

Communications
in Computer and Information Science 16

Rory V. O’Connor Nathan Baddoo
Kari Smolander Richard Messnarz (Eds.)

Software Process
Improvement

15th European Conference, EuroSPI 2008
Dublin, Ireland, September 3-5, 2008
Proceedings

13

Volume Editors

Rory V. O’Connor
School of Computing
Dublin City University
Dublin, Ireland
E-mail: roconnor@computing.dcu.ie

Nathan Baddoo
University of Hertfordshire
Hatfield, Hertfordshire AL10 9AB, UK
E-mail: n.baddoo@herts.ac.uk

Kari Smolander
Lappeenranta University of Technology
Lappeenranta, Finland
E-mail: kari.smolander@lut.fi

Richard Messnarz
ISCN LTD, Bray, Co.
Wicklow, Ireland
E-mail: rmess@iscn.com

Library of Congress Control Number: 2008934046

CR Subject Classification (1998): D.2, D.1, D.3, D.2.9, I.7

ISSN 1865-0929
ISBN-10 3-540-85934-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85934-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12517060 06/3180 5 4 3 2 1 0

Preface

This textbook is intended for use by SPI (Software Process Improvement) managers
and researchers, quality managers, and experienced project and research managers.
The papers constitute the research proceedings of the 15th EuroSPI (European Soft-
ware Process Improvement, www.eurospi.net) conference in Dublin, Ireland, 3–5
September 2008.

Since the first conference, held in Dublin in 1994, EuroSPI conferences have been
held in 1995 in Vienna (Austria), in 1997 in Budapest (Hungary), in 1998 in Gothen-
burg (Sweden), in 1999 in Pori (Finland), in 2000 in Copenhagen (Denmark), in 2001
in Limerick (Ireland), in 2002 in Nuremberg (Germany), in 2003 in Graz (Austria), in
2004 in Trondheim (Norway), in 2005 in Budapest (Hungary), in 2006 in Joensuu
(Finland), and in 2007 in Potsdam (Germany).

EuroSPI has established an experience library (library.eurospi.net), which will be con-
tinuously extended over the next few years and was made available to all attendees.

EuroSPI has also started an umbrella initiative for establishing a European Qualifi-
cation Network in which different SPINs and national ventures can join mutually
beneficial collaborations (EQN - EU Leonardo da Vinci network project).

With a general assembly on 15.-16.10.2007 through EuroSPI partners and net-
works, in collaboration with the European Union (supported by the EU Leonardo da
Vinci Programme), a European certification association has been created (www.eu-
certificates.org) for the IT and services sector to offer SPI knowledge and certificates
to industry, establishing close knowledge transfer links between research and industry.

A general assembly of the ECQA (European Certification and Qualification
Agency) took place as an associated event of EuroSPI 2008 on September 3, 2008.

The greatest value of EuroSPI lies in its function as a European knowledge and ex-
perience exchange mechanism for SPI know-how between research institutions and
industry.

Since its beginning in 1994 in Dublin, the EuroSPI initiative has outlined that there is
not a single silver bullet to solve SPI issues, but it is necessary to understand a combina-
tion of different SPI methods and approaches to achieve concrete benefits. Therefore
each proceedings volume covers a variety of different topics, and at the conference we
discussed potential synergies and the combined use of such methods and approaches.
These proceedings contain selected research papers for six topics each having three
research papers:

Section I: Organizational Issues
Section II: Productivity, Effort Estimation and Metrics
Section III: Standards and Reference Models 1
Section IV: Standards and Reference Models 2
Section V: Documentation and Knowledge Management
Section VI: Project Issues.

 Preface VI

Section I presents three studies that approach software development and process im-
provement from an organizational viewpoint. Ma et al. recognize conflict as an
unavoidable issue in organizational settings. They present a mediation model that can
be used for conflict resolution in requirements engineering. O’Donnell and Richardson
study the implementation of agile methods in a small software organization. The con-
clusion they come to is that many of the problems in implementation relate to the
management of the organization. The paper by Valtanen and Sihvonen makes empiri-
cal observations about a small company and its SPI efforts. In their analysis they iden-
tify factors that have a positive impact on the motivation of SPI efforts. The most
important factors they identify are top-down commitment, shared best practices, re-
sources and bottom-up initiatives.

Section II, “Productivity, Effort Estimation and Metrics”, combines the results of
three studies in this area. The first paper, by Chua et al., builds an empirical model for
estimating effort on requirements changes. The paper shows the importance of gather-
ing enough data to develop a cost estimation model. The paper by Pietinen et al. com-
pares two cases and draws conclusions on the productivity of pair programming in a
distributed environment. As a result, they suggest that pair programming is good for
raising confidence and sharing tacit knowledge. The third paper (Ozkan et al.) intro-
duces diverse uses of functional size measures and investigates how functional size
measures can be incorporated into project management practices.

In Section III the focus moves to the relation of improvement efforts to proposed
reference models and standards. Hauck et al. introduce process reference guides that
can be used for mapping reference models and standards to improvement efforts. To
implement such mapping they propose using an organizational WIKI. The paper by
Landaeta et al. approaches SPI from the project management perspective. They pre-
sent a procedure for planning, monitoring and closing an SPI program that uses
PMBOK’s process areas as a reference. Chen et al. focus on CMMI. They investigate
practice dependencies within CMMI process areas and present a set of graphs that
show the dependencies. Their model provides more information about the dependen-
cies of CMMI for SPI researchers and practitioners.

Section IV focuses on reference models and standards and places more emphasis
on IT services. Magdalena et al. use graph theory to represent the existing dependen-
cies among the ITIL v2 processes. The result helps in determining the implementation
priority of the service processes. Barafort et al. continue in the area of IT services.
They approach the subject through industrial cases and integrate capability assessment
with process modeling. As a conclusion, they present an enhanced framework for
process improvement. Finally in this section, Laporte et al. propose a software engi-
neering lifecycle standard for very small enterprises. They survey small enterprises
and emphasize the importance of recognizing the contribution of small enterprises.
They note that small enterprises require further guidance in order to integrate stan-
dards into their practices.

In Section V the focus shifts to managing SPI knowledge. Stapel et al. conclude
that a document-centric process is an impossibility in pre-development phases in the
automotive sector. Therefore they propose light-weight concepts for these phases and
incorporate them in a semantic Wiki. Calvo-Manzano et al. provide an organizational
tool, a process asset library that organizes the SPI-related knowledge of an organization.
The tool is targeted especially for small organizations and acts as an organizational

 Preface VII

repository for process improvement. Montoni et al. present an approach to support the
execution of SPI implementation initiatives based on SPI strategies. Their aim is to
capture the knowledge related to critical success factors of SPI initiatives. They im-
plement this with a set of tools in a process-centered knowledge management envi-
ronment.

Finally, Section VI concentrates on project management issues. The first paper of
this section, by Majchrowski and Deprez, makes an interesting connection from open
source to project management. It presents a process for selecting open source compo-
nents for a software development project. Hole and Moe combine agile methods and
global software development in their action research study of three distributed pro-
jects. They wish to find out whether it is possible to combine Scrum with global soft-
ware development. They conclude that trust is important for getting the benefits of
agile development, Scrum requires certain organizational adjustments, and that it is
important to solve existing communication problems. Finally, Martins and da Silva
present an SPI methodology that aligns processes and projects. They also propose a
metric to analyze the alignment.

Recommended Further Reading

In [1] we integrated the proceedings of 3 EuroSPI² conferences into one book which
was edited by 30 experts in Europe. In [2] you will find the EuroSPI² research pro-
ceedings published by Springer and based on EuroSPI 2005. In [3] you will find the
EuroSPI research proceedings published by Springer and based on EuroSPI² 2006. In
[4] you will find last year’s EuroSPI² research proceedings published by Springer.

References

1. Messnarz, R., Tully, C. (eds.): Better Software Practice for Business Benefit – Principles
and Experience, 409 pages. IEEE Computer Society Press, Los Alamitos (1999)

2. Richardson, I., Abrahamsson, P., Messnarz, R. (eds.): Software Process Improvement.
LNCS, vol. 3792, p. 213. Springer, Heidelberg (2005)

3. Richardson, I., Runeson, P., Messnarz, R. (eds.): Software Process Improvement. LNCS,
vol. 4257, pp. 11–13. Springer, Heidelberg (2006)

4. Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz, R. (eds.): Software Process Im-
provement. LNCS, vol. 4764, pp. 1–6. Springer, Heidelberg (2007)

July 2008 Rory V. O’Connor
Nathan Baddoo
Kari Smolander

Richard Messnarz

Organization

Board Members

EuroSPI board members represent centres or networks of SPI excellence with consid-
erable experience with SPI. The board members collaborate with different European
SPINs (Software Process Improvement Networks).

The following six organizations have been members of the conference board in the
last 8 years:

• ASQ, http://www.asq.org
• ASQF, http://www.asqf.de
• DELTA, http://www.delta.dk
• ISCN, http://www.iscn.com
• SINTEF, http://www.sintef.no
• STTF, http://www.sttf.fi

EuroSPI Scientific Program Committee

EuroSPI has established an international committee of selected well-known experts in
SPI who are willing to be mentioned in the program and to review a set of papers each
year. The list below represents the research program committee members. EuroSPI²
also has a separate industrial program committee responsible for the industry/experience
contributions.

• Ambriola, Vincenzo, Università di Pisa, Italy
• Aurum, Aybke, University of New South Wales, Australia
• Baddoo, Nathan, School of Computer Science at the University of Hertfordshire,

UK
• Biffl, Stefan, Technische Universität Wien, Austria
• Biro, Miklos, Corvinus University of Budapest, Hungary
• Calvo-Manzano Villalón, Jose A., Universidad Politécnica de Madrid, Spain
• Ciolkowski, Marcus, Fraunhofer IESE, Germany
• Coughlan, Ray, Cork Institute of Technology, Ireland
• Dalcher, Darren, Middlesex University, UK
• Daughtrey, Taz H., James Madison University, USA
• Desouza, Kevin C., University of Washington, USA
• Dingsoyr, Torgeir, SINTEF ICT, Norway
• Duncan, Howard, Dublin City University, Ireland
• Dyba, Tore, SINTEF ICT, Norway
• Gabor, Andras, Corvinno Technology Transfer Center Ltd, Hungary
• García Guzmán, Javier, Universidad Carlos III de Madrid, Spain

 Organization X

• Gorschek, Tony, Blekinge Institute of Technology, Sweden
• Gresse von Wangenheim, Christiane, Universidade do Vale do Itaja - UNIVALI,

Brazil
• Kreiner, Christian, Graz University of Technology, Austria
• Landes, Dieter, Fachhochschule Coburg, Germany
• Mäkinen, Timo, Tampere University of Technology, Finland
• Mac an Airchinnigh, Michael, Trinity College Dublin, Ireland
• Mc Caffery, Fergal, University of Limerick, Ireland
• McQuaid, Patricia, Orfalea College of Business, USA
• Müller, Matthias, EnBW Systeme Infrastruktur Support GmbH, Germany
• Münch Jürgen, Fraunhofer IESE, Germany
• O'Connor, Rory, Dublin City University, Ireland
• Oivo, Markku, University of Oulu, Finland
• Ovaska, Päivi, South Karelia University of Applied Sciences, Finland
• Peisl, Thomas, University of Applied Sciences Munich, Germany
• Pries-Heje, Jan, Roskilde University, Denmark
• Rejas, Ricardo, Universidad Francisco de Vitoria, Spain
• Richardson, Ita, Universtiy of Limerick, Ireland
• Ruhe, Günther, University of Calgary, Canada
• Siakas, Kerstin, Technological Educational Institute of Thessaloniki, Greece
• Sillitti, Alberto, Free University of Bolzano-Bozen, Italy
• Smolander, Kari, Lappeenranta University of Technology, Finland
• Stålhane, Tor, Norwegian University of Science and Technology, Norway
• Tiron Tudor, Adriana, UBB-University Babes Bolyai, Romania
• Vajde Horvat, Romana, University of Maribor, Slovenia
• Varkoi, Timo, Tampere University of Technology, Finland
• Winkler, Dietmar, TU Vienna, Austria

All four editors have quite a complementary and interesting profile. Dr. Messnarz

works in close collaboration with Austrian research institutions (universities of ap-
plied sciences) and large German automotive companies. Dr. Nathan Baddoo is a pro-
fessor at the University of Hertfordshire, UK, and he has published scientific articles
about human factors in SPI and has performed studies at major European organiza-
tions, applying motivation techniques in SPI. Dr. Rory O’Connor is a senior lecturer
at Dublin City University and a senior researcher with Lero, the Irish Software Engi-
neering Centre. His main research interests centre on software processes and SPI in
relation to small and very small organizations. And finally, Dr. Kari Smolander has
studied software development organizations extensively, and he is a professor of soft-
ware engineering at Lappeenranta University of Technology. The experience portfolio
of the chairs covers different market segments, different sizes of organizations, and
different SPI approaches. This strengthens the fundamental principal of EuroSPI² to
cover a variety of different markets, experiences, and approaches.

Table of Contents

Organizational Issues

Building a Narrative Based Requirements Engineering Mediation
Model . 1

Nan Ma, Tracy Hall, and Trevor Barker

Problems Encountered When Implementing Agile Methods in a Very
Small Company . 13

Michael J. O’Donnell and Ita Richardson

A Process Asset Library to Support Software Process Improvement in
Small Settings . 25

Jose A. Calvo-Manzano, Gonzalo Cuevas, Tomás San Feliu, and
Ariel Serrano

Productivity, Effort Estimation and Metrics

Criteria for Estimating Effort for Requirements Changes 36
Bee Bee Chua, Danilo Valeros Bernardo, and June Verner

Productivity of Pair Programming in a Distributed
Environment – Results from Two Controlled Case Studies 47

Sami Pietinen, Vesa Tenhunen, and Markku Tukiainen

Software Functional Size: For Cost Estimation and More 59
Baris Ozkan, Oktay Turetken, and Onur Demirors

Standards and Reference Models

Process Reference Guides – Support for Improving Software Processes
in Alignment with Reference Models and Standards 70

Jean Carlo R. Hauck, Christiane Gresse von Wangenheim,
Richard H. de Souza, and Marcello Thiry

Practical SPI Planning . 82
José Francisco Landaeta, Javier Garćıa, and Antonio Amescua

Analysis of Dependencies between Specific Practices in CMMI Maturity
Level 2 . 94

Xi Chen, Mark Staples, and Paul Bannerman

XII Table of Contents

A Solution for Establishing the Information Technology Service
Management Processes Implementation Sequence . 106

Magdalena Arcilla, Jose Calvo-Manzano, Gonzalo Cuevas,
Gerzon Gómez, Elena Ruiz, and Tomás San Feliu

Modeling and Assessment in IT Service Process Improvement 117
Béatrix Barafort, David Jezek, Timo Mäkinen, Svatopluk Stolfa,
Timo Varkoi, and Ivo Vondrak

A Software Engineering Lifecycle Standard for Very Small
Enterprises . 129

Claude Y. Laporte, Simon Alexandre, and Rory V. O’Connor

Documentation and Knowledge Management

Lightweight Process Documentation: Just Enough Structure in
Automotive Pre-development . 142

Kai Stapel, Eric Knauss, and Christian Allmann

Employees’ Motivation for SPI: Case Study in a Small Finnish Software
Company . 152

Anu Valtanen and Hanna-Miina Sihvonen

A Knowledge Management Approach to Support Software Process
Improvement Implementation Initiatives . 164

Mariano Angel Montoni, Cristina Cerdeiral, David Zanetti, and
Ana Regina Cavalcanti da Rocha

Project Issues

An Operational Approach for Selecting Open Source Components in a
Software Development Project . 176

Annick Majchrowski and Jean-Christophe Deprez

A Case Study of Coordination in Distributed Agile Software
Development . 189

Steinar Hole and Nils Brede Moe

ProPAMet: A Metric for Process and Project Alignment 201
Paula Ventura Martins and Alberto Rodrigues da Silva

Author Index . 213

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 1–12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Building a Narrative Based Requirements
Engineering Mediation Model

Nan Ma1, Tracy Hall2, and Trevor Barker1

1 School of Computer Science, University of Hertfordshire,
College Lane, Hatfield A10 9AB, UK

{N.ma,T.1.barker}@herts.ac.uk
2 Department of Information Systems & Computing, Brunel University,

Uxbridge, Middlesex UB8 3P
Tracy.Hall@herts.ac.uk

Abstract. This paper presents a narrative-based Requirements Engineering
(RE) mediation model to help RE practitioners to effectively identify, define,
and resolve conflicts of interest, goals, and requirements. Within the SPI com-
munity, there is a common belief that social, human, and organizational issues
significantly impact on the effectiveness of software process improvement in
general and the requirements engineering process in particularl. Conflicts
among different stakeholders are an important human and social issue that need
more research attention in the SPI and RE community. By drawing on the con-
flict resolution literature and IS literature, we argue that conflict resolution in
RE is a mediated process, in which a requirements engineer can act as a media-
tor among different stakeholders. To address socio-psychological aspects of
conflict in RE and SPI, Winslade and Monk (2000)’s narrative mediation model
is introduced, justified, and translated into the context of RE.

Keywords: Conflict, Method Tailoring, Narrative Mediation, Conflict Resolu-
tion, Requirements Negotiation.

1 Introduction

In this paper we present a narrative-based Requirements Engineering Mediation
Model (NREMM). Conflict is a common phenomenon in everyday life [1]. It also has
been recognized as an inevitable part of the RE process, as RE is both a social and
technical process involving extensive interactions among different stakeholders (e.g.
customers, users, developers and testers) from different backgrounds and with differ-
ent individual and organizational goals [2]. However, in the current RE literature,
conflict is consistently considered as a technical issue that may lead to inconsistency
in the requirements specification (e.g. [3] [4] [5] [6] [7]). Much work in this area
focuses on presenting technical methods or techniques for modelling, analyzing, and
managing conflict or inconsistency e.g. KAOS [5], Problem Frames [6] and I* [7] or
tools for automating conflict identification and resolution e.g. Oz [8], Synoptic [3], or
prompting groupware systems for remote negotiation e.g. Win-Win [9]. Little atten-
tion is given to the socio-psychological aspect of the conflict. Furthermore, the term “

2 N. Ma, T. Hall, and T. Barker

requirements negotiation” is prevalent in the RE literature where the resolution of
conflict in RE is considered as a purely negotiation-based process (e.g. [3] [4] [8] [10]
[11]) in which a requirements engineer acts as a representative of a developer site and
negotiates with users.

This paper adopts a complementary viewpoint and differentiates itself from previous
work by recognizing conflict as a social, human, and organizational issue. We adopt
Barki and Hartwick’s definition of conflict as “a phenomenon that occurs between
 interdependent parties as they experience negative emotional reactions to perceived
disagreements and interference with the attainment of their goals. [12]” Furthermore,
we also view the process of resolving conflict in RE is a mediated process, in which a
requirements engineer acts as a mediator among different stakeholders.

It is often possible to borrow relevant theories from other disciplines to improve
RE practice. Resolving the human aspects of conflict and reaching an agreement in
RE can thus be sought by applying relevant approaches that have proved successful in
the mediation and conflict resolution discipline. In doing this we borrow the original
narrative mediation theory from Winslade and Monk [13] and translate it into the
context of RE. This paper aims to describe the rational of why we have built such a
model, the methodological approach of how we built it, and finally what a narrative-
based RE mediation model is.

This paper is organised as follows: Section 2 gives a review of the relevant literature
to justify the rational of building the NREMM model. Section 3 provides an overview
of the original narrative mediation model, and justifies its applicability to the context of
RE. Section 4 presents our methodological approach of translating the original narrative
mediation model into the context of RE, and also presents our NREMM model. Finally,
section 5 concludes the paper with some plans for future research.

2 Conflict Resolution in RE

In this section, we argue that conflict resolution in RE is a mediation process rather
than a negotiation process, in which a requirements engineer acts as a mediator to
assist different stakeholders from different backgrounds with different individual and
organizational goals to resolve conflicts. The fundamental difference between nego-
tiation and mediation is that, negotiations often only involve conflicting parties them-
selves reaching an agreement. Mediations then involve a third party as a mediator to
lead the process and help parties to reach an agreement.

Most of the RE literature argues that the process of resolving conflict is a purely
negotiation-based process, in which a requirements engineer acts as a representative
of a development site to “negotiate” with a users’ site to make trade-offs (e.g. [3] [4]
[8] [10] [11]). However, evidence from the IS discipline suggests that conflicting
interests and goals are not only between the users’ site and the developers’ site, but
are often between different user groups. For example, Robertson et al. describe a case
where the decision to develop a new production management system was predomi-
nantly led by manufacturing and production department specialists who decide to
invest heavily in a new manufacturing resources planning system (MRP2) [14]. How-
ever, in this case, stakeholders from other functional departments (e.g. purchasing and
marketing) had different ideas about the problems they were facing and did not be-
lieve the new MRP2 to be the solution. Eventually the new system failed due to poor

 Building a Narrative Based Requirements Engineering Mediation Model 3

management of such conflicting interests and goals between two users groups [14].
This negotiated form of conflict resolution is seriously questioned in the above situa-
tion. It is apparent in the above situation that a requirement engineer needs to play a
mediator’s role to facilitate the two users groups to reach an agreement on require-
ments. Our field study of 10 RE practitioners also indicates that RE workshops are the
most widely used method of requirements elicitation, and he/she is often required to
play the role of a mediator in a RE workshop [15].

The facilitative role of a requirements engineer has been documented in the RE lit-
erature. However, there are many diverse views on the facilitators’ role in the RE
literature ([11] [16]). The role of a requirements engineer as a mediator has not been
explicitly identified in the previous RE literature. Few techniques, models, and guide-
lines have been developed to guide a requirements engineer to resolve conflicting
viewpoints in RE practice. In the next section, I will provide a brief overview of the
original narrative mediation approach and particularly focus on justifying its applica-
bility and importance to RE.

3 A Brief Overview of Narrative Mediation

The narrative perspective is that people tend to organize their experiences in story
form. In narrative mediation, the process of mediation is thus viewed as a story-telling
process [13]. It has been recognized as an innovative conflict resolution paradigm that
encourages conflicting parties to reach understanding and resolution through a deep
understanding of the shared personal and cultural narratives underlying the conflict.
In this section, we provide an overview of the original narrative mediation model, and
justify it’s applicability to the context of RE.

The narrative approach involves a simple and yet profound departure from com-
monly held assumptions about the conflicts that embroil people [13]. Its underlying
assumption is that people live their lives according to stories rather than according to
inner drives or interest. It thus privileges stories and the meanings within stories over
facts and causes. In the story, people seek to establish coherence and produce lives,
careers, relationship, and communalities [13]. Therefore, when they work with others
to overcome the divisiveness of a conflict, they will find it “more productive to work
with the stories in which the conflict is embedded than to pursue objective reality”
[13]. The original narrative mediation model contains three sub-models [13]:

• Engagement. In this phase, the mediator focuses on establishing a relation-
ship and identifying the problems with the conflicting parties. To achieve a
workable relational context, the mediator needs to attend to the physical set-
ting in which the mediation is to take place, to the non-verbal behaviour dis-
played by all parties, and to the relational moves made by the mediators and
the parties. In the case of resolving conflicts in RE, we can refer this phase as
conflict identification phases.

• Deconstructing the conflict-saturated story. This phase of the process in-
volves the mediator developing a supportive relationship and listening re-
spectfully to their own stories. The mediator works actively to separate the
parties from their conflict-saturated story. The mediator seeks to undermine
the certainties on which the conflict feeds and invites the participants to view

4 N. Ma, T. Hall, and T. Barker

the plot of the dispute from a different viewpoint. In the case of resolving
conflicts in RE, we can refer this phase as conflict definition phase.

• Constructing the alternative story. In this phase, the mediator is occupied
with crafting alternative, more preferred story lines with people who were
previously captured by a conflict-saturated relationship. This phase thus may
lead to a resolution that takes the form of an agreement between parties. In
the case of resolving conflicts in RE, we can refer this phase as conflict solu-
tion phase.

3.1 Narrative Mediation’s Applicability to RE

We justify the applicability of the original narrative mediation to RE based on the
following four aspects:

A process-oriented perspective
Narrative mediation model adopts a process-oriented perspective. As Winslade and
Monk [13] state:

“We have deliberately called this approach a process because we think the
word process focuses on the dynamic, shifting, and changing elements of me-
diation rather than on abstraction, facts, or structures. By concentrating on
process, the mediator is invited to think about and work with the responses of
the conflicting parties rather than follow some static, preconceived plans.”

This process-oriented perspective matches particularly well with the process aspect of
RE practice. RE process is a set of activities that should be systematically followed to
derive, validate, and maintain a systems requirements document [2]. The RE literature
has presented many different process models, which can range from linear or iterative
in structure (e.g. [2] [16]).

Although theses models are explicitly defined in the RE literature, the empirical
studies have indicated that the systematic and incremental RE models presented in the
RE literature do not really reflect the reality of RE process in real practice. For exam-
ple, Hofmann et al., indicate that most companies regard RE as an ad hoc process,
with only some using an explicitly defined RE process model or customising a com-
pany standard model [17]. Nguyen and Sawtmann also indicate that RE processes do
not appear in a systematic, smooth and incremental way, but are “opportunistic, with
sporadic simplification and restructuring of the requirements models when points of
high complexity are reached” [18].

One reason for this chaotic and dynamic RE process is due to requirements
changes [19]. It is apparent that the business environment in which software is de-
ployed continually changes. Even if the environment is constant, people’s perceptions
and understandings are dynamic [20]. As a result, the process of resolving conflicts
in RE is a dynamic and complex process. It does not involve discrete stages, and does
not follow a tidy sequence of events. Rather, the process moves back and forth in a
seemingly dynamic manner when necessary. In this sense, the narrative mediation
model which focuses on the dynamic, shifting, and changing elements of mediation
seems particularly applicable for the context of RE.

 Building a Narrative Based Requirements Engineering Mediation Model 5

A storytelling process
Narrative mediation particularly builds on this storytelling metaphor, and provides a
mediator with a way of incorporating stories into the resolution of conflict. In narra-
tive mediation, narratives are interactively developed, modified, and contested as
parties elaborate portions of their own and each other’s conflict stories [13]. This
approach thus assumes that conflicts are rooted in conflict-saturated stories that par-
ties have developed through the course of their relationship. As Winslade and Monk
state “conflict is likely because people do not have direct access to the truth or the
facts about any situation. [13]”

In RE, the way of gathering user requirements fundamentally can be viewed as a
storytelling process. New software development methodologies are increasing ex-
ploiting to storytelling aspect of RE process (e.g. user stories in XP practice) [21].
Viewing requirements elicitation as a storytelling process not only emphasizes the
final outcome – “user stories”, but also highlights the importance of verbal communi-
cation and interactions between users and developers, which can potentially minimize
the ambiguity of requirements specification [22]. In this sense, the original narrative
mediation model which builds on the storytelling metaphor seems well-matched with
the fundamental nature of RE elicitation process.

Outsider-in perspective
The context in which RE takes place is a complex “human activity system”; eliciting
and analysing requirements thus can not be performed in isolation from the organiza-
tional and social context in which any new system will have to operate [19]. This view
stresses a good understanding of the social, political and cultural changes caused by new
systems. Moreover, as shown in the Curtis et al.’s classic field study of software engi-
neering process, conflicts result from a wide range of interrelated factors, from change
in the organisational setting and business context, to the fact that software will be used
by different people with different goals and different backgrounds [23].

In narrative mediation, Winslade and Monk argue an “outsider-in” perspective,
which looks at conflict as produced in the socio-culture context, where meanings are
contested within the social fabric of community [13]. The narrative mediation ap-
proach is based on the idea that people construct conflict from their narrative descrip-
tion of events, and concentrates on developing a relationship that is incompatible with
conflict and that is built on stories of understanding, respect, and collaboration. The
narrative mediation approach recognizes that the mediation context is filled with
strong cultural, social, and organizational narratives that form around ethnicity, gen-
der, class, education, financial background, organizational structure and strategies.
The narrative mediation approach with an “outsider-in” perspective, which helps
mediators and their conflicting parties make sense of the complex social contexts that
produce conflicts is thus applicable for the social and organizational aspects of RE.

4 NREMM

In this section, we present our NREMM model. The first part of this section explains
our models translation approach. Although many existing RE studies present their
novel methods or models by borrowing and translating theories from the other disci-
plines, there is very little in the RE literature that directly and explicitly explains their

6 N. Ma, T. Hall, and T. Barker

methodological approach of how their model is systematically and rigorously bor-
rowed and translated. We believe that providing such a methodological approach will
benefit further researchers who also seek to translate relevant theories from other
disciplines to improve RE practice. However, here we only briefly present our meth-
odological approach and NREMM model. For the detail, please refer to [15].

4.1 Model Translation Method

To ensure a rigorous and systematic model translation process, I follow three transla-
tion activities (See figure-1):

1. Activity-1: In the first activity, each element of the original narrative media-
tion model (defined as Model version-V0) is mapped onto the context of RE
according to its relevance to the RE literature. This means that all irrelevant
elements will be removed from the original model. The outcome of this ac-
tivity is model version V1, which will retain the structure of the original
model but only contain elements relevant to RE. To give a reasonable and
subjective assessment of each element’s relevance of RE, a scoring scheme
was developed and used. A Cohen’s Kappa measure of inter-rater reliability
has been carried out, and indicates an acceptable level of agreements (0.68)
between two individual raters.

2. Activity-2: A RE specialised mediation model essentially requires the inte-
gration of contemporary specialised RE techniques. In the second activity,
model version V1 thus will be improved by adding specific RE techniques.
The outcome of this activity will be defined as model version V2, which con-
tains specific RE techniques from the RE literature.

3. Activity-3: The original mediation model itself contains a certain degree of
overlap. Activity 3 will re-structure the model version V2.

Model version: V0

Activity-1: Deleting
the irrelevant and
unimportant elements

Model version: V1

Activity-2: Adding on the
specialised RE elements
on the model version V1

Model version: V2

Activity-3:
Re-structuring
the model

Model version: V3

Fig. 1. Three activities of model translation

4.2 NREMM

As mentioned in section 3, the original model contains three sub-models, which are
also translated into the context of RE: conflict identification (See figure-2), conflict
definition (see figure-3), and conflict resolution (see fugirue-4).

4.2.1 Sub-Model-A: Conflict Identification
The aim of this phase is to establish a workable relationship with the conflicting parties
and initially identify conflict between them. The major activities in this phase include
selecting meeting settings, relationship practice, dialogical practice, and stakeholders

 Building a Narrative Based Requirements Engineering Mediation Model 7

modelling. The new model below retains majority elements of relational practice, and
dialogical practice from the original model, and is complemented by the feature of
stakeholder modelling and preparing an RE meeting setting.

Selecting RE meeting setting
Mediation is a meeting based activity. It is important to ensure a RE meeting take
place in the right place, with the group of right stakeholders, and with the facilitation
of right artefacts. Therefore, selecting meeting setting in RE focuses on the meeting
layout and the use of artefacts. In this research, good practice guidelines (e.g. [16];
[24]) from the existing RE literature are integrated with the original model.

Fig. 2. A model of conflict identification

Stakeholder modelling
Identifying and involving the right stakeholders is of paramount importance in RE. In
particular, stories in RE are interactively written through the collaborations between
different stakeholders. Consequently, it is essential to identify the right stakeholder’s
role and personas prior to listening to his/her conflict story. The disciplines of user-
centred design and interaction design provide the theories and techniques for identify-
ing and modelling stakeholders as an initial step towards a successful RE mediation
meeting. In this research, we will follow Constantinue and Lockwood’s recommended
practice to identify and model a useful set of stakeholder roles [25].

Dialogical practice
Dialogical practice provides a set of questioning and listening technique to develop a
dialogue between parties. The key part of dialogical practice in this sub-model is
about inviting and listening to the telling of their conflict stories. Narrative mediation
requires the mediator should be more interested in learning the story from which the
person is operating, not just with the story the parties are telling. The mediator should
learn and listen to people as experts on their own lives. Winslade and Monk [13:140]
introduce discursive listening techniques and defined it as:

 Conflict Identification

Selecting Meeting setting
Seat and Meeting layout
Light, hearting, general ambience
Artefacts (Flip chart, whiteboard, PC)

Stakeholder modeling
Identify stakeholder' role
Create a persona
Create an extreme character

Dialogical practice
Watching tacit communication
Watch facial expression
Discursive listening
Genuine curiosity questioning
Inviting production of meaning
Inviting collaborative conversions

Relationship practice
Showing respect
Value personhood
Build trust
Rituals of engagement

8 N. Ma, T. Hall, and T. Barker

“Careful listening involves hearing not just what has happened but also what
necessary constructs are at work in this particular account to make sense of
what has happened. This is what we call discursive listening, or listening to
the discourses at work in a particular account and to the position calls that
are issued within each discourse.”

The discursive listening aims to hear the stories as a version or construction of events
rather than a set of facts. It does not merely listen for a definable problem, which is
some facts that form the basis of the conflict, or the underlying interests of the parties
that are being expressed in the conflict. Most importantly, discursive listening in-
volves learning and listening for the intersection of narrative in a discursive context.
Relationship practice
Mediation is a cooperative practice in which the parties to the conflict are viewed as
partners in mediation. Thus, at the very beginning, narrative mediation is very much
about creating a relational climate. To achieve this relational climate, the original
narrative mediation model recommends that a mediator should “show respect to the
parties involved, value their personhood, and invite collaborative conversation”
Winslade and Monk [13:120]. In the case of RE, it is apparent all these good practices
should also be followed by a requirements engineer.

4.2.2 Sub-Model-B: Conflict Definition (Figure-3)
The aim of this sub-model of mediation is to gain an accurate understanding of con-
flict. The original narrative mediation model refer to this phase as “deconstructive” in
that it gently seeks to undermine the certainties on which the conflict feeds. The sub-
model-B thus retains the two elements from the original narrative mediation model:
dialogical practice and relationship practice. In addition, the sub-model-B is comple-
mented by adding a new activity: writing a good story.

Fig. 3. Conflict definition

Conflict definition

Relationship practices
Mediator guarding against

• Enlistment in problem narrative
• Assuming an expert knowing posi-

tion
Calling parties into a co-authoring re-

lationship

Dialogical practices
Curious, persistent, and resilient in

questioning
Discursive listening
Using externalizing language
Identifying and deconstructing domi-

nant problem discourses

Using structured story template
• Defining fleshed-out characters
• Defending the detailed settings
• Defining parties’ goals
• Dentifying causality
• Defining dramatic element

 Building a Narrative Based Requirements Engineering Mediation Model 9

Dialogical practice
In this phase, the mediator needs to ask questions that will open up space for recon-
sideration of the conflict story and eventually separate the people from the conflict.
Developing an externalizing conversation and questioning curiously play important
roles to achieve this. Careful inquiry into the meanings of the elements of the stories that
the parties tell seeks to avoid taking any particular meaning for granted. Curious inquiry
sometimes needs to be pursued persistently for its best effect. For example, if a devel-
oper team speaks about misunderstanding a user’s interpretation on software require-
ments as a result of what has happened in a conflicting situation, it might be productive
to inquire about the word “misunderstanding” and what it means rather than assume we
know what is being referred to. Using this type of questioning technique can break up
our sense of certainty that we know all that can be known about what we mean, or even
more dangerously, that we know what someone else means[13].

Continuing with above example, we now look how externalizing conversation mi-
ght be used in the conflicts situation between a user group and a developing team. The
mediator might look for some description of the conflict that includes both parties’
perspectives. Such a description might need to include notions like betrayal or inter-
ference. It might even be called simply the argument. In this case, such a description
can be viewed as misunderstanding between users and developers. Then the mediator
might speak about the misunderstanding as the cause of two parties’ problem, rather
than speaking about two parties as the cause of the argument. Such linguistic play,
done skillfully, might lead to a new perspective on the conflict, and eventually shifts
focuses away from personalities, or blame, and focuses attention on the problematic
features of the conflict itself.

Relationship practice
In this phase of mediation, the relationship established with the parties in the previous
preparation phase needs to be continued. In fact, the mediation can proceed only if the
mediator is able to continue to demonstrate respect and compassion to the parties. The
mediator thus should be “encouraging, affirming trust, having courage to engage with
the fullness of the story, and showing impact of conflict story on mediator” [13:80].

Writing a good story
The original model aims to undermine the fundamental causes of conflicts by adopt-
ing unique linguistic techniques such as discursive listening, curiosity questioning,
and externalization conversation. The original model strongly emphasises the impor-
tance of verbal communication, but overlooks the importance of writing a good story
document. The elements added on this activity are adopted from the fields of social
science in which the concept and theory of narrative first emerged [26]. Those works
recommend the basic practice on writing a good story such as using structured story
template, defining fleshed-out characters, defending the detailed settings, defining
parties’ goals, identifying causality, and defining dramatic element [26].

4.2.3 Sub-Model-C: Conflict Solution (See Figure-4)
Once the relational issues are addressed in a positive way and the conflict itself is
clearly defined, traditional problem-solving based mediation approach can become
effectively in this phase. In this sense, a mediator then can begin to invent solutions.
The original model asks the mediator to invite parties to identify with their preferred
alternative to the conflicting relationship. In the context of RE, this can be understood

10 N. Ma, T. Hall, and T. Barker

as the requirements engineer inviting the conflicting stakeholders to propose their
preferred solutions as the alternatives for the conflicting situation. As a result, this
phase will lead to a solution that takes the form of an agreement. The sub-model-C
(see figure-4) retains two activities from the original model: dialogical practice and
relationship practice. In addition, to help parties reach a fairly objective decision, a
semi-quantitative RE prioritization technique is integrated with the original model.

Fig. 4. Conflict resolution

Relationship practice and dialogical practice
Although relationship practice and dialogical practice is consistently recognised as
two most important parts in the previous two phases of narrative mediation, in this
phase of narrative mediation they may not play a most important role comparing with
the newly added activity: RE prioritization. This is because that the primary focus of
the previous two phases is on identifying and defining conflict. It is inevitable to in-
volve a great deal of verbal communications and relationship practice. However, this
phase of narrative mediation focuses on inventing resolution to conflict. It is a prob-
lem-solving process, which focuses more on brainstorming, selecting, and evaluating
possible solutions. This does not imply that the relational and dialogical practice will
be removed from this phase. Instead, all good practices recommended by the original
model will be continually retained, but, are considered as less important than RE
prioritization.

RE prioritization
RE prioritization is widely used to determine the relative necessary of the require-
ments [27]. Whereas all requirements are mandatory, some are more critical than
others. Davis [28] points outs that it particularly aims to resolve conflicts when

Conflict Resolution

Dialogical practices
Documenting change
Drawing attention to unstudied experience
Engaging with parties in crafting an alterna-
tive story
Recruiting audience to alternative story
Speaking with agency and authority
Receptive to alternative stories about the
relationship

RE prioritization
List all possible solutions.
Estimate its relative “value”
Estimate its relative “cost”
Estimate its relative “risks”
Calculate a priority number
Sort the solutions in descending order by calcu-
lated priority

Relationship practices
Celebrating and honoring moves towards
redecoration of relationship
Being open to new possibilities
Mediator invites parties to identify with
the alternative account of relationship
Mediator seeks to learn from parties’ ex-
perience
Describing impact of parties’ alternative
story on mediator

 Building a Narrative Based Requirements Engineering Mediation Model 11

customer expectations are high, timelines are short, and resources are limited. Indeed,
conflicts more likely emerge from those situations. As people naturally have their
own interests at heart and they aren’t always willing to compromise their needs for
someone else’s benefit. In the context of conflict resolution in RE, RE prioritization
can be used to help a mediator to evaluate their preferred solutions and eventually
make a win-win decision. In this paper, we will use a semi-quantitative spreadsheet
technique based on prioritization of solutions’ Value, Cost, and Risk, which is devel-
oped by Weigers [29] and described in the figure-4.

5 Conclusion and Future Work

This paper presents a RE specialised narrative mediation model. We examined the
importance of conflict resolution in RE and argued that the fundamental nature of
conflict resolution in RE is a mediation process. Winslade and Monk (2000)’s narra-
tive mediation model is described, justified, and translated into the context of RE. In
the future, the newly developed model is about to be tested in the real-world contexts.

References

1. Pruitt, D.G., Kim, S.H.: Social conflict: Escalation, stalemate, and settlement, 3rd edn.
McGraw-Hill, New York (2004)

2. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. Wiley,
Chichester (1997)

3. Easterbrook, S.M.: Resolving Requirements Conflicts with Computer-Supported Negotia-
tion. In: Jirotka, M., Goguen, J. (eds.) Requirements Engineering: Social and Technical Is-
sues, pp. 41–65. Academic Press, London (1996)

4. Nuseibeh, B.: To Be And Not To Be: On Managing Inconsistency in Software Develop-
ment. In: Proceedings of 8th International Workshop on Software Specification and Design
(IWSSD-8), Scloss Velen, Germany, 22-23 March 1996, pp. 164–169. IEEE CS Press, Los
Alamitos (1996)

5. Van Lamsweerde, A.: Requirements Engineering in the Year 2000: A Research perspec-
tive. In: Invited Paper for ICSE 2000 - 22nd International Conference on Software Engi-
neering, Limerick, June 2000. ACM Press, New York (2000)

6. Jackson, M.: Problem Frames: Analysing and Structuring Software Development Prob-
lems. Addison-Wesley Longman Publishing Co., Inc., Amsterdam (2001)

7. Yu, E., Mylopoulos, J.: Why Goal-Oriented Requirements Engineering. In: Dubois, E.,
Opdahl, A., Pohl, K. (eds.) Fourth International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ 1998), Pisa, Italy (1998)

8. Robinson, W.N.: Negotiation Behaviour During Multiple Agent Specification: A Need for
Automated Conflict Resolution. In: Proceedings of 12th International Conference on Soft-
ware Engineering (ICSE-12), Nice, France, March 1990, pp. 268–276. IEEE Computer
Society Press, Los Alamitos (1990)

9. Boehm, B., Grünbacher, P., Briggs, R.: Developing Groupware for Requirements Negotia-
tion: Lessons Learned. IEEE Software 18(3) (2001)

10. Damian, D.E., Shaw, M.L.G., Gaines, B.R., Zowghi, D.: A multi-disciplinary approach to
the study of distributed requirements negotiations. In: Proc. of the 5th Australian Work-
shop on Requirements Engineering, Brisbane, Australia, December 8-9, pp. 91–100 (2000)

12 N. Ma, T. Hall, and T. Barker

11. Damian, D.E.: A research methodology in the study of requirements negotiations in geo-
graphically distributed software system. In: Proceedings of 11 the IEEE International Re-
quirements Engineering Conference (2003)

12. Barki, H., Hartwick, J.: Interpersonal conflict and its management in information system
development. MIS Quarterly 25(2), 195–228 (2001)

13. Winslade, J., Monk, G.: Narrative Mediation: A New Approach to Conflict Resolution
Jossey-Bass (2000)

14. Robertson, M., Swan, J., Newell, S.: The role of networks in the diffusion of technological
innovation. Journal of manage studies 33(3), 335--26 (1996)

15. Ma, N., Hall, T., Barker, T.: Using an expert panel to validate a Requirements Engineering
Mediation Model. In: EASE 2008 conference, Italy, 26 (June 2008) (submitted, 2008)

16. Macaulay, L.: Requirements engineering, London, UK. Springer, Heidelberg (1996)
17. Hoffmann, O., Cropley, D., Cropley, A., Nguyen, L., Swatman, P.: Creativity, Require-

ments, and Perspectives. Australian Journal of Information Systems 13(1), 159–175 (2005)
18. Nguyen, L., Swatman, P.: Promoting and Supporting Requirements Engineering Creativ-

ity. In: Dutoit, A.H., McCall, R., Mistrik, I., Paech, B. (eds.) Rationale Management in
Software Engineering, ch. 10. Springer, Heidelberg (2006)

19. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. In: Proceedings of
International Conference on Software Engineering (ICSE-2000), Limerick, Ireland, 4-11
June (2000)

20. Ian, S.: Integrated Requirements Engineering: A Tutorial. IEEE Software 22(1): 16-23,
2005

21. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, Reading
(2000)

22. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley, Bos-
ton (2004)

23. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for large
systems. Communications of the ACM 31(11), 1268–1287 (1988)

24. Maiden, N., Bright, B.P.: Recurrent communication patterns in requirements engineering
meetings. In: WETICE 1996, pp. 208–213 (1996)

25. Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical Guide to the Essential
Models and Methods of Usage-Centered Design. Addison-Wesley, Reading (1999)

26. Burroway, J.: Writing Fiction: A Guide to Narrative Craft. Addison-Wesley, Reading
(1999)

27. Fellows, L., Hooks, I.: A Case for Priority Classifying Requirements. In: Eighth Annual
International Symposium on Systems Engineering, Seattle, Washington, International
Council on Systems Engineering (1998)

28. Davis, A.: The Art of Requirements Triage. Computer 36(3), 42–49 (2003)
29. Wiegers Karl, E.: First Things First: Prioritizing Requirements. Software Develop-

ment 7(9) (1999)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 13–24, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Problems Encountered When Implementing Agile
Methods in a Very Small Company

Michael J. O’Donnell1 and Ita Richardson2

1 Department of Computer Science and Information Systems,
 University of Limerick, Limerick, Ireland

2 Lero – the Irish Software Engineering Research Centre,
 University of Limerick, Limerick, Ireland

michael.odonnell@coolnadeed.com, ita.richardson@lero.ie

Abstract. This paper presents a case study carried out in a very small company
in Ireland, Sporting Software Ltd. The authors had access to Sporting Software
Ltd. while the company was implementing eXtreme Programming when devel-
oping a new product. We discuss how the implementation was carried out and
what went wrong; with the company itself ultimately declaring that the imple-
mentation was a failure. We present the problems and benefits experienced,
and why these indicate that the implementation of agile methods within a very
small company located remotely are not easily achievable While some of the
outcomes are not surprising, for example, management did not wholly support
the implementation of agile methods, others, such as pre-existing contractual
employment arrangements, should be noted.

Keywords: Agile methods, eXtreme Programming, Very Small Software De-
velopment Company.

1 Introduction

While many development techniques, methods and processes have been successful in
improving the quality and cost of software products, there is still a necessity for
software development to become more effective and efficient. Agile is the latest
technique introduced by the industry with the aim of achieving that increase in effec-
tiveness and efficiency. According to Mikael Lindvall et al. “the use of, interest in
and controversies surrounding agile methods have all increased dramatically” [1] and
that this increase has been attributed to small organizations finding existing method-
ologies “too cumbersome, bureaucratic, and inflexible”.

Given the positive reports (for example [2] , [3], [4]), regarding the implementation
of agile methods, and having observed and experienced low developer morale and
project failure while employing traditional based methodologies, the authors were
interested in studying the implementation of agile methods in a very small company.
To understand this, we investigated the problems and discuss how these could be
avoided by a small company. Therefore our objective was to study an Irish SME as
they implemented a project using eXtreme Programming (XP) and to examine the

14 M.J. O’Donnell and I. Richardson

problems which they encountered, the solutions that they derived, and the overall
result of the implementation. Our study, presented in this paper, demonstrated that
the implementation of eXtreme Programming (XP), an agile method, within such a
company was unsuccessful.

2 Why Agile Methods?

The primary goal of software development has changed from “conforming to plan” to
“satisfying customers - at the time of delivery, not at project initiation” [5]. There-
fore, the software industry must either adapt its existing development methodologies,
or formulate new methodologies which deal with rapidly changing requirements. It is
these changing requirements that are blamed for software companies’ inability to
deliver software within budget, on time, and to acceptable quality. Furthermore, these
rapidly changing requirements are forcing developers to cut quality in order to incor-
porate the changing needs of the client. This subsequently has a significant impact on
the developer’s ability to respond rapidly and cost effectively, to changing require-
ments in future releases [6].

Traditional methods, such as the waterfall model, V-model and Rational Unified
Process (RUP), assume that it is possible, early in the project, to identify all user re-
quirements. This in turn, should reduce the probability of requirements uncertainty.
However, the fact is that requirements change. In this situation, using traditional meth-
ods hinders the company’s ability to meet customer needs. It has been argued that agile
methods are optimised for dealing with changes and responding to customer requests in
a cost effective and timely manner. According to Highsmith and Cockburn [7], unlike
traditional approaches, agile development stresses quality in design. [Agile] methods
appeal “to our sense of priorities and provide a better way of articulating ideas previ-
ously classified as “doing-the-right-thing”, “being on the right side of the 80:20 rule”, or
“common-sense” [8]. Research carried out by Shine Technologies [2] with select com-
panies in regards to employing agile methodologies found that:

• 93% experienced a productivity increase;
• 88% produced software with better or significantly better quality;
• 83% encountered an increase in business satisfaction.

