
R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 189–200, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Case Study of Coordination in Distributed
Agile Software Development

Steinar Hole1 and Nils Brede Moe2

1 NTNU Department of Computer and Information Science
NO-7491 Trondheim, Norway
steinaho@stud.ntnu.no

2 SINTEF Information and Communication Technology
NO-7465 Trondheim, Norway
Nils.B.Moe@sintef.no

Abstract. Global Software Development (GSD) has gained significant popular-
ity as an emerging paradigm. Companies also show interest in applying agile
approaches in distributed development to combine the advantages of both ap-
proaches. However, in their most radical forms, agile and GSD can be placed in
each end of a plan-based/agile spectrum because of how work is coordinated.
We describe how three GSD projects applying agile methods coordinate their
work. We found that trust is needed to reduce the need of standardization and
direct supervision when coordinating work in a GSD project, and that electronic
chatting supports mutual adjustment. Further, co-location and modularization
mitigates communication problems, enables agility in at least part of a GSD
project, and renders the implementation of Scrum of Scrums possible.

Keywords: Agile development, Scrum, case study, coordinating work, mutual
adjustment, direct supervision, standardization, global software development.

1 Introduction

Many organizations turn toward global software development (GSD) in their quest for
cheap, higher-quality software with a short development cycle. GSD is becoming the
norm by promising potential advantages like global resources, attractive cost struc-
tures, round-the-clock development and closeness to local markets [1].

To unleash the potential, methods and tools for distributed software development
are designed to enable dispersed team members to share programming tasks and de-
velopment practices [2]. Methods and tools are needed to mitigate GSD problems
related to coordination, communication, control [3], and increased complexity [4].

Recently, there has been a growing interest in applying agile approaches in GSD to
solve some of the coordination and communication challenges [3]. Several reports on
the successful implementation of agile values and principles in different GSD projects
conclude that there are significant differences between the fundamental principles of
agile and distributed approaches, while there is a growing interest in assessing the
viability of using agile practices for distributed teams [5-7].

190 S. Hole and N.B. Moe

Agile development approaches and GSD approaches differ significantly in their
key tenets, e.g. regarding coordination mechanisms [6]. Traditional GSD focuses on
command-and-control, formal communication, and is usually implemented using a
mechanistic (bureaucratic with high formalization) organizational structure. Agile
development focuses on leadership-and-collaboration, informal communication and
the desire for an organic organizational form [8]. Therefore, applying agile principles
to GSD marks an intersection of two seemingly incompatible approaches.

Ramesh et al. [6] demonstrate how the balancing between agile and distributed ap-
proaches can help when introducing agility in GSD. They suggest that project leaders
and champions should participate in coordinating the activities of the local and remote
teams to help achieve project goals. Motivated by the work of Ramesh et al. [6], we
investigate how work is coordinated when introducing agile methods in a GSD envi-
ronment. Our research question is:

“How are tasks coordinated in GSD teams applying agile methods?”

The remainder of the paper is organized as follows. Section 2 describes GSD and
agile development, and the challenges associated with merging these two approaches.
Section 3 describes our research method. In Section 4, we present results from a mul-
tiple case study on agile methods and practices applied to three GSD projects. Find-
ings are discussed in Section 5. Section 6 concludes and suggests future research.

2 Background

In this section we present background information on agile development and GSD.
We use literature to describe challenges with coordination in an agile GSD context.

2.1 Agile Methods and Scrum

Agile software development comprises a number of practices and methods [9-11].
Among the most known and adopted agile methods are Extreme Programming (XP)
[12] and Scrum [13]. XP focuses primarily on the implementation of software, while
Scrum focuses on agile project management [14]. In this study the focus is on Scrum
since Scrum is an agile approach to the management of software development pro-
jects [9-11], and thus focuses on the coordination of work.

Scrum and agile development favor a leadership-and-collaboration style of
management where the traditional project manager’s role is replaced with the Scrum
master’s role of a facilitator or coordinator [9-11]. The Scrum master is in charge of
solving problems that prevents the Scrum team (5-9 people) from working effectively.
He or she is often described as a coach or facilitator and does not organize the team
(designers and developers); the team organizes itself and makes decisions concerning
what to do. The Scrum master works to remove the impediments of the process,
makes decisions in the daily meetings and validates them with management [13].

