference.

Array element operators. Array access with a variable index is expressed
in FlatZinc indirectly, by first equating the array element with a new variable,
via array element operators, and then using that variable in other constraints
where the array access is required. The following operator applies to an array of
Booleans, encoding Y[x] = z:

array_var_bool_element(x, Y, z);

Let m be the highest index of the array. This operation then translates into∨m
i=0((x = i) ∧ (Yi = z)). Again, the integer comparisons x = i are meant to be

further Booleanized and the results plugged in.
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The corresponding operators for arrays of integers and arrays of sets translate
into the same formula as above, except that Yi = z will be an integer comparison,
and set comparison, respectively, which we already know how to Booleanize.

Global constraints. In addition to the above groups of operators, a FlatZinc
model can also use global constraints. At the moment, all different (over
an integer array) is the only type of global constraints that is supported by
MiniZinc but not implemented by the official MiniZinc-to-FlatZinc translator.
We Booleanize an all different constraint over n elements by turning it into
n(n− 1)/2 inequalities and Booleanizing them as we do comparison operators.

3.3 Booleanization of Solve and Output Items

FlatZinc provides three types of solve items: solve satisfy, solve minimize
x, and solve maximize x, where x is an integer variable. Optimization of an
expression is provided for indirectly: One introduces constraints equating the
expression with a new variable, and optimizes that variable instead.

In Booleanization a solve satisfy item is left untouched. In the case of
solve minimize x and solve maximize x, it’s not possible for a single (or-
dinary) Boolean translation to encode the original optimization problem. Our
solution is to turn them both into a solve satisfy, and, as mentioned in the
beginning of the section, use an annotation or comment depending on the target
format (Boolean FlatZinc or DIMACS CNF) to encode the information nec-
essary for the optimization version of the problem to be reconstructed. Such
translations will be complete and solvers accepting them are then free to decide
how to handle the optimization.

FznTini solves optimization problems by an uninformed binary search, re-
ducing the domain of the objective variable by at least half at each step. Since
integers are encoded using k bits, any optimization problem can be solved this
way by at most k + 1 calls to the SAT solver. Note that these successive calls
will involve the original CNF formula plus different sets of new clauses encoding
the bounds that are being tested. SAT solvers that support incremental addition
and removal of clauses will hence be particularly suitable for these tasks.

For both satisfaction and optimization problems, FznTini starts with a k
sufficient to encode all constants in the problem, and automatically increases it
until either a solution is found, or k reaches the size of a C++ int (typically 32)
on the machine on which it’s run (this exceeds the capacity of G12/FD, which
is fixed at 22 bits). Note that since overflow protection is in place, a solution
found under any k is guaranteed to correspond to a correct solution for the
original problem, while an “unsatisfiable” answer could just mean that k is not
large enough. By the same token, for optimization problems the guanrantee of
the optimality of a solution returned by FznTini is conditioned on the k used.
In many problems, however, bounds on the objective variable are given either
implicitly or explicitly, in which case the guarantee of optimality provided by
FznTini will be absolute.

Lastly, output items are also encoded as annotations or comments so solvers
can print output back in ordinary decimal.
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3.4 Complexity of the Encoding

The size of the Boolean encoding described in this section is quadratic in k, the
number of bits used for an integer, for the multiplication, division, and modulo
operators, and linear in k for other arithmetic operators and integer comparison
operators. Where arrays or sets are involved, it’s also linear in the size of the
array or the size of the universe of the set, or both in the case of arrays of sets.
For linear constraints, it’s again quadratic in k as multiplications are involved.

In practice the size of the Booleanization is usually large compared with that of
the MiniZinc or FlatZinc model (as one would expect), although not necessarily
so from a SAT solver’s point of view. For example, the little “perfect square”
problem in Fig. 1 grows into 37 variables and 46 constraints in FlatZinc, and after
Booleanization has 5441 variables and 5364 constraints in Boolean FlatZinc, or
5441 variables and 14576 clauses in CNF. However, it was solved in just 0.05
second by FznTini including translation and SAT solving time.

4 Weaknesses and Strengths

Needless to say, the goal of our universal Booleanization is not to solve CP at one
fell swoop. Rather we are interested to see how far the SAT-based approach can
be pushed, and on what types of problems it might suffer, or excel, so that one
can be better informed when designing hybridizations of different techniques. In
this light it’s perhaps fitting to reflect for a moment on some possible weaknesses
and strengths that might be inherent in this approach, before examining concrete
experimental results.

The single most apparent weakness of such a solver is its remarkable “blind-
ness.” All explicit domain knowledge and structure is lost when everything boils
down to Booleans. This is particularly acerbated in cases where the MiniZinc
models contain annotations written by the user giving hints on the nature of the
variables and constraints, what techniques might suit which constraints, what
variable orderings might work best, etc., which the G12/FD solver is designed
to read and make use of. Information contained in these annotations is all lost
(in fact, ignored) through Booleanization, and all we can rely on is the generic
heuristics of whichever SAT solver we use.

The binary search used by FznTini to optimize an integer variable is also
blind in that it cannot directly benefit from techniques that may make an in-
formed search efficient in the original search space. One type of heuristic may
still be possible though: When the SAT solver is looking for a solution during
one of the steps of the binary search, it can be helpful to have the solver pre-
fer “larger” solutions in the case of maximization and the opposite in the case
of minimization, where “larger” generally means false instead of true for the
sign bit of the objective integer variable, and the opposite for its other bits.
It’s clear that an intermediate solution closer to the goal helps cut the domain
of the objective variable faster, reducing the number of steps required in the
binary search. However, such a heuristic can interfere with those of the SAT
solver’s, and combining them to the best advantage is nontrivial. Our preliminary
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experiments have not identified a way to achieve a consistent improvement; hence
FznTini doe not currently use such a heuristic.

On the other hand, universal Booleanization offers an efficient way to seam-
lessly combine the propagators of all constraints, through the unit propagation
of a SAT solver (an analysis of the propagation power of our Booleanization of
the constraints is beyond the scope of this paper). In particular, queueing of
propagators becomes irrelevant as all constraints are always propagated at once
and the propagation iterated to saturation. This feature is especially interesting
when one considers that the types of constraints in a model can be quite varied
and an advantageous integration of their respective propagators may otherwise
have been nontrivial.

The second major strength of universal Booleanization, which also applies to
previous work that translated specific types of constraint problems to SAT, lies
in the general efficiency and scalability of modern SAT solvers. In our case a
clause learning SAT solver has been used, as clause learning is currently known
as the best technique for SAT problems arising from real-world applications
[12]. Particularly of relevance here is the fact that clause learning is known to
be more general and potentially more powerful than traditional nogood learning
in constraint solvers (the basic reason is that learned clauses can involve any
variables, while traditional nogoods involve decision variables only) [13]. Also,
while SAT solvers cannot directly take advantage of domain knowledge and
the original problem structure, their heuristics are often good at exploiting the
hidden structure of the CNF formula and quickly focusing the search toward
solutions or toward early detection of unsatisfiability.

5 Experimental Results

We now present an empirical evaluation of FznTini. To obtain a comprehen-
sive picture, we enlist the entire set of benchmarks and examples distributed
with MiniZinc [9]. This amounts to the 21 groups of problems listed in Table 1.
The “perfsq” (perfect square) and “warehouses” problems in the examples group
are scalable, and we have created additional, progressively larger instances and
placed these two problems in their own groups of 10 instances each. Also,
“2DBinPacking” contains 500 instances divided into 10 classes, and “nsp” (nurse
scheduling problem) contains 400 instances divided into 4 classes; due to limited
computing resources, we only use the first class of each.

Apart from “examples,” which are a mixture of various types of problems, 12
of the groups are satisfaction problems, and 8 are optimization problems. Many
of these problems involve a large number of constraints and complex integer
arithmetic. For example, the largest “curriculum” instance involves 66 courses
with various numbers of credits to be assigned over 12 periods “in a way that
the minimum and maximum academic load for each period, the minimum and
maximum number of courses for each period, and the prerequisite relationships
are satisfied,” and the maximum academic load for all periods is minimized (this
instance was solved by FznTini in 10.98 seconds, and could not be solved by
the other solvers in 4 hours; see below).
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Table 1. Performance of FznTini vs. G12/FD and Gecode (4-hour time limit; times
on solved instances only, in seconds except in bottom row)

Problem No. of FznTini G12/FD Gecode
Inst. Solved Time Solved Time Solved Time

2DBinPacking-1 50 9 2843.46 7 2447.65 7 44.13
alpha 1 1 1.65 1 0.10 1 239.20
areas 4 4 0.69 4 0.71 4 0.04
bibd 9 8 16.17 8 757.72 6 197.48
cars 79 1 3.34 1 0.15 1 0.01
carseq 82 44 99403.70 2 3.58 82 66.65
curriculum 3 3 12.76 2 13.17 0 —
eq 1 1 49.92 1 0.18 1 0.00
examples 18 18 2076.74 18 1557.62 18 2.87
golfers 9 3 6278.30 4 12.88 6 1297.26
golomb 5 4 2030.23 5 323.54 5 10.35
jobshop 73 19 50294.40 2 1764.65 2 31.6
kakuro 6 6 0.17 6 1.10 6 0.01
knights 4 4 0.78 4 390.79 4 1.01
magicseq 7 4 9939.32 7 172.12 7 9.19
nsp-1-14 100 99 1800.36 1 3.97 0 —
perfsq 10 10 548.41 4 4350.19 5 2024.85
photo 1 1 0.08 1 0.20 1 0.00
queens 6 5 4168.79 6 90.68 3 0.33
trucking 10 9 14747.10 10 196.48 10 86.52
warehouses 10 10 671.71 9 2266.44 9 221.83
Total 488 263 54.14 hrs 103 3.99 hrs 178 1.18 hrs

The two solvers used for comparison are G12/FD, the FD solver developed
by the G12 project [11] and distributed with MiniZinc, and a solver based on
translating FlatZinc models to Gecode programs, described in [8] and available
for download at the Gecode Web site [14]. Like FznTini, both these solvers
assume that MiniZinc models have been converted to FlatZinc. We also note
that G12/FD determines its search strategy based on annotations given by the
user in the model files, and uses its default strategy (first-fail) in their absence.
Experiments were run on a computer cluster featuring two types of CPUs, Intel
Core Duo and AMD Athlon 64 X2 Dual Core Processor 4600+, both running
Linux at 2.4GHz with 4GB of RAM. Each run of a solver on an instance was
given a 4-hour time limit.

The overall results are shown in Table 1. For each solver and benchmark
group we report the number of instances solved and the time spent on the solved
instances. Time for converting MiniZinc to FlatZinc is common to all solvers,
and not included (it ranges from a split second to a few seconds per instance).

It’s clear that FznTini solves significantly more instances than the other
two solvers, 263 vs. 103 and 178 out of a total of 488, indicating the robust-
ness and versatility of universal Booleanization. It’s also interesting to note that
each solver appears to have its own “specialties”: FznTini was good at cur-
riculum design (curriculum), nurse scheduling (nsp-1-14), warehouse planning
(warehouses), and some mathematical puzzles (bibd, perfsq), and relatively good
at job shop scheduling (jobshop); G12/FD was good at linear equations under
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an all-different constraint (alpha) and the n-queens problem (queens); Gecode
was good at car sequencing (carseq),3 linear equations (eq), truck scheduling
(trucking), and some other mathematical puzzles (golomb, magicseq).

Overall, these results suggest that universal Booleanization offers a relatively
well-rounded, competitive solution to constraint solving, and is a viable alter-
native where other techniques might fail. The question we are interested to
explore—on what types of problems SAT might excel—now has an empirical
answer in these results, but we look forward to a continued exploration, where
an analytical answer may be sought in detailed analyses of the structure of the
problems and their actual constraints.

Finally, it’s worth mentioning that the examples group contains a purely
Boolean instance, “wolf-goat-cabbage,” where the results confirm that Fzn-

Tini does retain the advantage of SAT on problems of a Boolean nature: This
instance was solved by FznTini in 0.02 second, G12/FD in 1553.18 seconds, and
Gecode in 2.47 seconds.

6 Related Work and Conclusion

A different approach to homogeneous treatment of constraints has been recently
explored, also with MiniZinc as the source language but with linear programs
as the target language for translation [15]. Interestingly, this approach attempts
to do almost the opposite of Booleanization: The Boolean variables are turned
into integers (with a domain of {0, 1}) and Boolean constraints, along with non-
linear integer constraints, all into integer linear constraints. In the experiments
presented, the result of this linearization is saved in the input format of the
CPLEX solver, and solved by CPLEX. Unfortunately, we have learned from the
authors of [15] that their linearization program is currently unavailable due to
recent changes in the language (Cadmium) in which it was written.

In conclusion, we have presented the first translation of a constraint model-
ing language to SAT, and using a large set of benchmarks have shown that it
can outperform traditional constraint solvers. Our Booleanization uses a fixed,
somewhat basic encoding largely based on a binary representation of integers.
We expect our results to motivate the study of other encoding methods that
are suitable for Booleanization of heterogeneous constraint models, as well as
hybridizations of different techniques for constraint solving, part of which we
shall undertake as our own future work.
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Abstract. We propose new filtering algorithms for the SEQUENCE constraint
and some extensions of the SEQUENCE constraint based on network flows. We
enforce domain consistency on the SEQUENCE constraint in O(n2) time down
a branch of the search tree. This improves upon the best existing domain con-
sistency algorithm by a factor of O(log n). The flows used in these algorithms
are derived from a linear program. Some of them differ from the flows used to
propagate global constraints like GCC since the domains of the variables are en-
coded as costs on the edges rather than capacities. Such flows are efficient for
maintaining bounds consistency over large domains and may be useful for other
global constraints.

1 Introduction

Graph based algorithms play a very important role in constraint programming, espe-
cially within propagators for global constraints. For example, Regin’s propagator for
the ALLDIFFERENT constraint is based on a perfect matching algorithm [1], whilst his
propagator for the GCC constraint is based on a network flow algorithm [2]. Both these
graph algorithms are derived from the bipartite value graph, in which nodes represent
variables and values, and edges represent domains. For example, the GCC propagator
finds a flow in such a graph in which each unit of flow represents the assignment of
a particular value to a variable. In this paper, we identify a new way to build graph
based propagators for global constraints: we convert the global constraint into a linear
program and then convert this into a network flow. These encodings contain several nov-
elties. For example, variables domain bounds can be encoded as costs along the edges.
We apply this approach to the SEQUENCE family of constraints. Our results widen the
class of global constraints which can be propagated using flow-based algorithms. We
conjecture that these methods will be useful to propagate other global constraints.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of values
for subsets of variables. We use capital letters for variables (e.g. X , Y and S), and lower
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case for values (e.g. d and di). A solution is an assignment of values to the variables
satisfying the constraints. Constraint solvers typically explore partial assignments en-
forcing a local consistency property using either specialized or general purpose propa-
gation algorithms. A support for a constraint C is a tuple that assigns a value to each
variable from its domain which satisfies C. A bounds support is a tuple that assigns
a value to each variable which is between the maximum and minimum in its domain
which satisfies C. A constraint is domain consistent (DC) iff for each variable Xi, every
value in the domain of Xi belongs to a support. A constraint is bounds consistent (BC)
iff for each variable Xi, there is a bounds support for the maximum and minimum value
in its domain. A CSP is DC/BC iff each constraint is DC/BC. A constraint is monotone
iff there exists a total ordering ≺ of the domain values such that for any two values v,
w if v ≺ w then v is substitutable for w in any support for C.

We also give some background on flows. A flow network is a weighted directed graph
G = (V,E) where each edge e has a capacity between non-negative integers l(e) and
u(e), and an integer cost w(e). A feasible flow in a flow network between a source (s)
and a sink (t), (s, t)-flow, is a function f : E → Z+ that satisfies two conditions:
f(e) ∈ [l(e), u(e)], ∀e ∈ E and the flow conservation law that ensures that the amount
of incoming flow should be equal to the amount of outgoing flow for all nodes except
the source and the sink. The value of a (s, t)-flow is the amount of flow leaving the sink
s. The cost of a flow f is w(f) =

∑
e∈E w(e)f(e). A minimum cost flow is a feasible

flow with the minimum cost. The Ford-Fulkerson algorithm can find a feasible flow in
O(φ(f)|E|) time. If w(e) ∈ Z, ∀e ∈ E, then a minimum cost feasible flow can be
found using the successive shortest path algorithm in O(φ(f)SPP ) time, where SPP
is the complexity of finding a shortest path in the residual graph. Given a (s, t)-flow f
in G(V,E), the residual graph Gf is the directed graph (V,Ef ), where Ef is

{e with cost w(e) and capacity 0..(u(e)− f(e)) | e = (u, v) ∈ E, f(e) < u(e)}
⋃

{e with cost − w(e) and capacity 0..(f(e)− l(e)) | e = (u, v) ∈ E, l(e) < f(e)}

There are other asymptotically faster but more complex algorithms for finding either
feasible or minimum-cost flows [3].

In our flow-based encodings, a consistency check will correspond to finding a feasi-
ble or minimum cost flow. To enforce DC, we therefore need an algorithm that, given
a minimum cost flow of cost w(f) and an edge e checks if an extra unit flow can be
pushed (or removed) through the edge e and the cost of the resulting flow is less than
or equal to a given threshold T . We use the residual graph to construct such an algo-
rithm. Suppose we need to check if an extra unit flow can be pushed through an edge
e = (u, v). Let e′ = (u, v) be the corresponding arc in the residual graph. If w(e) = 0,
∀e ∈ E, then it is sufficient to compute strongly connected components (SCC) in the
residual graph. An extra unit flow can be pushed through an edge e iff both ends of
the edge e′ are in the same strongly connected component. If w(e) ∈ Z, ∀e ∈ E, the
shortest path p between v and u in the residual graph has to be computed. The minimal
cost of pushing an extra unit flow through an edge e equals w(f) + w(p) + w(e). If
w(f) + w(p) + w(e) > T , then we cannot push an extra unit through e. Similarly, we
can check if we can remove a unit flow through an edge.
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3 The SEQUENCE Constraint

The SEQUENCE constraint was introduced by Beldiceanu and Contejean [4]. It con-
strains the number of values taken from a given set in any sequence of k variables. It
is useful in staff rostering to specify, for example, that every employee has at least 2
days off in any 7 day period. Another application is sequencing cars along a produc-
tion line (prob001 in CSPLib). It can specify, for example, that at most 1 in 3 cars
along the production line has a sun-roof. The SEQUENCE constraint can be defined in
terms of a conjunction of AMONG constraints. AMONG(l, u, [X1, . . . , Xk], v) holds iff
l ≤ |{i|Xi ∈ v}| ≤ u. That is, between l and u of the k variables take values in v.
The AMONG constraint can be encoded by channelling into 0/1 variables using Yi ↔
(Xi ∈ v) and l ≤

∑k
i=1 Yi ≤ u. Since the constraint graph of this encoding is Berge-

acyclic, this does not hinder propagation. Consequently, we will simplify notation and
consider AMONG (and SEQUENCE) on 0/1 variables and v = {1}. If l = 0, AMONG

is an ATMOST constraint. ATMOST is monotone since, given a support, we also have
support for any larger assignment [5]. The SEQUENCE constraint is a conjunction of
overlapping AMONG constraints. More precisely, SEQUENCE(l, u, k, [X1, . . . , Xn], v)
holds iff for 1 ≤ i ≤ n− k + 1, AMONG(l, u, [Xi, . . . , Xi+k−1], v) holds. A sequence
like Xi, . . . , Xi+k−1 is a window. It is easy to see that this decomposition hinders prop-
agation. If l = 0, SEQUENCE is an ATMOSTSEQ constraint. Decomposition in this case
does not hinder propagation. Enforcing DC on the decomposition of an ATMOSTSEQ

constraint is equivalent to enforcing DC on the ATMOSTSEQ constraint [5].
Several filtering algorithms exist for SEQUENCE and related constraints. Regin and

Puget proposed a filtering algorithm for the Global Sequencing constraint (GSC) that
combines a SEQUENCE and a global cardinality constraint (GCC) [6]. Beldiceanu and
Carlsson suggested a greedy filtering algorithm for the CARDPATH constraint that can
be used to propagate the SEQUENCE constraint, but this may hinder propagation [7].
Regin decomposed GSC into a set of variable disjoint AMONG and GCC constraints [8].
Again, this hinders propagation. Bessiere et al. [5] encoded SEQUENCE using a SLIDE

constraint, and give a domain consistency propagator that runs in O(ndk−1) time. van
Hoeve et al. [9] proposed two filtering algorithms that establish domain consistency.
The first is based on an encoding into a REGULAR constraint and runs in O(n2k) time,
whilst the second is based on cumulative sums and runs in O(n3) time down a branch
of the search tree. Finally, Brand et al. [10] studied a number of different encodings of
the SEQUENCE constraint. Their asymptotically fastest encoding is based on separation
theory and enforces domain consistency in O(n2 logn) time down the whole branch of
a search tree. One of our contributions is to improve on this bound.

4 Flow-Based Propagator for the SEQUENCE Constraint

We will convert the SEQUENCE constraint to a flow by means of a linear program
(LP). We shall use SEQUENCE(l, u, 3, [X1, . . . , X6], v) as a running example. We can
formulate this constraint simply and directly as an integer linear program:
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l ≤ X1 + X2 + X3 ≤ u,

l ≤ X2 + X3 + X4 ≤ u,

l ≤ X3 + X4 + X5 ≤ u,

l ≤ X4 + X5 + X6 ≤ u

where Xi ∈ {0, 1}. By introducing surplus/slack variables, Yi and Zi, we convert this
to a set of equalities:

X1 + X2 + X3 − Y1 = l, X1 + X2 + X3 + Z1 = u,

X2 + X3 + X4 − Y2 = l, X2 + X3 + X4 + Z2 = u,

X3 + X4 + X5 − Y3 = l, X3 + X4 + X5 + Z3 = u,

X4 + X5 + X6 − Y4 = l, X4 + X5 + X6 + Z4 = u

where Yi, Zi ≥ 0. In matrix form, this is:

⎛⎜⎜⎝
1 1 1 0 0 0 −1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

X1

...
X6
Y1
Z1

...
Y4
Z4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
l
u
l
u
l
u
l
u

⎞⎟⎟⎠

This matrix has the consecutive ones property for columns: each column has a block
of consecutive 1’s or −1’s and the remaining elements are 0’s. Consequently, we can
apply the method of Veinott and Wagner [11] (also described in Application 9.6 of [3])
to simplify the problem. We create a zero last row and subtract the ith row from i+ 1th
row for i = 1 to 2n. These operations do not change the set of solutions. This gives:

⎛⎜⎜⎜⎝
1 1 1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

X1

...
X6
Y1
Z1

...
Y4
Z4

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
l

u−l
l−u
u−l
l−u
u−l
l−u
u−l
−u

⎞⎟⎟⎟⎟⎠
This matrix has a single 1 and −1 in each column. Hence, it describes a network

flow problem [3] on a graph G = (V,E) (that is, it is a network matrix). Each row
in the matrix corresponds to a node in V and each column corresponds to an edge in
E. Down each column, there is a single row i equal to 1 and a single row j equal to
-1 corresponding to an edge (i, j) ∈ E in the graph. We include a source node s and
a sink node t in V . Let b be the vector on the right hand side of the equation. If bi is
positive, then there is an edge (s, i) ∈ E that carries exactly bi amount of flow. If bi is
negative, there is an edge (i, t) ∈ E that caries exactly |bi| amount of flow. The bounds
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Fig. 1. A flow graph for SEQUENCE(l, u, 3, [X1, . . . , X6], v)

on the variables, which are not expressed in the matrix, are represented as bounds on
the capacity of the corresponding edges.

The graph for the set of equations in the example is given in Figure 1. A flow of
value 4u − 3l in the graph corresponds to a solution. If a feasible flow sends a unit
flow through the edge labeled with Xi then Xi = 1 in the solution; otherwise Xi =
0. Each even numbered vertex 2i represents a window. The way the incoming flow
is shared between yj and zj reflects how many variables Xi in the j’th window are
equal to 1. Odd numbered vertices represent transitions from one window to the next
(except for the first and last vertices, which represent transitions between a window and
nothing). An incoming X edge represents the variable omitted in the transition to the
next window, while an outgoing X edge represents the added variable.

Theorem 1. For any constraint SEQUENCE(l, u, k, [X1, . . . , Xn], v), there is an equiv-
alent network flow graph G = (V,E) with 5n − 4k + 5 edges, 2n − 2k + 3 + 2
vertices, a maximum edge capacity of u, and an amount of flow to send equal to
f = (n − k)(u − l) + u. There is a one-to-one correspondence between solutions
of the constraint and feasible flows in the network.

The time complexity of finding a maximum flow of value f is O(|E|f) us-
ing the Ford-Fulkerson algorithm [12]. Faster algorithms exist for this prob-
lem. For example, Goldberg and Rao’s algorithm finds a maximum flow in
O(min(|V |2/3, |E|1/2)|E| log(|V |2/|E| + 2) logC) time where C is the maximum
capacity upper bound for an edge [13]. In our case, this gives O(n3/2 logn log u) time
complexity. We follow Régin [1,2] in the building of an incremental filtering algorithm
from the network flow formulation. A feasible flow in the graph gives us a support for
one value in each variable domain. Suppose Xk = v is in the solution that corresponds
to the feasible flow where v is either zero or one. To obtain a support for Xk = 1 − v,
we find the SCC of the residual graph and check if both ends of the edge labeled
with Xk are in the same strongly connected component. If so, Xk = 1−v has a support;
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otherwise 1−v can be removed from the domain ofXk. Strongly connected components
can be found in linear time, because the number of nodes and edges in the flow network
for the SEQUENCE constraint is linear in n by Theorem 1. The total time complexity
for initially enforcing DC is O(n((n − k)(u − l) + u)) if we use the Ford-Fulkerson
algorithm or O(n3/2 logn log u) if we use Goldberg and Rao’s algorithm.

Still following Régin [1,2], one can make the algorithm incremental. Suppose during
search Xi is fixed to value v. If the last computed flow was a support for Xi = v, then
there is no need to recompute the flow. We simply need to recompute the SCC in the
new residual graph and enforce DC in O(n) time. If the last computed flow is not a
support for Xi = v, we can find a cycle in the residual graph containing the edge
associated to Xi in O(n) time. By pushing a unit of flow over this cycle, we obtain a
flow that is a support for Xi = v. Enforcing DC can be done in O(n) after computing
the SCC. Consequently, there is an incremental cost of O(n) when a variable is fixed,
and the cost of enforcing DC down a branch of the search tree is O(n2).

5 Soft SEQUENCE Constraint

Soft forms of the SEQUENCE constraint may be useful in practice. The ROADEF 2005
challenge [14], which was proposed and sponsored by Renault, puts forward a vio-
lation measure for the SEQUENCE constraint which takes into account by how much
each AMONG constraint is violated. We therefore consider the soft global constraint,
SOFTSEQUENCE(l, u, k, T, [X1, . . . , Xn], v). This holds iff:

T ≥
n−k+1∑

i=1

max(l −
k−1∑
j=0

(Xi+j ∈ v),
k−1∑
j=0

(Xi+j ∈ v)− u, 0) (1)

As before, we can simplify notation and consider SOFTSEQUENCE on 0/1 variables and
v = {1}.

We again convert to a flow problem by means of a linear program, but this time with
an objective function. Consider SOFTSEQUENCE(l, u, 3, T, [X1, . . . , X6], v). We intro-
duce variables, Qi and Pi to represent the penalties that may arise from violating lower
and upper bounds respectively. We can then express this SOFTSEQUENCE constraint as
follows. The objective function gives a lower bound on T .

Minimize
4∑

i=1

(Pi + Qi) subject to :

X1 + X2 + X3 − Y1 + Q1 = l, X1 + X2 + X3 + Z1 − P1 = u,

X2 + X3 + X4 − Y2 + Q2 = l, X2 + X3 + X4 + Z2 − P2 = u,

X3 + X4 + X5 − Y3 + Q3 = l, X3 + X4 + X5 + Z3 − P3 = u,

X4 + X5 + X6 − Y4 + Q4 = l, X4 + X5 + X6 + Z3 − P4 = u

where Yi, Zi, Pi and Qi are non-negative. In matrix form, this is:
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Minimize
∑4

i=1(Pi + Qi) subject to:

⎛⎜⎜⎜⎝
1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 1 1 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1

...
X6
Y1
Z1

...
Y4
Z4
Q1
P1

...
Q4
P4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
l
u
l
u
l
u
l
u

⎞⎟⎟⎠

If we transform the matrix as before, we get a minimum cost network flow problem:
Minimize

∑4
i=1(Pi + Qi) subject to:

0
BBB@

1 1 1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0
−1 0 0 1 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0 0 0
0 −1 0 0 1 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1 0 0
0 0 −1 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 −1
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1

1
CCCA

0
BBBBBBBBBBBBBBB@

X1

...
X6
Y1
Z1

...
Y4
Z4
Q1
P1

...
Q4
P4

1
CCCCCCCCCCCCCCCA

=

0
BBBB@

l
u−l
l−u
u−l
l−u
u−l
l−u
u−l
−u

1
CCCCA

The flow graph G = (V,E) for this system is presented in Figure 2. Dashed edges
have cost 1, while other edges have cost 0. The minimal cost flow in the graph corre-
sponds to a minimal cost solution to the system of equations.

Theorem 2. For any constraint SOFTSEQUENCE(l, u, k, T, [X1, . . . , Xn], v), there is
an equivalent network flow graph. There is a one-to-one correspondence between solu-
tions of the constraint and feasible flows of cost less than or equal to max(dom(T )).

Using Theorem 2, we construct a DC filtering algorithm for the SOFTSEQUENCE con-
straint. The SOFTSEQUENCE constraint is DC iff the following conditions hold:

– Value 1 belongs to dom(Xi), i = 1, . . . , n iff there exists a feasible flow of cost at
most max(dom(T )) that sends a unit flow through the edge labeled with Xi.

– Value 0 belongs to dom(Xi), i = 1, . . . , n iff there exists a feasible flow of cost at
most max(dom(T )) that does not send any flow through the edge labeled with Xi.

– There exists a feasible flow of cost at most min(dom(T )).

The minimal cost flow can be found in O(|V ||E| log logU log |V |C) =
O(n2 logn log log u) time [3]. Consider the edge (u, v) in the residual graph as-
sociated to variable Xi and let k(u,v) be its residual cost. If the flow corresponds to an
assignment with Xi = 0, pushing a unit of flow on (u, v) results in a solution with
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Fig. 2. A flow graph for SOFTSEQUENCE(l, u, 3, T, [X1, . . . , X6])

Xi = 1. Symmetrically, if the flow corresponds to an assignment with Xi = 1, pushing
a unit of flow on (u, v) results in a solution with Xi = 0. If the shortest path in the
residual graph between v and u is k(v,u), then the shortest cycle that contains (u, v)
has length k(u,v) + k(v,u). Pushing a unit of flow through this cycle results in a flow of
cost c + k(u,v) + k(v,u) which is the minimum-cost flow that contains the edge (u, v).
If c + k(u,v) + k(v,u) > max(dom(T )), then no flows containing the edge (u, v) exist
with a cost smaller or equal to max(dom(T )). The variable Xi must therefore be fixed
to the value taken in the current flow. Following Equation 1, the cost of the variable T
must be no smaller than the cost of the solution. To enforce BC on the cost variable, we
increase the lower bound of dom(T ) to the cost of the minimum flow in the graph G.

To enforce DC on the X variables efficiently we can use an all pairs shortest path
algorithm on the residual graph [15]. This takes O(n2 logn) time using Johnson’s al-
gorithm [12]. This gives an O(n2 logn log log u) time complexity to enforce DC on
SOFTSEQUENCE. The penalty variables used for SOFTSEQUENCE arise directly out of
the problem description and occur naturally in the LP formulation. We could also view
them as arising through the methodology of [16], where edges with costs are added to
the network graph for the hard constraint to represent the softened constraint.

6 Generalized SEQUENCE Constraint

To model real world problems, we may want to have different size or positioned
windows. For example, the window size in a rostering problem may depend on whether
it includes a weekend or not. An extension of the SEQUENCE constraint proposed in
[9] is that each AMONG constraint can have different parameters (start position, l, u,
and k). More precisely, GEN-SEQUENCE(p1, . . . ,pm, [X1, X2, . . . , Xn], v) holds iff
AMONG(li, ui, ki, [Xsi , . . . , Xsi+ki−1], v) for 1 ≤ i ≤ m where pi = 〈li, ui, ki, si〉.
Whilst the methods in Section 4 easily extend to allow different bounds l and u for
each window, dealing with different windows is more difficult. In general, the matrix
now does not have the consecutive ones property. It may be possible to re-order the
windows to achieve the consecutive ones property. If such a re-ordering exists, it can be
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found and performed in O(m+ n+ r) time, where r is the number of non-zero entries
in the matrix [17]. Even when re-ordering cannot achieve the consecutive ones property
there may, nevertheless, be an equivalent network matrix. Bixby and Cunningham [18]
give a procedure to find an equivalent network matrix, when it exists, in O(mr) time.
Another procedure is given in [19]. In these cases, the method in Section 4 can be
applied to propagate the GEN-SEQUENCE constraint in O(n2) time down the branch
of a search tree.

Not all GEN-SEQUENCE constraints can be expressed as network flows. Consider the
GEN-SEQUENCE constraint with n = 5, identical upper and lower bounds (l and u), and
4 windows: [1,5], [2,4], [3,5], and [1,3]. We can express it as an integer linear program:⎛⎜⎜⎝

1 1 1 1 1
−1 −1 −1 −1 −1
0 1 1 1 0
0 −1 −1 −1 0
0 0 1 1 1
0 0 −1 −1 −1
1 1 1 0 0
−1 −1 −1 0 0

⎞⎟⎟⎠
⎛⎝X1

X2
X3
X4
X5

⎞⎠ ≥

⎛⎜⎜⎝
l

−u
l

−u
l

−u
l

−u

⎞⎟⎟⎠ (2)

Applying the test described in Section 20.1 of [19] to Example 2, we find that the matrix
of this problem is not equivalent to any network matrix.

However, all GEN-SEQUENCE constraint matrices satisfy the weaker property of
total unimodularity. A matrix is totally unimodular iff every square non-singular sub-
matrix has a determinant of +1 or −1. The advantage of this property is that any to-
tally unimodular system of inequalities with integral constants is solvable in Z iff it is
solvable in R.

Theorem 3. The matrix of the inequalities associated with GEN-SEQUENCE constraint
is totally unimodular.

In practice, only integral values for the bounds li and ui are used. Thus the consis-
tency of a GEN-SEQUENCE constraint can be determined via interior point algorithms
for LP in O(n3.5 log u) time. Using the failed literal test, we can enforce DC at a cost
of O(n5.5 log u) down the branch of a search tree for any GEN-SEQUENCE constraint.
This is too expensive to be practical. We can, instead, exploit the fact that the matrix for
each GEN-SEQUENCE constraint has the consecutive ones property for rows (before
the introduction of slack/surplus variables). Corresponding to the row transformation
for matrices with consecutive ones for columns is a change-of-variables transformation
into variable Sj =

∑j
i=1 Xi for matrices with consecutive ones for rows. This gives the

dual of a network matrix. This is the basis of an encoding of SEQUENCE in [10] (de-
noted there CD). Consequently that encoding extends to GEN-SEQUENCE. Adapting
the analysis in [10] to GEN-SEQUENCE, we can enforce DC in O(nm+n2 logn) time
down the branch of a search tree.

In summary, for a compilation cost of O(mr), we can enforce DC on a
GEN-SEQUENCE constraint in O(n2) down the branch of a search tree, when it has
a flow representation, and in O(nm + n2 logn) when it does not.

7 A SLIDINGSUM Constraint

The SLIDINGSUM constraint [20] is a generalization of the SEQUENCE constraint
from Boolean to integer variables, which we extend to allow arbitrary windows.
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SLIDINGSUM ([X1, . . . , Xn], [p1, . . . ,pm]) holds iff li ≤
∑si+ki−1

j=si
Xi ≤ ui holds

where pi = 〈li, ui, ki, si〉 is, as with the generalized SEQUENCE, a window. The con-
straint can be expressed as a linear program P called the primal where W is a matrix
encoding the inequalities. Since the constraint represents a satisfaction problem, we
minimize the constant 0. The dualD is however an optimization problem.

min 0⎡⎢⎢⎣
W
−W
I
−I

⎤⎥⎥⎦X ≥

⎡⎢⎢⎣
l
−u
a
−b

⎤⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
P

min
[
−l u −a b

]
Y[

WT −WT I −I
]
Y = 0
Y ≥ 0

⎫⎪⎬⎪⎭D (3)

Von Neumann’s Strong Duality Theorem states that if the primal and the dual prob-
lems are feasible, then they have the same objective value. Moreover, if the primal is
unsatisfiable, the dual is unbounded. The SLIDINGSUM constraint is thus satisfiable
if the objective function of the dual problem is zero. It is unsatisfiable if it tends to
negative infinity.

Note that the matrix WT has the consecutive ones property on the columns. The dual
problem can thus be converted to a network flow using the same transformation as with
the SEQUENCE constraint. Consider the dual LP of our running example:

Minimize−
∑4

i=1 liYi +
∑4

i=1 uiY4+i −
∑5

i=1 aiY8+i +
∑5

i=1 biY13+i subject to:( 1 0 0 1 −1 0 0 −1 1 0 0 0 0 −1 0 0 0 0
1 1 0 1 −1 −1 0 −1 0 1 0 0 0 0 −1 0 0 0
1 1 1 1 −1 −1 −1 −1 0 0 1 0 0 0 0 −1 0 0
1 1 1 0 −1 −1 −1 0 0 0 0 1 0 0 0 0 −1 0
1 0 1 0 −1 0 −1 0 0 0 0 0 1 0 0 0 0 −1

)(
Y1

...
Y18

)
=

(
0
...
0

)

Our usual transformation will turn this into a network flow problem:

Minimize −
∑4

i=1 liYi +
∑4

i=1 uiY4+i −
∑5

i=1 aiY8+i +
∑5

i=1 biY13+i subject to:⎛⎝ 1 0 0 1 −1 0 0 −1 1 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 −1 1 0 0 0 1 −1 0 0 0
0 0 1 0 0 0 −1 0 0 −1 1 0 0 0 1 −1 0 0
0 0 0 −1 0 0 0 1 0 0 −1 1 0 0 0 1 −1 0
0 −1 0 0 0 1 0 0 0 0 0 −1 1 0 0 0 1 −1
−1 0 −1 0 1 0 1 0 0 0 0 0 −1 0 0 0 0 1

⎞⎠(
Y1

...
Y18

)
=

(
0
...
0

)

The flow associated with this example is given in Figure 3. There are n + 1 nodes
labelled from 1 to n + 1 where node i is connected to node i + 1 with an edge of cost
−ai and node i+1 is connected to node i with an edge of cost bi. For each window pi,
we have an edge from si to si + ki with cost −li and an edge from si + ki to si with
cost ui. All nodes have a null supply and a null demand. A flow is therefore simply a
circulation i.e., an amount of flow pushed on the cycles of the graph.

Theorem 4. The SLIDINGSUM constraint is satisfiable if and only there are no nega-
tive cycles in the flow graph associated with the dual linear program.

Proof. If there is a negative cycle in the graph, then we can push an infinite amount of
flow resulting in a cost infinitely small. Hence the dual problem is unbounded, and the
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Fig. 3. Network flow associated to the SLIDINGSUM constraint posted on the running example

primal is unsatisfiable. Suppose that there are no negative cycles in the graph. Pushing
any amount of flow over a cycle of positive cost results in a flow of cost greater than
zero. Such a flow is not optimal since the null flow has a smaller objective value. Push-
ing any amount of flow over a null cycle does not change the objective value. Therefore
the null flow is an optimal solution and since this solution is bounded, then the primal
is satisfiable. Note that the objective value of the dual (zero) is in this case equal to the
objective value of the primal. ��

Based on Theorem 4 we build a BC filtering algorithm for the SLIDINGSUM constraint.
The SLIDINGSUM constraint is BC iff the following conditions hold:

– Value ai is the lower bound of a variable Xi, i = 1, . . . , n iff ai is the smallest
value in the domain of Xi such that there are no negative cycles through the edge
weighted with −ai and labeled with the lower bound of Xi.

– Value bi is the upper bound of a variable Xi, i = 1, . . . , n iff bi is the greatest
value in the domain of Xi such that there are no negative cycles through the edge
weighted with bi and labeled with the upper bound of Xi

The flow graph has O(n) nodes and O(n + m) edges. Testing whether there is a
negative cycle takes O(n2 + nm) time using the Bellman-Ford algorithm. We find for
each variable Xi the smallest (largest) value in its domain such that assigning this value
to Xi does not create a negative cycle. We compute the shortest path between all pairs
of nodes using Johnson’s algorithm in O(|V |2 log |V |+ |V ||E|) time which in our case
gives O(n2 logn + nm) time. Suppose that the shortest path between i and i + 1 has
length s(i, i+ 1), then for the constraint to be satisfiable, we need bi + s(i, i+ 1) ≥ 0.
Since bi is a value potentially taken by Xi, we need to have Xi ≥ −s(i, i + 1). We
therefore assign min(dom(Xi)) ← max(min(dom(Xi)),−s(i, i + 1)). Similarly, let
the length of the shortest path between i + 1 and i be s(i + 1, i). For the constraint to
be satisfiable, we need s(i + 1, i) − ai ≥ 0. Since ai is a value potentially taken by
Xi, we have Xi ≤ s(i + 1, i). We assign max(Xi)← min(max(Xi), s(i + 1, i)). It is
not hard to prove this is sound and complete, removing all values that cause negative
cycles. Following [10], we can make the propagator incremental using the algorithm
by Cotton and Maler [21] to maintain the shortest path between |P | pairs of nodes in
O(|E| + |V | log |V | + |P |) time upon edge reduction. Each time a lower bound ai is
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increased or an upper bound bi is decreased, the shortest paths can be recomputed in
O(m + n logn) time.

8 Experimental Results

To evaluate the performance of our filtering algorithms we carried out a series of ex-
periments on random problems. The experimental setup is similar to that in [10]. The
first set of experiments compares performance of the flow-based propagator FB on
single instance of the SEQUENCE constraint against the HPRS propagator1 (the third
propagator in [9]), the CS encoding of [10], and the AMONG decomposition (AD) of
SEQUENCE. The second set of experiments compares the flow-based propagator FBS

for the SOFTSEQUENCE constraint and its decomposition into soft AMONG constraints.
Experiments were run with ILOG 6.1 on an Intel Xeon 4 CPU, 2.0 Ghz, 4G RAM. Boost
graph library version 1.34.1 was used to implement the flow-based algorithms.

8.1 The SEQUENCE Constraint

For each possible combination of n ∈ {500, 1000, 2000, 3000, 4000, 5000}, k ∈
{5, 15, 50}, Δ = u − l ∈ {1, 5}, we generated twenty instances with random lower
bounds in the interval (0, k − Δ). We used random value and variable ordering and a
time out of 300 sec. We used the Ford-Fulkerson algorithm to find a maximum flow. Re-
sults for different values of Δ are presented in Tables 1, 2 and Figure 4. Table 1 shows
results for tight problems with Δ = 1 and Table 2 for easy problems with Δ = 5.
To investiage empirically the asymptotic growth of the different propagators, we plot
average time to solve 20 instances against the instance size for each combination of
parameters k and Δ in Figure 4. First of all, we notice that the CS encoding is the best
on hard instances (Δ = 1) and the AD decomposition is the fastest on easy instances
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Fig. 4. Randomly generated instances with a single SEQUENCE constraints for different combi-
nations of Δ and k

1 We would like to thank Willem-Jan van Hoeve for providing us with the implementation of
the HPRS algorithm.
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Table 1. Randomly generated instances with a single SEQUENCE constraint and Δ = 1.
Number of instances solved in 300 sec / average time to solve. We omit results for n ∈
{1000, 3000, 4000} due to space limitation. The summary rows include all instances.

n k AD CS HPRS FB

500 7 8 / 2.13 20 / 0.13 20 / 0.35 20 / 0.30
15 6 / 0.01 20 / 0.09 20 / 0.30 20 / 0.29
50 2 / 0.02 20 / 0.07 20 / 0.26 20 / 0.28

2000 7 4 / 0.04 20 / 4.25 20 / 18.52 20 / 4.76
15 0 /0 20 / 1.84 20 / 15.19 20 / 4.56
50 1 /0 20 / 1.16 20 / 13.24 20 / 4.42

5000 7 1 /0 20 / 64.05 15 / 262.17 20 / 36.09
15 0 /0 20 / 24.46 17 / 211.17 20 / 34.59
50 0 /0 20 / 8.24 19 / 146.63 20 / 31.66

TOTALS
solved/total 37 /360 360 /360 351 /360 360 /360

avg time for solved 0.517 9.943 60.973 11.874
avg bt for solved 17761 429 0 0

Table 2. Randomly generated instances with a single SEQUENCE constraint and Δ = 5.
Number of instances solved in 300 sec / average time to solve. We omit results for n ∈
{1000, 3000, 4000} due to space limitation. The summary rows include all instances.

n k AD CS HPRS FB

500 7 20 / 0.01 20 / 0.58 20 / 0.15 20 / 0.44
15 20 / 0.01 20 / 0.69 20 / 0.25 20 / 0.44
50 18 / 0.02 20 / 0.20 20 / 0.37 20 / 0.42

2000 7 20 / 0.07 20 / 32.41 20 / 7.19 20 / 6.62
15 20 / 0.07 20 / 39.71 20 / 14.89 20 / 6.63
50 5 / 5.19 20 / 9.52 20 / 13.71 20 / 6.94

5000 7 20 / 0.36 0 /0 20 / 109.18 20 / 46.42
15 20 / 0.36 6 / 160.99 17 / 215.97 20 / 45.97
50 9 / 0.48 20 / 108.34 11 / 210.53 20 / 44.88

TOTALS
solved/total 296 /360 308 /360 345 /360 360 /360

avg time for solved 0.236 52.708 50.698 16.200
avg bt for solved 888 1053 0 0

Table 3. Randomly generated instances with 4 soft SEQUENCEs. Number of instances solved in
300 sec / average time to solve.

Δ = 1 Δ = 5
n k ADS FBS ADS FBS

50 7 6 / 19.30 7 / 27.91 20 / 0.01 20 / 2.17
15 8 / 36.07 13 / 20.41 11 / 49.49 10 / 30.51
25 6 / 0.73 10 / 23.27 10 / 6.40 10 / 7.41

100 7 1 /0 3 / 7.56 19 / 10.50 18 / 16.51
15 0 /0 5 / 6.90 3 / 0.01 3 / 7.20
25 0 /0 5 / 4.96 5 / 19.07 5 / 23.99

TOTALS
solved/total 21 /120 43 /120 68 /120 66 /120

avg time for solved 19.463 18.034 13.286 13.051
avg bt for solved 245245 343 147434 128
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(Δ = 5). This result was first observed in [10]. The FB propagator is not the fastest
one but has the most robust performance. It is sensitive only to the value of n and not to
other parameters, like the length of the window(k) or hardness of the problem(Δ). As
can be seen from Figure 4, the FB propagator scales better than the other propagators
with the size of the problem. It appears to grow linearly with the number of variables,
while the HPRS propagator display quadratic growth.

8.2 The Soft SEQUENCE Constraint

We evaluated performance of the soft SEQUENCE constraint on random problems. For
each possible combination of n ∈ {50, 100}, k ∈ {5, 15, 25},Δ = {1, 5} and m ∈ {4}
(where m is the number of SEQUENCE constraints), we generated twenty random in-
stances. All variables had domains of size 5. An instance was obtained by selecting ran-
dom lower bounds in the interval (0, k−Δ). We excluded instances where

∑m
i=1 li ≥ k

to avoid unsatisfiable instances. We used a random variable and value ordering, and a
time-out of 300 sec. All SEQUENCE constraints were enforced on disjoint sets of cardi-
nality one. Instances with Δ = 1 are hard instances for SEQUENCE propagators [10], so
that any DC propagator could solve only few instances. Instances with Δ = 5 are much
looser problems, but they are still hard do solve because each instance includes four
overlapping SEQUENCE constraints. To relax these instances, we allow the SEQUENCE

constraint to be violated with a cost that has to be less than or equal to 15% of the
length of the sequence. Experimental results are presented in Table 3. As can be seen
from the table, the FBS algorithms is competitive with the decomposition into soft
AMONG constraints on relatively easy problems and outperforms the decomposition on
hard problems in terms of the number of solved problems.

We observed that the flow-based propagator for the SOFTSEQUENCE constraint
(FBS) is very slow. Note that the number of backtracks of FBS is three order of mag-
nitudes smaller compared to ADS . We profiled the algorithm and found that it spends
most of the time performing the all pairs shortest path algorithm. Unfortunately, this is
difficult to compute incrementally because the residual graph can be different on every
invocation of the propagator.

9 Conclusion

We have proposed new filtering algorithms for the SEQUENCE constraint and several
extensions including the soft SEQUENCE and generalized SEQUENCE constraints which
are based on network flows. Our propagator for the SEQUENCE constraint enforces do-
main consistency in O(n2) time down a branch of the search tree. This improves upon
the best existing domain consistency algorithm by a factor of O(log n). We also intro-
duced a soft version of the SEQUENCE constraint and propose an O(n2 logn log log u)
time domain consistency algorithm based on minimum cost network flows. These al-
gorithms are derived from linear programs which represent a network flow. They differ
from the flows used to propagate global constraints like GCC since the domains of the
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variables are encoded as costs on the edges rather than capacities. Such flows are ef-
ficient for maintaining bounds consistency over large domains. Experimental results
demonstrate that the FB filtering algorithm is more robust than existing propagators.
We conjecture that similar flow based propagators derived from linear programs may
be useful for other global constraints.
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2. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proc. of the
12th National Conf. on AI (AAAI 1996), pp. 209–215 (1996)

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applica-
tions. Prentice Hall, Englewood Cliffs (1993)

4. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Mathematical and
Computer Modelling 12, 97–123 (1994)

5. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: The slide meta-constraint. Tech-
nical report (2007)
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Abstract. The Quantified Constraint Satisfaction Problem (QCSP) has
been introduced to express situations in which we are not able to con-
trol the value of some of the variables (the universal ones). Despite
the expressiveness of QCSP, many problems, such as two-players games
or motion planning of robots, remain difficult to express. Two more
modeler-friendly frameworks have been proposed to handle this diffi-
culty, the Strategic CSP and the QCSP+. We define what we name
back-propagation on QCSP+. We show how back-propagation can be
used to define a goal-driven value ordering heuristic and we present
experimental results on board games.

1 Introduction

The Constraint Satisfaction Problem (CSP) consists in finding values for vari-
ables such that a set of constraints involving these variables is satisfied. It is a
decision problem, in which all variables are existentially quantified (i.e., Is there
a value for each variable such that all constraints are satisfied?). This framework
is useful to express and solve many real applications.

Problems in which there is a part of uncertainty are hard to model in the CSP
formalism, and/or require an exponential number of variables. The uncertainty
part may come from weather or any external event, which is out of our control.
The Quantified Constraint Satisfaction Problem (QCSP [4]) is a generalisation of
the CSP in which variables can be either existentially (as in CSP) or universally
quantified. We control the existential variables (we choose their value), but we
have no control on universal variables (they can take any value in their domain).
Solving such problems is finding values for existential variables according to the
values taken by the preceding universal variables in the sequence of variables in
order to respect constraints.

The structure of QCSP is such that the domains of universal variables do
not depend on values of previous variables. But in many problems, values taken
by variables depend on what has been done before. For example, if we want to
express a board game like chess, some moves are forbidden, like stacking two
pieces on the same cell.

In [2,3] this issue has been identified and new formalisms, SCSP and QCSP+,
have been proposed to have symmetrical quantifier behaviors. Both in SCSP
� Supported by the ANR project ANR-06-BLAN-0383-02.
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and QCSP+, the meaning of the universal quantifier has been modified, and the
domains of universal variables depend on the values of previous variables. In
the field of Quantified Boolean Formulas, this problem has also been identified.
Ansótegui et al. introduced new QBF formulations and solving strategies for
adversarial scenarios [1].

In this paper, we propose a value ordering heuristic for the QCSP+. After
preliminary definitions (Section 2) and clues for solving QCSP+ (Section 3), we
analyse constraint propagation in QCSP+ in Section 4. Based on this analysis,
we derive a value ordering heuristic for QCSP+ in Section 5. Finally, in Section
6, we present experimental results on board-games.

2 Definitions

In this section we focus on the two frameworks that have been proposed to tackle
the QCSP modeling issue, Strategic CSPs [3] and QCSP+ [2]. But first of all,
we give some background on CSP and QCSP.

2.1 CSP and QCSP

The constraint satisfaction problem. A constraint network N = (X,D,C)
consists of a finite set of variables X = {x1, . . . , xn}, a set of domains D =
{D(x1), . . . , D(xn)}, where the domain D(xi) is the finite set of values that
variable xi can take, and a set of constraints C = {c1, . . . , ce}. Each constraint
ck is defined by the ordered set var(ck) of the variables it involves, and by the
set sol(ck) of combinations of values on var(ck) satisfying it. A solution to a
constraint network is an assignment of a value from its domain to each variable
such that every constraint in the network is satisfied. A value vi for a variable
xi is consistent with a constraint cj involving xi iff there exists an assignment
I of all the variables in var(cj) with values from their domain such that xi is
assigned vi and I satisfies cj .

Given a constraint network N = (X,D,C), the constraint satisfaction prob-
lem (CSP) is the problem of deciding whether there exists an assignment in D
for the variables in X such that all constraints in C are satisfied. In a logical
formulation, we write, “∃x1 . . . ∃xn, C?”.

In CSPs, the backtrack algorithm is inefficient when problems are big, and the
most common way to solve CSPs is to combine depth-first search and constraint
propagation. The aim is to use constraint propagation to reduce the size of the
search tree by removing some inconsistent values in domains of variables. An
inconsistent value is a value such that if it is assigned to its variable, the CSP
is unsatisfiable. That is, removing inconsistent values does not change the set of
solutions.

Most CSP solvers use Arc Consistency (AC) as the best compromise between
tree pruning and time consumption. A constraint cj is arc consistent iff for any
xi ∈ var(cj), for any vi ∈ D(xi), vi is consistent with cj. To propagate AC during
the backtrack, after each instantiation, we remove inconsistent values in domains
of not yet instantiated variables xj until all constraints are arc consistent.
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The quantified constraint satisfaction problem. The quantified extension
of the CSP [4] allows some of the variables to be universally quantified. A quanti-
fied constraint network consists of variables X = {x1, . . . , xn}, a set of domains
D = {D(x1), . . . , D(xn)}, a quantifier sequence Φ = (φ1x1, . . . , φnxn), where
φi ∈ {∃, ∀}, ∀i ∈ 1..n, and a set of constraints C. Given a quantified constraint
network, the Quantified CSP (QCSP) is the question “φ1x1 . . . φnxn, C?”.

Example 1. ∃x1∀y1∃x2, (x1 �= y1)∧(x2 < y1) with x1, y1, x2 ∈ {1, 2, 3}. This can
be read as: is there a value for x1 such that whatever the value chosen for y1,
there will be a value for x2 consistent with the constraints?

As in CSP, the backtrack search in QCSP is combined with constraint filtering.
Propagation techniques are heavily depending on the quantifiers of variables.
In Example 1 the QCSP is unsatisfiable because for each value of x1, there
is a value of y1 violating x1 �= y1. As y1 is a universal variable and x1 is an
existential variable earlier in the sequence, any value in the domain of x1 that
is not compatible with a value in the domain of y1 is not part of a solution.
Constraint propagation in QCSP has been studied in [4,8,7].

2.2 Restricted Quantification

One of the advantages that CSPs have on SAT problems (satisfaction of Boolean
clauses) is that a CSP model is often close to the intuitive model of a problem,
whereas a SAT instance is most of the time an automatic translation of a model
to a clausal form, and is not human-readable. QCSP and QBF can be compared
as CSP and SAT. To model a problem with a QBF, one needs to translate
a model into a formula, and the QBF is not human-readable. QCSP, like CSP,
should have the advantage of readability. But modeling a problem, even a simple
one, with a QCSP, is a complex task. The prenex form of formulas is counter-
intuitive. It would be more natural to have symmetrical behaviors for existential
and universal variables. We describe here two frameworks that are more modeler-
friendly: Strategic Constraint Satisfaction Problem (SCSP), and QCSP+.

The strategic CSP. In SCSP [3], the meaning of the universal quantifier is
different from the universal quantifier in QCSP. It is noted ∀̊. Allowed values for
universal variables are values consistent with previous assignments.

Let us change the universal quantifier of Example 1 into the universal quan-
tifier of SCSPs. The problem is now ∃x1∀̊y1∃x2, (x1 �= y1) ∧ (x2 < y1) with
x1, y1, x2 ∈ {1, 2, 3}. If x1 takes the value 1, the domain of y1 is reduced to
{2, 3} because of the constraint (x1 �= y1) that prevents y1 from taking the same
value as x1. This SCSP has a solution. If x1 takes the value 1, y1 can take either
2 or 3, and x2 can always take the value 1 that satisfies the constraint (x2 < y1).

Solving a SCSP is quite similar to solving a standard QCSP. The difference
is that domains of universal variables are not static, they depend on variables
already assigned in the left part of the sequence (before the universal variable
we are ready to instantiate).
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The quantified CSP+. QCSP+ [2] is based on the same idea as SCSP, which
is to modify the meaning of the universal quantifier in order to make it more
intuitive than in QCSP. It uses the notion of restricted quantification, which is
more natural for the human mind than unrestricted quantification used in QCSP.
Restricted quantification adds a “such that” right after the quantified variable.
A QCSP+ can be written as follows:

P = ∃X1[RX1 ], ∀Y1[RY1 ]∃X2[RX2 ] . . . ∃Xn[RXn ], G

All constraints noted RX are called rules. They are the restrictions of the quan-
tifiers. Each existential (resp. universal) scope Xi (resp Yi) is a set of variables
having the same quantifier. The order of variables inside a scope is not impor-
tant, but two scopes cannot be swapped without changing the problem. The
constraint G is called goal, it has to be satisfied when all variables are instanti-
ated. The whole problem can be read as “Is there an instantiation of variables in
X1 such that the assignment respects the rule RX1 and that for all tuples of val-
ues taken by the set of variables Y1 respecting RY1 , there will be an assignment
for variables in X2. . . such that the goal G is reached?”.

A QCSP+ can be expressed as a QCSP. The difference between QCSP and
QCSP+ is the prenex form of QCSP. The QCSP+ P is defined by the formula
∃X1(RX1 ∧(∀Y1(RY1 → ∃X2(RX2 ∧(. . . ∃Xn(RXn ∧G)))))). The prenex form of
P is ∃X1∀Y1∃X2 . . . ∃Xn, (RX1∧(¬RY1∨(RX2∧(. . . (RXn∧G))))). We see that,
in this formula, we lose all the structure of the problem because all information
is merged in a big constraint. Furthermore, disjunctions of constraints do not
propagate well in CSP solvers. Finally the poor readability of this formula makes
it hard to deal with for a human user.

The example of SCSP derived from Example 1 (see above) is modelled as a
QCSP+as follows: ∃x1∀y1[y1 �= x1]∃x2[x2 < y1],� with x1, y1, x2 ∈ {1, 2, 3},
where � is the universal constraint.

The difference between SCSP and QCSP+ is mainly the place where con-
straints are put. A constraint of a SCSP containing a set X of variables should
be placed in the rules of the rightmost variable of X in a QCSP+ modeling the
same problem.

In the rest of the paper, we will only consider the QCSP+, but minor modi-
fications of our contributions should be enough to adapt them to SCSPs.

3 Solving a QCSP+

In this section, we focus on solving QCSP+. First, we show how we use a back-
tracking algorithm with universal and existential variables. Then we focus on
constraint propagation in QCSP+.

As with classical CSPs or QCSPs, one can solve a QCSP+ by backtracking.
For each variable, we choose a value consistent with the rules attached to the
variable, and we go deeper in the search tree. At the very bottom of the tree,
we need to check that the assignments are consistent with the goal.
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For existential variables, we do as for classical CSPs. If it is possible to assign
the current existential variable according to the rules, then we can go deeper in
the tree. But if there is no value consistent with the rules, it means that the cur-
rent branch failed. Then we jump back to the last existential variable we instan-
tiated and make another choice. If there is no previous existential variable, the
QCSP+ has no solution. Another case for which the branch can fail is when we
instantiated all variables, but the assignments are not consistent with the goal.

On the other hand, if we instantiated all variables such that it is consistent
with the goal, we just found a winning branch of the QCSP+. In this case we
jump back to the last universal variable instantiated, we assign another value of
its domain consistent with its rules and we try to find another winning branch.
When all values of the universal variable have been checked and lead to winning
branches, we can go back to the previous universal variable. When there is no
previous universal variable, the QCSP+ has a solution. If at any moment, the
current universal variable we want to instantiate has an empty domain, it is a
winning branch. For example if it is a game, it means that the adversary cannot
play because we blocked him, or because we just won before his move.

Example 2. Let P = ∃x1∀y1[y1 �= x1]∃x2, x2 = y1, D(x1) = D(y1) = {1, 2, 3},
D(x2) = {1, 2} be a QCSP+. In this QCSP+, x1 can play any of the moves 1, 2,
or 3. Then y1 can play a move different from the move of x1, and x2 can play 1
or 2. At the end, in order to win, x2 and y1 must have the same value.
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If x1 plays 1 or 2, y1 will be able to play 3 and will
win because x2 cannot play 3 (this value is not in
its domain). The only way for the ∃-player to win
is to play 3 at the first move to forbid y1 to play
3. Then whatever the value taken by y1 (1 or 2),
x2 will be able to play the same value. The QCSP+

has a solution.
Note that in Example 2, the goal could have been

a rule for x2. When the last variable is an existential
one, its rules and the goal have the same meaning.

Propagating the constraints in QCSP+

We try to identify how it is possible to use constraint propagation to reduce the
domains of variables.

Example 3. Let P = ∃x1∀y1[y1 < x1],⊥. D(x1) = D(y1) = {1, 2, 3}. x1 has to
choose a value, then y1 has to take a lower value.

In Example 3, a standard CSP-like propagation of y1 < x1 would remove the
value 1 for x1 and the value 3 for y1. Like in CSPs, the value 3 in the domain
of y1 is inconsistent because whatever the value taken by x1, y1 will never be
able to take this value.1 But contrary to the CSP-like propagation, the QCSP+

1 Note the difference with the QCSP case for which a removal of value in a universal
domain means a fail of the whole problem.
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propagation should not remove the value 1 for x1: if x1 takes the value 1 he will
win because y1 will have no possible move.

Let xi be a variable in a QCSP+, with a rule Rxi . If we only propagate
the constraint Rxi on the domain of xi, we remove from its domain all values
inconsistent with what is happening before. This propagation is allowed, because
values removed this way cannot appear in the current search tree (when the solver
will have to instantiate xi, the allowed values are values consistent with Rxi).

Let xj be another variable in a scope before the scope of xi. Now suppose
that the rule Rxi involves xj too (i.e., the values that xi can take depend on the
values taken by xj). If the CSP-like propagation of the constraint Rxi removes
some values in the domain of xj , it does not mean that xj cannot take the values
removed, but that, if xj takes one of these values, then when it will be xi’s turn
to play, he will not be able to take any value. Hence a QCSP+ propagation
should not remove these values.

Briefly speaking, it is allowed to propagate constraints from the left of the
sequence to the right, but not to propagate from the right to the left. Benedetti
et al. proposed the cascade propagation, a propagation following this principle.

Cascade propagation. In [2], cascade propagation is proposed as a propaga-
tion mechanism. The idea is that propagating a rule can modify the domains of
variables of its scope, but not the domains of variables of previous scopes.

In [2], cascade propagation is implemented by creating a sequence of sub-
problems. Each sub-problem Pi represents the restriction of problem P to its
scopes from the first to the ith. That is, each Pi contains all rules belonging
to scopes 1 . . . i. If there are n scopes in P , Pn will be the problem excluding
the goal, and Pn+1 = P . In a sub-problem, propagation is used as in a classical
CSP. Each Pi can be considered as representing the fact that we will be able to
instantiate variables from the first one of the first scope to the last one of scope
i according to the rules. Let P be the problem described in Example 2. Cascade
propagation creates 4 sub-problems:

P1 = ∃x1,�
P2 = ∃x1∀y1[y1 �= x1],�
P3 = ∃x1∀y1[y1 �= x1]∃x2,�
P4 = ∃x1∀y1[y1 �= x1]∃x2, x2 = y1

For each sub-problem P1 to P3, the goal is � because we say a sub-problem has
a solution if we can instantiate all its variables, without thinking of the goal of
P . Propagation in each sub-problem can be done independently, but to speed
up the process, if a value is removed from the domain of a variable, it can safely
be removed from the deeper sub-problems. Furthermore if the domain of any
variable in a sub-problem Pk becomes empty with propagation, it means that
it is impossible to do the kth move. So, from there it is no longer necessary
to check the problems {Pk+1, . . . , Pn+1} since they are inconsistent too. If the
scope k is universal and if Pk−1 can be completely instantiated, then the current
branch is a winning branch. If the scope k is an existential one and if Pk−1 can
be completely instantiated, the current branch is a losing branch.
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4 Back-Propagation

In this section we present what we name back-propagation, a kind of constraint
propagation which uses the information from the right part of the sequence. We
also show that this propagation may not work properly in general.

4.1 Removing Values in Domains

The aim of constraint propagation in CSPs is to remove every value for which
we know that, if we assign this value to the variable, it leads to a fail. In QCSP+,
the aim of constraint propagation is to remove values in domains too. But values
we can remove without loss of solution depend on the quantifiers. In the case of
existential variables, the values we can remove are values that do not lead to a
solution (as we do in CSPs). Intuitively, it means that the ∃-player will not play
this value because he knows that he will lose with this move. If all values are
removed, it is impossible to win at this point. In the case of universal variables,
the values we can remove are values that lead to a solution. Intuitively, it means
that the ∀-player will not play this value because he knows that it means a loss
for him. If all values are removed, it means that the ∀-player cannot win, so it
is considered as a win for the ∃-player.

4.2 An Illustrative Example

We will see how to propagate information from right to left. Back-propagation
adds some redundant constraints inside the rules of variables. These constraints
will help to prune domains.

Consider the Example 2 from Section 3. Let us propagate the goal (x2 = y1).
It removes the value 3 in the domain of y1. It means that if y1 = 3, we cannot
win. So x1 has to prevent y1 from taking the value 3. If y1 is able to take this
value, the ∃-player will lose. The way to prevent this is to make sure that the
rule belonging to y1, y1 �= x1, will force the ∀-player not to take the value 3.
In other terms, the rule must be inconsistent for y1 = 3. We can express it
as (¬(y1 �= x1) ∧ y1 = 3), or ¬(3 �= x1), that is (x1 = 3). This constraint
can be posted as a rule for x1. The problem is now P = ∃x1[x1 = 3]∀y1[y1 �=
x1]∃x2, x2 = y1, D(x1) = D(y1) = {1, 2, 3}, D(x2) = {1, 2}. The new rule we
just added removes the inconsistent values 1 and 2 for x1.

4.3 General Behavior

First we know that if v is inconsistent with the rules of the scope of x, we can
remove it from the domain of x. Then, we can look ahead in the sequence of
variables. Consider a QCSP+containing the sequence with φ = ∀ and φ̄ = ∃ or
φ = ∃ and φ̄ = ∀: φxi[Rxi ], φ̄yj [Cj(xi, yj)], φxk[Ck(xk, yj)]. Suppose that propa-
gating Ck(xk, yj) removes the value vj in the domain of yj . As we said before,
it means that if we assign vj to yj , xk will not be able to play. Then the φ-
player will have to forbid the φ̄-player to play vj . If he is not able to forbid it,
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then he will lose. He can reduce the domain of yj with the rules belonging to yj

and involving xi.
To ensure that yj will not forbid any move for xk, we have to make sure

that the constraint Cj(xi, yj) will remove the value vj . It is equivalent to forc-
ing ¬Cj(xi, yj) to let the value vj in the domain of yj , or equivalently forcing
(¬Cj(xi, yj) ∧ yj = vj). Hence, we can add to Rxi the constraint ¬Cj(xi, vj),2

so that the φ-player is assured to have chosen a move that prevents the φ̄-player
from doing a winning move.

4.4 Back-Propagation Does Not Work in General

In the case where there are variables between xi and xk, our previous treatment
is not correct: imagine that the game always ends before xk’s turn and we are
unable to detect it with constraint propagation, we should not take into account
the constraints on xk. For example, consider the following problem:

Example 4. P = ∃x1∀z1z2[�= (x1, z1, z2)]∃t2∀y1[y1 �= x1]∃x2, x2 = y1. D(x1) =
D(t2) = D(y1) = {1, 2, 3}, D(z1) = D(z2) = {0, 1, 2}, D(x2) = {1, 2}. The
constraint �= (x1, z1, z2) is a clique of binary inequalities between the different
variables. The variable t2 is here only to separate the two scopes of universal
variables. This problem is the same as the problem in Example 2 in which we
added the variables zi and the variable t2.

From Example 4 we can add the same constraint x1 = 3 as we did for Example
2 in Section 4.2. Doing this, we forbid x1 to take either the value 1 or the value
2. But if x1 would take any of these two values, we would win since it is not
possible to assign values for the different zi.

In the general case the back-propagation may remove values that are consis-
tent, so it cannot be used as a proper propagation for QCSP+. But from the
back-propagation, we can make a value ordering heuristic that will guide search
towards a win, or at least prevent the adversary to win.

5 Goal-Driven Heuristic

In this section we present our value ordering heuristic for QCSP+. The behavior
of the heuristic is based on the same idea as back-propagation. The difference
is that, as it is a heuristic, it does not remove values in domains, but it orders
them from the best to the worst in order to explore as few nodes as possible.

In the first part of the section, we discuss value ordering heuristics on QCSP+,
and the difference with standard CSP. Afterwards, we present our contribution,
a goal-driven value ordering heuristic based on back-propagation.

5.1 Value Heuristics

In CSPs, a value ordering heuristic is a function that helps the solver to go
towards a solution. When the solver has to make a choice between the different
2 The constraint C in which we replaced the occurrences of yj with the value vj .
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values of a variable, the heuristic gives the value that seems the best for solving
the problem. The best value is a value that leads to a solution. If we are able
to find a perfect heuristic that always returns a value leading to a solution, it
is possible to solve a CSP without backtracking. But, when there is no solution
or when we want all the solutions of a CSP, the heuristic, even perfect, does
not prevent from backtracking. In the case of QCSP+, value ordering heuristics
can be defined too. But the search will not be backtrack-free, even with a good
heuristic, because of the universal quantifiers.

In QCSP+, a good value for an existential variable (like for CSP) is a value
that leads to a solution (i.e., the ∃-player wins). A good value for a universal
variable is a value that leads to a fail (i.e., we quickly prove that the ∀-player
wins). If the QCSP+ is satisfiable, the heuristic helps to choose values for ex-
istential variables, and if it is unsatisfiable, the heuristic helps to choose values
for universal variables.

In the rest of the section, we describe the value ordering heuristic we propose
for QCSP+.

5.2 The Aim of the Goal-Driven Heuristic

Our aim, with the proposal of our heuristic, is to explore the search tree looking
ahead to win as fast as possible, to avoid traps from the adversary, and of course
not to trap ourselves. For example, in a chess game, if you are able to put your
opponent into checkmate this turn, you do not ask yourself if another move
would make you win in five moves. Or if your adversary is about to put you into
checkmate next turn unless you move your king, you will not move your knight!

In terms of QCSP+ checking that a move is considered as good or bad is a
question of constraint satisfaction. We will use the same mechanisms as back-
propagation, i.e., checking classical arc consistency of rules.

Let see how to choose good values on different examples. In each of these
example, the aim is to detect what would be a good value to try first for the first
variable. In these examples, φ and φ̄ will we the quantifiers ∃ and ∀ or ∀ and ∃.

Self-preservation. In Example 5, a rule from a scope with the same quantifier
removes some values in the domain of the current variable. The φ-player tries
not to block himself.

Example 5. P = φx1 . . . φx2[x2 < x1] . . . , D(x1) = D(x2) = {1, 2, 3}. AC on the
rule of x2 removes the value 1 in the domain of x1. As the φ-player wants to
be able to play again, it could be a better choice to try the values x1 = 2 and
x1 = 3 at first. If x1 = 1 is played, the player knows that he will not be able to
play for x2.

Blocking the adversary. In Example 6, a rule from a scope with the opposite
quantifier removes some values in the domain of the current variable. The φ-
player tries to block the φ̄-player.
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Example 6. P = φx1 . . . φ̄y1[y1 < x1] . . . , D(x1) = D(y1) = {1, 2, 3}. AC on the
rule of y1 removes the value 1 in the domain of x1. As the φ-player wants to
prevent the φ̄-player from playing, it could be a better choice to try the value
x1 = 1 first. If x1 = 2 or x1 = 3 is played, the φ̄-player could be able to keep
playing.

If two rules are in contradiction, the heuristic will take into account the leftmost
rule, because it is the rule which is the more likely to happen. We will implement
this in our algorithm by checking the rules from left to right.

Annoying the adversary. Now imagine the other player finds a good value for
his next turn with the same heuristic. Your aim is to prevent him from playing
well, so the above process can be iterated.

This point is illustrated with the problem from Example 2:
P = ∃x1∀y1[y1 �= x1]∃x2, x2 = y1, D(x1) = D(y1) = {1, 2, 3}, D(x2) = {1, 2}.
The heuristic for finding values for y1 detects that the value 3 is a good value
(x2 will not be able to win). x1 is aware of that, and will try to avoid this case.
His new problem can be expressed as P ′ = ∃x1∀y1[y1 �= x1],⊥ with D(x1) =
{1, 2, 3}, D(y1) = {3}. (If the ∃-player lets y1 take the value 3, he thinks he will
lose. There may be a value for x1 such that the ∃-player will prevent the ∀-player
from making him lose). The heuristic for finding values for x1 in P ′ detects that
x1 should choose to play 3 first to prevent y1 from playing well.

In the next section, we will discuss on the algorithm for choosing the best
values for variables.

5.3 The Algorithm

In this section, we describe the algorithm GDHeuristic (Goal-Driven Heuristic)
used to determine what values are good choices for the current variable. The
algorithm takes as input, the current variable and the rightmost scope that we
consider. Note that we consider the goal as a scope here. It returns a set of values
which are considered better to try first as defined in the above part.

Note that the aim of an efficient heuristic is to make the exploration as short
as possible. If we try to instantiate a variable of the ∃-player, this means finding
a value that leads to a winning branch. If we try to instantiate a variable of the
∀-player, this means finding a value that proves the ∀-player can win, that is, a
losing branch. We see that in both cases, the best value to choose is a value that
leads the current player to a win. Thus, in spite of the apparent asymmetry of
the process, we can use the same heuristic for both players.

Algorithm 1 implements the goal driven value ordering heuristic. It is called
when the solver is about to assign a value to the current variable. The aim is to
give the solver the best value to assign to the variable. In fact, it is not more
time consuming to return a set of equivalent values than a single value, so we
return a set of values for which we cannot decide the best between them.
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In this algorithm, we use different functions we explain here:

saveContext() saves the current state (domains of variables)
restoreContext() restores to the last state.
AC(Pi) runs the arc consistency algorithm on the problem Pi

quant(var) returns the quantifier of var (∃ or ∀)
scope(var) returns the scope containing var
dom(var) returns the current domain of var
initDom(var) returns the domain of var before the first call to GDHeuristic().

We now describe the algorithm’s behavior. The first call to it is done with
GDHeuristic(current variable, goal). We try to find the best value for the
current variable, for the whole problem (the rightmost scope to consider is the
goal). Note that we could bound the depth of analysis by specifying another
scope as the last one.

First of all, we save the context (line 1) because we do not want our heuristic
to change the domains. The context will be restored each time we return a set
of values (lines 5, 14, 17 and 19).

For each future sub-problem (i.e., containing the variables at the right of the
current variable), we will try to bring back information in order to select the
best values for the current variable. This is the purpose of the loop (line 2). If no
information can be used, it will return the whole domain of the current variable
(line 20) since all its values seem equivalent.

For each sub-problem P#Scope containing all variables from scope 1 to scope
#Scope, we enforce AC (line 3). If the domain of any variable in P#Scope−1 is
reduced, we will decide the aim of our move: self-preservation (line 6), blocking
the adversary (line 7) or annoying the adversary (line 13). The heuristic performs
at most q2 calls to AC, where q is the number of scopes. It appears when all
recursive calls (line 13) are done with scope(V ar) = LastScope− 1.

The rest of the main loop is made of two main parts. The first part, from line 4
to line 8, describes the case where the domain of the current variable is modified
by the scope #Scope. (Note that we know it is not modified due to an earlier
scope because we have not exited from the main loop –line 2– at a previous turn.)
If the current variable has the same quantifier as the scope #Scope, the heuristic
returns values consistent with the scope #Scope (self-preservation line 6). If the
quantifiers are different, the heuristic returns values that block any move for the
scope #Scope, i.e., values inconsistent with the rules of scope #Scope (blocking
the adversary line 7). The second part of the main loop, from line 9 to line 18,
represents the case where a variable (V ar), between the current variable and the
scope #Scope has a domain reduced (line 9). If V ar and the scope #Scope have
different quantifiers (annoying the adversary line 11), V ar will try to block any
move for the scope #Scope by playing one of the values not in its reduced domain
(line 12). We then try to find a good value for the current variable according
to this new information that we have for V ar (line 13). If V ar and the scope
#Scope have the same quantifier (self-preservation line 16), V ar will try to play
values in its reduced domain, that is, those that do not block its future move at
scope #Scope. But we know that arc consistency has not removed any value in
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Algorithm 1. GDHeuristic

input: CurrentV ar, LastScope
Result: set of values
begin

saveContext()1

for #Scope ← scope(CurrentVar) + 1 to LastScope do2

AC(P#Scope)3

if dom(CurrentVar) 
= initDom(CurrentVar) then4

ReducedDomain ← dom(CurrentVar)
restoreContext()5

if quant(CurrentVar) = quant(#Scope) then6

return ReducedDomain
else7

return initDom(CurrentVar) \ ReducedDomain

else8

if any domain has been reduced before scope #Scope then9

Var ← leftmost variable with reduced domain in P#Scope−110

if quant(Var) 
= quant(#Scope) then11

dom(Var) ← initDom(Var) \ dom(Var)12

values ← GDHeuristic(CurrentVar, scope(Var))13

restoreContext()14

return values15

else16

restoreContext()17

return initDom(CurrentVar)18

restoreContext()19

return initDom(CurrentVar)20

end

the domain of the current variable. This means that whatever the value selected
by the current variable, V ar will be able to play in its reduced domain (i.e.,
good values). As a result, the heuristic cannot discriminate in the initial domain
of the current var (line 18).

If no domain is modified (except the domains in scope #Scope), we will have
to check the next sub-problem (returning to the beginning of the loop).

Note that at lines 6 and 16, we immediately return a set of values for the
current variable. We could imagine continuing deeper to try to break ties among
equally good values for the current variable. We tested that variant and we
observed that there were not much difference between the two strategies, both
in terms of nodes exploration and cpu time. So, we chose the simpler one.

6 Experiments

We implemented a QCSP+ solver on top of the constraint library Choco [5].
Our solver accepts all constraints provided by Choco, and uses the classical
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constraint propagators already present in the library. In this section, we show
some experimental results on using either our goal-driven heuristic or a lexico-
graphical value ordering heuristic. We compare the performance of this solver
with QeCode [2], the state-of-the-art QCSP+ solver, built on top of GeCode,
which uses a fail-first heuristic by default. This value ordering heuristic first
tries the value inconsistent with the earliest future scope. We also tried our
solver with the promise heuristic [6], but it was worse than Lexico. The effect
of a heuristic trying to ensure that constraints will still be consistent is that a
player does not want to win as early as possible (by making the other player’s
rules inconsistent). In all cases, the variable ordering chosen is the same: we
instantiate variables in order of the sequence.

We implemented the same model of the generalized Connect-4 game for our
solver and for QeCode.

Connect-4 is a two-player game that is played on a vertical board with 6 rows
and 7 columns. The players have 21 pieces each, distinguished by color. The
players take turns in dropping pieces in one of the non-full columns. The piece
then occupies the lowest empty cell on that column. A player wins by placing 4
of his own pieces consecutively in a line (row, column or diagonal), which ends
the game. The game ends in a draw if the board is filled completely without any
player winning. The generalized Connect-4 is the same game with a board of m
columns and n rows, where the aim is to place k pieces in a line.

At first we tried our solver on 4×4 grids, with alignments of 3 pieces. We ran
QeCode and our solver with Lexicographical heuristic (Lexico) or with Goal-
Driven heuristic on problems with different number of allowed moves, from 5 to
15. We compare the time taken to solve instances.

The results are presented in Figure 1 (note the log scale). There is a solution
for 9 allowed moves and more. As we can see, our solver with lexicographical
value ordering solves these instances faster than QeCode. It can be explained
by different ways. First, it is possible that Choco works faster in propagating
constraints defined as we did. The second reason is that QeCode uses cascade
propagation (propagation on the whole problem for each instantiation), whereas
our solver propagates only the rules of the current scope. Thus, our solver spends

 0.01

 0.1

 1

 10

 100

 4  6  8  10  12  14  16

C
P

U
 T

im
e 

(s
)

Number of Moves

QeCode
Lexico

Goal-Driven

Fig. 1. Connect-3, on 4x4 grid

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  2  4  6  8  10  12  14

C
P

U
 T

im
e 

(s
)

Number of Moves

Lexico
Goal-Driven

Fig. 2. Connect-4, on 7x6 grid



188 G. Verger and C. Bessiere

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  2  4  6  8  10  12  14  16  18

C
P

U
 T

im
e 

(s
)

Number of Moves

Lexico
Goal-Driven

Fig. 3. Noughts and Crosses, on 5x5 grid

less time in propagation. We can see that the Goal-Driven heuristic speed up
the resolution. It is about twice as fast as with Lexico.

In next experiments, we only compare our solver with Lexicographical value
ordering and with Goal-Driven value ordering because QeCode was significantly
slower and the aim is to test the accuracy of our heuristic.

In Figure 2, the real Connect-4 game is solved. We vary the number of moves
from 1 to 13 and compare the performance in terms of running time. For a
number of moves less than 9, Goal-Driven heuristic does not improve the per-
formance, but from this point, the heuristic seems to be useful. In this problem,
all instances we tested are unsatisfiable.

In Figure 3, we solve the game of Noughts and Crosses. This is the same
problem except the gravity constraint which does not exist in this game. It
is possible to put a piece on any free cell in the board. Instead of having n
choices for a move, we have n×m choices. In the problem we tested, the aim
is to align 3 pieces. This problem has a solution for 5 moves. We see that the
Goal-Driven heuristic is very efficient here for solvable problems. Adding allowed
moves (increasing the depth of analysis) has not a big influence on the running
time of our solver with the Goal-Driven heuristic. The heuristic seems to be
efficient when there are more allowed moves than necessary to finish the game.

Discussion. More generally, when can we expect our Goal-Driven heuristic to
work well? As it is based on information computed by AC, it is expected to work
well on constraints that propagate a lot, i.e., tight constraints. Furthermore, as
it actively uses quantifier alternation and tries to provoke wins/losses before the
end of the sequence, it is expected to work well in problems where there exist
winning/losing strategies that do not need to reach the end of the sequence.

7 Conclusion

In QCSP+, we cannot propagate constraints from the right of the sequence to
the left. Thus, current QCSP+ solvers propagate only from left to right. In
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this paper, we have analyzed the effect of propagation from right to left. We
have derived a value ordering heuristic based on this analysis. We proposed an
algorithm implementing this heuristic. Our experimental results on board games
show the effectiveness of the approach.
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Abstract. When numerical CSPs are used to solve systems of n equa-
tions with n variables, the interval Newton operator plays a key role: It
acts like a global constraint, hence achieving a powerful contraction, and
proves rigorously the existence of solutions. However, both advantages
cannot be used for under-constrained systems of equations, which have
manifolds of solutions. A new framework is proposed in this paper to
extend the advantages of the interval Newton to under-constrained sys-
tems of equations. This is done simply by permitting domains of CSPs
to be parallelepipeds instead of the usual boxes.

1 Introduction

The paper presents a new framework for solving numerical CSPs formed of
under-constrained systems of equations:

〈 x , f(x) = 0 , [x] 〉, (1)

where vectorial notations1 are used, i.e. x = (x1, . . . , xn) is a vector of variables,
f = (f1, . . . , fm), with m < n, is a vector of functions and [x] = ([x1], . . . , [xn])
is a vector of interval domains. These NCSPs arise naturally in a wide range of
applications, among which are surface intersection characterization and plotting
[1], a particular case of implicit equation solving [2], global optimization [3] and
robots kinematics [4].

Algorithms designed for well constrained NCSP [5,6] are not efficient for solv-
ing (1). Indeed, these algorithms are variations of the branch and prune algorithm
where the (preconditioned) interval Newton operator [7] plays a key role: On the
one hand, it acts like a global constraint that performs powerful contraction when
the domains become small enough. On the other hand, it can prove rigorously
the existence of a solution of a well constrained system of equations. However,
these two key contributions of the interval Newton operator are not operating
when dealing with under-constrained systems of equations, mainly because no
preconditioning of these systems of equations has been proposed yet. The main

1 Vectors of reals and vectors of functions are represented with boldface symbols.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 190–204, 2008.
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contribution of this paper is to present a framework that extends these two ad-
vantages of the interval Newton operator to NCSPs formed of under-constrained
systems of equations.

In the usual definition of a CSP, each variable is given a domain. As a matter of
fact, it is equivalent to consider the Cartesian product of these variable domains
(which is a box when variable domains are intervals) as a search space for a vector
made of the CSP variables. Then, more complicated sets, which are not anymore
the Cartesian product of variable domains, can be used. The framework proposed
in this paper shows that using parallelepiped domains instead of box domains
can drastically improve the efficiency of branch and prune algorithms dedicated
to (1). On the one hand, parallelepipeds offer a more flexible description of
subsets of Rn than boxes, hence providing a more accurate enclosure of the
NCSP solution set. On the other hand, using parallelepiped domains introduces
an efficient preconditioning process for under-constrained systems of equations,
hence allowing the interval Newton operator to both work as a global constraint
and prove the existence of solutions.

Parallelepipeds have already been used to advantageously replace boxes, for
example to rigorously enclose the solutions of initial values problems (cf. the sur-
vey paper [8] and references therein). The relationship between parallelepipeds
and preconditioning has already been investigated in [9,10], where parallelepipeds
are used to approximate the solution set of linear systems with interval uncertain-
ties. However, the ways and means of the introduction of parallelepiped domains
in the present work are totally different than in [9,10]. Finally, parallelepipeds
have been used in conjunction with existence theorems to build inner approxima-
tions of function ranges in [11], but again in the restricted case of well-constrained
systems of equations.

Outline. The framework proposed in this paper is presented on a motivating ex-
ample in Section 2. Then, the concepts of interval analysis used in this paper are
given in Section 3. The technical description of the proposed branch and prune
algorithm is given in Section 4. Finally, promising experiments are presented in
Section 5.

2 A Motivating Example

The usefulness of the usage of parallelepiped domains instead of box domains is
now illustrated on a simple example.

2.1 Contractions and Bisections Using Box Domains

Let us consider the very simple under-constrained CSP

〈 x , {f(x) = 0} , [x] 〉, (2)

with x = (x1, x2), f(x) = x2
1 + x2

2 − 1 and [x] = ([0.3, 0.7], [0.6, 1.0]). Its solution
set is plotted in Figure 1-(a).
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Fig. 1. (a) Solution set of the CSP (2). (b) Domain after one contraction. (c) Domains
after one bisection and two more contractions.

The key point is to notice that the contraction and bisection processes of a
branch and prune algorithm are not efficient in this situation: A contraction2

is performed in Figure 1-(b), and two more contractions are performed after a
bisection in Figure 1-(c). These plots clearly show that these contractions are
not efficient because the solution set crosses the box domain in its diagonal. The
contraction/bisection would be much more efficient if the solution set crossed the
box domain along one of the axes. Reaching this situation is the goal of using
parallelepiped domains instead of box domains.

2.2 From a Box Domain to a Parallelepiped Domain

To this end, a parallelepiped3 is built whose two axes are respectively approxi-
mately parallel and perpendicular to the solution set. These directions are related
to the gradient of the function f evaluated at the midpoint of the box domain.
Once the parallelepiped axes are computed, the parallelepiped is chosen as small
as possible under the constraint that it contains the original box domain (cf.
Figure 2-(a) where the former box domain is represented using dashed lines).

Note that changing the box domain to an enclosing parallelepiped domain in-
troduces new solutions on the border of the parallelepiped domain (the solutions
that are inside the parallelepiped domain but outside the former box domain).
In order to reject these additional solutions (which otherwise would be redun-
dant with the neighbor domains), the former box domain is reintroduced as four
inequality constraints which are added to the constraint store.

To see how a parallelepiped domain can improve the contraction/bisection
process, we have to formalize its definition: This parallelepiped is the image of
a box through an affine map u #→ C · u + x̃, i.e.

{C · u + x̃ : u ∈ [u]}, (3)

2 In this introducing example, the best contractions are performed. In practice, con-
tractions are not that efficient. Nevertheless, this illustrates the best that can be
obtained from both methods.

3 Note that in this motivating example parallelepipeds have perpendicular axes, but
this is not the case in general for higher dimensions.
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Fig. 2. (a) Enclosing parallelepiped domain for the CSP (2). (b) The same CSP ex-
pressed in the auxiliary basis formed of the parallelepiped axes.

where

– The matrix C ∈ R2×2 is a square matrix. This matrix gives its shape to the
parallelepiped and is chosen so that the solution set is approximately parallel
to one of its sides. This is done considering the gradient of the function
evaluated at the midpoint of the box (cf. Section 4 for more details).

– The vector x̃ is the midpoint of the box [x].
– The box [u] is computed in such a way that the parallelepiped encloses the

box domain [x], i.e. [u] = C−1 · ([x] − x̃) where interval arithmetic is used
(cf. Section 3).

Then, the CSP (2) can be expressed in the auxiliary basis formed of the charac-
teristic axes of the parallelepiped, giving rise to the auxiliary CSP

〈 u , {g(u) = 0} , [u] 〉, (4)

with g(u) = f(C · u + x̃), that is explicitly

g(u1, u2) = f(C11u1 + C12u2 + x̃1, C21u1 + C22u2 + x̃2). (5)

The solution sets of (4) is represented by Figure 2-(b). As mentioned previ-
ously, four linear inequalities are added to the constraints of (4) which rep-
resent the belonging to the original box domain (they are not given explic-
itly in (4) for clarity). These inequalities are represented using dashed lines
in Figure 2-(b). Note that the solution sets of (2) and (4) are closely related:
The former is exactly the image of the latter through the affine transformation
u #→ C · u + x̃.

The next two subsections show how to contract and bisect this parallelepiped
domain.
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Fig. 3. Contracting parallelepiped domains

2.3 Contracting Parallelepiped Domains

Contracting the parallelepiped {C · u + x̃ : u ∈ [u]} consists in contracting its
characteristic domain [u]. The aim is to keep all the solutions of the original
CSP (2) within the contracted parallelepiped. This is obviously equivalent to
contracting [u] without losing any solution of the auxiliary CSP (4). As this later
CSP has a box domain, one can use the usual techniques dedicated to NCSPs.
Note that since the solution set crosses the parallelepiped in the direction u2, the
constraint g(u) = 0 will contract efficiently the domain [u1] but will certainly be
useless for the domain [u2]. On the other hand, the inequality constraints coming
from the box domain will help contracting the domain [u2]. The contraction of [u]
obtained for this introducing example is shown in Figure 3. Figure 3-(a) shows
how [u] is contracted using the auxiliary CSP (4) while Figure 3-(b) shows the
corresponding contraction for the parallelepiped domain of the original CSP
(2). Comparing Figure 3-(b) to Figure 1-(b) shows how much more efficient the
contraction of the parallelepiped domain is compared to the contraction of the
original box domain.

The auxiliary CSP (4) is actually more complicated than the original CSP (2):
The function g(u) = f(C ·u+ x̃) contains more occurrences of each variables (cf.
Equation (5)), which is well known to decrease the efficiency of interval based
methods. However, this situation is very similar to the preconditioning of the
interval Newton operator. And indeed, this acts like a right-preconditioning4

where the interval Newton operator should be very efficient. Actually, Section 4
shows that this right-preconditioning process allows the interval Newton to both
act like a global constraint, and rigorously prove the existence of the manifold
of solutions. In the context of this introducing example, the interval Newton
operator proves that for all u2 ∈ [u2] there exists u1 ∈ [u1] such that g(u) = 0,
hence proving that the auxiliary solution set (4) crosses [u] along u2. Therefore,
the original (2) is proved to cross the parallelepiped in this direction.
4 I.e. a preconditioning where the change of basis is applied before the function, see

e.g. [9,10,11].
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2.4 Bisecting Parallelepiped Domains

Bisecting a parallelepiped {C ·u+ x̃ : u ∈ [u]} into two smaller parallelepipeds is
naturally done by bisecting its characteristic domain [u] (cf. Figure 4-(a)), thus
obtaining two new parallelepipeds {C · u + x̃ : u ∈ [u′]} and {C · u + x̃ : u ∈
[u′′]} (cf. Figure 4-(b)). Note that it obviously makes no sense to bisect [u] to
([u′

1], [u2]) and ([u′′
1 ], [u2]), which would not preserve the solution set transverse

crossing. Instead, bisecting [u] to ([u1], [u′
2]) and ([u1], [u′′

2 ]) does preserve this
transversality, and is therefore a very efficient bisection heuristic. This bisection
heuristic will be trivially extended to the general case of arbitrary dimensions.

Once bisected, their characteristic matrices are updated using the same pro-
cess as described previously, but based on the gradient vector of f evaluated
at the center of each new parallelepiped. This allows the new parallelepipeds
adapting their shape more accurately to the shape of the solution set (cf. Figure
4-(c)). Furthermore, as done with the original box domain, each former par-
allelepiped domain is expressed as four additional inequality constraints in its
CSP (represented in dashed lines in Figure 4-(c)), which will be used to re-
duce the overlapping introduced when updating the characteristic matrices of
the new parallelepipeds. Finally, a contraction is performed on these two new
parallelepipeds, leading to Figure 4-(d). Comparing this figure to Figure 1-(c)
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Fig. 4. Bisecting parallelepiped domains
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shows how important is the improvement obtained using parallelepipeds domains
instead of box domains.

The gains in contracting efficiency and existence proving illustrated on this
motivating example are even more important when dealing with more compli-
cated NCSPs of higher dimension (c.f. subsections 5.3 and 5.4).

3 Interval Analysis for NCSP Resolution

The modern interval analysis was born in the 60’s with [12]. Since, it has been
widely developed and is today one central tool in the resolution of constraints
acting over continuous domains (see [13] and extensive references).

3.1 Interval Arithmetic

Intervals, interval vectors and interval matrices are denoted using brackets. Their
set are denoted respectively by IR, IRn and IRn×m. The elementary func-
tion are extended to intervals in the following way: let ◦ ∈ {+,−,×, /} then
[x] ◦ [y] = {x ◦ y : x ∈ [x], y ∈ [y]} (division is defined only for non zero contain-
ing interval denominators). E.g. [a, b] + [c, d] = [a + c, b + d]. Also, continuous
one variable functions f(x) are extended to intervals using the same definition:
f([x]) = {f(x) : x ∈ [x]}, which is an interval because f is continuous. When
one represents numbers using a finite precision, the previous operations cannot
be computed in general. The outer rounding is then used so as to keep valid
the interpretations. For example, [1, 2] + [2, 3] would be equal to [2.999, 5.001] if
rounded with a three decimal accuracy.

Then, an expression which contains intervals can be evaluated using this in-
terval arithmetic. The main property of interval analysis is that such an interval
evaluation gives rise to a superset of the image through the function of the in-
terval arguments: For example, [x] × ([y] − [x]) ⊇ {x(y − x) : x ∈ [x], y ∈ [y]}.
In some cases (e.g. when the expression contains only one occurrence of each
variable), this enclosure is optimal. In particular, the computation C · [u] + x̃ is
the smallest box that contains the parallelepiped {C.u + x̃ : u ∈ [u]}.

3.2 Interval Contractors

Given an n-ary constraint c and a box [x] ∈ Rn, a contractor for c will con-
tract the box [x] without losing any solution of c. Some widely used contrac-
tors are based on the 2B-consistency (also called hull-consistency) or the box
consistency [14,15], which are adaptations of the arc-consistency to continuous
domains. They are both applied to one constraint at a time, hence suffering of
the usual drawbacks of the locality of their application. On the other hand, the
preconditioned interval Newton [7] can be applied to a set of n equations and
n variables. Under some hypothesis on the Jacobian matrix of the system eval-
uated on the domain of the CSP, it will be able to treat this set of constraint
as a global constraint and hence achieve a powerful contraction. Furthermore,
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the interval Newton can rigorously prove the existence of a solution in a CSP
domain. These two characteristics of the interval Newton makes it a key tool
for the resolution of NCSPs, however previously restricted to well-constrained
systems of equations.

4 Description of the Algorithm

The branch and prune Algorithm 1 used here is classical except for line 1 which
will be explained in the rest of the paper: The input is a CSP P and the output
a set of CSPs L = {P1, . . . ,Ps} whose disjunction is equivalent to the original
CSP. Formally,

Sol(P) =
⋃

Q∈L
Sol(Q). (6)

Normally, the set of CSPs L is a more accurate description of the solution set
that the original CSP: First, the union of their domains is much smaller than
the original domain, hence providing a sharper enclosure. Second, it is often
possible to prove that these CSPs actually contains some solutions, which is
a crucial information. The solution existence proof is not explicitly described
in Algorithm 1 for clarity. Informally, some existence proof can result of the
contraction performed at Line 1 when it is computed using the interval Newton
operator. When the existence of solutions is proved, this information is attached
to the CSP.

When the algorithm starts, the domain of the CSP is a box. The function
UpdateDomainShape at Line 1 allows changing the shape of the domain (chang-
ing a box to a parallelepiped when first successfully applied, or a parallelepiped
to another parallelepiped more suited to the shape of the solution set). The first
change from a box to a parallelepiped is performed only when the shape of the
solution set can be foreseen from the evaluation of the constraints derivatives
(cf. Subsection 4.1), which implies that the box domain is small enough. As a con-
sequence, the algorithm will use box domains in a first phase, and parallelepiped
domains as soon as box domains are small enough to identify the directions of
the solution manifold. While the CSP domain is a box, usual contractors are used
to prune its domain (2B-consistency based contractors and non-preconditioned
interval Newton operator in our implementation of Algorithm 1, whose collabo-
ration is known to be efficient). When the domain is changed to a parallelepiped,
the interval Newton operator is adapted and allows powerful contractions and
existence proof of solutions (cf. Subsection 4.2). Finally, parallelepiped domains
are bisected similarly to box domains (cf. Subsection 4.3).

4.1 Changing the Shape of a Parallelepiped

The function UpdateDomainShape(P) attempts to find a new parallelepiped
domain {C · u + x̃ : u ∈ [u]} that will be more suited to the solution set of
P . The former domain of P is the parallelepiped {D · v + x̃ : v ∈ [v]}, which
is possibly a box in which case D = id (note that the former and the new
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Algorithm 1. Branch and prune algorithm using parallelepiped domains

Input: P = 〈x,C, [x]), ε
Output: L = {P1, . . . ,Ps}
T ← {P}; L ← ∅;1

while ( not T = ∅ ) do2

P ← Extract(T );3

if ( Measure(Domain(P)) > ε ) then4

P ′ ← UpdateDomainShape(P);5

P ′′ ← Contract(P ′);6

if ( Domain(P ′′) 
= ∅ ) then7

(Q,Q′) ← Bisect(P ′′);8

T ← T ∪ {Q,Q′};9

end10

else11

L ← L ∪ {P};12

end13

end14

return (L);15

parallelepiped domains share the same characteristic vector x̃). This process is
done in two steps: First a candidate new parallelepiped domain {C · u + x̃ : u ∈
[u]} is computed. Then, the efficiency of this candidate parallelepiped domain
is verified a posteriori. If not useful, the former parallelepiped is kept. If the
candidate parallelepiped domain is chosen, then some inequality constraints are
added to the CSP in order to prevent some parasite solutions to appear due to
the enclosure of the former parallelepiped domain inside a new parallelepiped
(cf. Section 2).

Computation of the Candidate Parallelepiped Domain. As illustrated in
Section 2, the aim of using a new parallelepiped domain {C ·u+ x̃ : u ∈ [u]} is to
apply the interval Newton operator in the auxiliary basis of the parallelepiped
to reduce directly the box domain [u]. Hence, the parallelepiped characteristic
matrix C is chosen aiming an efficient application of the interval Newton oper-
ator. The box domain [u] will be reduced using the constraint g(u) = 0 where
g(u) = f(C · u + x̃) (cf. Section 2). To obtain an efficient application of the
interval Newton operator, the under-constrained system g(u) = 0 needs to be
interpreted as a system of equations m equations and m variables, where the
remain n −m variables are considered as parameters. Then, to be efficient the
interval Newton operator requires the Jacobian Jg of g to be close to the ma-
trix

(
Im×m 0m×(n−m)

)
, where Im×m is the identity matrix of size m×m and

0m×(n−m) is the null matrix of size m × (n−m). As Jg = Jf · C, it is natural
to choose C such that

Jf([x]) · C ≈
(
Im×m 0m×(n−m)

)
, (7)

where [x] is the interval hull of the parallelepiped domain, i.e. [x] = C · [u] + x̃.
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To this end, C is constructed based on the evaluation of the Jacobian of f
at x̃. The matrix C−1 is first constructed as follows, and C will be obtained
inverting C−1. The ith line (C−1)i of C−1 is defined by:

– The gradient of fi evaluated at x̃ if i ≤ m.
– A vector orthogonal to all previously computed (C−1)k for 1 ≤ k < i (these

vectors are not uniquely determined, but a set of such vectors is easily obtain
using a Gram-Schmidt orthogonalization).

Then, this matrix is inverted5 to obtain C. The matrix C thus satisfies Jf(x̃)·C =(
Im×m 0m×(n−m)

)
, up to rounding errors (indeed by construction, Jf(x̃) · C

is made of the m first rows of the n× n identity matrix).
Finally, the characteristic domain [u] is computed so that the new paral-

lelepiped domain encloses the former: [u] = (C−1D)[v]. This time, interval
arithmetic is used to ensure a rigorous enclosure.

Verification of the Efficiency of the Candidate New Parallelepiped Do-
main. Formally, the interval Newton will be efficient if the square matrix formed
of the first m columns of Jf([x]) · C is diagonally dominant (cf. Theorem 5.2.5
in [7]). Therefore, the interval matrix Jf([x]) ·C is computed explicitly, and the
diagonal dominance of its first m columns is checked. If it is diagonally domi-
nant, the parallelepiped domain is updated, and some inequality constraints are
added to the CSP (cf. the next section). Otherwise, the former parallelepiped
domain is kept, i.e. C = D and [u] = [v].

Remark 1. If x is a solution (i.e. f(x) = 0) and is singular (i.e. Df(x) is not full
rank, e.g. has two proportional lines) then Jf([x]) · C will never be diagonally
dominant. In this case, the algorithm keeps working with box domains around
this point. This situation is untypical as some arbitrary small perturbation of
the problem can change the singular solutions to regular solutions.

Adding Linear Inequalities to the new CSP. As illustrated in Section 2, the
enclosure of the former parallelepiped domain by a new parallelepiped domain
is not perfect. Hence, some solutions that are inside the new domain may not be
in the former, which would lead to redundant solutions if not properly treated.
To this end, the former parallelepiped domain is reintroduced in the new CSP
as 2n linear constraints:

vi ≤
∑

1≤j≤n

Dijxj ≤ vi, (8)

for 1 ≤ i ≤ n. As a consequence, the former and the new CSPs have the same
solution set. These linear inequalities will be denoted using the scalar product
notation a · x ≤ b where a = (Di1, . . . , Din) and b = vi, or a = −(Di1, . . . , Din)
and b = −vi.

5 Note that C needs only to be computed approximately and thus standard double
precision computations can be used at this step.
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4.2 Contracting a Parallelepiped Domain

When the domain of the CSP is a box, the usual techniques are used to contract
it. When it is a parallelepiped, two kind of constraints are in the store: the linear
inequalities a · x ≤ b and the nonlinear equalities f(x) = 0.

Linear Inequalities. In order to contract the characteristic domain [u] of the
parallelepiped {C · u + x̃ : u ∈ [u]} under the linear inequality a · x ≤ b, this
constraint is simply expressed in the basis of the parallelepiped:

a · x ≤ b ⇐⇒ (a · C) · u ≤ b− a · x̃. (9)

Then, [u] is contracted under the new linear inequality using the 2B-consistency.

Nonlinear Equalities. The nonlinear equalities are also expressed in the basis
of the parallelepiped: f(x) = 0 ⇐⇒ g(u) = 0, with g(u) = f(C ·u+ x̃). Then
the m first components of [u] are contracted considering this under-constrained
system of equations as a well constrained parametric systems of equations. Let
u′ = (u1, . . . , um) be the vector of the first m variables, and u′′ = (um+1, . . . , un)
be the vector of the remaining variables, which are considered as parameters.
The interval Newton is then applied to the parametric system of equation (see
[16] for details) to contract [u′] to a smaller box [ũ′]

[ũ′] = û′ + Γ ([Ju′ ], [u′]− û′,b) (10)

with b = −f(C ·u+ x̃)− [Ju′′ ] · ([u′′]− û′′) where [Ju′ ] and [Ju′′ ] are respectively
the square interval matrix formed of the first m columns of Jf(C.[u]+ x̃) ·C and
the rectangular matrix formed of the remaining columns. The operator Γ is the
interval Gauss-Seidel method [7]. The vectors û′ and û′′ are the midpoint of the
respective boxes.

As the interval matrix [Ju′ ] is centered on the identity matrix and diagonally
dominant (cf. Section 4.1), the interval Newton operator may be strictly con-
tracting (i.e. [ũ′] is included inside the interior of [u′]) and hence is able to prove
the existence of solutions. In this case, the following existence statement holds
[16]: ∀u′′ ∈ [u′′], ∃u′ ∈ [u′],g(u) = 0, hence proving that the solution set crosses
the whole parallelepiped domain transversally. When the existence is proved,
this information is recorded together with the CSP.

4.3 Bisecting a Parallelepiped Domain

A parallelepiped domain {C · u + x̃ : u ∈ [u]} is bisected splitting [u]. However,
as the contraction of [u′] performed using the interval Newton is convergent, it
is useless to bisect these components of the box. Therefore, [u] is bisected to [ũ1]
and [ũ2] where the largest component of u′′ has been bisected. This is sufficient
to ensure the convergence of the algorithm by Theorem 5.2.5 in [7]. Finally, the
two bisected parallelepipeds {C · u + x̃1 : u ∈ [u1]} and {C · u + x̃2 : u ∈ [u2]}
are defined as follows: for both k = 1 and k = 2, x̃k = C ·mid([ũk]) + x̃ so that
this vector is at the center of the parallelepiped, and hence is representative of
the domain. The domains [u1] and [u2] are then updated accordingly translating
[ũ1] and [ũ2], i.e. [uk] = [ũk] + C−1(x̃− x̃k).
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5 Experiments

Experiments presented in this section cover a wide range of situations, from
2D implicit functions to higher dimensional systems. For comparing the usage
of parallelepiped domains and box domains, the volume of each enclosure will
be compared. In order to have a dimension free measure, the reduced-volume,
defined as the nth root of the volume where n is the dimension of the problem,
will be used. Note that the volume of a parallelepiped is simply the volume of its
characteristic domain multiplied by the absolute value of the determinant of its
characteristic matrix. The algorithms have been run on a Intel(R) Core(TM)2
Duo CPU at 2.20 GHz, with 4Gb of memory, under Windows XP.

5.1 Intersection of Surfaces

The validated intersection between a sphere and a cylinder is modeled by a CSP
with 3 variables and 2 constraints. Both parallelepiped domains and box do-
mains have been used to compute the enclosure of this geometrical object for
comparison purpose. Figure 5 shows that, for the same number of bisections,
the parallelepiped domains provide a much more accurate enclosure of the solu-
tion set. Furthermore, the solution set has been proved rigorously to cross each
parallelepiped domain. That information is unavailable when using box domains.

5.2 Two Dimensional Implicit Plot

The problem consists in determining the implicit graph of a complicated function
proposed in [1]:

f(x) = x1 cos(x2) cos(x1x2) + x2 cos(x1) cos(x1x2) + x1x2 cos(x1) cos(x2). (11)

Fig. 5. Intersection of a sphere and a cylinder (both plotted in transparent for infor-
mation). Enclosures obtained using parallelepiped domains (left) or with box domains
(right) after 100 bisections.
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Fig. 6. Verified implicit plot of Tupper’s function

Note that in [1] each plus sign is actually consider as a plus/minus sign, hence
leading to four different functions, while here we treat (11). After 72 seconds,
the enclosure shown on Figure 6 has been computed for f(x) = 0. All the
parallelepiped domains are rigorously proved to be crossed by the solution set,
this latter being thus completely determined. Timings cannot be compared wrt.
the algorithm proposed in [1] because the present approach provides much more
information than [1], where a simple outer approximation is computed, exactly
as accurate as the pixel size of the resolution.

5.3 The Layne-Watson Exponential Cosine Curve

This system of 3 variables and 2 equations is taken from [2]. This NCSP is
an intersection of surfaces whose equations involve compositions of cosine and
exponential functions. Once more, the parallelepiped domains provide a more
accurate enclosure than box domains, and allow proving the existence of the
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whole manifold of solutions. For a more accurate comparison of performances,
the left hand side graphic of Figure 7 displays the time needed to obtain a given
reduced-volume for both methods. At a first glance, the parallelepiped domains
are much more efficient than box domains. Interpreting more precisely these
log/log plots, both curves are almost lines. Therefore, both algorithms display
a time increasing polynomially with the inverse of the reduced-volume. What
is noteworthy is that the slopes of the two lines are different (corresponding to
polynomials of different degree), which means that the parallelepiped domains
improve not only the timings but also the complexity of the branch and prune
algorithm.

5.4 The Parametrized Broyden Tridiagonal

The Broyden tridiagonal problem is a well-known system of n equations and
n unknowns [17]. The problem is changed to a parametric problem adding a
variable α:

(α− 2xi)xi − xi−1 − 2xi+1 + 1 = 0 (12)

for 1 ≤ i ≤ n, with x0 = xn+1 = 0 for compact notations. The original value
of α is 3, so we choose the domain [2, 4] for this additional variable. As in the
original problem, the domains of the other variables are [−100, 100]. Introducing
such a parameter allows studying how the solutions of the original Broyden
tridiagonal problem change with the variations of this parameter. Once more,
the usage of parallelepiped domains drastically reduces the time needed to obtain
an enclosure of a given reduced-volume, cf. Figure 7. And again, Figure 7 shows
that the time needed is approximately a polynomial of the inverse of the reduced-
volume, while the usage of parallelepiped domains has reduced the degree of this
polynomial.

6 Discussion

These first experiments show that indeed the global constraint contraction per-
formed on parallelepiped domains drastically improves the resolution process
(the degree of the polynomial time complexity to reach a given accuracy seems
to have been reduced, leading to timings divided by more than 100). Further-
more, the proof of existence of solutions works well for non singular solutions,
and allows giving a complete description of the solution set under the form of a
sharp enclosure which is proved to contain solutions.

Under-constrained systems of equations appear in many contexts. An impor-
tant part of the forthcoming work will be to include this framework in an efficient
solver to be able to tackle real life problems, like robot workspace computation.
Furthermore, parallelepiped domains may improve the efficiency of global op-
timization algorithms, which often have to solve under-constrained systems of
equations. On a theoretical point of view, the introduction of universally quan-
tified parameters in this framework will allow tackling interesting problems, like
the robust intersection of surfaces with uncertain parameters.
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Abstract. The Constraint Satisfaction Problem (CSP) framework al-
lows users to define problems in a declarative way, quite independently
from the solving process. However, when the problem is over-constrained,
the answer “no solution” is generally unsatisfactory. A Max-CSP Pm =
〈V,D, C〉 is a triple defining a constraint problem whose solutions max-
imise constraint satisfaction. In this paper, we focus on numerical CSPs,
which are defined on real variables represented as floating point inter-
vals and which constraints are numerical relations defined in extension.
Solving such a problem (i.e., exactly characterizing its solution set) is
generally undecidable and thus consists in providing approximations. We
propose a branch and bound algorithm that computes under and over
approximations of its solution set and determines the maximum number
mP of satisfied constraints. The technique is applied on three numeric
applications and provides promising results.

1 Introduction

CSP provides a powerful and efficient framework for modeling and solving prob-
lems that are well defined. However, in the modeling of real-life applications,
under or over-constrained systems often occur. In embodiment design, for ex-
ample, when searching for different concepts engineers often need to tune both
the constraints and the domains. In such cases, the classical CSP framework is
not well adapted (a no solution answer is certainly not satisfactory) and there
is a need for specific frameworks such as Max-CSP. Yet in a large number of
cases, the nature of the model (over-, well or under-constrained) is a priori not
known and thus the choice of the solving technique is critical. Furthermore, when
tackling over-constrained problems in the Max-CSP framework, most techniques
focus on discrete domains.

In this paper, we propose a branch and bound algorithm that approximate
the solutions of a numerical Max-CSP. The algorithm computes both an under
(often called inner in continuous domains) and an over (often called outer) ap-
proximation of the solution set of a Max-CSP along with the sets of constraints
that maximise constraint satisfaction. These approximations ensure that the
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inner approximation contains only solutions of the Max-CSP while the outer
approximation guarantees that no solution is lost during the solving process.

This paper is organized as follows: Section 2 motivates the research and
presents a numerical Max-CSP application. Section 3 presents the definitions
associated to the Max-CSP framework. A brief introduction to Interval analy-
sis and its related concepts is drawn in section 4, while our branch and bound
algorithm is described in Section 5. Section 6 presents the work related to Max-
CSP in both continuous and discrete domains while Section 7 is dedicated to
experimental results showing the relevance of our approach.

2 A Motivating Example

We motivate the usefulness of the numerical Max-CSP approach on a problem
of virtual camera placement (VCP), which consists in positioning a camera in
a 2D or a 3D environment w.r.t. constraints defined on the objects of a virtual
scene.

Within a classical CSP framework, these cinematographic properties are trans-
formed into numerical constraints in order to find an appropriate camera position
and orientation. One of the counterparts of the expressiveness offered by the con-
straint programming framework lies in the fact that it is easy for the user to specify
an over-constrained problem. In such cases, classical solvers will output a no solu-
tion statement and does not provide any information neither on why the problem
was over-constrained nor on how it could be softened. The Max-CSP framework
will, on the other hand, explore the search space in order to compute the set of
configurations that satisfy as many constraints as possible. This provides a clas-
sification of the solutions according to satisfied constraints and enables the user
to select one, or to remodel the problem.

Fig. 1. Top-view of a 3D scene representing camera’s position search space for a
VCP problem. Orientations of objects are represented by colored areas, shot distances
are represented as circles. Dark areas represent the max-solution regions of the over-
constrained problem.



A Branch and Bound Algorithm for Numerical MAX-CSP 207

For the purpose of illustration, we present a small over-constrained problem.
The scene consists of three characters defined by their positions, and by an
orientation vector (that denotes the front of the character). VCP frameworks
generally provide the angle property that specifies the orientation the character
should have on the screen (i.e., profile, etc.), and the shot property that specifies
the way a character is shot on the screen.

In Figure 1, a sample scene is displayed with three characters, each of which
must be viewed from the front and with a long shot. The regions corresponding
to each property are represented (wedges for the angle property and circles for
the shot distance). No region of the space fully satisfies all the constraints. The
solution of the Max-CSP are represented as dark areas. The solving process
associated to this simple example is provided in section 7.1.

3 The Max-CSP Framework

This section is dedicated to the Max-CSP framework and its related concepts.
According to [1,2], a Max-CSP P is a triplet 〈V,D, C〉 where V = {x1, . . . , xn},
D = {D1, . . . , Dn} and C = {c1, . . . , cm} are respectively a set of variables, a set
of domains assigned to each variable and a set of constraints. For clarity sake,
we use vectorial notations where vectors are denoted by boldface characters:
the vector x = (x1, . . . , xn) represents the variables and D is interpreted as the
Cartesian product of the variables domains. To define solutions of a Max-CSP,
a function si is first defined for each constraint ci as follows: ∀x ∈ D, si(x) = 1
if ci(x) is true and si(x) = 0 otherwise. Then, the maximum number of satisfied
constraint is denoted by mP and formally defined as follows:

mP := max
x∈D

∑
i

si(x). (1)

We denote MaxSol(P) the solution set of the numerical Max-CSP. Formally, the
following set of solution vectors:

MaxSol(P) =
{
x ∈ D :

∑
i

si(x) = mP
}
. (2)

4 Interval Analysis for Numerical CSPs

Numerical CSPs present the additional difficulty of dealing with continuous do-
mains, not exactly representable in practice. As a consequence, it is impossible to
enumerate all the values that can take variables in their domains. Interval anal-
ysis (cf. [3,4]) is a key framework in this context: soundness and completeness
properties of real values belonging to some given intervals can be ensured using
correctly rounded computations over floating point numbers. We now present
basic concepts allowing us to ensure that an interval vector contains no solution
(resp. only solutions) of an inequality constraint.
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4.1 Intervals, Interval Vectors and Interval Arithmetic

An interval [x] with representable bounds is called a floating-point interval. It is
of the form: [x] = [x, x] = {x ∈ R : x ≤ x ≤ x} where x, x ∈ F. The set of all
floating-point intervals is denoted by IF. An interval vector (also called a box)
[x] = ([x1], . . . , [xn]) represents the Cartesian product of the n intervals [xi]. The
set of interval vectors with representable bounds is denoted by IFn.

Operations and functions over reals are also replaced by an interval extension
having the containment property (see [5]).

Definition 1 (Interval extension [3]). Given a real function f : Rn → R, an
interval extension [f ] : IFn → IF of f is an interval function verifying

[f ]([x]) ⊇ {f(x) : x ∈ [x]}. (3)

The interval extensions of elementary functions can be computed formally thanks
to their simplicity, e.g., for f(x, y) = x + y we have [f ]([x], [y]) = [x + y, x + y].
To obtain an efficient framework, these elementary interval extensions are used
to define an interval arithmetic. For example, the interval extension of f(x, y) =
x+ y is used to define the interval addition: [x]+ [y] = [x+ y, x+ y]. Therefrom,
an arithmetical expression can be evaluated for interval arguments. The funda-
mental theorem of interval analysis [5] states that the interval evaluation of an
expression gives rise to an interval extension of the corresponding real function:
For example

[x] + exp([x] + [y]) ⊇ {x + exp(x + y) : x ∈ [x], y ∈ [y]}. (4)

4.2 Interval Contractors

Discarding all inconsistent values from a box of variables domains is intractable
when the constraints are real ones. There exists many techniques to obtain con-
tractors, like 2B consistency (also called hull consistency) [6,7], box consistency [8]
or interval Newton operator [3]. Those methods rely on outer contracting oper-
ators that discard values according to a given consistency. These methods are
instances of the local consistency framework in artificial intelligence [9].

Definition 2 (Interval contracting operator). Let c be an n-ary constraint,
a contractor for c is a function Contractc : IFn −→ IFn which satisfies

x ∈ [x] ∧ c(x) =⇒ x ∈ Contractc([x]). (5)

Experiments of Section 7 are performed with two different contractors dedicated
to inequality constraints f(x) ≤ 0. The first is called the evaluation contractor
and is defined as follows: Given an interval extension [f ] of f

Contractf(x)≤0(x) =
{
∅ if [f ]([x]) > 0
[x] otherwise. (6)
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The second, called the hull contractor, is based on the hull consistency, cf. [6,7]
for details1.

Interval contractors can be used to partition a box into smaller boxes where
the constraint can be decided. To this end, we introduce the inflated set difference
as follows: idiff([x], [y]) is a set of boxes {[d1], . . . , [dk]} included in [x] such that
[di]∩ [y] = ∅ and [d1]∪· · ·∪ [dk]∪ [y]⊕ = [x], where [y]⊕ is the smallest box that
strictly contains [y]. The inflated set difference is illustrated in two dimensions
in Figure 2. In this way, idiff([x],Contractf(x)≤0([x])) constructs a set of boxes
which are all proved to contain no solution. Following [10,11] this technique
can also be used to compute boxes that contain only solutions, applying the
contractor to the negation of the constraint: idiff([x],Contractf(x)>0([x])) is a set
of boxes that contain only solutions. Let us illustrate this process on a simple
example. Consider the CSP 〈x, [−1, 1], x ≤ 0〉. Then Contractx≤0([−1, 1]) =
[−1, 0] and idiff([−1, 1], [−1, 0]) = [0⊕, 1], where 0⊕ is the smallest representable
number bigger than 0. The constraint x ≤ 0 is therefore proved to be false
inside [0⊕, 1]. The domain [−1, 0⊕] remains to be processed, and we look for
solutions therein by computing Contractx>0([−1, 0⊕]) = [0, 0⊕]. We use again
idiff([−1, 0⊕], [0, 0⊕]) = [−1, 0�] (where 0� is the largest representable number
lower than 0) to infer that [−1, 0�] contains only solutions. Finally, the constraint
cannot be decided for the values of the interval [0�, 0⊕].

5 The Algorithm

The main idea of the algorithm is to attach to each box the set of constraints that
were proved to be satisfied for all vectors of this box (S) and the set of constraints
that have not been decided yet (U). Then, using inner or outer contractions
and bisections, we can split the box into smaller boxes where more constraints
are decided. We thus propose the definition of SU-boxes representing a triplet
consisting of a box [x] and the two sets of constraints described above. The
formal definition of a SU-box is given in the first subsection and the usage of
outer and inner contractions is described in the next three subsections. Finally
the branch and bound algorithm for numerical Max-CSP is given in the last
subsection.

5.1 SU-Boxes

The main idea of our algorithm is to associate to a box [x] the sets of constraints
S and U which respectively contain the constraints proved to be satisfied for
all vectors in [x] and the constraints which remain to be treated. Such a box,
altogether with the satisfaction information of each constraints is called a SU-
box 2 and is denoted by 〈[x],S,U〉. The following definition naturally links a
SU-box with a CSP:
1 A contractor based on box consistency could also be used but their optimality be-

tween hull and box consistency is problem dependent.
2 SU-boxes have been introduced in [12] in a slightly but equivalent way.
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Algorithm 1. Branch and Bound Algorithm for MAX-CSP
Input: P = 〈x, C, [x]〉, ε
Output: ([m,m],M,B)
L ← {〈[x], ∅,U〉}; /* SU-boxes to be processed */1

E ← {}; /* Epsilon SU-boxes */2

D ← {}; /* SU-boxes where every constraint is decided */3

m ← MultiStartLocalSearch(P , [x])3; /* Lower bound on max */4

while ( ¬empty(L) ) do5

〈[x],S,U〉 ← extract(L)4;6

if ( wid ([x]) < ε ) then7

E ← E ∪ {〈[x],S,U〉};8

else9

T ← {〈[x],S,U〉};10

foreach ( c ∈ U ) do11

[y] ← Contractc([x]);12

T ← InferLSUouter(T , [y], c);13

T ← {〈[x],S,U〉 ∈ T : (#S) + (#U) ≥ m};14

[y] ← Contract¬c([x]);15

T ← InferLSUinner(T , [y], c);16

end17

foreach ( 〈[x′],S′,U ′〉 ∈ T ) do18

if ( (#S′) > m ) then m← (#S′);19

if ( (#U ′) = 0 ) then20

D ← D ∪ {〈[x]′,S′, ∅〉};21

else22

{[x1], [x2]} ← Bisect([x′])5;23

L ← L ∪ {〈[x1],S′,U ′〉, 〈[x2],S′,U ′〉};24

end25

end26

end27

end28

m← max{(#S) + (#U) : 〈[x],S,U〉 ∈ D ∪ E};29

if ( m = m ) then30

M← {〈[x],S,U〉 ∈ D : (#S) ≥ m};31

B ← {〈[x],S,U〉 ∈ E : (#S) + (#U) ≥ m};32

else33

M← ∅;34

B ← {〈[x],S,U〉 ∈ D ∪ E : (#S) + (#U) ≥ m};35

return ([m,m],M,B);36

6 Constraints satisfaction is considered on uniformly distributed random points in [x],
the lower bound m being updated accordingly.

7 SU-boxes are stored in L according to (#S) + (#U), most interesting (i.e., highest
(#S) + (#U)) being extracted first.

8 Bisect splits the box [x′] into two equally sized smaller boxes [x1] and [x2].
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Fig. 2. Diagrams (a) and (b) show the constraint c (satisfied in dark gray regions
and unsatisfied in light gray regions), the initial SU-box 〈[x],S ,U〉 and the contracted
box [y] for two different situations: (a) outer contraction and (b) inner contraction for
constraint c. Diagram (c): Five new SU-boxes inferred from the contraction of [x] to [y].
The contraction does not provide any information on the SU-box ⊕ = 〈[x]∩ [y],S ,U〉,
hence its sets of constraints remain unchanged. The SU-boxes ⊗ = 〈[x′],S ′,U ′〉 are
proved to contain no solution of c (if outer pruning was applied) or only solutions (if
inner pruning was applied), their sets of constraint can thus be updated: U ′ = U\{c},
and, S ′ = S for outer pruning, while S ′ = S ∪ {c} and U ′ = U for inner pruning.

Definition 3. Let P be a CSP whose set of constraints is C. Then, a SU-box
〈[x],S,U〉 is consistent with P if and only if the three following conditions hold:

1. (S ∪ U) ⊆ C and (S ∩ U) = ∅
2. ∀x ∈ [x] , ∀c ∈ S , c(x) (the constraints of S are true everywhere in [x])
3. ∀x ∈ [x] , ∀c ∈ (C\(S ∪ U)) , ¬ c(x) (the constraints of C which are neither

in S nor in U are false everywhere in [x]).

A SU-box 〈[x],S,U〉 will be denoted by 〈x〉, without any explicit definition
when there is no confusion. Given a SU-box 〈x〉 := 〈[x],S,U〉, [x] is denoted
by box(〈x〉) and called the domain of the SU-box.

5.2 The Function InferSUouter

Let us consider a SU-box 〈[x],S,U〉, a box [y] ⊆ [x] and a constraint c, where
the box [y] is obtained computing [y] = Contractc([x]). Therefore, every box of
idiff([x], [y]) does not contain any solution of c. This is illustrated by Figure 2.
The SU-boxes formed using these boxes can thus be improved discarding c from
their set of constraint U . This is formalized by the following definition:

Definition 4. The function InferSUouter(〈[x],S,U〉, [y], c) returns the following
set of SU-boxes:

{〈[x′],S,U ′〉 : [x′] ∈ idiff([x], [y])} ∪ {〈[y]⊕ ∩ [x],S,U〉}, (7)

where U ′ = U\{c}.

Here, the box [x] is partitioned to idiff([x], [y]) and [y]⊕ ∩ [x]. Each of these
boxes is used to form new SU-boxes, with a reduced set of constraints U ′ for the
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SU-boxes coming from idiff([x], [y]). This is formalized by the following proposi-
tion, which obviously holds:

Proposition 1. Let 〈x〉 := 〈[x],S,U〉 be a SU-box consistent with a CSP P, c ∈
U and [y] satisfying x ∈ ([x]\[y]) ⇒ ¬ c(x). Define T := InferSUouter(〈x〉, [y], c).
Then the SU-boxes of T are all consistent with P. Furthermore, ∪{box(〈x′〉) :
〈x′〉 ∈ T } is equal to [x].

5.3 The Function InferSUinner

This function is the same as InferSUouter, but dealing with inner contraction. As a
consequence, the only difference is that, instead of just discarding the constraint
c from U for the SU-boxes outside [y], this constraint is stored in S. Figure 2 also
illustrates these computations. The following definition and proposition mirror
Definition 4 and Proposition 1.

Definition 5. The function InferSUinner(〈[x],S,U〉, [y], c) returns the following
set of SU-boxes:

{〈[x′],S′,U ′〉 : [x′] ∈ idiff([x], [y])} ∪ {〈[y]⊕ ∩ [x],S,U〉}, (8)

where S′ = S ∪ {c} and U ′ = U\{c}.

Proposition 2. Let 〈x〉 := 〈[x],S,U〉 be a SU-box consistent with a CSP P, c ∈
U and [y] satisfying x ∈ ([x]\[y]) ⇒ c(x). Define T := InferSUinner(〈x〉, [y], c).
Then the SU-boxes of T are all consistent with P. Furthermore, ∪{box(〈x′〉) :
〈x′〉 ∈ T } is equal to [x].

5.4 The Function InferLSUtype

Finally, the functions InferSUouter and InferSUinner are naturally applied to a
set of SU-boxes T in the following way:

InferLSUtype(T , [y], c) :=
⋃

〈x〉∈T
InferSUtype(〈x〉, [y], c), (9)

where type is either outer or inner. This process is illustrated by Figure 3. As a
direct consequence of propositions 1 and 2, the following proposition holds:

Proposition 3. Let T be a set of SU-boxes, each of them being consistent
with a CSP P, and [y] satisfying x ∈ ([x]\[y]) ⇒ ¬ c(x) (respectively x ∈
([x]\[y]) ⇒ c(x)). Define T ′ := InferLSUouter(〈x〉, [y], c) (respectively T ′ :=
InferLSUinner(〈x〉, [y], c)). Then the SU-boxes of T ′ are all consistent with P.
Furthermore,

∪{box(〈x′〉) : 〈x′〉 ∈ T ′} = ∪{box(〈x′〉) : 〈x′〉 ∈ T }. (10)
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Fig. 3. Left hand side: Boxes obtained from Figure 2. The box [y] represents the
contraction (inner or outer) of a box. Right hand side: The process illustrated by
Figure 2 is repeated for each box [xk], leading to twelve new SU-boxes, among which
⊗k have their sets of constraints updated.

5.5 The Branch and Bound Algorithm

Algorithm 1 uses three sets of SU-boxes L (SU-boxes to be proceeded), D (SU-
boxes where all constraints are decided, i.e., where (#U) = 0) and E (SU-
boxes that will not be processed anymore because considered as too small). The
mainline of the while-loop is to maintain the following property:

MaxSol(P) ⊆
⋃{

box(〈x〉) : 〈x〉 ∈ L ∪ D ∪ E
}
, (11)

while using inner and outer contractions and the function InferLSUtype to decide
more and more constraints (cf. lines 11–17), and hence moving SU-boxes from
L to D (cf. Line 21). Note that a lower bound m for mP is updated (cf. Line
19) and used to drop SU-boxes that are proved to satisfy less constraints than
m (cf. Line 14). When L is finally empty, (11) still holds and hence:

MaxSol(P) ⊆ ∪{box(〈x〉) : 〈x〉 ∈ D ∪ E}. (12)

Eventually, the sets of SU-boxes D and E are used to obtain new sets of SU-
boxes M and B, which describe the max-solution set (i.e., both the inner and
outer approximation of the solution set of the NCSP), and an interval [m,m] for
mP . We already have a lower bound m on mP . Now, as (11) holds, an upper
bound can be computed in the following way:

m = max{(#S) + (#U) : 〈[x],S,U〉 ∈ D ∪ E}. (13)

Two cases can then happen, which are handled at lines 29–36:

1. If m = m then the algorithm has succeeded in computing mP , which is
equal to m = m. In this case the domains of the SU-box of D are proved to
contain only max-solutions of P :

∀〈x〉 ∈ D , box(〈x〉) ⊆ MaxSol(P). (14)

Furthermore, the max-solutions which are not in D obviously have to be in the
SU-box of:

B = {〈[x],S,U〉 ∈ E : (#S) + (#U) ≥ m}. (15)

As a consequence, the algorithm outputs both an inner and an outer approxi-
mation of MaxSol(P).
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2. If m < m, mP is still proved to belong to the interval [m,m]. However, the
algorithm has not been able to compute any solution of the Max-CSP P , hence
M = ∅. In this case, all the max-solutions are obviously in the domains of the
SU-boxes of:

B = {〈[x],S,U〉 ∈ D ∪ E : (#S) + (#U) ≥ m}. (16)

As a consequence of Proposition 3, constraints are correctly removed U and
possibly added to S while no solution is lost. This ensures the correctness of the
algorithm (a formal proof is not presented here due to lack of space).

Remark 1. The worth case complexity of the foreach-loop at lines 11–17 is ex-
ponential with respect to the number of constraints in U . Indeed, the worth case
complexity of the loop running through lines 11–17, is (2n)q, where n is the
dimension and q is the number of constraints. This upper bound is is very pes-
simistic, and not met in any typical situation. Nonetheless, we expect a possibly
high number of boxes generated during the inflated set difference process when
the number of constraints is important. In order to bypass this complexity issue,
that could lead the algorithm to generate too many boxes within the outer and
inner contractions steps, we have chosen to switch between different contracting
operators. As soon as the number of constraints becomes greater than a thresh-
old (tc), contractions are performed with the evaluation contractor instead of
the hull contractor. This will reduce creation of boxes within the inner and outer
contracting steps, thus preventing the algorithm from falling into a complexity
pit. Experiments on relatively high number of constraints (cf. Section 7.2) have
shown that tc should be set between 5 and 10 in order to speed up the solving
process.

6 Related Work

A large literature is related to Max-CSP frameworks and solving techniques.
Most formulate the problem as a combinatorial optimisation one by minimiz-
ing the number of violated constraints. Approaches are then shared between
complete and incomplete techniques depending on the optimality criterion and
the size of the problem. For large problems, heuristic-based techniques such as
Min-conflict [13] and Random-walk [14] have proved to be efficient as well as
meta-heuristic approaches (Tabu, GRASP, ACO). However all are restricted to
the study of binary or discrete domains, and their extension to continuous values
requires to redefine the primitive operations (e.g., move, evaluate, compare, etc.).
Though some contributions have explored such extensions for local optimisation
problems (cf. e.g., Continuous-GRASP[15]), these are not dedicated to manage
numerical Max-CSPs. More general techniques built upon classical optimization
schemes such as Genetic Algorithms, Simulated Annealing or Generalized Gra-
dient can be employed to express and solve Max-CSPs, but do not guarantee
the optimality of the solution, nor compute a paving of the search space.

Regardless the fact that applications of CSP techniques in continuous domains
are less numerous than in discrete domains, both present the same need for
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Max-CSP models. Interestingly very few contributions have explored this class
of problems when optimality is required. Here, we report the contribution of
Jaulin et al. [16] that looks at a problem of parameter estimation with bounded
error measurements. The paper considers the number of error measurements
as known (i.e., mP is given beforehand) and the technique computes a Max-
CSP approximation over a continuous search space by following an incremental
process that runs the solving for each possible value of mP and decides which is
the correct one. At each step the technique relies on an evaluation-bisection.

7 Experiments

7.1 Camera Control Problem

This subsection is dedicated to the virtual camera placement example presented
in section 2. Let us recall briefly that this motivating example involves 2 variables
and 6 constraints expressed as dot products and Euclidian distances in 2D. The
corresponding paving is shown in Figure 4 while results are presented in Table 1
within the search space {[−30; 30], [1; 30]} with ε = 0.01.

Although Christie et al. [18] do not compute an outer and and inner approxi-
mation of the solution set of the Max-CSP (they only aim at computing an inner
approximation), their approach is similar enough to compare timings obtained
on the VCP example.

An advantage of our algorithm is that each SU-box contains the set of con-
straints that are fulfilled within this box. We are thus able to give the user

Fig. 4. Pavings generated by our algorithm on the VCP problem. Red boxes repre-
sent the max solution set (cf. Figure 1), while green boxes illustrate boundary boxes
encompassing the solution set.

Table 1. Approximated timings thanks to [17] for the VCP example between our
approach (PentiumM750 laptop, 1Go RAM) and Christie et al. [18](Pentium T7600
2.33Ghz 2Go RAM)

Method ε Toriginal (seconds) Tapprox (seconds)

Max-NCSP 0.01 3.2 3.2

Christie et al. 0.01 4.8 ≈ 15
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information on which constraint is fulfilled in each part of the search space,
allowing him to choose between the different solutions of the over-constrained
problem. Indeed Figure 4 shows that the search space is divided into three con-
nected components each encompassing a different set of equivalent solutions.
An automatic connected component identification algorithm (cf. [19]) could be
processed after solving a problem with our algorithm in order to present the
user the sets of equivalent SU-boxes, allowing him to choose which constraint he
wants to be relaxed into the original problem.

7.2 The Facility Location Problem

This example is based on a well-known problem in Operational Research: the
facility location problem [20]. The problem is defined by a number of customer
locations that must be delivered by some facilities. We consider that a customer
c can be served by a facility f if the distance between f and c is smaller than
a delivery distance d. The problem consists in finding the smallest number of
facilities such that each customer can be served by at least one facility.