On the other hand, research by Lindvall et al. [1] indicated that many companies –
in particular large companies – are approaching agile methods with a high degree of
scepticism due to the conflicting data regarding “in what environments and under
what conditions agile methods work” but that “the use of, interest in, and controver-
sies surrounding agile methods have all increased dramatically” [1]. Agile methods
have been derided as nothing more that cowboy coding and undisciplined hacking [9]
or as a “fad development methodology” [10]. Arguments have been made by Rakitin
[11] and Paulk [12] about the software industry’s inability to realistically compare
projects developed using agile and traditional based methods. However, according to
Lindvall et al. [1], the key to making agile methods work appears not to be the blind
adoption of all the techniques and practices, rather it is the intelligent integration of
the practices most suited to the environment and the project.

 Problems Encountered When Implementing Agile Methods in a Very Small Company 15

With Agile methods, working software is valued over documentation, as it allows all
the parties to determine the current stage of development, as opposed to where it may be
in theory. Secondly, it allows developers and project managers to more accurately de-
termine the velocity of the overall project, thus allowing more effective estimation of
the project’s completion date. Individuals and interactions are afforded greater empha-
sis as it “facilitates sharing information and changing the process quickly when it needs
changing” [7]. By collaborating with the client, developers can minimise the possibility
of producing software that does not meet the client’s actual needs. This increases the
probability of repeat business in the long term. Collaboration enables the developers to
identify new requirements and thus “change directions quickly so that they can produce
more appropriate results and less expensive designs” [7].

2.1 Employing Agile Methods

Employing Agile methods “is a challenging task demanding a great deal of adjust-
ment from all the stakeholders involved in the software development process” [13].
Therefore companies need assistance “to support systematic selection, deployment,
and tailoring of agile practices to fit the firm’s software development context” [14].
Methods that fall under the agile umbrella include eXtreme Programming (XP), Test
Driven Development (TDD), SCRUM, and the Dynamic System Development
Method (DSDM).

Extreme Programming. The agile development method, eXtreme Programming
(XP), was implemented within Sporting Software Ltd1., the company which was
studied. XP is an agile method that is built around 12 related practices. One of the
keys to XP is the replacement of physical documents with face-to-face and informal
communication between the various partners with the aim of “creating executable
code and automated test drivers”. The objective of XP’s practices is to increase
productivity while ensuring the same level of quality. Therefore they are grouped
according to 3 key areas [15]:

Customer’s Satisfaction - a high quality system is of no practical use if it
does not meet the basic needs of the client;
Software Quality – the aim is to produce a system of extremely high quality;
Project Management – XP aims to reduce management overhead while still
considering the customer.

3 Research Methodology

The purpose of this research project was to examine the problems encountered and
benefits derived by a very small Irish company when implementing an agile methodol-
ogy – in this case eXtreme Programming (XP). Given the objectives and limited re-
sources available, it was determined that a qualitative approach should be employed. Of
the qualitative approaches available [16], the case study approach was chosen. Research
data was collected using a number of techniques that included observation, interviews
and informal conversations. Interview questions and conversations firstly focused on the

1 Sporting Software Ltd. is a pseudonym.

16 M.J. O’Donnell and I. Richardson

perceived benefits and drawbacks that both developers and management expected to
experience with employing the new methodology. This information was then compared
and contrasted with data released by the Shine Technology organization [2] and other
industrial experts such as Schwaber [6], Highsmith and Cockburn [7]. Once the per-
ceived issues – such as the 40 hour week, increased morale and productivity – had
been identified, the questions focused on the actual benefits and drawbacks as experi-
enced by the participating parties, for example, actual hours worked and effect of
limited documentation. This information was then compared and contrasted with all
other collected data.

Further information was extracted from the system documentation such as project
specifications, bugs and issues list, emails sent between those involved in the project
from the technical and business areas, and documentation distributed with information
about the agile methodology which was employed. The purpose of reviewing and
analyzing such documentation was to determine the exact level of compliance with
the principles of the selected AGILE method. Reviewing the previously mentioned
documentation also allowed for the verification of the data collected during interviews
and informal conversations.

Business oriented techniques - SWOT2 and PESTEL3 analyses - were also em-
ployed for the purpose of making the results of the research applicable to the business
by identifying the issues that could potentially have either a positive or negative effect
on the overall methodology implementation and on the success of the project itself. It
should be noted that the project was a full commercial venture with the objective of
generating capital for the company in question.

4 Case Study

Sporting Software Ltd., is located remotely close to the west coast of Ireland, and
develops bespoke software applications using a mixture of Microsoft technologies
(e.g. MS SQL SERVER (2000), MS VISUAL STUDIO .NET (2003)), COBOL, and
open-source technologies. The company provides consultancy, technical support and
network solutions on-demand. They have a total workforce of 10 employees, consist-
ing of 4 software developers, 1 quality manager, 2 network support technicians, 2
sales personnel, and 1 administrator. All developers and network support technicians
are responsible for the provision of technical support to customers, and for answering
queries from potential customers.

Quality standards are an important marketing factor for Sporting Software Ltd.
They employ the PRINCE2 process based approach to project management [17] - the
de facto standard used by Irish Government bodies and the private sector, both Irish
and international. They have ISO 9001:2000 certification in order to meet specific
customer requirements. Sporting Software Ltd. has also enhanced its Quality Man-
agement System (QMS) by incorporating the principles of other standards such as
GAMP4, IEEE Standard 829-19985 and BS7925-26.

2 SWOT – Strengths, Weaknesses, Opportunities and Threats.
3 PESTEL – Political, Economic, Social-Cultural, Technology, Environmental, and Legal.
4 GAMP (Good Automated Manufacturing Process) – standard outlines a transparent develop-

ment, test and installation procedure.

 Problems Encountered When Implementing Agile Methods in a Very Small Company 17

One of the company’s products, COMMS, is a web based application aimed
primarily at sports clubs, in particular those associated with the Gaelic Athletic Asso-
ciation (GAA), the Football Association of Ireland (FAI), and Irish Rugby Football
Union (IRFU). By employing a web browser, or mobile phone, the system allows
managers to send SMS text messages, manage membership details and history, and
track all messages sent by the system from their account. The system also allows
purchase of additional message credits using credit cards or cheque book.

In late 2006, a decision was made to migrate to the MS VISUAL STUDIO .NET
(2005) development environment and MS SQL SERVER (2005) database. This re-
quired that all code be upgraded from ASP.NET 1.0 to version 2.0, and was carried
out using automated tools provided as part of MS VISUAL STUDIO .NET (2005).

4.1 Project Instigation

At the initial project meeting to introduce the requirements for the new system, man-
agers informed the developers that they would be employing a new development meth-
odology, the eXtreme Programming (XP) approach. This was to improve productivity
and quality while reducing costs. Developers were given a 5 page document outlining
XP, its key advantages, the 12 key principles, and a brief comparison with existing
techniques such as RUP and UML. Emphasis was placed on the production of high
quality code using the principles of pair-programming and code ownership. Manage-
ment also presented the benefits of the new methodology from the developer’s point of
view, especially on the reduced development time and the 40 hour week.

Given the small size of the company, there were only 2 developers working on the
project, therefore only one XP pairing was possible. The Quality manager (QM), who
was part-time on this project, was responsible for reviewing documentation and sign-
offs. The QM was also used as an ‘independent person’ if there was disagreement
over such requirements as usability. The original Project manager (PM), who was
also involved in sales, was involved in setting requirement priorities. This PM was
replaced about half-way through the project by a senior developer who had been used
as a consultant in the early stages of the project. The client was the managing director
of the company. He was responsible for setting new requirements and aligning and
prioritizing existing requirements for the system. He spoke regularly to customers
and had the final decision making power.

5 Effect of Implementing Agile Methods

When implementing XP within Sporting Software Ltd, management was surprised at
the number of unexpected problems experienced. This section discusses both the
problems and benefits, and why these indicate that the implementation of agile meth-
ods within a very small company located remotely is not easily achievable.

5 IEEE Standard 829-1998 – outlines a standard for test documentation.
6 BS 7925-2 – defines the process for software component testing using specified test case

design and measurement techniques.

18 M.J. O’Donnell and I. Richardson

5.1 Problems Encountered

Pair Programming. Pair programming involves two individuals sitting side by side
working on a single machine. Using this configuration, one developer (driver) is
responsible for driving the development/implementation while the second developer
(navigator) is responsible for identifying more effective approaches and any flaws in
the current approach. In some cases, the navigator is responsible for writing test
specifications. It is advised that the role of driver and navigator should be swapped
every couple of hours in order to prevent the onset of boredom. Williams et al. [18]
have indicated that although pair programming can increase the effort taken to im-
plement requirements by 15%, it can significantly increase the quality of software
produced.

Effective pair programming requires a significant level of coordination, coopera-
tion and trust between those involved in the pairing and effective and efficient pair-
ings should be identified by management in order to maximise productivity.

As it was understood to be a core principle of XP, pair programming was sup-
ported by management. Due to the limited number of developers, no evaluation oc-
curred into the suitability of pairing the developers together. Luckily, both developers
had an excellent working relationship at the start of the project, and had conferred
with each other on technical matters relating to previous projects that they had been
involved in separately. During the initial project meeting, the developers decided that
the driver would be responsible for implementing an entire requirement rather than
changing periodically. An entire requirement could range from implementing a func-
tion that allows a user to add, edit, and delete a member to simply changing the mes-
sage printed out on a label in response to a particular event. While the driver was
implementing the requirement, the navigator monitored the code and prepared testing
data. This was not a good decision as the requirement implantation could range from
1 minute to 40 hours, thus causing boredom on behalf of the navigator.

The second problem experienced when implementing pair programming related to
the size of the available computer monitor – a 15 inches laptop screen. This signifi-
cantly reduced the working area, and also caused problems when switching between
different applications. Requests were submitted for either a larger or second monitor,
but the tight financial restrictions within which small companies operate came to the
forefront, and this solution was not implemented.

Forty-hour week. XP calls for a sustainable development approach whereby devel-
opers avoid working excessively long hours during a standard working week. By
restricting the developer’s working hours to 40, companies reduce the risk of intro-
ducing poor quality code due to reasons of tiredness and lapses of attention. Man-
agement want developers “to be fresh and eager every morning, and tired and satis-
fied every night” and at the start of every week they want developers “to come in full
of fire and ideas” [19].

Sporting Software Ltd. employees have contractual flexible working arrangements.
When traditional development methodologies were employed, differences in daily
start times had a minimal effect on the work of individual developers. However, this
flexibility, when combined with the requirement to employ the pair programming
concept, and the remote location of the company, resulted in significant problems
being encountered when trying to achieve the 40 hour working week. Although

 Problems Encountered When Implementing Agile Methods in a Very Small Company 19

developers informally discussed the possibility of a common daily start and finish
time, this arrangement rapidly collapsed due to the contrasting family commitments
of individual personnel. Given that it was a management requirement that pair pro-
gramming be employed, differences in start times resulted in one developer working
additional hours. For that one developer, his working week amounted to 47-50 hours
per week. The difference in start time also resulted in the lunch hour being adjusted
on a daily basis – usually in deference to the senior developer.

The increased working week combined with the lack of consistency in working
hours, significantly affected the morale of individual developers. Lower morale was
further affected by the remote location of the company, as access to retail outlets,
stores and other facilities was limited. This drop in morale rapidly spread and began
to have an affect on others involved in the development project.

Long term maintenance. Opponents to agile methods point to the long term mainte-
nance of the system and argue that the lack of documentation as espoused by agile
methods make this task extremely difficult if not impossible: “With no design docu-
mentation or requirements to refer to, you’re left with only the code. I contend that
even incomplete or outdated design documentation is better than no documentation”
[11]. However, advocates argue that the working design speaks louder than the
documentation and provides a more accurate representation of the system, as docu-
mentation can be used to hide problems and design flaws.

In relation to the COMMS system, the lack of up-to-date documentation resulted in
numerous problems between those involved in selling the product and those involved
in its development. Often, sales personnel would declare at meetings that the system
once supported a feature but no longer did so. They were inclined to blame develop-
ers for randomly dropping features and sloppy source control. Should the developer
reply that the system, as it stood, represented the requirements as specified by the
sales personnel, meetings were likely to disintegrate into arguments and shouting
matches. During one such meeting, developers threatened to start bringing a voice
recorder and camera to future meetings to protect themselves from verbal abuse and
misinformation. Furthermore, developers recognised that the lack of documentation
effectively left them without any protective cover when dealing with the client. This
lack of protection or shield had a significant impact on the level of morale among
developers, especially in the lead up to project meetings and lead to calls for a return
to previously employed traditional methods.

Rapidly changing requirements. Agile methods welcome changing requirements as
they allow developers to produce a system that eventually meets the actual needs of
the customer. This is in contrast to traditional techniques which often produce sys-
tems that fail to meet many of the user’s basic needs. Once an iteration has been
completed, the developers sit down with the client to identify and analyse any new
requirements that may exist. It is the responsibility of the client to allocate a priority
rating to each requirement. The client is then asked to either identify those require-
ments that are most essential for the iteration (DSDM), or alternatively the developers
indicate that based on the timescale available that they will be able to complete the
first 10 requirements (SCRUM).

In the case of COMMS, rather than wait for the iteration to complete, management
were inclined in some cases to inject new requirements into the middle of the

20 M.J. O’Donnell and I. Richardson

iteration, while in other cases they re-prioritised requirements. On one occasion,
developers spent nearly 2 working weeks changing the look of a data-grid in terms of
fonts, colours, and data layout as the client and project manager declared that each
new look was getting closer to what they wanted. Changing requirements, without
adjusting the iteration time or without restarting the iteration, resulted in the workload
of individual developers rapidly increasing. Consequently, developers cut corners in
order to complete the work within the required timeframe. Additional bugs began to
appear and the adaptability of the code was significantly compromised.

Problems experienced with the pair programming concept itself (as previously dis-
cussed), combined with these uncontrolled rapidly changing requirements, caused pair
programming to be abandoned. Developers reverted to programming alone, agreeing
to coordinate activities to maximise development resources.

Changing requirements and failure to restart iterations caused developers to exceed
the 40 hour week on a more regular basis. The impact of this was that lower quality
code was produced, with an increased number of bugs and implementation issues.
Thus management and developers were able to observe first hand Schwaber’s [6]
comments regarding developers’ willingness to compromise code quality in order to
meet the demands and expectations of clients, and the additional problems that the
compromised code caused.

Collective Code Ownership. With traditional approaches, often one individual is
responsible “for the detailed design, the implementation and also for the mainte-
nance” [20] of modules and components in the overall system. Collective ownership,
or no ownership [21], advocates that nobody is allocated responsibility for any par-
ticular piece of code. This allows anyone to make a change to any piece of code at
any stage in the development process. This concept gives companies the flexibility to
redeploy staff to new tasks as and when needed.

In the case of COMMS, due to the abandonment of pair programming and the 40
hour week, developers reverted to the traditional approach of code ownership and
became extremely territorial about ‘their’ code. In some cases, one developer would
automatically blame the other for bugs in the overall code – this allocation of blame
had the effect of significantly complicating relations between individuals, especially
when ownership of the offending code could not be fully determined. Other problems
were encountered in regards to the source control environment employed – whereby
one developer would check out an essential class or module for editing, and maintain
the class as checked out for long periods of time. This long term check-out prevented
other personnel from accessing the most up-to-date version of the code or adding their
own methods and performing code alterations.

In order to prevent further deterioration in morale and relations between develop-
ers, developers themselves came to an arrangement whereby a number of comments
would be added to each method when created and edited. When a new method was
created the author was required to include their name, date/time and method descrip-
tion. When a method or class was to be edited, the editor, date/time and reason for
edit were added.

Furthermore, should a developer wish to add a new class or module, verbal con-
firmation was required from the second developer. Although the addition of these
comments, and the need to seek approval for new classes and functions, resulted in

 Problems Encountered When Implementing Agile Methods in a Very Small Company 21

the code moving from an agile type approach back to a traditional based one and
added to the workload of developers, it did allow everybody take a step back from a
mentality where everything that the other individual did was considered poor and
degraded the quality of the software.

Lack of insulation from clients by project manager. Although agile methods rec-
ommend that the developers have full time access to a representative from the client
company, in cases this can prove problematic. By having full time access, the devel-
opers can refer to the representative – who is considered to be a domain expert – to
clarify any requirements that are poorly specified. However, such a level of access
can raise the client’s expectations of the system and to the level of influence that they
will have in future project, especially if the developers decides not to proceed with
such an arrangement again.

In the case of the system been examined, the client was the developer’s boss (pro-
ject manager). This meant that they had a greater understanding of what was going
on in development and a greater degree of access to information than would usually
be afforded to the client. Furthermore, the project manager was heavily involved in
the setting of system requirements and was just as likely to inject new requirements
during an iteration. The project manager’s involvement in setting requirements also
prevented the individual from viewing new requirements in an objective fashion, and
in carrying out their job of insulating the developers from the demands and activities
of the client. This issue was raised on a number of occasions before management
decided to act and replace the original project manager with a developer who was
previously involved with the project. The replaced project manger continued to play
a significant role in specifying new requirements as they were allocated the responsi-
bility of acting as the client’s representative to customers.

5.2 Benefits Derived

Upgrading of junior programmer’s skills. Where pair programming can especially be
beneficial is when a firm is trying to improve the skills of junior developers by pairing
them with senior staff. This will also introduce them to the coding style of the company
while ensuring that all relevant procedures are fully understood and followed.

Although the principle of pair programming was eventually abandoned, its early
use allowed for the junior developer on the project team to learn new skills and to
identify the style used by the company when programming. By learning the com-
pany’s development style, other developers from within the company were quickly
and easily able to read any code written by the new developer. Furthermore, the pair
programming concept allowed the junior developer to explore new development con-
cepts and approaches while having direct access to someone with whom they could
discuss tactics and approach with. Also by having a senior developer present, the
junior developer could quickly be pulled up on mistakes and bad approaches, effec-
tively learning good practices on the job.

Pushed developers to rapidly adapt to a new environment and challenges. Spe-
cies that fail to adapt to changes in their environment eventually die off, the greatest
example of this is the dinosaurs. What the introduction of XP for the COMMS pro-
ject did was to force developers to adapt to a new development methodology and to

22 M.J. O’Donnell and I. Richardson

learn new skills and languages. By adapting and learning these new skills, developers
increased their employment opportunities and overall experience.

5.3 So What Went Wrong?

Although Agile methods were introduced with great intention in Sporting Software
Ltd., their application are considered a failure in relation to the COMMS project due
to the developers having to abandon many of the core principles such as pair pro-
gramming, code ownership, and the 40 hour week. Regardless, many valuable les-
sons have been learned by those involved in relation to existing problems within the
company, and on poor practices being employed by developers and management.
With the identification of these problems, corrective action can now be planned for
and implemented with the ultimate aim of possibly retrying agile methods or other
alternative methods again in the future.

There were a number of issues that were prevalent during the implementation of
agile methods within Sporting Software Ltd. These can be summarized as:

• Software Development group was too small;
• Sales force / project manager was the ‘client’;
• Lack of documentation caused problems;
• Management paid lip-service to the implementation of XP;
• Prior employment agreements interfered with XP implementation.

Software Development group was too small. Maurer and Martel [15] state that agile
methods are best employed by teams of 5 to 15 developers. This was bourn out in the
case of this very small company. There was no flexibility as to what developers
would be grouped together, and, even though both worked very well together prior to
this project, the pairing did not work out.

Sales force / project manager was the ‘client’. The project manager in the early
stages of the project had much control over the requirements, which in many cases
were what he felt would benefit the customer. As this person had a dual role within
the organization, this led to many additional requirements being added to iterations.
Even in these circumstances, iterations were not re-started nor were time schedules
changed as would have been expected.

Lack of documentation caused problems. With agile methods, documentation is
not normally used. Sporting Software Ltd. experienced many problems with this, as
the developers did not feel that the decisions that were made at meetings were main-
tained. This caused a further breakdown in relations between the developers and the
project manager.

Management paid lip-service to the implementation of XP. While requirements
changed, management did not ensure that XP issued were dealt with correctly. At one
level they required that developers would work a 40-hour week, but they did not
tackle the issues that arose due to employment contracts. They did not ensure that
requirements did not ‘creep’ between iterations. Management support is important
for change to be implemented [22], and in this case lack of such support contributed
to the failure of XP implementation.

 Problems Encountered When Implementing Agile Methods in a Very Small Company 23

Prior employment agreements interfered with XP implementation. Sporting
Software Ltd. had flexible working agreements in place with their employees. Hav-
ing people work in pairs directly affected this as now employees not only had to take
their own lives into account when coming into work, but also, on a consistent basis,
consider another developer.

At the time of writing, the COMMS system was still undergoing development,
with new features being added on a regular basis. Significant refactoring of existing
code was also occurring on a weekly basis in order to improve the usability of the
system, and to remove low quality and problematic code.

6 Conclusion

In the case study presented, the implementation of eXtreme Programming did not
work. While many of the problems experienced were caused by poor planning and
management support, implementing a 40-hour week within a very small company
where pre-existing contractual arrangements existed also had an effect.

Therefore the question is: how should firms approach agile methods? Lindvall et al.,
[1] argue that companies should identify and examine those aspects of agile methods
that are relevant to themselves. However, they should also examine what can go
wrong when agile methods are implemented. By carrying out this examination, and
by applying limited agile practices such as pair programming in a controlled envi-
ronment, companies will be in a better position to decide for themselves as to the
usefulness of such methods and practices. Furthermore, those that carry out such an
examination may be surprised to learn that they have been using practices similar to
those espoused by agile methods. The implementation of a limited number of success-
ful agile practices may place them in a position to exploit competitor’s weaknesses,
and to increase the probability of repeat business with customers.

Acknowledgments. This research was partially supported by the Science Foundation
Ireland funded project, Global Software Development in Small to Medium Sized
Enterprises (grant number 03/IN3/1408C) within Lero - the Irish Software Engineer-
ing Research Centre (http://www.lero.ie) and by the Higher Education Authority
through the M.Sc. in Software Engineering, University of Limerick. We would also
like to thank employees and management of Sporting Software Ltd.

References

1. Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kahkonen, T.: Agile Software Development in Large Organisations. Computer 37(12), 26–
34 (2004)

2. Shine Technologies, http://www.shinetech.com/display/www/Extreme+
success+with+Agile

3. Schatz, B., Abdelshafi, I.: Primavera Gets Agile: A Successful transition to Agile Devel-
opment. IEEE Software 22(3), 36–42 (2005)

4. Leszak, M., Perry, D., Stoll, D.: A Case Study in Root Cause Defect Analysis. In: 22nd In-
ternational Conference on Software Engineering (June 2000)

24 M.J. O’Donnell and I. Richardson

5. Cockburn, A.: http://alistair.cockburn.us/index.php/Agile_software_
development:_the_business_of_innovation

6. Google, http://video.google.com/videoplay?docid=-7230144396191
025011&q=Scrum+et+al.&total=2&start=0&num=10&so=0&type=searc
h&plindex=0

7. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Innovation.
Computer 34(9), 120–122 (2001)

8. Griffiths, M.: Crossing the agile chasm: DSDM as an Enterprise Friendly Wrapper for Ag-
ile Development. Quadrus Development Inc., 1–13 (2003)

9. Infinity-IT, http://www.infinityit.co.il/index.aspx?id1405
10. The Great Pyramid of Agile – The Daily WTF, http://worsethanfailure.com/

Articles/The-Great-Pyramid-of-Agile.aspx
11. Software Quality Consulting Inc., http://www.swqual.com/newsletter/vol2/

no7/vol2no7.html
12. Paulk, M.C.: Extreme Programming From a CMM Perspective. IEEE Software 18(6),

19–26
13. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization [Software Devel-

oper]. IEEE Computer Society 36(6), 74–78 (2003)
14. Pikkarainen, M., Salo, O., Still, J.: Deploying Agile Practices in Organizations: A Case

Study. In: Case Study, EuroSPI 2005 (2005)
15. Maurer, F., Martel, S.: Extreme Programming: Rapid Development for Web-based Appli-

cations. IEEE Internet Computing 6(1), 86–90 (2002)
16. Association For Information Systems, http://www.qual.auckland.ac.nz
17. The Office of Government Commerce, http://www.ogc.gov.uk/prince2/

about_p2/about_intro.html
18. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for Pair

Programming. IEEE Software 17(4), 19–25 (2000)
19. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley Longman,

Reading (2000)
20. XP Exchange,

http://www.xpexchange.net/english/intro/collectivecodeowners
hip.html

21. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley, Read-
ing (1999)

22. Richardson, I., Varkoi, T.: Managing Change when Implementing Software Process Im-
provement Initiatives. In: EuroSPI 2005 (2005)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 25–35, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Process Asset Library to Support Software Process
Improvement in Small Settings

Jose A. Calvo-Manzano, Gonzalo Cuevas, Tomas San Feliu,
 and Ariel Serrano

Faculty of Computer Science, Polytechnic University of Madrid (UPM)
Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

{jacalvo,gcuevas,tsanfe}@fi.upm.es,
 aserrano@mpsei.fi.upm.es

Abstract. A main factor to the success of any organization process improve-
ment effort is the Process Asset Library implementation that provides a central
database accessible by anyone at the organization. This repository includes any
process support materials to help process deployment. Those materials are
composed of organization's standard software process, software process related
documentation, descriptions of the software life cycles, guidelines, examples,
templates, and any artefacts that the organization considers useful to help the
process improvement. This paper describes the structure and contents of the
Web-based Process Asset Library for Small businesses and small groups within
large organizations. This library is structured using CMMI as reference model
in order to implement those Process Areas described by this model.

Keywords: PAL, process library, process assets, OPD, CMMI.

1 Introduction

The Process Asset term was introduced for the first time by the Software Capability
Maturity Model, (SW-CMM v1.1.) [1]. The key process area Organization Process
Definition (OPD) describes the process asset concept. Its main objective is to develop
and maintain a set of process assets that improve process performance across the
organization projects and provide a basis for cumulative knowledge database process.

The SW-CMM defines process assets as a collection of entities for use by projects
in developing, tailoring, maintaining, and implementing their software processes [1].
Also a process asset could be any entity that the organization considers useful in per-
forming the activities of process definition and maintenance. These process assets
provide the foundation to institutionalise the processes in any organization [1]. Al-
though, SW-CMM introduces for the first time the process asset concept, it does not
refer to the term Process Asset Library.

In the SW-CMM, the PAL concept was loosely translated into the “library of proc-
ess-related documentation”. As software process improvement became more com-
mon, the term Process Asset Library started to be used more frequently than the term
used by SW-CMM [2].

26 J.A. Calvo-Manzano et al.

The successor of the SW-CMM the Capability Maturity Model Integration better
known with the acronym CMMI [3, 4] takes all the concepts from its predecessor and
develop the term Process Asset Library (PAL), giving the importance that it have and
dedicating a specific practice to create and maintain a PAL.

The Process Asset Library (PAL) is a repository of information used to keep and
make available all process assets that are useful to those who are defining, implement-
ing, and managing processes in the organization [3, 4]. These process assets typically
include:

- organization's standard defined software process,
- software process-related documentation,
- descriptions of the software life cycles,
- guidelines for tailoring the organization's standard software process,
- process implementation aids,
- checklists and templates,
- lessons-learned documents,
- standards, procedures, plans,
- training materials, and other artefacts that can be used by a project.

Apart from these, any entity that the organization considers useful in performing
the activities of process definition and maintenance could be included as a process
asset.

Other definition describe the PAL as an organized, well-indexed, searchable re-
pository of process assets that is easily accessible by anyone who needs process guid-
ance information, examples, data, templates or other process support materials [2].
PAL development is very important for an organization, because it keeps in the same
repository all artefacts that could be used by process. The PAL is more than a single
repository of things, it is the live component of the organization and is itself the data-
base that contains all organizational process patrimony [2].

A Process Asset Library is a very important source of guidance to an organization.
A well designed PAL facilitates standardization and process improvement in organi-
zations, and is the key to achieve higher capability maturity levels. A poorly designed
PAL degenerates into an attic of process that discourages and frustrates process
users [5].

The first step in a process improvement effort for an organization is to have well
documented policies, process definitions, procedures, project plans, quality plans,
process guides, and lessons learned. The second one is to have an electronic reposi-
tory to keep all this information and maintain available for all process users. A well
designed and implemented PAL reduces planning, implementation and training costs
throughout whole organization, especially in those processes that only are partially
executed [6].

In every organization, a PAL provides the key infrastructure element that is re-
quired to support the process improvement effort. The PAL allows all the process
information that it is needed when a new project commence to be public for all or-
ganization, [6].

 A Process Asset Library to Support Software Process Improvement in Small Settings 27

2 Process Asset Library Goals and Implementation Benefits

This section explains goals and benefits that could be obtained with the implementa-
tion of a Process Asset Library.

2.1 The Process Asset Library Goals

The main Process Asset Library (PAL) goal is to provide an organized, indexed,
searchable repository of process assets and make it easily accessible to anyone who
needs process guidance information. The PAL provides to the organization a central
database for acquiring, defining, and disseminating the knowledge about processes
related to the software development and maintenance [2]. Other PAL goals include
but are not limited to the following:

• Reduce unnecessary duplication of process assets.
• Provide mechanisms for sharing knowledge about the process assets and how

they will be used by the process owners and users.
• Support an effective learning environment to train new employees related

have to use the organization’s processes.
• Provide a basis for making decisions about developing and tailoring all or-

ganization’s processes.
• Improve the consistency of content related to process assets.

In addition a PAL should be containing the lessons learned of those organization’s
projects that have been successful, in order to increase the knowledge database with
each project’s best practices.

2.2 Process Asset Library Implementation Benefits

For small settings, a PAL is a key infrastructure element that reduces training time,
and helps to guide a process focused culture within the organization [2]. Also, a PAL
is a key element to support the reduction in time needed for planning new projects.
Other benefits could include:

• Increasing the participation of the people involved to the process in making
suggestions for changes to process assets.

• Reducing the cost of project start-up, both from the point of view of less
training time needed to prepare people in the way of the processes to be used,
and from the point of view of reusing the existing assets.

• Making easy process standardization because the organization’s projects use
the same type of assets and facilitating the adaptation of those assets that are
not compliant with some kind of projects.

• Providing information related to projects that are useful to develop an
Integral Balanced Scorecard (BSC). The balanced scorecard is a strategic
planning and management system to align business activities to the vision
and strategy of the organization, improve internal and external communica-
tions, and monitor organization performance against strategic goals.

• Facilitating the implementation of new processes and allows that entire or-
ganization takes advantage of process assets stored in the PAL.

28 J.A. Calvo-Manzano et al.

Note that the value of the process assets depends on its availability and accessibil-
ity, and with the PAL implementation is easier to gain this value. “The ability to rap-
idly deploy and use processes to serve the needs of their marketplace is a critical at-
tribute of an organization experiencing hypergrowth” [7].

3 Web-Based Process Assets Library Application Structure

Considering the benefits that a PAL implementation brings to the success of a process
improvement effort, this research work focuses on the development of a Web-based
Process Assets Library easily accessible by the process users. This Web-based PAL
has been building in the Polytechnic University of Madrid by the Research Group of
Software Process Improvement for Spain and Latin American Region. The name of
this research project is PAL-SS (Process Asset Library for Small Settings).

The International Process Research Consortium (IPRC) uses the term Small Set-
tings to define organizations that are small and medium size enterprises, small groups
within large companies, or small projects. The Software Engineering Institute (SEI) is
the sponsor and organizer of the IPRC [8].

Small Settings are special challenges of process improvement. In the United States,
small businesses account for 99 percent of all employer firms, employ 50 percent of
all private sector employees, and hold 41 percent of all high technology jobs. Small
businesses are recognized as a critical component of the USA economy. In other
countries, small business is the economy [8].

The PAL-SS was developed initially as a prototype an currently is accessible by
the Word Wide Web. Its main objective is to maintain available the knowledge of the
process assets that has been developed by this research group for Small Settings
organizations.

This paper describes the main structure of the PAL-SS that is based on the CMMI
model components (Figure 1). The PAL-SS is designed using a Web-based platform,
which in turn, allows the users to exploit it without any complex installation. Addi-
tionally PAL-SS could be used from any software and hardware platform. It can be
accessed using any type of web browser (e.g Mozilla Firefox, Microsoft Internet Ex-
plorer, Netscape, or Opera).

The design of a PAL-SS include in their structure the three critical dimensions that
organizations typically focus on to improve its process: “People”, “Procedures and
Methods”, and “Tools and Equipment”[9].

The PAL-SS is structuring in intuitive way and its architecture allows adding
process assets following the CMMI process model. In order to maintain the CMMI
structure, each asset links with their respective subpractice, and each subpractice
belongs to a generic or specific practice. The implementation of these practices will
allow the goals achievement of a process area (Fig. 1).

The structure of the PAL-SS is based on standard process components, these
components are classified by process areas, practices, subpractices, and products.
Components are called standard because they will be used by different projects. Those
standard components are grouped into patterns. A pattern keeps a cluster of standard
components that are going to be used by a unique type of project but this pattern
could be used by another equivalent project.

For example, on the one hand, the pattern “A” contains a set of process compo-
nents 1, 3 and 5, on the other hand, the pattern “B” contains a set process components

 A Process Asset Library to Support Software Process Improvement in Small Settings 29

Fig. 1. CMMI model components

1, 4 and 8, in such a way all projects that need using process components 1, 3, 5 use
Pattern “A” and all projects that need using process components 1, 4, 8 use Pattern
“B”. With the use of patterns it will be able to cluster standard process components in
n different types of projects, so a pattern previously defined could be used by other
projects of the same characteristics.

The use of patterns will allow having a knowledge database of those projects that
are used with more frequency and in this way it will facilitate the use of defined assets
into equal or similar projects (Fig. 2).

In order to facilitate the inclusion and the search of assets, the PAL-SS has been
structured in two standard parts, on the one hand, “Organizational Standard Defini-
tions” which maintain all the process components such as (process areas, goals, prac-
tices, subpractices and products) and, on the other hand, “Organizational Standard
Metrics” which preserve all the metric that will be used to measure to each standard
process component. Moreover those standard and metric are cluster into “Patter
Statement Definitions” (Fig. 2).

Fig. 2. Functional structure of PAL-SS

30 J.A. Calvo-Manzano et al.

3.1 CMMI Model Components Descriptions

The PAL-SS is structured using the CMMI model components as reference, and the
database design include each component.

The description of CMMI model components are the following [9]:

Process Areas. A process area is a cluster of related practices in an area that, when im-
plemented collectively, satisfy a set of goals considered important for making improve-
ment in that area. CMMI for Development v1.2 has divided into 22 Process Areas.

Specific Goals. A specific goal describes the unique characteristics that must be pre-
sent to satisfy the process area. A specific goal is used in appraisals to help determine
whether a process area is satisfied.

Generic Goals. A generic goal describes the characteristics that must be present to
institutionalize the processes that implement a process area. Generic goals apply to
multiple process areas.

Specific Practices. A specific practice is the description of an activity that is consid-
ered important in achieving the associated specific goal. The specific practices de-
scribe the activities that are expected to result in achievement of the specific goals of
a process area.

Subpractices. A subpractice is a detailed description that provides guidance for inter-
preting and implementing a specific or generic practice.

Typical Work Products. The typical work products section lists sample output from a
specific practice. These examples are called typical work products because there are
often other work products that are also useful but are not listed.

Fig. 3. Functional components in a PAL-SS relational database

 A Process Asset Library to Support Software Process Improvement in Small Settings 31

Generic Practice Elaborations. A generic practice elaboration appears after a generic
practice in a process area to provide guidance on how the generic practice should be
applied uniquely to the process area.

3.2 Process Assets Library Structure Using CMMI Model Components as a
Reference

Using the model components described at section 3.1 the PAL-SS has been structured
taking these components as reference (Fig. 3).

The PAL-SS takes each CMMI Process Area and keeps up a correspondence with
“Standard Process”. The Specific and Generic Goals keeps up a correspondence with
“Process Goals”. And each Specific and Generic Practices keeps up correspondence
with “Standard Phases” (Fig. 4).

Fig. 4. CMMI model components match with PAL-SS

At the same time, and following the previous structure, the tasks needed to perform
a process are represented at CMMI model components with the name of “Subprac-
tices” and keep up a correspondence in the PAL-SS structure with “Standard Activi-
ties”. When a task is performed the resulting products are named by CMMI as
“Typical Work Products” and keep up a correspondence in the PAL-SS structure with
“Standard Products” (Fig. 5).

Finally, the informative model components of CMMI, that is additional informa-
tion that helps to understand a process area, are included at the PAL-SS as “Assets”.
These assets include a process area and they will be used for the implementation of
the process. The PAL-SS structure classifies the assets into “Process Assets”, “Activ-
ity Assets”, and “Product Assets” (Fig. 6).

Process assets are divided by Process Area. Each Process Area contains the organi-
zation’s policy for it, a process definition, and other supporting information.

32 J.A. Calvo-Manzano et al.

Process Area

Specific
Goals

Generic
Goals

Subpractices
SubpracticesTypical Work

Products

CMMI Model Components

STD
ProcessSTD

Phases

Process
Goals

Relationship
between

a Goals & Phases
STD

Activities
STD

Products

Relationship
between an Activity
with their Products

Process Model

PAL-SS Standard Definitions

Specific
Practices

Generic
Practices

Fig. 5. Matching Subpractices, TWP with PAL-SS activities

Process Area

Specific
Goals

Generic
Goals

Specific
Practices

Generic
Practices

Subpractices
Subpractices

Generic Practice
ElaborationsTypical Work

Products

Purpose
Statement Introductory

Notes Related
Process Areas Std

ProcessSTD
Phases

Process
Goals

Relationship
Goals & Phases STD

Activities
STD

Products

Relationship
Activity &
ProductsActivity

Assets

Process
Assets

Product
Assets

Process Model

Specific Practice
Elaborations

CMMI Model Components PAL-SS Standard Definitions

Fig. 6. CMMI informative model components are process assets in PAL-SS

Other information included as “Assets” are sample plans, templates, and other
documents from our organization and others Small Settings. Internal processes used
in the day-to-day process operations are also included.

This way the PAL-SS will allow making on a support tool for the process im-
provement implementation. It will let having an agile mechanism that contains all
process components to be implemented.

The process area will include all the components and the assets that are required
for the process implementation in a Small-Setting, such as process description, activi-
ties that are required to perform the process, tailoring guides and templates that will
be due to use. Similarly, it will be due to include essential metrics that are required to
measure the process and their products, which are necessary to be able to control the
process.

 A Process Asset Library to Support Software Process Improvement in Small Settings 33

3.3 Components of the Web-Based Process Assets Library for Small Settings

The PAL-SS web tool has been divided into five principal components (Fig. 7):

- Project management

- Organizational Standard Definitions

- Measurement Repository Definitions

- Configuration Management, and

- Pattern Statement Definitions

Fig. 7. Management Menu of web-based Process Asset Library for Small Setting

The functionality of each component is the following:

Organizational Standard Definitions. This component specifies all the relations that
exist between a process their objectives, activities, tasks and products.

Measurement Repository Definitions. This component defines each metric and that it
will be used to measure the process, tasks and products.

34 J.A. Calvo-Manzano et al.

Pattern Statement Definitions. This component specifies a set of processes, phases,
activities and products that were used by similar projects. Meaning that pattern for a
project could only be used in projects of the same type, but it can be registered as
many patterns as necessary.

Project Management. This component manages all projects and their data. It is impor-
tant to say that each project must be match with a Pattern previously defined.

Configuration Management. This component manages the changes that have each
project, such as requirement change, control baselines, project change management.

4 Conclusions

The PAL is a collection of assets, maintained by an organization, for use by projects
in developing, tailoring, maintaining, and implementing their software processes an is
important resource that can help reduce the effort in using processes [3, 4]. The
CMMI establish that in order to advance at maturity level 3 a structured and well
implemented Process Asset Library is required. Most of the organizations that are in
advanced levels of maturity coincide on having a Process Asset Library and argue that
is the key to have a culture focused to the maturity of the processes.[2]. A Process
Asset has no value if it is not easily accessible by the users when they need it. Every
matured organization has to implement a PAL but, it is generally one of the least
concepts that an organization has considered for its implementation.

The Process Asset Library presented in this paper was developed by Research
Group of Software Process Improvement for Spain and Latin American Region and it
was structured to be used by Small Settings in a Web-based environment easy to use.
Currently the PAL-SS has assets of Requirement Management (REQM), Project Plan-
ning (PP), and Project Monitoring and Control (PMC) process areas. Those assets will
be used at the implementation those activities that are needed to perform the goals of a
specific process area. The PAL-SS has been used by students software projects and is
currently being validated it in a pilot project within a Small Setting. Future research
includes developing assets from others CMMI process areas like as (PPQA) as well as
the incorporation of other models like TCPi, CMMI-ACQ and ITIL.

Acknowledgments. This work is sponsored by Endesa, everis Foundation, Sun Mi-
crosystems, and Polytechnic University of Madrid through the Research Group of
Software Process Improvement for Spain and Latin American Region.

References

[1] Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability Maturity Model for Soft-
ware, Version 1.1. Pittsburgh, PA. Software Engineering Institute, Carnegie Mellon Uni-
versity (1993)

[2] Garcia, S.: What is a Process Asset Library? Why Should You Care, Aimware Professional
Services, Inc., Boston, MA, USA (2004)

 A Process Asset Library to Support Software Process Improvement in Small Settings 35

[3] CMU/SEI-2002-TR-011, Capability Maturity Model Integration (CMMI), Version 1.1,
Continuous Representation," Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA., SEI March 2002 (2002)

[4] CMU/SEI-2002-TR-012, Capability Maturity Model Integration (CMMI), Version 1.1,
Staged Representation, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, SEI March 2002 (2002)

[5] Fogle, S., Loulis, C., Neuendorf, B.: The Benchmarking Process: One Team’s Experience.
IEEE Software 18, 40–47 (2001)

[6] Groarke, B.: Web-Based Software Process Improvement Repository. CrossTalk The Jour-
nal of Defense Software Engineering 13, 24–25 (2000)

[7] Moore, G.A.: Inside the Tornado: Strategies for Developing, Leveraging, and Surviving
Hypergrowth Markets. HarperCollins, New York (2004)

[8] Cepeda, S., Garcia, S., Langhout, J.: Is CMMI Useful and Usable in Small Settings?
CrossTalk The Journal of Defense Software Engineering 21, 14–18 (2008)

[9] CMU/SEI-2006-TR-008, Capability Maturity Model Integration for Development (CMMI-
DEV) version 1.2, in CMMI-DEV, V1.2, C. P. Team, Ed. Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, p. 560 (2006)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 36–46, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Criteria for Estimating Effort for Requirements Changes

Bee Bee Chua1, Danilo Valeros Bernardo1, and June Verner2

1 Faculty of Information Technology
University Of Technology, Sydney, Australia

bbchua@it.uts.edu.au, dbernard@ozonline.com.au
2 National ICT Australia

june.verner@nicta.com.au

Abstract. IT practitioners realize that poor scheduling can cause project failure.
This is because schedule overruns may be caused by the effort involved in mak-
ing requirement changes. A software process improvement challenge is to better
estimate the cost and effort of requirements changes. Difficulties with such ef-
fort estimation is partially caused by lack of data for analysis supported with lit-
tle information about the data types involved in the requirements changes. This
research is an exploratory study, based on change request forms, in require-
ments change categorization. This categorization can be used to develop an em-
pirical model for requirements change effort as input into a cost estimation
model. An empirically based estimation model will provide IT practitioners
with a basis for better estimation of effort needed for requirements changes.

Keywords: Requirements Changes, Change Request, Rework Effort.

1 Introduction

Our objective is to address the information in change request forms that is usually
insufficient to achieve a better understanding of the effort required for requirements
changes during software development. Rework effort estimation should be more
accurate if we are to categorize requirements changes on a number of dimensions
related to the effort they require. The practicalities of using an approach to minimize
software estimation risk are described in [1]. Prior to designing the framework, a
preliminary investigation [2] and an empirical research study is needed to show why
estimating rework effort for requirements changes is difficult and usually inaccurate.
The cost of requirement changes after software development is also very expensive
[3], and includes the cost of rework [4] during pre-maintenance [5], maintenance [6]
and post-maintenance [7]. However, there are numerous requirements changes, which
may be desired, but which cannot be implemented during a software development due
to: 1) every requirement change is not equal in terms of its size, type and impact; 2)
requirement changes are found at different points of the software development life
cycle, resulting in difficulties in understanding the complexity of the change required;
3) major or minor requirement changes occur at the same time; 4) users and testers do
not clearly describe requirement changes due to lack of understanding of the nature
of requirements; 5) the assertions of IT practitioners regarding requirement changes

 Criteria for Estimating Effort for Requirements Changes 37

are bounded by conflicting interests, especially when they are trying to prioritize
which change to implement first, and 6) there are different perceptions of requirement
changes by the user and tester with respect to implementation; for example, a typical
user submits a change request form proposing a modification to an existing require-
ment because the system does not meet business needs. This kind of requirement
changes is considered “non-error correction”. In contrast a software tester may submit
a change request form to report defects found during testing solely related to correc-
tions required in a) data, b) software, c) telecommunication and d) hardware.

All in all, it is difficult for IT estimators to provide accurate effort estimation. The
role of an IT estimator is not just planning for resources but also to estimate a project
schedule precisely and concisely. Hence, there are several challenges when dealing with
time, cost and effort estimation. Many cost estimation techniques are based on past data
and not present projects and there is lack of appropriate data on which to base the calcu-
lation of a project implementation timeframe. Any change in requirements is driven by
many factors such as: socio-economic, technology, business, politics and legal that
impact on the actual software development effort required. These challenges increase an
IT estimator’s difficulties in meeting the following conditions for projects: 1) no time
and budget overruns, 2) no unacceptable quality and non-agreed functionality, and 3) no
delivery of empty promises of benefits to the intended users.

The remainder of this paper is organized as follows: In section 2, we present an
update of the literature on requirements changes and their importance, where we
found at present no effective cost estimation models are able to estimate rework
effort. In section 3 we discuss our pilot study where we evaluate thirty-six change
request forms for both government and non-government projects. Our proposed
framework is illustrated and discussed in section 4 and the last section provides our
conclusion and outlines future work on framework validation.

2 Literature Review

Requirement changes may occur during: 1) software design, 2) programming, 3) test-
ing, 4) implementation, and 5) documentation. Each requirements change is regarded
as being either due to a defect in the original requirements or caused by a change in
the requirements [8, 9, 10, 11, 12, 13]. Therefore, there is a need to have a process in
place to: 1) measure the number of requirements changes in order to balance them
against the cost and effort required for the entire software development, and 2) to
ensure requirements changes are appropriate given the project resources. According to
Yashwant et al [14], the cost of fixing a defect is expensive because a large amount of
time and effort is required to analyze the causes of a defect before actually fixing it.
However, if a large amount of time and effort is spent fixing a defect, it can seriously
affect project duration and project cost. Poor requirements analysis at the early stages
of software development makes the problem worse [15] and can lead to project failure
because of the number and cost of changes ultimately required to satisfy customers
[16, 17].

No project is developed in a vacuum and even projects with the best initial set of
requirements at the start, can still expect changes as the project progresses. The larger
the project and the longer it takes, and the more requirements changes can be

38 B.B. Chua, D.V. Bernardo, and J. Verner

expected. An understanding of requirements characteristics and their attributes can be
confusing for IT practitioners and this makes it difficult to schedule rework accu-
rately. In addition, a great deal of time and effort may be invested in meetings be-
tween change management and software development teams discussing every aspect
of users’ change requests.

Sommerville [18] noted that requirements changes are unavoidable, unpredictable
and unanticipated because of changes in software project circumstances. Early risk
mitigation for requirement changes in a software project helps ensure a project is
completed on time and within budget. Hence, having a good understanding of re-
quirements changes is necessary for estimating accurately the effort required to
rework them. In addition, a categorization of requirements changes must be incorpo-
rated into a cost estimation model to expedite estimating “person effort” more accu-
rately. To do so, it is important not only to understand the types of requirement
changes but also to be aware of the characteristics of each type of change and the
likely effort to make the change will avoid inaccurate effort estimation.

Analyzing patterns of requirement changes is difficult because we need not only
understand the types of defect or omissions we must deal with, but also how much
rework must be done. Parametric models estimate overall budget, provide cost and
schedule breakdown by component, stage and activity, and can show the cost and
schedule sensitivity of software project decisions. Other research tools for managing
requirements have been developed. These tools assist in detecting and correcting poor
requirements and helping to identify requirements defects [19, 20]. However, such
tools do not provide any support in determining the cost of making changes.