Software is developed by the self-organizing team in increments called "sprints",
starting with planning and ending with a review. The team coordinates on a daily
basis. Features to be implemented are registered in a backlog, and a product owner
decides which backlog items should be developed in the following sprint. These items
are specified in a sprint backlog.

 A Case Study of Coordination in Distributed Agile Software Development 191

The product backlog comprises a prioritized and constantly updated list of business
and technical requirements for the system being built or enhanced. Backlog items can
include features, functions, bug fixes, requested enhancements and technology up-
dates. Multiple stakeholders can participate in generating product backlog items, such
as customer, project team, marketing and sales, management and support [11].

2.2 Coordinating Mechanisms in Agile Development and GSD

The issue of agile approaches in distributed development has caught the attention of
several researchers. There have been many studies reporting on the successful imple-
mentation of agile practices in GSD [5-7, 15-17], but a number of implementation
barriers are also mentioned by these authors. The combination of both agile and GSD
is poorly understood although it is expected to be beneficial [3]. Exploring theories on
coordination of work is one way of understanding this combination.

Coordination of work is an important aspect of teamwork and team leadership [18].
Coordination together with communication and collaboration are recognized as the
key enablers of software development processes [19]. There are three basic coordinat-
ing mechanisms that seem to describe the fundamental ways in which organizations
can coordinate their work [20]:

1. Mutual adjustment - based on the simple process of informal communication
2. Direct supervision - one person takes responsibility for the work of others by issu-

ing instructions and monitoring their actions
3. Standardization - of which there are four types: work processes, output, skills (as

well as knowledge) and norms

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

GSD

Agile

Fig. 1. Relative emphasis on coordinating mechanisms: Agile development relies purely on
mutual adjustment, while GSD emphasizes standardization and some direct supervision

GSD usually relies mainly on formal mechanisms (coordination by standardization),
which exploit detailed architectural design and plans to address impediments to team
communication induced by geographical separation [3, 6]. Agile development relies on
people and their creativity rather than on processes [21], and emphasizes informal
communication (mutual adjustment) as the primary coordinating mechanism [8].

192 S. Hole and N.B. Moe

The major challenge of applying agile methods or practices in a GSD context is to
balance the coordinating mechanisms (Fig. 1). However there are obvious conflicts
when trying to balance mutual adjustment, direct supervision and standardization.

3 Research Design and Method

The goal of this research is to understand how the introduction of agility affects coor-
dination of tasks in global software development teams. It is therefore important to
study software development teams in practice. We have collected data from three
teams using Scrum and participating in globally distributed software projects.

We report on a multiple case holistic study [22], in which we studied one phe-
nomenon in several projects in one company. In a multiple case study, each case must
be selected carefully so that it either a) predicts similar results or b) predicts contrast-
ing results but for predictable reasons [22]. We chose option a).

3.1 Study Context

This study was done in the context of a larger action research program, where several
companies have introduced elements from agile development in response to identified
problems. The software company is medium-sized with approximately 150 employees
in four major departments. The second author of this paper participated in the intro-
duction and training of Scrum, and observed the company while using Scrum. The
first author conducted the interviews, which we use as the primary source of data for
this study. The projects participating in the study were all using Scrum for the first
time; however this company was experienced with using GSD.

3.2 Data Sources and Analysis

To address the research questions, we conducted semi-structured interviews with the
persons most responsible for coordination of work in the three projects, i.e. a Scrum
master, a project manager and a product owner. One person was selected from each
project. The interviews lasted from 30 to 40 minutes, and aimed at understanding how
Scrum was applied in a GSD context. The interview guide was based on the three
coordinating mechanism as proposed by Mintzberg [20] in addition to questions re-
lated to Scrum. We focused on understanding coordination of work, communication
within and between the teams, feedback-sessions, planning and estimation, use of
documentation, roles and specializations, and how decisions were made. All the inter-
views were transcribed.

4 Agility in GSD Projects

We now present the three GSD projects under study, how Scrum was implemented in
these projects, and how work was coordinated in the projects.

4.1 Project India I

The goal of the project is to develop a system for integrity management of pipelines
both offshore and onshore. Today several customers are interested in buying the

 A Case Study of Coordination in Distributed Agile Software Development 193

product, and so far three contracts have been signed. One of the biggest challenges in
this project is to align requirements from potential customers from all over the world.
Scrum was introduced one year after the project had started.