Although the facility location problem is not strictly speaking a Max-CSP,
we can use the Max-CSP framework to build a greedy algorithm to find an
estimation of the number of facilities. The idea consists in computing the Max-
CSP areas of the problem which corresponds to the areas of the search space that
maximises customers delivery. Instead of computing the whole MaxSol paving,
we stop the algorithm as soon as we have found a MaxSol SU-box 〈[xm],Sm,Um〉.
We then remove from the original problem all the constraints of Sm and re-
run the algorithm again. We stop when the problem is empty, i.e., when all
the constraints have been solved. The numbers of runs of the algorithm then
correspond to a number of facilities that solves the problem.

In order to test our greedy algorithm, we have implemented a basic OR tech-
nique to solve the same problem (i.e., discretisation of the search space and
resolution of a linear integer programming problem) in Wolfram Mathematica6.

In 3D this problem boils down to modeling each customer by a random 3D
position in the search space {[−5; 5], [−5; 5], [−5; 5]} and trying to position some
facilities such that the distance between the facility and the customer is inferior
to d = 2. Results are shown in Table 2. The solution found by our algorithm
involves 3× 39 variables (3 coordinates per computed facility). Each iteration of
our algorithm removes on average 13 constraints (ranging from 33 to 1 constraint
removed at each iteration) of the 500 original ones.

Although, this basic OR technique seems less efficient than our greedy algo-
rithm, this is at least encouraging and thorough experiments need to be carried
out to compare our greedy approach with more specific OR techniques.

7.3 Parameter Estimation with Bounded Error Measurements

This experiment is based on a parameter estimation problem presented in [16].
The problem consists in determining unknown parameters p = (p1,p2) ∈
6 The corresponding Mathematica notebook is available for download at
http://www.goldztejn.com/src/FacilityLocation3D.nb.

http://www.goldztejn.com/src/FacilityLocation3D.nb
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Fig. 5. Paving generated for 3 possible outliers. Red boxes represent inner approxi-
mation (i.e., satisfying at least 7 of the 10 constraints) while green boxes illustrate
boundary boxes encompassing the solution set.

Table 2. Timings for the facility location problem for 500 customers randomly gener-
ated in {[−5; 5], [−5; 5], [−5; 5]} on a PentiumM750 laptop, 1Go RAM

Method Time (seconds) Number of facilities

Greedy Num. Max-CSP 69.25 39

Basic OR technique ≈ 140 45

Table 3. Original and approximate timings obtained from a Pentium M750 laptop
processor (Max-NCSP) and from a 486 DX4-100 processor (Jaulin et al.) thanks to [17]

Method ε bisection Toriginal (seconds) Tapprox (seconds)

Max-NCSP 0.005 0.46 0.46

Jaulin et al. 0.005 ≈ 180 ≈ 1.9

([−0.1,1.5], [−0.1,1.5]) of a physical model thanks to a set of experimental
data obtained from a system.

Here the model used is a two-parameter estimation problem taken from Jaulin
and Walter [21] which is a 2D extension of a problem presented by Milanese
and Vicino [22]. In fact, the solution set of the Max-CSP does not contain the
true parameters values. Indeed, the maximum number of satisfied constraints is
9, while there are 2 outliers. This means that an outlier is compatible with the
other error measurements. Hence, the Max-CSP cannot directly help solving this
problem. From an application point of view, it is possible to provide an upper
bound on the number of outliers (this assumption is realistic since manufacturers
are able to ensure a percentage of maximum failures of their probes). Algorithm 1
is easily modified to output the set of vectors which satisfy at least a fixed number
of constraints instead of the solution set of the Max-CSP.

In order to compare our approach with [16], we set a maximum of 3 outliers,
Figure 5 shows the corresponding paving. Although Jaulin et al. do not compute
an inner and outer approximation of the solution set, Table 3 compares our re-
sults. Approximate timings have been computed using [17] in order to compare



218 J.-M. Normand et al.

the results that were obtained on totally different computers. Time comparisons
are presented to give an idea of the gain offered by our algorithm, which is ap-
proximately 4 times more efficient (although no exact comparison of the pavings
computed by the two algorithms is possible, the pavings presented in [16] are
clearly less accurate than the pavings computed by our approach). Moreover, we
want to emphasize on the fact that our algorithm is much more scalable since
Jaulin et al. have to re-run their algorithm for each possible number of outliers
whereas we only need one run to compute the solution set of the Max-CSP.
Moreover our approach fully characterize this solution set w.r.t. the satisfied
constraints of the algorithm.

8 Conclusion

In this paper we have presented a branch and bound algorithm for numerical
Max-CSP that computes both an inner and an outer approximation of the so-
lution set of a numerical Max-CSP. The algorithm is based on the notion of
SU-box that stores the sets of constraints Satisfied or Unknown for each box of
the search space. Our method can address any kind of CSP: well-constrained,
under-constrained and over-constrained. The algorithm outputs a set of boxes
that encompass the inner and outer approximation of the solution set of a nu-
merical Max-CSP. For each box, it computes the sets of constraints that are
satisfied, thus giving the user additional information on the classes of solutions
of the problem. An algorithm of connected component identification could then
be applied on the solution SU-boxes in order to create regions of the search space
that share similar characteristics (i.e., that satisfies the same constraints). Users
could thus benefit from this feature when modeling conceptual design problems
for example.

Our algorithm could be extended to manage hierarchical constraints in a
predicate locally-better way [23]. Hierarchical constraints could be modeled as
different “layers” of numerical Max-CSP problems that could be solved in se-
quence, starting from the top-priority constraints down to the lowest ones and
maximizing constraints satisfaction of each “layer” of hierarchical constraints.
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Abstract. This paper presents a global constraint that enforces rules written in
a language based on arithmetic and first-order logic to hold among a set of ob-
jects. In a first step, the rules are rewritten to Quantifier-Free Presburger Arith-
metic (QFPA) formulas. Secondly, such formulas are compiled to generators of
k-dimensional forbidden sets. Such generators are a generalization of the index-
icals of cc(FD). Finally, the forbidden sets generated by such indexicals are ag-
gregated by a sweep-based algorithm and used for filtering.

The business rules allow to express a great variety of packing and place-
ment constraints, while admitting effective filtering of the domain variables of
the k-dimensional object, without the need to use spatial data structures.

1 Introduction

This paper extends a global constraint geost(k,O,S,R) for handling the location in
space of k-dimensional objects O (k ∈ N+), each of which taking a shape among a
set of shapes S, subject to rules R in a language based on arithmetic and first-order
logic. This language can also be seen as a natural target constraint of the Rules2CP
modeling language [1].

In order to model directly a lot of side constraints, which always show up in the con-
text of real-life applications, many global constraints have traditionally been extended
with extra options or arguments. This is why, in a closely related area, the diffn con-
straint [2] of CHIP provides, beside non-overlapping, a variety of other geometrical
constraints (in fact more than 10 side constraints). Even if this makes sense when one
wants to efficiently solve specific real-life applications, this proliferation of arguments
and options has two major drawbacks:

– Having a lot of ad-hoc side constraints is too specific and can sometimes be quite
frustrating since it does not allow to express a variant of an existing side constraint.

– Designing a filtering algorithm for each side constraint independently is not enough
and managing the interaction of several side constraints becomes more and more
challenging as the number and variety of side constraints increase.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 220–234, 2008.
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The approach presented in this paper addresses these two issues in the following way:

– Firstly, having a rule language for expressing side constraints is obviously more
flexible than having a large set of predefined side constraints.

– Secondly, as we will see later on, our filtering algorithms allow to directly take into
account the interaction between all rules.

In geost(k,O,S,R), each shape from S is defined as a finite set of shifted boxes,
where each shifted box is described by a box in a k-dimensional space at the given
offset with the given sizes. More precisely a shifted box s ∈ S is an entity defined by
its shape id s.sid , shift offset s.t[d], 1 ≤ d ≤ k, and sizes s.l[d] (where s.l[d] > 0 and
1 ≤ d ≤ k). All attributes of a shifted box are integer values. A shape is a collection of
shifted boxes all sharing the same shape id.

Each object o ∈ O is an entity defined by its unique object id o.oid (an integer),
shape id o.sid (an integer if the object has a fixed shape, or a domain variable for
polymorphic objects, which have alternative shapes), and origin o.x[d], 1 ≤ d ≤ k (in-
tegers, or domain variables that do not occur anywhere else in the constraint).1 Objects
and shifted boxes may also have additional, integer (but see also Section 6) attributes,
such as weight, customer, or fragility, used by the rules.

Each rule inR is a first-order logical formula over the attributes of objects and shifted
boxes. From the point of view of domain filtering, the main contribution of this paper is
that multi-dimensional forbidden sets can be automatically derived from such formulas
and used by the sweep-based algorithm of geost [3].2 This contrasts with the previous
version of geost, where an ad-hoc algorithm computing the multi-dimensional forbid-
den sets had to be worked out for each side constraint. R may also contain macros,
providing abbreviations for expressions occurring in formulas or in other macros.

The rule language. The language that makes up the rules to be enforced by the geost
constraint is based on first-order logic with arithmetic, as well as several features includ-
ing macros, bounded quantifiers, folding and aggregation operators. We will show how
all but a core fragment of the language can be eliminated by equivalence-preserving
rewriting. The remaining fragment is a subset of Quantifier-Free Presburger Arithmetic
(QFPA), which has a very simple semantics and, as we also will show, is amenable to
efficient compilation.

Constraint satisfaction problems using quantified formulas (QCSP) have for instance
been studied by Benedetti et al. [4], mostly in the context of modeling games. QCSP
does not provide disjunction but actively uses quantifiers in the evaluation, whereas we
eliminate all quantifiers in the process of rewriting to QFPA.

Example 1. This running example will be used to illustrate the way we compile rules
to code used by the sweep-based algorithm [3] for filtering the nonground attributes of
each object. Suppose that we have five objects o1, o2, o3, o4 and o5 such that:

1 A domain variable v is a variable ranging over a finite set of integers denoted by dom(v); v
and v denote respectively the minimum and maximum possible values for v.

2 The sweep-based algorithm performs recursive traversals of the placement space for each co-
ordinate increasing as well as decreasing lexicographic order and skips unfeasible points that
are located in a multi-dimensional forbidden set.
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– o1, o2 and o4 are rectangles fixed at (1, 2), (3, 3) and (3, 7) of respective size 3×1,
1× 1 and 3× 1.

– The rectangle o3 is fixed at (2, 5) but not its shape variable s3, which can take
values corresponding to size 1 × 2 or 2 × 1. We will denote by �31 resp. �32 the
length resp. height of o3.

– The coordinates of the non-fixed square o5 of size 2 × 2 correspond to the two
variables x51 ∈ [1, 9] and x52 ∈ [1, 6].

– o2, o4 and o5 have the additional attribute type with value 1 whereas o1 and o3 have
type with value 2.

– Two rules must be obeyed; see Fig. 1:
• All objects should be mutually non-overlapping .
• If the type attribute of two objects both equal 1, the two

objects should not touch, not even their corners .
– The figure on the right shows one solution.

1 2 3 4 5 6

1

3

4

5

6

7

2

overlap(D, oi, si, oj , sj) →
∀d ∈ D : end(oi, si, d) > ori(oj , sj , d) ∧ end(oj , sj , d) > ori(oi, si, d)

meet(D, oi, si, oj , sj) →
(∀d ∈ D : end(oi, si, d) ≥ ori(oj , sj , d) ∧ end(oj , sj , d) ≥ ori(oi, si, d))∧
(∃d ∈ D : end(oi, si, d) = ori(oj , sj , d) ∨ end(oj , sj , d) = ori(oi, si, d))

all not overlap(D, OIDs) →
∀oi ∈ OIDs, ∀si ∈ oi.sid ,∀oj ∈ OIDs :

oi.oid < oj .oid ⇒ (∀sj ∈ oj .sid : ¬overlap(D, oi, si, oj , sj))
all type1 not meet(D,OIDs) →

∀oi ∈ OIDs, ∀si ∈ oi.sid ,∀oj ∈ OIDs :
oi.oid < oj .oid ∧ oi.type = 1 ∧ oj .type = 1 ⇒

∀sj ∈ oj .sid : ¬meet(D, oi, si, oj , sj)
all not overlap sboxes([1, 2], [1, 2, 3, 4, 5])
all type1 not meet sboxes([1, 2], [1, 2, 3, 4, 5])

Fig. 1. Macros and rules of the running example. ori(o, s, d) (resp. end(o, s, d)) stands for the
origin (resp. end) in dimension d object o with shape s.

Declarative semantics. As usual, the semantics is given in terms of ground objects. The
constraint geost(k,O,S,R) holds if and only if the conjunction of the logical formulas
inR is true.

Implementation overview. Fig. 2 provides the overall architecture of the implemen-
tation. When the geost constraint is posted, the given business rules are translated,
first into QFPA, then into generators of k-dimensional forbidden sets. Such genera-
tors, k-indexicals, are a generalization of the indexicals of cc(FD) [5]. Each time the
constraint wakes up, the sweep-based algorithm [3] generates forbidden sets for a spe-
cific object o by invoking the relevant k-indexicals, then looks for points that are not
contained in any forbidden set in order to prune the nonground attributes of o.
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S,
R)

geost(k, % number of dimensions
% objects
% shapes
% business rules

Formula: core fragment, i.e.
Quantifier−Free
Presburger
Arithmetic

RUN−TIMECOMPILATION

GEOMETRICAL KERNEL

CONSTRAINT

INTERMEDIATE
REPRESENTATION

(rewriting and
partial evaluation)

COMPILATION/PHASE 1

Sweep−point algorithm

(producing code for not in

from QFPA formulas)
generating forbidden sets

COMPILATION/PHASE 2

 k−indexicals code to generate
[L1,U1], ..., [Lm,Um]

combined by union and intersection

may depend on the minimum or
where Li, Ui are expressions that

maximum value of some variables

FILTERING
(the sweep−point algorithm
 calls the appropriate

forbidden sets for pruning

k−INDEXICALS CODE

(o.x[1], o.x[2], ... , o.x[k])

a specific object o)

O,

Fig. 2. Overall architecture of the implementation

Paper outline. In Section 2, we present the rule language, its abstract syntax and its fea-
tures. In Section 3, we present the QFPA core fragment of the language, its declarative
semantics, and how the rule language is rewritten into QFPA. In Section 4, we de-
scribe (1) how a QFPA formula is compiled to generators of k-dimensional forbidden
sets, and (2) how the forbidden sets generated by such generators are aggregated by a
sweep-based algorithm and used for filtering. In Section 5, we provide experimental ev-
idence for search space reduction due to the global treatment of side constraints. Before
concluding, in Section 6, we mention a number of issues that we are currently working
on. An expanded version of this paper is available as a technical report [6]. In partic-
ular, see [6, Section 5] for an extension of the filtering to accommodate polymorphic
objects.

2 The Rule Language: Syntax and Features

A sentence is either a macro or a fol. A macro is simply a shorthand device: during
a rewriting phase, whenever an expression matching the left-hand side of a macro is
encountered, it is replaced by the corresponding right-hand side. A fol is a first-order
logic formula that must hold for the constraint to be true, and is one of: a comparison be-
tween two arithmetic expressions, the constant true or false, a cardinality formula
#(var , collection , integer , integer , fol ), a quantified formula ∀(var , collection , fol)
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or ∃(var , collection , fol), or formulas combined with logical connectives: ¬fol , fol ∧
fol , fol ∨ fol , fol ⇒ fol , or fol ⇔ fol .

An expr (arithmetic expression) is an integer, an attref (a reference to an at-
tribute of an entity, where an entity is an object or a shifted box), a fold expres-
sion @(var , collection , ◦, expr , expr) where ◦ ∈ {+,min,max}, or an expression
expr ◦expr where ◦ ∈ {+,−,×, /,min,max}. Arithmetic expressions must be linear:
in a product, at most one factor can be nonground; in a quotient, the divisor must be
ground.

A collection is the shorthand objects(S), denoting the collection of objects with
object id in S, or the shorthand sboxes(S) denoting the collection of shifted boxes
with shape id in S, or a list of terms, where a term is a variable, an integer, an identifier,
or a compound term. A compound term consists of a functor (an identifier) and one or
more arguments (terms). A term is ground if it is free of variables.

Quantified formulas are meaningful if the quantified variable occurs in the quantified
fol. They are treated by expansion to a disjunction resp. a conjunction of instances of
that fol where each element of the collection is substituted for the quantified variable.
In the context of our application, quantified variables typically vary over a collection of
dimensions, objects, or shifted boxes.

A cardinality formula specifies a variable quantified over a list of terms, a lower and
an upper bound, and a fol template mentioning the quantified variable. The formula is
true if and only if the number of true instances of the fol template is within the given
bounds. Cardinality formulas [7] are treated by expansion to¬, ∧ and∨ connectives [8].

Arithmetic expressions and comparisons are over the rational numbers. The rationale
for this is that business rules often involve fractions of measures like weight or volume.
However, such fractions are converted to integers during rewriting.

Fold expressions allow to express e.g. the sum of some attribute over a set of ob-
jects. The operator specifies a variable quantified over a list of terms, a binary operator,
an identity element, and a template mentioning the quantified variable. The identity
element is needed for the empty list case.

3 QFPA Core Fragment

In this section, we show how a formula p in the rule language is rewritten by a series
of equivalence-preserving transformations into a qfpa, i.e. a QFPA formula, which here
either is of the form

∑
i integer i ·attref i ≥ integer or is a conjunction or a disjunction

of qfpas.
QFPA is widely used in symbolic verification, and there has been much work on

deciding whether a given QFPA formula is satisfiable [9]. Many methods based on
integer programming techniques [10] rely on having the formula on disjunctive normal
form. However, for constraint programming purposes, we are interested in necessary
conditions that can be used for filtering domain variables, and we are not aware on any
such work on QFPA. In [11], filtering algorithms for logical combinations of adhoc
constraints3 are proposed, but it is not clear whether that approach can be extended to
QFPA. For that, we would need to provide supports of qfpas.

3 Also known as constraints given in extension.
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3.1 Rewriting into QFPA

We now show the details of rewriting the formula given as the geost parameter R in
the following eight steps into a qfpa R̂. We will later show how R̂ is translated to
generators of forbidden sets.

Macro expansion and constant folding. The implication and equivalenceconnectives,
bounded quantifiers, and cardinality and folding operators are eliminated. Ground in-
teger expressions are replaced by their values. Object and shifted box collections are
expanded.

Elimination of negation. Using DeMorgan’s laws and negating relevant relops.
Normalization of arithmetic. Arithmetic relations are normalized to one of the forms

expr ≥ 0 or expr > 0.
Elimination of ×, / and −. Any occurrence of these operators in arithmetic expres-

sions is eliminated. At the same time, all operands are associated with a rational
coefficient (c in the table). The elimination is made possible by the fact that in
multiplication, at least one factor must be ground and is simply multiplied into the
coefficient. Similarly, in division, the coefficient is simply divided by the divisor,
which must be ground.

Moving + inside min and max. Any expression with min or max occurring inside +
are rewritten by using the commutative and distributive laws (1) so that the + is
moved inside the other operator.

a + b = b + a
a + min(b, c) = min(a + b, a + c)
a + max(b, c) = max(a + b, a + c)

(1)

Elimination of min and max. Any min or max operators occurring in arithmetic re-
lations are eliminated, replacing such relations by new relations combined by ∧ or
∨. After this step, an arithmetic expression is a linear combination of attrefs with
rational coefficients, plus an optional constant.

Elimination of rational numbers. Any arithmetic relation r, which can now only be
of the form e > 0 or e ≥ 0, is normalized into the form e′′ ≥ c′′ where e′ and c′

are intermediate expressions in:

– Let e′ be the linear combination obtained by multiplying e by the least com-
mon multiplier of the denominators of the coefficients of e. Recall that those
coefficients are rational numbers. Thus, the coefficients of e′ are integers.

– Let c′ be 1 if r is of the form e > 0, or 0 if r is of the form e ≥ 0.
– If e′ contains a constant term c, then e′′ = e′ − c and c′′ = c′ − c. Otherwise,
e′′ = e′ and c′′ = c′.

Simplification. Any entailed or disentailed arithmetic comparison is replaced by the
appropriate logical constant (true or false). Any ∧ or ∨ expression containing
one of these constants is simplified using partial evaluation.
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Example 2. Returning to our running
example the resulting qfpa R̂ shown on
the right is a conjunction of six subfor-
mulas corresponding respectively to:

– From the business rule
all not overlap sboxes,
conditions to prevent o5 from
overlapping o1, o2, o3 and o4.

– From the business rule
all type1 not meet sboxes,
conditions to prevent o5 from
meeting o2 and o4. ∧

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∨(
x51 ≥ 4
x52 ≥ 3

)
∨
⎛⎜⎜⎝

x51 ≥ 4
−1 · x51 ≥ −1

x52 ≥ 4
−1 · x52 ≥ −1

⎞⎟⎟⎠
∨⎛⎝−1 · �31 + x51 ≥ 2

−1 · �32 + x52 ≥ 5
−1 · x52 ≥ −3

⎞⎠
∨⎛⎝ x51 ≥ 6

−1 · x51 ≥ −1
−1 · x52 ≥ −5

⎞⎠

∨
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x51 ≥ 5
x52 ≥ 5

∧
⎛⎜⎜⎜⎜⎜⎜⎝

∨(
−1 · x51 ≥ −3

x51 ≥ 5

)
x51 ≥ 2∨(

−1 · x52 ≥ −3
x52 ≥ 5

)
x52 ≥ 2

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∨
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x51 ≥ 7
−1 · x52 ≥ −4

∧
⎛⎜⎜⎜⎜⎝
∨(

−1 · x51 ≥ −5
x51 ≥ 7

)
x51 ≥ 2∨(
x52 ≥ 6

−1 · x52 ≥ −4

)
⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4 Compiling to an Efficient Run-Time Representation

It is straightforward to obtain necessary conditions for qfpas as well as pruning rules
operating on one variable at a time. Based on such conditions and pruning rules, we
will show how to construct generators of k-dimensional forbidden sets. We call such
generators k-indexicals, for they are generalization of the indexicals of cc(FD) [5]. Fi-
nally, we show how the forbidden sets generated by such indexicals are aggregated by
the sweep-based algorithm [3] and used for filtering.

Indexicals were first introduced for the language cc(FD) [5] and later used in the
context of CLP(FD) [12,13], AKL [14], finite set constraints [15] and adhoc con-
straints [16]. They have proven a powerful and efficient way of implementing constraint
propagation. A key feature of an indexical is that it is a function of the current domains
of the variables on which it depends. Thus, indexicals also capture the propagation from
variables to variables that occurs as variables are pruned. In the cited implementations,
an indexical is a procedure that computes the feasible set of values for a variable. We
generalize this notion to generating a forbidden set of k-dimensional points, for an
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object, and so k-indexicals captures the propagation from objects to objects that occurs
as object attributes are pruned.

4.1 Necessary Conditions

For a formula R denoting a linear combination of variables, let MAX (R) denote the
expression that replaces every attref x in R by x if x occurs with a positive coefficient,
and by x otherwise. Thus, MAX (R) is a formula that computes an upper bound of R
wrt. the current domains.

We will ignore the degenerate cases where R̂ is true resp. false, in which case
geost merely succeeds resp. fails. For the normal qfpa cases, we obtain the necessary
conditions shown in Table 1.

Table 1. Necessary condition N(t) for qfpa t

qfpa t necessary condition N(t)P
i ci · xi ≥ r MAX (

P
i ci · xi) ≥ r

p ∨ q N(p) ∨N(q)

p ∧ q N(p) ∧N(q)

4.2 Pruning Rules

For the base case
∑

i ci · xi ≥ r, we have the well-known pruning rules (2), which
provide sharp bounds; see e.g. [17] for details.

∀j

⎧⎨⎩xj ≥ (
r−MAX(

P
i�=j ci·xi)

cj
), if cj > 0

xj ≤ �
−r+MAX(

P
i�=j ci·xi)

−cj
�, otherwise

(2)

Consider now a disjunction p ∨ q of two base cases and a variable xj occurring in at
least one disjunct.

– If xj occurs in p but not in q, rule (2) is only valid for p if the necessary condition
for q does not hold.

– Similarly if xj occurs in q but not in p.
– If xj occurs in both p and q, we can use rule (2) for both p and q and conclude that
xj must be in the union of the two feasible intervals.

Finally, consider a conjunction p ∧ q, i.e. both p and q must hold. If xj occurs in
both p and q, we can use rule (2) for both p and q and conclude that xj must be in the
intersection of the two feasible intervals.

Example 3. Returning to our running example, consider the fragment x51 ≥ 4∨ x52 ≥
3 of the qfpa, which comes from a rule preventing o5 from overlapping o1. Suppose that
we want to prune x52. Then we can combine the necessary condition for x51 ≥ 4 with
rule (2) for x52 ≥ 3 into the conditional pruning rule:

max(x51) < 4 ⇒ x52 ≥ 3
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However, as we will show in the next section, instead of using such conditional prun-
ing rules, we unify necessary conditions and pruning rules into multi-dimensional for-
bidden sets and aggregate them per object. For the above fragment, the two-dimensional
forbidden set for o5 is ([1, 3], [1, 2]), denoting the fact that (x51, x52) should be distinct
from all the pairs (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2).

4.3 k-Indexicals

Recall that the set of rules given in R has been rewritten into a qfpa R̂. Consider this
formula, or some subformula R̂i of it if R̂ is a conjunction (see Section 4.4). The idea
is to compile this subformula, for each object o mentioned by it, into a k-indexical for
R̂i and o. The forbidden sets that it generates can then be aggregated and used by the
sweep-point kernel [3] to prune the nonground attributes of o. Let us introduce some
notation to make this idea clear.

Definition 1. A forbidden set for a qfpa r and object o is a set4 of k-dimensional points
such that, if o is placed at any of these points, r is disentailed.

Such a forbidden set can also be seen as the multi-dimensional generalization of a set
of inconsistent assignments [18].

Definition 2. A k-indexical for a qfpa r and an object o is a procedure that functions
as a generator of forbidden sets for r and o. It is of the form o.x �∈ ibody where ibody
is defined in Fig. 3. The k-indexical depends on object o′ if ibody mentions o′.

-

denoting a dimension

Fig. 3. k-indexicals

4 A forbidden set is not explicitly represented as a set of points, but rather by a set of boxes, as
is the case in the earlier implementation [3].
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k-indexicals are described by the inductive definition shown in Fig. 3. They are built
up from generators of k-dimensional half-planes, combined by union and intersection
operations.

4.4 Compilation

The qfpa R̂, normally5 a conjunction r̂1 ∧ · · · ∧ r̂n, is compiled to k-indexicals by the
following steps:

1. Partition the conjuncts of R̂ into equivalence classes R̂1, . . . , R̂m such that for all
1 ≤ i < j ≤ n, r̂i and r̂j are in the same equivalence class if and only if they
mention6 the same set of objects ofO.

2. For each equivalence class R̂i and object o ∈ O mentioned by R̂i, map R̂i (as
a conjunction) into a k-indexical for o, of the form o.x �∈ Fo(R̂i), according to
Table 2.

The mapping closely follows the pruning rules (2), except now we want to obtain a
forbidden set instead of a feasible interval. Rows 1-2 of Table 2 are analogous to the
recursive computation of inconsistent assignments in [18, Table 1]. Row 5 corresponds
to the case where r does not mention o, in which case all points are forbidden for o if r
is disentailed, and no points are forbidden for o otherwise.

Table 2. Mapping a qfpa r to a generator of forbidden sets, Fo(r), for the object o. We assume
here that o is not polymorphic.

r Fo(r) condition
p ∨ q Fo(p) ∩ Fo(q)

p ∧ q Fo(p) ∪ Fo(q)P
i ci · xi ≥ r {p ∈ Zk | p[d] < � r−MAX(

P
i�=j ci·xi)

cj
�} xj = o.x[d], cj > 0

P
i ci · xi ≥ r {p ∈ Zk | p[d] > �−r+MAX(

P
i�=j ci·xi)

−cj
�} xj = o.x[d], cj < 0P

i ci · xi ≥ r if MAX (
P

i ci · xi) < r then Zk else ∅ o.x[d] 
∈ {xi}

The rationale for aggregating the conjuncts into equivalence classes, as opposed to
mapping one conjunct at a time, is the opportunity to increase the granularity of the
indexicals and to merge subformulas coming from different business rules. This opens
the scope for future work on global simplification of formulas, and increases the amount
of subexpressions that can be shared within a k-indexical.

It is well known that indexicals can be efficiently compiled and executed by a virtual
machine [12,13]. In our context, we predict that there will be a large amount of com-
mon subterms in the k-indexicals, and so common subexpression elimination will be
quite important. Therefore, a register-based virtual machine would seem an appropriate
choice.

5 Since it comes from the conjunction of business rules stated in the last argument of geost.
6 A formula mentions an object o if it refers to a nonground attribute of o.
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Example 4. Returning to our running example, we obtained a qfpa which was a con-
junction of six subformulas . They are partitioned into two equivalence classes: one for
the single conjunct that mentions both o3 and o5, mapped to k-indexicals (3) and (4)
below; and one for the five conjuncts that only mention o5 (because o1, o2 and o4 are
ground), mapped to k-indexical (5) below. The three k-indexicals reflect the following
business rules:

1. o3 must not take a shape that will cause it to overlap o5. Note that this k-indexical
propagates from o5 to the shape id of o3. Pruning of shape ids of polymorphic
objects is discussed in [6, Section 5]. Initially, no forbidden boxes are generated.

s3 �∈
⋂⎛⎝{i ∈ dom(s3) | s3 = i⇒ �31 > x51 − 2}

{i ∈ dom(s3) | s3 = i⇒ �32 > x52 − 5}
if x52 > 3 then Z else ∅

⎞⎠ (3)

2. o5 must not overlap o3. Note that this k-indexical propagates from o3 to o5.

o5.x �∈ ([1, (�31 + 1)], [4, (�32 + 4)]) (4)

3. o5 must not overlap o1, o2 nor o4, nor meet o2 nor o4.

o5.x �∈
⋃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

([1, 3], [1, 2])
([2, 3], [2, 3])
([2, 5], [6, 6])

⋂
⎛⎜⎜⎜⎜⎝

([1, 4], [1, 4])

⋃
⎛⎜⎜⎝

([4, 4], [1, 6])
([1, 1], [1, 6])
([1, 9], [4, 4])
([1, 9], [1, 1])

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠

⋂
⎛⎜⎜⎝

([1, 6], [5, 6])⋃⎛⎝ ([1, 9], [5, 5])
([6, 6], [1, 6])
([1, 1], [1, 6])

⎞⎠
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

4.5 Filtering Algorithm

We now give a sketch of a filtering algorithm for geost(k,O,S,R). Let I(o) denote
the set of k-indexicals for object o ∈ O wrt. the given rules R, let eval(i) denote
the evaluation of k-indexical i wrt. the current domains, let sweep(o, F ) denote the
application of the sweep-based algorithm to the object o wrt. the forbidden set F , which
prunes the minimum and maximum values of the origin coordinates of o. Our proposed
Algorithm 1 is a straightforward propagation loop.
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PROCEDURE
1:
2: while do
3: some element from
4:
5:
6: if then
7: return
8: else if a coordinate of was pruned then
9: depends on

10: end if
11: end while
12: if all objects in are ground then
13: return
14: else
15: return
16: end if

Algorithm 1. Sketch of a filtering algorithm for geost(k,O,S ,R)

1 2 3 4 5 6

1

2

3

4

5

6

Example 5. Returning to our running exam-
ple, suppose now that the sweep-point kernel
wants to adjust the lower bound of x51. The
figure on the right traces the steps performed
by the algorithm when it walks from a lexico-
graphically smallest position to the first feasi-
ble position of o5. The result is that the lower
bound of x51 is adjusted to 5.

5 Experimental Results

The geost constraint, including the rewriting, compilation, and sweep-based algorithms,
has been implemented in SICStus Prolog 4 [19] using its global constraint programming
API. A direct performance comparison of this proof-of-concept implementation with
the earlier implementation [3], coded in C, is not meaningful. Therefore, we focus on
showing the potential for search space reduction and stronger filtering due to the global
treatment of side constraints.

We studied the placement problem given in [6, Appendix C], provided by Peugeot
Citroën, which involves a 1203×235×239 container and 9 objects with an extra weight
attribute, subject to the rules:

(a) Each object is placed inside the container.
(b) Each object is either on the floor or resting on some other object.
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(c) The objects do not pairwise overlap.
(d) A heavier object cannot be piled on top of a lighter one.
(e) For any two objects in a pile, the overhang can be at most 10 units.

In [6] we provide encodings of these rules as well as other rules encoding a pack-
ing-unpacking problem with visibility constraints7 and the time dimension.

We generated 600 problem instances by randomly permuting the objects. The search
was performed by labeling the coordinates, grouped by object, in the permuted order,
under a time limit of one CPU minute. For each instance, we posted the constraint, and
measured the number of search space nodes visited during search for the first solution.
Each instance was run twice:

1. with the new geost constraint, and
2. without it, but expressing constraint (c) with the earlier implementation [3] and

constraints (a, b, d, e) with logical combinations of arithmetic constraints.
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Search tree nodes for placing 9 objects under rulesThe scatter plot shown on the
right summarizes the results.
Each dot represents an instance,
its X (resp. Y) coordinate corre-
sponding to the old (resp. new)
implementation. The search ef-
fort was decreased by 100 times
or more in 26% of the cases and
by 10 times or more in another
33% of the cases.

6 Discussion

Generality. Our restriction that object attributes (except shape id and origin) must be
ground is somewhat artificial, and we plan to lift it. The rewritten QFPA formulas would
simply have more variables per object, and the sweep-based algorithm would deal not
with a k- or k + 1-dimensional placement space, but with an m-dimensional solution
space, where m is the number of possibly nonground attributes per object. In particular,
in order to deal with objects whose length in some dimension is a domain variable that
occurs in some other constraint, the length and possibly the end-point would have to
be expressed as nonground object attributes. Similarly, to treat the time dimension, we
would add three nonground object attributes start , duration , and completion , as in [3],
to be included in the solution space.

Theoreticalproperties. Ithasbeenshown[1,Proposition1-2] that thePKML/Rules2CP
rewriting system is confluent and Noetherian (i.e., terminating). Since our rule language
is essentially a subset of Rules2CP, the results apply to geost rules as well. A size

7 See the visible constraint in http://www.emn.fr/x-info/sdemasse/gccat/.

http://www.emn.fr/x-info/sdemasse/gccat/


A Geometric Constraint over k-Dimensional Objects and Shapes Subject 233

bound on programs generated from Rules2CP is also known [1, Proposition 3] and
applies to geost provided that min, max and cardinality is not used in the rules, since
these operators can cause an exponential (for min and max) resp. quadratic (for cardi-
nality) [8] blow-up. Consequently, one can certainly construct pathological cases where
the rewrite phases and/or runtime representation require huge amounts of memory. Even
if, at this time, this has not really been a problem for the instances and rules we have
experimented with 8, one way to manage the complexity of the rewrite phases is to
apply simplifying rewrites, e.g. Phase 8, as eagerly as possibly. Another way could be
to memoize patterns that have already been rewritten. Finally, common subexpression
elimination will mitigate this problem.

7 Conclusion

We have presented a global constraint that enforces rules written in a language based
on arithmetic and first-order logic to hold among a set of objects. By rewriting the rules
to QFPA formulas, we have shown how to compile them to k-indexicals and how the
forbidden sets generated by such indexicals can be aggregated by a sweep-based algo-
rithm and used for filtering. Initial experiments support the feasibility of the approach.
The approach combines an expressive logic-based rule modeling language for stating
business rules with a generic geometrical algorithm for effective filtering.

Finally, QFPA is a language in which also many other problems, unrelated to packing
and placement, can be stated. In this paper, we have begun to explore a way to compile
and run it efficiently.
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Abstract. Cost-based filtering is a novel approach that combines tech-
niques from Operations Research and Constraint Programming to filter
from decision variable domains values that do not lead to better solu-
tions [7]. Stochastic Constraint Programming is a framework for mod-
eling combinatorial optimization problems that involve uncertainty [19].
In this work, we show how to perform cost-based filtering for certain
classes of stochastic constraint programs. Our approach is based on a
set of known inequalities borrowed from Stochastic Programming — a
branch of OR concerned with modeling and solving problems involving
uncertainty. We discuss bound generation and cost-based domain filter-
ing procedures for a well-known problem in the Stochastic Programming
literature, the static stochastic knapsack problem. We also apply our
technique to a stochastic sequencing problem. Our results clearly show
the value of the proposed approach over a pure scenario-based Stochas-
tic Constraint Programming formulation both in terms of explored nodes
and run times.

1 Introduction

Constraint Programming (CP) [1] has been recognized as a powerful tool for
modeling and solving combinatorial optimization problems. CP provides global
constraints offering concise and declarative modeling capabilities and efficient
domain filtering algorithms. These algorithms remove combinations of values
which cannot appear in any consistent solution. Cost-based filtering is an ele-
gant way of combining techniques from CP and Operations Research (OR) [7].
OR-based optimization techniques are used to remove from variable domains
values that cannot lead to better solutions. This type of domain filtering can be
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combined with the usual CP-based filtering methods and branching heuristics,
yielding powerful hybrid search algorithms. Cost-based filtering is a novel tech-
nique that has been the subject of significant recent research.

Stochastic Constraint Programming (SCP) [19] is an extension of CP, in which
there is a distinction between decision variables, which we are free to set, and
stochastic (or observed) variables, which follow some probability distribution.
SCP is designed to handle problems in which uncertainty comes into play. Un-
certainty may take different forms: data about events in the past may not be
known exactly due to measuring or difficulties in sampling, and data about events
in the future may simply not be known with certainty.

In this work we propose a novel approach to performing cost-based filtering
for certain classes of stochastic constraint programs. Our approach is based on
a well-known inequality borrowed from Stochastic Programming [4], a branch of
OR that is concerned with modeling constraint satisfaction/optimization prob-
lems under uncertainty. We implemented this approach for two problems in
which uncertainty plays a role. In both cases we obtained significant improve-
ments with respect to a pure SCP formulation both in terms of explored nodes
and run times.

The rest of the paper is structured as follows. In Section 2 we give the nec-
essary formal background. In Section 3 we review relevant inequalities from
Stochastic Programming. In Section 4, we introduce global optimization chance
constraints. We describe our empirical results in Section 5 and review related
works in Section 6. Finally, we conclude and outline our future work in Section 7.

2 Formal Background

A Constraint Satisfaction Problem (CSP) [1] is a triple 〈V,C,D〉, where V =
{V1, . . . , Vn} is a set of decision variables, D is a function mapping each element
of V to a domain of potential values, and C is a set of constraints stating
allowed combinations of values for subsets of variables in V . A solution to a
CSP is an assignment to every variable of a value in its domain, such that all
of the constraints are satisfied. We may also be interested in finding a feasible
solution that maximizes (minimizes) the value of a given objective function over
a subset of the variables. With no loss of generality, we restrict our discussion
to maximization problems.

Optimization-oriented global constraints embed an optimization component,
representing a proper relaxation of the constraint itself, into a global constraint
[7]. This component provides three pieces of information: (a) the optimal solu-
tion of the relaxed problem; (b) the optimal value of this solution representing an
upper bound on the original problem objective function; (c) a gradient function
grad(V ,v), which returns for each variable-value pair (V ,v) an optimistic eval-
uation of the profit obtained if v is assigned to V . These pieces of information
are exploited both for propagation purposes and for guiding the search.

In [19], a stochastic CSP is defined as a 6-tuple 〈V, S,D, P,C, θ〉, where V is
a set of decision variables and S is a set of stochastic variables, D is a function
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mapping each element of V and each element of S to a domain of potential
values. A decision variable in V is assigned a value from its domain. P is a func-
tion mapping each element of S to a probability distribution for its associated
domain. C is a set of constraints. A constraint h ∈ C that constrains at least one
variable in S is a chance-constraint. θh is a threshold value in the interval [0, 1],
indicating the minimum satisfaction probability for chance-constraint h. Note
that a chance-constraint with a threshold of 1 (or without any explicit thresh-
old specified) is equivalent to a hard constraint. A stochastic CSP consists of a
number of decision stages. A decision stage is a pair 〈Vi, Si〉, where Vi is a set of
decision variables and Si is a set of stochastic variables. In an m-stage stochastic
CSP, V and S are partitioned into disjoint sets, V1, . . . , Vm and S1, . . . , Sm, and
we consider multiple stages, 〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vm, Sm〉. To solve an m-stage
stochastic CSP an assignment to the variables in V1 must be found such that,
given random values for S1, assignments can be found for V2 such that, given
random values for S2, ..., assignments can be found for Vm so that, given random
values for Sm, the hard constraints are satisfied and the chance constraints are
satisfied in the specified fraction of all possible scenarios. The solution of an m-
stage stochastic CSP is represented by means of a policy tree [18]. A policy tree
is a set of decisions where each path represents a different possible scenario and
the values assigned to decision variables in this scenario. Let S denote the space
of policy trees representing all the solutions of a stochastic CSP. We may be
interested in finding a feasible solution, i.e. a policy tree s ∈ S, that maximizes
the value of a given objective function f(·) over the stochastic variables S (edges
of the policy tree) and over a subset V̂ ⊆ V of the decision variables (nodes in
the policy tree). A Stochastic COP is then defined in general as maxs∈S f(s).
In [19] a policy-based view of stochastic constraint programs is proposed. Such
an approach has been further investigated in [3]. An alternative semantics for
stochastic constraint programs comes from a scenario-based view [4,18]: this so-
lution method consists in generating a scenario-tree that incorporates all possible
realizations of discrete stochastic variables into the model explicitly.

3 Value of Stochastic Solutions

Let Ξ be a discrete stochastic (vector) variable whose realizations correspond
to the various scenarios. Recall that in the policy-based view of stochastic CP a
scenario is a set of edges in the policy tree connecting the root to a leaf. Define

P = max
x∈S

z(x, ξ)

as the optimization problem associated with one particular scenario ξ ∈ Ξ, where
S is a finite set, and z(x, ξ) is a real valued function of two (vector) variables x
and ξ. Note that in what follows the discussion is dual for minimization problems.
In order to simplify the notation used, we will here use the same notation for
referring to a problem and to the value of its optimal solution. The meaning will
be made clear by the context.
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The function z(x, ξ) can be seen as a payoff table that for a given decision x
provides the profit with respect to a given scenario ξ having probability Pr{ξ}.
We may be then interested in computing the optimal solution value to the re-
course problem [4] RP(P)= maxx∈S

∑
Ξ Pr{ξ}z(x, ξ). This can be expressed, by

using the expectation operator E, as

RP(P) = max
x∈S

Ez(x,Ξ),

with an optimal solution x∗.
The expected value problem, the deterministic problem obtained by replacing

all the stochastic (vector) variables by their expected values, is defined as

EV(P) = max
x∈S

z(x,E[Ξ]).

Let us denote by x̂ an optimal solution of the expected value problem, called
the expected value solution. Anyone familiar with Stochastic Programming or
realizing that uncertainty is a fact of life would feel a little insecure about taking
decision x̂. Indeed, unless such a decision is independent of Ξ, there is no reason
to believe that this decision is even close to the optimal solution of the recourse
problem.

For any stochastic maximization (minimization) program, under the assump-
tions that (i) z(x,Ξ), the profit function, is a concave1 (convex) function of Ξ
and (ii) maxx∈S z(x,Ξ) (minx∈S z(x,Ξ)) exists for all Ξ,

Proposition 1. EV(P) - RP(P) ≥ 0 (EV(P) - RP(P) ≤ 0).

Proof. A proof is given in [2].

It directly follows that EV(P) ≥ RP(P) (EV(P) ≤ RP(P)). We will base our
cost-based filtering strategies on this inequality.2 Assumption (i) restricts the
form of the cost function. As witnessed by much of the Stochastic Programming
literature [4,11], many real life applications exhibit such a behavior in the profit
(cost) function. Nevertheless, it is often possible to encounter stochastic con-
straint programs whose objective exhibits a generalized non-convex dependence
on the stochastic variables. Note that, although the classical Jensen (Proposi-
tion 1) and Edmundson-Madansky type bounds [4], which we will employ in
the following sections, or their extensions are generally not available for such
problems, tight bounds may still be constructed under mild regularity condi-
tions as discussed in [13]. Assumption (ii) states that Proposition 1 provides
a valid bound only when a feasible solution exists and its existence is not af-
fected by the distribution of the stochastic variables. Intuitively, this means
that nothing can be inferred by using Proposition 1 if EV(P) is infeasible or,
clearly, if RP(P) is infeasible. Assumption (ii) may be violated in problems where
1 A real-valued function f is convex if for any x1, x2 in the domain and any λ ∈ [0, 1],

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2) [5]. f is concave if −f is convex.
2 Other inequalities are discussed in [4], pp. 140–141. Effective relaxations can be also

built on these other inequalities.
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chance-constraints appear. We will not discuss how to handle generic chance-
constraints and how to produce deterministic equivalent reformulations for them
in EV(P): the reader may refer to [6]. In this work we will consider only examples
of stochastic COPs that always satisfy assumptions (i) and (ii). In particular,
to comply with assumption (ii), we will consider problems for which a feasible
solution always exists and for which the chance-constraints are “hard” (θ = 1).
Note that “hard” chance-constraints in RP(P) become deterministic in EV(P).

4 Global Optimization Chance-Constraints

Solving stochastic constraint programs is computationally a challenging task.
In [19], the computational complexity — membership in PSPACE — of these
models is discussed. In [18], the authors proposed a standard way of compiling
down these models into conventional (non-stochastic) CP models that can be
solved by any available commercial software. This approach employs a scenario-
based [4] modelling strategy for representing stochastic variables. Of course this
approach has a price since the number of scenarios that need to be considered
in order to fully represent the problem grows exponentially with the number
of decision stages in the problem. A possible way to overcome this difficulty
is to reduce the number of scenarios considered by sampling them, but this
obviously affects the completeness of the model. Another possibility consists
instead in developing specialized and efficient filtering strategies. For this purpose
global chance-constraints have been proposed in [16]. These constraints differ
from conventional global constraints in the fact that they represent relations
among a non-fixed number of decision variables and stochastic variables.

In this work, by creating a parallel with [7], we present optimization-oriented
global chance-constraints as a way of enhancing the solving process of stochas-
tic constraint programs. Conventional optimization-oriented global constraints
perform cost-based filtering by encapsulating in global constraints optimization
components representing suitable relaxations of the constraint itself. Similarly
optimization-oriented global chance-constraints also encapsulate suitable relax-
ations of the constraint considered, but in contrast to conventional optimization-
oriented global constraints this relaxation may involve stochastic variables.

A global optimization chance-constraint provides the same three pieces of in-
formation provided by optimization-oriented global constraints. The difference
is the fact that in a global optimization chance-constraint we find two stages
of relaxations. At the first stage of relaxation, we are mainly involved with the
stochastic variables and we exploit well-known inequalities such as the one in
Proposition 1 to replace stochastic variables in our stochastic programs with
deterministic quantities and to yield a valid relaxation that is a deterministic
problem. This deterministic problem, however, may still be computationally very
challenging (NP-hard in general). Therefore, a second stage of relaxation may be
needed to produce a further relaxation that is computationally more tractable.
Finally, as we will see, a global optimization chance-constraint may also provide
a valid, and possibly good, solution at each node of the search tree.
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Objective:

max

jPk
i=1 riXi − cE

hPk
i=1 WiXi − q

i+
ff

Decision variables:
(1) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k
Stochastic variables:
Wi → item i weight

Fig. 1. RP(SSKP). Note that [y]+ = max{y, 0}.

In this section and in the following ones we will refer to a running example
and we will employ the following problem to better understand the concepts ex-
plained. Consider the Static Stochastic Knapsack Problem (SSKP) [12]: a subset
of k items has to be chosen, given a knapsack of size q into which to fit the
items. Each item i has an expected reward of ri. The size Wi of each item is not
known at the time the decision has to be made, but we assume that the decision
maker has an estimate of the probability distribution of W = (W1, . . . ,Wk). A
per unit penalty of c has to be paid for exceeding the capacity of the knapsack.
By modeling this problem as a one-stage Stochastic COP, the recourse problem
RP(SSKP) can be formulated as shown in Fig. 1. The objective function max-
imizes the trade-off between the reward brought by the objects selected in the
knapsack (those for which the binary decision variable Xi is set to 1) and the
expected penalty paid for buying additional capacity units in those scenarios in
which the low cost capacity q is not sufficient.

Example 1. Consider 5 items, item rewards ri are {10, 15, 20, 5, 25}. The dis-
crete probability distribution functions f(i) for the weight of item i = 1, . . . , 5
are respectively, f(1) = {10(0.5), 8(0.5)}, f(2) = {10(0.5), 12(0.5)}, f(3) =
{9(0.5), 13(0.5)}, f(4) = {4(0.5), 6(0.5)}, f(5) = {12(0.5), 15(0.5)}. The figures
in parenthesis represent the probability that an item takes a certain weight. The
other problem parameters are c = 2, q = 30. The optimal solution of the recourse
problem selects items {2, 3, 5} and has a value of RP(SSKP)=49.

This solution can be obtained by solving a deterministic equivalent conventional
constraint program obtained by employing a scenario-based representation [18].
Let Wj

i be the realized weight of object i in scenario j. We hand-crafted a
deterministic equivalent model DetEquiv(RP(SSKP)) for RP(SSKP) following
the guidelines in [18]. This model is shown in Fig. 2. Constraint (1) states that
Zj , total excess weight in scenario j, must be greater than the sum of the weights
of the objects selected in this scenario minus the low cost capacity q. Constraint
(2) restricts the decision variables Xi to be binary. Xi is equal to 1 iff item i
is selected in the knapsack. Constraint (3) fixes an upper bound for Zj ; this
upper bound is the sum of the weights of all the k objects in scenario j. The
objective function maximizes the trade-off between the total reward brought by
the objects selected and the sum of penalty costs — weighted by the respective
scenario probability — paid for those scenarios where the low cost capacity q is
not sufficient.
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Objective:

max
nPk

i=0 riXi − c
hPn

j=1 Zj Pr{j}
io

Constraints:

(1) Zj ≥
Pk

i=1 Wj
i Xi − q ∀j ∈ 1, . . . , n

Decision variables:
(2) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

(3) Zj ∈ [0,
Pk

i=1 Wj
i ] ∀j ∈ 1, . . . , n

Fig. 2. DetEquiv(RP(SSKP)). Pr{j} is the probability of scenario j ∈ {1, . . . , n}. Note
that

Pn
j=1 Pr{j} = 1.

4.1 Expectation-Based Relaxation for Stochastic Variables

The first step in our cost-based filtering strategy consists in applying a relaxation
involving the stochastic variables. By applying Proposition 1, if the profit (re-
spectively cost for minimization problems) function satisfies the two assumptions
discussed, an upper (lower) bound for the cost of an optimal solution to RP(P)
can be obtained by solving EV(P), that is the deterministic problem in which
all the stochastic variables are replaced by their respective expected values.

Lemma 1. The profit function for RP (SSKP ) is concave in W.

Proof. When proving concavity w.r.t. W we can ignore the constant term∑k
i=1 riXi.What remains is f(W)=−cE

[
W

T ·X−q
]+

,where “·” is the inner prod-

uct andWT
is vectorW transposed. We now prove that−f(W)=cE

[
WT ·X−q

]+
is convex in W . By recalling that a maximum of convex functions is convex [5],
this function is clearly convex w.r.t. each element of vector W and it is therefore
convex in W . This implies that −f is concave in W.

Obviously, in RP(SSKP), it is always possible to find a feasible assignment for
decision variables, therefore both the assumptions are satisfied for this problem.
The expected value problem EV(SSKP) can be obtained by replacing every
random variable Wi in RP(SSKP) with the respective expected value E[Wi],
thus obtaining a fully deterministic model.

Example 2. Here we solve the problem where the weights of the objects are
deterministic and equal to the respective expected weights3: �E[f(1)]� = 9,
�E[f(2)]� = 11, �E[f(3)]� = 11, �E[f(4)]� = 5, �E[f(5)]� = 13. This problem
provides the first two pieces of information needed by our cost-based filtering
method, that is (a) the optimal solution of the relaxed problem and (b) the
optimal value of this solution, which represents, according to Proposition 1, an
upper bound for the original problem objective function. In our running example
this solution selects items 3, 4, 5 and has a value of EV(SSKP)= 50.

3 As this is a maximization problem, the expected weight of each object is rounded
down to the nearest integer (� �) in order to keep the bound provided by the relax-
ation optimistic.
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4.2 Relaxing the Expected Value Problem

It should be noted that, although the expected value problem is easier than the
recourse problem, it may still be difficult to solve (NP-hard). For this reason we
can further relax the expected value problem in order to obtain a valid bound
by solving an easier problem. Let R(EV(P)) be a generic relaxation of EV(P).
Then for a maximization problem EV(P)≤ R(EV(P)) holds, therefore R(EV(P))
provides a valid bound for the recourse problem.

In SSKP, for instance, instead of solving to optimality the deterministic (NP-
Complete) knapsack problem obtained for the expected value scenario, we may
instead solve in linear time its continuous relaxation, thus obtaining Dantzig’s
upper bound, DUB(EV(SSKP)) [15]. DUB(EV(SSKP)) ≥ EV(SSKP) therefore
DUB(EV(SSKP)) ≥ RP(SSKP). DUB(EV(SSKP)) is a valid upper bound for
our recourse problem.

Example 3. To obtain DUB(EV(SSKP)) we order items for profit over expected
weight: {25/13, 20/11, 15/11, 10/9, 5/5}, and we insert items until the first that
does not fit completely into the remaining knapsack capacity. Of this last item
we take a fraction of the profit proportional to the capacity available. Therefore
DUB(EV(SSKP))= 25 + 20 + (6 ∗ 15/11) = 53.18.

Obviously at any node of the search tree it is possible to solve the expected
value problem taking into account decision variables already assigned. The bound
obtained can be used to exclude part of the tree that cannot lead to a better
solution.

In [7] the authors discuss filtering strategies based on reduced costs (RC). As
we shall see in the next section a similar technique can be adopted for SSKP,
provided that an efficient way of obtaining bounds is available for the expected
value problem.

4.3 Cost-Based Filtering

In order to perform cost-based filtering, as in RC-based filtering, we need a
gradient function grad(V ,v), which returns for each variable-value pair (V ,v)
an optimistic evaluation of the profit obtained if v is assigned to V . This function
is obviously problem dependent, but regardless of the strategy adopted in the
former section — i.e. whether we are using a relaxation for the expected value
problem or solving this problem to optimality — it is possible to specify it and
use it to filter provably suboptimal values. In what follows we present a gradient
function for SSKP. At each node of the search tree, in order to compute this
function, we use a continuous relaxation of the expected value problem similar
to the one proposed by Dantzig for the well-known 0-1 Knapsack Problem [15].
We will now define the gradient function for SSKP by reasoning on the expected
value problem. Assume that a partial assignment for decision variables is given.
Let K be the set of all the items in the problem, |K| = k. Let S be the set of
items for which a decision has been fixed, with |S| < k. Let q∗ be the sum of the
expected weights of the elements in S that are part of the knapsack. The profit
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r associated with this assignment is equal to the sum of the profits of the items
in the knapsack minus the eventual expected penalty cost c(q∗ − q), if q − q∗ is
negative. Now we consider an element i ∈ K/S. There are two possible options:
taking it into the knapsack or not. If we take it, we increase the profit by ri minus
any eventual expected penalty cost we pay if the expected residual capacity is
or becomes negative. Finally for every other element in K/S we check if the
balance between its profit and the eventual expected penalty gives an overall
positive profit and, if so, we add it to the knapsack. This procedure requires at
most O(k) steps for each element for which a decision has not yet been taken,
therefore it can be applied at each node of the search tree to compute a valid
upper bound associated with a certain decision on an item, which therefore may
be filtered if suboptimal.

Example 4. We now consider the case in which items 2 and 3 have been selected
in the knapsack and item 4 is not selected. We still have to decide on items
1 and 5. The total capacity used is c∗ = 11 + 11 = 22. The profit r brought
by items 2 and 3 is 35. We consider the set of the remaining items for which
a decision must be taken, K/S ≡ {1, 5}. Let us reason on item 1: this is a
critical item, in fact if taken in the knapsack it will use more capacity than
the residual 30 − 22 = 8 units. If we consider the option of taking this item,
then the expected profit is r1 = 10 − 2 ∗ (30 − 22 − 9) = 8, there is no more
residual capacity and item 5 is therefore excluded in the bound computation
since 25 − 4 ∗ 13 ≤ 0. The computed bound is 35 + 8 = 43. The reasoning is
similar for item 5. If we consider the option of taking this item, then the expected
profit is r5 = 25− 2 ∗ (30− 22−13) = 15, there is no more residual capacity and
item 1 is therefore excluded in the bound computation since 10− 4 ∗ 9 ≤ 0. The
computed bound is 35 + 15 = 50. Assume now that the current best solution
has a value of 46, corresponding to a knapsack that contains elements 3, 4 and
5: then element 1 can be excluded from the knapsack.

Obviously, as discussed in [7] the information provided by the relaxed model
(EV(P)), i.e. expected weights, gradient function etc., can be also used to define
search strategies. For instance in SSKP we may branch on variables according to
a decreasing profit over expected weight heuristic, or selecting the one for which
the chosen gradient function gives the most promising value.

4.4 Finding Good Feasible Solutions

In CP, it is critical, in order to achieve efficiency, to quickly obtain a good feasible
solution so that cost-based filtering can prune provably suboptimal nodes as early
as possible. In Stochastic COPs the EV(P) solution can be often used as a good
starting solution in the search process. If such a solution is feasible with respect
to RP(P) — in our examples assumption (ii) guarantees this — we can easily
compute EEV(P), that is the expected result of using the EV(P) solution in
the recourse problem RP(P). Furthermore, at every node of the search tree it is
possible to adopt a variable fixing strategy and compute the EV(P) solution with
respect to such a node, that is the best possible EV(P) solution incorporating the



244 R. Rossi et al.

partial decisions represented by the given node of the search tree. This provides
a full assignment for decision variables in RP(P) at each point of the search. By
using this assignment, we can again easily compute EEV(P). In this case EEV(P)
is the cost of a feasible, and possibly good, solution for RP(P) incorporating the
partial assignment identified by the current node explored in the search tree.

Example 5. In our SSKP example the solution of the expected value problem,
EV(SSKP), selects items 3, 4 and 5 in the optimum knapsack. This solution
is clearly feasible for RP(SSKP). We can therefore compute EEV(SSKP)= 46.
This is, of course, a good lower bound for the objective function value.

5 Experimental Results

In this section we report our computational experience on two one-stage stochas-
tic COPs, the SSKP and the Stochastic Sequencing with Release Times and
Deadlines (SSEQ). In our experiments we used Choco 1.2, an open source solver
written in Java [14]. We ran our experiments on an Intel(R) Centrino(TM) CPU
1.50GHz with 2Gb of RAM.

5.1 Static Stochastic Knapsack Problem

We created a Choco CP model for DetEquiv(RP(SSKP)), and we implemented
for it a global optimization chance-constraint incorporating the filtering dis-
cussed in the former sections. To recall, within this constraint at each node of
the search tree the stochastic variables are replaced by their respective expected
values. Then, after fixing decision variables according to the partial solution as-
sociated with the given search tree node, EV(SSKP) is solved and the bound
obtained is used to prune suboptimal parts of the search tree. Furthermore cost-
based filtering is performed as explained in Section 4.3. Finally EEV(P), the
expected result of using the EV(P) solution in the recourse problem, is computed
at each node of the search tree and used as a valid lower bound (profit of a
feasible solution). In fact RP(SSKP) satisfies assumption (ii) for Proposition 1,
therefore the solution of EV(SSKP) is feasible for RP(SSKP).

In our experiments we adopted a randomly generated test bed similar to the
one proposed in [12]. There are three sets of instances considered: the first set
has k = 10, the second set has k = 15 and the third has k = 20 items. For
all the instances, item random weights, Wi, from which scenarios are generated,
are independent and normally distributed with probability distribution function
N(μi, σi). The expected weights, μi, are generated from the uniform (20,30)
distribution, and the weight standard deviations, σi, are generated from the
uniform (5,10) distribution. Rewards ri are generated from the uniform (10,20)
distribution. The per unit penalty is c = 4, while the available low cost capacity
is q = 250 for 20 items, q = 187 for 15 items, and q = 125 for 10 items. We
randomly generated, using simple random sampling, sets of scenarios having
different sizes: {100, 300, 500, 1000}. Scenarios are equally likely. The variable
selection heuristic branches first on items with lower profit over expected weight
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Table 1. Experimental results for SSKP. Comparison between a pure SCP approach
(SCP) and an SCP model enhanced with optimization-oriented global-chance con-
straints (SCP-OO), times are in seconds. In each line we indicated in bold the best
performance in terms of run time and explored nodes.

Instance Time Nodes
k Scenarios SCP SCP-OO SCP SCP-OO
10 100 0.4 0.5 916 100
10 300 1.3 0.5 2630 59
10 500 2.4 0.2 4237 8
10 1000 7.2 2.4 6227 120
15 100 2.5 0.3 4577 11
15 300 15 2.3 10408 252
15 500 33 1.1 9982 75
15 1000 150 6.3 16957 222
20 100 70 10 102878 1024
20 300 250 13 85073 953
20 500 860 9.5 129715 225
20 1000 3200 240 134230 7962

ratio. The value selection tries first not to insert an item into the knapsack.
In Table 1 we report our computational results. In all the instances considered
our approach outperforms a pure SCP model in terms of explored nodes: the
maximum improvement reaches a factor of 576.5. Run times are also shorter
in our approach for almost all the instances. An exception is observed for the
smallest instance, where the cost of filtering domains is not compensated by
the payoff in terms of reduction of the search space. The maximum speed-up
observed for run times reaches a factor of 90.5.

5.2 Stochastic Sequencing with Release Times and Deadlines

We consider a specific sequencing problem similar to the one considered by
Hooker et. al [9]. Garey and Johnson [8] also mention this problem in their
list of NP-hard problems and they refer to it as “Sequencing with Release Times
and Deadlines” (SSEQ). An optimization version of this scheduling problem was
also described in [10]. The problem consists in finding a feasible schedule to pro-
cess a set I of k orders (or jobs) using a set M of n parallel machines. Processing
an order i ∈ I can only begin after the release date ri and must be completed
at the latest by the due date di. Order i can be processed on any of the ma-
chines. The processing time of order i ∈ I on machine m ∈M is Pim. The model
just described is fully deterministic, but we will now consider a generalization
of this problem to the case where some inputs are uncertain. For convenience
we will just consider uncertain processing times Pim for order i ∈ I on machine
m ∈ M . Instead of simply finding a feasible plan we now aim to minimize the
expected total tardiness of the plan (the deterministic version of this problem is
known as “Sequencing to minimize weighted tardiness” [8] and it is NP-hard). A
solution for our SSEQ problem consists in an assignment for the jobs on the ma-
chines and in a total order between jobs on the same machine. In such a plan, a
job will be processed on its release date if no other previous job is still processing,
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Objective:

min
nPk

i=1 E [Ci − di]
+

o
Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a �= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a �= b, ∀m ∈ 1, . . . , n
(3)

Pn
m=1 Xim = 1 ∀i ∈ 1, . . . , k

(4) Ci −
Pn

m=1 PimXim ≥ ri ∀i ∈ 1, . . . , k
(5) Sab = 1 → Cb ≥ Ca +

Pn
m=1 PbmXbm ∀a, b ∈ 1, . . . , k, a �= b

Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a �= b
Stochastic variables:
Pim: processing time of job i on machine m
Auxiliary variables:
Ci: stochastic completion time of job i.

Fig. 3. RP(SSEQ). Note that [y]+ = max{y, 0}. E denotes the expectation operator.

or as soon as the previous job terminates. The recourse problem RP(SSEQ) can
be formulated as a one-stage Stochastic COP. This is shown in Fig. 3.

Decision variable Xim takes value 1 iff job i is processed on machine m,
decision variable Sab takes value 1 iff job a is processed before job b. Con-
straints (1) and (2) enforce a total order among jobs on the same machine.
Constraint (3) enforces that each job must be processed on one and only one
machine. Constraint (4) states that the (stochastic) completion time, Ci, of a job
i minus its (stochastic) duration Pim on the machine on which it is processed
must be greater than or equal to its release date ri, where Ci is an auxiliary
variable used for simplifying notation. Let Im ≡ {J1m,J2m, . . . ,Jqm} ⊆ I be
the ordered set of jobs assigned to machine m. CJqm is defined recursively as
CJqm = max{rJqm , CJ(q−1)m}+PJqmm, and CJ0m = 0. Constraint (5) states that
if two jobs a and b are processed on the same machine and if a is processed
before b, that is Sab = 1, then the (stochastic) completion time of job a plus
the (stochastic) duration of job b on the machine on which it is processed must
be less than or equal to the (stochastic) completion time of job b. Finally, the
objective function minimizes the sum of the expected tardiness of each job. The
tardiness is defined as max{0, Ci − di}. The cost function to be minimized can
easily be proved convex in the random job durations. The expected total tar-
diness is in fact minimized for n machines. Job completion times on different
machines are independent, therefore if we prove convexity for machine m ∈ M ,
then it directly follows that the cost function of the problem is also convex4. The
cost function for machine m can be expressed as E

[∑
i∈Im

(Ci − di)+
]
.

Lemma 2. The expected total tardiness for machine m is convex in the uncer-
tain processing times Pim.

Proof. Maximum of convex functions is convex. CJ1m = rJ1m +PJ1mm is convex:
it follows that Ci for any i ∈ Im is convex, since function “max” is a convex
function. Therefore the objective function is convex.

4 Note that the sum of convex functions is convex [5].



Cost-Based Domain Filtering for Stochastic Constraint Programming 247

Objective:

min
nPk

i=1
Pw

v=1 Pr{w} [Cv
i − di]

+
o

Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a �= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a �= b, ∀m ∈ 1, . . . , n
(3)

Pn
m=1 Xim = 1 ∀i ∈ 1, . . . , k

and ∀v ∈ 1, . . . , w
(4) Cv

i −
Pn

m=1 Pv
imxim ≥ ri ∀i ∈ 1, . . . , k

(5) Sab = 1 → Cv
b ≥ Cv

a +
Pn

m=1 Pv
bmXbm ∀a, b ∈ 1, . . . , k, a �= b

Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a �= b
(8) Cv

i ∈ {0, maxi=1,...,k ri+Pk
t=1(maxm=1,...,n πv

tm)} ∀i ∈ 1, . . . , k, ∀v ∈ 1, . . . , w

Fig. 4. DetEquiv(RP(SSEQ)). Note that [y]+ = max{y, 0}. Pr{v} is the probability of
scenario v ∈ {1, . . . , w}. Note that

Pw
v=1 Pr{v} = 1.

In RP(SSEQ) a feasible solution can be found for any given set of stochastic job
lengths, therefore both the assumptions are satisfied for this problem. We hand-
crafted a deterministic equivalent model DetEquiv(RP(SSEQ)) shown in Fig. 4
for the RP(SSEQ) following the guidelines of scenario-based approach described
in [18]. In this model, Pv

im is the deterministic length of job i on machine m in
scenario v and Cv

i is the deterministic completion time of job i in scenario v.
Finally, as discussed for SSKP, we can obtain the expected value problem

EV(SSEQ) by replacing every stochastic variable Pim in RP(SSEQ) with the
respective expected value E[Pim]. Since all the chance-constraints in RP(SSEQ)
are “hard”, they are retained in EV(SSEQ) and they become deterministic.

We implemented DetEquiv(RP(SSEQ)) in Choco and we coded an
optimization-oriented global chance-constraint which exploits the expected value
problem both in order to generate valid bounds at each node of the search tree
and to filter provably suboptimal values from decision variable domains. At each
node of the search tree, we consider the associated partial assignment for deci-
sion variables Xim and Sab and we fix decision variables in EV(SSEQ) according
to it. Then we solve EV(SSEQ) with respect to the remaining decision variables
that have not been assigned. This provides a lower bound for the cost of a locally
optimal solution associated with the node considered. This bound can be used
for pruning suboptimal nodes. Furthermore at any given node, after performing
variable fixing in EV(SSEQ) for every variable Xim and Sab already assigned,
all the remaining binary variables Xim that have not been assigned yet can be
forward checked by fixing the respective value to 1, by solving EV(SSEQ) with
this new decision fixed, and by employing the new bound provided.

In order to generate instances for our experiments, we adopted release times,
deadlines and deterministic processing times from the first two “hard” instances
proposed in [9], the one with 3 jobs and 2 machines and the one with 7 jobs and 3
machines. In each scenario, we generated processing times uniformly distributed
in [1, 2 ∗ Jim], where Jim is the deterministic processing time required for job
i on machine m for the instance considered. We considered different number of
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Table 2. Experimental Results for SSEQ. Comparison between a pure SCP approach
(SCP) and an SCP model enhanced with optimization-oriented global-chance con-
straints (SCP-OO), times are in seconds. In each line we indicated in bold the best
performance in terms of run time and explored nodes.

Instance Time Nodes
Jobs Machines Scenarios SCP SCP-OO SCP SCP-OO
3 2 10 0.3 0.3 203 48
3 2 30 1.3 0.6 701 133
3 2 50 3.2 1.1 927 418
3 2 100 12 3.5 1809 838
7 3 10 180 866 57688 1723
7 3 30 1800 880 186257 5293
7 3 50 3300 1100 212887 6586
7 3 100 14000 1200 277804 8862

scenarios in {10, 30, 50, 100}. Scenarios are equally likely in terms of probability.
The variable selection heuristic branches first on binary decision variables. The
value selection tries increasing values in the domain. In Table 2 we report the
results observed with and without the improvement brought by our cost-based
filtering approach.

It should be noted that in this case, in contrast to the approach employed for
SSKP, we only relax stochastic variables and we do not employ a relaxation for
the deterministic equivalent problem, which therefore remains NP-hard. Recall
that in SSKP we adopted Dantzig’s relaxation to efficiently obtain a bound
for the deterministic equivalent problem. A direct consequence of this is that,
while in the SSKP example the improvement is significant both in terms of
explored nodes and run times for all the instances, in this example the run time
improvement starts to be significant (a factor of 11.6) only for the largest instance
(7 jobs and 3 machines) and for a high number of scenarios (100 scenarios). This
is due to the fact that at every node of the search tree we solve a difficult
problem (though far easier than the original stochastic constraint program) to
obtain bounds and perform cost-based filtering. In terms of explored nodes,
however, we obtain a significant improvement for every instance — the maximum
improvement factor is of 32.3 — since the bounds generated are tight.

6 Related Work

This paper extends the original work by Focacci et al. [7] on optimization-
oriented global constraints. It also extends the original idea of global chance-
constraints [16] to optimization problems. It should be noted that dedicated
cost-based filtering techniques for stochastic combinatorial optimization prob-
lems have been presented in [17], but these techniques are specialized for in-
ventory control problems, while those here presented can be applied to a wider
class of stochastic constraint programs. On the other hand this work also builds
on known inequalities borrowed from Stochastic Programming [2,4] usually ex-
ploited for relaxing specific classes of stochastic programs and obtaining good
bounds or approximate solutions. Nevertheless Stochastic Programming models
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are typically formulated as dynamic programs or MIP models. In both cases
these bounds are not exploited for filtering decision variable domains as in our
approach and they cannot be used for guiding the search.

7 Conclusions

We proposed a novel strategy to performing cost-based filtering for certain classes
of stochastic constraint programs, under the assumptions that (i) the objec-
tive function is concave or convex in the stochastic variables, and (ii) the exis-
tence of a feasible solution is not affected by the distribution of the stochastic
variables. This strategy is based on a known inequality borrowed from Stochas-
tic Programming. We applied this technique to two combinatorial optimiza-
tion problem involving uncertainty from the literature. Our results confirm that
orders-of-magnitude improvements in terms of explored nodes and run times can
be achieved. In the future, we aim to apply cost-based filtering to multi-stage
Stochastic COPs, define strategies to handle generic chance-constraints, which
are currently ruled out by our assumptions, and to extend the approach to other
valid inequalities such as Edmundson-Madansky [4] or to suitable inequalities for
non-convex problems [13]. Finally, we plan to exploit the information provided
by optimization-oriented global chance-constraints to define search strategies.
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Abstract. We devise a theoretical model for dichotomic search algo-
rithms for constrained optimization. We show that, within our model,
a certain way of choosing the breaking point minimizes both expected
as well as worst case performance in a skewed binary search. Further-
more, we show that our protocol is optimal in the expected and in the
worst case. Experimental results illustrate performance gains when our
protocols are used within the search strategy by Streeter and Smith.

1 Introduction

In Constrained Optimization, there are two fundamental strategies being used
to find and prove optimal feasible solutions. By far the most common strategy
is branch-and-bound. By recursively partitioning the problem into sub-problems
(“branching”), we systematically cover all parts of the search space. When our
objective is to minimize costs, we use a relaxation of the problem to compute
an under-estimate of the best solution for a given sub-problem (“bounding”).
By comparing this bound with the best previously found solution, we may find
that a given sub-problem cannot contain improving solutions, which allows us
to discard (or “prune”) the sub-problem from further consideration. There exist
a variety of relaxations which can be computed efficiently, the most commonly
used is linear relaxation.

Obviously, the efficiency of a branch-and-bound approach depends heavily on
the quality of the bounds. For many problems, standard relaxation techniques
are reasonably accurate or they can be improved to be reasonably accurate,
for example by automatically adding valid inequalities to a linear programming
formulation. However, for some problems we have grave difficulty in providing
lower bounds that can effectively prune the search. In particular, by exploiting
constraint filtering techniques, in Constraint Programming (with few exception
such as optimization constraints [5]) the primary focus is on feasibility and not
on optimality considerations.
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In order to augment a black-box feasibility solver to handle discrete objec-
tive functions, there exists a second strategy known as “dichotomic” or “bi-
nary search.” Given an initial interval [l, u] in which the optimal objective value
must lie, we can compute the optimum by testing whether a cost lower or equal
l + �(u − l)/2� can still be achieved. If so, we continue searching recursively in
[l, l+�(u−l)/2�−1]. If not, we know the optimum must lie in [l+�(u−l)/2�+1, u].
When a query to the feasibility solver incurs a cost of T , using classic binary
search we can compute the optimum in time O(T log(u− l)).

An implicit assumption in dichotomic search is that positive trials incur the
same costs as negative trials. However, based on our empirical knowledge from
phase transition experiments [2,9,11,14] we expect that negative trials, where
we prove that no better solution exists, are generally more costly than positive
trials, where we only need to find one improving solution.

Assume that we are trying to minimize costs within the interval [0, 100], and
the true minimum is (seemingly conveniently) 50. A classic binary search hits
the optimum immediately, and then attempts to find solutions with objective
lower or equal 24, 37, 43, 46, 48, and 49. While we need to consider the bound 49
in any case to prove optimality of 50, given that a proof of unsatisfiability may
be costly, it is unfortunate that binary search considers a rather large number
of almost satisfiable instances before 49.

To avoid this situation, we could of course start with an upper bound of 100,
and whenever we find a solution with value v only require that from then on
we are only interested in solutions with objective value v − 1 or lower (see for
example the minimization goal in Ilog CP Solver). The downside of this strategy
is that we may end up making very slow progress in finding improving solutions.

Our objective is therefore to devise a strategy that allows fast upper bound
improvement while avoiding as much as possible costly proofs of unsatisfiability.
In particular, we consider skewed binary searches [1] where we do not split the
remaining objective interval in half but according to a given ratio a. In our
example above, assume we use a = 0.6 to organize our dichotomic search. Then,
we consider 60, 35, 49, 55, 52, 50. Compared to classic binary search, we see that
this skewed search considers a number of almost infeasible problems instead of
almost feasible problems. In Figure 1 we illustrate the costs of classic binary
search and the skewed binary search in a model where a negative trial costs of
a factor c ≥ 1 more than a positive trial.

Based on the community’s empirical experience on typical runtime over con-
strainedness, we expect that finding near-optimal solutions is often significantly
easier than proving optimality/infeasibility. In Figure 2 we sketch the two di-
chotomic searches when assuming a typical curve describing the cost of finding
a feasible solution or proving infeasibility for a given upper bound on the objec-
tive with the typical easy–hard–less-hard regions (when considering subproblems
with increasing constrainedness in the sketch from right to left).

In this paper, we provide dichotomic search protocols for such skewed search
problems. In particular, we consider the theoretical model where failures incur
costs a factor c ≥ 1 more than positive trials. For this model, we devise a



Dichotomic Search Protocols for Constrained Optimization 253

c

1

50

c

1
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Fig. 1. Dichotomic search for the optimum 50 in the interval [0,100] when the cost of
a negative trial is c and the cost for a positive trial is 1. The left picture illustrates the
costs of a classic binary search, the right the costs of a skewed search.

Fig. 2. Dichotomic search for the optimum 50 in the interval [0,100] when the cost
of trials follows a typical easy–hard–less-hard pattern. The left picture illustrates the
costs of a classic binary search, the right the costs of a skewed search.

provably optimal dichotomic search protocol. We then exploit this protocol in
a heuristic algorithm which integrates dichotomic search and restarted branch-
and-bound. Experimental results on weighted quasi-group and weighted magic
square problems illustrate the performance improvements achieved by the new
algorithm.

2 Skewed Binary Search

We consider the following theoretical model.

Definition 1. Given a search-interval {l, . . . , u} and a function f : {l, . . . , u} →
{0, 1} such that f(x) = 1 ⇒ f(x + 1) = 1 ∀ l ≤ x < u, we call the problem of
finding y = min{x ∈ {l, . . . , u} | f(x) = 1} a dichotomic or binary search
problem. We call the test whether f(x) = 1 for some x ∈ {l, . . . , u} a trial at
x. A trial at x is called positive when f(x) = 1, otherwise its called negative or
a failure. If the cost of a negative trial is c times the cost of a positive trial for
some c ≥ 1, we call c the bias. A binary search problem is called skewed when
c > 1. An algorithm that makes trials at x to continue its search in {x+1, . . . , u}
in case of a failure and in {l, . . . , x − 1} in case of a positive trial is called a
(skewed) dichotomic search or a (skewed) binary search. In the case that the
search considers trials x = l + �a(u− l)� for some constant a ∈ [0, 1], we call a
the balance of the search.
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Theorem 1. When we assume a uniform distribution of optima in the given in-
terval, the expected effort for a skewed binary search with bias c ≥ 1 is minimized
when setting the balance a ∈ [0.5, 1) such that

ac + a = 1.

Proof. Let us assume our search interval has length n ∈ IN. According to [1,15,19],
the expected search cost in a skewed binary tree with balance a is in Θ(f(a))
with1

f(a) :=
a + (1− a)c

−a log a− (1− a) log(1− a)
log(n) + c.

Let us denote with H(a) := −a log(a)− (1− a) log(1− a) ∈ (0, 1] the entropy of
a ∈ (0, 1). Then, for the first derivative of f , it holds

f ′(a) =
(

(a + (1 − a)c)(log a− log(1− a))
H2(a)

− (c− 1)
H(a)

)
log(n) (1)

= (a(log(a)− log(1− a)) + c log(a) + cH(a)− cH(a) + H(a))
log(n)
H2(a)

(2)

=
(c log(a)− log(1− a))

H2(a)
log(n) (3)

We note that the sign of the first derivative depends solely on the sign of
c log(a) − log(1 − a). When a satisfies ac + a = 1 then f ′(a) = 0. For all lower
values for a ∈ [0.5, 1) the derivative is negative, for all larger values it is positive.
Consequently, a with ac + a = 1 marks a global minimum of f in the interval
[0.5, 1). ��

When our objective is to minimize expected costs under the uniform distribution,
the previous theorem tells us how to choose the balance a. The question arises
how we should choose a when our goal is to minimize the worst-case performance.
Interestingly, we find:

Theorem 2. The worst-case effort for a skewed binary search with bias c ≥ 1
is minimized when setting the balance a ∈ [0.5, 1) such that ac + a = 1.

Proof. When searching an interval of length n ∈ IN, the worst-case effort of
a skewed binary search with balance a is given by the value of the following
optimization problem: Maximize x+ cy+ c such that ax(1−a)y ≥ 1/n, x, y ≥ 0.
We linearize this optimization problem and get

max x + cy + c

such that log

„
1

a

«
x + log

„
1

1− a

«
y ≤ log(n)

x, y ≥ 0

1 The additional summand c is caused by the fact that we incur costs at nodes and not
on branches.
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From linear programming theory we know that the maximum is achieved in
a corner of this 2-dimensional polytope. The maximum value is thus in

Θ

⎛⎝max

⎧⎨⎩ 1
log

(
1
a

) , c

log
(

1
1−a

)
⎫⎬⎭ log(n) + c

⎞⎠ .

Since −log(a) is strictly monotonically decreasing and −log(1 − a) is strictly
monotonically increasing over [0.5, 1), this cost is minimized when choosing the
balance a ∈ [0.5, 1) such that 1

log( 1
a ) = c

log( 1
1−a ) , which is the same as log(1−a) =

c log(a), or 1 = ac + a. ��

Consequently, we conveniently minimize both expected and worst-case time
when setting a ∈ [0.5, 1) such that ac + a = 1. Then, for the runtime it holds:

Lemma 1. The expected and worst-case costs of a skewed binary search with

bias c≥1 and balance a∈ [0.5, 1) such that ac+a=1 are in Θ

(
c

(
log(n)

log( 1
1−a )+1

))
.

Proof. First, note that ac + a = 1 iff c = log(1−a)
log(a) . Recall from the proof of

Theorem 1 that the expected runtime is in Θ(f(a)) with

f(a) =
a + (1− a)c

−a log a− (1− a) log(1− a)
log(n) + c.

Then,

f(a) =
a log(a) + (1− a) log(1− a)

(−a log a− (1 − a) log(1− a)) log(a)
log(n) + c (4)

=
log(n)
− log(a)

+ c (5)

=
c

log( 1
1−a )

log(n) + c (6)

Regarding the worst-case runtime, recall from the proof of Theorem 2 that ac +
a = 1 implies 1

log( 1
a ) = c

log( 1
1−a ) . Then,

Θ

⎛⎝max

⎧⎨⎩ 1
log

(
1
a

) , c

log
(

1
1−a

)
⎫⎬⎭ log(n) + c

⎞⎠ = Θ

⎛⎝ c

log
(

1
1−a

) log(n) + c

⎞⎠ . ��

So we essentially gain a factor of log( 1
1−a ) by skewing our search. The question

arises how big this factor is in terms of the given bias c.

Lemma 2. Given c ≥ 1 and a ∈ [0.5, 1) such that ac + a = 1, we have that

log
(

1
1− a

)
≥ log(c)

2
.
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Proof. Since ac + a = 1 is equivalent with c = log(1−a)
log(a) , it is sufficient to show

that (
1

1− a

)2

≥ log(1− a)
log(a)

,

or equivalently that (1 − a)(1−a)2 − a ≥ 0. Let us define b := 1 − a ∈ (0, 0.5],
x := 1/b ≥ 2, and g(b) := bb2 + b − 1. Our claim is then equivalent to showing
that

bb2 + b− 1 = g(b) ≥ 0

for all b ∈ (0, 0.5]. Consider the first derivative of g:

g′(b) = bb2+1(1 + 2 ln(b)) + 1.

To show that g is monotonically increasing over (0, 0.5], we show that g′(b) ≥ 0
for all b ∈ (0, 0.5]. Since 1 + 2 ln(b) < 0 for all b ∈ (0, 0.5], it is sufficient to show
that b(1 + 2 ln(b)) + 1 ≥ 0, or equivalently, that

h(x) := 1 + x− 2 ln(x) ≥ 0 ∀ x ≥ 2.

A simple extremum analysis based on the first and second derivative of h shows
that h is convex and takes its unique minimum for x = 2. Since f(2) > 0, we
have shown that g′(b) ≥ 0 over (0, 0.5], and therefore that g is monotonically
increasing over (0, 0.5]. However, as g approaches 0 from above, we have

lim
b→0+

g(x) = lim
b→0+

bb2 + b− 1 (7)

= lim
b→0+

eb2 ln(b) − 1 (8)

= elimb→0+ b2 ln(b) − 1 (9)

= e0 − 1 = 0. (10)

Consequently, g(b) ≥ 0 for all b ∈ (0, 0.5]. ��

With the help of Lemmas 1 and 2, we get immediately:

Theorem 3. The expected and worst-case costs of a skewed binary search with
bias c ≥ 1 and balance a ∈ [0.5, 1) such that ac+a = 1 are in O

(
c
(

log(n)
log(c) + 1

))
.

To summarize our findings so far: Given a minimization problem where negative
trials cost a factor c ≥ 1 more than positive ones, we minimize the (expected and
worst-case) costs of a skewed binary search by choosing the balance a ∈ [0.5, 1)
such that ac + a = 1. With this setting, we essentially gain an asymptotic factor
in Ω(log(c)).

The question arises whether there are other protocols that could minimize
the costs further. For example, one may consider a protocol where the balance
is not chosen as a constant for the entire search, but that a ∈ [0, 1] is set in each
iteration according to some function over c and also n, the remaining interval
length. The following theorem proves that all other dichotomic search protocols
cannot perform asymptotically better.
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Theorem 4. Given an interval with length n, considering the breaking point
a ·n with ac +a = 1 in a skewed binary search with bias c ≥ 1 is expected optimal
in the O-calculus when we assume a uniform distribution of optima in the given
interval.

Proof. Consider a dichotomic search protocol that selects the next trial according
to some function s(c, n). For any given interval length n ∈ IN and bias c ≥ 1
we show that the expected time that a skewed search using function s takes is
greater or equal c

log( 1
1−a ) log(n) + c

2 , where ac + a = 1. We induce over n. For

n = 1 the claim is trivially true. Now assume n > 1 and that the claim holds
for all m < n. Denote with p = s(c, n) the current trial point. Given that the
chance for a positive trial at p is p/n (and (n − p)/n for a negative trial), and
by induction hypothesis, for the expected costs it holds that

cost(s, c, n) ≥ n− p

n

⎛⎝c +
c log(n− p)

log
(

1
1−a

) +
c

2

⎞⎠+
p

n

⎛⎝1 +
c log(p)

log
(

1
1−a

) +
c

2

⎞⎠ .

With c =
log( 1

1−a )
log( 1

a ) , it follows

cost(s, c, n) ≥ c +
log(n− p)

log
(

1
a

) +
p

n

(
1 +

log(p)− log(n− p)
log

(
1
a

) − c

)
+

c

2
(11)

=
1

log
(

1
a

) (log
(
n− p

1− a

)
+

p

n
log

(
(1 − a)p
a(n− p)

))
+

c

2
. (12)

Since we wish to show cost(s, c, n) ≥ c log(n)

log( 1
1−a ) + c

2 = log(n)

log( 1
a ) + c

2 , it is therefore

sufficient to show that

log
(

n− p

n(1− a)

)
+

p

n
log

(
(1− a)p
a(n− p)

)
≥ 0,

or equivalently that (
(1 − a)p
a(n− p)

) p
n

≥ n(1− a)
n− p

,

or that

t(a) :=
(p
a

) p
n − n

(
1− a

n− p

)n−p
n

≥ 0.

For the first and second derivation of t we have

t′(a) =
(

1− a

n− p

)(n−p
n )−1

− 1
n

(p
a

) p
n +1

and

t′′(a) =
p

a2n

(p
a

) p
n
( p
n

+ 1
)

+
1

n− p

(
1− n− p

n

)(
1− a

n− p

)n−p
n −2

.

Clearly, t′′(a) > 0 for all a ∈ [0.5, 1), and therefore t is convex on this interval.
Furthermore, t′( p

n ) = 0 and t( p
n ) = 0, and therefore t(a) ≥ 0 over [0.5, 1). ��
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As a consequence of the previous theorem and Lemma 1, which states that our
skewed binary search protocol does not work worse in the worst-case than it
does in the expected case, we finally get:

Corollary 1. Given an interval with length n, considering the breaking point
a · n with ac + a = 1 in a skewed binary search with bias c ≥ 1 is asymptotically
optimal in the worst-case.

3 Skewed Dichotomic Search for Constrained
Optimization

The previous theoretical study, while interesting in its own right and applicable
in realistic scenarios like the one considered in [1], cannot be exploited directly
when considering constrained optimization. This is for various reasons. First of
all, as we discussed earlier and illustrated in Figure 2, in optimization practice,
failures do not generally incur costs that are a constant factor higher than those
of positive trials. Consequently, there is a disconnect between the theoretical
model and reality.

The second reason why our protocol is not directly applicable is because, in
practice, we do not actually know the factor by which a negative trial is – say,
on average – more expensive than a positive trial. We could of course try to
estimate such a ratio based on our experience with past trials. However, when
the skewed search actually works well we hope to avoid negative trials as best
as we can, so the sampling is skewed and there will be very little statistical data
to work with. Furthermore, in some cases the lower bounds on the objective
that we can compute may be so bad that we may not even strive to find and
prove an optimal solution. Instead, our objective may be to compute high quality
solutions as quickly as possible.

Finally, in real applications, we may expect that, when a backtracking al-
gorithm finds a new upper bound, there may be other solutions that further
improve the objective and can be found quickly when investing only a little
more search. Classic branch-and-bound algorithms (to which we will refer as
B+B), where the current upper bound on the objective is based on the best
solution found so far, benefit from such a clustering of good solutions. Note
that branch-and-bound can also be parameterized to improve on upper bounds
more aggressively. For example, when only an approximately optimal solution
is sought, we can set the new upper bound to (1 − ε)u where ε > 0 and u is
the value of the best solution found. Or, following an idea presented in [18],
one could set the upper bound for pruning more aggressively based on empirical
evidence where the optimal objective may be expected.

3.1 The Streeter-Smith Strategy

To address some of these issues, we follow the work from Streeter and Smith [17]
who propose a dichotomic search strategywhich considers (potentially incomplete)
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Query strategy. S3(β, γ, ρ):
1. Initialize T ← 1

γ
, l ← 1, u ← U , tl ← ∞, and tu ← −∞.

2. While l < u:
(a) If [l, u − 1] ⊆ [tl, tu] then set T ← T

γ
, set tl ← ∞, and set tu ← −∞.

(b) Let u′ = u − 1. If [l, u′] and [tl, tu] are disjoint (or tl = ∞) then define

k =

j
�(1 − β)l + βu′� if (1 − ρ)l > ρ(U − u′)
�βl + (1 − β)u′� otherwise;

else define

k =

8<
:

�(1 − β)l + β(tl − 1)� if (1 − ρ)(tl − l)
> ρ(u′ − tu)

�(1 − β)u′ + β(tu + 1)� otherwise.

(c) Execute the query 〈k, T 〉. If the result is “yes” set u ← k; if the result is
“no” set l ← k + 1; and if the result is “timeout” set tl ← min{tl, k} and
set tu ← max{tu, k}.

Algorithm 1. The Streeter-Smith Strategy

trials with a given fail-limit. They show that their parameterized strategy given
in Algorithm 1 achieves an optimal competitive ratio for any fixed set of param-
eters 0 < β ≤ 0.5, 0 < γ < 1, and 0 < ρ < 1.

Assume we set β = ρ = γ = 0.5. Strategy S3 then proceeds as follows: It
first tries the midpoint of the given interval under some fail-limit. When the
trial is inconclusive, the next trial is at 3

4 of the interval and 1
4 if the first is

also inconclusive. This way, the search points are driven to the borders of the
search interval where we expect cheaper trials. If no improved upper and lower
bounds are found even for trials at the very border of the interval, the fail-limit
is multiplied with 1

γ , and the entire process is repeated. As soon as an improved
upper or lower bound is found, the search interval is shrunk accordingly. Note
how parameter β shifts the trial point towards the upper bound for lower values
of β. Parameter ρ determines the balance how much effort we put on upper-
bound rather than lower-bound improvement. In our experiments, negative trials
were so costly that the best performance was always achieved by setting ρ← 1.
The parameter γ finally determines how quickly the fail-limit grows. In our
experiments, we chose the initial fail-limit as 1000 and γ ← 2

3 . We will refer to
this algorithm with the acronym SS.

The way how the algorithm proceeds is illustrated in Figure 3. The algorithm
sets a fail-limit T and then maintains the current upper and lower bound as well
as a time-out interval. The algorithm then performs two interleaved dichotomic
searches with bias β, one in the interval [t, tl], the other in [tu, u], until the best
upper and lower bounds for the given time-limit are achieved. Then, the fail-limit
is increased geometrically, and two new dichotomic searchers are initiated.
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Fig. 3. The Streeter-Smith strategy for constrained optimization on the interval [1,100]

3.2 Parameter Tuning Based on Skewed Binary Search Protocols

While the Streeter-Smith strategy exploits a black-box feasibility solver, the
specific solvers that we use for constraint satisfaction are known to benefit from
randomization and restarts. Therefore, in a variant of algorithm SS we choose to
set the fail-limits in a more continuous fashion than in the Streeter-Smith strat-
egy: After each inconclusive trial, we update the fail-limit linearly to 1000(t+1),
where t is the number of the last trial that was inconclusive.

With respect to the fact that a backtrack-search may actually yield feasible
and potentially improving solutions near a new solution that has been found, we
also propose not to stop the search in case of a positive trial. Instead, we choose
the next trial point and use this upper bound to prune the search from then
on. When we find a new improving solution, we again set the new upper bound
aggressively. If we prove unsatisfiability of the new trial or end the search at the
initially given fail-limit, we continue in accordance to S3.

We observe that the interleaved searches for the best achievable upper and
lower bound under some fail-limit depicted in Figure 3 resemble our cost-model
from Figure 1. Based on our theoretical study of this cost-model, we are now in
a good position to exploit our dichotomic search protocol to tune the parameter
β which we propose to choose dynamically for every trial rather than treating it
as fixed. Our modified Streeter-Smith strategy works as follows: Whenever we
find an improving upper bound, we record how many fails it took within the
current restart to produce the new upper bound. Based on these numbers, we
keep track of the current average number of failures that it takes to compute a
new upper bound. Then, we set the bias c to the ratio of the current fail-limit
and this running average, as we expect the search for an improved upper bound
to take the running average while a negative trial incurs at most the costs of the
current fail-limit.

Of course, for our bias c ≥ 1, we could approximate a ∈ [0.5, 1) online. The
algorithm will be faster, however, when we pre-compute the corresponding a-
values for realistic values of c, say for all natural numbers lower than 1000. In
our implementation, we pre-computed values for a corresponding to c which
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Query strategy. SS − lc − skewed(l, u, δ)
1. Initialize f ← 0, s ← 0, avg ← 1, T ← δ, T ′ ← T , timeout ← false, l′ ← l.
2. While l < u:

(a) Let u′ ← u − 1
(b) If timeout = true and l′ ≥ u′, then set timeout ← false and l′ ← l,

T ← T + δ, T ′ ← T

(c) Let β ← 1 − a[T/avg]
If timeout = true, then set k ← l′ +(u′ − l′) ∗β else set k ← l +(u′ − l) ∗β

(d) Execute a limited randomized backtrack search with parameters
〈in : k, in : T ′, out : failures, out : bestSol〉.

(e) i. If the result is “yes”
Set u ← bestSol, s ← s + 1, f ← f + failures, T ′ ← T − failures,
avg ← f/s, β ← 1 − a[T/avg], k ← l + (u − l) ∗ β, timeout ← false

and l′ ← l. Continue the latest backtrack search with parameters
〈in : k, in : T ′, out : failures, out : bestSol〉. Go back to (e)

ii. If the result is “no”
Set l ← k + 1, T ← T + δ, T ′ ← T , timeout ← false and l′ ← l.

iii. If the result is “timeout”
Set l′ ← k, T ← T + δ and T ′ ← T , timeout ← true.

Algorithm 2. Skewed Restarted Search

grows exponentially starting at 1 by setting ct+1 := ct(1 + ε) for some small
ε > 0. For a concrete c, we then interpolate the value for a. The parameter β is
then dynamically set to β ← 1− a.

Depending on whether we use a specific β or our skewed protocol β = 1 − a
we refer to this variation of the Streeter-Smith strategy with the acronym SS-
lc or SS-lc-skewed, respectively. The latter is outlined in Algorithm 2: Given a
search interval [l, u], as well as an increment unit δ to update the successive fail-
limits T , the average number of failures to compute a new upper bound, avg, is
initialized to 1 and the trial point k, is determined by the skewing parameter,
β ← 1−a[T/avg], where a[T/avg] gives the skewing parameter a for bias T/avg.
The algorithm performs a search with fail-limit T ′, and returns the number of
failures along with a new upper bound, bestSol, if a solution is ever found. If the
search for an improving solution is successful, we decrease the upper bound u,
increase the number of successful trials s as well as the total number of failures
f , and reset the timeout flag. Then, the backtrack search is continued with the
updated values of β, k and T ′. If the search proves that no solution with costs
lower or equal k exists, we increase the lower bound l, and the fail-limit and
reset the time-out flag. If the query result is “timeout”, the timeout flag is set
to true, a temporary lower bound l′ is set to k, and the fail-limit is increased.
During the search, if the temporary lower bound meets the upper bound, we
reset the timeout flag and restart the search from the lower bound l with a
linearly increased fail-limit T . This entire process is repeated until the search
interval is consumed. To facilitate the presentation, we only show the modified
upper bound improvement here. Just as in the Streeter-Smith strategy, we can
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of course interleave the while-loop in step (2) with another skewed search that
aims at increasing the lower bound quickly.

4 Numerical Results

In [1], skewed dichotomic search has been thoroughly investigated in the context
of sorting. Here, branch-prediction and cache-misses can cause a skewed search
to work more efficiently than classic binary search. Experimental results show
that skewing the search leads to gains in the order of around 15%. To assess the
effect of skewing dichotomic search for constrained optimization, in this section
we compare the three algorithms outlined above on two benchmark problems,
the weighted quasigroup-completion problem and the weighted magic square
problem.

Definition 2. [Weighted Quasigroup Completion] Given a natural number
n ∈ IN, a quasigroup Q on symbols 1, · · · , n is an n× n matrix in which each of
the numbers from 1 to n occurs exactly once in each row and in each column. We
denote each element of Q by qij, i, j ∈ {1, 2, · · · , n}. n is called the order of the
quasigroup. Given profit values pij ∈ IN, i, j ∈ {1, 2, · · · , n}, and a set of tuples
F = {(k, i, j) | 1 ≤ i, j, k ≤ n}, the Weighted Quasigroup Completion problem
consists in computing a quasigroup Q such that qij = k for all (k, i, j) ∈ F and
the value mini

∑
j pijqij is minimized.

Definition 3. [Weighted Magic Square Problem] Given a natural number
n ∈ IN, a magic square M of order n is an n × n matrix in which each of the
numbers from 1 to n2 occurs exactly once and such that the sum of all values in
each row, column, and main diagonal are identical. We denote each element of
M by mij, i, j ∈ {1, 2, · · · , n}. Given profit values pij ∈ IN, i, j ∈ {1, 2, · · · , n},
the Weighted Magic Square Problem consists in computing a magic square M
such that the value mini

∑
j pijmij is minimized.

From the perspective of the Constraint Programming (CP), Artificial Intelligence
(AI), and Operations Research (OR) communities, combinatorial design prob-
lems as the ones given above are interesting as they are easy to state but possess
rich structural properties that are also observed in real-world applications such
as scheduling, timetabling, and error correcting codes. Thus, the area of combi-
natorial designs has been a good source of challenge problems for these research
communities. In fact, the study of combinatorial design problem instances has
pushed the development of new search methods both in terms of systematic
and stochastic procedures. For example, the question of the existence and non-
existence of certain quasigroups with intricate mathematical properties gives rise
to some of the most challenging search problems in the context of automated the-
orem proving [20]. So-called general purpose model generation programs, used
to prove theorems in finite domains, or to produce counterexamples to false
conjectures, have been used to solve numerous previously open problems about
the existence of quasigroups with specific mathematical properties. Considerable
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Fig. 4. Comparison of SS, SS-lc, and SS-lc-skewed on weighted magic square problems.
We show the average ratio of upper to lower bound for 20 instances with 36 (left) and
64 cells (right) and objective weights pij for each cell (i, j) chosen uniformly in [1,36]
and [1,64], respectively.
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Fig. 5. Comparison of SS, SS-lc, and SS-lc-skewed on weighted quasigroup-completion
problems. We show the average ratio of upper to lower bound for 20 instances with 100
(left) and 144 cells (right) and objective weights pij for each cell (i, j) chosen uniformly
in [1,100] and [1,144], respectively.

progress has also been made in the understanding of symmetry breaking pro-
cedures using benchmark problems based on combinatorial designs [3,6,8,16].
The study of search procedures on benchmarks based on quasigroups has led
to the discovery of the non-standard probability distributions that characterize
complete (randomized) backtrack search methods, so-called heavy-tailed distri-
butions [7].

For the purpose of testing dichotomic search protocols, the chosen bench-
marks are interesting since even finding feasible solutions only is already hard.
Moreover, it is a challenge to provide tight bounds on the objective, which is
exactly when experts usually revert to a dichotomic search to solve a problem.

Our results are illustrated in Figures 4 and 5. Experiments were run on an
AMD Athlon 64 X2 Dual Core Processor 3800+ using Ilog Solver 6.5. For both
problems, the CP-models used to solve particular queries are based on the ob-
vious AllDifferent constraints. We fill the squares row by row, whereby the row
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to be filled next is determined by the row that currently marks the lower bound
on the objective. Within a row, we pick a random variable with minimal domain
and assign the lowest value in its domain first. All dichotomic algorithms per-
form an initial improvement phase where we try to quickly tighten the initial
search interval as best as possible. Because of the difficulty to find even feasible
solutions only, we did not use local search for this purpose, but a number of
short, restarted tree-searches with a tight fail-limit.

The pure B+B approach without restarts often fails to provide feasible so-
lutions within the given time-frame. Consequently, we do not show the results
for this method in the figures. We believe that the inferior performance of B+B
is due to the fact that it conducts one continuous search that is not restarted.
Thus, it gets easily stuck in an area of the search space which does not contain
feasible and improving solutions. This trap is particularly big as the CP domain-
based lower bounds available to our algorithms are not of very high quality. All
other algorithms avoid this problem by exploiting the benefits of a somewhat
randomized branching variable selection with frequent restarts.

With respect to the remaining algorithms, we observe that SS-lc works better
than the pure Streeter-Smith strategy SS. That is, we find that continuously
updating the fail-limit and continuing the search with an improved upper bound
after a new solution has been found is beneficial for constrained optimization.
In the B+B approach, when it does find a solution, we often find that more im-
proving solutions are found shortly afterwards. We believe that this clustering
of solutions in some small subtree is caused by the algorithm having found a de-
sirable partial assignments. Such a clustering is exploited by SS-lc by continuing
the search rather than restarting directly.

Finally, we see that SS-lc-skewed leads to an additional improvement. In this
method, the fact that the Streeter-Smith strategy considers strict fail-limits al-
lows us to get a good estimate on the search-bias c. As we had hoped, using
an optimistic but not overly aggressive way to set new upper bounds based on
this estimate of the bias and our theoretically optimal setting allows us to find
improving solutions faster and thereby close the gap between upper and lower
bound more rapidly.

5 Conclusions

We studied a theoretical model for dichotomic search algorithms and devised a
protocol which minimizes both expected as well as worst case performance in a
skewed binary search. Furthermore, we showed that our protocol is optimal in
the expected and in the worst case. Earlier experiments in the sorting domain
by Brodal and Moruz had already shown practical gains from skewing binary
search algorithms. In the context of constrained optimization, by exploiting the
strategy proposed by Streeter and Smith, dichotomic search can be exploited
in practice while skewing the search leads to faster improvements of the upper
bound in constrained minimization.
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Abstract. Recently, a new domain store for set-variables has been proposed
which totally orders all values in the domain of a set-variable based on cardinal-
ity and lexicography. Traditionally, knapsack constraints have been studied with
respect to the required and possible set domain representation. For this domain-
store efficient filtering algorithms achieving relaxed and approximated consis-
tency are known. In this work, we study the complexity of achieving length-lex
and approximated length-lex bounds consistency. We show that these strength-
ened levels of consistency can still be achieved in (pseudo-)polynomial time. In
addition, we devise heuristic algorithms that work efficiently in practice.

1 Introduction

The constraint programming paradigm is inherently associated with the decomposition
of a given problem into its constituting parts as given by the constraints describing it.
Based on this decomposition, the standard solution scheme of constraint programming
interleaves search and constraint propagation. The latter consists in constraint-specific
filtering algorithms that remove inconsistent values from the variable domains. Thus,
information from one constraint is propagated to the other constraints solely through
variable domains.

While the decomposition allows the solver to apply filtering algorithms that are cus-
tom tailored for specific constraints, the main drawback of this scheme is that the infor-
mation exchange via variable domains inherently weakens the ability to reason about
the given problem. Consider for example the well-known example of three binary not-
equal constraints working on three variables that all must be assigned either value A or
value B. Clearly, no solution exists, but no constraint is able to convey information to
the other constraints through the domain store that would make it possible to infer that
the problem is infeasible.

Consequently, constraint programming research has looked for ways to strengthen
inference by softening the effects of problem decomposition. The concept of global
constraints has been an area of very productive research. In our example above, the All-
Different constraint represents the conjunction of all three binary not-equal constraints.
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Other schemes such as CP-based Lagrangian relaxation [17] or CP-based Bender’s
decomposition [5,9] have been proposed where constraints exchange dual or no-good
information on top of the traditional domain information. Recently, [1] proposed to use
a multi-dimensional decision diagram as domain store which allows much more infor-
mation to be represented and exchanged.

An alternative route is to consider more elaborate domains. For set variables, the
traditional domain representation has been to specify a lower bound of mandatory
elements and an upper bound of possible elements. In other words, the domain of a
set-variable would be (partially) ordered based on the subset relation. This representa-
tion is equivalent to a representation through a number of binary variables.

As an easy way to strengthen the information captured, a variable representing the
cardinality of the set could be added to this representation. In [13], Sadler and Gervet
apply a lexicographic order to the domain of a set-variable. That is, the lower bound and
upper bound become the lexicographically smallest and largest set that the variable can
be assigned. In [8], Gervet and Van Hentenryck propose a length-lexicographic order
for the domains of set variables. Domain elements (i.e., the sets that can potentially be
assigned to the set-variable) are first ordered by increasing cardinality, while sets with
equal cardinality are ordered lexicographically. The benefits of the length-lexicographic
representation with respect to the traditional subset bounds representation are that it has
less space requirements, unary constraints can be efficiently filtered, and it automati-
cally breaks some symmetry.

In order to fully benefit from new domain representations such as the length-lexico-
graphic set-variable domains, ways must be devised on how to exploit and strengthen
the additional information efficiently. For the length-lexicographic representation, a first
step in this direction was made by Dooms et al. [4], who presented domain filtering
algorithms for open constraints where the set-variable representing the scope of an
open constraint has a length-lexicographically ordered domain. For many important
constraints involving set-variables, however, it remains an open question whether or
not it is possible to efficiently filter the domains to some specified level of consistency
when they are length-lexicographically ordered. Addressing this question with respect
to knapsack constraints is the central topic of this paper.

Knapsack constraints have typically been defined over a number of binary variables
which model whether an item is included in or excluded from the knapsack. An al-
ternative way of modeling the constraint is by associating it with one set-variable.
For the latter case, filtering algorithms for knapsack constraints achieving bounds-
consistency for the subset-domain representation (which is equivalent to achieving
generalized arc-consistency (GAC) for the binary variable representation) have been
studied in [19,14]. Since determining whether an item must be included or excluded
in all feasible improving solutions is naturally NP-hard, the filtering algorithms either
run in pseudo-polynomial time [14,19], or they only achieve relaxed or approximated
consistency [6,11,14,16].

The length-lex domain representation provides information beyond the classical sets
of required and possible items. A priori, it is not clear that the knapsack problem
does not become strongly NP-hard when we require that the set of items must be
assigned a value within given length-lex bounds. If this was the case, we would no
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longer be able to approximate the problem efficiently. In this paper, we show that
there still exists a pseudo-polynomial filtering algorithm that establishes length-lex
bounds-consistency for knapsacks. We also show how to transform this algorithm into a
fully-polynomial approximation scheme and explain how this algorithm can be used to
obtain a polynomial-time algorithm which achieves approximated length-lex bounds-
consistency for knapsack constraints.

While a complexity analysis of knapsack problems under length-lex constraints is
interesting in its own right, in practice we often find that even polynomial-time filter-
ing algorithms can be too heavy to pay-off within a search. For that reason, we also
propose efficient heuristic filtering algorithms that communicate and exploit only the
cardinality information embedded in the length-lex domain representation. We evaluate
those heuristics empirically in the context of multi-knapsack problems where we find
that exploiting cardinality information can effectively reduce the size of the search-tree.

2 Domain Representations for Set-Variables

We assume basic familiarity with constraint programming. Here we recall the basic
definitions concerning constraint programming with set-variables [7].

A set-variable is a variable whose domain values are sets. We assume that the el-
ements originate from a finite universe of elements. Because the number of possible
values of a set-variable can be enormous (the size of a power set, in the worst case),
one usually represents the domain of a set-variable S by a ‘lower bound’ L(S) and an
‘upper bound’ U(S) on the values that S can take.

A natural representation for the domain of a set-variable is based on the subset order-
ing of the universe. That is, the lower bound L(S) represents all mandatory elements,
while the upper boundU(S) represents all possible elements, i.e., D(S) = {s | L(S) ⊆
s ⊆ U(S)}. We refer to this representation as the subset representation. In addition, at
times also a lower bound l(S) and upper bound u(S) on the cardinality of S are main-
tained. We can add these two bounds to the subset representation for the domain of S,
i.e., D(S) = [L(S), U(S), l(S), u(S)] = {s | L(S) ⊆ s ⊆ U(S), l(S) ≤ |s| ≤ u(S)}.
We refer to this representation as the subset-cardinality representation.

An alternate representation is based on the length-lexicographic ordering of the uni-
verse [8] where the lower boundL(S) represents the smallest set that can be assigned to
S, while the upper bound U(S) represents the largest set, i.e., D(S) = {s | L(S) ≤LL

s ≤LL U(S)}. Here ≤LL denotes the length-lexicographic order. We refer to this repre-
sentation as the length-lex representation.

Example 1. Let S be a set-variable representing a set of cardinality 2 or 3, in which
element 4 is required, while any element from the set {1, 2, 3, 4, 5}may appear. Using
the subset-cardinality representation, D(S) = [{4}, {1, 2, 3, 4, 5}, 2, 3]. Note that the
bounds of this representation do not correspond to feasible assignments for this variable.

Using the length-lex representation, we have D(S) = [{1, 4}, {3, 4, 5}]. Note that in
this case, the bounds do correspond to feasible assignments for this variable. However,
this representation also allows to assign sets that do not include element 4, for example,
sets {1, 5} and {2, 3} are within the two specified bounds.
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As pointed out in the example, a drawback of the length-lex representation is that it does
not allow to represent (and exploit) mandatory elements directly. Therefore, we intro-
duce an adapted representation that does allow to capture that information, combin-
ing the subset-cardinality and length-lex representations. We propose to maintain a set
R(S) of required elements, a set P (S) of possible elements other than R(S), and two
sets Llex(S) and Ulex(S) that denote the length-lexicographically smallest and largest
set that we can add to R(S). In other words, the domain of a set-variable S is repre-
sented as D(S) = [R(S), Llex(S), Ulex(S), P (S)] = {s | s = R(S) ∪ t, Llex(S) ≤LL

t ≤LL Ulex(S), t ⊆ P (S)}. We finally define the shorthands L(S) = R(S) ∪ Llex(S)
and U(S) = R(S) ∪ Ulex(S). We refer to this representation as the length-lex∗ repre-
sentation. 1

Example 2. Continuing Example 1, the length-lex∗ representation gives R(S) = {4},
Llex(S) = {1}, Ulex(S) = {3, 5}, and P (S) = {1, 2, 3, 5}. This defines the following
domain (in length-lex order) for S: {1, 4}, {2, 4}, {3, 4}, {4, 5}, {1, 2, 4}, {1, 3, 4},
{1, 4, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}.
For constraints involving set-variables, the filtering task is to increase the lower bounds
and decrease the upper bounds of the domains. Ideally, we would like to achieve a
specified level of consistency, for example bounds consistency or approximated bounds
consistency. The respective definitions of these consistencies depend on the applied
domain representation. For the length-lex∗ representation, we have:

Definition 1. Let S denote a set-variable with length-lex∗ domain D(S) = [R(S),
Llex(S), Ulex(S), P (S)]. A constraint C(S) is called length-lex∗ bounds consistent iff

– R(S) = inf
⊆
{s | s ∈ D(S) ∧ s ∈ C(S)},

– P (S) = sup
⊆
{s | s ∈ D(S) ∧ s ∈ C(S)} \R(S),

– Llex(S) = min
≤LL

{s | s ∈ D(S) ∧ s ∈ C(S)} \R(S),

– Ulex(S) = max
≤LL

{s | s ∈ D(S) ∧ s ∈ C(S)} \R(S).

The notion of approximated length-lex∗ bounds consistency will be presented in Sec-
tion 5.

3 The Knapsack Problem

In this section we fix notation that we use throughout the paper. First, we define the
knapsack constraint KP(S, p,B,w,C) representing the knapsack problem on a set of
items denoted by a set-variable S defined on the universe of n items I , a profit vector p
such that pi > 0 is the profit of item i ∈ I , a weight vector w such that wi > 0 is the
weight of item i ∈ I , a lower bound B on the total profit, and a capacity C on the total
weight of the knapsack. More formally, we have

1 Note that our length-lex∗ representation is closely related to the ‘hybrid’ domain representa-
tion of Sadler and Gervet [13, Definition 3]. The difference is that the hybrid representation
separates the lexicographic ordering and the bounds on the cardinality, while we treat them
simultaneously using length-lex bounds. Furthermore, the hybrid representation allows the
lexicographic bounds and the required elements to share elements, which we forbid.
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KP(S, p,B,w,C) = {s | s ∈ D(S),
∑
i∈s

pi ≥ B,
∑
i∈s

wi ≤ C}.

As an alternative to the set-variable S, we can represent the set of items to include by a
vector of binary variables x indexed by I , i.e., (i ∈ S) ⇔ (xi = 1). It is well-known
that achieving generalized arc consistency with respect to the variables x corresponds
to achieving subset bounds consistency with respect to the set-variable S [7].

4 Exact Pseudo-polynomial Algorithms for Knapsack

Let us begin by ignoring the lexicographic bounds and assume that we are only given
bounds on the number of items to include. The traditional way to achieve GAC for the
binary variable representation of a knapsack constraint is by exploiting the dynamic
programming (DP) principle. Since the maximum profit is achieved by either excluding
or including any particular item, we have the following recursion equation: For all k ∈
N and 0 ≤ q ≤

∑
i pi, the minimum weight Dk,q needed to achieve profit q using only

items in {1, . . . , k} is

Dk,q ← min{Dk−1,q, Dk−1,q−pk
+ wk}.

The maximum profit is then easily determined by finding the maximal q such that
Dn,q ≤ C. In [14], a filtering algorithm for knapsacks was developed that exploits
Trick’s well-known filtering technique for dynamic programs [19]. The main idea is to
consider a dynamic program as a graph where each cell is a node and each node has
exactly those predecessors as given by the dynamic programming recursion equation.
For example, the predecessors of Dk,q are Dk−1,q and Dk−1,q−pk

. Edges are weighted
by associating the edge from predecessor Dk−1,q with weight 0 (as it does not cost
anything to not include item k), and the edge from predecessor Dk−1,q−pk

with weight
wk. This way, the values computed by the DP correspond directly to the shortest path
distances from root-node D0,0.

Moreover, every path from the root to some node Dn,q corresponds directly to a
knapsack solution and vice versa. We call such paths “admissible” if and only if q ≥
B and their length is lower or equal C. Now, by exploiting shorter path constraint
filtering [15], we can shrink the graph by eliminating all edges in the graph which can
not be visited by any admissible path. To this end, we introduce an artificial sink-node t
that has predecessors Dn,q for all q ≥ B. Then, shortest path distances from the root to
all nodes and the corresponding shortest-path distances from all nodes to the sink-node
t can be used to determine which edges can still be used on some admissible path [15].
Finally, we infer that item k must (cannot) be included in any feasible and improving
knapsack iff for all q the only predecessor of Dk,q in the shrunken graph is Dk−1,q−pk

(Dk−1,q) [19].
In the presence of constraints limiting the cardinality to fall into a given interval [l, u],

the following analogous dynamic programming recursion solves the knapsack problem
with cardinality bounds:

Wk,q,c ← min{Wk−1,q,c,Wk−1,q−pk ,c−1 + wk}.
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Again, since item k is either included or excluded in the optimal solution, Wk,q,c

gives the minimum weight needed to achieve a profit of exactly q ∈ N when using ex-
actly c of the first k items. And again, based on this recursion the optimum is easily de-
termined by finding the maximum q and c ∈ [l, u] such that Wn,q,c ≤ C. By introducing
an artificial sink t with predecessorsWn,q,c for all q ≥ B and c ∈ [l, u], we exploit once
more shorter path filtering to determine all items that must or cannot be included by a
knapsack constraint augmented by a constraint on the cardinality. Furthermore, we can
infer new bounds on the cardinalities by finding the minimum and maximum values
for c for which there exists a predecessor Wn,q,c of t in the shrunken graph. The total
runtime of this algorithm is in O(n2u||p||∞) = O(n3||p||∞), where ||p||∞ = maxi pi.

Now, when we want to achieve length-lex∗ bounds consistency for knapsack con-
straints in the set-variable representation, we can exploit the above algorithm by de-
composing the constraint as follows. Let S be a set variable with length-lex∗ domain
D(S) = [R(S), Llex(S), Ulex(S), P (S)], based on a universe of items {1, . . . , n} (re-
call we use shorthands L(S) = R(S) ∪ Llex(S) and U(S) = R(S) ∪ Ulex(S)). Then

KP(S, p,B,w,C) ⇔ KP(S1, p, B,w,C) ∨ KP(S2, p, B,w,C) ∨ KP(S3, p, B,w,C),
(1)

where S1, S2, and S3 are set-variables with respective length-lex∗ domains

D(S1) = D(S) ∩ [L(S),min≤LL({n− |L(S)|+ 1, . . . , n}, U(S))],

D(S2) = D(S) ∩ [{1, . . . , |L(S)|+ 1}, {n− |U(S)|+ 2, . . . , n}],
D(S3) = D(S) ∩ [max≤LL(L(S), {1, . . . , |U(S)|}), U(S)].

Note that S1 and S3 have real lexicographic bounds but are fixed in cardinality with
|S1| = |L(S)| and |S3| = |U(S)|. On the other hand, S2 has only trivial lexicographic
bounds, and it holds that |L(S)| < |S2| < |U(S)| (provided that |U(S)|− |L(S)| ≥ 2).
Therefore, for S2 we can exploit the algorithm that we sketched above. Thus, for a
complete pseudo-polynomial length-lex bounds consistency algorithm, we only lack a
pseudo-polynomial filtering algorithm for knapsacks with fixed cardinality and arbitrary
lexicographic bounds.

So let us consider the following problem: Given a natural number n, a profit vector
p ∈ Qn, a profit threshold B ∈ N, a weight vector w ∈ Qn, a capacity C ∈ N, a
fixed cardinality κ ∈ N, and lexicographic bounds L,U ⊆ {1, . . . , n}, find a solution
x ∈ {0, 1}n such that

pTx ≥ B wTx ≤ C (2)

1Tx = κ L ≤lex {i | xi = 1} ≤lex U (3)

x ∈ {0, 1}n. (4)

By using a three-dimensional DP like before, we can directly enforce the capacity
and profit restrictions (simply by only allowing nodes Wn,q,c to connect to the sink-
node t for which c = κ and q ≥ B). The filtering problem can then be addressed by
identifying edges in the DP-induced graph for which there exists no admissible path
from the root to the sink, whereby admissibility now enforces both a path-length lower
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or equal C and that the corresponding knapsack solution is a set of items S for which
L ≤lex S ≤lex U . To this end, we intend to reuse the idea of shorter-path constraint
filtering. However, a simple forward and backward shortest path computation is no
longer sufficient because the concatenation of a path from the source to a node in the
graph and a path from that node to the sink may violate the lexicographic bounds.

Note that both L and U define (potentially non-admissible) paths in the DP-induced
graph that we denote with πL and πU , respectively. Conversely, for any path π from the
root to any node in the DP, we can define a corresponding set S of items that the path
includes in the knapsack: Sπ ← {k | (Wk−1,q−pk ,c−1,Wk,q,c) ∈ π}.

In order to identify exactly those nodes in the graph that have no admissible paths
running through them, it will be important to know the shortest path distance from the
root to a given node when the choices implied by that path π already ensure that the
resulting set Sπ must obey the lexicographic bounds L,U . Formally:

Definition 2. For a path π from the root to Wk,q,c, we write L <lex Sπ (or Sπ <lex U )
if and only if for all S ⊆ {1, . . . , n} such that S ∩ (Sπ ∪ {k + 1, . . . , n}) = S and
|S| = κ it holds that L <lex S (S <lex U ).

Conversely, we will also need to argue about paths from nodes in the DP-induced graph
to the sink-node t:

Definition 3. For a path π from Wk,q,c to t, we write L ≤lex Sπ (or Sπ ≤lex U ) if
and only if for T ← Sπ ∪ (L ∩ {1, . . . , k}) (T ← Sπ ∪ (U ∩ {1, . . . , k})) it holds that
|T | = κ and L ≤lex T (T ≤lex U ).

To make our task easier, we may assume that the first item is a member of L (otherwise
the item is disallowed and can be removed from consideration), and that the first item
is not in U (as otherwise the item must be taken and could also be removed from the
problem). Then, for all nodes but the root, we distinguish three situations.

Remark 1

1. For all nodes Wk,q,c that are neither on πL nor on πU , a shortest admissible path
from the root to t that visits this node obviously decomposes into a part from the
root to the given node π1, and from the node to the sink π2. Since the current node
is neither on πL nor on πU , we know that L <lex Sπ1 <lex U .

2. For a node Wk,q,c on πL, on top of option 1, the shortest admissible path from root
to t through this node may follow πL from the root to the node, and some path π2

from the node to t with L ≤lex Sπ2 .
3. For a node Wk,q,c on πU , on top of option 1, the shortest admissible path from root

to t through this node may follow πU from the root to the node, and some path π2

from the node to t with Sπ2 ≤lex U .

Note that options 2 and 3 may occur at the same time.

Consequently, we can compute the length of the shortest admissible path through a
given node Wk,q,c, if we know the following six quantities:
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– For Wk,q,c ∈ πL, M1
k,q,c gives the distance from the root to Wk,q,c when following

πL, that is M1
k,q,c ←

∑
i∈L,i≤k wi. For Wk,q,c /∈ πL, we set M1

k,q,c ←∞.
– For Wk,q,c ∈ πU , M2

k,q,c gives the distance from the root to Wk,q,c when following
πU , that is M2

k,q,c ←
∑

i∈U,i≤k wi. For Wk,q,c /∈ πU , we set M2
k,q,c ←∞.

– For arbitrary nodes Wk,q,c, M3
k,q,c gives the length of the shortest path π from the

root to Wk,q,c with L <lex Sπ <lex U .
– For arbitrary nodes Wk,q,c, M4

k,q,c gives the length of the shortest path π from
Wk,q,c to t.

– For arbitrary nodes Wk,q,c, M5
k,q,c gives the length of the shortest path π from

Wk,q,c to t with L ≤lex Sπ.
– For arbitrary nodes Wk,q,c, M6

k,q,c gives the length of the shortest path π from
Wk,q,c to t with Sπ ≤lex U .

Lemma 1

– The length of a shortest admissible path through an edge (Wk,q,c,Wk+1,q,c) is

min{M3
k,q,c + M4

k+1,q,c,M
1
k,q,c + D1

k,q,c,M
2
k,q,c + D2

k,q,c},
where D1

k,q,c = M4
k+1,q,c if k + 1 ∈ L and D1

k,q,c = M5
k+1,q,c otherwise, and

D2
k,q,c = M6

k+1,q,c if k + 1 /∈ U and D2
k,q,c = ∞ otherwise.

– The length of a shortest admissible path through an edge (Wk,q,c,Wk+1,q+pk+1,c+1)

is

min{M3
k,q,c+M4

k+1,q+pk+1,c+1+wk+1, M
1
k,q,c+E1

k,q,c+wk+1, M
2
k,q,c+E2

k,q,c+wk+1},

where E1
k,q,c = M5

k+1,q+pk+1,c+1 if k + 1 ∈ L and E1
k,q,c = ∞ otherwise, and

E2
k,q,c = M4

k+1,q+pk+1,c+1 if k+1 /∈ U and E2
k,q,c = M6

k+1,q+pk+1,c+1 otherwise.

Proof. Assume Wk,q,c ∈ πL. Denote with π1 the path from the root to Wk,q,c by fol-
lowing πL. Since 1 ∈ L and 1 /∈ U , we know that Sπ1 <lex U . Consequently, it is
sufficient for quantity M5 to consider the lower lexicographic bound only when com-
bined with M1. The analogue holds for the combination of M2 and M6. With this
observation, the lemma follows from Remark 1. ��
Consequently, our task is to compute quantities M1, . . . ,M6. For M1 and M2, this
is straightforward. For M3, . . . ,M6, in the following we devise recursion equations
which allow us to compute them by means of dynamic programming.

Recall that M3 measures the shortest path distance from the root when this path
already ensures that the final path will strictly obey both lexicographic bounds (let us
call such a path an M3-path). When considering the inclusion or exclusion of item k,
we can either use an M3-path to reach the predecessor of a node, in which case we
know that any continuation results in an M3-path. Alternatively, we can consider a
predecessor node on πL when the exclusion of k results in an M3 path. Analogously,
we can consider a predecessor node on πU when the inclusion of k results in an M3

path. Consequently, we have the following recursion equation:

M3
k,q,c = min{M3

k−1,q,c,M
3
k−1,q−pk,c−1 + wk, A

1
k,q,c, A

2
k,q,c},

whereby A1
k,q,c = M1

k−1,q,c if k ∈ L and A1
k,q,c = ∞ otherwise, and A2

k,q,c =
M2

k−1,q−pk,c−1 + wk if k /∈ U and A2
k,q,c = ∞ otherwise.
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QuantityM4 plainly computes the shortest path distance to the sink t, so the common
recursion equation works without modification:

M4
k,q,c = min{M4

k+1,q,c,M
4
k+1,q+pk+1,c+1 + wk+1}.

Quantity M5 measures the distance to the sink-node t when only paths are allowed
that obey the lexicographic lower bound when we prepend the lower-bound path to the
current node. When considering the exclusion of an item k + 1 with k + 1 ∈ L, we
are sure to strictly obey the lexicographic lower bound and can therefore use the unre-
stricted shortest path distance to the sink of the corresponding successor node. Conse-
quently, we have the following recursion equation:

M5
k,q,c = min{Bk,q,c,M

5
k+1,q,c},

wherebyBk,q,c = min{M4
k+1,q,c,M

5
k+1,q+pk+1,c+1+wk+1} if k+1 ∈ L and Bk,q,c =

∞ otherwise. The analogue argument for M6 gives:

M6
k,q,c = min{Ck,q,c,M

6
k+1,q+pk+1,c+1 + wk+1},

wherebyCk,q,c = min{M4
k+1,q+pk+1,c+1+wk+1,M

6
k+1,q,c} if k+1 /∈ U and Ck,q,c =

∞ otherwise.
With these results, we are now able to prove the following theorem:

Theorem 1. Let S be a set-variable with length-lex∗ domain based on a universe of
elements {1, . . . , n}. For a Knapsack constraint KP(S, p,B,w,C), length-lex∗ bounds
consistency can be achieved in time O(n3||p||∞).

Proof. We first decompose the constraint according to Equation 1. As discussed ear-
lier, we can identify all possible and required items for KP(S2, p, B,w,C) in pseudo-
polynomial time. Next we consider KP(S1, p, B,w,C) and KP(S3, p, B,w,C) and
filter edges according to the algorithm sketched above (whereby the lexicographic up-
per or lower bound are set to the trivial bound for the given cardinality κ ← |L(S)|
or κ ← |U(S)| when |L(S)| < |U(S)|). We set up the DP-induced graph and com-
pute quantities M1, . . . ,M6 for all nodes. Then, we filter all nodes and edges from the
graph which cannot be visited by any admissible path. Using Trick’s DP-filtering tech-
nique, this allows us to identify all items which must or cannot be part of any feasible
improving solution for KP(S1, p, B,w,C) and KP(S3, p, B,w,C).

In this way we also determine whether there exist admissible paths at the cardinality
bounds at all, i.e., whether the constraints can still be satisfied or not. If this is the case,
in order to compute a new lexicographic lower bound at the lower cardinality bound, we
simply include the first item if that is still possible after filtering edges from the graph.
Then we filter again and try to include the next item and so forth. The correctness of the
edge-filtering algorithm guarantees that we compute an admissible path π such that Sπ

is the lexicographically smallest feasible and improving solution with |Sπ| = |L(S)|.
For the new lexicographic upper bound we proceed analogously.

If we find that one of the two constraints is not satisfiable anymore, then we use
KP(S2, p, B,w,C) again to determine a new lower and/or upper bound on the cardi-
nality. If one of the cardinality bounds are updated, we repeat the computation of a new
lexicographical lower and/or upper bound as before.
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The total runtime of this algorithm is dominated by the computation of new lex-
icographical upper and lower bounds which require up to |U(S)| calls to the edge-
filtering algorithm whose runtime is determined by the size of the DP-induced graph
which is in O(n|U(S)|||p||∞). The total runtime is therefore in O(n|U(S)|2||p||∞) =
O(n3||p||∞). ��

5 Approximated Length-Lex Bounds Consistency for Knapsack
Constraints

The results of the previous section show that the fully polynomial-time approximeabil-
ity of knapsack problems is not affected by additional length-lex bounds constraints.
We can utilize our approximation scheme to achieve approximated length-lex∗ bounds
consistency for knapsack constraints in the spirit of [14]:

Definition 4. Let S denote a set-variable with length-lex∗ domain D(S) = [R(S),
Llex(S), Ulex(S), P (S)]. The knapsack constraint KP(S, p,B,w,C) is called
ε-length-lex∗ bounds consistent when it holds:

– P ∗[i ∈ S] ≥ B − εP ∗, for all i ∈ P (S),
– P ∗[i /∈ S] < B − εP ∗, for all i ∈ R(S),
– P ∗[S = R(S) ∪Llex(S)] ≥ B − εP ∗ and P ∗[S = R(S) ∪Ulex(S)] ≥ B − εP ∗,

where P ∗ gives the optimal knapsack solution (potentially under the additional con-
straints given in brackets).

Theorem 2. Approximated ε-length-lex∗ bounds consistency for knapsack constraints
can be achieved in time O(n4

ε ).

Proof. In this proof we again use the shorthands L(S) = R(S)∪Llex(S) and U(S) =
R(S) ∪ Ulex(S).

We apply the standard approach from [10] for transforming a dynamic program into
a fully polynomial-time approximation scheme (FPTAS): We scale the profits by set-
ting p̃i ← �pi

K � for K ← ε||p||∞
|U(S)| . Then, we invoke our pseudo-polynomial filtering

algorithm on KP(S, p̃, B − ε||p||∞, w, C). Note that ||p̃||∞ ≤ |U(S)|
ε . Therefore, the

algorithm runs in time O(n2|U(S)|||p̃||∞) = O(n2|U(S)|2
ε ).

We show that the algorithm is sound and achieves ε-length-lex∗ bounds consistency.

Soundness: Assume our algorithm excludes an item s from P (S). It does so only when
there exists no admissible path that includes the item, which is the same as to say that
there exists no admissible solution to KP(S, p̃, B−ε||p||∞

K , w, C) that includes the item.
Denote with S̃ ∈ D(S) the solution with s ∈ S̃ that maximizes P̃ ∗[s ∈ S] =

∑
i∈S̃ p̃i

while
∑

i∈S̃ wi ≤ C. Furthermore, denote with S∗ ∈ D(S) the solution with s ∈ S∗

that maximizes P ∗[s ∈ S] =
∑

i∈S∗ pi while
∑

i∈S∗ wi ≤ C. It holds:

B − ε||p||∞ > KP̃ ∗[i ∈ S] (5)

≥
∑
i∈S̃

pi −K|U(S)| ≥
∑
i∈S̃

pi − ε||p||∞ (6)
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Therefore, P ∗[s ∈ S] =
∑

i∈S̃ pi < B, which means it is sound to remove item s
from consideration. The analogous argument holds for items that are included by our
algorithm. Next, our algorithm computes length-lex lower and upper bounds Llex(S),
ULex(S) on the undecided items such that no set lower thanL(S)=R(S)∪Llex(S) and
no set larger than U(S) = R(S)∪Ulex(S) is admissible for KP(S, p̃, B−ε||p||∞

K , w, C).
The same argument as before shows that no set lower than L(S) or larger than U(S)
can then be admissible for KP(S, p,B,w,C).

Completeness: Assume for some item s it holds that P ∗[s ∈ S] < B−εP ∗. Therefore,
for all S̃ ∈ D(S) with s ∈ S̃ and

∑
i∈S̃ wi ≤ C it holds that

∑
i∈S̃ pi < B − εP ∗ ≤

B − ε||p||∞. Thus:

B − ε||p||∞ >
∑
i∈S̃

p̃i ≥ K
∑
i∈S̃

p̃i

for all S̃, and therefore s is removed from P (S). The analogous results follows for
items that must be included. For the length-lex bounds, finally, it holds that they define
admissible solutions for KP(S, p̃, B−ε||p||∞

K , w, C). It holds:

B − ε||p||∞ ≤ K
∑

i∈L(S)

p̃i ≤
∑

i∈L(S)

pi = P ∗[S = L(S)].

And the analogue is true for the set U(S). ��

6 Fast Heuristic Filtering Algorithms for Knapsacks with
Bounded Cardinalities

We have seen that cardinality and lexicographic information can be inferred and taken
into account for knapsack constraints without compromising the fully polynomial-time
approximeability of the problem. However, although polynomial, a runtime in O(n4)
is not practically appealing in light of the delicate trade-off between the time to per-
form this type of inference and the value of the additional information gained by it. In
order to make inference faster, we may decide that we only want to reason about the
cardinality of the final set of items included in the knapsack. We presented an exact
pseudo-polynomial time algorithm for this task in Section 4. In an effort to reduce the
filtering-time, in this section we devise a heuristic algorithm which runs in linear time.

6.1 Lagrangian Relaxation-Based Cardinality Bounds

To derive cardinality bounds, as we did earlier in [18], we consider the Lagrangian
relaxation of the knapsack problem. In linear programming, it is well-known that the
optimal dual value for the capacity constraint is the efficiency (the profit over weight)
of the critical item s, which is defined as the first item in the efficiency ordering whose

inclusion overloads the knapsack: s ← min{s′ |
∑s′

i=1 wi > C}, whereby i < j im-
plies pi/wi ≥ pj/wj . Using this value as Lagrangian multiplier, we are left with the
following relaxed problem: maximize pTx− (wTx−C)ps/ws = (p−wps/ws)Tx+
Cps/ws such that xi∈{0, 1}. Obviously, the maximum is obtained by setting xi ← 1
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Input: set S with associated profit vector p̃ and a bound B̃.
Pick a random element r in S.
Set L ← {i ∈ S | p̃i ≥ p̃r} and R ← {i ∈ S | p̃i < p̃r}.
p̃(L) ←

P
i∈L p̃i

if p̃(L) ≥ B̃ then
return lowerBound(L, p̃, B̃)

else
return |L|+lowerBound(R, p̃, B̃ − p̃(L))

Algorithm 1. Linear-time algorithm to determine a lower bound on the cardinality

if p̃i ← pi − wips/ws > 0, and xi ← 0 if p̃i < 0 (for p̃i = 0 we can set xi ar-
bitrarily). By this setting, we obtain a valid upper bound U on the profit that can be
achieved. If U < B, we can backtrack right away as the current subproblem cannot
have any improving feasible solutions. Otherwise, we would like to infer which items
must be included/excluded as they must/cannot be part of any improving feasible so-
lution. Moreover, we would like to tighten the bounds on the number of items that
must/can be included in the knapsack.

When sorting items according to decreasing Lagrangian profits p̃i, we can easily
deduce lower and upper bounds on the number of items that must/can be included:

l ← max{l,min{l′ |
l′∑

i=1

p̃i ≥ B − C
ps

ws
}},

whereby we assume that i < j implies p̃i ≥ p̃j . Analogously, we set

u← min{u,max{u′ |
u′∑

i=1

p̃i ≥ B − C
ps

ws
}}.

The effort for the above update is obviously dominated by sorting the items, which can
be done in time O(n log n). However, a complete sorting is actually not necessary. Just
like the critical item s of a knapsack instance can be computed in linear time [3], so can
the new cardinality bounds l and u. In Algorithm 1, we show how a lower bound on the
cardinality can be computed in expected linear time. The algorithm works like a quick-
sort algorithm, whereby only one part of the items needs to be investigated recursively.
According to the master theorem for recursive algorithms [2, Section 4.3, 4.4], this
lowers the time from O(n log n) to O(n) when we assume that, on average, the set of
items is cut in half in each recursion iteration. While this works well in practice, in
theory we can even guarantee a linear runtime by replacing the random choice of the
splitting item by the median item, where the median can be computed in linear time [2].