There is a substantial body of research in software cost estimation tools for soft-
ware project development effort including those based on expert judgment, parametric
models, and analogy [21, 22, 23, 24, and 25]. However, estimation results may not
always be accurate because there is too little data for analysis and/or inappropriate
data types are used as the basis for estimating effort for requirements changes and
integration. The difference between them is that a cost model uses one factor as its
primary input, such as a size driver, and secondary cost driver factors, whereas con-
straint models are based on demonstrating the relationship over time between two or
more parameters of effort, duration or staffing levels. However, since both types of
models rely on mathematical equations, they may not estimate a project accurately
because the time and effort for requirement changes (i.e. requirements rework effort),
has not been considered. This explains why accurate project effort estimation is diffi-
cult. The aim of cost estimation models is to provide estimates for overall effort. Nu-
merical data input is used to generate cost and time estimates but fails to illuminate
the cost and schedule sensitivity of software project decisions. Hence, IT practitioners
still face the same dilemma, that is the difficulty of understanding and interpreting the
results produced, because the scientific and mathematical equations used to derive the
final results are complicated [19, 20].

To estimate accurately the effort required during rework for any requirements
change is a difficult task for many experienced cost and schedule estimators. This is
because there is normally not enough data available on which to base a model, and
there is no useful categorization of the various requirements types to help in estimat-
ing the amount of effort. Effort rework should be distributed into 1) re-investigation,
2) re-analysis, 3) re-identification, and 4) re-estimation, to trace the cause and cost of

 Criteria for Estimating Effort for Requirements Changes 39

the change, i.e. where do the changes lie? Where does the correction or modification
fit in the lifecycle? from design to construction? or from construction to testing? or
from testing to implementation etc? Effort estimation for rework is usually based on
analogy. However, cost estimation models can help project managers by providing
appropriate effort multipliers to help with better effort estimates. A cost estimation
model such as COCOMO 2.0 [21], is useful for estimating effort based on appropriate
personnel effort and schedules.

Verner et al [26] note that poorly managed change control, is a risk to project
success. In addition, these researchers also report that poor estimation is frequently
based on poor requirements. Chua et al [27] suggest that failing to consider
requirements characteristics and attributes when making changes during software
development also is a risk.

Change control forms designed by industrial practitioners are not based on any
theoretical framework that categorizes requirement changes in a logical, economical
and structured manner. Practitioners often design change control forms based on the
types of requirements outlined in a project without real understanding of the require-
ment’s actual characteristics and attributes. Until now, there has been no standard
method for categorizing requirements changes able to provide an understanding that
will enable IT practitioners to categorize requirements changes at both the project
level (effect on the project) and the requirements level (effect on other requirements).
We provide such a categorization and use this as the basis of a rework effort estima-
tion model. In the following section, we present our findings based on a collection of
thirty-six change request forms that we have gathered and explained why the change
request information on them is not explicit enough to enable IT practitioners to gain a
good understanding of what the change really involves.

3 Empirical Evidence Based on a Collection of Change Request
Forms

Thirty-six change request forms are categorized by project sizes and types. Variables
in each form are compared and analyzed and tabulated in a matrix. The limited sam-
ple size of organizations these variables are not generalizable. The purpose of evalu-
ating thirty-six change request forms from different organizations is to present the
change request criteria covered in the forms. The research method used for this study
is qualitative. Observation is the preferred strategy for data collection, as it provides a
good understanding that real-world data can be used as a basis of discussion and pos-
sible inclusion in the proposed framework.

Data in table 1 is based on the thirty-six change request forms, gathered from gov-
ernment and non-government organizations, ranging from different sizes of projects
from small to large. To reduce data conflict validity threat, we focused on one vital
concern, and that is project and company characteristics; our approach is to choose
the same type of project from the same industry sectors of government and non-
government. Projects are based on telecommunication systems, billing systems and
transportation systems. Three change request forms from each of the two telecommu-
nication systems are reviewed, similarly for the billing systems and transportation
systems.

40 B.B. Chua, D.V. Bernardo, and J. Verner

Evaluating change request criteria is very subjective because not all change request
forms are the same. Some change request forms consist of open-ended questions,
while others consist of closed questions. This study aims not at criticizing change
request forms, but rather at suggesting ways to improve the change request forms. Not
every change request form received for this study is acceptable, because each form
must satisfy the following terms and conditions: 1) Every IT change request form
submitted to us must be in English, and 2) change request forms may be from either
government or non-government organizations. Change requests were found during the
following three broad stages: 1) pre-maintenance, 2) maintenance and 3) post-
maintenance (see table 1, note: PL: Project level and RL: Requirement level).

In the context of pre-maintenance, requirement changes normally refer to issues re-
lated to environment in the non-production stage. Particularly, requirements changes
will occur during the later phases of the software development lifecycle, i.e. design,
coding, development and testing, after the pre-release functional specification has
been formally signed off. In the context of software testing, a requirements change is
regarded either as an error correction or non-error correction. Both types of require-
ments changes are noted as either urgent or non-urgent. They can also be trivial or
non-trivial [22]. An example of a trivial requirements change is one that does not
affect overall system performance. For example, a requirements change in relation to
a spelling correction. On the other hand, a non-trivial requirements change is one that
disrupts and affects overall system performance. In this case, adding new functional-
ity related to business value.

The types of requirements changes reported in change request forms found in the
maintenance and post-maintenance environments present a major contrast to pre-
maintenance requirements changes. One absolute challenge is that requirements
changes under maintenance and post-maintenance often seem complicated but rework
effort to implement the changes is critical as a response to tactical decisions that relate
to system integration, new configuration files, new technology interfaces and backend
databases integration.

However, in the post-maintenance environment, requirements changes reported by
users are focused more on adding new functionality to the system (this change is not
related to development of new source code from a programming language perspective
but rather related to technology interfaces, and unfamiliarity with other new technol-
ogy platforms)

The separation of government and non-government projects is to check whether
the criteria in government change request forms are any different from non-
government forms. For example, is the design of government change request forms
better in the context of use and do they provide good content for IT practitioners’
understanding? Are they informative enough to be used as a basis for estimating pro-
ject schedule, cost and risk? Which kinds of information are most valuable and impor-
tant to IT practitioners?

In table 1, our projects are categorized into government and non-government crite-
ria. While project sizes are classified into three types: small, medium and large. Dis-
tinguishing projects type and size are important because we are interested in finding
out 1) if the project size matters with respect to understanding the effect of require-
ment changes? and 2) what effect does a change of requirements, in each project type,
have at the project level and requirements-level? Hence, categorizing project size is

 Criteria for Estimating Effort for Requirements Changes 41

one way of assessing the threats to validity of the data. Project size is determined by
the number of people employed in the software development team and the cost of the
project. For instance, small project have ten software developers in the team with a
project cost less than five hundred thousand dollars ($500K), medium sized projects
have a team size of more than ten people but less than fifty, and its cost is more than
five hundred thousand dollars ($500K) but less than one million (1M); big projects
are classified as more than fifty software development team members with a cost
greater than one million dollars (1M).

Table 1. Matrix for evaluating change request criteria on IT change request forms

CR Criteria Pre-maintenance Maintenance Post Maintenance
Project A: Government
Project B: Non-Government

A1 B1 A2 B2 A3 B3

Project Size (2 CRS for each size) S M L S M L S M L S M L S M L S M L
Section I Description of a requirement change

Description of a RCS (title, type, rationale,
scope)

* * * * * * * * * * * * * * * * * *

Description of Requirement attributes and
characteristics

- - - - - - - - - - - - - - - - - -

Section 2 Impact Assessment

Scope * * * * * * * * * * * * * * * * * *
Schedule * * * - - * * * * - - - * * * - - *
Effort * * * - - * * * * - - - * * * - - *

Risk * * * - - * * * * - - - * * * - - *
Business value * * * - - * - - - - - - - - - - - *
Project value * * * - - * - - - - - - - - - - - *

PL
 and R

L

Impact of making
a requirement
change

Requirement
Value

- - - - - - - - - - - - - - - - - -

Section 3 Effort Estimation

Estimate
Start time

* * * - - - * * * - - - * * * - - - PL

Estimate finish
time

Lifecycle Stage

* * * - - - * * * - - - * * * - - -

New
requirement

- - - - - - - - - - - - - - - - - - R
L Estimate effort

Existing
requirement

- - - - - - - - - - - - - - - - - -

Examining IT change request forms is the first step in designing a framework. The
aim is to discover, a) which change request criteria in change request forms are in-
formative enough to allow IT practitioners to understand the requirements changes; b)
what change request criteria are not explicitly addressed when producing IT change
request forms; and c) which specific change request criteria (presented in IT change
request forms) are relevant as a basis on which to effectively estimate project duration
when the impact of the change is both at the requirements and project level.

Governments wish to streamline their processes to provide effective communica-
tion by having their policy, procedures and forms online and available to the public.
Government projects we reviewed are mainly developed with internal software devel-
opment teams – usually called ‘in house software development’ and rarely outsource
their projects.

Data shown in table 1 of large government projects under the pre-maintenance
stage focus on an impact assessment of cost, risk, time and business value when they
are compared with large non-government projects. A never neglected variable in CR

42 B.B. Chua, D.V. Bernardo, and J. Verner

form is scope. All requirements are documented in order to help project managers and
users identify what is required to bring about project objectives. There are two types
of scope, business scope and technology scope. The CR forms submitted by large
non-government projects do not indicate that impact on cost, time and business value
is important because 1) the projects have short duration times, 2) projects are not
newly developed, and 3) the project sponsor is not really interested in the breakdown
of project cost. Because large government-based projects that require audit checks
criteria on CR forms are structured to give a detailed breakdown of project cost, time
and business value.

Of the thirty-six change requests forms presented in table 1, interestingly, two lev-
els of hierarchy are observed. One includes non-production (equivalent to SDLC
stage of pre-maintenance) change request forms concerned with the impact on a pro-
ject, particularly, effort, functionality, scheduling, risks, cost and overall quality. The
second includes the production (equivalent to SDLC defined stage of maintenance
and post-maintenance) change request forms, with non-standardized concerns on the
impact on the business; consequences of not implementing a particular change, testing
procedures, risks associated with change and business priorities etc.

Risk of requirements changes for government projects is perceived as more impor-
tant than for non-government projects, based on the change requests forms we col-
lected. Government change request forms show well-structured risk criteria that ad-
dress impact assessment and effort estimation at the project level. This could be due
to the fact that the governing style is bureaucratic, and software project management
must be highly organized and controlled. No project should be fallible.

Of all the criteria found in change request with respect to understanding require-
ments changes, and its impact assessment in relation to effort estimation, there is no
enough information for IT estimators to help them estimate rework effort.

At the project level, scope, effort, cost and time are the criteria used for determin-
ing overall impact. Conversely, at the requirements-level, attributes and characteris-
tics are the criteria to assess the nature of a requirement for its completeness.

The first section of the table outlines what a requirement change is. Of the thirty-
six change requests we observed, the criteria used for describing a requirements
change is focused at a project level only, and not at the requirements-level. The de-
scription of a requirements change is very limited in helping an IT estimator or
change management team understand how much time is really needed for rework
when implement a requirements change. Ideally speaking, the depth of knowledge
and understanding of a requirements change must be beyond just an understanding of
its rationality, that is, what constitutes a bad or poor requirement and its associated
attributes and characteristics. None of the forms we checked asked for information
identifying other requirements characteristics or attributes regarding what would be
needed for and understanding of its impact on other requirements, particularly during
1) pre-maintenance, 2) maintenance and 3) post-maintenance.

By highlighting the requirements attributes and characteristics criteria, it assists in
making changes understandable to IT estimators and change management teams. This
enables them to appreciate the added value of information with respect to effort esti-
mation for new requirements and rework on existing requirements.

The second section of the change requests addresses impact assessment for re-
quirement changes that is also directed only at the project level instead of the
requirements level. IT practitioners of twenty-seven government projects of varying

 Criteria for Estimating Effort for Requirements Changes 43

sizes, and nine large-scale non-government projects did not consider or appear inter-
ested in knowing the outcome of the implemented requirements changes, whether
they were of value to businesses, projects or requirements. One reason for project
failure is rushing to reach a deadline without considering the full value of a project or
the actual requirements for the overall business.

The third section examines specific change request criteria that are relevant to
change management teams, IT practitioners, project managers, and users, in order for
them to effectively schedule project duration when change impact is at both require-
ments level and project level. Of the thirty-six change requests forms we examined,
only four of the twelve for pre-maintenance change requests dealt with “estimated
effort in hours” and “estimate hours required to implement a change.” The remainder
of maintenance IT change request forms have a detailed breakdown for estimated
effort and actual time required for the software development stages. However, soft-
ware development effort can be classified into two main types - new effort for new
requirements and effort for rework on existing requirements. None of the change
request forms that we saw include this information. Estimated project schedule inac-
curacy can arise when effort for new requirements and effort for the rework of exist-
ing requirements have not been taken into account. Estimating hours of effort for new
requirements should be added on to the original estimates, while rework time for
existing requirements should be included in the existing project schedule. The pro-
posed solution is to incorporate these two factors into change request forms, so that IT
practitioners can use this information as a base when revising project schedules and
thus avoiding over or under estimating projects.

4 Proposed Framework

Our approach to developing a framework for estimating person-effort for require-
ments changes consists of three stages (see figure 1). The first is to identify the differ-
ent kinds of requirements changes listed on the change request forms and analyze the
causes of the requirements changes; this can help us better understand the reasons for
the changes. The second stage requires us to distinguish between the different types of
changes and allows us to classify them both horizontally and vertically. The third
stage includes considering requirement changes as one of the cost drivers in CO-
COMO 2.0 and enhancing the model.

The rationale for the development of this framework is two fold. Firstly, we wish
to improve the current process of reviewing and approving requirements changes by
change management committees. Secondly, we wish to assist project managers in
better planning for requirements changes through estimating more accurately the
person effort required for these changes.

Fig. 1. Proposed framework for estimating person effort on requirements changes

Stage 1

Stage 2

What is a
change?

How do we
estimate?

Stage 3

44 B.B. Chua, D.V. Bernardo, and J. Verner

The objectives for the development of our framework are to 1) improve the level of
accuracy of schedule estimation with respect to software development effort when
there are requirements changes, 2) to increase an understanding of requirements
changes by incorporating specific criteria in change request forms that are not widely
discussed in industry, 3) to integrate a category of requirement changes into paramet-
ric cost estimation models, 4) to understand from case studies of real world project
failure why the project failed rather than focus on requirements changes or inadequate
estimation, 5) to provide detailed explanation of specific reason for the project failure
and to use this information to prevent from future failure. This framework should
enable us to more accurately estimate the person-effort required to implement a pro-
posed change. In addition, the framework may help reduce rework through analyzing
patterns of requirements changes that assist in terms of assessing individual and group
person-effort for each requirements change. We believe that estimating person effort
through understanding the requirements change process and using variables that have
a direct effect on changes, may be a more effective way of estimating requirements
change effort rather than simply using effort estimation models developed mainly for
initial schedule and effort estimation for a proposed software system.

Note that qualitative and quantitative types of data such as requirements changes
(past or present) and effort for rework were collected from newly developed software
development projects as well as existing ones. These data were considered as inputs
to our framework on stage one. It was important to gain direct access to one change
management database from the software industry that deals with pre-maintenance,
maintenance, post maintenance changes to help us validate our framework in stage 2.

5 Conclusions and Future Work

The main contribution of this paper is not to propose new criteria to be applied in
change request forms but rather to emphasize the risk of not gathering enough data for
developing an effective cost estimation model. If the stream of requirement changes is
not resolved through software process improvement, cost and effort estimation mod-
els become not very effective when estimating rework effort without taking into ac-
count requirement changes categories integrated into cost estimation models. Prior to
designing our framework, the inclusion of new criteria in change requests would be
beneficial to IT practitioners and IT estimators in increasing the turnaround time for
rework effort estimation.

The next step of our research is to propose set of criteria to incorporate into change
request forms to companies interested in including them in their IT change request
forms so that requirements changes can be accurately estimated. Meanwhile, the
framework developed will be tested for validation. Ideally, we will validate the
framework through large and small industrial cases, in before production, during
production and after production environments. This will give us the opportunity to
calibrate a cost estimation driver with real-world data.

 Criteria for Estimating Effort for Requirements Changes 45

References

1. Chua, B.B., Verner, J.M.: Estimation of rework effort based on requirements categoriza-
tion. In: 5th Proceeding of Software Measurement European Forum (SMEF) (in press,
2008)

2. Chua, B.B., Verner, J.M.: A Framework for predicting Person Effort on Requirements
Changes. In: Proceeding of 5th International Conference on Software Methodologies Tools
and Techniques (2006)

3. Firesmith, D.: Common Requirements Problems, Their Negative Consequences, and the
Industry Best Practices to Help Solve Them., Software Engineering Institute. Journal of
Object Technology 6(1) (January-February 2007)

4. Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The Role of Software Processes and
Communication in Offshore Software Development. Communications of the ACM 45(4)
(2002)

5. Bianchi, A., Caivano, D., Lanubile, F., Rago, F., Visaggio, G.: An Empirical Study of dis-
tributed software maintenance. In: Proceeding of International Software Maintenance
(IEEE) (2002)

6. Wiegers, K.E.: Lessons from Software Work Effort Metrics. Software Development
(1994), http://www.processimpact.com/articles/metrics.pdf

7. Boehm, B.W., Clark, B., Horowitz, C., Westland, R., Madachy, S., Selby, R.: Cost Models
for Futre Software Life-Cycle Processes: COCOMO 2.0. Annals of Software Engineering
Special Volume on Software Process and Product Measurement, Vol. 1, pp 45-60 (1995)

8. Shooman, M.L., Bolsky, M.: Types, Distribution, and Test and Correction Times For Pro-
gramming Errors. In: Proceedings of the International conference on reliable software, Los
Angeles, California, USA (1975)

9. Bell, T.E., Thayer, T.A.: Software Requirements: Are They Really a Problem? In: Pro-
ceedings of 2nd IEEE Iinternational confernce on software engineering, San Francisco,
California,United States (1976)

10. Basili, V.R., Weiss, M.: Evaluation of a Software Requirements Document By Analysis of
Change Data. In: Proceedings of the 5th International conference on Software Engineering,
San Diego, Califonia, United States (1981)

11. Basili, V.R., Perricone, B.T.: Software Errors and Complexity: An Empirical Investigation.
In: Proceedings of Communciations of the ACM, vol. 27(1), pp. 42–52 (1984)

12. Stark, G.E., Skillicorn, A., Oman, P.O., Ameele, R.: An examination of the Effects of Re-
quirements Changes on Software Releases. Journal of Software Maintenance: ReseaRCsh
and Practice 5(11), 293–309 (1999)

13. Stark, G.E.: Measurements for Managing Software Maintenance. In: Proceedings of the In-
ternational conference on Software Maintenance, Monterey, California, pp. 152–161
(1996)

14. Yashwant, K., Denton, M.J.: Requirements Volatility and Defect Density. In: Proceedings
of the 10th International Symposium on Software Reliability Engineering, SA (1999)

15. Melonfire: Five common errors in requirements analysis (and how to avoid them)
16. Yardley, D.: Successful IT Project Delivery. Addison-Wesley, Reading (2002)
17. Standish Group : The Standish Group Report, Chaos (2006),

http://www.cs.nmt.edu/~cs328/reading/Standish.pdf
18. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. John

Wiley and Sons. Inc., New York (1997)

46 B.B. Chua, D.V. Bernardo, and J. Verner

19. Tran, X.: Improving the Recognition and Correction of Poor Requirements. In: Proceed-
ings of the Systems Engineering, Test & Evaluation Conference, SETE 2005 – A Decade
of Growth and Beyond, Brisbane, Queensland (2005)

20. Kasser, J.E.: A Prototype Tool for Improving the Wording of Requirements. In: Proceed-
ings of the 12th International Symposium of INCOSE, Las Vegas, NV (2002)

21. Chulani, S.D.: Incorporating Bayesian Analysis to Improve the Accuracy of COCOMO II
and Its Quality Model Extension, P.h.D. Qualifying Exam Report, University of Southern
California, USA (1998)

22. Boehm, B.W.: Software Engineering Economics. Prentice Hall, Englewood Cliffs (1981)
23. Albrecht, A.: Measuring Application Development Productivity. In: Proceedings of the

Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92 (1979)
24. Putman, L.H.: A general empirical solution to the maCRsosoftware sizing and estimating

problem. Proceeding of IEEE Transactions on Software Engineering 4, 345–361 (1978)
25. Fenton, N., Plfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS

Publishing Company (1975)
26. Verner, J.M., Cerpa, N.: Software Project Failure. Accepted by CACM, Communication of

ACM (in press, 2008)
27. Chua, B.B., Verner, J.M.: IT Practitioner’s Perspective on Australian Risk Management

Practices and Tools For Software Development Projects: A Pilot Study. In: The 4th Inter-
national Conference proceeding on Software Methodologies, Tools, and Techniques
(SoMET) (2004)

Productivity of Pair Programming in

a Distributed Environment – Results from
Two Controlled Case Studies

Sami Pietinen, Vesa Tenhunen, and Markku Tukiainen

University of Joensuu, Department of Computer Science and Statistics,
PL 11, 80110 Joensuu, Finland
{Sami.Pietinen,Vesa.Tenhunen

Markku.Tukiainen}@cs.joensuu.fi
http://www.joensuu.fi/tkt/english/

Abstract. Several methods and techniques have surfaced to address the
ongoing concerns of quality and productivity of software development.
Among these is the Pair Programming (PP) method, which has gained a
lot off attention through being an essential part of an agile software de-
velopment methodology called the eXtreme Programming (XP). In this
paper, we present the results of two controlled case studies that investi-
gate the possible productivity improvement through the incorporation of
PP over solo programming. The main focus is on implementation task,
more specifically in programming, although PP is suitable for other tasks
too. Our results show that very high level of PP use might be difficult
to achieve in a very tightly scheduled software development project, but
some of the benefits can be seen to come true even with proportional
use of PP. In our case, PP added the additional effort of 13% over solo
programming.

Keywords: Pair programming, virtual teams, productivity.

1 Introduction

Experimental methods have been used in most of the Pair Programming (PP)
studies. It might be that all of the advantages or disadvantages of PP are not vis-
ible in those kinds of controlled, but simplified settings with short programming
tasks, so we decided to use a controlled case study method to study quantita-
tively and qualitatively the productivity of PP.

The present paper describes a research in which a complex cognitive environ-
ment is set up for two two-month-long software development projects where two
programmers worked as a pair within a larger, geographically distributed project
team. The development was done using a single computer display screen, but
also a second workspace was provided for an opportunity to work individually
if needed. This paper’s main contribution is to the empirical knowledge of PP
productivity.

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 47–58, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.joensuu.fi/tkt/english/

48 S. Pietinen, V. Tenhunen, and M. Tukiainen

2 Research Background

2.1 SoPro Project

This research was conducted during a project called SoPro (Software Productiv-
ity Increase). The general aim of the project was to increase software engineering
productivity. The project was carried out in three phases. First, an assessment
of the software development processes of the participating companies was con-
ducted, and then the project continued by identifying problems and needs in im-
plementation phase. Finally, we aimed at creating a pair programming method
as one of the possible solutions.

A combination of agile development process together with Pair Programming
is regarded as a cost-effective method [25]. The current multinational software
development often happens in geographically distributed environments. In the
SoPro research project, we planned to enhance PP to suit it for the geograph-
ically distributed project teams. To this end, the method has been, and will
further be, developed and piloted in real software projects.

At the moment, there is not enough knowledge available about the aspects of
distributed PP processes. We therefore implemented two pilot cases that were
focused on the data collection aspects of the study of PP process. It was done
as a joint project with University of Joensuu’s Department of Computer Science
and Statistics and VTT Technical Research Centre of Finland in Oulu. Only the
product parts that were produced in Joensuu’s end are under evaluation.

2.2 Pair Programming

Pair programming is a method where two persons work together with an al-
gorithm, design or programming task using one computer [31]. According to
the literature, PP is said to yield several benefits: code has less errors, designs
are simpler, problem solving is more efficient, co-operation and communication
increases, productivity is better, and integrating newcomers into teamwork is
faster [32,25,29].

Still, there have been only few empirical PP studies, and their results have
been controversial about the claimed benefits; in particular, the alleged better
quality and productivity has been questioned [12]. On the other hand, some of the
claims have been scientifically confirmed, including the better problem solving
and learning. However, PP does not benefit all software development tasks [29].
It is not clear, for example, what phases of software development would better
be conducted by a single programmer, or a pair, or a team of programmers.

2.3 Productivity

The primary reason that software productivity is such a critical problem is that
the demand for new software is increasing faster than our ability to supply it.
Increased demand for software is the result of pressure throughout the economy
to improve commercial, industrial, and service productivity [7]. With the recent

Productivity of Pair Programming in a Distributed Environment 49

push to downsize or outsource, most of us are trying to look for ways to cut
down our software costs. Today, the majority of improvement strategies being
pursued try to either reduce the inputs (i.e. people, time, equipment) needed to
do the job, or increase the outputs generated per unit of input [22].

In addition to changing programming related activities in search of produc-
tivity improvement, nonprogramming related options can be used. According to
Boehm, all the factors influencing software productivity is not under our con-
trol, but one of the primary controllable factors is the number of instructions we
choose not to develop, either by deferring the development of marginally useful
features or using already available software like commercial software packages,
adaptation of existing in-house software or program generators [7].

No indications towards the superior productivity of PP over solo programming
could be detected based on a multiple case study in [12]. PP effort levels reported
in various studies have been from -28% to 100% [2,4,9,16,18,19,23,27,32].

3 Research Design

3.1 Research Method

Two controlled case studies were made in order to study the productivity of PP.
By using controlled case study method, the resulting information is applicable
in a wider context compared to using general case study method in academic
settings. More elaborate description of the method can be found from [24]. Us-
ing this method, the development of a software product is justified, because it
produces industrially useful end-products in a acceptable time frame.

3.2 Data Collection

Several protocols were recorded in order to be able to accurately measure and
analyze multiple aspects of the development process and product. An overall
video with sound was recorded for being able to afterwards find out, what really
happened in the development environment as a whole. Video with sound from
monitors were also recorded to see, what task was done when and how much
time was spend on each task. Task effort was also recorded by the used software
development process, but in order to make more fine-grained analyses, both of
the developers also kept a diary about ongoing activities and those were checked
against the recorded monitor and overall video. Notes were written in releases
to record the number of issues found.

3.3 Research Setting

Before the empirical part of this study was started, all the subjects were trained
to Mobile-D, an agile software process. It has been development by our partner
in this study and been used for several years in the ITC industry. Iterations in
Mobile-D consist of three types of days: planning day, working days and release

50 S. Pietinen, V. Tenhunen, and M. Tukiainen

day. The day length is six hours and there is only four days in a week that are
used for development, others are either free of work or used in planning or release.
Mobile-D approach is based on Extreme Programming, Crystal methodologies
and Rational Unified Process [1].

First project used PHP and HTML as an implementation language and the
second project was done using Java2ME platform. The use of different imple-
mentation languages is a result of the fact that both of the projects were real
world projects with real business needs and pressure. The main tool used in both
of the projects was Eclipse, an integrated development environment.1

3.4 Projects and Developers

The number of developers at Joensuu was two in both projects. During the first
project, Joensuu’s programmers developed an application for querying from and
storing data in a database with a mobile device’s browser and were also involved
with respective web application implementation. The project team consisted of
six persons in two geographically separated locations, so the team should be
called a virtual team. The second project consisted of seven persons with same
geographic distribution, where Joensuu’s developers build an mobile database
centric client-server application, but this project is used as solo programming
reference for the low amount of PP used. The low amount of PP use was result
from the client-server division, where dedication to different sides were formed
between developers, and because of the high business pressure, it was very dif-
ficult to detach from own work for pairing.

Developers programming experience has an effect to the generalizability of
this study. First developer had about 1.5 years of programming experience in
multiple academic software projects and the second had 6 months of academic
and 2 years of industrial programming experience.

4 Productivity Factors

The traditional productivity metrics, like dividing LOCs or Function Points by
person-months, have apparent limitations. They disregard inherent variety in
both software projects and software developers and they are especially ill-suited
for estimating the outcome of future projects [21]. Therefore, both the LOC and
Function Point counts are used for measuring productivity. Only information of
past development efforts is needed at this case and also the developers under
investigation has remained the same. According to Brooks [8], the number of
statements that programmer can write in fixed time is constant between different
implementation languages. It is also still unknown if the programming paradigm,
i.e. object oriented paradigm vs. procedural programming, has some kind of effect
on productivity.

It should be noted that in the long run, PP method is probably more pro-
ductive than in the first project, because of the pair jelling time [30], but as a
1 More info available at http://www.eclipse.org/

Productivity of Pair Programming in a Distributed Environment 51

balancing factor, we used PP also in second project about 6.1% off the develop-
ment effort. To which way this has an effect of advantage (solo or PP), is just
the matter of evaluating the required pair jelling time which might be from few
hours to several days. Also learning to use PP very efficiently, in our experience,
might take several days or even longer.

Software Process. Much of the process model’s methods and techniques re-
garding implementation (i.e. Test Driven Development) were not used for being
able to keep the two studies comparable and to be able to say in higher confi-
dence that the effect under consideration is the result of using PP and not by
some other factor. The task under investigation is mostly just coding, so the
used software process should not raise a thread of concern.

Lines of Code. Counting lines of code (LOC) is probably the oldest way to
count program size and it can be done in multiple ways. We could count only
executable lines; executable lines and data definitions; executable lines, data
definitions and comments; executable lines, data definitions, comments and job
control language; lines as physical lines on an input screen; or lines as terminated
by logical delimiters [21]. The best solution is the one that minimizes the effect
of different coding styles between different developers and languages, so the
number of executable lines of code (lines as physical lines on an input screen)
and the comment lines was selected leaving out blanks. Same indentation, code
block start character position and line length rules were used in both projects.
Deviations from the coding standard, which contained mostly the positioning of
block start markings and code line length exceeds, were afterwards corrected.

More lines of code produced in a constant time frame does not necessary
mean better productivity. It is the functions or features delivered to customer
that bring the real value, so we also used function points to size the end-product.
We were not able to avoid the use of modifiers when counting the product size
based on LOC, so we also present the analysis figures alternatively without any
modifiers.

Function Points. Function points have been used to calculate and estimate
program size for almost three decades. It was first created by Albrecht in 1979
[10]. The basic idea is that the function point value is a universal metric in which
all different kinds of programs, irrespective of the implementation language and
platform, can be compared with each other. According to Dreger [10], using
function point analysis one can evaluate project size, cost and development time
reliably within 10% error margin for existing systems and 15-20% error margin
for systems in planning phase. Hours per function point is a unit-of-work measure
that is industry-accepted [11], but not so much used as LOC. It measures the
number of hours required to develop one function point and is that way directly
linked to productivity. The distinct counting method used in this study is based
on the book by Garmus and Herron ([11]), which uses International Function
Point Users Group’s (IFPUG) counting rules version 4.1.

Function point analysis (FPA) is based on counting data functions and trans-
actional functions, more precisely, inputs, outputs, queries and files that are

52 S. Pietinen, V. Tenhunen, and M. Tukiainen

used by the computer system. The data functions, internal logical files (ILFs)
and external interface files (EIFs), relate to the logical data stored and available
for update or retrieval (or both). The transactional functions, external inputs
(EIs), external outputs (EOs), and external inquiries (EQs), perform the pro-
cesses of data maintenance, retrieval, output, etc. Each has it’s own unadjusted
function point weight based on its unique complexity matrix and the weighting
will give the number of Unadjusted Function Points (UFPs). Then we need to
calculate the Value Adjustment Factor (VAF), which is based on identification
of 14 General System Characteristics (GSCs). The 14 GSCs are totaled to cal-
culate a Total Degree of Influence (TDI). The value adjustment factor (VAF) is
calculated from equation (1):

V AF = (TDI ∗ 0.01) + 0.65, (1)

where the already given numerical values are constants. VAF adjusts the Unad-
justed Function Point count by ±35% and produces the Adjusted Function Point
(AFP) count [11]. There are several possible types of function point counts: de-
velopment project counts, enhancement project counts and application counts.
In this paper existing applications are sized, therefore the count is an application
count resulting in AFPs.

Code Reuse. Code reuse has been proven to be a productivity increasing factor
[7,15]. Even inside a one single project, one can reuse some parts of the modules,
although this sometimes indicates that the duplicate like code parts should be
generalized into a single code part. In our projects the reuse has not been in its
pure form, because it is better described as usage of example code. These are
not counted as real reuse and do not affect to the counting of code lines. The
kind of code reuse, where most of the code is unchanged, will this case have more
effect to the total number of lines of code produced. The effect of this kind of
pure reuse in our project is handled using a modifier in which 1:3 of the reused
code lines are included in the total number of lines of code. This is based on the
case example in [14], where 25% reuse resulted in decrease of coding effort from
3 calendar months to 2.3 months. The amount of reused code compared to the
total size of code base in first project is 13.3% and 9.6% in second project.

Debug Code. The number of produced debug code lines where significantly
higher in Java based project (2nd). It is much easier to debug HTML based
applications using a web browser that it was found to be with mobile Java
applications. The debug code consists of print statements in both projects and
this kind of statements are, in our experience in these projects, much faster to
produce than other parts of the code on average. The difference in number of
debug lines between the two projects has to be counted in with another modifier
in which 1:3 of the debug code lines are included in the productivity model.
There doesn’t seem to be any previous studies about debug code effort so the
given rough estimate needs to be used. The amount of debug code compared to
the total size of code base (code + comments - blanks) in 2nd project is 6.1%,
which is big enough for not giving us a change to ignore it. The respective value
in first project is 1.7%.

Productivity of Pair Programming in a Distributed Environment 53

Effort. According to [20], for most projects the biggest component of cost is
effort. Counting effort has to be done in categorized way using the following
classes: project management, it-support and development. Project management
includes all the communication and other management activities that might be
different between projects. IT-support is related to setting up and managing the
development environment and it has to be also separated from the productivity
count. Last, but the most important factor, is the development effort which
contains all the effort marked into task cards.

The effort used for design documentation is also left out, because the require-
ments for documentation where different in each project, although very light
documentation level was kept. Coarse UI mock-ups where drawn in both projects
and other more detailed documents where produced as post-implementation, so
in this sense, documentation did not affect differently to the actual implemen-
tation phases of the projects.

Although there where only 2 developers under investigation, it is very impor-
tant to keep the effort the same for both developers in both projects, because
the productivity between developers can vary by a factor of 10 [8,20,21]. The
total effort needed per projects where different, but the ratio of each developer’s
effort compared to total effort is the same in both projects.

Quality. The quality of the software can be presented using for example the
number of defect that remains in the end-product in subsequent releases and
most importantly after the final release. This can be presented as defect density
i.e. the number of defects identified across one or more phases of the development
project lifecycle compared to per thousand lines of code. In the second project,
in which solo programming was mostly used, the delivery rate of features was too
low to make any comparison between the projects concerning subsequent releases
but the final releases were comparable. There was no long term observation of
defects after the final release. Couple of defects were also found when going
through the code base when fixing coding standard deviations.

The amount of code reuse affects increasingly in the number of produced lines
of code and to product quality by decreasing the defect density [15]. In this way,
the code reuse could mask the effect of PP usage related to quality. This is not
a factor, because reused code is excluded from the quality analysis. Amount of
code commenting can also be considered as one indicator of quality.

5 Analyses

As can seen from table 1, solo programmers produced more code than pair
programmers (+13%). Even the quality seems to be better, including number of
defects relative to product size (1.6 vs. 1.16 defects/KLOC) and the amount of
commenting relative to product size (14.8% vs. 24.6%).

The severity of defects where mostly cosmetic, only one major defect was
recorded for each project. No meaningful difference in productivity calculated
with function points where found. It might be the result of using high level fea-
tures of the program to size it rather than module level analysis, which might

54 S. Pietinen, V. Tenhunen, and M. Tukiainen

Table 1. Effort, Code, Quality and Function Point Analyses

Proj1 (Solo) Proj2 (PP)

Complexity easy easy

Effort analysis

Task (hours) 245 275
Total (hours) 365 386
Velocity 67.1 71.2
Total Adjusted function point count (AFP) 73.7 83.7

Code analysis

Lines of code (code, comments, blanks, reuse) 7509 10215
Reused lines of code (code) 991 660
Debug lines of code 127 621
Number of comment lines 1114 2516
Number of blank lines 842 1200
Lines of code (code, comments, fixed debug, fixed reuse) 5760 7353
2 person team LOC per hour 23.51 26.74

Quality analysis

Defects after final release 7 5
Defects per KLOC 1,6382 1,1609

FPA analysis

Total unadjusted function points (UFP) 81 92
Total degree of influence (TDI) 26 26
Value adjustment factor (VAF) 0.91 0.91
Total Adjusted function point count (AFP) 73.7 83.7
FPUs per hour 0,3008 0,3044

reveal the underlying complexity better. The high amount of commenting in
Java-based project is at least partly the result of the code consisting higher
number of functions than the first PHP/HTML-based project. The lack of com-
menting e.g. the need for commenting is more visible and obvious in the method
interfaces than inside the methods, because of the Javadoc 2 style commenting,
and therefore in our case, results in a higher amount of commenting than a code
with fewer methods.

6 Results

Productivity. In our case the productivity of PP is lower compared to solo
programmers. When the used software development process is more heavy than
the one we used, difference of even 15% in productivity might be acceptable due
to the additional review phase needed with solo programmers [6]. But with our
partial use of PP, an additional review phase would also be needed, so roughly
less than 10% would be acceptable and therefore the limit is overrunned.

The FPU analysis still leaves some hope, but the use of high level program
features might lead into results that are not inside the expected accuracy of the
2 More info available at http://java.sun.com/j2se/javadoc/

Productivity of Pair Programming in a Distributed Environment 55

sizing method. There are still other benefits of using PP, like the increased learn-
ing, which might be considered highly relevant especially concerning tacit knowl-
edge. But what comes to productivity, the results show clearly an negative effect.

Pair Programming Method. The developers enjoyed very much using PP.
Particularly the following two factors might be easily disregarded at least in the
beginning when pairs do not have very much experience of using the PP method.
When one reaches a very deep level of concentration, it is hard to keep track
of time. As the developers are working as a pair, the other partner might not
be in a very excited mental state after couple of hours. There are many obvious
reasons for getting tired and one of them is just the fact that there are individual
differences in how much brainwork a person can do in one go without breaks.
Pairs could even make some effort to monitor each others mental state of vigor
to recognize the points where roles should be switched or it’s time for a break.
According to [29], breaks should be taken on hourly basis at the minimum.

Most of the bugs that was found during the coding, where typo errors, but
other potentially more dangerous bugs was found too. There was an automatic
syntax checking in the IDE, so typo errors were mostly catched on the fly by
the controller anyway. As a consequence, the navigator should give enough time
for the driver to correct the error on one’s own initiative before mentioning it,
or otherwise in the long run it will be very irritating for the driver.

Another factor noticed in our study, and also mentioned by [29], was the
mental support provided by the partner seemed to have a positive effect on
how efficiently developer starts to actually implementing something when the
problem at hand seems difficult. In other words, there is less planning required
to feel confident to proceed from planning to implementation, when you have
the partner giving fresh ideas or confirmation on how to proceed.

As the use of PP was based on voluntariness, the effect of business pressure
probably lowered the amount of PP use, which was considered the be the most
influencing factor. In [26], ratio as low as ca. 10% was reported, but the problems
there were related to organizing and infrastructure for PP. Our case the problems
were more affective, the feeling of need for hurry and the prejudice of PP being
less productive than solo programming.

6.1 Validity

Internal Validity. Both developers had prejudice against PP in the sense that
it was not felt to be more productive than solo programming. This has an effect at
least on how much PP is actually used over solo programming. As the first project
was also the first time when the developers developed software together, the pair
jelling time might have decreased the productivity a little. The productivity
differences between the Java and HTML/PHP cannot be accurately quantified
at the moment, but based on the FPU analysis, the combination of PHP and
HTML in our case produced a function point with ratio of 9:10 compared to
Java based lines of code.

56 S. Pietinen, V. Tenhunen, and M. Tukiainen

External Validity. Threads concerning generalizability of this study include
the experience of the developers. In general, developers working only in industrial
software development companies have probably more experience in average than
the developers in this study. The developed systems had low difficulty level,
which improves the external validity when the developers are not experienced
enough for ranking them as industrial developers. Another evident thread is the
small team size in Joensuu, because with bigger team sizes, the PP method
should be used differently i.e. by incorporation of pair rotation.

7 Discussion

The accommodation of PP into a company is not trivial, because many of the in-
dustrial managers do not believe PP methods superiority over solo programming.
It also does not help that in PP studies the results have been contradictrary.
Fortunately, most of the people that have tried the method, have liked it, al-
though it is not for everyone. According to Beck [5], XP should be adopted one
problem area at a time. So, if the problem at hand is related to product quality,
re-enforcing the software process with continuous reviews by taking PP in use
might be just the way to go. For example in [26], accommodation tactics of PP
included: PP guidelines, PP champion, voluntariness, motivation and a separate
PP room. PP can be excercised in a more structured way by using Collaborative
Software Process (CSP) desribed in [30].

Another interesting area where to apply PP is the assimilation of new people
to an on-going software project. Brooks says that adding people to a late project
makes it even later [8]. There is very anecdotal evidence, that adding manpower
to a late project will yield productivity gains to the team more quickly, if PP is
used [28].

Some of the PP benefits, like knowledge sharing, could be still improved by
consciously interacting more with other developers and discussing about possible
problem solutions openly without the fear of critique. In our second project,
which mostly consisted of solo programming, a great deal of information was still
exhanged between the developers, due to the effect of PP in the first project,
which clearly teached the developers to communicate better.

8 Conclusions and Future Work

PP seems to be a very good method for raising the workers confidence in their
work, team building, improving communication, sharing of tacit knowledge and
not to mention the feel-good factor. But there is a price in getting all these ben-
efits and that is the increased effort needed to bring the project to enclosure. PP
might not be productive enough for continuous use (used all the time) compared
to solo work, but many of the benefits can be seen to come true also in partial
use. Then again in our study, the proportion of effort, where PP was used, might
not be big enough to see all the benefits of PP to come true.

Productivity of Pair Programming in a Distributed Environment 57

When the use of PP is proportional, it has to be complemented with ad-
ditional quality verification methods, because the preview process is otherwise
incomplete. One of these methods is peer reviews. There is evidence that, peer
reviews and the following error fixing task should be done in pairs and by the
pair programmers, because according to [17], quality assurance (QA) made by
pairs was over two times faster than solo QA, which might be for the reason of
reviewing familiar code or otherwise inherent to PP.

Further analyses of the recorded data is still needed in order to find out, if
there is a visible pattern in where the PP seems to be the most efficient. We
are also investigating the possible productivity implications of PP based on eye
movements that where recorded during this study.

References

1. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala,
M., Koskela, J., Kyllönen, P., Salo, O.: Mobile-D: an agile approach for mobile
application development. In: OOPSLA 2004, Vancouver, Bc, Canada, pp. 174–175.
ACM, New York (2004)

2. Arisholm, E., Gallis, H., Dyb, T., Sjraberg, D.: Evaluating Pair Programming with
Respect to System Complexity and Programmer Expertise. IEEE Transactions on
Software Engineering 33(2), 65–86 (2007)

3. Arisholm, E.: Design of a Controlled Experiment on Pair Programming. In: Pro-
ceedings, ISERN 2002 (2002)

4. Baheti, P., Gehringer, E., Stotts, D.: Exploring the Efficacy of Distributed Pair
Programming. In: Proceedings, XP/Agile Universe 2002, New York, pp. 208–220.
Springer, Heidelberg (2002)

5. Beck, K.: Extreme Programming Explained: Embrace change. Pearson Education,
London (2000)

6. Boehm, B.W., Turner, R.: Balancing Agility and Discipline: A Guide for the Per-
plexed. Addison Wesley, Reading (2003)

7. Boehm, B.W.: Software Engineering Economics. 1st. Prentice Hall PTR, Engle-
wood Cliffs (1981)

8. Brooks Jr., F.P.: The Mythical Man-Month: Essays on Software Engineering. Ad-
dison Wesley, Reading (1975)

9. Ciolkowski, M., Schlemmer, M.: Experiences with a Case Study on Pair Program-
ming. In: Workshop on Empirical Studies in Software Engineering (2002)

10. Dreger, J.B.: Function Point Analysis. Prentice-Hall, Englewood Cliffs (1989)
11. Garmus, D., Herron, D.: Function Point Analysis: Measurement Practices for Suc-

cessful Software Projects. Addison-Wesley, Boston (2001)
12. Hulkko, H., Abrahamsson, P.: A multiple case study on the impact of pair pro-

gramming on product quality. In: Proceedings of the 27th international conference
on Software engineering (ICSE), pp. 495–504 (2005)

13. Jensen, R.: A Pair Programming Experience. CrossTalk 16(3), 22–24 (2003)
14. Jones, C.: Programming Productivity. McGraw-Hill, New York (1986)
15. Lim, W.C.: Effects of Reuse on Quality, Productivity, and Economics. IEEE Soft-

ware, 23–30 (September 1994)
16. Lui, K., Chan, K.: Pair programming productivity: Novice-novice vs. expert-expert.

International Journal of Human-Computer Studies 64(9), 915–925 (2006)

58 S. Pietinen, V. Tenhunen, and M. Tukiainen

17. Müller, M.M.: Are Reviews an Alternative to Pair Programming? Empirical Soft-
ware Engineering, vol. 9, pp. 335–351. Kluwer Academic Publishers, Dordrecht
(2004)

18. Nawrocki, J., Wojciechowski, A.: Experimental Evaluation of Pair Programming.
In: Proceedings, ESCOM 2001, pp. 269–276 (2001)

19. Nosek, J.: The Case for Collaborative Programming. Communications of the
ACM 41(3), 105–108 (1998)

20. Pfleeger, S.L.: Software Engineering: Theory and Practice, 2nd edn. Pearson Edu-
cation, London (2001)

21. Putnam, L.H., Myres, W.: Five Core Metrics: The Intelligence Behind Successful
Software Management. Dorset House, New York (2003)

22. Reifer, D.J.: Practical Software Reuse, 1st edn. John Wiley & Sons, Inc, Chichester
(1997)

23. Rostaher, M., Hericko, M.: Tracking Test-First Pair Programming - An Experi-
ment. In: Proceedings, XP/Agile Universe, pp. 174–184. Springer, New York (2002)

24. Salo, O., Abrahamsson, P.: Empirical Evaluation of Agile Software Development:
A Controlled Case Study Approach. In: Bomarius, F., Iida, H. (eds.) PROFES
2004. LNCS, vol. 3009. Springer, Heidelberg (2004)

25. Succi, G., Marchesi, M.: Extreme Programming Examined. Pearson Education,
London (2001)

26. Vanhanen, J., Lassenius, C., Mntyl, M.V.: Issues and Tactics when Adopting Pair
Programming: A Longitudinal Case Study. In: Proceedings of the Second Interna-
tional Conference on Software Engineering Advances (ICSEA) (August 2007)

27. Vanhanen, J., Lassenius, C.: Effects of Pair Programming at the Development Team
Level: An Experiment. In: Proceedings of International Symposium of Empirical
Software Engineering (ISESE 2005) (2005)

28. Williams, L., Shukla, A., Anton, A.I.: An Initial Exploration of the Relationship
Between Pair Programming and Brooks’ Law. In: Proceedings of the Agile Devel-
opment Conference, June 22 - 26, 2004, pp. 11–20. ADC. IEEE Computer Society,
Washington (2004)

29. Williams, L., Kessler, R.: Pair Programming Illuminated. Pearson Education, Lon-
don (2003)

30. Williams, L.A.: The collaborative software process. PhD Dissertation. Department
of Computer Science. Salt Lake City. University of Utah (2000)

31. Williams, L., Kessler, R.: All i really need to know about pair programming i
learned in kindergarten. Communications of the ACM 43, 108–114 (2000)

32. Williams, L., Kessler, R., Cunningham, W., Jeffries, R.: Strengthening the case for
pair programming. IEEE Software 17, 19–25 (2000)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 59–69, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Software Functional Size:
For Cost Estimation and More

Baris Ozkan*, Oktay Turetken, and Onur Demirors

Informatics Institute, Middle East Technical University
06531, Ankara, Turkey

{bozkan,oktay,demirors}@ii.metu.edu.tr

Abstract. Determining software characteristics that will effectively support
project planning, execution, monitoring and closure remains to be one of the
prevalent challenges software project managers face. Functional size measures
were introduced to quantify one of the primary characteristics of software. Al-
though functional size measurement methods have not been without criticisms,
they have significant promises for software project management. In this paper,
we explore the contributions of functional size measurement to project
management. We identified diverse uses of functional size by performing a lit-
erature survey and investigating how functional size measurement can be incor-
porated into project management practices by mapping the uses of functional
size to the knowledge areas defined in project management body of knowledge
(PMBOK).

Keywords: Software Project Management, Functional Size Measurement.

1 Introduction

Software project managers require knowledge on software product for effective man-
agement. Size is one of the key attributes for engineering projects and size measure-
ment supports project management in many processes such as scope determination,
cost and duration estimation, performance and quality measurement, and contract
management. Software size has been associated with several attributes of software
artifacts, documents and deliverables and software development practitioners have
measured size using a wide range of metrics and methods. Fenton explains software
size as a multidimensional attribute and describes it with the dimensions of length,
functionality and complexity [1].