The project consists of six developers working full time (one is a Scrum master),
two GUI designers, one product owner, and one project manager working 50% on this
project. Four of the developers are situated in India together with one tester. To im-
prove communication one of them was in periods moved to Norway.

The sprints usually lasted three weeks, ending on a Friday with a retrospective- and
review-meting. The next sprint was planned the following Monday. The team organ-
ized a 15 minutes stand-up every morning discussing project related issues. The prod-
uct owner usually joined all the different Scrum meetings.

Coordinating GSD Work in the India I Project. Before using Scrum the team
relied on standardization and direct supervision when coordinating work with their
Indian team. In the beginning, the remote team was given some easy tasks specified
by the Norwegian team. The Scrum master said: “In the beginning the quality was
varying, and then we thought they should only concentrate on the testing. Then they
said ’No, this is not fun, please give us something more exiting to work on‘, and then
they got different tasks, and this worked pretty well.”

After using Scrum for 6 months the project had implemented all the Scrum prac-
tices, and felt they were succeeding with continuously improving their Scrum process.
The team tried to work as if they were all collocated, ignoring the geographical and
time differences. The Scrum master said: “It is a big barrier being distributed. We
used a lot of time on discussions between people in the two sub-teams. It did not work.
The solution was to appoint one of the remote developers the role of a local Scrum
master. And then we mostly communicated with her.”

To improve the communication it was decided to let the Indian Scrum master stay
in Norway for a period. The Scrum master said: “This improved the situation a lot.
The productivity increased while she was here. The important issue is to communicate
with only one person.” She was participating in all the Scrum meetings while situated
in Norway. At the same time it was also decided to let the remote team work on its
own module.

Even though they started applying Scrum, and assigning a member of the remote
team as a local Scrum master, the coordination between the two teams was still de-
scribed as a traditional way of developing software. During the planning meetings in
Norway, the local team would plan and suggest initial estimates for all the tasks in the
project, and then assign tasks to their remote partner. Later the remote team would
turn these tasks into sub-tasks, and provide new estimates. In the end, the Norwegian
team would check the results.

The Norwegian Scrum master, the Scrum master from India and one of the Norwe-
gian developers had frequent meetings (2-3 times a week) with the remote team. This
was a kind of distributed stand-up. In the meetings between the two sub-teams they
relied on chat and e-mail. The Scrum master said: “We tried to use telephone-
conferences, but it did not work well, because of language problems. It is also easier
to understand each other when relying on written communication. Also extensive use
of chatting makes it possible to ask a question right away. It takes time to organize a
telephone-conference.” He continued: “It was also difficult to only use 15 minutes on
the telephone. Often we used an hour. Chat is better.”

194 S. Hole and N.B. Moe

Coordination of work with the remote team was mostly based on direct-
supervision. The Scrum master from India was involved in the meetings but she then
decided who should do what.

4.2 Project India II

The goal of the project was to develop a system for quality audits in organizations.
This project represents the second release of the system and will provide multi user
support. Two departments of the studied company are involved, each acting as an
internal customer responsible for contracts with their own international customer.

The project consists of a product owner, who is also a project manager, and an ar-
chitect from Norway, while development is outsourced to India. Four remote devel-
opers are working 100% on the project, one of them as a team leader. In addition a
few remote developers contribute part time on the project. The Indian team members
are given specialized responsibilities, like GUI.

Scrum was applied from the inception of this project because, according to the
product owner, “our customer didn’t understand the creation of an old-fashioned
functional specification, so we thought: Okay, let’s try an agile approach.” They
agreed on a contract that allowed the use of a backlog with a constantly updated list of
business and technical requirements, and continuous deployment of short deliveries.
The backlog was maintained by the product owner. In addition to the described Scrum
practices, they used continuous integration and semi-automatic deployment, and code
reviews.

Coordinating GSD Work in the India II Project. The project started after the first
initial backlog was created by the product owner. After the initial design was created,
the work was then planned and divided into sprints in cooperation with the Indian
team. This failed. The product owner said: “I quickly gave up these sprints, that is, to
define them together with the remote team.” She continued: “It was very difficult
because of problems with the communication. […] We didn’t understand each other,
and then there were cultural differences, too.”