Of course, the Lagrangian relaxation also allows us to filter items by exploiting
the idea of CP-based Lagrangian relaxation [17]. In our case, filtering is particularly
easy as items that must be included have p̃i > B−U . Those that cannot be included
have p̃i < U−B. In case that the external cardinality bounds are tight (this happens
when p̃l < 0 or p̃u > 0), we can even decide that an item must be included when
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p̃i− p̃l+1 > B−U when the lower cardinality bound is tight, and that an item must
be excluded when p̃i − p̃u < B − U when the upper cardinality bound is tight.

6.2 Redundant Knapsack Constraints

In terms of running time, the above linear time algorithm that heuristically filters knap-
sack constraints and exploits and provides upper and lower bounds on the cardinality
is already much more appealing than the exact or approximate algorithms devised
earlier. However, we can do even more: In [11], an algorithm for the propagation of
knapsack constraints was devised which runs in amortized expected sublinear time.
The question arises how this algorithm can be exploited to reason about knapsack
cardinalities at the same time as it infers which items must or cannot be included in
any feasible improving solution. A simple option is to post redundant knapsack con-
straints: If we are given the conjunction KP(S, p,B,w,C) ∧ (l ≤ |S| ≤ u), we can
post the following three traditional knapsack constraints (whereby x1, . . . , xn are bi-
nary variables): KP(x1, . . . , xn, p, B,w,C), KP(x1, . . . , xn, (1, . . . , 1)T , l, w, C), and
KP(x1, . . . , xn, p, B, (1, . . . , 1)T , u). Note that the different constraints do not only al-
low us to perform filtering in the item variables, they also allow us to infer strengthened
bound on the cardinalities. For example, the floor of the linear upper bound computed
for the propagation of KP(x1, . . . , xn, (1, . . . , 1)T , l, w, C) gives a valid upper bound
on the number of items that can be included in any feasible and improving solution.

7 Experimental Results

Despite the fact that the algorithms developed in Sections 4 and 5 are polynomial, their
comparably large computation costs render them impractical within backtrack search
where we face a delicate trade-off between inference efficiency and effectiveness. To
assess whether communicating information beyond the traditional inclusion or exclu-
sion of items, we therefore implemented the heuristic algorithms for reasoning about
knapsacks with cardinality constraints.

As our benchmark, we use multi-knapsack problems where we have to distribute a
set of items over multiple knapsacks while the capacity restrictions on the individual
knapsacks must be respected. We aim at maximizing the profit of the knapsack that is
assigned the least profit. Problems are generated using the code from Pisinger [12]. We
distinguish three different problem classes:

P1: Multi-Knapsack problems where all knapsacks use the same profit and weight vec-
tor. Constraints differ in the available capacity for each knapsack.

P2: Multi-Knapsack problems where all knapsacks use the same profit vector. Con-
straints differ in the weight vector and the available capacity for each knapsack.

P3: Multi-Knapsack problems where all knapsacks use different profit and weight vec-
tors.

In each algorithm, we branch on the item that has the least knapsacks left to be
assigned to, and we assign it to that knapsack that has been assigned the least profit yet.
We compare three different models:
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– KP: The plain knapsack model where each knapsack constraint is propagated by
the expected sublinear-time algorithm introduced in [11]. The partitioning of items
is enforced by introducing item variables, whereby each of those variables has the
indices of the knapsacks plus a dummy index for left-over items as its domain.

– KP + Card: The model where redundant knapsack constraints exploit cardinality
information. Each knapsack is modelled by three constraints, one for the actual
knapsack, one for the combination of cardinality upper bound and the knapsack’s
profit, and one for the combination of the original weights in combination with the
cardinality lower bound. All knapsacks are propagated by the algorithm from [11].
The partitioning of items is enforced by a global cardinality constraint which ex-
ploits and strengthens the cardinality bounds on the knapsacks.

– Lagrangian: The model where we use a Lagrangian bound to propagate knapsack
constraints and infer knapsack cardinalities. The partitioning of items is again en-
forced by a global cardinality constraint.

All experiments were run on an AMD Athlon 64 X2 Dual Core Processor 3800+
using Ilog Solver 6.5. In Tables 1 and 2 we show the average runtime and choice points

Table 1. Average running time (seconds) and the average number of choice points over 20 in-
stances with five knapsack constraints and 15 or 20 items using three different models

Lagrangian KP KP+Card
Class #Items Time #CPs Time #CPs Time #CPs

P1 15 1.89 26.7k 1.51 24.1k 2.19 22.4k
20 2.40k 31.4M 888.51 12.6M 978.79 8.62M

P2 15 5.98 85.4k 1.51 22.1k 2.34 21.6k
20 4.26k 57.8M 414.25 5.48M 468.65 3.74M

P3 15 2.41 32.2k 0.33 4.88k 0.54 4.84k
20 264.33 3.32M 12.85 0.19M 22.37 0.19M

Table 2. Average (avg) percent difference in running times and choice points as well as their
variance (var) when comparing models on a collection of multi-knapsack problems. A positive
value states the strategy listed first is the given percentage larger.

KP vs KP+Card Lagrangian vs KP+Card
Time #CPs Time #CPs

Class #Items avg var avg var avg var avg var
P1 15 -43.4 0.8 7.0 0.3 -4.6 16.4 24.9 10.7

20 -32.4 9.6 18.1 3.0 51.0 12.1 67.2 6.1
P2 15 -54.2 0.6 1.2 0.0 64.1 5.4 77.5 3.1

20 -50.6 4.5 8.9 1.5 92.3 0.6 95.8 0.2
P3 15 -55.3 1.1 1.2 0.2 81.5 5.2 90.2 2.1

20 -67.3 0.3 0.6 0.0 -353 3.9k -284 2.8k



280 Y. Malitsky, M. Sellmann, and W.-J. van Hoeve

on collections of 20 instances in the different banchmark classes P1, P2, and P3. We see
how exploiting cardinality information effectively reduces the number of choice points.
This is generally highly desirable as a more effective inference mechanism leaves less
room for mistakes when organizing the search. For multi-knapsack problems, the trade-
off between inference time and effectiveness is not in favor of even slightly more costly
inference, and we observe that the plain KP model works fastest in all cases. Note that,
in this model, inference works in expected sublinear time, while in the two other models
global cardinality constraits need to be propagated to infer new cardinality bounds on
the knapsacks. The Lagrangian model also suffers from a linear-time filtering routine
for knapsack, and we see that it cannot compete with with KP and KP+Card.

Table 3. Running times (seconds) and the number
of choice points for 10 instances with five knapsack
constraints and 22 items using the KP and KP+Card
models

KP KP+Card
ID Time #CPs Time #CPs
1 4.5K 52.2M 5.4K 39.5M
2 1.4K 17.2M 2.6K 16.7M
3 2.4K 31.7M 2.4K 19.6M
4 1.8K 20.8M 2.9K 20.7M
5 15.3K 196.2M 17.6K 136.3M
6 0.5K 6.7M 0.5K 4.0M
7 4.3K 55.8M 3.1K 23.6M
8 2.4K 33.2M 2.6K 22.1M
9 3.2K 41.9M 4.5K 35.9M

10 4.3K 56.5M 3.1K 24.9M
avg 4.0K 51.2M 4.5K 34.3M

We were curious to see whether the
reductions in choice points become
more important as problem instances
become even harder. In Table 3 we
compare KP and KP+Card on ten 22
item knapsack problems. We observe
that the exchange of cardinality infor-
mation is becoming more and more
competitive, and for even harder prob-
lem instances we expect that the more
costly yet more effective inference
will eventually become beneficial.
The results show that, with increas-
ing difficulty of the problem, the car-
dinality constraints significantly boost
the performance of the algorithm, pro-
viding an average decrease of more
than 30% in the number of choice
points. For more general problems,
where knapsack constraints are mixed
with other constraints, this reduction
may be very beneficial.

8 Conclusions

We studied the complexity of knapsack constraints with length-lex domains and showed
that the problem remains fully polynomial-time approximeable. Based on this result,
we showed how ε-approximate length-lex bounds consistency for knapsacks can be
achieved in time O(n4/ε). Compromising inference effectiveness for efficiency, we
provided heuristic filtering algorithms for knapsack constraints that incorporate cardi-
nality information only. Experiments on multi-knapsack problems showed that these
algorithms effectively reduce the number of choice points. Whether or not this reduc-
tion is worthwhile will depend on the concrete problem that needs to be solved.
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Abstract. Many tasks in automated reasoning can be modeled as weighted con-
straint satisfaction problems over Boolean variables (Boolean WCSPs). Tractable
classes of such problems have traditionally been identified by exploiting either:
(a) the topology of the associated constraint network, or (b) the structure of the
weighted constraints. In this paper, we introduce the notion of a constraint com-
posite graph (CCG) associated with a given (Boolean) WCSP. The CCG provides
a unifying framework for characterizing/exploiting both the graphical structure
of the constraint network as well as the structure of the weighted constraints. We
show that a given (Boolean) WCSP can be reduced to the problem of comput-
ing the minimum weighted vertex cover for its associated CCG; and we establish
the following two important results: (1) “the CCG of a given Boolean WCSP has
the same treewidth as its associated constraint network,” and (2) “many classes
of Boolean WCSPs that are tractable by virtue of the structure of their weighted
constraints have associated CCGs that are bipartite in nature.”

1 Introduction

In many application domains, we are required to efficiently represent and reason about
natural factors like fuzziness, probabilities, preferences and/or costs. Automated rea-
soning tasks in such domains involve combinatorial problems that typically exhibit both
a satisfaction component and an optimization component. While the satisfaction com-
ponent of a problem can be captured using hard constraints, soft constraints are used
to capture the optimization component. Many extensions to the basic CSP model have
been introduced to incorporate and reason about soft constraints. These include the
many variants like fuzzy CSPs, probabilistic CSPs and weighted CSPs.1

A WCSP is an optimization version of a CSP in which the constraints are no longer
“hard,” but are extended by associating non-negative costs to the tuples. The goal is to
find an assignment of values to all the variables (from their respective domains) such
that the total cost is minimized. More formally, a WCSP is defined by a triplet 〈X ,D, C〉
where X = {X1, X2 . . . XN} is a set of variables, and C = {C1, C2 . . . CM} is a set
of weighted constraints on subsets of the variables. Each variable Xi is associated with

� Several parts of this research were done by the author at the University of California, Berkeley.
1 These in turn can be viewed as particular instances of certain meta-frameworks like valued

CSPs and/or semiring-based CSPs [2].
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a discrete-valued domain Di ∈ D, and each constraint Ci is defined on a certain subset
Si ⊆ X of the variables. Si is referred to as the scope of Ci; and Ci specifies a non-
negative cost for every possible combination of values to the variables in Si. An optimal
solution is an assignment of values to all the variables (from their respective domains) so
that the sum of the costs (as specified locally by each weighted constraint) is minimized.
In a Boolean WCSP, the size of any variable’s domain is equal to 2 — i.e., |Di| = 2
for all i ∈ {1, 2 . . .N}. Boolean WCSPs are representationally as powerful as WCSPs;
and it is well known that optimally solving (Boolean) WCSPs is NP-hard in general.

(Boolean) WCSPs can be used to model important combinatorial problems arising
in many different application domains. Examples include (but are not limited to) repre-
senting and reasoning about user preferences [4], over-subscription planning with goal
preferences [8], resource allocation, combinatorial auctions, and Bioinformatics. Quite
importantly, they also arise as energy minimization problems (EMPs) in probabilistic
settings. In computer vision applications, for example, tasks such as image restoration,
total variation minimization and panoramic image stitching can be formulated as EMPs
derived in the context of Markov Random Fields (MRFs) [10].2

Although (Boolean) WCSPs are fundamental combinatorial problems, a lot of work
still remains to be done in characterizing/exploiting the combinatorial structure in spe-
cific instances/subclasses of them. One traditional way in which this has been done is by
studying the underlying variable-interaction graphs (also referred to as constraint net-
works) [7]. The variable-interaction graph incorporates basic information about which
variables are constrained with which other variables in the problem instance, and this
“locality” information can be exploited in solution procedures that employ dynamic
programming. Despite its apparent usefulness, the constraint network does not repre-
sent/capture information about the costs in the weighted constraints, and therefore can-
not be used to characterize/exploit any important combinatorial structure that might be
present in them. In fact, there are many fundamental combinatorial problems — like the
hypergraph min-st-cut problem — that can be formulated as Boolean WCSPs, and that
are tractable not by virtue of the graphical structure in their associated constraint net-
works, but by virtue of the numerical structure in their associated weighted constraints.

In this paper, we will introduce the notion of a constraint composite graph (CCG)
associated with a given (Boolean) WCSP. The CCG provides a unifying framework for
characterizing/exploiting both the graphical structure of the constraint network as well
as the structure of the weighted constraints. We will show that a given (Boolean) WCSP
can be reduced to the problem of computing the minimum weighted vertex cover for
its associated CCG; and in turn, we will prove two important computational properties
of CCGs. First, we will constructively show that the treewidth of the CCG is equal to
that of the corresponding constraint network. Because the minimum weighted vertex
cover for a graph can be computed in time exponential only in its treewidth, this prop-
erty of the CCG captures any topological structure in the variable-interactions. Second,
we will show that the CCG is always tripartite, and that many interesting classes of
Boolean WCSPs that are tractable by virtue of the structure of their weighted constraints
have associated CCGs that are bipartite in nature. Now because the minimum weighted
vertex cover can be efficiently computed in a bipartite graph also, this property of the

2 Here the minimum energy corresponds to a maximum a-posteriori labeling of the variables.
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CCG captures any numerical structure of the weighted constraints. Put together, the
CCG provides the necessary unifying framework as claimed above. Further, in the pro-
cess of proving/elucidating the many computationally attractive properties of CCGs, we
will provide simple arguments for establishing the tractability of the languageLBoolean

bipartite

(that in turn captures many useful subclasses of Boolean WCSPs).

2 Background Results in Graph Theory

We will now review some basic results in graph theory, and set up the groundwork for
the rest of the paper. We will also briefly review the treewidth-based characterization of
the complexity of solving Boolean WCSPs. In later sections, we will study the relevance
of these graph-theoretic results to important computational properties of the CCG.

Given an undirected graph G = 〈V,E〉, a matching is a subset of edges M ⊆ E such
that no two edges in M share a common end-point. A maximum matching is a matching
of maximum cardinality. A vertex cover is a subset of nodes U ⊆ V such that every
edge in E has at least one of its end-points included in U . A minimum vertex cover is
a vertex cover of minimum cardinality. While the problem of computing the maximum
matching can be solved using very efficient polynomial-time algorithms [14], the prob-
lem of computing the minimum vertex cover is NP-hard in general. Nonetheless, for
bipartite graphs, the minimum vertex cover problem can be solved very efficiently in
O(|V |2.5) time using a staged maxflow computation [5]. Moreover, even in the general

case, the minimum vertex cover can be approximated within a factor of 2− loglog |V |
2·log |V |

in polynomial time; and this approximation factor can further be improved to 2− 2
k for

k-partite graphs [9]. It is also well known that the size of a maximum matching serves
as a lower bound for the size of the minimum vertex cover [5]. Finally, the above results
can be extended to the “weighted” case in which the nodes/edges of the graph G are
associated with non-negative weights. The maximum weighted matching is then defined
to be a matching of maximum total weight on its edges, and the minimum weighted
vertex cover is defined to be a vertex cover of minimum total weight on its nodes.

It is well known that WCSPs — among many other combinatorial problems like in
probabilistic inference, constraint satisfaction and query optimization — can be solved
in time exponential only in the treewidth of their associated variable-interaction graphs.
A tree-decomposition3 of a graph is a tree whose nodes represent some appropriately
chosen subsets of variables (nodes) from the original graph. A combinatorial problem
defined on the original graph can typically be solved by using a dynamic programming-
based algorithm that proceeds by solving subproblems defined over the variables in-
cluded in each tree-node. The treewidth of the graph measures the largest number of
graph-nodes within any tree-node in an optimal tree-decomposition of the graph — i.e.,
it measures the size of the largest subproblem that needs to be solved.

In the above context, it is often very valuable to conceptually equate the treewidth
of a graph to its minimum induced width [7] (well illustrated in Figure 1). Consider
solving a given combinatorial problem — say, a CSP — over N variables. One
strategy is to eliminate the variables one at a time and recursively solve the smaller

3 Also referred to as a clique-tree or a join-tree in different research communities.
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Fig. 1. Shows a simple variable-interaction graph over 4 variables and two different variable-
elimination orderings for it. The second ordering produces an induced width less than that of the
first. The solid edges indicate the original variable-interactions/constraints and the dotted edge(s)
indicate newly induced ones between the parents (X1 and X3) of an eliminated node (X4).

subproblems. However, each time a variable Xi is eliminated from the current subprob-
lem, a new constraint has to be introduced among all the variables that Xi is currently
constrained with. This new constraint is required to ensure that a solution to the new
subproblem will indeed have a consistent extension to Xi. The size of the largest sub-
problem (clique) that we encounter using a proposed variable-elimination ordering is
referred to as the induced width of that ordering. The problem of constructing an optimal
tree-decomposition of a given graph is therefore equivalent to the problem of finding
an optimal variable-elimination ordering that minimizes the induced width — referred
to as the minimum induced width of the graph. Finally, although finding the minimum
induced width (treewidth) of a graph is NP-hard in general, heuristically chosen variable
-elimination orderings yield tree-decompositions that are of much practical value [7].

It is important to note that the minimum weighted vertex cover problem over a given
graph G = 〈V,E〉 can itself also be formulated as a Boolean WCSP over G. Here, a
Boolean variable Xi is associated with each node vi ∈ V ; and Xi = 1 (Xi = 0) is
indicative of vi being included in (excluded from) the vertex cover. A unary weighted
constraint is defined for each Xi; and a cost equal to the weight of vi is associated
with Xi = 1 while a cost of 0 is associated with Xi = 0. Moreover, binary weighted
constraints are defined for each edge (vi, vj) ∈ E. These constraints assign a cost of
∞ for the combination of values 〈Xi = 0, Xj = 0〉, and a cost of 0 for every other
combination of values to Xi and Xj . The constraint network of the resulting Boolean
WCSP is exactly the same as G; and therefore, the minimum weighted vertex cover for
G can be computed in time exponential only in the treewidth of G.

3 Projections of Minimum Weighted Vertex Cover Problems onto
Independent Sets

In this section, we will first introduce the idea of projecting the minimum weighted ver-
tex cover problem onto an independent set of the given graph G = 〈V,E〉.4 We will
then illustrate and prove a number of interesting computational properties of these pro-
jections. Our study of these projections motivates a special set of algorithmic techniques
for solving (Boolean) WCSPs that considers each weighted constraint only locally [12].

4 An independent set of a graph is a subset of nodes no two of which are connected by an edge.
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Consider an undirected graph G = 〈V,E〉. Let U = {u1, u2 . . . uk} be an indepen-
dent set of G. We say that a k-bit vector t imposes the following restrictions: (a) the ith

bit ti = 0 indicates that the node ui is necessarily excluded from the minimum weighted
vertex cover, and (b) the ith bit ti = 1 indicates that the node ui is necessarily included
in the minimum weighted vertex cover. The projection of the minimum weighted ver-
tex cover problem onto the independent set U is then defined to be a table of size 2k

with entries corresponding to each of the 2k possible k-bit vectors t(1), t(2) . . . t(2
k); the

value of the entry corresponding to t(j) is set to be equal to the weight of the minimum
weighted vertex cover conditioned on the restrictions imposed by t(j). Figure 2 presents
a simple example to illustrate this idea.5

Fig. 2. The table on the right-hand side represents the projection of the minimum weighted vertex
cover problem onto the independent set {X1, X4} of the accompanying node-weighted undi-
rected graph. (The weights on X4 and X7 are set to 3 and 2 respectively while all other nodes
have unit weights.) Here, the entry ‘7’ written against 〈X1 = 0, X4 = 1〉, for example, indicates
that when X1 is prohibited from being in the minimum weighted vertex cover but X4 is necessar-
ily included in it, then the weight of the minimum weighted vertex cover — {X2, X3, X4, X7}
or {X2, X3, X4, X5, X6} in this case — is equal to 7.

ALGORITHM: COMPUTE-PROJECTION-VALUE
INPUT: (a) a node-weighted undirected graph G = 〈V, E〉; (b) an independent set U =
{u1, u2 . . . uk} ⊆ V ; (c) a k-bit vector t.
OUTPUT: the value of the projection PG,U (t).
(1) S1 ← {}.
(2) For i = 1, 2 . . . k:

(a) If ti = 0: set the weight of ui to ∞.
(b) If ti = 1: S1 ← S1 ∪ {ui}; remove ui (and all edges incident on it) from the graph.

(3) Let S2 be the minimum weighted vertex cover computed for the resulting graph.
(4) Let W be the sum of the weights on all the nodes in S1 ∪ S2.
(5) RETURN: PG,U (t) ← W .
END ALGORITHM

Fig. 3. Shows a simple algorithm for computing PG,U (t). The algorithm makes use of one call
to the problem of computing the minimum weighted vertex cover.

5 It is worth noting that the projection is well defined only when U is an independent set.
If this is not the case, then there exists some edge (ui1 , ui2) for ui1 , ui2 ∈ U . The entry
corresponding to any k-bit vector that disallows both ui1 and ui2 from being in the minimum
weighted vertex cover then becomes undefined because the edge (ui1 , ui2) cannot be covered
in any way.
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ALGORITHM: COMPUTE-MIN-PROJECTION
INPUT: (a) a node-weighted undirected graph G = 〈V, E〉; (b) an independent set U =
{u1, u2 . . . uk} ⊆ V .
OUTPUT: (a) the optimal t∗ such that t∗ = argmin

t
PG,U (t); (b) the optimal value PG,U (t∗).

(1) Compute the minimum weighted vertex cover on G. Let S be the set of nodes included in
this cover, and let W be the total weight of the nodes in S.
(2) For all ui ∈ U :

(a) If ui ∈ S: set t∗i ← 1.
(b) If ui /∈ S: set t∗i ← 0.

(3) RETURN: (a) t∗: optimal assignment vector; (b) W : optimal value.
END ALGORITHM

Fig. 4. Shows an algorithm for computing the optimal t∗ such that t∗ = argmint PG,U (t). The
optimal value PG,U (t∗) is also returned. We note that the algorithm makes use of just one call
to the problem of computing the minimum weighted vertex cover.

Let PG,U denote the projection of the minimum weighted vertex cover problem onto
U ; and let PG,U(t) denote the value of the entry corresponding to the k-bit vector t.
We now prove some basic algorithmic properties of PG,U(t) (see Figures 3 and 4).

Lemma 1. The procedure ‘COMPUTE-PROJECTION-VALUE’ (Figure 3) computes
PG,U (t) for a given k-bit vector t.

Proof. In step 2(a) of the algorithm, we notice that if ti = 0, then the weight of ui is
set to ∞. This ensures the exclusion of ui from the minimum weighted vertex cover
computed in steps 3 and 4. In step 2(b), we notice that if ti = 1, then ui is included in
the minimum weighted vertex cover (computed in step 4). Further, in this case, all the
edges that are incident on ui are removed from the graph; this reflects the fact that these
edges would automatically be covered by the inclusion of ui. The truth of the Lemma
then follows simply from the definition of PG,U (t).

Lemma 2. The procedure ‘COMPUTE-MIN-PROJECTION’ (Figure 4) computes
mint PG,U(t) and argmint PG,U (t).

Proof. First, we note that the conditions imposed by any k-bit vector t restricts the can-
didate space for optimization; therefore, PG,U (t) ≥ W . Second, let the assignment
returned by the algorithm in Figure 4 be t̂. From step 2, t̂ is consistent with S on the
membership of u1, u2 . . . uk in the minimum weighted vertex cover. Conversely, S is a
candidate vertex cover in the space for optimization associated with PG,U (t̂) — estab-
lishing the condition that PG,U(t̂) ≤W . Put together, we have that for any k-bit vector
t, PG,U(t) ≥ PG,U(t̂). This proves that t̂ is the required optimal vector of assignments;
and clearly, this also proves that W = mint PG,U (t).

4 Weighted Constraints as Projections: The Idea of the CCG

We will now present some important results that relate projections to (Boolean) WCSPs.
In doing so, we will introduce the notion of the CCG and study some of its fundamental
computational properties. As a first step, we make the simple observation that the result
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Fig. 5. Shows a WCSP over 3 Boolean variables. The constraint network is shown in the top-
left cell, and the 6 unary/binary weighted constraints are shown along with their lifted graphical
representations in the 1st/2nd rows. The CCG is shown in the top-right cell, and the arguments
used in Lemma 3 are illustrated in the bottom-right cell. Here, the encircled subgraphs are in-
dicative of the independence of the corresponding subproblems when all the X-variables are
instantiated.

of projecting the minimum weighted vertex cover problem onto an independent set U of
the given graph produces a table of size 2|U|. In some sense, this table can be viewed as a
weighted constraint over |U |Boolean variables. Conversely, given a (Boolean) weighted
constraint, we can think about designing a “lifted” representation for it so as to be able
to view it as the projection of a minimum weighted vertex cover problem in some intel-
ligently constructed node-weighted undirected graph. Later in the paper, we will show
how any given Boolean weighted constraint can be represented graphically using a tri-
partite graph. For now, however, we will concentrate only on the computational aspects
of solving Boolean WCSPs when the lifted graphical representations for each of the
individual weighted constraints are already given to us.

Figure 5 shows an example WCSP over 3 Boolean variables. Here, there are 3 unary
weighted constraints and 3 binary weighted constraints; and their lifted representations
(as projections of minimum weighted vertex cover problems) are shown next to each of
them. The figure also illustrates how the CCG is obtained from the individual graphs
representing each of the weighted constraints. In the CCG, nodes that represent the
same variable are simply “merged” — along with their edges — and every “composite”
node is given a weight equal to the sum of the individual weights. Figure 6 presents the
procedure for constructing the CCG; and the following Lemmas prove some interesting
properties of the CCG in the general case.

Lemma 3. Consider a complete assignment q (i.e., an assignment of values to all the
variables from their respective domains). The cost of q can be computed simply by
running the procedure ‘COMPUTE-PROJECTION-VALUE’ on the CCG.

Proof. We know that the cost of q is given by the sum of the costs defined locally by each
weighted constraint. From Lemma 1, the cost defined locally by Ci can be computed
by running ‘COMPUTE-PROJECTION-VALUE’ on Hi (see Figure 6). Therefore, it
suffices for us to prove that running ‘COMPUTE-PROJECTION-VALUE’ on the CCG
is equivalent to running it on each of the individual graphsH1, H2 . . . HM and summing
the results. Consider the total weight contributed by the X-nodes — say, Xr (1≤r≤N )
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ALGORITHM: CONSTRUCT-CONSTRAINT-COMPOSITE-GRAPH
INPUT: (a) a Boolean WCSP with variables X1, X2 . . . XN and constraints C1, C2 . . . CM ;
(b) lifted graphical representations H1, H2 . . . HM for each of the weighted constraints — the
graph Hi corresponds to the weighted constraint Ci.
OUTPUT: The constraint composite graph (CCG) that provides a lifted representation for the
entire Boolean WCSP.
(1) For i = 1, 2 . . . M :

(a) Give the auxiliary variables in Hi unique names.
(2) For i = 1, 2 . . . N :

(a) Simply “merge” all copies of Xi by doing the following:
(A) If Xi has an edge to an auxiliary variable A in any of the graphs H1, H2 . . . HM ,
then introduce an edge between the “merged” copy of Xi and A in the CCG as well.
(B) Set the weight on the “merged” copy of Xi to be equal to the sum of the weights
assigned to it in each of the individual graphs H1, H2 . . . HM that it appears in.

(3) RETURN: the resulting “composite” graph.
END ALGORITHM

Fig. 6. A straightforward procedure for building the CCG from the individual graphs that repre-
sent each of the weighted constraints in a Boolean WCSP

in particular. When Xr = 0, the total weight contributed by Xr in any Hi is 0, and this
is also the case in the CCG. When Xr = 1, the total weight contributed by Xr is equal
to the sum of the weights associated with it in each of the individual graphs that it
appears in. By construction (step 2(a)(B) in Figure 6), this total weight is equal to the
weight contributed by Xr in the CCG. Now consider the total weight contributed by
the auxiliary nodes. It is easy to see that once the nodes X1, X2 . . . XN are instantiated
in the CCG, the optimal values for the auxiliary variables coming from any graph are
independent of the optimal values for the auxiliary variables coming from any other
graph; and this establishes that any auxiliary node — say, coming from the graph Hj

— is chosen to be in the minimum weighted vertex cover of the CCG if and only if it is
chosen to be in the minimum weighted vertex cover of Hj . Therefore, the total weight
contributed by the auxiliary nodes also remains the same in the CCG — hence proving
the Lemma.

Lemma 4. The optimal (minimum) cost complete assignment q∗ (for the given WCSP)
can be computed simply by running the procedure ‘COMPUTE-MIN-PROJECTION’
on the CCG.

Proof. From Lemma 2, the assignment returned by running the procedure ‘COMPUTE-
MIN-PROECTION’ (on the CCG) is optimal with respect to the CCG. From Lemma 3,
the cost of any complete assignment can be computed from the CCG. Put together, the
returned assignment is optimal for the given (Boolean) WCSP — hence proving the
Lemma.

5 Graphical Representations for Boolean Weighted Constraints

So far, we have studied how a given Boolean WCSP can be solved by computing a min-
imum weighted vertex cover for its associated CCG. This procedure, however, required
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Fig. 7. Illustrates how a (Boolean) weighted constraint can be represented as a multivariate poly-
nomial. Here, P (Xi, Xj , Xk) is the required polynomial, and its coefficients can be computed
simply by solving a system of 8 linear equations with 8 unknowns.

that the graphical representations for each of the weighted constraints already be given
to us. In this section, we will present a simple polynomial-time algorithm for building
a tripartite graph representation for any given Boolean weighted constraint.

The first step in our construction is to represent the given Boolean weighted con-
straint as a multivariate polynomial.6 Consider the example ternary weighted constraint
shown in Figure 7. The weighted constraint can be encoded as a multivariate polynomial
in Xi, Xj and Xk; and the polynomial is of degree 1 in each of these variables.7 The
coefficients of the polynomial can be computed by using a standard Gaussian Elimina-
tion procedure for solving systems of linear equations. The linear equations themselves
arise from substituting different combinations of values to the variablesXi, Xj and Xk,
and equating the results to the corresponding entries in the weighted constraint.8 One
way to build a graphical representation for a given weighted constraint is therefore to
simply do the following: (a) build the graphical representations for each of the individ-
ual terms in the multivariate polynomial (constructed as above), and (b) “merge” these
individual graphical representations (as in Figure 6). The correctness of this procedure
follows merely from the same arguments used in the proof of Lemma 3.

We will now show how to construct graphical representations for each of the indi-
vidual terms in a multivariate polynomial. We will treat three different cases: (1) linear
terms, (2) negative nonlinear terms, and (3) positive nonlinear terms. First, consider
building a graphical representation for a given linear term (allowed to be +ve or -ve). It
is easy to see that any such term can be represented using a single edge that connects the
corresponding variable to an auxiliary node. The non-negative weights on the two nodes
of this trivial graph are set appropriately as shown in Figure 8(a). Now consider building
a graphical representation for a given negative nonlinear term — say,−w ·(Xi ·Xj ·Xk)
when w > 0. We claim that a simple “flower” structure (as shown in Figure 8(b)) serves
the requirements. The “flower” structure makes use of one auxiliary node that is con-
nected to all the variables appearing in the term. A unit weight is assigned to all the
original variables while a weight of w is assigned to the auxiliary node. Since the only
case in which the auxiliary node is excluded from the minimum weighted vertex cover is
when all the original variables are set to 1, the weight of the minimum weighted vertex
cover — for the example in Figure 8(b) — is Xi +Xj +Xk +w−w · (Xi ·Xj ·Xk).

6 This is a common technique used in coding/complexity theory.
7 In general, if the domain of a variable is {0, 1 . . . K}, then the multivariate polynomial is of

degree K in this variable.
8 It is also easy to see that the number of terms in the polynomial is equal to the size of (number

of entries in) the weighted constraint.
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Fig. 8. The diagrams in (a), (b) and (c) illustrate the graphical representations used for linear,
negative nonlinear and positive nonlinear terms respectively. The diagrams in (d)-(l) show the
basis graphs for weighted constraints over the Boolean variables X1, X2 and X3. The blue nodes
represent the original X-variables. The green and red nodes represent the auxiliary variables.
The red nodes are referred to as “thorns” in the running text.

Now treating/cancelling the linear lower-order terms as explained before, we have a
graphical representation for the term −w · (Xi ·Xj ·Xk) as required.

Finally, consider building a graphical representation for a given positive nonlinear
term. Unlike negative nonlinear terms, positive nonlinear terms do not always have
bipartite graph representations.9 However, it is easy to construct tripartite graph rep-
resentations for such terms. First, we note that in the constructions presented so far, a
simple graph-theoretic trick allows us to substitute (1−Xl) for Xl (where Xl is any of
the original Boolean variables). Figure 8(c) shows how this is done for an example vari-
able Xk by introducing an intermediate node with a large weight L on it. Assigning (as
before) unit weights to all the original variables and a weight of w to the auxiliary node,
a “flower” structure over the variables Xi, Xj and Xk that bears an intermediate node
— referred to as the “thorn” — between Xk and the auxiliary node yields a minimum
weighted vertex cover of weightXi+Xj+Xk+L·(1−Xk)+w−w·(Xi ·Xj ·(1−Xk)).
Treating lower-order terms as shown before and/or recursively, such a graphical struc-
ture essentially represents the positive nonlinear term +w · (Xi ·Xj ·Xk) as required
(w > 0). In general, the graphical representation for a positive nonlinear term simply
falls out of constructing a “flower” structure over the participating variables (using a
single auxiliary node), and introducing a “thorn” (intermediate node of large weight)
for one of the variables. We also note that by the introduction of a “thorn,” the graph
no longer remains bipartite; instead, it becomes tripartite as shown in Figure 8(c).

Although the above constructions for individual terms allude to treating lower-order
terms recursively, the size of the graph representing any given term is inconsequen-
tial. Instead, it is more important to study the size of the graph representing the entire
weighted constraint. It can be easily observed that all of the graphs used for representing
different terms in the multivariate polynomial are only of two kinds: (a) “flowers,” and
(b) “flowers” with “thorns.”10 These graphs therefore constitute a basis for represent-
ing any Boolean weighted constraint (see Figure 8(d)-(l)). Further, although the number

9 The X-variables need to be in the same partition.
10 We can assume that the variables are ordered in some way, and that in any “flower” bearing a

“thorn,” the “thorn” is always associated with the variable that appears lowest in this ordering.
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of these different basis graphs is exponential in the number of variables, it only corre-
sponds directly to the size of (number of entries in) the weighted constraint itself.

Theorem 5. Any given Boolean WCSP has a tripartite CCG associated with it; and the
size of this CCG is only polynomial in the size of the WCSP.

Proof. We know that any Boolean weighted constraint can be cast as a multivariate poly-
nomial. We also know that the -ve/+ve terms in this polynomial can be represented using
bipartite/tripartite graphs. Further, from Figure 6, it is evident that when every weighted
constraint in a Boolean WCSP has a lifted bipartite/tripartite graph representation with
the X-variables belonging to the same partition, then the CCG is tripartite with all of
the X-variables belonging to the same partition. The truth of the Theorem then follows
from the observations made above.

6 Hybrid Computational Properties of the CCG

In the foregoing sections, we studied: (a) how to build graphical representations for each
of the weighted constraints in a given Boolean WCSP, (b) how to build the CCG from
these graphs, and (c) how computing the minimum weighted vertex cover for the CCG
yields a solution to the original WCSP. While (a) and (b) are simple polynomial-time
procedures, (c) is NP-hard in general.11 Nonetheless, in this section, we will study the
complexity of solving the minimum weighted vertex cover problem on the CCG asso-
ciated with a given Boolean WCSP. In particular, we will exploit the fact that it can be
efficiently solved in at least two different cases: (case 1) when the graph has bounded
treewidth, and (case 2) when the graph is bipartite. We will show that (case 1) corre-
sponds to the original constraint network having bounded treewidth, and that (case 2)
corresponds to the presence of good numerical structure in the weighted constraints.12

6.1 CCG Captures the Topological Structure of the Constraint Network

In this subsection, we will constructively show that the treewidth of the CCG is essen-
tially equal to that of the original constraint network — i.e., we will provide an elimina-
tion ordering on the nodes of the CCG that yields the same induced width as a proposed
elimination ordering on the original variables in the constraint network.

Consider a proposed elimination ordering 〈Xi1 , Xi2 . . .XiN 〉 on the original vari-
ables. Suppose that this ordering produces an induced width of w on the constraint
network of the given Boolean WCSP. Let {auxiliary variables} denote an arbitrary
ordering on the auxiliary variables in the CCG. (Note that “thorns” are also auxiliary
variables.) We claim that the following elimination ordering on the nodes of the CCG
produces the same induced width w for it: 〈{auxiliary variables}, Xi1 , Xi2 . . . XiN 〉.
11 Although the CCG is not a general graph, but tripartite in nature, the minimum weighted

vertex cover problem on tripartite graphs is also known to be NP-hard.
12 Graphical structures called microstructure complements have been studied by other re-

searchers in the context of identifying/exploiting symmetry in CSPs/WCSPs [16]. Unlike
CCGs, however, microstructure complements do not exhibit the desired hybrid computational
properties.
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Fig. 9. Shows an example WCSP over 4 Boolean variables. The top-left cell shows the constraint
network; and the graphical representations for the individual weighted constraints appear in the
first two rows. The CCG is shown in the top-right cell. The graphs in the bottom row (from left
to right) illustrate the process of variable-elimination when A1, A2 and A′

2 are (respectively)
eliminated. The newly induced edges are shown using purple dashed lines. After all the auxiliary
variables are eliminated, the resulting graph is the same as the original constraint network.

The correctness of our claim follows from the “compositional” nature of the CCG.
From Figure 6, we know that unique auxiliary variables are used for each of the weighted
constraints. This means that there is no edge between any auxiliary variable and any
other variable that does not explicitly participate in the corresponding constraint. Now
consider what happens when all the auxiliary variables are eliminated before any of the
X-variables are eliminated. In particular, consider what happens when all the auxiliary
variables created for a weighted constraintCi are eliminated. Because the only variables
that these auxiliary variables are connected to are the ones that explicitly participate inCi,
the set of edges that are induced in the CCG after they are eliminated constitute a clique
on the X-variables participating in Ci. However, this clique is the same as the one that
is used in building the constraint network of the Boolean WCSP. After all the auxiliary
variables are eliminated, therefore, the graphical structure that remains is the same as
the constraint network on the original X-variables (see Figure 9). Moreover, following
the proposed elimination ordering on these X-variables — viz., 〈Xi1 , Xi2 . . . XiN 〉 —
trivially results in the same induced width w.

Three things are worth noting in the above arguments. One, while the auxiliary vari-
ables are being eliminated, the size of the largest clique that we encounter is equal to the
largest arity (K) of the weighted constraints. This factor can be safely ignored since the
treewidth is lower-bounded by K , and is in fact typically much larger than K . Two, the
number of auxiliary variables created for any weighted constraint may be exponential
in the arity of that constraint. However, this does not come as a surprise since the size
of (number of entries in) the weighted constraint is itself exponential in the arity of the
constraint; and moreover, as argued before, this exponential factor can be ignored in
comparison with the treewidth of the CCG. Three, an important outcome of the above
arguments is that any algorithm/heuristic that works well in theory/practice for mini-
mizing the induced width of the constraint network can be directly adapted to the CCG
as well — just by eliminating all the auxiliary variables (in any order) before using the
proposed elimination ordering on the X-variables.
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6.2 CCG Captures the Numerical Structure of the Weighted Constraints

In this subsection, we will show how the CCG also captures the numerical structure
of the weighted constraints. In particular, we will show that many classes of Boolean
WCSPs that are tractable by virtue of the structure in their weighted constraints in fact
have bipartite CCGs. We will begin with the following important Theorem.

Theorem 6. The language LBoolean
bipartite of all Boolean weighted constraints that have bi-

partite graph representations is tractable.

Proof. From the procedure in Figure 6, it is clear that when every weighted constraint
in a Boolean WCSP has a lifted bipartite graph representation with the X-variables be-
longing to the same partition, then the CCG is also bipartite with all of the X-variables
belonging to the same partition. The truth of the Theorem then follows simply from
the fact that in any bipartite graph, the minimum weighted vertex cover problem can be
solved efficiently in polynomial time [5].

Drawing on the implications of the above Theorem, we will first consider Boolean
WCSPs restricted to binary constraints. Even in this simple case, the kinds of prob-
lems that we can speak about significantly differ in their associated tractability results.
For example, both the min-st-cut problem and the max-cut problem can be encoded
as Boolean WCSPs with binary constraints;13 but while the former can be solved in
polynomial time, the latter problem in NP-hard. Figure 10 sheds some light on such
WCSPs. In particular, it shows that: (a) any Boolean unary weighted constraint has a
simple bipartite graph representation; (b) the min-st-cut constraints are particular cases
of weighted constraints that have simple bipartite graph representations as V -structures;
and (c) the max-cut constraints are particular cases of weighted constraints that have
simple graphical representations as U -structures (that are not bipartite). The following
important conclusions can now be drawn immediately: (a) a generalization of the min-
st-cut problem with arbitrary unary weighted constraints is tractable;14 (b) the entire
space of weighted constraints resulting from varying the parameters w1, w2 and w3

(in the V -structures) is tractable; and (c) the absence of bipartite graph representations
for the max-cut constraints is consistent with the intractability of the max-cut problem.15

As a next step, we present a simple example in Figure 10 to illustrate how we can
generalize our techniques to non-binary constraints as well. The mere existence of a
bipartite graph representation establishes the tractability of the kinds of ternary weighted
constraints shown in the figure. Further, setting different values for w1 and w2 yields
different kinds of tractable (convex) functions. In general, several parameters in the bi-
partite graph representations can be adjusted to yield a multitude of tractable classes of
WCSPs. These include: (a) the weights on the original and auxiliary variables, (b) the
graphical structure of the bipartite graphs, and (c) the encoding mechanism between the

13 For the min-st-cut problem, unary weighted constraints on Xs and Xt ensure that they are
assigned the values 0 and 1 respectively; and for every edge 〈vi, vj〉 in the graph, a binary
weighted constraint between Xi and Xj yields a value of 1 when Xi 
= Xj , and 0 otherwise.
For the max-cut problem, the binary weighted constraints are reversed.

14 Similar tractable problems were identified in [11] using different combinatorial arguments.
15 Some other related useful results also appear in [6].
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Fig. 10. The top-left cell shows that any Boolean unary weighted constraint has a trivial bipartite
graph representation. The bottom-left/bottom-right cell shows the bipartite/tripartite graph rep-
resentation (V -structure/U -structure) for generalizations of the min-st-cut/max-cut constraints.
The min-st-cut and max-cut constraints become apparent when w1 = w2 = w3/2 (and the
additive constants are factored out). The top-right cell shows a bipartite graph for a weighted
constraint over the 3 Boolean variables Xi, Xj and Xk. Here, A1, A2 and A3 are the auxiliary
variables.

values of individual variables and the presence/absence of certain nodes in the minimum
weighted vertex covers [12]. A very simple argument for establishing the tractability of
the hypergraph min-st-cut problem, for example, is to note that when formulated as a
Boolean WCSP, the weighted constraints have (bipartite) “flower” structure represen-
tations that generalize the V -structures of the min-st-cut problem.16 Another important
result is that we can efficiently solve the minimization problem for any objective func-
tion that can be expressed as a bounded-degree multivariate polynomial with the positive
coefficients being restricted to linear terms. This result follows directly from the dis-
cussions in Section 5 where we explicitly showed that all linear and negative nonlinear
terms have simple bipartite graph representations.17

Finally, from Theorem 5, we see that the complexity of solving a given instance of
the Boolean WCSP is exponential only in the size of the smallest partition — in terms
of the number of nodes — of the tripartite graph constructed for it. This is because the
minimum weighted vertex cover problem can be solved in polynomial time for a bipar-
tite graph; and every possible combination of decisions to include/exclude the nodes of
the smallest partition in the vertex cover can be evaluated to find the optimal one. We
note that one of these partitions consists of the original N variables — leading us to the

16 The tractability of the hypergraph min-st-cut problem is also established in [13]. Nonetheless,
it is worth noting that the simple arguments presented here generalize to the entire space of
weighted constraints resulting from varying the parameters of the “flower” structures.

17 In turn, this result is also equivalent to the tractability of maximization problems defined
for the so-called negative-positive pseudo-Boolean functions [15]. Similar and more general
results appear in [1] and [3]. The techniques presented in [3] employ the posiform repre-
sentations of pseudo-Boolean functions and work on their associated conflict graphs. Here,
the equivalence between posiform maximization and weighted graph stability is exploited;
and posiforms with corresponding conflict graphs having special characteristics are studied.
Nonetheless, it is worthwhile to note that the arguments presented in this paper can be general-
ized very easily to non-Boolean domains [12]; and it is also important to note (once again) that
our transformation techniques preserve the treewidth for general Boolean WCSPs — thereby
providing for the desired hybrid computational properties of the CCG.
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obvious upper bound of characterizing the problem to be exponential inN . However, this
partition may not be the smallest — in which case our framework yields a much tighter
characterization, and allows us to computationally leverage the numerical structure of
the weighted constraints. (When there is sufficient numerical structure, for example, the
CCG is only bipartite, and such WCSPs can be solved in polynomial time.)

7 Conclusions and Future Work

We introduced the notion of a constraint composite graph (CCG) associated with a given
(Boolean) WCSP. We provided simple polynomial-time procedures for constructing it,
and we showed that the given Boolean WCSP can be solved by computing a minimum
weighted vertex cover for its CCG. We established that, unlike the constraint network,
the CCG provides a unifying framework for characterizing/exploiting both the structure
of the variable-interaction graph as well as the structure of the weighted constraints.18

As a consequence of these hybrid computational properties, we emphasize the impor-
tance of studying the CCG rather than the constraint network (for a given WCSP). Fur-
ther, the compositional nature of the CCG is a highly attractive property that allows us
to reason about the weighted constraints only locally. This property was used to pro-
vide simple arguments for establishing the tractability of the language LBoolean

bipartite (that
in turn captures many useful subclasses of WCSPs). For future work, we are interested
in a more detailed study of CCGs — especially for general non-Boolean WCSPs.
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Abstract. In this paper we provide a new method to generate hard
k-SAT instances. Basically, we construct the bipartite incidence graph of
a k-SAT instance where the left side represents the clauses and the right
side represents the literals of our Boolean formula. Then, the clauses are
filled by incrementally connecting both sides while keeping the girth of
the graph as high as possible. That assures that the expansion of the
graph is also high. It has been shown that high expansion implies high
resolution width w. The resolution width characterizes the hardness of
an instance F of n variables since if every resolution refutation of F has

width w then every resolution refutation requires size 2Ω(w2/n). We have
extended this approach to generate hard n-ary CSP instances. Finally,
we have also adapted this idea to increase the expansion of the system
of linear equations used to generate XOR-SAT instances, being able to
produce harder satisfiable instances than former generators.

1 Introduction

Providing challenging benchmarks for the SAT and the CSP problems is of a
great significance for both the experimental evaluation of SAT and CSP solvers
and for the theoretical computer science community. Every year, new bench-
marks are submitted to the SAT and CSP competitions. Our aim is to provide
a method for generating hard k-SAT and n-ary CSP instances.

In order to do that, we look at the field of propositional proof complexity,
where it turns out that graph expansion has been established as a key to hard
formulas for resolution (e.g. [1]), but also for other proof systems like the poly-
nomial calculus [2]. Roughly speaking, an expander graph is a graph G=(V ,E)
that, for any, not too big, subset of vertices S, its set of neighbors in V \ S is
big, compared with |S|, so S is well connected with the rest of the graph.

Basically, our approach is based on creating a bipartite graph with a high
expansion, and then from this graph we generate the k-SAT or n-ary CSP in-
stance. In particular, for the k-SAT instances one of the partitions of the graph
represents the set of clauses and the other one the set of literals. Edges represent
which literals belong to which clauses. We call this graph the literal incidence
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graph of a SAT instance. Analogously, for the CSP instances, one partition
represents nogood tuples and the other one pairs (variable, value).

The way our method tries to get a high expansion on the bipartite graph is to
incrementally build the graph while keeping the girth as high as possible. The
girth is the length of the shortest cycle of the graph. It is known that high girth
implies high expansion [3].

The instances we generate with this method can be used to test the effi-
ciency of SAT and CSP solvers. Moreover, expander graphs have many other
applications, like efficient communication networks [4], linear-time decodable
low density parity check codes [5] and cryptographic hash functions [6].

We have compared our approach against other methods in the SAT Com-
munity [7,8] which try to get hard SAT instances by balancing the occurrences
of literals, and thus the degrees of the vertices at the literal incidence graph
become also balanced. Previous results, e.g. [5], show that balanced bipartite
graphs also tend to have a high expansion. Our empirical results confirm that
our method generates harder instances. We have also introduced a modification
of the generator of satisfiable SAT instances regular k-XORSAT [9], that seems
to be very hard thanks to the expansion properties of its underlying system of
linear equations. So, we modify the generation of this system by using our high
girth bipartite graphs, instead of the original random regular bipartite graphs,
for building the system, and show that the hardness of the instances increases
by orders of magnitude.

In the CSP field there are four standard methods, denoted A, B, C and D, for
generating hard random binary CSPs [10,11]. In [12] the model E was introduced
in order to overcome some deficiencies of the previous models. For n-ary CSPs
some extensions of random binary CSPs models have been defined [13]. At the
section of experimental results we compare our method against the n-ary version
of Model E, because the set of parameters in model E (domain size, number of
variables and total number of nogoods) is the same as in our High-Girth model,
thus giving a natural comparison.

The rest of the paper is organized as follows. First, we introduce a set of
previous definitions. Second, we discuss the related work. Third we present our
method for generating hard k-SAT and n-ary CSP instances. Finally, we show
the experimental investigation on SAT and CSP solvers.

2 Preliminaries

We consider undirected bipartite graphs in this paper, although we mention
some results about undirected general graphs. A bipartite graph G is a pair
(V1 ∪V2, E), where V1 is the left partition and V2 is the right partition of the set
of vertices, and E ⊆ V1 × V2. We say that G is (k1, k2)-regular if the degree of
any vertex from V1 is k1 and the degree of any vertex from V2 is k2. Observe that
|V1|k1 = |V2|k2. In the same way, it is (k1,−)-regular if we only fix the degree of
the vertices in V1.
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Definition 1. The girth of a graph G, g(G), is the length of the shortest cycle
in G. If G is acyclic then, by definition, g(G) =∞.

There is a limit on how large the girth can be, for a graph with V vertices and
minimum degree d. This limit is 2 logd−1(|V |) [14].

Definition 2. We say that a family of k-regular graphs (Gm)m≥1, with |Vm| →
∞ as m → ∞, has high girth if, for some constant 0 < C < 2, g(Gm) ≥
(C + o(1)) logk−1 |Vm|, where o(1) → 0 as m→∞.

Random k-regular graphs have expected girth slightly greater than 3 [15], but
there exist constructions of graphs with high girth. The one with the highest girth
is that of [14] where they achieve girth (4/3) logk−1(|V |) and high expansion.

Definition 3. The expansion of a subset X from the vertices of G = (V1∪V2, E)
is defined to be the ratio |N(X)|/|X |, where N(X) = {w ∈ (V1 ∪ V2) \X | ∃v ∈
X, {v, w} ∈ E} is the set of outside neighbors of X.

When all the neighbors of X are inside X , we have expansion 0. We consider a
set high expanding when its expansion is greater than 1, that means that the
set of different outside neighbors of X is larger than X , so it is well connected
with the rest of the graph.

Definition 4. A left (α, c)-expander is a bipartite graph (V1 ∪ V2, E) such that
every subset of V1 of size at most α|V1| has expansion at least c.

Usually, smaller sets will have better expansion, the limit being for α = 1.0,
where expansion cannot be greater than |V2|/|V1|. Observe that for a (k,−)-
regular bipartite graph, the left expansion cannot be greater than k. Analogously,
we can also talk about right expanders or expanders in general if we consider
the expansion of any possible subset of vertices.

For this work, the following concepts are the main tools used to link complexity
with structural properties of k-SAT and n-ary CSP instances.

Definition 5. Given a k-SAT instance F with set of clauses C, set of variables
V and set of literals L, G(F ) = (C ∪ V,E) is its bipartite variable
incidence graph such that (c, v) ∈ E if and only if variable v appears in clause
c. LG(F ) = (C ∪L,E) is its bipartite literal incidence graph such that (c, l) ∈ E
if and only if literal l appears in clause c.

Observe that if LG(F ) = (C ∪ L,E) is a left (α, c)-expander, then G(F )
= (C ∪ V,E), will be, at least, a left (α, c/2)-expander.

Definition 6. Given a CSP instance P = 〈X,D,C〉, we define the literal in-
cidence graph as the bipartite graph LG(P ) = (NG ∪ L,E), where for every
variable xi and domain value j ∈ dom(xi) there is a vertex (xi, j) in L and for
every nogood tuple ngij = (vj1 = d1, vj2 = d2, . . . , vjk

= dk) associated with a
constraint Ci of arity k there is a vertex ngij in NG and k edges, one for every
pair (ngij , (vjj′ , dj′)).
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3 Related Work

In this section we survey some previous theoretical results about the expansion
of random graphs, and the related work in the SAT and CSP communities.

3.1 Expansion of Random Graphs

The problem of checking whether a graph is an expander is co-NP complete [16].
However, lower and upper bounds on the expansion of a graph have been ob-
tained using spectral graph theory results. Given the adjacency matrix of
G = (V,E) we denote its eigenvalues by λ0 ≥ λ1 ≥ . . . ≥ λn−1, where n = |V |.

For k-regular graphs, we have lower bounds on expansion that depend on λ1,
such that the lower λ1, the higher the expansion. Asymptotically (as |V | → ∞),
for k-regular graphs the best we can hope for λ1 is to tend to 2

√
k − 1, and

k-regular graphs with λ1 ≤ 2
√
k − 1 are called Ramanujan graphs [14]1. On

the other hand, Kahale [17] gave a lower bound on expansion that shows that
Ramanujan k-regular graphs can have expansion as high as k/2 for small sets.

Probabilistic methods have been used to show that regular graphs are almost
surely very good expanders. The particular case of k-regular or (k1, k2)-regular
bipartite graphs have received special attention in the communications commu-
nity (e.g. [4,5]), and such bipartite graphs are good expanders almost always. So,
it seems that regular graphs are promising towards obtaining good expanders,
although we will see that almost regular graphs can also be excellent expanders,
even better than regular graphs. For the case of bipartite graphs we have, for
example, that a random (k,−)-regular bipartite graph (V1 ∪ V2, E) with
|V1| = |V2| will be a good expander with probability > 1/2. So, when only
the vertices of one part have the same degree, the expansion properties seem
to degrade. Observe that this last graph can represent the incidence graph of a
random k-SAT instance.

3.2 Related Results in SAT Community

Concerning the resolution complexity of a 3-SAT instance F with n variables,
Ben-Sasson and Wigderson [18] proved that if every resolution refutation of F
requires width w, then every resolution refutation of F requires size 2Ω(w2/n).
The width of a resolution refutation is the length of the longest clause in the
refutation. Thus, lower bounds on width imply lower bounds on size. Finally,
there is a connection between graph expansion and 3-SAT resolution complex-
ity based on this width-size relationship. Consider a 3-SAT instance F with set
of clauses C and set of variables V and its bipartite variable incidence graph
G(F ) = (C ∪V,E). Results presented in [1] imply that any resolution refutation
will have width lower bounded by �(c− 1)α|C|/((2 + c)d)�, where d is the max-
imum right-degree of G(F ), if G(F ) is a left (α, c)-expander. So, any resolution
refutation of F will have exponential size if d = o(|C|) and c > 1, α > 0, given

1 2
√

k − 1 is only an asymptotic limit on the minimum value of λ1, but actual graphs
can have an smaller value.
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the width-size relationship. So, the higher the expansion of the graph and the
smaller the maximum right-degree d, the higher the refutation size lower bound.
Moreover, the results also imply that more powerful proof algorithms based on
strong k-consistency will also require exponential time for solving the 3-SAT
instance under the same circumstances.

As we have discussed, regular graphs tend to be better expanders than general
graphs. So, it is not surprising that previous random models for k-SAT based
on balancing the literal and variable occurrences generate harder instances, as
their incidence graph will tend to have higher expansion. The model described
in [7] for 3-SAT (lit-bal-1), generates instances with m clauses by putting � 3m

2n �
occurrences of each literal plus an additional random set of unique literals so
that there are exactly 3m literals in it. To construct each clause, 3 literals on
distinct variables are removed from the bag. If there are less than 3 distinct vari-
ables mentioned in literals remaining in the bag, additional distinct variables
are randomly selected from the set of all variables and negated with probabil-
ity 1

2 . This model easily generalizes for k > 3. The model described in [8] for
k-SAT (lit-bal-2) is very similar, being the main difference that every literal in
the resulting formula appears exactly �k·m

2n � or �k·m
2n �+1 times. By contrast with

lit-bal-1 the occurrences of literals can be less balanced.
Recently, models of hard satisfiable k-SAT instances, based on variants of

the XORSAT model, have been introduced [9,19,20,21]. The basic ingredient
in all these models is that a system of linear equations (mod 2) with at least
one solution is converted to an equivalent set of clauses, such that the solu-
tions of the SAT formula correspond to the solutions of the linear system. All
these models provide very challenging instances, being the hardest one regular
k-XORSAT [9,21], where the running time of DPLL algorithms seems to scale
exponentially in the number of variables. It seems that the key for the hardness
of regular k-XORSAT is the high expansion they get in the system of linear
equations, thanks to the use of a regular bipartite graph for building it, such
that the resulting system has n variables and n equations with k variables per
equation, and every variable appears in k equations. We will see that by using our
High-Girth bipartite graph generation algorithm to generate the system of linear
equations we increase the hardness of regular k-XORSAT instances even more.

3.3 Related Results in CSP Community

For binary CSPs, in [22] new methods for generating hard instances were pre-
sented, based on balancing both the constraint language and the constraint
graph. Also, a method for generating a high girth constraint graph was in-
troduced and it generated the hardest instances. In that work, they link the
hardness of the instances to the fact that more balanced graphs tend to have a
higher treewidth, thanks to the results that link the treewidth with the graph
expansion [23]. Then, given the results that link the treewidth with the level
of consistency needed to solve a CSP with k-consistency [24,25] we have that
the higher the expansion on the constraint graph, the higher the complexity to
solve the problem. Previous work has considered the generation of hard balanced
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CSPs (see for example [26,27]), but without linking the balance of the constraint
graphs to their treewidth.

We have also the results of [1], that link the complexity of a 3-SAT instance
with the expansion of its incidence graph using an encoding of the 3-SAT instance
as a CSP instance and using results that link the expansion of its incidence graph
to the level of resources needed to win certain combinatorial games. These results
are interesting, because one can consider also the same combinatorial games but
directly on the incidence graph of a n-ary CSP to find a relation between its
expansion and the level of k−consistency needed to solve the CSP, although
the possible relation does not seem to be a straightforward generalization of the
results in [1]. However, as we will see at the experimental results, our method
increases the hardness of n-ary CSPs, so we believe that high lower bounds on
complexity also hold for our model.

4 Hard SAT and n-ary CSP Instances

In this section we introduce our generation method for hard k-SAT and n-ary
CSP instances.

4.1 Expansion, Balance, and Girth

To get an idea on which is the typical structure of a good expander graph,
consider the expansion of subsets of the left partition of the bipartite graphs (a)
and (b) of Fig. 1. As the vertices in the left partition of both graphs have degree 3,
the expansion when |S| = 1 is 3. Consider now sets with |S| = 2. In the graph (a),
the set N(S) for any left subset S with |S| = 2 is always the entire right partition,
so the expansion is 4/2. But for graph (b) the set N({1, 4}) does not contain the
vertex 7, and so the expansion is only 3/2 due to the poor connectivity of vertex
7. For |S| = 3 the situation is similar. For graph (a) any left subset with |S| = 3
is connected to the whole right partition (its expansion is 4/3), but for graph (b)
N({2, 1, 4}) = {5, 6, 8}, so the expansion is 1. Thus, we observe that, due to the
unbalanced degrees of the right partition of graph (b), the vertex expansion of
the left subsets is not as good as in graph (a), where all the degrees are equal.
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Fig. 1. Example of bipartite graphs with different expansion
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Algorithm 1. Algorithm for generation of high girth (k,−)-regular bipartite
graphs (V1 ∪ V2, E)

input : V1, V2, k
output: a bipartite (k,−)-regular graph (V1 ∪ V2, E)
Initialize E with a random matching from V1 to V2

(every vertex from V1 will have degree 1)
for i = |V1|+ 1 to k|V1| do

LT := {u ∈ V1 | degree(u) < k}
RT := {u ∈ V2 | degree(u) ≤ degree(v),∀v ∈ V2}
maxdist := 1
while (maxdist = 1) do

T := {(u, v) | (u, v) ∈ LT ×RT dist(u, v) ≥ dist(x, y)∀(x, y) ∈ LT ×RT }
dmin := degree(u), where u ∈ RT

maxdist := dist(u, v), where (u, v) ∈ T
if (maxdist = 1) then

RT := {u ∈ V2 | degree(u) = dmin + 1}

E := E ∪ (u, v), where (u, v) ∈ T

However, the balance of the degrees does not provide a complete characteriza-
tion of good expander graphs. Consider the graphs (c) and (d) of Fig. 1, that are
both equally balanced. Graph (c) has several cycles of length 4, and thus girth
4, and its expansion for some left subsets of size 4 is 5/4. By contrast, in graph
(d) the minimum expansion for left subsets of size 4 is 7/4. The main structural
difference with the graph (c) is actually its girth, that in this case is 6. Actually,
Kahale [3] shows that high girth (O(logk−1(|V |)) implies high expansion, at least
for subsets of size at most |V |δ, with δ < 1. So, one way to obtain graphs with
good expansion is to get high girth graphs. In [28] it is presented an algorithm
for building graphs with degrees k−1, k and k+1 and high girth. The algorithm
we present in the next subsection follows the same approach to build bipartite
graphs with high girth. This graph will be used to build hard k-SAT and n-ary
CSP instances .

4.2 High Girth Bipartite Graphs

The algorithm presented by Chandran in [28] works for general (non-bipartite)
graphs. It builds the graph in a greedy fashion, introducing edges one by one,
connecting vertices which are at large distances in the current graph, in such a
way that the degrees are maintained almost balanced and the girth obtained is
O(logk−1(|V |)). The algorithm initiates the construction by building a match-
ing between the vertices, and then starts to insert edges between vertices with
maximum distance between them.

For building the literal incidence graph of a k-SAT formula (and similarly for
a k-ary CSP formula), we need to build a (k,−)-regular bipartite graph (V1 ∪
V2, E), where V1 is the set of clauses and V2 is the set of literals. Algorithm 1 does
this, but trying to keep the girth as high as possible, using the same technique
of linking vertices which are at large distances in the current graph. It starts the
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process by creating a random matching from V1 to V2, such that every vertex
from V1 will have degree 1 and every vertex from V2 will have degree either
�|V1|/|V2|� or �|V1|/|V2|� + 1. Because this matching does not create any cycle,
it starts with girth equal to ∞. Then, at every step it selects an edge from the
subset of edges (u, v) with u ∈ V1 and v ∈ V2, such that degree(u) < k and
degree(v) is minimum among all the current degrees in V2. From this subset
of edges, it selects one (u′, v′) with the maximum distance between u′ and v′,
because this way the new created cycle is of maximum length. This process ends
when the graph has |V1|k edges.

One of the keys of Chandran’s algorithm is that at any stage of the process it
maintains the degrees of the vertices almost balanced. Similarly, the algorithm
in [29] creates a bipartite graph with balanced degrees and guaranteed high
girth, but it only works for |V1| = |V2|. By contrast, for the purpose of using a
high girth bipartite graph for generating SAT instances with any possible ratio
r = |C|/|V |, we need a more general algorithm. That is, able to work with non-
equal partition sizes. Observe that this implies that the degrees of the vertices on
the right partition (literals) will be higher than on the left, the bigger the ratio
r, the bigger the difference between the degrees on the left and right partitions.

However, we can show that the degrees of the right vertices (V2) of our bipar-
tite graph will be almost balanced.

Lemma 1. For any fixed k and r and |V1| = r|V2| this algorithm creates a
(k,−)-regular bipartite graph (V1 ∪ V2, E), where the degree of any vertex in
V2 will be asymptotically (as |V2| → ∞), from the set {d − 1, d, d + 1}, where
d = �rk�.
Proof. After inserting the initial matching from V1 to V2, the degree of any
vertex from V2 will be �r� or �r�+1. If the algorithm always succeds in selecting
a minimum degree vertex from V2, then at the end of the process any vertex will
have degree �rk� = d or d+1. We define a minimum degree vertex from V2 that
is linked with all the current available vertices from V1 (vertices with less than
k edges) as a blocked vertex.

Consider a blocked vertex v from V2. The number of available vertices from
V1, but already linked to some vertex, when k|V1|−E edges are already inserted,
will be, at least, (E/(k − 1)). This situation corresponds to the extremal case
when all the available vertices are linked with only one vertex, and the rest of
vertices from V1 have degree k.

So, the first time when a blocked minimum degree vertex v from V2 can appear
is when all the vertices from this minimum set of available vertices can appear
linked with v. That is, when (E/(k − 1)) coincides with the current minimum
degree from V2: ⌈

E

(k − 1)

⌉
=
⌊
k|V1| − E

|V2|

⌋
Then, this will never occur before E satisfies:

E =
k(k − 1)|V1|
|V2|+ (k − 1)

<
k(k − 1)|V1|

|V2|
= rk(k − 1) = O(1)



306 C. Ansótegui et al.

Table 1. Girth of bipartite graphs created by our algorithm, corresponding to 3-SAT,
4-SAT and 5-SAT literal incidence graphs for instances at the peak of hardness

3-SAT 4-SAT 5-SAT
|V | |C| g logd(2|V |+ |C|) |C| g logd(2|V |+ |C|) |C| g logd(2|V |+ |C|)
62 221 8 5.6 539 6 3.8 1,091 4 3.4

125 447 8 6.2 1,087 6 4.3 2,467 4 3.8
250 895 10 6.9 2,175 6 4.6 4,935 6 4.1
500 1,790 10 7.6 4,350 6 5.1 9,870 6 4.5

1,000 3,560 10 8.3 - - - - - -

That is, when only a constant number of vertices still wait for one more edge. At
this time, we have two possibilities. On the one hand, if R = kr|V2| mod |V2| > 0
because k and r are fixed we have R = O(f |V2|) with 0 < f < 1. Let i be the
number of minimum degree vertices from V2 that should receive one more edge.
Then, the degree of R− i vertices will be d+ 1, and the degree of |V2| − (R− i)
vertices will be d. Observe that a third degree d+2 will only be introduced if all
the minimum degree vertices from V2 are blocked. But the maximum number of
blocked vertices is always k − 1, so only if |V2| − R < k − 1 will be possible to
block, at most, the last k − 1 minimum degree vertices from V2. But |V2| − R
= O(|V2|) * k − 1 and asymptotically no vertex of degree d + 2 will appear.

On the other hand, if R = 0 we will have |V2| − i vertices with degree d and
i vertices with degree d − 1. In this case, only if i < k we could have all the
minimum degree vertices blocked, and this would lead to the introduction of at
most k − 1 vertices of degree d + 1. ��
So, the degrees of the vertices in V2 will be almost balanced. Actually, the instances
we have obtained with this method in our experiments almost always have only
two distinct degrees in V2, and only exceptionally three distinct degrees.

Regarding the girth, although we cannot ensure the same conditions that
guarantee a logarithmic girth like in [28] and [29], our empirical results show
that this is the case. Table 1 shows the girth for graphs obtained with our
algorithm, compared with the minimum girth we would obtain for a general
d−regular graph, with d equal to the floor of the average degree of our bipartite
graphs (d = �2|V1|k/(|V1|+ |V2|)�), if we used Chandran’s algorithm.

Table 1 does not show results for |V | = 1, 000 for 4-SAT and 5-SAT because
the size of the corresponding literal incidence graph is too big in such cases
for our generation algorithm to work in reasonable time, even if we are using
the best performing polynomial-time algorithm we have found in [30], for the
dynamic all-pairs shortest distance problem (DAPSD). For our bipartite graph
(V1 ∪ V2, E) with |V1| = |C|, |V2| = 2|V | and n = |V1| + |V2|, the worst-case
running time of our algorithm is O((k − 1)2n3), thanks to using the variant of
the algorithm of [31] described in [32]. Theoretically, there is a best worst-case
algorithm for DAPSD [33], but empirically for our particular graphs the chosen
algorithm was the best performing.

By contrast, we also computed the girth for the literal incidence graphs
obtained with the balanced SAT model Lit-bal-1, and the girth obtained in
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all the instances was always 4, the minimum possible girth for a bipartite graph.
Remember that actually there are theoretical results that imply that for random
k−regular graphs the average girth is slightly greater than 3 [15].

We can easily use this algorithm to generate the literal incidence graphs of
k-SAT and n-ary CSPs, with the goal of obtaining harder instances than the
ones we obtain with regular (balanced) graph models. Moreover, we can also use
it to generate the XORSAT linear equations system, instead of using a random
regular bipartite graph like it is done in [9], with the left partition representing
the equations, and the right partition the equations’ variables.

5 Experimental Investigation

We have divided our experimental investigation into two subsections. The first
one presents a comparison of our method against the most recent k-SAT gen-
erators and the classical random k-SAT generator. The second one shows a
comparison between model E and our method High-Girth for n-ary CSPs.

5.1 Hard k-SAT Instances

Four methods have been used to generate k-SAT instances : the classical random
k-SAT (Random), a generalization of method described in [7] (Lit-bal-1) for
k-SAT, the method described in [8] (Lit-bal-2), and our method (High-Girth). We
have solved the instances with five SAT solvers: satz [34], minisat [35], kcnfs [36],
walksat [37] and adaptg2wsat [38].

Fig. 2 shows the results for the complete SAT solver kcnfs on 4-SAT and 5-SAT
instances. As we can see High-Girth is the best generator, while Lit-bal-1 and
Lit-bal-2 are almost identical, and the differences remain even when looking
only at satisfiable instances. We only report the results for the SAT solver kcnfs
since it was the fastest and it reported the least difference between the two best
generators. Table 2 shows the ratios for the median time between High-Girth
and Lit-bal-1 and between Lit-bal-1 and Random for different arities when both,
all and only satisfiable instances, are considered. We observe that the higher the
arity (k), the higher the ratio High-Girth/Lit-bal-1 results, particularly for larger
number of variables. This can be due to the differences in the expansion of the
bipartite graphs of the different models, because as we increase k, it is possible
to obtain more drastic differences in the expansion of the bipartite graphs of the
different models. That is, the higher the k, the higher the maximum expansion

Table 2. Ratio of median time to solve all/only sat instances on peak hardness between
High Girth Bipartite, Literal and Random generation methods

3-SAT 4-SAT 5-SAT

Num. vars. 300 330 130 150 70 100

High-Girth/Lit-bal-1 1.29/1.02 1.44/1.19 1.34/1.42 1.39/1.68 1.64/1.48 3.09/3.34
Lit-bal-1/Random 80.2/126 132/162 4.58/7.41 5.59/10.47 1.73/2.65 2.09/2.48
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Fig. 2. Performance of kcnfs for the different SAT generators

of a subset of clauses S. At the same time, the ratio Lit-bal-1/Random seems to
decrease, but this could be due to the fact that as we increase k, more variables
may be needed in order to observe a difference for such ratio.

We also wanted to check if we could observe the same behavior when using a
local search SAT solver. Table 3 reports results for 5-SAT. First, we run the solver
walksat, on the 50 most difficult satisfiable instances at the underconstrained and
the phase transition zones. We report the median time and the best noise param-
eter setting (median-time/best-noise at table) for the heuristics best and novelty.

Second, in order to solve instances with a higher number of variables, we run
one of the best performing local search solvers at the SAT’07 solver competition,
adaptg2wsat. We report the median time on the satisfiable instances at the peak
of hardness. Since the unsatisfiable instances were too difficult to be filtered out
by complete solvers, we applied a cutoff of 10,000 seconds for adaptg2wsat, and
we assumed those instances lasting more to be unsatisfiable. We applied this
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Table 3. Local search solvers on 5-SAT instances. Median time (in seconds). For walksat
we give time/best-noise. Cutoff is 1,000 seconds.

walksat

50 most High-Girth Lit-bal-1 Random

70 vars / best 1,000/— 0.12/29 0.08/27
70 vars / novelty 84/21 0.05/45 0.03/41
90 vars / best 1,000/— 0.17/29 0.07/27
90 vars / novelty 76/15 0.06/47 0.04/47

adaptg2wsat

peak of hardness High-Girth Lit-bal-1 Random

130 vars 16 2.5 0.4
150 vars 53 8.7 0.6

Table 4. Median time (in seconds) for 3-SAT, 4-SAT, and 5-SAT. High-Girth solved
with kcnfs, and regular XORSAT and HG-XORSAT solved with minisat. Results only
for best solver among satz, minisat and kcnfs.

3-SAT

Num. vars 200 250 270 300 330 350

High-Girth 0 7 14 91 368 1,125
XORSAT 14 386 2,322 19,778 >20,000 >20,000

HG-XORSAT 642 >20,000 >20,000 >20,000 >20,000 >20,000

4-SAT 5-SAT

Num. vars 100 130 150 80 90 100

High-Girth 3 59 1,180 64 405 2,839
XORSAT 4 201 2,543 51 290 2,528

HG-XORSAT 66 8,018 >20,000 586 3,186 >20,000

process on sets of 100 instances. For all the generations methods we obtained
around 50 satisfiable instances. As we can see, High-Girth dominates Lit-bal-1,
and Lit-bal-1 dominates Random instances.

On why the expansion of the incidence graph also affects the performance of
local search solvers, we can turn to results in [39], where the existence of what
they call chains of short range connections between clauses is identified as a
cause for bad performance of local search, due to the long range dependencies
they create. It turns out that big cycles in the incidence graph could create these
problematic chains on the formula.

Finally, we have also compared the hardness of the satisfiable instances ob-
tained with High-Girth, at the peak of hardness, with the ones obtained with
regular k-XORSAT and with our modification of k-XORSAT where we generate
the system of linear equations with our High-Girth algorithm (HG-XORSAT).
Table 4 shows the results when solving test-sets of 100 satisfiable instances with
a cutoff of 20,000 seconds per instance. The instances from XORSAT are harder
than the satisfiable ones from High-Girth, but when we use our High-Girth
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Fig. 3. Comparison of CSP generators

algorithm for the k-XORSAT instances is when we obtain the hardest instances,
with orders of magnitude of difference, and even in some cases we have not been
able to reach the median with our cutoff time (median > 20,000).

5.2 Hard n-ary CSP Instances

To generate the n-ary CSP instances we have used two methods: model E de-
scribed in [12] and our method High-Girth. We have solved the n-ary CSP in-
stances with the CSP solver minion [40] using the dynamic heuristic sdf (smaller
domain first). We also report results on the direct SAT encoding [41] of the n-ary
CSP instances for the SAT solvers minisat and kcnfs (some competitive solvers
submitted to the CSP competition are built on top of minisat). We have gen-
erated two set of instances, one of 25 variables, domain 3, and arity 4, and the
other one of 40 variables, domain 3 and arity 3. In Fig. 3 we plot the results for
arity 4, showing again that our generation method, High-Girth (HG), produces
the hardest instances. In this figure, results are shown in log-scale, in contrast
with Fig. 2 for k−SAT, because here the differences are even more significant
than in Fig. 2. However, observe that we do not have previous existing balanced
models for n-ary CSPs, like Lit-bal-1 and Lit-bal-2 for k−SAT, that are the ones
that are closer to our High-Girth model for k−SAT.

6 Conclusions

We have proposed a new method for generating hard k-SAT and n-ary CSP in-
stances. This method is based on the results that link problem hardness with the
expansion of the incidence graph of the instances. In particular, in our method
we achieve high expansion by maintaining a high girth during the construction
process of the incidence graph. We have also shown that our high girth graphs
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can be used to increase the hardness of the satisfiable instances obtained with
regular k-XORSAT, by building the system of linear equations with our high
girth graphs, instead of using random regular graphs.
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35. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

36. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In: Proceedings of the IJCAI 2001, pp. 248–253 (2001)

37. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: Proceedings of the AAAI 1994, pp. 337–343 (1994)

38. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local
search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501, pp. 121–133. Springer, Heidelberg (2007)

39. Wei, W., Selman, B.: Accelerating random walks. In: Van Hentenryck, P. (ed.) CP
2002. LNCS, vol. 2470, pp. 216–232. Springer, Heidelberg (2002)

40. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer,
Heidelberg (2006)

41. Walsh, T.: SAT vs CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp.
441–456. Springer, Heidelberg (2000)



Switching among Non-Weighting, Clause Weighting,
and Variable Weighting in Local Search for SAT�

Wanxia Wei1, Chu Min Li2, and Harry Zhang1

1 Faculty of Computer Science, University of New Brunswick, Fredericton, NB, Canada,
E3B 5A3

{wanxia.wei,hzhang}@unb.ca
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Abstract. One way to design a local search algorithm that is effective on many
types of instances is allowing this algorithm to switch among heuristics. In this
paper, we refer to the way in which non-weighting algorithm adaptG2WSAT+
selects a variable to flip, as heuristic adaptG2WSAT+, the way in which clause
weighting algorithm RSAPS selects a variable to flip, as heuristic RSAPS, and
the way in which variable weighting algorithm V W selects a variable to flip, as
heuristic V W . We propose a new switching criterion: the evenness or unevenness
of the distribution of clause weights. We apply this criterion, along with another
switching criterion previously proposed, to heuristic adaptG2WSAT+, heuris-
tic RSAPS, and heuristic V W . The resulting local search algorithm, which
adaptively switches among these three heuristics in every search step accord-
ing to these two criteria to intensify or diversify the search when necessary, is
called NCV W (Non-, Clause, and Variable Weighting). Experimental results
show that NCV W is generally effective on a wide range of instances while
adaptG2WSAT+, RSAPS, V W , and gNovelty+ and adaptG2WSAT0,
which won the gold and silver medals in the satisfiable random category in the
SAT 2007 competition, respectively, are not.

1 Introduction

Intensification refers to search strategies that intend to greedily improve solution quality
or the chances of finding a solution in the near future [5]. Diversification refers to search
strategies that help achieve a reasonable coverage when exploring the search space in
order to avoid search stagnation and entrapment in relatively confined regions of the
search space that may contain only locally optimal solutions [5]. Generally speaking,
there are three classes of local search algorithm: non-weighting, clause weighting, and
variable weighting. A non-weighting algorithm does not use any weighting and mainly
focuses on intensifying the search to greatly decrease the number of unsatisfied clauses.
A clause weighting algorithm uses clause weighting to diversify the search while a
variable weighting algorithm uses variable weighting to diversify the search.
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Efforts have been made to develop non-weighting local search algorithms
[3,8,9,10,14,15]. Among these algorithms, adaptG2WSATP [9], the improved
adaptG2WSATP [10], adaptG2WSAT 0 [8], and adaptG2WSAT+ [15] combine
the use of promising decreasing variables defined in [7] with the adaptive noise mech-
anism proposed in [4]. According to the definition of promising decreasing variables,
flipping such variables not only decreases the number of unsatisfied clauses but also
probably allows local search to explore new promising regions in the search space.

Clause weighting has been used in local search algorithms to help the search es-
cape from local minima and diversify the search [6,11,12]. These algorithms include
Breakout [11], SAPS (Scaling And Probabilistic Smoothing) [6], RSAPS (Reactive
SAPS) [6], and gNovelty+ [12]. Of these algorithms, gNovelty+ combines the use
of promising decreasing variables and clause weighting techniques. Rather than using
clause weighting, the local search algorithm VW [13] employs variable weighting to
diversify the search and guide local search out of local minima.

However, each single local search heuristic is usually ineffective on many types of
instances, since the performance of a heuristic depends on the properties of the search
space and the search spaces of different types of instances have different properties.
One way to design a local search algorithm that is effective on many types of instances
is allowing this algorithm to switch among heuristics in order to adapt to search spaces
with different properties.

Several local search algorithms switch between two heuristics [2,16]. UnitWalk
0.98 [2] is improved by alternating between WalkSAT -like and UnitWalk-like frag-
ments of the random walk. Hybrid [16] switches between heuristic adaptG2WSATP

and heuristic VW according to the evenness or non-evenness of the distribution of
variable weights.1

Nevertheless, our experimental results show that the performance of Hybrid is poor
on some instances for which a local search algorithm may result in imbalanced clause
weights, and that the performance of clause weighting algorithm RSAPS [6] is poor
on some instances for which a local search algorithm may result in balanced clause
weights. In this paper, we propose a new switching criterion: the evenness or uneven-
ness of the distribution of clause weights. We refer to the ways in which non-weighting
algorithm adaptG2WSAT+ [15], clause weighting algorithm RSAPS, and variable
weighting algorithm VW [13] select a variable to flip, as heuristic adaptG2WSAT+,
heuristic RSAPS, and heuristic VW , respectively. We apply this switching crite-
rion together with another switching criterion, namely the evenness or non-evenness of
the distribution of variable weights proposed in [16], to heuristic adaptG2WSAT+,
heuristic RSAPS, and heuristic VW . The resulting local search algorithm, which
adaptively switches among these three heuristics in every search step according to
these two criteria to intensify or diversify the search when necessary, is called NCVW
(Non-, Clause, and Variable Weighting).

Given a set of instances and a fixed cutoff for each instance, if an algorithm
achieves a success rate greater than 50% for each instance, we say that this algorithm is
generally effective on these instances. Our experimental results show that NCVW is

1 The ways in which algorithms adaptG2WSATP [9] and V W [13] select a variable to flip,
are referred to as heuristic adaptG2WSATP and heuristic V W , respectively [16].
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generally effective on a wide range of instances while adaptG2WSAT+, RSAPS,
VW , Hybrid, and gNovelty+ and adaptG2WSAT 0, which won the gold and silver
medals in the satisfiable random category in the SAT 2007 competition,2 respectively,
are not.

Our work for NCVW provides a solution to the algorithm heuristic selection prob-
lem. Different approaches have been proposed for this problem. CBR (Case-Based
Reasoning) was used to select a solution strategy for instances of a CP problem [1].
SATzilla-07 [17] is a per-instance solver portfolio for SAT. This solver portfolio uses
machine learning techniques to build an empirical hardness model that predicts an al-
gorithm’s runtime on a given instance based on the features of this instance and the past
performance of this algorithm, and uses this model to choose among the constituent
solvers of SATzilla-07. NCVW is different from SATzilla-07 in that NCVW
chooses heuristics for an instance dynamically during the search while SATzilla-07
first chooses an algorithm for an instance and then runs this algorithm on this instance.

2 Review of Algorithms adaptG2WSAT+, RSAPS, V W ,
and Hybrid

The local search algorithm adaptG2WSAT+ [15] combines the use of promising de-
creasing variables [7] and the adaptive noise mechanism [4]. As a result, noise p in
this algorithm is adjusted during the search. Moreover, random walk probability wp is
also adjusted and wp = p/10. This algorithm won the bronze medal in the satisfiable
random category in the SAT 2007 competition. As presented in Section 1, we refer to
the way in which algorithm adaptG2WSAT+ selects a variable to flip, as heuristic
adaptG2WSAT+.

SAPS [6] scales the weights of unsatisfied clauses and smoothes the weights of
all clauses probabilistically. It performs a greedy descent search in which a variable is
selected at random to flip, from the variables that appear in unsatisfied clauses and that
lead to the maximum reduction in the total weight of unsatisfied clauses when flipped.
RSAPS [6] is a reactive version of SAPS that adaptively tunes smoothing parameter
Psmooth during the search. RSAPS has the other parameters α, ρ, and wp whose
default values are (α, ρ, wp) = (1.3, 0.8, 0.01). As presented in Section 1, we refer to
the way in which algorithm RSAPS selects a variable to flip, as heuristic RSAPS.

In VW [13], the weight of a variable reflects both the number of flips of this variable
and the times when this variable is flipped. This algorithm initializes the weight of a
variable x, vw[x], to 0 and updates and smoothes vw[x] each time x is flipped, using
the following formula:

vw[x] = (1− s)(vw[x] + 1) + s× t (1)

where s is a parameter and 0 ≤ s ≤ 1, and t denotes the time when x is flipped, i.e., t
is the number of search steps since the start of the search.

VW always flips a variable from a randomly selected unsatisfied clause c. If c con-
tains freebie variables,3 VW randomly flips one of them. Otherwise, with probability

2 http://www.satcompetition.org/
3 Flipping a freebie variable will not falsify any clause.
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p (noise p), it flips a variable chosen randomly from c, and with probability 1 − p, it
flips a variable in c according to a unique variable selection rule, which generally favors
variables with relatively low variable weights. As presented in Section 1, we refer to the
way in which algorithm VW selects a variable to flip, as heuristic VW .

A switching criterion, namely the evenness or non-evenness of the distribution of
variable weights, was proposed in [16]. This evenness or non-evenness is defined in
[16] as follows. Assume that γ is a number. If the maximum variable weight is at least
γ times as high as the average variable weight, the distribution of variable weights is
considered uneven, and the step is called an uneven step in terms of variable weights.
Otherwise, the distribution of variable weights is considered even, and the step is called
an even step in terms of variable weights. An uneven or an even distribution of variable
weights is used as a means to determine whether a search is undiversified in a step in
terms of variable weights.

Hybrid [16] switches between heuristic adaptG2WSATP and heuristic VW ac-
cording to the above switching criterion. More precisely, in each search step, Hybrid
chooses a variable to flip according to heuristic VW if the distribution of variable
weights is uneven, and selects a variable to flip according to heuristic adaptG2WSATP

otherwise. In Hybrid, the default value of parameter γ is 10.0.Hybrid updates variable
weights using Formula 1, and parameter s in this formula is fixed to 0.0.

3 Motivation

The search space of a hard SAT instance for a local search algorithm generally has a
large number of local minima in each of which flipping any variable cannot decrease
the number of unsatisfied clauses. Each local minimum is characterized by a subset
of unsatisfied clauses, which cannot be satisfied without unsatisfying other clauses. The
unsatisfied clauses in a local minimum can be considered as having attractions to draw a
local search towards this local minimum. Different clauses in a SAT instance can have
very different attractions for a local search. A local search can be frequently drawn
towards the same local minima by the same unsatisfied clauses with strong attractions.
In this case, the search is poorly diversified. Accordingly, clause weighting techniques
are introduced to diversify this poorly diversified search.

Clause weighting in a local search algorithm has two purposes. The first one is to
quantify the attraction of a clause for a local search. Different clause weights are de-
fined to measure the attractions of clauses for local searches [6,11]. The second one is
to modify the objective function, which is usually the number of unsatisfied clauses,
during the search by minimizing the total weight of unsatisfied clauses instead of the
number of unsatisfied clauses. As a result, a clause weighting algorithm usually first
satisfies clauses that have the largest attractions to diversify the search.

We hypothesize firstly that, without clause weighting techniques, Hybrid [16] ex-
hibits good performance, usually when clause weights are generally balanced, i.e., usu-
ally when all clauses have roughly equal attractions for a local search towards local
minima. We hypothesize secondly that, with clause weighting techniques, RSAPS [6]
exhibits good performance, usually when clause weights are unbalanced. To empiri-
cally verify our hypotheses, we conduct experiments with Hybrid and RSAPS on
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two classes of representative instance, one of which leads to balanced clauses weights
and the other of which leads to unbalanced clause weights.

In order to quantify the attraction of a clause towards a local minimum at a search
point, we simply sum up the number of local minima, encountered so far, in which
this clause is unsatisfied. In fact, these summations of the numbers of local minima
are the clause weights defined in Breakout [11]. We refer to these clause weights as
clause weights defined by Breakout. We calculate these clause weights in both Hybrid
and RSAPS to make clause weights comparable for these two algorithms, although
RSAPS has its own clause weighting techniques, which are more sophisticated. Note
that the calculations of these clause weights in these two algorithms do not change the
behavior of Hybrid or RSAPS in any way, i.e., these two algorithms do not consider
the clause weights that we calculate, when choosing variables to flip.

We ran RSAPS and Hybrid on two classes of instance.4 The source code of
RSAPS was downloaded from http://www.satlib.org/ubcsat/. When experimenting
with these algorithms, we do not change the ways in which these algorithms adaptively
adjust their parameters and do not change the default values of their other parame-
ters. One class includes the 5 structured instances par16-1, par16-2, par16-3, par16-4,
and par16-5 in PARITY from the SATLIB repository,5 and the other consists of the
5 structured instances f*3995, f*3997, f*3999, f*4001, and f*4003 in Ferry from the
industrial category in the SAT 2005 competition benchmark.6 Each algorithm is run
100 times (Maxtries = 100). The cutoffs are set to 109 (Maxsteps = 109) and 108

(Maxsteps = 108) for an instance in PARITY and an instance in Ferry, respectively.
In Table 1, for each of the two algorithms Hybrid and RSAPS, we report the av-

erage coefficient of variation of distribution of clause weights (coefficient of variation
= standard deviation / mean value) (“cv”) and the average division of the maximum
clause weight by the average clause weight (“div”), over all search steps, for clause
weights defined by Breakout. All reported values are then averaged over 100 runs
(Maxtries = 100). A run is successful if an algorithm finds a solution within a cutoff
(Maxsteps). The success rate of an algorithm is the number of successful runs divided
by Maxtries. We also report success rates (“suc”). Moreover, in the last row for each
group (“avg”) in this table, we present the average of the values in each column, for
each algorithm, over all instances.

Generally speaking, the distribution of clause weights defined by Breakout reflects
the history of the attractions of clauses for local searches towards local minima. If
clauses in a small subset have drawn local searches towards local minima much more
frequently than other clauses, the weights of these clauses should be much higher than
those of others and the coefficient of variation of distribution of clause weights should
be high. Otherwise, all clauses should have approximately equal weights, and the coef-
ficient of variation of distribution of clause weights should be low. That is, the higher
the coefficient of variation is, the more clause weights far from the mean value exist,

4 All experiments reported were conducted on a computer with Intel(R) Core(TM)2 CPU 6400
@ 2.13GHz and with 2GB of memory, under Linux.

5 http://www.satlib.org/
6 http://www.lri.fr/∼simon/contest/results/
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Table 1. Performance and distributions of clause weights defined by Breakout for RSAPS and
Hybrid on PARITY and Ferry

RSAPS Hybrid
cutoff cv div suc cv div suc

par16-1 109 0.82 7.22 0.19 10.20 127.06 1.00
par16-2 109 0.82 7.31 0.05 10.40 131.58 1.00
par16-3 109 0.82 7.27 0.12 10.30 129.04 1.00
par16-4 109 0.82 7.22 0.16 10.23 127.75 1.00
par16-5 109 0.82 7.28 0.09 10.43 131.88 1.00

avg 109 0.82 7.26 0.12 10.31 126.46 1.00
f*3995 108 2.72 22.38 1.00 41.05 1910.94 0.06
f*3997 108 2.06 12.15 1.00 47.51 2632.37 0.02
f*3999 108 2.36 17.39 1.00 48.23 2594.44 0.00
f*4001 108 2.13 12.80 0.84 55.04 3489.75 0.00
f*4003 108 2.11 13.57 1.00 55.35 3375.36 0.00

avg 108 2.28 15.66 0.97 49.44 2800.57 0.02

the more unbalanced cause weights are, and the less well diversified, in terms of clause
weights, the search is.

According to Table 1, the distributions of clause weights of PARITY are more
balanced than the distributions of clause weights of Ferry, both for Hybrid and for
RSAPS, meaning that when solving the Ferry instances, some clauses in the Ferry
instances frequently draw local searches towards local minima so that the searches for
Ferry are less diversified than those for PARITY. Nevertheless, with its own powerful
clause weighting techniques, RSAPS diversifies the search better than does Hybrid.
As a result, the distributions of clause weights in the searches of RSAPS are more
balanced for each of the two classes of instance than the distributions of clause weights
in the searches of Hybrid.

As shown in Table 1, the average success rate of Hybrid on PARITY is 1.00, sug-
gesting that when the distributions of clause weights are generally balanced, Hybrid,
which does not use clause weighting techniques, exhibits good performance. However,
the average success rate of Hybrid on Ferry is only 0.02, suggesting that when the
distributions of clause weights are generally unbalanced, the performance of Hybrid
is poor. Conversely, RSAPS exhibits very good performance on Ferry but poor per-
formance on PARITY. Therefore, the experimental results in this table indicate that an
algorithm should ignore clause weights and concentrate on intensifying the search if
clause weights are generally balanced, and that an algorithm should use clause weight-
ing techniques, such as those introduced in RSAPS, to diversify the search to prevent
a local search from being drawn towards the same local minima.

According to Table 1, on PARITY, the averages of the values for div in RSAPS and
Hybrid are 7.26 and 126.46, respectively, while on Ferry, the averages of the values for
div in RSAPS and Hybrid are 15.66 and 2800.57, respectively. That is, the maximum
clause weight on Ferry usually deviates from the average clause weight to a greater
degree than does the maximum clause weight on PARITY. Therefore, the results in
this table suggest that, similar to the coefficient of variation of distribution of clause
weights, the division of the maximum clause weight by the average clause weight also
indicates whether clause weights are balanced. In fact, calculating the division is not
time-consuming, but calculating the coefficient of variation is.
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4 A New Switching Criterion

We propose a new switching criterion. Additionally, we introduce a new local search
algorithm that uses this criterion along with another switching criterion.

4.1 Evenness or Unevenness of Distribution of Clause Weights

Assume that δ is a number. If the maximum clause weight is at least δ times as high
as the average clause weight, the distribution of clause weights is considered uneven,
and the step is called an uneven step in terms of clause weights. Otherwise, the distri-
bution of clause weights is considered even, and the step is called an even step in terms
of clause weights. An uneven distribution and an even distribution of clause weights
correspond to the situations in which clause weights are unbalanced and balanced,
respectively. We use an uneven or an even distribution of clause weights as a means
to determine whether a search is undiversified in a step in terms of clause weights.

4.2 Algorithm NCV W

To evaluate the effectiveness of the proposed switching criterion, we apply it together
with another switching criterion, namely the evenness or non-evenness of the distri-
bution of variable weights proposed in [16], to heuristic adaptG2WSAT+, heuris-
tic RSAPS, and heuristic VW . The resulting local search algorithm, which switches
among these three heuristics according to these two criteria, is called NCVW (Non-,
Clause, and Variable Weighting).

NCVW exploits the information about the structure of an instance when choosing a
variable to flip by first examining the distribution of variable weights of this instance and
then examining the distribution of clause weights of this instance. This algorithm adap-
tively switches among heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic
VW in every search step according to the distributions of variable and clause weights,
to intensify or diversify the search when necessary. When the distribution of variable
weights is uneven, i.e., when a search is undiversified in terms of variable weights,
NCVW uses heuristic VW to choose a variable to flip to diversify the search by using
variable weights. Otherwise, NCVW selects a variable to flip according to heuris-
tic RSAPS or heuristic adaptG2WSAT+, depending on whether the distribution of
clause weights is uneven. If the distribution of clause weights is uneven, i.e., if a search
is undiversified in terms of clause weights, NCVW uses heuristic RSAPS to select
a variable to flip to diversify the search by using clause weights; otherwise, i.e., if a
search is diversified in terms of both variable and clause weights, NCVW uses heuris-
tic adaptG2WSAT+ to select a variable to flip to intensify the search.

NCVW is described in Fig. 1. In this figure, flip time[i], vw[i], max vw, ave vw,
cw[j], max cw, and ave cw are the time when variable i is flipped, the weight of
variable i, maximum variable weight, average variable weight, the weight of clause
j, maximum clause weight, and average clause weight, respectively.

NCVW has its own parameters γ, δ, and π, which are used to choose one heuris-
tic fromNCVW ’s constituent heuristics in every step. Parameter γ determines whether
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Algorithm: NCV W (SAT-formula F)

1: A← randomly generated truth assignment;
2: for each variable i do initialize flip time[i] and vw[i] to 0;
3: initialize max vw and ave vw to 0;
4: for each clause j do initialize cw[j] to 1; initialize max cw and ave cw to 1;
5: for flip←1 to Maxsteps do
6: if A satisfies F then return A;
7: if (max vw ≥ γ × ave vw)
8: then heuristic←“V W”;
9: else

10: if ((ave cw ≤ π) or (max cw ≥ δ × ave cw))
11: then heuristic←“RSAPS”;
12: else heuristic←“adaptG2WSAT + ”;
13: y← use heuristic to choose a variable;
14: if (y 
= −1)
15: then A←A with y flipped; update flip time[y], vw[y], max vw, and ave vw;
16: if (heuristic = “RSAPS”)
17: then if (y = −1) then update clause weights, max cw, and ave cw;
18: return Solution not found;

Fig. 1. Algorithm NCV W

the distribution of variable weights is uneven, δ determines whether the distribution of
clause weights is uneven, and π represents a threshold for average clause weight.

In algorithm NCVW , heuristic RSAPS is used both for gathering information
about the distribution of clause weights and for selecting a variable to flip when the dis-
tribution of clause weights is uneven. In this algorithm, the n variables of an instance are
represented as n integers from 0 to n− 1. When NCVW uses heuristic RSAPS and
when this heuristic returns−1, NCVW performs a null flip and updates clause weights
in the same way as does RSAPS. To avoid frequent time-consuming clause weight up-
dating, NCVW does not update clause weights if it uses heuristic adaptG2WSAT+
or heuristic VW . NCVW uses Formula 1 to update variable weights after it selects
any heuristic from its three constituent heuristics and after NCVW performs a non-
null flip.

We have three objectives in NCVW . The first objective is to ensure that every vari-
able in a SAT instance has an approximately equal chance of being flipped to diversify
the search in terms of variable weights, i.e., to ensure that the distribution of variable
weights is even. When the distribution of variable weights is uneven, NCVW chooses
heuristic VW to balance variable weights. Whether the distribution of variable weights
is even is determined at line 7 using the condition (max vw ≥ γ × ave vw), in which
parameter γ > 1.0, in Fig. 1.

The second objective is to avoid the same local minima or to avoid exploring the
same regions in the search space, i.e., to ensure that the distribution of clause weights
is even. Since NCVW updates clause weights only when heuristic RSAPS is used
to choose a variable to flip, parameter π, which represents a threshold for average
clause weight ave cw, is introduced. When the distribution of variable weights is even,
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NCVW chooses heuristic RSAPS to build up the distribution of clause weights
whenever the average clause weight is lower than parameter π. When the average clause
weight is higher than π, clause weights are considered meaningful to determine whether
the distribution of clause weights is even, and heuristic RSAPS is chosen to balance
the distribution of clause weights and to diversify the search in terms of clause weights
if the distribution of clause weights is uneven. This building up of distribution of clause
weights and this balancing of distribution of clause weights are realized through line 10
using the condition ((ave cw ≤ π) or (max cw ≥ δ × ave cw)), in which parameter
δ > 1.0, in Fig. 1.

The third objective is to intensify the search when the distributions of both variable
and clause weights are even. In this case, the search is considered diversified in terms of
both variable and clause weights, and heuristic adaptG2WSAT+ is used to intensify
the search.

NCVW is an example that uses the proposed switching criterion along with the
switching criterion proposed in [16]. These switching criteria can be used in other local
search algorithms that combine intensification strategies with diversification strategies.

5 Evaluation

We present the default values of parameters in NCVW . Moreover, we evaluate
NCVW on a wide range of instances and justify the switching strategy in NCVW .

5.1 Groups of Instances

We evaluate NCVW on 11 groups of benchmark SAT problems (36 instances shown
in Table 2). They generally consist of hard problems from those widely used to
evaluate local search algorithms in the literature and constitute a wide range of in-
stances, including structured instances, instances from the industrial and crafted cat-
egories in a SAT competition benchmark, and hard random instances. Due to space
limits, we do not present the performance of algorithms on the instances that are
easy for most algorithms discussed in this paper. Structured problems come from the
SATLIB repository and the SAT 2005 competition benchmark. The structured prob-
lems from SATLIB include instances in ais, blocksworld, Beijing, GCP, PARITY,
and QG. The structured problems from the SAT 2005 competition benchmark in-
clude instances from the industrial category and instances from the crafted category.
The former consist of f*3995, f*3997, f*3999, f*4001, and f*4003 in Ferry. The lat-
ter consist of g*1334, g*1337, g*1339, g*1340, and g*1341 in grid-pebbling/sat, and
p*1318, p*1319, p*1320, p*1321, and p*1322 in random-pebbling/sat. Random prob-
lems come from the SAT 2007 competition benchmark,7 and they are hard problems,
including *v10000*03, *v10000*04, *v10000*05, *v10000*06, and *v10000*10 in
3SAT/v10000, and *v1100*04, *v1100*06, *v1100*08, *v1100*10, and *v1100*14
in 5SAT/v1100.

Each instance is executed 100 times (Maxtries = 100). As shown in Table 2, the
search step cutoff (Maxsteps) for each instance is set to a fixed value, to ensure that

7 http://www.satcompetition.org/



322 W. Wei, C.M. Li, and H. Zhang

Table 2. Experimental results for NCV W , adaptG2WSAT+, RSAPS, and V W on the 11
groups of instances

NCV W adaptG2WSAT+ RSAPS V W
cutoff suc #steps time suc #steps time suc #steps time suc #steps time

ais12 107 0.93 249576 0.2 0.94 2568069 2.4 1.00 159617 0.2 1.00 962263 1.4
bw large.d 107 0.96 955185 2.5 0.70 5786347 8.1 0.06 > 107 n/a 0.94 2554959 5.4
e0ddr2*1 107 1.00 119631 0.5 0.96 2219658 3.3 1.00 120139 0.7 0.71 6656635 10.7
g250.29 107 0.79 3483743 76.9 1.00 728358 6.3 0.00 > 107 n/a 0.15 > 107 n/a
par16-1 109 1.00 96371225 48.3 1.00 45395657 14.9 0.16 > 109 n/a 0.00 > 109 n/a
par16-2 109 0.88 329217086 166.7 1.00 96745059 32.5 0.07 > 109 n/a 0.00 > 109 n/a
par16-3 109 1.00 115526876 58.8 1.00 87203523 28.9 0.08 > 109 n/a 0.00 > 109 n/a
par16-4 109 0.96 183854606 92.8 0.98 170022013 55.7 0.10 > 109 n/a 0.01 > 109 n/a
par16-5 109 0.93 264988982 133.5 0.99 111417125 37.0 0.13 > 109 n/a 0.00 > 109 n/a
qg2-08 107 0.83 2832886 12.7 1.00 1766643 4.9 0.08 > 107 n/a 0.12 > 107 n/a
qg7-13 108 1.00 3663127 31.9 0.20 > 108 n/a 0.07 > 108 n/a 0.00 > 108 n/a
f*3995 108 1.00 56405 0.1 0.04 > 108 n/a 1.00 66907 0.1 1.00 5346194 4.2
f*3997 108 0.95 4830154 3.3 0.01 > 108 n/a 1.00 6348614 5.8 0.69 55768455 29.8
f*3999 108 1.00 336040 0.4 0.00 > 108 n/a 1.00 269670 0.3 0.38 > 108 n/a
f*4001 108 0.66 51971463 41.8 0.00 > 108 n/a 0.80 39945421 40.3 0.18 > 108 n/a
f*4003 108 1.00 1514236 1.9 0.00 > 108 n/a 1.00 1575665 1.9 0.05 > 108 n/a
g*1334 108 1.00 248515 0.2 0.11 > 108 n/a 1.00 385746 0.2 1.00 165058 0.1
g*1337 108 1.00 1411026 1.2 0.51 52247390 24.7 1.00 4188026 3.1 1.00 334304 0.2
g*1339 108 1.00 2325027 3.5 0.70 1656358 1.9 1.00 19332961 27.5 1.00 1090780 1.1
g*1340 108 0.76 3579295 7.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 9592247 10.3
g*1341 108 0.98 4507419 10.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 6911453 8.5
p*1318 108 1.00 1411992 6.2 0.19 > 108 n/a 1.00 1109307 5.3 1.00 1023732 37.8
p*1319 108 1.00 1039612 4.1 0.64 1283571 3.5 1.00 361676 0.9 1.00 202640 2.3
p*1320 108 1.00 4264494 13.4 0.00 > 108 n/a 1.00 3167791 8.7 1.00 555636 9.1
p*1321 108 1.00 8401861 27.4 0.01 > 108 n/a 1.00 3512466 6.8 1.00 925001 12.8
p*1322 108 0.94 18686150 85.0 0.02 > 108 n/a 0.99 11563065 39.5 1.00 1203442 45.8

*v10000*03 109 0.93 195343618 310.3 0.38 > 109 n/a 0.00 > 109 n/a 1.00 51325928 70.1
*v10000*04 109 0.78 445825231 703.0 0.12 > 109 n/a 0.00 > 109 n/a 1.00 73729009 99.9
*v10000*05 109 0.56 928751054 1407.3 0.00 > 109 n/a 0.00 > 109 n/a 0.96 140754923 188.4
*v10000*06 109 0.92 287233505 427.6 0.22 > 109 n/a 0.00 > 109 n/a 0.99 52498950 70.6
*v10000*10 109 0.84 340420147 536.8 0.10 > 109 n/a 0.00 > 109 n/a 0.99 71314104 95.9
*v1100*04 109 0.99 160716875 692.8 0.99 154199134 454.7 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*06 109 0.96 254443055 1082.3 0.97 181909223 538.3 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*08 109 0.94 271460435 1159.5 0.94 274281212 810.0 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*10 109 0.98 201335004 852.7 0.94 244056999 723.9 0.00 > 109 n/a 0.00 > 109 n/a
*v1100*14 109 1.00 48218593 205.9 1.00 56308880 166.8 0.00 > 109 n/a 0.02 > 109 n/a

at least one algorithm discussed achieves a success rate greater than 50% in order to
calculate median number of search steps and median run time based on these 100 runs.
We report success rates (“suc”), median numbers of search steps (“#steps”), and median
run times (“time”) in seconds. If an algorithm cannot achieve a success rate greater than
50% on an instance within the specified cutoff, we use “> Maxsteps” (greater than
Maxsteps) and “n/a” to denote the median number of search steps and median run
time, respectively. Results in bold indicate the best results for an instance.

5.2 Default Values of Parameters in NCV W

Like VW , NCVW updates variable weights using Formula 1. To adapt to NCVW ,
which is set up to solve a wide range of instances, parameter s in this formula is fixed
to 0.0. When s is 0.0, the weight of a variable is just a counter of the number of flips
of this variable. Conversely, in VW , s is adjusted during the search (s > 0.0). That
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is, NCVW does not smooth variable weights while VW does. This non-smoothing of
variable weights makes uneven distributions of variable weights and even distributions
of variable weights more distinguishable.

In addition to its own parameters γ, δ, and π, NCVW has all parameters from
its constituent heuristics. According to our experiments, on a wide range of instances,
NCVW with (γ, δ, π, s, wp) = (7.5, 3.0, 15.0, 0.0, 0.05) (wp is from RSAPS) ex-
hibits generally good performance. Thus, in NCVW , the default values of γ, δ, π,
s, and wp are (γ, δ, π, s, wp) = (7.5, 3.0, 15.0, 0.0, 0.05). For the other parameters in
NCVW from its constituent heuristics, NCVW adaptively adjusts these parameters
as do the constituent heuristics or uses the same default values as do the constituent
heuristics.

5.3 Comparison of Performance

We compare the performance of NCVW , adaptG2WSAT+, RSAPS, and VW on
the 11 groups of instances (36 instances) in Table 2, and compare the performance
of NCVW , gNovelty+, adaptG2WSAT 0, and Hybrid on these instances in Ta-
ble 3. The source code of adaptG2WSAT+, gNovelty+, and adaptG2WSAT 0
was downloaded from http://www.satcompetition.org/, and that of RSAPS was down-
loaded from http://www.satlib.org/ubcsat/. The source code of VW was obtained from
the organizer of the SAT 2005 competition. When experimenting with these algorithms,
we do not change the ways in which these algorithms adaptively adjust their parameters
and do not change the default values of the other parameters in these algorithms either.

According to our experiments, the 36 instances include those that, for NCVW , usu-
ally lead to the following four combinations of the distributions of variable and clause
weights: the distributions of both variable and clause weights are even, the distributions
of variable weights are even while the distributions of clause weights are uneven, the
distributions of variable weights are uneven while the distributions of clause weights
are even, and the distributions of both variable and clause weights are uneven. Specifi-
cally, for NCVW , the instances in PARITY and 5SAT/v1100 generally result in even
distributions of both variable and clause weights. The instances in Ferry and QG usually
lead to even distributions of variable weights but uneven distributions of clause weights.
The instances g*1340 and g*1341 in grid-pebbling/sat usually result in uneven distri-
butions of variable weights but even distributions of clause weights. The instances in
blocksworld and Beijing generally lead to uneven distributions of both variable and
clause weights.

According to Table 2, within the specified cutoffs, NCVW is generally effective
on these 11 groups. Conversely, within the designated cutoffs, adaptG2WSAT+,
RSAPS, and VW are effective on only 6, 4, and 6 groups, respectively.

NCVW exhibits good performance on qg7-13 although adaptG2WSAT+,
RSAPS, VW all show poor performance on this instance. There are two reasons for
this good performance. First, like adaptG2WSAT+, NCVW conducts preprocessing
using unit propagation to simplify an instance before searching. Second, NCVW
usually chooses heuristic RSAPS automatically to select a variable to flip for the
simplified qg7-13 because this simplified qg7-13 results in even distribution of variable
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Table 3. Experimental results for NCV W , gNovelty+, adaptG2WSAT0, and Hybrid on the
11 groups of instances

NCV W gNovelty+ adaptG2WSAT0 Hybrid
cutoff suc #steps time suc #steps time suc #steps time suc #steps time

ais12 107 0.93 249576 0.2 0.32 > 107 n/a 1.00 1181980 1.1 1.00 1534609 2.0
bw large.d 107 0.96 955185 2.5 0.60 6561933 16.7 0.49 > 107 n/a 0.96 661253 2.1
e0ddr2*1 107 1.00 119631 0.5 0.00 > 107 n/a 0.96 2013651 3.0 1.00 117320 1.7
g250.29 107 0.79 3483743 76.9 1.00 590941 10.7 1.00 806380 7.0 0.88 1360491 22.6
par16-1 109 1.00 96371225 48.3 0.51 985564819 231.1 1.00 78289718 26.1 1.00 69932292 29.6
par16-2 109 0.88 329217086 166.7 0.38 > 109 n/a 0.99 105017111 35.8 0.99 119600333 52.2
par16-3 109 1.00 115526876 58.8 0.52 955707228 224.5 1.00 113814551 39.0 1.00 92166515 40.2
par16-4 109 0.96 183854606 92.8 0.26 > 109 n/a 0.98 142059581 47.7 0.99 95694408 40.8
par16-5 109 0.93 264988982 133.5 0.55 924073354 219.7 1.00 113484583 38.8 0.99 81990858 35.4
qg2-08 107 0.83 2832886 12.7 0.02 > 107 n/a 0.98 1757920 4.8 0.99 1440339 6.1
qg7-13 108 1.00 3663127 31.9 0.00 > 108 n/a 0.20 > 108 n/a 0.40 > 108 n/a
f*3995 108 1.00 56405 0.1 0.00 > 108 n/a 0.06 > 108 n/a 0.15 > 108 n/a
f*3997 108 0.95 4830154 3.3 0.00 > 108 n/a 0.00 > 108 n/a 0.01 > 108 n/a
f*3999 108 1.00 336040 0.4 0.00 > 108 n/a 0.00 > 108 n/a 0.00 > 108 n/a
f*4001 108 0.66 51971463 41.8 0.00 > 108 n/a 0.00 > 108 n/a 0.00 > 108 n/a
f*4003 108 1.00 1514236 1.9 0.00 > 108 n/a 0.00 > 108 n/a 0.00 > 108 n/a
g*1334 108 1.00 248515 0.2 0.04 > 108 n/a 0.01 > 108 n/a 1.00 69867 0.1
g*1337 108 1.00 1411026 1.2 0.47 > 108 n/a 0.31 > 108 n/a 1.00 146414 0.2
g*1339 108 1.00 2325027 3.5 0.67 23436378 32.7 0.49 > 108 n/a 1.00 602498 2.0
g*1340 108 0.76 3579295 7.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 2542104 6.4
g*1341 108 0.98 4507419 10.3 0.00 > 108 n/a 0.00 > 108 n/a 1.00 2875184 9.8
p*1318 108 1.00 1411992 6.2 0.49 > 108 n/a 0.05 > 108 n/a 0.85 828436 4.2
p*1319 108 1.00 1039612 4.1 0.16 > 108 n/a 0.00 > 108 n/a 0.26 > 108 n/a
p*1320 108 1.00 4264494 13.4 0.63 58348721 135.6 0.03 > 108 n/a 0.79 507350 2.2
p*1321 108 1.00 8401861 27.4 0.02 > 108 n/a 0.00 > 108 n/a 0.15 > 108 n/a
p*1322 108 0.94 18686150 85.0 0.09 > 108 n/a 0.00 > 108 n/a 0.17 > 108 n/a

*v10000*03 109 0.93 195343618 310.3 1.00 55787237 93.0 0.12 > 109 n/a 0.98 162732471 229.1
*v10000*04 109 0.78 445825231 703.0 1.00 69007926 111.5 0.02 > 109 n/a 0.88 262272862 345.4
*v10000*05 109 0.56 928751054 1407.3 1.00 134839615 219.3 0.00 > 109 n/a 0.77 516289640 735.8
*v10000*06 109 0.92 287233505 427.6 1.00 53678135 84.1 0.10 > 109 n/a 1.00 134103486 208.1
*v10000*10 109 0.84 340420147 536.8 1.00 69535298 110.0 0.00 > 109 n/a 0.92 260197067 370.4
*v1100*04 109 0.99 160716875 692.8 0.04 > 109 n/a 1.00 134579805 390.1 0.88 298792644 1410.6
*v1100*06 109 0.96 254443055 1082.3 0.08 > 109 n/a 0.98 189797513 544.4 0.75 468379966 2194.6
*v1100*08 109 0.94 271460435 1159.5 0.08 > 109 n/a 0.94 219521877 627.1 0.69 643453270 3039.1
*v1100*10 109 0.98 201335004 852.7 0.06 > 109 n/a 0.96 219480345 629.1 0.73 547026001 2556.3
*v1100*14 109 1.00 48218593 205.9 0.26 > 109 n/a 1.00 54801707 157.2 1.00 112659869 525.2

weights and uneven distribution of clause weights, and heuristic RSAPS is effective
on the simplified qg7-13 although this heuristic is not effective on the original qg7-13.

As shown in Table 3, within the specified cutoffs, NCVW is generally effective on
these 11 groups of instances while gNovelty+, adaptG2WSAT 0, and Hybrid are
effective on only 3, 5, and 8 groups, respectively.

5.4 Justification for Switching Strategy Used in NCV W

To justify the proposed switching strategy used in NCVW , we implement two other
switching strategies in two algorithms NCVW diff and NCVW rand, which are
described as follows. If the distribution of variable weights is uneven or the distribu-
tion of clause weights is uneven, NCVW diff chooses a variable to flip according
to heuristic adaptG2WSAT+. Otherwise, i.e., if the distributions of both variable and
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Table 4. Experimental results for NCV W , NCV W diff , and NCV W rand on the hardest
instances in the 11 groups

NCV W NCV W diff NCV W rand
cutoff suc #steps time suc #steps time suc #steps time

ais12 107 0.93 249576 0.2 0.94 3068730 4.5 1.00 340597 0.5
bw large.d 107 0.96 955185 2.5 0.70 7040081 16.2 0.90 2061289 5.2
e0ddr2*1 107 1.00 119631 0.5 0.96 2206478 4.3 1.00 193154 0.7
g250.29 107 0.79 3483743 76.9 1.00 771854 11.6 1.00 994184 13.9
par16-2 109 0.88 329217086 166.7 1.00 131330419 65.8 0.98 198219412 118.2
qg7-13 108 1.00 3663127 31.9 0.20 > 108 n/a 0.32 > 108 n/a
f*4001 108 0.66 51971463 41.8 0.00 > 108 n/a 0.00 > 108 n/a
g*1341 108 0.98 4507419 10.3 0.00 > 108 n/a 1.00 28817283 66.2
p*1322 108 0.94 18686150 85.0 0.01 > 108 n/a 1.00 1932060 18.5

*v10000*05 109 0.56 928751054 1407.3 0.02 > 109 n/a 0.14 > 109 n/a
*v1100*08 109 0.94 271460435 1159.5 0.94 253006754 1056.5 0.39 > 109 n/a

clause weights are even, NCVW diff first randomly selects a heuristic from heuristic
RSAPS and heuristic VW , and then chooses a variable to flip according to the ran-
domly selected heuristic. In each search step, NCVW rand randomly selects a heuris-
tic from heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic VW , and then
uses this randomly selected heuristic to choose a variable to flip.

Both NCVW diff and NCVW rand update variable and clause weights in the
same ways as does NCVW . For an instance that leads to even distributions of variable
weights, NCVW diff will build up the distribution of clause weights, after a small
number of search steps compared with the total search steps that NCVW diff per-
forms for this instance. Thus, NCVW diff does not need parameter π. For each of
the other parameters in NCVW diff , NCVW diff adjusts this parameter as does
NCVW or uses the same default value as does NCVW . As opposed to NCVW ,
NCVW rand does not need parameters γ, δ, and π. For each of the other parame-
ters in NCVW rand, NCVW rand adjusts this parameter as does NCVW or uses
the same default value as does NCVW . In Table 4, we compare the performance of
NCVW , NCVW diff , and NCVW rand on the hardest instances in the 11 groups
for most algorithms discussed in this paper. Within the specified cutoffs, NCVW is
generally effective on these 11 instances, but NCVW diff and NCVW rand are
effective on only 6 and 7 instances, respectively.

6 Conclusion

We have proposed a new switching criterion: the evenness or unevenness of the
distribution of clause weights. We apply this criterion, along with another switching crite-
rion, to heuristic adaptG2WSAT+, heuristic RSAPS, and heuristic VW . The result-
ing algorithm, which combines intensification strategies with diversification strategies, is
called NCVW (Non-, Clause, and Variable Weighting). Experimental results show that
NCVW is generally effective on a wide range of instances whereas adaptG2WSAT+,
RSAPS, VW , gNovelty+, adaptG2WSAT 0, and Hybrid are not.
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Abstract. This paper studies how to verify the conformity of a pro-
gram with its specification and proposes a novel constraint-programming
framework for bounded program verification (CPBPV). The CPBPV
framework uses constraint stores to represent the specification and the
program and explores execution paths nondeterministically. The input
program is partially correct if each constraint store so produced implies
the post-condition. CPBPV does not explore spurious execution paths
as it incrementally prunes execution paths early by detecting that the
constraint store is not consistent. CPBPV uses the rich language of con-
straint programming to express the constraint store. Finally, CPBPV is
parametrized with a list of solvers which are tried in sequence, start-
ing with the least expensive and less general. Experimental results often
produce orders of magnitude improvements over earlier approaches, run-
ning times being often independent of the variable domains. Moreover,
CPBPV was able to detect subtle errors in some programs while other
frameworks based on model checking have failed.

1 Introduction

This paper is concerned with software correctness, a critical issue in software
engineering. It proposes a novel constraint-programming framework for bounded
program verification (CPBPV), i.e., when the program inputs (e.g., the array
lengths and the variable values) are bounded. The goal is to verify the conformity
of a program with its specification, that is to demonstrate that the specification is
a consequence of the program. The key idea of CPBPV is to use constraint stores
to represent the specification and the program, and to non-deterministically
explore execution paths over these constraint stores. This non-deterministic
constraint-based symbolic execution incrementally refines the constraint store,
which initially consists of the precondition. Non-determinism occurs when exe-
cuting conditional or iterative instructions and the non-deterministic execution
refines the constraint store by adding constraints coming from conditions and
from assignments. The input program is partially correct if each constraint store
produced by the symbolic execution implies the post-condition. It is important
to emphasize that CPBPV considers programs with complete specifications and
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that verifying the conformity between a program and its specification requires
to check (explicitly or implicitly) all executables paths. This is not the case in
model-checking tools designed to detect violations of some specific property, e.g.,
safety or liveness properties.

The CPBPV framework has a number of fundamental benefits. First, con-
trary to earlier work using constraint programming or SMT [2,11,12], CPBPV
does not use predicate abstraction or explore spurious execution paths, i.e.,
paths that do not correspond to actual executions over inputs satisfying the
pre-condition. CPBPV incrementally prunes execution paths early by detecting
that the constraint store is not consistent. Second, CPBPV uses the rich language
of constraint programming to express the constraint store, including arbitrary
logical and threshold combination of constraints, the element constraint, and
global/combinatorial constraints that express complex relationships on a set of
variables. Finally, CPBPV is parametrized with a list of solvers which are tried
in sequence, starting with the least expensive and less general.

The CPBPV framework was evaluated experimentally on a series of bench-
marks from program verification. Experimental results of our (slow) prototype
often produce orders of magnitude improvements over earlier approaches, and
indicate that the running times are often independent of the variable domains.
Moreover, CPBPV was able to found subtle errors in some programs that some
other verification frameworks based on model-checking could not detect.

The rest of the paper is organized as follows. Section 2 illustrates how CPBPV
handles constraints store on a motivating example. Section 3 formalizes the
CPBPV framework for a small programming language and Section 4 discusses
the implementation issues. Section 5 presents experimental results on a number
of verification problems, comparing our approach with state of the art model-
checking based verification frameworks. Section 6 discusses related work in test
generation, bounded program verification and software model checking. Section 7
summarizes the contributions and presents future research directions.

2 The Constraint-Programming Framework at Work

This section illustrates the CPBPV verifier on a motivating example, the binary
search program. CPBPV uses Java programs and JML specifications for the
pre- and post-conditions, appropriately enhanced to support the expressivity of
constraint programming. Figure 1 depicts a binary search program to determine
if a value v is present in a sorted array t. (Note that \result in JML corresponds
to the value returned by the program). To verify this program, our prototype
implementation requires a bound on the length of array t, on its elements, and
on v. We will verify its correctness for specific lengths and simply assume that
the values are signed integers on a number of bits.

The initial constraint store of the CPBPV verifier, assuming an input array
of length 8, is the precondition1 cpre ≡ ∀0 ≤ i < 7 : t0[i] ≤ t0[i + 1] where t0

is an array of constraint variables capturing the input. The constraint variables
1 We omit the domain constraints on the variables for simplicity.
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/*@ requires (\forall int i; i>=0 && i<t.length-1;t[i]<=t[i+1])

@ ensures

@ (\result != -1 ==> t[\result] == v) &&

@ (\result == -1 ==> \forall int k; 0 <= k < t.length ; t[k] != v)@*/

1 static int binary_search(int[] t, int v) {

2 int l = 0;

3 int u = t.length-1;

4 while (l <= u) {

5 int m = (l + u) / 2;

6 if (t[m]==v)

7 return m;

8 if (t[m] > v)

9 u = m - 1;

10 else

11 l = m + 1; } // ERROR else u = m - 1;

12 return -1; }

Fig. 1. The Binary Search Program

are annotated with a version number as CPBPV performs a SSA-like renaming
[10] on the fly since each assignment generates constraints possibly linking the
old and the new values of the assigned variable. The assignments in lines 2–3
add the constraints l0 = 0∧u0 = 7. CPBPV then considers the loop instruction.
Since l0 ≤ u0, it enters the loop body, adds the constraint m0 = (l0 + u0)/2,
which simplifies to m0 = 3, and considers the conditional statement on line
6. The execution of the statement is nondeterministic: Indeed, both t0[3] = v0

and t0[3] �= v0 are consistent with the constraint store, so that the two alterna-
tives, which give rise to two execution paths, must be explored. Note that these
two alternatives correspond to actual execution paths in which t[3] in the input
is equal to, or different from, input v. The first alternative adds the constraint
t0[3] = v0 to the store and executes line 7 which adds the constraint result = m0.
CPBPV has thus obtained an execution path p whose final constraint store cp

is: cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = (l0 + u0)/2 ∧ t0[m0] = v0 ∧ result = m0

CPBPV then checks whether this store cp implies the post-condition cpost by
searching for a solution to cp ∧ ¬cpost. This test fails, indicating that the com-
putation path p, which captures the set of actual executions in which t[3] = v,
satisfies the specification. CPBPV then explores the other alternatives to the
conditional statement in line 6. It adds the constraint t0[m0] �= v0 and executes
the conditional statement in line 8. Once again, this statement is nondetermin-
istic. Its first alternative assumes that the test holds, generating the constraint
t0[m0] > v0 and executing the instruction in line 9. Since u is (re-)assigned,
CPBPV creates a new variable u1 and posts the constraint u1 = m0 − 1 = 2.
The execution returns to line 4, where the test now reads l0 ≤ u1, since CPBPV
always uses the most recent version for each variable. Since the constraint stores
entails l0 ≤ u1, the only extension to the current path consists of executing line
5, adding the constraint m1 = (l0 + u1)/2, which actually simplifies to m1 = 1.
Another complete execution path is then obtained by executing lines 6 and 7.
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Consider now a version of the program in which line 11 is replaced by
u = m-1. To illustrate the CPBPV verifier, we specify partial execution paths
by indicating which alternative is selected for each nondeterministic instruction.
For instance, 〈T4, F6, T8, T5, T6〉 denotes the last execution path discussed above
in which the true alternative is selected for the first execution of the instruction
in line 4, the false alternative for the first execution of instruction 6, the true
alternative for the first instruction of instruction 8, the true alternative of the
second execution of instruction 5, and the true alternative of the second execu-
tion of instruction 6. Consider the partial path 〈T4, F6, F8〉 and let us study how
it can be extended. The partial path 〈T4, F6, F8, T4, T6〉 is not explored, since it
produces a constraint store containing

cpre ∧ t0[3] �= v0 ∧ t0[3] ≤ v0 ∧ t0[1] = v0

which is clearly inconsistent. Similarly, the path 〈T4, F6, F8, T4, F6, T8〉 cannot be
extended. The output of CPBPV on this incorrect program when executed on an
array of length 8 (with integers coded on 8-bits to make it readable) produces,
in 0.025 seconds, the counterexample:

v0 = −126 ∧ t0 = [−128,−127,−126,−125,−124,−123,−122,−121] ∧ result = −1.

This example highlights a few interesting benefits of CPBPV.

1. The verifier only considers paths that correspond to collections of actual in-
puts (abstracted by constraint stores). The resulting execution paths must all
be explored since our goal is to prove the partial correctness of the program.

2. The performance of the verifier is independent of the integer representation
on this application: it only requires a bound on the length of the array.

3. The verifier returns a counter-example for debugging the program.

Note that CBMC and ESC/Java2, two state-of-the-art model checkers fail to
verify this example as discussed in Section 5.

3 Formalization of the Framework

This section formalizes the CPBPV verifier on a small abstract language using a
small-step SOS semantics. The semantics primarily specifies the execution paths
over constraint stores explored by the verifier. It features assert and enforce
constructs which are necessary for modular composition.

Syntax. Figure 2 depicts the syntax of the programs and the constraints gen-
erated by the verifier. In the following, we use s, possibly subscripted, to denote
elements of a syntactic entity S.

Renamings. CPBPV creates variables and arrays of variables “on-the-fly”
when they are needed. This process resembles an SSA normalization but does
not introduce the join nodes, since the results of different execution paths are not
merged. Similar renamings are used in model checking. The renaming uses map-
pings of type V ∪A→ N which maps variables and arrays into a natural numbers
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L : list of instructions; I : instructions; B : Boolean expressions
E : integer expressions; A : arrays; V : variables

L ::= I; L | ε
I ::= A[E] ← E | V ← E | if B I | while B I | assert(B) | enforce(B) | return E | {L}
B ::= true | false | E > E | E ≥ E | E = E | E 
= E | E ≤ E | E < E
B ::= ¬B | B ∧B | B ∨B | B ⇒ B
E ::= V | A[E] | E + E | E − E | E × E | E/E |

C : constraints E+ : solver expressions
V + = {vi | v ∈ V & i ∈ N} : solver variables
A+ = {ai | a ∈ A & i ∈ N} : solver arrays

C ::= true | false | E+ > E+ | E+ ≥ E+ | E+ = E+ | E+ 
= E+ | E+ ≤ E+ | E+ < E+

C ::= ¬C | C ∧ C | C ∨ C | C ⇒ C
E+ ::= V | A[E+] | E+ + E+ | E+ − E+ | E+ × E+ | E+/E+ |

Fig. 2. The Syntax of Programs and Constraints

denoting their current “version numbers”. In the semantics, the version number
is incremented each time a variable or an array element is assigned. We use σ⊥
to denote the uniform mapping to zero (i.e., ∀x ∈ V ∪A : σ⊥(x) = 0) and σ[x/i]
the mapping σ where x now maps to i, i.e., σ[x/i](y) = if x = y then i else σ(y).
These mappings are used by a polymorphic renaming function ρ to transform
program expressions into constraints. For example, ρ σ b1 ⊕ b2 = (ρ σ b1) ⊕
(ρ σ b2)(where ⊕ ∈ {∧,∨,⇒}) is the rule used to transform a logical expression.

Configurations. The CPBCV semantics mostly uses configurations of the type
〈l, σ, c〉, where l is the list of instructions to execute, σ is a version mapping, and
c is the set of constraints generated so far. It also uses configurations of the
form 〈�, σ, c〉 to denote final states and configurations of the form 〈⊥, σ, c〉 to
denote the violation of an assertion. The semantics is specified by rules of the
form conditions

γ1 �−→γ2
stating that configuration γ1 can be rewritten into γ2 when the

conditions hold.

Conditional Instructions. The conditional instruction if b i considers two
cases. If the constraint cb associated with b is consistent with the constraint
store, then the store is augmented with cb and the body is executed. If the
negation ¬cb is consistent with the store, then the constraint store is augmented
with ¬cb. Both rules may apply, since the store may represent some memory
states satisfying the condition and some violating it.

c ∧ (ρ σ b) is satisfiable
〈if b i ; l, σ, c〉 #−→ 〈i ; l, σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable
〈if b i ; l, σ, c〉 #−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

Iterative Instructions. The while instruction while b i also considers two
cases. If the constraint cb associated with b is consistent with the constraint
store, then the constraint store is augmented with cb, the body is executed, and
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the while instruction is reconsidered. If the negation ¬cb is consistent with the
constraint store, then the constraint store is augmented with ¬cb.

c ∧ (ρ σ b) is satisfiable
〈while b i ; l, σ, c〉 #−→ 〈i;while b i ; l, σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable
〈while b i ; l, σ, c〉 #−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

Scalar Assignments. Scalar assignments create a new constraint variable for
the program variable to be assigned and add a constraint specifying that the
variable is equal to the right-hand side. A new renaming mapping is produced.

σ2 = σ1[v/σ1(v) + 1] & c2 ≡ (ρ σ2 v) = (ρ σ1 e)
〈v ← e ; l, σ1, c1〉 #−→ 〈l, σ2, c1 ∧ c2〉

Assignments of Array Elements. The assignment of an array element creates
a new constraint array, add a constraint for the index being indexed and posts
constraints specifying that all the new constraint variables in the array are equal
to their earlier version, except for the element being indexed. Note that the index
is an expression which may contain variables as well, giving rise to the well-known
element constraint in constraint programming [25].

σ2 = σ1[a/σ1(a) + 1]
c2 ≡ (ρ σ2 a)[ρ σ1 e1] = (ρ σ1 e2)
c3 ≡ ∀i ∈ 0..a.length : (ρ σ1 e1) �= i ⇒ (ρ σ2 a)[i] = (ρ σ1 a)[i]

〈a[e1]← e2, σ1 ; l, c1〉 #−→ 〈l, σ2, c1 ∧ c2 ∧ c3〉

Assert Statements. An assert statement checks whether the assertion is im-
plied by the control store in which case it proceeds normally. Otherwise, it ter-
minates the execution with an error.

c⇒ (ρ σ b)
〈assert b ; l, σ, c〉 #−→ 〈l, σ, c〉

c ∧ ¬(ρ σ b) is satisfiable
〈assert b ; l, σ, c〉 #−→ 〈⊥, σ, c〉

Enforce Statements. An enforce statement adds a constraint to the constraint
store if it is satisfiable.

c ∧ (ρ σ b) is satisfiable
〈enforce b ; l, σ, c〉 #−→ 〈l, σ, c ∧ (ρ σ b)〉

Block Statements. Block statements simply remove the braces.

〈{l1} ; l2, σ, c〉 #−→ 〈l1 : l2, σ, c〉

Return Statements. A return statement simply constrains the result variable.

c2 ≡ (ρ σ1 result) = (ρ σ1 e)
〈return e ; l, σ1, c1〉 #−→ 〈σ1, c1 ∧ c2〉
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Termination. Termination also occurs when no instruction remains.

〈ε, σ, c〉 #−→ 〈�, σ, c〉

The CPBPV Semantics. Let P be program bpre l bpost in which bpre denotes
the precondition, l is a list of instructions, and bpost the post-condition. Let ∗#−→
be the transitive closure of #−→. The final states are specified by the set

SFN (bpre,P) = { 〈f, σ, c〉|〈i, σ⊥, ρ σ⊥ bpre〉 ∗#−→ ∗〈f, σ, c〉 ∧ f ∈ {⊥,�} }

The program violates an assertion if the set

SFE (bpre,P , bpost) = {〈⊥, σ, c〉 ∈ SFN (bpre,P)}

is not empty. It violates its specification if the set

SFE (bpre,P , bpost) = {�, σ, c〉 ∈ SFN (bpre,P) | c ∧ (ρ σ ¬bpost) satisfiable}

is not empty. It is partially correct otherwise.

4 Implementation Issues

The CPBPV framework is parametrized by a list of solvers (S1, . . . , Sk) which
are tried in sequence, starting with the least expensive and less general. When
checking satisfiability, the verifier never tries solver Si+1, . . . , Sk if solver Si is
a decision procedure for the constraint store. If solver Si is not a decision pro-
cedure, it uses an abstraction α of the constraint store c satisfying c ⇒ α and
can still detect failed execution paths quickly. The last solver in the sequence
is a constraint-programming solver (CP solver) over finite domains which iter-
ates pruning and searching to find solutions or prove infeasibility. When the CP
solver makes a choice, the earlier solvers in the sequence are called once again
to prune the search space or find solutions if they have become decision proce-
dures. Our prototype implementation uses a sequence (MIP,CP ), where MIP is
the mixed integer-programming tool ILOG CPLEX2 and CP is the constraint-
programming tool Ilog JSOLVER. Our Java implementation also performs some
trivial simplifications such as constant propagation but is otherwise not opti-
mized in its use of the solvers and in its renaming process whose speed and
memory usage could be improved substantially. Practically, simplifications are
done on the fly and the MIP solver is called at each node of the executable
paths. The CP solver is only called at the end of the executable paths when
the complete post condition is considered. Currently, the implementation use a
depth-first strategy for the CP solver, but modern CP languages now offer high-
level abstractions to implement other exploration strategies. In practice, when
CPBPV is used for model checking as discussed below, it is probably advisable
to use a depth-first iterative deepening implementation.
2 See http://www.ilog.com/products
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5 Experimental Results

In this section, we report experimental results for a set of traditional benchmarks
for program verification. We compare CPBVP with the following frameworks:

– ESC/Java is an Extended Static Checker for Java to find common run-time
errors in JML-annotated Java programs by static analysis of the code and
its annotations. See http://kind.ucd.ie/products/opensource/ESCJava2/.

– CBMC is a Bounded Model Checker for ANSI-C and C++ programs. It
allows for the verification of array bounds (buffer overflows), pointer safety, ex-
ceptions, and user-specified assertions. See http://www.cprover.org/cbmc/.

– BLAST, the Berkeley Lazy Abstraction Software Verification Tool, is a
software model checker for C programs. See http://mtc.epfl.ch/software-
tools/blast/.

– EUREKA is a C bounded model checker which uses an SMT solver instead
of an SAT solver. See http://www.ai-lab.it/eureka/.

– Why is a software verification platform which integrates many existing
provers (proof assistants such as Coq, PVS, HOL 4,...) and decision pro-
cedures such as Simplify, Yices, ...). See http://why.lri.fr/.

Of course, neither the expressiveness nor the objectives of all these systems are
the same as the one of CPBPV. For instance, some of them can handle CTL/LTL
constraints whereas CPBPV dos not yet support this kind of constraints. Nev-
ertheless, this comparison is useful to illustrate the capabilities of CPBPV.