Unlike other engineering disciplines in which size is measured from the project ini-
tiation to the closure phase and measurements are effectively used for different pur-
poses each project management process have, software size measurement has been
mostly practiced in software cost and effort estimation and remained unfruitful in
other project management processes.

* This study is supported by The Scientific and Technological Research Council of Turkey.

60 B. Ozkan, O. Turetken, and O. Demirors

Among the various approaches developed to software size measurement, the meas-
ures and methods on quantifying the ‘functionality’ attribute have been widely ac-
cepted in practice. Software functional size measures the amount of functionality
provided to the users. Functional Size Measurement (FSM) methods are utilized
frequently in estimation of effort and cost for software development and maintenance
projects. The need for well established estimation models is so imperative that the
relation between FSM and software cost, effort and time estimation can easily cause
the misinterpretation of FSM methods as estimation models. However, software pro-
ject management essentially requires reliable size measurements for many other pur-
poses including controlling and monitoring project scope and risks, assessing process
performance and establishing organizational level standard measures.

In this study, we focused on the software functional size and explore its usability in
various software project management practices. We investigated how methods and
approaches based on the functional size can address the concerns and requirements of
software project management, by going through the specific process knowledge areas
(KAs) defined in the project management body of knowledge (PMBOK) [2] and by
reviewing the literature for studies that specifically utilize FSM methods for various
project management tasks. We selected the PMBOK to identify the project manage-
ment tasks, as it is a well-known project management guide that provides process
definitions along with inputs, outputs, relevant tools and techniques and the presenta-
tion of the interactions between processes. This representation and structure eased the
identification of potential uses of functional size measures. In mapping the process
KAs to FSM uses, process descriptions in each KA are reviewed and relevant applica-
tions of FSM in the industry and research studies are surveyed.

The remainder of the paper is structured as follows: Section 2 discusses the related
research on the functional size measures, related measurement methods, and the uses
of functional size in project management processes. Section 3 investigates how pro-
ject management KAs in PMBOK can be supported with functional size measures.
Section 4 concludes by presenting the uses of functional size that span across the
project management processes.

2 Related Research

The research study involved the identification of potential uses of FSM methods in
software project management practices. For this purpose, we have used PMBOK as a
reference that is representative of the state of the art collection of project management
practices and combines them in a well-defined structure. In the exploration of the uses
of FSM, we selected three well known ISO/IEC conformant FSM methods, Mk II
FPA [3], IFPUG FPA [4] and COSMIC FSM [5].

Project Management Body of Knowledge (PMBOK), published by Project
Management Institute, is an internationally recognized collection of processes and
KAs often accepted as a best practices reference. It is supported by an international
standard, IEEE 1490-2003, published by the IEEE Standards Association [6]. The
knowledge in PMBOK is organized into five project management process groups;
initiating, planning, executing, controlling and monitoring, and closing. The processes
are categorized into nine KAs; project integration management, project scope man-
agement, project time management, project cost management, project quality

 Software Functional Size: For Cost Estimation and More 61

management, project human resource management, project communications man-
agement, project risk management, and project procurement management. PMBOK
describes each process in three sections; the process inputs, outputs, and tools & tech-
niques applied for the process. The knowledge area processes interact with each other
and processes from other KAs directly or indirectly.

Function Point measure has gained considerable interest since it has been first in-
troduced by Allan Albrecht in 1979 [7]. The motivation was to quantify the software
functional requirements independent from the development method, people and the
implementation language. Later, Albrecht and Gaffney improved this method [8].
During the 1980s and 1990s, several new counting methods were developed that in-
tended to improve the original FPA or extend its domain of application.

In 1986, the International Function Point Users’ Group (IFPUG) was set up as the
design authority of Albrecht’s FPA method. Since then, IFPUG has been clarifying
FP counting rules and expanded the original description of Albrecht.

Mk II FPA method was developed by Charles Symons in 1988 to solve the short-
comings of the regular FPA method [3]. Currently, the Metrics Practices Committee
(MPC) of the UK Software Metrics Association is the design authority of the method.

COSMIC FSM method was published by Common Software Measurement Inter-
national Consortium (COSMIC) in November 1999 [5]. This group has been estab-
lished to develop this new method as the one which would measure the functional size
of software for not only business information systems, but real-time systems and
hybrids of both.

Due to the proliferation of the methods, a workgroup was initiated by International
Organization for Standardization (ISO) in 1996, with the purposes of identifying the
fundamental concepts of a measurement process, clarifying the conceptual basis and
establishing an international standard for functional size measurement. ISO/IEC joint
committee first published ISO/IEC 14143-1:1998 International Standard, which de-
fines the fundamental concepts of FSM methods [10]. This standard defines the core
concepts of FSM, such as functional user requirements (FURs)1, Functional Size2,
Base Functional Component (BFC3) and the FSM requirements that should be met by
a candidate FSM method. In the following years, other ISO/IEC standards were pub-
lished [11]- [15].

Currently, MkII FPA [3], IFPUG FPA [4], COSMIC FSM [5] and NESMA FSM
[16] are accepted as international standards for functional size measurement. All these
FSM methods measure the functional size of a software product; however, they use
different metrics and rules during the measurement process [9].

The uses of FSM in software project management have been studied by other re-
searchers. These studies focus mainly on estimation processes emphasizing cost and
effort prediction for a software project [17], [18], [25], [26] ,[28], [32]. Few of these
studies exploit FSM in other project management processes. Muller in [19], describes
how function point metrics can be adopted to earned value technique used in cost
control process. Dekkers [20] explores use of FSM in IT Governance processes.

1 FURs: “a sub-set of the user requirements. The FURs represent the user practices and proce-

dures that the software must perform to fulfill the users’ needs”.
2 Functional Size: “a size of the software derived by quantifying the FUR”.
3 BFC: “an elementary unit of FUR defined by and used by an FSM Method for measurement

purposes”.

62 B. Ozkan, O. Turetken, and O. Demirors

Abran, Meli, Buglione [21] discusses how the use of FSM can strengthen an ICT
Balanced Scorecard (BSC). They show how BSC, as a performance measurement
driven by business strategies, is supported by FSM through establishing normalized
performance indicators. Rispens and Vogelezang [22] present a case study demon-
strating the use of functional size in application portfolio management of a bank.
ISO/IEC 14143-1 [10] includes an informative annex section about the uses of FSM
in project management . In [23], Symons addresses various aspects where functional
size can contribute, including scope and procurement management.

3 Uses of Functional Size Measures in Project Management
Knowledge Areas

We explored the use of functional size measure for each applicable project manage-
ment knowledge area (KA). Each KA requires different techniques, skills and exper-
tise, and constitutes a distinguishable aspect of project management practices such as
cost, quality and scope management. In the mapping, we also discuss how functional
size relates to the techniques and practices used in software project management.

We identified seven of the KAs defined in PMBOK, where functional size offers
direct opportunities to contribute. In the exploration of uses, the capabilities of the
three ISO compliant FSM methods, MkII FPA, IFPUG FPA, COSMIC FSM are taken
into consideration and the findings about the extend of each method concerning the
capabilities are identified.

Project Integration Management. Project integration is primarily concerned with
integration and harmonization of processes among the project management process
groups. Functional size can be used to estimate preliminary scope, cost, and schedule.
The applicability of functional size at the early stages of a project can enable the
project managers and sponsors with quantitative analysis capability on feasibility and
project selection studies.

Portfolio management evaluates the individual projects and their relations to
maximize the benefits and ensure alignment with strategic objectives of the organiza-
tion. Functional size measures can support portfolio management by providing the
functional size for the portfolio; hence functional size of completed, maintenance, on-
going and potential projects. Quantifying project’s functional size, the portfolio or
program managers can compare projects with each other, give investment and project
selection decisions based on the functional size to be developed or to be delivered for
each software project. Functional size can support the definition of quantitative crite-
ria and measurement against the criteria when selecting among candidate projects. In
risk/reward ratio calculations, reward for each project can include the functionality
offered by the software that will be developed. Similarly, estimated costs based on
functional size can be included in risk calculations. Functional size can help the allo-
cation of project costs to lines of business by measuring the software functionality
delivered to each line. Measures, such as cost per functional size unit can be used to
value software assets.

Monitoring and controlling the project work essentially needs measurement capa-
bilities and performance information. Using functional size, project work in each
phase can be continuously monitored against the functional size implemented and the

 Software Functional Size: For Cost Estimation and More 63

remaining size planned to be developed. Depending on this performance rate, estima-
tion of project cost, scope and schedule can be performed to update forecasts. In [19],
Muller explains the adoption of Earned Value technique, where values are calculated
in terms of earned software functional size units as an alternative to value approxima-
tions to costs.

FSM methods size the software project at BFC level and integrated change control
process can utilize this to evaluate the impact of a change that can be represented in
BFC granularity level to the scope, cost and schedule. Automated tools can help to
collect performance data.

Scope Management. FSM methods supports the breakdown of project work into
work packages such that the FURs of a software project that are included in work
packages can be measured individually. Among the three FSM methods, COSMIC
FFP is fully scalable, thus functional size of FURs can be aggregated to get the total
size. In scope definition, the set of BFCs that are included in the initial scope can be
measured as the baseline and can be used to estimate initial cost and schedule. Scope
can be monitored by comparing the functional size at different development phases
and product baselines. Changes in the scope, whether they are additions, removals or
alterations for the available functionality, can be quantified independently. The
impact of the change on project cost and schedule can be estimated, so that a change
request can be evaluated and negotiated with the project sponsors and stakeholders on
a quantitative basis.

Time Management. Development of a project schedule requires estimation of
activity durations in work packages defined in project work breakdown structure
(WBS). The decomposition of FURs into BFCs can be used for estimating the effort
and duration for each activity. In activity resource estimation process, -using a
parametric resource estimation technique- the effort required for each activity can be
estimated over the functional size using productivity rates, which are based on the
actual values for the functional size and the development effort for completed
projects. Constructive Cost Model (COCOMO) [24] breaks the software development
schedule down into pre-determined software life-cycle phases/activities, where
functional size is taken as a primary size input to the model. The most recent version
of the model uses only IFPUG function points.

Cost Management. Cost estimation is the process of developing the approximate
costs of resources to complete the project activities. Effort has been the primary re-
source for software development projects. There are many researches in the literature
that study the relationship between the software functional size and effort [17], [18],
[24], [25]. Other studies discuss the productivity and the factors - called as cost driv-
ers [24], [26] - that influences the size-effort relationship.

Software cost estimation techniques can be categorized into two; heuristic and pa-
rametric approaches. Either a bottom-up or top-down method can be selected when
applying these techniques [1], [33]. Bottom-up methods estimate each individual
component and combine all components to give the overall, complete estimation of
the project. On the other hand, top-down approaches estimate the size of the project as
a whole, considering the overall characteristics of the system to be developed. When
using functional size in cost estimation, bottom-up estimation needs detailed WBS

64 B. Ozkan, O. Turetken, and O. Demirors

and FURs to come up with accurate estimations. Top-down approach can be applied
at early phases of a project, where software requirements are not detailed. Among the
techniques defined in PMBOK Cost estimation process, functional size can support
cost-rate based and parametric estimations. Functional size based organizational or
benchmark productivity rates from international databases such as The International
Software Benchmarking Standards Group (ISBSG), can be used as cost rates to calcu-
late resource cost per schedule activities [27]. ISBSG [28] works through software
metrics groups in major countries of the world and defines standards for recording
data about software projects, collects software project data, manages a software pro-
ject database, and publishes periodic reports. The ISBSG repository is richer for
benchmarking projects measured by IFPUG than relatively new methods such as
COSMIC FSM and MK II FPA.

Regression models can be built with organizational project data that includes func-
tional size, effort or other costs [29]. COCOMO [30], as a parametric and top-down
cost model, takes functional size as a model input and converts it to source lines of
code and then calculates the development cost based on these values. Other models
that take functional size as input for effort and cost calculations are SEER SEM, Put-
nam’s SLIM, Albrecht Gaffney, Kemerer, Matson-Barret-Meltichamp , [32], [33],
 [34], [29].

IFPUG and MkII FPA adjust the total functional size of a software product with
weights given for non-functional characteristics of the software. The adjusted function
points can be compared with past project data to estimate the cost more precisely [31].

Cost estimation can be performed throughout the project to update forecasts and
increase accuracy as more detailed project information is available. FSM methods can
be used to estimate the functional size starting from earlier project phases where soft-
ware requirements are high-level. Accurate measurement is possible starting from the
time requirements are specified to the later phases of software design and implemen-
tation. Language and platform independence enable size measurement before such
technical details are decided. The organization can keep detailed productivity rates in
functional size units with respect to different implementation languages, hardware
platforms and use these rates on cost estimations for combinations of selections.

In cost control process, baselines can be set by determining functionality to be de-
veloped in each time-phase and calculating cost baseline by applying relevant estima-
tion techniques. Cost variance analysis and cost performance measurement can be
performed by comparing the planned and actual cost values based on implemented
and remaining functionality. Earned value management, as a performance manage-
ment technique used in cost control process, can be performed based on earned func-
tion points [19].

Quality Management. Software functional size is one of the most important attrib-
utes that enables comparisons of many process and project measures between projects
of different sizes and utilizing different developments methods and implementation
languages. Functional size values can be used in the normalization of several process,
product and resource base measures. Derived measures such as defect density (num-
ber of defects detected in a software component per functional size unit), defect detec-
tion efficiency (number of defects detected in qualification tests per functional size
unit), and productivity rate (effort spent for a specific activity per functional size unit)
can be constructed only when software size values, such as functional size, is

 Software Functional Size: For Cost Estimation and More 65

available as the denominator for normalizations. This makes functional size a good
candidate to construct a measurement framework distributed across project manage-
ment processes and to maintain organizational project data to be based on.

In order for functional size to be measured correctly and accurately, ISO qualified
FSM methods decompose the functional user requirements into a set of coherent and
well-structured functional components with respect to the techniques and rules de-
fined for each method. This practice also contributes the establishment of quality
criteria for requirements specification by reducing the ambiguity and improving the
rigor in requirements documentation.

Risk Management. Functional size can support quantitative risk analysis at the early
phases of the software supporting methods for risk impact calculations with rates
based on functional size, such as productivity, defect density and penalty cost per
function points that are delivered late. It can provide the project managers with a
mechanism to turn risks from scope creep into controllable and negotiable software
scope changes with estimated impacts on cost and duration.

Project costs and schedule can be estimated early in project’s life through use of
functional size based effort estimation models. In risk response planning, using these
models can be considered as an alternative risk mitigation strategy for such risks as
schedule and budget overruns.

Project Procurement Management. Software acquisition and purchase planning is
one of the most challenging processes that needs tools and techniques to handle
problems of unstable requirements and relevant uncertainties. The identification and
distribution of risks among acquirer and supplier parties becomes more difficult partic-
ularly when the software development is iterative. The use of functional size measures
in different KAs, such as cost estimation, quality, scope and project integration
management, is also valid and applicable in procurement management, since processes
in procurement management is closely linked to processes in other KAs.

In addition, FSM based quantification can be further utilized by introducing func-
tional size as the purchasing unit in bids, statement of works and contract documents.
Cost and delivery rates can be agreed over functional size units [45]. The procurement
items can be identified in terms of the amount of software purchased; scope changes
can be mutually adjusted without breaking the contracts and sustaining a degree of
risk avoidance for acquirer and supplier parties. Standardized FSM methods can im-
prove contracts, increasing independency and objectivity in the quality and delivery
terms. Thus, the functional size of the software delivered can facilitate the establish-
ment of a consensus among acquirer, supplier and other stakeholders. Focusing on
functionality rather than technical items (lines of code, number of components, and
etc.) can be more meaningful in contracts since from an acquirer’s perspective, ser-
vices that will be provided by the software application are highly correlated to the use
value -benefits to the user- of the software [35].

Applicability and Limitations. Project managers should be aware of the difficulties
and limitations of FSM methods as well. Pros and cons of specific FSM methods and
their limitations should be taken into consideration when using the functional size and
a related measurement method. The studies by Lother & Dumke [36], Symons [23],
Meli [38], Kitchenham[39], Kitchenham & Fenton [37], and Gencel & Demirors [40]
discuss the criteria for evaluating FSM methods and explore the challenges.

66 B. Ozkan, O. Turetken, and O. Demirors

In practice, the functional domains where FSM methods are effectively applicable
are limited to business applications and real-time systems. All three FSM methods are
used effectively in data-strong application domains and COSMIC FSM explicitly
covers real-time software measurement in detail with examples and illustrations.
Thus, the FSM method selection can be different in different projects. The functional
size based comparison of projects depends on certain factors with respect to the pur-
pose of the comparison. For instance, technical and environmental factors and produc-
tivity rates should be taken into account in comparisons of cost and duration of projects.
Although there are studies and formulations for converting functional size measured by
different FSM methods, it may not possible to convert them in every case since FSM
methods have different purposes and measures functionality over different software
elements or at different levels of detail. The measurement artifacts may be not detailed
to support feasibility studies where accurate size measurement has the most value and
early estimation techniques can be preferred at early project phases [41], [42], [43].
ISO/IEC 14143-3 [13] was developed to provide assistance to the FSM evaluators in
determining an appropriate method, by providing a process for verifying the certain
properties of an FSM method. This standard part can provide guidance in selection of
the best method that satisfies the project management’s needs.

4 Conclusions

In our study, we explored how functional size can contribute to effective execution of
the project management processes. We addressed the potential opportunities for using
functional size in project management areas in addition to cost estimation, which
gained the focus in majority of FSM research and practices. While mapping the po-
tential uses of the functional size to project management KAs, we observed that, al-
though functional size can be used for different purposes in each, several uses are
prevailing and they span across many of the project management and other organiza-
tional processes.

Input for cost, effort and schedule estimation. One of the significant purposes for
measuring the software functional size is to be able to make accurate estimations of
the development effort by incorporating the size into an estimation model. The rela-
tionship between software functional size and effort has been explored in many cost
estimation models and techniques. Leung and Fan [44] discuss both the strengths and
weaknesses of these models. Although their applicability is limited in scope and to
specific functional domains, successful applications of functional size based cost
estimation are reported in many studies [25], [34] .

Support for monitoring scope change. Functional size provides a means to quantify
change in project scope. Tracking the functional size at each baseline – requirements,
design, implementation and maintenance - supports monitoring and controlling scope
creep. Based on the functional size of the change, the impact on project cost and
schedule can be estimated.

Enables size measurement at early project phases. As defined in ISO/IEC 14143-1,
FSM methods can be applied to estimate size as soon as any functional user require-
ment is elicited. Estimating size early in the life-cycle is significant not only for

 Software Functional Size: For Cost Estimation and More 67

deciding feasibility of the project and related risks but also estimating its cost and
effort at a point where such measurement information is actually required. As project
progresses, size is (re) measured to obtain more accurate values. Early estimation
methods, such as EFPA [41], Function Points Simplified [42], and Early & Quick
COSMIC FFP [43] proposes techniques for estimating size before software require-
ments are specified in detail.

Using as a purchasing unit for software acquisition. Functional size can be used as
a unit to be negotiated between supplier and acquirer. As a unit for sizing software
projects and managing the size of a software project during the development, it can
help managing and decreasing the risks for both sides. Having been ensured that an
appropriate level of functionality will be delivered, the acquirer can be more ready to
accept the risk for a given size of software project. Similarly, the supplier can be more
willing to accept the risk for the cost of production (the cost per functional size unit).

Normalizing performance and quality measures. Functional size provides a
significant value for normalizing several base measures as an indication of how well
the organizational processes are performed. Such measures demonstrate general
trends and progress and help to identify problem areas. For example, inconsistent
productivity rates between projects can be considered as an indication that a standard
process is not being followed. Similarly, varying defect densities in software products
can be signs for inconsistencies in performing standard quality assurance activities.
Unpredictable values for such measures are expected to stabilize as the project teams
conform to standard organizational processes. Measures normalized with size not only
help monitoring process performance but also assist comparing products and projects
at the organizational level in terms of productivity, reliability, and other quality
attributes. Defects per function size unit, maintenance effort per functional size
altered, functional size per calendar month, cost per functional size unit are examples
of measures that can be monitored at the organizational level to indicate trends and
progress in performance levels.

In addition to the direct usage of functional size to support processes, as the project
management processes in PMBOK are directly or indirectly linked to each other
within and between KAs, the utilization of functional size in a KA process can implic-
itly contribute to all processes that are linked to that process. In relation to that, the
prevalent uses can be a good selection of areas to incorporate functional size meas-
urement in project management, where their application can show themselves in im-
mediate returns and accelerate the spread of functional size measurement usage in
project management processes.

In our exploratory study, we observed that the recognition of functional size meas-
urement in software industry is due to its support for software estimation and the
concentration of FSM research is on the cost and effort models. Despite concerns and
limitations, functional size has many uses to answer software project managers’ re-
quirements beyond estimating cost and effort. In the development and improvement
of models, tool and techniques that measures functional size or uses functional size to
support project management processes, these requirements should be taken into ac-
count to increase the usability and applicability, thus realizing the opportunities in
many management processes.

68 B. Ozkan, O. Turetken, and O. Demirors

References

1. Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd
edn. International Thomson Computer Press, Boston (1996)

2. Project Management Body of Knowledge, 3rd edn. Project Management Institute (2004)
3. ISO/IEC IS 20968:2002: Software Engineering - MK II Function Point Analysis - Count-

ing Practices Manual (2002)
4. ISO/IEC IS 20926:2003: Software Engineering - IFPUG 4.1 Unadjusted Functional Size

Measurement Method - Counting Practices Manual (2003)
5. ISO/IEC 19761:2003: Software Engineering - COSMIC-FFP: A Functional Size Meas-

urement Method (2003)
6. IEEE Std. 1490-2003 Adoption of PMI Standard - A Guide to the Project Management

Body of Knowledge –Description (2003)
7. Albrecht, A.J.: Measuring Application Development Productivity. In: Proc. Joint

SHARE/GUIDE/IBM Application Development Symposium (1979)
8. Albrecht, A.J., Gaffney, J.E.: Software Function, Source Lines of Code, and Development

Effort Prediction: A Software Science Validation. IEEE Trans. Software Eng. 9(6), 639–
648 (1983)

9. Gencel, C., Demirors, O.: Functional Size Measurement Revisited. ACM Transactions on
Software Engineering and Methodology (July 2008) (to be published)

10. ISO/IEC 14143-1:1998 Information Technology - Software Measurement - Functional
Size Measurement - Part 1: Definition of Concepts (1998)

11. ISO/IEC 14143-2:2002: Information Technology - Software Measurement - Functional
Size Measurement - Part 2: Conformity Evaluation of Software Size Measurement Meth-
ods to ISO/IEC 14143-1:1998 (2002)

12. ISO/IEC TR 14143-3:2003: Information Technology - Software Measurement - Functional
Size Measurement - Part 3: Verification of Functional Size Measurement Methods (2003)

13. ISO/IEC TR 14143-4:2002: Information Technology - Software Measurement - Functional
Size Measurement - Part 4: Reference Model (2002)

14. ISO/IEC TR 14143-5:2004: Information Technology- Software Measurement - Functional
Size Measurement - Part 5: Determination of Functional Domains for Use with Functional
Size Measurement (2004)

15. ISO/IEC FCD 14143-6:2005: Guide for the Use of ISO/IEC 14143 and related Interna-
tional Standards (2005)

16. ISO/IEC IS 24570:2005: Software Engineering - NESMA functional size measurement
method Ver.2.1 - Definitions and counting guidelines for the application of FPA (2005)

17. Abran, A.: Estimation Models for Software Maintenance Based on Functional Size. DoD
SoftwareTech News 9(3) (2006)

18. Abran, A., Silva, I., Primera, L.: Field studies using functional size measurement in build-
ing estimation models for software maintenance. Journal of Software Maintenance: Re-
search and Practice 14(1) (2002)

19. Muller, R.J.: Earning Function Points in Software Projects. In: SM/ASM Conference
(1999)

20. Dekkers, T.: IT Governance requires performance measurement. In: PSQT/PSTT North
Conference (2004)

21. Buglione, L., Abran, A., Meli, R.: How Functional Size Measurement supports the Bal-
anced Scorecard Framework for ICT, FESMA-DASMA (2001)

22. Rispens, M., Vogelezang, F.: Application Portfolio Management - The Basics - How much
software do I have? In: Software Measurement European Forum-SMEF (2007)

 Software Functional Size: For Cost Estimation and More 69

23. Symons, C.: Come Back Function Point Analysis (Modernized) – All is Forgiven. In: Proc.
of the 4th European Conference on Software Measurement and ICT Control, FESMA-
DASMA 2001, pp. 413–426 (2001)

24. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Hall, B.K.: Software Cost Estimation
with Cocomo II. Prentice Hall, NJ (2000)

25. Abran, A., Ndiaye, I., Bourque, P.: Contribution of Software Size in Effort Estimation. Re-
search Lab. In: Software Engineering, École de Technologie Supérieure, Canada (2003)

26. Kitchenham, B., Mendes, E.: Software Productivity Measurement Using Multiple Size
Measures. IEEE Transactions on Software Engineering 30(12), 1023–1035 (2004)

27. Forselius, P.: Benchmarking Software-Development Productivity. IEEE Software 17(1),
80–88 (2000)

28. ISBSG, International software benchmarking standards group,
http://www.isbsg.org/au

29. Tran, C., Levesque, G.: Maintenance Effort and Cost Estimation Using Software Func-
tional Sizes. In: IWSM (2003)

30. Rollo, T.: Functional Size Measurement and COCOMO – A Synergistic Approach. In:
Proc. of Software Measurement European Forum (SMEF), Rome, Italy, pp. 259–267
(2006)

31. Lokan, C.J.: An empirical analysis of function point adjustment factors. Information &
Software Technology 42(9), 649–659 (2000)

32. Jensen, R.: A Comparison of the Jensen and COCOMO Schedule and Cost Estimation
Models. In: Proc. Int’l Society of Parametric Analysis, pp. 96–106 (1984)

33. Nasir, M.: A Survey of Software Estimation Techniques and Project Planning Practices.
In: SNPD, pp. 305–310 (2006)

34. Matson, J., Barrett, B., Mellichamp, J.: Software development cost estimation using func-
tion points. IEEE Transactions on Software Engineering 20(4), 275–287 (1994)

35. Meli, R.: The Software Measurement Role in a Complex Contractual Context, Software.
In: Measurement European Forum, Rome, pp. 28–30 (2004)

36. Lother, M., Dumke, R.: Points Metrics - Comparison and Analysis. In: International
Workshop on Software Measurement (IWSM 2001), Montréal, Québec, pp. 155–172
(2001)

37. Kitchenham, B., Fenton, N.: Towards a Framework for Software Measurement Validation.
IEEE Transactions on Software Engineering 21(12) (1995)

38. Meli, R.: Functional Metrics: Problems and Possible Solutions, FESMA, Antwerpen
(1998)

39. Kitchenham, B.: The Problem with Function Points. IEEE Software 14(2), 29–31 (1997)
40. Gencel, C., Demirors, O.: Conceptual Differences Among Functional Size Measurement

Methods. In: Empirical Software Engineering and Measurement, ESEM (2007)
41. Conte, M., Iorio, T., Meli, R., Santillo, L.: E&Q: An Early & Quick Approach to Func-

tional Size Measurement Methods. In: Proc. of Software Measurement European Forum
(SMEF), Rome, Italy (2004)

42. Bock, D.B., Klepper, R.: FP-S: a simplified function point counting method. Journal of
Systems and Software 18, 245–254 (1992)

43. Meli, R., Abran, A., Ho, V.T., Oligny, S.: On the Applicability of COSMIC-FFP for
Measuring Software Throughout Its LifeCycle. Escom-Scope (2000)

44. Leung, H., Fan, Z.: Software Cost Estimation. Handbook of Software Engineering. Hong
Kong Polytechnic University (2002)

45. Demirörs, O., Karagoz, N.A., Gencel, C.: Acquiring Innovative Software Systems: Experi-
ences from the Field. In: EUROMICRO-SEAA, pp. 393–400 (2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 70–81, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Process Reference Guides – Support for Improving
Software Processes in Alignment with Reference

Models and Standards

Jean Carlo R. Hauck1,2, Christiane Gresse von Wangenheim1,2,
Richard H. de Souza1, and Marcello Thiry2

1 UFSC – Universidade Federal de Santa Catarina. Campus Universitário, Trindade,
88040.900 Florianópolis - Santa Catarina, Brazil

2 UNIVALI – Universidade do Vale do Itajaí. Rodovia SC 407, Km 4,
88102.280 São José - Santa Catarina, Brazil

jeanhauck@egc.ufsc.br,
{gresse,richardhenrique,marcello.thiry}@gmail.com

Abstract. Software process improvement in small organizations in alignment
with reference models or standards remains complicated. In this paper, we en-
hance an approach for software process improvement and introduce the concept
of process reference guides as a way to explicitly map reference mod-
els/standards and potential solutions in order to systematize and facilitate the
process definition in improvement initiatives. Experiences provide a first indi-
cation that such reference guides can be useful in this context and may help to
reduce the effort for process definition.

Keywords: Software Process Improvement, Process modeling, CMMI,
ISO/IEC 15504, Alignment.

1 Introduction

Many small organizations have problems in improving effectively and efficiently
their software processes [1]. Although, today, exist a variety of widely accepted refer-
ence models for various processes, such as, CMMI [2], ISO/IEC 15504 [3], ITIL [4],
still only a small number of small organization manages to successfully systematize
their software process in alignment with those models. For example, a survey run by
the ISO/IEC JTC1/SC7 Working Group 24 on Life Cycle Processes for Very Small
Enterprises (VSEs) [5], found out that less than 18% of very small organizations (with
less than 25 employees) are certified and among the 82% of VSEs not certified, only
25% claim to use standards.

One of the predominant reasons for this is that reference models or standards are
often perceived as difficult and bureaucratic, not offering adequate guidance for small
business environments. These models are typically developed focusing on larger
companies and do not simply “scale down” to small organizations, especially to those
with a low capability level [1]. Consequently, compliance with such standards or
reference models is difficult, if not impossible for them to achieve.

 Process Reference Guides – Support for Improving Software Processes in Alignment 71

Another aspect is that these reference models or standards define requirements in rela-
tion to software processes. They do not intend to nor provide detailed support on how
these requirements can be satisfied. In this context, process models, such as RUP [6] or
ICONIX [7] for example, provide generic process descriptions. Yet, such process models
also cannot simply be deployed in an organization, as in order to be effective and opera-
tional, processes need be defined based on the actual processes in place in the organiza-
tion taking into consideration its specific characteristics, needs and limitations [8].

Thus, in order to assure an effective adoption of a defined process, the process
should be defined in a balanced way by eliciting the actual process in place and only
improving or completing the existing process, where necessary [9]. In this context,
there exist a variety of approaches, which deal on different levels of formalism with
the descriptive modeling of software processes (e.g., [10] [11] [12] [13] [14]).

However, considering high-level reference models on one side and software proc-
ess modeling approaches on the other side, in practice, we observed a need for inter-
twining descriptive and prescriptive process modeling in order to come up with a
defined process aligned with reference models. Therefore, we need to integrate de-
scriptive and prescriptive process modeling activities as well as provide guidance,
which in a more refined way presents possible solutions for process shortcomings in
alignment with reference models or standards.

In this paper, we describe such an extension to the process improvement approach
ASPE/MSC (Approach for Software Process Establishment in Micro and Small Com-
panies), which has been developed to ASPEI/MSC (Approach for Software Process
Establishment and Improvement in Micro and Small Companies) specifically for
software process improvement (SPI) in small companies. As part of this, we introduce
the concept of process reference guides, which can be considered a flexible collection
of alternative processes, techniques and tools mapped to practices required by refer-
ence models and standards. Such process reference guides can facilitate the improve-
ment of existing processes by indicating various alternative solutions to be tailored to
the specific needs of the organization. An example process reference guide for project
monitoring & control is presented. We also summarize first experiences and feedback
from the application of the approach in practice.

2 ASPEI/MSC

Few approaches have been described specifically for the establishment and improve-
ment of software processes in small organizations [13], [14]. In this context, we are
defining ASPEI/MSC by integrating and adapting existing approaches (including
[10], [11], [12], [13], [14]) to the characteristics of small software companies [1],
[15]. We do not intend to develop a new method, but rather aim at the integration and
tailoring of existing approaches to the context of small software companies.

The principal phases of the approach are Instantiation, Diagnosis, Strategic Analy-
sis, Definition and Deployment to be executed in an iterative and incremental way in
order to establish and improve step-by-step one or more process(es) within an organi-
zation (Figure 1). During the Instantiation phase, the software process improvement
initiative is prepared and the necessary infrastructure and pre-conditions are created
(e.g., allocating personnel for SPI). During the Diagnosis phase, a process assessment
of the actual software process is performed, identifying its strengths and weaknesses

72 J.C.R. Hauck et al.

Fig. 1. ASPEI/MSC – enhancing the improvement of the process definition

and establishing a target process profile to be achieved. Such an assessment can be
done on different levels of scope and detail, ranging from an overview assessment to a
focused assessment of a set of processes in alignment with one or more reference
models or standards, using, for example, the MARES method [16]. Based on the
assessments results, during Strategic Analysis, processes to be established and im-
proved are prioritized in accordance to the organization’s business and improvement
goals. As a result, improvement cycles and the process(es) to be improved in each
cycle are defined. During the Process Definition phase, each process chosen is mod-
eled, improved and documented in form of an organizational process guide. This is
done by eliciting the actual process in place creating a descriptive process model,
which in alignment with relevant reference models or standards is being improved,
where necessary. The standard process being defined is applied and evaluated in pilot-
projects and then, during Deployment, institutionalized throughout the organization.

In addition, the approach also covers the management of the process establishment,
including planning, monitoring & control and post-mortem.

We developed a first version of this approach (called ASPE/MSC) in 2005, which
has since then been applied successfully in several SPI initiatives in small organiza-
tions [13], [15], [16], [17]. However, while adopting this approach, we also perceived
a specific difficulty in finding solutions for weaknesses identified especially in order
to satisfy requirements of reference models or standards. And, although, today, exists

 Process Reference Guides – Support for Improving Software Processes in Alignment 73

a variety of alternative solutions to satisfy requirements of reference models or stan-
dards, there basically does not exist a more systematic support or know-how on which
alternative processes, techniques or tools could be adopted in a specific environment
and how they may need to be tailored to fit the specific context. Thus, the identifica-
tion of potential solutions to improve an organizational process still remains a com-
plex task, which requires high level of expertise and is typically performed without
reuse and no explicit, specific know-how. This represents especially a problem to
small organizations, which typically cannot count with experienced software process
engineers, which have a profound understanding of the reference models or standards
and the available processes, techniques or tools. To fill this gap, we enhanced the
improvement step in the ASPEI/MSC approach by introducing the concept of process
reference guides, which map existing alternatives with required practices in reference
models and standards and, thus, facilitate the identification of possible solutions in
order to improve the current process in place (Figure 1).

3 Introducing Process Reference Guides

By process reference guides we understand a model, which maps requirements of
reference models or standards (e.g., outcomes or base practices) with a broad variety
of processes, techniques and/or tools to satisfy these requirements. Process reference
guides are expected to provide detailed information on these processes, techniques
and tools as well as information on their applicability in certain contexts and on how
to tailor them to suit specific needs and characteristics. They are not a single, pre-
scriptive process description, but rather a collection of diverse alternative solutions,
from which potential improvement solutions can be selected and tailored to a specific
organization’s standard process.

Table 1. Process reference guide structure

Introduction Visualization of the scope of the respective process and its relation to
other processes (Figure 2).

Basic concepts Description of basic concepts and terminology in relation to the re-
spective process.

Assessment Set of assessment indicators derived from the considered reference
models and standards (e.g. CMMI-DEV and ISO/IEC 15504) with a
mapping of potential processes, techniques and tools, which may help
to the improve the process (Figure 3).

Typical activities Set of typical activities executed as part of the respective process,
describing for each activity its purpose, objective, steps, working
products and templates, roles as well as relationships between activi-
ties.

Practices Presentation of practices required by reference models or standards,
such as, CMMI-DEV or ISO/IEC15504.

Techniques Description of relevant techniques, which can be used in order to
establish required practices and achieve the required outcomes.

Tools Comparison and reviews of relevant tools in relation with the support
they provide for the specific process in alignment with the considered
reference models and standards.

74 J.C.R. Hauck et al.

As one of the purposes of the process reference guides is to provide guidance for
process improvement in consistency with reference models and standards, the guides
are based on relevant reference guides and present detailed information on how the
requirements of the models can be satisfied. A structure for such a process reference
guide is shown in Table 1.

Such process reference guides can be developed initially based on a literature re-
search, compiling and comparing well-accepted processes, techniques and tools as
well as consolidate experiences on their application in practice. This includes also a
detailed analysis of relevant reference models and standards.

However, the principal focus of the development of such reference guides has to be
on their continuous evolution. Such an effort, in practice is only viable through col-
laborative knowledge management. In this context, various types of tools can support
the management of such process reference guides. For example, process modelling
tools, such as, SPEARMINT [18] or Wagner [19]; general modeling tools, such as,
Enterprise Architect [39], BPMN Designer (free) [40] or tools specifically designed
for process framework development, such as the Eclipse Process Framework Com-
poser (EPF Composer) [41] as well as general tools for collaborative knowledge man-
agement, including semantic web and ontologies [46], WIKIs [20] and, especially,
semantic WIKIs [47].

Currently, we are initiating the development of process reference guides for vari-
ous processes focusing on the context of small organizations. An example is a process
reference guide on Project Monitoring and Control [17] being developed in alignment
with CMMI-DEV [2], ISO/IEC 15504 [3] and the Brazilian Software Process Im-
provement Model MPS.BR [21] based on literature in the area of project monitoring
& control, including [2], [23], [24], [25], standards [26], [27] and guides [28], [29],

Fig. 2. Introduction of the project monitoring & control guide [42]

 Process Reference Guides – Support for Improving Software Processes in Alignment 75

[30], as well as experience reports in the context of small organizations [1], [31], [32],
[33] and our experiences on establishing this process in practice.

For example, Figure 2 shows the introduction of the process monitoring & control
guide. Starting from this page, the guide can be used in different ways depending on
the level of expertise of the process engineer, either by directly accessing an aspect of
interest or by guiding the engineer through an assessment questionnaire, which ex-
plicitly links potential solutions to identified shortcomings (Figure 3).

Fig. 3. Support provided for process assessment [42]

In this way, process reference guides provide a structured overview on existing
processes, techniques and tools mapping these alternatives to reference models and
standards. Offering such a process reference guide as support, is expected to reduce
the related effort and time as well as to improve the quality and adherence of defined
processes.

Software processes can be defined on various levels of detail, ranging, typically,
from concrete instantiated processes in a specific project, organizational standard
processes to high-level and generic reference models or standards. Using the Software
Process Engineering Metamodel (SPEM) [34], a standard for software process model-
ing, we can express these levels and place the concept of process reference guides.
Therefore, we enhance the SPEM architecture of four to six levels of abstraction,
refining level M1 in order to separate organizational process models from generic
process models, similar to the proposal by [35]. In Figure 4, these different levels of
processes are shown with respect to the four-layered organization of SPEM. Layer 3
describes the process modeling metamodel. Layer M2 defines the ASPEI/MSC nota-
tion based on the SPEM notation as model for the definition of process models.

76 J.C.R. Hauck et al.

Fig. 4. Definition of process levels in alignment with SPEM

Following the original definition of SPEM, Layer M1 contains process models.
Yet, this representation does not explicitly express different levels of process model-
ing and, thus, we suggest dividing layer M1 in three sub-layers:

 Layer M1.1 represents organizational standard processes, which are sets of
definitions of the processes that must be incorporated into the defined processes
that are implemented in projects across the organization.

 Layer M1.2 represents references models or standards for a specific domain or
sector, such as, e.g., S4S (SPICE for Space [36]), AutomotiveSPICE [43] as
well as domain-specific process models or reference process guides, such as,
for example, a reference process guide for project monitoring & control in
small organizations.

 Layer M1.3 represents generic reference models or standards, such as CMMI,
ISO/IEC 15504 as well as generic process models, such as RUP, and generic
reference process guides.

Layer M0 represents the defined process, which is an instantiated process in a spe-
cific project that is managed (planned, monitored and adjusted), tailored from the
organization’s set of standard processes according to the organization’s tailoring
guidelines. It provides a basis for planning, performing, and improving a project’s
tasks and activities.

 Process Reference Guides – Support for Improving Software Processes in Alignment 77

4 First Experiences

So far, we have started to apply the enhanced approach ASPEI/MSC using the project
monitoring & control guide in two process improvement initiatives. The first applica-
tion was run in parallel to the development of the guide in the software R&D group
CYCLOPS [44] at the Federal University of Santa Catarina/Brazil. A second applica-
tion has been run in a small software company in Florianópolis/ Brazil.

The focus of the first improvement initiative was focused on project management,
including monitoring & control as well as on requirements development and man-
agement. The process improvement was coordinated full-time by a junior process
engineer and weekly supported by external senior consultants. We followed the
ASPEI/MSC approach and during the Definition phase elicited the processes in place
through process workshops with the process performers. A gap analysis was done in
order to identify shortcoming of the processes actually in place in relation with the
respective reference models. Based on an initial version of the process reference
guide, process engineers started to improve the processes in cooperation with process
performers. The organization’s standard process has been documented in form of an
Electronic Process Guide (EPG) as part of the organizational WIKI. We, then, started
to implement the process in pilot projects, identifying aspects in which it remained
inefficient or ineffective. Once an operational standard process had been achieved, we
started to train and deploy the process organization-wide.

The total effort spent during the process improvement, so far, is about 265 person-
hours, with about 80 person-hours spent on the definition and deployment of the pro-
ject monitoring & control process, which represents about 2% of the total effort spent
by the R&D group during this period. Today, the standard process is used in all pro-
jects of the CYCLOPS Group. More than 60 percent of the specific practices of the
project monitoring & control process area of CMMI-DEV are characterized at least as
largely implemented in the majority of the software projects of the organization.

In this first application, we could not yet identify a significant advantage through
the usage of process reference guides, principally due to the fact that the project moni-
toring & control guide was being developed in parallel.

Using the organizational WIKI for the documentation of the process description
was considered helpful, especially as it made the review and collaborative evolution
easy. However, we also observed some weaknesses, especially when compared to
other process modeling tools, which provide more support for structuring EPGs and
linking elements automatically as well as offering functionality for the graphical visu-
alization of process elements. As a consequence, we decided to use the Eclipse Proc-
ess Framework Composer for the development of the process reference guides. The
principal advantages are its support for various levels of abstraction and its compre-
hensive support to interrelate elements of the guide. Another substantial advantage is
that the EPF Composer permits in a very simple way to construct an organizational
standard process from a reference guide. Similar to other EPG tools, it also allows to
publish the process guide on the web. Yet, a significant shortcoming at the moment is
the inability to continuously evolve the framework easily in a collaborative manner.
But, such a support is foreseen to become available as part of the next releases with
EPF WIKI.

78 J.C.R. Hauck et al.

The second application took place after a first version of the process reference
guide on project monitoring & control had been developed. We also applied the
ASPEI/MSC approach focusing on the establishment of the project planning, monitor-
ing & control as well as the requirements management. The improvement initiative
has been realized by a part-time process engineer and external junior and senior con-
sultants. Similar to the application at the CYCLOPS Group, we performed a high-
level process assessment in the beginning and started to define the process in place.
Based on a gap analysis in relation with the considered reference model, we identified
improvement opportunities and indicated possible solutions using the process refer-
ence guide. The defined standard process has been applied in a pilot project and the
company is now starting to use the process organization-wide.

During this application of ASPEI/MSC, we started to perceive an indication for a
potential effort reduction during the process definition. In comparison also to other
initiatives in small organizations where we improved the project monitoring & control
process and spent an average of 23 person-hours on the process definition, the defini-
tion of the project monitoring & control process using the process reference guide was
reduced to 12 person-hours. Yet, this may have happen also due to other reasons, as,
e.g., the fact that the junior consultant got more experienced after having established
the process in several organizations. Subjectively, the consultants perceived that the
process reference guide can facilitate the process improvement by mapping weak-
nesses of the organization’s process to expected practices of the reference models and
standards. In this respect, especially, the association of practices and solution alterna-
tives was considered valuable. So far, a principal shortcoming is that insufficient
information on the applicability and tailoring of solution alternatives in certain con-
texts is available. In addition, we also observed that even using the EPF Composer, it
remained difficult to navigate through the guide.

5 Discussion

Our experiences provide a first indication that such process reference guides can be
useful in order to support the definition of a software process. In contrast to reference
models or standards, such as CMMI or ISO/IEC 15504, they intend to provide more
concrete information on how to implement the required practices by presenting vari-
ous alternatives. In this way, they also go a step further than implementation guides,
which are being published as part of some reference models, as, e.g. the implementa-
tion guide of the Brazilian Process Improvement Model MPS.BR [21] or [28].

A difference of the concept of process reference guides in comparison to process
frameworks, such as, the Rational Unified Process (RUP) [6], ICONIX [7] or Clean-
room [37] is that the idea of reference guides is to offer a broader process vision,
which may cover several different process frameworks and presenting them (or parts
of these frameworks) as alternative solutions, including also information on when to
apply which and how to tailor such frameworks to a specific organization.

Another similar concept are Process Patterns, which are collections of general
techniques, actions, and/or tasks (activities) for developing object-oriented software
[38] [45]. They describe a proven, successful approach and/or series of action for
developing software. And, although, originally limited to object-oriented software

 Process Reference Guides – Support for Improving Software Processes in Alignment 79

development, they also seem to be valuable using other methodologies. Ambler clas-
sifies three types of process patterns [38]: task process patterns, stage process pat-
terns, phase process patterns. Each pattern is structured as Forces, Initial Context,
Solution, and Resulting Context. But, as process pattern are understood to describe
what should be done, they do not describe the exact details of how.

Thus, in comparison, we consider a principal strength of process reference guides
their detailed description also on how to execute practices as well as their larger vari-
ety of potential alternative.

6 Conclusions

In this paper, we introduce the concept of process reference guides as a way to explic-
itly map reference models and potential solutions in order to systematize and facilitate
the process definition in improvement initiatives, principally in small organizations.
Experiences provide a first indication that such reference guides can be useful in this
context and may help to reduce the effort for process definition. We are planning to
continue the application of the approach in future improvement programs and the
evaluation of the process reference guides as well as to amplify the definition of ref-
erence guides for other process areas, such as, project planning, requirements devel-
opment, etc.

Acknowledgement

Our thanks to all involved in the improvement initiatives at CYCLOPS/UFSC and the
small software company.