The product owner explained how they changed their way of coordinating work,
after finding it too time consuming to do the sprint planning in cooperation with the
remote team: “We then started sending them work-packages specified in detail, but
we realized it would be a too big job to do this for each work package.” The solution
was then to create a principal work plan and then further specify and document back-
log items with use-cases described in documents.

The product owner and the remote team leader communicate daily, often several
times a day. She said: “There has been a team leader down there who assigned the
tasks to the team, so I’ve only been dealing with him.”

The assignment of tasks to the Indian team became less detail oriented and instead
there was an increased focus on continuous communication. It seems like the product
owner tried to act more as described in the Scrum literature. She was maintaining the
backlog and specifications, while letting the Indian team work out the specifications:
“I do not know everything, therefore I try to communicate: ‘This is the use case, you
need to solve this. Work it out.’ And it works, and then they ask: ‘Can we discuss’,
and of course, we do.”

 A Case Study of Coordination in Distributed Agile Software Development 195

Coordination of work with the remote team was mainly based on direct supervision
and standardization in the form of written specifications and reporting of status, but
the team was also relying on frequent informal communication. However, the biggest
challenge was getting feedback from the remote team. The product owner said: “What
I miss, though, is that they should detect problems and show initiative.”

4.3 Project Eastern Europe

The goal of the project is to develop a system for collection and visualization of data
from ship-inspections. When ships are inspected, the results are stored in the system,
and the collected data are visualized through 3D models. The 3D engine was first
developed as a prototype 5 years ago, before it was integrated into the core system
and then released. Each time the product is sold to a new customer it requires adapta-
tion and modification of the system. Several contracts with different customers from
all over the world have been signed.

Four to five developers are situated in the remote team in an East European coun-
try, while two developers are situated in Norway, together with two persons from the
support department, one from sales and a project manager acting as a product owner.
The Norwegian team implements the daily Scrum. These meetings are also used for
discussion of future solutions. They tried to implement sprints for the whole project,
but failed. Tasks are mostly assigned to the Norwegian team’s members by the project
manager, who said, while pointing at the backlog: “There, I’ve been putting some
signatures on who is going to do what.”

Coordinating GSD Work in the Eastern Europe Project. The project was origin-
nally applying a traditional, waterfall inspired model. This changed a year ago when a
new project manager was assigned. The two distributed teams tried to use a common
Scrum process. They were conducting several joint stand-ups each week, and
implemented shared responsibilities. Originally, the remote team was only responsible
for the creation of 3D models, but when it was decided to integrate them in the total
development process, they faced new challenges. The project manager said: “We
thought that we should try Scrum, but because we wanted the remote team to take
part in development and bug fixing, stand-up became a challenge. […] We didn’t
manage to interact and cooperate, it became too time consuming.”

According to the project manager, the remote team was unfamiliar with the system.
This unfamiliarity made communication time consuming. The project manager said:
“We felt that the Norwegian team members used too much time communicating with
the remote team.” The project manager also felt that the remote team did not deliver
as expected. She said: “Often, the software seemed inadequately tested.” This dissat-
isfaction was communicated to the remote team.

The project manager considered the problem to be difficulties gaining a thorough
understanding of the complex source code, and commented on how tasks were
divided: “If we had managed to identify bigger chunks of new functionality to be
developed by the remote team, it might have been easier for them.” To improve the
situation it was decided to divide responsibility between the teams and to give the
remote team tasks that required less cross-site coordination. The Norwegian team is
now responsible for the core system, bug fixing, new functionality and customer rela-
tions, while the remote team is mainly responsible for system configuration and the

196 S. Hole and N.B. Moe

creation of 3D models for each customer. The project manager said: “Because of their
3D competency, it works, because then they don’t have to communicate with us all the
time. […] It’s only if they lack a specification or domain knowledge, for instance
when they miss an overview of what to put on the ship, then they come back and ask.”

Coordination of work between the teams was mainly based on standardization, and
to some degree direct supervision. The level of mutual adjustment was low.