All experiments were performed on the same machine, an Intel(R) Pentium(R)
M processor 1.86GHz with 1.5G of memory, using the version of the verifiers
that can be downloaded from their web sites (except for EUREKA for which the
execution times given in [2,3] are reported.) For each benchmark program, we de-
scribe the data entries and the verification parameters. In the tables, “UNABLE”
means that the corresponding framework is unable to validate the program
either because a lack of expressiveness or because of time or memory limitations,
“NOT FOUND” that it does not detect an error, and “FALSE ERROR” that
it reports an error in a correct program. Complete details of the experiments,
including input files and error traces, can be found in [13].

Binary Search. We start with the binary search program presented in figure 1.
ESC/Java is applied on the program described in Figure 1. ESC/Java requires a
limit on the number of loop unfoldings, which we set to log(n) + 1 which is the
worst case complexity of binary search algorithm for an array of length n. Sim-
ilarly, CBMC requires an overestimate of the number of loop unfoldings. Since
CBMC does not support first-order expressions such as JML \forall statement,
we generated a C program for each instance of the problem (i.e., each array
length). For example, the postcondition for an array of length 8 is given by

(result!=-1 && a[result]==x)||
(result==-1 && (a[0]!=x&&a[1]!=x&&a[2]!=x&&a[3]!=x&&a[4]!=x&&a[5]!=x&&a[6]!=x&&a[7]!=x)

For the Why framework, we used the binary search version given in their distri-
bution. This program uses an assert statement to give a loop invariant.
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Table 1. Comparison table for binary search

CPBPV
array length 8 16 32 64 128 256
time 1.081s 1.69s 4.043s 17.009s 136.80s 1731.696s

CBMC
array length 8 16 32 64 128 256
time 1.37s 1.43s UNABLE UNABLE UNABLE UNABLE

Why
with invariant 11.18s
without invariant UNABLE

ESC/Java FALSE ERROR

BLAST UNABLE

Note that CPBPV does not require any additional information: no invariant
and no limits on loop unfoldings. During execution, it selects a path by nonde-
terministically applying the semantic rules for conditional and loop expressions.

Table 1 reports the experimental results. Execution times for CPBPV are
reported as a function of the array length for integers coded on 31 bits.3 Our
implementation is neither optimized for time or space at this stage and times
are only given to demonstrate the feasibility of the CPBPV verifier.

The “Why” framework [16] was unable to verify the correctness without the
loop invariant; 60% of the proof obligations remained unknown.

The CBMC framework was not able to do the verification for an instance of
length 32 (it was interrupted after 6691,87s).

ESC/Java was unable to verify the correctness of this program unless complete
loop invariants are provided 4.

An Incorrect Binary Search. Table 2 reports experimental results for an
incorrect binary search program (see Figure 1, line 11) for CPBPV, ESC/Java,
CBMC, and Why using an invariant. The error trace found with CPBPV has
been described in Section 2. The error traces provided by CBMC and ESC/Java
only show the decisions taken along the faulty path can be found in [13]. In con-
trast to CPBPV, they do not provide any value for the array nor the searched
data. Observe that CPBPV provides orders of magnitude improvements in effi-
ciency over CBMC and also outperforms ESC/Java by almost a factor 8 on the
largest instance.

The Tritype Program. The tritype program is a standard benchmark in test
case generation and program verification since it contains numerous non-feasible
paths: only 10 paths correspond to actual inputs because of complex conditional
statements in the program. The program takes three positive integers as inputs
(the triangle sides) and returns 2 if the inputs correspond to an isosceles triangle,
3 if they correspond to an equilateral triangle, 1 if they correspond to some other
triangle, and 4 otherwise. The tritype program in Java with its specification in
JML can be found in[13]. Table 3 depicts the experimental results for CPBPV,

3 The commercial MIP solver fails with 32-bit domains because of scaling issues.
4 A version with loop invariants that allows to show the correctness of this program

has been written by David Cok, a developper of ESC/Java, after we contacted him.
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Table 2. Experimental Results for an Incorrect Binary Search

CPBPV ESC/Java CBMC WHY with invariant BLAST

length 8 0.027s 1.21 s 1.38s NOT FOUND UNABLE

length 16 0.037s 1.347 s 1.69s NOT FOUND UNABLE

length 32 0.064s 1.792 s 7.62s NOT FOUND UNABLE

length 64 0.115s 1.886 s 27.05s NOT FOUND UNABLE

length 128 0.241s 1.964 s 189.20s NOT FOUND UNABLE

Table 3. Experimental Results on the Tritype Program

CPBPV ESC/Java CBMC Why BLAST

time 0.287s 1.828s 0.82s 8.85s UNABLE

ESC/Java, CBMC, BLAST and Why. BLAST was unable to validate this ex-
ample because the current version does not handle linear arithmetic. Observe
the excellent performance of CPBPV and note that our previous approach us-
ing constraint programming and Boolean abstraction to abstract the conditions,
validated this benchmark in 8.52 seconds when integers were coded on 16 bits
[12]. It also explored 92 spurious paths.

An Incorrect Tritype Program. Consider now an incorrect version of Tritype
program in which the test “if ((trityp==2)&&(i+k>j))” in line 22 (see [13])
is replaced by “if ((trityp==1)&&(i+k>j))”. Since the local variable trityp is
equal to 2 when i==k, the condition (i+k)>j implies that (i,j,k) are the sides
of an isosceles triangle (the two other triangular inequalities are trivial because
j>0). But, when trityp=1, i==j holds and this incorrect version may answer
that the triangle is isosceles while it may not be a triangle at all. For example,
it will return 2 when (i,j,k)=(1,1,2). Table 4 depicts the experimental results.
Execution times correspond to the time required to find the first error. The error
found with CPBPV corresponds to input values (i, j, k) = (1, 1, 2) mentioned
earlier. Once again, observe the excellent behavior of CPBPV compared to the
remaining tools. 5

Bubble Sort with Initial Condition. This benchmark (see [13]) is taken
from [2] and performs a bubble sort of an array t which contains integers from
0 to t.length given in decreasing order. Table 5 shows the comparative results
for this benchmark. CPBPV was limited on this benchmark because its recur-
sive implementation uses up all the JAVA stack space. This problem should be
remedied by removing recursion in CPBPV.

Selection Sort. We now present a benchmark to highlight both modular veri-
fication and the element constraint of constraint programming to index arrays
5 For CBMC, we have contacted D. Kroening who has recommended to use the option

CPROVER assert. If we do so, CBMC is able to find the error, but we must add
some assumptions to mean that there is no overflow into the sums, in order to prove
the correct version of tritype with this same option.
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Table 4. Experimental Results for the Incorrect Tritype Program

CPBPV ESC/Java CBMC WHY

time 0.056s s 1.853s NOT FOUND NOT FOUND

Table 5. Experimental Results for Bubble Sort

CPBPV ESC/Java CBMC EUREKA

length 8 1.45s 3.778 s 1.11s 91s

length 16 2.97s UNABLE 2.01s UNABLE

length 32 UNABLE UNABLE 6.10s UNABLE

length 64 UNABLE UNABLE 37.65s UNABLE

with arbitrary expressions. The benchmark described in [13]. Assume that func-
tion findMin has been verified for arbitrary integers. When encountering a call
to findMin, CPBPV first checks if its precondition is entailed by the constraint
store, which requires a consistency check of the constraint store with respect to
the negation of the precondition. Then CPBPV replaces the call by the post-
condition where the formal parameters are replaced by the actual variables. In
particular, for the first iteration of the loop and an array length of 40, CPBPV
generates the conjunction 0 ≤ k0 < 40 ∧ t0[k0] ≤ t0[0] ∧ . . . ∧ t0[k0] ≤ t0[39]
which features element constraint [25]. Indeed, k0 is a variable and a constraint
like t0[k0] ≤ t0[0] indexes the array t0 of variables using k0.

The modular verification of the selection sort explores only a single path, is
independent of the integer representation, and takes less than 0.01s for arrays
of size 40. The bottleneck in verifying selection sort is the validation of function
findMin, which requires the exploration of many paths. However the complete
validation of selection sort takes less than 4 seconds for an array of length 6. Once
again, this should be contrasted with the model-checking approach of Eureka
[2]. On a version of selection sort where all variables are assigned specific values
(contrary to our verification which makes no assumptions on the inputs), Eureka
takes 104 seconds on a faster machine. Reference [2] also reports that CBMC
takes 432.6 seconds, that BLAST cannot solve this problem, and that SATABS
[9] only verifies the program for an array with 2 elements.

Sum of Squares. Our last benchmark is described in [13] and computes the
sum of the square of the n first integers stored in an array. The precondition
states that n is the size of the array and that t must contain any possible
permutation of the n first integers. The postcondition states that the result
is n × (n + 1) × (2 × n + 1)/6. The benchmark illustrates two functionalities
of constraint programming: the ability of specifying combinatorial constraints
and of solving nonlinear problems. The alldifferent constraint [23] in the
pre-condition specifies that all the elements of the array are different, while the
program constraints and postcondition involves quadratic and cubic constraints.
The maximum instance that we were able to solve with CPBPV was an array
of size 10 in 66.179s.
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CPLEX, the MIP solver, plays a key role in all these benchmarks. For in-
stance, the CP solver is never called in the Tritype benchmark. For the Binary
search benchmark, there are length calls to the CP solver but almost 75% of the
CPU time is spent in the CP solver. Since there is only path in the Buble sort
benchmark, the CP solver is only called once. In the Sum of squares example,
80% of the CPU time is spent in the CP solver.

6 Discussion and Related Work

We briefly review recent work in constraint programming and model checking
for software testing, validation, and verification. We outline the main differences
between our CPBPV framework and existing approaches.

Constraint Logic Programming. Constraint logic programming (CLP) was
used for test generation of programs (e.g., [17,20,24,19]) and provides a nice
implementation tool extending symbolic execution techniques [4]. Gotlieb et al.
showed how to represent imperative programs as constraint logic programs and
used predicate abstraction (from model checking) and conditional constraints
within a CLP framework. Flanagan [15] formalized the translation of imper-
ative programs into CLP, argued that it could be used for bounded model
checking, but did not provide an implementation. The test-generation method-
ology was generalized and applied to bounded program verification in [11,12].
The implementation used dedicated predicate abstractions to reduce the explo-
ration of spurious execution paths. However, as shown in the paper, the CPBPV
verifier is significantly more efficient and often avoids the generation of spurious
execution paths completely.

Model Checking. It is also useful to contrast the CPBPV verifier with model-
checking of software systems. SAT-based bounded model checking for software[6]
consists in building a propositional formula whose models correspond to exe-
cution paths of bounded length violating some properties and in using SAT
solvers to check whether the resulting formula is satisfiable. SAT-based model-
checking platforms [6] have been widely popular thanks to significant progress
in SAT solvers. A fundamental issue faced by model checkers is the state space
explosion of the resulting model. Various techniques have been proposed to ad-
dress this challenge, including generalized symbolic execution (e.g., [21]), SMT-
based model checking, and abstraction/refinement techniques. SMT-based model
checking is the idea of representing and checking quantifier-free formulas in a
more general decidable theory (e.g. [14,18,22]). These SMT solvers integrate
dedicated solvers and share some of the motivations of constraint programming.
Predicate abstraction is another popular technique to address the state space
explosion. The idea consists in abstracting the program to obtain an abstract
program on which model checking is performed. The model checker may then
generate an abstract counterexample which must be checked to determine if it
corresponds to a concrete execution path. If the counterexample is spurious, the
abstract program is refined and the process is iterated. A successful predicate
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abstraction consists of abstracting the concrete program into a Boolean program
(e.g., [5,7,8]). In recent work [3,2], Armando & al proposed to abstract concrete
programs into linear programs and used an abstraction of sets of variables and
array indices. They showed that their tool compares favourably and, on some
of the programs considered in this paper, outperforms model checkers based on
predicate abstraction.

Our CPBPV verifier contrasts with SAT-based model checkers, SMT-based
model checkers and predicate abstraction based approaches: It does not ab-
stract the program and does not generate spurious execution paths. Instead it
uses a constraint-solver and nondeterministic exploration to incrementally con-
struct abstractions of execution paths. The abstraction uses constraint stores to
represent sets of concrete stores. On many bounded verification benchmarks, our
preliminary experimental results show significant improvements over the state-
of-the-art results in [2]. Model checking is well adapted to check low-level C
program and hardware applications with numerous Boolean constraints and bit-
wise operations: It was successfully used to compare an ANSI C program with a
circuit given as design in Verilog [7]. However, it is important to observe that in
model checking, one is typically interested in checking some specific properties
such as buffer overflows, pointer safety, or user-specified assertions. These prop-
erties are typically much less detailed than our post-conditions and abstracting
the program may speed up the process significantly. In our CPBPV verifier, it
is critical to explore all execution paths and the main issue is how to effectively
abstract memory stores by constraints and how to check satisfiability incremen-
tally. It is an intriguing issue to determine whether an hybridization of the two
approaches would be beneficial for model checking, an issue briefly discussed in
the next section. Observe also that this research provides convincing evidence of
the benefits of Nieuwenhuis’ challenge [22] aiming at extending SMT6 with CP
techniques.

7 Perspectives and Future Work

This paper introduced the CPBPV framework for bounded program verification.
Its novelty is to use constraints to represent sets of memory stores and to explore
execution paths over these constraint stores nondeterministically and incremen-
tally. The CPBPV verifier exploits the fact that, when variables and arrays are
bounded, the constraint store can always be checked for feasibility. As a result, it
never explores spurious execution path contrary to earlier approaches combining
constraint programming and predicate abstraction [11,12] or integrating SMT
solvers and the abstraction/refinement approach from model checking [2]. We
demonstrated the CPBPV verifier on a number of standard benchmarks from
model checking and program checking as well as on nonlinear programs and
functions using complex array indexings, and showed how to perform modular
verification. The experimental results demonstrate the potential of the approach:
6 See also [1] for a study of the relations between constraint programming and Satis-

fiability Modulo Theories (SMT).
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The CPBPV verifier provides significant gain in performance and functionalities
compared to other tools.

Our current work aims at improving and generalizing the framework and
implementation. In particular, we would like to include tailored, light-weight
solvers for a variety of constraint classes, the optimization of the array imple-
mentation, and the integration of Java objects and references. There are also
many research avenues opened by this research, two of which are reviewed now.

Currently, the CPBPV verifier does not check for variable overflows: the
constraint store enforces that variables take values inside their domains and
execution paths violating these constraints are thus not considered. It is pos-
sible to generalize the CPBPV verifier to check overflows as the verification
proceeds. The key idea is to check before each assignment if the constraint store
entails that the value produced fits in the selected integer representation and
generate an error otherwise. (Similar assertions must in fact be checked for each
subexpression in the right hand-side in the language evaluation order. Interval
techniques on floats [4] may be used to obtain conservative checking of such
assertions.

An intriguing direction is to use the CPBPV approach for properties checking.
Given an assertion to be verified, one may perform a backward execution from
the assertion to the function entry point. The negation of the assertion is now the
pre-condition and the pre-condition becomes the post-condition. This requires to
specify inverse renaming and executions of conditional and iterative statements
but these have already been studied in the context of test generation.

Acknowledgements. Many thanks to Jean-Franois Couchot for many helps
on the use of the Why framework.
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Abstract. It is acknowledged that the symbolic form of the equations is
crucial for interval-based solving techniques to efficiently handle systems
of equations over the reals. However, only a few automatic transforma-
tions of the system have been proposed so far. Vu, Schichl, Sam-Haroud,
Neumaier have exploited common subexpressions by transforming the
equation system into a unique directed acyclic graph. They claim that
the impact of common subexpressions elimination on the gain in CPU
time would be only due to a reduction in the number of operations.

This paper brings two main contributions. First, we prove theoretically
and experimentally that, due to interval arithmetics, exploiting certain
common subexpressions might also bring additional filtering/contraction
during propagation. Second, based on a better exploitation of n-ary plus
and times operators, we propose a new algorithm I-CSE that identifies and
exploits all the “useful” common subexpressions. We show on a sample of
benchmarks that I-CSE detects more useful common subexpressions than
traditional approaches and leads generally to significant gains in perfor-
mance, of sometimes several orders of magnitude.

1 Introduction

Granvilliers et al. [9] show in a survey several ways to combine symbolic and
interval methods to improve performance of solvers. They noticed that Gröbner
basis computation [3] introduces redundancies that often improve the pruning
effect of interval techniques. The use of several forms of the equations together
in the same system (e.g., the natural and centered forms) has the same effect.

The presence of multiple occurrences of the same variable in a given equa-
tion is well-known to lower the power of interval arithmetics [17]. Thus, several
practitioners apply by hand symbolic transformations of their systems, such as
factorizations, to limit the number of occurrences of variables [9,15].

Common subexpression elimination (CSE) is an important feature of compiler
optimization [16]. CSE searches in the code for common subexpressions with
identical evaluation and replaces them by auxiliary variables. It generally fasten
the program by decreasing the number of instructions. Symbolic tools like Math-
ematica [2] or Maple [11] represent equations by directed acyclic graphs (DAGs),
where nodes with several parents correspond to common subexpressions (CSs).
This decreases the number of evaluations and also stores all the expressions with
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c© Springer-Verlag Berlin Heidelberg 2008



Exploiting Common Subexpressions in Numerical CSPs 343

less memory. Ceberio and Granvilliers in [4] use Gaussian elimination to reduce
the number of non-linear terms in equations. As a side effect, their algorithm
identifies some CSs.

Following the representation used by symbolic tools, Schichl and Neumaier
have proposed a unique DAG to represent a system of equations handled by
interval analysis techniques [18]. CSs are the nodes of the DAG with several par-
ents and the main interval analysis operators are redefined on this data struc-
ture: evaluation of functions, computation of derivatives, etc. Vu, Schichl and
Sam-Haroud have described in [20] how to carry out propagation in the DAG.
In particular, an interval is attached to internal nodes and the propagation is
performed in a sophisticated way: two queues are managed, one for the evalu-
ation, the other for the narrowing/propagation (see below), and the top-down
narrowing operations have priority over the bottom-up evaluation. All the re-
searchers who have exploited CSs manually or automatically [9,20] think that
the gain in performance due to common subexpressions would be only implied
by a reduction of the number of operations.

The first good news is that CSE in interval analysis might bring a stronger
contraction/filtering power. Section 3 clearly states which types of CSs are useful
for bringing additional filtering. Section 4 presents a new algorithm I-CSE (In-
terval CSE) to detect CSs and generate a new system of equations. For a given
form of the equations, I-CSE is able to find all the “useful” CSs, because it finds
all the n-ary maximal CSs corresponding to sums and products, modulo the
commutativity and the associativity of these operators, including overlapping
CSs. In addition, I-CSE is not intrusive in that it produces a new system that
can be handled by any interval solver using a classical propagation scheme. Fi-
nally, experiments shown in Section 6 highlight that the CSs are extracted very
quickly. The new system of equations then leads solving algorithms using HC4 to
significant gains in performance (of sometimes several orders of magnitude).

2 Background

The algorithms presented in this paper aim at solving systems of equations or,
more generally, numerical CSPs.

Definition 1. A numerical CSP (NCSP) P = (V,C,B) contains a set of
constraints C and a set V of n variables. Every variable xi ∈ V can take a real
value in the interval Xi and B is the cartesian product (called a box) X1× ...×
Xn. A solution to P is an assignment of the variables in V satisfying all constraints

in C.

Finding all the solutions to an NCSP follows a scheme analogous to branch and
prune for CSPs. Branch: Bisections divide the domain of one variable into two
sub-domains in a combinatorial way. Prune: Two types of algorithms are used.
Algorithms from interval analysis, like interval Newton [17], contract/filter the
current box in all the dimensions simultaneously and can often guarantee that
a box contains a unique solution. Algorithms from constraint programming are
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Fig. 1. Evaluation and narrowing in the HC4-revise algorithm. The tree represents
the constraint: (x + y + z)2 + 3(x + z) = 30.

also useful. HC4 follows a propagation loop like that of AC3 and handles the
constraints individually with a procedure HC4-revise that removes inconsis-
tent values on the bounds of intervals [1,12]. Stronger consistencies like 3B [13],
similar to SAC [7] for finite domain CSPs, often obtain a better performance.
At the end, the solving algorithm finds an approximation of all the solutions
of the NCSP. The algorithm HC4-revise uses a tree representation of one con-
straint, where leaves are constants or variables, and internal nodes correspond to
primitive operators like +, ×, sinus. An interval is associated with every node.
HC4-revise works in two phases. The evaluation phase is performed bottom-up
from the leaves (variables and constants) to the root. Using the natural extension
of primitive functions, this phase evaluates the intervals of the sub-expressions
represented by the tree nodes (see Fig. 1-left). The narrowing phase traverses the
tree top-down from root to leaves and applies in every node a narrowing operator
(also called projection; see Fig. 1-right). The narrowing operator contracts the
intervals of the nodes eliminating inconsistent values w.r.t. the corresponding
unary or binary primitive operator. In Fig. 1, the intervals in bold have been
narrowed. If an empty interval is obtained during the narrowing phase, this
means that the constraint is inconsistent w.r.t. the initial domains. The inter-
vals computed in the internal nodes are not stored from one call to HC4-revise
to another, as opposed to the intervals of the leaves (i.e., the variables).

3 Properties of HC4 and CSE

We call Common Subexpression (in short CS) a numerical expression that occurs
several times in one or several constraints.

If we observe carefully the HC4-revise algorithm, we can note that the con-
traction obtained by a narrowing operator on a given expression f is in general
partially lost in the next evaluation of f . Consider for instance a sum x + z
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Fig. 2. Narrowing/Evaluation without and with CSE

that is shared by two expressions n1 and n2. Following Fig. 1, the narrowing
phase of HC4-revise applied to n1 contracts its interval to [−2, 5]. Then, when
the evaluation phase of HC4-revise applies to n2, its interval is set to [−2, 6]
(Fig. 2–left). Clearly, the interval of n2 is larger than that of n1. To avoid this
loss of information, the idea is to replace n1 and n2 by a common variable v, and
to add a new constraint v = x+ z. The new system is equivalent to the original
one (both have the same solutions) while it improves the contraction power of
HC4. The introduction of v (Fig. 2–right) amounts to adding a redundant equa-
tion n1 = n2 (Fig. 2–center). If one applies evaluation and narrowing phases of
HC4-revise until the fixed-point on the new system, one will obtain the interval
[0.19, 4.14] for z, instead of [−0.36, 4.58].

3.1 Additional Propagation

Proposition 1 underlines that HC4 might obtain a better filtering when new
auxiliary variables and equations corresponding to CSs are added in the system.

Proposition 1. Let S be a NCSP and S′ be the NCSP obtained by replacing
in S one CS f in common between two expressions (belonging to constraints in
S) by an auxiliary variable v, and by adding the new equation v = f . Then, HC4
(with a floating-point precision) applied to S′ produces a contracted box B′ that
is smaller than or equal to the box B produced by HC4 applied to S.

Proof. One first produces a system S1 by replacing in S the first occurrence of
f by an auxiliary variable v1 and the second one by v2. We add the equations
v1 = f and v2 = f . Because HC4-revise works on acyclic graphs, HC4 computes
the 2B-consistency of the decomposed system (i.e., ternary system equivalent to
S where all the operators are replaced by auxiliary variables). It is thus well-
known that S and S1 are equivalent: HC4 applied to S1 and HC4 applied to S
produce the same contracted box B [6]. Finally, creating S′ amounts to adding
the constraint v1 = v2 to S1. Thus, the box B′ is smaller than or equal to B. �

Of course, this result is useless if the box B′ is equal to B, and we want
to determine conditions for obtaining a box B′ that might be strictly smaller
than B. Among the set of primitive operators that are defined in a standard
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implementation of HC4, the analysis presented below highlights that the following
subset of non-monotonic or non-continuous operators might bring additional
contraction when they occur several times (as CS) in the same system: sin(x),
cos(x), tan(x) with non-monotonic domains, x2c (c positive integer and 0 ∈ X),
cosh(x) with 0 ∈ X , 1/x with 0 ∈ X and binary operators (+,−,×,/).

3.2 Unary Operators

Let us first introduce some definitions. An evaluation function associated with
a function f computes a conservative interval, i.e., the application of f on any
tuple of values picked inside the input intervals falls inside the computed interval.

Definition 2. Let IR be the set of all the intervals over the reals. F : IR→ IR,
Y = [y, y] = F (X) is an evaluation operator associated with a unary primitive
operator f if: ∀x ∈ X, ∃y ∈ Y such that f(x) = y.

A narrowing operatorNx
F associated with a function f allows us to filter/contract

the domain of a variable x.

Definition 3. Let X be the domain of a variable x, let F be an evaluation oper-
ator associated with f , and let Y be an interval. Nx

F is a narrowing operator
of F on x, if X ′ = [x, x] = Nx

F (Y ) verifies:

f(x) ∈ Y ∧ f(x) ∈ Y ∧ ∀y ∈ Y, ∀x ∈ (X −X ′) : f(x) �= y

Definition 4. Let f be a function defined on I(f). f is a monotonic function
on an interval X if: ∀x1, x2 ∈ (X ∩ I(f))2, x1 ≤ x2 : f(x1) ≤ f(x2) or
∀x1, x2 ∈ (X ∩ I(f))2, x1 ≤ x2 : f(x1) ≥ f(x2)

As said above, a necessary condition to replace a CS is when the contraction
obtained by a narrowing operator on a given expression f is partially lost in the
next evaluation of f . More formally:

Condition 1. ∃Y ⊆ F (X), X ′ = Nx
F (Y ) : F (X ′) �⊆ Y where X is the domain

of variable x, F is the evaluation operator associated with f , and Nx
F is the

projection narrowing operator of F on x.

The following proposition indicates a simple condition to identify a useless CS
for which no filtering is expected.

Proposition 2. Let F be the evaluation operator associated with a unary oper-
ator f . Let Nx

F be the narrowing operator of F on a variable x of domain X.
If f is a monotonic and continuous function, then:

∀Y ⊆ F (X), X ′ = Nx
F (Y ) : F (X ′) ⊆ Y

Proof. WLOG we suppose that f is monotonically increasing. X ′ = NF (Y ),
then using Def. 3: f(x), f(x) ∈ Y , where X ′ = [x, x]. Finally, with Defs. 2 and
4, F (X ′) = [f(x), f(x)] ⊆ Y . �
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Proposition 3. With the same notations as above, if f is a non-monotonic
function, then: ∃Y ⊆ F (X), X ′ = Nx

F (Y ) : F (X ′) �⊆ Y

Proof. The non monotonicity of f means:

∃x1, x2, x3 ⊆ X3, x1 ≤ x2 ≤ x3 s.t. f(x2) > f(x1) ∧ f(x2) > f(x3)

Using values x1, x2 and x3 that satisfy the existency condition, we can suppose
that Y = [f(x1), f(x3)]. As (f(x2) > f(x1)) ∧ (f(x2) > f(x3)), f(x2) �∈ Y .
X ′ = NF (Y ), then, with Def. 1, [x1, x3] ⊆ X ′. Since x1 ≤ x2 ≤ x3, x2 ∈ X ′,
with Def. 2, f(x2) ∈ F (X ′). Finally, F (X ′) �⊆ Y . �

Example. Let X = [−1, 3] be the domain of a variable x, and x2 be an expression
shared by two or more constraints. Suppose that in the narrowing phase of
HC4-revise, the node corresponding to one of the expressions x2 is contracted
to: Y = [3, 4]. Applying the narrowing operator on x produces X ′ = [−1, 2]. In
the next evaluation of the expression, F (X ′) = [0, 4] �⊆ Y .

Considering the standard operators managed in HC4 (except operators like
floor), the useful CSs do not satisfy Proposition 2 and satisfy Proposition 3.

3.3 N-Ary Operators (Sums, Products)

For binary (n-ary) primitive functions, Condition 1 above can be extended to
the following Condition 2:

∃Z ⊆ F (X,Y ), X ′ = Nx
F (Z, Y ), Y ′ = Ny

F (Z,X) : F (X ′, Y ′) �⊆ Z

where X,Y are the domains of variables x and y respectively, F is the evaluation
operator associated with f , Nx

F and Ny
F are the narrowing/projections operators

on x and y resp. This condition 2 is generally satisfied by the n-ary operators +
and × (resp. − and /). Many examples prove this result (see below). The result is
due to intrinsic “bad” properties of interval arithmetics. First, the set of intervals
IR is not a group for addition. That is, let I be an interval: I−I �= [0, 0] (in fact,
[0, 0] ⊂ I−I). Second, IR\{0} is not a group for multiplication, i.e., I/I �= [1, 1].

The proposition 4 provides a quantitative idea of how much we can win when
replacing additive CSs. It estimates the width Δ that is lost in binary sums
(when an additive CS is not replaced by an auxiliary variable). Note that an
upper bound of Δ is 2 × min(Diam(X), Diam(Y )) and depends only on the
initial domains of the variables.

Proposition 4. Let x + y be a sum related to a node n inside the tree repre-
sentation of a constraint. The domains of x and y are the intervals X and Y
resp. Suppose that HC4-revise is carried out on the constraint: in the evalua-
tion phase, the interval of n is set to V = X + Y ; in the narrowing phase, the
interval V is contracted to Vc = [V +α, V − β] (with α, β ≥ 0 being the decrease
in left and right bounds of V ); X and Y are contracted to Xc and Yc resp. The
difference Δ between the diameter of Vc (current projection) and the diameter
of the sum Xc + Yc (computed in the next evaluation) is:

Δ = min(α, Diam(X), Diam(Y ), Diam(V ) − α) + min(β, Diam(X), Diam(Y ), Diam(V ) − β)
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Example. Consider X = [0, 1] and Y = [2, 4]. Thus, V = X +Y = [2, 5]. Suppose
that after applying HC4-revise we obtain Vc = [2 + α, 5 − β] = [4, 4] (α = 2,
β = 1). With Proposition 4, the narrowing operator yields Xc = [0, 1] and
Yc = [3, 4]. Finally, Xc + Yc = [3, 5] is Δ = 2 units larger than Vc = [4, 4].

The properties related to multiplication are more difficult to establish. Concise
results (not reported here) have been obtained only in the cases when 0 does not
belong to the domains or when 0 is a bound of the domains.

4 The I-CSE Algorithm

The novelty of our algorithm I-CSE lies in the way additive and multiplicative
CSs are taken into account.

First, I-CSE manages the commutativity and associativity of + and × in a
simple way thanks to intersections between expressions. An intersection be-
tween two sums (resp. multiplications) f1 and f2 produces the sum (resp. mul-
tiplication) of their common terms. For example: +(x,×(y,+(z, x2)),×(5, z)) ∩
+(x2, x,×(5, z)) = +(x,×(5, z)). Consider two expressions w1 × x × y × z1 and
w2×y×x×z2 that share the CS x×y. We are able to view these two expressions as
w1×(x×y)×z1 and w2×(x×y)×z2 since×(w1, x, y, z1)∩×(w2, y, x, z2) = ×(x, y).

Second, contrarily to existing CSE algorithms, I-CSE handles conflictive subex-
pressions. Two CSs fa and fb included in f are in conflict (or conflictive) if
fa ∩ fb �= ∅, fa �⊆ fb and fb �⊆ fa. An example of conflictive CSs occurs in the
expression f : x× y× z that contains the conflictive CSs fa : x× y and fb : y× z.
Since x×y and y×z have a non empty intersection y, it is not possible to directly
replace both fa and fb in f .

I-CSE works with the n-ary trees encoding the original equations1 and pro-
duces a DAG. The roots of this DAG correspond to the initial equations; the
leaves correspond to the variables and constants; every internal node f corre-
sponds to an operator (+,×, sin, exp, etc) applied to its children t1, t2..., tn. f
represents the expression f(t1, t2, ..., tn) and t1, ..., tn are the terms of the ex-
pression. The CSs extracted by I-CSE are the nodes with several parents.

We illustrate I-CSE with the following system made of two equations.

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2
(x2 + y3)(x2 + cos(y)) + 14

x2 + cos(y)
= 8

4.1 Step 1: DAG Generation

This step follows a standard algorithm that traverses simultaneously the n-ary
trees corresponding to the equations in a bottom-up way (see e.g. [8]). By la-
belling nodes with identifiers, two nodes with common children and with the
same operator are identified equivalent, i.e., they are CSs.
1 The + and × operators are viewed as n-ary operators. They include − and /. For

example, the 3-ary expression x2y/(2− x) is viewed as ∗(x2, y, 1/(2− x)).
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4.2 Step 2: Pairwise Intersection between Sums and Products

Step 2 pairwise intersects, in any order, the nodes corresponding to n-ary sums on
one hand, and to n-ary products on the other hand. This step creates intersection
nodes corresponding to CSs. Inclusion arcs link their parents to intersection
nodes. If the intersection expression is already present in the DAG, an inclusion
arc is just added from each of the two intersected parents to this node.

For instance, on Fig. 3-a, the node 1.4 is obtained by intersecting the nodes
1 and 4, and we create inclusion arcs from the nodes 1 and 4 to the node 1.4.
This means that 2 (i.e., y and x2) among the 3 terms of the sum/node 4 are
in common with 2 among the 4 terms of the sum/node 1. (Note that the two
terms are in different orders in the intersected nodes.) The node 10 corresponds
to the intersection between nodes 4 and 10 (in fact the node 10 is included in
the node 4), but it has already been created at the first step.

Step 2 is a key step because it makes appear CSs modulo the commutativity
and associativity of + and × operators, and creates at most a quadratic number
of CSs. By storing the maximal expressions obtained by intersection, intersection
nodes and inclusion arcs enable I-CSE to compute all the CSs before adding them
in the DAG in the next step2.

4.3 Step 3: Integrating Intersection Nodes into the DAG

In this step, all the intersection nodes are integrated into the DAG, creating the
definitive DAG. The routine is top-down and follows the inclusion arcs. Every
node f is processed to incorporate into the DAG its “children” reached by an
inclusion arc.

If f has no conflictive child, the inclusion arcs outgoing from f are transformed
into plain arcs. Also, to preserve the equivalence between the DAG and the
system of equations, one removes arcs from f to the children of its intersection
terms/children. For instance, on Fig. 3-b, Step 3 modifies the inclusion arc 1→
1.4 and removes the arcs 1 → 12 and 1→ y.

Otherwise, f has children/CSs in conflict, i.e., there exist at least two CSs fa

and fb, included in f , such that fa ∩ fb �= ∅, fa �⊆ fb and fb �⊆ fa. In this case,
one or several nodes (f1, f2, ..., fr) equivalent to f are added such that: the set
f, f1, f2, ..., fr cover all the CSs included in f . To maintain the DAG equivalent
to the original system, a node equal is created with the children: f, f1, f2, ..., fr.
For example on Fig. 3, the node 4 associated with the expression y+x2 + y3− 1
has two CSs in conflict. Step 3 creates a node 4b (attaching the conflictive CS
x2 + y3) redundant to the node 4 (attaching the other conflictive CS y + x2).

A greedy algorithm has been designed to generate a small number r of re-
dundant nodes, with a small number of children. r is necessarily smaller than
the number of CSs included in f . We illustrate our greedy algorithm handling
conflictive CSs on a more complicated example, in which an expression (node)
u = s+ t+ x+ y+ z contains 3 CSs in conflict: v1 = s+ t, v2 = t+ x, v3 = y+ z

2 If one did not want to manage conflictive expressions, one would incorporate directly,
in Step 2, the new CSs into the DAG.
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Fig. 3. (a) DAG obtained after the first two steps of I-CSE. Step 1: the system
is transformed into a DAG including all the nodes, excepting 1.4, together with the
arcs in plain lines. (For the sake of clarity, we have not merged the variables with
multiple occurrences.) Step 2: the × and + nodes are pairwise intersected, resulting
in the creation of the node 1.4 and the three inclusion arcs in dotted lines. (b) DAG
obtained after Step 3: all the inclusion arcs have been integrated into the DAG. For
the conflictive subexpressions (nodes 1.4 and 10), a redundant node 4b and an equality
node 4′ have been created. The node 1.4 is attached to 4 whereas the node 10 is
attached to 4b. Step 4 generates the auxiliary variables corresponding to the useful
CSs (v1, v2, v4 and v5) and to the equality nodes (v3).

Fig. 4. Integrating intersection nodes into the DAG. a) The node u has three CSs in
conflict. b) The DAG, with an equality node, obtained by the greedy algorithm.

(Fig. 4-a). The greedy algorithm works in two phases. In the first phase, several
occurrences of u are generated until all the CSs are replaced. On the example,
u = v1 +x+v3 and u1 = s+v2 +y+z are created. The second phase handles all
the redundant equations that have been created in the first phase. In a greedy
way, it tries to introduce CSs into every equation to obtain a shorter equation
that improves filtering. On the example, it transforms u1 = s + v2 + y + z into
u1 = s+ v2 + v3. Finally, an equality node (=) is associated with the node u and
the redundant node u1 (Fig. 4-b).
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4.4 Step 4: Generation of the New System

A first way to exploit CSs for solving an NCSP is to use the DAG obtained
after Step 3. As shown by Vu et al. in [20], the propagation phase cannot still
be carried out by a pure HC4, and a more sophisticated propagation algorithm
must consider the unique DAG corresponding to the whole system.

Alternatively, in order to still be able to use HC4 for propagation, and thus to
be compatible with existing interval-based solvers, Step 4 generates a new system
of equations in which an auxiliary variable v and an equation v = f are added for
every useful CS. Avoiding the creation of new equations for useless CSs, which
cannot provide additional contraction, decreases the size of the new system.
In addition, redundant expressions (f, f1, f2, ..., fr) linked by an equality node,
add a new auxiliary variable v′ and the equations v′ = f , v′ = f1,...,v′ = fr. To
achieve these tasks, Step 4 traverses the DAG bottom-up and generates variables
and equations in every node.

Finally, the new system will be composed by the modified equations (in which
the CSs are replaced by their corresponding auxiliary variable), by the auxiliary
variables and by the new constraints v = f corresponding to CSs. The new
system corresponding to the example in Fig. 3 is the following:

v2 + (v3)3 + x3 − 2 = 0
v4 × v5 + 14

v5
− 8 = 0

v1 = x2

v2 = y + v1

v3 = v2 + y3 − 1

v3 = −1 + y + v4

v4 = v1 + y3

v5 = v1 + cos(y)

For a given system of equations, our interval-based solver manages two sys-
tems: the new system generated by I-CSE is used only for HC4 and the original
system is used for the other operations (bisections, interval Newton). The in-
tervals in both systems must be synchronized during the search of solutions.
First, this allows us to clearly validate the interest of I-CSE for HC4. Second,
carrying out Newton or bisection steps on auxiliary variables would need to be
validated both in theory and in practice. Finally, this implementation is similar
to the DAG-based solving algorithm proposed by Vu et al. which also considers
only the initial variables for bisections and interval Newton computations, the
internal nodes corresponding to CSs being only used for propagation [20].

4.5 Time Complexity

The time complexity of I-CSE mainly depends on the number n of variables, on
the number k of a-ary operators and on the maximum arity a of an a-ary sum
or multiplication expression in the system. k + n is the size of the DAG created
in Step 1, so that the time complexity of Step 1 is O(k + n) on average if the
identifiers are maintained using hashing. In Step 2, the number i of intersections
performed is quadratic in the number of sums (or products) in the DAG, i.e., i =
O(k2). Every intersection requires O(a) on average using hashing (a worst-case
complexity O(a log(a)) can be reached with sets encoded by trees/heaps). The
worst-case for Step 3 depends on the maximum number of inclusion arcs which
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Table 1. Time complexity of I-CSE on three representative scalable systems of equa-
tions (see Section 6). The CPU times have been obtained with a processor Intel 2.40
GHz. The CPU time increases linearly in the size k + n of the DAG for Trigexp1 and
Katsura while the time complexity for Brown reaches the worst-case one.

Benchmark Trigexp1 Katsura Brown

Number n of variables 10 20 40 5 10 20 10 20 40
Number k of operators 46 96 196 15 55 208 10 20 40
I-CSE time in second 0.19 0.28 0.63 0.08 0.19 0.91 0.05 0.20 1.26

is O(k2). Step 4 is linear in the size of the final DAG and is O(k+n+ i). Overall,
I-CSE is thus O(n + a log(a) k2). Table 1 illustrates how the time complexity
evolves in practice with the size of the system.

5 Implementation of I-CSE

I-CSE has been implemented using Mathematica version 6. Mathematica first
automatically transforms the equations into a canonical form, where additions
and multiplications are n-ary and where are performed reductions, i.e., factor-
izations by a constant. For instance, the expression 2x−y+x+z is transformed
into +(×(3, x),−y, z). The n-ary representation of equations is useful for the
pairwise intersections of I-CSE (Step 2).

The solving algorithms are developed in the open source interval-based li-
brary in C++ called Ibex [5]. A given benchmark is solved by a branch and prune
process: the variables are bisected in a round-robin manner and contracted by
constraint propagation (HC4 only, or 3BCID using HC4 – 3BCID is a variant of
3B [19]) and interval Newton. As mentioned above, Ibex offers facilities to cre-
ate two systems of equations in memory for which domains of variables are
synchronized during the search of solutions.

I-CSE-B and I-CSE-NC

We have proven theoretically that the interest of I-CSE resides in the additional
pruning it permits and not only in a decrease of the number of operations.
To confirm in practice this significant result, we have designed two variants of
I-CSE that compute fewer CSs. I-CSE-B (Basic I-CSE) simply ignores the step 2
of I-CSE. The commutativity and associativity of + and × are not taken into
account. Additive and multiplicative n-ary expressions are considered in a fixed
binary form in which only a few subexpressions can be detected. For instance,
the CS x + y is detected in two expressions x + y + z1 and x + y + z2, but not
in expressions x + z1 + y and x + z2 + y.

I-CSE-NC (I-CSE with No Conflicts) completely exploits the commutativity
and associativity of + and ×, but does not take into account conflictive CSs.
I-CSE-NC lowers the worst case time complexity of I-CSE, but does not replace all
the CSs. If a given system does not contain CSs in conflict, I-CSE and I-CSE-NC
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return the same new system (with no redundant equations). In the example,
I-CSE-NC does not create the redundant equation v3 = y + v7, so that the
equation v7 = v9 + y3 is not created either. The second (initial) equation finally
becomes: (x2+y3)×v8+14

v8
= 8.

Existing CSE algorithms take place between I-CSE-B and I-CSE-NC in terms
of number of detected useful CSs. We assume here that the algorithm by Vu
et al. [20] is similar to I-CSE-NC.

6 Experiments

Benchmarks have been taken in the first two sections (polynomial and non-
polynomial systems) of the COPRIN page3. The selected sample fulfills system-
atic criteria: every tested benchmark is an NCSP with a finite number of isolated
solutions (no optimization); all the solutions can be found by the ALIAS sys-
tem [14] in a time comprised between one second and one hour; selected systems
are written with the following primitive operators: +, -, ×, /, sin, cos, tan, exp,
log, power. With these criteria, we have selected 40 benchmarks. The I-CSE al-
gorithm detects no CS in 16 of them. There are also two more benchmarks
(Fourbar and Dipole2) for which no test has finished before the timeout (one
hour), providing no indication. 9 of the remaining 22 benchmarks are scalable,
that is, can be defined with any number of variables. Table 2 provides informa-
tion about the selected benchmarks. When there is no conflictive CS, I-CSE and
I-CSE-NC return the same new system and there is no redundant constraints
(#rc=0). The interval-based solver results will be the same.

For all the benchmarks, the CPU time required by I-CSE (and variants) is
often negligible and always less than 1 second.

Remark. In the benchmarks marked with a star (*), the equations have not been
initially rewritten into the canonical form by Mathematica (see Section 5). This
leads to fewer CSs, but these CSs correspond to larger subexpressions shared by
more expressions, providing generally better results.

Tables 3 and 4 compare the CPU times required by Ibex to solve the ini-
tial system (Init) and the systems generated by I-CSE-B, I-CSE-NC and I-CSE.
Table 3 reports results obtained by a standard branch and prune approach with
bisection, Newton and HC4. Table 4 reports results obtained by a branch and
prune approach with bisection, Newton and 3BCID (using HC4 as a refutation
algorithm). Both tables report CPU times in seconds obtained on a 2.40 GHz
Intel Core 2 processor with 1 Gb of RAM, and the corresponding gain w.r.t.
the solving of the original system. The time limit has been set to 3600 sec-
onds. The tables also report the number of generated boxes (#Boxes) during
the search. This corresponds to the number of nodes in the tree search and
highlights the additional pruning due to I-CSE. The precision of solutions has
been set to 10−8 for all the benchmarks. The parameter used by HC4 has been
set to 1% in Table 3. The parameters used by HC4 and 3BCID have been set to
3 www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html
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Table 2. Selected benchmarks. The columns yield the name of the benchmark, the
number of solutions (#s), the number of variables (n), the number of useful CSs (#cs)
found by I-CSE-B, I-CSE-NC, I-CSE, the number of redundant constraints created by
I-CSE due to conflictive CSs (#rc).

Benchmark I-CSE-B ICSE-NC I-CSE Benchmark I-CSE-B ICSE-NC I-CSE
#s n #cs #cs #cs #rc #s n #cs #cs #cs #rc

6body 5 6 2 3 3 0 Katsura-20 7 21 90 90 90 0
Bellido 8 9 0 1 1 0 Kin1 16 6 13 13 19 3
Brown-7 3 7 3 7 21 24 Pramanik 2 8 0 15 15 0
Brown-7* 3 7 3 1 1 0 Prolog 0 21 0 7 7 0
Brown-30 2 30 26 53 435 783 Rose 16 3 5 5 5 0
BroyBand-20 1 20 22 37 97 73 Trigexp1-30 1 30 29 29 29 0
BroyBand-100 1 100 102 119 479 473 Trigexp1-50 1 50 49 49 49 0
Caprasse 18 4 6 7 11 2 Trigexp2-11 0 11 15 15 15 0
Design 1 9 3 3 3 0 Trigexp2-19 0 19 27 27 27 0
Dis-Integral-6 1 6 4 6 18 9 Trigonom-5 2 5 7 9 20 14
Dis-Integral-20 3 20 18 34 207 171 Trigonom-5* 2 5 7 6 6 0
Eco9 16 8 0 3 7 1 Trigonom-10 24 10 15 15 26 15
EqCombustion 4 5 7 8 11 1 Trigonom-10* 24 10 15 12 12 0
ExtendWood-4 3 4 2 2 2 0 Yamamura-8 7 8 5 10 36 48
Geneig 10 6 11 14 14 0 Yamamura-8* 7 8 5 1 1 0
Hayes 1 8 9 8 8 0 Yamamura-12 9 12 9 18 78 119
I5 30 10 3 4 10 5 Yamamura-12* 9 12 9 1 1 0
Katsura-19 5 20 81 81 81 0 Yamamura-16 9 16 13 26 136 224

Table 3. Results obtained with HC4 and interval Newton

Benchmark Time in second Time(Init) / Time #Boxes
Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE

EqCombustion >3600 26.1 0.35 0.14 >137 >10000 >25000 >1e+08 3967 1095
Rose >3600 500 101 101 >7.2 >35 >35 >3e+07 865099 865099
Hayes 141 51.9 15.7 15.7 2.7 9 9 550489 44563 44563
6-body 0.22 0.07 0.07 0.07 3.1 3.1 3.1 4985 495 495
Design 176 65.2 63.2 63.2 2.7 2.8 2.8 425153 122851 122851
I5 >3600 >3600 1534 1565 ? >2.3 >2.3 >3e+07 7e+06 7e+06
Geneig 3323 2910 2722 2722 1.14 1.22 1.22 7e+08 4e+08 4e+08
Kin1 8.52 8.32 8.32 8.01 1.02 1.02 1.06 905 909 905
Pramanik 89.3 92.1 84.9 84.9 0.97 1.05 1.05 487255 378879 378879
Bellido 15.7 15.9 15.6 15.6 0.99 1.01 1.01 29759 29319 29319
Eco9 23.9 23.9 24 24.1 1.00 1.00 0.99 126047 117075 110885
Caprasse 1.56 1.81 1.68 2.16 0.86 0.93 0.72 8521 7793 7491
Brown-7* 500 350 0.01 0.01 1.42 49500 49500 6e+06 95 95
Dis-Integral-6 201 0.46 1.3 0.03 437 155 6700 653035 4157 47
ExtendWood-4 29.9 0.03 0.03 0.03 997 997 997 422705 353 353
Brown-7 500 350 30.7 1.49 1.42 16.1 332 6e+06 258601 3681
Trigexp2-11 1118 208 56.2 56.2 5.38 19.9 19.9 1e+06 316049 316049
Yamamura-8* 13 13.3 0.75 0.75 0.98 17.3 17.3 29615 2161 2161
Broy-Banded-20 778 759 261 58.1 1.03 2.98 13.4 172959 46761 12623
Trigonometric-5* 15.8 12.3 1.49 1.49 1.28 10.6 10.6 10531 1503 1503
Trigonometric-5 15.8 12.3 8.94 6.97 1.28 1.77 2.27 10531 7369 5307
Yamamura-8 13 13.3 44.6 10.8 0.98 0.3 1.20 29615 115211 13211
Katsura-19 1430 1583 1583 1583 0.90 0.90 0.90 145839 153193 153193
Trigexp1-30 2465 3244 3244 3244 0.76 0.76 0.76 1e+07 1e+07 1e+07

10% in Table 4. We have put at the end of both tables the results correspond-
ing to scalable benchmarks. To return a fair comparison between algorithms,
we have selected for the scalable systems the instance with the largest number
of variables n such that the solver on the original system finds the solutions in less



Exploiting Common Subexpressions in Numerical CSPs 355

Table 4. Results obtained with 3BCID using HC4 and interval Newton

Benchmark Time in second Time(Init) / Time #Boxes
Init ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Init ICSE-NC I-CSE

Rose 2882 5.17 4.04 4.04 557 713 713 4e+06 5711 5711
Prolog 38.5 60 0.14 0.14 0.64 275 275 4647 11 11
EqCombustion 0.42 0.37 0.06 0.06 1.35 7 7 427 23 23
Hayes 32.6 27.2 5.67 5.67 1.13 5.7 5.7 17455 1675 1675
Design 52 17.9 13.3 13.3 2.9 3.9 3.9 16359 4401 4401
I5 33.5 41.1 17.9 17.8 0.81 1.9 1.9 10619 4387 4281
6-body 0.14 0.08 0.1 0.1 1.75 1.4 1.4 173 51 51
Kin1 1.66 2.66 1.76 1.23 0.62 0.94 1.35 85 161 197
Bellido 10.3 10.4 9.98 9.98 1 1.03 1.03 4487 4341 4341
Eco9 11.6 11.6 12.4 13.2 1 0.94 0.88 6205 6045 5749
Pramanik 73.8 114 96.8 96.8 0.65 0.76 0.76 124663 95305 95305
Caprasse 1.96 2.51 2.5 2.92 0.74 0.78 0.67 1285 1311 1219
Geneig 696 1050 1050 1050 0.66 0.66 0.66 362225 362045 362045
Trigexp2-19 2308 2.23 0.03 0.03 1035 77000 77000 250178 7 7
Brown-7* 600 318 0.01 0.01 1.88 60000 60000 662415 9 9
ExtendWood-4 185 0.03 0.03 0.03 6167 6167 6167 669485 35 35
Dis-Integral-6 135 0.18 0.51 0.03 750 264 4500 86487 185 7
Brown-7 600 318 4.75 0.22 1.88 126 2700 662415 2035 23
Yamamura-12* 1751 1842 1.01 1.01 0.95 1700 1700 364105 307 307
Yamamura-12 1751 1842 31.1 8.72 0.95 56.3 200 364105 5647 445
Trigonometric-10* 1344 506 19.4 19.4 2.67 69 69 140512 2033 2033
Trigonometric-10 1344 506 156 49.6 2.67 8.62 27 140512 19883 3339
Broy-Banded-100 9.96 20.3 14.8 8.21 0.49 0.67 1.21 13 23 11
Trigexp1-50 0.15 0.19 0.17 0.17 0.79 0.88 0.88 1 1 1
Katsura20 3457 5919 5919 5919 0.58 0.58 0.58 62451 120929 120929
Brown-30 >3600 >3600 >3600 22.9 ? ? >150 >210021 >151527 31
Dis-Integral-20 >3600 >3600 >3600 1.12 ? ? >3200 >111512 >75640 39
Yamamura-16 >3600 >3600 681 35.6 ? >5 >100 >522300 96341 919

than one hour. This number n is greater with 3BCID (Table 4) than with only
HC4 (Table 3) because 3BCID is generally more efficient than HC4.

Tables 3 and 4 clearly highlight that I-CSE is very interesting in practice.
We observe a gain in performance greater than a factor 2 on 15 among the
24 lines (on both tables). The gain is of two orders of magnitude (or more)
for 5 benchmarks with HC4 (corresponding to 4 different systems) and for 10
benchmarks with 3BCID (corresponding to 8 different systems).

I-CSE clearly outperforms the variants extracting fewer useful CSs, as shown
on Table 3 (see Brown-7, Dis-Integral-6, Broyden-Banded-20) and Table 4
(see Brown-7, Dis-Integral-6, Yamamura-12, Trigonometric-10). In these
cases, the gains in CPU time are significant. They are sometimes of several or-
ders of magnitude. The few exceptions for which I-CSE is worse than its simpler
variants give only a slight advantage to I-CSE-NC or I-CSE-B.

The number of boxes is generally decreasing from the left to the right of
tables. This confirms our theoretical analysis that expects gains in filtering when
a system has additional equations due to CSs. This experimentally proves that
exploiting conflictive CSs is useful. This confirms an intuition shared by a lot
of practitioners of partial consistency algorithms that redundant constraints are
often useful because they allow a better pruning effect [10]. Benchmarks like
Brown-30, Dis-Integral-20 and Yamamura-16, have been added at the end of
Table 4 to highlight this trend: I-CSE produces a gain in performance of 3 orders
of magnitude while it adds hundreds of redundant equations.
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Most of the obtained results are good or very good, but four benchmarks
observe a loss of performance lying between 20% and 42%: Caprasse with both
strategies, and Pramanik, Geneig, Katsura with 3BCID. The loss in performance
observed for Katsura-20 (10% or 42% according to the strategy) is due to the
domains of the variables that are initialized to [0,1]. Without detailing, such
domains imply that the pruning in the search tree is due to the evaluation
(bottom-up) phase and not to the (top-down) narrowing phase of HC4-revise.

7 Conclusion

This paper has presented the algorithm I-CSE for exploiting common subexpres-
sions in numerical CSPs. A theoretical analysis has shown that gains in filtering
can only be expected when CSs do not correspond to monotonic and continuous
operators like x3 or log. Contrarily to a belief in the community, this means that
CSs can bring significant gains in filtering/contraction, and not only a decrease
in the number of operations. These are good news for the significance of this line
of research.

Experiments have been performed on 40 benchmarks among which 24 con-
tain CSs. Significant gains of one or several orders of magnitude have been
observed on 10 of them. I-CSE differs from existing CSEs in that it also detects
conflictive CSs. As compared to I-CSE-NC (similar to existing CSEs), the addi-
tional contraction involved by the corresponding redundant equations leads to
improvements of one or several orders of magnitude on 4 benchmarks (Brown,
Dis-Integral, Yamamura and, only for HC4, BroyBanded).

A future work is to compare our implementation based on the standard HC4
algorithm (and the management of two systems), with the sophisticated prop-
agation algorithm carried out on the elegant DAG-based structure proposed by
Vu, Schichl and Sam-Haroud. However, our experimental results have under-
lined that the gain in contraction has a greater impact on efficiency than the
time required to reach the fixed-point of propagation. Thus, we suspect that
both implementations will show similar performances.
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13. Lhomme, O.: Consistency Tech. for Numeric CSPs. In: IJCAI, pp. 232–238 (1993)
14. Merlet, J.-P.: ALIAS: An Algorithms Library for Interval Analysis for Equation

Systems. Technical report, INRIA Sophia (2000),
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html

15. Merlet, J.-P.: Interval Analysis and Robotics. In: Symp. of Robotics Research
(2007)

16. Muchnick, S.: Advanced Compiler Design and Implem. M. Kauffmann (1997)
17. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University

Press, Cambridge (1990)
18. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global

optimization. Journal of Global Optimization 33(4), 541–562 (2005)
19. Trombettoni, G., Chabert, G.: Constructive Interval Disjunction. In: Bessière, C.

(ed.) CP 2007. LNCS, vol. 4741, pp. 635–650. Springer, Heidelberg (2007)
20. Vu, X.-H., Schichl, H., Sam-Haroud, D.: Using Directed Acyclic Graphs to Coordi-

nate Propagation and Search for Numerical Constraint Satisfaction Problems. In:
Proc. ICTAI 2004, pp. 72–81. IEEE, Los Alamitos (2004)

http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS.html


A Soft Constraint of Equality:

Complexity and Approximability�

Emmanuel Hebrard, Barry O’Sullivan, and Igor Razgon

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{e.hebrard,b.osullivan,i.razgon}@4c.ucc.ie

Abstract. We introduce the SoftAllEqual global constraint, which
maximizes the number of equalities holding between pairs of assignments
to a set of variables. We study the computational complexity of prop-
agating this constraint, showing that it is intractable in general, since
maximizing the number of pairs of equally assigned variables in a set is
NP-hard. We propose three ways of coping with NP-hardness. Firstly,
we develop a greedy linear-time algorithm to approximate the maximum
number of equalities within a factor of 2. Secondly, we identify a tractable
(polynomial) class for this constraint. Thirdly, we identify a parameter
based on this class and show that the SoftAllEqual constraint is fixed-
parameter tractable with respect to this parameter.

1 Introduction

Constraints for reasoning on the number of differences within a set of variables
are ubiquitous in constraint programming. One of the most commonly used
global constraints is the AllDifferent constraint [11], which enforces that all
variables take pair-wise different values. Petit et al. have introduced a soft ver-
sion of the AllDifferent constraint, SoftAllDiff [10]. They proposed two
types of costs, which are to be minimized: graph- and variable-based costs (see
Definitions 1 and 2). The former counts the number of equalities, whilst the
latter counts the number of variables violating an AllDifferent constraint.
The algorithms for filtering these two constraints, introduced in the same paper,
were then improved by Hoeve et al. [15]. In both cases the constraint can be rep-
resented as a flow problem, leading to polynomial time algorithms for achieving
generalised arc consistency.

Another closely related constraint dealing with equalities between variables,
AtMostNValue, received some attention recently. Achieving bounds consis-
tency on this constraint can be done in polynomial time [2] whilst achieving
GAC is NP-hard [3]. This latter constraint ensures that no more than k dis-
tinct values are assigned to a set of n variables. It is therefore the dual of
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Table 1. Complexity of optimizing inequalities

Minimizing Cost Maximizing Cost

Variable Cost O(n
√

m) NP-hard
Graph Cost O(nm) ?

SoftAllDiff for the variable-based cost, i.e. an assignment with k distinct
values among n variables violates AllDifferent on n−k variables. To impose
a cost of k for AtMostNValue is thus equivalent to imposing a cost of n− k
for SoftAllDiff.

The complexities of minimizing both variable- and graph-based costs, as well
as maximizing the variable-based cost, for SoftAllDiff are known. However,
the complexity of maximizing the graph-based cost (i.e. maximizing the num-
ber of pairs of variables assigned with the same value) is still an open problem.
Table 1 summarizes the known results for these constraints. Interestingly, whereas
minimizing this cost can be mapped to a flow problem and therefore solved in poly-
nomial time, maximizing it does not correspond in a straightforward way to any
known problem. In this paper, we fill this gap by providing a number of algorithmic
results on the problem of maximizing the number of pair-wise equalities amongst
a set of variables. We first show that this problem is NP-hard in general, then we
introduce an approximation algorithm, a tractable class and a fixed parameter
tractable algorithm.

We call SoftAllEqualG the global constraint defined with the same graph-
based cost as SoftAllDiff, albeit where this cost is to be maximized instead
of minimized. This constraint has many applications. For instance, consider the
problem of scheduling a number of meetings so that every person attends ex-
actly one meeting, and the number of interactions is to be maximized. Each
person is assigned to a timeslot, and two people interact only if they attend the
same meeting, i.e., are assigned the same value. This can be modelled using a
single SoftAllEqualG constraint. As another example, consider a map color-
ing problem where we want each continent to be colored as homogeneously as
possible. One could post, besides inequalities corresponding to borders, as many
SoftAllEqualG constraints as continents, ensuring that whilst neighboring
countries are distinguishable, continents also appear as entities.

However, the original motivation for this work comes from our desire to for-
mulate the problem of finding sets of similar and diverse solutions to CSPs as
a constraint optimization problem. Similarity and diversity play fundamental
roles in theories of knowledge and behaviour [14]. Reasoning about the distance
between solutions is an important problem in artificial intelligence [1,4,7,8,13].
For example, in belief update one might wish to minimize Hamming distance
between states [5], in case-based reasoning one often seeks solutions to similar
problems while achieving diversity amongst the alternatives [13], in preference-
based search one may express preferences in terms of a set of ideal or non-ideal
solutions [8]. For instance, let P1, . . . ,Pm, be m CSPs with the same number
of variables n. In [7] the diversity of a set of solutions was defined as the sum
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sol1:

solm:

Fig. 1. Finding diverse solutions as a CSP

of the Hamming distances between each pair of solutions. Let kDifferences(M)
be the number of pairs of distinct elements in the multiset M . The previously
defined diversity of a set of solutions {sol1, . . . , solm} is equivalent to the sum
of kDifferences({sol1[i], . . . , solm[i]}) over all indices 1 ≤ i ≤ n, as illustrated in
Figure 1. When either minimizing or maximizing this sum, achieving GAC on
each number of differences (kDifferences) is enough to obtain GAC on the whole,
since the hypergraph is Berge-acyclic. The complexity of computing lower and
upper bounds for the number of differences on variables is, therefore, key to this
problem.

Our contribution in this paper is to present an indepth study of the complex-
ity of SoftAllEqualG. While achieving generalized arc consistency on the
SoftAllDiff constraint is known to be polynomial, the complexity of filter-
ing the SoftAllEqualG constraint is more intriguing. In Section 3, we show
that SoftAllEqualG is intractable in general, since maximizing the number
of pairs of equally assigned variables in a set is NP-complete. We propose three
ways of coping with NP-hardness. Firstly, in Section 4, we show that a natural
greedy algorithm approximates the maximum number of equalities within a fac-
tor of 2, and that its complexity can be brought down to linear time. Secondly, in
Section 5, we identify a polynomial class for this constraint. Thirdly, in Section 6,
we identify a parameter based on this class and show that the SoftAllEqualG

constraint is fixed-parameter tractable with respect to this parameter.

2 Formal Background

Constraint Satisfaction. A constraint satisfaction problem (CSP) is a triplet
P = (X ,D, C) where X is a set of variables, D a mapping of variables to sets
of values and C a set of constraints that specify allowed combinations of values
for subsets of variables. A constraint C ∈ C is generalized arc consistent (gac)
iff, when a variable in the scope of C is assigned any value, there exists an
assignment of the other variables in C such that C is satisfied. This satisfying
assignment is called a support for the value. Given a CSP P = (X ,D, C), we shall
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use the following notation throughout the paper: n shall denote the number of
variables, i.e., n = |X |; m shall denote the number of distinct unary assignments,
i.e., m =

∑
X∈X |D(X)|; λ shall denote the total number of distinct values, i.e.,

λ = |
⋃

X∈X D(X)|.

Soft Global Constraints. Adding a cost variable to a constraint to represent
its degree of violation is now common practice in constraint programming. This
model was introduced in [12]. It offers the advantage of unifying hard and soft
constraints since generalized arc consistency, along with other types of consisten-
cies, can be applied to such constraints with no extra effort. As a consequence,
classical constraint solvers can solve over-constrained problems modelled in this
way without modification. This approach was refined and applied to a number
of other constraints in [15].

Two natural cost measures have been explored for the AllDifferent and for
a number of other constraints. The variable-based cost counts how many variables
need to change in order to obtain a valid assignment of the hard constraint. The
graph-based cost counts how many times a component of a decomposition of
the constraint is violated. Typically these components correspond to edges of a
decomposition graph, e.g. for an AllDifferent constraint, the decomposition
graph is a clique and an edge is violated if and only if both variables connected
by this edge share the same value (see Definitions 1 and 2). The SoftAllDiff

constraint was, thus, given the following definitions in [10]:

Definition 1 (SoftAllDiffV – variable-based cost)

SoftAllDiffV ({X1, ..Xn}, N)⇔ N ≥ n− |{v | Xi = v}|.

Definition 2 (SoftAllDiffG – graph-based cost)

SoftAllDiffG({X1, ..Xn}, N)⇔ N ≥ |{{i, j} | Xi = Xj & i �= j}|.

Consider each of the violation costs for the following two solutions of a CSP
involving four variables X1, . . . , X4 each with domain {a, b}:

S1 : X1 = a,X2 = b,X3 = a,X4 = b

S2 : X1 = a,X2 = b,X3 = b,X4 = b

In both solutions, at least two variables need to change (for example X3 and X4)
to obtain a valid solution. Therefore, the variable-based cost is two for S1 and
S2. However, in S1 only two edges are violated {X1, X3} and {X2, X4} whilst in
S2, three edges are violated {X2, X3}, {X2, X4} and {X3, X4}. Therefore, the
graph-based cost of S1 is two whereas it is three for S2.

Parameterized Complexity. We shall use the notion of parameterized com-
plexity in the last section of this paper. For a comprehensive introduction the
reader is referred to [9]. Given a problem A, a parameterized version of A is
obtained by specifying a parameter of this problem and getting as additional
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input a non-negative integer k which restricts the value of this parameter. The
resulting parameterized problem 〈A, k〉 is fixed-parameter tractable (FPT) with
respect to k if it can be solved in time f(k) ∗ nO(1), where f(k) is a function
depending only on k.

3 The SoftAllEqual Constraint

We define the constraint that we study in this paper, SoftAllEqualG, by
reversing the graph-based cost of the SoftAllDiff constraint (Definition 2).

Definition 3 (SoftAllEqualG – dual of SoftAllDiffG)

SoftAllEqualG({X1, ..Xn}, N)⇔ N ≤ |{{i, j} | Xi = Xj & i �= j}|.

Interestingly, the same inversion of the definition for the variable-based cost
of SoftAllDiff leads to the AtMostNValue constraint [2]. The focus of
this paper, however, is on the graph-based cost. We first show that solving a
CSP with the SoftAllEqualG constraint is intractable using a reduction from
3dMatching [6].

Definition 4 (3dMatching)
Data: An integer K, three disjoint sets X,Y, Z, and T ⊆ X × Y × Z.
Question: Does there exist M ⊆ T such that |M | ≥ K and ∀m1,m2 ∈ M, ∀i ∈
{1, 2, 3}, m1[i] �= m2[i].

Theorem 1 (The Complexity of SoftAllEqualG). Finding a satisfying
assignment for the SoftAllEqualG constraint is NP-complete even if no value
appears in more than three domains.

Proof. The problem is clearly in NP: checking the number of equalities in an
assignment can be done in O(n2) time.

We use a reduction from 3dMatching to show completeness. Let P=(X,Y, Z,
T,K) be an instance of 3dMatching, where: K is an integer; X,Y, Z are three
disjoint sets such that X ∪ Y ∪ Z = {x1, . . . xn}; and T = {t1, . . . tm} is a set of
triplets over X×Y ×Z. We build an instance I of SoftAllEqualG as follows:

1. Let n = |X |+ |Y |+ |Z|, we build n variables {X1, . . . , Xn}.
2. For each tl = 〈xi, xj , xk〉 ∈ T , we have l ∈ D(Xi), l ∈ D(Xj) and l ∈ D(Xk).
3. For each pair (i, j) such that 1 ≤ i < j ≤ n, we put the value (|T |+ (i− 1) ∗

n + j) in both D(Xi) and D(Xj).

We show there exists a matching of P of size K if and only if there exists
a solution of I with � 3K+n

2 � equalities. We refer to “a matching of P” and
to a “solution of I” as “a matching” and “a solution” throughout this proof,
respectively.

⇒: We show that if there exists a matching of cardinality K then there exists a
solution with at least � 3K+n

2 � equalities. Let M be a matching of cardinality K.
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We build a solution as follows. For all tl = 〈xi, xj , xk〉 ∈M we assign Xi, Xj and
Xk to l (2). Observe that there remain exactly n−3K unassigned variables after
this process. We pick an arbitrary pair of unassigned variables and assign them
with their common value (3), until at most one variable is left (if one variable is
left we assign it to an arbitrary value). Therefore, the solution obtained in this
way has exactly � 3K+n

2 � equalities, 3K from the variables corresponding to the
matching and �n−3K

2 � for the remaining variables.

⇐: We show that if the cardinality of the maximal matching is K, then there is
no solution with more than � 3K+n

2 � equalities. Let S be a solution. Furthermore,
let L be the number of values appearing three times in S. Observe that this set
of values corresponds to a matching. Indeed, a value l appears in three domains
D(Xi),D(Xj) and D(Xk) if and only if there exists a triplet tl = 〈xi, xj , xk〉 ∈ T
(2). Since a variable can only be assigned to a single value, the values appearing
three times in a solution form a matching. Moreover, since no value appears in
more than three domains, all other values can appear at most twice. Hence the
number of equalities in S is less than or equal to � 3L+n

2 �, where L is the size of
a matching. It follows that if there is no matching of cardinality greater than K,
there is no solution with more than � 3K+n

2 � equalities. ��

It is worth noting that if one similarly reverses the alternative, variable-based,
cost of SoftAllDiff, the result corresponds to the AtMostNValue con-
straint. Interestingly, this is not equivalent to applying the variable-based cost
on a constraint AllEqual. For instance, consider n variables X1, . . . , Xn and
suppose that half are assigned to a whilst the other half are assigned to b. One
needs to change n/2 variables in order to make them all equal, and n − 2 to
make them all different. In this paper we consider only the costs as defined for
SoftAllDiff in [10], when reasoning about both lower an upper bounds. On
the other hand, the graph-based cost on AllEqual is indeed equivalent to the
opposite of SoftAllDiffG.

4 Approximation Algorithm

In this section and in the rest of the paper we consider the optimization version
of SoftAllEqualG where the objective is to maximize the number of pairs of
variables assigned with the same value. We first study a natural greedy algorithm
for approximating the maximum number of equalities in a set of variables. This
algorithm picks the value that occurs in the largest number of domains, and
assigns as many variables as possible to this value (this can be achieved in
O(m)). Then it recursively repeats the process on the resulting sub-problem until
all variables are assigned (at most O(n) times). We show that this algorithms
approximates the maximum number of equalities with a factor 2 in the worst
case. Moreover, we it can be implemented to run in in linear amortized time
(that is, O(m)) by using the following data structures:
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– var : Λ #→ 2X maps every value v to the set of variables whose domains
contain v.

– val : N #→ 2Λ maps every integer i ∈ [0..n] to the set of values appearing in
exactly i domains.

These data structures are initialized in Lines 1 and 2 of Algorithm 1, respectively.

Algorithm 1. GreedyValue
Data: A set of variables X
Result: Lower bound on the maximum number of equalities
var(v) ← ∅, ∀v ∈

S
X∈X D(X);1

foreach X ∈ X do
foreach v ∈ D(X) do

add X to var(v);

val(k) ← ∅, ∀k ∈ [0..|X |];2

foreach v ∈
S

X∈X D(X) do
add v to val(|var(v)|);

return AssignAndRecurse(var, val, |X |);

Algorithm 2. AssignAndRecurse
Data: a mapping var : Λ �→ 2X , a mapping val : N �→ 2Λ, an integer k;
while val(k) = ∅ do k ← k − 1;1

if k ≤ 1 then
return 0;

else
pick and remove any v ∈ val(k);2

foreach X ∈ var(v) do3

foreach w 
= v ∈ D(X) do
occw ← |var(w)|;
remove w from val(occw);
add w to val(occw − 1);
assign X with w and remove X from var(w);4

return k(k−1)
2

+AssignAndRecurse(var, val, k);

The above algorithm returns the number of pairs of equal values of an assign-
ment of the given CSP, which is constructed on Line 4.

Theorem 2 (Algorithm Correctness). The algorithm GreedyValue approx-
imates the optimal satisfying assignment of the SoftAllEqualG constraint
within a factor of 2 and runs in O(m).

Proof. We first prove the correctness of the approximation ratio, the soundness
of the algorithm and then the complexity of the algorithm.
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Approximation Factor. We proceed using induction on n. Let lb be the value re-
turned by GreedyValue and let eq∗ be the maximum possible number of equal-
ities. We denote P (n) the proposition “If there are no more than n values in
the union of the domains of X , then lb ≥ eq∗/2”. P (1) implies that every vari-
able can all be assigned to a unique value v. Algorithm GreedyValue therefore
chooses this value and assigns all variables to it. In this case lb = eq∗.

Now we suppose that P (n) holds and we show that P (n + 1) also holds. Let
X be a set of variables such that |

⋃
X∈X D(X)| = n + 1 and let v be the first

value chosen by GreedyValue. We denote by Xv = {X ∈ X | v �∈ D(X)} the set
of variables whose domains do not contain v, X̄v = X \ Xv the complementary
set of variables assigned to v and we let k = |X̄v|. We denote eq∗v the maximal
number of equalities on the set of variables Xv, that is where both variables in
the equality belong to Xv. Consider any variable X ∈ X̄v. Given any value w in
D(X), there are no more than k variables in X containing w. Indeed, v was chosen
for maximizing this criterion and belongs to the domains of exactly k variables.
Therefore, the total number of equalities involving at least one variable in X̄v is
at most k(k−1), since there are k variables in X̄v and each can only be involved
in k − 1 equalities. Since an equality either involves at least one variable X̄v, or
none of them, we can bound the maximal total number of equalities as follows:

eq∗ ≤ k(k − 1) + eq∗v .

Now, observe that the total number of values in Xv is less than or equal to n
since every variable whose domain contains v is in X̄v. Since we suppose that
P (n) holds, we know that the value returned by GreedyValue for X̄v is greater
than or equal to eq∗v/2. Hence the value returned for X is greater than or equal
to k(k − 1)/2 + eq∗v/2. We can therefore conclude that lb ≥ eq∗/2 and hence
P (n + 1) is true.

Correctness. Here we show that the mapping var and val are correctly updated
in a call to AssignAndRecurse. Let X be the set of variables given as initial input
of GreedyValue. We define XV , as the set of variables remaining after greedily
choosing and assigning the set of values V . (XV = {X |X ∈ X &D(X)∩V = ∅}).
We say that val and var are correct for XV iff both of the following invariants
hold:

∀v ∈
⋃

X∈XV

D(X), var(v) = {X | v ∈ D(X)} (1)

∀k ∈ [1..n], val(k) = {v | k = |var(v)|} (2)

This is clearly the case after the initialisation phase. Now we suppose that it
is the case at the ith call to AssignAndRecurse and we show that it still holds
at the (i + 1)th call. We assume that value w is chosen in Line 2.

We suppose first that invariant 1 does not hold. That is, there exists X ∈ XV , v
such that either v ∈ D(X) and X �∈ var(v) or v �∈ D(X) and X ∈ var(v). The
latter case is not possible since we only remove values from var(v). The former
case can only arise if X was removed from var(v) in AssignAndRecurse (Line 4).
However this can only happen if X ∈ var(w), hence X �∈ XV ∪{w}.
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Then we suppose that invariant 2 does not hold, i.e., there exists k, v such
that either v ∈ val(k) and k �= |var(v)| or v �∈ val(k) and k = |var(v)|. However,
the cardinality k of var(v) can only decrease by one at Line 4, and in that case
v is removed from val(k) and added to val(k − 1).

Complexity. The mapping var is in O(m) space, and val is in O(λ), where λ
denotes the number of distinct values. Initialising both mappings is done in
linear time since exactly one element is added to either val or var at every
step. Hence the initialisation is in O(m) + O(λ) time, i.e., O(m). In Line 1 in
AssignAndRecurse, k can be decremented at most n times in total. In Loop 3,
every iteration remove exactly one element in var, the amortised time complexity
for this loop therefore is O(m). The overall time complexity is thus O(m). ��

Theorem 3 (Tightness of the Approximation Ratio). The approximation
factor of 2 for GreedyValue is tight.

Proof. Let {X1, . . . X4} be a set of four variables with domains as follows:

X1 ∈ {a}; X2 ∈ {b}; X3 ∈ {a, c}; X4 ∈ {b, c}.

Every value appears in exactly two domains, hence GreedyValue can choose
any value. We suppose that the value c is chosen first. At this point no other
value can contribute to an equality, hence GreedyValue returns 1. However, it
is possible to achieve two equalities with the following solution: X1 = a, X3 =
a, X2 = b, X4 = b. ��

5 Tractable Class

In this section we explore further the connection between the SoftAllEqualG

constraint and vertex matching. We showed earlier that the general case was
linked to 3dMatching. We now show that the particular case where no value
appears in more than two domains solving the SoftAllEqualG constraint is
equivalent to the vertex matching problem on general graphs, and therefore can
be solved by a polynomial time algorithm. We shall then use this tractable class
to show that SoftAllEqualG is NP-hard only if an unbounded number of
values appear in more than two domains.

Definition 5 (The VertexMatching Problem)
Data: An integer K, an undirected graph G = (V,E).
Question: Does there exist M ⊆ E such that |M | ≥ K and ∀e1, e2 ∈M , e1 and
e2 do not share a vertex.

Theorem 4 (Tractable Class of SoftAllEqualG). If all triplets of vari-
ables X,Y, Z ∈ X are such that D(X)∩D(Y )∩D(Z) = ∅ then finding an optimal
satisfying assignment to SoftAllEqualG is in P .

Proof. In order to solve this problem, we build a graph G = (V,E) with a vertex
xi for each variable Xi ∈ X , that is, V = {xi | Xi ∈ X}. Then for each pair
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{i, j} such that D(Xi) ∩ D(Xj) �= ∅, we create an undirected edge {i, j}; let
E = {{i, j} | i �= j & D(Xi) ∩ D(Xj) �= ∅}.

We first show that if there exists a matching of cardinality K, then there exists
a solution with at least K equalities. Let M be a matching of cardinality K of G,
for each edge e = (i, j) ∈M we assign Xi and Xj to any value v ∈ D(Xi)∩D(Xj)
(by construction, we know that there exists such a value). Observe that no
variable is counted twice since it would mean that two edges of the matching have
a common vertex. The obtained solution therefore has at least |M | equalities.

Now we show that if there are K equalities in S, then there exists a matching of
cardinality K. Let S be a solution, and let M = {{i, j} | S[Xi] = S[Xj]}. Observe
that M is a matching of G. Indeed, suppose that two edges sharing a vertex (say
{i, j}, {j, k}) are both in M . It follows that S[Xi] = S[Xj] = S[Xk], however this
is in contradiction with the hypothesis. We can therefore compute a solution S
maximizing the number of equalities by computing a maximal matching in G.

��

This tractable class can be generalized by restricting the number of occurrences
of values in the domains of variables. The notion of heavy values is key to this
result.

Definition 6 (Heavy Value). A heavy value is a value that occurs more than
twice in the domains of the variables of the problem.

Theorem 5 (Tractable Class with Heavy Values). If the domain D(Xi)
of each variable Xi contains at most one heavy value then finding an optimal
satisfying assignment of SoftAllEqualG is in P .

Proof. Consider a two stage algorithm. In the first stage it explores all values
w that have three or more appearances and assigns w to all the variables whose
domains contain it. Notice that no variable will be assigned with two values.
In the second stage the CSP created by the domains of unassigned variables
consists of only values having at most two occurrences, so we solve this CSP by
transforming it to the matching problem as suggested in the proof of Theorem 4.

We show that there exists an optimal solution where each variable that can
be assigned to an heavy value is assigned to this value. Let s∗ be an optimal
solution and w be an heavy value over a set T of variables of cardinality t.
We suppose that only z < t of them are assigned to w in s∗. Consider the
solution s′ obtained by assigning all these t variables to w: we add exactly
t(t−1)/2−z(z−1)/2 equalities. However, we potentially remove t−z equalities
since values other than w do not appear more than twice. We therefore have
obj(s′)− obj(s∗) ≥ t2 − 3t− z2 + 3z, which is non-negative for t ≥ 3 and z < t.
By iteratively applying this transformation, we obtain an optimal solution where
each variable that can be assigned to an heavy value is assigned to this value.
The first stage of the algorithm is thus correct. The second stage is correct by
Theorem 4. ��
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6 Parameterized Complexity

We further advance our analysis of the complexity of the SoftAllEqualG con-
straint by introducing a fixed-parameter tractable (FPT) algorithm with respect
to the number of values. This result is important because it shows that the com-
plexity of propagating this constraint grows only polynomially in the number of
variables. It may therefore be possible to achieve gac at a reasonable computa-
tional cost even for a very large set of variables, providing that the total number
of distinct values is relatively small.

We first show that the SoftAllEqualG problem is FPT with respect to
the number of values λ. We use the tractable class introduced in the previous
section to generalize this result, showing that the problem is FPT with respect to
the number of heavy values occurring in domains containing two or more heavy
values. We begin with a definition.

Definition 7 (Solution from a Total Order). A solution s≺ is induced by
a total order ≺ over the values if and only if

s[X ] = v ⇒ ∀w ≺ v, w �∈ D(X).

We now prove the following key lemma.

Lemma 1. Let s∗ be an optimal solution, v be a value, and occ(s∗, v) be the
number of variables assigned to v in s∗. Moreover, let ≺occ be a total order
such that values are ranked by decreasing number of occurrences (ties are broken
arbitrarily). We claim that ≺occ induces s∗.

Proof. Consider, without loss of generality, a pair of values v, w such that v ≺occ

w. By definition we have occ(s∗, v) ≥ occ(s∗, w). We suppose that the hypothesis
is falsified and show that this leads to a contradiction. Suppose that there exists
a variable X such that {v, w} ⊆ D(X) and s∗[X ] = w (that is, ≺occ does not
induce s∗). The objective value of the solution s′ such that s′[X ] = v and s′[Y ] =
s∗[Y ] ∀y �= x is given by: obj(s′) = obj(s∗)+occ(s∗, v)−(occ(s∗, w)−1).Therefore,
obj(s′) > obj(s∗). However, s∗ is optimal, hence this is a contradiction. ��

This lemma has two interesting consequences. The first consequence is expressed
by the following corollary.

Corollary 1. There exists a total order ≺ over the set of values, such that the
solution s≺ induced by ≺ is optimal.

Proof. Direct consequence of Lemma 1.

The fixed-parameter tractability of the SoftAllEqualG constraint follows eas-
ily from Corollary 1.

Theorem 6 (FPT – number of values). Finding an optimal satisfying as-
signment of the SoftAllEqualG constraint is fixed-parameter tractable with
respect to λ, the number of values in the domains of the constrained variables.
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Proof. Explore all possible λ! permutations of values. For each permutation cre-
ate a solution induced by this permutation. Compute the cost of this solution.
Return the solution having the highest cost. According to Corollary 1, this solu-
tion is optimal. Creating an induced solution can be done by selecting for each
domain the first value in the order. Clearly, this can be done in O(m). Com-
puting the cost of the given solution can be done by computing the number of
occurrences occ(w) and then summing up occ(w) ∗ (occ(w) − 1)/2 for all values
w. Clearly, this can be done in O(m) as well. Hence the theorem follows. ��

The second corollary from Lemma 1 is much more surprising.

Corollary 2. The number of optimal solutions of the CSP with the
SoftAllEqualG is at most λ!

Proof. According to Lemma 1, each optimal solution is induced by an order over
the values of the given problem. Clearly each order induces exactly one solution.
Thus the number of optimal solution does not exceed the number of total orders
which is at most λ!. ��

Corollary 2 claims that the number of optimal solutions of the considered prob-
lem does not depend on the number of variables and they all can be explored by
considering all possible orders of values. We believe this fact is interesting from
the practical point of view because in essence it means that even enumerating all
optimal solutions is scalable with respect to the number of variables. Moreover,
we can show that SoftAllEqualG is fixed-parameter tractable with respect
to the number of bad values, defined as follows.

Definition 8 (Bad Value). A value w of a given CSP is a bad value if and
only if it is an heavy value and there is a domain D(X) that contains w and
another heavy value.

Theorem 7 (FPT – number of bad values). Let k be the number of bad
values of a CSP comprising only one SoftAllEqualG constraint. Then the
CSP can be solved in time O(k! ∗ n2 ∗ λ), hence SoftAllEqualG is fixed-
parameter tractable with respect to k.

Proof. Consider all the permutations of the bad values. For each permutation
perform the following two steps. In the first step for each variable X where
there are two or more bad values, remove all the bad values except the one
which is the first in the order among the bad values of D(X) according to
the given permutation. In the second stage we obtain a problem where each
domain contains exactly one heavy value. Solve this problem polynomially by
the algorithm provided in the proof of Theorem 5.

Let s be the solution obtained by this algorithm. We show that this solution is
optimal. Let p∗ be a permutation of all the values of the considered CSP so that
the solution s∗ induced by p∗ has the highest possible cost. By Corollary 1, s∗ is
an optimal solution. Let p1 be the permutation of the bad values which is induced
by p∗ and let s1 be the solution obtained by the above algorithm with respect
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to p1. By definition of s, obj(s) ≥ obj(s1). We show that obj(s1) ≥ obj(s∗) from
which the optimality of s immediately follows.

Observe that there is no X such that s∗[X ] = w and w was removed from
D(X) in the first stage of the above algorithm where the permutation p1 is
considered. Indeed, w can only be removed from D(X) if it is preceded in p1 by
a value v ∈ D(X). It follows that w is also preceded in p∗ by v and consequently
s∗(X) �= w. Thus s∗ is a solution of the CSP obtained as a result of the first stage.
However s1 is an optimal solution of that CSP by Theorem 5 and, consequently,
obj(s1) ≥ obj(s∗) as required. ��

This result shows that the complexity of propagating the SoftAllEqualG con-
straint comes primarily from the number of (bad) values, whereas other factors,
such as the number of variables, have little impact. Observe that the “expo-
nential” part of this algorithm is based on the exploration of all possible orders
over the given set of bad values. In fact the ordering relation between two values
matters only if these values belong to a domain of the same variable. In other
words consider a graph H on values of the given CSP instance. Two values a and
b are connected by an edge if and only if they belong to the domain of the same
variable. Instead of considering all possible orders over the given set of values we
may consider all possible ways of transforming the given graph into an acyclic
digraph. The upper bound on the number of possible transformations is 2E(H)

where E(H) is the number of edges of H . For sparse graphs such a bound is
much more optimistic that k!. For example, if the average degree of a vertex is
4 then the number of considered partial orders is 22k = 4k.

7 Conclusion and Future Work

We showed that achieving gac for the SoftAllEqualG constraint is NP-
complete. Then we introduced a simple linear greedy algorithm and showed
that it approximates the maximum number of pairs of variables that can be
assigned equally within a factor of 2. Moreover, we showed that the hardness of
the problem could be encapsulated by the number of “bad” values, irrespective
of the size of the instance.

We believe one can combine our parameterized and approximation algorithms
in order to design a practical algorithm for solving the SoftAllEqualG con-
straint. Firstly, Theorem 7 allows us to search in the space of permutations of
a subset of values, which is usually much smaller than the space of partial as-
signments. Therefore we can design a branch-and-bound algorithm searching in
the space of permutations. Secondly, we can use our approximation algorithm
to more effectively prune the branches of the search tree. In particular, if the
number of equalities guessed by the approximation algorithm is at most half of
the current upper bound maintained by the branch-and-bound algorithm, then
the algorithm may safely backtrack.

To the best of our knowledge, the problem we are tackling in this paper does
not have a straightforward equivalent formulation in the algorithmic literature.
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We therefore focused on complexity and approximability issues, laying down the-
oretical foundations for future work on this constraint. The design of a filtering
algorithm for SoftAllEqualG, besides the trivial application of the bounds
provided in this paper, is left as a challenge. A very important avenue of research
is to study the complexity of achieving bounds consistency on SoftAllEqualG.
The complexity of SoftAllEqualG when domains are intervals on N is still
open, while bounds consistency on the AtMostNValue constraint can be done
in polynomial time [2]. The problem is equivalent to finding a clique cover of
minimal cardinality for the intersection graph of the domains [3], which is by
definition an interval graph. The restriction of SoftAllEqualG to intervals,
on the other hand, leads to a similar problem, but requiring a clique cover of the
same graph that maximizes the sum of cardinalities of the cliques.
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Structural Tractability of Propagated

Constraints
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Abstract. Modern constraint solvers do not require constraints to be
represented using any particular data structure. Instead, constraints are
given as black boxes known as propagators. Propagators are given a list
of current domains for variables and are allowed to prune values not
consistent with these current domains.

Using propagation as the only primitive operation on constraints im-
poses restrictions on the operations that can be performed in polynomial
time. In the extensional representation of constraints (so-called positive
table constraints) join and project are primitive polynomial-time opera-
tions. This is not true for propagated constraints.

The question we pose in this paper is: If propagation is the only prim-
itive operation, what are the structurally tractable classes of constraint
programs (whose instances can be solved in polynomial time)?

We consider a hierarchy of propagators: arbitrary propagators, whose
only ability is consistency checking; partial assignment membership prop-
agators, which allow us to check partial assignments; and generalised arc
consistency propagators, the strongest form of propagator.

In the first two cases, we answer the posed question by establishing
dichotomies. In the case of generalised arc consistency propagators, we
achieve a useful dichotomy in the restricted case of acyclic structures.

1 Background

Over recent years the research into the constraint satisfaction problem (CSP)
has led to the development of many practically useful general purpose constraint
solvers. Solving a CSP instance, or constraint program, involves assigning values
to variables which are consistent with a set of restrictions, known as constraints.
The identification of tractable classes of CSP instances (solvable in polynomial
time) has become an important and fruitful area of research in the constraint
community. Generally, tractable classes are described by limiting either the inter-
action of the constraints, called a structural restriction, or the type of constraint
allowed, called a relational restriction.

Unfortunately, most of the identified classes [1,2] rely on a somewhat imprac-
tical (positive) extensional representation for the constraints: an explicit rela-
tion, or table, of allowed assignments. In this representation, join and project
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are primitive operations that can be performed in polynomial time. This notion
of primitive operations allows large classes of CSP instances to be structurally
tractable. For example, it is well-known that the class of CSP instances with
acyclic structure is tractable in this representation [3]. Structural decomposi-
tions, such as hypertrees [1], aim to exploit this result, reducing CSP instances
with bounded width to acyclic instances.

The advantage of the extensional representation is that it allows us to readily
specify any constraint we wish on finite domains without issues of expressibil-
ity. Unfortunately, it also has a number of significant drawbacks in the context
of constraint programming. Consider any constraint which forbids precisely one
assignment on r variables each of domain size d. Such constraints can be used
to represent clauses for SAT instances. However the (positive) extensional rep-
resentation of this constraint requires listing all dr − 1 allowed assignments.

This leads to the anomalous tractable class of all CSP instances which contain
a universal (over all variables) constraint allowing all assignments. The exten-
sional representation of this class is tractable: the size of the universal constraint
dominates the number of solutions to the rest of the instance. However, it would
be somewhat absurd to encode this universal constraint extensionally, and more
succinct representations may affect the tractability of such classes.

Recently, researchers have started to determine those structural classes (de-
rived from families of hypergraphs or relational structures) that remain tractable
when we allow specific succinct representations to be used instead of the exten-
sional representation. Both Houghton et al. [4] and Chen and Grohe [5] approach
this task from above. Houghton et al. prove that a large class of structures, spec-
ified by two width parameters rather than just one, define a tractable structural
class of CSP instances when we allow each constraint to be represented as the
smaller of the allowed or forbidden assignments. Chen and Grohe specify two
succinct representations: one based on a generalised form of DNF allowing larger
domain sizes (called the GDNF representation), the other based on a form of
decision diagrams (called the DD representation). In each case, they find a di-
chotomy between the tractable and intractable structural classes.

In this paper, we approach this task from below. Modern constraint solvers
implement constraints as oracles known as propagators. Normally, only two prim-
itive operations are allowed: consistency checking (membership) and propagation
(pruning inconsistent values from domains). A propagator for a constraint is an
algorithm. It takes as input a set of possible values for each variable and returns
a subset of these values for each variable. Values may be removed from a set only
when they cannot occur in any assignment to the constraint which is consistent
with the given sets. In order to use a propagator as a complete representation
of a constraint, we combine the two allowed operations into one, imposing a
(natural) membership condition on the propagators we consider.

Propagators have proved to be very successful in practice. Efficient propaga-
tors have been designed for a large range of constraint types [6] and implementa-
tions are provided in many available solvers [7,8,9,10]. Unfortunately, it is often
the case that propagators align poorly with existing tractability theory, simply
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because they are able to provide very compact representations for many common
constraint types. The standard assumption of polynomial-time join and project
operators is no longer valid.

In this paper, we pose the question: If propagation is the only primitive op-
eration, what are the structurally tractable classes of CSP instances?

We consider a hierarchy of propagators. In Sect. 3 we begin with arbitrary
propagators, whose only ability is consistency checking (membership). In this
representation, we find very small tractable structural classes. We then exam-
ine partial assignment membership (PAM) propagators in Sect. 4, which allow
us to check partial assignments. In this representation we find that there are
much larger, more useful tractable structural classes, defined by restricting the
overlapping of constraints. Finally, in Sect. 5, we investigate generalised arc con-
sistency propagators, the strongest form of propagator: here we find still larger
tractable structural classes with less restrictive overlapping.

In the first two cases, we completely answer the posed question by establishing
dichotomies. In the case of generalised arc consistency propagators, we achieve
a useful dichotomy in the restricted case of acyclic structures.

2 Theoretical Introduction

In this section we introduce fundamental theory and definitions. We begin by
considering a constraint satisfaction problem (CSP).

Definition 1. A CSP instance is a triple 〈V,D,C〉, where V is a finite set of
variables, D is a function which maps each element of V to a finite set of
possible values, called its domain, and C is a finite set of constraints.

Each constraint c ∈ C is a pair, 〈σ, ρ〉, where σ is a sequence of variables from
V , called the scope. The length of σ, denoted |σ|, is called the arity of c. The
relation, ρ, is a subset of D(σ[1]) × · · · × D(σ[r]), where r = |σ|, and defines
the allowed assignments for this constraint.

A solution to a CSP instance is a function which maps each variable to a
value from its domain which is consistent with all of the constraints.

A CSP is a decision problem. In this paper, we consider the search problem for a
class of CSP instances. However, for any class of CSP instances for which we are
allowed to add constant constraints, which define assignments to some subsets of
the variables, these two notions coincide [11]: we find a solution (backtrack-free)
in at most |V | × d steps (where V is the set of variables and d is the size of the
largest domain) by adding unary constant constraints and calling the decision
algorithm at each step. For all the classes we consider in this paper, we show
that adding constant constraints does not affect complexity.

CSP instances are mathematical objects. They tell us what the instances are,
but not how they should be represented for feeding to a constraint solver.

Definition 2. The extensional (Pos) representation of a CSP instance
〈V,D,C〉 specifies the size of V , the size of the union of the domains, and then
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a list of constraints. Each constraint is represented extensionally as a list of the
variables in the scope followed by a list of the allowed tuples. The size of the
extensional representation of the CSP instance 〈V,D,C〉 is

log |V |+ log d +
∑

〈σ,ρ〉∈C

(|σ| (|ρ| log d + log |V |)) , where d =

∣∣∣∣∣ ⋃
v∈V

D(v)

∣∣∣∣∣ .

It is this representation that has been assumed in most tractability results for
classes of CSP instances [1,2]. However, this leads to anomalies since it imposes
an artificial limitation on practitioners who use other representations such as
forbidden assignments, equations, SAT clauses or propagators.

Definition 3. Given a CSP instance 〈V,D,C〉, a sub-domain of a variable
v ∈ V is a subset of D(v).

Let 〈σ, ρ〉 ∈ C be a constraint of arity r. A list of sub-domains, S, for σ
is a list containing a sub-domain for each element of σ in order. We denote by
×S the product of the sets in S, so that ×S = S[1]× · · · × S[r].

A propagator prop for 〈σ, ρ〉 is a function which maps a list of sub-domains
for σ to another list of sub-domains for σ satisfying the following conditions:

1. × prop(S) ⊆ ×S (inclusion)
2. ×S ⊆ ×T ⇒ × prop(S) ⊆ × prop(T ) (monotonicity)
3. a ∈ (×S ∩ ρ)⇒ a ∈ × prop(S) (validity)
4. If ×S = {a} and a /∈ ρ, then × prop(S) = ∅ (membership)

The first three of these conditions are generally accepted requirements which
ensure that applying a list of propagators results in a well-defined fixed point.
The fourth condition is introduced to provide a method of checking if an as-
signment satisfies a constraint, allowing us to use a propagator as the complete
representation of a constraint. In this paper, we will consider the class of all such
propagators, Prop, as well as two restricted types: partial assignment member-
ship (PAM) and generalised arc consistency (GAC).

Definition 4. A partial assignment membership (PAM) propagator sat-
isfies the condition that when all variables have either their complete sub-domain
or a single value in their sub-domain, it will empty the sub-domains if there is
no allowed assignment in the current sub-domains.

A generalised arc consistency (GAC) [12,13] propagator removes as
many values as possible from the sub-domain of each variable.

Propagators can naturally be intersected. As we will see in Proposition 2, it is
not always possible to intersect (or join) propagators in polynomial time, even
on the same scope. GAC propagators provide the greatest level of propagation
that can be achieved for domain filtering: they can be seen as the intersection
of all possible propagators for a constraint.

Example 1. The most famous GAC propagator is for the ‘AllDiff’ constraint,
which imposes that a list of variables take different values [14].
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Definition 5. Let R be any class of propagators (such as Prop, PAM or GAC).
An R-representation of a constraint 〈σ, ρ〉 is a propagator for 〈σ, ρ〉 from R.

An R-representation of the CSP instance 〈V = {v1, . . . , vn}, D,C〉 is a list
of the indices of the variables in V , that is 1, . . . , n, followed by a list of the
union of the domains (again, as indices), followed by a list of R-representations
of the constraints in C. The size of any R-propagator representation of the CSP
instance 〈V,D,C〉 is

|V | log |V |+ d log d + |C|, where d =

∣∣∣∣∣ ⋃
v∈V

D(v)

∣∣∣∣∣ .

There are some differences between the size of a propagator representation of
a CSP instance and its extensional representation (Definition 2). Firstly, we
assume in a propagator representation that each variable is explicitly named (as
the integers 1, . . . , n), as are the domain values (as the integers 1, . . . , d). This
is because, unlike the extensional representation, we are not given the scopes
and relations explicitly in the representation. We assume that constraints are
represented in unit space (even their scopes). This is a very harsh property, but
we make this assumption because we want to treat constraints as black boxes.

Definition 6. Let C be a class of CSP instances and Θ be a method for repre-
senting CSP instances. We denote by Θ(C) the set of Θ representations of the
instances in C. We call the class of CSP instance representations Θ(C) tractable
if there is a solution algorithm for Θ(C) that runs in time polynomial in the size
of the representation: otherwise, we call the class intractable.

In this paper, we are aiming for classes of propagator representations of CSP
instances that are tractable. Strictly speaking, a class of propagator representa-
tions would be intractable if the propagators were not polynomial time. Instead,
we assume that calling any propagator can be considered as one time step, which
therefore limits any solution algorithm to a polynomial number of propagator
calls in the size of the propagator representation (as given in Definition 5).

In order to prove intractability results in this paper, we will reduce intractable
problems to propagator representations of CSP instances for which the propaga-
tors run in polynomial time. This will imply that the solution algorithm for these
CSP instance representations must require exponential time (under a standard
assumption from complexity theory). Using propagator representations allow us
to drastically reduce the size of representation for some CSP instances.

Example 2. Recall Ex. 1. In any propagator representation, AllDiff is compact.
However, we are unaware of any other representation that will succinctly repre-
sent an AllDiff constraint over r variables with ≥ r domain values. This includes
Pos, forbidden tuples, GDNF [5] and DD [5].

Whilst it is possible to decompose an AllDiff constraint into a clique of binary
inequalities, this decomposition does not allow for simple GAC propagation and
is therefore less practical. Therefore, there is presently no method of identifying
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practically applicable tractable classes of propagator representations that contain
AllDiff constraints (of unbounded arity), despite the existence of such classes.

Definition 7. A multi-hypergraph is a pair H = 〈V,E〉 where V is a set of
vertices and E is a multi-set of subsets of V , called the hyperedges of H. We
define a list of structures1 to be a list of multi-hypergraphs. We say a list of
structures is of bounded arity if there is a bound on the size of all hyperedges
in all multi-hypergraphs in the list.

For any tuple t of arity r we define set(t) = {t[1], . . . , t[r]}. The structure
of a CSP instance P = 〈V,D,C〉 is the multi-hypergraph 〈V,E〉 where E is the
multi-set containing all of the scopes of the constraints in C, abstracted to be
sets. That is, E = {{set(σ) | 〈σ, ρ〉 ∈ C}}, where {{. . . }} denotes a multiset.

A class of CSP instances is called structural if it is defined only by restricting
the allowed structure of its instances to a given list of structures. For a list of
structures H we denote by Ψ(H) the structural class of CSP instances whose
structures are all in H.

The definition of structure we give here differs from the two usual definitions
in the literature. When constraints are represented extensionally, it is a cheap
operation to join constraints occurring on the same scope. As such, instances
may be treated as if they have only a single constraint on each scope, which
leads to the hypergraph structure of a CSP instance. Many structural tractability
results use this notion [1]. Our definition of structure as a multi-hypergraph does
not alter complexity results for the extensional representation, since subsumed
hyperedges (which includes multiple occurrences of the same hyperedge) are
always removed as an initial step (called normalisation). Multi-hypergraphs are
a natural generalisation of the hypergraph structure of CSP instances and are
necessary for our complexity results. As Proposition 2 will show, there is no
simple method of combining constraints defined using propagators — multiple
constraints on the same scope must be handled with care.

Alternatively, some results on structural tractability use the notion of rela-
tional structures, which are more restrictive than multi-hypergraphs: they impose
that a particular set of (ordered) hyperedges must take the same constraint re-
lation. Use of relational structures is outside the scope of this paper. However,
we can induce a relational structure from a multi-hypergraph by placing each
occurrence of a hyperedge in a different relation of the relational structure.

An important result in the area of structural tractability for bounded arity
CSP instances is reproduced in Theorem 1. Due to insufficient space, we will not
define the terms used in this theorem, but instead refer the reader to [15].

Theorem 1 (Corollary 19 of Grohe [15]). Given a list, H, of (relational)
structures of bounded arity, the class Pos(Ψ(H)) of extensionally represented
CSP instances with structure in H is tractable if and only if the following require-
ment is satisfied: H has bounded treewidth modulo homomorphic equivalence.
1 We require a list of structures as there must be a mapping from the structures to

the natural numbers, which arises naturally from a list. We also require this list of
structures to be recursively enumerable.
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Due to space limitations, we give the following result without proof.

Proposition 1. Constraint solvers employing 2-way branching search cannot
solve all tractable structural classes identified by Theorem 1 in polynomial time.

The aim of this paper is to identify properties of families of structures which
give tractability results for certain propagator representations. We rely heav-
ily on Theorem 1 to produce complexity results by producing tractable CSP
instances of bounded arity. Unfortunately, Proposition 1 shows that with cur-
rent constraint solvers, employing only 2-way branching search, we cannot utilise
these tractability results. We will be forced to modify the constraint solvers by
providing new solution algorithms. However, the advantage of the results we give
in this paper are that we need only provide new, simple, solution algorithms —
we do not require any new representations of constraints to be implemented,
instead utilising the current framework of propagated constraints.

For our hardness results we require some results from parameterised complex-
ity theory. We limit ourselves to a very small explanation of the fundamental
definitions here: for a more complete discussion we refer the reader to [16,17].

Definition 8. A parameterised problem is a pair (P , κ) where P is a problem
and κ is a function which maps each member of P to N.

Example 3. An instance of the parameterised problem p-CLIQUE is a pair (G, k)
where G is a graph and k is an integer. The parameter of (G, k) is k. The question
for (G, k) is: Does there exist a clique in G of size k?

Classes of CSP instances can be parameterised. In particular, the parameterisa-
tion we use throughout this paper is given in Ex. 4.

Example 4. Given a (possibly infinite) list of multi-hypergraphs H, any class of
CSP instances whose structures are all in H can be parameterised by mapping
each CSP instance to the index of the first occurrence of its structure in H.

Definition 9. A parameterised problem (P , κ) is fixed-parameter tractable
(FPT) if there is a (computable) function f : N → N and an algorithm which
decides if the instance p ∈ P has a solution in time

f(κ(p)).|p|O(1) .

Definition 10. An FPT-reduction from a parameterised problem (P , κ) to
another parameterised problem (P ′, κ′) is a mapping R from instances of P to
instances of P ′ such that:

– p ∈ P has a solution if and only if R(p) has a solution.
– There is a (computable) function m : N → N and an algorithm that, given

p ∈ P, computes R(p) in time m(κ(p)).|p|O(1).
– There is a (computable) function g : N → N such that for all p ∈ P we have

that κ′(R(p)) ≤ g(κ(p)).
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Parameterised complexity is a large and complex field of research. Instead of the
traditional distinction between complexity classes P and NP, there is a hierarchy
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . of complexity classes. Downey and Fellows [18] define
this hierarchy and conjecture that it is strict. In this paper, we are only inter-
ested in W[1] and make the standard assumption that FPT �= W[1] throughout
(including previously in Theorem 1). For our proofs, we will make extensive use
of Theorem 2.

Theorem 2 (Corollary 3.2 of [19]). The parameterised problem p-CLIQUE
is W[1]-complete under FPT-reductions.

3 Arbitrary Propagators

In this section, we will consider the question of tractable structural classes of
CSP instances where each constraint is represented by an arbitrary propaga-
tor. Arbitrary propagators need only check if a complete assignment satisfies
the constraint. As such, constant constraints can be integrated into a call to a
propagator by intersecting them with the given sub-domains.

Example 5. Consider any CSP instance of arity bounded by k. We can convert
any Prop representation of this instance into an extensional representation by
testing the membership of all dk possible assignments for each constraint, where
d is the size of the union of the domains. Since the union of the domains is
listed as part of the input and k is fixed, this is polynomial time. Alternatively,
building a GAC propagator (which is the strongest possible propagator type)
for an extensionally represented constraint is straightforward. It is equivalent to
enforcing GAC on an extensionally represented constraint, which may be done
in polynomial time [13], as can listing the variables and (used) domain values.
Hence, for bounded arity, propagators are equivalent to extensionally represented
constraints.

Lemma 1. Let H be a list of structures of bounded arity. The class Prop(Ψ(H))
is tractable if and only if H satisfies the requirement of Theorem 1.

Proof. Ex. 5 shows that for bounded arity there exist polynomial-time reductions
between Prop(Ψ(H)) and Pos(Ψ(H)), so Theorem 1 applies to Prop(Ψ(H)). ��

Unfortunately, as our next result shows, any list of structures of unbounded
arity generates a class of CSP instances that is intractable when represented
using arbitrary propagators.

Lemma 2. Let H be any list of structures of unbounded arity. The search prob-
lem for the class Prop(Ψ(H)) is W[1]-hard, and therefore intractable.

Proof. We give an FPT-reduction from p-CLIQUE to Prop(Ψ(H)). Given any
instance (G, k) of p-CLIQUE, the parameter k is mapped to the index of the
first element H of H which includes a hyperedge of arity at least k. We construct
a Prop representation of a CSP instance with structure H as follows.
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The domain of all variables is the vertices of G. For a single occurrence of a
hyperedge of arity at least k, order this hyperedge and generate the Prop repre-
sentation of the constraint with this scope such that the first k variables in its
scope satisfy p-CLIQUE for (G, k). All other constraints are true for all assign-
ments. The size of this mapping is the size of (G, k), plus a constant (polynomial
in the size of H) to express the other domains and constraints, and is therefore
a FPT-reduction. By Theorem 2, this proves the result. ��

Lemmas 1 and 2 provide the following dichotomy for arbitrary propagator rep-
resentations of structural classes of CSP instances.

Theorem 3. Let H be any list of structures. The class Prop(Ψ(H)) is tractable
if and only if H is of bounded arity and satisfies the requirement of Theorem 1.

4 Partial Assignment Membership Propagators

Partial assignment membership (PAM) propagators exist for many constraint
types. For instance, most arithmetic constraints have polynomial-time PAM
propagators but yet have no polynomial-time GAC propagator. PAM propaga-
tors provide a useful level of propagation. For example, all propagators provided
by the Minion CSP solver [10] are PAM propagators.

One feature of the (positive) extensional representation of constraints is that
it is possible to join two constraints in polynomial time with respect to the size
of their representation. This does not in general hold for propagators.

Proposition 2. Given two lists of constraints A and B with polynomial time
PAM propagators (or GAC propagators), checking if the constraints A[i] ∧ B[i]
have a consistent assignment is, in general, an NP-complete problem.

Proof. Consider the constraints
∑n

i=1 aivi ≤ 0 and
∑n

i=1 aivi ≥ 0 defined by
integer constants ai and variables vi with domain {0, 1}. Both of these families
of constraint have polynomial time GAC propagators [20], which are of course
PAM propagators. Given a set of integers S = {s1, . . . , sn}, the problem of
finding a subset of S which sums to exactly 0 is a well-known NP-complete
problem [21]. However, this problem is exactly equivalent to the intersection of
the two constraints above by setting ai = si for each i. ��

We observe that a PAM propagator exactly captures the notion of applying
constant constraints to some subset of the variables. As such, we can freely
integrate constant constraints into calls to PAM propagators.

Many more families of structures derive tractable classes for PAM propagators
than with general propagators. For example, the class of CSP instances which
contain only a single constraint is tractable for the PAM propagator representa-
tion. However, there are still simple classes which remain intractable.

Definition 11. Given any constraint, c, the Free-c constraint is defined as fol-
lows: Free-c is a constraint over the same (number of) variables, each containing



Structural Tractability of Propagated Constraints 381

one extra domain value, denoted Free. An assignment to the scope of Free-c is
true either if any variable is assigned Free or the assignment satisfies c.

For a set of constraints, C, the set of constraints {Free-c | c ∈ C} is de-
noted Free-C. For a problem, P, and a set of constraints, C(P), that model the
instances of P, we denote by Free-P the set of constraints Free-C(P).

PAM propagators for Free-c constraints only ever have to check if complete
assignments satisfy c, because given a list of sub-domains with any unassigned
variables, Free-c is satisfied by assigning any unassigned variable Free.

We assume the following model of p-CLIQUE as a set of constraints.

Definition 12. Let (G, k) be an instance of p-CLIQUE, where G = 〈V,E〉.
We generate a constraint on k variables each with domain V and satisfying
assignments defined by cliques of size k in G.

By imposing Free-p-CLIQUE, along with unary constraints of the type “variable
is not assigned Free”, we derive classes of CSP instances which model p-CLIQUE
and are therefore W[1]-hard for the PAM representation.

Definition 13. Let H = 〈V,E〉 be a multi-hypergraph. A vertex v ∈ V is called
isolated if it exists in (at most) one occurrence of a hyperedge in E.

Lemma 3. Given a list of structures H, generate a new list of structures H′

by removing from members of H all isolated vertices. The search problem for
PAM(Ψ(H)) is W[1]-hard if and only if it is W[1]-hard for PAM(Ψ(H′)).

Proof. Given a PAM propagator, prop, for a constraint c, over a list of vari-
ables 〈x1, . . . , xr〉 each with domain D, consider the projection, ck, of c onto
the variables 〈x1, . . . , xk〉, for k ≤ r. A PAM propagator, propk, for ck can be
constructed from prop using at most |D| × (r − k) extra time: take the partial
assignment to ck and attach the complete sub-domain D for xk+1 to xr .

Further, we observe that projecting out isolated variables preserves solutions.
Therefore, we can solve CSP instances whose structure is H[i], for some i, by
projecting down to H′[i] using the above transformation. Given a CSP instance
whose structure is H′[i], we extend this to an instance on H[i] by giving all
the extra variables a single domain value and have the constraints ignore the
assignment to these variables. This gives FPT-reductions between PAM(Ψ(H))
and PAM(Ψ(H′)), proving the result. ��

We may now prove the main result of this section: a complete dichotomy of the
tractable structural classes of CSP instances for the PAM representation.

Theorem 4. Given any list of structuresH, generate the list of structures H′ by
removing from members of H all isolated vertices. Then PAM(Ψ(H)) is tractable
if and only if H′ is of bounded arity and satisfies the requirement of Theorem 1.

Proof. By Lemma 3 we know that the search problem for PAM(Ψ(H)) is W[1]-
hard if and only if it is for PAM(Ψ(H′)). We therefore consider only PAM(Ψ(H′)).
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If H′ is not of bounded arity then we map p-CLIQUE to PAM(Ψ(H′)) (using
a similar mapping to that used in the proof of Lemma 2). Given any instance
(G, k) of p-CLIQUE, the parameter k is mapped to the index of the first element
H of H′ which includes a hyperedge of arity at least k. Then, we construct a
PAM representation of a CSP instance with structure H as follows.

For a single occurrence of a hyperedge of arity at least k, order this hyperedge
and generate the PAM representation of the constraint with this scope such that
the first k variables in its scope impose the Free-p-CLIQUE constraint for (G, k),
extending the constraint to ignore the assignment to the other variables. The
domain for these k variables is the vertices of G together with the value Free.
By definition of H′ no variable on which we imposed Free-p-CLIQUE can be iso-
lated, so for each constraint meeting the first k variables of the Free-p-CLIQUE
constraint we impose that no variable in the constraint is assigned Free. All other
variables in the CSP instance are given a single value (which is not Free) in their
domains, and all other constraints allow all assignments. This CSP instance has
a solution if and only if G has a clique of size k. The size of this mapping is the
size of (G, k), plus a constant (polynomial in the size of H) to express the other
domains and constraints, and therefore is a FPT-reduction.

Otherwise, H′ is of bounded arity. We use Ex. 5 to map in polynomial time
between PAM(Ψ(H′)) and Pos(Ψ(H′)) and Lemma 3 completes the result. ��

5 Generalised Arc Consistency Propagators

Generalised arc consistency (GAC) propagators provide the highest level of do-
main filtering. Many famous GAC propagators have been found for highly prac-
tical global constraints. For an overview, including the following constraint types,
see, for example, [6].

– AllDiff(〈v1, . . . , vr〉) : All of the vi take distinct values.
– Element(〈M1, . . . ,Mn〉, x, y) : Mx = y.
– GCC〈v1, . . . , vr〉, 〈〈l1, u1〉, . . . , 〈lr, ur〉〉) : For constants 〈li, ui〉, there are be-

tween li and ui occurrences of i in 〈v1, . . . , vr〉.
In this paper, we have not considered the cost of applying a propagator for

a constraint, instead treating them as oracles taking constant time. That said,
the tractability results generated in this paper would be less useful if low-cost
propagation was not possible for many common constraint types. While there
exist many constraint types for which GAC propagation is itself NP-hard, no-
ticeably those involving arithmetic (such as bin packing), many constraints do
have simple GAC propagators, including the previous examples. As with PAM
propagators, calls to GAC propagators can integrate constant constraints with-
out affecting complexity. In fact, they can integrate any unary constraints on
their variables. This power of GAC propagation allows for significantly more
tractable structural classes than with either arbitrary or PAM propagators.

In the special case of Boolean domains, Proposition 3 shows that PAM and
GAC propagators have comparable complexity. However, for non-Boolean do-
mains this is not the case, as our subsequent results show.
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Proposition 3. For a constraint c of arity r and Boolean domain, a GAC prop-
agator for c can be constructed using 2r calls to a PAM propagator for c.

Proof. We observe that non-empty sub-domains of a Boolean domain must either
be complete or contain only a single value. This satisfies the condition for PAM
propagators. GAC propagators must remove all values which cannot be extended
to a solution. We can do this in at most 2r calls to the PAM propagator for c. ��

Theorem 4 says that the structures which derive tractable classes for the PAM
representation are essentially bounded arity: there must be a bounded number
of non-isolated vertices in each hyperedge. However, for the GAC representation,
this restriction is lifted. The following example seems to be known in the con-
straints community, though the authors failed to find a reference in the literature.

Example 6. We call a multi-hypergraph 〈V,E〉 a tree with single vertex over-
lap if the following algorithm creates an empty multi-hypergraph: Choose any
hyperedge e ∈ E for which |e ∩

⋃
f∈E\{e} f | ≤ 1, remove it from E, and repeat

whilst some hyperedge has been removed.
Let T be any list of trees with single vertex overlaps. The class GAC(Ψ(T )) is

tractable: GAC propagation decides. This result is a straightforward extension
of (binary) tree-structured instances being decided by arc consistency.

In this section, we generalise this result to provide a dichotomy for lists of acyclic
multi-hypergraphs.

Definition 14. Given any constraint, c, with scope 〈v1, . . . , vr〉, the Pair-c con-
straint is defined as follows: Pair-c is a constraint over 〈x1, . . . , xr, y1, . . . , yr〉,
where for all i, xi and yi have the same domain as vi. Pair-c is true either if
xi �= yi, for any i, or the assignment to 〈x1, . . . , xr〉 satisfies c.

For a set of constraints, C, the set of constraints {Pair-c | c ∈ C} is de-
noted Pair-C. For a problem, P, and a set of constraints, C(P), that model the
instances of P, we denote by Pair-P the set of constraints Pair-C(P).

If assignments to a constraint c can be checked in polynomial time, then it is
straightforward to show that Pair-c has a simple polynomial-time GAC propaga-
tor. The class of Pair-p-CLIQUE constraints will be used to construct intractable
structural classes of CSP instances for the GAC representation.

Proposition 4. The search problem for the following class of CSP instances,
parameterised by structure, is W[1]-hard for the GAC representation:

– Variables labelled x1, . . . , xn and y1, . . . , yn.
– An arbitrary Pair-p-CLIQUE constraint on scope 〈x1, . . . , xn, y1, . . . , yn〉.
– The constraint xi = yi for i = 1, . . . , n.

Proof. There is a simple FPT-reduction from p-CLIQUE to this class. ��

Proposition 4 shows one important feature of the tractability for the GAC rep-
resentation is the size of overlaps with other constraints, rather than simply the
number of overlaps or the total number of variables contained in overlaps.
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Definition 15. Given a multi-hypergraph H and a hyperedge e in H, a non-
trivial overlap of e in H is a minimally sized set of vertices which, if removed
from H, leaves every other hyperedge (including other occurrences of the same
hyperedge) meeting e at no more than one vertex.

Definition 16. A multi-hypergraph H is acyclic if the following algorithm re-
sults in an empty multi-hypergraph: Remove all isolated vertices from (occur-
rences of) hyperedges, then remove all (occurrences of) hyperedges contained in
some other hyperedge, and repeat whilst some change has been made.

A join tree of a multi-hypergraph 〈V,E〉 is a tree J = 〈E,F 〉 which satis-
fies the condition: each v ∈ V induces a connected subtree of J . Not all multi-
hypergraphs have join trees. A multi-hypergraph is acyclic if it has a join tree.

For any list,H, of acyclic structures, it is well-known that Pos(Ψ(H)) is tractable
[3]. In the extensional representation, we solve acyclic instances by identifying
a join tree using the algorithm of Definition 16: the parent of a hyperedge is
the hyperedge that subsumes it. We apply pairwise consistency along the join
tree: two constraints are pairwise consistent if an assignment to their common
variables can be extended to an assignment over their join. For the extensional
representation, pairwise consistency can be achieved in polynomial time [22]. If
each constraint still has allowed assignments, there is a solution, and we can
find it in a backtrack-free way. This solution technique does not work for the
GAC representation: for example, the intractable class of instances defined in
Proposition 4 has only acyclic structures.

We are now in a position to provide the main result of this section: a dichotomy
for the GAC representation in the restricted case of acyclic structures.

Theorem 5. Let H be any list of acyclic structures. GAC(Ψ(H)) is tractable if
and only if H has bounded non-trivial overlap.

Proof (sketch). If H does not have bounded non-trivial overlap then, for every
l, the following property holds: there exists a structure H in H for which there
is an occurrence of a hyperedge e containing 2l distinct vertices which may be
partitioned into l pairs such that each pair exists in the intersection of e with
an occurrence of some other hyperedge (possibly another occurrence of e).

We give an FPT-reduction from p-CLIQUE to GAC(Ψ(H)). For any instance
(G, k) of p-CLIQUE we choose the first structure H in H containing a hyper-
edge e with k pairs of vertices (as defined above). We generate an instance in
GAC(Ψ(H)) as follows. We impose a Pair-p-CLIQUE constraint for (G, k) on
the k pairs of variables of e. Other constraints allow all assignments except for
enforcing that each of the selected pairs of variables are equal. This provides a
FPT-reduction from p-CLIQUE to GAC(Ψ(H)).

Otherwise, H has bounded non-trivial overlap. Let k be this bound. We solve
instances from GAC(Ψ(H)) in polynomial time in the following way. Identify
a join tree, J , for the structure of the instance, labelling each node with the
constraint on this (ordered) hyperedge. Then, we identify a non-trivial overlap
for each hyperedge (node of J). We determine the set of allowed assignments to
the non-trivial overlaps: at most dk assignments for maximum domain size d.
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Finally, we show that pairwise consistency can be achieved using GAC on
these allowed assignments to the non-trivial overlaps. Consider any adjacent
pair of nodes in J . Apart from their non-trivial overlaps, they must meet in at
most one additional variable. We remove an assignment to a non-trivial overlap
if it cannot extend to one of the two labels (constraints) of these hyperedges.
This can be tested using the GAC propagators for these two constraints, since
there is at most one additional variable in their overlap that is not assigned a
constant.

Hence, we can use GAC to achieve pairwise consistency along the join tree, in
polynomial time, just as with a positive representation. If at any point we empty
a set of assignments to a non-trivial overlap, there is no solution. Otherwise, after
pairwise consistency has been achieved, there is a solution which can be found
in a backtrack-free way, testing unary extensions with GAC propagation. ��

Theorem 5 includes the tractable class whose structures are trees with single
vertex overlaps (Ex. 6): these structures have empty non-trivial overlaps. Unfor-
tunately, we do not yet know what can be said about bounded width structural
decompositions, such as hypertrees [1]. To finish, we observe a simple extension
to the tractable structural classes of Theorem 5 for non-acyclic structures.

Corollary 1. Let k be a constant and H be any list of structures, with bounded
non-trivial overlap, that can be made acyclic by removal of at most k variables.
The class GAC(Ψ(H)) is tractable.

6 Conclusion

In this paper we have made a major step towards making the tractability of struc-
tural classes of CSP instances applicable to modern constraint solvers. We have
shown the unfortunately weak tractability classes for general propagators and
the much stronger tractability classes for partial assignment membership propa-
gators. We have given a dichotomy for generalised arc consistency propagators in
the restricted case of acyclic structures. While we have not yet provided a com-
plete dichotomy for generalised arc consistency propagators, we have shown the
existence of large classes, both tractable and intractable, providing immediately
useful results and guidance towards where a future dichotomy may exist.

Acknowledgements. The authors are extremely grateful to Peter Jeavons and
David Cohen for many insightful discussions about the contents of this paper.
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Abstract. ABT is the reference algorithm for asynchronous distributed constraint
satisfaction. When searching, ABT produces nogoods as justifications of deleted
values. When one of such nogoods has an empty left-hand side, the considered
value is eliminated unconditionally, once and for all. This value deletion can be
propagated using standard arc consistency techniques, producing new deletions in
the domains of other variables. This causes substantial reductions in the search ef-
fort required to solve a class of problems. We also extend this idea to the propaga-
tion of conditional deletions, something already proposed in the past. We provide
experimental results that show the benefits of the proposed approach, especially
considering communication cost.

1 Introduction

In recent years, there is an increasing interest for solving problems in which informa-
tion is distributed among different agents. Most of the work in constraint reasoning as-
sumes centralized solving, so it is inadequate for problems requiring a true distributed
resolution. This has motivated the new Distributed CSP (DisCSP) framework, where
constraint problems with elements (variables, domains, constraints) distributed among
automated agents which cannot be centralized for different reasons (prohibitive transla-
tion costs or security/privacy issues) are modelled and solved.

When solving a DisCSP instance, all agents cooperate to find a globally consistent
solution. To achieve this, agents assign their variables and exchange messages on these
assignments, which allows them to check their consistency with respect to problem con-
straints. Several synchronous and asynchronous solving algorithms have been proposed
[2, 5, 8, 12, 13]. While synchronous algorithms are easier to understand and imple-
ment, asynchronous ones are more robust. If some agents disconnect, an asynchronous
algorithm is still able to provide a solution for the connected part, while this is not
true in general for synchronous ones. Asynchronous algorithms exhibit a high degree
of parallelism, but the information exchanged among agents is less up to date than in
synchronous ones.

ABT [12, 13] is the reference algorithm for asynchronous distributed constraint solv-
ing, playing a role similar to backtracking algorithm in the centralized case. Several
ideas to improve its efficiency and privacy have been proposed.
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In this paper we study the idea of propagating value deletions in ABT. When search-
ing, ABT produces nogoods as justifications of deleted values. When one of such no-
goods has an empty left-hand side, the considered value is eliminated unconditionally,
once and for all. This value deletion can be propagated using standard arc consistency
techniques, producing new deletions in the domains of other variables. This causes sub-
stantial reductions in the search effort required to solve a class of problems, especially
on communication cost. We extend this idea to the propagation of conditional deletions.

The idea of including consistency maintenance in ABT is not new. It was proposed
by [9, 10]. However, the specialization to unconditional value deletions (nogoods with
empty left-hand side) is new. Previous experimental results [9, 10], considered AAS [8]
with bound consistency. Here, we provide experimental results for ABT with directional
and full (both directions) arc consistency on a set of random DisCSP instances.

This paper is organized as follows. First, we recall the DisCSP definition and the
ABT description. Then, we present the idea of propagating unconditional deletions, in
the ABT-UAC algorithm. We extend this idea to conditional deletions, in the ABT-DAC
algorithm. We present experimental results for both approaches on random DisCSP
instances. Finally, we extract some conclusions and directions for further research.

2 Preliminaries

2.1 Distributed Constraint Satisfaction

A Constraint Satisfaction Problem (X ,D, C) involves a finite set of variables X , each
taking values in a finite domain, and a finite set of constraints C. A constraint on a subset
of variables forbids some combinations of values that these variables can take. A solu-
tion is an assignment of values to variables which satisfies every constraint. Formally,

• X = {x1, . . . , xn} is a set of n variables;
• D = {D(x1), . . . , D(xn)} is a set of finite domains; D(xi) is value set for xi;
• C is a finite set of constraints. A constraint Ci on the ordered subset of variables
var(Ci) = (xi1 , . . . , xir(i) ) specifies the relation prm(Ci) of the permitted combi-
nations of values for the variables in var(Ci), prm(Ci) ⊆

∏
xik

∈var(Ci)
D(xik

).
An element of prm(Ci) is a tuple (vi1 , . . . , vir(i) ), vik

∈ D(xik
).

A Distributed Constraint Satisfaction Problem (DisCSP) is a CSP where variables,
domains and constraints are distributed among automated agents. Formally, a finite
DisCSP is defined by a 5-tuple (X ,D, C,A, φ), where X , D and C are as before, and

• A = {1, . . . , p} is a set of p agents,
• φ : X → A is a function that maps each variable to its agent.

Each variable belongs to one agent. The distribution of variables divides C in two
disjoint subsets, Cintra = {Ci|∀xj , xk ∈ var(Ci), φ(xj) = φ(xk)}, and Cinter =
{Ci|∃xj , xk ∈ var(Ci), φ(xj) �= φ(xk)}, called intraagent and interagent constraint
sets, respectively. An intraagent constraint Ci is known by the agent owner of var(Ci),
and it is unknown by the other agents. Usually, it is considered that an interagent con-
straint Cj is known by every agent that owns a variable of var(Cj) [13].
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A solution of a DisCSP is an assignment of values to variables satisfying every con-
straint. DisCSPs are solved by the coordinated action of agents, which communicate by
exchanging messages. It is assumed that the delay of a message is finite but random.
For a given pair of agents, messages are delivered in the order they were sent. For sim-
plicity, we assume that each agent owns exactly one variable, and the agent number is
the variable index (∀xi ∈ X , φ(xi) = i). Furthermore, we assume that all constraints
are binary. A constraint Cij indicates that it binds variables xi and xj .

2.2 Asynchronous Backtracking

ABT [12, 13] is the reference algorithm for asynchronous distributed constraint solv-
ing, with a role similar to backtracking in the centralized case. An ABT agent makes
its own decisions, informs other agents about them, and no agent has to wait for the
others’ decisions. The algorithm computes a global consistent solution (or detects that
no solution exists) in finite time; its correctness and completeness have been proved
[2, 13]. ABT requires constraints to be directed. A binary constraint causes a directed
link between the two constrained agents: the value-sending agent, from which the link
starts, and the constraint-evaluating agent, at which the link ends. To make the network
cycle-free, there is a total order among agents, which is followed by the directed links.

Each ABT agent keeps its own agent view and nogood store. The agent view of
self , a generic agent, is the set of values that self believes are assigned to higher
priority agents (connected to self by incoming links). Its nogood store keeps nogoods
as justifications of inconsistent values. Agents exchange four message types:

• ok?: A high priority agent informs lower priority ones about its assignment.
• ngd: A lower priority agent inform a higher priority one of a new nogood.
• addl: A lower priority agent requests a higher priority one to set up a link.
• stop: The empty nogood has been generated. There is no solution.

When the algorithm starts, each agent assigns its variable, and sends the assignment
to its neighboring agents with lower priority. When self receives an assignment, self
updates its agent view with the new assignment, removes inconsistent nogoods and
checks the consistency of its current assignment with the updated agent view.

When self receives a nogood, it is accepted if the nogood is consistent with self ’s
agent view (for the variables in the nogood, their values in the nogood and in self ’s
agent view are equal). Otherwise, self discards the nogood as obsolete. If the nogood is
accepted, the nogood store is updated, causing self to search for a new consistent value
(since the received nogood forbids its current value). If an unconnected agent i appears
in the nogood, it is requested to set up a new link with self . From this point on, self will
receive i values. When self cannot find any value consistent with its agent view, either
because of the original constraints or because of the received nogoods, new nogoods
are generated from its agent view and each one sent to the closest agent involved in
it. This operation causes backtracking. There are several forms of how new nogoods
are generated. In [2], when an agent has no consistent values, it resolves its nogoods
following a procedure described in [1]. In this paper we consider this last version. The
ABT code is in Figure 1 for the self agent. Γ+

0 and Γ−
0 are the sets of agents initially

constrained with self which are above and below it in the agent ordering.
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procedure ABT()
Γ = Γ−

0 ∪ Γ+
0 ; Γ− = Γ−

0 ; Γ+ = Γ+
0 ; myV alue ← empty; end← false; CheckAgentView();

while (¬end) do
msg ← getMsg();
switch(msg.type)
Ok?:ProcessInfo(msg); Ngd:Conflict(msg); Stop: end ← true; AddL:SetLink(msg);

procedure CheckAgentView()
if ¬consistent(myV alue, myAgentV iew) then

myV alue ← ChooseValue();
if (myV alue) then for each k ∈ Γ+ do sendMsg:Ok?(k, myV alue); else Backtrack();

procedure ProcessInfo(msg)
Update(myAgentV iew, msg.assig); CheckAgentView();

procedure Conflict(msg)
if Coherent(msg.nogood, Γ− ∪ {self}) then

CheckAddLink(msg); add(msg.nogood, myNogoodStore);
myV alue ← empty; CheckAgentView();

else if Coherent(msg.nogood, self) then sendMsg:Ok?(msg.sender, myV alue);

procedure SetLink(msg)
add(msg.sender, Γ+); sendMsg:Ok?(msg.sender, myV alue);

procedure CheckAddLink(msg)
for each (var ∈ lhs(msg.nogood))

if (var /∈ Γ−) then sendMsg:AddL(var, self); add(var, Γ−);
Update(myAgentV iew, msg.nogood[var]);

procedure Backtrack()
newNogood ← solve(myNogoodStore);
if (newNogood = empty) then end ← true; sendMsg:Stop(system);
else sendMsg:Ngd(newNogood); Update(myAgentV iew,rhs(newNogood) ← unknown);

CheckAgentView();

function ChooseValue()
for each v ∈ D(self) not eliminated by myNogoodStore do

if consistent(v, myAgentV iew) then return (v); else add(nogood(v), myNogoodStore);
return (empty);

procedure Update(myAgentV iew, newAssig)
add(newAssig, myAgentV iew);
for each ng ∈ myNogoodStore do

if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore);

function Coherent(nogood, agents)
for each var ∈ nogood ∪ agents do if nogood[var] 
= myAgentV iew[var] then return false;
return true;

Fig. 1. The ABT algorithm for asynchronous backtracking search
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3 Propagating Unconditional Deletions

During search, ABT produces nogoods in self as result of the reception of ok? and
ngd messages. A nogood is a conjunction of individual assignments, which has been
found inconsistent, either because the initial constraints or because searching all possi-
ble combinations. For instance, the following nogood,

x1 = a ∧ x2 = b ∧ x3 = c

means that these three assignments cannot happen simultaneously because they cause
an inconsistency: either they violate a constraint or any extension including the remain-
ing variables violates a constraint. Often, a nogood is written in directed form,

x1 = a ∧ x2 = b⇒ x3 �= c

meaning that x3 cannot take value c because of the values of x1 and x2. In a directed
nogood, ”⇒” separates the left-hand side (lhs) from the right-hand side (rhs). Since
variables are ordered at each branch of the search tree, it is useful to write nogoods
in a directed form, where the last variable in the branch order appears in the rhs. A
nogood is a necessary justification to eliminate a value. In the previous example, the
directed nogood is a justification to eliminate value c of D(x3). A nogood is active if
the assignments in its lhs hold. To assure polynomic space usage, ABT only keeps
one active nogood per eliminated value. As soon as a nogood becomes no active, it is
removed (and the corresponding eliminated value is again available).

When all values of D(self) are eliminated by some nogood, the justifying nogoods
are resolved generating a new nogood ng (see [1] for a detailed description of this
process). ng is sent to var, the variable that appears in rhs(ng) (which always has the
form var �= val). This means that val can be eliminated from D(var), conditioned to
the assignments of lhs(ng). It may happen that lhs(ng) is empty. In this case, val can
be deleted from D(var) unconditionally, once and for all. After removal, val will never
be available again: no matter which new assignments may be explored in the future, the
empty lhs(ng) always holds.

An unconditional deletion may generate further unconditional deletions in other
domains, if it happens that the initial deletion causes a constraint (or a subset of con-
straints) to become locally inconsistent, and the corresponding local consistency is en-
forced afterwards. In this paper, we only consider arc consistency, although other local
consistencies removing single values could also be analyzed [6]. We assume that do-
mains are initially arc consistent (if not, this can be easily done by a preprocess, ex-
plained below). If value a of variable xi is deleted, this has to be notified to all agents
connected with i. These agents will check their constraints with i to enforce arc consis-
tency after a deletion (for instance, using the popular revise-2001 function [3]). If
more deletions occur, they are propagated in the same way, until reaching a fix point.

Values deleted in this way are removed once and for all. Let us assume three sequen-
tially constrained agents i, j and k, i < j < k, connected by two constraints Cij and
Cjk , such that j receives a nogood from k eliminating unconditionally value b. If it hap-
pens that b was the only support for value a ∈ D(xi), after the deletion of b in D(xj),
a must be deleted from D(xi) because a will not be in any solution. Value b will never
be available again, so a would never have a support and its deletion is unconditional.
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3.1 ABT-UAC

The idea of propagating unconditional deleted values can be included in ABT, produc-
ing the new algorithm ABT-UAC. It exploits the idea that a constraint Cij is known by
both agents i and j. ABT-UAC requires the some minor changes with respect to ABT:

• In addition to its own domain, the domain of every variable constrained with self
is also represented in self . Assuming that a constraint between self and j does
not contain irrelevant values, domain computation can be done by projecting the
constraint on xj . This constraint will be arc consistent after the preprocess.

• A new message type, del, is required. When self deletes value a in D(self), it
sends a del message to every agent initially constrained with it, except the agent
that sent the message that caused a deletion. When self receives a del message, it
registers that the message value has been deleted from the domain of sender, and it
enforces arc consistency on the constraint between self and sender. If, as result of
this enforcing, some value is deleted in D(self) it is propagated as above.

Including the propagation of unconditionally deleted values does not changes the
semantic of original ABT messages. It is worth noting that ABT-UAC keeps the good
ABT properties, namely correctness, completeness and termination: since we are elim-
inating values which are unconditionally arc inconsistent, their removal will not cause
to miss any solution. If the value assigned to self is found to be arc inconsistent, it is
removed and another value is tried for self . Any value removal is propagated to agents
initially constrained with self .