References

1. Richardson, I., Gresse von Wangenheim, C.: Why are Small Software Organizations Dif-
ferent? IEEE Software 24(1) (January/Febuary 2007)

2. CMMI Team. CMMI-DEV: CMMI for Development, version 1.2. Software Engineering
Institute/Carnegie Mellon University, Pittsburgh (2006)

3. International Organization for Standardization. ISO/IEC 15504: Information Technology –
Process Assessment: Part 1- Part 5 (2003 -2006)

4. ITIL v3 (2007), http://www.itil-officialsite.com
5. Laporte, C.Y., Alexandre, S., Renault, A.: Developing International Standards for Very

Small Enterprises. IEEE Computer 41(3) (March 2008)
6. IBM Rational Unified Process (2008-05-06),

http://www-306.ibm.com/software/awdtools/rup
7. Rosenberg, D., Collins-Cope, M., Stephens, M.: Agile Development with ICONIX Proc-

ess. Apress (2005)
8. Acuña, S.T., et al.: The Software Process: modeling, evaluation and improvement. Hand-

book of Software Engineering and Knowledge Engineering, vol. 1. World Scientific Pub-
lishing Company, Singapore (2001)

80 J.C.R. Hauck et al.

9. Jacobson, I.: Does Process come from the top or from the bottom? Flexi Newsletter, 1
(2008-04-12) (2007), http://www.flexi-itea2.org/newsletter.php

10. Machado, L.F., Oliveira, K.M., Rocha, A.R.: Using Standards and Maturity Models for the
Software Process Definition. Quality Week, Belgium (2000)

11. Scott, L., Zettel, J., Hamann, D.: Suporting Process Engineering in Pactice: An Experience
Based Scenario. IESE Technical Report no. 033.00/E, Fraunhofer Institute for Experimen-
tal Software Engineering, Germany (2000)

12. Becker, U.: Towards Systematic Knowledge Elicitation for Descriptive Software Process
Modeling. IESE Technical Report n° 036.01/E, Fraunhofer Institute for Experimental
Software Engineering, Germany (2001)

13. Thiry, M., von Wangenheim, C.G., Zoucas, A.: Uma Abordagem para a Modelagem Co-
laborativa de Processos de Software em Micro e Pequenas Empresas. In: SBQS – Brazilian
Symposium on Software Quality, Vitória (2006)

14. Dingsøyr, T., Moe, N.B., Dyba, T., Conradi, R.: A Workshop-Oriented Approach for De-
fining Electronic Process Guides. In: Juristo, N., Acuña, S.T. (eds.) Software Process
Modeling. Kluwer Academic Publishers, Dordrecht (2005)

15. von Wangenheim, C.G., Weber, S., Hauck, J.C.R., Trentin, G.: Experiences on establish-
ing software processes in small companies, vol. 48. Elsevier, Amsterdam (2006)

16. von Wangenhein, C.G., Anacleto, A., Salviano, C.F.: Helping Small Companies Assess
Software Processes. IEEE Software 23(1) (January/ Febuary 2006)

17. Hauck, J.C.R., Wangenheim, C.G., Thiry, M.: Suportando a Modelagem de Processo de
Monitoração e Controle em Micro e Pequenas Empresas, alinhado ao CMMI, MPS.BR e
ISO/IEC15504. In: SBQS – Brazilian Symposium on Software Quality, Ipojuca (2007)

18. Becker-Kornstaedt, U., et al.: Support for the Process Engineer: The Spearmint Approach
to Software Process Definition and Process Guidance. In: Jarke, M., Oberweis, A. (eds.)
CAiSE 1999. LNCS, vol. 1626. Springer, Heidelberg (1999)

19. Scott, L., Kurniawati, F.: WAGNER – Web-bAsed process Guide aNd Experience Reposi-
tory. Centre for Advanced Software Engineering Research (CAESER), University of New
South Wales, Sydney (2001)

20. Louridas, P.: Using wikis in software development. IEEE Software 23(2) (March/ April
2006)

21. SOFTEX, MPS.BR – Brazilian Software Process Improvement Model – Implementation
Guide, version 1.2, Brasília (in Portuguese) (2007)

22. Project Management Institute. A Guide to the Project Management Body of Knowledge
(PMBOK® Guide), 3. edn, PMI, Pennsylvania (2004)

23. Hughes, B., Cotterell, M.: Software Project Management, 3rd edn. McGraw-Hill, New
York (2002)

24. Department of Defense & US Army. PSM - Practical Software and System Measurement,
A foundation for Objective Project Management, Ver. 4.0c (2003)

25. ANSI, ANSI/EIA 748. A Standard for Earned Value Management Systems. ANSI Stan-
dard (1998)

26. International Organization for Standardization. ISO/IEC 10006: Quality Management –
Guidelines to Quality in Project Management, 2 edn. (2003)

27. Jalote, P.: CMM in Practice: Processes for Executing Software Projects at Infosys. Addi-
son Wesley Longman, Amsterdam (2000)

28. Kulpa, M.K., Johnson, K.A.: Interpreting the CMMI®: a process improvement approach.
Auerbach Publications (2003)

29. Kerzner, H.: Project Management: A Systems Approach to Planning, Scheduling, and
Controlling, 9th edn. Wiley, Chichester (2003)

 Process Reference Guides – Support for Improving Software Processes in Alignment 81

30. Orci, T., Laryd, A.: CMM for Small Organisations Level 2. Suécia: Umeå University
(2000)

31. Meneses, J.B.: Inspector: Um Processo de Avaliação de Progresso para Projetos de Soft-
ware. Máster Thesis, Federal University of Pernambuco, Recife/Brazil (2001)

32. Otoyo, S., Cerpa, N.: An Experience: A Small Software Company Attempting to Improve
its Process. Software Technology and Engineering Practice (1999)

33. OMG - Object Management Group. Software Process Engineering Metamodel Specifica-
tion, Version 1.1 OMG Specification (2005)

34. Järvi, A., Makila, T.: Observations on Modeling Software Processes with SPEM Process
Components. In: Proc. of 9th Symposium on Programming Languages and Software
Tools, Estonia (2005)

35. Cass, A., et. al.: SPiCE for SPACE: A Method of Process Assessment for Space Software
Projects.In: Proc. of the International SPICE Conference (2000)

36. Mills, H., Dyer, M., Linger, R.: Cleanroom Software Engineering. IEEE Software 4(5)
(September 1987)

37. Ambler, S.: Process Patterns - Building Large-Scale Systems Using Object Technology.
Cambridge University Press, Cambridge (1998)

38. Sparx Systems (2008-05-05), http://www.sparxsystems.com.au
39. Intalio, BPMN Designer (2008-05-06), http://www.intalio.com
40. Eclipse Process Framework (2008-05-07), http://www.eclipse.org/epf
41. Process Reference Guide (2008-05-06),

http://www.inf.ufsc.br/~jeanhauck/guia/
42. AutomotiveSPICE (2008-05-06), http://www.automotivespice.com
43. CYCLOPS Research Group (2008-05-06), http://www.cyclops.ufsc.br/
44. The Process Patterns Resource Page (2008-05-06),

http://www.ambysoft.com/processPatternsPage.html
45. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, May 17, 2001. Scientific

American Magazine (2001)
46. Schaffert, S., Baumeister, J., Bry, F., Wikis, M.K.S.: IEEE Software, July/August (2008)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 82–93, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Practical SPI Planning

José Francisco Landaeta, Javier García, and Antonio Amescua

Computer Science Department
Carlos III University

Avda. Universidad, 30, 28911, Leganés, Madrid (Spain)
100064802@alumnos.uc3m.es, jgarciag@inf.uc3m.es,

amescua@inf.uc3m.es

Abstract. This paper presents a practical procedure named P4SPI for planning,
monitoring and closing an SPI. Planning activities are performed using
PMBOK's process areas as a reference; monitoring activities using Six Sigma
tools and techniques and closing activities using gathering qualitative and quan-
titative information about the SPI Implementation. These activities are sup-
ported by office templates.

Keywords: Software Process Improvement, Project Planning, Project Manag-
ement, PMBOK.

1 Introduction

The knowledge area of this paper is Software Process Improvement (SPI) Project Man-
agement. According to Zhang [34], project planning is the third most important factor
affecting project success and maybe the most time consuming. It is said that [32] the
project planning process requires approximately 35% of the project manager’s effort
over the life of the project. Blair [5] reminds us that: “The success of a project will de-
pend critically on the effort, care and skill you apply in its initial planning.”

One of the problems identified is that some SPIs are not planned as projects, even
when it is generally known that SPIs require a large quantity of effort and resources
from the organization. This conclusion is supported because the average time needed
to move up one level (out of five) is around 16-32 months [1] and, the cost of SPIs
depends on the size of the organization where it takes place. As some studies can
prove to be expensive [11], SPI must be considered as a Project [3] and planned
carefully [1].

Another problem is that the lack of success in SPI implementation is not due to a
lack of a standard or a model, but rather the lack of an effective strategy to success-
fully implement these standards or models [25]. In this study, two SPI models
(IDEAL, DMAIC) were selected because they allow planning and implementing SPI
Programs.

Finally, according to [25], in order to increase the SPI success probability it is nec-
essary to offer guidance to SPI Managers on how to implement SPI activities, rather
than suggesting what SPI activities are actually implemented. [19] has identified nine

 Practical SPI Planning 83

key functions or activities to ensure process improvement success. These activities are
included and mapped to the two SPI models selected (IDEAL and DMAIC).

Having identified the problems: SPIs are not managed and planned as normal Pro-
jects and the lack of a practical procedure to implement an SPI, the focus of this paper
is based on the following research questions:

1. What activities should be performed to plan, monitor and close an SPI? How are
these activities and their sequences performed?

2. Which set of components are necessary to plan and monitor an SPI?
3. How can the success of SPI Implementation be ensured?
4. What results are obtained from using P4SPI in an organization?

These questions can be answered by is to answer these questions by:

• Defining a procedure to manage an SPI based on Project Management best practices.
• Developing a set of templates and tools to help SPI Managers plan and monitor an

SPI and its restrictions: time, cost, scope.
• Providing a practical procedure to ensure the success of SPI Implementation.

The rest of the paper is structured as follows: Section 2 reviews the state of art in SPI
planning. Section 3 describes P4SPI. Section 4 presents the steps needed to apply the
P4SPI and finally, section 5 presents the conclusions of this research and future work.

2 State of the Art

P4SPI is founded on a practical view of managing an SPI Implementation. Among the
different models for managing SPIs, the most famous are IDEAL and DMAIC. The
IDEAL model defines and determines how to manage an SPI from inception to clo-
sure. However, when it comes to planning, its activities are very generic and are not
easy to put into practice. The DMAIC model has a definition phase to determine the
project scope, but does not specify how to create a project planning. A review of the
IDEAL and DMAIC models and an analysis on using them for planning, monitoring
and closing an SPI follow.

2.1 IDEAL Model

The IDEAL model provides guidelines on how to organize SPI initiatives. The model is
based on five recommended phases: Initiating, Diagnosing, Establishing, Acting and
Leveraging. The Initiating phase is where the initial improvement infrastructure is estab-
lished. The Diagnosing phase lays the groundwork for the later phases through the
creation of the SPI action plan. During the Establishing phase, the issues that the organi-
zation has decided to address are prioritized and strategies for pursuing the solutions are
developed. In the Acting phase, solutions to address the areas for improvement discov-
ered during the Diagnosing phase are created, piloted, and deployed throughout the
organization. Finally, the objective of the Learning phase is to make the next step the
IDEAL model more effective through reflection and learning [6]. These sequences
represent the ideal scenario, but it is known that their sequential application is compli-
cated because every organization must customize each step to its particular situation.

84 J.F. Landaeta, J. García, and A. Amescua

Additionally, the limits between steps are not clearly defined. The model does not pro-
vide much help in how to adapt it, what factors and interdependences must be taken to
adapt the model to the vision, goals objectives and resources of the organization [12].
IDEAL is oriented to big companies and small settings cannot afford to implement it as
proves too costly [9].

2.2 DMAIC Model

The Define-Measure-Analyze-Improve-Control (DMAIC) model is the most com-
monly used to achieve six sigma projects. It has five phases and 26 steps. According
to [28], the DMAIC model can be used to find and solve problems in existing proc-
esses. It can also be used to expand the current capabilities of an existing process by
identifying opportunities to improve current processes. Each phase of DMAIC is
explained as follows:

• Define phase defines project goals aligned with business goals, project scope,
customers with their requirements, project charter and project teams. A high-level
map of the current process is also created.

• Measure phase collects data on current processes, and develops measurement
systems to validate collected data. The current process performance is calculated
based on measured data.

• Analyze phase identifies ways to narrow the gap between the current performance
level and the desired goals. The project team analyzes collected data of current
processes, and determines the root causes of the poor sigma performance of the
processes.

• Improve phase identifies, evaluates and selects. Focusing on the root causes iden-
tified in the Analyze phase, the project team generates and selects a set of solutions
to improve sigma performance.

• Control phase is to implement the final solutions and guarantee the maintenance
of newly improved processes so that the improved sigma performance holds up
over time.

2.3 Analysis of Project Management of SPI Models

Both models include/define project management activities, but IDEAL needs to be
more explicit in order to be used and DMAIC must be included in the Project man-
agement tasks because it is a powerful tool [4] and can serve as an enabler for the
successful implementation of domain-specific improvement models. On the other
hand, according to [10], implementing an SPI based on the CMMI (and using IDEAL)
model is directly related to the increase in project performance within an organization.
The authors proposed including Six Sigma tools and techniques in the SPI phases to
plan and monitor implementation, and to ensure the SPI success. Blending Six Sigma
and CMMI is possible and their joint deployment is synergistic. The potential added
value is the accelerated SPI adoption [24], [31]. P4SPI’s goal is to make the planning
activities of an SPI, based on the CMMI model, more practical and to incorporate
some Six Sigma activities in its planning.

 Practical SPI Planning 85

3 P4SPI Description

3.1 Overview

The P4SPI is a procedure used to plan an SPI as a normal project, to monitor its im-
plementation using Six Sigma techniques and tools, and to evaluate the SPI imple-
mentation collecting its information and lessons learned. P4SPI allows:

• To connect business goals with the improvement goals.
• To connect improvement goals with CMMI Process Areas (PA).
• To perform some of the activities suggested by PMBOK.
• To monitor SPI implementation using Six Sigma techniques and tools
• To collect SPI postmortem information as a feedback for continuous improvement.

P4SPI life cycle is based on the project life cycle proposed by PMBOK, but it has
4 phases instead of 5. The execution phase is not included because is outside the
scope of this study. The phases are: Initiation, Planning, Control and Monitoring, and
Closure.

Initiation Planning

Execution*

Monitor&Control

Closure

*Not included in P4SPI

Fig. 1. P4SPI Life cycle

3.2 Initiation Phase

This phase defines an SPI based on the organization’s needs, goals and its assessed
maturity level. An Initial SPI Case is created using this information, as defined in
[17], in order to reflect, at a high level, the organization and improvements goals, a
summary of actual maturity level and the scope based on the improvement plan. The
activities associated with this phase are:

• SPI Formal Approach: This activity is necessary to perform an SPI formal ap-
proach according to [14]‘s proposal, to determine the organization’s goals and im-
provement objectives. The improvement metrics are determined using the GQ(I)M
Model [29].

• Maturity Assessment: During this activity an assessment (SCAMPI [2],
ISO/IEC15504, etc.) must be performed in order to know the organization’s matur-
ity and capability level.

• Develop Preliminary Project Scope: This activity is necessary to create an Initial
SPI Case based on the information obtained from the SPI formal approach and the
deliverables generated by the assessment (Improvement Plan).

86 J.F. Landaeta, J. García, and A. Amescua

3.3 Planning Phase

This phase refines the SPI objectives and performs planning activities to determine an
agreed scope. According to Cadle [7], a project is defined as ”a managed environment
that assures the delivery of a specific product defined in a Business Case”. This means
that a SPI process improvement must be done according to the agreed constraints:
time, cost and resources. An element named Planning SPI Case is a fundamental part
of this phase. This element is created and completed through the following activities:

• SPI Preplanning: This activity is necessary to perform an SPI Preplanning. Ac-
cording to [13], it suggests the need to determine a preliminary budget in order to
justify the project plan, and a rough estimation of resource requirements based on
previous management experiences. An agent, who performs an estimation based on
queries to an SPI Case Database, obtains the preplanning information or estimation
and then generates a Planning SPI Case as an output.

• Scope Definition: This activity is necessary to refine the scope generated by the
previous activity. It includes modifying the Planning SPI Case, for instance the ex-
pected implementation degree of each CMMI PA depending on the specific model
and/or the selected generic/specific practices.

• Determine WBS: This activity is necessary to determine a WBS based on Plan-
ning SPI Case information. A WBS is a hierarchical decomposition of work to be
executed by the team in order to accomplish the project goals [30]. It organizes and
defines the scope of the SPI. The WBS must include as many work packages as are
necessary, having management, training and implementation activities [22].

• Activities definition: This activity is necessary to identify and give details of the
work packages and activities to be executed. During this activity all the deliver-
ables must be identified.

• Activity sequencing: This activity is necessary to identify and document the logi-
cal relations between SPI activities.

• SPI Resource estimation: This activity is necessary to identify the resources (per-
sons, profiles, equipments or materials) needed and how much of each resource
will be used.

• Activity duration estimation: This activity is necessary to estimate the amount of
effort required to perform the scope of the SPI, based on available resources.

• Cost estimation: This activity is necessary to obtain the cost of resources that will
execute the project activities.

• Schedule development: This activity is necessary to generate an SPI Project Plan-
ning by an agent that extracts information from the Planning SPI Case and creates the
schedule. Once the file is created, it must be updated regularly. This includes modify-
ing starting and finishing dates. This activity may require reviewing or correcting du-
ration estimation or resources levels. The resulting plan/schedule should be approved
by relevant SPI Stakeholders and become the SPI Baseline.

• Quality Planning: This activity is necessary for an agent, who uses the information
contained in the Planning SPI Case, to generate a House of Quality named QFD4SPI.
The QFD4SPI structure and functionalities are based on the model proposed in [16].
QFD4SPI allows control of an SPI, based on its organization goals, improvement
goals, and monitors the institutionalization and project scope.

 Practical SPI Planning 87

3.4 Control and Monitoring

This phase is necessary to monitor and control the SPI Execution and to report vari-
ances from a baseline of schedule, scope, cost, etc. During this phase the institution-
alization grade is monitored. This value is very important because the SPI success is
measured by the number of people using it [26]. The activities associated with this
phase are:

• SPI Execution Monitoring: This activity is necessary to monitor the implementa-
tion grade of Business Goal, Improvement Goal and Process Area. The monitoring
is performed by using questionnaires and the QFD4SPI.

• Institutionalization Monitoring: This activity is necessary to monitor the institu-
tionalization grade (IG) for each project, and based on these, a summary for SPI, is
determined. A Project’s IG is determined by the technical advance of its scheduled
activities. The IG monitoring is performed by answering a Questionnaire for each
Project included in the SPI. This matrix is included in the QFD4SPI.

Projects P
A
 W

ei
g
h
ts

P
ro

je
ct
 W

B
S
 D

ev
el
op

ed

T
as

ks
 D

ef
in
ed

,
R
es

ou
rc
es

 A
ss

E
ffo

rt
, C

os
ts
 a
nd

 T
im

e
E
st
im

at

P
ro

je
ct
 P

la
n
D
ev

el
op

ed

P
ro

je
ct
 C

om
m
itm

en
t O

bt
ai
ne

d

P
ro

je
ct
 P

la
n
U
pl
oa

de
d
to
 t
he

 R

R
eq

ui
re

m
en

t C
at
al
og

ue
 V

er
ifi
e

R
eq

ui
re

m
en

t C
at
al
og

ue
 V

al
id
a

R
eq

ui
re

m
en

t V
al
id
at
ed

 B
as

eL
i

R
eq

ui
re

m
en

t C
at
al
og

ue
 U

pl
oa

P
ro

je
ct
 S

co
pe

 S
ta
te
m
en

t E
la
bo

P
ro

je
ct
 S

co
pe

 S
ta
te
m
en

t U
pl
o

A
cc

ep
te
d
C
on

tr
ac

t
U
pl
oa

de
d
to

C
on

tr
ac

t R
eq

ui
re

m
en

ts
 B

as
eL

P
ro

je
ct
 L
es

so
ns

 L
ea

rn
ed

 D
oc

u

T
ar

g
et

 V
al
u
e

A
b
so

lu
te

 S
co

re

P
ro

je
ct

 IG

R
el
at

iv
e
W

ei
g
h
t

PROY1 7 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 105 35 33% 35%

PROY2 6 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 90 60 67% 30%

PROY3 5 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 105 40 38% 35%

5 5 3 5 5 3 5 5 5 3 5 2 5 5 3

15 15 9 15 15 9 15 15 15 9 15 6 10 10 9

15 15 9 15 10 0 15 10 5 0 10 2 0 0 0

100% 100% 100% 100% 67% 0% 100% 67% 33% 0% 67% 33% 0% 0% 0%

8% 8% 5% 8% 8% 5% 8% 8% 8% 5% 8% 3% 5% 5% 5%

SPI Sheduled Activities

Relative Weight

Target Value

SPI Activity Weights

Absolute score

Activities IG

Fig. 2. SPI Institutionalization Matrix

• Schedule Control: This activity is necessary to monitor the SPI Earned Valued
using the information contained in the SPI Planning file. The information is ex-
tracted and stored into a metrics database by an agent.

• Information Distribution: This activity is necessary to report information to the
relevant stakeholders about the implementation grade, the institutionalization
and/or SPI Earned value.

3.5 Closure Phase

This phase is necessary to close the SPI through a postmortem assessment and the
collection of SPI information from various sources. During this phase a Final SPI
Case is elaborated according to [17]. The only activity during this phase is:

• SPI Closure: This activity is necessary to extract the information contained in the
QFD4SPI and SPI Planning, and then to store it in a specific database. During this
activity an SPI postmortem analysis is performed through the development of an
Final SPI Case. Once this element is finished, the information will be extracted and
stored in a Database SPI Cases by an agent.

88 J.F. Landaeta, J. García, and A. Amescua

3.6 P4SPI Components

The P4SPI is made up of various components (elements, agents) that allow an SPI
management throughout all its phases. One component can be used in various phases
of P4SPI and are depicted in Figure 3.

Fig. 3. P4SPI Components

3.6.1 P4SPI Elements
The P4SPI elements are SPI deliverables developed and managed using Microsoft
Office tools. The description of each item is as follows:

• SPI Case: The SPI Case is a high level proposal to an investment initiative to meet
its functional needs and business goals [23]. The purpose of SPI Case is to collect
information about SPIs, depending on its phase (Initiation, Planning or Closure).
The different structures of SPI Case are defined in [17]. The tool used for creating
and updating the SPI Case is Microsoft Word.

• QFD4SPI: The QFD4SPI is a set of related houses of quality which implements a
technique to monitor and control the technical advance of SPI programs. Its struc-
ture and operation are described in [16].This element must be updated regularly
through the use of some Questionnaires that reflect the actual implementation and
institutionalization grade (IG). This element includes an SPI Institutionalization
Matrix, which allows evaluating the IG for each SPI project, and based on each one
of them being able to determine a weighed global value of the SPI implementation.
The IG of a project is determined by the technical advance degree of its planned
activities. The activities are those proposed by the implemented SPI Process Areas
that need to be performed on each project. The tool used for updating QFD4SPI is
MS Excel.

• SPI Planning: The SPI Planning contains the schedule of the project with its
planned activities, planned start and finish dates; it allows reflecting the resource
level. This element must be updated regularly in order to communicate and control
the SPI Earned Value. The tool used for updating the Planning SPI is Microsoft
Project.

 Practical SPI Planning 89

3.6.2 P4SPI Agents
The P4SPI agents are functions and/or activities that need to be performed by a
role/person/function, in order to:

1. Extract information from different sources, including an SPI Cases database.
2. Create/Fill any of the P4SPI elements,

The description of each of the players is as follows:

• Estimation Agent: This agent performs an effort analogy estimation [20] from the
attributes defined in the Initial SPI Case and the information contained in the SPI
Case database (SPICDb) to generate a prediction of efforts that will be reflected in
a Planning SPI Case.

 Inputs: Initial SPI Case, SPI Case Database.
 Outputs: Planning SPI Case.
• Planning Agent: This agent creates an SPI Planning file with the information

contained in the Planning SPI Case, which includes: activities, Start Dates, Finish
Dates, Resources, etc.
Inputs: Planning SPI Case.
Outputs: SPI Planning.

• Quality Agent: This agent creates a QFD4SPI file with the information contained
in the Planning SPI Case, which includes: Business Goals, Improvement Goals,
Process Areas, etc.
Inputs: Planning SPI Case.
Outputs: QFD4SPI.

• Monitoring Agent: This agent generates electronics notifications and/or reports
based on information from SPI Planning and QFD4SPI
Inputs: SPI Planning and QFD4SPI.
Outputs: Electronics mail and/or Notification Reports.

• Closure Agent: The agent stores information in the SPI Case Database using the
information contained in the Final SPI Cs.
Inputs: Final SPI Case.
Outputs: SPI Case Database (updated).

Table 1. The nine key activities mapped to P4SPI

Initiation Planning
Activities Initial

SPI Case
Estimation

Agent
Planning SPI

Case
Planning

Agent
Quality
Agent

Data collection X X X
Process Tailoring X X
Process assessment X
Problem identification X X

Problem analysis X

Process definition X
Solution identification X
Result measurement N/A N/A N/A N/A N/A
Document Management N/A N/A N/A N/A N/A

90 J.F. Landaeta, J. García, and A. Amescua

3.6.3 Validating P4SPI Components
Leung concludes [19], that there are nine “Key” activities that any tool that intends to
support an SPI program must provide. The following table maps the P4SPI Compo-
nents with the activities proposed by [19] to ensure the completeness of our proposal:

4 Case Study of CMMI Implementation Using P4SPI

Considering an IT organization that recognized the benefits of implementing CMMI,
considering that they already know their strengths, weaknesses and Business Objec-
tives, considering an SPI Project Plan that has been developed by the SEPG Group
and that they were ready to start the SPI program, the project sponsors asked to about
having some method to plan an SPI program, and know in advance their limitation on
funding resources. P4SPI was proposed to plan a CMMI implementation in its small
organization. Their organizational scope was limited to Web Development Group,
and specifically to a 10-man group dedicated to new development of Internet Web
Portals, the technology used for developing are: Macromedia, Java, JavaScript, etc.
This organization chose to implement CMMI using the continuous model; they se-
lected to improve the Project Planning, Measuring and Analysis, and Project Monitor-
ing and Control Process Areas. This section describes the 5 steps proposed by P4SPI
to cover the SPI Life Cycle.

Step 1: Perform Initial Analysis
Purpose: The objective of this step is to determine the actual needs and organization
goals (OG) and to create an Initial SPI Case based on the SPI Plan resulting from
assessment and the SPI formal approach.

Description: Once the SPI formal approach and the initial appraisal (Unofficial
SCAMPI Class B) were performed in parallel, some needs were identified and some
goals were chosen. The Initial SPI Case was created to gather the resulting informa-
tion from previous activities.

Activities: (1) SPI Formal Approach, (2) Maturity Assessment and (3) Develop Pre-
liminary Project Scope.

Process/Outputs: Organization Goals List, Improvement Goals List, Assessment
Report, Improvement Plan, Initial SPI Case.

Step 2: Perform SPI PrePlanning
Purpose: The objective of this step is to determine the effort/cost of performing the
SPI and adjusting its values and scope until the organization considers it affordable or
cost effective.

Description: During this step an agent, who used the information contained in the
Initial SPI Case and in SPICDb, created a Planning SPI Case. This step was repeated
several times until the estimated SPI scope was almost similar to the planned SPI
scope to be implemented.

Activities: (1) SPI PrePlanning and (2) Scope Definition.

 Practical SPI Planning 91

Process/Outputs: Planning SPI Case.
Step 3: Perform SPI Planning
Purpose: The objective of this step was to refine the SPI objectives and perform
planning activities to determine an agreed scope and an SPI schedule.

Description: During this step the Planning SPI Case was refined and updated. It in-
cluded determining the SPI WBS, defining the SPI activities and their sequences, and
determining the SPI resources. On completion of these activities, an agent generated
two files (SPI Planning and QFD4SPI). The SPI Planning is a Microsoft Project file
containing all the activities, starting and finishing dates, human and material re-
sources, and a baseline of SPI. The QFD4SPI is a Microsoft Excel file that contains
two houses of quality: (1) to monitor the implementation grade of the OG, Improve-
ment Goals (IG) and Process Areas (PA) [16]; and (2) to monitor the institutionaliza-
tion grade of the projects using the new SPI Process Areas. The SPI Planning and
QFD4SPI were updated after they were created/creation.

Activities: (1) Determine WBS, (2) Activities Definition, (3) Activity sequencing, (4)
SPI Resource Estimation, (5) Schedule development, and (6) Quality Planning.

Process/Outputs: SPI Planning and QFD4SPI.

Step 4: Perform SPI Monitoring
Purpose: The objective of this step is to perform different monitoring activities to
review the earned value, the institutionalization grade and the implementation grade.

Description: This step was repeated until the SPI reached its closure phase. This step
was performed before every project meeting or SPI reporting activity. Both files (SPI
Planning and QFD4SPI) were updated to reflect the actual situation of SPI. After the
data was updated, an agent extracted specific information from each file, and created
several records in the Metrics Database. Electronics reports that were sent to SPEG
were created using this information.

Activities: (1) SPI Execution Monitoring, (2) Institutionalization Monitoring, (3)
Schedule Control and (4) Information Distribution.

Process/Outputs: SPI Planning (updated), QFD4SPI (updated) and Emails/reports

Step 5: Perform SPI Closure
Purpose: The objectives of this step were to perform a postmortem assessment and
gather qualitative and quantitative information and store it in the SPICDb.

Description: During this step a postmortem assessment using a Final SPI Case was
performed. Once the assessment was completed, an agent extracted the information
and stored it in the SPICDb.

Activity: SPI Closure.

Process/Outputs: A Final SPI Case and the SPI Case Database (updated).

92 J.F. Landaeta, J. García, and A. Amescua

5 Conclusions

This paper presents a practical procedure to manage an SPI implementation as a nor-
mal project throughout its phases. The procedure determines the necessary activities
to plan, monitor and close an SPI. The P4SPI Procedure has answered the research
questions because its definition includes activities to perform planning, monitoring
and closure of an SPI. The P4SPI life cycle is based on the projects Life Cycle pre-
sented in [PMI,2004]. The necessary components to apply P4SPI were developed
with Microsoft office application to ensure its use and accessibility by the SPI Man-
ager and the SPEG Group.

P4SPI was applied in an organization and it has demonstrated:

• That is possible to manage and plan an SPI as a normal project.
• That P4SPI serves as guidance for an SPI implementation.
• That SPI Implementation can be facilitated by providing tools to SPI Managers.
• That using P4SPI, the success of SPI is ensured by monitoring and controlling its

implementation and institutionalization.

As a future research work, the integration of all components defined in different
proposals ([14], [16], [17]) within a utility that provides an integrated SPI manage-
ment framework is being considered.

References

[1] Aaen, I., Arent, J., Mathiassen, L., Ngwenyama, O.: A Conceptual MAP of Software.
Process Improvement, Scandinavian Journal of Information Systems 13(1) (2001)

[2] Ahern, D.: CMMI SCAMPI Distilled. Addison Wesley, Reading (2005)
[3] Appleton, B.: Patterns for Conducting Process Improvement. In: PLoP 1997 conference

(1997)
[4] Babacan, B.: An Application of 6 Sigma Methodology for Project Management Process

Improvement. In: PICMET 2006 Proceedings (2006)
[5] Blair, G.: Planning a project. Engineering Management Journal (1993)
[6] Making Software Process Improvement Happen. Gothenburg Studies in Applied Informa-

tion Technology. IT University of Gothenburg. Doctoral Dissertation (2006)
[7] Cadle, J., Yeates, I.: Project Management for Information Systems, 3rd edn. Pearson Edu-

cation Limited, Sydney (2002)
[8] Clark, T.A.: Project Management for Planners: A Practical Guide. Planners Press, Ameri-

can Planning Association (2002)
[9] Cuevas, G., Gil, M.Á.: Mejora rápida en los procesos de desarrollo de software, II Con-

greso Nacional de Ingeniería de Telecomunicación. Madrid (1998)
[10] Jiang, J., Klein, G.: An exploration of the relationship between software development

process maturity and project performance. Information & Management 41 (2003)
[11] Emam, K., Briand, L.: Costs and benefits of Software Process Improvement. International

Software Engineering Research Network technical report (1997)
[12] Kautz, H., Hansen, W., Thaysen, K.: Applying and adjusting a software process im-

provement model in practice. In: ICSE 2000, pp. 626–633 (2000)
[13] Kwon, S., Shin, K.: PPSS: CBR System for ERP Project Preplanning. In: Kim, T.G. (ed.)

AIS 2004. LNCS (LNAI), vol. 3397, pp. 157–166. Springer, Heidelberg (2005)

 Practical SPI Planning 93

[14] Garcia, J.: Aproximación Formal para la mejora de procesos de software. Univesidad
Carlos III de Madrid. Tesis Doctoral (2001)

[15] GartnerGroup, Moderate Process Rigor Is Faster (In the Long Run..). Stanford Gartner-
Group (2000)

[16] Landaeta, J., Garcia, J., Amescua, A.: QFD4SPI: A Technique to Monitor and Control
Software Process Improvement Programs. In: EuroSPI 2007 (2007)

[17] Landaeta, J., Garcia, J., Amescua, A.: Estimación Formal de un SPI. Universidad Carlos
III de Madrid (2008)

[18] Leung, H.: Slow change of information system development practice. Software Quality
Journal 8(3), 197–210 (1999)

[19] Leung, H., Liao, L., Qu, Y.: Automated support of software quality improvement. Inter-
national Journal of Quality & Reliability Management 24(3), 230–243 (2007)

[20] Li, J., Ruhe, G.: Decision Support Analysis for Software Effort Estimation by Analogy.
In: Third International Workshop on Predictor Models in Software Engineering. IEEE,
Los Alamitos (2007)

[21] Malan, A., Pretorius, L., Pretorius, J.: A Framework for Increasing Project Maturity and
Capability in Southern Africa. In: PICMET 2007 Proceedings (2007)

[22] McFeeley, R.: IDEAL: A User’s Guide for Software Process Improvement. Software En-
gineering Institute. Carnegie Mellon University (1996)

[23] Miller, K.: Case Study: Simulation of the Call Center Environment for comparing com-
peting call routing technologies for Business Case ROI Projection (1999)

[24] Murugappan, M., Keeni, G.: Blending CMM and Six Sigma to Meet Business Goals.
IEEE SOFTWARE (2003)

[25] Niazi, M., Wilson, D., Zowghi, D.: A maturity model for the implementation of SPI. The
Journal of Systems and Software 74, 155–172 (2003)

[26] Niazi, M., Wilson, D., Zowghi, D.: A framework for assisting the design of effective soft-
ware process improvement implementation strategies. Journal of Systems and Soft-
ware 78(2), 204–222 (2005)

[27] Li, J., Ruhe, G.: Decision Support Analysis for Software Effort Estimation by Analogy.
In: Workshop on Predicto Models in Software Engineering (PROMISE 2007). IEEE, Los
Alamitos (2007)

[28] Pan, Z., Park, H., Baik, J., Choi, H.: A Six Sigma Framework for Software Process Im-
provements and its Implementation. In: Software Engineering Conference. IEEE, Los
Alamitos (2007)

[29] Park, R.E., Wolfhart, B., Geothert, W., Florac, A.: Goal-driven Software Measurement,
software engineering institute, handbook CMU/SEI-96-HB-002 (1996)

[30] PMI: A Guide to the Project Management Body of Knowledge, 2000 Edition and Third
Edition, 2004. Newtown Square: Project Management Institute, USA (2000 & 2004)

[31] Sivi, J., Penn, M., Harper, E.: Relationships Between CMMI and Six Sigma. Software
Engineering Institute, Carnegie Mellon University (2005)

[32] Rehessar, H.: Project Management Success Factors. University New South Wales (1996)
[33] Zahran, S.: Business and cost justification of software process improvement (2000)
[34] Zhang, H., Kitchenham, B., Jeffery, R.: Planning Software Project Success with Semi-

Quantitative Reasoning. In: Proceedings of the 2007 Australian Software Engineering
Conference (ASWEC 2007). IEEE, Los Alamitos (2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 94–105, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Analysis of Dependencies between Specific
Practices in CMMI Maturity Level 2

Xi Chen, Mark Staples, and Paul Bannerman

NICTA, Australian Technology Park, Eveleigh, NSW 2015, Australia
School of Computer Science and Engineering,

 University of New South Wales, Australia
{xi.chen,mark.staples,paul.bannerman}@nicta.com.au

Abstract. CMMI contains a collection of Process Areas (PAs), each of which
contains many Specific Practices (SPs). However, the CMMI specification does
not provide any explicit recommendation about which individual SPs can or
should be implemented before other SPs. In this paper we identify dependencies
between CMMI SPs in PAs in maturity level 2, and between the PAs. We ana-
lyzed the text of the CMMI specification to identify every Work Product
(WP) produced and used by every SP in maturity level 2. Our analysis was
validated by independent researchers and comparison with an existing depend-
ency analysis shown in CMMI training materials. Our results have significance
as a reference model of SP and PA dependencies for both SPI researchers and
practitioners. For researchers we have provided an explicit representation of SP
and PA dependencies that were previously only implicit in the CMMI specifica-
tion. For practitioners, our results may provide guidance on the order of imple-
mentation of SPs and PAs. Our dependency analysis has limitations in being
derived from the text of the CMMI specification – we have no direct evidence
that these dependencies are valid in practice.

Keywords: SPI, CMMI, Specific Practice, Work Products, Dependency.

1 Introduction

The CMMI [1] Software Process Improvement (SPI) and assessment model has been
adopted and implemented in many companies [2, 3]. Some report great impact and
benefit in helping reduce cost, increase productivity, and improve performance. Other
researchers [4, 5, 6] claim that CMMI has limitations because of its complexity, time-
consuming adoption, and costly services. Furthermore, others object that CMMI re-
sults in excessive documentation and interferes with developers’ creativity [6].

Wilkie et al. [7] have investigated the use of the Specific Practices (SPs) of six
Process Areas (PAs) in CMMI maturity level 2 within six small software develop-
ment companies. They found that companies did not pursue all CMMI SPs equally,
and proposed “perceived value” as an indicator of preferences of companies in adopt-
ing SPs. This suggests that a better understanding of CMMI SPs may improve ap-
praisal and adoption approaches. It also implies that an alternative approach to using

 Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2 95

CMMI could be based on SPs, rather than the higher level of whole PAs or overall
maturity levels.

In CMMI version 1.2 [1], 173 SPs are grouped under 22 PAs. Regardless of
whether a company uses the Staged or Continuous Representation of CMMI to im-
prove their process, they will be required to implement all of the SPs within a group
of PAs. However, the CMMI specification [1] provides no explicit description of
dependencies between SPs in any group of PAs (i.e. required or suggested order of
implementation).

In this paper, we present an analysis of the dependencies between CMMI SPs in
PAs in maturity level 2. Our analyses are based on the text of the CMMI specification
[1] and are based on the assumption that a dependency exists between two SPs when
one SP uses as an input a Work Product (WP) that is produced as an output from the
other SP. We also derive a view of the dependencies between PAs by analyzing de-
pendencies between their SPs. To validate our results we compare the relationships
we identified to those presented in a CMMI tutorial [8].

The proposed dependency model has significance for both researchers and practi-
tioners. Researchers may be able to use our results to qualify their understanding of
the adoption of CMMI-based SPI, and to inform research regarding the structured
representation of CMMI. Practitioners may be able to use our results as informative
guidance in determining the order of implementation of SPs and PAs.

The remainder of this paper is organized as follows. In section 2, we discuss how
WPs relate to SPs in CMMI, and how we classify WPs in this paper. In section 3, we
describe how the relationship map of CMMI SPs in maturity level 2 is generated. In
section 4 we compare our results to existing material from a CMMI tutorial. We con-
clude in section 5.

2 Work Products of CMMI Specific Practices

In CMMI version 1.2 [1], a Work Product (WP) is the result or output of a SP. Instead
of merely tangible products or parts of products that are to be delivered to customers,
WPs in the CMMI model can represents a much broader range of products, including
files, documents, specification, process descriptions, as well as services. Some of
these might not be part of the product package that the customer eventually receives.

SPs can not be implemented without sufficient resources, and a WP from one SP
can be an input resource for another SP. This output-input relationship provides a
basis for expressing dependency relationships between SPs in terms of WPs. We have
classified WPs according to the role they play in SPs as described in the CMMI
specification [1]:

• Input Work Product (InpWP)
 An Input WP of a SP is not produced by this SP but is necessary to carry out the SP.
• Output Work Product (OWP)

An Output WP of a SP is produced when executing this SP. It is not part of any
other WP and does not help produce another WP in the same SP.

96 X. Chen, M. Staples, and P. Bannerman

• Internal Work Product (IntWP)
An Internal WP of a SP is produced when executing this SP. It is either part of an-
other WP generated from this SP or it helps produce another WP in the same SP.

3 Work Product-Based CMMI Specific Practice Dependencies

3.1 Methodology

We divided our work into two stages. In stage 1, by using the categorization of WPs
from Section 2, two of the researchers independently analyzed the specification of
CMMI (v1.2) and identified Input WPs and WPs that are produced for each SP. Then,
for WPs generated by each SP, the two researchers separated them into Internal WPs
and Output WPs. When WPs were identified, they were recorded in a spreadsheet by
category for each PA. The researchers compared their results and resolved differences in
a joint meeting. In stage 2, we calculated the relationships between SPs by using the
spreadsheet from stage 1 as input to the open source tool Graphviz, to draw the relation-
ships graphs. These results were later validated as described in section 4.1 below.

3.2 Specific Practice Dependencies within Process Areas

Figures 1 to 7 show the mapping of dependencies for SPs in seven PAs in CMMI
maturity level 2, namely: Configuration Management (CM), Measurement and Analy-
sis (MA), Project Management & Control (PMC), Project Planning (PP), Process and
Product Quality Assurance (PPQA), Requirement Management (REQM), and Sup-
plier Agreement Management (SAM). Tables 1 to 7 identify the ID labels listing WPs
produced by one SP that are used by another SP. IDs and WPs marked with a grey
background mean additionally identified dependencies, compared to the CMMI tuto-
rial material, which will be discussed in section 4.

Fig. 1. SP dependencies in CM

Table 1. Dependent WPs in CM

ID WP

R1 Identified configuration items
R2 Identified configuration items
R3 Identified configuration items
R4 Identified configuration items
R5 Identified configuration items
R6 Identified configuration items
R7 Configuration management system
R8 Change request database
R9 Configuration management system
R10 Configuration management system
R11 Baselines
R12 Baselines
R13 Baselines
R14 Change requests
R17 Configuration Management

Records

 Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2 97

Fig. 2. SP dependencies in MA

Table 2. Dependent WPs in MA

ID WP
R18 Measurement objectives
R19 Measurement objectives
R20 Specifications of base and derived measures
R21 Specifications of base and derived measures
R22 Specifications of base and derived measures
R23 Specifications of base and derived measures
R24 Data collection and storage procedures
R24 Updated measures & measurement objectives
R25 Updated measures & measurement objectives
R26 Data collection and storage procedures
R26 Data collection tools
R27 Updated measures & measurement objectives
R28 Updated measures & measurement objectives
R29 Analysis specifications and procedures
R29 Data analysis tools
R30 Base and derived measurement data sets
R31 Base and derived measurement data sets
R32 Base and derived measurement data sets
R33 Refined criteria for spec’n of measurement
R34 Refined criteria for spec’n of data collection
R35 Refined criteria for spec’n of data analysis
R36 Analysis results and draft reports
R37 Analysis results and draft reports

Fig. 3. SP dependencies in PMC

98 X. Chen, M. Staples, and P. Bannerman

Table 3. Dependent WPs in PMC

Fig. 4. SP dependencies in PP

 Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2 99

Table 4. Dependent WPs in PP

Fig. 5. SP dependencies in PPQA

Table 5. Dependent WPs in PPQA

ID WP
R108 Process noncompliance reports
R109 Process evaluation reports

Process noncompliance reports
Process corrective actions

R110 WPs noncompliance reports
R111 WPs evaluation reports

WPs noncompliance reports
WPs corrective actions

R112 Corrective action reports
Evaluation reports
Quality trends analysis
Documented noncompliance issues
when they cannot be resolved
within the project

100 X. Chen, M. Staples, and P. Bannerman

Fig. 6. SP dependencies in REQM

Table 6. Dependent WPs in REQM

Fig. 7. SP dependencies in SAM

Table 7. Dependent WPs in SAM

Fig. 8. Relationships between PAs in CMMI
ML2

Table 8. Dependent WPs for SPs across PAs
in CMMI ML2

 Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2 101

3.3 Specific Practices Dependencies Across Process Areas

Figure 8 shows the interrelationships between each PA in CMMI maturity level 2
based on the SP inter-dependencies. The identifier on each edge represents one or
many dependencies between SPs. The labels are identified in Table 8.

4 Discussion

4.1 Interpreting the Model

Figures 1 to 7 suggest the order of adoption of SPs in each PA. The accompanying
tables show the WPs that constitute the relationships, i.e. the WPs that are produced
by one SP and used by another. When implementing each PA, one could start from
those SPs that have no “parent” SP. Then, SPs could be implemented whose parents’
SP have all been implemented. This can continue until all the SPs in a PA have been
adopted.

Taking Figure 5 and Table 5 for example, in PPQA, (Product and Process Quality
Assurance), the dependencies model suggests that practitioners should start by im-
plementing PPQASP11, (Objectively Evaluate Processes), and PPQASP12, (Objec-
tively Evaluate Work Products and Services). The “Process noncompliance reports”
(R108 in Table 5) output from PPQASP11, and “WPs noncompliance reports” (R110)
output from PPQASP12 will become the input WPs of PPQASP21, (Communicate
and Ensure Resolution of Noncompliance Issues). Finally, PPQASP22, (Establish
Records) will take “Process evaluation reports”, “Process noncompliance reports”,
and “Process corrective actions” produced by PPQASP11 (R109), “WPs evaluation
reports”, “WPs noncompliance reports”, and “WPs corrective actins” produced by
PPQASP12 (R111), and “Corrective action reports”, “Evaluation reports”, “Quality
rends analysis”, and “Documented noncompliance issues when they cannot be re-
solved within the project” produced by PPQASP21 (R112), as input WP, and so
PPQASP22 should be implemented last.

4.2 Validation

Consistency in the interpretation of independent researchers offers prime facie valida-
tion for the relationships found. However, we also compared the results to the intra-PA
SP relationships identified in a CMMI (version 1.1) tutorial [8]. Our results showed
some differences to the tutorial material. These differences are explained in Table 9.

Differences of type D1 (additional dependencies not recognized in the tutorial) are
highlighted with a grey background in Tables 1-7. As there are slight differences
between the PA of Supplier Agreement Management in CMMI version 1.1 and 1.2,
we also regarded dependencies of newly added SPs as additionally recognized rela-
tionships. Table 10 shows the details of differences found for types D2 and D3.

The differences identified between our findings and the tutorial’s dependencies do
not invalidate our findings. Table 9 explains the differences found. The differences arise
because the tutorial is intended for teaching rather than specification purposes, and
because our analysis was systematic, based on the text of the CMMI specification. We
compared our inter-PA relationships with those of the tutorial, and found no differences.

102 X. Chen, M. Staples, and P. Bannerman

Table 9. Clarification of differences

Type Number Description Explanation
D1 109 We recognized more

dependencies than the
tutorial.

The tutorial was intended to be instructional. It showed
most important WP dependencies, but did not give
exhaustive information.

D2 1 The tutorial recognized
more dependencies
than us.

The tutorial’s extra dependency was not explicitly
described in the CMMI specification but may have been
implicit.

D3 14 Both analyses
recognized the same
dependency, but in a
different direction.

The tutorial’s converse dependency was not explicitly
described in the CMMI specification. WPs modified by
a SP were sometimes considered by the tutorial to
depend on that SP, despite being able to exist in
principle without the SP.

Table 10. Analysis of differences of type D2 and D3 in each Process Area

Dependencies PA Type
ID From to

Configuration Management System SP 3.1 D2
SP 3.1 Configuration Management System
Configuration Management System SP 1.2
Change Request Database SP 1.2
SP 1.3 Configuration Management System
SP 2.1 Change Request

CM

D3

SP 2.2 Change Request Database
SP 1.2 Measurement Repository
SP 2.1 Measurement Repository
SP 2.3 Measurement Indicator

MA D3

SP 2.4 Measurement Indicator
PP D3 SP 3.3 Project Plans

SP 1.1 Requirements
SP 1.2 Requirements

REQM D3

SP 1.4 Requirements

4.3 Problems with Completeness and Terminology in the CMMI Specification

When performing the textual analysis of the CMMI specification, one limitation we
found in the specification was that some WPs were not explicitly stated for some SPs,
but nevertheless would probably be required to perform those SPs. To guard the in-
tegrity of our findings, we excluded this group of WPs from the analysis. This sug-
gests opportunities for improving the completeness of future versions of the CMMI
specification, and implies that companies should use judgment in interpreting and
applying CMMI to suit their development contexts.

Another difficulty encountered in this research concerned the ambiguity of termi-
nology within the CMMI specification. Sometimes individual WPs were identified
with different names in the CMMI specification. This ambiguity initially resulted in
missing dependencies within the specification, which were later found and corrected
during the review process in joint meetings. A more systematic solution to the prob-
lem of ambiguity would be to use a glossary of consistent nomenclature for WPs in
the CMMI specification. The use of a process meta-model for the CMMI specification

 Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2 103

could additionally describe relationships between different WPs and between WPs
and SPs.

4.4 Discussion of Specific Practice Dependencies and Process Area
 Relationships

Figure 8 shows that PP and PMC are key PAs in CMMI Maturity Level 2, which
closely interact with other PAs by providing and using shared WPs. From Table 8 we
see that PP is important in directing the production of WPs in other SPs, while the
practices of PMC revise and change WPs from other SPs. The Support PAs (CM,
MA, and PPQA) are mostly isolated in our relationships graph. This is because these
PAs take “Any WP” as inputs. We have not shown these as links explicitly in our
graph. In practice they can interact with every other PA in CMMI.

The following brief observations are made about each PA, based on the SP inter-
dependencies mapped in Figures 1 to 7:

• For CM (Figure 1) the order of SP is mostly linear, with no cyclic dependencies.
• MA (Figure 2) has many cyclic dependencies, especially in SG1, as WPs from

each of the SPs can become criteria for the others to consider. The CMMI speci-
fication comments that companies often adopt all SPs in MA SG1 concurrently
[1, p180].

• The graph for PMC (Figure 3) does not show any cyclic dependencies within the
PA itself, but as discussed above, PMC is very important in interactions with other
PAs, and there are cyclic dependencies with other PAs, as shown in Figure 8.