5 Discussion

In this section we present our key observations in light of our research question: How
are tasks coordinated in GSD teams applying agile methods? To answer this question
we need to evaluate the degree to which the projects conformed to the generally ac-
cepted elements of the Scrum methodology. None of the projects succeeded in im-
plementing a shared Scrum process for both the local and remote team, and only the
local team in the India I project was using Scrum as intended. One reason for the
reported problems was the failed attempt to implement mutual adjustment in the dis-
tributed process. Agile development relies on mutual adjustment. All the projects
ended up using the traditional approach relying on direct supervision and standardiza-
tion when coordinating remote work. Figure 2 summarizes the coordinating mecha-
nisms used between the teams. The graphs are drawn from the bases of the interview
data and are also discussed with the interviewees.

5.1 Challenges Implementing Mutual Adjustment in GSD

All three projects tried to implement daily stand-ups as they are the most important
instrument for mutual adjustment. However, they all experienced these meetings as
time consuming, because of the flow of questions from the remote site. Language and
cultural differences were also a reason for the problems with these meetings. Com-
munication problems, often reported in GSD projects [6, 23], led to the replacement
of daily meetings with direct supervision and detailed specifications. This probably
made it difficult to solve the communication problems [24], discuss the backlog, and
to self-organize; one of the key tenets of agile development [25].

Ramesh et al. [6] suggest four practices to improve communication; synchronize
work hours, provide for informal communication through formal channels, balanced
coordination and constant communication. India II was only partly synchronized, but
managed to communicate frequently and relied on formal channels, i.e. communica-
tion through people with dedicated roles. India I reduced the need for synchronization
and coordination through modularization and communicated frequently with the re-
mote Scrum master. The team from Eastern Europe used synchronized work hours,
enabling constant communication, but the amount of communication and the lack of
formalized channels negated the positive effect.

All three projects were using Scrum for the first time, and it is possible that more
mature Scrum teams would communicate more efficiently because they may be more
knowledgeable about and have a better understanding of issues related to applying an
agile approach in a GSD project. Furthermore, none of the remote teams were trained
in Scrum and this probably resulted in a lack of process understanding.

 A Case Study of Coordination in Distributed Agile Software Development 197

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

Traditional GSD

India I

Scrum Theory

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

Traditional GSD

India II

Scrum Theory

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

Traditional GSD
Eastern Europe

Scrum Theory

Fig. 2. Relative emphasis on coordinating mechanisms between the onshore and offshore
teams: More emphasis is placed on direct supervision and standardization than on mutual
adjustment

198 S. Hole and N.B. Moe

5.2 Implementing Scrum Practices

There was no joint Scrum process between the teams; however India I succeeded in
implementing Scrum in Norway by dividing the project into modules, appointing a
remote Scrum master, and by moving her to Norway for periods. The other projects
used a similar approach, making the remote team responsible for specific modules.
This reduced the need for everyone to communicate with everyone, and made com-
munication less critical. The Eastern Europe project chose to assign standardized
tasks to the remote team, as less complex tasks reduce the need for mutual adjustment
[20]. Fowler [26] argues that this kind of modularization is important to succeed with
distributed Scrum, because a remote team that is responsible for an entire module
from planning to testing gets a deeper understanding of the tasks it is working on. He
also suggests continuous integration to avoid surprises when integrating the modules.

Modularization also makes it possible to implement a Scrum of Scrums approach
[27], where several teams follow their own Scrum process. The total process will then
be coordinated through meetings between the Scrum masters. India I was in an early
phase of implementing Scrum of Scrums.

Two of the projects improved their level of mutual adjustment after first substitut-
ing this coordinating mechanism with standardization and direct supervision. Elec-
tronic chatting was the best remedy to support mutual adjustment, since it is instant,
written text is less hampered by noise than speech, and it was perceived as timesaving
compared to using a telephone conference.

All projects focused on direct supervision after failing to use Scrum, but after some
months, they all felt they could reduce their level of direct supervision because of an
increased level of trust. Among the reasons for increased trust are frequent and reli-
able communication [24] and frequent visits by distributed partners [6]. Trust is a
prerequisite for effective mutual adjustment [24].

6 Conclusion and Future Work

This paper presented data from a multiple case study. None of the projects succeeded
in implementing mutual adjustment, and Scrum was only implemented in one local
team. In the end the projects applied a subset of Scrum practices. We found that:

• A high level of trust is important for reducing direct supervision and standardiza-
tion which is important to enable mutual adjustment.

• Co-locating the remote Scrum master with the local team and making the remote
team responsible for dedicated modules, makes it possible to implement Scrum in
part of a GSD project, and to implement Scrum of Scrums. This also reduces the
need for everyone to communicate with everyone in the GSD project.