It is mentioned above that initial domains are assumed to be arc consistent. If not,
this can be easily done by a preprocess depicted in Figure 2, executed on each agent.
First, it initially enforces arc consistency between self and each constrained agent.
Second, value deletions are propagated as described above, until reaching quiescence,

procedure AC-preprocess()
compute Γ0 = Γ−

0 ∪ Γ+
0 ; end ← false; init structures of revise-2001

for each j ∈ Γ0 do AC(self, j);
while (¬end) do

msg ← getMsg();
switch(msg.type)

Del: ValueDeletedPre(msg.sender, msg.value); Stop: end ← true;

procedure ValueDeletedPre(j, a)
D(j) ← D(j)− {a}; AC(self, j);

procedure AC(self, j)
if revise-2001(self, j) then

if D(self) = ∅ then sendMsg:Stop(system);
else DEL is the set of deleted values in D(self) by the last revise-2001(self, j) call

for each v ∈ DEL and k ∈ Γ0, k 
= j do sendMsg:Del(self, v);

Fig. 2. The AC algorithm for preprocessing DisCSP
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procedure ABT-UAC()
Γ = Γ−

0 ∪ Γ+
0 ; Γ− = Γ−

0 ; Γ+ = Γ+
0 ;

myV alue ← empty; end← false; CheckAgentView();
while (¬end) do

msg ← getMsg();
switch(msg.type)
Ok?:ProcessInfo(msg); Ngd:Conflict(msg); Stop: end ← true;

new AddL:SetLink(msg); Del: ValueDeleted(msg.sender, msg.value);

procedure Conflict(msg)
if Coherent(msg.nogood, Γ− ∪ {self}) then

new if lhs(msg.nogood) = empty then DeleteValue(myV alue, msg.sender);
else CheckAddLink(msg); add(msg.nogood, myNogoodStore);

myV alue ← empty; CheckAgentView();
else if Coherent(msg.nogood, self) then sendMsg:Ok?(msg.sender, myV alue);

new procedure ValueDeleted(j, a)
new D(j) ← D(j)− {a}; AC(self, j);
new if myV alue 
∈ D(self) then myV alue ← empty; CheckAgentView();

new procedure DeleteValue(a, j)
new D(self) ← D(self)− {a};
new if D(self) = ∅ then sendMsg:Stop(system);
new else for each k ∈ Γ0, k 
= j do sendMsg:Del(self, a); CheckAgentView();

procedure Backtrack()
newNogood ← solve(myNogoodStore);
if (newNogood = empty) then end ← true; sendMsg:Stop(system);
else sendMsg:Ngd(newNogood); Update(myAgentV iew,rhs(newNogood) ← ukn);

new if lhs(newNogood) = empty then ValueDeleted(rhs(newNogood));
else CheckAgentView();

Fig. 3. New lines/procedures of ABT-UAC with respect to ABT

when ABT-UAC execution begins. Value deletions in the preprocessing phase are un-
conditional. Differences between ABT-UAC and ABT appear in Figure 3. They are,

• ABT-UAC. It includes the Del message, which notifies that a value has been deleted
in some domain. Upon reception, the ValueDeleted procedure is called.

• Conflict. After accepting a Ngd message with empty lhs, the DeleteValue
procedure is called.

• ValueDeleted(j, a). Agent j has deleted value a of its domain. self registers
this in its D(j) copy, and enforces AC on the constraint between self and j. If
the value of self is deleted in this process, the CheckAgentView procedure is
called (looking for a new compatible value; if none exists performs backtracking).
Any deletion in D(self) is propagated.

• DeleteValue(a, j). Agent self must delete its currently assigned value a be-
cause a nogood with empty lhs has been received from agent j. Value a is deleted
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from D(self). If, as consequence of a’s deletion, D(self) becomes empty, there
is no solution so a Stop message is produced. Otherwise, a’s deletion is notified
to all agents constrained with self except j via Del messages, and the procedure
CheckAgentView is called.

• Backtrack. After self computes and sends a newNogood, it checks if its lhs
is empty. If so, self knows that the value that forbids newNogood will be removed
in the domain of the variable that appears in rhs(newNogood). Therefore, self
calls ValueDeleted, as if it would had received a Del message.

3.2 Example

A simple example of the benefits of this approach appears in Figure 4. It is a graph color-
ing instance, with seven agents and the indicated domains. This instance has no solution
(realize that there are two available values a, b for the clique formed by the agents 5, 6
and 7, mutually connected). We assume that agents are ordered lexicographically and
values are tried in the order indicated for each domain. Agent 1 assigns x1 ← a, to dis-
cover after a while that there is no solution with this assignment. A nogood with empty
lhs will reach agent 1, forbidding value a. From this point on, ABT and ABT-UAC
behave differently.

x1

x3 x4x2

x7

x6

x5

a b                                                                   a b                    a b

  a b                b a               a b                            a b

Fig. 4. Instance of graph coloring with 7 agents, each holding a variable. Domains are indicated

t/a 1 2 3 4 5 6 7
1 x1 ← b x2 ← a x3 ← b x4 ← a x5 ← a x6 ← a x7 ← a

1 ok? to x2 1 ok? to x3 1 ok? to x4 1 ok? to x5 2 ok? to x6, x7 1 ok? to x7
1 ok? to x5

2 x1 = b ⇒ x5 �= b x6 ← b x7 ← b
x4 = a ⇒ x5 �= a 1 ok? to x7
1 ngd to x4
x5 ← a
2 ok? to x6x7

3 x1 = b ⇒ x4 �= a x5 = a ⇒ x7 �= a
x3 = b ⇒ x4 �= b x6 = b ⇒ x7 �= b
1 ngd to x3 1 ngd to x6
x4 ← b x7 ← b
1 ok? to x5

4 x1 = b ⇒ x3 �= b x5 = a ⇒ x6 �= a
x2 = a ⇒ x3 �= a x5 = a ⇒ x6 �= b
1 ngd to x2 1 ngd to x5
x3 ← a x6 ← a
1 ok? to x4 1 ok? to x7

5 x1 = b ⇒ x2 �= a x1 = b ⇒ x5 �= b
x1 = b ⇒ x2 �= b ⇒ x5 �= a
1 ngd to x1 1 ngd to x1
x2 ← a x5 ← a
1 ok? to x3 2 ok? to x6, x7

6 ⇒ x1 �= a x6 ← b
⇒ x1 �= b 1 ok? to x7
empty nogood
stop

Fig. 5. Trace of ABT in the example, after discarding value a for x1
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time/agent 1 2 3 4 5 6 7
1 D1 = {� ab}

2 del to x2, x5
x1 ← b x2 ← a x3 ← b x4 ← a x5 ← a x6 ← a x7 ← a
2 ok? to x2, x5 1 ok? to x3 1 ok? to x4 1 ok? to x5 2 ok? to x6, x7 1 ok? to x7

2 D5 = {a � b}
2 del to x6, x7
x1 = b ⇒ x5 �= b x6 ← b x7 ← b
x4 = a ⇒ x5 �= a 1 ok? to x7
1 ngd to x4
x5 ← a
2 ok? to x6x7

3 D6 = {� ab} D7 = {� ab}
1 del to x7 1 del to x6

x1 = b ⇒ x4 �= a x5 = a ⇒ x7 �= a
x3 = b ⇒ x4 �= b x6 = b ⇒ x7 �= b
1 ngd to x3 1 ngd to x6
x4 ← b x7 ← b
1 ok? to x5

4 x1 = b ⇒ x3 �= b D6 = ∅ D7 = ∅
x2 = a ⇒ x3 �= a stop stop
1 ngd to x2
x3 ← a
1 ok? to x4

Fig. 6. Trace of ABT-UAC in the example, after discarding value a for x1

ABT behavior is summarized in Figure 5, while ABT-UAC behavior is summarized
in Figure 6. Since tracing asynchronous algorithms is difficult, we assume that all mes-
sages sent in a time period are read in the next time period. The main difference between
ABT and ABT-UAC is that the latter propagates unconditional deletions via del mes-
sages. As consequence of that, it detects two empty domains at period 4 (D4 and D5),
so there is no solution. For this, it exchanges 23 messages. ABT performs just search
and it requires 25 messages to deduce that the instance has no solution.

It is worth noting that the detection of empty domains by ABT-UAC is done by the
unique action of del messages, and ok? and ngd messages are useless.

4 Propagating Any Deletion

The idea of propagating unconditional deletions can be extended to propagate any dele-
tion, including conditional ones. A value is conditionally deleted when the reason for
its removal is a nogood with a non-empty lhs. This value remains deleted as long as its
justifying nogood is active. When this nogood becomes no active, it has to be removed
and the value is available again. Propagating any deletion means that any deleted value
and its justifying nogood of any agent has to be sent to any other agent constrained
with it. This was already proposed in [9, 10]. Agents have to store the received no-
goods while they are active, but the space complexity remains polynomial [9]. As in the
previous case, ABT propagating any deletion remains sound, complete and terminates.

When a value a ∈ D(self) is removed, we differentiate between,

• Unconditional deletion. Value a is removed when,
1. a nogood with empty lhs has been accepted, or
2. all values initially consistent with a in the domain of a constrained variable

have been unconditionally eliminated.
Then, a is eliminated from D(self) once and for all (D(self)← D(self)−{a}).

• Conditional deletion. Value a is removed when,
1. self produces a nogood with non-empty lhs for a when looking for a consis-

tent value for xself ; it is the justification for the conditional a deletion, or
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2. a nogood with non-empty lhs has been accepted; this nogood is the justifica-
tion for the conditional a deletion, or

3. all values initially consistent with a in the domain of a constrained variable
have been eliminated, and this removal is conditional for at least one of these
values. The nogood of a deletion is the conjunction of the lhs of the nogoods
of the conditionally removed values which were initially consistent with a.

Nogoods justifying deletions of values in D(self) have to be sent to constrained
agents, which will enforce arc consistency in their constraints with self . This may
produce further deletions in the domains of those agent variables, which have to be
propagated, etc. Each time a value is conditionally deleted, a nogood is added that
justifies its deletion. When this nogood is no longer active, it has to be removed and the
deleted value becomes available again. Because of that, if an agent stores a nogood, it
must have direct link with all agents owners of the variables that appear in its lhs, to
be notified if one of these variables changes its value (which could render the nogood
no active). To perform propagation, self has to send all nogoods of its values to all
agents constrained with self . If ng is a nogood to propagate, it is sent to all constrained
agents that are below the last variable (lv) in the static agent ordering of ABT agents,
that appears in lhs(ng). The reason is clear: if ng is sent to agent k < lv(lhs(ng)),
agent k has no way to determine if ng is active or not, because there are variables in
lhs(ng) which are below k (so their values will never be sent to k).

Propagating any deletion has a clear drawback: the huge number of messages that
should be exchanged. This large number of del messages may overcome the benefits of
propagation, which are reduction of the search effort (because there are less available
values) which causes a reduction in the number of ok? and ngd messages. To mitigate
this drawback, we suggest to propagate any deletion directionally, following the ABT
static order of agents. If a value is deleted in self , the del message goes to agents above
self in the ordering. If agent j, j < self is constrained with self , upon the reception
of del message, j enforces arc consistency in the constraint between j and self .

Assuming that the instance is initially arc consistent, directional arc consistency is
maintained. These ideas are implemented in the ABT-DAC algorithm. This algorithm
presents the following changes with respect to ABT-UAC:

• Agent self , in addition to store the nogoods for the values of D(self), it has to
store the nogoods for values of other agents. Because of that, myNogoodStore
becomes a vector indexed by agent, myNogoodStore[k].

• Message del contains a nogood (instead of a pair (variable,value)).

Differences of ABT-DAC with ABT-UAC appear in Figure 7. In that code, when value
a is unconditionally deleted, it is removed from its domain (D ← D − {a}). When a
is conditionally deleted, a nogood justifying its deletion is added to the nogood store.
Checking for empty domain (D = ∅) means if all values of D have been uncondition-
ally removed. New lines are explained in the following,

• ValueDeleted(msg). Agent msg.sender has deleted a value of its domain
with msg.nogood. First, self checks if this message is up to date, by compar-
ing lhs(msg.nogood) with its agentV iew. If the message is accepted, then it
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procedure ValueDeleted(msg)
new if Coherent (msg.nogood, Γ− ∪ {self}) then
new if lhs(msg.nogood) = empty then D(msg.sender) ← D(msg.sender)− {a};
new else add(msg.nogood, myNogoodStore[msg.sender]); CheckAddLink(msg);
new DAC(self, msg.sender);

if myV alue 
∈ D(self) then myV alue ← empty; CheckAgentView();

procedure DeleteValue(a, j)
D(self) ← D(self)− {a};
if D(self) = ∅ then sendMsg:Stop(system);

new else for each k ∈ Γ−
0 , k 
= j do sendMsg:Del(” ⇒ xself 
= a”); CheckAgentView();

procedure Backtrack()
new newNogood ← solve(myNogoodStore[self ]);

if (newNogood = empty) then end ← true; sendMsg:Stop(system);
else sendMsg:Ngd(newNogood); Update(myAgentV iew,rhs(newNogood) ← ukn);

new ValueDeleted(newNogood);

new procedure DAC(self, j)
new if revise-2001(self, j) then
new if D(self) = ∅ then sendMsg:Stop(system); /* empty by unconditional deletions */
new else DEL is the set of deleted values in D(self) by the last revise-2001(self, j) call
new for each a ∈ DEL, ng(a) justifies deletion, k ∈ Γ−

0 , k > lv(lhs(ng(a)) do
new sendMsg:Del(ng(a));

function ChooseValue()
new for each v ∈ D(self) not eliminated by myNogoodStore[self ] do

if consistent(v, myAgentV iew) then return (v);
new else add(nogood(v), myNogoodStore[self ]);
new for each k ∈ Γ−

0 k > lv (lhs(nogood(v))) do sendMsg:Del(nogood(v));
return (empty);

procedure Update(myAgentV iew, newAssig)
add(newAssig, myAgentV iew);

new for each k ∈ Γ+ ∪ {self} do
new for each ng ∈ myNogoodStore[k] do
new if ¬Coherent(lhs(ng), myAgentV iew) then remove(ng, myNogoodStore[k]);

Fig. 7. New lines/procedures for ABT-DAC, with respect to ABT-UAC. Deletions are direction-
ally propagated with DAC.

differentiates between unconditional or conditional deletion. In the first case, the
value is removed from D(msg.sender). Otherwise, the nogood is stored and an-
alyzed for possible new links. in both cases, directed arc consistency between
self and msg.sender is enforced. If the value of self is deleted in this process,
the CheckAgentView procedure is called (looking for a new compatible value;
if none exists performs backtracking). Any deletion in D(self) is directionally
propagated.
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• DeleteValue(a, j). The only difference with the same procedure of ABT-UAC
is in the last line, where an unconditional deletion is propagated. The new format
of del message requires to form a directed nogood.

• Backtrack. Differences are in the first and last lines. In the first line, because
myNogoodStore is now a vector, myNogoodStore[self ] is solved, instead of
myNogoodStore. In the last line, theValueDeleted procedure is always called.

• DAC(self, j). Arc consistency is enforced in the constraint between self and j. If,
as result of this enforcing, D(self) becomes empty (all values have been uncon-
ditionally deleted), the problem has no solution, stop. Otherwise, any deletion is
propagated to agents above self and below lv(lhs) of the nogood sent.

• ChooseValue(). A new value for self , consistent with myAgentV iew, is
fetched. If a particular value is not consistent with myAgentV iew (because con-
straints with other agents), a nogood justifying its conditional deletion is computed,
stored and directionally propagated.

• Update(myAgentV iew, newAssig).myNogoodStore[k], now a vector indexed
by agent, causes the only difference. To remove nogoods which may become no
active by newAssig, all stored nogoods of agents below self should be checked.

It may occur that a del message includes a nogood more up to date than the agent view
of the receiving agent. In that case, [9] used a time-stamp system to determine which
message was earlier, and how to update correctly the agent view. We take a simpler
approach here: if this happens, the del message is considered obsolete and discarded
(see ValueDeleted).

5 Experimental Results

We experimentally evaluate the performance of ABT-UAC and ABT-DAC algorithms
with respect to ABT on uniform binary random DisCSP. A binary random DisCSP
class is characterized by 〈n, d, p1, p2〉, where n is the number of variables, d the num-
ber of values per variable, p1 the network connectivity defined as the ratio of existing
constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.
The constrained variables and the forbidden value pairs are randomly selected [11]. A
problem class will be referred to as a 〈n, d, p1, p2〉 network. Each agent is assigned one
variable. Neighboring agents are connected by constraints.

Using this model, we have tested random instances on four sets of experiments. The
first three ones consist of instances of 16 agents and 8 values per agent, considering
three connectivity classes, sparse (p1 = .2, p2 = .7), medium (p1 = .5, p2 = .4) and
dense (p1 = .8, p2 = .3) while the four experiment considers instances of 50 agents
and 50 values per agent, considering two dense connectivity classes, (p1 = 1, p2 =
.875, p1 = .7, p2 = .8). Tightness were selected at the complexity peak, where the
differences among algorithms are more explicit. Tables 1 and 2 present the results of
the algorithms according to two parameters: the communication cost, in terms of the
number of messages, and the computation effort, in terms of the number of non con-
current constraint checks (nccc) [7], respectively. In addition to these parameters, we
also report the number messages sent for each message type, the number of uncondi-
tionally deleted values and the number obsolete messages (obsolete ngd for ABT and
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Table 1. Results of ABT, ABT-UAC and ABT-DAC on random instances of 16 agents, 8 values
per agent and sparse, medium and dense connectivities

alg #ok? #ngd #addl #del #msg #del-val #obsolete nccc
ABT 4,866 1,829 27 0 6,722 0 446 5,689

p1 = .2 ABT-UAC 1,566 573 19 154 2,312 66 142 2,502
ABT-DAC 2,983 1,132 26 1,938 6,080 22 653 57,785
ABT 28,055 8,070 39 0 36,164 0 2,702 39,923

p1 = .5 ABT-UAC 27,487 7,902 39 125 35,553 19 2,642 40,039
ABT-DAC 28,042 8,094 39 11,281 47,456 3 5,138 345,933
ABT 53,400 14,999 19 0 68,418 0 5,909 98,330

p1 = .8 ABT-UAC 52,304 14,670 19 805 67,798 76 5,783 101,948
ABT-DAC 53,238 14,932 19 21,484 89,674 7 11,049 670,803

Table 2. Results of ABT, ABT-UAC and ABT-DAC on random instances of 50 agents, 50 values
per agent and two connectivities

alg #ok? #ngd #addl #del #msg #del-val #obsol nccc
ABT 267,046 153,909 0 0 420,955 0 100,632 557,242

p1 = 1 ABT-UAC 44,312 25,378 0 45,640 115,331 1,130 16,277 1,708,130
ABT-DAC 66,596 38,270 0 124,931 229,797 499 65,762 131,596,664

ABT 1,191,937 468,069 301 0 1,660,307 0 321,994 1,876,059
p1 = .7 ABT-UAC 1,130,235 443,916 301 47,954 1,622,407 1,587 305,807 4,535,344

ABT-DAC 210,963 87,129 275 277,351 575,718 52 151,288 391,778,623

ABT-UAC, obsolete ngd plus obsolete del for ABT-DAC). All parameters are averaged
over 50 executions.

Table 1 presents the first three sets of experiments for random instances of 16 agents
and 8 values per agent. The upper set corresponds to the sparse instances. Regarding
the number of messages, we observe that ABT-UAC and ABT-DAC always dominate
the standard ABT. ABT-UAC is the algorithm that shows the best results, reducing
approximately three times the number of ok?, ngd and total messages sent. As expected,
ABT-UAC sends a lower number of arc consistent messages than ABT-DAC. However,
ABT-UAC discards more unconditional arc inconsistent values than ABT-DAC (since
ABT-UAC and ABT-DAC perform different propagations of different deletions, they
may cause different numbers of removed values). Regarding message obsolescence,
results show that agents in ABT-UAC are better informed about others’ assignments
than agents in ABT.

The second and third sets of experiments in the same table correspond to medium and
dense connected binary instances of 16 agents and 8 values. In both cases the tightness
of the constraints is low at the complexity peak. Therefore, there is a little propagation to
reach an arc consistent state. Although the impact of maintaining arc consistent domains
on ABT is minor, ABT-UAC is always more economic than ABT with respect to the
total number of messages. In contrast, ABT-DAC sends more messages than ABT.

Considering the three experiments, propagating deletions algorithms send del mes-
sages, which cause to delete some values. These deletions cause to diminish the search
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effort, decreasing the number of ok? and ngd messages exchanged. When the number
of saved ok? and ngd messages is larger than the number of del messages, propagation
pays off and causes an overall message decrement. However, if the number of saved ok?
and ngd messages is smaller than the number of del messages, propagation is harmful.
In the sparse class, both ABT-UAC and ABT-DAC are beneficial, while for the medium
and dense classes only ABT-UAC is beneficial while ABT-DAC is harmful. In these two
classes, the number of ok? and ngd is practically the same for ABT and ABT-DAC, so
the effect of propagation is practically unnoticed. In terms of nccc, propagating dele-
tions algorithms are clearly more costly than ABT, since they perform full or directed
arc consistency, which implies more constraint checks. ABT-DAC is always more costly
than ABT-UAC because it performs more effort, propagating also conditional deletions.

Since the decrement in the number of messages caused by ABT-UAC in the medium
and dense connectivity classes of 16 agents and 8 values is minor, one might think that
the proposed approach is not beneficial on any medium or dense classes. To evaluate
this hypothesis, we have performed the fourth set of experiments for random instances
of 50 agents and 50 values per agent, with p1 = 1 and p1 = 0.7. Results appear in
Table 2. Regarding communication cost, results of p1 = 1 show a significant improve-
ment of ABT-UAC with respect to ABT: the number of messages it sends is 3.6 times
lower than ABT. We can note larger gains in the number of messages for each ABT
message type. We observe that ABT-DAC also needs lower number of messages than
ABT, even when it discards less than the half of the arc inconsistent values that ABT-
UAC. Results for p1 = .7 show that the winner here is ABT-DAC, requiring a number
of messages that divides by 2.9 the number required by ABT. ABT-UAC shows some
minor improvements. Regarding computation effort, once again nccc reflect the high
local effort that agents must pay in order to have consistent domains.

6 Conclusions

From this work we can extract some conclusions. According to experimental results,
propagation of unconditional deletions is not harmful, and it provides substantial bene-
fits for some problem instances, reducing substantially ABT communication require-
ments among agents. Directional propagation of any deletion provides a less clear
picture: it can be harmful in some instances, but also beneficial in others. More experi-
mental work is needed to assess their relative importance in different problem classes.

As future work, many ideas remain to be explored. On one hand, it has to be found the
right degree of arc consistency when propagating any deletion. In more general terms,
other local consistencies that remove individual values [6] could replace arc consistency
in the proposed approach; it remains to analyze how this can be done and their cost. On
the other hand, the proposed approach could be combined with other strategies that
improve ABT efficiency, like dynamic variable ordering [14, 15], or the hybrid ABT
version [4]. Finally, privacy deserves a special mention. Obviously, the proposed ap-
proach is less private than ABT, since deleted values (and the reasons for their deletion)
are exchanged among agents. How privacy could be improved inside the framework of
the proposed approach is an open question for further research.
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Abstract. Fuzzy constraints are a popular approach to handle preferences and
over-constrained problems in scenarios where one needs to be cautious, such as
in medical or space applications. We consider here fuzzy constraint problems
where some of the preferences may be missing. This models, for example, set-
tings where agents are distributed and have privacy issues, or where there is an
ongoing preference elicitation process. In this setting, we study how to find a
solution which is optimal irrespective of the missing preferences. In the process
of finding such a solution, we may elicit preferences from the user if necessary.
However, our goal is to ask the user as little as possible. We define a combined
solving and preference elicitation scheme with a large number of different in-
stantiations, each corresponding to a concrete algorithm which we compare ex-
perimentally. We compute both the number of elicited preferences and the ”user
effort”, which may be larger, as it contains all the preference values the user has
to compute to be able to respond to the elicitation requests. While the number of
elicited preferences is important when the concern is to communicate as little in-
formation as possible, the user effort measures also the hidden work the user has
to do to be able to communicate the elicited preferences. Our experimental results
show that some of our algorithms are very good at finding a necessarily optimal
solution while asking the user for only a very small fraction of the missing pref-
erences. The user effort is also very small for the best algorithms. Finally, we test
these algorithms on hard constraint problems with possibly missing constraints,
where the aim is to find feasible solutions irrespective of the missing constraints.

1 Introduction

Constraint programming is a powerful paradigm for solving scheduling, planning, and
resource allocation problems. A problem is represented by a set of variables, each with
a domain of values, and a set of constraints. A solution is an assignment of values to
the variables which satisfies all constraints and which optionally maximizes/minimizes
an objective function. Soft constraints are a way to model optimization problems by
allowing for several levels of satisfiability, modelled by the use of preference or cost
values that represent how much we like an instantiation of the variables of a constraint.
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It is usually assumed that the data (variables, domains, (soft) constraints) is completely
known before solving starts. This is often unrealistic. In web applications and multi-agent
systems, the data is frequently only partially known and may be added to at a later date
by, for example, elicitation. Data may also come from different sources at different times.
In multi-agent systems, agents may release data reluctantly due to privacy concerns.

Incomplete soft constraint problems can model such situations by allowing some of
the preferences to be missing. An algorithm has been proposed and tested to solve such
incomplete problems [7]. The goal is to find a solution that is guaranteed to be optimal
irrespective of the missing preferences, eliciting preferences if necessary until such a
solution exists. Two notions of optimal solution are considered: possibly optimal solu-
tions are assignments that are optimal in at least one way of revealing the unspecified
preferences, while necessarily optimal solutions are assignments that are optimal in
all ways that the unspecified preferences can be revealed. The set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.

If there is no necessarily optimal solution, the algorithm proposed in [7] uses branch
and bound to find a ”promising solution” (specifically, a complete assignment in the best
possible completion of the current problem) and elicits the missing preferences related
to this assignment. This process is repeated till there is a necessarily optimal solution.

Although this algorithm behaves reasonably well, it make some specific choices
about solving and preference elicitation that may not be optimal in practice, as we
shall see in this paper. For example, the algorithm only elicits missing preferences after
running branch and bound to exhaustion. As a second example, the algorithm elicits all
missing preferences related to the candidate solution. Many other strategies are possi-
ble. We might elicit preferences at the end of every complete branch, or even at every
node in the search tree. Also, when choosing the value to assign to a variable, we might
ask the user (who knows the missing preferences) for help. Finally, we might not elicit
all the missing preferences related to the current candidate solution. For example, we
might just ask the user for the worst preference among the missing ones.

In this paper we consider a general algorithm scheme which greatly generalizes that
proposed in [7]. It is based on three parameters: what to elicit, when to elicit it, and who
chooses the value to be assigned to the next variable. We test all 16 possible different
instances of the scheme (among which is the algorithm in [7]) on randomly generated
fuzzy constraint problems. We demonstrate that some of the algorithms are very good
at finding necessarily optimal solution without eliciting too many preferences. We also
test the algorithms on problems with hard constraints. Finally, we consider problems
with fuzzy temporal constraints, where problems have more specific structure.

In our experiments, we compute the elicited preferences, that is, the missing values
that the user has to provide to the system because they are requested by the algorithm.
Providing these values usually has a cost, either in terms of computation effort, or in
terms of privacy decrease, or also in terms of communication bandwidth. Thus know-
ing how many preferences are elicited is important if we care about any of these issues.
However, we also compute a measure of the user’s effort, which may be larger than the
number of elicited preferences, as it contains all the preference values the user has to
consider to be able to respond to the elicitation requests. For example, we may ask the
user for the worst preference value among k missing ones: the user will communicate
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only one value, but he will have to consider all k of them. While knowing the number
of elicited preferences is important when the concern is to communicate as little infor-
mation as possible, the user effort measures also the hidden work the user has to do to
be able to communicate the elicited preferences. This user’s effort is therefore also an
important measure.

As a motivating example, recommender systems give suggestions based on partial
knowledge of the user’s preferences. Our approach could improve performance by iden-
tifying some key questions to ask before giving recommendations. Privacy concerns re-
garding the percentage of elicited preferences are motivated by eavesdropping. User’s
effort is instead related to the burden on the user.

Our results show that the choice of preference elicitation strategy is crucial for the
performance of the solver. While the best algorithms need to elicit as little as 10% of
the missing preferences, the worst one needs much more. The user’s effort is also very
small for the best algorithms. The performance of the best algorithms shows that we
only need to ask the user a very small amount of additional information to be able to
solve problems with missing data.

Several other approaches have addressed similar issues. For example, open CSPs
[4,6] and interactive CSPs [9] work with domains that can be partially specified. As a
second example, in dynamic CSPs [2] variables, domains, and constraints may change
over time. However, the incompleteness considered in [5,6] is on domain values as well
as on their preferences. Working under this assumption means that the agent that pro-
vides new values/costs for a variable knows all possible costs, since they are capable of
providing the best value first. If the cost computation is expensive or time consuming,
then computing all such costs (in order to give the most preferred value) is not desir-
able. We assume instead, as in [7], that all values are given at the beginning, and that
only some preferences are missing. Because of this assumption, we don’t need to elicit
preference values in order, as in [6].

2 Background

In this section we give a brief overview of the fundamental notions and concepts on
Soft Constraints and Incomplete Soft Constraints.

Incomplete Soft Constraints problems (ISCSPs) [7] extend Soft Constraint Problems
(SCSPs) [1] to deal with partial information. We will focus on a specific instance of this
framework in which the soft constraints are fuzzy.

Given a set of variables V with finite domain D, an incomplete fuzzy constraint is a
pair 〈idef, con〉 where con ⊆ V is the scope of the constraint and idef : D|con| −→
[0, 1] ∪ {?} is the preference function of the constraint associating to each tuple of
assignments to the variables in con either a preference value ranging between 0 and 1,
or ?. All tuples mapped into ? by idef are called incomplete tuples, meaning that their
preference is unspecified. A fuzzy constraint is an incomplete fuzzy constraint with no
incomplete tuples.

An incomplete fuzzy constraint problem (IFCSP) is a pair 〈C, V,D〉 where C is a set
of incomplete fuzzy constraints over the variables in V with domain D. Given an IFCSP
P , IT (P ) denotes the set of all incomplete tuples in P . When there are no incomplete
tuples, we will denote a fuzzy constraint problem by FSCP.
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Given an IFCSP P , a completion of P is an IFCSP P ′ obtained from P by associ-
ating to each incomplete tuple in every constraint an element in [0, 1]. A completion
is partial if some preference remains unspecified. C(P ) denotes the set of all possible
completions of P and PC(P ) denotes the set of all its partial completions.

Given an assignment s to all the variables of an IFCSP P , pref(P, s) is the prefer-
ence of s in P , defined as pref(P, s) = min<idef,con>∈C|idef(s↓con) �=?idef(s↓con).
It is obtained by taking the minimum among the known preferences associated to the
projections of the assignment, that is, of the appropriated sub-tuples in the constraints.

In the fuzzy context, a complete assignment of values to all the variables is an optimal
solution if its preference is maximal. The optimality notion of FCSPs is generalized to
IFCSPs via the notions of necessarily and possibly optimal solutions, that is, complete
assignments which are maximal in all or some completions. Given an IFCSP P , we
denote by NOS(P ) (resp., POS(P )) the set of necessarily (resp., possibly) optimal
solutions of P . Notice that NOS(P ) ⊆ POS(P ). Moreover, while POS(P ) is never
empty,NOS(P ) may be empty. In particular,NOS(P ) is empty whenever the revealed
preferences do not fix the relationship between one assignment and all others.

In [7] an algorithm is proposed to find a necessarily optimal solution of an IFCSP
based on a characterization of NOS(P ) and POS(P ). This characterization uses the
preferences of the optimal solutions of two special completions of P , namely the 0-
completion of P , denoted by P0, obtained from P by associating preference 0 to each
tuple of IT (P ), and the 1-completion of P , denoted by P1, obtained from P by as-
sociating preference 1 to each tuple of IT (P ). Notice that, by monotonicity of min,
we have that pref0 ≤ pref1. When pref0 = pref1, NOS(P ) = Opt(P0); thus, any
optimal solution of P0 is a necessary optimal solution. Otherwise, NOS(P ) is empty
and POS(P ) is a set of solutions with preference between pref0 and pref1 in P1. The
algorithm proposed in [7] finds a necessarily optimal solution of the given IFCSP by
interleaving the computation of pref0 and pref1 with preference elicitation steps, until
the two values coincide. Moreover, the preference elicitation is guided by the fact that
only solutions in POS(P ) can become necessarily optimal. Thus, the algorithm only
elicits preferences related to optimal solutions of P1.

3 A General Solver Scheme

We now propose a more general schema for solving IFCSPs based on interleaving
branch and bound (BB) search with elicitation. This schema generalizes the concrete
solver presented in [7], but has several other instantiations that we will consider and
compare experimentally in this paper. The scheme uses branch and bound. This consid-
ers the variables in some order, choosing a value for each variable, and pruning branches
based on an upper bound (assuming the goal is to maximize) on the preference value
of any completion of the current partial assignment. To deal with missing preferences,
branch and bound is applied to both the 0-completion and the 1-completion of the prob-
lem. If they have the same solution, this is a necessarily optimal solution and we can
stop. If not, we elicit some of the missing preferences and continue branch and bound
on the new 1-completion.

Preferences can be elicited after each run of branch and bound (as in [7]) or during
a BB run while preserving the correctness of the approach. For example, we can elicit
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preferences at the end of every complete branch (that is, regarding preferences of every
complete assignment considered in the branch and bound algorithm), or at every node in
the search tree (thus considering every partial assignment). Moreover, when choosing
the value for the next variable to be assigned, we can ask the user (who knows the
missing preferences) for help. Finally, rather than eliciting all the missing preferences in
the possibly optimal solution, or the complete or partial assignment under consideration,
we can elicit just one of the missing preferences. For example, with fuzzy constraint
problems, eliciting just the worst preference among the missing ones is sufficient since
only the worst value is important to the computation of the overall preference value.
More precisely, the algorithm schema we propose is based on the following parameters:

1. Who chooses the value of a variable: the algorithm can choose the values in de-
creasing order either w.r.t. their preference values in the 1-completion (Who=dp)
or in the 0-completion (Who=dpi). Otherwise, the user can suggest this choice. To
do this, he can consider all the preferences (revealed or not) for the values of the
current variable (lazy user, Who=lu for short); or he considers also the preference
values in constraints between this variable and the past variables in the search order
(smart user, Who=su for short).

2. What is elicited: we can elicit the preferences of all the incomplete tuples of the
current assignment (What=all) or only the worst preference in the current assign-
ment, if it is worse than the known ones (What=worst);

3. When elicitation takes place: we can elicit preferences at the end of the branch
and bound search (When=tree), or during the search, when we have a complete
assignment to all variables (When=branch) or whenever a new value is assigned to
a variable (When=node).

By choosing a value for each of the three above parameters in a consistent way, we
obtain in total 16 different algorithms, as summarized in Figure 1, where the circled
instance is the concrete solver used in [7].

Figures 2 and 3 show the pseudo-code of the general scheme for solving IFCSPs.
There are three algorithms: ISCSP-SCHEME, BBE and BB. ISCSP-SCHEME takes
as input an IFCSP P and the values for the three parameters: Who, What and When.

Fig. 1. Instances of the general scheme
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IFCSP-SCHEME(P ,Who,What,When)
Q ← P0

smax, prefmax ← BB(P0,−)
Q′,s1,pref1 ← BBE(P, 0, Who, What,When, smax, prefmax)
If (s1 �= nil)

smax ← s1, prefmax ← pref1, Q ← Q′

Return Q, smax, prefmax

Fig. 2. Algorithm IFCSP-SCHEME

BBE (P ,nInstV ar, Who, What, When, sol, lb)
sol′ ← sol, pref ′ ← lb

currentV ar ← nextV ariable(P1)
While (nextV alue(currentV ar, Who))

If (When = node)
P, pref ← Elicit@Node(What,P, currentV ar, lb)

ub ← UpperBound(P1, currentV ar)
If (ub > lb)

If (nInstvar = number of variables in P )
If (When = branch)

P, pref ← Elicit@branch(What,P, lb)
If (pref > lb)

sol ← getSolution(P1)
lb ← pref(P1, sol)

else
BBE(P,nInstV ar + 1, Who,What,When, sol, lb)

If (When=tree and nInstV ar = 0)
If(sol = nil)

sol ← sol′, pref ← pref ′

else
P, pref ← Elicit@tree(What,P, sol, lb)
If(pref > pref ′)

BBE(P, 0, Who,What,When, sol, pref)
else BBE(P, 0, Who, What,When, sol′, pref ′)

Fig. 3. Algorithm BBE

It returns a partial completion of P that has some necessarily optimal solutions, one
of these necessarily optimal solutions, and its preference value. It starts by computing
via branch and bound (algorithm BB) an optimal solution of P0, say smax, and its
preference prefmax. Next, procedure BBE is called. If BBE succeeds, it returns a
partial completion of P , say Q, one of its necessarily optimal solutions, say s1, and
its associated preference pref1. Otherwise, it returns a solution equal to nil. In the
first case the output of IFCSP-SCHEME coincides with that of BBE, otherwise IFCSP-
SCHEME returns P0, one of its optimal solutions, and its preference.

Procedure BBE takes as input the same values as IFCSP-SCHEME and, in addition,
a solution sol and a preference lb representing the current lower bound on the optimal
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preference value. Function nextV ariable, applied to the 1-completion of the IFCSP,
returns the next variable to be assigned. The algorithm then assigns a value to this
variable. If the Boolean function nextV alue returns true (if there is a value in the
domain), we select a value for currentV ar according to the value of parameter Who.

Function UpperBound computes an upper bound on the preference of any comple-
tion of the current partial assignment: the minimum over the preferences of the con-
straints involving only variables that have already been instantiated.

If When=tree, elicitation is handled by procedure Elicit@tree, and takes place only
at the end of the search over the 1-completion. The user is not involved in the value
assignment steps within the search. At the end of the search, if a solution is found, the
user is asked either to reveal all the preferences of the incomplete tuples in the solution
(if What=all), or only the worst one among them (if What=worst). If such a preference
is better than the best found so far, BBE is called recursively with the new best solution
and preference.

If When=branch, BB is performed only once. The user may be asked to choose the
next value for the current variable being instantiated. Preference elicitation, which is
handled by function Elicit@branch, takes place during search, whenever all variables
have been instantiated and the user can be asked either to reveal the preferences of all the
incomplete tuples in the assignment (What=all), or the worst preference among those
of the incomplete tuples of the assignment (What=worst). In both cases the information
gathered is sufficient to test such a preference value against the current lower bound.

If When=node, preferences are elicited every time a new value is assigned to a vari-
able and it is handled by procedure Elicit@node. The tuples to be considered for elic-
itation are those involving the value which has just been assigned and belonging to
constraints between the current variable and already instantiated variables. If What=all,
the user is asked to provide the preferences of all the incomplete tuples involving the
new assignment. Otherwise if What=worst, the user provides only the preference of the
worst tuple.

Theorem 1. Given an IFCSP P and a consistent set of values for parameters When,
What and Who, Algorithm IFCSP-SCHEME always terminates, and returns an IFCSP
Q ∈ PC(P ), an assignment s ∈ NOS(Q), and its preference in Q.

Proof. Let us first notice that, as far as correctness and termination concern, the value
of parameter Who is irrelevant.

We consider two separate cases, i.e., When=tree and and When=branch or node.

Case 1: When =tree.
Clearly IFCSP-SCHEME terminates if and only if BBE terminates. If we consider the
pseudocode of procedure BBE shown in Algorithm 3, we see that if When = tree, BBE
terminates when sol = nil. This happens only when the search fails to find a solution
of the current problem with a preference strictly greater than the current lower bound.
Let us denote with Qi and Qi+1 respectively the IFCSPs given in input to the i-th and
i+1-th recursive call of BBE. First we notice that only procedureElicit@treemodifies
the IFCSP in input by possibly adding new elicited preferences. Moreover, whatever the
value of parameter What is, the returned IFCSP is either the same as the one in input or it
is a (possibly partial) completion of the one in input. Thus we haveQi+1 ∈ PC(Qi) and
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Qi ∈ PC(P ). Since the search is always performed on the 1-completion of the current
IFCSP, we can conclude that for every solution s, pref(Qi+1, s) ≤ pref(Qi, s). Let us
now denote with lbi and lbi+1 the lower bounds given in input respectively to the i-th
and i+1-th recursive call of BBE. It is easy to see that lbi+1 ≥ lbi. Thus, since at every
iteration we have that the preferences of solutions can only get lower, and the bound
can only get higher, and since we have a finite number of solutions, we can conclude
that BBE always terminates.

The reasoning that follows relies on the fact that value pref returned by function
Elicit@tree is the final preference after elicitation of assignment sol given in input.
This is true since either What = all and thus all preferences have been elicited and the
overall preference of sol can be computed or only the worst preference has been elicited
but in a fuzzy context where the overall preference coincide with the worst one. If called
with When = tree IFCSP-SCHEME exits when the last branch and bound search has
ended returning sol = nil. In such a case sol and pref are updated to contain the best
solution and associated preference found so far, i.e., sol′ and pref ′. Then, the algorithm
returns the current IFCSP, say Q, and sol and pref . Following the same reasoning as
above done for Qi we can conclude that Q ∈ PC(P ).

At the end of every while loop execution, assignment sol either contains an opti-
mal solution sol of the 1-completion of the current IFCSP or sol = nil. sol = nil iff
there is no assignment with preference higher than lb in the 1-completion of the current
IFCSP. In this situation, sol′ and pref ′ are an optimal solution and preference of the
1-completion of the current IFCSP. However, since the preference of sol′, pref ′ is inde-
pendent of unknown preferences and since due to monotonicity the optimal preference
value of the 1-completion is always greater than or equal to that of the 0-completion
we have that sol′ and pref ′ are an optimal solution and preference of the 0-completion
of the current IFCSP as well.

By Theorems 1 and 2 of [7] we can conclude that NOS(Q) is not empty. If pref =
0, then NOS(Q) contains all the assignments and thus also sol. The algorithm cor-
rectly returns the same IFCSP given in input, assignment sol and its preference pref .
If instead 0 < pref , again the algorithm is correct, since by Theorem 1 of [7] we know
that NOS(Q) = Opt(Q0), and we have shown that sol ∈ Opt(Q0).

Case 2: When=branch or node.
In order to prove that the algorithm terminates, it is sufficient to show that BBE ter-
minates. Since the domains are finite, the labeling phase produces a number of finite
choices at every level of the search tree. Moreover, since the number of variables is
limited, then, we have also a finite number of levels in the tree. Hence, BBE considers
at most all the possible assignments, that are a finite number. At the end of the exe-
cution of IFCSP-SCHEME, sol, with preference pref is one of the optimal solutions
of the current P1Thus, for every assignment s′, pref(P1, s

′) ≤ pref(P1, sol). More-
over, for every completion Q′ ∈ C(P ) and for every assignment s′, pref(Q′, s′) ≤
pref(P1, s

′). Hence, for every assignment s′ and for every Q′ ∈ C(P ), we have that
pref(Q′, s′) ≤ pref(P1, sol). In order to prove that sol ∈ NOS(P ), now it is suffi-
cient to prove that for every Q′ ∈ C(P ), pref(P1, sol) = pref(Q′, sol). This is true,
since sol has a preference that is independent from the missing preferences of P , both
when eliciting all the missing preferences, and when eliciting only the worst one either
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at branch or node level. In fact, in both cases, the preference of sol is the same in every
completion. Q.E.D.

If When=tree, then we elicit after each BB run, and it is proven in [7] that IFCSP-
SCHEME never elicits preferences involved in solutions which are not possibly op-
timal. This is a desirable property, since only possibly optimal solutions can become
necessarily optimal. However, the experiments will show that solvers satisfying such a
desirable property are often out-performed in practice.

4 Problem Generator and Experimental Design

To test the performance of these different algorithms, we created IFCSPs using a gen-
erator which is a simple extension of the standard random model for hard constraints to
soft and incomplete constraints. The generator has the following parameters:

– n: number of variables;
– m: cardinality of the variable domains;
– d: density, that is, the percentage of binary constraints present in the problem w.r.t.

the total number of possible binary constraints that can be defined on n variables;
– t: tightness, that is, the percentage of tuples with preference 0 in each constraint

and in each domain w.r.t. the total number of tuples (m2 for the constraints, since
we have only binary constraints, and m in the domains);

– i: incompleteness, that is, the percentage of incomplete tuples (that is, tuples with
preference ?) in each constraint and in each domain.

Given values for these parameters, we generate IFCSPs as follows. We first generate n
variables and then d% of the n(n − 1)/2 possible constraints. Then, for every domain
and for every constraint, we generate a random preference value in (0, 1] for each of the
tuples (that are m for the domains, and m2 for the constraints); we randomly set t% of
these preferences to 0; and we randomly set i% of the preferences as incomplete.

Our experiments measure the percentage of elicited preferences (over all the missing
preferences) as the generation parameters vary. Since some of the algorithm instances
require the user to suggest the value for the next variable, we also show the user’s effort
in the various solvers, formally defined as the number of missing preferences the user
has to consider to give the required help.

Besides the 16 instances of the scheme described above, we also considered a ”base-
line” algorithm that elicits preferences of randomly chosen tuples every time branch
and bound ends. All algorithms are named by means of the three parameters. For ex-
ample, algorithm DPI.WORST.BRANCH has parameters Who=dpi, What=worst, and
When=branch. For the baseline algorithm, we use the name DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem instances are generated. The
results shown are the average over the 100 instances. Also, when it is not specified
otherwise, we set n = 10 and m = 5. However, we have similar results (although
not shown in this paper for lack of space) for n = 5, 8, 11, 14, 17, and 20. All our
experiments have been performed on an AMD Athlon 64x2 2800+, with 1 Gb RAM,
Linux operating system, and using JVM 6.0.1.
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5 Results

In this section we summarize and discuss our experimental comparison of the different
algorithms. We first focus on incomplete fuzzy CSPs. We then consider two special
cases: incomplete CSPs where all constraints are hard, and incomplete fuzzy temporal
problems. In all the experimental results, the association between an algorithm name
and a line symbol is shown below.

5.1 Incomplete Fuzzy CSPs

Figure 4 shows the percentage of elicited preferences when we vary the incompleteness,
the density, and the tightness respectively. For reasons of space, we show only the results
for specific values of the parameters. However, the trends observed here hold in general.
It is easy to see that the best algorithms are those that elicit at the branch level. In
particular, algorithm SU.WORST.BRANCH elicits a very small percentage of missing
preferences (less than 5%), no matter the amount of incompleteness in the problem,
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Fig. 4. Percentage of elicited preferences in incomplete fuzzy CSPs
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and also independently of the density and the tightness. This algorithm outperforms all
others, but relies on help from the user. The best algorithm that does not need such
help is DPI.WORST.BRANCH. This never elicits more than about 10% of the missing
preferences. Notice that the baseline algorithm is always the worst one, and needs nearly
all the missing preferences before it finds a necessarily optimal solution. Notice also that
the algorithms with What=worst are almost always better than those with What=all, and
that When=branch is almost always better than When=node or When=tree.

Figure 5 (a) shows the user’s effort as incompleteness varies. As could be pre-
dicted, the effort grows slightly with the incompleteness level, and it is equal to the
percentage of elicited preferences only when What=all and Who=dp or dpi. For exam-
ple, when What=worst, even if Who=dp or dpi, the user has to consider more prefer-
ences than those elicited, since to identify the worst preference value the user needs
to check all of them (that is, those involved in a partial or complete assignment).
DPI.WORST.BRANCH requires the user to look at 60% of the missing preferences
at most, even when incompleteness is 100%.

Figure 5 (b) shows the user’s effort as density varies. Also in this case, as expected,
the effort grows slightly with the density level. In this case DPI.WORST.BRANCH
requires the user to look at most 40% of the missing preferences, even when the density
is 80%.
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(a) d=50%, t=10% (b) d=50%, t=10%

Fig. 7. Incomplete fuzzy CSPs: best algorithms

All these algorithms have a useful anytime property, since they can be stopped even
before their termination obtaining a possibly optimal solution with preference value
equal to the best solution considered up to that point. Figure 6 shows how fast the var-
ious algorithms reach optimality. The y axis represents the solution quality during exe-
cution, normalized to allow for comparison among different problems. The algorithms
that perform best in terms of elicited preferences, such as DPI.WORST.BRANCH, are
also those that approach optimality fastest. We can therefore stop such algorithms early
and still obtain a solution of good quality in all completions.

Figure 7 (a) shows the percentage of elicited preferences over all the preferences
(white bars) and the user’s effort (black bars), as well as the percentage of preferences
present at the beginning (grey bars) for DPI.WORST.BRANCH. Even with high levels
of incompleteness, this algorithm elicits only a very small fraction of the preferences,
while asking the user to consider at most half of the missing preferences.

Figure 7 (b) shows results for LU.WORST.BRANCH, where the user is involved
in the choice of the value for the next variable. Compared to DPI.WORST.BRANCH,
this algorithm is better both in terms of elicited preferences and user’s effort (while
SU.WORST.BRANCH is better only for the elicited preferences). We conjecture that
the help the user gives in choosing the next value guides the search towards better
solutions, thus resulting in an overall decrease of the number of elicited preferences.

Although we are mainly interested in the amount of elicitation, we also computed the
time to run the 16 algorithms. Ignoring the time taken to ask the user for missing pref-
erences, the best algorithms need about 200 ms to find the necessarily optimal solution
for problems with 10 variables and 5 elements in the domains, no matter the amount of
incompleteness. Most of the algorithms need less than 500 ms.

5.2 Incomplete Hard CSPs

We also tested these algorithms on hard CSPs. In this case, preferences are only 0 and
1, and necessarily optimal solutions are complete assignments which are feasible in
all completions. The problem generator is adapted accordingly. The parameter What
now has a specific meaning: What=worst means asking if there is a 0 in the missing
preferences. If there is no 0, we can infer that all the missing preferences are 1s.
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Fig. 8. Elicited preferences in incomplete CSPs

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

us
er

’s
 e

ffo
rt

incompleteness

(a) d=50%, t=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

us
er

’s
 e

ffo
rt

density

(b) t=10%, i=30%

Fig. 9. Incomplete CSPs: user’s effort

Figure 8 shows the percentage of elicited preferences for hard CSPs in terms of
amount of incompleteness, density, and tightness. Notice that the scale on the y axis
varies to include only the highest values. The best algorithms are those with What=worst,
where the inference explained above about missing preferences can be performed. It is
easy to see a phase transition at about 35% tightness, which is when problems pass from
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(a) d=50%, t=10%

Fig. 10. Incomplete CSPs: best algorithm
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Fig. 11. Percentage of elicited preferences in incomplete fuzzy temporal CSPs

being solvable to having no solutions. However, the percentage of elicited preferences
is below 20% for all algorithms even at the peak.

Figure 9 (a) shows the user’s effort in terms of amount of incompleteness and Fig-
ure 9 (b) shows the user’s effort in terms of density for the case of hard CSPs. Overall,
the best algorithm is again DPI.WORST.BRANCH. Figure 10 gives the elicited prefer-
ences and user effort for this algorithm.

5.3 Incomplete Temporal Fuzzy CSPs

We also performed some experiments on fuzzy simple temporal problems [8]. These
problems have constraints of the form a ≤ x− y ≤ b modelling allowed time intervals
for durations and distances of events, and fuzzy preferences associated to each element
of an interval. We have generated classes of such problems following the approach in
[8], adapted to consider incompleteness. While the class of problems generated in [8] is
tractable, the presence of incompleteness makes them intractable in general. Figure 11
shows that in this specialized domain it is also possible to find a necessarily optimal
solution by asking about 10% of the missing preferences, for example via algorithm
DPI.WORST.BRANCH.



416 M. Gelain et al.

6 Future Work

In the problems considered in this papers, we have no information about the missing
preferences. We are currently considering settings in which each missing preference is
associated to a range of possible values, that may be smaller than the whole range of
preference values. For such problems, we intend to define several notions of optimality,
among which necessarily and possibly optimal solutions are just two examples, and
to develop specific elicitation strategies for each of them. We are also studying soft
constraint problems when no preference is missing, but some of them are unstable, and
have associated a range of possible alternative values.

To model fuzzy CSPs, we have not used traditional fuzzy set theory [3], but soft
CSPs [1], since we intend to apply our work also to non-fuzzy CSPs. In fact, we plan
to consider incomplete weighted constraint problems as well as different heuristics for
choosing the next variable during the search. All algorithms with What=all are not tied
to fuzzy CSPs and are reasonably efficient. Moreover, we intend to build solvers based
on local search and variable elimination methods. Finally, we want to add elicitation
costs and to use them also to guide the search, as done in [10] for hard CSPs.
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Abstract. Constraints that are defined by tables of allowed tuples of assignments
are common in constraint programming. In this paper we present an approach to
reformulating table constraints of large arity into a conjunction of lower arity con-
straints. Our approach exploits functional dependencies. We study the complexity
of finding reformulations that either minimize the memory size or arity of a con-
straint using a set of its functional dependencies. We also present an algorithm to
compute such reformulations. We show that our technique is complementary to
existing approaches for compressing extensional constraints.

1 Introduction

Constraint satisfaction techniques are ubiquitous in many practical problem-solving
contexts [20]. Constraints can either be defined intensionally, as expressions or global
constraints, or extensionally as tables of allowed or forbidden tuples of values. In this
paper we focus on table constraints that are defined in terms of allowed tuples, which
are often referred to as positive table constraints. Most constraint toolkits, e.g. ILOG
Solver and Choco, provide support for specifying such constraints. Table constraints
occur “naturally” in many application domains, such as product configuration where
data is available from databases, spreadsheets or catalogues [13]. Also, naive users of
constraint toolkits often find it convenient to use table constraints rather than more ap-
propriate models using global constraints and other advanced features.

While table constraints might be easy to specify, they suffer from three disadvan-
tages from a computational point of view. Firstly, table constraints are propagated with
algorithms such as GAC-SCHEMA [4] with running times that are proportional to the
number of tuples allowed by the constraint, which is exponential in its arity. Secondly,
when a set of table constraints is inconsistent, we may be interested in characterising
the inconsistency by generating an explanation [5]. A typical form of explanation is a
minimal set of conflicting constraints. Large arity table constraints do not lend them-
selves to giving compact explanations because they might involve too large a subset of
the variables of the problem. Thirdly, the amount of space required to store a table con-
straint might be excessive since there can be redundant information copied many times
in the tuples of the constraint. Therefore, there is considerable motivation for looking at
techniques to automatically reformulate table constraints by either reducing their arity,
the number of tuples that define them, or the amount of space they require.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 418–432, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Reformulating Positive Table Constraints Using Functional Dependencies 419

In this paper we study such a technique that exploits functional dependencies in the
constraint. In particular, we reformulate by eliminating functional dependencies and
computing equivalent conjunctions of lower arity constraints. We study the complexity
of the problem of finding a reformulation that either minimizes memory size or arity
based on a set of functional dependencies that hold on the constraint. We also pro-
pose an algorithm for computing such a reformulation. We show that this reformulation
technique is complementary to previous approaches to compactly representing table
constraints [6,8,10,12,19] by capturing quite a different structure in their tuples.

2 Background

A constraint satisfaction problem P is a triple P def= 〈X ,D, C〉, where: X is a finite set
of variables;D is a set of domains corresponding to the possible values of each variable;
and C is a set of constraints. Each constraint ci ∈ C is defined by a scope and a relation.
The scope denoted scope(ci) is an ordered subset of X and the relation, rel(ci), is a set
of tuples over scope(ci) that satisfy the constraint. The number of variables constrained
by ci, i.e. |scope(ci)|, is known as the arity of the constraint ci. A solution to P is an
assignment of all variables to a value of their domain that satisfy all the constraints of
the problem. We will moreover denote by sol(P) the set of all solutions of P .

In order to avoid confusion between the notion of a database relation, and the relation
of a constraint, we define the projection operator σ in the following. Let r be a relation
over a set of variables X and t, a tuple of r. The projection onto Z ⊆ X of t, denoted
t[Z], is the restriction of t to Z . The projection of r onto Z , denoted σZ(r), is the set
{t[Z]|t ∈ r}. σZ(c) denotes the corresponding constraint with a scope Z ⊆ scope(c)
and rel(σZ(c)) = σZ(rel(c)). σZ(c) is a relaxation of c, i.e. its set of allowed tuples is
obtained by projecting the set of allowed tuples of c onto Z .

Definition 1 (Constraint Reformulation). A reformulation Δ(c) of a positive table
constraint c is a set of relaxationsR def= {c1, . . . , ck} of c such that ∀ca, cb ∈ R, a �= b,
scope(ca) � scope(cb).

Reformulations that give rise to conjunctions of constraints that are equivalent, i.e. have
the same set of solutions, are very important. We refer to such reformulations as lossless.

Definition 2 (Lossless Reformulation). Given a CSP P def= 〈X ,D, {c}〉 involving a
single constraint c, Δ(c) is a lossless reformulation of c if the CSP P ′ def= 〈X ,D, Δ(c)〉
is such that sol(P) = sol(P ′).

In contrast with earlier work, e.g. [9], our approach to computing lossless reformula-
tions of positive table constraints exploits the concept of functional dependencies in a
relation [11]. A functional dependency in a relation rel(c) is written as F : X → y,
where X∪{y} ⊆ scope(c). A functional dependency states that if a pair of tuples in the
relation take the same values for the variables in X , they must also take the same value
for variable y. F : X → y is minimal if y is not functionally dependent on any subset
of X . It is said to be trivial if y ∈ X . Algorithms for finding the set of all minimal and
non-trivial dependencies that hold in a given relation are known [11].
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Example 1 (Functional Dependencies in Constraints). Consider the following con-
straint:

ca(x1, x2, x3, x4)
def= {(0, 0, 0, 4), (1, 0, 0, 2), (2, 4, 1, 3), (0, 4, 2, 4), (2, 2, 3, 2)}.

The following minimal functional dependencies (among the seven that exist) hold in
ca: F1 : {x3} → x2,F2 : {x1, x2} → x3, and F3 : {x1, x2} → x4. The values of
x2 are uniquely determined by the value of x3 and the values of x4 and x3 depend,
similarly, only on the values taken by x1 and x2. The dependency {x2} → x3 does not
hold because value 4 for x2 does not determine the value of x3 (2 or 1). �

For the sake of simplicity, we will denote by Si the scope Xi ∪ {yi} of a dependency
Fi : Xi → yi. Moreover, we will say that Fi ⊂ Fj if and only if Si ⊂ Sj . Finally for
a set of dependencies δ, we define δ(S) = {Fi ∈ δ | Si ⊂ S}, the restriction of δ to
a scope S, i.e all the dependencies of δ that hold on this scope. A dependency can be
used to reformulate a constraint in the following way.

Definition 3 (Constraint Reformulation using a Functional Dependency). Let c be
a positive table constraint, F : X → y a functional dependency that holds on rel(c)
such that X ∪ {y} ⊂ scope(c). The reformulation of c, denoted Δ(c,F), using F is
defined by: Δ(c,F) = {σscope(c)−{y}(c), σX∪{y}(c)}.

Informally, a functional dependency is used to split the scope of a constraint into two
scopes by eliminating the functionally dependant variable y. For the sake of simplicity,
the notion of reformulation is extended to scopes with Δ(scope(c),F) = {scope(c)−
{y}, X∪{y}} and relations,Δ(rel(c),F) = {σscope(c)−{y}(rel(c)), σX∪{y}(rel(c))}.

Example 2 (Constraint Reformulation using a Functional Dependency). Consideragain
the constraint ca presented in Example 1. The original scope of ca is (x1, x2, x3, x4).
If we apply F3 : {x1, x2} → x4, this scope is split into (x1, x2, x3) and (x1, x2, x4),
in accordance with the procedure above. If we apply F1 : {x3} → x2 on the scope
(x1, x2, x3) we can split it into (x1, x3), (x2, x3), giving the lossless reformulation:
Δ(ca, 〈F3,F1〉) = {{x3, x2}, {x1, x3}, {x1, x2, x4}}. �

Our reformulation strategy is related to decomposing database relations into Boyce-Codd
Normal Form (BCNF). However, we can often decompose relations further. Specifically,
we focus on minimal reformulations. Given a constraint c, the reformulation Δ(c, δ)
obtained from a set of dependencies δ holding on rel(c) is said to be minimal if each
element ofΔ(c, δ) cannot be decomposed further and there does not exist a reformulation
Δ′(c, δ) ⊂ Δ(c, δ) such that Δ′(c, δ) is lossless.

Example 3 (Minimal Reformulation). Consider the constraint scope c(x1, x2, x3, x4)
on which F1 : {x1, x4} → x3, F2 : {x1} → x2 and F3 : {x3} → x1 hold. The
following sequence of reformulations is produced by F1, F2, F3:

– Δ1(c,F1) = {{x1, x4, x3}, {x1, x2, x4}};
– Δ2(c, 〈F1,F2〉) = {{x1, x4, x3}, {x1, x2}, {x1, x4}};
– Δ3(c, 〈F1,F2,F3〉) = {{x1, x3}, {x3, x4}, {x1, x2}, {x1, x4}}.
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The final reformulation, Δ3(c, 〈F1,F2,F3〉) is not minimal. In Δ2(c, 〈F1,F2〉), the
scope {x1, x4, x3} contains the scope {x1, x4} (the first constraint implies the other),
therefore the latter can be removed while still ensuring that the resultant reformulation
is lossless. In fact, the decomposition of {x1, x4, x3} that follows is itself lossless. A
minimal decomposition would, therefore, be {{x1, x3}, {x3, x4}, {x1, x2}}. �
It can be shown [5] that reformulations obtained using the process described in Def-
inition 3 are lossless and preserve arc-consistency, i.e that that achieving generalised
arc consistency (GAC) [4,15,16] on the reformulation is equivalent to achieving GAC
on the original constraint. A reformulation is obtained by applying a sequence of func-
tional dependencies. However, as dependencies are applied, others may no longer be
applicable to the reformulation we obtain and this implies compatibilities between de-
pendencies and valid orderings to compute the reformulation.

Theorem 1 (Valid Ordering of Functional Dependencies [5]). Given a constraint c,
let Fi : Xi → yi and Fj : Xj → yj be two minimal functional dependencies that hold
in rel(c) such that yj ∈ Si and Fi �⊂ Fj . Then, when Fi and Fj are applied on the
same scope, Fi can only be applied before Fj , which we denote as Fi ≺ Fj .

Example 4 (Valid Ordering Dependencies). Consider F1 : {x1, x2} → x3 and F2 :
{x1, x3} → x4. F2 can only be applied before F1 (F2 ≺ F1) because the use of F1

would remove x3 from the scope and thus prevents F2 from applying on this scope. �
Given a set of dependencies δ, we denote by Gδ the directed graph of precedences
between the dependencies in δ. The nodes of Gδ are the dependencies in δ. An edge
(Fi,Fj) is added if Fi ≺ Fj , i.e. Fi can only be applied before Fj . To fully character-
ize a set of dependencies that can be used to give rise to a reformulation, we define the
root of a set δ and a scope S as root(δ, S) = {Fi ∈ δ(S) | ∀Fj ∈ δ(S) : Fi �⊂ Fj}, i.e.
the subset of δ that applies to scope S and where no dependency is included in another.
A root set on S corresponds to the dependencies that will be used to remove variables
from S. The precedence graph of such a set, therefore, needs to be acyclic and valid
sets of dependencies are defined as follows:

Definition 4 (Valid Set of Dependencies). A set of functional dependencies δ∗ ⊆ δ
holding on a scope S is said to be valid if and only if Groot(δ∗,S) is acyclic and ∀Fi ∈
δ∗, Groot(δ∗,Si) is acyclic.

Example 5 (Valid Set of Dependencies). Consider δ = {F1,F2,F3,F4}, and their cor-
responding precedence graph presented in Figure 1. This is a valid set, even if Gδ is
cyclic, since it can be verified that all roots correspond to acyclic subgraphs of Gδ

: root(δ, S) = {F1,F4}, root(δ, {x1, x2, x3}) = {F3}, root(δ, {x1, x3, x5, x4}) =
{F2}, root(δ, {x3, x2}) = ∅ and root(δ, {x3, x4, x1}) = ∅. So, first of all x3, x4 will
both be removed from S using F1,F4. Secondly, F3 and F2 will be used on the two
independent subscopes produced by F1,F4. �
All dependencies in a valid set δ can be used to decompose the original scope by ap-
plying them root by root in an order compatible with the precedences of each root.
Moreover, it is shown in [5] that the reformulation associated with the valid sequence
of δ, using all elements of δ, is unique. This result relies on the following observation
that we will use later.
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F4

F2

F3 : {x3} → x2F1

F2 : {x3 x4} → x1

F1 : {x1 x2} → x3

F4 : {x1 x3 x5} → x4

F3

Fig. 1. An example of a graph of precedences

Lemma 1. Let Fi, Fj be two minimal dependencies s.t Fi ⊆ Fj , then yj ∈ Xi ∪ {yi}.

Proof. If yj /∈ Xi ∪ {yi} it means that Xi ∪ {yi} ⊆ Xj and, therefore, that Fj is not
minimal because another dependency, namely Fi, is contained in its left-hand side. �
Lemma 1 can be used to show that the reformulation using a valid set is unique and
the dependencies can only be used once in the process because they are partitioned be-
tween the scopes as the scopes are broken. Thus, the reformulation of a valid set can be
quickly computed because any order of the dependencies that respects the precedence
graph of each root produces the same result. Algorithm 1 computes the reformulation
(as a set of scopes) obtained from a valid set δ applying on S. The uniqueness of the
reformulation for a valid set underpins our claim that when finding an optimal refor-
mulation one can search for valid sets amongst the subsets of the original dependencies
(O(2n) complexity) rather than consider all possible sequences, which would give an
O(n!) complexity.

Example 6 (Uniqueness of Reformulation). Consider the set of four dependencies δ of
Figure 1. After applying F4 on S, F2 can only be applied on the scope x1, x3, x5, x4

produced by F4 because, as we have F2 ⊂ F4, it necessarily involves x4 (Lemma 1) in
its left hand side and x4 does not appear in the remainder of S. �

3 Characterizing a Good Reformulation

For a relation r over a set X of variables, the size of r is computed as the number of
values in the table (the memory size) i.e. |r| ∗ |scope(r)|. A reformulation Δ(r, δ) is a
conjunction of constraints that can be characterized by: its maximum arity aΔ(r,δ) =
maxri∈Δ(r,δ)|scope(ri)|; its maximum number of tuples lΔ(r,δ) = maxri∈Δ(r,δ)|ri|;
its overall memory size sΔ(r,δ) =

∑
ri∈Δ(r,δ) |ri| ∗ |scope(ri)|. The complexity of

GAC is determined by the maximum number of tuples involved in any constraint rela-
tion, lΔ(r,δ), or the maximum arity, aΔ(r,δ), depending on the GAC scheme used [4,16].
However it is easy to see that lΔ(r,δ) is always equal to |rel(c)| in what remains of the
initial relation. The maximal number of tuples in the reformulation cannot be decreased.
By using a dependency, a small table can be extracted but the number of tuples of the
relation from which the variable is removed remains unchanged. Consider Xi → yi

holding on S, once yi has been removed from S, no pair of tuples can be identical in the
resulting table, otherwise they would be identical on Xi and, therefore, would have been
identical on yi as well, by definition of a functional dependency. This does not mean
that the reformulation cannot be more compact. Specifically sΔ(r,δ) can be smaller than
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Algorithm 1. REFORMULATE(δ = {F1, . . .Fn}, S = {x1, . . . xr})
1. DS ← {S};
2. While δ �= ∅ Do
3. For each Scopek ∈ DS Do
4. δ∗ ← root(δ, Scopek);
5. If δ∗ �= ∅
6. DS ← DS − Scopek; c ← |δ∗|;
7. For each Fi ∈ δ∗ Do
8. DS ← DS ∪ Si;
9. If �P ∈ DS, {Scopek − {y1, . . . , yc}} ⊆ P; // ensures minimality
10. DS ← DS ∪ {Scopek − {y1, . . . , yc}};
11. δ ← δ − δ∗;
12. Return DS;

|rel(c)| × |scope(c)|; arity and memory size, therefore, provide a basis to characterise
a good reformulation and we will focus our study on those two parameters.

4 Complexity of Size-Bounded Reformulation

Given a set of functional dependencies holding on a scope, we consider the complexity
of finding a reformulation of minimum size or a reformulation in which the maximum
arity of the constraints is minimized. Both problems can be shown to be NP-Hard, since
their corresponding decision problems can be used to solve the Weighted Feedback
Vertex Set (WFVS) problem, which is known to be NP-Complete. We have shown in [5]
that the problem of minimizing the maximum arity is NP-Hard and now extend this
result to minimizing the size to show the nature of the problem and derive an algorithm.

We start first by rewriting the size of a reformulation in Δ(r, δ) only in terms of
|σSj (r)| of each dependency Fj of δ. Notice that each relation ri of Δ(r, δ) is initially
derived from a dependencyFj that produces a relation of scope Sj (with the exception
of r0 denoting here the remainder of the initial scope S). Then pi variables might have
been eventually removed from Sj by other dependencies to reach scope(ri) (pi is null
for at least one relation of Δ(r, δ)). The pair (Sj , pi) is known for each ri �= r0 and r0
can be associated with the pair (S, p0). The size of a reformulation can be written as:

sΔ(r,δ) =
∑

ri:(Sj,pi)∈Δ(r,δ)

(|Sj | − pi)× |σSj (r)|.

The size can, therefore, be computed from the details of each dependency Fi, in par-
ticular the cardinality of its projection onto scope Si, i.e. |σSi(r)|. We define the basic
decision problem as follows:

BOUNDED SIZE REFORMULATION (BSR)
Instance: A set δ of minimal functional dependencies holding on a scope S =
(x1, . . . , xm). A set H = {h0} ∪ {hi|Fi ∈ δ} of positive integers denoting the number
of tuples, h0, of a relation on S and the number of tuples of the relations obtained from
S with each dependency of δ. A positive integer b.

Question: Does there exist a subset δb ⊆ δ with sΔ(S,δb) ≤ b, where sΔ(S,δb) =∑
ri:(Sj,pi)∈Δ(S,δb)

(|Sj | − pi)× hj is the size of the reformulation obtained using δb?



424 H. Cambazard and B. O’Sullivan

Notice that the BSR problem assumes that the set of functional dependencies is given
explicitly in advance. The reason is that finding the dependencies from the relation is
itself an NP-Complete problem. However, given a set of functional dependencies δ, it
can be shown that there always exists a relation on which only those functional depen-
dencies hold; such relations are known as Armstrong relations [3]. While constructing
an Armstrong relation is exponential in the size of δ, upper and lower bounds on the
minimal number of tuples in the relation are known [3]. The BSR problem, however,
refers to a set of dependencies with the specific number of tuples in each projection of
the relation on the scope of each dependency of δ. We show here that such a relation
always exists for some specific set of dependencies and use it to prove theorem 2.

Lemma 2. Let δ be a minimal set of dependencies defined on scope S such that one
variable x ∈ S does not appear in the scope of any dependency of δ. Assume that each
Fi ∈ δ has at least one element ei ∈ Xi that does not appear in the scope of any
other dependency. Let hα be an upper bound on the minimum number of tuples in an
Armstrong relation for δ. Consider also a set of integers hi ≥ hα for all 1 ≤ i ≤ |δ|.
There is an Armstrong relation r for δ such that |r| ≥

∑
i hi+hα and ∀i, hi = |σSi(r)|.

Proof. Consider the minimum Armstrong relation Λ for δ with at most hα tuples and
vα different values (in the range [1, vα]). We show here how to add tuples to Λ without
breaking any dependency in δ (no dependencies can be introduced by adding tuples) to
achieve the proper size of each projection. For each dependency Fi of δ we add a set
T = {tj |1 ≤ j ≤ hi − |σSi(Λ)|} of tuples to Λ. Let t be an arbitrary tuple of Λ. Each
tj of T is identical to t except that tj [ei] = vα + i + j. It can be easily verified that
T appears only in σSi and in none of the σSj for i �= j. In addition, the only violated
dependencies by the addition of T are of the form V → ei that cannot be in δ. Finally
|r| can be made greater than

∑
i hi + hα by adding tuples equal to a tuple of Λ except

on x where t[x] is constructed using a new value for each tuple. �
Our complexity proof is based on a reduction from the WEIGHTED FEEDBACK VER-
TEX SET, which is known to be NP-Complete [7].

WEIGHTED FEEDBACK VERTEX SET (WFVS)
Instance: A positive integer k and a weighted directed graph G = (V,W,E)
where wv ∈W denotes a positive integer associated with each node v ∈ V .
Question: Does there exist an X ⊆ V with

∑
x∈X wx ≤ k such that G with

the vertices from X removed is acyclic?

Theorem 2. The BOUNDED SIZE REFORMULATION problem is NP-Complete.

Proof. Clearly, this problem is in NP. Given a valid set of functional dependencies, the
size of the resultant unique reformulation can be computed in polynomial time using
Algorithm 1. To prove completeness we show a reduction from the WFVS problem.
Consider an instance of the WFVS on a graph G = (V,W,E) with |V | = n. We con-
struct an instance of the BSR problem in the following way. A functional dependency
Fk : {. . .} → vk is associated with each node of V . Then each vk is instantiated to xk

and added to the left-hand side of all dependencies corresponding to the predecessors
of vk in G. Moreover, we add n different new variables to each left side of all functional
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1

5

2

3

4

2 11 . . . 15 → 4

4 → 5

2 → 4

→ 1

1 3 5 → 2

1 2 → 3

4 6 . . . 10 → 5

21 . . . 25 → 1

1 3 5 16 . . . 20 → 2

1 2 26 . . . 30 → 3

Fig. 2. An example set of dependencies built from a given graph

dependencies and one more variable that does not appear in any dependency. The result-
ing scope S is equal to {x1, . . . , xn2+n+1}. Figure 2 shows the construction resulting
from the two previous steps on an example graph G. These dependencies respect the
precedences of G, they are minimal and can only apply on the main scope, i.e. they are
not included in one another.

Let δ be such a set of dependencies and m = n2 + n + 1. We denote by L, the
least common multiple of all |Si| and w

′
i = ( h0

hαL − wi). We set hi with 0 < i ≤ n,

b and h0 to the following values: h0 = L × maxi(wi) × hα, hi = w
′
i × hαL

|Si| and

b = hαL(
∑

i∈V w
′
i + k) + h0 × (n2 + 1), where hα is an upper bound on the size

of the minimum Armstrong relation for δ (computable in polynomial time). It can be
verified that they are all positive integers, that hi ≥ hα and that h0 ≥

∑n
i=1 hi + hα

because
∑n

i=1 hi +hα =
∑n

i=1
h0−haLwi

|Si| +hα = h0

∑n
i=1

1
|Si| −ha(

∑n
i=1

Lwi

|Si| − 1)
and that

∑n
i=1

1
|Si| ≤ 1 and

∑n
i=1

Lwi

|Si| > 1. Indeed, all wi are positive and for all i,
|Si| > n. This transformation is polynomial and such an Armstrong relation with the
corresponding properties exists according to Lemma 2.

We show that G has a feedback vertex set of weight at most k if and only if S
has a reformulation of size at most b. Assume that we have a solution to BSR with
sΔ(S,δb) ≤ b and denote by X the set of nodes corresponding to the complement of δb

in V so that δb = V − X . There is a one-to-one correspondence between the nodes
of G and dependencies of δ by construction. It can be verified that

∑
i∈X wi ≤ k, in

the following way starting from sΔ(S,δb) ≤ b; notice that all the pi are null except p0

because all dependencies apply on the main scope and thus:∑
i∈δb

|Si| × hi + h0(|S| − |δb|) ≤ b

hαL
∑
i∈δb

w
′
i + h0(n2 + n + 1− (n− |X |)) ≤ b

∑
i∈δb

w
′
i +

h0

hαL
|X | ≤

∑
i∈V

w
′
i + k ⇒ −

∑
i∈X

w
′
i +

h0

hαL
|X | ≤ k ⇒

∑
i∈X

wi ≤ k.

Conversely, it can be easily seen, using the same computation, that any solution X to
the WFVS having a weight at most k gives a set of dependencies δb (the complement
of X in V ) that provides a reformulation of size at most b. �
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5 A Dynamic Programming Algorithm for Reformulation

We propose a complete algorithm to find optimal reformulations that improves the one
presented in [5]. We observe that many independent subproblems occur when trying
to compute the optimal reformulation in terms of arity or size. This can be easily seen
when writing the computation in a recursive way :

a∗(S, δ) =

⎧⎨⎩
|S| if δ = ∅
minFi∈δ( max(a∗(Si, δ(Si)), a∗(S − {yi}, δ − {Fi} − δ(Si))),

a∗(S, δ − {Fi})) otherwise

s∗(S, δ) =

⎧⎨⎩
|S| × |σS( rel(c))| if δ = ∅
minFi∈δ( s∗(Si, δ(Si)) + s∗(S − {yi}, δ − {Fi} − δ(Si)),

s∗(S, δ − {Fi})) otherwise

The rationale behind these formulations is that once a dependency Fi is chosen,
δ(Si) can only apply on Si and, therefore, two independent subproblems appear: the
optimal reformulation of Si using δ(Si) on one side and the optimal reformulation of
S − {yi} on the other. δ(Si) can only apply on scope Si because all the dependencies
of δ(Si) involve yi according to Lemma 1, and yi only appears in Si.

Consider, for example, the minimal dependency F : {x1, x2, x3} → y, the only
way to further decompose the scope obtained after applying this dependency is with a
functional dependency of the form {y} → x1 or {x2, y} → x3, but y is mandatory on
the left-hand side. The reformulation algorithm is presented as Algorithm 2.

Algorithm 2. OPTIMALREFORMULATION(δ = {F1, . . . ,Fn}, S)
1. sort δ by increasing size of scopes;
2. For each Fi ∈ δ do
3. (a∗/s∗

Fi
, δ∗

Fi
) ← FINDREDUCEDOR(δ(Si ), ∅, Si);

4. FINDREDUCEDOR(δ, ∅, S);

The arity/size of the optimal reformulation obtained by each Fi of δ(Si) is known
when calling Algorithm 3, i.e. FINDREDUCEDOR (line 3), as all such subproblems
have been solved independently before due to the sorting of line 1. Their optimal value
is denoted a∗Fi

or s∗Fi
and the set of corresponding dependencies by δ∗Fi

.

Example 7 (An Optimal Reformulation Problem). Figure 3 gives an example of a re-
formulation problem where the dependencies have been organized into independent
subproblems. The arity of the initial scope is eight and the circled dependencies denote
an optimal solution to get a reformulation of arity three. The optimal value of the sub-
problem associated to each dependency is indicated in parentheses. 1 4 6 8 → 7 leads,
for example, to a subscope that can be reformulated with a maximum arity of three by
using 7 1 4 → 6, 7 6 → 4 and 7 1 → 8. It can also be seen that 7 6 → 4, which is
included in 1 4 6 8 → 7 and 7 1 4 → 6, therefore, uses 7 and 6 in its left-hand side as
stated by Lemma 1. Algorithm 2 will solve the subproblems from the leaves to the root
of this tree by calling Algorithm 3 for each subproblem. �
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7 6 −> 4 (3)

1 2 7 −> 6 (4)

1 2 3 4 5 6 7 8

1 2 −> 8 (3) 1 2 −> 4 (3) 1 2 −> 3 (3) 1 3 5 −> 6 (3) 1 4 6 8 −> 7 (3)

6 5 −> 3 (3) 8 7 −> 1 (3)6 3 −> 1 (3) 7 1 4 −> 6 (3) 7 1 −> 8 (3)

Fig. 3. An example of a hierarchy of subproblems

Algorithm 3. FINDREDUCEDOR(CD = {Fi, . . .Fn} , PD, S)
// a∗

Fi
/s∗

Fi
and δ∗

Fi
are assumed to be known for all Fi ∈ CD

1. If CD = ∅
2. REFORMULATE (PD ∪ {δ∗

Fi
|Fi ∈ PD}, S);

3. If an improving solution has been found
4. store it and update the upper bound
6. Else
7. CD ← CD − {Fi}; // Fi is chosen for branching
8. FD ← PRUNING (CD, PD ∪ {Fi}) ∪ δ(Si) ∪ {Fk ∈ CD|Si ⊆ Sk};
9. If BOUND(CD − FD, PD ∪ {Fi}, S) < upperBound
10. FINDREDUCEDOR(CD − FD, PD ∪ {Fi}, S);
11. If BOUND(CD, PD, S) < upperBound
12. FINDREDUCEDOR(CD, PD, S);

Algorithm 3 assumes that each dependency is labeled with its corresponding a∗/s∗Fi

and δ∗Fi
. It computes the optimal reformulation of S using such dependencies. It is, basi-

cally, a branch and bound over the subsets of subproblems defined by each dependency
of δ. At each node it considers the current set of subproblems (called PD) chosen to
reformulate S and the set of current candidate subproblems (called CD) to be included
(or not) in PD. PD and CD are maintained as sets of dependencies and PD can be seen
as the root set of S: root(δ, S). The algorithm proceeds as follows:

– If CD is empty, the reformulation is computed with Algorithm 1 and the best known
solution is updated if needed. Notice that PD ∪ {δ∗Fi

|Fi ∈ PD} is a valid set.
– Otherwise, the algorithm branches by selecting which subproblem will be used to

remove a variable from the scope S. A dependencyFi is chosen and the algorithm
branches on the corresponding subproblem (line 7). FD represents the forbidden
dependencies and the method PRUNING(CD,PD ∪ {Fi}) computes all the func-
tional dependencies of CD that would create a cycle in the initial root set repre-
sented by PD; As a subproblem is selected for branching, all dependencies from
δ(Si) and the one containing Si are pruned (line 8). Branching on 7 1 4 → 6 on
the example of Figure 3 would prune 1 4 6 8 → 7, 7 6 → 4 and all dependencies
creating a cycle i.e. 1 3 5→ 6, 6 5 → 3, 6 3→ 1 and 1 2 7 → 6.

– If the bound obtained for the new pair (CD − FD,PD ∪ {Fi}) is compatible with
the best known solution, the algorithm branches.

The algorithm relies on the partitioning of functional dependencies amongst sub-
problems, and specifically that no dependency is added twice (when completing PD
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Algorithm 4. BOUNDARITY(CD, PD, S)
1. lb ← maxFi∈PD a∗

Fi
;

2. lbs ← |S| - |PD| - (|CD| - lower bound on the min.
vertex feedback set in GCD);

3. Return max(lb, lbs);

with the dependencies of each subproblem – line 2), Lemma 1 can be extended to
highlight that δ∗Fi

∩ δ∗Fj
= ∅ for all pairs of dependencies added to PD.

Property 1. For any two minimal compatible dependencies Fi and Fj , i.e such that
Fi ≺ Fj and Fj ≺ Fi do not hold, then δ∗Fi

∩ δ∗Fj
= ∅.

The algorithm is sound because it computes only valid sets: adding δ∗Fi
(line 2) cannot

introduce any cycle in any root sets because each δ∗Fi
is known to be valid already.

The only root that needs to be checked is the initial one, PD, which is ensured by the
pruning of the corresponding cycles (line 9). A heuristic can be applied (at line 7). A
preprocessing step can also be applied when minimizing the size by removing all Fi

such that s∗Fi
> h0. Finally simple bounds are used to prune the search. The proof of

NP-Completeness showed the strong relationship between this problem and the WFVS.
The bounding procedures relate to simple bounds for the WFVS.

The minimum arity expected from a current set of functional dependencies PD and
the remaining candidates CD is simply computed here as the maximum over the min-
imal arity known for each dependency of PD and a lower bound on the arity expected
from the remain of the original scope S (see Algorithm 4). The latter is computed by
looking at the maximum number of variables that can still be removed from S without
creating a cycle. This is the quantity: (|CD| - lower bound on the min. vertex feedback
set in GCD).

All bounds known for the FVS can be used. We use a simple lower bound that in-
volves partitioning the graph into cliques P = {C1 . . . Ck}. In each clique, all nodes
except one must be removed to break all the cycles. Any partition P , therefore, gives
a lower bound as

∑
Ci∈P (|Ci| − 1). Consider the case of minimizing the size of the

reformulation (Algorithm 5). Firstly, the optimal size of the reformulation associated
with each dependency of PD is taken into account into the bound. Secondly, we con-
sider the graph GCD where a weight equal to s∗Fi

− h0 is associated with each node
Fi. The weight corresponds to the reduction in size (the gain) obtained by the use Fi.
A lower bound on the minimum weighted vertex feedback set gives an upper bound on
the gain in size that we can expect due to the remaining dependencies.

Algorithm 5. BOUNDSIZE(CD, PD, S)
1. lb ←

P
Fi∈PD s∗

Fi
;

2. lb ← lb + h0 × (|S| − |PD|) - (
P

Fi∈CD(s∗
Fi

− h0) -

lower bound on the min. weighted vertex feedback set in GCD);
3. Return lb;

A lower bound on the minimum WFVS can be based on the partition into cliques as
well, by keeping in each clique the node of minimum weight

∑
Ci∈P minFj∈Cis

∗
Fi

.



Reformulating Positive Table Constraints Using Functional Dependencies 429

6 A Comparison with Other Compression Techniques

Several techniques have been introduced to improve the efficiency of reasoning over
table constraints [6,8,12,19]. A recent approach based on table compression [12] relies
on a cross-product representation the tuples [10], e.g. the tuples {〈1, 1, 1〉, 〈1, 2, 1〉} can
be represented as a single tuple 〈(1)(1, 2)(1)〉. The authors of [12] state that ”The appli-
cability of the representation is also reduced for tables where some of the variables are
functionally dependent on some others”. We believe that both techniques can strictly
benefit from each other as breaking functional dependencies can only reduce the Ham-
ming distance between the tuples by projecting them on sub-scopes. We show here that
the technique in [12] is complementary to our reformulation approach.

Proposition 1. The gain in size achieved by the approach presented in [12] and our
functional dependency-based approach to reformulation are incomparable.

Proof. Consider constraint c of Table 1 with 4kn tuples. For any pair of tuples in c,
the Hamming distance is at least 2, thus preventing any compression using the repre-
sentation from [12]. Notice that this table exhibits several dependencies and especially
x2 → x3 and x1 → x4 corresponding, in this example, to two equality constraints. The
reformulationΔ(c) is obtained from those two dependencies and its size, 2k+2n+2kn
shows the following gain: 1 < sc

sΔ(c)
< 2 if k, n > 2 (the gain would increase with

the arity). Another observation is that c3 can now be represented very efficiently by a
cross-product 〈(1, . . . , n) × (1, . . . , k)〉 whereas no dependencies hold1, showing that
both techniques are complementary. �
Other representations of the tuples have been proposed such as [8], which relies on a
“trie” data structure. A trie aims a factoring the shared prefixes of the tuples so it, es-
sentially, captures the same kind of structure as the cross-product, i.e. the information
stored in a redundant way in many tuples. The approach of [19] tries to achieve com-
pression of the tuples by computing a minimal automaton whereas the CASE constraint
corresponding to the table constraint in Sicstus [6] uses a DAG to get a representation

Table 1. An example of a table constraint and its reformulation

c Δ(c)
c1 c2 c3

x1 x2 x3 x4 x2 x3 x1 x4 x1 x2
1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2 1
. . . . . . . . . .
n 1 1 n k k n n n 1
1 2 2 1 1 2
. . . . . .
n 2 2 n n 2
. . . . . .
1 k k 1 1 k
. . . . . .
n k k n n k

1 This is, in fact, a multi-valued dependency [11] as x1 and x2 are independent of each other
and could also be detected as such.
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similar to the cross-product. All these approaches rely on the idea that the tuples of the
table share some information which is stored redundantly and can be compressed by
using the appropriate data structure. Dependent variables only hinder their efficiency.
Our reformulation approach is orthogonal to those techniques by capturing a very dif-
ferent kind of structure. It cannot, however, achieve by itself an exponential reduction
in size, which is possible with the previous compression approaches. The bottleneck
lies in the fact that the maximum number of tuples cannot be reduced using functional
dependencies alone. Typically, for a constraint of arity a with n tuples of original size
an, the reformulation always contains, in the best case, a constraint of size 2n.

7 Experimental Results

The objective of our experimental evaluation was to study how effectively our func-
tional dependency-based approach to reformulation could reduce the worst-case (max-
imum) arity of constraints in our reformulation as well as its total memory size2 . We
considered two cases with respect to size: measuring the sum of the sizes of each table
constraint in the reformulation, as well as the sum of the sizes of a REGULAR-based
compilation of each table. We considered positive table constraints from the following
five datasets: the Renault Megane Car Configuration Problem (we used the two largest
table constraints, R80 and R140) [2]; a dataset of digital cameras [18]; a dataset of
laptops [18]; the AI-CBR travel case-base [14]; and a dataset based on the crossword
puzzle CSP benchmark [1]. We used a well-known library, called TANE [11], to com-
pute the set of minimal functional dependencies for each table.

Table 2 presents the results and is divided into four parts. Firstly, we present some
information on the original tables including their number of tuples, arity, size, num-
ber of minimal functional dependencies and the time needed by Tane to extract them.
Secondly, we show the results associated with finding the optimal reformulation that
minimizes the maximum arity. Thirdly, we present similar results focused on minimiz-
ing memory size. Finally, we show results associated with minimizing the size of the
automata used by a REGULAR-based reformulation. A time limit was put at 120 seconds
and a ‘-’ indicates that the time-out was reached while bold indicates when the result

Table 2. Results on minimizing arity and memory size (time given in seconds)

Instance Details Minimize Maximum Arity Minimize Memory Size Minimize DFA
Complete Greedy Complete Greedy Complete

name nbt arity size ndep time max gain size time arity time size gain time size time orig refor gain
camera 112 8 896 41 0.21 5 1.6 2220 0.07 5 0.05 896 1.0 0.02 896 0.01 421 421 1.0
laptop 403 10 4030 54 0.12 6 1.67 14393 0.03 7 0.0 4030 1.0 0.05 4030 0.05 1452 1423 1.02
rn R80 342 10 3420 2 0.25 8 1.25 2836 0.0 8 0.0 2836 1.21 0.0 2836 0.0 209 137 1.53
rn R104 164 9 1476 11 0.06 4 2.25 1026 0.0 5 0.0 836 1.77 0.01 1140 0.0 183 100 1.83
travel 1470 9 13230 7 0.14 6 1.5 27535 0.0 6 0.0 13230 1.0 0.01 13230 0.01 3693 3021 1.22
cw R10 1881 12 22572 26 0.63 10 1.2 60114 0.0 10 0.0 22572 1.0 0.06 22572 0.06 5138 5138 1.0
cw R11 1136 13 14768 128 0.65 9 1.44 45690 0.84 9 0.0 14768 1.0 0.13 14768 0.13 5426 4773 1.14
cw R12 545 14 7630 1211 0.62 7 2.0 33546 109.1 8 0.02 7630 1.0 0.56 7630 0.51 3585 3503 1.02
cw R13 278 15 4170 2243 0.41 6 2.5 14645 - 7 0.15 4170 1.0 0.83 4170 0.51 2095 2046 1.02
cw R14 103 16 1648 4268 0.45 5 3.2 5061 - 6 0.74 1648 1.0 1.65 1648 0.4 970 942 1.03
cw R15 57 17 969 5057 0.37 4 4.25 2611 10.78 5 1.13 969 1.0 2.04 969 0.29 674 627 1.07
cw R16 23 18 414 3514 0.4 3 6.0 945 1.77 4 0.32 409 1.01 1.58 414 0.12 287 284 1.01

2 These experiments were run on a MacBook 2 GHz Intel Core Duo, 2 GB 667 Mhz DDR2.
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has been proven optimal. The columns “gain” present the ratios of the original measure
divided by the measure from the reformulation. We also present the results for a sim-
ple greedy algorithm selecting first the dependency of smallest scope. We observe that
we can always find a reformulation in which the maximum arity is reduced: the gains
range from 1.2 to 6. When we focus on minimizing memory size, the results are less
successful and only the two Renault configuration benchmark tables are reduced. The
optimal reformulation algorithm is very efficient when there are fewer than 1000 depen-
dencies, but the more practical greedy algorithm achieves excellent performance even
if the optimal solution is not always found.

Compression techniques can also be used to further reduce the size of our reformu-
lation. In the final three columns of Table 2 we present the size of the automaton of
a REGULAR [17,19] constraint for the original table, the sum of the sizes of each au-
tomata for the reformulation, and the corresponding gain in space we achieve through
reformulation. The heuristic used to order the variables in the automaton is simply to
put first the variable of minimum domain. We find that using a compilation of our re-
formulation, we reduce space in almost every case, and particularly so for the laptop,
Renault, and travel datasets confirming the complementarity of the techniques.

8 Conclusion

Constraints that are defined by tables of allowed tuples of assignments are common in
constraint programming. They are a very natural modeling tool for beginners in CP who
often tend to enumerate the allowed tuples of a logical relation that does not fit perfectly
into any of the intentional constraints provided by a constraint toolkit. In this paper we
extend the results of [5] and present an approach to reformulating table constraints of
large arity into a conjunction of lower arity constraints. Our approach exploits func-
tional dependencies that might hold on the relation. We summarized many issues on
dependencies in the context of reformulation, presented the complexity of the refor-
mulation problem, a dynamic programming algorithm for optimal reformulation, and
evaluated it on real-world and academic datasets. The experiments show that the gain
of size is not large enough for an improvement in performance during search on those
benchmark but open many opportunities when combined with compression techniques
which deserve further studies. The experiments stand here as a proof of concept, as this
technique is intending as an automatic way to deal with naive models made of large
arity constraints, thus making CP easier to use.

Acknowledgement

This work was supported by Science Foundation Ireland (Grant number 05/IN/5806).

References

1. Sillito, J., Beacham, A., Chen, X., van Beek, P.: Constraint programming lessons learned
from crossword puzzles. In: 14th Canadian Conference on Artificial Intelligence, pp. 78–87
(2001)

2. Amilhastre, J., Fargier, H., Marguis, P.: Consistency restoration and explanations in dynamic
CSPs – application to configuration. Artif. Intell. 135, 199–234 (2002)



432 H. Cambazard and B. O’Sullivan

3. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of armstrong relations for
functional dependencies. J. ACM 31(1), 30–46 (1984)
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Abstract. In many real-world settings, e.g. product configuration, constraint sat-
isfaction problems are compiled into automata or binary decision diagrams, which
can be seen as instances of Darwiche’s negation normal form. In this paper we
consider settings in which a foreground set of constraints can be added to a set of
consistent background constraints, that are compactly represented in a compiled
form. When the set of foreground constraints introduces inconsistencies with the
background constraints we wish to find relaxations of the problem by identify-
ing the subset of the foreground constraints that do not introduce inconsistency;
such a subset is called a relaxation. This paper is organised in two parts. First,
two novel algorithms for finding relaxations based on automata are presented.
They find the relaxation that is consistent with the largest (or smallest) number
of solutions from amongst the longest ones (first algorithm), or from amongst the
set-wise maximal ones (second algorithm). Then, we generalise our results by
identifying the properties that the target compilation language must have for our
approach to apply. Finally, we show empirically that on average our algorithms
can be more than 500 times faster than a current state-of-the-art algorithm.

1 Introduction

We consider a configuration tool with which a user can specify preferences for options.
These preferences are expressed as constraints. When preferences conflict, we want to
help the user find which preferences to relax. In an iterative process, the user might
relax constraints until at least one solution is found. Alternatively, the user might wish
to be told which particular subsets of his constraints can be satisfied. Most current ap-
proaches to explanation generation in constraint-based settings are based on the notion
of a minimal (with respect to inclusion) set of unsatisfiable constraints, known as a min-
imal conflict set of constraints. To demonstrate the concepts, we provide an example.

Example 1 (Car Configuration). Consider a simple car configuration problem, based on
an example in [10], with the following set of options; the Boolean variable xi ∈ {0, 1}
indicates whether constraint ci is in the current set of active constraints or not:

Constraint Option Selector Cost
c1 Budget x1 = 1

P
i∈{2,...,5}(ki · xi) ≤ 3000

c2 Roof Rack x2 = 1 k2 = 500
c3 Convertible x3 = 1 k3 = 500
c4 CD Player x4 = 1 k4 = 500
c5 Leather Seats x5 = 1 k5 = 2600

� This work was supported by Science Foundation Ireland (Grant No. 05/IN/I886).

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 433–447, 2008.
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Table 1. The maximal relaxations and minimal exclusion sets for the over-constrained problem
presented in Example 1. We show both the subset of the constraints in the relaxation (marked
with a �) and those in the exclusion set, i.e. those that must be removed (marked with a ×).

Constraints
Exp. c1 c2 c3 c4 c5 Relaxation Exclusion Set

I × × � � � {c3, c4, c5} {c1, c2}
II × � × � � {c2, c4, c5} {c1, c3}
III � × � � × {c1, c3, c4} {c2, c5}
IV � � × � × {c1, c2, c4} {c3, c5}
V � × × × � {c1, c5} {c2, c3, c4}

Assume that the technical constraints of the configuration problem forbid convertible
cars having roof racks, therefore, constraints c2 and c3 form a conflict. Note that,
given the budget constraint, if the user selects option c5, it is not possible to have
any of the options c2, c3, c4. The set of all minimal conflicts for this example are:
{c2, c3}, {c1, c2, c5}, {c1, c3, c5}, and {c1, c4, c5}. �

As explanations, these conflicts are sufficient to explain why all constraints cannot be
satisfied simultaneously. Based on the set of minimal conflicts we can compute the set of
set-wise maximal relaxations showing which of the user’s constraints can be satisfied.
Table 1 presents the set of all maximal relaxations, each showing how the user can
satisfy at least some of his constraints. For example, consider Explanation I: we can
simultaneously satisfy the constraints in {c3, c4, c5}, but we must exclude c1 and c2.

Sometimes we may have to choose a single relaxation to present to the user. The
question is, which one should we select? The obvious response would be to select the
relaxation that cannot be extended using any of the user’s choices without eliminating
all solutions – this is the standard notion of a maximal relaxation. Amongst the set of
maximal relaxations we might prefer to select the one that is longest on the basis that
it includes the largest number of user constraints. However, an alternative is to present
the relaxation that is consistent with either the fewest or largest number of solutions to
the problem, while remaining maximal. This is the question we address in this paper.

In Section 2 we summarise the preliminary concepts required in this paper and
present results from a motivating experiment showing that the number of solutions con-
sistent with a maximal relaxation is not correlated with its length. In Section 3 we sum-
marise the basics of automaton-based configuration. In Section 4 we present two novel
algorithms. The first algorithm finds from amongst the longest relaxations to a set of
inconsistent user constraints, the one that is consistent with either the fewest/largest
number of solutions; this algorithm is linear in the size of the automaton. The second
algorithm considers the same objectives in the context of set-wise maximal relaxations.
In Section 5 we generalise our approach to other compiled representations by studying
the properties that these must have in order for our results to carry over. We show that
basically our algorithms do not need all the power of automata and that they work with
more general, i.e. more compact, representations. In Section 6, we show that, while it
is not polynomial in the size of the automaton, the second algorithm is in the average
more than 500 times faster than a state-of-the-art algorithm.
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2 Preliminaries

We focus on constraint satisfaction problems in this paper, but the results hold for many
other settings in which consistency is monotonic. This property holds whenever the set
of solutions to a set of constraints C is a subset of the solutions to any set of constraints
that is a subset of C. In addition, we focus on constraint satisfaction problems that are
solved in an interactive manner, e.g. product configuration problems. It is useful to
distinguish between a background set of constraints, B, that cannot be relaxed, and a
set of constraints, U , that are added by the user as he finds a preferred solution to B by
finding a solution to B ∪ U , the constraint problem we denote as P def= 〈B,U〉.

A set of constraints is consistent if it admits a solution. We will assume that the
set of background constraints, B, admits at least one solution. If a set of constraints
does not admit a solution, at least one constraint must be excluded in order to recover
consistency. Specifically, we are interested in finding maximal relaxations of P .

Definition 1 (Maximal Relaxation). Given a constraint problem P def= 〈B,U〉 that
is inconsistent, a subset R of U is a relaxation of P if B ∪ R admits a solution. The
relaxation R is a maximal relaxation if ∀R′ ⊃ R, B ∪R′ is inconsistent. The maximal
relaxation R is a longest relaxation if for other each maximal relaxation R′, |R′| ≤ |R|.

In some contexts, it might be more convenient to consider the following dual concept.

Definition 2 (Minimal Exclusion Set). Given a constraint problem P def= 〈B,U〉 that
is inconsistent, a subset E of U is an exclusion set (resp. minimal exclusion, shortest
exclusion set) ofP if U\E is a relaxation (resp. maximal relaxation, longest relaxation).

While intuitively we might believe that longer relaxations have fewer solutions, the
story is not so simple. Theoretically, there is no reason why the number of solutions of
two maximal relaxations should be similar. We illustrate this with an example. Con-
sider variables x0, . . . , xn with respective domains D(x0) = {0, 1} and D(xi) =
{0, . . . , d}, i > 0, and the constraints x0 < xi, ∀i > 0, x0 > xi, ∀i > 0 and
x0 = 0. This problem is inconsistent, and R1 = {x0 < xi, ∀i > 0} ∪ {x0 = 0}
and R2 = {x0 > xi, ∀i > 0} are two maximal relaxations of the constraints. The
number of solutions to R1 is dn, while there is only one solution to R2. The prob-
lem of selecting the maximal relaxation consistent with the largest set of solutions is
intractable, in general.

More concretely, in Figure 1 we show the results of a simple experiment on the
Renault Mégane configuration problem [1], which has been compiled in an automaton.
This problem has 99 variables and about 2.8×1012 solutions. We built inconsistent user
queries that instantiated 40 randomly chosen variables with a random value. We ran 20
such queries. For each query, we generated the complete set of maximal relaxations
using the Dualize & Advance algorithm [2]. Using the automaton we could efficiently
count the number of solutions consistent with each relaxation. In Figure 1, we plot,
for each maximal relaxation, its length and the number of solutions of the problem
consistent with it. It is clear from this figure that the number of solutions of a maximal
relaxation is not necessarily correlated with its length.
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Fig. 1. Results from a simple experiment showing that number of solutions of a maximal relax-
ation is not necessarily correlated with its length

3 The Basics of Automaton-Based Configuration

In a configuration context, a typical approach is to compile the problem into an automa-
ton in order to facilitate interactive solving [1,17]. In this case many operations become
tractable in practice. Let us focus, therefore, on the case where we have a compiled form
of a problem, and the user chooses only unary constraints, i.e. assignments or disjunc-
tions of assignments to the variables. A user query is composed of a set of constraints,
each constraint ci of which holds on a variable xi.

An automaton gives a compact way of representing the set of all solutions. Infor-
mally, an automaton can be seen as a representation of the search tree on which min-
imisation allows us to reduce its size. This automaton only recognises words of the same
length, and each recognised word corresponds to a solution of the problem, a particular
ordering on the variables having been fixed in advance. The incoming and outgoing
transitions of a state q are denoted by in(q) and out(q), respectively. The origin and
destination state of a transition t are denoted by in(t) and out(t), respectively. The ini-
tial and the final states (or the source and the sink) are denoted by I and F , respectively.
The level of a state q is the length of the words from I to q. The set of all states of level i
is denoted Q(i). The level of a transition t is the level of out(t). Each level greater than
0 corresponds to a variable of the problem. Thus, each transition t provides a support

F1
0

X1

0

0
1
2

1
2
3
0

2

X2 X3

I

Fig. 2. An example automaton defined on three variables
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for the instantiation of the variable of its level with the value labelling t. Figure 2, for
example, shows the automaton for a problem on three variables X0, X1 and X2. This
problem has 13 solutions, some of which are 001, 002, 102, etc.

4 Algorithms

We present two novel algorithms for finding relaxations that are consistent with ei-
ther the largest or fewest number of solutions, based on an automaton representation
of the configuration problem. For a particular user query, comprising a set of unary
constraints that restrict the domain of each variable, a valuation φ(t) is associated with
each transition t of the automaton:φ(t) = 0 meaning that this transition supports a valid
instantiation (i.e. is labelled by an allowed value) and φ(t) > 0 meaning it does not.
Thus, to each complete path from I to F there corresponds a relaxation of the user’s
constraints, composed of the user’s constraints supported by the transitions of the path
with a valuation of 0.

If we restrict the valuation of the transitions only to 1 in case of a violation, the
cost of a path from the source to the sink, which is the sum of the valuations of the
transitions it is composed of, corresponds to the number of user constraints violated. If
no such path of cost 0 exists, then the set of user constraints is inconsistent. A procedure
is described in [1] that associates with each transition t of an automaton a cost cost(t)
of the best path (i.e. of minimal cost) of the automaton that uses t. This allows us to
explore only the shortest paths in the automaton and, thus, only the longest relaxations
of the user’s constraints. Therefore, this can give our first exact algorithm (Algorithm 1)
that finds, amongst all the longest relaxations, the one that is consistent with the largest
or the smallest number of solutions, in time linear in the size of the automaton.

Obtaining the most, or least soluble, longest relaxation is simply a matter of selecting
the appropriate relaxation at line 14. Let us consider the max case; a similar presentation
can be used for the min case. Algorithm 1 associates with each state q′ of the automaton,
the most soluble longest relaxation restricted from I to q′ (the automaton “to the left of”
q′), stored in relax (q′), with nsols(q′) storing the corresponding number of solutions.
This is valid because of the following property.

Property 1. After the end of the for loop starting at line 6, the value of nsols(R) is the
number of solutions of the part of the automaton from I to q′ that supports R.

Proof. In the implementation of the algorithm, at some state q′, equal relaxations must
be uniquely identified, and thus, for the same relaxation R, nsols(R) takes into account
all the ways to reach R, i.e. it is the sum of the numbers of solutions of all the known
occurrences ofR∩{c1, . . . , ci−1}, which, by induction, are assumed to admit a maximal
number of solutions. �

The set candidates , after the iteration (starting at line 6), will contain all the longest
relaxations ending at q′. At this point, we can choose the most soluble relaxation, as a
less soluble one could not result in a longer relaxation globally more soluble. As the size
of candidates is bounded by the number of states of the previous level, this algorithm
runs in time linear in the size of the automaton.
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Algorithm 1. Finding a most or least soluble longest relaxation
Data: An automaton updated for a user query.
Result: An optimally soluble longest relaxation.

relax (I) ← ∅1

nsols(I) ← 12

for i ← 1 to n do3

forall q′ ∈ Q(i) do4

candidates ← ∅5

forall t ∈ in(q′) s.t. t is optimal do6

q ← in(t)7

if φ(t) = 0 then R ← relax (q) ∪ {ci}8

else R ← relax(q)9

if R 
∈ candidates then10

candidates ← candidates ∪ {R}11

nsols(R) ← 012

nsols(R) ← nsols(R) + nsols(q)13

nsols(q′) ← optR∈candidates nsols(R)// opt ∈ {max, min}14

relax (q′) ← R ∈ candidates s.t. nsols(R) = nsols(q′)15

return relax (F )16

However, restricting to the longest relaxation can prove to be too strong. For exam-
ple, the plot in Section 2 (Figure 1) suggests that there is quite a concentration of long
maximal relaxations, but very few of maximum length. Focusing on candidates amongst
the maximal (by inclusion) relaxations seems to be a good trade-off between solubility
and maximality. Therefore, we can adapt the previous algorithm to explore the whole
automaton so as to consider all relaxations. The difference is that we cannot now greed-
ily keep partial optimal solutions, because what is locally a maximal relaxation may not
eventually be maximal. For example, in the automaton of Figure 2, suppose we post
three unary constraints c1, c2, c3 forcing every variable to be 0. Two maximal relax-
ations start in the second state of level 1: c2 and c3. The first has three solutions while
the second has only two. But the first will be, at the next step, included in the relaxation
c1c2, which has three solutions, while c3 will still be a maximal relaxation, but with
four solutions. Therefore, we need to maintain for each state the list of all the maxi-
mal relaxations. This procedure has, therefore, a complexity linear in the size of the
automaton times the number of maximal relaxations. The corresponding modification
is presented in Algorithm 2.

This is an ad-hoc procedure that lists all maximal relaxations of a query. However,
being specifically designed for our context, it can be more efficient than generic algo-
rithms, such as Dualize & Advance [2] (which can be theoretically exponential in the
number of maximal relaxations), and gives, at the same time, the number of solutions of
each relaxation. In this algorithm relax (q) is a set of relaxations, and for each of them,
say R, nsols(q,R) stores its number of solutions. At lines 12 and 13, any relaxation
that is a subset of another is removed, so as to keep only the maximal elements. As the
size of the list relax (q) is bounded by the total number of relaxations, the complexity
is linear in the size of the automaton times the number of relaxations.
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Algorithm 2. Finding all maximal relaxations
Data: An automaton updated for a user query.
Result: All maximal relaxations and their number of solutions.

relax (I) ← {∅}1

nsols(I, ∅) ← 12

for i ← 1 to n do3

forall q′ ∈ Q(i) do4

forall t ∈ in(q′) do5

q ← in(t)6

forall R ∈ relax(q) do7

if φ(t) = 0 then R′ ← R ∪ {ci}8

else R′ ← R9

relax (q′) ← relax (q′) ∪ {R′}10

nsols(q′, R′) ← nsols(q′, R′) + nsols(q, R)11

Sort relax (q′) by decreasing cardinality12

forall R ∈ relax (q′) do Remove in relax (q′) subsets of R13

return relax (F )14

5 Generalisation to Other Compiled Representations

Although automata, and their boolean counterparts (reduced ordered) BDDs, are be-
coming widely used in real-world applications, other ways of compiling and repre-
senting a problem exist. An extensive survey of such representations for propositional
formulas is provided in [6], which classifies the different representations from the per-
spective of their compactness, while showing which operations each representation ef-
ficiently supports. In this section we study how to generalise our algorithms beyond
automata so that more succinct representations can be used. We present some sufficient
conditions that the compiled representations must satisfy in order to guarantee that ef-
ficient algorithms exist for finding the kinds of relaxations we study in this paper.

The Compilation Map [6] presents a set of compiled representations of a problem,
referred to as target compilation languages. Only boolean problems are considered. The
most general language is NNF (for Negation Normal Form). A sentence Σ in NNF,
holding on the set of variables vars(Σ), can be represented as a directed acyclic graph
(DAG), where the leaf nodes are labelled with � (true) or ⊥ (false), X , ¬X (with
X ∈ vars(Σ)), and the internal nodes are labelled with ∧ or ∨, and can have arbitrarily
many children. Figure 3 shows an example of an NNF (taken from [5])1.

Additionally, some key properties are defined. Firstly, an NNF satisfies decompos-
ability if the children of every and-node hold on disjoint sets of variables, i.e. if for ev-
ery and-node, ∧iαi, vars(αi) ∩ vars(αj) = ∅, for i �= j. Every and-node of Figure 3
satisfies this property and therefore this sentence satisfies decomposability. Secondly,
an NNF satisfies determinism if the children of every or-node are mutually inconsis-
tent, i.e. if for every or-node, ∨iαi, αi ∧ αj |= ⊥, for i �= j. Every or-node in Figure 3

1 We use a bold-face font to refer to a language, e.g. NNF, while a regular font is used to denote
a formula in a specific language, e.g. NNF.
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Fig. 3. An example NNF for the odd-cardinality function
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Fig. 4. The succinctness of the different languages; more succinct languages are higher up

satisfies this property and therefore this sentence also satisfies determinism. Thirdly,
an NNF satisfies smoothness if the children of every or-node hold on the same set of
variables, i.e. if for every or-node ∨iαi, vars(αi) = vars(αj), for i �= j. The sen-
tence of Figure 3 also satisfies smoothness. It is important to mention that smoothness
can be enforced on any NNF. In fact, any child αi of an or-node C = ∨iαi such that
vars(αi) ⊂ vars(C) can be replaced by αi ∧ (∧X∈vars(C)\vars(αi)(X ∨ ¬X)). This
preserves equivalence, decomposability, determinism, and results in a new sentence
whose size is O(|Σ|.|vars(Σ)|). From a practical perspective, this means that any lan-
guage is equivalent to its smooth version as far as the succinctness and the satisfiability
of queries are concerned.

The languages DNNF, d-NNF and s-NNF are the subset of NNF that satisfy decom-
posability, determinism, smoothness, respectively. The language d-DNNF is the subset
of DNNF that also satisfies determinism. The languages s-DNNF, sd-DNNF, sd-NNF
are corresponding subsets that also satisfy smoothness. Without entering into the de-
tails, the language OBDD< is the language corresponding to classic (reduced order)
BDDs. Some other languages are worth mentioning here. DNF is the subset of DNNF
containing DNF sentences, CNF is the set of CNF sentences, and PI (for prime im-
plicates) is the subset of CNF of the sentences represented as the conjunction of their
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Table 2. The queries supported by the introduced languages

L CO CT ME CD SES MR

NNF × × × � × ×
DNNF � × � � � �

d-DNNF � � � � � �
FBDD � � � � � �
OBDD � � � � � �

OBDD< � � � � � �
DNF � × � � � �
CNF × × × � × ×

PI � × � � ? ?
MODS � � � � � �

prime implicates. Finally, MODS is the language where sentences are represented by
their set of models.

Informally, a language is more succinct than another if any sentence in the latter is
equivalent to a smaller sentence in the former. This relation between languages is fun-
damental, as one typically wants to find the most succinct language that satisfies some
desired properties. The relation between all the aforementioned languages in terms of
succinctness is given in Figure 4.

A query allows us to efficiently retrieve information about a sentence. A language
satisfies the query CO (Consistency) if there exists a polynomial algorithm that decides
the consistency of any sentence in it; it satisfies CT (Model counting) if there exists a
polynomial algorithm that counts the number of solutions of any sentence in it; it satis-
fies ME (Model enumeration) if there exists an algorithm that enumerates the models of
any sentence in time polynomial in its size and the number of models. A transformation
transforms a sentence into another one. We will only recall one such transformation.
A language satisfies the transformation CD (Conditioning) if there exists a polynomial
algorithm that maps a sentence Σ of that language and a term γ to a sentence denoted
Σ|γ in the same language, equivalent to Σ ∧ γ. Queries are not supported when no
polynomial algorithm exists unless P=NP.

We define two new queries: SES (Shortest exclusion set, in Section 5.2) and MR
(Maximal Relaxation, in Section 5.3). Table 2 summarises the results known for the
queries previously introduced and our contribution of two new queries.

5.1 Counting Solutions

Counting the number of solutions can be efficiently performed on d-DNNF [5]. We
recall here the function that counts the number of solutions of an sd-DNNF, adapted
to take into account ⊥ and � nodes. Note that because of smoothness, a � node can
appear only as a child of an and-node, making it therefore neutral with respect to the
conjunction, hence its value. Decomposability is required for case (5): the set of mod-
els of every child of the and-node hold on disjoint sets of variables, so they combine
by simple product. Determinism and smoothness are required for case (6): the set of
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models of every child of the or-node hold on the same set of variables and are mutually
disjoint, so the overall number of solutions is simply the sum.

count(�) = 1 (1)

count(⊥) = 0 (2)

count(l) = 1, if ¬l �∈ S (3)

count(l) = 0, if ¬l ∈ S (4)

count(∧iαi) =
∏

i

count(αi) (5)

count(∨iαi) =
∑

i

count(αi) (6)

This methodology is the skeleton to define other functions on DNNF.

5.2 Longest Relaxations

Let Σ be a sentence. A set of user choices on it can be defined as a term S, i.e. an
assignment of a subset of vars(Σ). If Σ ∧ S is inconsistent, then we can find a longest
relaxation of S, i.e. a way to satisfy the largest number of assignments, or equivalently
a shortest relaxation set of S, i.e. a way to give up on the fewest possible assignments.
Formally, for a sentence Σ and a query S, ses(Σ,S) is the size of a shortest exclu-
sion set. In particular, Σ ∧ S is consistent iff ses(Σ,S) = 0. Also, if Σ is inconsis-
tent, ses(Σ,S) is undefined. We must consequently assume that only consistent nodes
are considered. Practically, because of decomposability, inconsistent nodes are only ⊥-
nodes, and-nodes that have at least one inconsistent child, and or-nodes that have only
inconsistent children.

We define a new query SES: a language L satisfies SES iff there exists a polynomial
algorithm that computes ses(Σ,S) for every formula Σ from L and every term S.

ses(�, S) = 0 (1)

ses(l, S) = 0, if ¬l �∈ S (2)

ses(l, S) = 1, if ¬l ∈ S (3)

ses(∧iαi, S) =
∑

i

ses(αi, S) (4)

ses(∨iαi, S) = min
i

ses(αi, S) (5)

Case (4) only works with decomposable languages. In fact, if the exclusion sets of two
children of the and-node hold on variables that do not overlap, they can be combined in
a new one whose size is the sum. However, if the variables overlap, no greedy choice can
be made, and different possibilities must be tested. Case (5) needs only smoothness: the
exclusion sets of the children of the or-node hold on the same set of variables, it is just a
matter of choosing the optimal one. Any language satisfying decomposability supports
SES, as for example DNNF, d-DNNF, OBDD<. On the other hand, this definition does
not hold on non-decomposable languages.
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Obviously, any language that does not support CO cannot support SES. Indeed, ev-
ery language supports CD, and ses(Δ, γ) = 0 iff Δ|γ is consistent. Notably, CNF does
not support CO. However, PI is the only non decomposable language that supports con-
sistency. It remains therefore a question to know whether it supports SES or not. That
question is left for further work.

Once ses(Σ, γ) is known, one or all the shortest exclusion sets can be found. The
only point of choice is at an or-node: children that have a minimal value correspond to
the shortest exclusion sets, and thus, we only need to explore those. If we rely on an
oracle for counting the number of solutions of a given exclusion set (like a complete
enumeration or an incomplete estimation), enumerating the shortest exclusion sets to
pick a most soluble longest relaxation is enough. On the other hand, for languages
satisfying determinism, we can also combine the computation of one shortest exclusion
set with the solution counter to find a most soluble longest relaxation.

Let mse(Σ,S) be the function that returns the number of solutions of the most sol-
uble shortest exclusion set. For the sake of clarity, we do not keep track of the corre-
sponding exclusion set at each level, but of course that can be easily done. mse(Σ,S)
is defined as follows:

mse(�, S) = 1 (1)

mse(l, S) = 1, if ¬l �∈ S (2)

mse(l, S) = 0, if ¬l ∈ S (3)

mse(∧iαi, S) =
∏

i

mse(αi, S) (4)

mse(∨iαi, S) = max
i s.t. ses(αi,S)=ses(∨iαi,S)

mse(αi, S) (5)

Algorithm 1 (Section 4) is effectively a special application of this procedure for
automata (compare lines 6 with the condition in Case (5) and 14 with the selection of
the maximal child in Case (5)). Of course, we achieve, in the same way, a minimally
soluble longest relaxation by changing the max of Case (5) to a min.

5.3 Maximal Relaxations

We now consider the enumeration of all maximal relaxations. A language L satisfies
MR if, for each Σ of L and each query S, there exists an algorithm that enumerates all
the maximal relaxations of Σ ∧ S in time polynomial in the size of Σ and the number
of maximal relaxations. Similar to the previous case, the set of all maximal relaxations
can be found in time linear in their number in all languages satisfying decomposability.
Moreover, we can observe again that any language that does not satisfy CO does not
satisfy MR, and thus there only remains the question about PI, which is not decompos-
able but supports CO.

For any decomposable sentenceΣ, the functionmr(Σ,S) defined as follows. returns
the set of all maximal relaxations of Σ ∧ S:

mr(�) = 1 (1)

mr(l) = {{l}}, if ¬l �∈ S (2)
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mr(l) = {∅}, if ¬l ∈ S (3)

mr(∧iαi) = ⊗imr(αi) (4)

mr(∨iαi) = simplify(∪imr(αi)) (5)

where R ⊗ R′ = {R ∪ R′|R ∈ R ∧ R′ ∈ R′} and simplify(R) = {R ∈ R|∀R′ ∈
R R �⊂ R′}, i.e., we retain only set-wise maximal elements. Assuming we have deter-
minism, we can associate with each maximal relaxation its number of solutions, exactly
in the same way we did for mse (which does not depend at all on the nature of the re-
laxations). This way, we obtain a generalisation of Algorithm 2.

It is very interesting to note that basically this shows that, under some assumptions,
we have a procedure that lists all maximal relaxations of an over-constrained problem
that is theoretically more efficient than the best known one [2] (which is not linear in the
number of maximal relaxations). These assumptions are that we post unary constraints,
which is relevant in a configuration context, and that we have a problem compiled at
least in a DNNF. Again, compilation is common in configuration, and DNNF is one of
the most general, and succinct, forms to which a problem can be compiled.

6 Empirical Evaluation

The objective of our evaluation was to demonstrate the effectiveness of Algorithm 2
against a state-of-the-art algorithm for enumerating all maximal relaxations. We also
considered two generic heuristic methods. We did not evaluate Algorithm 1 since it is
an exact algorithm, linear in the size of the automaton. We based our experiments on the
Renault Mégane Problem, also introduced in [1], which was compiled to an automaton.
This problem has 99 variables and over 2.8× 1012 solutions. We built inconsistent sets
of user choices that instantiated 40 randomly chosen variables with a random value.
We ran 20 such queries. For each of them, we generated the complete set of relaxations
using the state-of-the-art Dualize & Advance algorithm [2], for finding all maximal
relaxations in a constraint satisfaction context, and compared its performance against
that of Algorithm 2 from this paper. For both algorithms, we recorded the time for each
to find the most satisfiable maximal relaxation.

In addition to comparing Algorithm 2 against Dualize & Advance, we compared
two heuristic techniques in terms of the number of solutions of the best relaxation they
found. The goal is to find efficient heuristics for deciding which user constraints to
add first when building a maximal relaxation. Each heuristic chooses as its next as-
signment the one that would reduce the number of solutions of the remaining prob-
lem by the least (respectively, largest) amount (minimise/maximise solution
loss). The key measurements taken in each case were the number of solutions of the
relaxation found as well as the time taken to find that relaxation.

In Figure 5 we compare each method in terms of the solubility of the best relaxation
each found based on each query; note that we sorted the queries by the solubility of
the most satisfiable relaxation for the purposes of clarity. We observe that the heuristics
find very good relaxations, and very often an optimal one.

Concerning running time, the heuristicsminimise/maximisesolution loss
were prohibitively slow (i.e. not much better than a complete method). These heuristics
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Fig. 5. Solubility of the best relaxation found by each method

Table 3. Running times in seconds for both algorithms

times (seconds)
Algorithm minimum maximum average

Dualize and Advance [2] 255 726 416
Most soluble maximal relaxation (Algorithm 2) 0.4 1.3 0.8

are thus interesting more as an indication for future work; we want to look for heuristics
that achieve the same purpose but in a less brutal way. We, therefore, do not discuss
time results for these. The most interesting comparison regarding time is between the
Dualize & Advance algorithm and our exact algorithm (Algorithm 2) for finding the
most soluble maximal relaxation. Our results, summarised in Table 3, show the obvious
advantage of our algorithm. Not only does our algorithm guarantee that it will find
the maximal relaxation consistent with the most solutions of the problem, it is over
500 times faster than a current-state-of-the-art algorithm. Also, the times required by
Algorithm 2, is of the order of one second, ideal for interactive applications.

7 Related Work

There have been many technical papers about explanation in the context of constraints
[1,8,10,3,7,13,16,15]. The dominant approach to explanation in configuration is based
on computing minimal conflicting sets of constraints, which is related to the problem
of finding all maximal relaxations. Approaches to finding the most preferred relax-
ations are well-known [10]. However, very little has been said about how to choose
from amongst the set of all explanations, or how to select amongst equally preferred
explanations. We address this problem by showing that it can be practical to prefer
explanations based on their solubility.

Approaches have been proposed that attempt to be more “helpful” by presenting
users with partial consistent solutions [15], or advise on how to relax constraints in order
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to achieve consistency [13, 14]. Our approach is complementary to these by providing
a basis for selecting from amongst the set of alternative explanations.

Other recent work has focused on finding minimal unsatisfiable subproblems in tem-
poral problems [11], satisfiability [9,12] and type error debugging [2]. These techniques
find all minimal unsatisfiable sets of constraints, which can be exponential in the num-
ber of constraints. Our work can be seen as a generalisation of these algorithms to the
case where consistency is determined using an automaton. Furthermore, the concept of
minimum cardinality (i.e. the minimum number of literals that are set to false in the
models of a sentence), although not conceptually identical to the one of relaxations, in-
volves similar procedures on DNNF [4]. Our work establishes a link between this work
and the work on automata [1], and extends it.

8 Conclusions

We considered the problem of generating maximal relaxations by reasoning about their
solubility, in the context of product configuration, where the constraint model of the
problem has been compiled into an automaton. Two novel algorithms were presented.
The first finds from amongst the longest relaxations to a set of inconsistent user con-
straints, the one that is consistent with the most/fewest solutions; while the second con-
siders the problem for maximal relaxations. Based on a large real-world configuration
problem we demonstrated the value of our approach. Finally, we generalised our results
by identifying the properties that the target compilation language must have for our
approach to apply.
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Abstract. We present an incremental refinement algorithm for approximate
compilation of constraint satisfaction models into multivalued decision diagrams
(MDDs). The algorithm uses a vertex splitting operation that relies on the detec-
tion of equivalent paths in the MDD. Although the algorithm is quite general, it
can be adapted to exploit constraint structure by specializing the equivalence tests
for partial assignments to particular constraints. We show how to modify the al-
gorithm in a principled way to obtain an approximate MDD when the exact MDD
is too large for practical purposes. This is done by replacing the equivalence test
with a constraint-specific measure of distance. We demonstrate the value of the
approach for approximate and exact MDD compilation and evaluate its benefits
in one of the main MDD application domains, interactive configuration.

1 Introduction

Compiling a constraint satisfaction model into a tractable representation is useful for
a number of tasks related to model analysis and decision support. Various forms of
tractable structures have been suggested as target compilation languages, including au-
tomata [1], binary decision diagrams [2], and/or decision diagrams [3], and determinis-
tic decomposable negation normal form (d-DNNF) [4].

In this paper we focus on compiling CSP models into multivalued decision dia-
grams (MDDs), as they are well suited for a number of decision support tasks [2,5]. We
identify the tests of infeasibility, entailment and equivalence as critical for reasoning
about the properties of various compilation schemes. We recognize that the semantics
of global constraints can be utilized to enhance the compilation, and suggest using in-
cremental refinement as a way of dealing with the weaknesses of semantic tests when
compiling multiple constraints. Our incremental scheme generalizes both the search
based BDD compilation of [9] and standard bottom-up compilation of [10]. We repre-
sent two different algorithms for achieving this, one that constructs a new MDD and
one that refines the input MDD. The later algorithm makes use of the concept of vertex
splitting which was first introduced in [8].

Because the full MDD can grow too large for practical use, we are particularly con-
cerned with generating approximate MDDs that are limited in size but useful in appli-
cations. Additionally we are also concerned with generating approximate MDDs under
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tight time requirements, since some of the constraints might be known only during
user interaction. We show how equivalence checking offers a principled way to create
approximate MDDs (approximate in the sense that they represent a superset of the fea-
sible solutions). Rather than check for equivalence, we measure the “distance” between
two partial assignments and view them as equivalent for algorithmic purposes when the
distance is below a threshold. The distance measure is specialized to each constraint
type, thus again allowing us to exploit special structure in the problem. The refinement
process is an iterative one in which the threshold is gradually reduced. This injects a
learning element, because the algorithm refines equivalence detection as it refines the
MDD, thus allowing the next MDD to be more accurate. An exact MDD can be obtained
by reducing the threshold to zero, or an approximate MDD by reducing the threshold
to a positive number or terminating when the MDD exceeds a size limit. Terminating
before obtaining the exact MDD still provides bounds on the degree of violation of each
individual constraint.

We are not aware of related work utilizing explicitly the semantics of highly struc-
tured constraints for the purpose of compilation. The related compilation techniques
enhance compilation by exploiting independencies among variables [3,9]. The idea is
to recognize two partial assignments p1, p2 as equivalent when they assign same values
to critical variables. In [9] the critical variables are determined by a cutset and in [3] by
a context with respect to a pseudo-tree extracted from a constraint graph. We note how-
ever, that neither technique can enhance equivalence detection when presented when
individual global constraints span all variables.

Some work has already been done on generic techniques for approximate compila-
tion [6,7], but these techniques have two major drawbacks in relation to constraint mod-
els. Firstly, they conjoin individual constraints precisely until a threshold is reached, and
only then start approximating. Therefore, they do not take all constraints into consider-
ation. Secondly, since they are not relying on semantic information captured by highly
structured constraints, they provide no guarantees regarding the degree of violation of
individual constraints.

2 Preliminaries

A multivalued decision diagram (MDD) can be viewed as a branching tree in which
isomorphic subtrees have been merged. The tree is constructed to find feasible solutions
of a constraint set containing finite-domain variables x1, . . . , xn. The tree branches on
the variables in a fixed order x1, . . . , xn. The branches at each node correspond to
possible values of some variable xj , or more generally, to disjoint subsets of possible
values. To form the MDD, subtrees containing no feasible solutions are first deleted, and
subtrees having the same shape are then merged to remove redundancy from the tree.
Additional edges connect each vertex in the bottom layer to a single terminal vertex 1.

Thus an MDD for a constraint set S is a directed acyclic graph whose vertices are
arranged in layers corresponding to the variables x1, . . . , xn in S. If vertex u lies in
layer j (corresponding to xj), we say var(u) = xj , and each edge (u, v) leaving u
corresponds to a subset Duv of the domain Dj of xj . The top layer consists only of the
root vertex r, with var(r) = x1. Each path p = (u1, . . . , un+1) from r to 1 is identified
with the cartesian product

∏n
j=1 Dj,j+1, where u1 = r and un+1 = 1. Every path p
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x1 layer: u1
.................................................................................................

{0}
..............................................................................................

{1, 2}

x2 layer: u2
..............................................................................................

{0, 1}

u3
..............................................................................................

{0}
1

Fig. 1. MDD for 2x1 + 3x2 ≤ 4 with domains xi ∈ {0, 1, 2}

from r to 1 in the MDD must satisfy S, meaning that every tuple (x1, . . . , xn) in p is
a feasible solution of S. Conversely, every feasible solution of S belongs to some path
from r to 1. For example, the MDD for the constraint 2x1 + 3x2 ≤ 4 (with domains
xi ∈ {0, 1, 2}) appears in Fig. 1.

We assume that the MDD is reduced, meaning that all isomorphic subtrees have been
merged. To make this precise, let each vertex u in layer j of the MDD correspond to the
function fu : Dj×· · ·×Dn → {0, 1} defined by f(xj , . . . , xn) = 1 when (x1, . . . , xn)
belongs to a path from u to 1. Then fr(x1, . . . , xn) = 1 if and only if (x1, . . . , xn)
satisfies S. Two vertices u, v in a given layer are equivalent if fu = fv , and the MDD
is reduced if no two vertices in any layer are equivalent. When the variable ordering is
fixed, there is a unique reduced MDD representing a given constraint set. It is common
in the literature to remove vertex u in layer j (and join the two edges incident to u)
when there is a single outgoing edge (u, v), and it has the property that Duv = Dj .
This results in “long edges” that skip one or more layers, but to simplify notation we do
not remove any vertices in this fashion.

For convenience in describing the algorithms we further assume that the operation
of choosing the edge corresponding to value α returns the special vertex False if no
such edge exists. When this vertex is included as a child in constructing a node, the
semantics is to simply ignore this child. Furthermore we use True(i) to indicate the
MDD corresponding to the set of solutions Di × . . .Dn. Given an MDD M and a
partial assignment p to variables x1, . . . , xk we use Mp to denote the vertex reached in
M when following the path corresponding to p. Given a constraint C, we also use C to
denote the set of solutions to C. For a partial assignment p to variables x1, . . . , xk we
use C(p) to represent the solution space of C(p) restricted to the assignments in p.

3 Top-Down Compilation of MDDs

An MDD is a compact representation of a branching tree for a given constraint set. The
naive MDD construction based on first constructing the tree and then reducing it can be
significantly improved by performing reductions during search. This has already been
recognized in a more specific context, where a CNF formula is compiled into a binary
decision diagram (BDD) using DPLL search with caching [9]. As a starting point in
this paper, we suggest a generalized approach for compiling CSPs into MDDs. It is im-
portant to realize that the general compilation algorithm is based on three fundamental
tests: recognizing when partial assignments encountered during search lead to infeasi-
ble, (domain) entailed or equivalent subbranches. Algorithm 1 emphasizes these tests
during a depth first search (DFS) traversal of the branching tree.
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Algorithm 1. CompileDFS(path p, int i, constraints S): A generic backtracking
algorithm constructing an MDD for a set of constraints in a cached top-down manner. It is
initiated with the call Compile(S) which just executes CompileDFS(∅, 0, S).

if p ≡S 0 then
return False;

if p ≡S 1 then
return True(i);

key = idS(p);
result = cache-lookup(key);
if result 
= null then

return result;
Let v1, . . . , vk be the values in Di;
result =
get-vertex(i,CompileDFS(p× {v1}, i + 1), . . . , CompileDFS(p× {vk}, i + 1);
cache-insert(key, result);
return result ;

We define a partial assignment p to be infeasible for a constraint set S (p ≡S 0) if it
cannot be completed to an assignment in p ×

∏n
i=k Di satisfying all constraints in S.

In that case, the above algorithm returns False indicating infeasibility. We say that p is
domain entailed (p ≡S 1) if every completion of p satisfies S. In this case, we return
True(i) representing an MDD for the entire set of solutions Di × . . .×Dn.

Finally, p1 and p2 are said to be equivalent (p1 ≡S p2) if they have the same comple-
tions satisfying S. The equivalence test induces a set of equivalence classes among all
partial assignments, and we use idS(p) to denote a unique identifier key for the equiva-
lence class to which p belongs. An MDD is stored as a cache of keys that is maintained
during search. A new node is created (using cache-insert and get-vertex)
only if the current key cannot be found (using cache-lookup). While the equiva-
lence class identifiers might be prohibitively large in general, in practice they are usually
compact.

We say that tests for infeasibility, entailment, and equivalence are sound if every
“yes” answer is correct, complete if every “yes” answer is recognized, and efficient if
the test can be computed in polynomial time (with respect to the size of the MDD). The
performance of Algorithm 1 critically depends on these three properties. Unsound tests
lead to MDDs not representing the desired solution space. Incomplete tests make the
algorithm traverse equivalent or infeasible parts of the search space. Inefficient tests in-
crease the running time. Ideally, if we have sound and complete tests requiring constant
time, and it is possible to represent equivalence classes efficiently then Algorithm 1
builds an MDD in output-optimal time and space. In the remainder of the paper we
will use these tests as a basis for discussing the efficiency of various MDD compilation
schemes.

4 Semantic Caching

Previous approaches that enhance equivalence tests are based on identifying variable in-
dependencies in the underlying model. Two partial assignments to variablesx1, . . . , xi−1
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are equivalent if they assign the same values to variables on which xi critically depends.
The set of such variables might be much smaller than {x1, . . . , xi−1} and therefore,
equivalence detection could be enhanced [3,9]. However, these approaches cannot be
applied if all variables depend on each other. It suffices to introduce just a single global
constraint, spanning over all variables, to get to this situation.

We argue that in addition to looking at the variable independencies, we should also
consider the semantics of well-structured constraints. Namely, the CSP modeling vo-
cabulary is full of constraints with rich structure, which is normally exploited during
search through efficient filtering algorithms.

We illustrate how the same can be exploited for designing better compilation tests
for inequality, equality, and Alldiff constraints. We will then discuss how to extend this
to multiple constraints.

Inequality. An inequality constraint C has the form
∑

i fi(xi) ≤ b, where each xi

is a finite domain integer variable and fi is some cost function. For a given partial
assignment p = (v1, . . . , vk−1) to variables (x1, . . . , xk−1), we denote the cost of p
with respect to C as a(p) =

∑k−1
i=1 fi(vi). A simple equivalence test for an inequality

constraint C is
p1 ≡C p2 ⇔ a(p1) = a(p2).

The test is efficient but incomplete, because two equivalent partial assignments can be
identified as nonequivalent. For example, p1 = (0) and p2 = (1) are equivalent for
x1 + 2x2 ≤ 3 (where x1, x2 ∈ {0, 1}), but they fail the above test for equivalence.
We can formulate a complete equivalence test that requires pseudo-polynomial time.
Assuming without loss of generality that a(p1) < a(p2), the test is

p1 ≡C p2 ⇔ a(p1) ≤ b− a(p) < a(p2) for no p ∈ Dk × . . .×Dn.

The following infeasibility test is both complete and efficient:

p ≡C 0⇔ a(p) + SP(p) > b. (1)

where SP(p) =
∑n

i=k min{fi(v) | v ∈ Di} is the shortest path in Dk × . . .×Dn.
An analogous entailment test is also complete and efficient:

p ≡C 1 ⇔ a(p) + LP(p) ≤ b. (2)

where LP(p) =
∑n

i=k max{fi(v) | v ∈ Di} is the longest path in Dk × . . .×Dn.

Equality. The equivalence test

p1 ≡C p2 ⇔ a(p1) = a(p2). (3)

for an equality constraint C (defined as
∑

i fi(xi) = b) is complete and efficient. The
infeasibility test is essentially a subset sum problem:

p ≡C 0 ⇔ a(p) + a(p′) �= b for all p′ ∈ Dk × . . .×Dn. (4)

which is complete but inefficient (pseudo-polynomial). A complete and efficient domain
entailment test checks whether all completions of the path have the same cost:

p ≡C 1⇔ SP(p) = LP(p). (5)
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Alldiff. Given a partial assignment p = (v1, . . . , vk−1) we define D(p) =
⋃k−1

i=1 vi.
We can now define a complete and efficient equivalence test for an Alldiff constraint C:

p1 ≡C p2 ⇔ D(p1) = D(p2).