• In PP (Figure 4), we see that SP2.7 is an important SP. It takes outputs from
many other SPs in the PA to produce the “Project Plan” WP, which is central in
the project. The Project Plan is used and revised in many other SPs in other PAs.

• PPQA (Figure 5) has a very simple structure with no cycles.
• REQM (Figure 6) has a cycle between SP 1.1 and SP 1.3, because requirements

change as the project evolves.
• SAM (Figure 7) has a key SP 1.3 which produces the “Supplier Agreement” WP

as the basis for managing suppliers, and receives feedback from other PAs to
maintain it, as shown in Figure 8.

5 Conclusion

In this paper, we identify SP dependencies in PAs in CMMI maturity level 2, by not-
ing the WPs used and produced by each SP, as described in the CMMI specification
[1]. We validated our dependency analysis by having two researchers independently
perform the textual analysis, and by comparing the results to the relationships pre-
sented in a CMMI tutorial [8]. Our results provide more detail on dependencies than
is shown in the tutorial.

The dependency model developed has significance for researchers and practitio-
ners as a reference model. SPI researchers investigating the adoption and implementa-
tion of CMMI SPs will have a basis for understanding possible SP inter-dependencies.
SPI practitioners may benefit by being informed about possible implementation

104 X. Chen, M. Staples, and P. Bannerman

dependencies between PAs and between SPs within PAs. We have shown an example
of how the dependencies model can be used to suggest an order for implementing
SPs.

Future research will extend our analysis to PAs in CMMI maturity levels 3 to 5. It
will also combine the relationships identified here with an outcome-based SP catego-
rization [9] to propose a goal-oriented method for planning the implementation of
CMMI SPs. Other research may investigate the structured representation of CMMI in
a process meta-model, to derive a CMMI model to express SP dependencies rigor-
ously and be interpreted consistently. Further work is needed to evaluate the utility of
our dependency model for practitioners. For example, how can it be applied for
practitioners to better understand the relationships between SPs and between PAs?
Empirical studies are also required to determine if there are benefits to using this
dependency model when implementing SPI.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI: Guidelines for Process Integration and
Product Improvement, 2nd edn. Addison-wesley, Reading

2. Goldenson, D., Gibson, D.: Demonstrating the Impact and Benefits of CMMI – An Update
and Preliminary Results. Technical Report, CMU/SEI-2003-SR-009, Software Engineering
Institute, CMU (2003)

3. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI-Based Process
Improvement. Technical Report, CMU/SEI-2006-TR-004, Software Engineering Institute,
CMU (2006)

4. Reifer, D.J.: The CMMI: it’s formidable. The Journal of Systems and Software 50, 97–98
(2000)

5. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An Exploratory
Study of Why Organizations Do Not Adopt CMMI. Journal of Systems and Soft-
ware 80(6), 883–893 (2007)

6. Turgeon, J.: CMMI on the Sly for the CMMI Shy - Implementing Software Process Im-
provement in Small Teams and Organizations. In: SEPG (2006)

7. Wilkie, F.G., McFall, D., McCaffery, F.: An Evaluation of CMMI Process Areas for
Small-to Medium-sized Software Development Organizations. Software Process: Im-
provement and Practice 10(2), 189–201 (2005)

8. Phillips, M.: CMMI V1.1 and Appraisal Tutorial (February 16, 2005)
9. Chen, X., Staples, M.: Using Practice Outcome Areas to Understand Perceived Value of

CMMI SPs for SMEs. In: Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz, R. (eds.)
EuroSPI 2007. LNCS, vol. 4764, pp. 59–70. Springer, Heidelberg (2007)

 Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2 105

Appendix: CMMI Maturity Level 2 Specific Practice Glossary

Configuration Management (CM) Project Planning (PP)
SP11 Identify Configuration Items SP11 Estimate the Scope of the Project
SP12 Establish a CM System SP12 Establish Estimates of WP and Task

Attributes
SP13 Create or Release Baselines SP13 Define Project Life Cycle
SP21 Track Change Requests SP14 Determine Estimates of Effort and Cost
SP22 Control Configuration Items SP21 Establish the Budget and Schedule
SP31 Establish CM Records SP22 Identify Project Risks
SP32 Perform Configuration Audits SP23 Plan for Data Management
Measurement and Analysis (MA) SP24 Plan for Project Resources
SP11 Establish Measurement Objectives SP25 Plan for Needed Knowledge and Skills
SP12 Specify Measures SP26 Plan Stakeholder Involvement
SP13 Spec. Data Collection & Storage Procs SP27 Establish the Project Plan
SP14 Specify Analysis Procedures SP31 Review Plans that Affect the Project
SP21 Collect Measurement Data SP32 Reconcile Work and Resource Levels
SP22 Analyze Measurement Data SP33 Obtain Plan Commitment
SP23 Store Data and Results Requirement Management (REQM)
SP24 Communicate Results SP11 Obtain an Understanding of Requirements
Project Management and Control (PMC) SP12 Obtain Commitment to Requirements
SP11 Monitor Project Planning Parameters SP13 Manage Requirements Changes
SP12 Monitor Commitments SP14 Maintain Bidirectional Traceability of Reqs
SP13 Monitor Project Risks SP15 Identify Inconsistencies between Project

Work and Requirements
SP14 Monitor Data Management Supplier Agreement Management (SAM)
SP15 Monitor Stakeholder Involvement SP11 Determine Acquisition Type
SP16 Conduct Progress Reviews SP12 Select Suppliers
SP17 Conduct Milestone Reviews SP13 Establish Supplier Agreements
SP21 Analyze Issues SP21 Execute the Supplier Agreement
SP22 Take Corrective Action SP22 Monitor Selected Supplier Processes
SP23 Manage Corrective Action SP23 Evaluate Selected Supplier Work Products
Process and Product Quality Assurance
(PPQA)

SP24 Accept the Acquired Product

SP11 Objectively Evaluate Processes SP25 Transition Products
SP12 Objectively Evaluate Work Products and Services
SP21 Communicate and Ensure Resolution of Noncompliance Issues
SP22 Establish Records

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 106–116, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Solution for Establishing the Information Technology
Service Management Processes Implementation Sequence

Magdalena Arcilla1, Jose Calvo-Manzano2, Gonzalo Cuevas2, Gerzon Gómez3,
Elena Ruiz1, and Tomás San Feliu2

1 Universidad Nacional de Educación a Distancia,
 Escuela Técnica Superior de Ingeniería Informática

{marcilla,elena}@issi.uned.es
2 Universidad Politécnica de Madrid, Facultad de Informática

{jacalvo,gcuevas,tsanfe}@fi.upm.es
3 Universidad Autónoma de Tamaulipas, Unidad Reynosa Rodhe

ggomez@uat.edu.mx

Abstract. This paper addresses the implementation sequence of Services Man-
agement processes defined in ITIL v2, from a topological perspective. Graphs
Theory is used to represent the existing dependencies among the ITIL v2 proc-
esses, in order to find clusters of strongly connected processes. These clusters
will help to determine the implementation priority of the service management
processes. For it, OPreSSD (Organizational Procedure for Service Support and
Service Delivery) is proposed in order to identify the processes implementation
sequence related to the Service Support (SS) and Service Delivery (SD) areas.

Keywords: ITIL, Service Delivery, Service Support, Service Management.

1 Introduction

Nowadays, organizations are depending more and more on IT services to satisfy their
corporative objectives and cover their business needs [1] [2] [3]. This trend shows that
Information Technology Services Management (ITSM) is becoming an important
factor for the success of business in many organizations. When ITSM is not suitable
for companies or does not work as it should be, it means a huge daily cost for the com-
pany or loss of productivity and new opportunities, and an increase in service costs [1].

Although this situation is not new, it has motivated the emergence of process mod-
els to manage IT since the 80’s. One of these models was the Information Technology
Infrastructure Library (ITIL) developed by the Office of Government Commerce of
the United Kingdom (OGC-UK) [2] [3]. ITIL is a generic framework constituted by a
library of best practices for ITSM focusing on Service Delivery [2] (SD) and Service
Support [3] (SS).

ITIL is one of the most used and widely disclosed models at international level. It
has been adopted by large companies, like IBM [5], Microsoft [6], SUN [8] and HP
[8] among others, as the foundation for the development of their own models of
ITSM. These companies apply their own experiences to implement ITIL processes.

 A Solution for Establishing the ITSM Processes Implementation Sequence 107

ITIL v2 does not explicitly describe the processes implementation sequence. This
situation has created the need for a procedure in order to get the ITSM processes im-
plementation sequence.

This research work addresses the implementation sequence of Services Manage-
ment processes defined in ITIL v2, from a topological perspective. Graphs Theory is
used to represent the existing dependencies among the ITIL processes, in order to find
clusters of strongly connected processes. These clusters will help to determine the
implementation priority of the services processes.

This paper is organized as follows. Section 2 shows a brief description on the or-
ganizational proposal of ITIL service management processes. Section 3 describes the
OPreSSD (Organizational Procedure for Service Support and Service Delivery) pro-
cedure developed in this research work and the results obtained. Finally, section 4
establishes a brief summary and future study.

2 Organization and Structure of the ITSM Processes

The two main areas of Service Management are Service Delivery (SD) and Service
Support (SS). ITIL v2 provides a set of best practices for ITSM, promoting a quality
approach to obtain effectiveness and efficiency in the use of Information Systems.
(Fig. 1 shows processes1 that compose IT Service Management areas).

Fig. 1. IT Service Management Processes

The Service Delivery area looks at what service the business requires of the pro-
vider in order to provide adequate support to the business User. The Service Support
area is concerned with ensuring that Customer has access to the appropriate services
to support the business functions [2].

All processes shown in Fig. 1 have a common structure: objectives, scope, basic
concepts and activities. Some processes also describe the related processes (although
in ITIL official documentation there is a global chapter [10] [11] which indicates for
each process their related processes), costs and implementation problems. As an ex-
ample, the structure of the Configuration Management process in the Service Support
area is shown in Fig. 2.

1 ITIL official documentation considers Service Desk as a functional unit therefore it is not

discussed in this research work.

108 M. Arcilla et al.

Fig. 2. Configuration Management process structure

3 OPreSSD: Organizational Procedure for Service Support and
Service Delivery

The procedure described in this section, called OPreSSD (Organizational Procedure for
Service Support and Service Delivery), identifies the processes implementation se-
quence related to the Service Support (SS) and Service Delivery (SD) areas [10] [11].

The main reason to elaborate this procedure was the need for a guideline to help us
with the processes implementation sequence of SS and SD areas. OPreSSD is divided
into two stages (see Fig. 3). In the first stage, dependencies among processes are iden-
tified in order to generate a dependency matrix. In the second stage, clusters of
Strongly Connected Components (SCCs) are proposed in order to generate the im-
plementation sequence.

3.1 Establish Dependency Relationships

The first stage of the procedure is to identify and represent the dependencies among
processes by reviewing the ITIL official bibliography [10] [11].

3.1.1 Identify Dependencies
A review of the official books provides the information to determine how each process
is related to each other. A matrix of dependencies is elaborated (see Table 1) taking into
account the dependencies found among processes. This matrix represents all the existing
dependencies among processes from both areas (SS and SD). In a dependency relation
between processes there is a source process and a destination process. In Table 1, rows
represent the source processes and columns the destination processes. Processes are
named by their acronym as indicated in Fig. 1. In cell Pij, the value 1 indicates there is a
dependency between process i and process j (Pi∩Pj=1). The value 0 indicates there is
not a dependency between process i and process j (Pi∩Pj=0).

 A Solution for Establishing the ITSM Processes Implementation Sequence 109

Fig. 3. OPreSSD Stage Diagram

Table 1. Matrix of dependencies

SS SD
IM PM CM ChM RM TDSS SLM FM CapM CoM AM TDSD TS

IM 1 1 1 0 3 1 0 1 0 1 6
PM 1 1 1 0 3 1 0 1 0 1 6
CM 1 1 1 1 4 1 1 1 1 1 9
ChM 1 1 1 1 4 1 0 1 0 1 7

SS

RM 0 0 1 1 2 1 0 0 0 0 3
SLM 1 1 1 1 1 1 1 1 1 4 9
FM 0 0 1 0 0 1 1 0 0 2 3
CapM 1 1 1 1 1 1 1 1 1 4 9
CoM 0 0 1 1 0 1 0 1 1 3 5

SD

AM 1 1 1 1 0 1 0 1 1 3 7
TD 6 6 9 8 4 9 3 8 4 7

Destination
Source

3.1.2 Represent Dependencies
The dependencies shown in Table 1 are represented by two types of graphs, a global
graph (see Fig. 4) and two specific graphs for SS and SD respectively (see Fig. 5).
Data provided by the matrix of dependencies are represented by a directed graph
(digraph) where the processes are represented by vertices and dependencies by arcs.
Each vertex is labeled with the process acronym as shown in Fig. 1.

The following definitions and proposition describe the elements of Graphs Theory
used:

Definition 1: A digraph D consist of a non-empty finite set V(D) of elements called
vertices (or nodes) and a finite set A(D) of ordered pairs of distinct vertices called

110 M. Arcilla et al.

arcs (or edges). V(D) is the vertex set and A(D) is the arc set of D. D = (V, A) means
that V and A are the vertex set and arc set of D, respectively [12].

Definition 2: A trail is walk in which all arcs are distinct. If the vertices of W are
distinct, W is a path. If the vertices v1, v2 ...vk-1 are distinct, k≥3 and v1=vk, W is a
cycle [12].

Definition 3: A digraph D (V, A) is strongly connected if each pair of vertices u and
v (u ≠ v), has a path from u to v [13].

Proposition 1: Let D be a digraph and let x, y be a pair of distinct vertices in D. If D
has an (x, y)-walk W, then D contains an (x, y)-path P such that A (P) Œ A (W). If D
has closed (x, x)-walk W, then D contains a cycle C through x such that A (C) Œ A
(W) [12].

The global graph in Fig. 4 is obtained by applying definition 1 to the dependency
matrix.

Fig. 4. Global graph corresponding to the SS and SD processes

The global graph in Fig. 4 shows the complexity of the dependencies among the
processes. It is observed that it is not possible to determine a process implementation
sequence. Moreover, in order to reduce the level of complexity, processes will be
grouped by areas (SS & SD), to facilitate the elaboration of the implementation
sequence.

The specific graphs for SS and SD (see Fig. 5) are obtained by applying definition
1 to the dependency sub matrix (the internal dependencies of each area are only taken
into account).

 A Solution for Establishing the ITSM Processes Implementation Sequence 111

Fig. 5. Specific graphs of the SS and SD areas respectively

3.2 Generate Sequence

In the second stage of OPreSSD, the processes implementation sequence for each area
is generated through the following steps.

3.2.1 Generate Cyclic Clusters
A cluster decomposition of a graph D is a partition of D into connected components
[14]. The following steps are used to generate cyclic clusters:

• Step 1: Verifying that specifics graphs are Strongly Connected Components
(SCCs).

• Step 2: Generating combinations for each SCC.
• Step 3: Obtaining cyclic clusters.

For each specific graph (see Fig. 5) a component that goes through all processes
and relationships is elaborated in order to check the SCCs. These components are
executed using a mathematical software tool [15] in order to know the SCCs.

Component SS: {IM PM, PM ChM, ChM CM, CM RM, RM ChM,
ChM IM, IM CM, CM PM, PM CM, CM IM, IM ChM, ChM RM,
RM CM, CM ChM, ChM PM, PM IM}
Component SD: {AM CapM, CapM SLM, SLM CoM, CoM AM, AM SLM,
SLM FM, FM CapM, CapM CoM, CoM CapM, CapM FM, FM SLM,
SLM AM, AM CoM, CoM SLM, SLM CapM, CapM AM}

After executing the mathematical software tool only one SCC (step 1) is obtained
for each area:

SCC of SS: {IM, PM, ChM, CM, RM}
SCC of SD: {AM, CapM, SLM, CoM, FM}

Step 2 is applied to each SCC in order to get all the different combinations of 3-
processes. Results are shown in Table 2. The minimal number of vertices in a cycle is
3 and this is the reason for selecting groups of 3-processes.

Cyclical clusters (step 3) are obtained by applying the Graphs Theory definition 2
to the resulting groups indicated in Table 2 (see Tables 3).

112 M. Arcilla et al.

Table 2. SS and SD areas Combinations

SS Combinations Processes SD Combinations Processes
A CM, PM, RM K SLM, AM, CoM
B CM, PM, ChM L SLM, FM, CapM
C CM, PM, IM M SLM, CapM, AM
D CM, IM, ChM N SLM, FM, CoM
E CM, RM, ChM O SLM, CapM, CoM
F CM, IM, RM P SLM, FM, AM
G IM, PM, ChM Q CoM, CapM, AM
H IM, PM, RM R CoM, FM, AM
I IM, RM, ChM S CoM, FM, CapM
J PM, RM, ChM T AM, FM, CapM

Table 3. SS and SD cyclical cluster

Cluster SS Processes Cluster SD Processes
B CM, PM, ChM K SLM, AM, CoM
C CM, PM, IM L SLM, FM, CapM
D CM, IM, ChM M SLM, CapM, AM
E CM, RM,ChM O SLM,CapM, CoM
G IM, PM, ChM Q CoM, CapM, AM

3.2.2 Establish Implementation Sequence
To identify the processes implementation sequence, the following steps are applied to
the previous cyclical clusters.

• Step 4: Generate permutations for each cyclical cluster from Table 3.
• Step 5: Select valid permutations. A permutation is considered valid when is sorted

by higher to lower number of dependencies (in this case in accordance with TDSS
and TDSD columns).

• Step 6: Select permutations by the total number of source dependencies (column
TS in Table 1).

• Step 7: Select valid permutations in accordance with Total row in Table 7.

The fourth step is applied in order to get all different permutation of the processes
clusters from Table 3. Results are shown in Table 4.

The fifth step is applied in order to obtain valid permutation from Table 4. In this
case, for each cyclical cluster, six permutations are obtained. In accordance with
TDSS column in Table 1 an example of valid permutation is the B3 permutation
where TDSS (ChM) is equal to 4, TDSS (CM) is equal to 4 and TDSS (PM) is equal
to 3 dependencies, and an example of a non valid permutation is the B2 permutation
where TDSS (CM) is equal to 4, TDSS (PM) is equal to 3, and TDSS (ChM) is equal
to 4.

Results of valid permutations for SS and SD are shown in Tables 5 and 6. The To-
tal TS is the sum of the number of dependencies that each process has as source with
other processes.

 A Solution for Establishing the ITSM Processes Implementation Sequence 113

Table 4. SS and SD areas permutations

Permutation SS area Processes Permutation SD area Processes
B1 CM ChM PM K1 SLM AM CoM
B2 CM PM ChM K2 SLM CoM AM
B3 ChM CM PM K3 AM SLM CoM
B4 ChM PM CM K4 AM CoM SLM
B5 PM ChM CM K5 CoM SLM AM
B6 PM CM ChM K6 CoM AM SLM
C1 CM PM IM L1 SLM FM CapM
C2 CM IM PM L2 SLM CapM FM
C3 PM CM IM L3 FM SLM CapM
C4 PM IM CM L4 FM CapM SLM
C5 IM CM PM L5 CapM FM SLM
C6 IM PM CM L6 CapM SLM FM
D1 CM IM ChM M1 CapM CoM AM
D2 CM ChM IM M2 CapM AM CoM
D3 IM CM ChM M3 CoM CapM AM
D4 IM ChM CM M4 CoM AM CapM
D5 ChM IM CM M5 AM CoM CapM
D6 ChM CM IM M6 AM CapM CoM
E1 CM RM ChM O1 SLM CapM AM
E2 CM ChM RM O2 SLM AM CapM
E3 RM CM ChM O3 CapM SLM AM
E4 RM ChM CM O4 CapM AM SLM
E5 ChM RM CM O5 AM CapM SLM
E6 ChM CM RM O6 AM SLM CapM
G1 ChM IM PM Q1 SLM CapM CoM
G2 ChM PM IM Q2 SLM CoM CapM
G3 IM ChM PM Q3 CapM SLM CoM
G4 IM PM ChM Q4 CapM CoM SLM
G5 PM IM ChM Q5 CoM CapM SLM
G6 PM ChM IM Q6 CoM SLM CapM

In order to obtain those permutations having the highest number of source depend-

encies we apply step 6 to Tables 5 and 6. Results are shown in Tables 7 and 8 for each
permutation.

The Total row in Table 9 represents the global source dependencies. The Total row
is obtained by adding TS and TD values of each process from Table 1 (matrix of
dependencies).

Applying step 7 we will select from Tables 7 and 8 valid permutations taking into
account the Total row of Table 9. Results are shown in Table 10. In the case of the SS
area, B1 and D2 permutations are selected. And in the case of the SD area, O1
permutation is selected.

114 M. Arcilla et al.

Table 5. Valid permutations for each SS cluster

Permutation Implementation sequence Total TS
B1 CM ChM PM 22
B3 ChM CM PM 22
C1 CM PM IM 21
C2 CM IM PM 21
D2 CM ChM IM 22
D6 ChM CM IM 22
E2 CM ChM RM 19
E6 ChM CM RM 19
G1 ChM IM PM 19
G2 ChM PM IM 19

Table 6. Valid permutations for each SD cluster

Permutation Implementation sequence Total TS
K1 SLM AM CoM 21
K2 SLM CoM AM 21
L2 SLM CapM FM 21
L6 CapM SLM FM 21
M1 CapM CoM AM 21
M2 CapM AM CoM 21
O1 SLM CapM AM 25
O2 CapM SLM AM 25
Q1 SLM CapM CoM 23
Q2 CapM SLM CoM 23

Table 7. SS area permutations sorted by TS Total

Permutation Implementation sequence TS Total
B1 CM ChM PM 22
B3 ChM CM PM 22
D2 CM ChM IM 22
D6 ChM CM IM 22

Table 8. SD area permutations sorted by TS Total

Permutation Implementation sequence TS Total
O1 SLM CapM AM 25
O2 CapM SLM AM 25

 A Solution for Establishing the ITSM Processes Implementation Sequence 115

Table 9. Global source dependencies of SS and SD areas

 SS process area SD process area
 IM PM CM ChM RM SLM FM CapM CoM AM

TS 6 6 9 7 3 9 3 9 5 7
TD 6 6 9 8 4 9 3 8 4 7

Total 12 12 18 15 7 18 6 17 9 14

Table 10. Implementation Sequence SS and SD permutation

Permutation Implementation sequence
B1 CM(19) ChM(15) PM(12)
D2 CM(19) ChM(15) IM(12)
O1 SLM(18) CapM(17) AM(14)

Table 10 shows the possibilities of implementation sequence; there are two for the

SS area and one for the SD area. In the case of the SS area, where Total (IM) and
Total (PM) have the same number of dependencies, the sequence is ordered taking
into account their functionalities. According to ITIL–SS [3], a problem exists if there
is a previous incident. So it is necessary to first implement the IM process, then the
PM process.

Thus, in the case of the SS area the processes implementation sequence would be
CM first, ChM later and finally IM (B1 permutation).

In the case of the SD area the processes implementation sequence would be SLM,
CapM and AM (O1 permutation).

For each process area the full processes implementation sequence is obtained by
taking into account the total dependencies of the remaining processes (see Total row
in Table 9). Therefore, the processes implementation sequence for SS is CM, ChM,
IM, PM and RM. For the SD area it is SLM, CapM, AM, CoM and FM.

4 Summary

It has been observed that all processes of Service Support (SS) and Service Delivery
(SD) areas are strongly connected; the functional organization by areas confirms it.
However, with respect to the structural organization it has been found that not all
processes have the same structure, which makes difficult to identify the activities of
each process, as well as the way to interrelate with each other. This situation opens
the possibility of future studies to propose a standardized organization of the structure
processes like other models have already done [16].

ITIL proposes a set of processes that will have to be established, but not its imple-
mentation sequence. This work has proposed a procedure that will allow initializing the
sequence of implementation in each area related to SS and SD, through dependencies on
processes. The SS area should begin with CM and the SD area should begin with SLM.

According to everis consultants, usually there are three typical scenes of ITIL im-
plementation in the business field: 1) begin with Configuration Management, 2) begin

116 M. Arcilla et al.

with Services Desk, and 3) begin with Service Level Management. The implementa-
tion sequence obtained by means of OPreSSD has been confirmed with the results of
the experiences obtained by everis consultants, demonstrating that indeed the obtained
results correspond to a present implementation sequence of ITIL processes.

The results obtained represent dependencies at a process level. In future studies the
dependencies at activity level among processes of ITIL v3 will be considered.

Acknowledgements

This paper is sponsored by ENDESA, everis Foundation and Sun Microsystems
through “Research Group of Software Process Improvement for Spain and Latin
America”, as well as by the Secretariat of Public Education (Mexico) with a scholar-
ship PROMEP through the agreement with the Autonomous University of Tamaulipas.

References

1. Johnson, B.: (November 2006),
http://www.ca.com/hk/event/itil2005/bjohnson.htm

2. Office of Government Commerce (OGC). ITIL Managing IT Service: Service Delivery.
TSO, London (2001)

3. Office of Government Commerce (OGC). ITIL Managing IT Service: Service Support.
TSO, London (2001)

4. Sarbanes, P., Oxley, M.: Sarbanes-Oxley Act (SOX/SORBOX), United States (July 2002)
5. IBM (November 2006),

http://www-306.ibm.com/software/tivoli/features/ITIL/
6. Microsoft (November 2006),

http://www.microsoft.com/technet/itsolutions/cits/mo/mof/defau
lt.mspx

7. SUN (November 2006), http://es.sun.com/services/itil/
8. HP (November 2006), http://www.hp.com/large/itsm/
9. Thu, T.D., Hanh, N., Bich Thuy, D.T., Coulette, B., Cregut, X.: Topological Properties for

Characterizing Well-formedness of Process Components. Software Process Improvement
and Practice 10(2), 217–247 (2005)

10. Office of Government Commerce (OGC). Relationship between processes en ITIL Manag-
ing IT Service: Service Delivery, ch. 2. TSO, London (2001)

11. Office of Government Commerce (OGC). Relationship between processes en ITIL Manag-
ing IT Service: Service Support, ch. 2. TSO, London (2001)

12. Bang-Jensen, J., Gutin, G.: Digraphs Theory, Algoritms and Applications. Springer, Lon-
don (2006)

13. Diestel, R.: Graph Theory. Springer, New York (1997)
14. Lecture Notes in Theorethical Distributed Computing, Alexandro Panconesi (19-12-1997),

http://www.nada.kth.se/kurser/kph/2d5340/wwwbook/wwwbook.html
15. WolfromResearch, Inc., Matemática 5.2 (November 2006),

http://www.wolfrom.com/mathematica/functions/advanceDocument
ationGraphPlot

16. CMMI for Services Team: CMMI for Services v0.5. Carnegie Mellon University SEI,
Pittsburgh, PA (2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 117–128, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modeling and Assessment in IT Service Process
Improvement

Béatrix Barafort1, David Jezek3, Timo Mäkinen2,
Svatopluk Stolfa3, Timo Varkoi2, and Ivo Vondrak3

1 Centre de Recherche Public Henri Tudor, Luxembourg
2 Tampere University of Technology, Pori, Finland

3 Technical University of Ostrava, Ostrava, Czech Republic

Abstract. This paper is based on the experiences of a research project with the
aim to develop modeling and assessment readiness for IT companies. As a part
of the project, process assessments for process improvement purposes were per-
formed in some of the participating companies. This paper describes the back-
ground of applying process reference model based assessment and modeling of
the processes for the same process instance. Some findings and experiences
based on an industry case are documented. We also discuss how these ap-
proaches could be combined in an efficient way.

Keywords: Process improvement, assessment, process models, modeling.

1 Introduction

Process improvement approaches are means to develop an organization’s processes to
more effectively meet its business goals. Process assessments are used to find out the
capability of the process to reach this goal. Assessments also point out opportunities
for process improvements. A disciplined process assessment evaluates organization’s
processes against a process assessment model (PAM), which typically includes exem-
plar practices as assessment indicators. A process reference model (PRM) describes
the processes typical for a specific domain.

One of the difficulties in process improvement is that, as the first step, the existing
process must be understood correctly. One prominent approach is to integrate process
modeling with assessments, which additionally is known to provide more accurate
process ratings and higher quality process models.

A two year research project launched in 2006, Modeling and Simulation in
Software Engineering (MoSSE), studied different methods and tools applicable for
combined assessment and modeling. The project is a part of the Finnish national tech-
nology program on modeling and simulation (MASI), which is funded by Tekes,
Finnish Funding Agency for Technology and Innovation.

The primary goal of the MoSSE project was to answer the question, “How to inte-
grate software process assessment and process modeling?” In the project we refined
our goal to develop a method, which integrates the techniques of software process
assessment and process modeling. The approaches are applicable to similar domains,
e.g. IT service management.

118 B. Barafort et al.

This paper describes the background of applying process reference model based as-
sessment and modeling of the processes in the IT service management domain. In
section two we describe a method that aims to process improvement using process
capability assessments. Section three explains background and development of a
process assessment model for IT service management. In section four business proc-
ess modeling is introduced as a basis for the modeling with appropriate techniques.
Section five discusses the experiences of the industry case, in which the approaches
were applied to. The main result of the study, the integration of assessment and mod-
eling approaches, is presented in section six. Finally, section seven summarizes the
work and proposes future developments.

2 Capability Assessments

Earlier projects at Tampere University of Technology contained expert and training
services to support software engineering processes in companies [22]. One of the most
important forms of these services was software process assessments. We have carried
out altogether about 40 assessments in over 20 organizations. Most of the assessments
are based on the international standard ISO/IEC 15504 [12, 13], or the preceding set of
technical reports. The applied, experience based software process assessment and im-
provement practices have been modeled and resulted in the development of the Soft-
ware Process Improvement initiation (SPINI) framework, which is similar to the results
of some other research projects e.g. in Ireland [18] and in Brazil [1].

The SPI Initiation framework developed covers the process improvement start-up
from the examination of an organization’s needs to the development and support of
the software process improvement (SPI) program. The framework consists of activi-
ties which are grouped from external advisors’ points of view into the following three
steps: understanding and deciding priorities, performing assessments, and supporting
SPI. [21]

The ISO/IEC 15504 based process assessment has its origins in software develop-
ment and an exemplar process assessment model, 15504-5, is based on ISO/IEC
12207 Software lifecycle process reference model. Nevertheless, the process capabil-
ity dimension describes process attributes that are applicable to any process and to
any domain.

The SPINI approach forms the methodological basis in this study. Modeling meth-
ods will be integrated into this approach producing an enhanced method for process
improvement. The same capability assessment principles are applied for the IT
service process assessments.

3 Process Assessment Models for IT Service Management

Nowadays, organizations are highly dependent on their Information Technology (IT)
services and expect they not only support the organization but also bring new possi-
bilities to realize its objectives. Contrary to the past when many IT organizations were
centered on internal technical matters, today’s businesses have high requirements
regarding the quality of services and these needs are quickly evolving with time. IT

 Modeling and Assessment in IT Service Process Improvement 119

organizations have to meet these requirements and must pay attention to service qual-
ity and develop a more customer-oriented approach: cost issues are now high on the
agenda as is the development of a more businesslike attitude to provision of service.

In that context, the IT Infrastructure Library (ITIL), produced by the CCTA (Cen-
tral Computer and Telecommunications Agency in UK) in the late ‘80s, was the first
comprehensive structured approach publicly available on providing IT services [14,
15]. The ITIL® rapidly became a worldwide de facto standard for IT Service Man-
agement. The core of ITIL® initially focused on delivering and supporting IT services
that are appropriate to the organization’s business requirements, whatever its type or
size. ITIL® provides a comprehensive, consistent and coherent set of best practices
for IT Service Management processes, promoting a quality approach to achieving
business effectiveness and efficiency in the use of information systems.

In the Public Research Centre Henri Tudor in Luxembourg, the ISO/IEC 15504
standard, as well as the ITIL® de facto one, had been studied and used since the mid-
nineties. Several experiences in R&D projects showed that many companies used
process approaches in software development (CMM and/or ISO/IEC 15504 approach)
and for operations (ITIL®), but with not many connections (separate departments and
culture; project versus non-project approaches). Then the combined use of both stan-
dards appeared as an interesting matter of research. The AIDA® R&D project was
defined and aimed at developing a common approach for IT process assessment and
improvement. There were already existing process assessment models such as
ISO/IEC 15504-5 and CMM, and more recently CMMI [20]. But there were not many
initiatives linking assessment purposes and IT Service Management. So the AIDA
R&D Project developed an IT Service Management Process Reference Model (PRM)
and its associated Process Assessment Model (PAM) [2, 3, 4].

The AIDA® model was inspired by ITIL® best practices, with the goal to enable
objective IT Service Management capability assessments. The references used to
create the PRM and PAM were the Service Support and Service Delivery books pub-
lished by the Office of Government Commerce (OGC). These inputs are considered
as implementation best practices, and can be considered as a Process Implementation
Model (PIM) to start with. The purpose of the PRM was to define, at a high level of
abstraction (i.e. in term of Process purpose and Process outcomes), a set of processes
that can be used as the process dimension for a PAM in the Service Management area.
According to the maturity of the definition of these processes, the process list of the
PRM was directly derived from the Service Support and Service Delivery ones. The
ten processes from Service Support and Service Delivery were then selected without
adding or removing any of them.

Using ITIL® best practices, the CRP Henri Tudor developed a Process Reference
Model. The purpose of this Process Reference Model was to define a set of processes
that can be used as the process dimension for a Process Assessment Model. [6]

The Process Assessment Model proposes additional information that can be re-
quested when running a process assessment: base practices, inputs and outputs. The
capability levels and process attributes are identical to those defined in ISO/IEC
15504-2. Fig. 1 describes the steps required to derive the models.

120 B. Barafort et al.

Service Support (SS) Service Support (SS) and and Service Service
Delivery Delivery (SD) (SD) processesprocesses

Process Model
Implementation

(PIM)

Process Reference Model
(PRM)

Process Assessment Model
(PAM)

ITIL'sITIL's best practices & best practices &
Management Management praticespratices

for SS & SDfor SS & SD

ProcessProcess abstraction to abstraction to define define
purpose purpose & & oucomesoucomes

ContinuousContinuous process process
assessmentassessment model : model : processprocess

performance performance and process and process
capability indicatorscapability indicators

Abstraction

Process
performance

indicators

ISO/IEC 15504-2
Capability
Dimension

Service Support (SS) Service Support (SS) and and Service Service
Delivery Delivery (SD) (SD) processesprocesses

Process Model
Implementation

(PIM)

Process Reference Model
(PRM)

Process Assessment Model
(PAM)

ITIL'sITIL's best practices & best practices &
Management Management praticespratices

for SS & SDfor SS & SD

ProcessProcess abstraction to abstraction to define define
purpose purpose & & oucomesoucomes

ContinuousContinuous process process
assessmentassessment model : model : processprocess

performance performance and process and process
capability indicatorscapability indicators

Abstraction

Process
performance

indicators

ISO/IEC 15504-2
Capability
Dimension

Fig. 1. Deriving the IT Service Management Process models

In addition to the Process Assessment Model, a specific questionnaire for each
field of activity was developed to help assessors during the interviews. However this
questionnaire is not mandatory and a competent assessor can conduct interviews using
the Process Assessment Model without a questionnaire, as part of a more ‘open’
discussion.

As ITIL® has become more and more popular, the new version 3 of ITIL® was
published in June 2007. The objective is to propose a consistent, modular and dy-
namic conceptual framework providing IT managers with on demand methodologies
and tools. ITIL® v3 is not only more structured but also particularly focusing on
services implementation strategy and services life cycle. Finally, ITIL® V3 tends to
involve more the development actors within Service Support and Delivery processes,
with particular attention to the management of change. This is a real challenge be-
cause both approaches generally reconcile poorly within companies.

Additionally the International standardization Organization (ISO) develops the
ISO/IEC 20000 IT Service Management standard [7, 8]. It is aiming at certifying a
service provider with a management system for IT Service Management Processes.
The ISO/IEC 20000-1 standard, titled “Specification” promotes the adoption of an
integrated process approach to effectively deliver managed services to meet the busi-
ness and customer requirements. On the other hand, ISO/IEC 20000-2, titled “Code of
practice” takes the form of guidance and recommendations.

The International standardization community recognized the benefits of using com-
plementary approaches (New Work Item Proposals Accepted for defining a PRM and a
PAM based on the ISO/IEC 20000 standard [9, 10]). Then, the extension of the AIDA
R&D project enables to develop such a PRM and a PAM, based on the collection of
requirements provided by the ISO/IEC 20000 Parts 1 and 2. Further works develop a
methodology for transforming requirements into PRM and PAM. Some particular Re-
quirements Engineering approaches and techniques (Goal Oriented Requirements Engi-
neering) have been used as well as issues met by R&D projects in CRP Henri Tudor in
Luxembourg for modeling PRMs and PAMs [19]. These RE techniques have shown
how helpful they can be. The whole set of tools and techniques constitute a methodol-
ogy, which is continually refined along with experimentations and standardization

 Modeling and Assessment in IT Service Process Improvement 121

works related to process models. In this context, the very structured way required by
ISO/IEC 15504 for building process models enables process assessment with capability
determination. In order to structure the methodology leading to the construction of a
PRM-PAM and to organize components, a PRM has been drafted, aiming at engineer-
ing process models. The purpose of this Process Model Engineering PRM is to design
and manage an ISO/IEC 15504 compliant process model (validation and traceability)
fulfilling the stakeholders’ requirements and needs, and to provide a knowledge base
supporting uses of the model. This Process Model Engineering PRM draft provides the
framework for the overall methodology and it will be further developed in next R&D
activities within CRP Henri Tudor.

By using a rigorous and systematic approach for developing PRMs and PAMs, it
provides a very structured and trusted basis for process improvement. Then it can be
valuable inputs for combining process modeling and assessment with the help of a
support tool, within an improvement approach contextualized to an organization.

4 Process Modeling

Process modeling ranges from informal to formal, where formal models are based on
mathematical principals and are executable by computing systems. BPM (Business
Process Modeling) method is a modeling instrument that combines UML-like tool
based on the best practices with such formalized approach [23]. The main goal of the
BPM is to balance clarity of visualization with the power of theory of Petri Net that
strengthens correctness of the process specification. Consequently, the BPM method
can be characterized by the following:

- BPM is a formalized and visual modeling tool. Formalization is employed to
model a process uniquely and precisely enough to use a built model for simula-
tion and enactment without any or limited changes. Visual approach enables to
increase modeling capabilities and clarity to make all necessary communications
easier.

- BPM enables structural analysis of the process, visual simulation and enactment
of the process dynamics.

- BPM uses concurrency of process activities execution as a primary focus. This as-
pect of process definition provides key way how to get processes more effective.

BPM employs three types of models to capture the process as a whole. The main
aim of the functional model is an identification of the process architecture, as well as
the identification of process customers and products. The primary focus of the func-
tional model is to find an answer to questions what processes are employed and what
is their structure. A simple fictive process example process demonstrates notation of
the functional model and how the process can be hierarchizised using so called
contains relationship (Fig. 2). Obviously any sub-process can be expanded into the
similar diagram with its own customers, owners and products.

Object model identifies static structure of all entities (objects) that are essential for
the enactment of the process. In other words, the answer to the question by whom and
what the process is realized is searched. This model tries to capture all active objects
responsible for an execution of activities and passive objects that can be understood as

122 B. Barafort et al.

material, products or documents that are manipulated by the process. All these objects
have a set of attributes associated. The notation used for this sort of models is similar
to notation used by typical object-oriented method except that active and passive
objects are represented by different icons to distinguish them (Fig. 3). Object models
are created for every process identified during the functional modeling.

Fig. 2. Functional model of the process Fig. 3. Object model for the process

Coordination model is based on previous two models and its goal is to show how
the process will be enacted. The coordination model specifies interactions among
objects (active and/or passive) and defines the way how all these activities are syn-
chronized based on principles used in Petri Nets. The coordination view is the most
important because it enables to define the execution order of all activities, including
conditions for their potential concurrency. It means that the correct order is defined,
as well as sharing of used resources. Each activity can have more than one scenario

Fig. 4. Coordination model of the process

 Modeling and Assessment in IT Service Process Improvement 123

with the duration time and costs associated to provide necessary information for the
analysis. Based on the architecture definition captured in a functional model, the
atomic activities are accompanied by sub-processes icons that can be refined further
into more detailed collaboration models again (Fig. 4).

The specified process models serve as a basis for testing and analysis. The analysis
is based on a discovery of both structural and behavioral properties. The first kind of
properties is encoded in the model itself while the second one is obtained from the
process model via its simulation. The analysis based on a process simulation verifies
model and provides user with the information on how long it takes to get from the
initial request to the final product and what are the process costs.

The main and unique property of the presented methods is that the modeling, simu-
lation and enactment are based on one common model that is used by Petri Net engine
for the purposes of its execution. No compilations are needed and the process can be
verified and validated during the development time.

5 Experiences of Combined Modeling and Assessment

The BPM method was used to evaluate utilization of formal based modeling and
simulation for the assessment of service processes. The processes were provided by
an international IT company with a large service business unit. The company has an
ISO 9000 compatible quality system, it uses ITIL and will probably apply for the
future ISO/IEC 20000 IT Service Management standard certification.

The main goal of the work carried out was to introduce and evaluate the way how
both modeling and assessment could be hooked up together to generate some synergy
effects. The combined approach that was used in this case study was concentrated on
the assessment and evaluation of two main service support processes: incident and
problem management.

The first step of the process modeling was based on the analysis of the materials
and documents provided by the company, in comparison to an existing IT Service
Management Process Assessment Model. The used model, AIDA PAM, is described
in section 3. Although, the processes were thoroughly specified in these documents,
the specification was mainly textual and suffered from the lack of formal description.
The preliminary models were created and the unknown details were discussed with
the company representatives responsible for the process facilitation. It took several
sessions to refine the models. Each session consisted of the definition of the formal-
ized models that were checked by customer first, and afterwards these verified models
were used for the purposes of their assessment. The final result of the modeling was
the descriptive process model.

The next step is the definition of the prescriptive processes. The combined output
of the analysis and simulation of the descriptive processes and the improvement sug-
gestions from the assessment activity provides the information for the creation of the
final prescriptive process model.

From the simulation point of view, process models needed to be completed by the
information set required by the BPM simulation tool. The information set comprises
of duration and cost of each activity. Then, the simulation part of the BPM could be
used effectively. The obtained results showed the total time and cost needed for the

124 B. Barafort et al.

execution of processes being modeled. The interpretation of the results led to the
conclusions that were more or less known by the company, but the results of cost and
time analysis could never have been achieved without the simulation. For example,
one of the main disclosures was the confirmation of the theory that the existence of
the good knowledge base is one of the main time and cost saving factors. Since the
knowledge base is especially used during the incident management process and exe-
cution of the incident management was proved as significantly cheaper and less time
consuming than problem management process, the existence of proper knowledge in
the knowledge base is crucial to save company time and money and to achieve better
efficiency.

Simulation and analysis based on simulation experiment are not the only benefits
that could be gained by this approach. The main benefit could be achieved by the
continuous refining, control and simulation of the company processes. Although, the
initial assessment of the company’s service processes showed the high process matur-
ity, the next logical step should be the application of the systematic process improve-
ment according to this approach.

From the improvement point of view, the BPM tool confirmed the potential to be
an efficient modeling, simulation and control tool for the modeling and assessment of
company processes. In this case study, modeling and simulation of the processes were
performed manually. The implementation of the automated control and enactment
tool that is already part of the BPM tool could bring more precise results. This en-
hanced approach is more complex and might be used not only for process assessment
but also for purposes of continuous process improvement.

Generally, the combination of assessment methods and modeling, simulation and
control tool fulfilled the expectations and fully satisfied the company representatives
that were eager to find a way to proceed to achieve efficient process improvement.

6 Integration of the Approaches

Based on the presented experiences of using both assessment and modeling to gain
input for process improvement, we now describe an integrated approach that, at least
in theory, contains the elements needed to answer the research question: “How to
integrate software process assessment and process modeling?” This section presents
the integration steps and a new concept: the prescriptive process model.

Process assessment is a disciplined evaluation of an organization’s processes
against a Process Assessment Model. The essential part of an assessment output is a
set process profiles, which are process attribute ratings for the assessed processes. The
indicators of the process assessment model support assessors’ judgment in rating
process attributes. [11]

Assessment itself can also be considered as a process which transforms its inputs to
outputs using resources. In an assessment process, Process Evidence stands for the
inputs, Process Profiles for the outputs, and Assessment Model for the resources
(Fig. 5). During the assessment the process evidence is classified by the indicators of
the assessment model to assist the process ratings of the process profiles.

Descriptive process modeling uses a process meta-model that defines the process
elements and their relationships, to classify the process evidence. Typical process

 Modeling and Assessment in IT Service Process Improvement 125

elements are tasks, work products, roles, and resources. There is similarity to the
assessment process, while the output of the process is Process Model and its resource
is Process Meta-model (Fig. 5).

A combination of process assessment and descriptive process modeling is repre-
sented in Fig. 5. The combined approach was proposed by Hamann in his dissertation
[5]. During an assessment, the descriptive process modeling is performed by mapping
process performance indicators of the assessment model to the existing process ele-
ments of the assessed organization. Later on, Mäkinen and Varkoi suggested the use
of process capability indicators in the combined assessment [16, 17].

Fig. 5. Combination of process assessment and descriptive process modeling

In addition to the process profiles, the assessment usually produces a set of sugges-
tions for process improvements. In the combined assessment, a prescriptive process
model can be regarded as the counterpart for the suggestions. In this case, the pre-
scriptive process model illustrates the organization’s process after the implementation
of the suggested improvements.

Fig. 6. Combination of descriptive and prescriptive process modeling, and process assessment

126 B. Barafort et al.

Fig. 6 depicts the extended combination of assessment and process modeling [17].
The extended combined assessment produces Improvement Suggestions and a Pre-
scriptive Process Model in addition to Process Profiles and a Descriptive Process
Model. The suggestions are derived from the process profiles and the assessment
model. The prescriptive process model is based on the descriptive model and the
improvement suggestions. The construction of the prescriptive process model is sup-
ported by a process library that includes the indicators of the assessment model as
process elements.

7 Conclusions

This paper presents the work of a research project with international connections.
Assessment models and methods applying process reference models were discussed,
as well as business process modeling concepts. As an example, an advanced IT ser-
vice process assessment model is described. An assessment and modeling exercise
was carried out in an industrial case. The experiences confirm the need for a com-
bined approach for modeling and assessment. The main result of the study is the inte-
grated method for assessment and modeling.

The framework in Fig. 7, named SPINI+, uses assessment input to create a descrip-
tive process model of the assessed processes without extra effort to elicit information
for modeling. The input data is classified using an industry standard process meta-
model to support a choice of modeling tools. A revised prescriptive model illustrates
an organization’s processes after the improvements, and it is created using a process
library that is based on the indicators of the assessment model. The benefit of the
approach is that the improvements can be clearly expressed in the process model to
make the process changes more manageable. Modeling with a formal approach re-
lated to process assessment is effective in ensuring up-to-date process descriptions in
an organization.

Fig. 7. Enhanced framework for process improvement

 Modeling and Assessment in IT Service Process Improvement 127

The method requires further validation. Expected strengths of the proposed method
include:

- efficient use of resources; same input can be used both for modeling and
assessment,

- improved assessment reliability,
- improved descriptive process model accuracy and
- precise and illustrative improvement suggestions

Further development of the SPINI framework will seek to solve needs for profi-
cient process modeling and simulation using advanced process description approaches
and methods. For instance, some of our earlier research projects have produced soft-
ware measurement knowledge and process improvement experience items that can be
related to the process improvements that have been identified using process assess-
ments. The process improvement knowledge is collected as libraries.

Acknowledgments. This research has been partly funded by Academy of Finland and
Tekes, Finnish Funding Agency for Technology and Innovation.