• The communication problems caused by distribution are a threat to mutual adjust-
ment, however electronic chatting enables mutual adjustment.

• In addition, there is a need for more research utilizing formal analytical methods on
how work is coordinated in mature agile GSD teams, e.g. teams using Scrum of
Scrums, and when there is a common Scrum process.

 A Case Study of Coordination in Distributed Agile Software Development 199

Acknowledgement

We appreciate the input received from the project participants of the investigated
company and from the review by Hamish Barney and Odd Nordland. This research is
supported by the Research Council of Norway under Grant 174390/I40.

References

1. Damian, D., Moitra, D.: Global software development: How far have we come? IEEE
Software 23, 17–19 (2006)

2. Canfora, G., Cimitile, A., Di Lucca, G.A., Visaggio, C.A.: How distribution affects the
success of pair programming. International Journal of Software Engineering and Knowl-
edge Engineering 16, 293–313 (2006)

3. Agerfalk, P.J., Fitzgerald, B.: Flexible and distributed software processes: Old petunias in
new bowls? Communications of the ACM 49, 26–34 (2006)

4. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global software
development. IEEE Software 18, 22–29 (2001)

5. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile practices reduce dis-
tance in global software development. Information Systems Management 23, 7–18 (2006)

6. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Communications of the ACM 49, 41–46 (2006)

7. Paasivaara, M., Lassenius, C.: Could Global Software Development Benefit from Agile
Methods? In: Casper, L. (ed.) ICGSE, International Conference on Global Software Engi-
neering, pp. 109–113 (2006)

8. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48, 72–78 (2005)

9. Erickson, J., Lyytinen, K., Siau, K.: Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Research. Journal of Database Management 16, 88–
100 (2005)

10. Cohen, D., Lindvall, M., Costa, P.: An Introduction to Agile Methods. In: Zelkowitz, M.V.
(ed.) Advances in Computers, Advances in Software Engineering, vol. 62. Elsevier, Am-
sterdam (2004)

11. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods
- Review and analysis, vol. 478. VTT Publications (2002)

12. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading (2004)

13. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River (2001)

14. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile meth-
ods A comparative analysis, pp. 244–254 (2003)

15. Farmer, M.: DecisionSpace infrastructure: agile development in a large, distributed team.
Agile Development Conference, pp. 95–99 (2004)

16. Nisar, M.F., Hameed, T.: Agile methods handling offshore software development issues.
In: Hameed, T. (ed.) International Multitopic Conference 2004, pp. 417–422 (2004)

17. Sulfaro, M.: Agile Practices in a Large Organization: The Experience of Poste Italiane. In:
Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536. Springer,
Heidelberg (2007)

200 S. Hole and N.B. Moe

18. Salas, E., Sims, D.E., Burke, C.S.: Is there a “big five” in teamwork? Small Group Re-
search 36, 555–599 (2005)

19. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for
Extreme Programming in a global software development team. Information and Software
Technology 48, 781–794 (2006)

20. Mintzberg, H.: Mintzberg on Management: Inside Our Strange World of Organizations
(1989)

21. Cockburn, A., Highsmith, J.: Agile software development: The people factor. Com-
puter 34, 131–133 (2001)

22. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications Inc., Thousand
Oaks (2003)

23. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering 29, 481–
494 (2003)

24. Moe, N.B., Smite, D.: Understanding Lacking Trust in Global Software Teams: A Multi-
Case Study. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp.
20–32. Springer, Heidelberg (2007)

25. Dyba, T., Dingsoyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology (2008)

26. Fowler, M.: Using an Agile Software Process with Offshore Development (2003),
http://www.martinfowler.com

27. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed Scrum: Agile Project
Management with Outsourced Development Teams. In: HICSS, p. 274 (2007)

	A Case Study of Coordination in Distributed Agile Software Development
	Introduction
	Background
	Agile Methods and Scrum
	Coordinating Mechanisms in Agile Development and GSD

	Research Design and Method
	Study Context
	Data Sources and Analysis

	Agility in GSD Projects
	Project India I
	Project India II
	Project Eastern Europe

	Discussion
	Challenges Implementing Mutual Adjustment in GSD
	Implementing Scrum Practices

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