Additionally we have the following complete and efficient infeasibility test.

p ≡C 0 ⇔ |
n⋃

i=k

Di| < n− k + 1.

Finally, a complete and efficient entailment test is given by

p ≡C 1 ⇔ D(p), Dk, . . . , Dn are disjoint and nonempty. (6)

The above equivalence detection rules directly indicate how to compute idC(p) for
a constraint C. In case of inequality or equality constraints, id(p) = a(p), and for an
Alldiff constraint it is D(p).

Multiple Constraint Caching. The semantic tests described above can be directly
generalized to a set of constraints S = {C1, . . . , Cm}:

p ≡S 0 ⇔
m∨

i=1

(p ≡Ci 0), p ≡S 1 ⇔
m∧

i=1

(p ≡Ci 1), p1 ≡S p2 ⇔
m∧

i=1

(p1 ≡Ci p2).

The equivalence class identifier, idS(p), can be generically constructed as a tuple of
individual keys, id×S (p) = (idC1(p), . . . , idCn(p)). In this case, Algorithm 1 detects
the equivalence of two paths p1, p2 as soon as idCi(p1) = idCi(p2) for each Ci ∈ S.
This way of combining the individual tests ensures soundness but not completeness
of the generic test even if individual tests are complete. Namely, the test allows for a
number of ”fake” equivalence classes that appear to be different even though they are
the same. The potential number of fake classes explodes exponentially if individual
tests are incomplete or as we add more constraints to S. For example, if idS allows for
Kf fake equivalence classes and Ke exact equivalence classes, and if we add to S a
constraint C′ with K ′ equivalence classes (all exact), then the resulting number of fake
equivalence classes is at least Kf ·K ′. Even among remainingKe ·K ′ pairs, there could
be many fake classes.

We could partially remedy this if we could uncover interactions amongst the set of
constraints rather than treating them independently. For example, infeasibility detection
p ≡S 0 of a set of integer inequalities could be enhanced by checking for feasibility
of their linear relaxation. In addition, if we can detect that some constraints become
entailed by the remaining ones, we could ignore them when denoting the equivalence
classes. In the following section we will show how this can be done efficiently in a very
interesting special case.

5 Incremental Refinement

In the previous section we saw that the performance of Algorithm 1 critically depends
on completeness of semantic tests, and that these tests become significantly weaker
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when dealing with multiple constraints. In order to avoid the explosion of “fake” equiv-
alence classes, we can make the compilation process incremental. We compile only a
subset S′ of S into an MDD M and insert this intermediate MDD into S instead of
S′. Each vertex in the MDD represents an exact equivalence class for S′ and we can
take idS′(p) = idM (p) = Mp, allowing us to compute idS(p) as idM (p) × id×S\S′(p)
which can provide a reduction in the number of fake equivalence classes that is expo-
nential in |S′|. This approach is illustrated in Algorithm 2. In each step it compiles a
subset of constraints S′ in the manner discussed above. We effectively have a number
of different compilation approaches, ranging from compiling all constraints in one pass
(S′ = S), similar to [9], to pairwise conjunctions (|S′| = 1), which resembles the
standard bottom-up compilation approach to building BDDs [10].

Algorithm 2. IncrementalRefine(M,S)
Data: Constraint set S
Result: MDD Representation of the Solution Space of S
M ← True(1);
while S 
= ∅ do

S′ ← some subset of S;
M ← Compile(S′ ∪ {M});
S ← S \ S′;

return M ;

In the remainder of the paper we will focus on pair-wise operations, where one con-
straint C is combined with one MDD M in each step. This case is especially interesting
as it allows us to create some very efficient tests for S = {M,C}, while in many
cases retaining completeness. In particular, all individual constraint tests described pre-
viously relying on shortest or longest path computations of C can easily be generalized
efficiently for S = {M,C} in such a way to preserve completeness. This is achievable
because it is easy to compute shortest and longest paths through an MDD as long as
the cost function is separable [2]. For the Alldiff the domain entailment test remains
complete, but the infeasibility test of Alldiff is no longer complete since it is an NP-
complete problem to determine if an MDD contains a solution satisfying an external
Alldiff constraint [8]. In addition, it is efficient to detect whether the MDD entails an
inequality or equality since we can compute longest and shortest paths efficiently in
the MDD, thereby providing a further reduction in the fake equivalence classes. The
same is possible for the Alldiff. For each MDD vertex u in layer l(u) we can efficiently
compute the set D(u) of values occuring on all paths to u. The MDD then entails the
Alldiff constraint iff |D(u)| = l(u)− 1 for all nodes u, that is iff a distinct set of values
leads to each node.

As previously mentioned the above approach of pair-wise compilation closely resem-
bles standard bottom-up compilation. We do however have two significant advantages.
Firstly, the standard approach requires each constraint to be represented as an MDD.
To see why this is a problem in itself, consider an Alldiff constraint combined with
a lexical ordering constraint. The conjunction of these only allows a single solution,
but if we build the Alldiff separately, we will require exponential time and space. If
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we on the other hand, build the MDD for the lexical ordering constraint first (yield-
ing a polynomial size MDD), we can efficiently compute the conjunction as most of
the equivalence classes from the Alldiff need never be considered since they are dis-
allowed by the lexical ordering constraint. Secondly, the semantic information allows
us to detect domain- and general-entailment of some interesting constraint types more
efficiently. For example, detecting that an inequality is entailed by an MDD is more
efficient if it is represented symbolically rather than as an MDD.

5.1 Vertex Splitting

The algorithm described above operates by always constructing an entirely new MDD,
instead of updating the input MDD, even when differences between them are only mi-
nor. We can try to minimize redundant work by modifying the input MDD rather than
creating a new one. We do this by identifying non-equivalent paths ending in the same
vertex, and then splitting it.

Figure 2 illustrates a vertex-split and the separation of nonequivalent paths for an
Alldiff constraint. The edge (u4, u5) is, for algorithmic purposes, regarded as two edges
that correspond respectively to values 1, 2. If two or more paths coming into u5 are
nonequivalent, we will split u5 into two vertices in order to refine the MDD. In this
case, the paths (u1, u2, u5) and (u1, u3, u5) are equivalent, but other pairs of paths
are nonequivalent. We therefore split u5 into three vertices and distribute the incoming
edges between these two vertices in such a way that no two edges coming into a vertex
are nonequivalent. No fewer than three vertices will accomplish this.

This algorithm is shown in Algorithm 3 and replaces Compile. It traverses the
MDD in a breadth-first manner (BFS) manner. Instead of considering the equivalence
classes of partial assignments (correspond to paths), it considers equivalence classes of
edges (considering an edge (u, v) where |Duv| > 1 as |Duv| seperate edges). Since
the algorithm always splits the previous layer completely before splitting nodes in the
next layer, it is guaranteed that all partial assignments ending in a given edge in the
next layer belong to the same equivalence class. Therefore the edge can be considered
to be identical to any of these paths for the purpose of equivalence, entailment and

u1
................................................................................................................

{1}
..............................................................

{2}

...........................................................................................................

{3}

u2
...........................................................................................................
{2}

u3
..............................................................

{1}
u4

...........................................................................................................
{1, 2}

u5
.................................................................................................

{1, 2}
.................................................................................................

{3}

u6 u7

(a)

u1
................................................................................................................

{1}
..............................................................

{2}

...........................................................................................................

{3}

u2
.........................................................

{2}

u3
...........................................................................................................

{1}

u4
.........................................................................................................

{1}
.........................................................

{2}

u′
5.....................................................................................

{1, 2}

...............................................................................................................................................................................

{3}

u′′
5.................................................................................................

{1, 2} .................................................................................................

{3} u′′′
5..................................................................................................................................................................................... {1, 2}

........................................................................................

{3}

u6 u7

(b)

u1
................................................................................................................

{1}
..............................................................

{2}

...........................................................................................................

{3}

u2
.........................................................

{2}

u3
...........................................................................................................

{1}

u4
.........................................................................................................

{1}
.........................................................

{2}

u′
5 ...............................................................................................................................................................................

{3}

u′′
5.................................................................................................

{2} u′′′
5.....................................................................................................................................................................................

{1}

u6 u7

(c)

Fig. 2. (a) Part of an MDD just before splitting vertex u5 with respect to an Alldiff constraint.
(b) The edges coming into vertex u5 have been partitioned into three equivalence classes, and u5

split into three vertices to receive them. (c) After the split we can prune some infeasible values.
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Algorithm 3. SplitCompile(M,C)
Data: MDD M , constraint C
Result: Refined MDD
if M ⇒ C then

return M ;

foreach vertex u ∈ M in layer-by-layer top-down order do
foreach e ∈ In(u) do

if e ≡C 0 then
delete e from M and from In(u);

if In(u) = ∅ then
delete u from M ;

else if In(u) 
≡C 1 then
Partition In(u) into sets E1, . . . , Em such that for each e, e′ ∈ Ei, e ≡C e′;
Split(M,u, E1, . . . , Em);

return Reduce(M);

Algorithm 4. Split(M,u,E1, . . . , Em)
Data: MDD M , vertex u
for i = 1 . . . m do

Create a new vertex ui in u’s layer of M ;
for edges (u, u′) of M do

Add edge (ui, u
′) to M with Duiu′ = Duu′ ;

for (u′, u) ∈ Ei do
Remove edge (u′, u) from M ;
Add edge (u′, ui) to M with Du′ui

= DEi ;

for edges (u, u′) of M do
Remove edge (u, u′) from M ;

infeasibility detection. The previously described entailment detection is now done prior
to the vertex splitting. Since reduction is not done during splitting, this is performed
just before returning the MDD. In our experiments we will rely on this vertex splitting
based algorithm to implement the pair-wise conjunction of Algorithm 2.

6 Approximate Compilation

Even when we can compile an MDD for a constraint set using iterative refinement, the
MDD may be too large or too hard to compute for practical purposes. This may occur,
for example, in an online setting where there is insufficient time or memory to compute
an exact MDD. We therefore propose to modify iterative refinement for approximate
semantic compilation. For given memory and time restrictions we compile an MDD
that represents a superset of the solution space. In particular, we produce a sequence of
approximate MDDs, each a refinement of the last in the sense that it represents a smaller
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superset of the solution space. Each approximate MDD is created by taking all
constraints into consideration, thus taking advantage of interactions among the con-
straints. We also provide approximation guarantees with respect to each constraint.

The basic idea is to regard two partial assignments p1, p2 as equivalent for algorith-
mic purposes when their distance is below a threshold dC

max. Thus the equivalence test
becomes

p1 ≡C p2 ⇔ distanceC(p1, p2) ≤ dC
max.

A definition of edge equivalence is induced from equivalence of partial assignments in
the same way as before. Distance measures are specialized to each type of constraint.
For an inequality constraint

∑n
i=1 f(xi) ≤ b, the distance will be

distance≤(p1, p2) = |a(p1)− a(p2)|

and similarly for an equality constraint. For Alldiff constraints we can use symmetric
difference as a measure of distance:

distanceA(p1, p2) = |D(p1)/D(p2)|.

where S1/S2 = (S1 \S2)∪ (S2 \S1). Other distance measures could be used as well.
When equivalence is detected in this fashion, Algorithm 1,2 and 3 becomes approx-

imate MDD compilers. The resulting MDD guarantees that any two paths entering the
same vertex differ by at most dC

max with respect to constraint C. If the infeasibility
test is complete, then we create no infeasible vertices, and the number of redundant
equivalence classes can be limited as desired by adjusting the bound dC

max.
The overall procedure for approximate compilation begins with a trivial MDD M

(consisting of the single vertex True(1)) and some initial large distance. It then refines
M using SplitCompile for each of the constraints in S using the distance based
equivalence tests. The process is then repeated with lower distance thresholds, obtained
from the previous thresholds by, for example, a multiplicative or additive factor.

The advantage of this approach, regardless of whether the goal is exact or approxi-
mate compilation, is that after one distance is processed, the resulting MDD takes all
constraints into consideration. This means that we at any time have a bound on the de-
gree of violation on each constraint in the current MDD. In addition, it allows obvious
inconsistencies to be removed from the solution space at an earlier time, preventing the
corresponding equivalence classes from taking up computatation time in subsequent
steps. Therefore it can in fact be advantageous to compute an exact MDD through a
sequence of approximations in which the distance thresholds are gradually reduced to
zero.

7 Experiments

In this section we will show how the presented techniques perform in practice for a
selection of applications. Implementation of techniques discussed in this paper is us-
ing our own MDD compiler and generic MDD-manipulation package, written in Java.
Comparisons to standard compilation techniques makes use of CLab [11].
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7.1 Approximation Quality Tradeoff

In the first set of experiments we evaluate the overall quality of our approximation
scheme. For an MDD M , and a constraint C we create an approximate MDD Mapx

with increasing precision (decreasing maximal distance threshold dC
max) and without

size limit (Tmax = ∞). For each dC
max we generate the approximate MDD and report

its number of edges and solutions. The results are shown in Figure 3, and we can for
example see that the solution count decreases super-linearly as a function of MDD size.
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Fig. 3. The two plots above tracks the progress of the approximate compilation process of 5 ran-
dom separable inequalities, with 15 variables over domains of size 3 and matrix elements from the
range −100 to 100. The leftmost plot shows the approximatedistance achieved on the horizontal-
axis and the size of the MDD on the vertical axis. Since the instance consists of inequalities, the
distance corresponds to an upper bound on how much the longest path can violate the bound. The
rightmost plot shows the trade-off achieved between solution count and MDD size.

7.2 Approximate Refining for Exact Compilation

In the second set of experiments we illustrate how approximative refining can be a
competitive method for exact compilation. We postulated previously that the use of
approximate refinement steps with distance thresholds gradually reducing to 0 might
be beneficial for exact compilation. We therefore compared the CLab compilation ap-
proach, precise refining, and approximate refining for a single randomly generated lin-
ear inequality, as well as for a set of linear inequalities over binary variables. Compiling
a single inequality might be relevant for assisting a standard compiler (such as CLab) in
compiling individual rules, while the set of linear inequalities illustrates behavior when
we have weak equivalence detection due to a lack of strong semantics. The results are
shown in Figures 4(a) and 4(b).

For a single inequality, we can observe that the number of vertices created by CLab is
nearly unaffected by tightness. This is due to the mechanism used in CLab for construct-
ing the BDD for an inequality, which compiles a BDD for each bit of the left-hand side
and then builds the BDD by comparing these with the bit representation of the right-
hand side. We can also see that both precise and approximate compilation outperform
CLab in the number of vertices generated. With regard to time (which is not shown), the
approximate compiler outperforms CLab on tightness less than 0.2 and greater than 0.8.
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Fig. 4. (a) Total number of vertices created during compilation of a single random linear inequal-
ity over 18 variables with binary domains. The coefficients range from 0 to 100000. (b) Total
number of vertices created during compilation of 10 random linear inequalities over 18 variables
with binary domains. The coefficients range from 0 to 100000. Instances with tightness up to and
including 0.4 are unsatisfiable.

The second experiment considers a set of linear inequalities. Again we observe that
CLab is almost unaffected by the tightness of the constraints. This is again due to the
construction mechanism mentioned before. In fact more than 99% of the vertices cre-
ated by CLab are generated during the construction of BDDs for individual inequal-
ities, and most of these vertices are created before considering the right-hand side of
each constraint. The precise vertex-splitting based compiler produces far fewer vertices,
while approximate compilation reduces this number even further, clearly outperform-
ing precise compilation. With regards to time (not shown), the (approximate) vertex-
splitting compiler is fastest up to and including tightness 0.5 and again for tightness
greater than 0.8. CLab is fastest between 0.5 and 0.8. Note, however, that CLab is based
on highly optimized C code, while our Java implementation is far from optimized.

7.3 Interactive Configuration

In our final set of experiments we assess the usefulness of approximative MDD com-
pilation for one of its main application areas: interactive configuration. We consider a
scenario where an MDD M init is given for an initially compiled configuration instance
along with a set S of external (resource) constraints, which have not been compiled
either because the resulting MDD is too large, or the constraints are not known at the
time of compilation.

In the presence of external constraints, it is NP-hard to prune all non-GAC values;
that is, values that are not generalized arc consistent with respect to the conjunction
M init ∧ S of all constraints. A user is therefore exposed to backtracking, because he is
presented with non-GAC values as valid options due to incomplete (but time efficient)
pruning algorithms. This often occurs in practice1 and is regarded negatively. We there-
fore explore whether approximate compilation can be used to remove non-GAC values
while still observing strict time and memory limitations.

1 Think of buying an airplane ticket online and getting the message, “There is no flight on
selected dates. Please go back and try again.”
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After each user assignment, we compute initial valid domains, and while the user is
assessing available options we refine the existing MDD with respect to S to get refine-
ment M apx. This MDD is then additionally cost-pruned with respect to each constraint
C ∈ S, in the sense of cost-bounded configuration [2], and the domains displayed to the
user are updated. As an alternative to approximate compilation, we consider computing
valid domains only with respect to the initial MDD M init, or with respect to M init after
cost pruning. We abbreviate the first scenario as ApxP (approximation + cost pruning)
and denote the other two as Init and InitP, respectively. The approach of the last scenario
in itself leads to strictly more pruning than in the case of standard CSP propagation, in
which the MDD and the constraints in S are posted individually as global constraints.

For the initial MDD M init we loaded an MDD representing the real-world config-
uration instance “PC” (a personal computer configuration problem), available in the
CLib benchmark suite [12]. It has 45 finite-domain variables of up to 33 domain val-
ues and 4875 vertices. We then generated a set S of external constraints. For each
m ∈ {2, 3, . . . , 13} we generated 10 models of m random separable inequalities, each
with a tightness t = 0.5. For a separable cost expression

∑
i ci(xi) we set the right-

hand side bound to b = minc + (maxc − minc) · t, where minc and maxc are the
minimal and the maximal value of the cost function c. We set the maximal vertex size
threshold Tmax to 5000. For each set of separable inequalities we measured a number
of parameters averaged over 100 interaction simulations (where in each simulation we
randomly simulated user assignments until there was only one solution left). In Table 1
we report, for each number of constraints m, the median of these values over the 10
generated models.

Table 1. Effect of approximate compilation on reducing the non-GAC values in user interac-
tion. Column m indicates the number of external constraints C. M apx is the maximal size of an
approximate MDD encountered. Me is the size of the MDD representing entire conjunction ex-
actly M init ∧ C. Columns Init, InitP and ApxP denote the probability of selecting non-GAC value
for the three scenarios previously described. Column Subsume indicates the average subsumption
depth, i.e. after how many assignments does approximate MDD become exact. Finally, columns
Refine and Reduce indicate the number of seconds spent for generating approximate M apx and
subsequent elimination of redundant equivalence classes.

m Mapx Me Init(%) InitP(%) ApxP(%) Subsume Refine(s) Reduce(s)
13 7894 732 18 7 0.5 1.17 1.27 0.48
12 5838 253 19 6.9 0 0 1.07 0.48
11 5616 872 18 6.3 0 0 0.75 0.43
10 6081 2471 18 6.8 0.1 1 0.89 0.39
9 5031 258 19 5.1 0 0 0.86 0.36
8 7474 3676 16 4.8 0.02 1.45 0.94 0.40
7 6925 2849 16 4.7 0.02 1.43 0.70 0.31
6 6827 7797 14 2.5 0.02 1.62 0.64 0.28
5 7112 17965 11 2.0 0.01 2.17 0.56 0.24
4 7336 25030 11 1.8 0.02 2.42 0.48 0.21
3 7957 35092 9.8 0.82 0.006 2.56 0.42 0.18
2 7231 43108 6.2 0.22 0.0002 3.08 0.29 0.13
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The probability of selecting a non-GAC value was assessed by comparing, for every
unassigned variable, the size of the domains represented to the user (Dinit, DinitP , and
DapxP ) against the actual number of non-GAC values De. More precisely, if domain
Di is shown to the user, but only a subset De

i of values are GAC, then we compute the

probability |Di|−|De
i |

|Di| of selecting a non-GAC value with respect to a single variable.
We then average the probability over all unassigned variables and repeat this for every
assignment in a simulation. If Uj was the set of unassigned variables at interaction step
j, and there were a total of k assignments when the solution was completely specified,
we compute:

1
k

k∑
j=1

1
|Uj |

·
∑
i∈Uj

|Di| − |De
i |

|Di|

as the probability of selecting a non-GAC value in an interaction simulation.
Table 1 indicates that approximate compilation almost entirely eliminates the prob-

ability of backtracking. On average, scenario ApxP using approximate compilation re-
duces by several orders of magnitude the probability of selecting a non-GAC value,
compared to the InitP and especially the Init scenario. While InitP performs well for a
smaller number of constraints (below 1% for two constraints), the probability of back-
tracking increases with the number of constraints (7% for 13 constraints). Computing
domains over initial MDD in Init scenario leads to a significant backtracking proba-
bility that increases with the number of constraints, up to 19%. Subsumption depth
for approximate compilation is very shallow. After an average of 1-3 assignments, the
MDD becomes exact. Since we fixed the tightness of individual constraints, the overall
tightness of the solution space increases with the number of constraints. As a result,
exact MDDs get increasingly smaller, while approximate MDDs are relatively stable.
The combined running time for refinement and reduction phase is usually below 1.5
seconds, which is more than acceptable in our interaction setting: we first show ini-
tial domains, and while the user is investigating those, we further refine based on an
approximate MDD.

8 Conclusions

We presented an incremental refinement algorithm based on vertex splitting, for ap-
proximate compilation of constraint satisfaction models into MDDs. The presented
approach utilizes the semantics of constraints and a notion of distance to obtain ap-
proximate MDDs. Our empirical evaluation demonstrated that approximate refinement
can be a competitive compilation method and that significant reductions in backtrack-
ing can be made by approximately compiling external constraints during interactive
configuration.

Acknowledgments. Tarik Hadzic is supported by an IRCSET/Embark Initiative Post-
doctoral Fellowship Scheme. Barry O’Sullivan is supported by Science Foundation Ire-
land (Grant Number 05/IN/I886).
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Abstract. Solutions to valid Quantified Constraint Satisfaction Prob-
lems (QCSPs) are called winning strategies and represent possible ways
in which the existential player can react to the moves of the universal one
to “win the game”. However, different winning strategies are not neces-
sarily equivalent: some may be preferred to others. We define Quantified
Constraint Optimization Problems (QCOP) as a framework which al-
lows both to formally express preferences over QCSP strategies, and to
solve the related optimization problem. We present examples and some
experimental results. We also discuss how this framework relates to other
formalisms for hierarchical decision modeling known as von Stackelberg
games and bilevel (and multilevel) programming.

1 Introduction

QCSP (Quantified Constraint Satisfaction Problems) is a constraint-based frame-
work used to model several problems that go beyond classical CSP, such as those
involving some degree of uncertainty in the state of the modeled reality, and those
structured as game playing [1,2,3] or adversary problems [4], such as conformant
planning, model checking, testing, and robust scheduling [5], to name a few.

In QCSP variables may be universally quantified over their domains. Such
universal quantification is crucial while modeling, for example, the behavior of
a hostile adversary or some potentially harmful uncertainty about the state of
the environment. This expressive power comes at a cost: While CSP is solved
by just exhibiting values for its (existentially quantified) variables such that all
the constraints are satisfied, a QCSP is solved by exhibiting winning strategies.
A strategy is a set of functions that compute the values of each (existentially
quantified) variable in the problem as a function of all the relevant (universally
quantified) variables. A winning strategy is a strategy that, given whatever as-
signment to the universal variables, manages to satisfy all the constraints by the
values of the existential variables: then, a QCSP is true if it has at least one
winning strategy. Strategies, unlike satisfying CSP assignments, are not always
docile objects: their worst-case size is exponential in the number of variables.

Given a true QCSP instance, are all its winning strategies equally desirable?
It turns out that some strategies should be preferred over others, despite being
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equally “winning”. The contribution of this paper is to present a framework,
called Quantified Constraint Optimization (QCOP+), to express preferences over
strategies, and a reasoning engine that solves the resulting optimization problem.

In CSP we express preferences over the set of solutions by means of an ob-
jective function, and solve the related optimization problem by determining the
satisfying assignment(s) that maximize(s)/minimize(s) such objective. Similarly,
in a game-like scenario modeled in QCSP we could be interested, for example,
in playing the strategy that gives the earliest win, or in selecting strategies with
features that cannot be enforced at the level of the constraint language. As an
example, suppose that we face a game-like situation in which strategies to force
the opponent to a tie exist, though we cannot defeat him if he plays perfectly.
Out of all the strategies that prevent the opponent from winning, we prefer those
leading to our win in case the opponent plays less than perfectly. This induces
a preference over the space of winning strategies which cannot be modeled in
plain QCSP (any attempt to require a strict defeat of the opponent by additional
constraints would result in a false instance, as the opponent cannot be overcome
in general). QCOP+ is the perfect framework for modeling similar situations.

The QCOP+ language we introduce is based on QCSP+ [3] and extends it by
providing means to define compositional objective functions built along the quan-
tification structure of the problem. With each universal quantification we asso-
ciate some aggregate function, while optimization functions (e.g., minimization,
maximization) are associated with existential levels. Let us consider, for exam-
ple, the QCOP+ in Figure 1, in which the domains are numerical. We associate
the components of the optimization function with a specific scope by indenting
them at the same level as the quantifier they refer to. If we momentarily disregard

(1) ∃X ∈ DX . [C1(X)]
(2) ∀Y ∈ DY . [C2(X,Y )]
(3) ∃Z ∈ DZ . [C3(X,Y, Z)]
(4) C(X,Y, Z)
(5) min(Z)
(6) k : sum(Z)
(7) max(k)

Fig. 1. Example of QCOP+

lines (5 − 7), we recognize a standard
QCSP+ instance P = ∃X ∈ DX [C1] ∀Y ∈
DY [C2] ∃Z ∈ DZ [C3]. C, where the condi-
tions C1 to C3 are used to restrict dynam-
ically the possible values a variable may
assume. Let W ⊆ SX × SZ be the set of
winning strategies for such problem, where
SX is the space of (constant) functions
onto DX and SZ is the space of functions
sZ : DY #→ DZ , and let WX denote the
set {sX ∈ SX : ∃sZ 〈sX , sZ〉 ∈ W}. Then,

our sample QCOP+ instance asks to identify the subset W ′ ⊆ W of winning
strategies which, beyond satisfying P , optimize the objective function:

max
sX∈WX

[
∑

Y ∈DY

( min
〈sX ,sZ〉∈W

sZ(Y ))]

Any QCOP+ instance is thus composed of two parts: an initial QCSP+ portion
which identifies candidate winning strategies, followed by a quantifier-by-
quantifier specification of an objective function meant to describe optimal candi-
dates. These two parts belong to conceptually different languages and manipulate
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different domains: the first part deals with truth assignments to the problem
variables, the second one is concerned with strategies and sub-strategies.

By mixing them in a single specification we obtain several benefits: we make
as easy as possible the task of declaring (complex) preferences over (complex)
strategies; we keep all the information about the quantified optimization problem
in a compact specification; most importantly, as we shall see, we give the solver
the possibility to exclude on-the-fly partially-formed sub-optimal candidates, in
the spirit of branch and bound algorithms.

Fig. 2. Optimum for the leader alone and re-
sponse of the follower

We have found no previous ac-
count for a general notion of op-
timization in the QCSP literature.
However, this kind of problems has
been studied since the 70’s in mathe-
matical programming under he name
of bilevel (or multi-level) program-
ming [6], a.k.a. “mathematical pro-
grams with optimization problems
in the constraints”. Bilevel programs
are used for solving decision prob-
lems of the form of Stackelberg
games, which is a model of oligopoly in game theory [7]. In this kind of
problems, there are two actors who perform decisions sequentially but have
no control on each other. The first one to act is called “leader”; the second
one, called “follower”, uses the leader decisions to adapt her own ones to-
wards her objective. The key issue here is that the leader and the follower
have different objective functions, that may be conflicting. For example, the
leader can be a government agency which divides an amount of money among
several entities which are free to use their amount for their own purpose.
The following example, taken from [8], shows that conflicting objectives can lead
to a non-optimal equilibrium. In the situation depicted in Figure 2, the choice of
(x1, y1) which would be optimal without the follower becomes considerably sub-
optimal with her response (x2, y1). The equilibrium x∗ is depicted in Figure 3,
where it can be noticed that dominating solutions exist, for both the leader and
the follower, which can never be reached without consensus. We refer to [9] for
an extensive survey of bilevel programming. The name multi-level programming
applies when more than two levels of hierarchical decisions are involved.

Fig. 3. Optimal equilibrium

The QCOP+ framework has been
prototyped in the solver QeCode [10]
based on Gecode [11]. In addition
to optimization, it includes strategy
extraction (useful also for classical
QCSP+, where a simple true/false
answer is often insufficient). The ex-
traction of strategies has been intro-
duced in [12] in the context of QBF.
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The paper presents QCSP, QCSP+ and then QCOP+ and their evaluation. The
search algorithm is presented and its branch and bound variant studied. Finally
some examples of bilevel problems are presented.

2 QCSP

Notations. Let V be a set of variables and D = (DX)X∈V be the family of
their domains. We recall that a family is a function from an index set to a set.
For W ⊆ V , we denote by DW the set of tuples on W , namely ΠX∈WDX .
Projection of a tuple (or a set of tuples) on a variable (or a set of variables)
is denoted by |. For example, for t ∈ DV , t|W = (tX)X∈W and for E ⊆ DV ,
E|W = {t|W | t ∈ E}. For W,U ⊆ V , the join of A ⊆ DW and B ⊆ DU is
A � B = {t ∈ DA∪B | t|W ∈ A ∧ t|U ∈ B}. A sequence is a family indexed
by a prefix of N. We denote by | the sequence constructor and by [] the empty
sequence. We use a?b:c to denote if a then b else c.

Constraints and CSPs. A constraint c = (W,T ) is a couple composed of a subset
W ⊆ V of variables and a relation T ⊆ DW (W and T are also respectively noted
var(c) and sol(c). An empty constraint such that sol(c) = ∅ is false and a full
constraint (which does no constrain the variables) is such that sol(c) = DW .
When W = ∅, only these two constraints exist: (∅, ∅) which has value false and
(∅, ()) which has value true.

A Constraint Satisfaction Problem (or CSP) is a set of constraints. We denote
by var(C) =

⋃
c∈C var(c) its set of variables and by sol(C) = �c∈C sol(c) its

set of solutions. The empty CSP which contains no constraint is true and will
be denoted by � while any CSP which contains a false constraint is false and
denoted by ⊥.

Prefix and QCSP. A quantified set of variables, or qset is a couple (q,W ) where
q ∈ {∃, ∀} is a quantifier and W ⊆ V .

Definition 1 (Prefix). A prefix P is a sequence of qsets [(q0,W0), . . . , (qn−1,
Wn−1)] such that i �= j ⇒Wi ∩Wj = ∅.

We denote by P |W the prefix P restricted to the variables of a set W . A variable
X is declared in a qset Wi if X ∈Wi. A QCSP is defined by adding a CSP to a
prefix:

Definition 2 (QCSP). A Quantified CSP, or QCSP is a couple (P,G) where
P is a prefix and G is a CSP called goal.

Let P = [(q0,W0), . . . , (qn−1,Wn−1)] be a prefix. We define the following nota-
tions. First, let range(P ) = [0..n]. For all i in range(P ), let vari(P ) = Wi be
the set of variables at index i, let beforei(P ) =

⋃
j≤i varj(P ) (resp. afteri(P ) =

beforen(P )\beforei(P )) be the set of all variables defined before (resp. after) the
index i. We also need to access to the index of the next universal block nui(P )
located after an index i. We define nui(P ) = minj>i{j | qj = ∀} if such an
index exists, and n otherwise. These notions are naturally extended for QCSP
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Q = (P,G) in a straightforward way. Moreover, we have prefix(Q) = P and
goal(Q) = G. The QCSP is closed if var(G) = beforen(Q), i.e. all variables men-
tioned in the goal are explicitly quantified. In the sequel, we only consider closed
QCSP.

Example 3 (QCSP). The formula:

∃X ∈ {0, 1}, ∀Y ∈ {0, 1}, ∃Z ∈ {1, 2} . X + Y = Z

is represented by the following QCSP, in which the domains attached to the
variables are not mentionned:

Q = ([(∃, X), (∀, Y ), (∃, Z)], {X + Y = Z})

Thus, prefix(Q) = [(∃, X), (∀, Y ), (∃, Z)], goal(Q) = {X + Y = Z}, range(Q) =
[1..3], var1(Q) = {X}, before2(Q) = {X,Y }, after2(Q) = {Z}. �

Strategy and scenario. A solution, called strategy, is intuitively the way the
existential player react to every possible move of the the universal player. It is
interesting to note that a strategy is a syntactic object that does not depend
on a notion of validity. It is just a possible way to play the game as if there is
no rule. As a consequence, it can be defined for a prefix only. In [13], a strategy
was defined as a family of (Skolem) functions that give a value to an existential
variable as a function of its preceding universal ones. For the purpose of this
set-theoretic exposition, we rather define it in extension, as a set of tuples. Each
of these tuples is a scenario, i.e. a possible way the game is played. Here follows
the inductive definition of the set of strategies for a given prefix:

Definition 4 (Set of strategies). The set of strategies Strat(P ) for a prefix
P = [(q0,W0), . . . , (qn−1,Wn−1)] is defined inductively as follows:

– Strat([]) = ∅
– Strat([(∃,W ) | P ′]) = {t � s′ | t ∈ DW ∧ s′ ∈ Strat(P ′)}
– Strat([(∀,W,C)|P ′])={

⋃
α(DW ) | α ∈ Πt∈DW ( {t � s′ | s′ ∈ Strat(P ′)} )}

The set of strategies for a prefix beginning with an universal variable is defined
as follows: we build, for a tuple t ∈ DW , the set { t � s′ | s′ ∈ Strat(P ′) } of
all strategies beginning by t. Then we take the Cartesian product Πt∈DW ( { t �

s′ | s′ ∈ Strat(P ′) } ) of all these sets. Each tuple α of this Cartesian product
has as value a strategy beginning by a tuple t for every t ∈ DW . Such tuple α
is also a function that associates to each tuple of DW a strategy, which is a set
of tuples. The union of the strategies of the image set α(DW ) of this function
is a new strategy which contains a sub-strategy for each t ∈ DW . The set of
strategies for the prefix is the set of all strategies constructed by all tuples α.

Semantics of QCSP. A strategy is a winning strategy if all of its scenarios satisfy
the goal:

Definition 5 (Winning Strategy for QCSP). A strategy s is a winning
strategy iff s|var(G) ⊆ sol(G).

We denote by win(Q) the set of all winning strategies of Q.
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Definition 6 (Semantics of QCSP). The semantics [[Q]] of a QCSP Q is:

[[Q]] = Win(Q)

This notion of solution generalizes exactly the classical notion of solution of CSP:
a QCSP is true if it has a winning strategy. Other weaker notions have been
proposed. The notion of outcome, which is the set of scenarios of all winning
strategies, has been used as a notion of solution for QCSP in [13] to model
filtering.

Example 7. Consider the following QCSPs:

Q1 : ∀x ∈ {0, 1}, ∃y ∈ {1}, ∃z ∈ {0, 1}. x ∨ y = z

Q2 : ∃x ∈ {0, 1}, ∀y ∈ {1}, ∀z ∈ {1}. x ∨ y = z

Q3 : ∃x ∈ {0, 1}, ∀y ∈ {0, 1}, ∃z ∈ {1}. x ∨ y = z

With the tuples defined for the values of x, y and z respectively, we have:

[[Q1]] = { {(0, 1, 1), (1, 1, 1)} }
[[Q2]] = { {(0, 1, 1)}, {(1, 1, 1)} }
[[Q3]] = { {(1, 0, 1), (1, 1, 1)} }

QCSP+. Introducing restricted quantification in QCSPs means changing the
nature of the prefix. In addition to a quantifier and a set of variables, each
scope includes a CSP whose solutions define the allowed values for the variables
of the current qset. QCSP+ have been introduced in [3] mainly for modeling
purposes. A restricted quantified set of variables, or rqset is a triple (q,W,C)
where q ∈ {∃, ∀} is a quantifier, W ⊆ V and C is a CSP. The intended meaning
is to restrict the possible values of the variables of W to those which satisfy the
CSP C. We extend the notion of prefix to rqsets. In particular, it is still required
that i �= j ⇒Wi ∩Wj = ∅.

Definition 8 (QCSP+). A QCSP+ is a couple Q = (P,G) where P is a prefix
of rqsets such that var(Ci) ∩ afteri(Q) = ∅ and G is a goal CSP.

A QCSP+ Q = (P,G) is closed if ∀i ∈ range(P ), var(Ci) ⊆ beforei(Q) and
var(G) ⊆ beforen(Q). It is easy to notice that a standard QCSP is a QCSP+ for
which ∀i ∈ range(P ), Ci = ∅. The definition of strategy for a QCSP+ is the same
as for a QCSP. But being a winning strategy is different. A winning strategy is
a strategy for which all possible moves for the universal player end in a winning
scenario. This can happen, like in a classical QCSP, when all constraints of the
goal and of all restrictions are satisfied because all implications and conjunctions
are valid. But, it can also happen when one left-hand side of an implication is
contradicted. Then this scenario is valid whatever happens in the remaining
assignments of variables after the contradicted rqset’s CSP. The set of winning
strategies of a QCSP+ can be defined recursively as follows:
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Definition 9 (Set of winning strategies for a QCSP+). LetQ be a QCSP+.
The set of winning strategies win(Q) is defined by:

– win(([], G)) = sol(G)
– win(([(∃,W,C)|P ′], G)) = {t � s | t ∈ DW ∧ t|var(C) ∈ sol(C) ∧ s ∈

win(P ′, G)}
– win(([(∀,W,C)|P ′], G)) = {

⋃
α(DW ) | α ∈ Πt∈DW ( { t � s | t|var(C) ∈

sol(C) ? s ∈ win(P ′, G) : s ∈ strat(P ′, G) } ) }

This definition is similar to the definition of the set of strategies for a prefix.
However, classical winning sub-strategies are not the only ones to take into
account: A strategy can be winning at a universal level if it contradicts the
related restriction. It follows that any sub-strategy can be freely glued, whatever
its winning status. To reason on all the CSP restrictions at once, a kind of
propagation called cascade propagation is introduced in [3].

3 Optimization

QCOP+ is formed after QCSP+ by adding preferences and aggregates to the
rqsets. Let A be a set of aggregate names and F be a set of aggregate func-
tions. An aggregate function is defined by an associative function on a multiset
of values and a neutral element 0f which indicates the value of f({{}}). Possible
functions are sum, product, average, standard deviation, median, count, etc. If
the function is associative and commutative, it can be evaluated using an accu-
mulator initialized to 0f and the evaluation could be parallelized. An aggregate
is an atom of the form a : f(X) where a ∈ A, f ∈ F and X ∈ V ∪ A. We
call names(A) the set of aggregate names of a set of aggregates A. An aggre-
gate name has the same status as a variable, except that it cannot be part of a
constraint. An optimization condition is an atom of the form min(X),max(X)
where X ∈ V ∪ A or the atom any. An atom min(X) indicates that the user is
interested in strategies that minimize this value and not in the other ones, while
any simply indicates she does not care about the returned strategy. It is only
needed to define minimization since max(X) is a syntactic sugar for min(−X).

Definition 10 (Orqset). An ∃-orqset is a 4-uple (∃,W,C, o) where (∃,W,C)
is a rqset and o is an optimization condition. A ∀-orqset is a 4-uple (∀,W,C,A)
where (∃,W,C) is a rqset and A is a set of aggregates. An orqset is either an
∃-orqset or a ∀-orqset.
The notion of prefix and all adjoin notations defined in notation 2 are extended to
a sequence of orqsets. There is a restriction on the variables which can appear in
an optimization condition or an aggregate. Actually, it should be ensured that the
variable to be optimized will have an unique value in the current strategy. This is
the case if this variable is not in the scope of an universal quantifier located after
the optimization condition. However, it can be an aggregate of the next universal
block since it will also have an unique value. The same holds for the variable
of an aggregate: it can belong to the set of variables of any existential scope
between the aggregate declaration and the next universal block’s aggregates.
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Definition 11 (QCOP and QCOP+). A QCOP+ is a couple (P,G) where
G is a CSP and P = [orq0, . . . , orqn−1] is a prefix of orqsets such that ∀i ∈
range(P ), with k = nui(P ):

– if orqi = (∃,W,C, o) with o = min(X) or o = max(X), then we must have
X ∈ beforek−1(P ) ∪ (k < n ? names(Ak) : ∅)

– if orqi = (∀,W,C,A), then for all a : f(X) in A, we must have X ∈
beforek−1(P ) ∪ (k < n ? names(Ak) : ∅)

A QCOP is a QCOP+ in which no orqset has restrictions.

The semantics of a QCOP+ is defined as a set of strategies which include the
computation of the aggregates and which respect the optimization conditions.
We first define the function val which computes the value of an aggregate a:f(X)
for a strategy s. We have val(a:f(X), s) = f({{t|X | t ∈ s}}).

Definition 12 (Semantics of QCOP+). The semantics of a QCOP+ is a set
of strategies defined as follows:

– win(([], G)) = sol(G)
– win(([(∃,W,C, any)|P ′], G)) = win(([(∃,W,C)|P ′], G))
– win(([(∃,W,C,min(X))|P ′], G)) =
{s ∈ win(([(∃,W,C)|P ′], G)) | s|X = mins′∈win(([(∃,W,C)|P ′],G))(s′|X)}

– win(([(∀,W,C,A)|P ′], G)) =
{(val(a:f(X), s))a∈names(A) � s | s ∈ win(([(∀,W,C,A)|P ′], G))}

After the aggregates are evaluated, their value are glued to the scenarios of the
strategy and they appear as if they were existential variables of the preceding
level. As for CSP which can have multiple optimal solutions, a QCOP+ may
have multiple optimal strategies. It can happen with the use of any, but also
when multiple strategies have the same optimal value. They may differ a lot on
subsequent optimal values found in sub-strategies. However, the search algorithm
described in the next section returns one of these optimal strategies only.

4 Algorithms

This section presents a search algorithm to evaluate QCOP+ and its version
based on branch and bound. It is implemented in the solver QeCode [10] based
on Gecode [11]. The solving technique is based on the QCSP+ search procedure
that recursively explores the quantified structure. A mechanism for strategy ex-
traction and its recording in a tree is implemented. This feature also benefits
to QCSP+ because in many cases the user is interested not only in the decision
problem but also in the way the game can be played. An explicit representation
of strategies—called certificate in [12]—has numerous applications, the first one
being to be able to verify the solution in a solver-independent way. In the current
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Procedure Solve ([o|P ′], G)

if o = existential orqset then
return Solve e ([o|P ′], G)

else
return Solve u ([o|P ′], G)

end if

Procedure
Solve e ([(∃, W, C, min(X))|P ′], G)

BEST STR := null
BEST Xvalue := +∞
for all t ∈ DW s.t. t is a solution of C
do

CUR STR := Solve( (P ′, G)[W ← t] )
if CUR STR 
= null then

CUR Xvalue := CUR STR|X
if CUR Xvalue < BEST Xvalue
then

BEST STR := CUR STR
BEST Xvalue := CUR Xvalue

end if
end if

end for
return tree(t,{ BEST STR })

Procedure Solve u ([(∀, W, C, A)|P ′], G)

for all ∀a:f(X) ∈ A do
VAL a := ∅

end for
STR := ∅
for all t ∈ DW s.t. t is a solution of C
do

CUR STR := Solve( (P ′, G)[W ← t] )
if CUR STR = null then

return null
else

for all a:f(X) ∈ A do
VAL a := VAL a  
{{ CUR STR|X}}

end for
STR := STR

S
CUR STR

end if
end for
return tree((f(VAL a))a:f(X)∈A, STR)

Fig. 4. Search procedure

prototype implementation, the tree is recorded without compression, and this
could eventually put limits to the size of the examples that can be handled.

The main search procedure is composed of two mutually recursive evaluation
functions, one for an ∃-orqset and one for a ∀-orqset. They return a strategy
described by a tree which can either be the empty tree null or tree(a,B) where
a is a tuple and B a set of trees. The general algorithm, the algorithm for
a minimization condition in an ∃-orqset and the one for a ∀-orqset are given
in Figure 4. For an ∃-orqset, the function maintains the best strategy found
so far BEST STR and returns it, or null if the orqset is failed. All strategies
are successively explored and compared on their X value. The max and any
aggregates are defined similarly. Adding branch and bound to this procedure
can be done simply by adding the constraint X < BEST Xvalue (resp. >) to
the rest of the minimization (resp. maximization) problem. This can be seen as
an adaptation of the algorithm of [14] for which the lower/upper bounds are
directed by the optimization condition and associated to their own optimization
variable instead of to the whole problem. Once a solution has been found, the
algorithm for a ∀-orqset first evaluates the sub-strategies for every universal
tuple. For each of them it computes the set of aggregates. Then it collects all of
them in a set STR and returns it at the end.

Branch and Bound. Interestingly, the branch and bound algorithm may be in-
correct in the case of overlapping optimization conditions. This happens if there
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exists two orqsets orqi = (∃,Wi, Ci,min(X)) with X ∈Wk and orqj =(∃,Wj , Cj ,
min(Y )) with Y ∈ Wl such that i < j < k. Any number of condition any may
appear in between.

Example 13. A sample problem incorrect for branch and bound is in Figure 5.

∃X ∈ DX

∃Y ∈ DY

∃A ∈ DA

∃B ∈ DB

. . .
any

any
min(B)

min(A)

Fig. 5. Incorrect B&B

Suppose there exists three strategies s0 =
{(X0, Y0, A0, B0)}, s1 = {(X1, Y1, A1, B1)}
and s2 = {(X1, Y2, A2, B2)} such that A1 >
A0, A2 < A0 and B1 < B2. Having found the
strategy s0, the constraint A < A0 is added
to the search of subsequent strategies. Thus,
s1 is cut. We find s2 which has a better value
A2 for A and the optimal strategy is s2. With-
out branch and bound, optimization at the
level of Y would have preferred strategy s1

because of its better value on B and would
have returned the value A1. The best strat-
egy at the upper level would have been s0.

Proposition 14. Branch and bound is correct if optimization conditions are
non-overlapping.

Proof. With the same notations as above, conditions are non-overlaping if k ≤ j.
Then it is ensured that any branch cut by B&B will be cut before the level of
Y will be reached, hence only strategies worse for X will be cut.

5 Examples

In this section, we give several examples of use of quantified constraint optimiza-
tion, ranging from toy examples to real-world problems taken from the bilevel
programming literature. In order to give a readable presentation of the exam-
ples, we use a pseudo-code syntax in which the aggregates/optimization part is
placed at the end. In a similar way, we allow the use of constants and arrays.
For example, the following QCOP+ which returns a strategy in which X = 0 if
the sum of odd indices of the array A is less than the sum of its even indices
and X = 1 otherwise is depicted on the right as pseudo-code:

( [ (∃, {X}, ∅, min(s)),
(∀, {i}, {i mod 2 = X}, {s : sum(Z)}),
(∃, {Z}, ∅, any) ],
{Z = A[i]} )

const A[0..9]

\exists X in {0..1}

| \forall i in {0..9} [i mod 2 = X]

| | \exists Z in {0..+oo}

| | | Z = A[i]

| | any

| s:sum(Z)

min(s)
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Minimax in adversary scheduling. Often, the objectives of the existential and
universal players conflict completely. This situation can be dealt with by a clas-
sical minimax algorithm (and in this case the branch and bound implements
alpha-beta pruning). We illustrate this case by an extension of the adversary
scheduling example introduced in [4]. In this problem, two opponents are in-
volved: the scheduler tries to build a schedule that satisfies all the (temporal
and resource) constraints, while the adversary tries to prevent the formation of
a valid schedule by inflicting some (limited) deterioration on the problem setting.
In the QCSP+ version, the scheduler was trying to build a schedule such that the
ending date was below a given threshold. In QCOP+ it is possible to capture the
more realistic variant in which the scheduler aims to minimize the ending time
of the robust schedule, while the adversary tries to maximize the same ending
time. Let us consider an example with three activities a1, a2, a3 and a resource
r. An activity ai has a starting date of si, a duration of di and requires ci units
of the resource r of maximal capacity 5. The precedence is a1 ≺ a2 and the data
are d1 = 1, d2 = 2, d3 = 3, c1 = 3, c2 = 2 and c3 = 1. The adversary is able to
add one unit to the resource consumption of at most two activities. We add a
fictitious activity end whose purpose is to minimize the length of the schedule.
The model in QCOP+ is as follows:

const d[1..3], c[1..n]

\exists k1 in {0,1}, k2 in {0,1}, k3 in {0,1}

| [k1+k2+k3 =< 2]

| \exists S1 in D1, S2 in D2, S3 in D3, Send in Dend,

| | c’1 in Dc1, c’2 in Dc2, c’3 in Dc3

| | [S1+d1 =< Send, S2+d2 =< Send, S3+d3 =< Send, S1+D1 =< S2,

| | c’1=c1+k1, c’2=c2+k2, c’3=c3+k3]

| | cumulative([S1,S2,S3], [d1,d2,d3], [c’1,c’2,c’3], 5)

| minimize(Send)

maximize(Send)

Since there are only existential variables, the strategy is reduced to a single
branch which gives the best attack and the corresponding scheduler response.

Network links pricing. Here is an example from the telecom industry, taken
from [15]. The problem is to set a tariff on some network links in a way that
maximizes the profit of the owner of the links (the leader). The network, as
depicted in Figure 6, is composed of NCustomer customers (the followers) that
route their data independently at the smallest possible cost. Customer i wishes
to transmit di amount of data from source xi to target yi. Each path from a
source to a target has to cross a tolled arc aj . On the way from xi to aj , the cost
of the links (owned by other providers) is cij . It is assumed that each customer
i wishes to minimize the cost to route her data and that he can always choose
another provider at a cost ui. The purpose of the problem is to determine the
cost tj to cross a tolled arc aj in order to maximize the revenue of the telecom
operator. In Figure 6, there are 2 customers and 3 tolled arcs. This problem can
be expressed as a QCOP as follows:

const NCustomer

const NArc

const c[NCustomer,NArc] // c[i,j] = fixed cost for Ci to reach Aj
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const d[NCustomer] // d[i] = demand for customer i

const u[NCustomer] // u[i] = maximal price for customer i

\exists t[1], ..., t[NArc] in [0,max]

| \forall k in [1,NCustomer]

| | \exists a in [1,NArc],

| | | cost in [1,max],

| | | income in [0,max]

| | | cost = (c[k,a]+t[a])*d[k]

| | | income = t[a]*d[k]

| | | cost =< u[k]

| | minimize(cost)

| s:sum(income)

maximize(s)

We generated sets of random instances of this problem. These sets differ from
each other as a consequence of different values assigned to two parameters: (1)
the number of links the network operator owns, and (2) the number of clients
who want to use these links. The network operator can choose between five prices
for each link. For each instance, the maximum price each customer is willing to
pay and the initial costs (to go from home to the starting point of a given link)
are randomly chosen. Each set contains 100 instances. These tests were run on
machines equipped with two dual-core opteron and 4 GB of RAM. QeCode being
mono-threaded, each core was assigned one instance. No timeout has been set.
The branch and bound is not activated because the condition is not met.

Figure 7 shows the average and median resolution times of these tests. In-
stances with a number of links smaller than 7 are not shown, as most of them
were solved in less than one second. It is noteworthy that the number of clients
has a very small impact on the resolution time, contrary to the number of links.
This effect can be explained considering that adding clients simply requires to
choose the link in which their data will transit, while adding links adds one pos-
sible choice to every client, and multiplies the pricing alternatives of the network
operator.

Virtual network pricing. Telecom infrastructure requires very large investments,
supported by one or a few network operators (NO). To increase competition,

Fig. 6. A network pricing problem
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Fig. 7. Average and median resolution times (Y-axis, in seconds) on the Network Link
Pricing problem for 7, 8 and 9 links, and for between 2 and 9 clients (X-axis)

governments have fostered the introduction of virtual network operators (VNO),
who provide the same services except that they do not own their network. They
rent capacity on the network of NO instead. To some extent, fixed by a regulat-
ing authority, network operators are simultaneously competing and cooperating.
Taking good decisions in such an environment requires a model of oligopoly
which is complex and far from Walras’ pure and perfect competition. The fol-
lowing example is taken from [16].

Fig. 8. Virtual network pricing

Figure 8 depicts the relations between the
NO, the VNO and the customers, each ac-
tor being modeled as in [16]. Let us assume
the point of view of NO. Our main purpose
is to determine the decisions y = (y1, y2), y1

being the service provision to our own cus-
tomers and y2 the price for capacity leased to
the VNO. The decisions taken by the VNO
are z = (z1, z2), z1 being the price for service
provision to VNO’s customers and z2 the ca-
pacity leased from the NO. The customer are
modeled by n = (n1, n2) (total number of
customers of NO and VNO respectively) according to the prices set for ser-
vice provision: ni = ki + ri,1y1 + ri,2y2, the parameters ki, ri,1 and ri,2 being
determined by analysis of market data. The profit of VNO is given by the rev-
enue of the customers minus the cost of leasing, i.e. (q − e2z1)n2 − y2z2 − g2,
where q, e2 and g2 are respectively the fixed and variable costs by customer
and the fixed service provision cost. The profit of the NO is given by the rev-
enue from service provision to the customers and by the capacity allocated to
the VNO, i.e. g1 + (q + y1 + e1)n1 + y2z2 where e1 and g1 are respectively
the variable costs by customer and the fixed service provision cost. Note that
the revenue of NO depends on decisions taken by VNO. In addition, the price
for service to customers is comprised between the limits d and D, the price
of leasing has an upper limit of U1 fixed by the authority, and the maximal
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capacity available for VNO is less than a limit U2. We construct the following
QCOP+ model (in which the universal quantifier is not used since there is only
one virtual operator). Note that the non-overlapping condition is not met.

const d, D, U1, U2, k1, r11, r12, r21, r22, g1, q

\exists y1 in Dy1, y2 in Dy2

| [d =< y1, y1 =< D, y2 =< U1]

| \exists z1 in Dz1, z2 in Dz2

| | [d =< z1, z1 =< D, z2 =< U2]

| | \exists n1 in Dn1, n2 in Dn2, rno in Drno, rvno in Drvno

| | | n1 = k1 - r11 * y1 + r12 * z1

| | | n2 = k2 + r21 * y1 - r22 * z1

| | | rvno = (q - e2 * z1) * n2 - y2 * z2 - g2

| | | rno = g1 + (q + y1 + e1) * n1 + y2 * z2

| maximize(rvno)

maximize(rno)

6 Related Work and Conclusion

Closely related works are the framework of Plausibility-Feasibility-Utility (PFU)
[17], a work on iterated expressions [18], and the language of Stochastic CSPs [14].
The PFU framework aims at providing an algebraic unification of QBF, QCSP,
Stochastic CSP, Bayesian networks, and Markov Decision Processes, while the
purpose of iterated expressions is to model resource allocation in workflows. They
both introduce expressions of the form

⊕
x1∈D1

. . .
⊕

xn∈Dn
expr(x1, . . . xn)

where
⊕
∈ {min,max,

∑
, Π}. It is not possible to express bilevel models in these

frameworks because the optimization condition has to apply on an expression in-
volving the result of an immediate subexpression. However, some constructions
like min(

∑
x e1(x) +

∑
y e2(y)) are expressible by a PFU or iterated expression

and not by a QCOP+. Moreover, the branch and bound condition is always veri-
fied by construction. In [19] it is proposed to find a boolean QCSP strategy which
maximizes the weighted sum of its existential variables set to 1. A dichotomy the-
orem is also proved (to identify tractable and intractable language classes).

All these works, along with QCOP+, pose the problem of finding an adequate
language for expressing preferences over strategies. In this respect, the QCOP+

framework is general enough to model bi and multi-level problems whose impor-
tance is confirmed by several studies of the game theory and operations research.

Several unanswered questions remains: Should the objective function be com-
positionally defined or not? What is the analog of weighted CSP in this context?
When several strategies are optimal at the first level, it can happen that they
differ considerably as to sub-strategies. The language of QCOP+ does not allow
to capture such subtle differences. Enabling constraints on aggregate values is
another issue. It is for example impossible to require that strategies should take
different values of an existential variable for all values of an universal variable:
It would require an “all-different” aggregate that may fail. A last open question
concerns the evaluation of partial and/or non-winning strategies, which could
open the way to both relaxation and local search in quantified problems.
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Abstract. Decomposition is a powerful technique for reducing the size of a
backtracking search tree. However, when solving constraint optimization prob-
lems (COP’s) the standard technique of invoking a separate recursion to solve
each independent component can significantly reduce the strength of the bounds
that can be applied when using branch and bound techniques. In this paper we
present a new search algorithm that can obtain many of the computational bene-
fits of decomposition without having to resort to separate recursions. That is, the
algorithm explores a standard OR tree not an AND-OR tree. In this way incre-
mental information gathered from any component can be immediately applied to
improve the bounding information for all of the other components. We also dis-
cuss how caching and local propagation can be combined with our approach and
finally test our methods empirically to verify their potential.

1 Introduction

In this paper we investigate the use of decomposition during search to aid in solving
Constraint Optimization Problems (COPs). In particular, we are interested in COPs
whose objective function is decomposed into a sum of sub-objectives. This means that
when variables are instantiated during search the COP can split into independent com-
ponents that can be solved separately.

Since backtracking’s worst case time complexity is exponential in the number of vari-
ables, decomposition into independent components can yield an exponential speedup
when applied recursively. More precisely, decomposition can reduce the worst case time
complexity from 2O(n) to nO(1)2O(w) where n is the number of variables and w is the
tree-width of the constraint graph, see, e.g., [1,7].

The downside to using decomposition in COPs is that it can reduce the effective-
ness of the bounding techniques that are essential for solving COPs. In particular, the
standard method for exploiting decomposition during search is to invoke a separate
recursion for each independent component generated during the search, yielding an
AND/OR search tree [7,8,9,10,12,14]. Unfortunately, the bounds that can be employed
in these separate recursions can be quite weak causing inefficiencies in the search.

In this paper we present an algorithm that is able to exploit decomposition in a stan-
dard backtracking search tree (an OR tree). Our algorithm has complete freedom in its
variable ordering and is able to switch between working on different components while
retaining the space efficiency of depth-first search. In this way incremental information

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 478–492, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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gathered from any component can be used to improve the bounding information for all
of the other components. This can often mean that an entire collection of components
can be rejected without ever having to solve any of them to optimality. In addition we
discuss how local propagation (soft-arc consistency) [6] can be employed in conjunction
with our algorithm, and demonstrate how a fixed tree-decomposition can be flexibly uti-
lized to improve decomposition without having it impose excessive restrictions on the
variable ordering.

In the sequel we first present some background on branch and bound and AND/OR
search with bounding. Our new algorithm is then presented and some of its proper-
ties illustrated. After a discussion of local propagation and our technique for flexibly
exploiting a fixed tree-decomposition, we present empirical results demonstrating the
potential of our approach.

2 Background

A COP, C, is specified by a tuple 〈Vars , Dom , Cons , Obj 〉, where Vars is a set of
variables, for each V ∈ Vars, Dom[V ] is a domain for V , Cons is a set of constraints,
and Obj is an objective function mapping every complete assignment to Vars to a real
value. A solution of C is a complete set of assignments to Vars that minimizes Obj and
satisfies the constraints in Cons .

The techniques we discuss in this paper are effective on COPs whose constraints and
objective function are decomposable. In particular, we require that Obj be decomposed
into a sum of sub-objectives oi such that: (1) each oi (and each constraint in Cons)
depends on only a proper subset of the variables in Vars , denoted by scope(oi); (2)
each oi maps assignments to the variables in scope(oi) to a real value; and (3) on any
complete assignment A the total objective is the sum of the sub-objectives, Obj (A) =∑

i oi(A).1

The constraints in Cons can be treated as additional sub-objectives that map satisfy-
ing assignments to 0 and violating assignments to∞. Thus the problem can be reformu-
lated with a single unified objective Obj =

∑
i oi +

∑
cj∈Cons cj , and we simply need

to minimize this unified objective. Hence, we regard a COP as being defined by a tuple
〈Vars ,Dom,Objs〉 where Objs includes both the original objective sub-functions and
the hard constraints. We use the term objectives to denote the sub-objectives in Objs .

LetA be any set of assignments to some of the variables of Vars : we use varsOf (A)
to denote the set of variables assigned by A; cost(A, C) to denote the sum of the costs
of all objectives in the COP C that are fully instantiated byA; and mincost(C) to denote
cost(A, C) of any solutionA to C (i.e., the optimal objective value achievable in C).

A set of assignments A reduces the original COP C to a smaller COP C|A whose
variables are the variables of C not assigned in A (C.Vars − varsOf (A)), and whose
objectives are those that contain at least one unassigned variable and are obtained by
restricting the original objectives of C by A. That is, for any objective oi ∈ Objs if
scope(oi) �⊆ varsOf (A), then the reduction of oi by A, oi|A, is the new objective

1 If the objective function or constraints are not decomposable (and they can often be reformu-
lated in a decomposed form), our techniques will still correct solve the COP, but no computa-
tional advantage will be gained from decomposition.
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Algorithm 1. Branch and Bound
BB

`C, UB
´

1
/* Return bounds (C.lb, C.ub) on mincost(C). If mincost(C) < UB, then return exact bounds

C.lb = mincost(C) = C.ub. Else return bounds such that UB ≤ C.lb ≤ mincost(C) ≤ C.ub. */
begin2

(C.lb, C.ub) = getBounds(C)3

if
`C.lb < UB ∧ C.lb �= C.ub

´
then4

choose (a variable V ∈ C.Vars)5
foreach d ∈ Dom[V ] do6

UB = min(UB, C.ub)7

Δd = cost(V = d, C)8

(lbd,ubd) = BB
`C|V =d, UB − Δd

´
9

C.ub = min(C.ub, ubd + Δd)10

C.lb = max
`C.lb, MINd∈Dom[V ] lbd + Δd

´
11

return (C.lb, C.ub)12
end13

function with scope(oi|A) = scope(oi)− varsOf (A) and on any set of assignments α
to the variables in scope(oi|A) we have that oi|A(α) = oi(A ∪ α).

Branch and Bound: (Alg. 1) is a standard technique for solving COPs using backtrack-
ing search. It works by building up partial variable assignments in a depth-first manner
using bounding to prune the search space. Each recursion is passed a COP C (a reduc-
tion of the original COP by the current set of assignments) and an upper bound UB. It
tries to compute mincost(C), subject to the condition that it can abort its computation
as soon as it can conclude that mincost(C) ≥ UB.

The computation starts with obtaining valid bounds on mincost(C) (various ap-
proximations can be used). If it is possible that mincost(C) < UB (i.e., C.lb < UB)
and mincost(C) is not already known (i.e., C.lb �= C.ub), then the computation of
mincost(C) can proceed. For any variable V ∈ C.Vars we know that mincost(C) must
be achieved by assigning V one of its values, and we can try each of these values in
turn. The minimal cost for C under the assignment V = d is the sum of Δd, the cost
contributed by any objectives of C that are fully instantiated by V = d (line 8), and
mincost(C|V =d). Hence, to achieve a total cost for C of less than UB under V = d, we
must achieve a cost less than UB − Δd for C|V =d (line 9). After the recursive call we
know that mincost(prob) can be no greater than the returned ubd plus Δd, so we can
reset C.ub to this value if it provides a tighter bound. We can also update the desired
bound for the next value to be the minimum of what was already required, UB, and
the current upper bound for C, C.ub (line 7). That is, we force the rest of the search
to achieve an even better value for C. After trying all values, we know that both the
initially estimated lower bound, C.lb, and the minimum of the lower bounds, lbd +Δd,
achieved under the different values of V are valid lower bounds for C. Hence, we can
use the tightest (maximum) of these as a new lower bound C.lb. Note that when all
variables have been assigned the recursion must stop. In particular, the passed C will be
the empty COP and will have exact bounds C.lb = 0 = C.ub.

Branch and Bound with Decomposition: (Alg. 2) A more recent technique used in
solving COPs (and other types of constraint problems) is search with decomposition (or
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Algorithm 2. AND-OR Decomposition with Branch And Bound
AND-OR-Decomp (κ, UB)1
/* On entry (κ.lb, κ.ub) must be valid bounds on mincost(κ). If mincost(κ) < UB, then compute

exact bounds κ.lb = mincost(κ) = κ.ub. Else compute bounds such that
UB ≤ κ.lb ≤ mincost(κ) ≤ κ.ub. */

begin2
if

`
κ.lb < UB ∧ κ.lb �= κ.ub

´
then3

choose (a variable V ∈ κ.Vars)4
foreach d ∈ Dom[V ] do5

UB = min(UB, κ.ub)6

Δd = cost(V = d, κ)7
// Start new Processing for decomposition.
Kd = toComponents(κ|V =d)8

foreach κd ∈ Kd do9
(κd.lb, κd.ub) = getBounds(κd)10

foreach κd ∈ Kd while
“ P

κd∈Kd κd.lb < UB − Δd
”

do11
UBκd = UB − Δd − P

κ′∈K∧κ′ �=κd κ′.lb12

AND-OR-Decomp (κd, UBκd )13

(lbd,ubd) =
P

κd∈K(κd.lb, κd.ub)14
// End new Processing for decomposition.
κ.ub = min(κ.ub,ubd + Δd)15

κ.lb = max
`
κ.lb, MINd∈Dom[V ] lbd + Δd

´
16

end17

AND/OR search) [7,8,10,14]. As variable assignments are made during backtracking
search, the COP can become separated into smaller independent COPs called com-
ponents. These components are COPs that share no variables and hence they can be
solved independently of each other. For example, if C has the objectives o1(V1, V2, V3)
and o3(V3, V4, V5) then the assignment V3 = d will split C into two components, the
first containing the variables V1 and V2, and the objective o1|V3=d while the second
contains the variables V4 and V5, and the objective o2|V3=d. Setting the variables of one
component has no effect on the other. AND/OR search works by invoking a separate
recursion for each component κ generated during search.

In Alg. 2 components are represented by a data structure κ that is created and de-
stroyed as Alg. 2 performs its search. κ is defined by some subset of the objectives
of the original input problem, κ.Objs , that have been reduced by some set of assign-
ments κ.A sufficient to disconnect these objectives from the rest of the problem. The
variables of κ, κ.V ar, are all of the unassigned variables of these objectives (thus
varsOf (κ.A) ∪ κ.V ars =

⋃
o∈κ.Objs scope(o)). Also note that κ is a COP so we

can evaluate cost(A′, κ) for any set of assignments A′. κ also contains fields κ.lb and
κ.ub used to store bounds on mincost(κ).

The search starts with the call κ = C and with κ.lb ≤ mincost(κ) ≤ κ.ub, i.e.,
a request to solve the original problem with valid bounds on the optimal cost. Each
recursion solves a single component κ created by the current set of assignments. To
solve the component κ we try all values of one of its variables V , reducing κ by each
possible assignment. The reduced component, κ|V =d, is first separated into a set of sub-
components Kd and a data-structure κd is created for each of these sub-components
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(line 8). Each sub-component is solved independently (line 13). We know that in order
to achieve a total cost of less than UB for κ under the assignment V = d, the sum
of the lower bounds over all components in K must be less than UB − Δd (where Δd

is the immediate cost of making the assignment V = d). Thus each sub-component
κd ∈ K must achieve a value of no greater than UB −Δd minus the sum of the lower
bounds of all of the other sub-components in K (line 12). Since each recursive call
updates the lower bound of a sub-component in K, we can abort the solving of these
sub-components whenever the sum of their lower bounds exceeds UB −Δd (line 11).

Once we have finished with the value V = d all of the data structures in Kd can
be deleted—so that the space requirements of the algorithm remain polynomial. On the
other hand, during search with decomposition the same component can be encountered
many times. Thus it is natural to cache the computed bounds for these components so
that when they are encountered again we can use these better bounds to optimize the
next attempt at solving the component. Cache look up can occur inside of the function
getBounds (line 10) where the better bounds (perhaps exact bounds) stored in the cache
can be retrieved.

3 Decomposition without Separate Recursions

Although the above use of decomposition with bounding gains computational advan-
tage from breaking the problem into independent sub-problems, it suffers from a weak-
ening of the bounding information it can utilize.

Consider solving a component κ under UB = 100. Say that we branch on variable
V making the assignment V = d, and that this adds zero to the cost (Δd = 0) while
breaking κ into five components κ1, . . . , κ5. If mincost(κi) = 25 this value for V must
eventually be rejected as under V = d, κ can only achieve a minimal cost of 125. Say
further that for each of the κi, our estimated lower bounds, κi.lb, is 10. We can see that
the upper bound applied when solving κ1 will be 100 − 4 ∗ 10 = 60, and the search
will be forced to solve κ1 to optimality. This will update κ1.lb to 25, and yield an upper
bound of 100− (3 ∗ 10 + 25) = 45 for solving κ2. Thus the search will also be forced
to solve κ2 to optimality. The bound for κ3 will then be 30, and κ3 must be solved to
optimality. The bound for κ4 will be 15 and now the search can terminate before solving
κ4, after which

∑
i κi.lb > 100 and we can reject V = d. Computing the optimal value

for κ1–κ3 can be very expensive, and it could be that some much shallower search of all
of the components could have served to move their lower bounds to 20 or higher so that
V = d could be rejected without having to solve any of them to optimality. Thus we
see that although we are solving simpler problems, the bounds we can exploit in these
problems are weaker.

The key contribution of this paper is to demonstrate how the computational benefits
of decomposition can be obtained without having to perform separate recursions for
each component. Instead our method exploits the ideas originally presented in [1] for
counting problems where the benefits of decomposition are obtained in a regular back-
tracking search tree (OR-tree). We extend the ideas of [1] in a non-trivial way so that
bounding can be exploited.
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Algorithm 3. Decomposition and Bounding in a Standard Backtracking Tree
OR-Decomp (K, UB)1

/* On entry each κ ∈ K must have valid bounds (κ.lb, κ.ub). If
P

κ∈K mincost(κ) < UB

then compute exact bounds for every κ ∈ K, κ.lb = mincost(κ) = κ.ub . Else compute
valid bounds on the components in K such that UB ≤

P
κ∈K κ.lb. */

begin2

if
`P

κ∈K κ.lb < UB ∧
P

κ∈K κ.lb 
=
P

κ∈K κ.ub
´

then3
choose (a component τ ∈ K with τ.lb 
= τ.ub and a variable V ∈ τ.Vars)4
AddConstraint(τ , τ.ub)5

foreach d ∈ Dom[V ] while
P

κ∈K κ.lb < UB do6
UB = min(UB,

P
κ∈K κ.ub)7

Δd = cost(V = d, τ )8

Kd = toComponents(τ |V =d)9

foreach κd ∈ Kd do10

(κd.lb, κd.ub) = getBounds(κd)11

K′ =
`
K− τ ∪ Kd

´
12

OR-Decomp (K′, UB −Δd)13

(lbd, ubd) =
P

κd∈Kd(κd.lb, κd.ub)14

τ.ub = min(τ.ub, ubd + Δd)15

RemoveConstraint(τ , τ.ub)16

τ.lb = max
`
τ.lb, MINd∈Dom[V ] lbd + Δd

´
17

end18

Our new algorithm is shown in Alg. 3. Like Alg. 1 the algorithm takes as input the
entire remaining problem. However, instead of regarding the input as being a single
reduced COP (C), the input has been broken up into a set of componentsK. The aim is
to solve all of the components inK (compute bounds such that ∀κ ∈ K : κ.lb = κ.ub or
equivalently

∑
κ∈K κ.lb =

∑
κ∈K κ.ub), subject to the condition that we can give up on

the computation once we have concluded that the combined cost of these components
is greater than or equal to the passed upper bound UB (i.e., when

∑
κ∈K κ.lb ≥ UB).

If neither of these conditions have been met, some unassigned variable is chosen, and
all of its values are tried. On each instantiation the component, τ , containing V might
be split up into a new collection of components. These replace τ in the recursive call
(line 12), and as in Alg. 1 the upper bound is updated to account for the cost of making
the assignment V = d. Note that unlike Alg. 2 we pass all of the remaining components
to the recursive call (line 13)—we do not recurse just on a single component. Thus
the sub-tree search below this invocation can choose to branch on variables from any
component in any order—it is not constrained to branch only on the remaining variables
of a single passed component as in Alg. 2.

On return from the search below the newly generated components in Kd will poten-
tially have had their bounds updated, and we can update the upper bound of τ (line 15).
After trying all of the values for V we can update the lower bound of τ (line 17).

Note that in the search below the other components in K can be branched on, and
can have their bounds updated. Thus we may obtain sufficient information to abort the
for loop before trying all of the values of V . This motivates the while test during the for
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a) AND-OR-Decomp Search Space b) OR-Decomp Search Space

Fig. 1. Search Space of AND/OR decomposition and OR decomposition

loop (line 6). Note also that if any of these components are solved, i.e., if exact bounds
on their value are computed, we will never branch on them again: the branch variable
must be from an unsolved component (line 4). That is, if under V ’s first value we solve
some component κ′ ∈ K, then in the sub-trees generated by all of V ’s other values
we will never branch on any of the variables of κ′ again. This is where decomposition
is exploited. If all of the components of K beside τ are solved (which will occur if
UB −Δd >

∑
κ∈K∧κ �=τ mincost(κ)) then Alg. 3 will obtain all of the computational

benefits of decomposition.

Example 1. Consider a COP C with two objectives o1(A,B,C) = A + B + C and
o2(C,D,E) = C + D + E and where all of the variables have domain {0, 1}. Thus
mincost(C) = 0 is obtained when all variables have been set to zero. Also suppose
that getBounds always returns the minimum and maximum values for the remaining
reduced sub-COP. Say that we first branch on C = 0 which splits the problem into two
components κ1 = {o1(A,B,C = 0)} and κ2 = {o2(C = 0, D,E).

If Alg. 1 is used always trying the value 1 before 0, it can be demonstrated that
the search below C = 0 will attempt 20 variable assignments. In contrast the search
by Alg. 2, shown in Fig 1.a is smaller attempting only 12 assignments. It is able to
detect that the problem consists of two independent components and solve them inde-
pendently. Alg. 3, shown in Fig 1.b also searches only 12 nodes. It also exploits decom-
position but in a different search tree. In particular, under the left most instantiation of
the variables A and B, κ2 is solved exactly. Hence, the search need never branch on D
and E again until it tries a different value for C.

Example 2. However, sometimes bounding in Alg. 3 can interfere with independently
solving the components in K. Say that K contains two components κ1 and κ2, where
κ1 contains only a single unassigned variable V that has values {a, b, c}. If Alg. 3 first
branches on V , then after each value for V it will attempt to solve K′ = {κ2} (Kd

will be a empty set of components since V is κ1’s final value). Dependent on Δd we
will be trying to solve κ2 under different, perhaps too stringent bounds. For example, if
mincost(κ2) = 10, UB = 15, and Δa = 7, Δb = 6, and Δc = 3, the attempts to solve
κ2 under both V = a and V = b will fail (although we will increase κ2.lb). Only when
V = c will we try to solve κ2 under a bound that is greater than mincost(κ2). As the
number of variables in κ1 increases, these repeated attempts to solve κ2 can multiply.
Some savings can, however, occur since each solution attempt can tighten the bounds
on κ2. Nevertheless, a multiplicative effect can occur destroying independence.
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Thus on the positive side Alg. 3 can interleave the solving of the current components
by branching on variables from different components at each recursion. This can pro-
duce refined bounding information that can be sufficient to refute a whole collection of
components without ever having to solve any component to optimality. This can be ac-
complished while still obtaining many of the benefits of decomposition. On the negative
side however, bounding can sometimes interfere with the benefits of decomposition, as
illustrated in the example above.

Fortunately, there are a couple of simple ideas that can remove the worst of the
negative effects of bounding on decomposition. The first idea is to force a component
to be solved once and for all, if the search continues to return to it. The second idea is to
force the complete solution of a component if that component is sufficient small. In the
example above, the first method would solve κ2 (i.e., find mincost(κ2)) after having
returned to it some number of times; while the second method would solve κ1 (finding
that V = c is the correct assignment to make) before advancing to κ2 since κ1 is small.
In our implementation we did not find an effective way of utilizing the first idea: any
fixed count of how often the search can return to a component before forcing it to be
solved sometimes degraded performance. The second idea of forcing the solution of
a component when it is small was effective, and in our implementation we forced the
solution of any component whose variables had a product domain size of 20 or less.

Local Bounding: There is one further aspect of Alg. 3: the two lines AddConstraint
and RemoveConstraint that bracket the for loop over V ’s values. The intuition for
these lines is that the current component τ has an upper bound τ.ub that is initialized
when τ was first added to K and is updated after each value for V has been attempted
(line 15). Thus in the search below it is never effective to instantiate the variables of
τ.Vars to values that will cause τ to achieve a value greater than τ.ub. Note that this
can happen even though the global bound of

∑
κ∈K .lb < UB remains valid. We have

found that the easiest way to enforce this local bound on the settings of τ.Vars is to
post a constraint on the search below. Note that the strength of this constraint increases
as we obtain tighter bounds on τ.ub.

For example, say that τ contains the objectives o1(A,B,C), o2(A,E, F ), and o3(F,
G) and that τ.ub = 10. If we branch on A = a with Δa = 3 then sometime later on
F = f with Δf = 3, we will have broken τ into three sub-components: κ1 = {o1(A =
a,B,C)}, κ2 = {o2(A = a,E, F = f)}, and κ3 = {o3(F = f,G)}, and accumulated
an immediate cost of Δa +Δf = 6. This means that if κ1.lb +κ2.lb +κ3.lb > (10−6)
we can immediately backtrack to the deepest point a variable of τ has been instantiated
(in this case to undo the assignment F = f ). That is, under the assignments A = a
and F = f , τ cannot achieve its optimal value—it is already exceeding a known upper
bound on its optimal value. More formally, we require that in the subtree below if S is
the set of components that have been generated from τ , and A is the set of assignments
that have been made to variables of τ , then

∑
κ∈S κ.lb + cost(A, τ) ≤ τ.ub.

There are other ways of implementing this local bound condition, but utilizing a hard
constraint is a simple method. There are also potentially other ways the local bounds
could be used, including, e.g., using more sophisticated propagation of the added con-
straint. In our current implementation we are only checking this constraint and back-
tracking when it is violated.
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Formal Results: It can be proven that Alg. 3 is correct.

Theorem 1. If on entry to Alg. 3 ∀κ ∈ K.
(
κ.lb ≤ mincost(κ) ≤ κ.ub

)
, then if UB >∑

κ∈K mincost(κ) on return ∀κ ∈ K.
(
κ.lb = mincost(κ) = κ.ub

)
. On the other

hand under the same entry conditions, if UB ≤
∑

κ∈K mincost(κ), then on return
UB ≤

∑
κ∈K lb(κ).

This theorem can be proved by induction on the total number of variables in the set of
components in K. The base case is when there are no variables in K, i.e., K is empty.
The inductive case is straight-forward. This theorem means that Alg.3 correctly solves
the initial input COP, C, as long as the initial bounds on mincost(C) are valid—any
valid bounds will work, but tighter bounds can yield smaller search trees.

The space requirements of Alg. 3 are also worth looking at. It can be noted that after
the value V = d has been tried, all newly generated components (Kd) can be discarded.
If the input COP C has n variables, then there can be at most n components in K (each
component must contain at least one variable), and we can descend a path of at most
length n. Thus at most O(n2) space is ever needed to store the active components during
the algorithm’s operation, above and beyond the space initially needed to represent the
input problem C.

The algorithm’s performance can be considerably enhanced by remembering previ-
ously encountered components in a cache. Thus after new bounds on τ have been com-
puted, at line 17, these bounds (perhaps exact) can be stored in the cache and reused
whenever τ is encountered again in the search. Caching is an important part of our im-
plementation and we have utilized the template techniques described in [10] to make its
use more efficient. Note, that the cache serves only to improve the algorithm’s perfor-
mance, it is not required for the algorithm’s correctness.

4 Local Propagation

An important technique when solving COPs is local propagation or soft-arc consis-
tency, developed in a number of previous works, e.g., [6,8,13]. This technique works
by “sweeping” values from the sub-objectives to a zero-arity sub-objective. The value
of the zero-arity objective can then be used as a lower-bound on the COP’s value, and
to prune the variable domains.

The technique works by adding to the original COP unary sub-objectives oi(Vi),
one for each variable, and a zero-arity objective 0() (none of these added objectives
affect decomposition). Sweeping (enforcing soft-arc consistency) moves value into the
zero-arity objective.

Two sweeping transformations are employed. First, values can be swept between a
unary objective o1(V ) and any binary objective involving V , e.g., o2(V,X). In partic-
ular, if for a ∈ Dom[V ] we have that minb∈Dom[X] o2(a, b) = α > 0, then we can
sweep α from o2 into o1: for all b ∈ Dom [X ] we reset o2(a, b) = o2(a, b) − α,
and o1(a) = o1(a) + α. Intuitively, if o2 yields a value of at least α when V =
a, then we can move α into the unary objective over V adding it to the unary cost
of V = a. Similarly, we can sweep a value from o1 into o2. If o1(a) = α > 0:
we reset o2(a, b) = o2(a, b) + α for all b ∈ Dom [X ], and o1(a) = 0. Second,
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values can be swept from a unary objective o1(V ) into the zero-ary objective 0():
if mina∈Dom[V ] o1(a) = α > 0 we can reset 0() = 0() + α and o1(a) = o1(a)− α for
all a ∈ Dom[V ]. These two types of transformations are equivalence preserving in the
sense that the updated COP has an unchanged minimum cost.

Local propagation can be added to the three previously specified algorithms as fol-
lows. For Alg. 1 we set Δd on line 8 so that it is equal to all of the costs that have been
swept to 0() as a result of applying local propagation after the assignment V = d, and
we invoke the algorithm recursively (line 9) on C|V =d after local propagation has been
applied to the reduced problem (thus the bounds computed at line 3 are with respect
to a problem that has already been modified by local propagation). Similarly to add
local propagation to Alg. 2, we set Δd on line 7 to be the total value swept to 0() from
variables of the component κ, and break κ|V =d into components (line 8) after local
propagation has been performed.

Finally, to add local propagation to our new algorithm (Alg. 3), we again set Δd

(line 8) to be the total value swept to 0() as a result of applying local propagation after
the assignment V = d, and break κ|V =d into components (line 9) after local propaga-
tion has been performed. In addition, to accommodate local bounding we enforce the
constraints added at line 5 by ensuring that in the search below the sum of the lower
bounds of all of the components generated from τ plus the total value swept to 0() from
variables of τ always remains ≤ τ.ub.

Caching: Local propagation can also interfere with caching. With caching, we store the
bounds computed on components that arise during search and reuse these bounds if the
component reappears in the search. However, the next time the component appears local
propagation might have moved a different amount of value into or out of the component
as compared to the previous time the component was encountered. This can invalidate
the cached bounds.

To exploit caching in the presence of local propagation we must make the bounds in-
dependent of the current propagation before we store them in the cache, and adjust these
bounds to account for the current propagation when we retrieve them from the cache. In
[8] a technique was developed for accomplishing this when a fixed tree-decomposition
is used to guide the search. With a fixed decomposition the components that will arise
during search can be predicted ahead of time. In Alg. 3, however, the order in which
the variables are instantiated is unconstrained—i.e., a fixed tree-decomposition is not
used. Rather, components are detected dynamically whenever they are created by the
instantiated variables. Nevertheless, we were able to generalize the techniques of [8] so
that we can compute the value that has flowed into and out of the components as they
are generated during search. Using these flows the cached bounds can be adjusted so
that they are made independent of the context when they are to be stored in the cache,
and made compatible with the current context when retrieved from the cache.

5 Tree Decompositions

A commonly used technique for exploiting decomposition during search is to compute
a tree-decomposition T for the constraint graph prior to search. T is a tree where each
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node is labeled by a set of variables of the COP (these labels satisfy certain conditions,
see, e.g., [1]). We then force the variable ordering of the backtracking search to follow T
by requiring that it always branch on an unassigned variable from an active node of T .
Initially only the root of T is active, and once all variables in an active node have been
assigned all of its children become active nodes. By then forcing the variable ordering
to follow the tree-decomposition the components that will appear during search can be
determined before the search commences. This reduces the overhead of detecting and
caching components. The other advantage of computing a tree-decomposition prior to
search is that more expensive algorithms can be used that can better analyze how to
effectively decompose the COP.

We have specified our algorithms as using arbitrary variable orderings. When these
orderings are not following a fixed tree-decomposition detecting and caching compo-
nents during search is more expensive. However, such fully dynamic variable orderings
can yield small search trees. In [1] it was proved that for some problem instances fully
dynamic variables orderings can yield a super-polynomial speedup over variable order-
ings forced to follow any fixed tree-decomposition. Empirical evidence has also been
given that despite the higher overheads, search with decomposition can perform better
with dynamic variable orderings in COPs [15].

With the additional flexibility for variable ordering provided by our algorithm we
have found that a hybrid approach can be very effective. In this hybrid we compute
a tree-decomposition and try to follow it. However, we allow the algorithm to deviate
from the ordering dictated by the tree-decomposition if an alternative variable looks
particularly promising. In particular, using a heuristic to score the variables, we impose
an additional penalty on any variable that would violate the ordering imposed by the
tree-decomposition. However, if that variable’s heuristic score (measuring the merit of
branching on it next) is high enough it can overcome the penalty and cause the search
to make a different decision than that dictated by the tree-decomposition.

6 Experimental Results

We implemented the three algorithm described above. We have additionally added lo-
cal propagation to these algorithms, and for Alg. 2 and Alg. 3 we include caching
of previously solved components. We have tested these algorithms on both weighted-
CSP (wCSP) problems and Most Probable Explanation (MPE) problems from Bayesian
networks.

The following specific versions of these algorithms were tested: (1) BB which is
Alg. 1 with FDAC local propagation implemented in the state-of-the-art solver Tool-
bar [3]; (2) AND/OR which is Alg. 2 with FDAC local propagation using a variable
ordering that follows a fixed tree-decomposition; (3) OR-Decomp+T which is our
Alg. 3 with FDAC local propagation using a variable ordering that follows a fixed
tree-decomposition; (4) OR-Decomp+D which is Alg. 3 with FDAC local propaga-
tion using a heuristically guided dynamic variable ordering; and (5) OR-Decomp+G
which is Alg. 3 with FDAC local propagation using a hybrid variable ordering that fol-
lows a fixed tree-decomposition but can opportunistically branch on other variables if
they have high enough heuristic score. It should be noted that although OR-Decomp+T
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follows a fixed tree-decomposition it still has more flexibility in its variable ordering
than AND/OR following a fixed tree-decomposition. This added flexibility arises from
the fact that OR-Decomp+T can branch on a variable from any active node of the tree
decomposition, AND/OR search on the other hand must commit to a particular node
n of the tree-decomposition and branch on all variables in the subtree below n before
being able to branch on any variable in the labels of n’s siblings.

The heuristic score used for in the variable ordering decisions2 is the an adaptation of
the Jerslow heuristic that has previously been used for solving COPs [3]. Previous work
has found that this heuristic tends to be more effective than simpler heuristics based
on domain size or variable degree. Intuitively, in COPs this heuristic considers both
the variable’s domain size and the average cost of the objective functions the variable
appears in.

All algorithms utilized a value ordering determined by the unary objectives used dur-
ing local propagation. That is, the values for variable Vi were ordered by lowest unary
cost oi(Vi). For those algorithms that utilized a tree decomposition, these decompo-
sitions were computed using a min-fill algorithm [11]. The AND/OR search ordered
its components so as to solve the largest component first. All experiments were run
with 600 second timeouts, and were conducted on 2.66GHx machines with 8GB of
memory. In our experiments we found that the space used in caching never exceeded
available memory, so we did not have to prune the cache during search. The following
four benchmarks were tested.

The Radio Link Frequency Assignment Problem (RLFAP) assigns frequencies
to a set of radio links in such a way that all the links may operate together without
noticeable interference. The RLFAP instances were cast as binary wCSP’s [5]. The
benchmark family includes 6 problems.

The Earth Observing Satellites (SPOT5) problems select from a set of candidate
photographs a subset such that some imperative constraints are satisfied and the total
importance of the selected photographs is maximized. The problems have been formu-
lated as wCSP’s with binary and ternary constraints in the SPOT5 benchmark [2]. The
benchmark family consists of 20 problems.

The GridNetworks (Grid) problems involve computing the setting of the variables
in a Bayes Net that have maximum probability (an MPE problem). The net is a N ×N
grid with CPT’s that have been filled with values that were either randomly (uniformly)
chosen from the interval (0,1) or were randomly assigned 0 or 1. The problem instances
have N ranging between 10 and 38, with 90% of the CPTs entries were 0 or 1 [17]. The
benchmark family consists of 13 problems.

ISCAS-89 circuits are a benchmark used in formal verification and diagnosis. The
problem set has been converted into n-ary wCSPs [4]. The benchmark family consists
of 10 problems.

Table 1 summarizes the number of problems solved by the various algorithms form
the various benchmarks. Of the 49 total problem instances BB solved 22 problems
across the four benchmarks; AND/OR solved 22 problems; OR-BBDecomp+T solved

2 Even in those algorithms where the variable ordering must follow a fixed tree-decomposition
there are typically a range of variables in the active nodes that can be branched on; the choice
of which of these variable to branch on next is determined by the heuristic score.
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Table 1. Number of Problems Solved (600 second timeout)

Benchmark RLFAP (6) Spot5 (20) Grids (13) Iscas89 (10) Total (49)
BB 5 4 4 9 22

AND/OR 5 5 3 9 22

OR-Decomp+T 5 5 3 10 23

OR-Decomp+D 5 4 4 9 22

OR-Decomp+G 5 5 4 10 24

Table 2. RLFAP Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
CELAR6-SUB0 0.16 0.03 0.21 0.33 0.21

CELAR6-SUB1-24 2.64 13.2 8.27 2.95 3.35

CELAR6-SUB1 41.3 94.96 57.14 43.42 55.16

CELAR6-SUB2 15.42 101.21 135.19 16.15 16.2

CELAR6-SUB3 239.65 446.28 430.98 222.67 228.61

Table 3. Spot5 Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
1502 0.05 0.02 0.06 0.04 0.06

29 1.66 0.01 0.04 0.03 0.03

404 89.18 0.7 1.2 1.49 1.83

54 0.18 0.01 0.02 0.04 0.03

503 Timeout 0.23 1.19 Timeout 40.19

23 problems, showing an improvement by dtrack over standard AND/OR search; and
OR-BBDecomp+G solved the most problems at 24.

The RLFAP instances have small tree-width that can be calculated quickly. Hence
decomposition techniques offer a much lower theoretical time bounds than standard
branch and bound search. However, we found that many of the instances benefit more
from added flexibility in variable ordering than from decomposition.

In particular, as shown in Table 2 BB, OR-Decomp+D, and OR-Decomp+G all
perform well on these benchmarks, since they allow for the largest variable ordering
freedom. AND/OR and OR-Decomp+T both perform poorly on the benchmarks, al-
though OR-Decomp+T took less total time to solve all instances since it allows more
freedom of variable selection than AND/OR.

The Spot5 instances shown in Table 3 are solved efficiently by algorithms exploit-
ing decomposition. For example, BB and OR-Decomp+D could not solve one of the
instances that was solved by all other approaches. Although OR-Decomp+D can de-
compose problems, the problem does not decompose quickly unless a tree decompo-
sition is used to guide search toward decompositions. AND/OR, OR-Decomp+T, and
OR-Decomp+G all used decomposition effectively on the Spot5 instances.
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Table 4. Grid Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
90-10-1 0 1.01 0.85 0.03 0.06

90-14-1 0.02 17.74 1.74 0.12 0.26

90-16-1 0.23 364.07 89.93 1.08 4.45

90-24-1 455.11 Timeout Timeout 3.26 10.82

Table 5. ISCAS’89 Instances - Time in Seconds (600 second timeout)

Instance BB AND/OR OR-Decomp+T OR-Decomp+D OR-Decomp+G
c432 0.23 0.13 129.76 0.58 5.17

c499 0.09 0.09 0.23 0.39 0.43

c880 0.3 0.28 0.82 1.33 1.54

s1196 0.13 0.13 256.03 0.57 0.65

s1238 0.11 0.12 0.5 0.55 0.63

s1423 1.64 1 3.23 0.89 1.04

s1488 0.17 0.16 0.53 0.88 1.01

s1494 Timeout 0.16 0.51 Timeout 1.0

s386 3.38 0.01 0.36 12.39 0.06

s953 0.09 Timeout 0.05 3.38 1.07

Table 6. Number of instances solved (600 second timeout)

Benchmark RLFAP Spot5 Grids Iscas89 Total
OR-Decomp+G 5 5 4 10 24

BF 0 5 8 10 23

The Grid problems also benefit greatly from flexibility in variable ordering. OR-
Decomp+D and OR-Decomp+G are both extremely effective since they exploit de-
composition in the problem while still allowing complete dynamic variable ordering.
Neither AND/OR nor OR-Decomp+T could solve instance 90-24-1.

ISCAS’89 instance also benefit from more flexible variable ordering, but decompo-
sition is also effective. The two algorithms that solved the most ISCAS’89 instances are
OR-Decomp+T and OR-Decomp+G. OR-Decomp+T could solve one instance not
solved by AND/OR.

Finally, we compared OR-Decomp+G with Best First search using static mini buck-
ets (BF) [16]. This algorithm explores an AND/OR tree, but does so in a best first
manner rather than in a depth-first manner. Thus it can need considerably more space,
which unlike caching is required for correctness. So we see, e.g., that it could not solve
any of the RLFAP problems due to its space requirements. However, it was also able to
solve some problems not solvable by OR-Decomp. It is difficult to assess the cause of
this difference however, since the bounding technique of mini-buckets is quite distinct
from the bounding technique of local propagation. Thus it is hard to say if these results
(except for the RFLAP results) are due to better bounding or due to the differences in
the search used by the algorithms.
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7 Conclusions and Future Work

Constraint Optimization Problems can benefit greatly from both dynamic variable or-
dering and decomposition. Unfortunately the recursive nature of current decomposition
techniques forces search to solve only one active component at a time. In this paper, we
have introduced a novel search method that is able to exploit decomposition while at
the same time allowing complete freedom to branch on any unassigned variable of any
active component. We also introduced a new variable ordering algorithm which guides
search toward decomposition, but still allows for the flexibility to choose any variable.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and Complexity Results for #SAT and
Bayesian Inference. In: 44th Symposium on Foundations of Computer Science (FOCS), pp.
340–351 (2003)

2. Bensana, E., Lemaitre, M., Verfaillie, G.: Earth observation satellite management. Con-
straints 4(3), 293–299 (1999)

3. Bouveret, S., de Givry, S., Heras, F., Larrosa, J., Rollon, E., Sanchez, M., Schiex, T., Verfail-
lie, G., Zytnicki, M.M.: Max-csp competition 2007. In: Proceedings of the Second Interna-
tional CSP Solver Competition, pp. 19–21 (2008)

4. Brglez, F., Bryan, D., Kozminski, K.: Combinatorial Profiles of Sequential Benchmark Cir-
cuits. In: Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp.
1229–1234. IEEE, Los Alamitos (1989)

5. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency assignment.
Constraints 4(1), 79–89 (1999)

6. Cooper, M., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proceedings of the
International Joint Conference on Artifical Intelligence (IJCAI), pp. 68–73 (2007)

7. Darwiche, A.: Recursive conditioning. Artif. Intell. 126(1-2), 5–41 (2001)
8. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting Tree Decomposition and Soft Local Con-

sistency in Weighted CSP. In: AAAI, pp. 22–27 (2006)
9. Jégou, P., Ndiaye, S., Terrioux, C.: Dynamic heuristics for backtrack search on tree-

decomposition of csps. In: IJCAI, pp. 112–117 (2007)
10. Kitching, M., Bacchus, F.: Symmetric component caching. In: IJCAI, pp. 118–124 (2007)
11. Kjaerulff, U.: Triangulation of graphs - algorithms giving small total state space, Technical

Report R90-09. Technical report, Department of Computer Science, University of Aalborg
(March 1990)

12. Larrosa, J., Meseguer, P., Sánchez, M.: Pseudo-tree search with soft constraints. In: ECAI,
pp. 131–135 (2002)

13. Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc consistency. Artificial Intel-
ligence 159(1-2), 1–26 (2004)

14. Marinescu, R., Dechter, R.: And/or branch-and-bound for graphical models. In: IJCAI, pp.
224–229 (2005)

15. Marinescu, R., Dechter, R.: Dynamic orderings for and/or branch-and-bound search in graph-
ical models. In: ECAI, pp. 138–142 (2006)

16. Marinescu, R., Dechter, R.: Best-first and/or search for graphical models. In: Proceedings of
the AAAI National Conference (AAAI), pp. 1171–1176 (2007)

17. Sang, T., Beame, P., Kautz, H.: Performing bayesian inference by weighted model counting.
In: AAAI, pp. 475–482 (2005)



A Coinduction Rule for Entailment of Recursively
Defined Properties

Joxan Jaffar, Andrew E. Santosa, and Răzvan Voicu
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Abstract. Recursively defined properties are ubiquitous. We present a proof meth-
od for establishing entailment G |= H of such properties G and H over a set of
common variables. The main contribution is a particular proof rule based intuitively
upontheconceptofcoinduction.This ruleallows the inductivestepofassuming that
an entailment holds during the proof the entailment. In general, the proof method is
based on an unfolding (and no folding) algorithm that reduces recursive definitions
to a point where only constraint solving is necessary. The constraint-based proof
obligation is then discharged with available solvers. The algorithm executes the
proof by a search-based method which automatically discovers the opportunity of
applying induction instead of the user having to specify some induction schema,
and which does not require any base case.

1 Introduction

A large category of formal verification problems can be expressed as proof obligations
of the form G entails H , written G |= H , where G and H are recursively defined
properties. Such problems appear in functional and logic programs, and specification
languages such as JML, and they usually represent verification requirements for sys-
tems with infinite, or unbounded number of states, such as parameterized, or software
systems. For instance, G might represent the semantics of a program, expressed as a
formula in a suitable theory, whereas H may express a safety assertion.

Once the proof obligation G |= H is formulated, it may be discharged with the help
of a theorem prover such as Coq [1], HOL [6], or PVS [20]. While, in general, the proof
process may be very complex, these tools provide a high level of assistance, automating
parts of the process, and guaranteeing the correctness of the proof, once it is obtained.
While there is, currently, a sustained research effort towards automating the process of
discharging proof obligations, this process still requires, in general, a significant level
of manual input. In the case of inductive proofs, for instance, the inductive variable, its
base case, and the induction hypothesis need to be provided manually.

In this paper we present a proof method that establishes an entailment of the form
G |= H , where G and H are two recursively defined properties over a set of com-
mon variables. The use of a coinduction principle (which does not require a base case),
coupled with the standard operation of unfolding recursive definitions, allows the op-
portunistic discovery of suitable induction hypotheses, and makes our method amenable
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to automation. The entire framework is formalized in Constraint Logic Programming
(CLP), so that CLP predicates can be used to describe the recursive properties of inter-
est. Our method is, in fact, centered around an algorithm whose main operation is the
standard unfolding of a CLP goal. The unfolding operation is applied to both the lhs G
and the rhs H of the entailment. The principle of coinduction allows the discovery of a
valid induction hypothesis, thus terminating the unfolding process. Through the appli-
cation of the coinduction principle, the original proof obligation usually reduces to one
that no longer contains recursive predicates. The remaining proof obligation contains
only base constraints, and can be relegated to the underlying constraint solver.

Let us illustrate this process on a small example. Consider the definition of the fol-
lowing two recursive predicates

m4(0). even(0).
m4(X + 4) :- m4(X). even(X + 2) :- even(X).

whose domain is the set of non-negative integers. The predicate m4 defines the set of
multiples of four, whereas the predicate even defines the set of even numbers. We shall
attempt to prove that m4(X) |= even(X), which in fact states that every multiple of four
is even. We start the proof process by performing a complete unfolding on the lhs goal.
By “complete,” we mean that we use all the clauses whose head unify with m4(X)1.
We note that m4(X) has two possible unfoldings, one leading to the empty goal with
the answer X = 0, and another one leading to the goal m4(X ′),X ′ = X − 4. The two
unfolding operations, applied to the original proof obligation result in the following
two new proof obligations, both of which need to be discharged in order to prove the
original one.

X = 0 |= even(X) (1)
m4(X ′),X ′ = X−4 |= even(X) (2)

The proof obligation (1) can be easily discharged. Since unfolding on the lhs is no
longer possible, we can only unfold on the rhs. We choose1 to unfold with clause
even(0), which results in a new proof obligation which is trivially true, since its lhs
and rhs are identical.

For proof obligation (2), before attempting any further unfolding, we note that the
lhs m4(X ′) of the current proof obligation, and the lhs m4(X) of the original proof
obligation, are unifiable (as long as we consider X ′ a fresh variable), which enables the
application of the coinduction principle. First, we “discover” the induction hypothesis
m4(X ′) |= even(X ′), as a variant of the original proof obligation. Then, we use this
induction hypothesis to replace m4(X ′) in (2) by even(X ′). This yields the new proof
obligation

even(X ′),X ′ = X−4 |= even(X) (3)

To discharge (3), we unfold twice on the rhs, using the even(X + 2) :- even(X) clause.
The resulting proof obligation is

even(X ′),X ′ = X−4 |= even(X ′′′),X ′′′ = X ′′ −2,X ′′ = X−2 (3)

1 The requirement of a complete unfold on the lhs, and the lack of such requirement on the rhs,
is explained in Section 3.
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where variables X ′′ and X ′′′ are existentially quantified2. Using constraint simplifica-
tion, we reduce this proof obligation to even(X−4) |= even(X−4), which is obviously
true.

At this point, all the proof obligations have been discharged and the proof is com-
plete. Informally, we have performed four kinds of operations: (a) left unfolding, (b)
right unfolding, (c) application of coinduction, and (d) constraint solving/simplification.
While we shall relegate to Section 3 the argument that all these steps are correct, we
would like to further emphasize several aspects concerning our proof method.

First, our method is amenable to automation, in the form of a non-deterministic al-
gorithm. The state of the proof is given by a proof tree, whose frontier has the current
proof obligations, all of which have to be discharged in order to complete the proof.
Each proof step applies non-deterministically one of the four operations given above
to one of the current proof obligations. Of these four, the lhs and rhs unfolding opera-
tions expand the tree by adding new descendants. In contrast, the coinduction operation
searches the ancestors of the current goal for a matching lhs. If one is found, then a
suitable induction hypothesis is generated, and applied to the lhs of the current goal, as
shown in the small example given above. The fourth kind of operation performs con-
straint simplification/solving, possibly discharging the current proof obligation. As our
examples show, the unfolding process and the application of the coinduction principle
require no manual intervention.

Second, our coinductive proof step is inspired from tabled logic programming [24].
The intuition behind the correctness of this step is that, since the unfolding of the lhs is
complete, we are already exploring all the possibilities of finding a counterexample, i.e.
a substitution θ for which Gθ is true while H θ is false. Whenever we find an ancestor
with lhs G ′ which is variant of the lhs G (or some subgoal thereof) of the current proof
obligation, we can immediately conclude that the current proof obligation would not
contribute counterexamples that wouldn’t already be visible from its matching ancestor.
However, for this statement to be indeed true, we need to establish a similar matching
between the rhs of the two proof obligations. This condition is expressed by the proof
obligation obtained after the application of the coinductive step.

Finally, we would like to clarify that the use of the term coinduction pertains to the
way the proof rules are employed for a proof obligation G |= H , and has no bearing on
the greatest fixed point of the underlying logic program P. In fact, our proof method,
when applied successfully, proves that G is a subset of H wrt. the least fixpoint of (the
operator associated with) the program. However, as further clarified in Section 4, the
success of the proof method is modeled as a property of a potentially infinite proof tree,
and thus coinduction, rather than induction, needs to be employed to establish it.

1.1 Related Work

Variants of our proof method have been applied in more restricted settings of timed
automata verification [10] and reasoning about structural properties of programs [12].
In the current paper, we focus on the common techniques used as well as hinting towards
greater class of applications.

2 In Section 3 we handle these variables formally.
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Among logic-programming-based proof methods, early works of [13,14] propose def-
inite clause inference and negation as failure inference (NFI) which are similar to our
unfolding rules. These inferences are applied prior to concluding a proof of an implica-
tion using a form of computational induction. A form of structural induction in a similar
framework is employed in [4]. We note that these proof methods are based on fitting in
the allowable inductive proofs into an induction schema, which is usually syntax-based.
Mesnard et al. [18] propose a CLP proof method for a system of implications, whose
consequents contain only constraints. This technique is not completely general. Craci-
unescu [3] proposed a method to prove the equivalence of CLP programs using either
induction or coinduction. The notion of coinduction here is different from ours; they
reason about the greatest fixpoint of a CLP program, while we reason about the least.

Among the more automated approaches, [21,22] used unfold/fold transformation
of logic programs to prove equivalences of goals. [22] presents a proof method for
equivalence assertions on parameterized systems. Hsiang and Srivas [7,8] propose an
inductive proof method for Prolog programs. The main feature of the proof method is a
semi-automatic generation of induction schema (in the sense, this objective is similar to
those of Kanamori and Fujita [13] mentioned above). The generation of inductive asser-
tions is by producing the reduct of the goals (unfolding). Termination of the unfolding
is implemented by a marking mechanism on the variables. Whenever an input variables
is instantiated during an unfold (in other words, we need to make a decision about its
value), it is marked. In a sense, this is similar to the use of bomblist in the Boyer-Moore
prover [2]. As is the case with Boyer-Moore prover, the induction is structural. Here,
the method requires the user to distinguish a set of input variables to structurally induct
on. In comparison, we employ no induction schema. We detect the point where we ap-
ply the induction hypothesis automatically using constraint subsumption test. In other
words, we discover the induction schema dynamically using indefinite steps of unfolds.
This approach is more complete and automatable.

The work of Roychoudhury et al. [23] systematizes induction proofs using tabled
resolution of logic programming. It is essentially based on unfolding, delaying upon
detection of potential infinite resolution, and finally a folding step to conclude similar-
ity. These serve to extend the tabled resolution engine of XSB tabled logic programming
system. Our work generalizes this idea by providing a constraint-based inductive proof
rules based on automated detection of cycles using constraints. Our rules are also based
on the notion of tabling of assertions, which are later re-used as induction hypothesis.

Another form of tabling is also employed in Prolog Technology Theorem Prover
(PTTP) [25]. Here the proof process is basically Prolog’s search for refutation with
several extensions, including a model elimination reduction (ME reduction), which
memoes literals, and whenever a new goal which is contradictory to a stored literal
is found, we stop because this constitutes a refutation. The part of PTTP that is akin
to our coinduction is the detection when there is an occurrence of the same literal in
which case, the system backtracks. Our work departs from PTTP mainly by the use of
constraints.

Recursive definitions are also encountered in data structure verification area. [17]
presents an algorithm for specification and verification of data structure using equal-
ity axioms. In [19] user-defined recursive definitions are allowed to specify “shape”
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properties. Proofs are carried out via fold/unfold transformations. As we will exemplify
later, our algorithm can be used to automatically perform proofs of assertions containing
recursive data structure definitions.

Finally, we mention the work in [5], which uses a coinductive interpretation of logic
programming rules to express properties of infinite or circular data structures. The term
coinductive is used here to refer to the greatest fixed point of the program at hand. We
re-emphasize at this point that, in contrast with [5], our use of the term “coinductive”
refers to the way our proof rules are employed, and bears no direct relationship to the
greatest fixed point of the logic program.

2 Constraint Logic Programs

We use CLP [9] definitions to represent our verification conditions. To keep our paper
self-contained, we provide a minimal background on the constraint logic programming
framework.

An atom is of the form p(t̃) where p is a user-defined predicate symbol and t̃ a tuple
of terms, written in the language of an underlying constraint solver. A clause is of the
form A:-Ψ, B̃ where the atom A is the head of the clause, and the sequence of atoms B̃
and constraint Ψ constitute the body of the clause. The constraint Ψ is also written in
the language of the underlying constraint solver, which is assumed to be able to decide
(at least reasonably frequently) whether Ψ is satisfiable or not. In our examples, we
assume an integer and array constraint solver, as described below.

A program is a finite set of clauses. A goal has exactly the same format as the body
of a clause. A goal that contains only constraints and no atoms is called final.

A substitution θ simultaneously replaces each variable in a term or constraint e into
some expression, and we write eθ to denote the result. A renaming is a substitution
which maps each variable in the expression into a distinct variable. A grounding is
a substitution which maps each integer or array variable into its intended universe of
discourse: an integer or an array. Where Ψ is a constraint, a grounding of Ψ results in
true or false in the usual way.

A grounding θ of an atom p(t̃) is an object of the form p(t̃θ) having no variables. A
grounding of a goal G ≡ (p(t̃),Ψ) is a grounding θ of p(t̃) where Ψθ is true. We write
[[G ]] to denote the set of groundings of G .

Let G ≡ (B1, · · · ,Bn,Ψ) and P denote a non-final goal and program respectively. Let
R≡ A:-Ψ1,C1, · · · ,Cm denote a clause in P, written so that none of its variables appear
in G . Let the equation A = B be shorthand for the pairwise equation of the corresponding
arguments of A and B. A reduct of G using a clause R, denoted reduct(G ,R), is of the
form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,Bi = A,Ψ,Ψ1)

provided the constraint Bi = A∧Ψ∧Ψ1 is satisfiable.
A derivation sequence for a goal G0 is a possibly infinite sequence of goals G0,G1,

· · · where G i, i > 0 is a reduct of G i−1. If the last goal Gn is a final goal, we say that
the derivation is successful. A derivation tree for a goal is defined in the obvious way.
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Definition 1 (Unfold). Given a program P and a goal G , UNFOLD(G) is {G ′|∃R ∈ P :
G ′ = reduct(G ,R)}. ��

In the formal treatment below, we shall assume, without losing generality, that goals are
written so that atoms contain only distinct variables as arguments.

2.1 An Integer and Array Constraint Language

In this section we provide a short description of constraint language allowed by the
underlying constraint solver assumed in all our examples. We consider three kinds of
terms: integer and array terms. Integer terms are constructed in the usual way, with
one addition: the array element. The latter is defined recursively to be of the form a[i]
where a is an array expression and i an integer term. An array expression is either an
array variable or of the form 〈a, i, j〉 where a is an array expression and i, j are integer
terms. A term is either constructed from an array “segment”: a{i.. j} where a is an array
expression and i, j integer variables.

The meaning of an array expression is simply a map from integers into integers, and
the meaning of an array expression a′ = 〈a, i, j〉 is a map just like a except that a′[i] = j.
The meaning of array elements is governed by the classic McCarthy [16] axioms:

i = k → 〈a, i, j〉[k] = j
i �= k → 〈a, i, j〉[k] = a[k]

A constraint is either an integer equality or inequality, an equation between array
expressions. The meaning of a constraint is defined in the obvious way.

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbol ψ or Ψ, with or without subscripts, to
denote a constraint.

3 Proof Method for Recursive Assertions

3.1 Overview

In this key section, we consider proof obligations of the form G |= H where var(H )
⊆ var(G). The validity of this formula expresses the fact that H θ succeeds w.r.t. the
CLP program at hand whenever Gθ succeeds, for any grounding θ of G . They are the
central concept of our proof system, by being expressive enough to capture interesting
properties of data structures, and yet amenable to automatic proof process.

Intuitively, we proceed as follows: unfold G completely a finite number of steps in
order to obtain a “frontier” containing the goals G1, . . . ,Gn. Then unfold H , but this
time not necessarily completely, that is, not necessarily obtaining all the reducts each
time, obtain goals H 1, . . . ,Hm. This situation is depicted in Figure 1. Then, the proof
holds if

G1∨ . . .∨Gn |= H1∨ . . .∨Hm

or alternatively, Gi |= H1 ∨ . . .∨Hm for all 1 ≤ i ≤ n. This follows from the fact that
G |= G1∨ . . .∨Gn, (which is not true in general, but true in the least-model semantics
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G1, . . . Gn

H
?
|=G

Complete

H1 ∨ . . .∨Hm

G1 ∨ . . .∨Gn |=
To Prove:

Hm

Hj

. . .

. . .

H1

. . .

. . .

Unfold
Partial

Coinduction

Unfold

Fig. 1. Informal Structure of Proof Process

of CLP), and the fact Hj |= H for all j such that 1≤ j ≤ m. More specifically, but with
some loss of generality, the proof holds if

∀i : 1≤ i≤ n,∃ j : 1≤ j ≤ m : Gi |= Hj

and for this reason, our proof obligation shall be defined below to be simply a pair of
goals, written Gi |= Hj .

3.2 The Proof Rules

We now present a formal calculus for the proof of G |= H . To handle the possibly infi-
nite unfoldings of G and H , we shall depend on the use of a key concept: coinduction.
Proof by coinduction allows us to assume the truth of a previous obligation. The proof
proceeds by manipulating a set of proof obligations until it finally becomes empty or a
counterexample is found. Formally, a proof obligation is of the form Ã 2G |= H where
the G and H are goals and Ã is a set of assumption goals. The role of proof obligations
is to capture the state of a proof. The set Ã contains goals whose truth can be assumed
coinductively to discharge the proof obligation at hand. This set is implemented in our
algorithm using a table as described in the next section.

(LU+I)
Π�{Ã � G |= H }

Π ∪ Sn
i=1{Ã∪{G |= H } � G i |= H }

UNFOLD(G) =
{G1, . . . ,Gn}

(RU)
Π�{Ã � G |= H }
Π∪{Ã � G |= H ′}

H ′ ∈ UNFOLD(H )

(CO)
Π�{Ã � G |= H }

Π∪{ /0 � H ′θ |= H }
G ′ |= H ′ ∈ Ã and there exists
a substitution θ s.t. G |= G ′θ.

(CP)
Π�{Ã � G ∧ p(x̃) |= H ∧ p(ỹ)}

Π∪{Ã � G |= H ∧ x̃ = ỹ}
(DP)

Π�{G |= H }
Π

G |= H holds by
constraint solving

Fig. 2. Proof Rules
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Our proof rules are presented in Figure 2. The 3 symbol represents the disjoint union
of two sets, and emphasizes the fact that in an expression of the form A3B, we have
that A∩B = /0. Each rule operates on the (possibly empty) set of proof obligations Π,
by selecting one of its proof obligations and attempting to discharge it. In this process,
new proof obligations may be produced.

The left unfold with new induction hypothesis (LU+I) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligation, producing a new set of
proof obligations. The original assertion, while removed from Π, is added as an assump-
tion to every newly produced proof obligation, opening the door to using coinduction
later in the proof.

The rule right unfold (RU) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systematically interleaved. The resulting
proof obligations are then discharged either coinductively or directly, using the (CO)
and (CP) rules, respectively.

The rule coinduction application (CO) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligation via the direct proof (CP)
rule. Since assumptions can only be created using the (LU+I) rule, the (CO) rule real-
izes the coinduction principle. The underlying principle behind the (CO) rule is that a
“similar” assertion G ′ |= H ′ has been previously encountered in the proof process, and
assumed as true.

Note that this test for coinduction applicability is itself of the form G |= H . However,
the important point here is that this test can only be carried out using constraints, in the
manner prescribed for the CP rule described below. In other words, this test does not
use the definitions of assertion predicates.

Finally, the rule constraint proof (CP), when used repeatedly, discharges a proof obli-
gation by reducing it to a form which contains no assertion predicates. Note that one
application of this removes one occurrence of a predicate p(ỹ) appearing in the rhs of
an obligation. Once a proof obligation has no predicate in the rhs, a direct proof (DP)
may be attempted by simply removing any predicates in the corresponding lhs.

Given a proof obligation G |= H , a proof shall start with Π = { /0 2 G |= H }, and
proceed by repeatedly applying the rules in Figure 2 to it.

3.3 The Algorithm

We now describe a strategy so as to make the application of the rules automated. Here
we propose systematic interleaving of the left-unfold (LU+I) and right-unfold (RU)
rules, attempting a constraint proof along the way. As CLP can be execution by res-
olution, we can also execute our proof rules, based on an algorithm which has some
resemblance to tabled resolution.

We present our algorithm in pseudocode in Figure 3. Note that the presentation is in
the form of a nondeterministic algorithm, and thus each of the nondeterministic operator
choose needs to be implemented by some form of systematic search. Note also that when
applying coinduction step, we test that some assertion G ′ |= H ′ is stored in some table.

In Figure 3, by a constraint proof of a obligation, we mean to repeatedly apply the
CP rule in order to remove all occurrences of assertion predicates in the obligation, in
an obvious way. Then the constraint solver is applied to the resulting obligation.
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REDUCE(G |= H ) returns boolean

• Constraint Proof: (CP) + Constraint Solving (DP)
Apply a constraint proof to G |= H .
If successful, return true, otherwise return false

• Memoize (G |= H ) as an assumption
• Coinduction: (CO)

if there is an assumption G ′ |= H ′ such that
REDUCE(G |= G ′θ) = true and REDUCE(H ′θ |= H ) = true then return true.

• Unfold:
choose left or right
case: Left: (LU+I)

choose an atom A in G to reduce
for all reducts GL of G using A:

if REDUCE(GL |= H ) = false return false
return true

case: Right: (RU)
choose an atom A in H to reduce, obtaining GR
return REDUCE(G |= GR)

Fig. 3. The Algorithm

3.4 Correctness

Given a proof obligation G |= H , a proof starts with Π = {Ã 2 G |= H }, and proceeds
by repeatedly applying the rules in Figure 2. The omission of negative literals in the
body of the clauses of program P ensures that it has a unique least model, denoted
lm(P).

Theorem 1 (Soundness). A proof obligation G |= H holds, that is, lm(P)→ (G |= H )
for the given program P, if, starting with the proof obligation /0 2 G |= H , there exists
a sequence of applications of proof rules that results in proof obligations Ã 2 G ′ |= H ′

such that (a) H ′ contains only constraints, and (b) G ′ |= H ′ can be discharged by the
constraint solver. ��

Proof Outline. The rule (RU) is sound because by the semantics of CLP, when H ′ ∈
UNFOLD(H ) then H ′ |= H . Therefore, the proof of the obligation Ã 2 G |= H can be
replaced by the proof of the obligation Ã 2 G |= H ′ since G |= H ′ is stronger than
G |= H . Similarly, the rule (CP) is sound because G |= H ∧ x̃ = ỹ is stronger than the
G ∧ p(x̃) |= H ∧ p(ỹ).

The rule (LU+I) is partially sound in the sense that when UNFOLD(G)={G1, . . . ,Gn},
then proving G |= H can be substituted by proving G1 |= H , . . . ,Gn |= H . This is be-
cause in the least-model semantics of CLP, G is equivalent to G1∨ . . .∨Gn. However,
whether the addition of G |= H to the set of assumed assertions Ã is sound depends on
the use of the set of assumed assertions in the application of (CO).

Notice that in the rule (CO) we require the proofs of both G |= G ′θ and H ′θ |= H
for some substitution θ. These proofs establish subsumption, that is the implication
(G ′ |= H ′)→ (G |= H ).
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Assume that using our method, given a program P, we managed to conclude G |= H
where G and H are goals possibly containing atoms and it is not the case that G |= H
can be proved without the application of (LU+I) (since otherwise trivial by soundness
of (RU) and (CP)). Assume that in the proof, there are a number of assumed assertions
A1, . . . ,An used coinductively as induction hypotheses. This means that in the proof of
G |= H the left unfold rule (LU+I) has been applied at least once (possibly interleaved
with the applications of (RU) and (CP)) obtaining two kinds of assertions:

1. Assertions C which are directly proved using (RU), (CP), and constraint solving
(DP).

2. Assertions B which are proved using (CO) step using some assumed assertion A j

as hypothesis for 1≤ j ≤ n.

We may conclude that G |= H holds. We now outline the proof of this.
First, define a refutation to an assertion G |= H as a successful derivation of one

or more atoms in G whose answer Ψ has an instance (ground substitution) θ such that
Ψθ∧H θ is false. A finite refutation corresponds to a such derivation of finite length.
A nonexistence of finite refutation means that lm(P)→ (G |= H ). A derivation of an
atom is obtainable by left unfold (LU+I)) rule only. Hence a finite refutation of length k
implies a corresponding k left unfold (LU+I) applications that results in a contradiction.

Due to:

1. The soundness of other rules (RU) and (CP) and the partial soundness of (LU+I)
with the fact that Ai for all 1 ≤ i ≤ n is obtained from G |= H by applying these
rules, and

2. All assertions C are proved by (RU), (CP) and constraint solving (DP) alone,

we have: G |= H holds if Ai holds for all 1≤ i≤ n, and this holds iff for all i such that
1≤ i≤ n, and for all k≥ 0 : Ai has no finite refutation of length k.

We prove inductively:

• Base case: When k = 0, for all i such that 1 ≤ i ≤ n, Ai trivially has no finite
refutation of length 0.

• Inductive case: Assume that for all i such that 1≤ i≤ n, Ai has no finite refutation
of length k or less (∗), we want to prove that for all i such that 1≤ i≤ n, Ai has no
finite refutation of length k + 1 or less (∗∗).

Notice again in our assumptions above that assertions B are proved by applying
(CO) using A j for some 1≤ j ≤ n. Because subsumption holds in every application
of (CO), this means that for such B, A j → B. (∗ ∗ ∗).

The proof is by contradiction. Now suppose that (∗∗) is false, that is, Ai for
some i such that 1 ≤ i≤ n has a finite refutation of length k + 1 or less. But due to
our hypothesis (∗), Ai has no finite refutation of length k or less. Therefore it must
be the case that Ai has a finite refutation of length k + 1.

Again, note that we have applied (LU) to Ai at least once on the resulting asser-
tions, possibly interleaved with applications of (RU) and (CP) obtaining the follow-
ing two kinds of assertions:
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X = X ′ +2,X ′ = 2×Z |= X = 2×?Y
Direct proof

X = X ′ +2,even(X ′) |= X = 2×?Y

Coinduction
Direct proof
X = 0 |= X = 2×?Y

Unfold

even(X) |= X = 2×?Y

Fig. 4. Proof Tree Example

1. Assertions C which are proved by applications of (RU) and (CP) and constraint
solving alone.

2. Assertions B which are proved by (CO) using some A j for 1≤ j ≤ n in the set
of assumed assertions as induction hypothesis.

Then in the above set of assertions, either:

1. Some assertion of type C is a refutation to Ai of length k +1. However, regard-
less of the length, since all such assertions C are already proved by (RU), (CP),
and constraint solving, this case is not possible.

2. Since Ai has to have a finite refutation of length k +1, therefore there has to be
at least one assertion of type B that is reached in k or less unfolds. Therefore,
B has to have a refutation of length k or less. Now since subsumption (∗ ∗ ∗)
holds, then it should be the case that some A j for 1 ≤ j ≤ n such that A j → B
also has a finite refutation of length k or less. But this contradicts our hypothesis
(∗) that Ai for all 1≤ i≤ n has no finite refutation of length k or less. ��

We finally mention that the proof rules are not complete. For example, when we have a
program

p(X) :- 0≤ X ≤ 3.
q(X) :- 0≤ X ≤ 2.
q(X) :- 1≤ X ≤ 3.

obviously p(X) |= q(X) holds, but we cannot prove this using our rules. The reason is
that 0 ≤ X ≤ 3 (obtained from the unfold of p(X)) does not imply either 0 ≤ X ≤ 2 or
1≤ X ≤ 3 (both obtained by right unfolding q(X)). It is possible, however, to introduce
new rules toward achieving completeness. For proving the above assertion, we could
introduce a splitting of an assertion. For instance, we may split G |= H into G ,φ |= H
and G ,¬φ |= H (φ in our example would be, say, X ≤ 1). However, this is beyond the
scope of this paper.

4 On the Coinduction Rule

Consider again the predicate even presented in Section 1. We now demonstrate a sim-
ple application of our rules to prove a property on the predicate. Consider proving the
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assertion even(X) |= X = 2×?Y, call it A (we denote existentially-quantified variables
with the query symbol “?”). The proof process starts by applying the (LU+I) rule un-
folding the even(X) goal, resulting in two new proof obligations, each with the original
goal A as its assumption. On the left branch, after unfolding with the base-case clause,
we are left with X = 0 |= X = 2×?Y , which can be discharged by direct proof using a
constraint solver. On the right branch of the proof, the unfolding rule produces the proof
obligation even(X ′),X = X ′+2 |= X = 2×?Y . Here we apply the coinduction (CO) rule
using even(X) |= X = 2×?Y as induction hypothesis, spawning an obligation to prove
X ′ = 2×Z,X = X ′+2 |= X = 2×?Y. This can then be proved using constraint solving.

Let us now recall our example in Section 1. In Section 1 we have applied (LU+I) to
unfold the predicate m4(X) resulting in the two obligations (1) and (2). We apply (RU)
to perform right unfold on (1). We apply (CO) to (2) obtaining (3). We then apply (RU)
to (3) twice to establish it.

Our system does not require the user to manually specify induction hypothesis and/or
construct induction schema. Instead, any induction hypothesis used is obtained dynam-
ically during the proof process. Let us now exemplify this concept by considering the
program

p(X) :- q(X).
q(X) :- q(X).
r(X).

Here we want to prove p(X) |= r(X). Call this A1. We first apply (LU+I) to the assertion
obtaining q(X) |= r(X). Call this assertion A2. At this point, our algorithm tests whether
A1 can be used as a induction hypothesis to establish A2. This fails, and we again apply
(LU+I) obtaining another assertion A3 which is equivalent to A2. Upon obtaining A3,
the set of assumed assertions contain both A1 and A2. The algorithm now tests whether
any of these can be used in a (CO) application. Indeed, we can use the assertion A2

which is identical to A3. In this way induction hypotheses are chosen dynamically.
In the preceding examples we have demonstrated the use of the rule (CO) to conclude

proofs. Moreover, the last example illustrates the fact that, in contrast to most inductive
proof methods, our proof process may be successful even in the absence of a base case.
While the lack of a base case requirement justifies the qualifier “coinductive” being
applied to our proof method, the fact that this term has been somewhat overused in the
logic programming community warrants further clarification.

In our view, induction and coinduction are two flavours of one general proof scheme,
which is used to prove properties of objects defined by means of recursive rules. This
general scheme proves properties of such objects by assuming that the property of inter-
est already (inductively) holds for the “smaller” object on which the definition recurses.
Now, recursive definitions may be interpreted in an inductive or coinductive manner,
and each of these interpretations would lead to the general proof scheme being con-
strued as either induction or coinduction.

The crux of our proof method is to automatically generate an induction hypothesis
for the goal at hand, in an attempt to produce a successful application of the general
proof scheme mentioned above. The method works correctly irrespective of whether
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Program:
F(x) ⇐ if p(x) then x

else F(F(h(x)))

CLP Model:
s(X ,X) :– X = error.
s(X ,Xf ) :– X �= error, p(X) = 1,Xf = X .
s(X ,Xf ) :– X �= error, p(X) = 0, s(h(X),Y), s(Y,Xf ).

Fig. 5. Idempotent Function

the rules defining the properties of interest are intepreted inductively or coinductively3.
Since our proof method does not explicitly look for base cases, and since it can also
handle the situation where a recursive definition of a property would be interpreted
coinductively, we have chosen to use the qualifier “coinductive.” However, this qualifier
bears no direct relationship to the greatest fixed point of the logic program at hand.
Throughout this paper, our recursive definitions are meant to be interpreted inductively,
and the meaning of the goal G |= H is that whenever a grounding Gθ lies in the least
fixed point of the program at hand P, it follows that the grounding H θ is also in lfp(P).
Our proof method will be successful only when this interpretation of a goal holds.

5 Proof Examples

In our driving examples area of program verification, most of the entailment problems
we have encountered can be proved by our algorithm automatically. We believe they
cannot be automatically discharged by any existing systematic method. In this section,
we present two examples.

5.1 Function Idempotence

Suppose that we have the function in Figure 5 [15] with its CLP representation. Note
that error represents the return value of the function on divergent termination. Here
we want to prove idempotence, that is F(x) = F(F(x)), or that both the assertions A)
s(X ,Y ),s(Y,Xf ) |= s(X ,Xf ) and B) s(X ,Xf ) |= s(X ,?Y ),s(?Y,Xf ) holds. The mechan-
ical proof of Assertion A requires coinduction and will be exemplified here. The algo-
rithm first applies (LU+I) obtaining the assertions 1) s(error,Xf ) |= s(error,Xf ), 2) X �=
error, p(X) = 1,X = Y,s(Y,Xf ) |= s(X ,Xf ), and 3) X �= error, p(X) = 0, s(h(X),Z),
s(Z,Y ), s(Y,Xf ) |= s(X ,Xf ). Assertions 1 and 2 are proved by (CP) and (DP), and
the algorithm attempts to apply (CO) to Assertion 3 using the ancestor Assertion A as
hypothesis.

The application of (CO) obtains the obligation X �= error, p(X) = 0, s(h(X),Y ),
s(Y,Xf ) |= s(X ,Xf ). This assertion cannot be proved by constraint proof nor by coin-
duction (since the set of assumed assertions are empty), and the algorithm proceeds
to proving by unfolding. Here it applies right unfold (RU) rule obtaining X �= error,
p(X) = 0, s(h(X),Y ), s(Y,Xf ) |= X �= error, p(X) = 0, s(h(X),?Z), s(?Z,Xf ), which
can be proved directly. Since the application of (CO) to Assertion 3 has been successful,
the proof concludes.

3 Nevertheless, the complete unfold of the left goal ensures that correct base case proofs are
generated whenever the current recursive definition provides such base cases.
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Program:
{h = h0,p = p0 > 0}

〈0〉 while (p>0) do
[p] := 0 〈1〉
p := [p+1] 〈2〉 end 〈3〉

{∃y.allz(h0,h, p0,y),h[y+1] = 0}

Assertion Predicate:

allz(H, 〈H,L,0〉,L,L) :- L > 0.
allz(H1, 〈H2,L,0〉,L,R) :-

L > 0,allz(H1,H2,H1[L+1],R).

Fig. 6. List Reset

5.2 A Pointer Data Structure Example: List Reset

We represent pointers as indices in an array which we call the heap. We write [p] to refer
to the location referenced by the pointer p. To implement a linked list, we shall assume
that a list element is made up of two adjacent heap cells. Thus, for the list element
referenced by p, the data field is [p], and the reference to the next element is [p + 1].
In the CLP program, given an array H, which typically denotes the heap, we denote by
H[I] the element referenced by index I in the array. We also denote by 〈H, I,J〉 the array
that is identical to H for all indices, except I, where the original value is replaced by J.
The steps for solving constraints containing these constructs are discussed in [11].

Figure 6 shows a program which “zeroes” all elements of a given linked list with
head p. We prove that the program produces a nonempty null-terminating list with zero
values. Note that in Figure 6, h is a program variable denoting the current heap. The
predicate takes into consideration the memory model of the program and expresses the
relationship between the heap H before the execution of the program, and the heap H ′

obtained after the program has completed. Thus, the predicate allz(H,H ′,L,R) states
that the heap H ′ differs from H only by having zero elements in the non-empty sublist
from L to R.

In Figure 6 we provide a tail-recursive definition of allz which defines a zeroed
list segment (L,R) as one whose head contains zero, and its tail is, recursively, the
zeroed list segment (H[L+1],R)4. We could have used a sublist-recursive specification:
a zeroed list segment (L,R) is defined to be a zeroed list segment (L,T ) appended by
one extra zero element R. Clearly the program behaves in consistency with the latter
definition, and not the former. We show that despite this, our method automatically
discharges the proof.

Here we want to prove that Ψ≡ allz(h0,h, p0,p) is a loop invariant. Formally,

allz(H0,H,P0,P),H[P+1] > 0 |= allz(H0,〈H,H[P+1],0〉,P0,H[P+1]). (Z.1)
For this assertion, constraint proof fails and coinduction (CO) is not applicable due to
an empty set of assumed assertions. The algorithm applies left unfold (LU+I) using the
definition of allz obtaining two new obligations, of which one is:
allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |=

allz(H0,〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]). (Z.2)

Now the algorithm applies (CO) using Z.1 as the hypothesis. As required by (CO), the
algorithm spawns two sub-obligations, one of which proves

allz(H0,H1,H0[P0 +1],P),P0 > 0,H1[P+1] > 0 |= allz(H0,H1,H0[P0 +1],P),H1[P+1] > 0

4 Note that we do not require that the list is acyclic (L �= R).
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This is established by eliminating the predicates using (CP) and applying constraint
solving to the following assertion:

P0 > 0,H1[P+1] > 0 |= H0 = H0,H1 = H1,H0[P0 +1] = H0[P0 +1],P = P,H1[P+1] > 0.

The second sub-obligation is

allz(H0,〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=
allz(H0,〈〈H1,P0,0〉,H1[P+1],0〉,P0,H1[P+1]). (Z.3)

Here again the application of constraint proof and coinduction fails, and the algorithm
performs a right unfold using the second clause of allz resulting in

allz(H0,〈H1,H1[P+1],0〉,H0[P0 +1],H1[P+1]) |=
allz(H0,?H2,H0[P0 +1],H1[P+1]),〈〈H1,P0,0〉,H1[P+1],0〉= 〈?H2,P0,0〉

(Z.4)

By an application of (CP) proof rule, the algorithm removes the predicates and then
solves the following implication by constraint solving (DP):

true |= H0 = H0,H0[P0 +1] = H0[P0 +1],
H1[P+1] = H1[P+1],〈〈H1,P0,0〉,H1[P+1],0〉= 〈〈H1,H1[P+1],0〉,P0,0〉.

(Z.5)

6 Conclusion

We presented an automatic proof method which is based on unfolding recursive CLP
definitions of user-specified program properties. The novel aspect is a principle of coin-
duction which is used in conjunction with a set of unfold rules in order to efficiently
dispense recursive definitions into constraints involving integers and arrays. This prin-
ciple is applied opportunistically and automatically over a dynamically generated set of
potential induction hypotheses. As a result, we can now automatically discharge many
useful proof obligations which previously could not be discharged without manual in-
tervention. We finally demonstrated our method, assuming the use of a straightforward
constraint solver over integers and integer arrays, to automatically prove two illustrative
examples.
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Abstract. In many real-life problems, constraints are explicitly defined
as a set of solutions. This ad hoc (table) representation uses exponen-
tial memory and makes support checking (for enforcing GAC) difficult.
In this paper, we address both problems simultaneously by representing
an ad hoc constraint with a multi-valued decision diagram (MDD), a
memory efficient data structure that supports fast support search. We
explain how to convert a table constraint into an MDD constraint and
how to maintain GAC on the MDD constraint. Thanks to a sparse set
data structure, our MDD-based GAC algorithm, mddc, achieves full in-
crementality in constant time. Our experiments on structured problems,
car sequencing and still-life, show that mddc is a fast GAC algorithm
for ad hoc constraints. It can replace a Boolean sequence constraint [1],
and scales up well for structural MDD constraints with 208 variables and
340984 nodes. We also show why it is possible for mddc to be faster than
the state-of-the-art generic GAC algorithms in [2,3,4]. Its efficiency on
non-structural ad hoc constraints is justified empirically.

1 Introduction

An ad hoc constraint is an explicitly defined constraint (arity > 2), usually
represented as a set of solutions stored in a table (e.g., sequence of tuples). Nat-
urally, a table or list takes exponential space (in the arity) in the worst case;
furthermore, support checking (seekSupport) is also exponential. Some improve-
ments are indexing [2,4,5] and binary search [3]. The trade-off is that additional
data structures inevitably require extra memory and manipulation effort.

Indexing may speed up seekSupport because it only has to visit a (small) subset
of the solutions. This is done by linking related solutions with pointers. Figs. 1a,
1b and 1c depict three ways to index a constraint with solutions θ1, . . . , θ9. In
Fig. 1a, solutions with the same assignment (xi, a) are chained [5] — each (xi, a)
has its own table that contains all its supports. In this example, seekSupport

checks at most 4 out of 9 solutions to find a support for (x4, 0).
In another indexing scheme (called hologram here) by Lhomme and Régin [4],

for every (xi, a) in a solution θk, there are d pointers, where d is the size of
dom(xi). Each pointer points to the next solution θk′ (k′ > k) where (xi, a

′) ∈ θk′

and a′ ∈ dom(xi). Fig. 1b shows the three pointers from θ1 to θ2, θ5 and θ9,

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 509–523, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



510 K.C.K. Cheng and R.H.C. Yap

x1 x2 x3 x4

θ1 0 0 0 0

θ2 0 0 0 1

θ3 0 0 1 0

θ4 0 0 1 1

θ5 0 1 0 0

θ6 0 1 0 1

θ7 0 1 1 0

θ8 0 1 1 1

θ9 2 2 2 2

(a) a tuple list

x1 x2 x3 x4

θ1 0 0 0 0

θ2 0 0 0 1

θ3 0 0 1 0

θ4 0 0 1 1

θ5 0 1 0 0

θ6 0 1 0 1

θ7 0 1 1 0

θ8 0 1 1 1

θ9 2 2 2 2

(b) hologram

x1 x2 x3 x4

θ1 0 0 0 0

θ2 0 0 0 1

θ3 0 0 1 0

θ4 0 0 1 1

θ5 0 1 0 0

θ6 0 1 0 1

θ7 0 1 1 0

θ8 0 1 1 1

θ9 2 2 2 2

(c) nd-list

0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

2

2

2

2

x1

x2T1 x2

x3T2 x3T3 x3

x4 x4 x4 x4 x4

tt tt tt tt tt tt tt tt tt

(d) a trie

0

0 1

0 1

10

2

2

2

2

x1

tt

x2G1 x2

x3 x3

x4 x4

(e) an MDD

Fig. 1. Different indexing schemes and representations of the same ad hoc constraint.
(a) (b) (c) Not all pointers are drawn. (d) A trie and (e) an MDD representing the
same constraint. Each non-terminal node v is labeled with a variable xi. An outgoing
edge of v with label a depicts an assignment (xi, a). Each path from the root to the
t-terminal (tt) corresponds to a solution.

corresponding to the assignments (x2, 0), (x2, 1) and (x2, 2) respectively. Now let
θ1 be the support for (x1, 0) when 2 is assigned to x2. When seekSupport is finding
a new support for (x1, 0), it jumps to θ9 directly via the pointers, and concludes
(x1, 0) has no support. Without indexing, the entire table will be scanned.