References

[1] Anacleto, A., Gresse von Wangenheim, C., Salviano, C.F., Savi, R.: A Method for Proc-
ess Assessment in Small Software Companies. In: Proceedings of the 4th International
SPICE Conference, Portugal (2004)

[2] Barafort, B., Di Renzo, B., Merlan, O.: Benefits resulting from the combined use of
ISO/IEC 15504 with the Information Technology Infrastructure Library (ITIL). In: Pro-
ceedings of the International Conference PROFES 2002, Rovaniemi, Finland (2002)

[3] Barafort, B., Di Renzo, B.: Assessment and improvement integrated approach: combined
use of the ISO/IEC 15504 (SPICE) and the Information Technology Infrastructure Li-
brary (ITIL). In: Proceedings of the National Conference SPIRAL 2004, Luxembourg
(2004)

[4] Barafort, B., Di Renzo, B., Lejeune, V., Simon, J.-M.: ITIL Based Service Management
measurement and ISO/IEC 15504 process assessment: a win – win opportunity. In: Pro-
ceedings of the 5th International SPICE Conference on Process Assessment and Im-
provement, Klagenfurt, Austria (2005)

[5] Hamann, D.: Towards an Integrated Approach for Software Process Improvement: Com-
bining Software Process Assessment and Software Process Modeling. PhD dissertation.
Technische Universität Kaiserslautern (2006)

[6] Hilbert, R., Renault, A.: Assessing IT Service Management Processes with AIDA – Ex-
perience Feedback. In: Proceedings of the 14th European Conference for Software Proc-
ess Improvement EuroSPI, Potsdam, Germany (2007)

[7] ISO, ISO/IEC 20000-1: Information technology – Service management – Part 1: Specifi-
cation (2005)

[8] ISO, ISO/IEC 20000-2: Information technology – Service management – Part 2: Code of
practice (2005)

[9] ISO, ISO/IEC JTC1/SC7 3797: NWI Proposal - Information Technology - Service Man-
agement Process Reference Model (2007)

128 B. Barafort et al.

[10] ISO, ISO/IEC JTC1/SC7 3798: NWI Proposal - Information Technology - Process as-
sessment - Part 8: An exemplar process assessment model for IT service management
(2007)

[11] ISO, ISO/IEC 15504-1: Information technology - Process assessment - Part 1: Concepts
and vocabulary (2004)

[12] ISO, ISO/IEC 15504-2: Information technology - Process assessment - Part 2: Performing
an assessment (2003)

[13] ISO, ISO/IEC 15504-5: Information technology - Software Process Assessment - Part 5:
An exemplar process assessment model (2006)

[14] IT Infrastructure Library – Service Delivery, The Stationery Office Edition, ISBN 011
3308930 (2001)

[15] IT Infrastructure Library – Service Support, The Stationery Office Edition, ISBN 011
3308671 (2000)

[16] Mäkinen, T., Varkoi, T., Soini, J.: Integration of Software Process Assessment and Mod-
eling. In: Proceedings of the PICMET 2007 Management of Converging Technologies
Conference, Portland, Oregon, USA (2007)

[17] Mäkinen, T., Varkoi, T.: Assessment Driven Process Modeling for Software Process Im-
provement. In: PICMET 2008 Technology Management for a Sustainable Economy Con-
ference, Cape Town, South Africa (accepted for publication, 2008)

[18] McCaffery, F., Richardson, I., Coleman, G.: Adept – A Software Process Appraisal
Method for Small to Medium-sized Software Development Organisations. In: Proceed-
ings of the EuroSPI 2006 Conference, Joensuu, Finland (2006)

[19] Rifaut, A.: Goal-Driven Requirements Engineering for supporting the ISO 15504 As-
sessment Process. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI
2005. LNCS, vol. 3792, pp. 151–162. Springer, Heidelberg (2005)

[20] Rout, T.P., El Emam, K., Fusani, M., Goldenson, D., Jung, H.-w.: SPICE in retrospect:
Developing a standard for process assessment. Journal of Systems and Software 80(9),
1483–1493 (2007)

[21] Varkoi, T., Mäkinen, T.: Software process improvement initiation in small organisations.
In: Proceedings of the 3rd European Software Measurement Conference, FESMA-
AEMES, Madrid, Spain (2000)

[22] Varkoi, T., Mäkinen, T.: Software process improvement network in the Satakunta region
- SATASPIN. In: Proceedings of the EuroSPI 1999 Conference, Pori, Finland (1999)

[23] Vondrak, I., Kruzel, M., Szturc, R., Benes, M.: Unified Environment for Business Process
Modeling and Workflow Enactment. In: Proceedings of the ECEC 2002 Conference,
Ghent, SCS (2002)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 129–141, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Software Engineering Lifecycle Standard for Very
Small Enterprises

Claude Y. Laporte1, Simon Alexandre2, and Rory V. O’Connor3

1 École de technologie supérieure, Montréal, Canada
2 Centre d’Excellence en Technologies de l’Information et de la Communication,

 Charleroi, Belgium
3 Lero, The Irish Software Engineering Research Centre

and School of Computing, Dublin City University, Dublin, Ireland
Claude.Y.Laporte@etsmtl.ca, simon.alexandre@cetic.be,

roconnor@computing.dcu.ie

Abstract. Industry recognizes that very small enterprises (VSE), that develop
parts involving software components are very important to the economy. These
parts are often integrated into products of larger enterprises. Failure to deliver a
quality product on time and within budget threatens the competitiveness of both
organizations. One way to mitigate these risks is to haveall suppliers of a prod-
uct chain put recognized engineering practices in place. Many international
standards and models such as ISO/IEC12207 or CMMI have been developed to
capture proven engineering practices. However, these standards were not de-
signed for very small development organizations, those with less than 25 em-
ployees, and are consequently difficult to apply in such settings. An ISO/IEC
JTC1/SC7 Working Group has been established to address these difficulties by
producing a software engineering standard tailored to VSE.

Keywords: ISO, Lifecycles, Very Small Enterprises, Standards.

1 Introduction

The ability of organizations to compete, adapt, and survive nowadays depends in-
creasingly on software. By 2010, it is estimated that cellular phones will contain 20
million lines of code; one automobile manufacturer estimates that its cars will have
up to 100 million lines of code [1]. Manufacturers depend increasingly on the compo-
nents produced by their suppliers. A manufacturing chain, of large mass market prod-
ucts, often has a pyramidal structure. The pyramid is composed of a layer of dozens of
main suppliers which are supplied by a layer of hundreds of smaller suppliers. This
small suppliers layer may have thousands of very small suppliers. As an example, a
large mass product manufacturer integrated a part with an unknown software error
produced by one of its 6000 producers into one of its products, [2]. The defective part
resulted in a multi-million dollar loss by the manufacturer. The need for international
software engineering standards is thus clear.

There is evidence that the majority of small software organizations are not adopt-
ing existing standards as they perceive them as being orientated towards large organi-
zations. Studies have shown that small firms’ negative perceptions of process model

130 C.Y. Laporte, S. Alexandre, and R.V. O’Connor

standards are primarily driven by negative views of cost, documentation and bureauc-
racy. In addition, it has been reported that VSEs find it difficult to relate ISO/IEC
12207 to their business needs and to justify the application of the international stan-
dards in their operations. Most VSEs cannot afford the resources for, or see a net
benefit in, establishing software processes as defined by current standards (e.g.
ISO/IEC 12207) and maturity models such as the Capability Maturity Model Integra-
tion CMMI) developed by the Software Engineering Institute [3].

Accordingly there is a need to help these organizations understand and use the
concepts, processes and practices proposed in the ISO/IEC JTC1/SC7’s international
software engineering standards. This paper presents a new project intended to facili-
tate access to, and utilization of, ISO/IEC JTC1/SC7 software engineering standards
in very small enterprises.

This paper is divided into six sections. Section 2 presents the concept of a VSE and
describes the characteristics that distinguish a VSE from other organizations. Section
3 presents a historical perspective on the events that led to an ISO/IEC JTC1 SC7
project proposal for VSEs and Section 4 presents the results of a survey that was de-
veloped to question VSEs about their utilization of ISO/SC7 standards. Section 5
explains the approach being taken by the VSE working group and finally Section 6
presents concluding remarks and discusses future actions.

2 Very Small Enterprises

The definition of “Small” and “Very Small” Enterprises is challengingly ambiguous,
as there is no commonly accepted definition of the terms. For example, the partici-
pants of the 1995 CMM tailoring workshop [4] could not even agree on what “small”
really meant. Subsequently, in 1998, in an SEPG conference panel on the CMM and
small projects [5], small was defined as “3-4 months in duration with 5 or fewer
staff.” Johnson and Brodman [6] define a small organization as “fewer than 50 soft-
ware developers and a small project as fewer than 20 software developers”. Another
definition for VSE introduced by Laporte et al [7] as “any IT services, organizations
and projects with between 1 and 25 employees”.

Taking a legal perspective, the European Commission [8] defines three levels of
small to medium-sized enterprise (SME) as being: Small to medium –“employ fewer
than 250 persons and which have an annual turnover not exceeding 50 million Euro,
and/or an annual balance sheet total not exceeding 43 million Euro”; Small – “which
employ fewer than 50 persons, and whose annual turnover or annual balance sheet
total does not exceed 10 million Euro” and Micro – “which employ fewer than 10
persons and whose annual turnover”.

To better understand the dichotomy between the definitions above it is necessary to
examine the size of software companies operating in the market today. In Europe, for
instance, 85% of the Information Technology (IT) sector companies have 1 to 10
employees1. In the context of indigenous Irish software firms 1.9% (10 companies),
out of a total of 630 employed more than 100 people whilst 61% of the total em-
ployed 10 or fewer, with the average size of indigenous Irish software firms being

1 http://www.esi.es/en/main/iitmark.html

 A Software Engineering Lifecycle Standard for Very Small Enterprises 131

about 16 employees [9]. In Canada, a survey of the Montreal area found that 78% of
software development enterprises have less than 25 employees and 50% have fewer
than 10 employees [10]. In Brazil, small IT companies represent about 70% of the
total number of companies [11].

Therefore, for the purposes of this paper we are adopting the definition for VSE in-
troduced in [7] as “any IT services, organizations and projects with between 1 and 25
employees”.

2.1 Characteristics of a VSE

The unique characteristics of small entrepreneurial businesses as well as the unique-
ness of their situations of necessity make their style of business different [12]. Some
of the unique differences between very small and large businesses behavior are given
in Table 1.

Table 1. Characteristic differences between large firms and small firms

Characteristic Small firm Large firm
Planning orientation Unstructured/operational Structured/strategic
Flexibility High Structured/strategic
Risk orientation High Medium
Managerial process Informal Low
Learning and knowledge
absorption capacity

Limited High

Impact of negative market
effects

More profound More manageable

Competitive advantage Human capital centered Organizational capital centered

Software VSEs are subject to a number of distinctive and intrinsic characteristics

that make them different from their larger counterparts, therefore affecting the con-
tents, the nature and the extent of the activities. We classify VSE characteristics
according to four main categories: Finance, Customer, Internal Business Processes
and Learning and Growth.

VSEs are economically vulnerable as they are driven by cash-flow and depend on
project profits, so they need to perform the projects within budget. They tend to have
low budgets which have many impacts, such as: lack of funds to perform corrective
post delivery maintenance; few resources allocated for training; little or no budget to
perform quality assurance activities; no budget for software reuse processes; low
budget to respond to risks; and limited budget to perform Process Improvement and
/or obtain a certification/assessment.

Typically the VSE’s product has a single customer, where the customer is in
charge of the management of the system and the software integration, installation and
operation. It is normal practice for the customer not to define quantitative quality
requirements and for customer satisfaction to depend on the fulfillment of specific
requirements that may change during the project. A close relationship between all
involved project members including the customer shows that software development in
small and very small companies is strongly human-oriented and communication

132 C.Y. Laporte, S. Alexandre, and R.V. O’Connor

between them is important. For example, in contrast to small companies, very small
companies often do not have regular project meetings [13].

The internal business process of VSEs are usually focused on developing custom
software systems, where the software product is elaborated progressively and which
typically does not have strong relationship with other projects. Typically most man-
agement processes (such as human resource and infrastructure management) are
performed through informal mechanisms, with the majority of communication, deci-
sion-making and problem resolution being performed face-to-face.

The learning and growth characteristics of VSE are typified by a lack of knowledge
(or acceptance) of software process assessment and improvement and a lack of human
resources to engage in standardization. It is usual for a negative perception of stan-
dards to exist in smaller organizations who consider they are made by large enter-
prises, for large enterprises [9].

3 History of the ISO/IEC Working Group for VSEs

The mandate of ISO/IEC JTC1/SC7 is the standardization of processes, supporting
tools, and supporting technologies for the engineering of software products and sys-
tems. A description of SC7 and of the development of ISO/IEC JTC1/SC7 standards
is presented in [14]. In this section, a brief history of the events leading to the creation
of a new ISO/IEC JTC1/SC7 Working Group (WG) is presented. A detailed descrip-
tion of its history is available in [3].

At the May 2004 SC7 Plenary meeting in Brisbane, Canada raised the issue of
small enterprises requiring standards adapted to their size and maturity level. The
current software engineering standards target (or are perceived as targeting) large
organizations. A meeting of interested parties was organized and a consensus was
reached on general objectives for a future working group:

• To make the current software engineering standards more accessible to VSEs;
• To provide documentation requiring minimal tailoring and adaptation effort;
• To provide harmonized documentation integrating available standards:

• Process standards
• Work products and deliverables
• Assessment and quality
• Modeling and tools

• To align profiles, if desirable, with the notions of maturity levels presented in
ISO/IEC 15504.

In March 2005, the Thailand Industrial Standards Institute (TISI) invited a Special
Working Group (SWG) to advance the work items defined at the Brisbane meeting. A
key topic of discussion was to clearly define the size of VSE that the SWG would
target, consensus being reached on IT services, organizations and projects with 1 to
25 employees. The major output of this one-week meeting was a draft of the New
Work Item (NWI) to be tabled at the next SC7 meeting.

In May 2005, a resolution was approved to distribute the NWI Proposal for the de-
velopment of Software Life Cycle Profiles and Guidelines for use in Very Small En-
terprises for ballot. Twelve countries voted in favor of the NWI Proposal [15]. As a

 A Software Engineering Lifecycle Standard for Very Small Enterprises 133

result of this vote, the Project was approved and the new working group, WG24, was
established.

The Thailand Industrial Standards Institute (TISI) sent out a second invitation to
participate in the SWG, to be held in September 2005 in Bangkok. The main objective
of the meeting was to prepare material that would be presented to WG24 in order to
facilitate the start-up of the working group that was scheduled for October 2005 in
Italy.

In October 2005, Italy hosted ISO/IEC JTC1 SC7 Interim Meeting. The New Work
Item was updated in order to take into account relevant comments received during
balloting, and the requirements were validated by WG members. In addition, some
VSE Business Models were identified, as was a strategy for creating profiles. Finally,
WG24 decided to conduct a survey to collect relevant information from VSEs around
the world.

4 Gathering VSE Requirements

In 1997, the Technical Council on Software Engineering responsible for the IEEE
Software Engineering Standards conducted a survey to capture information from
software engineering standards users in order to improve those standards [16]. They
gathered 148 answers, mainly from the USA (79%) and large companies (87% of
them having more than 100 employees). The main application domains of the survey
respondents were IT (22%), military (15%) and aerospace (11%). (It should be noted
that the purpose of this section is not to systematically compare the two sets of survey
results.) Even though the IEEE survey objectives differ from those of the ISO/IEC
survey, there are some interesting common findings. In response to the question con-
cerning the reasons why their organization does not use standards, 37% said that the
standards were not available in their facilities, while 37% explained that they use
other standards. In fact, the IEEE survey underscores the fact that ISO/IEC standards,
rather than the IEEE standards, are often used in organizations.

The IEEE survey underlined the difficulties regarding IEEE standards use reported
by the respondents. The two main difficulties were a lack of understanding of the
benefits (28%) and a lack of useful examples (25%). The survey also revealed how
IEEE standards are used in organizations. Most of the organizations claimed to use
IEEE standards for internal plan elaboration. The IEEE survey gathered several new
requirements about IEEE standards being requested by the respondents. These were
principally examples and templates of deliverables, support for metrics and measure-
ment, help on life cycle process definition, a training course and support for small,
rapid application development efforts.

The WG24 survey was developed to question VSEs about their utilization of
ISO/SC7 standards and to collect data to identify problems and potential solutions to
help them apply standards and become more competitive. From the very beginning,
the working group drew up several working hypotheses regarding VSEs. The survey
was intended to validate some of these hypotheses, such as the following:

• The VSE context requires light and well-focused life cycle profiles.
• Particular business contexts require particular profiles.

134 C.Y. Laporte, S. Alexandre, and R.V. O’Connor

• There are significant differences, in terms of available resources and infrastructure,
between a VSE employing 1 to 10 people and an Information Technology (IT) de-
partment of the same size in a larger company.

• VSEs are limited in both time and resources, which leads to a lack of understand-
ing of how to use the standards for their benefit.

• Benefits for VSEs may include recognition through assessment or audit by an ac-
credited body.

The survey questionnaire and an introductory text were developed by the WG24 and
translated into 9 languages: English, French, German, Korean, Portuguese, Thai,
Turkish, Russian and Spanish. The survey is made up of 20 questions structured in 5
parts: General information, Information about standards utilization in VSEs, Informa-
tion about implementation and assessment problems in VSEs, Information about VSE
needs and Information about justification for compliance to standard(s). Over 392
responses have been collected from 29 countries.

4.1 Categorization of the Sample According to the Size Criterion

Of the 392 responders, 228 (58%) are enterprises with 0 to 25 employees as illustrated
in Figure 1. Note that responders of small organizations (<25 persons) that are a part
of a larger enterprise are not included in these 228 responses. These 228 VSEs con-
stitute the sample for this study. The following paragraphs present findings common
to the 228 VSEs and identify correlations inside the sample, and findings that differ
from those of the bigger companies that contributed to the survey.

This categorization and several studies underscore the differences between micro,
small and medium enterprises in terms of available resources. Therefore, WG24 de-
cided to focus on the first category (micro enterprises with 0-9 employees) and on a
subpart of the small enterprise category (10-25 employees).

0 to 9
36%

10 to 25
22%

26 to 49
9%

50 to 249
16%

250+
17%

0 to 9

10 to 25

26 to 49

50 to 249

250+

Fig. 1. Number of employees in the enterprises surveyed

 A Software Engineering Lifecycle Standard for Very Small Enterprises 135

4.2 General Characteristics

Here, we draw attention to some weaknesses of the sample itself. Since the survey
was initiated through WG24 contacts without building a true random sample, the
survey results may have been impacted. The first observation about the respondent
sample, as illustrated in Table 2, is the geographical distribution of answers. We col-
lected a high number of responses from Latin America (46%), mainly from Colombia
and Brazil.

Table 2. Number of Survey Responses per Country

 Country No. of Responses Country No. of Responses
Argentina 2 Italy 2
Australia 8 Japan 3
Belgium 10 Korea (South) 4
Brazil 68 Mexico 20
Bulgaria 3 New Zealand 1
Canada 8 Peru 4
Chile 1 Russia 4
Colombia 88 South Africa 10
Czech Rep. 3 Spain 2
Ecuador 9 Taiwan 1
Finland 13 Thailand 52
France 3 Turkey 1
India 57 United Kingdom 2
Ireland 10 United States 3

At the same time, we received only a few responses from European countries (48),

Japan (3) and the United States (3). Therefore, our results may only generalize to the
broader populations of projects in each region to the extent that this sample represents
them. Moreover, we have no evidence that participating companies are representative
of the situation in their own countries.

4.3 Use of Standards

An interesting finding of the survey is the difference in the percentage of certified
companies with regard to company size: less than 18% of VSEs are certified, while
53% of larger companies (more than 25 employees) claim to be certified. Further-
more, among the 18% not certified, 75% do not use standards. In larger companies
using standards, two families of standards and models emerge from the list: ISO stan-
dards (55%) and models from the Software Engineering Institute (SEI) (47%).

WG24 anticipated the weak use of standards by VSEs by asking questions de-
signed to provide a better understanding of the reasons for this. There are three main
ones, as shown in Figure 2. The first is a lack of resources (28%); the second is that
standards are not required (24%); and the third derives from the nature of the stan-
dards themselves: 15% of the respondents consider that the standards are difficult and
bureaucratic, and do not provide adequate guidance for use in a small business
environment.

136 C.Y. Laporte, S. Alexandre, and R.V. O’Connor

Not Required
24%

Lack of support
9%

Lack of resources
28%

Too time-consuming
14%

Standard(s)
15%

Other
10%

Not Required

Lack of support

Lack of resources

Too time-consuming

Standard(s)

Other

Fig. 2. Why VSEs do not use standards

For a large majority (74%) of VSEs, it is very important to be evaluated or certified
against a standard. ISO certification is requested by 40% of them. Of the 28% re-
questing official market recognition, only 4% are interested in a national certification.
From the VSE perspective, some benefits provided by certification are:

• Increased competitiveness
• Greater customer confidence and satisfaction,
• Greater software product quality
• Increased sponsorship for process improvement
• Decreased development risk
• Facilitation of marketing (e.g. better image)
• Higher potential to export

However, VSEs are expressing the need for assistance in order to adopt and im-
plement standards. Over 62% would like more guidance with examples, and 55% are
asking for lightweight and easy-to-understand standards complete with templates.
Finally, the respondents indicated that it has to be possible to implement standards
with minimum cost, time and resources. All data about VSEs and standards clearly
confirm WG24’s hypothesis and the requirements. Therefore, WG24 uses this infor-
mation to help define its approach for the development of profiles, guides and tem-
plates to meet VSE needs.

5 The WG24 Approach

The approach used by WG24 had to take into account, as a starting point, the ISO
requirements in terms of standard definition. Indeed, since an international standard
dedicated to software lifecycle was already available (i.e. ISO/IEC 12207) [17],
WG24 had to use the concept of ISO profiles (ISP – International Standardized Pro-
file) in order to develop the new standard for VSEs. A Profile is defined as “A set of
one or more base standards and/or ISPs, and, where applicable, the identification of
chosen classes, conforming subsets, options and parameters of those base standards,
or ISPs necessary to accomplish a particular function” [18]. From a practical point of

 A Software Engineering Lifecycle Standard for Very Small Enterprises 137

view, a Profile is a kind of matrix that identifies precisely all elements that are taken
from existing standards from those that aren’t.

The overall approach followed by WG24 to develop this new standard for VSE
consisted of three steps:

• Select ISO/IEC12207 process subset applicable to VSEs of less than 10 employees
• Tailor the subset to fit VSE needs
• Develop guidelines

Firstly, since WG24 wished to prepare an initial set of software development stan-
dards as quickly as possible, WG24 analyzed international reference standards and
models that could help subset ISO/IEC 12207 for low maturity VSEs. To achieve
these initial products quickly, WG24 began a search for existing standards or models
that could be tailored. Moprosoft, a Mexican standard developed to assist Mexican
small and medium enterprises (SMEs) has been selected in order to achieve this
objective [19].

Moprosoft uses ISO/IEC 12207 as a general framework. It borrows practices from
ISO9001, the Capability Maturity Model Integration (CMMI) developed by the Soft-
ware Engineering Institute, the Project Management Body of Knowledge (PMBOK)
and the Software Engineering Body of Knowledge SWEBOK.

However, WG24 felt that Moprosoft was addressing the needs of organizations
larger than targeted VSEs. Therefore, as a second step, WG24 decided to tailor Mo-
prosoft in order to address key characteristics of low maturity VSEs. The tailoring
approach lead to the development of incremental profile targeting as starting point,
low maturity VSE of less than 10 employees and, in a second phase, those with 10 to
25 employees. Therefore, the first profile, developed by WG24, contains basic activi-
ties coming from project management and software development related processes.
The idea was to concentrate on core activities that a low maturity VSE should
perform.

The first document of the family of documents developed by WG24, titled “Over-
view”, introduces the major concepts required to understand and use the suite of
documents. It introduces the business aspects, characteristics and requirements of
VSEs, and clarifies the rationale for VSE-specific profiles, documents, standards and
guides. It also introduces basic process, lifecycle and standardization concepts, and
the 29110 family of documents. It is targeted both at a general audience interested in
these documents, and more specifically at users of these documents. The Overview is
identified as technical report (TR) TR 29110-1.

The second set of documents; titled “Profiles” are defined to formally package ref-
erences to and/or part of other documents in order to adapt them to the VSEs needs
and characteristics. Preparing profiles is an ISO/IEC JTC1 defined process. It in-
volves producing two types of documents: a framework and taxonomy and a profile
specification:

• Framework and Taxonomy - The Framework and Taxonomy document
(ISP29110-2) establishes the logic behind the definition and application of profiles.
It specifies the elements common to all profiles (structure, conformance, assess-
ment) and introduces the taxonomy (catalogue) of 29110 profiles. It is targeted at
authors and reviewers of ISPs, authors of other parts, and authors of other

138 C.Y. Laporte, S. Alexandre, and R.V. O’Connor

VSE-targeted profiles. The Framework and Taxonomy is applicable to all profiles
and identified as TR 29110-2

• Profile Specifications - There is a profile specification document for each profile.
Its purpose is to provide the definitive composition of a profile, provide normative
links to the normative subset of standards (e.g. ISO/IEC 12207) used in profile, and
provide informative links (references) to "input" documents (e.g. 90003, SWE-
BOK, PMI). It is targeted at authors/providers of guides, and authors providers of
tools and other support material. There is one profile specification document for
each profile, identified as 29110-4.x, where x is the number assigned to the profile.

The third set of documents, titled “Guides”, contain implementation guidelines (do-
main specific) on how to perform the processes to achieve the maturity levels (e.g.
recommended activities, measures, techniques, templates, models, methods ...).
Guides are developed for the process implementation and for the assessment based on
the domain’s issues, business practices and risks. Guides are targeted at VSE, and
should be VSE accessible, both in terms of style and cost. There are two guides: an
assessment guide and a management and engineering guide:

• Assessment Guide - This guide describes the process to follow to perform an
assessment to determinate the process capabilities and the organizational process
maturity. This is, when an organization wants an assessment execution in order to
obtain a process capability profile of the implemented processes and an organiza-
tional process maturity level. It is also applicable to the situation where customer
asks for a third-party assessment execution in order to obtain a capability level pro-
file of the implemented process by the software development and maintenance
provider. It is also suitable for self-assessment. The Assessment Guide is applica-
ble to all profiles and identified as TR 29110-3

• Management and Engineering Guides - The management and engineering
guides provide guidance on its implementation and use or a profile. It is targeted at
VSE (management and technical staff), VSE-related organizations (technology
transfer centers, government industry ministries, national standards, consortiums
and associations, academic use for training, authors of derived products (software,
courseware, and acquirer and suppliers. There is one management and engineering
guide document for each profile, identified as 29110-5.x, where x is the number as-
signed to the profile. This number matches the number assigned to the profile
specification.

The third step of the approach consisted in defining guidelines explaining in more
details the processes defined in the profile. These guidelines will be published as ISO
Technical Reports which should be freely accessible to VSEs. These guidelines inte-
grate a series of deployment packages. A deployment package is a set of artifacts
developed to facilitate the implementation of a set of practices, of the selected frame-
work, in a VSE. But, a deployment package is not a process reference model. The
elements of a typical deployment package are: process description (e.g. activities,
inputs, outputs, and roles), guide, template, checklist, example, presentation material,
reference and mapping to standards and models, and a list of tools. Packages are de-
signed such that a VSE can implement its content, without having to implement the
complete framework at the same time. The first four deployment packages being

 A Software Engineering Lifecycle Standard for Very Small Enterprises 139

developed are: requirements analysis and management, change management, testing
and project management. Future deployment packages are: architecture, issue track-
ing, unit testing and coding. The table of content of a deployment package is illus-
trated in table 3.

Table 3. Table of Content of a deployment package

1. Introduction
 Purpose of this document
 Key Definitions
2. Why this Process is important
3. Overview of Main Tasks
 3.1 Tasks
 3.2 Roles and artifacts
 3.3 Activity Lifecycle and examples of lifecycles
Annex A Templates
Annex B Checklists
Annex C Coverage Matrices (ISO 12207, ISO 9001, CMMI)
Annex D Tools
Annex E Training Material
Annex F Deployment Package Evaluation Form

5.1 Recent Developments

At the Montreal meeting of WG24, in October 2007, the requirement analysis and
management deployment package has been reviewed and received a broad support
from the group members. The group decided to develop following deployment pack-
ages for its next meeting in Berlin: configuration management, project management,
and testing.

Having profiles and guides for VSEs is not sufficient to ensure broad utilization
and adoption: they have to be tested with real VSEs of a few countries. The Mexican
delegation presented the result of the introduction, as pilot projects, of the first profile
developed by WG24, in Latin American countries [20]. Also a new country, Colom-
bia, and a new organization, the European Software Institute (ESI), joined WG24.

6 Conclusion and Future Work

Industry recognizes the value of VSEs in their contribution of valuable products and
services. About 75% of software enterprises worldwide have fewer than 25 employ-
ees. ISO/IEC JTC1 SC7 standards are not easily applied in VSEs that generally find
standards difficult to understand. Hence, VSEs require further guidance in order to
integrate standards into their practices. ISO/IEC JTC1 SC7 decided to establish a new
working group to address these issues.

With regard to future work, WG24 plan to invite VSEs to participate in the field tri-
als before the standards get published by ISO Since a few WG24 delegates are already
working closely with VSEs, they will play a key role in the coordination of the trials.
Trials will help validate the approach and obtain feedback in order to improve the
documents before going for ISO/IEC publication. WG24 is planning to produce a Final

140 C.Y. Laporte, S. Alexandre, and R.V. O’Connor

Draft in 2009. Publication by ISO/IEC is scheduled for 2010. In the meantime, de-
ployment packages will be made available, to VSEs, on public web sites.

Additional Information
The following Web sites provide more information as well as articles and eventually
deployment packages, which members of WG24 will develop:

http://profs.logti.etsmtl.ca/claporte/English/VSE/index.html
http://www.cetic.be/indexEN.php3

References

1. Charette, R.N.: Why Software Fails, Spectrum, pp. 42–49. IEEE Computer Society, Los
Alamitos (2005)

2. Shintani, K.: Empowered Engineers are Key Players in Process Improvement. In: The First
International Research Workshop for Process Improvement in Small Settings, Software
Engineering Institute, CMU/SEI-2006-SR-01, Pittsburgh, PA (2006)

3. Laporte, C.Y., April, A.: Applying Software Engineering Standards in Small Settings: Re-
cent Historical Perspectives and Initial Achievements. In: Proceedings of the First Interna-
tional Research Workshop for Process Improvement in Small Settings. Software Engineer-
ing Institute, Carnegie Mellon University, CMU/SEI-2006-Special Report-001, pp. 39–51
(January 2006)

4. Ginsberg, M., Quinn, L.: Process Tailoring and the Software Capability Maturity Model,
Software Engineering Institute, CMU/SEI-94-TR-024 (November 1995)

5. Hadden, R.: Key Practices to the CMM: Inappropriate for Small Projects, Panel. In: Pro-
ceedings of the Software Engineering Process Group Conference, Chicago (1998)

6. Johnson, D., Brodman, J.: Applying the CMM to Small Organizations and Small Projects.
In: Proceedings of Software Engineering Process Group Conference, Chicago (1998)

7. Laporte, C.Y., April, A., Renault, A.: Applying ISO/IEC Software Engineering Standards
in Small Settings: Historical Perspectives and Initial Achievements. In: Proceedings of
SPICE Conference, Luxembourg (2006)

8. European Commission, The New SME Definition: User Guide and Model Declaration
(2005),
http://europa.eu.int/comm/enterprise/enterprise_policy/sme_d
efinition/sme_user_guide.pdf

9. Coleman, G., O’Connor, R.: Investigating Software Process in Practice: A Grounded The-
ory Perspective. Journal of Systems and Software 81(5), 772–784 (2008)

10. Laporte, C.Y., Renault, A., Desharnais, J.M., Habra, N., Abou El Fattah, M., Bamba, J.C.:
Initiating Software Process Improvement in Small Enterprises: Experiment with Micro-
Evaluation Framework. In: SWDC-REK, International Conference on Software Develop-
ment, University of Iceland, Reykjavik, Iceland, May 27-June 1, 2005, pp. 153–163 (2005)

11. Anacleto, A., von Wangenheim, C.G., Salviano, C.F., Savi, R.: Experiences gained from
applying ISO/IEC 15504 to small software companies in Brazil. In: 4th International
SPICE Conference on Process Assessment and Improvement, Lisbon, Portugal (April
2004)

12. Mtigwe, B.: The entrepreneurial firm internationalization process in the Southern African
context: A comparative approach. International Journal of Entrepreneurial Behavior & Re-
search 11(5), 358–377 (2005)

 A Software Engineering Lifecycle Standard for Very Small Enterprises 141

13. Hofer, C.: Software Development in Austria: Results of an Empirical Study among Small
and Very Small Enterprises. In: Proceedings of the 28th Euromicro Conference, pp. 361–
366 (2002)

14. Coallier, F.: International Standardization in Software and Systems Engineering, Crosstalk,
pp. 18–22 (February 2003)

15. New Work Item Proposal – Software Life Cycles for Very Small Enterprises, ISO/IEC
JTC1/SC7 N3288 (May 2005), http://www.jtc1-sc7.org/

16. Land, S.K.: Results of the IEEE Survey of Software Engineering Standards Users. In: Soft-
ware Engineering Standards Symposium and Forum, 1997. Emerging International Stan-
dards. ISESS 1997, Walnut Creek, CA, June 1-6, pp. 242–270 (1997)

17. ISO/IEC 12207:2008, Information technology – Software life cycle processes. Interna-
tional Organization for Standardization/International Electrotechnical Commission: Ge-
neva, Switzerland

18. ISO/IEC TR 10000-1:1998, Information technology: Framework and taxonomy of Interna-
tional Standardized Profiles. Part 1: General principles & documentation framework

19. NMX-059-NYCE-2005, Information Technology-Software-Models of Processes and As-
sessment for Software Development and Maintenance. Part 01: Definition of Concepts and
Products; Part 02: Process Requirements (MoProSoft); Part 03: Guidelines for Process Im-
plementation; Part 04: Guidelines for Process Assessment (EvalProSoft), Ministry of
Economy, Mexico (2005)

20. Oktaba, H., Felix, G., Mario, P., Francisco, R., Francisco, P., Claudia, A.: Software Proc-
ess Improvement: The Competisoft Project. IEEE Computer 40(10) (October 2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 142–151, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Lightweight Process Documentation: Just Enough
Structure in Automotive Pre-development

Kai Stapel1, Eric Knauss1, and Christian Allmann2

1 FG Software Engineering, Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germany

2 Audi Electronics Venture GmbH
Sachsstraße 18, 85080 Gaimersheim, Germany

{eric.knauss,kai.stapel}@inf.uni-hannover.de,
 Christian.Allmann@audi.de

Abstract. Pre-development in the automotive sector is informally organized to
support the engineers trying out new ideas and generally being creative. If fea-
sibility studies reveal system’s uncertainties or bad market opportunities and the
development has to be discarded, all documentation attached is obsolete. As a
result it is neither possible nor desirable to establish a document centric process
in automotive pre-development.

However, without a defined development procedure it is hard to improve
and validate development outcomes, respectively to repeat success strategies as
well as to integrate new personnel. Furthermore, if new innovations do pass to
series development, system characteristics and development activities certainly
have to be documented.

In this contradictory situation we cannot apply traditional document centric
process approaches. Instead we make use of our Information Flow Analysis.
This way it is possible to document and analyze the pre-development activities.
Based on our conclusions we developed lightweight concepts to systematically
capture documentation from the engineers, without hindering their creativity.
These concepts were incorporated in a semantic Wiki, in an effort to give a
suitable starting point for comprehensive documentation in case of pre-
development projects going into production.

1 Introduction

The role of automotive pre-development is to evaluate and demonstrate the technical
feasibility of new ideas and technologies as the base for client and market studies. Gen-
erally speaking, pre-development is similar to research in general. The main difference
between research and pre-development is the timeline. All pre-development activities
focus on the contemporary (up to 3 years) vehicle deployment. Both have in common
that the starting point can be described as a development on the “green field” [1, 2].
Meaning that the amount of requirements is indefinite, the technical realization is un-
known, the identification of all relevant stakeholders is still ongoing, and the client
usage can not be demonstrated. Therefore, the main goal of the development activities is
to build up a system demonstrator regularly. In automotive pre-development this
usually is a vehicle prototype. As in conventional systems engineering and software

 Lightweight Process Documentation 143

engineering, these prototypes prove whether a technical solution is reasonable or not.
The main challenge assembling the vehicle prototypes is caused by the implementa-
tion of new technologies (e.g. sensors and image processing) and by networking for-
merly independent functions. Both rely on a growing number of increasingly powerful
and highly integrated mechatronic components. The amount of functions and the extent
of network interaction are only two indicators for system and thus pre-development
complexity. Another dimension originates from the diversity and the overlapping of
development domains where a growing number of systems are a compound of mechani-
cal, electronic and software components. Traditionally, the activities within these disci-
plines are carried out separately, often within independent departments at the original
equipment manufacturer (OEM) and the supplier. This further increases pre-develo-
pment complexity and demands high efforts for the communication between all in-
volved parties and the coordination of the system development.

In case a new technology and system development verified by a vehicle prototype
does not demonstrate feasibility, the collected experience still has to be documented
in order to avoid developers to try the same again. However, in such a case compre-
hensive documentation should be avoided, because it does not add value to the final
product.

A difference of prototyping in the automotive context in contrast to prototyping in
conventional software engineering is that developers responsible for the prototypes
are not necessarily responsible for the series product development. Therefore, if an
innovation is proved to be valuable for series deployment, comprehensive documenta-
tion of this technical invention is needed after all.

Because of these conflicting aspects (creative and innovative solution finding vs.
good documentation of proved solutions) the process of pre-development is a chal-
lenging object of research. On the one hand these projects need to be organized, be-
cause they contribute to the company’s success. Therefore, it is important to improve
chances of success. Consequently, a process model is needed to make these projects’
success repeatable. This is a typical goal of traditional process- or maturity models.

On the other hand traditional process modeling approaches are not designed to deal
with the exchange of experiences and technical know-how in coffee-corners. Because
of the creativity involved in pre-development a specification of a strict sequence of
activities and process artifacts is undesirable. The main task is to make relevant in-
formation available to all project members, support exchange of information between
projects, and help project leaders to cope with an informally organized process. We
also strive to create an overview of pre-development projects, to give new project
members some orientation.

In this context we applied our Information Flow Analysis [3, 4] in order to capture
the information flows between project participants. We were able to derive a project
map that shows which information flows are important for success in pre-
development projects. It turned out that especially the documentation of project ex-
periences is difficult in this context. As a result, we enhanced a Wiki-Web application
to better support these crucial information flows (e.g. introducing templates for quick
documentation of experiences and observations).

This paper is organized as follows: Section 2 gives some foundations and shows
how our approach distinguishes from other approaches. Section 3 contains the design
of our study as well as the foundations of Information Flow Analysis. The actual

144 K. Stapel, E. Knauss, and C. Allmann

analysis with its findings and highlights is presented in section 4. We give a short
account of the direct benefits and consequences from the analysis in section 5. Fi-
nally, we draw our conclusions and give an outlook of open research questions and
future activities in this area.

2 Related Work

Today, most of vehicle or system innovations arise from the intelligent integration of
individual, complex (sub-)systems into the vehicle network which must fulfill vehicle
constraints like real-time, safety and dependability aspects. On the other hand these
(sub-)systems nowadays are developed by a network of suppliers together with the
OEM. The manufacturer is in the role of the client and at the same time manager of
the system to be developed. He defines the requirements and monitors the project
through testing. One conflict arises because on the one hand the OEM is depended on
the specific knowledge of the supplier when it comes to individual components (e.g.
specific sensor devices). On the other hand the supplier depends on the OEM’s
knowledge of the environmental conditions he has to comply with, like construction
space, physical ambient parameter, dependencies to other systems or the power sup-
ply. Therefore the interaction of OEM and the supplier has to be considered as a key
factor for success in this kind of projects. Naturally both sides have a strong interest
to protect their intellectual property. So an efficient development is not only difficult
to realize due to system complexity, but also because of the gap of communication
resulting from the diverging views of OEM and suppliers [5, 6].

At first glance applying a formal process model like the Rational Unified Process [7]
or V-Modell XT [8] seems to be a good method to coordinate interactions between
OEM and supplier. But, a strict process requiring a lot of documentation rather hinders
creativity and innovation needed in pre-development instead of enabling them. Thus,
our approach is a lightweight method to document the already working informal proc-
ess. The method is called Information Flow Analysis [3, 4]. The resulting information
flow map can be used as a base for process improvements. In this context lightweight
means two things: First, the method to collect the information flow data and create the
according model is easy to learn and easy to use. Furthermore, with the method it does
not take a lot of time to get an overview of a process. Second, lightweight means proc-
ess shaping without bothering the developers too much. Regular processes provide a lot
of benefits but also demand a lot of duties. In the automotive pre-development context a
lightweight process with fewer duties provides a better cost-benefit ratio.

3 Study Design

In this section we present the study design that we used to conduct the information
flows in an automotive pre-development context. The basis for this is our Information
Flow Analysis, which therefore will be introduced first. After that the actual study de-
sign will be presented. Finally, some notes on the execution of the elicitation are given.

3.1 Information Flow Basics

Information is the most important resource in development projects, this applies par-
ticularly to pre-development. The correct flow of information is essential for project

 Lightweight Process Documentation 145

success and product quality. Especially in pre-development information is not only
being passed on by documents but also by e-mails, phone calls, and direct communi-
cation like in meetings.

Information Flow Analysis is our approach to conquer the challenges with different
ways of information exchange. Information flows are modeled, analyzed and opti-
mized based on the following fundamental concepts:

• Information appears in different states. Fluid information is verbal or non-
objectively reproducible information including e-mails and personal notes third
parties cannot access or reproduce. Solid information refers to written or recorded
information (like documents or videos) which is long-term accessible even to third
parties.

• Experience is a special kind of information which is being modeled explicitly. It
often influences activities and acts as a catalyst. Experiences made in one project
can be of value in others.

• Coarse modeling of information content. Just the type of information is being
modeled, e. g. product requirements, experiences, or development decisions, not
the exact content.

In order to be able to note down the information flows of a given project a simple,
easy to understand, and easy to use notation is needed. All relevant aspects of infor-
mation and its flow need intuitive representation. The following Information Flow
Notation was designed to fulfill these needs:

Table 1. Information Flow Symbols

information state store information flow experience flow activity

solid

fluid

<activity>

combined
solid-fluid

Especially these aspects were addressed:

• Means of expression for state of information for both, information stores and in-
formation flows. An information store can be solid, represented by a document
symbol (since a document is the most prominent solid information store), or fluid,
represented by a smiley symbol (fluid information is stored in peoples’ minds).

<information type>
(optional)

<experience>
(optional)

<information type>
(optional) <identifier>

<experience>
(optional)

<experience>
(optional)

<information type>
(optional)

<identifier>

<identifier>

146 K. Stapel, E. Knauss, and C. Allmann

 Information flows can be solid and fluid as well. The state of an information flow
is determined by its originating information store: If the originating store is solid
the flow is also solid (represented by a solid line), if the originating store is fluid
the flow is fluid (represented by a dashed line).

• Means of expression for experiences. To be able to distinguish experience flows
from other information flows, experience flows and stores are depicted in a differ-
ent color (e. g. gray).

• The ability to establish connections between information flow models and process
models. The activity symbol is available in both notations and therefore acts as a
connection point (all process notations have a symbol for activities/functions).

• Very easy understandable even for non computer scientists. Few, easy explainable
symbols are used.

• Fast and Easy to use. Especially for pragmatic reasons the combined solid-fluid
store and flow were introduced. In a few special cases it is not that important in
what state certain information flows, it is just important that it flows at all.

With the Information Flow Notation and the basic principles of Information Flow
Analysis in mind we designed the elicitation.

3.2 Elicitation Design

Besides the Information Flow Analysis concepts we incorporated the automotive pre-
development context in our elicitation design. The following general assumptions
express that.

General Assumptions
1. A fluid information culture is important in automotive pre-development.
2. Rework has to be done in case a new approach makes it to serial production be-

cause of sparse documentation in pre-development.
3. There are reoccurring project patterns indicating a certain process despite of the

fluid information culture and the informal process.
4. Interviewees will be more open when interviewed by an intern staff member.

Based on these assumptions we designed the study. With the given time and re-
source constraints collecting data via interviews was most promising. As interviewees
several project managers and engineers of different pre-development projects were
selected.

Elicitation with interviews is a bottom up technique. Each interviewee gives a low
level view on the project. In the following analysis step these local views are put
together to build up a global pre-development view which then can be used as a base
for further discussions and improvements.

Each interview consists of two parts:

1. A catalogue of general questions: employee background, project, involved roles
and persons, general information flows, experiences, what works good, what does
not, etc.

2. Information Flow data entry forms: For each work-task of an interviewee a form
has to be filled. Data about the task, the executing role, required information, sup-
porting information, and outgoing information is being collected.

 Lightweight Process Documentation 147

To verify assumption 1 questions concerning the distribution of verbal and written
communication or how the work result gets to its users were incorporated in the cata-
logue of general questions. Because of assumption 4 an intern staff member was used
to conduct the interviews. A problem with that is that industry staff usually is not
familiar with Information Flow Analysis concepts. Therefore we had to train the in-
tern staff member.

3.3 Elicitation Execution

A widely accepted intern was selected as the intern staff member to conduct the inter-
views. We taught her the Information Flow Analysis concepts in a personal instruc-
tion. It turned out that the training of the new concepts only needed short time to be
successful. Thus, we conclude that the Information Flow concepts are easy to under-
stand. This adds to the fact that Information Flow Analysis is a lightweight method.

In total 6 interviews were held with staff members from 4 different pre-
development projects. The intern scheduled and conducted the interviews herself and
reported the results to us. We then analyzed each interview and built up the global
information flow model.

4 Information Flow Analysis

After the elicitation phase the raw data from the interviews had to be analyzed to
build up the global view. The results are presented in this section. First the unmodi-
fied answers from the interviews are presented. After that our interpretation and ag-
gregation is given.

4.1 Results

The interviews confirmed assumption 1 (see section 3.2.). There is a mainly fluid
information culture. The interviewees claimed that between 60% and 90% of the
information being shared is fluid. Everybody stated that most information is ex-
changed in meetings. It was also stated that there is few required documentation in
pre-development.

Assumption 3 could also be confirmed. Despite of working in different projects the
interviewees mentioned many tasks that were common among the projects:

• Organizational and project management tasks
• Information search tasks
• Supplier analysis tasks
• Vehicle prototype construction tasks
• Coordination tasks with departments

Most interviewees summed up, that pre-development intern communication mainly
works well, but coordination with departments often causes difficulties because of
unknown competencies and missing documentation.

4.2 Aggregation

In this section we present the results of the interpretation and the aggregation of the raw
interview data. This is the final and most important step in Information Flow Analysis.

148 K. Stapel, E. Knauss, and C. Allmann

First we created a communication network showing the staff and their direct com-
munication paths without documents. Generally speaking, from such a communica-
tion network one can see who is talking to whom.

We then build a generic pre-development project model, because several tasks
common to all projects could be identified (assumption 3). From this an employee
new to pre-development can be instructed or a project manager setting up a new pre-
development project can create an instance of the generic model and use it for e. g.
project planning.

Experiences were not systematically used throughout all projects. Especially in
frequently reoccurring tasks this leads to a lot of rework. A typical frequently reoccur-
ring task in automotive pre-development is the construction of a vehicle prototype to
test new approaches under real world conditions. A generic test vehicle construction
process as derived from the interviews is depicted in figure 1.

plan
experimental vehicle

construction

execute
experimental vehicle

construction
departments construction

firm

assignment

cable planproject staff

member of staff

offer

modification dates

product spec production
representative

member of staff

Fig. 1. Information Flow Model of Present Vehicle Prototype Construction Process

The vehicle prototype construction task is divided into two main activities: plan
and execute. The planning activity incorporates information from project staff, de-
partments and the construction firm. The outcome is a product specification, some
calendar entries and a cable plan for the vehicle. The execution activity is mainly
concerned with the assignment of the construction firm with the actual construction of
the vehicle. The offer and other results from the construction firm are incorporated in
the planning activity of the next iteration. In particular it is noticeable that no experi-
ences are shared to be helpful in following iterations.

Based on these observations, we drew some direct consequences. On the one hand,
we enhanced an existing Wiki-Web to better reflect the information flow demands.
On the other hand we showed our results to the developers and started a discussion of
the pre-development process model.

5 Drawing the Consequences

In the opinion of the analyzed pre-development department clear documentation be-
tween the roles on the side of the pre-development team, adjacent departments and
involved suppliers is needed. Methods and tools like a customized Wiki are supposed

 Lightweight Process Documentation 149

to map both the horizontal and the vertical information flows to avoid that communi-
cation becomes the bottleneck of development.

In this context the horizontal flow represents the organizational hierarchy (devel-
opment departments) and the vertical depicts the supplier chain. Therefore, all rele-
vant stakeholders, developers as well as manager decisions, process steps, etc. can be
mapped to the actual development state. Hence, the Information Flow Analysis re-
vealed communication bottlenecks, knowledge drains and loosely coupled documents.
This unbalanced relationship between stakeholders, documentation and system devel-
opment activities call for suitable methods facilitating the communication, knowledge
and project experience acquisition in pre-development projects. Scenario based de-
velopment like it is described in [13-16] can be used to bridge the gap between less
documentation and documentation centric approaches.