The last indexing method (called nd-list in this paper) was suggested by Gent
et al. [2]. Here, every (xi, a) in a solution θk has a pointer to the next solution
θk′ (k′ > k) where (xi, a

′) ∈ θk′ and a′ �= a. See Fig. 1c for an example. To find
a new support for (x1, 0) after x2 is assigned with 2, seekSupport first jumps from
θ1 to θ5. Since (x2, 2) �∈ θ5, it jumps again and finally stops at θ9.

As memory limits can be more important than time in large problems, we
want a data structure more compact than a table, but supports efficient support
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checking. One approach is to store all solutions in a trie, which is often smaller
than a table due to the prefix sharing of similar solutions (see Fig. 1d). To find a
support for an assignment (xi, a), we traverse the trie recursively. For example,
suppose we seek a support for (x1, 0) when x2 = 2. From the root of the trie,
we go down to T1 because of (x1, 0). Now T2 which requires x2 = 0 is excluded,
so is T3. The search then can stop early. This idea was used by [2] in their GAC
algorithm (we call mtrie). For a r-ary ad hoc constraint, mtrie generates r tries,
all represent the same solutions but each is rooted at a different variable. To seek
a support for (xi, a), mtrie looks up the trie rooted at xi. Multiple tries avoid the
scenario that, if there is only one trie, mtrie may need to traverse the entire trie
to find a support for (xi, a), if xi is at the bottom of the trie.

Sometimes multiple tries do not help. Consider the trie constraint in Fig. 1d.
When x4 is assigned with 2, mtrie seeks a support for (x1, 0) in exponential time
as it has to visit every (x4, 0) and (x4, 1) at the bottom of T1. This is because a
trie may contain identical sub-tries (T2 and T3 in Fig. 1d). Merging these sub-
tries, we obtain a directed acyclic graph (DAG), called a multi-valued decision
diagram (MDD) [6]. Fig. 1e depicts the MDD obtained from the trie in Fig. 1d.
Note that an MDD can be exponentially smaller than a trie (e.g., T1 versus G1).

GAC using DAGs (similar to MDD) to represent ad hoc constraints were
introduced in case [7] and bddc [8]. To enforce GAC, the DAG is traversed re-
cursively; the worst case time complexity is linear to the number of edges in the
DAG. When GAC is maintained during search, we can improve the average run-
time by taking incrementality into account: an inconsistent constraint remains
inconsistent when more variables are assigned, or equivalently, an inconsistent
and pruned sub-DAG should remain pruned. A simple and fast implementa-
tion for this is not trivial. The case algorithm is only partially incremental — all
pruned sub-DAGs have to be reset when the solver backtracks — due to the lim-
itation of time-stamping that case uses to record the status of a sub-DAG. The
bddc algorithm is incremental, but its implementation is inefficient: pruned sub-
DAGs are kept in a stack of bit vectors, so undoing changes upon backtracking
takes linear time, and memory usage is high for large ad hoc constraints.

In Section 3, we present an MDD-based GAC algorithm, mddc, that achieves
full incrementality in constant time. The key is a sparse set data structure [9],
which is more suitable for mddc than bit vectors and time-stamping. We show
why mddc can be faster than the above mentioned GAC algorithms [2,3,4]. Our
experiments (Section 4) on structured problems, car sequencing and still-life,
show that mddc is a fast GAC algorithm for ad hoc constraints. It can replace a
Boolean sequence constraint [1], and scales up well for large structural MDD con-
straints. Our results suggest that ad hoc constraints can be competitive or even
outperform problem-specific global constraints, and for this mddc can be useful
in modeling new global constraints: mddc is generic and building MDDs is easier
than inventing propagation algorithms. The efficiency of mddc on non-structural
ad hoc constraints is justified empirically: on our random benchmarks, mddc is
always faster than mtrie, and 2–3 orders of magnitude faster than hologram.
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2 Background

A constraint satisfaction problem (CSP) P = (X,C) consists of a finite set X of
variables and a finite set C of constraints. Every variable xi ∈ X can only take
values from its domain dom(xi) which is a finite set of integers. An assignment
(xi, a) denotes xi = a. A r-ary constraint C ∈ C on an ordered set of r distinct
variables x1, . . . , xr is a subset of the Cartesian product

∏r
i=1 dom(xi) that re-

stricts the values the variables in C can take simultaneously. The arity of C is
r and the scope is var (C). Sometimes we write C(x1, . . . , xr) to make the scope
explicit. A set of assignments θ = {(x1, a1), . . . , (xr , ar)} satisfies C, and is a
solution of C, iff θ ∈ C. Denote |C| the number of solutions of C. We say True
is the trivially true constraint. Solving a CSP requires finding a value for each
variable from its domain so that all constraints are satisfied. Two constraints C1

and C2 are equivalent, written as C1 ≡ C2, iff θ ∈ C1 ⇐⇒ θ ∈ C2.
Consider a CSP P = (X,C). An assignment (xi, a) is generalized arc consistent

(GAC) [10] iff for every constraint C ∈ C such that xi ∈ var (C), there is a
solution θ of C where (xi, a) ∈ θ and a ∈ dom(xi) for every (xi, a) ∈ θ. This
solution is called a support for (xi, a) in C. A variable xi ∈ X is GAC iff (xi, a) is
GAC for every a ∈ dom(xi). A constraint is GAC iff every variable in its scope
is GAC. A CSP is GAC iff every constraint in C is GAC.

A multi-valued decision diagram (MDD) [6] is either the t-terminal (tt) that
denotes True, or a directed acyclic graph G rooted at a non-terminal node of the
form root(G) = mdd(xi, {a1/G1, . . . , ad/Gd}) where G1, . . . , Gd are MDDs and
a1, . . . , ad are distinct integers. Here we abuse the notation by writing G instead
of root(G). Semantically G represents the MDD constraint1

Φ(G) ≡
d∨

k=1

(xi = ak ∧ Φ(Gk)). (1)

A binary decision diagram (BDD) [11] is an MDD in which every non-terminal
node has at most two branches, 0/G0 and 1/G1, where G0 and G1 are BDDs. A
BDD constraint is a Boolean MDD constraint.

We can transform a r-ary ad hoc constraint C to an MDD in two steps. First,
we build a trie that represents the |C| solutions in O(r · |C|) time. To add a
solution, we traverse the trie from its root and make new edges accordingly. The
trie will have O(r · |C|) edges. Second, we combine identical sub-tries in a depth-
first, bottom-up manner. The resultant MDD is so-called reduced. Fig. 2 shows
the algorithm mddReduce.2 By construction, two MDDs G and G′ are identical
iff they have the same children. As a result, representing each MDD node as
an array of integers (indexes), line 1 is a typical dictionary lookup, which takes

1 When an MDD node has many identical children (Gk’s), it may be advantageous
to replace xi = ak with xi ∈ Jk (an interval), as in the implementation of case. We
have chosen values (ak’s) for the sake of simplicity.

2 It is different from Bryant’s original reduction algorithm on BDD, which applies a
breadth-first, bottom-up transformation.
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mddReduce(T ) // T is a trie (a tree-like MDD)
// the set G of created MDDs is initially empty
begin

if T is the t-terminal then return tt

// let T = mdd(xi, {a1/T1, . . . , ad/Td})
B := ∅
for k := 1 to d do

Gk := mddReduce(Tk)
B := B ∪ {ak/Gk}

G := mdd(xi, B)
if ∃G′ ∈ G such that G′ is identical to G then1

return G′ // sharing: reuse existing MDDs
else

G := G ∪ {G}
return G

end

Fig. 2. mddReduce

O(d) time. The time complexity of mddReduce is O(r · |C|) as the entire trie is
traversed exactly once. This is optimal since it takes the same amount of time
to input the |C| solutions from a file. As a remark, a static order on the MDD
variables is sufficient because no new MDD is constructed during search.

3 Maintaining GAC on an MDD Constraint

Fig. 3 shows the mddc algorithm which enforces GAC on an MDD constraint
Φ(G)(x1, . . . , xr). The algorithm is coarse grained: maintaining GAC during
search works on one (MDD) constraint at a time. For each xi, mddc keeps a
set Si of values in the domain of xi which have no support (yet). The func-
tion mddcSeekSupports traverses G recursively and updates S1, . . . , Sr on the fly.
Line 3 then removes for each variable all values that have no support from its
domain.

To simplify the implementation of mddcSeekSupports, we assume that for every
path from the root of G to the t-terminal, every variable in the scope of Φ(G)
appears exactly once and in the same (natural) order. In other words, each path
to the t-terminal corresponds to exactly one solution of the constraint.

The function mddcSeekSupports works as follows: If G is the t-terminal tt YES
is returned. Otherwise, let G = mdd(xi, {a1/G1, . . . , ad/Gd}), which represents
the MDD constraint (1). Now if mddcSeekSupports(Gk) returns YES (line 7),
Φ(Gk) is satisfiable and (xi, ak) has at least one support. We thus remove ak

from Si. Line 8 terminates the iteration as soon as Φ(G) is GAC (the guard is
O(1) using an incremental counter [8]). At last the function returns res, which
is YES if Φ(G) is satisfiable and NO otherwise.

Proposition 1. When mddcSeekSupports terminates, the value ak ∈ Si iff the
assignment (xi, ak) has no support.



514 K.C.K. Cheng and R.H.C. Yap

mddc(G) // MDD constraint Φ(G)(x1, . . . , xr)
begin

GYES := ∅
restore(GNO )2

for i := 1 to r do Si := dom(xi) // values that have no support yet
mddcSeekSupports(G) // update S1, . . . , Sr

for i := 1 to r do dom(xi) := dom(xi) \ Si3

end

mddcSeekSupports(G) // recursive: Φ(G)(xi, . . . , xr)
begin

if G = tt then return YES
if G ∈ GYES then return YES // visited and consistent4

if G ∈ GNO then return NO // pruned5

// let G = mdd(xi, {a1/G1, . . . , ad/Gd})
res := NO
for k := 1 to d do6

if ak ∈ dom(xi) then
if mddcSeekSupports(Gk) = YES then7

res := YES
Si := Si \ {ak}
if ∀i′ ≥ i : Si′ = ∅ then break // Φ(G)(xi, . . . , xr) is GAC8

Gres := Gres ∪ {G}9

return res
end

Fig. 3. mddc and mddcSeekSupports

Lines 4 and 5 guarantee mddcSeekSupports traverses every sub-MDD at most
once. A sub-MDD G is in the set GYES iff Φ(G) is satisfiable, and in the set
GNO iff Φ(G) is unsatisfiable. Each visited sub-MDD is added to the appropriate
set according to the value of res (line 9). As an unsatisfiable constraint remains
unsatisfiable when more variables are assigned, mddc achieves incrementality by
maintaining a stack of GNO

1 , . . . ,GNO
t during search, where GNO

j (1 ≤ j ≤ t) is
the accumulated set of pruned MDD nodes at the search state j. Later, when
the search backtracks to j, the procedure restore (line 2) will reset GNO to GNO

j .
To make restore efficient, we wish to do three tasks on GYES and GNO in

constant time: (1) check whether an MDD is in the set, (2) insert an MDD
to the set, and (3) undo all insertions upon backtracking. The sparse set data
structure by Briggs and Torczon [9] meets our requirements. To represent a set
S of at most e elements (0 to e− 1), they use two arrays S.dense and S.sparse
of size e, and a counter S.members that keeps the number of elements in S.
Initially, S.members = 0. Fig. 4 shows how to do tasks 1 and 2 in constant time.
For task 3, we stack the values of S.members and reset them accordingly. Fig. 5
demonstrates the operations. Since every MDD can be uniquely identified with
its root, we can always map MDD nodes to unique integers.
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isMember(S, k) // is k an element of S?
begin

a := S.sparse[k]
if 0 ≤ a < S.members and S.dense[a] = k then

return YES
else

return NO

end

addMember(S, k) // add k to S
begin

a := S.sparse[k]
b := S.members
if a ≥ b or S.dense[a] 
= k then

S.sparse[k] := b
S.dense[b] := k
S.members := b + 1

end

Fig. 4. Sparse set operations [9]

0 1 2 3 4 5 6
S.sparse
S.dense
S.members ↑0

(a)

0 1 2 3 4 5 6
S.sparse 0
S.dense 3
S.members ↑0 ↑1

(b)

0 1 2 3 4 5 6
S.sparse 1 0 2 3
S.dense 3 1 5 6
S.members ↑0 ↑1 ↑2

(c)

0 1 2 3 4 5 6
S.sparse 5 1 4 0 2 3
S.dense 3 1 5 6 2 0
S.members ↑0 ↑1 ↑2 ↑3

(d)

0 1 2 3 4 5 6
S.sparse 5 1 4 0 2 3
S.dense 3 1 5 6 2 0
S.members ↑0 ↑1

(e)

Fig. 5. A demonstration of the sparse set operations. (a) After the initialization of S.
Note that the set operations work correctly regardless the initial values (not shown) in
the arrays. For incremental trailing, ↑t denotes the number of elements (S.members)
at time t. (b) After adding 3 at t = 1. (c) After adding 1, 5 and 6 at t = 2. (d) After
adding 2 and 0 at t = 3. (e) After backtracking to t = 1. Only S.members is restored;
the values in the arrays are unchanged. As an example, 5 is no longer an element
of S because S.sparse[5] = 2 > 1 = S.members. When S is incrementally maintained
within depth-first search, ↑t’s can be kept in the program heap space so that the undo
operation takes constant time during backtracking.
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GNO in bddc [8] was implemented with a stack of bit vectors. However, for
large MDD constraints, copying and clearing bit vectors (task 3) become ex-
pensive (compared with the constant time sparse set operations). The memory
requirement for bit vectors is another issue: Given a r-ary MDD constraint with
m MDD nodes, there are at most t = 1 + r(d − 1) bit vectors (m bits each) for
GNO , where d is the size of the largest domain of the variables in the constraint.
This is because mddc is executed when it is initialized and every time the domain
of a relevant variable is modified. Bit vectors thus require at most mt/8 bytes.
Meanwhile, a sparse set comprises two integer arrays of size m and a stack of t
integer counters, so it needs 4(2m + t) bytes (4 bytes per integer). The sparse
set uses less memory than a stack of bit vectors when

64
1 + r(d − 1)

< 1− 32
m

.

Under the reasonable assumption that m* 32, the condition becomes r(d−1) >
63. So one should use a sparse set when an MDD constraint has many variables
and their domains are large.

Provided that the early-cutoff optimization (line 8) is implemented, time-
stamping cannot achieve (in constant time) the same level of incrementality of
GNO : when the solver backtracks, one has to reset all pruned MDD nodes. This
is because mddcSeekSupports may not visit every MDD node and update its time-
stamp in a lazy manner. Hence we cannot tell if a previously pruned node is still
pruned using a condition such as “time-stamp ≤ current time.”

As a result, case, which implements both time-stamping and early-cutoff, re-
sets all nodes (visited or pruned) when the solver backtracks [7]. In contrast,
mddc is able to maintain the pruned nodes across backtracking due to the stack-
like sparse set. This difference is crucial in terms of runtime efficiency, when the
MDD is large and the problem is difficult (many backtracks).

The overall memory requirement for mddc (using sparse set) is calculated
as follows: Suppose there are h MDDs and k MDD constraints (h ≤ k since
equivalent MDD constraints can share the same MDD). Let m be the number
of nodes in the largest MDD. Let d be the size of the largest domain among
all variables in the constraints. We store the nodes in an MDD in an m × d
integer array. If an integer takes 4 bytes, h MDDs require O(hmd) bytes. Since
at most one MDD is traversed in each call of mddc and we assume there is no
parallel execution, we need only one GYES of size O(m). On the other hand, each
MDD constraint has its own copy of GNO (of size O(m)). In total, for k MDD
constraints, the memory requirement for GNO is O(km) bytes. The memory for
trailing the number of elements in GNO at each choice point during search is
negligible. The overall memory requirement for mddc is therefore O((hd + k)m)
bytes.

From the description of mddc, it is not difficult to see the following:

Proposition 2. Given an MDD G with e edges, there are at most e recursive
calls of mddcSeekSupports in each run of mddc(G).
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Corollary 1. Given an MDD constraint Φ(G)(x1, . . . , xr) where the MDD G
has e edges, mddc enforces GAC on Φ(G) in O(e) time.

Finally, we analyze the potential runtime improvement by mddc over the GAC
algorithms in [2,3,4]. We consider the ad hoc constraint

EGd,r(x1, . . . , xr) ≡
[
x1 = 0 ∧

r∧
i=2

xi ∈ {0, 1}
]
∨
[ d−1∨

j=2

r∧
i=1

xi = j
]
.

The domain of each variable is {0, . . . , d− 1}. Fig. 1 depicts various representa-
tions of EG3,4(x1, . . . , x4). In general, EGd,r has 2r−1 + d− 2 solutions, and its
MDD representation has 1 + (r − 1)(d − 1) nodes and 2r − 1 + r(d − 2) edges.
Without loss of generality, we assume when EGd,r is represented as a table, the
solutions are sorted lexicographically.

Property 1. Enforcing GAC on EGd,r using mddc takes O(rd) time.

Property 2. To enforce GAC on EGd,r, binary search [3] takes O(r3 + r2d) time.

Proof. Suppose there is a sub-table of supports for every assignment (xi, a) (see
Fig. 1a). To find a support for any of the 2r − 1 assignments where a ∈ {0, 1},
binary search takes O(r · log(2r−1)) = O(r2) time. But for each of the remaining
r(d− 2) assignments where a ≥ 2, only O(r) comparisons are required, because
the corresponding sub-table contains only one tuple.

Property 3. To seek a support for (xi, a) in EGd,r, nd-list [2] takes O(r ·2r) time.

Proof. Let xr = 2. To seek a support for (x1, 0), one iterates over the O(2r−1)
solutions with x1 = 0 because the next-different pointer of (xr , a) in any solution
of EGd,r always points to the immediately next solution (for any two adjacent
solutions θ, θ′ ∈ EGd,r: (xr , a) ∈ θ, (xr , a

′) ∈ θ′ and a �= a′; see Fig. 1c).
Checking if a support is valid takes O(r) time.

Property 4. To seek a support for (xi, a) in EGd,r using mtrie [2] is O(2r).

Proof. Let xr = 2. To seek a support for (x1, 0), one completely traverses the
trie representing the O(2r−1) solutions with x1 = 0 (xr is at the bottom of the
trie; see Fig. 1d). The trie is a complete binary tree and has O(2r) edges.

Property 5. To enforce GAC on EGd,r, hologram [4] can be d times slower than
mddc.

Proof. Let x1 = 2. Enforcing GAC using mddc takes O(r) time because there
is exactly one path (no branching) in the MDD such that x1 = 2 holds (x1 is
at the root of the MDD; see Fig. 1e). On the other hand, to seek a support for
(xi, a), where a �= 2, using hologram, although in constant time3 one can jump to
θ = {(x1, 2), . . . , (xr, 2)} and confirm there is no support for (xi, a), this process
is repeated (r − 1)(d− 1) times for every (xi, a) where i �= 1 and a �= 2.
3 Here d indexing pointers are used for every (xi, a). When only one pointer is used,

the memory requirement drops but the jump operation takes O(d) time [12].
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Our analysis reveals that the memory compactness and the runtime efficiency of
mddc go hand and hand — if the MDD is small, mddc can be drastically faster
than GAC algorithms that do not exploit the semantics of the ad hoc constraint.

4 Experimental Results

We implemented mddc in Gecode 2.1.1 (http://www.gecode.org). All experiments
were run on a 2 GHz Core 2 Duo MacBook with 1 GB RAM. Our benchmarks
include structured problems (the still-life and car sequencing problem) and ran-
dom CSPs. In the two structural problems, the arity of an MDD constraint
ranges from 27 to 400 and the number of solutions grows exponentially with
the arity. Therefore, the scalability of mddc is crucial. We remark that mtrie and
nd-list could not be tested on the structured problems which are too large.

There are three implementations of mddc: mddc(sp) uses sparse sets, mddc(bv)
uses bit vectors and mddc(ts) uses time-stamping. Note that mddc(ts) is strictly
non-incremental (the time-stamp is incremented at every call of mddc) and hence
a base-line reference.

We also tested regular [13] (available in Gecode), which maintains GAC on
a constraint represented as a deterministic finite state automata (DFA), via
explicit and incremental modification of the graph. It works for MDD constraints
because MDDs are virtually DFAs with one final state (tt). Unfortunately, the
graph-updating mechanism in regular is expensive in memory and computation.
As we will see, regular scales up poorly and is always 1 to 3 orders of magnitude
slower than mddc, although both use exactly the same MDDs.

4.1 The Still Life Problem

An n × n still-life problem has n2 Boolean variables x1,1, . . . , xn,n, 4n border
constraints (xi−1,k+xi,k+xi+1,k < 3, xk,j−1+xk,j+xk,j+1 < 3, where k ∈ {1, n},
1 ≤ i, j ≤ n), and n super-row density (SRD) constraints [14] of the form

SRDi ≡ [fi =
1∑

d=−1

n∑
j=1

xi+d,j ]∧
n∧

j=1

[(xi,j = 0∨si,j ∈ {2, 3})∧(xi,j = 1∨si,j �= 3)]

where

si,j = −xi,j +
i+1∑

p=i−1

j+1∑
q=j−1

xp,q.

Note that the variable fi has a domain {0, . . . , 2n}. The objective is to maximize

z =
n∑

i=1

n∑
j=1

xi,j =
n/3∑
k=1

f3k−1.

In this experiment n is always a multiple of 3. The still-life problem is a good
benchmark for ad hoc constraints because, on the one hand, an SRD constraint
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Fig. 6. Results on the still-life problem. The variables are assigned (a) top-down and
(b) bottom-up, with respect to the MDD variable order.

can be constructed easily via BDD operations; on the other hand, its arity grows
fast (3n+1) and its number of solutions grows exponentially. Indeed, even with a
good BDD variable order [14], we found empirically that the number of nodes in
the MDD (because of fi) representation grows roughly as 32.73·0.9121n·6.486

√
n.

Here the memory factor becomes significant: when n = 69 (340984 nodes in
an MDD), mddc(sp) uses 162 MB, versus 287 MB by mddc(bv). Gecode returns
a memory allocation error when we use regular for the instance n = 39 (102904
nodes in an MDD, regular consumes > 600 MB, mddc uses 28 MB).

For each implementation of mddc and regular, two searches were run with
different labeling orders: one corresponds to the top-down MDD variable order
and the other to the bottom-up. Both lead to the same search space because of
the symmetries in this problem (think flipping the SRD constraints vertically).

Fig. 6 plots the number of backtracks per second (bt/s) against n when var-
ious implementations of mddc, or regular, is used to enforce GAC on the SRD
constraints. Bt/s is a valid measure of the speed (the more bt/s the faster) of
different implementations of mddc because the search space is the same and no
instance was solved by either implementation within one minute (time-out).

We can see although mddc(ts) is non-incremental, it is faster than mddc(bv)
when the labeling is top-down. This is because the MDD is reduced implicitly,
making incrementality unnecessary and copying bit vectors adds pure overhead.
On the contrary, under the bottom-up labeling, the lower part of the MDD is
pruned first and incrementality becomes critical. As a result, mddc(ts) performs
just 24 backtracks in one minute when n reaches 66. Finally, sparse set is the
most robust and is always the fastest.

4.2 The Car Sequencing Problem

In a car factory, different classes of cars are assembled along an assembly line.
Each class has its own options (e.g., air-conditioning) and each option has its
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own demands on resources (e.g., manpower). Since the stations on the assembly
line can only handle a limited number of cars within any time interval (e.g., 2
out of 5 cars passing along the line), the cars requiring the same options must
not be clustered. Solving the car sequencing problem is to arrange the cars in a
sequence such that the capacity of each station is not exceeded.

Let oi be a Boolean variable which is 1 iff the i-th car along the assembly line
needs the option o. The capacities of the stations can be modeled as a sequence
constraint [1]:

Seq(o1, . . . , on) ≡
n−q∧
i=0

l ≤
q∑

j=1

oi+j ≤ u

which means, along an assembly line of length n, there are at least l and at most
u out of q consecutive cars requiring the option o. Hoeve et al. [15] suggested to
transform the constraint into a DFA and use regular to enforce GAC on it. We
instead use an ad hoc constraint that represents Seq as a BDD, so that mddc can
be used. The construction is straightforward using standard BDD operations.

All problems are from CSPLib (http://www.csplib.org/prob/prob001). There
are 9 instances with n = 100 cars, 70 with 200 cars (excluding the 10 instances
that can be solved in one minute), 10 with 300 and 10 with 400 cars. Respectively,
the sequence constraints have 1617 (mean), 11949, 10548 and 24726 BDD nodes.

The model is standard and our goal is to evaluate the performances of mddc

and regular, rather than to study how to solve car sequencing quickly. Indeed,
none of the 99 instances can be solved in one minute (time-out). During search
the classes of the cars are assigned to the stations lexicographically. By symme-
try, labeling the stations from 1 to n (top-down BDD variable order) or from n
to 1 (bottom-up BDD variable order) results in the same search space. Again
this allows us to study the best and the worst-case scenarios for mddc.

Table 1 gives the mean bt/s and e/c, the number of calls of mddcSeekSupports

per mddc run. The tiny difference in e/c between mddc(sp) and mddc(bv) is due
to the different amount of mddc executions (the search is always timed out).

As expected, incrementality is more useful when the labeling is bottom-up
— it cuts 75 to 89 percent of the mddcSeekSupports calls by mddc(ts) and makes
mddc 3.5 times faster when sparse set is used. Another observation is, although
the BDDs are small, bit vector is about 15–29% slower than sparse set.

Our results confirm the scalability of mddc for structural ad hoc constraints.
This means mddc can readily substitute for global constraints with a compact
MDD representation. Since MDD construction is relatively straightforward, mddc

will be useful in prototyping global constraints. Clearly, table-based GAC algo-
rithms do not have this flexibility.

4.3 Random Problems

In this final experiment, we compare mddc with mtrie and nd-list in Minion 0.4.1
(http://minion.sourceforge.net), which are not available in Gecode. We do not
report results on hologram (also available in Minion) because it performs poorly:
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Table 1. Results on the car sequencing problem. The column “bt/s” gives the number
of backtracks per second (the more the faster). The column “e/c” shows the number of
mddcSeekSupports calls per mddc run. The percentage gives the relative performance
of mddc({sp,bv}) over mddc(ts).

mddc(ts) mddc(sp) mddc(bv) regular

n bt/s e/c bt/s e/c bt/s e/c bt/s

100 3645 346 3519 (-3.5%) 338 (-2.1%) 3061 (-16.0%) 337 (-2.4%) 190
200 3045 476 2943 (-3.4%) 454 (-4.6%) 2375 (-22.0%) 455 (-4.3%) 26
300 1023 1321 973 (-4.9%) 1317 (-0.3%) 822 (-19.6%) 1320 (-0.1%) 6
400 829 2705 819 (-1.3%) 2026 (-25.1%) 667 (-19.5%) 2034 (-24.8%) 2

(a) Top-down labeling

mddc(ts) mddc(sp) mddc(bv) regular

n bt/s e/c bt/s e/c bt/s e/c bt/s

100 1902 2015 3180 (+67%) 492 (-75.6%) 2707 (+42%) 493 (-75.5%) 108
200 1217 4328 2584 (+112%) 787 (-81.8%) 2042 (+68%) 790 (-81.7%) 7
300 288 15951 798 (+178%) 2287 (-85.7%) 646 (+125%) 2300 (-85.6%) 5
400 135 39167 611 (+351%) 4277 (-89.1%) 475 (+251%) 4337 (-88.9%) 1

(b) Bottom-up labeling

for only 6 out of the 80 instances hologram finished in 5 minutes (for these 6, mddc

is 2 to 3 orders of magnitude faster); runs using other algorithms always termi-
nated within the time limit. We did not test the binary-search-based algorithm [3]
(no longer supported by Minion) as it was shown almost always slower than mtrie

(see Fig. 10 in [2]). The Minion solvers were built with make table minions.sh
in the Minion distribution.

A problem in the benchmark 〈n, d, c, r, t〉 has n variables whose domain is
{1, . . . , d}, and c random r-ary constraints with t solutions. The variables in the
scope of each constraint are randomly ordered. There are totally 80 instances in
〈22, 5, {5, 6}, 10, {10K, 20K}〉, 〈25, 10, {17, 18}, 5, {3K, 6K}〉, 〈25, 20, {10, 11}, 5,
{3K, 6K}〉, and 〈25, 5, 3, 20, {5K, 10K}〉. These benchmarks, in terms of arity
and domain size, are compatible to, and sometimes larger than those in [2,3,4].

During search the variable that appears in the most constraints is selected
first, and the smallest value in a domain is tried first. Both orders are static and
the backtracks are about the same.4

Fig. 7 plots the solving time by mddc(sp) against that by mtrie or nd-list. On
average, mddc(sp) is 2.9 times faster than mtrie and 8.3 times faster than nd-list.
The medians are 2.2 and 7.5 respectively. The results are good, provided that the
constraints are random and there is little MDD sharing (on average, an MDD
has 3 times less nodes than the corresponding trie). Indeed, random constraints
are challenging for any GAC algorithm that exploits hidden structure, and our
results reveal the worst case performance of mddc. Finally, mddc(sp) is 20% faster

4 The mean absolute difference in the numbers of backtracks by Gecode and Minion
is 3 and median is 1, so we assume both solvers traverse the same search space.
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Fig. 7. Results on random CSPs. The X and Y-axes are the solving times (in seconds)
by the respective algorithms. The line y/x = c is obtained via curve fitting.

than mddc(bv) and 74% faster than mddc(ts). The speedup is moderate, compared
with the one in the structural problems, because the MDDs are small (on average,
an MDD has 20790 nodes; the median is 4794).
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Abstract. By using recent results from graph theory, including the
Strong Perfect Graph Theorem, we obtain a unifying framework for a
number of tractable classes of constraint problems. These include prob-
lems with chordal microstructure; problems with chordal microstructure
complement; problems with tree structure; and the “all-different” con-
straint. In each of these cases we show that the associated microstructure
of the problem is a perfect graph, and hence they are all part of the same
larger family of tractable problems.

1 Introduction

Considerable effort has been devoted to identifying tractable subclasses of the
constraint satisfaction problem. Most of this work has focused on just two general
approaches: either identifying forms of constraint which are sufficiently restric-
tive to ensure tractability no matter how they are combined, or else identifying
structural properties of constraint networks which ensure tractability no matter
what forms of constraint are imposed (see Chapters 7 and 8 of [10]).

However, some important tractable classes of problems do not fall into either
of these categories. A notable example is the class of problems where all the
variables must be assigned different values. The tractability of this problem has
been exploited to great effect by designing an efficient propagator for the global
“all-different” constraint [9], which is widely used in practical constraint solvers.

The binary disequality relation used to specify the “all-different” problem
is not contained in any tractable language (as it can express the NP-complete
Graph Colouring problem). The structure of the “all-different” problem is
also not a tractable structure (since each variable constrains each other vari-
able, and an arbitrary binary constraint problem can be represented on such a
complete structure). It is the combination of structure and constraint language
that leads to tractability for this problem, and there is currently little theory
available to analyse such “hybrid” reasons for tractability.

In this paper we analyse such hybrid properties by examining the properties
of a graph associated with every constraint problem instance, known as the
microstructure. We show that for “all-different” problems, as well as several other
known tractable classes, this microstructure is a perfect graph (see Figure 1 for
a summary). For all such problems the tractability can then be deduced as an
immediate consequence of classical results about perfect graphs [5].

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 524–528, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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PERFECT

MSC(ALLDIFF) MS(ALLDIFF)

(hole, odd-antihole)-free (odd-hole, antihole)-free

MSC(TREE) MS(TREE)(hole, antihole)-free

MS(CCMC) = MSC(CCMC)

chordal co-chordal

Fig. 1. Inclusions among constraint problems with perfect microstructure

2 Graphs, Perfect Graphs, and Microstructures

A graph is a structure G = (V (G), E(G)) containing a set V (G) of vertices and
a set E(G) ⊆ {{u, v} | u, v ∈ V (G), u �= v} of edges. The order of a graph is
the number of its vertices. The complement G of graph G contains the same
vertices as G, and its edges are the non-edges of G.

A graph G is a subgraph of H , written G ⊆ H , if V (G) ⊆ V (H) and
E(G) ⊆ E(H). The graph H contains G if G is a subgraph of H such that
E(G) contains all edges in E(H) that have both endpoints in V (G). In this case
G is also known as an induced subgraph of H . If G does not contain a graph
that is isomorphic to any graph in class C, then we say that G is C-free.

A clique is a subgraph which has edges connecting each pair of vertices. A
cycle of order k in a graph is a subgraph with vertices {v1, . . . , vk} and edges
{vk, v1} and {vi, vi+1} for i = 1, 2, . . . , k− 1. Such a cycle is usually denoted Ck.

A vertex-colouring of a graph is an assignment of colours to the vertices of
the graph, such that the vertices of every edge are assigned different colours. The
chromatic number of a graph is the smallest number of colours required for
a vertex-colouring. A graph G is perfect if for every induced subgraph H of G,
the chromatic number of H is equal to the order of the largest clique contained
in H [5,6]. The smallest non-perfect graph is C5 (which has chromatic number
3, but maximum clique size 2). Perfect graphs are important for our purposes
because of the following classical result.

Theorem 1 ([5, Sect. 6]). A maximum clique in a perfect graph can be found
in polynomial time.

A hole is a cycle of order n ≥ 5. An antihole is the complement of a hole. The
results in this paper rely heavily on the following recent result.

Theorem 2 ([2, 1.2], Strong Perfect Graph Theorem). A graph is perfect
if and only if it is (odd-hole,odd-antihole)-free.

It has also recently been established that perfect graphs can be recognised in
polynomial-time [1]. The class of perfect graphs will be denoted PERFECT.

The microstructure (MS) of a constraint problem instance is a graph where
the set of vertices corresponds to the set of possible assignments of values to
variables: a vertex (x, a) represents the assignment of value a to variable x [7].
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The edges of the microstructure connect all pairs of variable-value assign-
ments that are allowed (simultaneously) by the constraints. Note that if there
is no explicit constraint between two variables x and y, then the microstructure
includes edges between all pairs of variable-value assignments involving x and y.

The microstructure complement (MSC) is the complement of the mi-
crostructure: its edges represent pairs of variable-value assignments that are dis-
allowed by the constraints [3] (including distinct values for the same variable).

We denote the microstructure and microstructure complement of a constraint
problem instance P by MS(P ) and MSC(P ), respectively, and let MS(C) and
MSC(C) denote the classes of graphs formed by microstructures and microstruc-
ture complements of instances in class C. A perfect constraint problem is a
class C of binary constraint problem instances such that MS(C) is perfect.

Theorem 3. Any perfect constraint problem can be solved in polynomial-time.

Proof. For binary constraint problems, a solution corresponds to a (maximum)
clique in the microstructure of order n, where n is the number of variables [7].
The result follows by Theorem 1. ��

3 Examples of Perfect Constraint Problems

A graph is called chordal or triangulated if it is (Cn+4)-free, where Cn+4 denotes
all cycles of order at least 4. Such graphs may have a cycle of order 4 or greater
as a subgraph, but not as an induced subgraph — in other words, every cycle of
order at least 4 must have a “chord” (an edge connecting two of its vertices that
are not adjacent in the cycle). A graph is called co-chordal if its complement
is chordal. All chordal and co-chordal graphs are perfect [6].

Jégou noted that binary constraint problems with chordal MS form a tractable
class [7]. Cohen noted that binary constraint problems with chordal MSC also
form a tractable class [3]. In fact this latter class has been shown to consist of
problems that are “permutably max-closed” [4]. We observe that both of these
classes are perfect, and can be combined to obtain a larger tractable class. Let
CCMC be the class of binary constraint problem instances P , such that either
MS(P ) is chordal or MSC(P ) is chordal.

Proposition 4. MS(CCMC) = MSC(CCMC) ⊂ (hole,antihole)-free1

Proof. The antihole of order 5 is isomorphic to C5 and all larger antiholes contain
C4, so chordal graphs are antihole free. The remaining inclusions are easy. ��

It is well-known that tree-structured binary constraint problems are tractable [10,
Chapter 7]. However, the MS of a tree-structured problem is no longer a tree, and
nor is the MSC. For example, the MSC of a single binary disequality constraint
contains C4, so it is not a tree (and is also not chordal). On the other hand, tree-
structured problems are perfect, as we now show. Let TREE be the class of all
tree-structured binary constraint problem instances.
1 Also called weakly chordal.
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Proposition 5. MSC(TREE) ⊂ (hole,odd-antihole)-free ⊂ PERFECT.

Proof. Let G = MSC(P ) ∈MSC(TREE). If G contains a cycle Ck of order k ≥ 5,
then the vertices of Ck must involve at least 3 different variables (since different
values for the same variable are all connected in a microstructure complement),
and this implies that the structure of the instance P must contain a cycle, which
contradicts the fact that it is tree-structured. Hence G is hole-free.

Since the antihole of order 5 is isomorphic to C5 we need only consider anti-
holes of order ≥ 7. Assume for contradiction that G contains an antihole A of
order k ≥ 7, on the vertices (v0, v1, . . . , vk−1) (in that order around the cycle). We
note that A contains an induced subgraph isomorphic to C4 on every 4 vertices
(vi, vi+1, vj+1, vj) such that 0 ≤ i < j < k and i < i+2 < j < j+2 < i+k (with
subscripts taken modulo k). Any induced 4-cycle in the MSC of a tree-structured
problem must involve exactly 2 variables, hence every set of 4 vertices of this kind
in A involves exactly 2 variables. This implies that the vertices (v1, v2, . . . , vk)
involve just two variables, which alternate around the cycle.

If k is odd, these conditions are unsatisfiable, so G is odd-antihole-free. ��
We also obtain the following symmetrical result on taking complements.

Corollary 6. MS(TREE) ⊂ (odd-hole,antihole)-free ⊂ PERFECT.

An “all-different” constraint can be represented by a set of binary constraints
of the form x �= y, for each pair of distinct variables x and y.

The microstructure complement of such a constraint problem contains edges
between vertices (x, a) and (y, b) (corresponding to assignments x = a and y = b
respectively), when either x = y and a �= b, or else a = b and x �= y. For
example, the MSC of an “all-different” problem with 3 variables, with domains
{a1, a2}, {a2, a3}, {a1, a3}, is the even hole, C6. Hence “all-different” problems
do not lie in any of the tractable classes described so far.

Let ALLDIFF be the class of “all-different” constraint problem instances. A
gridline graph is one whose vertices can be embedded in the real plane, such
that there is an edge between two distinct vertices precisely when they are on
the same horizontal line or the same vertical line [8].

Proposition 7. MSC(ALLDIFF) = gridline ⊂ (odd-hole,odd-antihole)-free.

Proof. Let G = MSC(P ) ∈ MSC(ALLDIFF). We can embed each vertex (x, a) of
G in the real plane, using the associated variable, x, to determine the horizontal
position, and the associated value, a, to determine the vertical position. Now
the edges of G are precisely those required by the definition of gridline.

Conversely, for any gridline graph G we have an associated embedding in the
real plane, so we can map each vertex to a pair (x, y), and consider these to
be the (variable,value) pairs of a constraint problem. The graph G can then be
considered as the MSC of an all-different problem.

Hence MSC(ALLDIFF) = gridline. By the results of [8], gridline graphs are
(odd-hole,odd-antihole)-free (and hence perfect, by Theorem 2). ��
We also obtain the following symmetrical result on taking complements.

Corollary 8. MS(ALLDIFF) ⊂ (odd-hole,odd-antihole)-free = PERFECT.
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4 Conclusions and Future Work

We have shown that a wide range of constraint problem classes (including hybrid
classes which have previously been difficult to analyse) have a perfect microstruc-
ture, and hence can be solved efficiently by a single method.

However, the classical algorithm for finding a maximum clique in a perfect
graph [5], although polynomial, is currently too slow to be practically useful,
although there has been some progress in improving the method [11]. Recent
advances such as the Strong Perfect Graph Theorem could provide a new route
to developing more practical algorithms. The results presented above provide a
strong additional motivation to develop such algorithms, which could then be
used to solve a wide variety of constraint problems in a unified way.

Conversely, it may be that some of the algorithmic ideas developed for con-
straint solvers and propagators could be used in a more general, graph-theoretic
context. For example, for gridline graphs, Peterson suggests that matching tech-
niques could be used to obtain O(n3) algorithms for finding a maximum indepen-
dent set [8], and that better algorithms should exist. The algorithm developed
by Régin for obtaining domain consistency in all-different constraints is based
on matching in a bipartite graph [9], which can be achieved in time O(n2.5), and
it may be that similar ideas could be exploited for arbitrary gridline graphs.
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Abstract. Group theory is the mathematical study of symmetry. This
paper presents a CP method of efficiently solving group-theoretic prob-
lems, where each of the solutions is an element of a group. This method
allows us to answer questions in group theory which are computationally
unfeasible with traditional CP techniques.

1 Introduction

Many problems arising in group theory can be naturally expressed as constraint
problems but current solvers are often unable to solve instances of an interesting
size. Our aim is to create a constraint programming based tool for mathemati-
cians, that allows group theorists to search for groups with a specific property. It
will allow counter example generation by answering for example: “Does a group
exist with a given subgroup, and a given element of a certain order”.

This paper provides the fundamental basis for such a system; by providing
a constraint programming method for solving group-theoretic problems, where
each of the solutions is an element of a group. This algorithm works by finding
only a small subset of solutions which are sufficient to generate every other
solution. As we will see our method allows group-theoretic problems to be solved
which can not be solved using traditional constraint techniques.

2 Overview of Method

In this section we will briefly define a number of common group-theoretic con-
cepts, for a more complete introduction see [1]. Stabiliser chains provide an
algorithmic method of constructing a small generating set [2] for any group and
provide the inspiration for our algorithm. The stabiliser chain relies on the con-
cept of the point wise stabiliser. We start by giving the definition of a stabiliser.

Definition 1. Let G be a permutation group acting on the set of points Ω.
Let β ∈ Ω be any point. The stabiliser of β is the subgroup of G defined by:
StabG(β) = {g ∈ G | βg = β}, which is the set of elements in G which fixes or
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stabilises the point β. The stabiliser of any point in a group G is a subgroup of
G. The stabiliser of a set of points, denoted StabG(i, j, . . . ), is the elements of
G which move none of the points.

The definition of the stabiliser chain follows.

Definition 2. Stabiliser chains are built in an recursive fashion. Given a per-
mutation group G and a point p, the first level of the stabiliser chain is built from
an element of G which represents each of the places p can be mapped to. The
next level of the stabiliser chain is built from applying this same algorithm to
StabG(p), again choosing representative elements for all the places some point
q �= p can be mapped to. The stabiliser chain is finished when the stabiliser
generated contains only the identity element.

Stabiliser chains, in general, collapse quickly to the subgroup containing only
the identity since the order of each new stabiliser must divide the order of the
stabilisers above it. The following example is given to crystallise the stabiliser
chain concept.

Example 1. Consider the symmetric group consisting of the 24 permutations of
{1, 2, 3, 4}. We compute a chain of stabilisers of each point, starting arbitrarily
with 1 (denoted StabS4(1)). 1 can be mapped to 2 by [2, 1, 3, 4], 3 by [3, 1, 2, 4] and
4 by [4, 1, 2, 3]. These group elements form the first level of the stabiliser chain.

The second level is generated by looking at the orbit and stabiliser of 2 in
StabS4(1). In the stabiliser of 1, 2 can be mapped to both 3 and 4 by the group
elements [1, 3, 2, 4] and [1, 4, 2, 3]. We now stabilise both 1 and 2, leaving only
the group elements [1, 2, 3, 4] and [1, 2, 4, 3]. Here 3 can be mapped to 4 by the
second group element, and once 1, 2 and 3 are all stabilised the only element left
is the identity and the algorithm finishes.

The stabiliser chain shows how a generating set of elements can be generated
from a limited number of simple calculations. Our method is based around split-
ting search into a number of pieces, and finding only the first solution in each of
these pieces. Each of these pieces is equivalent to a step in the stabiliser chain. We
state without proof due to space restrictions that an arbitrary solution, should
one exist, to each member of the split we define, form a stabiliser chain, and
therefore a set of generators for the group of solutions. The precise split we use
is given in Definition 3.

Definition 3. Given a CSP P where the projection of the solutions onto some
list of variables V of length n forms a permutation group, then the generator
split of P is the following set of CSPs, each equal to P with a list of additional
constraints: ∀1 ≤ i < j ≤ n. Pi,j = P ∧ (∀1 ≤ k ≤ i− 1.Vk = k) ∧ Vi = j.

Our algorithm is very simple. It requires creating a generator split of a CSP and
then finding the first solution, if one exists, to each of the CSPs in the generator
split by whichever means we wish. The major strength of this algorithm is that it
can be implemented with no changes to the constraint solver. This does however
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create a small overhead due to having to start the solver many times. In our
Minion implementation, we instead create the CSP once in the solver, and then
solve it multiple times. This is possible as the extra conditions imposed by the
generator split are only variable assignments. No other changes were necessary
to implement the algorithm.

3 Experimental Results

We consider a number of experiments, each of which involves solving a CSP
whose solutions form a group. These will show that the gains made from iden-
tifying that the solutions to a problem form a group often provides massive
advantages, and almost no loss in even the worst case.

3.1 Graph Automorphism

Probably the most famous problem whose solutions form a group is graph au-
tomorphism. Our model does not use the propagators given in [3] due to lack of
an implementation in the Minion constraint solver.

We will consider finding the symmetries of two families of graphs, randomly
generated graphs and the grid graph, given in Definition 4.

Definition 4. The l × w grid graph is a graph on l × w vertices arranged in a
grid of height l and width w, where two vertices are connected by an edge if they
are either in the same row or same column.

The symmetry group of the grid graph arises frequently in constraint program-
ming, as this is the symmetry group of problems with “row and column” matrix
symmetry [4], a commonly occurring group in constraint programming. There-
fore being able to quickly identify this group would be an important and useful
property for any system which would be used to identify the graph automor-
phisms which occur in CP.

Table 1 shows a comparison of our algorithm against a traditional complete
search for identifying the automorphism group of grid graphs of various sizes.
It is clear from these results that using a traditional search quickly becomes
unfeasible. Using the generators found by our algorithm, a computational group
theory package such as GAP can almost instantly produce the total size of the
group, which we fill in for the two largest instances. Clearly no constraint solver
could enumerate this many solutions.

Note that while our algorithm takes a non-trivial period of time for large
graphs, the size of the search is still very small. Given a more efficient propagator
for graph automorphism, we expect these times would drop dramatically.

We also conducted experiments to compares finding the symmetries of a small
selection of random graphs. In general we expect such graphs to have no symme-
tries except for the identity symmetry, and indeed all the graphs we considered
did only have this symmetry. As these graphs have no symmetries, we do not
expect our algorithm to perform any better than a complete search. The aim
therefore of these experiments is to investigate the overhead which is introduced.
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Table 1. Comparing algorithms for finding the automorphisms of a grid graph

Size Traditional New

Solutions Nodes Time Generators Nodes Time

3× 3 72 143 0.007 12 31 0.07
4× 4 1,152 2303 0.26 24 103 0.08
5× 5 28,800 57599 9.64 40 238 0.12
6× 6 1,036,800 2073599 711.8 60 455 0.31
10× 10 2.6×1013 - - 180 2523 11.61
15× 15 3.4×1024 - - 420 9233 297.6

The results show that there is almost no measurable overhead introduced by our
algorithm.

For a static variable ordering along the permutation, we expect the searches
produced with and without our algorithm to be almost identical, except for a tiny
variance in the number of search nodes introduced from splitting the search into
pieces before beginning and this is what we see in practice. We also conducted
experiments using a dynamic variable ordering, smallest domain first. While
this does introduce some measurable differences into the resulting searches, it
is not clear if our algorithm is better or worse, and once again any variance is
small. While this by no means proves our algorithm would not interfere with
any dynamic variable ordering, it produces promising evidence that it does not
effect search even when dynamic heuristics are used.

One important step we have not taken here is comparing our algorithm against
specialised graph isomorphism systems, such as those provided in specialise
graph isomorphism tools such as NAUTY [5] and SAUCY [6]. We feel for a
fair comparison our algorithm must first be combined with a specialised propa-
gator. We note that the experiments in [3] show a specialised propagator can find
single automorphisms very competitively, giving hope that combined with our
new algorithm the result should be comparable to these systems, while allowing
a much greater degree of flexibility.

3.2 Group Intersection

One of the major advantages of designing our algorithm as a modification to
search in a traditional CP framework is that allows us to use the flexibility of
CP when modelling our problems. As an example of this flexibility, we consider
finding the intersection of the grid graph, given in Definition 4, with the alter-
nating group, given in Definition 5. Expressing this as a CSP requires simply
imposing the constraints for both in the same problem. Definition 5 does not pro-
vide an obvious method of expressing that a permutation is even. A well known
alternative method of checking if a permutation V is even is to check if the value
of the expression

∑
1≤i<j≤n(V [i] > V [j]) is even. This is the formulation which

we use to express that a permutation is alternating.

Definition 5. A permutation is even if it can be expressed as an even number
of swaps of pairs of values. The alternating group contains even permutations.
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Table 2. Comparing algorithms for finding the intersection of the grid graph and
alternating group

Size Traditional New

Solutions Nodes Time Generators Nodes Time

3× 3 36 107 0.02 11 30 0.04
4× 4 1,152 2,303 0.81 24 103 0.06
5× 5 14,400 43,199 7.5 39 237 0.13
6× 6 518,400 1,555,199 509.4 55 274,010 109
7× 7 25,401,600 76,204,799 40304 83 772 1.46

Table 2 gives results for this experiment. The results show how the power of
constraint programming can be used to solve complex problems. It is unclear
from where the large number of nodes for the 6 × 6 grid arise and this shows
that it is non-obvious how hard it will be to find the intersection of two groups.
Our algorithm still noticeably outperforms complete search in this instance and
performs magnitudes better on the largest instance.

4 Conclusion

We have extended the abilities of constraint programming to allow problems
in Computational Group Theory to be efficiently solved. We have, moreover,
demonstrated experimentally that constraint programming can be a useful tool
to solve group theoretic problems. Our method, allows us to solve problems which
would not be possible without this constraint based decomposition technique.
This result is important, since it shows the scope for constraint programming to
be applied to group theoretic research.
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Abstract. In this paper, we describe a new algorithm for sampling solutions from
a uniform distribution over the solutions of a constraint network. Our new algo-
rithm improves upon the Sampling/Importance Resampling (SIR) component of
our previous scheme of SampleSearch-SIR by taking advantage of the decompo-
sition implied by the network’s AND/OR search space. We also describe how our
new scheme can approximately count and lower bound the number of solutions
of a constraint network. We demonstrate both theoretically and empirically that
our new algorithm yields far better performance than competing approaches.

1 Introduction

In this paper, we present a new Sampling/Importance Resampling (SIR) algorithm that
exploits AND/OR search spaces for graphical models [1]. Although, our algorithm is
quite general, in this paper, we focus on using it for sampling solutions from a con-
straint network. Our main contributions are: (a) We show that SIR can be understood
as a method that learns a probability distribution on an OR tree. (b) We generalize
SIR to AND/OR spaces yielding AO-SIR which learns a probability distribution on an
AND/OR tree (or graph). (c) We show theoretically and by an experimental evaluation
on satisfiability benchmarks that AO-SIR is far more accurate than SIR. (d) We derive
a new unbiased estimator from the distribution learnt over the AND/OR tree which can
be used to approximately count and lower bound the number of solutions, improving
over our previous solution counter presented in [4].

2 Preliminaries and Previous Work

Definition 1 (constraint network, counting and sampling). A constraint network
(CN) is defined by a 3-tuple, R = 〈X,D,C〉, where X = {X1, . . . ,Xn} is a set of vari-
ables associated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and C =
{C1, . . . ,Cr} is a set of constraints. Each constraint Ci is a relation RSi defined on a
subset of variables Si ⊆ X. The relation denotes all compatible tuples of the cartesian
product of the domains of Si. A solution is an assignment of values to all variables
x = (X1 = x1, . . . ,Xn = xn), xi ∈ Di, such that x belongs to the natural join of all con-
straints i.e. x∈RS1  ! . . .  !RSr . The solution counting problem #csp is the problem of
counting the number of solutions. The solution sampling problem §csp is the problem
of sampling solutions from a uniform distribution over the solutions.
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Fig. 1. (a) A 3-coloring problem, (b) Pseudo-tree (c) OR tree (d) AND/OR tree

2.1 AND/OR Search Spaces for Graphical Models

Given a constraint network, its AND/OR search space is guided by the pseudo-tree
defined below (for more information see [1]).

Definition 2 (Pseudo Tree). Given a constraint graph G = (V,E), a pseudo-tree T =
(V,E ′) is a directed rooted tree in which any arc not included in E ′ is a back-arc.

Definition 3 (AND/OR tree). Given a constraint network R = 〈X,D,C〉 and a pseudo
tree T , the AND/OR search tree SAOT , has alternating levels of AND and OR nodes. The
root of SAOT is an OR node labeled by the root of T . The children of an OR node Xi are
AND nodes labeled with assignment Xi = xi that are consistent with the assignment
(X1 = x1, . . . ,Xi−1 = xi−1) along the path from the root. The children of an AND node
Xi = xi are OR nodes labeled with the children of variable Xi in T . A solution subtree
of SAOT contains the root node. For every OR node it contains one of its children and
for each of its AND nodes it contains all its children. An OR tree is an AND/OR tree
whose pseudo-tree is a chain.

Example 1. Figure 1(c) and 1(d) show a complete OR tree and an AND/OR tree (guided
by the pseudo-tree in Figure 1(b)) respectively for the 3-coloring problem in Figure 1(a).

2.2 Exact Solution to the §csp Problem

Dechter et al. [2] proposed the following scheme to exactly solve the §csp problem.
We first express the uniform distribution P(x) in a product factored form: P(x =
(x1, . . . ,xn)) = ∏n

i=1 Pi(xi|x1, . . . ,xi−1). The probability Pi(Xi = xi|x1, . . . ,xi−1) is equal
to the ratio between the number of solutions that (x1, . . . ,xi) participates in and the
number of solutions that (x1, . . . ,xi−1) participates in. Second, we generate multiple
samples by repeating the following process: for i= 1 to n, given a partial assignment
(x1, . . . ,xi−1) to the previous i−1 variables, we assign a value to variable Xi by sampling
it from Pi(Xi|x1, . . . ,xi−1). All algorithms described in this paper are devoted to finding
an approximation to Pi(Xi|x1, . . . ,xi−1) at each branch of the search tree.

Example 2. The labeled OR and AND/OR tree of Figure 1(c) and 1(d) respectively
depict the uniform distribution over the solutions expressed in a product factored form.
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2.3 Sampling Importance Resampling to Solve the §csp Problem Approximately

Because constructing P(x) can be quite hard [2], in [6] we proposed to use Sampling
Importance Resampling (SIR) [8] in conjunction with the SampleSearch scheme [3]
to approximate it. This scheme operates as follows. First, given a proposal distribu-
tion Q, it uses SampleSearch to draw random solution samples A = (x1, . . . ,xN) from
the backtrack-free distribution QF of Q. Second, a possibly smaller number of sam-
ples B = (y1, . . . ,yM) are drawn from A with sample probabilities, proportional to the
weights w(xi) = 1/Q(xi) (this step is referred to as the re-sampling step). For N = 1,
the distribution of solutions is same as QF . For a finite N, the distribution of solutions
is somewhere between QF and P improving as N increases and equals P as N → ∞.

3 Sampling Importance Resampling on AND/OR Search Spaces

We first describe the main intuition involved in defining a new SIR scheme called AO-
SIR which operates on the AND/OR search space in the following example.

Example 3. The bold edges and nodes in Figure 1 (c) and (d) show four solution sam-
ples arranged on an OR and AND/OR tree respectively. Note that SIR and AO-SIR
operate on the OR and AND/OR tree respectively. One can verify that the 4 solution
samples correspond to 8 solution samples (solution sub-trees) on the AND/OR tree.
Thus, the AND/OR representation yields a larger set of virtual samples. It includes for
example the assignment (C = 0,B = 2,D = 1,A = 0) which is not represented in the OR
tree. From SIR theory [8], we know that the accuracy of SIR increases with the number
of samples and therefore we expect AO-SIR to be more accurate than SIR.

In AO-SIR, the first step of using SampleSearch to generate solution samples remains
the same. What changes is the way in which we (a) store samples and (b) define the
distribution over the initial set of samples for resampling. We explain each of these
modifications below. We first define the notion of an AND/OR sample tree (or graph)
which can be used to store the initial set of samples.

Definition 4 (Arc Labeled AND/OR sample tree and graph). Given (1) a constraint
network R = 〈X,D,C〉, (2) a pseudo-tree T (V,E) , (3) the backtrack-free distribution
QF = ∏n

i=1 QF(Xi|Anc(Xi)) such that Anc(Xi) is a subset of all ancestors of Xi in T , (4)
a sequence of samples S (assignments) generated from QF , an arc-labeled AND/OR
sample tree SAOT is a complete AND/OR tree (see definition 3) from which all assign-
ments not in S are removed.The arc-label from an OR node Xi to an AND node Xi = xi

in SAOT is a pair 〈w,#〉 where: (a) w = 1
QF (Xi=xi|anc(Xi))

is called the weight of the arc.

anc(Xi) is the assignment of values to all variables in Anc(Xi) and (b) #: the frequency
of the arc is the number of times (Xi = xi,anc(Xi)) is seen in S .

As noted earlier, all approximate algorithms for solving the §csp problem can be thought
of as approximating the probability labels on the arc of an AND/OR tree. Because, the
probability labels are just ratios of solution counts, we define the notion of value of a
node which can be semantically understood as providing an unbiased estimate of the
solution counts of the subtree rooted at the node.
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Algorithm 1. AO−SIR(R,QF,N,M)
1: Generate N i.i.d. samples A = {x1, . . . ,xN} from QF using SampleSearch.
2: Store the N solution samples on an AND/OR sample tree SAOT or a graph and label it using definition 4.
3: FOR all leaf nodes i of SAOT do
4: IF And-node v(i)= 1 ELSE v(i)=0
5: FOR every node n from leaves to the root do
6: Let C(n) denote the child nodes of node n
7: IF n = 〈X ,x〉 is a AND node, then v(n) = ∏n′∈C(n) v(n′)

8: ELSE if n = X is a OR node then v(n) = ∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))
∑n′∈C(n) #(n,n′) .

9: Update the weights by updating the arc labels as: p(n,n′) = v(n′)w(n,n′)#(n,n′)
∑n′′∈C(n)(#(n,n′′)w(n,n′′)v(n′′))

10: Return M solution samples generated at random from SAOT

Definition 5 (Value of a node). The value of a node in a arc-labeled AND/OR sample
tree (see Definition 4) is defined recursively as follows. The value of leaf AND nodes is
”1” and the value of leaf OR nodes is ”0”. Let C(n) denote the child nodes of n and
v(n) denotes the value of node n. If n is an AND node then: v(n) = ∏n′∈C(n) v(n′) and if

n is a OR node then v(n) =
∑n′∈C(n)(#(n,n′)w(n,n′)v(n′))

∑n′∈C(n) #(n,n′) .

Lemma 1. The value of a node n is an unbiased estimate of the number of solutions of
the subtree rooted at n.

We now have the required definitions to formally present algorithm AO-SIR (see Algo-
rithm 1). Here, we first generate samples in the usual way from QF . We then store these
samples on an arc labeled AND/OR sample tree and compute the value of each node
(Steps 3-8). The AND/OR sample tree is then converted to an AND/OR sample prob-
ability tree by normalizing the values at each OR node (Step 9). Finally, the required
M solution samples are generated from the AND/OR sample probability tree. We can
prove that:

Theorem 1. As N → ∞, the solutions generated by AO-SIR will consist of independent
draws from the uniform distribution over the solutions.

Finally, we summarize the relationship between AO-SIR and SIR in Theorem 2:

Theorem 2. When the pseudo-tree is a chain, the solution samples output by AO-SIR
will have the same distribution as those output by SIR. Asymptotically, if the pseudo-tree
is not a chain then AO-SIR has lower sampling error than SIR.

3.1 Approximate Counting on AND/OR Search Spaces

From Lemma 1, it is easy to see that:

Proposition 1. The value of the root node of the AND/OR sample tree is an unbiased
estimate of the number of solutions.

We can utilize this unbiased estimate obtained from the AND/OR sample tree to obtain
a lower bound on the solution counts [7,4] in a straight forward way. The main virtue of
of using the AND/OR space estimator over our previous scheme [4] is that the former
may have lower variance (and therefore likely to have better accuracy) than the latter
(for more details, see [5]).
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4 Experimental Results

For lack of space, we present only a part of our empirical results for solution sampling.
Detailed experimental results for both solution sampling and counting are presented in
the extended version of this paper [5]. For solution sampling, we experimented with the
following schemes (a) SampleSearch [3] (b) SampleSearch-SIR [6] (c) SampleSat [9]
and (d) AO-SIR. Table 1 summarizes the results of running each algorithm for exactly
1 hr on various benchmarks. The second and the third column report the number of
variables and clauses respectively. The remaining columns report the KL distance be-
tween the exact and the approximate distribution for various competing schemes. Note
that lower the KL distance the more accurate the sampling algorithm is. We can see
that AO-SIR is more accurate than SampleSearch-SIR on most benchmarks. Also the
SIR-type methods are more accurate than pure SampleSearch and SampleSat.

Table 1. Results for Solution Sampling

Problem #Var #Cl SampleSearch SampleSearch-SIR AO-SIR SampleSat
KL KL KL KL

Pebbling
grid-pbl-25 650 1226 0.13 0.027 0.00600 0.138
grid-pbl-30 930 1771 0.15 0.040 0.00170 0.154

Circuit
2bitcomp 5 125 310 0.03 0.003 0.00100 0.033
2bitmax 6 252 766 0.11 0.006 0.00100 0.039
Coloring
Flat-100 300 1117 0.08 0.001 0.00190 0.020
Flat-200 600 2237 0.11 0.016 0.00800 0.030
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There exist various methods to break symmetries. The two that concern us in this pa-
per are static symmetry breaking where we add static constraints to the problem (see
e.g. [1,3]) and symmetry breaking by dominance detection (SBDD) where we filter
values based on a symmetric dominance analysis when comparing the current search-
node with those that were previously expanded [2,5]. The core task of SBDD is domi-
nance detection. The first provably polynomial-time dominance checkers for value sym-
metry were devised in [18] and [14]. For problems exhibiting both “piecewise” sym-
metric values and variables, [15] devised structural symmetry breaking (SSB). SSB is
a polynomial-time dominance checker for piecewise symmetries which, used within
SBDD, eliminates symmetric subproblems from the search-tree. Piecewise symmetries
are of particular interest as they result naturally from symmetry detection based on a
static analysis of a given CSP that exploits the knowledge about problem substructures
as captured in global constraints [17]. Static SSB was developed in [4] and is based on
the structural abstractions that were introduced in [17].

Compared with other symmetry-breaking techniques, the big advantage of dynamic
symmetry breaking is that it can accommodate dynamic search orderings without run-
ning an increased risk of thrashing. Dynamic orderings have often been shown to vastly
outperform static orderings in many different types of constraint satisfaction problems.
However, when adding static symmetry-breaking constraints that are not aligned with
the variable and value orderings, it is entirely possible that we dismiss perfectly good so-
lutions just because they are not the ones that are favored by the static constraints, which
(ideally) leave only one representative solution in each equivalence class of solutions.
To address this problem, Puget suggested an elegant semi-static symmetry breaking
method that provably does not remove the first solution found by a dynamic search-
method [12]. It is not clear how this method can be generalized, though, and for the
case of piecewise variable and value symmetry, no method with similar properties is
known yet. On the other hand, static methods are generally easy to use, enjoy a low
overhead per choice point, and exhibit an anticipatory character that emerges from fil-
tering symmetry-breaking constraints in combination with constraints in the problem.

In this paper, for the first time ever we compare static and dynamic SSB in prac-
tice. We will show that static SSB works much faster than dynamic SSB. However,
this gain comes at a cost: Static SSB introduces a huge variance in runtime as static
symmetry breaking constraints may clash with dynamic search orderings. Using static
search orderings, on the other hand, can also cause large variances in runtime as they
are not equally well suited for different problem instances. To avoid this core problem
of static symmetry breaking, we introduce the idea of “model restarts.” We will show

� This work was supported by the National Science Foundation through the Career: Cornflower
Project (award number 0644113).
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how they allow us to efficiently combine static symmetry breaking with semi-dynamic
search-orderings. The method is very simple to use and we show that model restarts
greatly improve the robustness of static symmetry breaking.

1 Static and Dynamic Structural Symmetry Breaking

A Constraint Satisfaction Problem (CSP) is a tuple (Z, V,D,C) where Z is a finite
set of variables, V is a set of values, D = {D1, . . . , Dn} is a set of finite domains
where each Di ⊆ V is the set of possible instantiations to variable Xi ∈ Z , and
C = {c1, . . . , cp} is a finite set of constraints where each ci ∈ C is defined on a
subset of the variables in Z and specifying their valid combinations. Given a set S and
a set of sets P = {P1, . . . , Pr} such that

⋃
i Pi = S and the Pi are pairwise non-

overlapping, we say that P is a partition of S, and we write S =
∑

i Pi. Given a set
S and a partition S =

∑
i Pi, a bijection π : S #→ S such that π(Pi) = Pi (where

π(Pi) = {π(s) | s ∈ Pi}) is called a piecewise permutation over S =
∑

i Pi. Given
a CSP (Z, V,D,C), and partitions Z =

∑
k≤r Pk, V =

∑
l≤s Ql, we say that the

CSP has piecewise variable and value symmetry iff all variables within each Pk and all
values within each Ql are considered symmetric.

As mentioned in the introduction, dynamic SSB is a special case of SBDD. Before
we expand a new search-node we first check if the partial assignment that led us to the
current node is not dominated by any partial assignment that has been fully explored
earlier. SBDD ensures that there is only a linear number of dominance checks needed.
SSB performs the dominance checks by setting up a bipartite graph and pruning the
current node if and only if a perfect matching can be found. In [15] it was shown how
dynamic SSB can be used for filtering in time O(nm3.5 + n2m2), where m is the
number of values and n the number of variables in the given CSP.

Static SSB is based on the abstractions used by the dominance checker in dynamic
SSB. In [4] a linear set of (global) constraints was devised which provably leaves one
and only one solution in each equivalence class of solutions. Using Regin’s filtering
algorithm [13] for the global cardinality constraints (GCCs) in this set, filtering all static
SSB constraints does not take longer than amortized O(

∑a
k=1 |Pk|2m) = O(n2m),

where m is the number of values and n the number of variables in the given CSP.

2 Model Restarts

As the runtime comparison shows, static symmetry-breaking imposes much less over-
head. However, it suffers from one important drawback, and that is the fact that it
is much more sensitive to search-orderings. Both in [10] and [16] it has been noted
that static symmetry-breaking constraints can cause great variances in expected run-
time. Knowing that static symmetry-breaking constraints work by excluding all but
one representative out of each equivalence class of solutions, this is hardly surprising:
When the symmetry-breaking constraints are not aligned with the search-orderings,
static symmetry-breaking constraints may interrupt the construction of many perfectly
good solutions, simply because they are not the representatives we have chosen. On the
other hand, when using static search orderings, they themselves are much less robust
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and perform with greatly varying performance on different problem instances. The
question arises how we can combine the benefits of being able to change the search
orderings while using lean static symmetry breaking.

We exploit the idea of randomization and restarts [7,9], which has been shown to
greatly improve the robustness of systematic search: When the search takes too long (as
determined by exceeding a given fail-limit) we interrupt our search, and try again with
an updated fail-limit [9]. To avoid that we conduct the same search over and over again,
a random component is added to the selection heuristics for the branching variable
and/or the branching value. The method has been proven both experimentally and the-
oretically to eliminate heavy-tailed run-time distributions [7]. Complemented by non-
chronological backtracking and no-good learning, the idea of randomization and restarts
marks one of the backbones of modern systematic SAT solvers.

To improve on the robustness of static symmetry breaking, we therefore propose to
exploit randomization and restarts. Note that, when posing static symmetry breaking
constraints, there is often a lot of freedom in how we determine the representatives that
we leave in each equivalence class of solutions (see, e.g., [16]). In our case, with respect
to the ordering of variables, we have the freedom to arbitrarily choose the ordering of the
variable partitions. We start our search and use the static variable ordering as induced
by the ordering of variable partitions used in the static symmetry breaking constraints.
This avoids clashes between static SSB and the search ordering used. However, the
particular search ordering we choose may not be suited well for the concrete instance
we need to solve. Consequently, we interrupt our search when a fail-limit is reached.
Now, we would like to choose a new and somewhat randomized search ordering, but
if we do, then it is likely to clash with our static constraints. Consequently, rather than
updating the search ordering only, we also change the underlying CP model! That is,
at every restart we do not only change the search-orderings, but also the corresponding
static symmetry-breaking constraints. This way, we avoid clashes between the search-
orderings and static symmetry-breaking constraints, and are still not bound to one static
search-ordering which may be bad for the given problem instance. We refer to this
simple and easy to use idea as “model restarts.”

3 Experimental Results
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Fig. 1. Mean number of fails (log-scale)
for the biased graph-coloring benchmark
(q=1)

We experiment on the benchmark introduced
in [11] that consists of graph coloring prob-
lems over symmetric graphs. Colors are inter-
changeable values and nodes that have the same
set of neighbors form a partition of piecewise
interchangeable variables. Randomized graph
coloring problems are generated with either a
uniform or a biased distribution of partitions of
interchangeable nodes in the graphs, and a pa-
rameter q influences the density of the graphs
(for details, see [11]). For reasons of compa-
rability, our experimental set-up is the same as
in [11]. Each data point we report represents the
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mean of runs on 20 different instances with a cutoff of one hour. For each data point, at
least 90% of all runs finish within this time-frame. For the restarted methods, fail-limits
grow linearly as multiples of 100. We use the same CSP model as in [11].
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Fig. 2. Mean times (seconds, log-scale)
for the uniform (top two) and biased
(bottom two) graph-coloring bench-
mark with q = 0.5 (1st and 3rd) and
q = 1 (2nd and 4th)

In Figure 1, we study three different algo-
rithms on the biased graph-coloring benchmark:
static SSB in combination with a min-domain
heuristic (sSSB-gcc-md), static SSB in combina-
tion with a corresponding static variable ordering
(sSSB-gcc-st), and static SSB with model restarts
(sSSB-gcc-res), where the ordering of variable
partitions is permuted at every model restart, with
a bias to place larger partitions earlier in the or-
dering. The figure shows the average number of
failures, but since the time per choice point for
all variants is practically the same, we get the ex-
act same picture when comparing running times
(for the actual runtime of sSSB-gcc-res, com-
pare with Figure 2). We observe that sSSB-gcc-
md and sSSB-gcc-st are both not robust at all.
Due to a high variance in runtime the curves
are highly erratic. The reason why sSSB-gcc-st
shows such a high variance in solution time is
that the static ordering that is chosen is good
for some instances and bad for others. Dynamic
variable orderings like the min-domain heuristic
usually lead to much more robust performance.
However, in the case of symmetric problems, the
dynamic orderings may clash with the static con-
straints, and sSSB-gcc-md is not performing con-
sistently well either. On the other hand, we can
see clearly how model restarts greatly improve
the robustness of sSSB.

In Figure 2 we compare restarted static
SSB based on GCC constraints (sSSB-gcc-res)
with dynamic SSB (with min-domain heuristic,
dSSB-md) and a different variant of static SSB
based on regular constraints that was introduced
in [11] (with min-domain heuristic, sSSB-reg-
md). The first two algorithms were run on an
AMD-Athlon 64-X2 3800+ (2.0GHz), the lat-
ter was run on a Sun Blade 2500 (1.6GHz)
and the curve shown is an adaptation of that
shown in [11]. Based on the data given in
that paper, we can infer that their machine can
process about 20K failures per second when
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running sSSB-gcc-md, while we measured 30K failures per second on our architecture
for the same method. We conclude that our machine works about a factor 1.5 faster and
thus divided the data-points underlying the curve shown in [11] by that factor to make
the comparison fair.

We see that the restarted method works equally robust as sSSB-reg-md, but roughly
one order of magnitude faster. In [11] it is reported that sSSB-reg visits less than 100
choice points on the biased instances (which makes it highly unlikely that restarts will
lead to any further improvements), the number of failures of sSSB-gcc-res is shown
in Figure 1. Consequently, sSSB-gcc-res visits about two orders of magnitude more
choice points than sSSB-reg. This implies that sSSB-gcc works almost three orders of
magnitude faster per choice point. This efficiency gives the simple sSSB-gcc-res the
advantage over the much more effective filtering of sSSB-reg-md. When comparing
with dynamic SSB, finally, as the theoretical runtime comparison of dSSB and sSSB in
Section 1 already suggested, we find that the dynamic variant cannot compete with the
static methods, despite our great efforts to tune the method as best as possible using the
heuristic improvements introduced in [8].
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Fig. 3. Mean times (seconds, log-scale,
cutoff 600 seconds) on 100 random
AllDiff-CSP instances

In Figure 3 we compare dSSB with sSSB on a
different benchmark where we generate random
AllDifferent constraints which each partition a
set of 12 values and 15 variables, thus leaving a
piecewise symmetric CSP. By varying the num-
ber of values per constraint, we achieve a range
of more and more restricted piecewise symmetric
problems which allows us to compare methods
over an entire regime of constrainedness. Again,
we see that static symmetry breaking vastly out-
performs dynamic symmetry breaking. Although
we cannot show the result of those tests here, we
would also like to note that restarts do not lead to
performance improvements for dynamic SSB.

We conclude that dynamic SSB for piecewise symmetry is inferior to its static coun-
terpart. Moreover, we found that static SSB based on GCC constraints is far less effec-
tive than static SSB based on regular constraints as it visits many more choice points.
However, its extremely low cost per choice points causes it to run faster, and when used
with model restarts it works equally robustly.
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1 Introduction and Preliminaries

Functional constraints are studied in Constraint Satisfaction Problems (CSP)
using consistency concepts (e.g., [1,4]). In this paper, we propose a new method
— variable substitution — to process functional constraints. The idea is that if
a constraint is functional on a variable, this variable in another constraint can
be substituted using the functional constraint without losing any solution. We
design an efficient algorithm to reduce, in O(ed2), a general binary CSP contain-
ing functional constraints into a canonical form which simplifies the problem and
makes the functional portion trivially solvable. When the functional constraints
are also bi-functional, then the algorithm is linear in the size of the CSP.

We use the standard notations in CSP. Two CSPs are equivalent if and only
if they have the same solution space. Throughout this paper, n represents the
number of variables, d the size of the largest domain of the variables, and e
the number of constraints in a problem. The composition of two constraints is
defined as cjk ◦ cij = {(a, c) | ∃b ∈ Dj , such that (a, b) ∈ cij ∧ (b, c) ∈ cjk}.
Composing cij and cjk gives a new constraint on i and k.

A constraint cij is functional on j if for any a ∈ Di there exists at most one
b ∈ Dj such that (a, b) ∈ cij . cij is functional on i if cji is functional on i.
When a constraint cij is functional on j, for simplicity, we say cij is functional
by making use of the fact that the subscripts of cij are an ordered pair. In this
paper, the definition of functional constraints is different from the one in [4,5]
where constraints are functional on each of its variables, leading to the following
notion.

A constraint cij is bi-functional if cij is functional on both i and j. A bi-
functional constraint is called bijective in [2] and simply functional in [4].

2 Elimination Algorithm

Definition 1. Consider a CSP (N,D,C), a constraint cij ∈ C functional on j,
and a constraint cjk ∈ C. To substitute i for j in cjk, using cij, is to get a new
CSP where cjk is replaced by c′ik = cik ∩ (cjk ◦ cij). The variable i is called the
substitution variable.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 545–549, 2008.
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Property 1. Given a CSP (N,D,C), a constraint cij ∈ C functional on j, and a
constraint cjk ∈ C, the new problem obtained by substituting i for j in cjk is
equivalent to (N,D,C).

Based on variable substitution, we can eliminate a variable from a problem so
that no constraint will be on this variable (except the functional constraint used
to substitute it).

Definition 2. Given a CSP (N,D,C) and a constraint cij ∈ C functional on
j, to eliminate j using cij is to substitute i for j, using cij, in every constraint
cjk ∈ C (k �= i).

Given a functional constraint cij of a CSP (N,D,C), let Cj be the set of all
constraints involving j, except cij and cji. The elimination of j using cij results
in a new problem (N,D,C′) where C′ = (C − Cj) ∪ {c′ik | c′ik = (cjk ◦ cij) ∩
cik, cjk, cik ∈ C} ∪ {c′ik | c′ik = cjk ◦ cij , cjk ∈ C, cik /∈ C}.

In the new problem, there is only one constraint cij on j and thus j can be
regarded as being “eliminated”. By Property 1, the variable elimination preserves
the solution space of the original problem.

Property 2. Given a CSP (N,D,C) and a functional constraint cij ∈ C, the
new problem (N,D,C′) obtained by the elimination of variable j using cij is
equivalent to (N,D,C).

We now extend variable elimination to general CSPs with functional and non-
functional constraints. The idea of variable elimination can be used to reduce a
CSP to the following canonical functional form.

Definition 3. A CSP (N,D,C) is in canonical functional form if for any con-
straint cij ∈ C functional on j, the following conditions are satisfied: 1) if cji

is also functional on i(i.e., cij is bi-functional), either i or j is not constrained
by any other constraint in C; 2) otherwise, j is not constrained by any other
constraint in C.

In a canonical functional form CSP, the functional constraints form disjoint star
graphs. A star graph is a tree where there exists a node, called the center, such
that there is an edge between this center node and every other node. We call the
variable at the center of a star graph, a free variable, and other variables in the
star graph eliminated variables. The constraint between a free variable i and an
eliminated variable j is functional on j, but it may or may not be functional on
i. In the special case that the star graph contains only two variables i and j and
cij is bi-functional, any one of the variables can be called a free variable while
the other called an eliminated variable.

If a CSP is in canonical functional form, all functional constraints and the
eliminated variables can be ignored when we try to find a solution for this
problem. Thus, to solve a CSP (N,D,C) in canonical functional form whose
non-eliminated variables are NE, we only need to solve a smaller problem
(NE,D′, C′) where D′ is the set of domains of the variables NE and C′ =
{cij | cij ∈ C and i, j ∈ NE}.
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algorithm Variable-Elimination(inout (N, D, C), out consistent) {
L ← N ;
while ( There is cij ∈ C functional on j where i, j ∈ L and i �= j){

// Eliminate variable j,
1. C ← {c′ik | c′ik ← (cjk ◦ cij) ∩ cik, cjk ∈ C, k �= i} ∪ (C − {cjk ∈ C | k �= i});
2. L ← L − {j};

Revise the domain of i wrt cik for every neighbour k of i;
if (Di is empty) then { consistent ← false; return }

}
consistent ← true;

}

Fig. 1. A variable elimination algorithm to transform a CSP into a canonical functional
form

Any CSP with functional constraints can be transformed into canonical func-
tional form by variable elimination using the algorithm in Fig. 1. Given a con-
straint cij functional on j, Line 1 of the algorithm substitutes i for j in all
constraints involving j.

Theorem 1. Given a CSP (N,D,C), Variable-Elimination transforms the
problem into a canonical functional form in O(n2d2)

A good ordering of the variables to eliminate will result in a faster algorithm.
The intuition is that once a variable i is used to substitute for other variables, i
itself should not be substituted by any other variable later.

Example. Consider a CSP with functional constraints cij and cjk. Its constraint
graph is shown in Fig. 2 where a functional constraint is represented by an arrow.
If we eliminate k and then j, we first get cjl and cjm, and then get cil and cim.
Note that j is first used to substitute for k and later is substituted by i. If we
eliminate j and then k, we first get cik, and then get cil and cim. In this way,
we reduce the number of compositions of constraints. �

Given a CSP P = (N,D,C), PF is used to denote its directed graph (V,E)
where V = N and E = {(i, j) | cij ∈ C and cij is functional on j}.

i

m

l

j k

Fig. 2. The constraint graph of a CSP with functional constraints cij and cjk and
non-functional constraints ckl and ckm



548 Y. Zhang et al.

Definition 4. Given a directed graph (V,E), a sequence of the nodes of V is
a functional elimination ordering if for any two nodes i and j, i before j in
the sequence implies that there is a path from i and j. A functional elimination
ordering of a CSP problem P is a functional elimination ordering of PF .

Given a directed graph G, a functional elimination ordering can be found by 1)
finding all the strongly connected components of G, 2) modifying G by taking
every component as one vertex with edges changed and/or added accordingly,
3) finding a topological ordering of the nodes in the new graph, and 4) replacing
any vertex v in the ordering by any sequence of the vertices of the strongly
connected component represented by v.

The algorithm Linear-Elimination in Fig. 3 first finds a functional elimina-
tion ordering (Line 1). Line 4 and 6 are to process all the variables in O. Every
variable i of O is processed as follows: i will be used to substitute for all the vari-
ables reachable from i through constraints that are functional in C0 and still exist
in the current C. Those constraints are called qualified constraints. Specifically,
L initially holds the immediate reachable variables through qualified constraints
(Line 8). Line 9 is a loop to eliminate all variables reachable from i. The loop at
Line 11 is to eliminate j using i from the current C. In this loop, if a constraint
cjk is qualified (Line 14), k is reachable from i through qualified constraints.
Therefore, it is put into L (Line 15).

algorithm Linear-Elimination(inout (N, D, C)) {
1. Find a functional elimination ordering O of the problem;
2. Let C0 be C; any cij in C0 is denoted by c0

ij ;
3. For each i ∈ N , it is marked as not eliminated ;
4. while (O is not empty) {

Take and delete the first variable i from O;
6. if (i is eliminated) continue;
8. L ← {j | (i, j) ∈ C and c0

ij is functional};
9. while (L not empty) {

Take and delete j from L;
11. for any cjk ∈ C − {cji} { // Substitute i for j in cjk;

c′ik ← cjk ◦ cij ∩ cik;
C ← C ∪ {c′ik} − {cjk};

14. if (c0
jk is functional) then

15. L ← L ∪ {k};
}

16. Mark j as eliminated ;
} // loop on L

} // loop on O

} // end of algorithm

Fig. 3. A variable elimination algorithm of complexity O(ed2)
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Theorem 2. Given a CSP problem, the worst case time complexity of
Linear-Elimination is O(ed2) where e is the number of constraints and d the
size of maximum domain in the problem.

For the algorithm Linear-Elimination, we have the following nice property.

Theorem 3. Consider a CSP with both functional and non-functional con-
straints. If there is a variable of the problem such that every variable of the
CSP is reachable from it in PF , the satisfiability of the problem can be decided
in O(ed2) using Linear-Elimination.

For a problem with the property given in the theorem above, its canonical
functional form becomes a star graph. So, any value in the domain of the
free variable is extensible to a solution if we add (arc) consistency enforcing
during Linear-Elimination. The problem is not satisfiable if a domain be-
comes empty during the elimination process . In contrast to our algorithm
Linear-Elimination, using an arc consistency based (bi-)functional algorithm
[4] or view based [3] implementations of propagators for functional constraints
may not be able to achieve global consistency in general.

3 Conclusion

We have introduced a variable substitution method to reduce a problem with
both functional and non-functional constraints. Compared with the previous
work on bi-functional and functional constraints, the new method is not only
conceptually simple and intuitive but also reflects the fundamental property
of functional constraints. Our experiments (not included here) also show that
variable elimination can significantly improve the performance of a general solver
in dealing with functional constraints.
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Abstract. We present new results in crossword composition, showing
that our program significantly outperforms previous successful tech-
niques in the literature. We emphasize phase transition phenomena, and
identify classes of hard problems. Phase transition is shown to occur
when varying problem parameters, such as the dictionary size and the
number of blocked cells on a grid, of large-size realistic problems.

1 Introduction

In this paper we propose new ideas in solving crossword puzzles presented in a
hybrid model with two viewpoints, one containing cell variables and the other
containing word slot variables. We discuss an architecture where search and
nogood learning exploit the strenghts of each viewpoint. Our program solves
more crossword problems than previous successful techniques in the literature.
We present the program performance on a collection of realistic puzzles, which
has been used in previous studies [1,2,3].

We also analyze the behaviour of the crossword domain in detail. We em-
phasize phase transition phenomena and identify classes of hard problems. We
discuss how the structure of a problem is affected by varying parameters such
as the size of a dictionary and the number of blocked cells on a grid. Such
structural changes exhibit phase transition phenomena. Unlike previous CSP
contributions on phase transition (e.g., [4,5]), which always consider randomly
generated problems, we experiment with large-size realistic problems.

The earliest contribution to crossword grid composition reported in the liter-
ature belongs to Mazlack [6]. In that work, a grid is filled with a letter-by-letter
approach. Ginsberg et al. [7] focus on an approach that adds an entire word at
a time. The list of matching words for each slot is updated dynamically based
on the slot positions already filled with letters. Meehan and Gray [8] compare
a letter-by-letter approach against a word-by-word encoding and conclude that
the latter is able to scale up to harder puzzles.

Cheesman et al. [9] showed that the hard instances in NP-hard problems
often exhibit a phase transition phenomenon. The classical phase transition in
SAT [10] is observed when the ratio between the number of variables and the
number of clauses varies.
� NICTA is funded by the Australian Government as represented by the Department of

Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.
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2 Encoding Crosswords into CSP

Formally, a crossword puzzle consists of a grid size, a fixed configuration of
blocked cells, and a dictionary. The problem is to fill the grid with words from
the dictionary. No word can be placed more than once on the grid. As in [1,2],
we adopt a hybrid encoding where both cells and word slots are used as CSP
variables. Consider a slot s and its i-th cell c. A binary intersection constraint
enforces that the letter assigned to c is the same as the i-th letter of the word
assigned to s. Each pair of same-length slots defines a repetition constraint, which
forbids to place the same word into two distinct slots. The hybrid encoding can
be obtained from a basic model with only cell variables by applying the hidden
variable transformation. It can also be seen as two combined viewpoints, one
with high-level (or dual) slot variables and one with low-level cell variables.

3 Combus: A Crossword Composer

The solving engine highlighted in this section exploits the hybrid problem en-
coding by instantiating only dual variables in search and by using only low-level
variables as part of nogood records. An instantiation to a dual variable in search
is a macro of low-level instantiations. Macro-actions can reduce the depth of
a search at the cost of increasing the branching factor per node (the utility
problem). When the non-binary constraints that generated the dual variables
are reasonably tight, the utility problem does not appear to be an issue. Since
each dual variable contains several low-level variables, the search tree depth is
reduced considerably. The branching factor can be kept low due to constraint
propagation and to preferring variables with small domains to be instantiated.

In building nogoods we exploit that, in crosswords and other real-life, struc-
tured problems, a partial assignment to the dual variables can partition the unin-
stantiated variables into clusters that do not interact via common constraints.
In crosswords, clustering is possible if we ignore the repetition constraints, which
can connect slots on any two grid areas. A cluster is initialized to a seed slot
and extended iteratively up to a fix point by adding new uninstantiated dual
variables (i.e., empty or partially filled slots) that intersect the cluster.

To extract a nogood from a deadlocked node n, a deadlock cluster is built
around the variable selected for instantiation, whose possible assignments have
been invalidated either through further search or statically (via arc-consistency
propagation). If n is not a leaf node and its subtree has explored instantiating
variables in other clusters too, an additional condition is needed to ensure that
the deadlock is contained within the current cluster, being independent of the
rest of the problem. Specifically, we require that no parts of n’s subtree have been
pruned because of deadlocks that involve variables from other clusters. Then the
instantiated cells in the deadlock cluster are a superset of a nogood.

Nogoods are stored in a database and used for pruning in the future. As no-
good learning ignores repetition constraints, nogoods might be built that are
actually part of a correct solution, giving up the method completeness. As repe-
tition constraints are handled in the main search, all found solutions are correct.
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4 Empirical Results on Composer Performance

We examine the performance of Combus on a suite of problems introduced
in [1] and subsequently used in other studies [2,3]. The suite contains ten grids
of each of the following sizes: 5x5, 15x15, 19x19, 21x21 and 23x23. There are two
dictionaries: the smaller one, called “words”, contains 45,000 words and “UK”
contains 220,000 words. Each combination of a grid and a dictionary creates a
problem instance. Thus, we obtain a set of 100 instances.

Table 1. Time (T) in seconds and expanded nodes (N) of the 80 instances. The 5x5
problems are too easy and their details are not presented. A dash means that no
solution was found in the given time limit.

15x15 grids 19x19 grids 21x21 grids 23x23 grids
Inst words UK words UK words UK words UK
ance T N T N T N T N T N T N T N T N

01 86 83 287 71 56 118 320 123 113 471 851 128 1 0 209 157

02 11 75 216 74 23 96 429 109 134 143 1133 141 81 178 697 172

03 41 71 239 73 34 315 245 108 76 139 624 130 455 12121 1185 160

04 18 304 290 66 75 127 738 116 740 15367 525 139 180 1700 715 162

05 25 65 354 70 13 112 121 115 56 238 288 132 105 178 707 170

06 84 1678 521 64 96 126 313 121 99 140 560 137 – – 462 227

07 146 118 548 65 34 118 296 126 128 152 571 136 86 241 572 162

08 41 76 196 78 62 122 396 120 68 145 551 142 320 7842 766 156

09 25 77 210 75 23 121 342 121 64 141 479 138 689 18109 366 160

10 114 506 462 65 14 119 120 121 – – 857 119 – – 680 135

In Table 1, we present the results obtained by switching on the nogood recording
procedure. Combus solves 97 instances in less than 20 minutes per instance on
a 2.4GHz Intel Duo Core. The results show that problems corresponding to the
“UK” dictionary require few node expansions. The number of expanded nodes is
close to the depth of the search tree, indicating that, often, solutions are found
with no backtracking. The “words” dictionary generates harder problems with
respect to the number of nodes. All three unsolved problems are in this category.
In general, our results are significantly better than the results presented in [1,2,3].

5 Empirical Results on Crossword Phase Transition

The experiments were run using the Combus engine. The incomplete method
of nogood learning is switched off, to ensure that an instance reported as UN-
SAT has no solution indeed. In this study, we vary the dictionary size and the
percentage of blocked cells.

5.1 Changing Dictionary Size

Here, we study the problem hardness and the phase transition by varying the
dictionary size. The full dictionary has 220,000 words [1]. Subsets of it are
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Fig. 1. Phase transition and problem hardness when percentage of dictionary varies

obtained by adding 2,200 words (1%) at a time. We created a set of 10 9x9
grids, having 12 blocked cells each, to be able to solve them all in a reasonable
time and compute the percentage of SAT instances. Figure 1a shows the problem
hardness (the median expanded nodes) and the percentage of SAT instances on
9x9 grids. The hard instances occur in the phase transition region, where the
dictionary ranges from about 10,000 to 35,000 words.

Figure 1b presents the median expanded nodes for larger grids. The data
contain ten grids of each of the following sizes: 15x15, 19x19, 21x21 and 23x23 [1].
The percentage of blocked cells is around 15 to 20%. Here, the time limit is set
to 5 hours per problem. The results clearly show easy-hard-easy transitions for
each grid collection. The hard region size increases with the grid size. The 15x15
data set shows a hard region from around 22,000 to 66,000 words, whereas hard
23x23 problems occur from about 22,000 to 110,000 words. Problems with a
small dictionary size have no solution. The search cost to prove this is low.
As we progress along the horizontal axis, problems become solvable. Finding a
solution is hard at the beginning of the SAT range. The search effort decreases
as larger and larger dictionaries are used.

5.2 Changing Number of Blocked Cells

In this experiment we use the 23x23 grids and the 220,000 words dictionary.
To vary the number of blocked cells, we started from a configuration with 192
blocked cells (36% of all cells) placed symmetrically on the grid. We gradually
removed pairs of symmetrical cells until an entirely blank grid was obtained.

Table 2 presents data showing the occurence of phase transition phenomena
when solving the crossword puzzles on 23x23 grids. In the table, “Time”
represents the mean runtime in seconds and “Total” represents the number of
instances in the given solution region. There are three distinct experiments, one
with the full dictionary (D=100%), one with half of it (D=50%), and one with
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Table 2. The phase transition of crossword puzzles on 23x23 grids

Solution D=100% D=50%
Region blocked cells Total Time blocked cells Total Time

Unsat 0-36 19 60 0-48 25 1835

Hard 38-66 15 >86400 50-72,76 13 >86400

Sat 68-192 60 734 74, 78-192 56 228

Solution D=30%
Region blocked cells Total Time

Unsat 0-48 25 13

Hard 50-80,84,104,110,114,116 21 >86400

Sat 82,86-100,106,108,112,118-192 48 516

D=30%. The data show that there are more hard problems for the D=30% case.
As the dictionary size gets smaller, the number of Unsat instances increases.

The problem set is partitioned into three regions. Problems with few blocked
cells have no solutions and are easy to solve. We call this the Unsat region.
Instances with a large number of blocked cells have solutions that are easy to
compute (Sat region). Since we work with large problems, the hard instances
between the previous two regions cannot be solved in 24 hours (Hard region).
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1 Introduction

The cooperation between the Mathematical Programming (MP) and Constraint
Programming (CP) paradigms has come to focus in the recent years. The im-
possibility of solving bigger instances alone and the apparently complementar-
ity between the two approaches pushes towards further researches on hybrid
methods. We can define a linear binary optimization problem as (P ){min c.x :
Ax ≤ b, x ∈ Bn}, where x is a binary variable, A ∈ Rm×n is the constraint
matrix, b ∈ Rm is the right-hand side vector and c ∈ Rn is the objective
function.

Commonly, when authors are studying such a general problem, they start by
studying the case where A ≥ 0, b ≥ 0 and c ≥ 0, which is the Multi-Knapsack
Problem (MKP ). For example, Osorio and Glover [7] developed a new paradigm
to introduce the logical cuts into linear and integer programming and applied
to the (MKP ). Hooker [4] showed that MP could benefit from the domain
reduction, base idea of CP also in the (MKP ).

In this work, we revisit the cooperative scheme from Oliva, Artigues and
Michelon [6] and what has been done over the years to implement it efficiently
in Section 2. Then, in Section 3, we define a global constraint for the MKP, as
well as its filtering algorithm, and show how it can be inserted into the pro-
vided framework. The Section 4 shows some preliminary results comparing the
enhanced framework to its previously best version and the to the commercial
solver ILOG CPLEX.

2 The Cooperative Scheme

Introduced in [6], this cooperative scheme between the CP and MP is based on
adding to a mathematical programming enumeration a new layer when evaluat-
ing a node. That means using the constraint programming filtering algorithms
to deduce constraints over the domains of the variables, hence possibly changing
the enumeration variable state or proving the infeasibility of the node.
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Linear Relaxation Solving

Propagation Algorithms

Node Evaluation

Feasible Solution BranchingPruning

(MP Layer)

(CP Layer)

(Branch and Bound scheme)

2.1 Reduced Costs Implicit Constraint

The first type of propagation algorithm we can add to the CP layer in the
cooperative scheme was presented in [6]. Based on the information given by the
linear relaxation of our model, the reduced costs, this method assembles a new
constraint which can be used to tighten the domains of the variables.

Given a problem (MKP ) and a lower bound for this problem, L, if we consider
N0 and N1 as the set of indices of the non-basic variables which have received
the value 0 and 1, respectively, in the solution of the linear relaxation of (MKP )
and U to be the value of this solution, as showed in [10], the reduced cost implicit
constraint can be simplified in our case to the following expression:

X
j∈N0

|cj |xj +
X

j∈N1

|cj |(1− xj) ≥ U − L (1)

If a variable xj is given a different value (by branching or any other fixing process)
from what it was given by the linear relaxation at a certain node, then the left
hand side of (1) will be decreased by |cj |. In other words, filtering this constraint
means checking whether or not the value of the variable xj can change from the
linear relaxation solution without violating (1). It is important to further remark
that at each node of a branch and bound enumeration tree, the reduced cost, for
each variable, changes, hence resulting in a new reduced costs implicit constraint
that should be taken into account as well as the constraints from the parent nodes
in the enumeration tree, which can be filtered backwards [10].

2.2 Enumeration Framework

Conceived in [10] this type of branch-and-bound enumeration tries to take the ad-
vantage from the reduced cost propagation algorithm with its branching strategy.
This enumeration is divided in three distinct phases: lower bound calculation,
cardinality bounding and finally the branch-and-bound.

The first phase consists in calculating a lower bound for the problem. Having
this value, we proceed, following the remarks in [9], to calculate a lower and an
upper bound to the number of items in the optimal solution kmin and kmax.
Then we separate the root node into �kmax� − (kmin) + 1 nodes where we add
a cardinality constraint (phase 2). Then, the model to be solved at each node of
the tree from now on is the following:
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(|MKP |k) max
nX

j=1

cjxj (2a)

s.a:
nX

j=1

aijxj ≤ bi, i = 1, ..., m (2b)

nX
j=1

xj = k (2c)

xj ∈ {0, 1}, j = 1, ..., n (2d)

Having all these presets, we start phase 3, where the cooperative scheme is
applied. For the branching strategy, first we order the variables from the biggest
to the smallest reduced cost. Then, for the first variable we branch fixing it to
the opposite value to the one received by the linear relaxation solution and all
other variables are free. Note that this will take the maximum amount of reduced
cost from the left hand side of (1). The second branch fixes the first variable
to its value in the linear relaxation solution and fixes the second variable in the
order to its opposite value. The third branch does the same strategy until we
have no more non-basic variables free. The last branch has only basic variables
as free variables. Here we use a depth-first search algorithm to enumerate the
possibilities for these variables.

3 A New Global Constraint

Once we have a cardinality constraint, we can combine it to each of the original
constrainsts of the problem to define the ”‘knapSum”’ global constraint, since
it seems interesting to take both into account at the same time, considering the
integrality of the problem.

knapSum(ai, bi, k, x) ⇔
(

bi ≤
nX

j=1

aijxj ≤ b̄i;

nX
j=1

xj = k

)
(3)

The idea of the filtering is to ”‘force”’ the limits of a constraint, respecting
the number of variables in the solution, determined by k. If the bounds are
respected, we can then proceed to a second phase of the process, where we fix
the variables, iteratively, leading to a smaller, or possibly infeasible problem (in
this case, the node is cut off).

Let’s first assume that for a constraint knapSum(ai, bi, k, x) the coefficients
aij are ordered in a non-increasing order. We can make an estimation of the
biggest and the smallest value we can have for this constraint by summing up
the k biggest/smallest values in it. Then, if

kX
j=1

aij < bi or
nX

j=n−k

aij > b̄i, (4)

the problem is infeasible.
If these bounds are respected, then we try to fix the variables corresponding

to the maximum and minimum values on 0, separately, and re-evaluate the
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expressions (4). If we find an infeasibility, then we can fix that variable to 1
from now on. If the bounds were respected, then we can try to fix them to 1
and check (4) again. If any fixation was found in this process, we can iteratively
repeat it with the new maximum/minimum variable.

Algorithm: KnapSum Filtering

1. Calculate S̄ =
Pk

j=1 aij.

2. Calculate S =
Pn

j=n−k aij.

3. If S̄ < bi or S > b̄i then the problem is infeasible.

4. Repeat

(a) If S̄ − ai1 + ai,k+1 < bi then

i. S ← S− ai,n−k + ai1

ii. k ← k − 1
iii. n ← n − 1
iv. Fix x1 to 1

(b) If S̄ − aik + ain < bi then

i. S ← S− ain + ai,n−k−1

ii. n ← n − 1
iii. Fix xn in 0

(c) If S− ain + ai,n−k−1 > b̄i then

i. S̄ ← S̄ − aik + ain

ii. k ← k − 1
iii. n ← n − 1
iv. Fix xn in 1

(d) If S− ai,n−k + ai1 > b̄i then

i. S̄ ← S̄ − ai1 + ai,k+1

ii. n ← n − 1
iii. Fix x1 in 0

5. Until there’s no fixation.

As it is shown, this global constraint can be directly applied to the CP Layer
of our cooperative scheme, just after the reduced costs constraint. Then, if an
infeasibility is found, the node is fathomed. Else, if a variable is attributed a
different value from what it had on the linear relaxation, we can re-solve the
linear problem, hence getting new reduced costs and making all the cycle again.

There’s also the possibility of using the ”‘knapSum”’ filtering algorithm to
deduce valid cuts to the problem at a given node. Let’s consider the sets N0

and N1 as defined in Section 2.1. If the ”‘knapSum”’ returns an infeasibility for
(N0, N1), then the following cut can be added to the problem to forbid that
state: X

j∈N0

xj +
X

j∈N1

(1− xj) ≥ 1 (5)

Also, if a variable xl is fixed by this filtering a similar valid cut can be found
by adding l to the corresponding opposite set xl was fixed (eg. add l to N0 if
xl was fixed to 1), meaning the complementary state of variable is infeasible for
the problem.

4 Numerical Results and Conclusion

A table of results is shown, comparing the times (in seconds) of our strategies,
adding the knapSum to fix variables or prove infeasibities and the version that
add the cuts derived from the knapSum filtering. We also compare our strategies
with a method that implements the same enumeration framework (VBV [10])
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and the commercial solver ILOG CPLEX v. 10.1 for the instances found in the
OR-Library[1]. Our objective was to see how much one can gain when adding
this new form of cooperation between the paradigms. We present the arithmetic
average of our results for 3 sets of instances. The name of the instance set tells
how many constraints and variables for each one in the form m.n. Each set has
30 instances. The tests were realized on a PC Celeron 3GHz with 1GB of RAM.

Table 1. Summary of Results - times expressed in seconds

Set CPLEX VBV KPS +Cuts

5.250 244.02 99.73 1.96 1.90
5.500 4219.56 926.7 31.43 29.41
10.250 N/A 8536.26 4718.23 4788.56

The insertion of the knapSum global constraint as a fixing algorithm and as
a cut-generation algorithm on the CP Layer into this cooperative framework
has shown an improvement over the total time of resolution of the best known
solutions and may lead to further improvements.
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Abstract. Recently, edge matching puzzles, an NP-complete problem, have
received, thanks to money-prized contests, considerable attention from wide au-
diences. This paper studies edge matching puzzles focusing on providing gen-
eration models of problem instances of variable hardness and on its resolution
through the application of SAT and CSP techniques. From the generation side, we
also identify the phase transition phenomena for each model. As solving meth-
ods, we employ both; SAT solvers through the translation to a SAT formula, and
two ad-hoc CSP solvers we have developed, with different levels of consistency,
employing generic and specialized heuristics. Finally, we conducted an extensive
experimental investigation to identify the hardest generation models and the best
performing solving techniques.

1 Introduction

The purpose of this paper is to introduce a new set of problems, edge matching puzzles,
a problem that has been shown to be NP-complete [4], modelling them as SAT/CSP
problems. These puzzles have recently received world wide attention with the publi-
cation of an edge matching puzzle with a money prize of 2 million dollars if resolved
(Eternity II). Our contribution is threefold. First, we provide a method for generating
edge matching puzzles. The proposed method is simpler and faster than other genera-
tors of hard SAT/CSP instances. Second, to our best knowledge, we provide the first
detailed analysis of the phase transition phenomenon for edge matching puzzles in or-
der to locate hard/easy puzzles. Third, we provide a collection of solving methods and
a wide experimental evaluation, including SAT and CSP solving techniques.

2 Preliminary Definitions

A generic edge matching puzzle (GEMP) is a puzzle where we must place a set of to-
kens in a board following a simple rule. Tokens have four sides (called also half-edges),
in our case for simplicity we assume square tokens, each of a different color or pattern.
The rule to follow when placing tokens is that two tokens can be placed side by side iff
adjacent half-edges are of the same color (or pattern), such when placed side by side
they will form an edge with an unique color. Tokens in GEMP, unlike in easier variants
as Tetravex, can be freely rotated. An example of such a puzzle is shown in Figure 1.

� Research partially supported by projects TIN2006-15662-C02-02, TIN2007-68005-C04-02
and José Castillejo 2007 program funded by the Ministerio de Educación y Ciencia.
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. .

. .

Fig. 1. 6x6 size two-set GEMP-F example with 4 frame colors and 3 inner colors

There are several variants of puzzles attending to the sets of colors employed on
distinct areas of the puzzle. In this paper we deal with two types, that have a profound
impact on hardness, one-set GEMP-F when colors can be used at any edge of the
puzzle, and two-set GEMP-F when two disjoint sets of colors are used; one set for
edges joining frame pieces and another set for any other edge as in Figure 1, where one
can observe that colors joining frame pieces are different than the rest. Another variant
is when there are no frame in the puzzle. As real-world puzzles (as in Eternity II1) are
usually framed puzzles and due to the interesting effect that the frame has on hardness
this work deals with GEMP-F.

3 Generation Models

The general method for a solvable puzzle generator is as follows; one assigns colors to
edges of puzzle pieces (assigning a color to both half-edges), and when all edges are
colored, tokens are built from the existing color assignment. Extending this algorithm
to generate framed puzzles is easy. First the inner part of the puzzle is generated (tokens
without gray color), without taking into account the frame. Then colors are assigned to
the half-edges of the frame adjacent to inner tokens, that are already determined by the
inner tokens, and then half-edges that join tokens of the frame are filled with colors,
randomly choosing either from the same set of colors used for the inner tokens (one-set
GEMP-F) or from a second set of colors with no colors in common with the first set
(two-set GEMP-F).

4 Solving Approaches

The following section details the methods used for solving edge matching puzzles used
in this paper. We use two different approaches to the problem, solving it as a SAT
formula and as a CSP. For both methods, state of the art solvers or ad-hoc solvers have
been used, choosing the most efficient ones for our experimental results in the following
sections.

1 In fact, Eternity II is a two-set GEMP-F.



562 C. Ansótegui et al.

The advantage of the SAT approach is the availability of a wide variety of competitive
SAT solvers that can be applied to our SAT encoding. The first SAT encoding we in-
troduce is the primal encoding. A primal Boolean variable denoted as pt,r,i,j is true
iff the token t with rotation r is placed at cell (i, j). The primal constraints are of the
form: a cell has exactly one token, one token placed exactly at one cell, a token matches
its neighbors and token edges located at puzzle frame are gray colored. Similarly, we
could think on an encoding just working on a set of dual variables, where the dual
variables represent how the edges of the puzzle are colored. A dual Boolean variable
denoted as ec,d,i,j is true iff the edge located at cell (i, j) at direction d is colored
with color c. Finally, we sort of merge both encodings in what we call the primal-
dual encoding, what increases the power of unit propagation. In order to keep the for-
mula in a reasonable size, it is crucial to take special care at encoding the Cardinality
Constraints.

Edge matching puzzles are easy modeled as CSP problems, with two basic sets of
constraints, one set of constraints for neighboring relations, modelling the relation be-
tween half-edges and a set of global constraints modelling the fact that every token
must be assigned to one variable. We have used two base algorithms for CSP solv-
ing, PLA (Partial Look-ahead) and MAC (Maintaining Arc-Consistency), and we have
added specific improvements for increasing constraint propagation. Both algorithms
have been tested with two variable selection heuristics, DOM (minimum domain) and
CHESS. CHESS is a static variable heuristic that considers all the variables of the prob-
lem as if placed in a Chess board, and proceeds by choosing all ’black’ variables fol-
lowing a spiral shaped order from the center towards the frame, and then repeats the
same procedure with ’white’ variables. That causes unitary variables (singletons) appear
earlier.

With the MAC algorithm we have considered the inclusion of global (n-ary) con-
straints with powerful filtering algorithms for maintaining generalized arc-consistency
(GAC). The most important n-ary constraint we have identified is the exactly-k con-
straint between the set of 2k half-edges with a same color. That is, in any solution this
set of 2k half edges must be arranged in a set of k disjoint pairs of half-edges. With this
aim, we use the symmetric alldiff constraint (that is formally equivalent to our exactly-
k constraint), and its specialized filtering algorithm [7], that achieves GAC over this
constraint in polynomial time. So, we define a symmetric alldiff constraint for each
exactly-k constraint we have (one for each color). More specifically, we have a color
graph that represents either already matched half-edges (that become disconnected from
the rest of the graph) or half-edges that could be matched given the current domains of
the unassigned variables. Observe that in order to be able to extend the current par-
tial solution to a complete solution, a necessary condition is that any color graph must
contain at least one perfect matching. If this is not the case for some color, we may
backtrack. Moreover, using the filtering algorithm of Regin we can eliminate any edge
that will not appear in any perfect matching of the graph (i.e. to maintain GAC) and
discover forced partial matchings.

We have also considered maintaining GAC for the alldiff constraint over the set of
position variables using the filtering algorithm of [6].
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5 Experimental Results

We present experimental results and an analytical approach for the location of the Phase
Transition on one-set and two-set GEMP-F models, as well as a solver performance
comparison on the instances on the peak of hardness.

5.1 Model Hardness and Phase Transition

One-set and two-set GEMP-F present a hardness characterization depending on their
constituent number of colors. As shown in Figure 2, an accurate selection of the num-
ber of colors increases the puzzle hardness by several orders of magnitude. While com-
paring results for one-set and two-set GEMP-F, it is worth to note that for the same
puzzle size, two-set GEMP-F are harder. As detailed in [1], one can link this hard-
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Fig. 2. Hardness characteristic for a one-set GEMP-F as a function of the number of colors (left).
Hardness characteristic for a 7x7 two-set GEMP-F as a function of the number of colors. Mini-
mum median time of PLA-CHESS and PLA-DOM (right).

ness characterization, on only satisfiable problems, with a phase transition effect when
the backbone is considered, i.e. the number of variables that take the same value on
all the solutions [5]. Backbone measurements for two-set GEMP-F problems shows a
phase transition of the backbone fraction vs. cf . From an analytical point of view, we
can derive some expressions that predict the phase transition location. For the sake of
tractability, we consider tokens generated randomly, unregarding adjacency constraints
that give only SAT puzzles. Of course, this is only an approach, but experimental results
and numerical evaluations agree for both models (see [2] for further details). It is worth
to note that for n = 16 and cf = 5, our model predicts a phase transition at cm = 17,
that is exactly the number of inner colors of the two-set GEMP-F puzzle used in the
Eternity II contest.

5.2 SAT and CSP Solving Methods

We generated the SAT instances according to the two previously described SAT encod-
ings. The complete SAT solvers we experimented with were: Minisat2 (v.061208-simp),
siege(v.4.0), picosat(v.535) and satz. Minisat2 was the best performing SAT solver, and
required to activate the option polarity-mode=true. For the state-of-the-art CSP solvers,
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Table 1. Comparison of solving approaches for the one-set and two-set models. 100 instances per
point.

One-set
GEMP-F Two-set GEMP-F

Size (n× n) 7× 7 8× 8 6× 6 7× 7

Colors inner[:frame] 6 7 6:2 6:4 7:2 7:3 7:4 8:2

PLA-LEX 235 >2·105 - - - - - -
PLA-DOM 20 12125 15 520 18193 9464 581 8387
PLA-CHESS 42 52814 0.5 5249 137 4181 6906 510
MAC+GAColor 90 23210 0.94 328 96 646 348 208
MAC+GAColor+CTadiff 92 22442 0.73 377 94 727 395 216
SAT(P) 1341 >2·105 7.45 >2·104 4418 >2·104 7960 6465
SAT(PD) 34 117823 0.55 777 125 1785 682 359
MACb dom/deg 154 39742 19 2415 >2·104 >2·104 3307 >2·104

Minion 413 >2·105 125 3463 >2·104 >2·104 4675 >2·104

Solver Median Time (seconds)

Minion and MACb dom/deg [3], we adapted the primal and primal-dual encodings tak-
ing into account variables with a domain greater than or equal to two (we only report
results for the best encoding).

Table 1 shows median time results for one-set and two-set GEMP-F with distinct
sizes and number of colors, solved with several techniques. These techniques are: (i)
PLA CSP solvers with variable selection heuristics LEX, DOM and CHESS, explained
above; (ii) MAC with filtering algorithm for Generalized Arc-Consistency for color
graphs (GAColor), using CHESS heuristic, with and without GAC filtering for the alld-
iff over position variables (CTadiff); (iii) the Minisat2 (v.061208-simp) on the primal
encoding SAT(P), and on the primal-dual encoding SAT(PD), and (iv) the state-of-the-
art CSP solvers Minion and MACb dom/deg.

On one hand, the best performer for one-set GEMP-F is PLA-DOM meanwhile for
two-set puzzles MAC+GAColor is the best one. It seems that the additional pruning
effect of the GAColor filtering is powerful enough to pay off the additional time needed
by such filtering in the two-set GEMP-F.

On the other hand, on PLA solvers for two-set GEMP-F, CHESS heuristic performs
better than DOM when the number of frame colors is lower, and this could be because
CHESS instantiates frame variables at the end of the search, and in those cases, the
probability of finding a consistent frame is higher than when the number of frame colors
is higher. About SAT solvers, the best performing encoding is the primal-dual encoding
being quite competitive with the CSP approaches, but still with a poor scaling behaviour.
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Abstract. Testing is the process of stimulating a system with inputs
in order to reveal hidden parts of the system state. We consider a vari-
ant of the constraint-based testing problem that was put forward in the
model-based diagnosis literature, and consists of finding input patterns
that can discriminate between different, possibly non-deterministic mod-
els. We show that this problem can be framed as a game played between
two opponents, and naturally lends itself towards a formulation in terms
of quantified CSPs. This QCSP-based formulation is a starting point to
extend testing to the practically relevant class of systems with limited
controllability, where tests consist of stimulation strategies instead of
simple input patterns.

Keywords: Test generation, adversarial planning, quantified CSPs.

1 Introduction

As the complexity of technical devices grows, methods and tools to automatically
check such systems for the absence or presence of faults become increasingly
important. Testing asks whether there exist inputs (test patterns) to stimulate
a system, such that a given fault will lead to observable differences at the outputs.
For the domain of digital circuits, it has been shown how this question can be
framed and solved as a constraint satisfaction problem [3,6].

In this paper, we consider constraint-based testing for a broader class of sys-
tems, where the outputs need not be deterministic. There are several sources for
non-determinism in model-based testing of technical systems: in order to reduce
the size of a model, for example, to fit it into an embedded controller [7,10], it is
common to aggregate the domain of continuous variables into discrete, qualita-
tive values such as ’low’, ’medium’, ’high’, etc. A side-effect of this abstraction is
that the resulting models can no longer be assumed to be deterministic functions,
even if the underlying system behavior was deterministic [9]. Another source is
the test situation itself: even in a controlled environment like an automotive
test-bed, there are inevitably variables or parameters that cannot be completely
controlled.

Struss [8] introduced a theory of testing for such general, constraint-based
models: finding so-called discriminating tests (DTs) asks whether there exist
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inputs that can unambiguously reveal or exclude the presence of a certain fault
in a system, even if there might be several possible outputs for a given input.
Generating DTs is a problem of considerable practical importance; the frame-
work was applied to real-world scenarios from the domain of railway control and
automotive systems [5]. [8] also provided a characterization of this problem in
terms of relational (constraint-based) models, together with an ad-hoc algorithm
to compute DTs.

In this paper, we build a bridge from this earlier, application-oriented work
to newer developments in the area of constraint programming. In particular,
we show how the DT problem can be conveniently formulated using quantified
CSPs (QCSPs), which can be viewed as an extension of CSPs to multi-agent
(adversarial) scenarios. This leads to three contributions: first, we observe that
the problem of generating definitely discriminating tests is in a different com-
plexity class than the testing problem described in [6] (ΣP

2 vs. NP). Second,
formulating DT generation as an instance of QCSP solving enables to leverage
recent progress in QCSP/QBF solvers in order to effectively compute DTs, in-
stead of using ad-hoc algorithms as in [5,8]. Third, we show that our QCSP
(adversarial planning) formulation of testing can be straightforwardly extended
to systems with limited controllability, which require complex test strategies
instead of simple input patterns and thus go beyond the framework in [8].

2 Discriminating Tests

We briefly review the theory of constraint-based testing of physical systems as
introduced in [8]. Testing attempts to discriminate between hypotheses about a
system – for example, about different kinds of faults – by stimulating the sys-
tem in such a way that the hypotheses become observationally distinguishable.
Formally, let M =

⋃
i Mi be a set of different models (hypotheses) for a system,

where each Mi is a set of constraints over variables V . Let I = {i1, . . . , in} ⊆ V
be the subset of input (controllable) variables, O = {o1, . . . , om} ⊆ V the subset
of observable variables, and U = {u1, . . . , uk} = V − (I ∪O) the remaining (un-
controllable and unobservable) variables. The goal is then to find assignments to
I (input patterns) that will cause different assignments to O (output patterns)
for the different models Mi.

Definition 1 (Discriminating Tests). An assignment tI to I is a possibly
discriminating test (PDT), if for all Mi there exists an assignment tO to O such
that tI ∧Mi∧ tO is consistent and for all Mj, j �= i, tI ∧Mj ∧ tO is inconsistent.
The assignment tI is a definitely discriminating test (DDT), if for all Mi and
all assignments tO to O, if tI ∧Mi ∧ tO is consistent then for all Mj, j �= i, it
follows that tI ∧Mj ∧ tO is inconsistent.

In the following, we restrict ourselves to the case where there are only two
possible hypotheses, corresponding to normal and faulty behavior of the system.
For example, consider the (simplified) system in Fig. 1. It consists of five variables
x, y, z, u, v, where x, y, z are input variables and v is an output variable, and two
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Fig. 1. Circuit with a possibly faulty adder

components that compare signals (x and y) and add signals (u and z). The
signals have been abstracted into qualitative values ’low’ (L) and ’high’ (H);
thus, for instance, values L and H can add up to the value L or H, and so on.
Assume we have two hypotheses about the system that we want to distinguish
from each other: the first hypothesis is that the system is functioning normally,
which is modeled by the constraint set M1 = {fdiff , fadd}. The second hypothesis
is that the adder is stuck-at-L, which is modeled by M2 = {fdiff, faddstuck}. Then
for example, the assignment x ← L, y ← H, z ← L is a PDT for M (it leads to
the observation v = L or v = H for M1, and v = L for M2), while the assignment
x ← L, y ← H, z ← H is a DDT for M (it leads to the observation v = H for
M1, and v = L for M2).

3 Test Generation as QCSP Solving

The two forms of testing in Def. 1, finding PDTs and DDTs, can be characterized
as a game played between two opponents. The first player (∃-player) tries to
reveal the fault by choosing input values for which the two hypotheses yield
disjunct observations. The second player (∀-player) instead tries to hide the fault
by choosing values for outputs or internal variables such that the two hypotheses
yield overlapping observations. In the case of PDTs, he can choose values only
for internal variables, whereas in the case of DDTs, he can choose values both
for internal and observable variables. Both the ∃-player and the ∀-player must
adhere to the rules that they can only choose among values that are consistent
with the model of the system, as not all values are possible in all situations. The
goal of the game is that exactly one hypothesis becomes true. Clearly, a PDT or
DDT then exists if and only if the first player has a winning strategy.

Thus, the first form of testing in Def. 1, finding PDTs, is captured by the
QCSP formula

∃i1 . . . in ∃o1 . . . om ∀u1 . . . uk .M1 → ¬M2 (1)

whereas the second (stronger) form of testing, finding DDTs, is captured by the
QCSP formula

∃i1 . . . in ∀o1 . . . om ∀u1 . . . uk .M1 → ¬M2 (2)

From the QCSP-based formulation it can be observed that the two problems
of finding PDTs and DDTs have the same worst-case complexity (ΣP

2 -complete).
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The formulations (1) and (2) allow us to use standard solvers in order to compute
discriminating tests, as opposed to using special algorithms as in [8,5].

The QCSP-based formulation of testing is also a starting point to tackle new
classes of applications. In Def. 1, tests are assumed to consist of assignments to
the controllable variables I; the underlying assumption is that these variables
characterize all relevant causal inputs to the system. As noted in the introduc-
tion, this assumption is often too restrictive; in practice, during testing there
might be variables or parameters who influence the system’s behavior but whose
values cannot be completely controlled. This scenario of testing under limited
controllability can be captured using a modification of (2). Let I be partitioned
into input variables Ic = {i1 . . . is} that can be controlled (set during testing),
and input variables Inc = {is+1 . . . in} that can be observed but not controlled.
Then a definitely discriminating test exists iff the following formula is satisfiable:

∀is+1 . . . in ∃i1 . . . is ∀o1 . . . om∀u1 . . . uk .M1 → ¬M2 (3)

Note that while solutions to (1) and (2) are simply assignments to the values of
the input variables, solutions to (3) are in general more complex and correspond
to a strategy or policy that states how the values of the controllable variables
Ic must be set depending on the values of the non-controllable variables Inc. To
illustrate this, consider again the example in Fig. 1, but assume that variable
x can’t be controlled. According to Def. 1, no DDT exists in this case, as the
possible observations for v will always overlap for the two hypotheses M1 and
M2. However, there exists a test strategy to distinguish M1 from M2, which
consists of setting y depending on the value of x: choose input y ← H, z ← H
if x = L, and choose input y ← L, z ← H if x = H. Generating such strategies
goes beyond the theory in [8], which assumed that tests consist of assignments
(patterns) for the input variables, but it is possible in the QCSP framework.

We conducted preliminary experiments of QCSP-based DDT generation with
the solvers Qecode [1] and sKizzo [2] (since the present version of Qecode does
not allow one to extract solutions from satisfiable instances, we transform the
instance into QBF and use sKizzo to extract solutions). Figure 2 shows solutions
generated from (3) for the example in Fig. 1. The solutions are represented in
the form of BDDs with complemented arcs [2], where ¬x stands for x ← L, x
stands for x ← H, etc. The left-hand side of the figure shows the strategy (in
this case, a simple set of assignments) that is generated if variables x, y, z are
specified as controllable (input) variables, whereas the right-hand side of the

x y y zz

x
1

1

Fig. 2. Test strategies generated for the example in Fig. 1
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figure shows the strategy when only y, z are controllable (in this case, y must
be set depending on the value of x). No solution (definitely discriminating test
strategy for the fault) exists if only z is assumed to be controllable.

4 Conclusion and Directions for Future Work

We reviewed an existing theory of testing for physical systems, which defines a
weaker (PDTs) and a stronger form (DDTs) of test inputs, and showed how it
can be framed as QCSP solving. Assumptions in this theory about the complete
controllability of system inputs can be relaxed and lead to a more powerful
class of tests, where inputs are intelligently set in reaction to observed values.
Such test strategies go beyond the test pattern approach of the existing theory,
but they can be captured in the QCSP framework. We are currently working on
larger, more realistic examples to evaluate our QCSP-based testing approach. We
are also extending our framework to systems with dynamic behavior (transition
systems), in order to complement passive verification tools [4] for embedded
autonomous controllers [10] with a capability to generate test strategies that
can actively reveal faults.
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Abstract. When implementing a propagator for a constraint, one must
decide about variants: When implementing min, should one also imple-
ment max? Should one implement linear equations both with and with-
out coefficients? Constraint variants are ubiquitous: implementing them
requires considerable effort, but yields better performance.

This paper shows how to use variable views to derive perfect propa-
gator variants: derived propagators inherit essential properties such as
correctness and domain and bounds completeness.

1 Introduction

When implementing a propagator for a constraint, one typically needs to decide
whether to also implement some of its variants. For example, when implementing
a propagator for maxn

i=1 xi = y, should one also implement minn
i=1 xi = y? When

implementing the linear equation
∑n

i=1 aixi = c for integer variables xi and
integers ai and c, should one implement

∑n
i=1 xi = c for better performance?

While resulting in better performance, special implementations for propaga-
tor variants inflate code and documentation, and impair maintainability. The
approach we take is to derive propagators from already existing propagators us-
ing variable views. In [8], we introduced an implementation architecture for vari-
able views to reuse generic propagators without performance penalty. Gecode [4]
makes massive use of views: every propagator implementation is reused 3.6 times
on average. Without views, Gecode would feature 140 000 rather than 40 000 lines
of propagator implementation to be written, tested, and maintained. Due to the
extensive use of views, it is vital to develop a model that allows us to prove that
derived propagators have the desired properties.

In this paper, we argue that propagators that are derived using variable views
are indeed perfect : they are not only perfect for performance, we prove that
they inherit all essential properties such as correctness and completeness from
their original propagator. The key contribution is the identification of proper-
ties of views that yield perfect derived propagators. The paper establishes a
formal model that defines a view as a function and a derived propagator as
functional composition of views (mapping values to values) with a propagator
(mapping domains to domains). This model yields all the desired results, in that
derived propagators are indeed propagators; faithfully implement the intended
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constraints; preserve domain completeness of the original propagators; and pre-
serve bounds completeness if the views satisfy additional properties.

2 Preliminaries

We assume a finite set of variables Var = {x1, . . . , xn} and a finite set of values
Val . An assignment a ∈ Asn maps variables to values: Asn = Var → Val . A
constraint c ∈ Con is a relation over the variables, represented as the set of all
assignments that satisfy the constraint, Con = 2Asn .

Constraints are implemented by propagators over domains, which are con-
structed as follows. A domain d ∈ Dom maps each variable to a finite set of
possible values, the variable domain d(x) ⊆ Val . We identify a domain d with a
set of assignments d ∈ 2Asn , and therefore treat domains as constraints to sim-
plify presentation. A domain d1 is stronger than a domain d2 (written d1 ⊆ d2),
iff for all variables x, d1(x) ⊆ d2(x).

Propagators, also called narrowing operators or filter functions, serve as im-
plementations of constraints. A propagator is a function p ∈ Dom → Dom that
is contracting (p(d) ⊆ d) and monotone (d′ ⊆ d⇒ p(d′) ⊆ p(d)).

A propagator p implements its associated constraint cp = {a ∈ Asn | p({a}) =
{a}}. Monotonicity implies that cp∩d ⊆ p(d) for any domain d: no solution of cp

is ever removed by p. We say that p is sound for any c ⊆ cp and weakly complete
for any c′ ⊇ cp (it accepts all assignments in c and rejects all assignments not in
c′). For any constraint c, we can find a propagator p such that c = cp. Typically,
there are several propagators, differing by propagation strength (see Sect. 3). Our
definitions of soundness and different notions of completeness are based on and
equivalent to Benhamou’s [1] and Maher’s [5].

3 Views and Derived Propagators

A view on a variable x is an injective function ϕx ∈ Val → Val ′, mapping values
from Val to values from a possibly different set Val ′. We lift a family of views
ϕx point-wise to assignments as follows: ϕAsn(a)(x) = ϕx(a(x)). Finally, given
a family of views lifted to assignments, we define a view ϕ ∈ Con → Con on
constraints as ϕ(c) = {ϕAsn(a) | a ∈ c}. The inverse of that view is defined
as ϕ−(c) = {a ∈ Asn | ϕAsn (a) ∈ c}. Views can now be composed with a
propagator: a derived propagator is defined as ϕ̂(p) = ϕ− ◦ p ◦ ϕ.

Example. Given a propagator p for the constraint c ≡ (x = y), we want to
derive a propagator for c′ ≡ (x = 2y) using a view ϕ such that ϕ−(c) = c′.
It is usually easier to think about the other direction: ϕ(c′) ⊆ c. Intuitively,
the function ϕ leaves x as it is and scales y by 2, while ϕ− does the inverse
transformation. We thus define ϕx(v) = v and ϕy(v) = 2v. We have a subset
relation because some tuples of c may be ruled out by ϕ.

This example makes clear why the set Val ′ is allowed to differ from Val . In
this particular case, Val ′ has to contain all multiples of 2 of elements in Val .
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The derived propagator is ϕ̂(p) = ϕ− ◦ p ◦ ϕ. We say that ϕ̂(p) “uses a scale
view on” y, meaning that ϕy is the function defined as ϕy(v) = 2v. Similarly,
using an identity view on x amounts to ϕx being the identity function on Val .

Given the assignment a = (x #→ 2, y #→ 1), we first apply ϕAsn and get
ϕAsn(a) = (x #→ 2, y #→ 2). This is returned unchanged by p, so ϕ− transforms
it back to a. Another assignment, a′ = (x #→ 1, y #→ 2), is transformed to
ϕAsn(a′) = (x #→ 1, y #→ 4), rejected (p({ϕAsn (a′)}) = ∅), and the empty domain
is mapped to the empty domain by ϕ−. Thus, ϕ̂(p) implements ϕ−(c).

Common views capture linear transformations for integer variables, negation
for Boolean variables, or complement for set variables. For example, in [8] the
following views are introduced for a variable x and values v: a minus view on x is
defined as ϕx(v) = −v, an offset view for o ∈ Z on x is defined as ϕx(v) = v+ o,
and a scale view for a ∈ Z on x is defined as ϕx(v) = a · v.

The central properties of derived propagators are expressed in the following
theorems (with proofs in the long version of this paper [9]):

Theorem 1. A derived propagator is a propagator: for all propagators p and
views ϕ, ϕ̂(p) is a monotone and contracting function in Dom → Dom.

Theorem 2. If p implements cp, then ϕ̂(p) implements ϕ−(cp).

Theorem 3. Views preserve contraction: for any domain d, if p(ϕ(d)) ⊆ ϕ(d),
then ϕ̂(p)(d) ⊂ d. This property makes sure that if the propagator makes an
inference, then this inference will actually be reflected in a domain change.

A propagator is domain complete (or simply complete) for a constraint c if it
establishes domain consistency. More formally, dom(c) is the strongest domain
including all valid assignments of a constraint, defined as min{d ∈ Dom | c ⊆ d}.
The minimum exists as domains are closed under intersection, and the definition
is non-trivial because not every constraint can be captured by a domain. Now,
for a constraint c and a domain d, dom(c∩ d) refers to removing all values from
d not supported by the constraint c. A propagator p is complete for a constraint
c iff for all domains d, we have p(d) ⊆ dom(c ∩ d). A complete propagator thus
removes all assignments from d that are inconsistent with c. One of the main
results of this paper is that domain completeness is preserved by views.

Theorem 4. If p is complete for c, then ϕ̂(p) is complete for ϕ−(c).

A propagator is bounds complete for a constraint c, if it only affects domain
bounds, or only depends on domain bounds for its inferences. For our pur-
poses, we only distinguish bounds(Z) and bounds(R) completeness (see [3] for
an overview). Our definitions of bounds completeness are based on the strongest
convex domain that contains a constraint, conv(c) = min{d ∈ Dom | c ⊆
d and d convex}. A convex domain maps each variable to an interval, so that
conv(c)(x) = {mina∈c(a(x)), . . . ,maxa∈c(a(x))}. Following Benhamou [1] and
Maher [5], we define that p is bounds(Z) complete for c iff p(d) ⊆ conv(c ∩
conv(d)), and p is bounds(R) complete for c iff p(d) ⊆ conv(cR ∩ convR(d)),
where convR(d) is the convex hull of d in R, and cR is c relaxed to R.
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The result for domain completeness does not carry over directly to bounds
completeness: we can only derive bounds complete propagators using views that
satisfy certain additional properties. A constraint c is a ϕ constraint iff for all
a ∈ c, there is a b ∈ Asn such that a = ϕAsn (b). A view ϕ is interval injective iff
ϕ−(conv(c)) = conv(ϕ−(c)) for all ϕ constraints c. It is interval bijective iff it is
interval injective and ϕ(conv(d)) = conv(ϕ(d)) for all domains d. The following
table summarizes how completeness depends on view bijectivity:

propagator interval bijective view interval injective view arbitrary view

domain domain domain domain
bounds(Z) bounds(Z) bounds(R) weakly
bounds(R) bounds(R) bounds(R) weakly

Minus and offset views are interval bijective. A scale view for a ∈ Z on x
is always interval injective and only interval bijective if a = 1 or a = −1.
An important consequence is that a bounds(Z) complete propagator for the
constraint

∑
i xi = c, when instantiated with scale views for the xi, results in a

bounds(R) complete propagator for
∑

i aixi = c.
Views are related to indexicals [2,10], propagators that prune a single vari-

able and are defined over range expressions. However, views are not used to
define propagators, but to derive new propagators from existing ones. Allowing
the full expressivity of indexicals for views would imply giving up our complete-
ness results. Another related concept are arithmetic expressions (as found in
ILOG Solver [6]). In contrast to views, expressions are used for modeling, not
for propagation, and, like indexicals, yield no completeness guarantees.

4 Extended Properties of Derived Propagators

A derived propagator permits further derivation: ϕ̂(ϕ̂′(p)) is perfectly acceptable,
properties like correctness and completeness carry over. For instance, we can
derive a propagator for x− y = c from a propagator for x+ y = 0 by combining
an offset and a minus view on y.

A propagator is idempotent iff p(p(d)) = p(d) for all domains d. Some sys-
tems require all propagators to be idempotent, others apply optimizations if the
idempotence of a propagator is known [7].

Theorem 5. If a propagator is derived from an idempotent propagator, the
result is idempotent again: If p(p(d)) = p(d) for a propagator p and a domain d,
then, for any view ϕ, ϕ̂(p)(ϕ̂(p)(d)) = ϕ̂(p)(d).

A propagator is subsumed for a domain d iff for all stronger domains d′ ⊆ d,
p(d′) = d′. Subsumed propagators do not contribute any propagation in the re-
maining subtree of the search, and can therefore be removed. Deciding subsump-
tion is coNP-complete in general, but for most propagators an approximation
can be decided easily. This can be used to optimize propagation.

Theorem 6. p is subsumed by ϕ(d) iff ϕ̂(p) is subsumed by d.

An alternative model of views is to regard a view ϕ as additional view constraints,
implementing the decomposition of a constraint.
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Example. Assume the equality constraint c ≡ (x = y). In order to propagate
c′ ≡ (x = y + 1), we could use a domain complete propagator p for c and a view
ϕ with ϕx(v) = v, ϕy(v) = v+1. The alternative model would contain additional
variables x′ and y′, a view constraint cϕ,x for x′ = x, a view constraint cϕ,y for
y′ = y + 1, and c[x/x′, y/y′], which enforces equality of x′ and y′.

In general, every view constraint cϕ,i shares exactly one variable with c and
no variable with any other cϕ,i. Thus, the constraint graph is Berge-acyclic,
and we can reach a fixpoint by first propagating all the cϕ,i, then propagating
c[x1/x

′
1, . . . , xn/x

′
n], and then again propagating the cϕ,i. This is exactly what

ϕ−◦p◦ϕ does. In this sense, views can be seen as a way to specify a perfect order
of propagation, which is usually not possible in constraint programming systems.
Furthermore, if ϕ̂(p) is domain complete for ϕ−(c), it achieves path consistency
for c[x1/x

′
1, . . . , xn/x

′
n] and all the cϕ,i in the decomposition model.

Acknowledgements. We thank Mikael Lagerkvist and Gert Smolka for fruitful
discussions about views and helpful comments on a draft of this paper.
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Abstract. We present measures for bounding the instance-based complexity of
AND/OR search algorithms for solution counting and related #P problems. To
this end we estimate the size of the search space, with special consideration given
to the impact of determinism in a problem. The resulting schemes are evaluated
empirically on a variety of problem instances and shown to be quite powerful.

1 Introduction

Inference algorithms like variable elimination have been known to be exponentially
bounded by the tree width of a problem’s underlying graph structure. More accurate
bounds were derived by looking at the respective domain sizes of the variables in each
cluster of a tree decomposition of the underlying graph [5], which was later also applied
to search algorithms that explore the context-minimal AND/OR search graph [1].

We recently introduced a more informed upper-bounding scheme, that selectively
takes determinism into account [6]. We demonstrated its effectiveness empirically over
a set of Bayesian networks and showed that the bounds it provides can in some cases
be better by orders of magnitude. These tighter bounds allow us, for instance, to better
predict parameters of algorithms (like variable orderings) ahead of time.

In this paper we extend our earlier work in four ways: First, we refine the bound-
ing scheme by “reusing” relations during the estimation process, projecting their scope
down to the currently relevant variables. Secondly, we introduce a simple scheme for
lower bounding, that uses a sampling-based SAT solution counting algorithm. Thirdly,
we show that these schemes are applicable to constraint networks by presenting ex-
periments on various sets of constraint problem instances. Finally, we investigate our
bounds’ ability to discriminate between different variable orderings and demonstrate
that they are indeed informative in this respect.

2 Bounding Search Space Size

We will assume a graphical model, given as a set of variables X = {x1, . . . , xn}, their
finite domains D = {D1, . . . , Dn}, a set of functions or relations R = {r1, . . . , rm},
each of which is defined over a subset of X , and a combination operator (join, sum or

� This work is supported in part by NSF grant IIS-0713118 and NIH grant R01-HG004175-02.
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(a) (b) (c)

Fig. 1. (a) An example problem graph, (b) its AND/OR search graph along ordering d =
A, B, C, D, E, F , and (c) the corresponding bucket tree decomposition

product) over all functions. The scope of a relation rj , denoted scope(rj), is the subset
of X on which rj is defined, its tightness tj is the number of valid tuples in the relation.
A constraint satisfaction problem (CSP) is then a special kind of graphical model.

Given a variable ordering d, we furthermore assume the usual definition of a tree
decomposition, decomposing the variables and relations into clusters of a certain tree
width w (the max. number of variables in a cluster). If the variables in each cluster are
covered by the scopes of the cluster’s relations, we have a hypertree decomposition, with
associated hypertree width hw (the max. number of functions in a cluster). It is known
that, if k = maxi |Di| and t= maxj tj , the time and space complexity of processing a
tree decomposition is dominated by kw, while a hypertree decomposition can yield a
solution with time and space complexity dominated by thw [3].

AND/OR search, on the other hand, is a novel method to exploit problem decompo-
sition during search. It introduces AND nodes into the search space that allow capturing
the independence of subproblems. If we also apply context-based caching of identical
subproblems, it is easy to see that the resulting AND/OR search space has a one-to-one
correspondence to a (bucket) tree decomposition along the same ordering (cf. Fig. 1).
Accordingly, similar asymptotic bounds can be proven [1].

For a more refined analysis of problem complexity, we can determine the size of the
search space as follows: For each cluster of the bucket tree Ck, containing variables
Xk ⊆ X and relations Rk ⊆ R, we multiply the domain sizes of the variables in Xk

– this represents all possible value combinations of the variables in Xk. Summing over
all clusters we obtain an upper bound on the number of nodes in the AND/OR search
space, denoted twb :=

∑n
k=1

∏
xi∈Xk

|Di| (this is essentially a fine-grained version of
the asymptotic, tree width-exponential bound). The bound quality will depend on the
degree of determinism present in the problem, which is not reflected in twb, but which
can cause significant pruning of the search space in practice.

If we are working on a hypertree decomposition, we can take the product over the
tightness of each relation in a cluster as an upper bound on the number of search nodes
in that cluster and sum over clusters – a fine-grained version of the asymptotic hy-
pertree width bound, thus accounting for determinism. However, since relation scopes
typically overlap, this will be far from optimal. We therefore start from the twb bound,
the product of variable domains, and iteratively pick relations whose tightness we can
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Algorithm GreedyCovering
Input: Set of variables X = {x1, . . . , xr} and set of
relations R = {r1, . . . , rs}, with xi having domain
size |Di| and rj having tightness tj

Output: A subset of R (a partial covering of X)
Init: Uncov := X , Covering := ∅
(1) Find j∗ that minimizes qj = tj/

Q
xk∈Ij

|Dk| ,

where Ij = Uncov ∩ scope(rj) .
(2) If qj∗ ≥ 1 , terminate and return Covering .
(3) Add rj∗ to Covering and set

Uncov := Uncov \ scope(rj∗ ) .
(4) If Uncov = ∅ , terminate and return Covering .
(5) Goto (1) .

Algorithm Compute-hwb
Input: A bucket tree decomposition with clusters
C1, . . . , Cn, where cluster Ck contains variables
Xk ⊆ X and relations Rk ⊆ R

Output: The bound hwb on the size of the search space
Init: hwb := 0

(1) for i = 1 to n:
(2) R := Rk .
(3) For every relevant relation r from the ancestral

buckets, project it onto scope(r) ∩ Xk and
add it to R with updated tightness t′r .

(4) G := GreedyCovering(Xk, R) .
(5) hwb +=

Q
rj∈Gtj ·

Q
xi∈Xk\G|Di| .

(6) end for.
(7) Return hwb .

Fig. 2. Greedy covering algorithm and procedure to compute the overall bound hwb

use to improve the bound, greedily covering variables with relations, similar to a SET
COVER problem [4]. This results in the algorithm GreedyCovering given in Fig. 2.

Propagating Cluster Size Downwards. When considering relations for the covering
of variables Xk in cluster Ck, we can refine the above scheme even further: We collect
all relations from the ancestral clusters in the rooted tree decomposition and project
them down to Xk. This can be seen as propagation of information down the search tree.
In practice, we found that for some problem instances it will decrease the bound by up
to 30%.

Overall Bound and Complexity. The resulting overall algorithm Compute-hwb is given
in Fig. 2. It computes the upper bound hwb on the number of nodes in the AND/OR
search space. Its complexity can be shown to be time O(n · m · (t + w)) and space
O(m+ t), where n and m are the number of variables and relations, respectively, w is
the tree width of the problem along the given ordering, and t is the maximal tightness
as before (proof in [7]).

Lower Bounds on Cluster Size. To obtain a lower bound on the size of the search
space, we employ a different scheme: In each cluster we generate a SAT formula from
all relevant relations (i.e., from within the current cluster and ancestral ones). We encode
the invalid tuples of each relation as the nogoods of the of the SAT formula, thus the
number of SAT solutions will correspond to the number of valid nodes in the cluster.
We feed each cluster’s formula to the sampling-based SAT solution counting algorithm
SampleSearch-LB [2], which gives a (probabilistic) lower bound. To get a lower bound
on the overall number of search nodes, we again sum the cluster bounds. We call this
bound satb.

3 Experimental Results

We ran a variety of empirical tests on a large set of different problem instances from
various domains. Here we present selected results, for the full set we refer to [7]. For
every problem instance, we report the number of variables n, the number of relations
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Table 1. twb, hwb, and satb bounds compared to true search space size #cm

instance n m k r w tr twb hwb satb #cm Qt Qh Qs

pret-60 60 40 2 3 4 0.50 1,534 1,102 839 998 1.51 1.10 0.89
pret-150 150 100 2 3 4 0.50 3,934 2,862 2,303 2,598 1.54 1.10 0.84
ssa-0432-003 435 738 2 5 31 0.75 4,244,330 2,059,616 1,116,669 1,868,283 2.27 1.10 0.60
ssa-2670-130 1359 2366 2 5 31 0.75 160,631,566 123,388,312 104,689,598 106,638,207 1.51 1.16 0.98
ssa-7552-038 1501 2444 2 6 63 0.75 308,861,278 115,499,146 6,815,140 36,718,327 8.41 3.15 0.19
ssa-7552-158 1363 1985 2 5 31 0.50 90,702 74,406 56,863 69,365 1.31 1.07 0.82
ssa-7552-159 1363 1983 2 5 31 0.50 92,238 73,586 48,929 68,694 1.34 1.07 0.71
BN 105 40 44 2 21 18 0.62 2,477,054 363 69 131 18909 2.77 0.53
BN 107 40 46 2 21 21 0.62 29,983,742 1,643 191 272 110234 6.04 0.70
BN 109 40 46 2 20 20 0.62 13,054,974 4,052 1,309 2,531 5158 1.60 0.52
BN 111 40 45 2 20 19 0.62 8,406,270 2,299 465 979 8587 2.35 0.47
BN 113 40 47 2 21 21 0.62 18,916,350 2,752 336 630 30026 4.37 0.53
aim-50-1-6-sat-1 50 77 2 3 18 0.88 2,517,118 2,053,046 931,492 1,813,906 1.39 1.13 0.51
aim-50-1-6-sat-2 50 76 2 3 16 0.88 767,678 626,955 73,180 551,659 1.39 1.14 0.13
aim-50-1-6-sat-3 50 78 2 3 20 0.88 4,742,590 3,859,278 2,023,465 3,848,835 1.23 1.00 0.53
aim-50-1-6-sat-4 50 77 2 3 19 0.88 3,615,166 2,616,824 2,079,752 2,532,968 1.43 1.03 0.82
aim-50-1-6-unsat-1 50 69 2 3 15 0.88 377,502 256,482 26,806 211,168 1.79 1.21 0.13
aim-50-1-6-unsat-2 50 77 2 3 19 0.88 3,484,734 2,551,090 16,995 1,908,441 1.83 1.34 0.01
aim-50-1-6-unsat-3 50 70 2 3 17 0.88 1,190,910 971,254 43,382 685,060 1.74 1.42 0.06
aim-50-1-6-unsat-4 50 76 2 3 20 0.88 7,236,702 5,195,870 2,386,893 3,873,236 1.87 1.34 0.62

m, the maximum variable domain size k, the maximum relation arity r, and the median
tightness ratio tr over all its relations, defined as the ratio of valid tuples in a (full)
relation table.

We build a bucket tree decomposition of the problem along a minfill ordering and
report the tree width w. We then compute and report our bounds twb, hwb, and satb.
Lastly we record the exact size of the AND/OR search graph, denoted #cm. To make
comparing values easier, we also report the ratios Qt = twb

#cm , Qh = hwb
#cm , and Qs =

satb
#cm . The results are shown in Table 1. We note that computation of twb and hwb is
performed within milliseconds, while satb can take up to three seconds for ssa-7552-
038 on our 2.66 GHz system (with 1000 samples generated in each cluster).

Bound Tightness. Going from twb to hwb, i.e., exploiting determinism, yields signif-
icantly tighter bounds across all instances, from, for instance, a 28% decrease on the
Pret instances or 18% on aim-50-1-6-sat-2 to several orders of magnitude on the BN
instances (which were generated with forced determinism and are thus amenable to our
method). In many cases the hwb bound is indeed quite tight when compared to #cm,
getting to within 10% on the Pret and some SSA instances. Overall, the quality of the
hwb bound seems to decrease with growing problem complexity. The current results
for satb are somewhat less impressive at this point, often being more than 50% smaller
than #cm – yet they can sometimes give a rough idea and, on top of that, set the stage
for future improvements.

Impact of Orderings. To investigate the power of our bounds in predicting good order-
ings, we processed the same problem instance 50 times along a randomized minfill or-
dering, each time computing twb and hwb as well as recording #cm. The results for two
instances are presented in Fig. 3. We find that hwb can provide valuable information: On
aim-50-1-6-sat-4 the twb bound can not distinguish between orderings with tree width
19, yet hwb captures the different #cm values rather accurately. On aim-50-1-6-sat-1,
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Fig. 3. Plots of the twb and hwb bounds versus the true search space size #cm on two problem
instances, each over 50 randomized minfill variable orderings. Also shown is the tree width w for
each ordering, which is plotted against a separate scale on the right.

some orderings yield a higher tree width of 19, yet have a smaller search space size
#cm, which is correctly indicated only by hwb.

4 Summary and Future Work

We have previously introduced a scheme that extends known methods for bounding the
size of the search space by taking determinism in the relation specification into account
[7]. In this work we expand upon this in four ways: We account for propagation of
determinism down the search tree by reconsidering and projecting relations, we develop
an approach for lower bounding search space size, we show empirically the applicability
to constraint networks, and we demonstrate the bounds’ ability to discriminate between
variable orderings. Our experimental results show that the upper bounds we obtain can
be quite tight and provide valuable information; the lower bounds, however, still leave
room for improvement at this point.

We believe our bounding scheme can be extended to optimization tasks by using the
cost function itself. By dynamically adapting the bounds throughout the search process,
we plan to allow for run time parameter updates. Finally, recent advances in sampling-
based counting should also allow us to improve the quality of the lower bounds.
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Abstract. We define a new heuristic that guides the application of cycle resolu-
tion (CR) in MaxSAT, and show that it produces better lower bounds than those
obtained by applying CR exhaustively as in Max-DPLL, and by applying CR in
a limited way when unit propagation detects a contradiction as in MaxSatz.

1 Introduction

The lower bound (LB) computation method implemented in modern branch and bound
MaxSAT solvers has two components: (i) the underestimation component, which de-
tects disjoint inconsistent subformulas (typically using unit propagation (UP) [1] or
unit propagation enhanced with failed literal detection [2]), and takes the number of de-
tected inconsistent subformulas as an underestimation of the LB; and (ii) the inference
component, which applies cost preserving inference rules that, in the best case, make
explicit a contradiction by deriving an empty clause which allows to increment the LB.

We analyze more deeply than before the impact of the cycle resolution (CR) infer-
ence rule on the performance of MaxSAT solvers. It is well-known that Max-DPLL [3]
applies CR exhaustively and does not combine its application with the underestimation
component, while MaxSatz [4] applies CR when the underestimation component de-
tects an inconsistent subformula via unit propagation which includes one particular unit
clause and the premises of CR. In this paper, we provide evidence that the exhaustive
application of CR is not the best option in general, and that combining its application
with an underestimation component incorporating failed literal detection may produce
better quality LBs. To better exploit the power of CR in MaxSAT solvers, we define a
new heuristic that guides the application of CR during failed literal detection. Experi-
ments on a new version of MaxSatz implementing this heuristic, called MaxSatzc, show
that MaxSatzc substantially speeds up MaxSatz.

2 Inference Rules

MaxSatz [4] incorporates the following rules (also called Rule 1, Rule 2, Rule 3, and
Rule 4 in this paper):

l1, l1 ∨ l2, l2 =⇒ , l1 ∨ l2 (1)

� This research was funded by MEC research projects TIN2006-15662-C02-02, TIN2007-
68005-C04-04, and CONSOLIDER CSD2007-0022, INGENIO 2010.
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l1, l̄1 ∨ l2, l̄2 ∨ l3, . . . , l̄k ∨ lk+1, l̄k+1 =⇒ , l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1

(2)

l1, l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3 =⇒ , l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3 (3)

l1, l̄1 ∨ l2, l̄2 ∨ l3, · · · , l̄k ∨ lk+1,
l̄k+1 ∨ lk+2, l̄k+1 ∨ lk+3, l̄k+2 ∨ l̄k+3

=⇒ , l1 ∨ l̄2, l2 ∨ l̄3, · · · , lk ∨ l̄k+1,
lk+1 ∨ l̄k+2 ∨ l̄k+3, l̄k+1 ∨ lk+2 ∨ lk+3

(4)
Max-DPLL [3] incorporates several rules for weighted MaxSAT, including chain

resolution (which is equivalent to Rule 2 in the unweighted case) and CR restricted to
3 variables, which is as follows in the unweighted case:

l̄1 ∨ l2
l̄1 ∨ l3
l̄2 ∨ l̄3

=⇒
l̄1

l1 ∨ l̄2 ∨ l̄3
l̄1 ∨ l2 ∨ l3

(5)

In the sequel, when we say CR we mean CR restricted to 3 variables. Rule 3 and Rule 4
in MaxSatz, and CR in Max-DPLL capture this special structure: l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3,
which we call cycle structure. Max-DPLL applies CR in an unlimited way: it replaces
every subset of three binary clauses matching the cycle structure with one unit clause
and two ternary clauses. MaxSatz applies CR in a limited way: it applies CR only when
the underestimation component detects a contradiction containing the cycle structure
by applying unit propagation.

3 CR and Failed Literal Detection

The next example shows that it is worth applying CR in scenarios not considered in
the version of MaxSatz used in the 2007 MaxSAT Evaluation, called MaxSatz-07 in
this paper. MaxSatz-07 computes underestimations using failed literal detection after
no more contradictions can be derived using unit propagation, but does not check if
a rule is applicable when a failed literal is detected. The applicability of rules is just
checked when unit propagation (without failed literals) derives a contradiction. So, CR
is applied only when unit propagation allows to apply Rule 3 or Rule 4. Assume that a
MaxSAT instance φ contains

x1 ∨ x2, x̄2 ∨ x3, x̄2 ∨ x4, x̄3 ∨ x̄4, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7

x8 ∨ x̄2, x8 ∨ x3, x8 ∨ x4, x̄8 ∨ x9, x̄8 ∨ x10, x̄8 ∨ x11, x̄9 ∨ x̄10 ∨ x̄11

Since there is no unit clause, Rule 3 and Rule 4 are not applied. Failed literal detection
just detects the inconsistent subformula in the first line ( branching on the variable x1).
However, if CR is applied to x̄2∨x3, x̄2∨x4, x̄3∨ x̄4, the underestimation component
detects 2 inconsistent subformulas (one branching on x1 and the other on x8). We would
like to highlight two features of this example: (i) the inconsistent subformula detected
when CR is applied after branching on x1 is smaller than when CR is not applied:
x1 ∨ x2, x̄2, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7 instead of x1 ∨ x2, x̄2 ∨ x3, x̄2 ∨
x4, x̄3 ∨ x̄4, x̄1 ∨ x5, x̄5 ∨ x6, x̄1 ∨ x7, x̄6 ∨ x̄7; and (ii) the added ternary clauses
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(x2∨x̄3∨x̄4 and x̄2∨x3∨x4) may contribute to detect further inconsistent subformulas:
When branching on x8, it detects the inconsistent subformula x8 ∨ x̄2, x8 ∨ x3, x8 ∨
x4, x̄8 ∨ x9, x̄8 ∨ x10, x̄8 ∨ x11, x̄9 ∨ x̄10 ∨ x̄11, x2 ∨ x̄3 ∨ x̄4, which contains one
of the added ternary clauses.

Proposition 1. Let l be a failed literal in φ (i.e., UP(φ∧l) derives an empty clause), and
let Sl be the set of clauses used to derive the contradiction in UP(φ ∧ l). If Sl contains
the cycle structure l̄1 ∨ l2, l̄1 ∨ l3, l̄2 ∨ l̄3, and S′

l is Sl after applying CR to the cycle
structure, then S′

l – {l1 ∨ l̄2 ∨ l̄3, l̄1 ∨ l2 ∨ l3} is inconsistent.

Proposition 1 states that if an inconsistent subformula containing the cycle structure is
detected using unit propagation enhanced with failed literal detection and CR is applied,
then the inconsistent subformula is smaller than the inconsistent subformula that can be
derived without applying CR and, moreover, CR adds two ternary clauses that can be
used to detect other inconsistent subformulas. This is the rationale behind the heuristic,
defined in the next section, for guiding the application of CR during the process of
detecting failed literals in the underestimation component.

4 A New Heuristic for Guiding the Application of CR

We have seen that CR can improve the lower bound if its application allows to reduce
the size of an inconsistent subformula and liberate two ternary clauses. We define now a
heuristic that guides the application of CR during the process of detecting failed literals
with the aim of capturing situations in which CR could be beneficial. This heuristic is
implemented in Algorithm 1, where occ2(l) is the number of occurrences of literal l
in binary clauses of φ, and Sl is an inconsistent subformula detected by applying unit
propagation to φ ∧ l.

Between the two literals of a variable x that are likely to be failed (since their sat-
isfaction results in at least two new unit clauses), Algorithm 1 detects first the literal l
with more occurrences in binary clauses. Note that l has less chances to be failed than
l̄ because its satisfaction produces fewer new unit clauses. If l is a failed literal and Sl

contains a cycle structure, CR is applied in Sl before deciding whether l̄ is failed. If l̄
is also failed, the inconsistent subformula Sl∪Sl̄ – {l, l̄} is transformed into a smaller
inconsistent subformula by applying CR in Sl, and two ternary clauses are liberated. If
l̄ is not a failed literal in the current node, we do not have an inconsistent subformula
that can be transformed using CR in Sl, but Sl is now smaller thanks to CR and will be
easier to redetect it in the subtree. Note that l̄ has higher chances to fail in the subtree
and to produce an inconsistent subformula transformed using CR.

On the other hand, if l is not failed, Algorithm 1 does not detect an inconsistent
subformula. It is not checked whether l̄ is failed, and CR is not applied to Sl̄ if l̄ is
failed, avoiding the application of CR that does not allow to transform an inconsistent
subformula.

With the aim of evaluating the impact of Algorithm 1 in the performance of MaxSatz,
we define the following solvers:

MaxSatz-07: Standard version of MaxSatz, implementing all MaxSatz inference rules,
and failed literal detection, besides UP, in the underestimation component.
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Algorithm 1. flAndCycle(φ, x), combining CR and failed literal detection
Input: A MaxSAT instance φ and a variable x such that occ2(x)≥ 2 and occ2(x̄)≥ 2
Output: φ in which CR is possibly applied, and an underestimation
begin1

if occ2(x)>occ2(x̄) then l←−x; else l←−x̄;2

underestimation ←− 0;
if UP(φ ∧ l) derives a contradiction then

apply CR in Sl if Sl contains a cycle structure;3

if UP(φ ∧ l̄) derives a contradiction then
apply CR in Sl̄ if Sl̄ contains a cycle structure;4

underestimation ←− 1;

return new φ and underestimation5

end6

MaxSatz: Optimized version of MaxSatz-07. The optimizations make MaxSatz sub-
stantially faster for Max-2SAT, but slightly slower for Max-3SAT when the clauses-to-
variables ratio is small. All the following solvers are implemented on top of MaxSatz.

MaxSatzc: The failed literal detection of MaxSatz is replaced by the following pro-
cedure: for every variable x such that occ2(x)≥ 2 and occ2(x̄)≥ 2, call Algorithm 1.
Compared with MaxSatz, after detecting failed literals l and l̄, and incrementing the
underestimation by 1, the inconsistent subformula Sl∪Sl̄ – {l, l̄} is transformed by ap-
plying CR, so that MaxSatzc has additional clauses for detecting other inconsistencies.

MaxSatzp
c: MaxSatzc but applying CR exhaustively at the root node as a preprocessing.

For instances without binary clauses, MaxSatzp
c is simply MaxSatzc.

MaxSatzp: MaxSatz but applying CR exhaustively at the root node as a preprocessing.
For instances without binary clauses, MaxSatzp is simply MaxSatz.

MaxSatzc∗: MaxSatz but applying CR exhaustively at each node after applying UP
and the inference rules (Rule 1, Rule 2, Rule 3, and Rule 4), and before applying failed
literal detection.

The exhaustive applications of CR in MaxSatzc∗ and in the preprocessing of MaxSatzp
c

and MaxSatzp are not combined with failed literal detection. We do not know a pri-
ori whether they allow to transform an inconsistent subformula. Their comparison with
MaxSatzc will allow to see the effectiveness of CR combined with failed literal detection
to transform inconsistent subformulas.

5 Experimental Results and Analysis

We compared the different versions of MaxSatz —on a Linux Cluster where the nodes
have a 2GHz AMD Opteron processor with 1Gb of RAM— using sets of 100 random
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Fig. 1. Random Max-2SAT

Max-2SAT instances with 120 variables; the number of clauses ranged from 1500 to
1900. The results are shown in Figure 1: mean time needed to solve an instance of the
set (top plot), mean number of CR applications without counting the applications of
Rule 3 and Rule 4 (bottom left), and mean search tree size (bottom right).

It is quite easy to detect an inconsistent subformula in a Max-2SAT instance us-
ing unit propagation or failed literal detection, especially when the clauses-to-variables
ratio is high. Since a cycle structure implies a failed literal, and its complementary
literal easily fails during search, most cycle structures are likely contained in an in-
consistent subformula detected using failed literal detection, explaining the behaviour
of the exhaustive applications of CR in the preprocessing of MaxSatzp

c and MaxSatzp

for random Max-2SAT, since most applications of CR probably allow to transform an
inconsistent subformula. Nevertheless, MaxSatzc, with guided CR applications aiming
at transforming inconsistent subformulas, is always the best solver in terms of runtime:
It is 5.4 times faster than MaxSatz for the hardest instances (1900 clauses). Notice that
MaxSatz is substantially faster than MaxSatz-07 on Max-2SAT.

Additional experiments on Max-3SAT and Max-CUT instances, and on the instances
from the 2007 MaxSAT Evaluation (not included here for lack of space) also pro-
vide empirical evidence that, in general, MaxSatzc outperforms the rest of solvers,
and applying CR exhaustively is the worst alternative, making MaxSatzc∗ slower than
MaxSatz for Max-3SAT.
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Abstract. Constraint programming often involves global constraints,
for which various custom filtering algorithms have been published. This
work presents a semi-automatic generation of CHR solvers for the subset
of global constraints defineable by specific automata. The generation is
based on a constraint logic program modelling an automaton and an im-
proved version of the Prim-Miner algorithm. The solvers only need to be
generated once and achieve arc-consistency for over 40 global constraints.

1 Introduction

Global constraints are a combination of multiple constraints in order to improve
filtering on the domains of involved variables. While it is common knowledge,
that specialized filtering algorithms on global constraints achieve better domain
pruning than generic approaches, the development and implementation of such
algorithms requires a lot of effort. Thus, in [1] a generic method for deriving
filtering algorithms from special checker automata is introduced.

Constraint Handling Rules (CHR) [2] is a multi-headed, guarded, and con-
current constraint programming language. CHR was designed for writing con-
straint solvers and is increasingly being used as a general-purpose programming
language. However, there is no direct support for global constraints available in
CHR so far.

The aim of this work is to adapt the results from [1] in order to generate
CHR solvers for global constraints. To this end, we make use of the Prim-Miner
algorithm proposed in [3] to generate rules from a constraint logic program
(CLP). The necessary CLP is automatically created from the description of the
automaton corresponding to a global constraint, as given by the global constraint
catalog (GCC) [4,5]. This work presents a refined version of the Prim-Miner
algorithm that adapts it to the problem at hand, which results in a significant
improvement of runtime complexity.

2 Preliminaries

2.1 Automata for Global Constraints

In [1] automata for checking if a global constraint holds are introduced. The
underlying idea is to compile a list of signature arguments from the arguments
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of the global constraint and use this list to iterate through the automaton. These
automata can use counters which are initialized to a value in the start state and
can be modified at each transition. Additionally, the final state specifies a final
value which has to hold for the counter in order for the global constraint to hold.
We use M = {1, . . . , |M|} for the set of transitions of an automaton.

Example 1. The among (N, [X1, . . . , Xk], V ) constraint holds if exactly N vari-
ables from the set of variables X1, . . . , Xk take a value in the set V . The cor-
responding automaton consists of two states. In the first state the value of the
current variable Xi is checked for inclusion in the set V and a counter is incre-
mented in that case. The second state is the final state where the final counter
value is compared to N .

[1] further describes an arc-consistent filtering algorithm based on these au-
tomata and arc-consistent solvers for the ψ constraints as well as φ constraints,
which are used to encode the transitions. In this work we generate CHR solvers
for those constraints, which in combination with rules generating the necessary
ψ and φ constraints allow arc-consistent filtering for global constraints. Note,
however, that the arc-consistency result only holds for automata which do not
involve counters. In all other cases the filtering algorithm and therefore the gen-
erated CHR solvers can still be used, but may not achieve arc-consistent filtering.

3 Semi-automatic Solver Generation

To generate a CHR solver for a global constraint, first the automaton definition
is extracted from the global constraint catalog [5]. Then CHR rules for creating
signature arguments, ψ and φ constraints are written, after which the solvers
for ψ constraints and for φ constraints are generated. Optionally, the generated
ruleset can be optimized in a post-processing step. The following sections present
these steps in more detail.

3.1 Generation of ψ and φ Constraints

For the filtering algorithm proposed in [1] the generation of ψ and φ constraints
for the automaton is required. Note that this step cannot be fully automated,
as the signature arguments depend on the specific global constraint for which
to generate a solver. In some cases, however, the generation of these constraints
can be done in a canonical way as detailed in [6].

3.2 Generation of Solver for ψ Constraint

The generation of a solver for the ψ constraints assumes that all transition con-
straints Ci and their negations are available as arc-consistent built-in constraints.
We also require that for all subsets of these constraints their union is available
as a arc-consistent built-in constraint. This directly leads to the creation of rules
of the following kind ∀i ∈M : ψ(S,Δ) ⇒ Δ �∈ Ci | S ∈M \ {i}.
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Intuitively, these rules make use of each transition i corresponding to a tran-
sition constraint Ci and state the fact that if this constraint does not hold the
transition cannot be made. Thus, the corresponding identifier for the transition
is removed from the possible transitions.

In order to achieve arc-consistency, however, further rules are required. Con-
sidering a domain restriction for D(S) = {i1, . . . , ik} with i1, . . . , i|M| being a
permutation of M and 0 < k ≤ |M|, a constraint Ci1 ∪ . . . ∪ Cik

can be propa-
gated: ψ(S,Δ)∧S ∈ {i1, . . . , ik} ⇒ Δ ∈ (Ci1 ∪ . . .∪Cik

) Such rules are inserted
for D(S) = {i1, . . . , ik} being any of the possible subsets ofM with the exception
of ∅.

Assuming an automaton with |M| transition edges where each edge is labeled
with a different constraint, O(|M|) rules of the first kind and O(2|M|) rules
of the second kind are added. Using these O(2|M|) rules we have the following
result:

Theorem 1. The generated solver achieves arc-consistency for the ψ constraint.

Example 2. The generated solver for the ψ constraint of the among global con-
straint consists of these rules:

1 ψ(S, Δ, V ) ⇒ Δ ∈ V | S ∈ {0, 1} \ {0}
2 ψ(S, Δ, V ) ⇒ Δ 
∈ V | S ∈ {0, 1} \ {1}
3

4 ψ(S, Δ, V ) ∧ S ∈ {0} ⇒ Δ 
∈ V

5 ψ(S, Δ, V ) ∧ S ∈ {1} ⇒ Δ ∈ V

6 ψ(S, Δ, V ) ∧ S ∈ {0, 1} ⇒ #

3.3 Generation of Solver for φ Constraint

The solver for the φ constraint is based on the Prim-Miner algorithm. The basic
idea is to encode the automaton in a constraint logic program P for the algorithm
to work with and use all possible domains as candidate inputs.

Generation of CLP. Creating the CLP P for the φ constraints is a straightfor-
ward encoding of the automaton’s transitions into CLP rules [6]. The generation
of these CLPs can be fully automated given the definition of the automaton.

A check performed by the Prim-Miner algorithm against such a CLP consists
of a backtracking search. If the given domain restrictions are consistent with one
of the automaton’s transitions the check succeeds and the check fails if the given
domain restrictions do not allow for any of the transitions to fire.

Solver Generation. The generation of the solver for the φ constraint is per-
formed by a modified version of the Prim-Miner algorithm, which we call the GC-
Prim-Miner algorithm. It uses the previously generated CLP P against which to
test goals. The resulting ruleset is a CHR solver for the φ constraint providing
arc-consistency for global constraints whose automaton is free of counters:
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Theorem 2. For automata which do not involve counters the resulting rule set
achieves arc-consistency for φ.

As the runtime complexity of the direct application of the Prim-Miner algorithm
is insufficient we can make use of the specifics of our application to improve it.
By selecting the inputs in an advantageous way we can ensure, that the resulting
ruleset still possesses the same propagation power, while at the same time dras-
tically reducing the complexity of the algorithm. The details of this modification
can be found in [6], along with the deduction of the runtime complexity now
being O(23n+|M| + 22n+2|M|), whereas using the original Prim-Miner algorithm
gives a complexity of O(22n ∗ 22|M|

).

3.4 Post-processing of Rule Set

After generating a set of CHR rules with the GC-Prim-Miner algorithm the
resulting rule set can be reduced. A large number of the generated rules is
redundant, therefore, an additional post-processing of the rule set leads to a
more concise solver.

In order to find redundant rules for removal, the results about operational
equivalence of CHR programs in [7] can be applied. [7] presents a decidable,
sufficient, and necessary syntactic condition to determine operational equivalence
of CHR programs that are terminating and confluent [8]. We can apply this
condition by removing each rule from the generated rule set successively, and
check if the complete rule set and the rule set without that rule are operationally
equivalent. If they are, the selected rule is redundant and can be removed.

Example 3. Using the GC-Prim-Miner algorithm on the CLP for the φ con-
straint for the among automaton and removing all redundant rules generates the
following solver:

1 φ(Q, K, S, Q′, K′) ⇒ Q ∈ {s}
2 φ(Q, K, S, Q′, K′) ∧Q′ ∈ {t} ⇒ Q ∈ {s} ∧ S ∈ {$}
3 φ(Q, K, S, Q′, K′) ∧Q′ ∈ {s} ⇒ Q ∈ {s} ∧ S ∈ {0, 1}
4 φ(Q, K, S, Q′, K′) ∧ S ∈ {$} ⇒ Q ∈ {s} ∧Q′ ∈ {t}
5 φ(Q, K, S, Q′, K′) ∧ S ∈ {0} ⇒ Q ∈ {s} ∧Q′ ∈ {s}
6 φ(Q, K, S, Q′, K′) ∧ S ∈ {1} ⇒ Q ∈ {s} ∧Q′ ∈ {s}
7 φ(Q, K, S, Q′, K′) ∧ S ∈ {0, 1} ⇒ Q ∈ {s} ∧Q′ ∈ {s}

4 Conclusion

In this paper we have shown a way to semi-automatically generate CHR solvers
for the set of automata-describable global constraints. The process is not fully
automated due to the generation of signature arguments and because signature
constraints are not available in a suitable format in the global constraint catalog.

We have shown that by the use of the GC-Prim-Miner algorithm, and given the
availability of arc-consistent built-in constraint solvers for transition constraints,
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the generated CHR solvers achieve arc-consistency in those cases the automata-
based filtering proposed in [1] allows for it. We have further shown, that the
generality of the Prim-Miner algorithm can cause a runtime complexity problem,
which can be alleviated by an order of magnitude if specialized for the problem
at hand.

For future work the problems associated with the ψ constraint solver [6] need
to be tackled. As there are few semantically different signature constraints used
in the various automata it might be possible to develop arc-consistent solvers for
these, including their negations and unions. Together with a way to automati-
cally extract the signature constraints from the definitions given in the global
constraint catalog this would allow for a fully automated generation of the CHR
solvers.
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Abstract. In this paper, a stochastic local search (SLS) is studied for
the optimal winner determination problem (WDP) in combinatorial auc-
tions. Experiments on various realistic instances of the considered prob-
lem are performed to show and compare the effectiveness of our approach.
The computational experiments show that the SLS provides competitive
results and finds solutions of a higher quality than Tabu search and
Casanova methods.

1 Introduction

The combinatorial auction (CA) is the mechanism that allows agents (bidders)
to bid on bundles of items (goods). It allows the bidders to express both com-
plementarity1 and substitutability 2 of their preferences within bids. The com-
binatorial auction avoids the risk to obtain incomplete bundles since the seller
allows bids on bundles of items.

In this paper, we are interested in the optimal winner determination problem
(WDP) in combinatorial auctions. The WDP is a complex problem and it is
equivalent to a weighted set packing problem which is NP-Complete [5].

The optimal winner determination problem in combinatorial auctions can be
stated as follows:

Let us consider a set of m items, M= {1, 2 . . . m} to be auctioned and a set
of n bids, B= {B1, B2 . . . Bn}. A bid Bj is a tuple < Sj , Pj > where Sj is a set
of items, and Pj is the price of Bj (Pj 5 0). Further, consider a matrix am×n

having m rows and n columns where aij = 1 iff the item i belongs to Sj , aij = 0,
otherwise. Finally the decision variables are defined as follows: xj = 1 iff the bid
Bj is accepted (a winning bid), and xj = 0 otherwise (a losing bid).

1 Complementarity between items means that the value assigned to a collection of
goods is greater than the sum of the values assigned to its individual’s elements.

2 Substitutability means that the value assigned to a collection of goods is lower than
the sum of the value attached to its individual’s elements.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 593–597, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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The WDP is the problem of finding winning bids that maximize the auction-
eer’s revenue under the constraint that each item can be allocated to at most
one bidder. The WDP can be modeled as the following integer program [2]:

Maximize
n∑

j=1

Pj .xj (1)

Under the constraints :
n∑

j=1

aijxj ≤ 1 i ∈ {1 . . .m} (2)

xj ∈ {0, 1} (3)

The objective function (1) maximizes the auctioneer’s revenue which is equal to
the sum of the prices of the winning bids. The constraints (2) express the fact
that each item can be allocated to at most one bidder. Due to the free disposal
assumption, some items could be left uncovered.

Several exact algorithms to search optimal solutions for the WDP problem
have been developed. Among them, we cite : the iterative deepening A∗, the
Branch-on-Items (BoI), the Branch on Bids (BoB), and the Combinatorial Auc-
tions BoB (CABoB)[6]. On other hand, different inexact methods are studied
for the WDP. Among them Casanova [3] and the hybrid simulated annealing [2].
For more details about auctions and the WDP, the reader can refer to [6].

In this paper, we develop a SLS algorithm for the WDP. The proposed algo-
rithm makes use of the random key encoding (RK) introduced by [1] and used
mainly for ordering and scheduling problems. The RK encoding mechanism per-
mits to generate and manipulate a feasible solution. Therefore, no additional
penalties for invalid solutions are necessary. We note that bids are in conflict if
they share an item. To maintain a feasible allocation along the search process, we
have defined a conflict graph where bids are vertices and edges connect bids that
cannot be accepted together. This graph is useful for removing any conflicting
bids occurring in the current allocations when new bids are added.

2 Proposed Approach

In order to explore the most important part of the whole search space for at-
taining good solutions, we propose a search technique (SLS). A solution of the
WDP problem can be defined as a combination of bids satisfying the target goals
described in the objective function. We use an allocation A(a Vector with a vari-
able length). Each of whose components Ai receives the winning bid number.
The initial solution of the SLS is generated randomly according to the Random
Key Encoding that operates as follows: we generate n real numbers sequenced
by an r order where n is the number of bids and the r order is a permutation of
keys values. To generate an allocation, first we select the bid having the highest
order value to include in the allocation. Secondly, the bid having the second-
highest order value is accepted if its acceptance with accepted bid currently in
the allocation does not create any conflict, otherwise it is discarded. The process
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is repeated until having examined the n bids. We obtain a subset of bids that
can be a feasible solution to the WDP.

The proposed SLS starts with an initial allocation A generated randomly
according to the Rk encoding. Then, it performs a certain number of local steps
that consists in selecting a bid to be added in the current allocation A and in
removing all conflicting bids that can be occured in the current allocation. At
each step, the bid to be accepted is selected according to one of the two following
criteria:

1. The first criterion (step1 of Algorithm 1) consists in choosing the bid in a
random way with a fixed probability wp > 0.

2. The second criterion (step2) consists in choosing the best bid (the one max-
imizing the auctioneer’s revenue when it is selected) to be accepted.

The process is repeated for a certain number of iterations called maxiter fixed
empirically. The SLS algorithm is sketched in Algorithm 1.

Algorithm 1. The SLS method
Require: a WDP formula, an allocation A, maxiter, wp
Ensure: an improved allocation A
1: for I = 1 to maxiter do
2: r ⇐ random number between 0 and 1
3: if r ≺ wp then
4: bid = pick a random bid (*Step 1)
5: else
6: bid = pick a best bid; (*Step 2)
7: end if
8: A= A with bid included into it;
9: remove from A any conflicting bids;

10: end for
return the best allocation found.

3 Computational Experiments

This section gives some preliminary results. The C programming language is
used to implement our SLS algorithm for the WDP. The source codes are run
on a Pentium- IV 2.8 GHz, 1GB of RAM.

To measure the performance of algorithms for the WDP, Lau and Goh pro-
vided benchmarks of various sizes consisting of up to 1500 items and 1500 bids
[4]. These data sets allow for several factors such as a pricing factor, a bidder
preference factor and a fairness factor in distributing items among bids.

In this paper, we use the realistic data pre-generated by [4] for which the
CPLEX was unable to find the optimal solution in reasonable time [2]. The pre-
generated data set includes 500 instances and it is available at the Zhuyi’s home
page 3. These instances can be divided into 5 different groups of problems where
each group contains 100 instances.
3 http://logistics.ust.hk/ zhuyi/instance.zip
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3.1 Comparison with Casanova Local Search, Tabu Search and
SAGII

To show the effectiveness of our approach, we compared the SLS with a tabu
search algorithm (TS) which we have implemented. A comparative study with
some algorithms of the state of the art concerning the WDP (Casanova and
SAGII [2]) is given also in this section.

Tables 1 and 2 summarize the results for the 500 test instances with the 5
different problem sizes. The column μ corresponds to the arithmetic average
solution of the 100 instances in each group, the column time corresponds to the
average time in second. δ1 is given by the expression (μSLS- μCasanova)/ μSLS .
δ2 is (μSLS - μTS)/ μSLS and δ3 equals to (μSLS - μSAGII)/ μSLS.).

Table 1. Comparison of SLS with Casanova and TS

Groups SLS Casanova TS
of problems time μ time μ δ1% time μ δ2%

REL-500-1000 22.35 64216.14 119.46 37053.78 42,30 91,07 65286,94 -164
REL-1000-500 5.91 72206.07 57.74 51248.79 40,89 25,84 71985,34 0.30
REL-1000-1000 14.19 82120.31 111.42 51990.91 36,68 104,30 81633,63 0.60
REL-1000-1500 14.97 79065.08 168.24 56406.74 28,65 223,37 77931,41 1.43
REL-1500-1500 16.47 98877.07 165.92 65661.03 33,59 175,68 97824,64 1.06

Table 1 shows that SLS always gives a 28 to 43 percent improvement in results in
comparison to Casanova. The SLS performs better than Casanova. It finds better
solutions in shorter time. The difference between SLS and Casanova is even greater.
Table 1 shows also good performances of the SLS in solving the WDP compared to
TS.

The SLS and TS find good quality solutions for almost all the benchmarks efficiently.
They are definitely better than the Casanova that fails to find good solutions for all
the instances. It can be seen that the SLS is the fastest algorithm. However, for the
REL 500-1000 group of problems, TS outperforms SLS in term of solutions quality.

Table 2. SLS vs. SAGII

Groups SLS SAGII
of problems time μ time μ δ3%

REL-500-1000 22.35 64216.14 38.06 64922.02 -1.08
REL-1000-500 5.91 72206.07 24.46 73922.10 -2.32
REL-1000-1000 14.19 82120.31 45.37 83728.34 -1.92
REL-1000-1500 14.97 79065.08 68.82 82651.49 -4.33
REL-1500-1500 16.47 98877.07 91.78 101739.64 -2.81

Table 2 compares SLS and SAGII. The SLS produces quite similare results to SAGII
in spite the sophisticate Branch-and-Bound and preprocessing tools used in SAGII.
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It should be signaled that the SLS method and SAGII are not directly com-
parable, since the SLS does not use the pre-processor that was used in [2]. This
pre-processor permits to improve on time and reduces mainly the required search
effort. Our aim is to compute the power of the SLS comparing to other methods
in particular local search family methods. However adding such pre-processor on
SLS should improve it and permits to solve problems in shorter time.

4 Conclusion

A stochastic local search for the winner determination problem (WDP) is pro-
posed in this paper with its different components. The proposed SLS method
uses a random key encoding mechanism to generate a feasible combination of
bids. The SLS method is evaluated on several realistic instances and compared
with TS, SGAII and Casanova. The experimental results are very encouraging.
To improve our algorithm on quality, new features will be integrated into the
proposed algorithm such as the combination of the SLS and a Branch-and-Bound
exact method. Our purpose is to find a good compromise when combining exact
approaches with inexact ones. To improve on time, preprocessors will be added
to exclude bids that can lead to suboptimal solutions.
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Abstract. Finding feasible points for which the proof succeeds is a crit-
ical issue in safe Branch and Bound algorithms which handle continuous
problems. In this paper, we introduce a new strategy to compute very
accurate approximations of feasible points. This strategy takes advan-
tage of the Newton method for under-constrained systems of equations
and inequalities. More precisely, it exploits the optimal solution of a lin-
ear relaxation of the problem to compute efficiently a promising upper
bound. First experiments on the Coconuts benchmarks demonstrate that
this approach is very effective.

1 Introduction

Optimization problems are a challenge for CP in finite domains; they are also
a big challenge for CP on continuous domains. The point is that CP solvers
are much slower than classical (non-safe) mathematical methods on nonlinear
constraint problems as soon as we consider optimization problems. The tech-
niques introduced in this paper try to boost constraints techniques on these
problems and thus, to reduce the gap between efficient but unsafe systems like
BARON1, and the slow but safe constraint based approaches. We consider here
the global optimization problem P to minimize an objective function under non-
linear equalities and inequalities,

minimize f(x)
subject to gi(x) = 0, i ∈ {1, .., k}

hj(x) ≤ 0, j ∈ {1, .., m}
(1)

with x ∈ x, f : IRn → IR, gi : IRn → IR and hj : IRn → IR; Functions f , gi and
hj are nonlinear and continuously differentiable on some vector x of intervals

� An extented version of this paper is available at:
http://www.i3s.unice.fr/%7Emh/RR/2008/RR-08.11-A.GOLDSZTEJN.pdf

1 See http://www.andrew.cmu.edu/user/ns1b/baron/baron.html
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of IR. For convenience, in the sequel, g(x) (resp. h(x)) will denote the vector of
gi(x) (resp. hj(x)) functions.

The difficulties in such global optimization problems come mainly from the
fact that many local minimizers may exist but only few of them are global min-
imizers [3]. Moreover, the feasible region may be disconnected. Thus, finding
feasible points is a critical issue in safe Branch and Bound algorithms for con-
tinuous global optimization. Standard strategies use local search techniques to
provide a reasonable approximation of an upper bound and try to prove that a
feasible solution actually exists within the box around the guessed global opti-
mum. Practically, finding a guessed point for which the proof succeeds is often
a very costly process.

In this paper, we introduce a new strategy to compute very accurate approxi-
mations of feasible points. This strategy takes advantage of the Newton method
for under-constrained systems of equations and inequalities. More precisely, this
procedure exploits the optimal solution of a linear relaxation of the problem
to compute efficiently a promising upper bound. First experiments on the Co-
conuts benchmarks demonstrate that the combination of this procedure with a
safe Branch and Bound algorithm drastically improves the performances.

2 The Branch and Bound Schema

The algorithm (see Algorithm 1) we describe here is derived from the well known
Branch and Bound schema introduced by Horst and Tuy for finding a global min-
imizer. Interval analysis techniques are used to ensure rigorous and safe com-
putations whereas constraint programming techniques are used to improve the
reduction of the feasible space.

Algorithm 1 computes enclosers for minimizers and safe bounds of the global
minimum value within an initial box x. Algorithm 1 maintains two lists : a list
L of boxes to be processed and a list S of proven feasible boxes. It provides a
rigorous encloser [L, U ] of the global optimum with respect to a tolerance ε.

Algorithm 1 starts with UpperBounding(x, nbStarts) which computes a set
of feasible boxes by calling a local search with nbStarts starting points and a
proof procedure.

The box around the local solution is added to S if it is proved to contain a
feasible point. At this stage, if the box x′ is empty then, either it does not contain
any feasible point or its lower bound fx′ is greater than the current upper bound
U . If x′ is not empty, the box is split along one of the variables2 of the problem.

In the main loop, algorithm 1 selects the box with the lowest lower bound
of the objective function. The Prune function applies filtering techniques to
reduce the size of the box x′. In the framework we have implemented, Prune just
uses a 2B-filtering algorithm [2]. Then, LowerBound(x′) computes a rigorous
lower bound fx′ using a linear programming relaxation of the initial problem.
Actually, function LowerBound is based on the linearization techniques of the
Quad-framework [1]. LowerBound computes a safe minimizer fx′ thanks to the
techniques introduced by Neumaier et al.
2 Various heuristics are used to select the variable the domain of which has to be split.
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Algorithm 1. Branch and Bound algorithm
Function BB(IN x, ε; OUT S , [L, U ])

% S : set of proven feasible points
% fx denotes the set of possible values for f in x
% nbStarts: number of starting points in the first upper-bounding
L←{x}; (L, U)←(−∞, +∞); S←UpperBounding(x′, nbStarts);
while w([L, U ]) > ε do

x′←x′′ such that fx′′ = min{fx′′ : x′′ ∈ L}; L←L\x′; fx′←min(fx′ , U);
x′←Prune(x′); fx′←LowerBound(x′); S←S ∪ UpperBounding(x′, 1);
if x′ �= ∅ then (x′

1,x
′
2)←Split(x′); L←L ∪ {x′

1,x
′
2};

if L = ∅ then (L, U)←(+∞,−∞)

else (L, U)←(min{fx′′ : x′′ ∈ L}, min{fx′′ : x′′ ∈ S})
endwhile

Algorithm 1 maintains the lowest lower bound L of the remaining boxes L and
the lowest upper bound U of proven feasible boxes. The algorithm terminates
when the space between U and L becomes smaller than the given tolerance ε.

The Upper-bounding step (see Algorithm 2) performs a multistart strategy
where a set of nbStarts starting points are provided to a local optimization
solver. The solutions computed by the local solver are then given to a function
InflateAndProve which uses an existence proof procedure based on the Borsuk
test. However, the proof procedure may fail to prove the existence of a feasible
point within box xp. The most common source of failure is that the “guess”
provided by the local search lies too far from the feasible region.

3 A New Upper Bounding Strategy

The upper bounding procedure described in the previous section relies on a local
search to provide a “guessed” feasible point lying in the neighborhood of a local
optima. However, the effects of floating point computation on the provided local
optima are hard to predict. As a result, the local optima might lie outside the
feasible region and the proof procedure might fail to build a proven box around
this point.

We propose here a new upper bounding strategy which attempts to take ad-
vantage of the solution of a linear outer approximation of the problem. The lower
bound process uses such an approximation to compute a safe lower bound of P .
When the LP is solved, a solution xLP is always computed and, thus, available
for free. This solution being an optimal solution of an outer approximation of P ,
it lies outside the feasible region. Thus, xLP is not a feasible point. Nevertheless,
xLP may be a good starting point to consider for the following reasons:

– At each iteration, the branch and bound process splits the domain of the vari-
ables. The smaller the box is, the nearest xLP is from the actual optima of P .

– The proof process inflates a box around the initial guess. This process may
compensate the effect of the distance of xLP from the feasible region.
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Algorithm 2. Upper bounding build from the LP optimal solution x∗
LP

Function UpperBounding(IN x, x∗
LP , nbStarts; OUT S ′)

% S ′: list of proven feasible boxes; nbStarts: number of starting points
% x∗

LP : the optimal solution of the LP relaxation of P(x)
S ′ ← ∅; x∗

corr ←FeasibilityCorrection(x∗
LP ); xp ←InflateAndProve(x∗

corr, x);
if xp �= ∅ then S ′ ←S ′ ∪ xp

return S ′

However, while xLP converges to a feasible point, the process might be quite
slow. To speed up the upper bounding process, we have introduced a light
weight, though efficient, procedure which compute a feasible point from a point
lying in the neighborhood of the feasible region. This procedure which is called
FeasibilityCorrection will be detailed in the next subsection.

Algorithm 2 describes how an upper bound may be build from the solution
of the linear problem used in the lower bounding procedure.

4 Computing Pseudo-feasible Points

This section introduces an adaptation of the Newton method to under-constrained
systems of equations and inequalities which provides very accurate approxima-
tions of feasible points at a low computational cost. When the system of equa-
tions g(x) = 0 is under-constrained there is a manifold of solutions. l(x), the
linear approximation is still valid in this situation, but the linear system of equa-
tions l(x) = 0 is now under-constrained, and has therefore an affine space of so-
lutions. So we have to choose a solution x(1) of the linearized equation l(x) = 0
among the affine space of solutions. As x(0) is supposed to be an approximate so-
lution of g(x) = 0, the best choice is certainly the solution of l(x) = 0 which is
the closest to x(0). This solution can easily be computed with the Moore-Penrose
inverse: x(1) = x(0) − A+

g (x(0))g(x(0)), where A+
g ∈ IRn×m is the Moore-Penrose

inverse of Ag ∈ IRm×n, the solution of the linearized equation which minimizes
||x(1)−x(0)||. Applying previous relation recursively leads to a sequence of vectors
which converges to a solution close to the initial approximation, provided that this
latter is accurate enough.

The Moore-Penrose inverse can be computed in several ways: a singular value
decomposition can be used, or in the case where Ag has full row rank (which is
the case for Ag(x(0)) if x(0) is non-singular) the Moore-Penrose inverse can be
computed using A+

g = AT
g (AgA

T
g )−1.

Inequality constraints are changed to equalities by introducing slack variables:
hj(x) ≤ 0 ⇐⇒ hj(x) = −s2

i . So the Newton method for under-constrained
systems of equations can be applied.
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5 Experiments

In this Section, we comment the results of the experiments with our new upper
bounding strategy on a significant set of benchmarks. Detailled results can be
found in the resarch report ISRN I3S/RR-2008-11-FR3). All the benchmarks
come from the collection of benchmarks of the Coconuts project4. We have se-
lected 35 benchmarks where Icos succeeds to find the global minimum while
relying on an unsafe local search. We did compare our new upper bounding
strategy with the following upper bounding strategies:

S1: This strategy directly uses the guess from the local search, i.e. this strategy
uses a simplified version of algorithm 1 where the proof procedure has been
dropped. As a consequence, it does not suffer from the difficulty to prove
the existence of a feasible point. However, this strategy is unsafe and may
produce wrong results.

S2: This strategy attempts to prove the existence of a feasible point within a
box build around the local search guess. Here, all provided solutions are safe
and the solving process is rigorous.

S3: Our upper bounding strategy where the upper bounding relies on the optimal
solution of the problem linear relaxation to build a box proved to hold a
feasible point. A call to the correction procedure attempts to compensate
the effect of the outer approximation.

S4: This strategy applies the correction procedure to the output of the local
search (to improve the approximate solution given by a local search).

S5: This strategy mainly differs from S3 by the fact that it does not call the
correction procedure

S3, our new upper bounding strategy is the best strategy: 31 benchmarks are
now solved within the 30s time out; moreover, almost all benchmarks are solved
in much less time and with a greater amount of proven solutions. This new
strategy improves drastically the performance of the upper bounding procedure
and competes well with a local search.

Current work aims at improving and generalizing this framework and its im-
plementation.
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Abstract. The problem of finding an optimal solution in a constraint satisfaction
problem with preferences has attracted a lot of researchers in Artificial Intelli-
gence in general, and in the constraint programming community in particular. As
a consequence, several approaches for expressing and reasoning about satisfiabil-
ity problems with preferences have been proposed, and viable solutions exist for
finding one optimal solution. However, in many cases, it is not desirable to find
just one solution. Indeed, it might be desirable to be able to compute more, and
possibly all, optimal solutions, e.g., for comparatively evaluate them on the basis
of other criteria not captured by the preferences.

In this paper we present a procedure for computing all optimal solutions of a
satisfiability problem with preferences. The procedure is guaranteed to compute
all and only the optimal solutions, i.e., models which are not optimal are not even
computed.

1 Introduction

The problem of finding an optimal solution in a constraint satisfaction problem with
qualitative preferences has attracted a lot of researchers in Artificial Intelligence in gen-
eral, and in the constraint programming community in particular.

As a consequence, several approaches for expressing and reasoning about satisfia-
bility (SAT) problems with preferences have been proposed, and viable solutions exist
for finding one optimal solution, see, e.g., [1,2]. However, in many cases, it is not de-
sirable to find just one solution. Indeed, it might be desirable to be able to compute
more, and possibly all, optimal solutions, e.g., for comparatively evaluate them on the
basis of other criteria not captured by the preferences. As an example of the practical
importance of the issue, from the ILOG web page1: ”ILOG CPLEX 11 introduces the
solution pool feature, which allows users to consider multiple solutions to a MIP model.
In practice, a single, even optimal, solution is not always sufficient, because every as-
pect of a problem cannot always be perfectly captured in a MIP model. The solution
pool feature offers a mechanism for exploring the effects of subjective preferences on
the solution space without enforcing them as constraints in the model”.

A simple approach for finding all optimal solutions consists in first enumerating all
(non necessarily optimal) solutions, and then eliminating a solution μ if there exists
another solution μ′ which is “preferred” to μ. The first obvious drawback of this ap-
proach is that it requires the computation of all solutions, even the non optimal ones.

1 http://www.ilog.com/products/cplex/news/whatsnew.cfm
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The second drawback is that each solution has to be stored and compared with the oth-
ers. In [3], in the context of CP-nets, the authors noticed that by imposing an ordering
on the splitting heuristic used for searching solutions, it is possible to mitigate the sec-
ond drawback by comparing a solution only with the previously generated ones, which
are already guaranteed to be optimal: In this way, only the so far generated optimal so-
lutions need to be stored. Still, the number of optimal solutions can be exponential and
all the solutions (even the non optimal ones) are computed.

In this paper we present a procedure for computing all optimal solutions of a SAT
problem with qualitative preferences which is guaranteed to compute all and only the
optimal solutions, i.e., models which are not optimal are not even computed. In our
setting, a qualitative preference is a partially ordered set of literals S,≺: S is the set
of literals that we would like to have satisfied, and ≺ is partial order on S expressing
the relative importance of fulfilling the literals in S. For this result, it is essential that
the splitting heuristic follows the partial order on the expressed preferences: Imposing
such ordering can lead to significant degradations in the performances of the solver [4],
though this has been shown to happen only when the number of preferences is very high
(in the order of the number of variables in the problem [2]), and this is not the case for
many applications, see, e.g., [5].

2 Satisfiability and Qualitative Preferences

Consider a finite set P of variables. A literal is a variable x or its negation ¬x. A for-
mula is either a variable or a finite combination of formulas using the n-ary connectives
∧,∨ for conjunction and disjunction (n ≥ 0), and the unary connective ¬ for nega-
tion. We use the symbols ⊥ and � to denote the empty disjunction and conjunction
respectively. If l is a literal, we write l for ¬l and we assume x = x. This notation
is extended to sets S of literals, i.e., S = {l : l ∈ S}. Formulas are used to express
hard constraints that have to be satisfied. For example, given the 4 variables Fish, Meat,
RedWine, WhiteWine, the formula

(Fish ∨Meat) ∧ (RedWine ∨WhiteWine) (1)

models the fact that we cannot have both fish (Fish) and meat (Meat), both red (RedWine)
and white (WhiteWine) wine.

An assignment is a consistent set of literals. If l ∈ μ, we say that both l and l
are assigned by μ. An assignment μ is total if each literal l is assigned by μ. A total
assignment μ satisfies

– a literal l if and only if l ∈ μ,
– (ϕ1 ∨ . . . ∨ ϕn) (n ≥ 0) if and only if μ satisfies at least one ϕi with 1 ≤ i ≤ n,
– (ϕ1 ∧ . . . ∧ ϕn) (n ≥ 0) if and only if μ satisfies all ϕi with 1 ≤ i ≤ n,
– the negation of a formula ¬ψ if and only if μ does not satisfy ψ.

A model of a formulaϕ is a total assignment satisfying ϕ. A formulaϕ entails a formula
ψ if the models of ϕ are a subset of the models of ψ. For instance, (1) has 9 models.
In the following, we represent a total assignment as the set of variables assigned to
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true. For instance, {Fish,WhiteWine} represents the total assignment in which the only
variables assigned to true are Fish and WhiteWine, i.e., the situation in which we have
fish and white wine.

A (qualitative) preference (on literals) is a partially ordered set of literals, i.e., a pair
S,≺ where (i) S is a set of literals, called the set of preferences, which represents the
set of literals that we would like to have satisfied; and (ii) ≺ is a partial order on S:
l ≺ l′ models the fact that we prefer l to l′. For example,

{Fish,Meat,RedWine}, {Fish ≺ Meat} (2)

models the case in which we prefer to have both fish and meat, and avoid red wine; in
the case in which it is not possible to have both fish and meat, we prefer to have the fish
more than the meat.

A qualitative preference S,≺ on literals can be extended to the set of total assign-
ments as follows: Given two total assignments μ and μ′, we say that μ is preferred to
μ′ (μ ≺ μ′) if and only if (i) there exists a literal l ∈ S with l ∈ μ and l ∈ μ′; and (ii)
for each literal l′ ∈ S ∩ (μ′ \ μ), there exists a literal l ∈ S ∩ (μ \ μ′) such that l ≺ l′.
A model μ of a formula ϕ is optimal if it is a minimal element of the partially ordered
set of models of ϕ. For instance, considering the qualitative preference (2), the formula
(1) has only two optimal models, i.e., {Fish} and {Fish,WhiteWine}.

Consider a formula ϕ, a qualitative preference S,≺ and a set Γ of optimal models
of ϕ. Γ is said to be complete (wrt S,≺) if contains all the optimal models of ϕ. With
this notion, there can be only one complete set of optimal models, which, in the case
of (1) and the preference (2), is the set {{Fish,WhiteWine}, {Fish}}. Other notions of
completeness are possible.

3 Computing All Optimal Solutions

Given a formula ϕ and a preference, we now show how it is possible to compute a
complete set of models of ϕ by extending the Davis-Logemann-Loveland procedure
(DLL) [6] and the procedure in [2] for computing one optimal solution. DLL is the most
used decision procedure for checking satisfiability of formulas. However, DLL does not
directly handle arbitrary formulas, but finite sets of clauses, where a clause is a finite set
of literals to be interpreted disjunctively. This is not a limitation because of well known
clause form transformation procedures (see, e.g., [7,8]).

In the following, we will continuously switch between formulas and sets of clauses,
intuitively meaning the same thing.

Consider a formula ϕ and a preference S,≺. An assignment μ dominates an assign-
ment μ′ (wrt S,≺) if μ ≺ μ′. The problem of computing a complete set of optimal
models of ϕ wrt S,≺ can be solved by considering the following crucial condition
which enables us to say which are the assignments that are dominated by μ (wrt S,≺).
We therefore define a formula whose models are dominated by μ. Consider a total as-
signment μ.

1. n(μ) is the set of preferences not satisfied by μ, i.e., n(μ) = S ∩ μ
2. for each l ∈ S, d(l, μ) is the set of literals in μ which are preferred to l according

to ≺, i.e., d(l, μ) = {l′ : l′ ∈ μ, l′ ≺ l or l′ ≺ l}.
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Then the μ-dominates formula (wrt S,≺) is

¬((∨l∈n(μ)(∧l′∈d(l,μ)l
′ ∧ l)) ∨ (∧l∈μ,l∈(S∪S)l ∧ (∨l′∈μ,l′ �∈(S∪S)l

′))) (3)

The total assignment μ dominates a total assignment μ′ wrt S,≺ iff μ′ satisfies the
corresponding μ-dominates formula, as stated by the following theorem.

Theorem 1. Let S,≺ be a qualitative preference on literals. A total assignment domi-
nates a total assignment μ′ wrt S,≺ if and only if μ′ satisfies the μ-dominates formula
wrt S,≺.

For example,

1. if μ1 = {Fish} and S,≺ is as in (2), then
(a) n(μ1) is {Meat}, and d(Meat) = {Fish},
(b) the μ1-dominates formula is ¬((Fish ∧ Meat) ∨ (Fish ∧ Meat ∧ RedWine ∧

WhiteWine)): Any total assignment which does not satisfy (Fish ∧ Meat) or
(Fish ∧ RedWine ∧ WhiteWine) is dominated by {Fish}. Notice that the total
assignment {Fish,WhiteWine} is not dominated by {Fish}, as expected.

2. if μ2 = {Meat} and S,≺ is as in (2), then
(a) n(μ2) is {Fish}, and d(Fish) = ∅,
(b) the μ2-dominates formula is ¬(Fish∨ (Fish∧Meat∧RedWine∧WhiteWine)):

μ2 does not dominate the total assignments satisfying Fish or (Fish ∧Meat ∧
RedWine ∧WhiteWine).

Notice that since μ1 ≺ μ2, the μ1-dominates formula is entailed by the μ2-dominates
formula: μ1 dominates a superset of the total assignments dominated by μ2.

It is thus possible to generalize the DLL-based procedure presented in [2] for comput-
ing an optimal model, in order to return complete sets of optimal models. The resulting
procedure is represented in Figure 1. In the figure,

– It is assumed that the input formula ϕ is a set of clauses; μ is an assignment; ψ is
an initially empty set of clauses;

– (ϕ ∪ ψ)μ is the set of clauses obtained from ϕ ∪ ψ by (i) deleting the clauses
C ∈ ϕ∪ψ with μ∩C �= ∅, and (ii) substituting each clause C ∈ ϕ∪ψ with C \μ;

– Reason(μ) returns a set of clauses equivalent to the negation of the μ-dominates
formula.

– ChooseLiteral1(ϕ ∪ ψ, μ) returns an unassigned literal l such that
• if there exists a literal in S which is not assigned by μ, then each literal l′ with
l′ ≺ l has to be assigned by μ, and

• l is an arbitrary literal occurring in ϕ ∪ ψ, otherwise.

nOPT-DLL has to be invoked with ϕ and μ set to the input formula and the empty
set respectively. nOPT-DLL prints a complete set of optimal models, as stated by the
following theorem.

Theorem 2. Let S,≺ be a qualitative preference on literals. Let ϕ be a set of clauses.
nOPT-DLL(ϕ, ∅) prints a complete set of optimal models for ϕ.
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S,≺ := a qualitative preference on literals;
ψ := ∅;

function nOPT-DLL(ϕ∪ ψ, μ)
1 if (⊥ ∈ (ϕ ∪ ψ)μ) return FALSE;
2 if (μ is total)
3 Print(μ);
4 ψ := ψ ∪ Reason(μ);
5 return FALSE;
6 if ({l} ∈ (ϕ ∪ ψ)μ) return nOPT-DLL(ϕ ∪ ψ, μ ∪ {l});
7 l := ChooseLiteral1(ϕ ∪ ψ, μ);
8 return nOPT-DLL(ϕ ∪ ψ, μ ∪ {l}) or

nOPT-DLL(ϕ ∪ ψ, μ ∪ {l}).

Fig. 1. The algorithm of nOPT-DLL

4 Conclusions

In this paper we have presented an algorithm for computing all solutions in SAT prob-
lems with preferences. The algorithm computes only optimal models, by following the
given partial order on preferences, but is not ensured to work in polynomial space.
Future work comprises the design of algorithms which are guaranteed to work in poly-
nomial space.
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Abstract. Recently proposed impact based heuristics have been shown
to outperform other instances of the first-fail policy such as the common
dom and dom/deg heuristics. This paper compares the behaviour of a
constraint and a variable centered impact based heuristic and relates it
to the amount of constraint propagation inherent to the model of the
problem. Additionally, it presents results which suggest that a looka-
head impact heuristic we recently proposed might be the best choice for
problems with low locality and where constraint propagation plays an
important role.

1 Introduction

Despite the success of Constraint Programming in addressing combinatorial NP
problems non trivial instances still require appropriate search strategies to find
solutions efficiently. The most general such strategy is possibly the first-fail prin-
ciple: solve first the most difficult sub-problems. This principle is usually im-
plemented in the variable selection heuristics, by starting enumeration on the
variables with domains of least cardinality. This heuristics does not take into
account the “structure” of the problem, which is more likely to be accounted for
by selecting the variable that participates in more constraints (hence, harder to
enumerate). The combination of both ideas results in the popular “dom/deg”
heuristic, which performs reasonably well in a number of problems.

Still, other heuristics have been recently proposed that implement the first fail
principle more efficiently, by measuring during search the impact of the decisions
made, either focusing on the constraints violated, as the wdeg heuristics [2] or the
impact on the search space as the variable centered heuristics presented in [12].
However we have found that the singleton arc consistency heuristic we proposed
[4] clearly outperforms the dom/wdeg heuristics in a class of CSP problems with
some identified features.

In this paper, we firstly describe in more detail the above heuristics. Then
we show their results in a number of benchmark problems, for which we study
their features, namely the propagation that is achieved, and the correlation that
exists between these features and the efficiency shown by the heuristics under
study. We conclude with some general comments on this preliminary study and
some suggestions for further work.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 608–612, 2008.
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2 Preliminaries

A constraint network consists of a set of variables X , a set of domains D, and a set
of constraints C. Every variable x ∈ X has an associated domain D(x) denoting
its possible values. Every k-ary constraint c ∈ C is defined over a set of k variables
(x1, . . . , xk) by the subset of the Cartesian product D(x1)×. . .×D(xk) which are
consistent values. The constraint satisfaction problem (CSP) consists in finding
an assignment of values to variables such that all constraints are satisfied.

A CSP is arc-consistent iff it has non-empty domains and every consistent
instantiation of a variable can be extended to a consistent instantiation involving
an additional variable. A problem is generalized arc-consistent (GAC) iff for
every value in each variable of a constraint there exist compatible values for all
the other variables in the constraint.

A CSP P is singleton θ-consistent (SC), iff it has non-empty domains and for
any value a ∈ dom (x) of every variable x ∈ X , the resulting subproblem P |x=a

can be made θ-consistent. SC time complexity is in O(n2d2Θ), Θ being the
time complexity of the algorithm that achieves θ-consistency on the constraint
network. Restricted singleton consistency (RSC) [11] considers each variable only
once and has runtime complexity O(ndΘ).

3 Impact Based Heuristics

Impact based heuristics use information collected dynamically during search to
score each variable according to its first-failness. We now revise three impact
based strategies which use distinct sources of information.

The method presented in [2] associates a counter with each constraint ex-
pressing the number of times it was violated since the beginning of search. This
information is projected to each variable by summing the counters for all con-
straints where the variable participates (referred to as the weighted degree of the
variable). Heuristics then select the variable with largest degree (wdeg), or with
smallest ratio between the size of the domain and the degree (dom/wdeg).

The impact based heuristic introduced in [12] measures the size of the search
space, given by a function σ (P ), before and after the enumeration of a variable.
The impact of a variable x, given by (σ (P ) − σ (P |x=a)) /σ (P ), is averaged over
all its previous enumerations and the highest impact so far indicates the next
variable to instantiate.

In [4] we extended this idea by explicitly computing the actual impact of every
variable before each enumeration, which is available if simultaneously maintain-
ing (restricted) singleton consistency. In this case we give preference for the
variable with a smaller sum of search space size for every possible instantiation,
formally

varLA (P ) = arg min
x∈X (P )

⎛⎝ ∑
a∈D(x)

σ (P |x=a)

⎞⎠
which also corresponds to the minimize promise variable heuristic defined in [7].
As said, this heuristic requires lookahead computations which may be inefficient,
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however it is expected that the reduction in dead end failures compensates such
inefficiency.

4 Experiments and Discussion

In this section we compare the heuristics described previously on a set of three
well known benchmarks. The dom/dweg heuristic was used while maintaining
arc-consistency (dom/wdeg). We also tested the dom/wdeg heuristic while main-
taining restricted singleton arc consistency, and the dom and wdeg heuristics
independently but their performance were consistently worse (results are omit-
ted for space reasons). The varLA heuristic was used with restricted singleton
arc consistency (la) further restricted to the subset of variables with domain
size d = 2 as described in [4], to avoid expensive lookahead computation with
variables unlikely to be selected.

Firstly, 200 random CSP instances were generated using model C [9] (gener-
alized to 5-ary CSPs) with 25 variables and domains of size 4. Instances were
created by varying the looseness of the constraints in [0.1 . . .0.8] and setting the
density such that the constrainedness of the instances is κ = 0.95 [8] (phase
transition occurs typically at κ ≈ 1). For more details see [4]. Solutions were
stored as positive table constraints and GAC-Schema [1] was used for filtering.

Graph coloring assigns n colors to m nodes of a given graph such that no
pair of connected nodes have the same color. We used a k-colorable graph gen-
erator [5] to obtain 200 instances of 10-colorable graphs with 65 nodes at the
phase transition by varying the average node degree d uniformly around 0.6 [3].
Difference binary constraints were posted for every pair of connected nodes.

The Latin squares problem places N colors in a N × N grid, such that each
color occurs exactly once on the same row or column. A partial Latin squares
problem has several preassigned cells, and the goal is to complete the puzzle.
We generated 200 instances of satisfiable partial Latin squares of size 35, with
396 cells preassigned, using lsencode-v1.1 [10]. The problem was modelled using
alldifferent (GAC) constraints1.

The results in fig. 1 (obtained using CaSPER2 on a Pentium4, 1.7GHz with
512Mb RAM, timeout set to 1800 seconds, and time given in seconds) show that
there is no clear winner across all problems.

As possibly expected, for problems where propagation achieves less pruning,
impact based heuristics are less effective. This is the case of both the random
and the graph coloring problems, as illustrated in fig. 2, that shows, in log scale,
the reduction of the size of the search space, subsequent to each enumeration.
In random problems the propagation is poor given the lack of structure of the
problem.

The networks for the graph coloring problem exhibit some locality, and prop-
agation mostly affect variables in the same cluster of the variable being assigned,
1 The dual encoding model, as proposed in [6], was also considered but never improved

over the direct model on the presented instances.
2 Code available from http://proteina.di.fct.unl.pt/casper, revision 333.
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Fig. 1. Number of problems solved (vertical axis) versus time (horizontal axis)
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Fig. 2. Search space size during solving of a typical instance in each problem

with limited propagation to variables far away in the network. Apparently, the
dom/wdeg heuristics, by reasoning at constraint level, is able to ”infer” such
locality and take advantage of it for variable selection.

In contrast, in the latin square instances modeled by means of all different
global constraints locality is not so marked (two variables often share the same
constraint, if in the same row or column, or are separated by two constraints,
one row and one column, and seldom by more than that, when both row and
column pivot elements are already ground). Moreover, generalized arc consis-
tency propagation virtually affects all variables after variable enumeration. The
greater impact achieved in these problems, together with the lack of locality
to be exploited by a constraint centered impact heuristic such as dom/wdeg,
makes variable centered impact heuristics more adequate in this problem. We
tried both heuristics in a set of smaller latin square instances modelled with
pairwise distinct constraints while maintaining (singleton) node consistency and
observed a different ranking, which confirms our thesis (see table 1).

Table 1. Results for finding the first solution to latin-15 with a selected strategy

strategy #timeouts avgfails stddevfails avgtime stddevtime

dom/wdeg 2 63549 422439 13.7 94.6

la 42 8022 30312 208.3 366.4
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5 Conclusion

This paper focused on a class of heuristics exploiting some form of impact that
decisions may have had in the past (dom/wdeg and impact) or will have in
the near future (la). We have shown that the performance of these heuristics
is correlated with the model used for the problem, more specifically with the
amount and locality of constraint propagation.

The experiments reported in the paper show that work on impact based
heuristics is far from over. The fact that there is no clear winner heuristic sug-
gests combinations of these and other impact measures to obtain an efficient
compromise between past and future impact information, and/or variable and
constraint centered impacts.

Notwithstanding this future work, the new lookahead heuristic that we present
in this paper already outperform, to our knowledge, all other heuristics on fi-
nite domain encodings of the latin square problems, and we believe that will
also outperform other heuristics on problems with the same characteristics (low
locality, large reduction of search space per choice).
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Abstract. Backbone variables have the same assignment in all solutions to a
given constraint satisfaction problem; more generally, bias represents the pro-
portion of solutions that assign a variable a particular value. Intuitively such
constructs would seem important to efficient search, but their study to date has
been from a mostly conceptual perspective, in terms of indicating problem hard-
ness or motivating and interpreting heuristics. Here we summarize a two-phase
project where we first measure the ability of both existing and novel probabilis-
tic message-passing techniques to directly estimate bias and identify backbones
for the Boolean Satisfiability (SAT) Problem. We confirm that methods like Be-
lief Propagation and Survey Propagation–plus Expectation Maximization-based
variants–do produce good estimates with distinctive properties. The second phase
demonstrates the use of bias estimation within a modern SAT solver, exhibit-
ing a correlation between accurate, stable, estimates and successful backtracking
search. The same process also yields a family of search heuristics that can dra-
matically improve search efficiency for the hard random problems considered.

1 Introduction

Probabilistic message-passing algorithms like Survey Propagation (SP) and Belief Prop-
agation (BP), plus variants based on Expectation Maximization (EM), have proved very
successful for random SAT and CSP problems [2,3,4]. This success would appear to re-
sult from the ability to implicitly sample from the space of solutions and thus estimate
variable bias: the percentages of solutions that have a given variable set true or false.
However, such bias estimation ability has never been measured directly, and its actual
usefulness to heuristic search has also escaped systematic study. Similarly, backbones,
or variables that must be set a certain way in any solution to a given problem, have also
drawn a good deal of recent interest [5,6,7,8,9], but they have not been directly targeted
for discovery within arbitrary problems. Since backbones must have 100% positive or
negative bias, bias determination generalizes the task of backbone identification.

Isolating the performance of probabilistic techniques when applied to bias estima-
tion improves our understanding of both the estimators and of bias itself, ultimately
directing the design of a complete problem-solving system. Thus the first stage of our
study compares the basic accuracy of six message-passing techniques and two control
methods when applied to hard, random, satisfiable SAT problems as stand-alone bias es-
timators. The second stage assesses how such comparisons translate when we move the

� This article summarizes a more detailed description that is available as a technical report [1].
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algorithms into the realm of full-featured search, by embedding them as variable/value
ordering heuristics within the MiniSat solver [10]. While it is intuitive that bias should
relate to how we set variables during search, it is not obvious that bias should be a key
to efficiency in the presence of modern features like restarts and clause learning.

2 Definitions

Definition 1 (SAT instance). A (CNF) SAT instance is a set C of m clauses, con-
straining a set V of n Boolean variables. Each clause c ∈ C is a disjunction of literals
built from the variables in V . An assignment X ∈ {0, 1}n to the variables satisfies the
instance if it makes at least one literal true in each clause.

Definition 2 (Bias, Survey). For a satisfiable SAT instance F , the estimated bias dis-
tribution θv of a variable v attempts to represent the fraction of solutions to F wherein
v appears positively or negatively. Thus it consists of a positive bias θ+

v and a negative
bias θ−v , where θ+

v , θ−v ∈ [0, 1] and θ+
v + θ−v = 1. A vector of bias distributions, one

for each variable in a theory, will be called a survey, denoted Θ(F).

Equivalently, it can be useful to think of a variable’s bias as the probability of finding
the variable set positively or negatively when randomly sampling from the space of
satisfying assignments. Less formally, the “strength” of a bias distribution indicates
the margin by which it favors one value over the other.

3 Probabilistic Methods for Estimating Bias

We compare six distinct message-passing techniques for measuring variable bias: Be-
lief Propagation (BP), EM Belief Propagation-Local/Global (EMBP-L and EMBP-G),
Survey Propagation (SP), and EM Survey Propagation-Local/Global (EMSP-L and
EMSP-G). On receiving a SAT instance F , each of the propagation methods begins
by formulating an initial survey at random. Each algorithm proceeds to successively re-
fine its estimates over multiple iterations. An iteration consists of a single pass through
all variables, where the bias for each variable is updated with respect to the other vari-
ables’ biases, according to the characteristic rule for a method. If no variable’s bias has
changed between two successive iterations, the process ends with convergence; other-
wise a method terminates by timeout or some other parameter. EM-type methods are
“convergent”, or guaranteed to converge naturally, while regular BP and SP are not [4].

BP estimates bias via Pearl’s Belief Propagation, also known as the Sum-Product
algorithm [11,12]. SP (Survey Propagation) extends BP to measure not only the prob-
abilities of a variable being positively or negatively constrained in a solution, but also
the probability that it could have been set either way [2]. Such extra sensitivity changes
the dynamics between iterations, but in the final survey any mass for the third “joker
state” is evenly divided between the positive and the negative for the purposes of es-
timating bias. Both methods can be re-formulated within the Expectation Maximization
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framework [13], producing the four EM-based methods. EMBP-L and EMBP-G use
the two-state model of BP and differ in exploiting variational approximations [14] based
on local (generalized arc-) consistency and global consistency, respectively. Similarly,
EMSP-L and EMSP-G apply local or global consistency to the three-state model repre-
sented by SP. Global methods embody a tighter bound on the variational approximation,
but in general take longer to compute than local methods. For experimental compari-
son, we created two non-probabilistic control methods. LC (“Literal Count”) greatly
simplifies the backbone-inspired heuristic at the core of a highly successful system for
refuting unsatisfiable SAT instances [8]. CC (“Clause Count”) is an even simpler base-
line method that just counts the number of clauses containing a given variable as a
positive literal, and the number wherein it appears negatively. The relative weights of
these two counts determine the variable’s estimated bias distribution.

4 Summary of Experiments

The first phase of experiments compared the eight methods as stand-alone bias esti-
mators for randomly generated problems whose true biases were found via exhaustive
model counting. Figure 1 depicts basic root-mean-squared error, with the global EM-
based methods performing the best, followed by the controls and the local EM-based
methods. Probabilistic methods that do not use EM have the worst basic accuracy, and
on most measures the SP variants do better than those based on BP’s simpler model.

However, a second pattern arises across experiments that emphasize strong biases
and estimates: “backbone identification rate” and “rank of first wrong bias” (graphs
available in longer presentation [1]). The former measures the proportion of actual
backbone variables that an estimator biases toward the correct polarity. The latter ex-
amines the variables to which a method assigns the strongest biases, and finds the
highest-ranking estimate that was actually toward the wrong polarity. For both of these
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measures, BP actually performs the best, followed by EMSP-G, LC, SP, EMBP-G, the
local EM methods, and CC.

These two sets of measures (basic accuracy and accuracy on strong biases) turned
out to be the most important predictors of success in the second phase of study. Here,
the methods were embedded as variable-ordering heuristics within the MiniSat solver
[10]. Part of this process meant determining a good way to use surveys: based on our
experimental experiences, the results reflect the intuitive “succeed-first” approach of
setting the most strongly-biased variable in a survey in the direction of its stronger bias.

The overall runtime results in Figure 2 exhibit a correlation between good bias es-
timates and significant improvement in search efficiency. The graph presents average
runtimes broken down to show the proportion that was devoted to computing surveys.

The “DEFAULT” method represents regular MiniSat without bias estimation, and BP
performed so badly as to not appear on the graph. When scaling to larger experiments,
the relative efficiency of the best method (EMSP-G) exhibits exponential growth. For
instance, when n = 450, it requires an average of 5 minutes per problem, while default
MiniSat typically requires half an hour, or times out after three hours.

Of the many measures examined during the first phase of experiments, basic accu-
racy seems to be the most important predictor of success as a heuristic: global EM
methods and controls outperform local EM methods and SP/BP, and within each of
these bands the SP version is a more effective heuristic than the BP version. Exceptions
to this correlation indicate the importance of the secondary strength-oriented accuracy
measures mentioned above. For instance, CC compares relatively well in basic accu-
racy, but ranks lower as a heuristic–it scored the worst with the accuracy measures that
focus on strong biases. Still, the influence of such secondary measures remains domi-
nated by overall accuracy–BP is the best estimator of strong biases, but has poor overall
accuracy and constitutes the worst heuristic by far.
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5 Conclusions

The main findings of these experiments indicate that probabilistic message-passing
techniques can be comparatively successful at estimating variable bias and identifying
backbone variables, and that successful bias estimation has a positive effect on heuris-
tic search efficiency within a modern solver. Secondary contributions include a novel
family of EM-based bias estimators, and a series of design insights culminating in a fast
solver for hard random problems.

However, many important issues remain. For instance, structured and unsatisfiable
instances have not yet been considered by this bias estimation framework. This may
require a finer-grained analysis of accuracy that considers variance across multiple runs
with various random seeds. Further, the best way to use surveys for variable ordering
cannot be settled conclusively by the limited span of branching strategies that have
been studied to date. For instance, we waste some of the SP framework’s power when
we split the probability mass for the joker state between positive and negative bias;
future branching strategies might favor variables with low joker probabilities.
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10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco
(1988)

12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory 47(2) (2001)

13. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society 39(1), 1–39 (1977)

14. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational methods for
graphical models. In: Jordan, M. (ed.) Learning in Graphical Models. MIT Press, Cambridge
(1998)



A New Empirical Study of Weak Backdoors

Peter Gregory, Maria Fox, and Derek Long

University of Strathclyde
Glasgow, UK

{pg,maria,derek}@cis.strath.ac.uk

Abstract. Work by Kilby, Slaney, Thiebaux and Walsh [1] showed that the back-
doors and backbones of unstructured Random 3SAT instances are largely disjoint.
In this work we extend this study to the consideration of backdoors in SAT encod-
ings of structured problems. We show that the results of Kilby et al. also apply to
structured problems. Further, we analyse the frequency with which individual vari-
ables appear in backdoors for specific problem instances. In all problem classes
there are variables with particularly high frequencies of backdoor membership.
Backbone variables that do appear in backdoors typically appear in very few.

1 Introduction and Background

There has been considerable research into the hidden structure of constraint satisfac-
tion problems. One example is the backdoor structure, which can be informally char-
acterised as sets of choices that make it trivial to solve a problem. Previous empirical
analysis by Kilby et al. [1] studied backdoors in unstructured Random 3SAT instances.
They showed that the backdoors and backbones of these instances tend to be largely
disjoint. In this work we extend this study to the consideration of backdoors in SAT
encodings of structured problems.

A SAT instance,P , is defined as a set of boolean variables,X , and a set of disjunctive
clauses, C over X . A solution to P is a total mapping X #→ {true, false} which
satisfies all c ∈ C. The SAT decision problem class is defined to be SAT = (D,Y )
with D the domain of all instances of SAT , and Y⊆D the set of all “yes” instances. A
subproblem of SAT is any SAT ′ = (D′, Y ′), such that D′ ⊆ D and Y ′ = Y ∩ D′.
A subproblem of SAT is obtained whenever additional restrictions are placed on the
general SAT problem class. A subsolver, A, is a polynomial time algorithm that solves
a subproblem, SAT ′, of SAT rejecting all other instances of SAT .

The definition of backdoors is relative to a specific subsolver. A previous definition
was introduced by Williams et al. [2] and our definition is compatible with theirs. Given
a subsolver, A, and an instance, P , of SAT , a weak backdoor, B, for P is a set of
variables in X such that there is at least one assignment, b, to B for which A determines
P satisfiable, given b. Since a backdoor is defined with respect to a given subsolver,
A, we must choose one for the purposes of our studies. In the rest of this paper the
term backdoor is used to refer to weak backdoors of SAT problems, where A is unit
propagation [3].

The backbone structure is important in our characterisation of the backdoor. Given
a SAT instance P with variable set X , the backbone I ⊆ X is defined as x ∈ X such
that exactly one of either C ∧ x or C ∧ ¬x is satisfiable.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 618–623, 2008.
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2 Problem Set and Finding Backdoors

The SAT problems we analyse are derived by translation from five different prob-
lem classes: Driverlog, Blocksworld (planning problems), Graph 3-Colouring, partially
completed Latin Squares and Random 3SAT. Each problem set contains 100 separate
instances, all of which are satisfiable. The planning domains were taken from previous
International Planning Competitions [4,5] and were translated to SAT using the Black-
box [6] translator. The Random 3SAT and Graph 3-Colouring instances are from the
satlib [7] benchmarks. The Latin Square instances were generated, and translated to
SAT instances, by Carla Gomes’ ls-encode program1.

In this work we are interested in studying minimal backdoors and we find them
using Algorithm 1. This algorithm depends on a sub-procedure we call bounded dpll,
which performs DPLL search over a subset of the variables. If bounded dpll returns a
satisfying assignment, then the variables it searched across must form a backdoor.

If an instance is satisfiable then the entire set of variables must be a backdoor. Algo-
rithm 1 finds a minimal backdoor by iteratively removing variables from the candidate
set, and testing if the remaining structure is still a backdoor. If the removal of a vari-
able leads to bounded dpll being unable to find a solution, then that variable forms part
of the minimal backdoor and is placed in the member set. Once the candidate set is
exhausted, the member set can be returned as the found minimal backdoor.

Algorithm 1. MINIMAL BACKDOOR

1: candidate ← X
2: member ← ∅
3: while candidate 
= ∅ do
4: c ← xi, xi ∈ candidate
5: candidate ← candidate \ c
6: if bounded dpll(candidate ∪member) = reject then
7: member ← member ∪ {c}
8: end if
9: end while

10: return member

3 A New Empirical Characterisation of Backdoors

The results of Kilby et al. show that for Random 3SAT instances, there is little over-
lap between backdoors and backbones. They do not demonstrate that what holds for
unstructured Random 3SAT problems also holds for structured SAT problems. In this
section we consider structured problems to determine whether backbone variables are
more or less likely to be backdoor variables. To test this claim, four instances have been
taken from each of the problem sets defined in Section 2. Table 1 shows the compara-
tive statistics for 20 different instances, four from each problem domain. Exactly 100
unique backdoors were found for each instance, using Algorithm 1.

1 ls-encode is currently available at http://www.cs.cornell.edu/gomes/SOFT/lsencode-v1.1.tar.Z
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Table 1. Charactersitics of 20 different SAT instances, four from each problem class. #V refers
to the number of variables, #C refers to number of clauses, μ|B| refers to mean backdoor size,
μO refers to mean backbone overlap.

#V #C |I| μ|B| |B∗| μO #V #C |I| μ|B| |B∗| μO

BW 1 250 3141 218 3.63 107 1.81 GC 1 150 545 0 7.00 140 0.00
BW 2 91 323 91 2.88 52 2.88 GC 2 150 545 0 7.75 141 0.00
BW 3 148 1211 124 3.34 63 1.15 GC 3 150 545 0 8.24 144 0.00
BW 4 148 1213 116 3.42 76 1.13 GC 4 150 545 0 8.74 129 0.00
DL 1 148 358 60 8.65 67 0.00 3SAT 1 75 325 28 4.86 41 0.24
DL 2 179 625 130 10.23 73 0.84 3SAT 2 75 325 29 8.39 74 1.61
DL 3 307 1466 247 12.14 81 0.67 3SAT 3 75 325 72 8.45 69 5.45
DL 4 180 609 114 10.86 94 1.22 3SAT 4 75 325 50 9.96 70 2.14
LS 1 283 1708 0 8.30 266 0.00 LS 3 278 1643 6 7.90 259 0.05
LS 2 275 1758 3 7.14 249 0.00 LS 4 283 1757 0 8.29 267 0.00

Backbone Size. It can be seen that for some problem classes, the backbone is large as
a proportion of the variables: 86% of the Blocksworld variables, 68% of the Driverlog
variables and 60% of the Random 3SAT instances are backbone variables. In the other
two domains, Latin Squares and Graph Colouring, the backbones are much smaller:
< 0.01% for the Latin Square problems, and there are no backbone variables in the
Graph Colouring instances. The Graph Colouring result is obvious since colours can be
permuted to create new solutions.

Backdoor Size. Table 2 shows the average size of the backdoors and their variances
for each problem class. The results are averages over all of the 100 instances in each
problem set. Each value is the result of 100 backdoors, and hence the overall average is
the average over 10,000 different backdoors. The averages are also displayed as propor-
tions of the total number of variables in each instance. For example, the μ|B| result for
Blocksworld means that, on average, the fraction 0.02 of the variables formed each min-
imal backdoor. Of the five problem classes, the Random 3SAT instances clearly have an
unusually large average size backdoor. They also have a larger variance than the other
problem classes. This provides evidence that the random problems are characteristically
different from the structured problems.

Backbone / Backdoor Variable Overlap. The overlap values in Table 1 show that
the backdoors and backbones overlapped most in the Random 3SAT instances and the
Blocksworld instances. In the Driverlog instances, there is little overlap, even though
the backbone is large in proportion to the total number of variables. In Table 2, the

Table 2. Qualities of the entire problem sets. μ|B|/|X | refers to the average backdoor size as a
proportion of the variables. σ2|B|/|X | refers to the variance of the backdoor sizes as a proportion
of the total variables, μ O refers to the average overlap as a proportion of the backdoor size, σ2

O refers to the variance of the overlaps as a proportion of the backdoor size.

μ|B|/|X | σ2|B|/|X | μ O σ2 O
BW 0.02 1.97×10−5 0.45 7.01 ×10−2

DL 0.03 4.67×10−5 0.03 1.56 ×10−3

LS 0.03 5.74×10−6 0.00 1.52 ×10−6

GC 0.05 5.52×10−5 0.00 0.00
3SAT 0.10 8.85×10−5 0.31 2.93 ×10−2
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Table 3. Maximum absolute backdoor frequencies of variables in different instances

BW 1 2 3 4 DL 1 2 3 4 LS 1 2 3 4 GC 1 2 3 4 3SAT 1 2 3 4
11 16 17 17 55 52 12 100 8 8 9 7 28 44 39 40 42 48 100 42

averages over the entire problem sets are shown. Notice that the mean overlap now rep-
resents the mean number of overlapping variables as a proportion of the backdoor size.
The highest proportion of overlapping variables occurs in the Blocksworld instances,
followed by the Random 3SAT, followed by the remainder of the problems, all sharing
approximately zero values.

Frequency of Variables in Backdoors. The only other property of the instances in
Table 1 not discussed so far is the |B∗| property. This represents the total number of
variables that occur in any of the 100 minimal backdoors found by Algorithm 1. These
figures are typically quite high. None of the instances in the table have full coverage, but
some come close. So this result tells us that many of the variables appear in at least one
backdoor. What it does not tell us is whether the variables appear in many backdoors.
To answer this question, further analysis is required. Figure 1 plots the frequency with
which each variable appears in the 100 backdoors. The x-axes represent the variables in
each of the instances, the y-axes represent the number of backdoors that each variable
occurred in.The y-axes on each graph are scaled to the most frequent variable in that
specific problem instance. The maximum frequency in each of the graphs is given in
Table 3. The variables are sorted so that they appear in descending frequency of back-
door membership. These graphs show that there are some variables that are members of
large numbers of backdoors, while other variables are either very infrequently members
of backdoors, or are actually never backdoor members.

Frequency of Backbone Variables in Backdoors. In Figure 1 it was seen that in par-
ticular instances of the studied problem set, there are particular, small set of variables
that are members of many of the backdoors that were found for those instances. Figure 2
refines this picture in order to show which variables in the frequency plots are backbone
variables. If a variable is a backbone variable, then there is a black bar plotted under-
neath its frequency. In all three of the graphs, it is clear that backbone variables also
tend to low backdoor frequency variables. The Blocksworld instance deviates slighty
from this rule, although there are still fewer backbone members in the high-frequency
area. The reader will recall that the backbone size of this instance is 218 variables from

(a) BW1 (b) BW2 (c) BW3 (d) BW4 (e) DL1 (f) DL2 (g) DL3 (h) DL4 (i) LS1 (j) LS2

(k) LS3 (l) LS4 (m) GC1 (n) GC2 (o) GC3 (p) GC4 (q) 3S1 (r) 3S2 (s) 3S3 (t) 3S4

Fig. 1. Backdoor frequencies for 20 SAT instances
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(a) BW 1 (b) DL 1 (c) 3SAT 1

Fig. 2. Backdoor Frequencies for 3 Problem Instances with backbone variables highlighted. Black
bar indicates backbone membership.

Table 4. Changes in the various measures with clause learning enabled. Δ μ |B| refers to change
in the average backdoor size, Δ|B∗| refers to the change in backdoor coverage, Δ μO refers to
the change in average overlap between the backdoors and the backbone.

Problem Class Δ μ |B| Δ|B∗| Δ μO

Blocksworld -1.76 -52 -1.58
Driverlog -0.81 -17.5 -0.68
Latin Squares -0.02 -0.5 -0.01
Graph Colouring -1.68 -31 0.00
Random 3SAT -2.75 -37.75 -2.36

a possible 250 variables (Table 1), and as such little over 10% of the variables are non-
backbone variables.

Backdoors and Clause Learning. In order to study the effect of clause learning on
backdoors, 100 new backdoors of the same instances studied in this section are found.
However, when they are now found, clause learning is enabled in the implementation.
Table 4 summarises the differences between the measures in both of the experiments.
Notice that in the vast majority of cases, the backdoors found when clause learning is
enabled are, on average, smaller than they were before.

4 Conclusions

The work presented in this paper first shows that the results of Kilby et al hold more
generally in structured problems. In addition, our work extends this previous analysis
to provide a deeper analysis of backdoor variables. The total variable coverage across
many backdoors, reported in the earlier work, does not distinguish between variables
that occur in backdoors frequently and those that do not. We have refined the analysis
by studying the frequency with which individual variables occur in backdoors.
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Abstract. We describe a small, non-intrusive extension to the declar-
ative modelling language Zinc that allows users to define model-specific
search. This is achieved by providing a number of generic search pat-
terns that take Zinc user-defined functions as parameters. We show the
generality of the approach by using it to implement three very different
kinds of search: backtracking search, branch-and-bound search, and local
search. Our approach is competitive with hand-coded search strategies.

1 Introduction

Recent approaches to solving combinatorial problems divide the task into two
steps: developing a conceptual model of the problem that gives a declarative
specification without consideration as to how to actually solve it, and solving the
problem by mapping the conceptual model into an executable program called
the design model.

The declarative modelling language Zinc [7,5] is a first-order functional lan-
guage designed to support experimentation with different solving techniques.
In its current implementation, conceptual models in Zinc can be automati-
cally mapped into design models that use one of the following three solving
approaches: standard constraint programming (CP); a Mixed Integer Program-
ming (MIP) solver; and incomplete search using local search methods.

While the default search used by the automatically mapped design models
usually performs well for MIP, this is not the case for CP and local search whose
efficiency often depends on the modeller providing an effective, model-specific
search strategy. However, allowing users to define their search routines requires
the integration of a conceptual model and a search strategy, something that is
difficult to achieve cleanly since while the former is best expressed declaratively,
the latter is inherently procedural.

Here we describe an extension to Zinc to support model-specific search. The
extension consists of three high-level search patterns for backtracking search,
branch and bound, and local search, respectively, that take complex expres-
sions, functions and predicates as parameters. This combined with user-defined
functions give Zinc modellers a degree of flexibility to tailor the search only found
previously in procedural search languages. While the actual mechanism of search
must still be understood procedurally, the Zinc specification is declarative and
requires no additional language features.
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2 Using Search in Zinc

We illustrate the use of our search patterns with a simple example, the N-queens
problem, which tries to place n queens on an n × n chess board in such a way
that no two queens can take each other. A Zinc model for this problem is:

int: n;

type Domain = 1..n;

array[Domain] of var Domain :q;

predicate noattack(Domain: i,j, var Domain: qi,qj) =

qi != qj /\ qi + i != qj + j /\ qi - i != qj - j;

constraint forall(i,j in Domain where i<j)

noattack(i,j,q[i],q[j]);

solve satisfy;

The model defines the integer variable n to be a parameter, Domain to be a
new type for the range 1..n, and q to be an array of n finite domain decision
variables (indicated by the keyword var) over that range. For our purposes, the
most interesting feature of Zinc is that it allows the user to define new predicates
and functions. In the example, the modeller has defined the noattack predicate,
which succeeds if queens qi and qj of rows i and j respectively, cannot attack
each other (/\ denotes conjunction). The constraint uses the forall expression
to make sure the noattack predicate holds for each pair of queens. The last line
declares the model to be a satisfaction problem. Since the solve item has no
annotation for search, Zinc uses the default search to solve the model.

Backtracking search
Modellers can use Zinc’s depth-first search pattern backtrack(init,expand)
for solving satisfaction problems with backtracking search using a propagation
solver. The first argument, init, is the state of the root node in the search tree.
This is often the list of variables to label, but can be anything the modeller needs
to create choice points, and can include extra information such as a counter
to implement iterative deepening. Its second argument, expand, is a (possibly
user-defined) function that takes the state for the current node and returns its
children as a list of pairs of the form (ns, c), where ns is the child’s state, and c
the constraint that should be posted right before this child becomes the current
node. Note that expand has implicit access to the solver state and, thus, can
call standard propagation solver reflection functions such as domain(V), which
returns the current domain of variable V.

As an example, we can use a standard labeling search for the N-queens model
by annotating the solve item as follows:

solve satisfy::backtrack(q,std_label);

where the initial local state is the list of variables q and function std label is
the expand function. It is defined by:
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function list of tuple(list of $T, var bool): std_label(list of $T:Vs) =

if Vs = [] then []

else [ (tail(Vs), head(Vs) == d) | d in domain(head(Vs))]

endif;

which takes a list of variables Vs (with polymorphic type list of $T) and (by
using a list comprehension) for each variable V in Vs returns a list of tuples in
which the first element is the remaining variables (and will be the state of the
children nodes) and the second element is an equality constraint between the
variable and a value from its domain. The head and tail functions are provided
in the Zinc library and return the head and tail of the input list, respectively.
Since the output of domain is a set and Zinc’s sets are ordered, the domain
values are considered from smallest to largest. To instantiate each variable, the
backtracking search tries the constraints returned by std label in order.

Branch-and-bound
For optimization problems, Zinc provides a variant of the backtracking pattern
extended with branch and bound: backtrack(init,expand,bound,flag). This
is used as an annotation to the solve item which is either in the form solve
maximize expr or solve minimize expr for maximization and minimization
problems, respectively.

The first two arguments of the pattern are as before. The two extra arguments
are a function, bound, for computing the new bound from the previous and
current bounds, and a flag to indicate the kind of branch-and-bound search
performed. The flags are similar to those provided in ECLiPSe [1], and include
restart (to restart the search from the root of the search tree), continue (to
continue the search from the current node in the search tree), and dichotomic
(to do dichotomic search).

Local search
A common class of techniques for solving combinatorial optimization problems
are so-called local search methods (such as hill-climbing or simulated annealing)
which iteratively improve a single valuation by moving to a neighbour. Zinc
provides the pattern local search(init valn, init state,move, finish), which
takes as arguments the initial valuation (list of variable/value pairs), the initial
state information, a function move that takes the current state and returns the
new valuation to move to (this needs only to give the values for variables that
have been changed in the move) along with the new state, and a function finish
that takes the state and indicates whether the search should finish.

These functions can use the following Zinc’s local search solver reflection func-
tions similar to those provided in Comet [8]: val(V ) gives the value of variable
V in the valuation, var penalty(V ) the degree of violation associated with vari-
able V , penalty(C) the violation of constraint C, current penalty the total
penalty for the current valuation, and new penalty(V al) the total penalty that
will result if the changes in valuation V al are applied to the current valuation.
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The modeller can then specify, for example, a simple hill-climbing search routine
by annotating the solve item as:

solve satisfy::local_search([(q[i],i)|i in Domain],1000,move,finish);

where initially the ith queen is placed on row i and the initial state is simply the
maximum permitted number of moves. The move function is:

function valuation: swap($T: v1, $T: v2) = [(v1,val(v2)),(v2,val(v1))];

function tuple(int, valuation): move(int: nmovesleft) =

let {int: i=maximizes(q,var_penalty),

int: j=minimizes([swap(q[i],q[k])|k in Domain], new_penalty)

} in

(nmovesleft-1,swap(q[i],q[j]));

function has_ended: finish(int: nmovesleft) =

if current_penalty == 0 then sol(get_valuation)

elseif nmovesleft =< 0 then end(get_valuation)

else continue

endif;

where function swap takes two variables and returns a valuation in which the
values of variables have been swapped. The built-in type valuation is defined
in Zinc as a list of variable/value pairs. The built-in functions minimizes and
maximizes take a list and a function and return the position of the element
in the list that minimizes and maximizes the function, respectively. The move
function chooses the most violated queen q1 and determines the queen q2 with
which it can be swapped to reduce the overall violation. The number of moves
left for the next iteration is decremented. After each move, the function finish
is invoked which decides upon the state whether the search should finish. The
enumerated type has ended is defined in Zinc’s library as:

enum has_ended = {sol(valuation),end(valuation),continue};

to indicate if the search has found a solution, it has not but it must end, or
should continue.

It is worth pointing out that Zinc allows the modeller to override the default
violation of constraints and variables by using annotations that can take complex
expressions and functions. Also, the Zinc modeller does not have to explicitly
set up invariants (or functional constraints). These are inferred automatically
from the choice of driver variables based on the initial valuation and the model
constraints. The compiler generates an error if some non-driver variable cannot
be computed from the driver variables.

Evaluation
To evaluate the expressiveness of our approach, we chose a set of 8 well known
benchmarks and searched the literature for the best tree and local search strategy
for each problem. The three search patterns in Zinc were expressive enough to
implement the best search algorithms for all models (models can be found at [6]).



628 R. Rafeh et al.

Our implementation maps Zinc models into ECLiPSe programs (ECLiPSe was
chosen because it supports all target solving techniques). Our results show that
the models with user-defined search are often orders of magnitude faster than
the equivalent models using the default search, and that the mapped models
are competitive with hand-written models in ECLiPSe that use the same search
algorithm (on average, the overhead is less than 10%).

3 Discussion

Our extension to Zinc allows users to run the same conceptual model with dif-
ferent solving methods and, when the default search is too slow, to tailor it with
user-defined search. This can be achieved by simply writing functions in Zinc to
pass as the required parameters to one of the search templates: backtracking,
branch and bound, and local search. The success of this pragmatic solution to an
inherently difficult problem is only possible because: (1) the modelling language
is powerful enough to allow the user to provide user-defined functions to tailor
the search; and (2) a limited number of different generic search schemas covers
most of the useful search routines.

Modelling languages for combinatorial problems have traditionally been declar-
ative. Early languages such as AMPL [3] had search built into the solvers and pro-
vided only a few simple parameters for controlling it. This approach is too inflex-
ible. The main alternative approach used, for example, in Mosel [2] and OPL [4],
is to allow users to specify the search with the model. However, this requires the
modelling language to be extended with non-declarative procedural constructs,
something that is avoided in our approach.

The closest predecessor to Zinc’s search appears to be the ECLiPSe search
predicate [1] (which in turn was preceded by that of CHIP). While most search
parameters in ECLiPSe are multiple-choice ones, some can be user-defined pred-
icates. The key difference is that ECLiPSe is not fully declarative: modelling and
search are both performed by procedural statements.

Acknowledgements. We thank members of the G12 team at National ICT
Australia for helpful discussions, in particular Ralph Becket and Peter Stuckey.
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Abstract. Experimentation of new algorithms is the usual companion section
of papers dealing with SAT. However, the behavior of those algorithms is so
unpredictable that even strong experiments (hundreds of benchmarks, dozen of
solvers) can be still misleading. We present here a set of experiments of very
small changes of a canonical Conflict Driven Clause Learning (CDCL) solver and
show that even very close versions can lead to very different behaviors. In some
cases, the best of them could perfectly have been used to convince the reader of
the efficiency of a new method for SAT. This observation can be explained by the
lack of real experimental studies of CDCL solvers.

1 Introduction

Conflict-Driven Clause Learning algorithms (CDCL) have been one of the major break-
throughs in the practical solving of industrial SAT problems. Since the introduction of
ZChaff in 2001 [8], a lot of progresses have been made [3], and solvers can now tackle
problems of millions of clauses. All techniques and methods embedded in “modern”
solvers are well known: dynamic heuristics [4,8], learning [9], restarts [1,6] and lazy
data structures [8]. Efficient solvers can nowadays be written from scratch in less than
a thousand lines of code.

However, we believe that the underlying mechanisms are still not understood. They
result from extensive tests rather than strong experimental studies, where paradigms
would be proposed and tested against observations. We believe that new breakthroughs
in the next years may only come if we begin to really understand the reasons of solvers
performances. A new technique may be good, but can still be thrown away and not pub-
lished because of a dramatic side effect of a previously unknown behavior of CDCL
solvers. It is thus crucial to begin an in-depth study of modern solvers, without trying
to improve their performances at first. In this short paper, we try to consider a typical
CDCL solver, MINISAT [3], as a physical system that we try to test against well ad-
mitted ideas. Our final aim here is more to cast new questions to the community, given
some observations of MINISAT performances, rather than proposing a full and tested
paradigm of CDCL solvers. As a side effect of our studies, we illustrate how far one
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may improve MINISAT performances with only a couple lines hack. This last obser-
vation may for instance be a standard to know whether or not new solvers bring really
new ideas or may result from a side effect of small changes of a canonical CDCL solver,
MINISAT.

2 Shuffling Effects: The Lisa Syndrome, Revisited

It is well admitted that shuffling instances have a negative effect on industrial bench-
marks (see the so-called “Lisa” Syndrom in [7], related to [2]). This observation has
motivated, in SAT Contests and SAT Races, to consider only proper benchmarks. Thus,
it is admitted that modern solvers explicitly use a heuristic that suppose a non-shuffled
instance. Over all explanations, one intuition is that first variables have more chances to
be input variables than additional variables introduced in order to avoid combinatorial
explosion. During the first phase, MINISAT chooses decision variables in lexicographic
order (some solvers choose variables according to their occurrences in the input for-
mula). However, it is not clear how much one may lose by shuffling an instance. If the
above explanation holds, and if order of clauses and variables are related to some im-
portant structural property between clauses and literals, then one should loose a lot by
shuffling an instance before calling MINISAT.

All experiments are done with instances of the SAT Race 2006.Shuffling is done on
variables order, clauses order and literals order in each clause (like in [2]).

Figure 1.a shows the traditional performance plot for solvers comparison. It gives
the CPU time (in seconds) needed to solve a given number of instances. We can read
that MINISAT (without SATELITE preprocessing) is able to solve 55 problems. Curves
”best” (respectively ”best6”, ”best24” and ”best50”) plot the result of virtual solvers
which would have the best CPU time obtained on all 50 shuffled runs (respectively the
5th, 24th and 50th (median) percentile). Thus, a very simple shuffling (50 times) of
instances allows to solve 69 instances in less than 900 seconds (in comparison to the 55
instances solved with only one run on the original problem). What is more striking, is
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that there is 24% of chances to obtain better results by shuffling instance (see “best24”
curve). This result is clearly higher than one would have predicted if it was only justified
by the topology of the original problem (input/output variables encoding).

3 Parameters Effects

When tuning the solver, a number of parameters have to be set (like the randomness of
the heuristics, the number of conflicts before restarts, ...). We study how performances
can be enhanced by changing only one of these values in MINISAT. We took 10 different
magic values of MINISAT parameters and studied all (1-parameter) neighboors as they
were different solvers. For each value, we tried both MINISAT with SATELITE (called
simp) and without it (called core), on all original benchmarks. Between 5 and 8 different
values were tested for each of 10 parameters1, which give us 126 solvers (half with
SATELITE).

Figure 1.b gives the results for some virtual solvers based on parameter neighbor-
hood. Each best of N curve corresponds to the subset of N solvers that give the best
results, if the N solvers were ran in parallel on N computers. First observation: using
two versions of MINISAT (the best couple of solvers were core with RESTARTINC=1
and simp with MINISAT default values) can pay a lot. It seems that keeping a very
fast restart policy, but without preprocessing, may pay. This shed a new light on re-
cent works on restart policies. We report the best of 3 solvers, also based on variants of
restart policies: MINISAT simp with default values, MINISAT core with RESTARTINC=1
and MINISAT core with RESTARTINC=1.1.

The second observation is based on the proximity of all best-N curves (except for
the best of all, that even though, joins all best-N curves at the end), which means that
MINISAT really reaches its limits there. One may cast doubts on the real improvement
of CDCL solvers if any brand new solver does not really improve this “hard” limit.

Figure 2.a reports another experiment: we took MINISAT and, each time one of the
10 constants was requested, we added 10% random noise to it. We can see that the
“noisy” MINISAT now behaves like another solver. When new methods exhibit similar
performance plot w.r.t MINISAT, nothing can be really drawn from it. This can only
be due to some hidden noise. Last observation we made: When considering the whole
neighborhood, using SATELITE as a preprocessor is not so important. We measured that
differences between best of all simp versions and best of all core versions are only by
one more bench solved for the first version.

1 VARDECAY (inverse of the variable activity decay) ∈ {0.5, 0.75, 0.85, 0.90, 0.95, 0.99,
0.999}; VARINC (init. amount to bump vars) ∈ {1, 2, 5, 10, 50}; RESTARTINC
(factor by which the restart limit is multiplied after restarts) ∈ {1, 1.1, 1.25,
1.5, 1.75, 2, 4, 8}; RESTARTFIRST (init. restart limit) ∈ {10, 50, 100, 200, 500,
1000, 5000, 10000, 50000}; RANDOMVARFREQ (frequency with which MINISAT choose
a random variable rather than the heuristics based one) ∈ {0, 0.001, 0.002, 0.003,
0.01, 0.05, 0.1, 0.5}; LEARNTSIZEINC (factor that increases the limit of learnt clauses)
∈ {0.5, 0.8, 1, 1.1, 1.2, 1.5, 2, 4}; LEARNTSIZEFACTOR (limit for learnt clauses as a fac-
tor of the total number of clauses) ∈ {1, 1.5, 2, 3, 4, 5, 8}; CLAINC (init.amount to bump
clauses with) ∈ {1, 2, 5, 10, 50}; CLAUSEDECAY (inverse of the clause activity decay fac-
tor) ∈ {0.5, 0.75, 0.85, 0.90, 0.95, 0.99}; POLARITYMODE (branching) ∈ {false, true}.
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a. 10% Noisy Parameters b. E ectff on clause deletion by size

Fig. 2. Noisy parameters (left, median on 40 runs) ; Clauses deletion (right, median on 20 runs)

4 Learning Large or Short Clauses?

In order to avoid memory explosion, modern solvers clean out learnt clauses database.
Clauses with less activity (the number of times that these clauses were directly, and
recently, considered when analyzing the reasons for the conflict) are deleted. However,
it is not necessary for CDCL solver completeness to keep learnt clauses until the end.
They just have to provide a reason for current asserting literals. This reason, repre-
sented as a clause, can be forgotten when it becomes unnecessary. We analyze here the
behavior of MINISAT when one forces it to forget some clauses. Our first goal is to
know whether some classes of clauses may be removed without degrading MINISAT

performances. The second is more important. We believe that improvements of future
CDCL solvers are related to highlighting ”important” learnt clauses (yet another time,
in a multi-core context, it would be worth sharing a clause between processes only if it
is important, see [5] for example).

We conducted this experiment as follows. First, we run MINISAT on shuffled in-
stances (20 times), and store, for each benchmark, the median size of learnt clauses.
Then, we run 3 versions of MINISAT. The first one forgets 25 % of learnt clauses of
any size. In the second (resp. third), it forgets 50% of clauses of size less than (resp.
greater than) the computed median size (for a given benchmark). For each parameter,
and each benchmark, we consider the median CPU time over 20 shuffled instances. This
experiment should show what is highly believed: the size of learnt clauses matters.

Results are summarized in figure 2.b and, contrary to what is usually believed, it
seems that short clauses are not significantly more important than large ones. Indeed,
removing short, large or any clauses produces approximatively the same results at the
end. This was already pointed out in previous, theoretical, works, that shown that some
proofs need large clauses, but it is surprising to measure in practice that deleting 50%
of short clauses is not so different than deleting 50% of large clauses. We also tried
to characterize important clauses with other parameters (number of resolutions step
during conflict analysis, minimal resolution depth of clauses), but results are identical,
and important clauses are very hard to characterize, with a global measure.
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5 Conclusion

In [2], it was already proposed to use shuffling techniques to characterize the behavior
of solvers, and to begin a real experimental study of them. However, this is not a suf-
ficient framework to really test solvers against hypothesis, as they were physical sys-
tems. This work is a first step in this direction. We took a canonical, well known, solver,
MINISAT, and built experimental studies in order to validate or invalidate some well ad-
mitted ideas. So, what can be drawn from our very simple experiments? First, shuffling
instances is not as bad as one may have expected. In 25% of the case, it may pay, which
is probably to high to confirm that the locality of variables and the order of clauses in
real world problems really matters. It is often argued that shuffling instances is useless
and has no meaning at all from a practical point of view. However, if one wants to add
good learnt clauses somewhere in a formula, by any preprocessing technique, then it is
essential to understand where to add it, and if the order really matters and how. At last,
we showed that it is not possible to consider short clauses as globally more important
than large clauses, which is highly counter-intuitive and was believed to be false. We
also show that, by moving parameters, one may obtain really different solvers.

In the next years, CDCL framework will probably be extended to multi-core archi-
tectures, which will increase their complexity and their “unpredictability”. If one wants
to understand their behavior, a lot of effort has to be made now. Would it be satisfactory
to use the multi-core ability of next processors generation only by using different shuf-
fled instances of the same benchmarks? We shown in this paper that a lot of progress
has to be done in order to really, deeply, understand why CDCL are so efficient, and
what mechanisms are essential. In the quest for efficiency, it is urgent to begin to study
them, from a real, deep, experimental perspective.
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Abstract. In a constraint optimization problem (COP), many feasible
assignments have the same objective value. This usually means huge
search space and poor propagation among the objective variables (which
appear in the objective function) and the problem variables (which do
not). In this paper, we investigate a search strategy that focuses on the
objective function, namely, the objective variables are assigned before the
problem variables.1 Despite the larger search space, we may indeed solve
a COP faster, provided that the constraint propagation is strong — the
search can reach the optimal objective value faster in the objective space,
and by strong propagation it knows if the constraints are unsatisfiable
with little search in the problem space. To obtain strong propagation,
we study the use of dual encoding [1] for COPs. Our COP formulation
and search strategy are general and can handle any dual COPs.

1 Background

A constraint optimization problem (COP) Q = (X,C) consists of a finite set X
of variables and a finite set C of constraints. Every variable xi ∈ X can only take
values from its domain dom(xi) which is a finite set of integers. An assignment
(xi, a) denotes xi = a. A r-ary constraint C(x1, . . . , xr) ∈ C is a subset of the
Cartesian product

∏r
i=1 dom(xi) that restricts the values the variables in C

can take simultaneously. The arity of C is r and the scope is var (C). A set of
assignments θ = {(x1, a1), . . . , (xr , ar)} satisfies C, and is a solution of C, iff
θ ∈ C. Solving a COP requires finding a value for each variable from its domain
so that all constraints are satisfied and the objective x0 ∈ X is maximized.

For simplicity of presentation, we consider COPs of the following form: Let
Q = (X∪Y ∪{z},C) be a COP. Each variable is either a problem variable (P-var)
xi ∈ X , an objective variable (O-var) yj ∈ Y , or the objective z. The objective
is defined by the objective function z =

∑
y∈Y y (a constraint in C). For every

yj ∈ Y , there is in C an objective constraint (O-constraint) of the form yj =
Fj(x1, . . . , xr), where {x1, . . . , xr} ⊆ X and Fj is a function that maps every
{(x1, a1), . . . , (xr , ar)} to some b ∈ dom(yj). Any remaining constraint C ∈ C is
a problem constraint (P-constraint), where var (C) ⊆ X . Finally, the Cartesian

1 The usual branch-and-bound search labels only the problem variables; the objective
variables are assigned indirectly by constraint propagation.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 635–639, 2008.
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product of the domains of the P-vars is the problem space (P-space), and that of
the O-vars is the objective space (O-space). As a remark, our restriction on the
O-constraints and the objective function is to simplify presentation; our ideas
are applicable to COPs whose O-constraints have more than one O-var, or when
the objective function is arbitrary (e.g., non-linear).

In [2], we proposed the idea of searching in the O-space in conjunction with
Russian Doll Search and used the Still-Life problem as a benchmark. This paper
focuses on how to do dual encoding for general COPs. In contrast to [2], we show
that O-space search also benefits pure optimization problems.

2 Dual Encoding of a COP

Since enforcing arc consistency (AC) on the dual model is strictly stronger than
enforcing generalized arc consistency (GAC) on the original model [3], a dual
model will be more suitable when the search explores the O-space and the P-
space simultaneously. Here we explain how to transform a COP into an equivalent
COP using dual encoding [1]. Our transformation is only on the P-vars and the
P-constraints; the O-vars and the objective function are unchanged. This is
because each O-constraint and the objective function need only share exactly
one O-var, and so dual encoding on them is not useful.

To describe dual encoding we need some extra notation. Let θ be a set of
assignments, X a set of P-vars and y an O-var. We denote θ|y = b if (y, b) ∈ θ,
and θ|X = {(x, a) ∈ θ : x ∈ X}. Also, two sets of assignments θ and θ′ are
compatible iff for every (xi, a) ∈ θ and (xj , a

′) ∈ θ′, i = j implies a = a′.
Finally, the dual encoding of a COP Q = (X ∪ Y ∪ {z},C) is another COP

Q′ = (X ′ ∪ Y ∪ {z},C′) constructed as follows:

– For every C ∈ C, if var(C) intersects X , there is a dual P-var x′ ∈ X ′ whose
domain is {θ|X : θ ∈ C}, a set of projected solutions of C, which can be
simply mapped to distinct integers.

– For every C(x1, . . . , xr, y) ∈ C, where x1, . . . , xr ∈ X and y ∈ Y , there is a
dual O-constraint C′(x′, y) ∈ C′ such that {(x′, θ|X), (y, θ|y)} is a solution of
C′ iff θ is a solution of C.

– For every Ci, Cj ∈ C, if var (Ci) ∩ var(Cj) ∩X is non-empty, there is a dual
P-constraint C′

i,j(x
′
i, x

′
j) ∈ C′ such that {(x′

i, θi|X), (x′
j , θj |X)} is a solution

of C′
i,j iff θi ∈ Ci, θj ∈ Cj , and θi|X and θj|X are compatible.

Q′ is the dual model (of Q) and Q is the primal model (of Q′). Both Q and Q′

have the same O-vars Y and the same objective function. By construction, there
is a one-to-one mapping between the solutions of the two COPs.

3 Experimental Results

To evaluate the search behaviors under various sizes of the P-space and the O-
space, we experiment with random pure COPs (no P-constraint). In the instance
〈n, d,m, e, r, p〉, there are n P-vars with domain {0, . . . , d − 1}, m O-vars with
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domain {0, . . . , e− 1}, and m O-constraints with arity r + 1 (r P-vars and one
O-var). For every solution {(x1, a1), . . . , (xr, ar), (y, b)} of an O-constraint, with
probability p we randomly choose b ∈ {1, . . . , e−1}, or else (1−p) we set b = 0.2

Thus for small p most assignments to the P-vars map to the same objective
value (zero), making the problem difficult. Each benchmark has 10 instances.

We used Gecode 2.1.1 on a 2 GHz Core 2 Duo MacBook with 1 GB RAM. The
built-in table constraint extensional [4] is used to enforce GAC on the primal O-
constraints. For the dual constraints, we implemented the arc consistency (AC)
algorithm by Samaras and Stergiou [5], which exploits the piecewise functional
nature of the dual constraints. During the depth-first branch-and-bound search,
the variables are assigned in a static order, and the largest value in the domain
is always tried first. To be more specific, when the primal model is used, the
P-var that appears in most constraints is selected first, i.e., only the P-space is
searched. We call this strategy “primal/x.” When the dual model is used, the
O-space is explored before the P-space — the O-var whose corresponding dual
P-var appears in most constraints is assigned first; after all O-vars are assigned,
the dual P-vars are assigned in the same order. We call this “dual/yx.”

Fig. 1 plots the number of backtracks and the solving time by dual/yx against
primal/x, on 〈25, 5, {20, 21}, {2, 50}, 4, p〉, where p ranges from 0.01 to 0.04. Note
that the size of the P-space is always 525 ≈ 3e17 while the size of the O-space
is between 220 ≈ 1e6 and 5021 ≈ 4.77e35. From the graph we can see that using
dual/yx often results in 10 to 200 times less backtracks (and never more) than
primal/x, although the search space for dual/yx is bigger.3 This is because dual
encoding is suitable for sparse problems [5] and exploring the O-space is more
preferred for small p, when the O-vars take the value zero for most assignments
of the P-vars. Fig. 1b shows that the improvement on solving time by dual/yx is
significant for instances which are hard for primal/x (region to the right of y = x;
when search on the P-vars takes about > 10 seconds). Actually, when dual/yx
is faster, it has 56.3 (median) times less backtracks than primal/x; but when it
is slower, the ratio is 12.5, and hence the cost of the dual constraints outweighs
the benefit. Overall, our results show that the search moves to the optimal value
quickly, and during the traversal in the O-space, the constraint propagation is
strong enough to prune many unsatisfiable regions in the P-space.

Finally, no instance were solved within 5 minutes when the P-space was ex-
plored with the dual model. This is because the domains of the dual P-vars are
large and the values are often mapped to the same value (zero, in the worst case)
of the O-var.

4 Related Work and Concluding Remarks

Decomposing the search space is not a new idea. Sachenbacher and Williams
made a similar observation on the relationship between the O-space and the
2 Tuples with objective value b = 0 are akin to no-goods as the objective is maximized.
3 An O-constraint is functional from P-vars to O-var, so that the value of O-var is

determined when all P-vars are assigned, but usually not vice versa.
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Fig. 1. Empirical results on dual/yx against primal/x

P-space. Their conflict-directed A* search [6] solves a COP in two interleaving
steps. Upon all the O-vars are assigned using a traditional A* search, the current
sub-problem is solved with a satisfiability (SAT) solver. If it is unsatisfiable, the
A* search resumes. There is no propagation between the O-vars and the P-vars.
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Decomposition is also used in hybrid algorithms (e.g., [7]) that combine integer
programming and constraint programming; however, communication between
the solvers is limited (e.g., one-way).

The above mentioned algorithms are in fact instances of the logic-based Ben-
ders decomposition [8], which decomposes a combinatorial problem into a master
problem and one or more sub-problems. Once the master problem is solved, we
check whether all the sub-problems are satisfiable. If not, the unsatisfied sub-
problems create and insert Benders cuts to the master problem. A Benders cut
is an implied constraint on the variables in the master problem, which prevents
the master problem from reaching the same unsatisfiable state in the future. The
master problem is then solved again for a different solution. This continues until
a solution of the original problem is found or unsatisfiability is proved.

In contrast to a rigid separation of the P-space and the O-space, we simply
give more freedom to the variable ordering heuristic, which can now choose a P-
var or an O-var. This is achieved via the strong propagation among the objective
function, the O-constraints and the P-constraints. We believe dynamic variable
ordering heuristics will improve the performance of our search strategy.

The usefulness of dual encoding for COPs was demonstrated with the Still-
Life problem [2,9]. Our preliminary experiments show that dual encoding can
also be useful for general COPs. Interestingly, due to the functional nature of a
dual O-constraint, assigning an O-var divides the domain of the corresponding
P-var, and can be seen as a value ordering heuristic. It would be interesting to
see whether the optimization approach can apply to the soft CSP framework.
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Abstract. This paper engineers a new state-of-the-art Stochastic Lo-
cal Search (SLS) for the Low Autocorrelation Binary Sequence (LABS)
problem. The new SLS solver is obtained with white-box visualization to
get insights on how an SLS can be effective for LABS; implementation
improvements; and black-box parameter tuning.

1 Introduction

Low Autocorrelation Binary Sequence (LABS) problem is a hard problem with
simple formulation: find a binary sequence s = {s0, s1, . . . , sn−1}, si ∈ {−1, 1} of
length n that minimizes the objective function E(s) – the quadratic sum of the
autocorrelation function Ck, or equivalently, maximizes the merit factor F (s):

Ck(s) =
∑n−k−1

i=0 sisi+k E(s) =
∑n−1

k=1 (Ck(s))2 F (s) = n2

2E(s)

The LABS problem dates from 1960s and was first posed in the Physics com-
munity. It has applications in many communication and electrical engineering
problems. More recently, LABS has been investigated by the optimization com-
munity using both exact and incomplete solvers [1,2,3,4,5].

In 2006, Dotú and van Hentenryck [4] proposed a simple SLS: Tabu Search
(TS) with frequent restarts. This could find optimal LABS solutions for n ≤ 48
much quicker than the exact Branch & Bound [2]. It was roughly on par with
another good SLS solver for LABS problem: Kernighan-Lin [3].

In 2007, Gallardo et al. [5] proposed an SLS: MATS , combining a Memetic
Algorithm with a similar TS. MATS was shown to be “one order of magnitude”
faster than the pure TS [4] and was the fastest LABS solver in 2007.

In this paper, we show how an integrated white+black box approach [6] us-
ing an SLS engineering tool Viz [7,8] can be used to successfully engineer a
new state-of-the-art LABS SLS starting from [4]. For more details, please visit
http://sls.visualization.googlepages.com.

2 In-Depth Analysis of LABS Fitness Landscape

Previous researchers, e.g. [1,2,5] have shown several features of LABS fitness
landscape. As LABS is unconstrained, each LABS instance n has 2n valid so-
lutions with several Global Optima (GO) (≥ 4) (an approximation of |GO| for

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 640–645, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. FLST visualization for LABS n = 27 with 4 GO (dark blue circles). LO are
deep and isolated, shown by black dots (poor solutions) around each LO in part A&B.

3 ≤ n ≤ 64 is in [3]). These GO are spread like ‘golf holes’ (deep and isolated)
in irregular LABS fitness landscape. The fitness landscape of LABS causes dif-
ficulties for standard SLS algorithms to work well especially with large n.

In order to get more insights about LABS fitness landscape, we use the Fitness
Landscape Search Trajectory (FLST) visualization in Viz [7,8]. To obtain this
FLST visualization, we run our initial implementation (called TSv1) of the TS
algorithm from [4] to sample diverse and high quality Local Optima (LO) from
the fitness landscape of medium-sized LABS instances (n ≤ 40). Our sampling
strategy exploits the symmetries in LABS: when TSv1 reaches a solution with
Objective Value (OV) equals with the known optimal value (a GO) for that
particular medium-sized LABS instance, we can immediately generate all the
symmetries of this GO solution. This sampling strategy is used to get a clearer
picture of the LABS fitness landscape (compare Fig. 1.A with 1.B).

In Fig. 1.A, we see that without symmetry in GO/LO sampling, we are not
immediately aware of the existence of other GO and the Hamming Distance (HD)
from the current LO to the nearest GO found seems to be large, HD > n/2.

By exploiting symmetry, all 4 GO are also ‘found’ when TSv1 hits a GO. In
Fig. 1.B, we can now see that the positions of GO (dark blue circles) are spread
out. This suggests that wherever the current solution is, it should be nearer to
one GO (the nearest GO) than to other GOs. Further observations reveal that
LO (light colored non-blue circles) are usually not too close to the nearest GO.
By using exact enumeration for LABS 3 ≤ n ≤ 24, we have checked that around
85% of the 2nd best solution (which is an LO) have HD around [n/4 . . .2n/5]
bits away from the nearest GO. We exploit this insight.

3 Improving the Tabu Search Algorithm of [4]

In [4], a rather simple yet successful TS algorithm for LABS is presented. We are
grateful to the TS code (we call this TSv0) from the authors. We benchmarked
TSv0 on our test machine, a 2 GHz Centrino Duo laptop (see the scattered
black circles around magenta line in Fig. 2). Benchmarking shows that our
test machine has similar performance to the 3 GHz P4 PC used in [4].

Before obtaining the TSv0 code, we implemented the TS algorithm using
our own understanding of the pseudo-code in the paper. We call our original
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Fig. 2. Comparison of average runtimes (20 runs) between {TS [4], TSv0 O}, {MATS

[5] ♦}, and {TSv1 &, TSv7 ∇} for LABS with known optimal OVs (40 ≤ n ≤ 60)

implementation, TSv1. TSv1 is already much faster by about one order of
magnitude than TSv0 (see the red line with upward triangle in Fig. 2).

Visualization in Viz shows clearly the speed difference as the search trajec-
tory in TSv1 animates much faster than TSv0. Analysis of the source codes
reveals the following two major differences. First, while both codes use a form
of “incremental computation” to speed up the näıve O(n2) E(s) computation,
the actual sub-algorithms for this part turns out to be different. Since this part
is not described in [4], we implemented TSv1 with the incremental O(n) Val-
ueFlip technique used by MATS [5]. It turns out that although there is some
incremental calculation in TSv0, the computation of E(s) is still O(n2).

Second, though both codes use an O(1) tabu table mechanism, they have
different TABU_TENURE settings. We know that TABU_TENURE cannot be ≈ n as
it will quickly forbid (almost) all 1-bit flip moves. Black-box tuning on several
constant values [0.1, 0.2, 0.3]n on training instances n = {27, 30, 41, 42} helps us
to set small TABU_TENURE = 0.2n for TSv1. But, TSv0 use TABU_TENURE = n.
Thus TSv0 does more frequent random restart (every n+1 iterations) than the
pre-determined MAX_STABLE parameter as no more valid moves are available.

We can see that TSv1 runtimes are already comparable to the recent state-
of-the-art MATS (TSv1 on 3 GHz P4 PC is about 1.7 to 5.6 times faster than
MATS [5] for LABS 40 ≤ n ≤ 55 and the 3 GHz P4 PC is (probably) at most
1.25 times faster than the 2.4 GHz P4 PC in [5]). We remark that this shows
that the random restart strategy in TSv0/TSv1 is good and better than the
benchmarking in [5] would indicate.

4 A State-of-the-Art Tabu Search for LABS

We wanted to get better results. We analyzed TSv1 search trajectory using the
same FLST visualization. During visualization, a circle is drawn on the nearest
sampled GO/LO if the current solution is “near” (near is HD ≤ 20% ∗ n).

Using this feature, we observe the following behavior, shown in Fig. 1.C and
Fig. 1.D: TSv1 happens to be near a GO in the earlier phase of the search (1.C),
but TSv1 does not immediately navigate there. TSv1 then wanders to another
region near to another GO, perhaps due to random restart strategy. Thousands
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of iterations later, TSv1 gets near to the first GO again (1.D) and this time
TSv1 manages to find the GO.

Such observations and insights about the LABS fitness landscape in Sec. 2
lead us to engineer a better SLS strategy. The resulting TS variant is called
TSv7. (We experimented with other variants also using the white+black box
approach described here but TSv7 had the best performance). Upon experienc-
ing stagnation, TSv7 restarts to a region around HD n/4 bits away from the
current LO. Basically, TSv7 searches for the nearest GO. Only if the current
LO region is saturated, TSv7 does a diversification.

The implementation improvements using faster incremental calculation, im-
proved TABU_TENURE settings and the new strategy engineered from white-box
analysis using visualization gives a new SLS, TSv7. However, we are not done.
To obtain a state-of-the-art result, we configured the parameter values for TSv7
using black-box tuning. We ran a full factorial design of logical parameter values
on a set of training instance and picked the best one. Due to space constraints,
we are unable to show the algorithm and its parameters. More details and the
source code for TSv7 can be found on the webpage.

Fig. 2 shows the performance of TS (timings from [4]), MATS (timings from
[5]), and TSv0/TSv1/TSv7 (2 GHz Centrino Duo laptop). We see that TSv7
strategy is better than the original random restart strategy used in TSv0/TSv1.
The performance gap is easily noticeable on larger n = {50, 55, 57, 60}.

To analyze the results, we used the Wilcoxon signed-ranks test. It detected a
significant difference between the average runtimes of TSv1 and TSv7 on LABS
40 ≤ n ≤ 60 (21 pairs, T = 27.5, p < .01). Since both TS variants use the same

Table 1. Best found LABS solutions using TSv7: 61 ≤ n ≤ 77. These runs are
performed on a 2.33 GHz Core2 Duo PC.

n E(s) F(s) Runtime Limit Best Found LABS in Run Length Notation [2]

61 226 8.23 3 m 1.1 h 33211112111235183121221111311311
62 235 8.18 8 m 1.5 h 112212212711111511121143111422321
63 207 9.59 4 m 2.0 h 2212221151211451117111112323231
64 208 9.85 47 m 2.7 h 223224111341121115111117212212212
65 240 8.80 2.2 h 3.7 h 132323211111711154112151122212211
66 265 8.22 3.1 h 4.9 h 24321123123112112124123181111111311
67 241 9.31 4.1 h 6.6 h 12112111211222B2221111111112224542
68 250 9.25 6.6 h 8.8 h 11111111141147232123251412112221212
69 274 8.69 8.2 h 11.8 h 111111111141147232123251412112221212
70 295 8.31 12.4 h 15.8 h 232441211722214161125212311111111

71 275 9.17 7.8 h 10.0 h 241244124172222111113112311211231121
72 300 8.64 2.4 h 10.0 h 1111114111444171151122142122224222
73 308 8.65 1.2 h 10.0 h 1111112311231122113111212114171322374
74 349 7.85 0.2 h 10.0 h 11321321612333125111412121122511131111
75 341 8.25 8.0 h 10.0 h 12122132121211211111131111618433213232
76 338 8.54 4.6 h 10.0 h 111211112234322111134114212211221311B11
77 366 8.10 3.9 h 10.0 h 111111191342222431123312213411212112112
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incremental OV computation and run on the same hardware, this difference in
average runtimes can be attributed to the new stochastic strategy.

The least square fit on the logarithm of the average runtimes gives an es-
timated running time of O(5.03e-6 ∗ 1.37n) and O(1.03e-5 ∗ 1.34n) seconds for
TSv1 and TSv7, respectively. We believe TSv7 to be the current state-of-the-
art SLS algorithm for LABS. Due to lack of space, we do not show the error bars
but the experiments show that TSv7 is more robust than MATS and TSv1.

Table 1 explores the frontier of LABS instances, 61 ≤ n ≤ 77, where optimal
values have yet to be proven. For 61 ≤ n ≤ 70, we use a runtime limit roughly
based on the estimated runtime from Fig. 2. For n > 70, we use a runtime limit of
10 hours. We see that TSv7 manages to obtain relatively good LABS solutions
(by the merit factor) in reasonable running time.

5 Conclusion

The contributions of this paper are twofold. First, we show that one has to
analyse the search trajectory and not just the timings for a SLS. Our implemen-
tation (TSv1) of the pseudo-code in [4] shows that it is actually a good strategy.
The conclusion in [5] that MATS is faster than the original TS by ‘one order of
magnitude’ is in part due to the less incremental implementation.

Second, we have shown how to engineer a new state-of-the-art LABS solver.
Though the changes from TSv1 to the final TSv7 may seem small, it is often
that small changes to an SLS causes big differences. Our changes are derived from
reasoning on the LABS fitness landscape structure and TS trajectory behavior
and thus serve as a rationale supported by empirical experiments. The resulting
TSv7 is also simpler than the hybrid MATS code.
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