For future development in highly innovative fields, like hybrid technologies, x-by-
wire or sensor fusion, documented project experience is inevitable. The mentioned
distributed information flow is very sophisticated to organize and to lead. Passing
experience on to further development means sharing knowledge, the knowledge about
the actual developed system as well as the project experience each team member has
collected over the years. The illustrated clash of development “philosophies” requires
some kind of cooperation platform to organize the different development activities,
determine the development chain and teams responsibilities. Time-shared and arti-
fact-shared development is mandatory concerning the effort for system’s develop-
ment under the pre-development circumstances.

All mentioned implications can be subsumed to one essential point: a common
platform for planning, documenting, and representing pre-development projects is
crucial. To avoid misunderstandings this platform comprehends solutions for arising
communication overhead, distributed access to the different knowledge basis, project
management, and tools. A Wiki has proved to be a pragmatic technology for such a
platform and has already been used in some projects at the analyzed pre-development
department.

This specific Wiki is designed around scenarios. It is based upon an extension of the
MediaWiki [9] and a semantic Wiki extension [10]. With the help of this extension it is

plan
experimental vehicle

construction

execute
experimental vehicle

construction
departments

construction
firm

assignment

cable plan

project staff

member of staff

offer

modification dates

product spec
production

representative

create experience
record

experience record
exp. vehicle construction

member of staff

Fig. 2. Information Flow Model of Improved Vehicle Prototype Construction Process

150 K. Stapel, E. Knauss, and C. Allmann

possible to define templates as well as relations between pages in the Wiki (e.g. tem-
plates that allow scenario-based requirements engineering, project-management activi-
ties, and reports).

Based on our findings we decided to improve this Wiki: For example, the Informa-
tion Flow Analysis revealed improvement potential for documentation of project
experiences.

Figure 2 shows which information needs to be included in experience reports. Con-
sequently we introduced links to observation and experience report templates at the
according positions in the Wiki. For example, if the production representative reads the
product specification, she has a direct facility to leave some experience-related remarks
on that specification. Note that it is important to reduce the effort of documenting ex-
periences in order to improve the chances of a developer actually doing it. [11, 12]

The documentation of experiences is only one of the challenges of learning organi-
zations. The other big challenge is to apply relevant experiences to the development
activities. In the example above we introduced overviews of existing experiences into
relevant Wiki pages that relate to the activities of planning vehicle prototype con-
struction and its execution.

6 Conclusion and Outlook

In this paper we showed that Information Flow Analysis is a fast and lightweight
method to reveal and document informally organized processes like pre-development
processes in auto industry. While traditional approaches proved to be unsuitable, we
were able to capture the important aspects of pre-development with Information Flow
Analysis. This is because the Information Flow concepts enable to distinguish be-
tween different states of information. The specialized Information Flow Notation
makes it possible to depict non-document-based communication that is particularly
important and common in pre-development.

The results of Information Flow Analysis give a good starting point to build sup-
porting information systems. In our study we were able to enhance a Wiki system to
better support the important information flows. While this Wiki is a good prototype
for this area, further work in IT-support for pre-development is needed. On the one
hand, effort for documenting project relevant information has to be further reduced.
On the other hand tool support has to ensure that enough documentation is created to
support the start of production. In our opinion, a good strategy of lightweight tools is
to support developers doing their daily tasks while systematically storing additional
documentation as a by-product.

Generally, our experiences show that an Information Flow Map of a pre-
development project is a valuable artifact. It serves as an important foundation for
discussion. This way such a map can lead to faster education of new project members
or to process improvements.

References

1. Weber, M., Weisbrod, J.: Requirements Engineering in Automotive Development: Experi-
ences and Challenges. IEEE Software 20(1), 16–24 (2003)

2. Allmann, C.: Automotive Pre-Development, requirements management based on the green
field? Softwaretechnik Trends 27(1) (2007)

 Lightweight Process Documentation 151

3. Stapel, K., et al.: Improving an Industrial Reference Process by Information Flow Analy-
sis: A Case Study. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589.
Springer, Heidelberg (2007)

4. Schneider, K.: Software Process Improvement from a FLOW Perspective. In: Learning
Software Organizations Workshop. Springer, Kaiserslautern (2005)

5. Allmann, C., Oppermann, N., Kovacevic, S.: Simulation-driven functional safety evalua-
tion of embedded automotive systems. In: 8th International Stuttgart Symposium “Auto-
motive and Engine Technology”, Stuttgart, Germany (2008)

6. Allmann, C., Winkler, L., Kölzow, T.: The Requirements Engineering Gap in the OEM-
Supplier Relationship. Journal of Universal Knowledge Management 1(2), 103–111 (2006)

7. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-Wesley
Professional, Reading (2003)

8. VMXT, V-Modell XT (Version 1.2), Koordinierungs- und Beratungsstelle der Bundes-
regierung für Informationstechnik in der Bundesverwaltung (2006), http://v-
modell.iabg.de/v-modell-xt-html-english/index.html

9. Wikimedia-Foundation, MediaWiki, http://www.mediawiki.org
10. Wikimedia-Foundation, Semantic MediaWiki, http://semantic-mediawiki.org
11. Basili, V., Caldiera, G., Rombach, D.H.: The Experience Factory. Encyclopedia of Soft-

ware Engineering. John Wiley and Sons, Chichester (1994)
12. Schneider, K.: LIDs: A Light-Weight Approach to Experience Elicitation and Reuse. In:

Bomarius, F., Oivo, M. (eds.) PROFES 2000. LNCS, vol. 1840. Springer, Heidelberg
(2000)

13. Allmann, C., Oppermann, N.: Lightweight requirements management in the automotive
pre-development. In: Software Engineering 2008, Munich, Germany (2008)

14. Jacobson, I.: Object Oriented Software Engineering: A Use Case Driven Approach. Addi-
son-Wesley, Reading (1992)

15. Benner, K., et al.: Utilizing Scenarios in the Software Development Process. In: Proceed-
ings of the IFIP WG8.1 Working Conference on Information System Development Proc-
ess, Amsterdam, Netherland (1993)

16. Sutcliffe, A.: Scenario-based requirements analysis. Requirements Engineering Jour-
nal 3(1), 48–65 (1998)

Employees’ Motivation for SPI: Case Study in a

Small Finnish Software Company

Anu Valtanen and Hanna-Miina Sihvonen

University of Kuopio, Department of Computer Science, P.O.B 1627,
FI-70211 Kuopio, Finland

{anu.valtanen,hanna-miina.sihvonen}@uku.fi
http://www.cs.uku.fi

Abstract. In small software companies the resources available for SPI
are often limited. With limited resources, the motivation of the employees
becomes one of the key factors for SPI. In this article, the motivational
factors affecting a small company’s SPI efforts are discussed. In the re-
search, we carried out interviews and a survey in a small Finnish software
company considering the motivation towards SPI. The results are pre-
sented here and compared with earlier motivation research. There were
differences revealed while comparing the motivating factors of smaller
companies to those of larger ones. In large companies the focus seems
to be on the business related motivators and in small ones the motiva-
tors related to comfortability of work are emphasized. Motivation survey
and the interviews proved to be useful tools in planning the future SPI
strategy. A lot of valuable information was discovered for planning and
implementing the next steps of SPI.

1 Introduction

Small and very small software companies are fundamental to the growth of many
national economies and it is crucial to note that small companies should not be
seen less important and influential than large ones, while the term small may im-
ply this. Majority of software companies are small [1], for example in Finland vast
majority of companies operating in both data processing and software engineer-
ing fields employ less than 50 employees1. Small companies need to maintain and
enhance their competitiveness and for that they need to improve their processes.
However, small companies do not necessarily share the same characteristics and
goals as large ones, which affect SPI efforts. There are certain unique features of
small companies that need to be understood [1,2]. Their resources, both finan-
cial and human, are often limited, and management, work, and organizational
culture may differ greatly from the ones in large organizations. For example, in
small software companies employees often work in several roles and practically
every employee is involved directly or indirectly in software development process,
whether one wants or does not want to be involved, whether one has software
engineering background or not.
1 http://www.stat.fi (2006)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 152–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Employees’ Motivation for SPI 153

Considering the limited resources – especially the employees, the human re-
sources - who represent a crucial part of companies’ process infrastructure [3],
their motivation for SPI has to be taken into account as one important factor
for successful improvement initiatives and implementation. Their motivation to
adapt new practices to daily work is significant for the SPI success. Practitioners’
SPI motivators and de-motivators have been studied earlier in different cultural
contexts for example by Baddoo et al. in UK [4,5,6] and Niazi et al. in Vietnam
[7]. However, previous studies of SPI motivation have concentrated on exploring
motivation mainly in large and SME sized software companies, and not empha-
sized the small and very small software companies. In this paper, we present a
case study of SPI motivators in a small Finnish software company. We have stud-
ied SPI motivation applying methods and motivators from studies of Baddoo et
al. [4] and Niazi et al. [7]. The focus in this research is on considering motivation
from employees’ and management’s perspectives. The results are compared with
the previous studies [4,7].

This paper aims at providing a more comprehensive perspective of small soft-
ware companies’ employees’ motivation and point of views about SPI. Addition-
ally, the effect of the management’s motivation towards SPI in a small company
is discussed. The paper is organized as follows: In Section 2, the case context and
research questions are presented. In Section 3, the research strategy is described.
In section 4, we present the findings from the research. In Section 5, we present
comparison of the results to earlier studies. Finally, in Section 6 we conclude the
results and point out the most important findings.

2 Case Context and Research Questions

The motivation of the employees is an important and much researched subject
in context of SPI [4,5,6,7]. However, the research usually neglects small and very
small software companies. In this research, SPI motivational factors of a small
company’s employees are contemplated and answers to following questions are
searched:

– What motivates the employees of a small company to SPI?
– What motivates the management of a small company to SPI?
– What is the role of motivation for SPI success in a small company?

The research was carried out in form of a case study in a small Finnish company
that has 17 employees. A case study is said to have ”a distinct advantage when
a ’how’ or ’why’ question is being asked about a contemporary set of events over
which the investigator has little or no control.” [12] and as a method, suits this
research very well.

The company where the research was performed in is a traditional software
house. The company’s working environment is quite free and the company has
a low hierarchy. The employees of the company are loosely divided into depart-
ments where their main responsibility areas are. Division of the workforce that
participated in this research is presented in Table 1. The CEO of the company

154 A. Valtanen and H.-M. Sihvonen

participates practically in every activity and because of this has a good knowl-
edge of what is going on in the company. The employees feel free to talk about
their work related problems and other issues.

Table 1. The Profiles of the Employees

MainResponsibility
Area Sales Adv. Con. Def. Des. Prog. Doc. Adm. Test. Man. SPI%

1 Management - - - x x - - - x x 85
2 Sales and Marketing x - - - - - - - - - 6
3 Sales and Marketing x - x - - - - x x - 3
4 Development - - - x x x x x - - 66
5 Development - - - - - x - - - - 6
6 Development - x - x x x x x x - 12
7 Development - - - x x x x x - - 15
8 Development - - - x x x x x - - 51
9 Development - - - x x x x - - - 45
10 Customer Support x x - x x x x x x - 90
11 Customer Support x x - x x x x x x - 90
12 Customer Support x x x - - - - - x - 3
13 Customer Support x x - x x - x x x - 85

Sales = Salesperson
Adv. = Advisor
Con. = Consigner
Def. = Definer

Des. = Designer
Prog. = Programmer
Doc. = Documenter
Adm. = Administrator

Test. = Tester
Man. = Manager

SPI % = The participation in the SPI efforts. (Percentage value count from
the documented process improvement sessions in the target company n=33)

The target company has an ongoing SPI project. The company started its SPI
efforts from a situation where the processes were at initial state and the situation
was quite chaotic. Like many small companies, also this company has a lack
of SPI resources and skills. The improvement project has been so far realized
using two outside SPI researchers, from whom another is the main author of
this article, and the target company’s personnel. Selected processes have been
modeled and streamlined using a light-weight modeling technique, that does not
require special SPI personnel or other special resources from the target company.
The techinique is described in [13]. After 18 months of improvement work the
situation has improved quite a bit. A lot of this seems to be thanks to the
enthusiasm and involvement of the target company’s employees.

The second phase of improvement project is about to start. At this point
part of the company’s processes are modeled and streamlined to the state from
which it is possible to start aiming at mature processes. The motivation research
described here was conducted to assure the next phases success. To measure the
motivation, there was a series of interviews made in the company considering the

Employees’ Motivation for SPI 155

Table 2. Definition of SPI Motivators (Baddoo and Hall, 2002)

Motivator Definition

1 Automation Tools to eliminate paper work
2 Autonomy Enables practitioners to perform different roles
3 Bottom-up initiatives Low and middle management have

input into the design and planning of SPI
4 Career prospects Improves career prospects
5 Communication Improved communication about SPI
6 Compulsory All SPI practices are made mandatory
7 Cost beneficial Improved cost/revenue ratio through SPI
8 Critical mass The presence of sufficient staff members

who want to see SPI happen
9 Eliminates bureaucracy Eliminates spending time on bureaucratic

processes
10 Empowerment Empower staff to take decisions on SPI
11 External audits Provision of some external body to maintain

SPI practices
12 Feedback Feedback from stakeholders
13 Job satisfaction Practitioners get job satisfaction from

producing good quality process
14 Justifiable benefits The ability to justify the long-term

benefits of SPI
15 Knowledgeable team leaders Having team leaders who know about SPI
16 Maintainable/easy processes Processes that are easy to understand,

follow and maintain
17 Meeting targets SPI practice help company to meet company’s

goals
18 Phased introduction SPI is introduced through small and

incremental implementation
19 Process ownership Stakeholders own and therefore are able to

change processes
20 Resources Sufficient time and resources allocated to SPI
21 Reward schemes Stakeholders are rewarded for SPI work
22 Saleability The perception that SPI will lead to

more saleable job market skills
23 Shared best practices Best practice is shared in companies
24 SPI forum Creating a forum where SPI ideas can

be discussed
25 Standardisation SPI makes practitioners work in

a standardised way
26 Taller hierarchy Taller company hierarchies for

more opportunity and promotion
27 Task forces Using task forces for SPI
28 Top-down commitment Senior management support for SPI
29 Training Training provided to practitioners

in SPI practices
30 Reduced admin SPI leads to reduced administration
31 Visible success Evidence of the benefits of SPI

motivation towards improvement efforts. Additionally, the interviewees assessed
the factors influencing their motivation using a survey based on [4].

3 Research Strategy

In order to be able to carry out a research of this type it requires firstly, a confi-
dential relationship between the researchers, employees and company’s manage-
ment and secondly a company that carries out SPI efforts. These requirements
also present a limitation for sample size. For these reasons, our sample in this
case is only one company.

156 A. Valtanen and H.-M. Sihvonen

However, we have quite an extensive sample collected within one company, tak-
ing into account thatwe collecteddata from13 out of 17 employees.Thosewhowere
left out were doing either remote work or were subcontractors working on sales and
marketing in different geographical locations. In addition to the small sample size,
other limitations of this research are the same ones as described in [4,7].

3.1 Data Collection Method

Data collection consisted of two basic instruments: individual interviews and
motivation survey. The confidentiality and anonymity of the collected data was
explained to the employees. The interviews were semi-structured interviews, car-
ried out in the form of discussion. Individual interviews were chosen in order to
avoid influence of the others on the interviewee’s answers and to explore the
personal dimension of motivation. The interview questions and format were con-
structed by two researchers. The motivation survey is based on software practi-
tioner motivators researched earlier by Baddoo et al. [4], used also by Niazi et al.
in [7]. Survey consists of 31 items and uses a 5-point response scale. The survey
examines what motivators the employees evaluate motivating but also whether
they may consider some of those de-motivating. The interviews and survey were
examined for consistency of information across the two instruments. Comments
from interviews were compared to the motivators pointed out in the survey. The
interviews and surveys were combined with common identity number in order
to be able to remain traceability between each interview and survey.

We interviewed individually the company’s CEO and twelve employees, who
are directly or indirectly involved in software development process, see Table
1. Two researchers were present in each interview. One researcher asked the
interview questions and guided through the discussions. Interviewing researcher
has not participated in the company’s SPI project. Another researcher, who was
making notes, has been involved with the SPI project of the company. Interviews
varied in length from 20 to 60 minutes. Interviews were recorded and transcribed
afterwards. Interview questions were as follows:

1. How did you choose a career in software engineering?
2. Did you have prior knowledge of SPI before the ongoing process improvement

project? (e.g. SPI models and standards)
3. How were the processes defined in your company prior to SPI project?
4. How were new tools, methods, and ways of work introduced and implemented

earlier?
– Were there defined common ways of work?
– Were your roles and responsibilities defined?

5. What motivated you to take part in process improvement efforts?
6. What results and impacts has the process improvement work had?
7. How were you informed about the upcoming SPI project?
8. Are the resources available for the improvement work?
9. What affect the outside process improvement consultants have had?

10. What has motivated you keeping up the improvement work?

Employees’ Motivation for SPI 157

The interviewed employees were given the motivator survey to fill in after
the interviews in order to avoid preconceived conceptions of motivators. The
employees were explained the meaning of each SPI motivator. The employees
were advised to consider the motivators from their personal perspective towards
SPI. Motivators with explanation are listed in Table 2. Each employee was asked
to evaluate the motivators with a scale from one to five. The scale was as follows:
1 = strong negative impact on motivation, 2 = negative impact on motivation,
3 = no impact on motivation, 4 = positive impact on motivation, 5 = strong
positive impact on motivation. Employees were also asked to prioritize three
most important motivators respectively.

3.2 Data Analysis

Each interview and the related motivation survey were studied as one entity and
they were combined with an identity number. The interview answers were coded
and traceability from the smallest instances to the original answers was main-
tained. Answers were collected and grouped by each interview question. From
grouped answers, all company and product specific references were removed in
order to preserve the anonymity of the company. From grouped answers, key-
words and sentences were marked and listed into tables in respect of interview
question. From provided lists, the common, unique, and contradictory moti-
vators were identified and compared with results from motivation survey. The
motivation survey data was combined in tables, describing with scale from one
to five the motivators across the employees, including CEO’s motivators. CEO’s
motivators were marked with a star in Table 3, in order to be able to perceive
his motivators, presenting the managerial point of view.

4 Findings

As it can be seen from Table 3, the employees of the company are motivated
to SPI. They see most of the motivational factors presented in Baddoo et al’s
[4] work as motivating. The 4’s and 5’s dominate the table, meaning that the
employees see the factor mentioned having a positive or very positive impact on
motivation.

The factors having the strongest positive influence on motivation were au-
tonomy, bottom-up initiatives, communication, critical mass, job satisfaction,
justifiable benefits, process ownership, shared best practices, standardization,
top-down commitment and training. Most of these motivating factors also oc-
cured during the interviews. For example, majority of the interviewees stressed
the importance of communication saying that it is essential to disseminate the
improvement project’s results and plans to the whole company. There were only
three factors that were considered having a negative impact on motivation. One
of the motivators having a negative impact was interestingly cost beneficiality.
Other de-motivating factors were reward schemes and reduced admin. In the
next sections the motivational factors of the target company’s CEO and the

158 A. Valtanen and H.-M. Sihvonen

Table 3. Results of the motivation query

Occurrence in answers (n=12)
Frequency3 %4

Motivator2 1 2 3 4 5 1 2 3 4 5 P15 P25 P35

1 Automation 0 1 2 6 3* 0 8 17 50 25 0 0 0
2 Autonomy 0 0 0 9 3* 0 0 0 75 25 3 0 0
3 Bottom-up initiatives 0 0 0 6* 6 0 0 0 50 50 0 1 1
4 Career prospects 0 0 4 6* 2 0 0 33 50 17 0 2 0
5 Communication 0 0 0 7* 5 0 0 0 58 42 0 1 1
6 Compulsory 0 1* 5 6 0 0 8 42 50 0 0 0 0
7 Cost beneficial 0 2 3 5 2* 0 17 25 42 17 0 1* 0
8 Critical mass 0 0 0 7 5* 0 0 0 58 42 0 1 0
9 Eliminates bureaucracy 0 0 5 5* 2 0 0 42 42 17 0 0 0
10 Empowerment 0 0 1* 6 5 0 0 8 50 42 2 0 0
11 External audits 0 1 3 4* 4 0 8 25 33 33 0 0 2
12 Feedback 0 0 1 9* 2 0 0 8 75 17 0 0 0
13 Job satisfaction 0 0 0 7 5* 0 0 0 58 42 3 2 0
14 Justifiable benefits 0 0 0 10* 2 0 0 0 83 17 0 0 0
15 Knowledgeable team leaders 0 0 3 7* 2 0 0 25 58 17 0 0 0
16 Maintainable/easy processes 0 0 2* 6 4 0 0 17 50 33 1 0 1
17 Meeting targets 0 0 3 6 3* 0 0 25 50 25 1* 0 1
18 Phased introduction 0 0 3 8* 1 0 0 25 67 08 0 0 0
19 Process ownership 0 0 0 7* 5 0 0 0 58 42 1 0 0
20 Resources 0 0 1 5* 6 0 0 8 42 50 0 1 0
21 Reward schemes 0 0 7* 3 2 0 0 58 25 17 0 0 1
22 Saleability 0 0 4 3* 5 0 0 33 25 42 0 0 0
23 Shared best practices 0 0 0 6 6* 0 0 0 50 50 0 0 0
24 SPI forum 0 0 1 8* 3 0 0 8 67 25 0 0 0
25 Standardisation 0 0 0 8 4* 0 0 0 67 33 1 2 1
26 Taller hierarchy 0 0 3 7* 2 0 0 25 58 17 0 0 0
27 Task forces 0 0 3 8 1* 0 0 25 67 8 0 0 0
28 Top-down commitment 0 0 0 5 7* 0 0 0 42 58 0 1 1
29 Training 0 0 0 7 5* 0 0 0 58 42 0 0 1
30 Reduced admin 0 0 5 4 3* 0 0 42 33 25 0 0 0
31 Visible success 0 0 1 7 4* 0 0 8 58 33 0 0 2*

Table 4. The three most motivating factors

1 2 3

CEO Meeting targets Cost beneficial Visible Success
Employees Job satisfaction Autonomy Standardization

employees are compared and analyzed. The analysis presented is based on both,
the interviews and the motivation survey.

4.1 Motivation of the CEO

In the interviews, the CEO expressed cost beneficiality and autonomy as moti-
vators in several answers. While describing his earlier job assignments and career
2 The motivational factors researched by Baddoo et al.
3 The number of the occurrences in total.
4 Percentage values of occurrences.
5 P1, P2, P3=The three most important motivators.

Employees’ Motivation for SPI 159

in the interview, it became obvious that these motivators have been strong from
the early stages of his career. Furthermore, he mentioned shared best practices
and standardization as motivators, which he also sees as main goals of the SPI
project. Although maintainable/easy processes was pointed out by the CEO to
be one of the most important goals too, in the survey he had marked that to be
irrelevant. He considered external audits useful and motivating saying that the
external auditing compels to carry out improvements. While seeing the external
compulsion as motivating trigger, he sees internal compulsion having a negative
impact. He evaluates using imposing or compulsion for employees and himself
being a de-motivating factor, which contradicts with the previous statement. He
sees top-down commitment as one of the most important motivators and insists
on being committed to SPI. However, the top-down commitment is not visible
for the employees. He emphasized also training, knowledgeable team leaders,
SPI forum, and visible success as motivators. In the interviews, he pointed out
the defined roles and easy processes as motivating factors, which allow him to
reduce administration and to redirect some of his tasks to other personnel. From
the CEO’s point of view the possibilities to work in a cost effective and reduced
administrative way were important. In the CEO’s interview we presented addi-
tional question, what he thinks motivates his employees to SPI. He predicted that
job satisfaction, visible success, autonomy and communication would motivate
the employees.

In the survey he listed following as the most important motivators: automa-
tion, autonomy, cost beneficiality, critical mass, job satisfaction, meeting targets,
shared best practices, standardization, task forces, top-down commitment, train-
ing, reduced admin and visible success. As the three most important motivators
he listed the following respectively: meeting targets, cost beneficiality and visi-
ble success, see Table 4. The results of the CEO’s motivation survey are marked
with * in Table 3.

Furthermore, he added five other motivators he evaluated highly motivating:
improved quality, improved scheduling, improved resource usage, and impression
of professionalism for customers.

4.2 Motivation of the Employees

None of the target company’s employees had previous experience in SPI. The
initiative to the SPI project came from the company’s CEO and the participa-
tion in the project was compulsory. While discussing in the interviews about the
communication issues related to SPI project in the interviews, it became obvious
that the employees who had not participated in the SPI work so far had little
knowledge on how the improvement work was going, and what were the real
goals. However, neither the compulsory nor the lack of previous knowledge had
not influenced the motivation of the employees negatively. Quite the contrary,
compulsion was seen as a fairly motivating factor by 6 of the employees. Consid-
ering the communication problems, the situation was different. In the motivation
query communication was seen as an important motivation factor by all of the

160 A. Valtanen and H.-M. Sihvonen

employees and many of them stated in the interviews that it was frustrating not
to have information about the progress of the SPI project.

Despite the communication problems, compulsion and lack of experience and
knowledge, as a whole, the employees of the target company are very motivated
to SPI. In the motivation survey there were 13 out of 31 factors that all of the em-
ployees regarded as motivating or strongly motivating. Summary of the answers
can be seen in Table 3. When asking them to name the three most important
motivational factors respectively, job satisfaction, autonomy and standardization
rose above others, see Table 4.

In the interviews, in addition to communication, most of the employees ex-
pressed that they saw top-down commitment and standardization as very im-
portant motivators. Interestingly, only standardization was seen as the most
important factor in the motivation survey.

Even though the CEO of the company insists on being committed to SPI
some of the employees have a different opinion. Especially the employees in the
marketing department and part of the software engineers experience that there
are no resources available for them to improve their processes. This conception
is a result and a problem caused by the poor communication and resource al-
location, which is not justified to the employees. The resources are allocated
without further explanations. The SPI project has not yet reached the market-
ing department but improving their processes is discussed and included in the
future plans. This problem describes the motivation of the target company’s em-
ployees well. They see the fact that their own work processes have not yet been
improved, acknowledge the unsatisfactory state of processes, and look forward
on improvement actions influencing those processes.

Comparing the motivators the CEO predicted to motivate the employees, job
satisfaction, visible success, autonomy and communication, it appears that he
knows his employees quite well. All the motivational factors the CEO predicted
were high on the motivator list of the employees.

5 Discussion

With a small company’s limited resources, motivation of the employees is es-
sential to make process improvement happen. In the research presented here,
the results of the motivation survey and the interviews proved the employees to
be highly motivated in process improvement efforts. Furthermore, the employ-
ees who have not yet had the chance to participate actively in improvements,
showed also great interest and motivation to be involved in the SPI project.

Perhaps not surprisingly, the most important motivational factors between
the employees and the CEO differed quite a lot. The CEO named productivity
related issues to have the most positive impact on his motivation. Meanwhile,
among the employees the comfortability issues were seen as the most significant.
The factor ”cost beneficial” distributes opinions strongly. Part of the employ-
ees evaluate that it has a negative impact on motivation, however there are
others who consider it having positive or very positive impact. Based on the

Employees’ Motivation for SPI 161

interviews, cost beneficiality might be seen as intrusive managerial procedure.
Reward schemes, that have been referred to in [4,7] as a motivating factor, was
not considered having an impact on motivation in the research presented here.
The same employees who had valued reward schemes strongly motivating in the
survey expressed this also in the interviews.

When comparing the results of the research presented here with the results of
other motivation surveys, these results support the earlier ones. In Baddoo et al’s
survey [4] among the most important motivators, excluding the management,
were visible success, bottom-up initiatives, resources, training, empowerment,
and process ownership. In Niazi and Babar’s research [7] six highly motivat-
ing factors were cost beneficiality, job satisfaction, knowledgeable team leaders,
maintainable/easy processes, shared best practices and top-down commitment.
In the research presented here the most important motivators among the em-
ployees were autonomy, bottom-up initiatives, communication, critical mass, job
satisfaction, justifiable benefits, process ownership, shared best practices, stan-
dardization, top-down commitment and training. In addition to these, the CEO
named cost beneficiality and autonomy as important factors.

Critical SPI success factors are higher management support, training, aware-
ness, allocation of resources, staff involvement, experienced staff and defined SPI
implementation methodology [15]. All these were also listed as motivators in the
motivation survey and the answers presented that these factors have a positive
impact on the target company’s employees. In the light of these results, the
factors motivating the target company should facilitate the success of the SPI
efforts.

Traditionally the management/top-down commitment has been seen as an vi-
tal success factor for SPI [15,14,10] and the results from this research strengthen
this conception. However, what became evident, especially from the interview
answers, was the fact that it is not enough if the manager insists on being com-
mitted. The actual practical actions has to be visible for employees. By taking
into account bottom-up initiatives, empowerment, allocating resources fairly and
communicating the SPI related issues to the employees, the motivation of the
management reflects to the employees and increases their motivation. This can
also be done through compulsion, which was not considered de-motivating by
any of the employees. On the contrary, all of the employees regarded this as
motivating. When SPI is made compulsory by the management, it can be per-
ceived as a sign of SPI being a part of the company’s essential business processes
and there by, beneficial for everyone. In the interviews some of the employees
were clearly pointing out the need for following up SPI, seeing this motivating,
because this provides visible success and justifiable benefits, which were pointed
out motivating by majority of the employees.

6 Conclusion

In the research presented here, the motivation of a small company’s employees for
SPI was researched and analyzed. According to the motivation survey, the most

162 A. Valtanen and H.-M. Sihvonen

important factors having strong positive impact on motivation were top-down
commitment, shared best practices, resources and bottom-up initiatives. The
most important motivators having a positive impact were autonomy, feedback
and justifiable benefits. The factors the employees themselves chose to be the
most important, were job satisfaction, standardization, and autonomy.

Comparing the results to [7] of small company practitioner motivators, the
important ones have been cost beneficiality, job satisfaction, knowledgeable team
leaders, and maintainable/easy processes. Our results show that job satisfaction
is important, however, more emphasis is on top-down commitment, bottom-up
initiatives, resources, and shared best practices. Comparing both of these to the
motivators in large companies [7,4], career prospects, eliminating bureaucracy,
and reward schemes were not seen as important as in large companies. In large
companies the focus is on the business related motivators and in small ones the
motivators related to comfortability of work are emphasized.

During the research presented, motivation survey and the interviews have
proven to be useful tools in planning the future SPI strategy. A lot of valuable
information was discovered for planning and implementing the next steps of SPI.
When beginning SPI or planning future SPI cycles in the company, it could be
useful to carry out a motivation survey before SPI actions or latest, in the early
stages of the SPI project. This provides the SPI planners with a conception of
how to involve and interact with the employees or management, for instance how
often SPI results should be reported and to whom, who should be involved at
what stage of the project, justification scheme etc.

Despite the fact that the results presented in this article are from one small
company, the researchers suggest that the main results can be generalized when
keeping some limitations in mind. The most significant motivational factors pre-
sented here represent opinions of one small company, but seem to support pre-
vious research. In addition to small sample of the research, other limitations
are the language and human issues. The interviews and the survey were con-
ducted in Finnish. Original motivational factors were translated from English to
Finnish. In addition to language issues, when interviewing people there is always
the risk that people offer answers that they expect the interviewer wants, and
also, they might understand questions or words differently regardless of expla-
nations. To address these limitations in future work, it would be valuable to
increase the sample size and expand research in different cultural contexts in
small companies. However, this requires a good groundwork.

References

1. Richardson, I., von Wangenheim, C.G.: Guest Editors’ Introduction: Why are Small
Software Organizations Different? IEEE Software 24, 18–22 (2007)

2. Horvat, R.B., Rozman, I., Gyrks, J.: Managing the complexity of SPI in small
companies. Software Process: Improvement and Practice 5, 45–54 (2000)

3. Kaltio, T., Kinnula, A.: Deploying the defined SW process. Software Process: Im-
provement and Practice 5, 65–83 (2000)

Employees’ Motivation for SPI 163

4. Baddoo, N., Hall, T.: Motivators of Software Process Improvement: an Analysis of
Practitioners’ Views. Journal of Systems and Software 62, 85–96 (2002)

5. Baddoo, N., Hall, T.: De-motivators for Software Process Improvement: an Analysis
of Practitioners’ Views. Journal of Systems and Software 66, 23–33 (2003)

6. Baddoo, N., Hall, T.: Software Process Improvement Motivators: An Analysis using
Multidimensional Scaling. Empirical Software Engineering 7, 93–114 (2004)

7. Niazi, M., Ali Babar, M.: Motivators of Software Process Improvement: An Analysis
of Vietnamese Practitioners’ Views. In: Proceedings of EASE 11th International
Conference on Evaluation and Assessment in Software Engineering (2007)

8. Demirörs, O., Demirörs, E.: Software Process Improvement in a Small Organiza-
tion: Difficulties and Suggestions Software Process Technology. In: Proceedings of
the 6th European Workshop on Software Process Technology EWSPT. Springer,
Heidelberg (2006)

9. Curtis, B., Hefley, W.E., Miller, S.A.: The People Capability Maturity Model:
Guidelines for Improving the Workforce. Addison-Wesley, Reading (2002)

10. Zahran, S.: Software process improvement: practical guidelines for business susc-
cess. Addison-Wesley Longman Ltd., Essex (1998)

11. Abrahamsson, P.: Is Management Commitment a Necessity After All in Software
Process Improvement. In: Proc. 26th Euromicro. Conf., vol. 2, pp. 246–253 (2000)

12. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications Inc.,
Thousand Oaks (2003)

13. Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process
modeling technique for software process improvement. Software Process Improve-
ment and Practice 7, 33–44 (2002)

14. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process
Improvement Implementation: An Empirical Study. Software Process Improvement
and Practice 11, 193–211 (2006)

15. Dyb̊a, T.: Factors of software process improvement success in small and large or-
ganizations: an empirical study in the scandinavian context. In: Proceedings of
the 9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering, pp.
148–157. ACM Press, New York (2003)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 164–175, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Knowledge Management Approach to Support
Software Process Improvement Implementation

Initiatives

Mariano Angel Montoni, Cristina Cerdeiral, David Zanetti,
and Ana Regina Cavalcanti da Rocha

COPPE/UFRJ – Universidade Federal do Rio de Janeiro
Caixa Postal 68511 – CEP 21945-970 – Rio de Janeiro – RJ – Brasil

{mmontoni,cerdeiral,zanetti,darocha}@cos.ufrj.br

Abstract. The success of software process improvement (SPI) implementation
initiatives depends fundamentally of the strategies adopted to support the exe-
cution of such initiatives. Therefore, it is essential to define adequate SPI im-
plementation strategies aiming to facilitate the achievement of organizational
business goals and to increase the benefits of process improvements. The objec-
tive of this work is to present an approach to support the execution of SPI im-
plementation initiatives. We also describe a methodology applied to capture
knowledge related to critical success factors that influence SPI initiatives. This
knowledge was used to define effective SPI strategies aiming to increase the
success of SPI initiatives coordinated by a specific SPI consultancy organiza-
tion. This work also presents the functionalities of a set of tools integrated in a
process-centered knowledge management environment, named CORE-KM,
customized to support the presented approach.

Keywords: Software process improvement implementation, process-centered
knowledge management environment, SPI implementation strategy.

1 Introduction

The increase of organizations competitive advantages is crucial to guarantee market
survival. In order to increase organizations capability to develop software, several
approaches can be adopted, being Software Process Improvement (SPI) implementa-
tion the most recognized one.

Software development is a complex activity and software processes depend
strongly in human commitment for its implementation [1]. Individual and organiza-
tional behavioral aspects also have great influence in the success of SPI initiatives
[2, 3]. Therefore, an important issue to be considered in the execution of SPI initia-
tives is that those initiatives are conducted by people in a highly collaborative proc-
ess. Motivated and satisfied teams are likely to implement process improvements
more efficiently and the benefits achieved from the SPI implementations are rapidly
observed. Nevertheless, when the opposite occurs, resistance to changes can be a
critical barrier to effective SPI implementation [3].

 A Knowledge Management Approach to Support 165

SPI practitioners must have a great amount of knowledge about software engineer-
ing and they must also be capable to use these knowledge to guide SPI implementa-
tion in software organizations aiming to achieve the expected results [4]. Moreover,
mostly process improvement actions require a significant amount of financial re-
sources and some benefits achieved with implemented improvements are not easily
measurable, increasing the difficulty to observe return of SPI investments [5].

According to Zaharan [6], the lack of adequacy of approaches to support SPI im-
plementation is one of the most common reasons to SPI initiatives failure. The major-
ity of SPI approaches only supports the identification of “what” activities must be
implemented, and not the “how” to implement those activities [7, 8].

Considering that SPI consultancy organizations have the SPI implementation as
their core business, and that the success of SPI initiatives coordinated by those con-
sultancy organizations implies directly in the success of the organizations that acquire
their services, it is fundamental to provide adequate mechanisms to support the man-
agement of SPI implementation initiatives by SPI consultancy organizations.

This work presents a knowledge management approach to support SPI implemen-
tation initiatives conducted by SPI consultancy organizations. As part of the approach,
a set of tools were developed and integrated in a process-centered knowledge man-
agement environment aiming: (i) to support SPI consultancy organizations to estab-
lish SPI strategies; (ii) to support the execution and follow-up of such strategies; and
(iii) to support the management of knowledge necessary to conduct SPI initiatives
effectively and efficiently. In order to facilitate the definition of SPI strategies, we
developed and applied a methodology to identify critical success factors that influence
SPI initiatives. Both the methodology and the results achieved by its application are
also presented in this work.

In the next section, we discuss some issues related to management of SPI initia-
tives. Section 3 presents the methodology developed to support the identification of
critical success factors that influence SPI initiatives. Section 4 presents the approach
to support SPI initiatives conducted by SPI consultancy organizations, and also the
tools developed to support the approach. Section 5 presents the conclusions and points
out future directions.

2 Management of SPI Implementation Initiatives

An important aspect to be considered in the management of SPI implementation ini-
tiatives is the relevant issues that have influence on SPI success. Most of the time,
these issues are penetrated deeply into the organization so that it is difficult to recog-
nize its existence and importance [6]. For instance, SPI implementation involves the
introduction of innovative practices in the organizations that require knowledge about
new technologies. But it is not always easy to manage barriers for a specific SPI im-
plementation, such as lack of technical knowledge required to implement process
improvements.

Issues that have influence on SPI implementation initiatives are object of research
studies in the last decades. These issues are commonly known as Critical Success
Factors (CSF). Although there is considerable number of studies focusing this theme,
there is neither consensus in the area about what are those factors, nor understanding
about how they interact or influence SPI implementation initiatives.

166 M.A. Montoni et al.

According to Niazi et al. [7], most of the software organizations do not treat their
SPI initiatives as real projects. Therefore, it is difficult to apply methods and tech-
niques well established in the project management area to support SPI initiatives
execution. Therefore, it is important to apply efficient mechanisms to monitor and
control SPI actions and to manage critical success factors that may affect a specific
SPI initiative, for instance, resistance to processes changes. Another important aspect
to be considered in SPI implementation initiatives is that most of the activities related
to SPI involve transference of large amounts of knowledge (for instance, knowledge
about patterns, methods, techniques, supporting tools and about the software process
implemented, and also knowledge about the software organization and its projects).

Baddoo and Hall [9] suggest that the improvement of knowledge about the rela-
tionship among motivators to SPI for different software engineering groups can in-
crease the efficiency of SPI implementation. El-Emam et al. [10] also point that the
evaluation of the effects of critical success factors interaction that influence SPI initia-
tives amplify substantially the organizational pre-requirements for the success or
failure of those initiatives and, in this way, increases the viability to define more ge-
neric models about critical success factors that may affect SPI. El-Emam et al. [10]
also indicates that cultural differences affect directly the success of SPI.

Niazi et al. [7] suggest that the actual problem in SPI is not the lack of standards or
models, but the lack of an effective strategy to successfully implement such standards
and models. Some approaches were developed to support SPI implementation man-
agement. Niazi et al. [7] developed a SPI implementation framework, named SPI-IF,
from empirical studies about critical success factors (CSF) that influence SPI. This
approach aimed to identify “what” is critical in SPI implementation and “how” to
implement the improvements in the organizations. Wilson et al. [11] developed a
framework to evaluate the success of SPI initiatives and validated this approach with
group interviews in seven organizations of the UK. Dybå [12] developed an instru-
ment to measure critical success factors in SPI based in data collected from 120 soft-
ware development organizations.

3 A Methodology for Identifying Critical Success Factors That
Influence Software Process Improvement Initiatives

In order to cope with the lack of knowledge about factors that influence SPI initia-
tives, we planned and executed an empirical study to develop a knowledge-body of
factors that influence SPI initiatives in the context of Brazilian software industry. The
complete methodology developed to support the study is presented in [13]. Next, we
briefly describe the relevant characteristics and results of such study that were used as
a base for elaborating the approach to support SPI implementation initiatives that is
the main focus of this work.

We applied in the study a multi-strategy approach that combined review of empiri-
cal studies in the SPI field, a survey and application of qualitative and quantitative
analysis techniques. In the study, we applied the Grounded Theory (GT) method [14].
The first step for applying this method was to collect data by applying questionnaires

 A Knowledge Management Approach to Support 167

aiming to identify factors that have influence in SPI implementation. The question-
naires were applied to a selected group of SPI practitioners that participated on SPI
initiatives based on recognized models and standards, such as CMMI [15]. In total we
analyzed 25 questionnaires of SPI practitioners. The next step in the study was to
associate codes to declarations on each questionnaire representing types of findings of
critical success factors that influence SPI initiatives. The coded data (findings) were
then analyzed and categorized. These categories were denominated critical success
factors properties. The association between the findings and a critical success factor
property was classified as a finding representing the presence or absence of a critical
success factor in a specific SPI implementation initiative. As a result of this analysis
we elaborated a theoretical framework composed of knowledge related to critical
success factors, its properties and relationships.

In order to derive and aggregate the main critical success factors, we applied two
widely recognized statistical analysis techniques: Multi-Dimensional Scaling (MDS)
[16] and Principal Components Analysis (PCA) [17]. The MDS and PCA techniques
were used in conjunction to identify the critical success factors with statistical signifi-
cant relationship. More specifically, the PCA technique provided us a systematic way
for identifying a reduced set of CSF components relative to the original set of vari-
ables. 5 major critical success factors components with statistical reliability were
identified.

The first factor was labeled “Environment” since all variables measure the organ-
izational environment capability to establish and maintain SPI initiatives. These vari-
ables measure if there are favorable conditions for initiating and sustaining an SPI
initiative with two points of view: the individual and the organization. The individual
measures are related to members’ satisfaction and relationship among members and
the SPI team. The organization measures are related to conciliation of strategic goals
and SPI interests and to organization internal stability.

The second factor is labeled “Strategy” and indicates that an efficient SPI strategy
is concerned on guaranteeing that organization members are aware of the potential
benefits that can be achieved by implementing SPI.

The third factor component is “Institutionalization” since the variables of this fac-
tor measure the institutionalization of SPI implementation initiatives across the or-
ganization by characterizing the degree of resistance to processes institutionalization
and to organizational changes, for instance, people turnover, and to inherent difficul-
ties of implementing SPI in different organizational levels.

Since all variables of the fourth factor are considered indicators of commitment to
SPI, we labeled this factor as “Commitment”. A higher management committed to
SPI provides adequate financial resources since the conception of an SPI program and
throughout the SPI projects. Moreover, a committed senior management guarantees
that organization members have adequate competences and available time to effi-
ciently execute process changes.

The fifth factor is termed “Motivation and acceptance” and indicates that the SPI
team is a facilitator of organization members’ acceptance to institutionalization of
process changes promoted by SPI initiatives.

168 M.A. Montoni et al.

4 A Knowledge Management Approach to Support Software
Process Improvement Implementation Initiatives

An approach supported by a computational infra-structure was defined to support the
management of SPI implementation initiatives by consultancy organizations. This
approach is based on a customized process-centered knowledge management envi-
ronment. Next, we describe some important definitions, the approach architecture,
and the functionalities of supporting tools to the presented approach.

4.1 Standard SPI Implementation Process and SPI Implementation Strategy
Concepts

Two concepts used in this work need more discussion. The first concept is standard
SPI implementation process. A SPI consultancy organization may have one or more
different processes to guide SPI implementation. Nevertheless, these processes do not
differ much when put in practice, i.e., they share common characteristics. Therefore,
we can say that SPI consultancy organizations may have one or more standard proc-
esses which are composed of explicit phases constituted of subprocesses defined in a
high level. These standard processes can be defined in accordance to existence SPI
implementation approaches. One example would be a standard process defined based
on the phases and subprocesses of the IDEAL model [18].

The second concept is SPI implementation strategy. A SPI consultancy organiza-
tion may have one or more SPI implementation strategies applicable to one or more of
the subprocesses that constitute each one of the organizations’ standard SPI imple-
mentation process. These strategies specialize and adapt a subprocess of a SPI stan-
dard process by defining in a lower level the activities to be executed in the context of
each subprocess. The defined process for a specific SPI implementation project is
constituted of the standard SPI process adapted by the selection and incorporation of
specific SPI implementation strategies. A SPI implementation strategy applied to
guide a specific subprocess of a standard SPI process defines: (i) the activities exe-
cuted in the context of the subprocess and its descriptions, like the products required
and produced by the activities and the competences requirements that activities exec-
utants must satisfy in order to be allocated in the activity; (ii) the organizational con-
texts which define scenarios for applying the strategies; (iii) the required knowledge
to execute the activities defined in the strategy; (iv) the resources necessary to execute
the activities defined in the strategy; (v) the risks associated to a specific strategy and
that occurred in previous SPI implementation projects; (vi) the mitigation and contin-
gency actions related to risks associated to a specific strategy and the results of the
execution of such actions in previous SPI implementation projects; (vii) the time and
effort usually required to execute each one of the activities defined in a specific strat-
egy based on data collected from previous SPI implementation projects; and (viii) the
communication procedures necessary to guarantee the success of the activities defined
in a specific strategy.

As an example of an strategy, we can consider the subprocess “Establish the
infra-structure” defined in the “Initiating” phase of the IDEAL approach [18]. De-
pending in the specific characteristics of the software organization focus of the SPI

 A Knowledge Management Approach to Support 169

implementation, SPI consultancy organizations can chose to provide or indicate dif-
ferent infra-structures. For instance, if the software organization does not have
adequate tools to support processes, an SPI consultancy organization may suggest
specific tools according to organizational context. One example is a process-centered
software engineering environment, named TABA Workstation [19-21], that
COPPE/UFRJ provides to software organizations that acquire its SPI services.
COPPE/UFRJ is a research and development institute that has been providing SPI
consultancy services to Brazilian organizations for over two decades.

4.2 Architecture of the Approach

The approach presented in this work relies on an architecture constituted of different
components with well defined objectives and responsibilities aiming to address criti-
cal issues related to SPI implementation initiatives. The conceptual understanding of
critical success factors, standard SPI implementation process and SPI implementation
strategy were essential for designing such architecture.

Figure 1 presents the main components of this architecture and their relationships.
The first group of components on the left part of Figure 1 has the objective to manage
knowledge related to (i) critical success factors that have influence on SPI implemen-
tation initiatives, and (ii) SPI strategies to guide SPI implementation initiatives coor-
dinated by a SPI consultancy organization. The components of this group are the
following:

• Identification of Critical Success Factors: the objective of this component
is to support the acquisition of knowledge related to critical success fac-
tors that have influence in SPI implementation initiatives. The component
must support knowledge capture from different sources, for instance,
technical papers and reports, and empirical studies, and also to support the
application of the methodology for identifying critical success factors that
influence SPI initiatives presented in section 3 of this work.

• Definition of SPI implementation Strategies: the objective of this
component is to support the acquisition of knowledge related to SPI im-
plementation strategies in specific contexts, considering organizational
characteristics that may have positive or negative impact on SPI. The
component must provide the means for different SPI consultancy organi-
zations to preserve their knowledge related to (i) their SPI implementation
strategies defined based on software process standards and models, (ii) the
context which these strategies are most applicable, and (iii) the directives
for adapting the SPI strategies to support the conduction of specific SPI
implementation initiatives.

The second group of components on the upper right part of Figure 1 treats the ap-
plication of benchmarking techniques in SPI implementation projects. The main com-
ponent of this group is:

• Benchmarking of SPI Implementation Projects: the objective of this com-
ponent is to support the identification of best practices of a SPI consul-
tancy organization and the application of these practices in new SPI

170 M.A. Montoni et al.

Fig. 1. Components of the approach to support SPI implementation initiatives

initiatives. The component must support the maintenance of knowledge
related to the performance of SPI implementation strategies extracted
from execution data of SPI implementation projects. This knowledge pro-
vides the means to SPI consultancy organizations predict both current and
future SPI implementation projects performance.

The third group of components on the lower right part of Figure 1 focuses SPI im-
plementation projects management and assessment. The components of this group are
the following:

• SPI Implementation Projects Planning: the objective of this component is
to support planning of SPI implementation projects aiming to provide the
means for selecting and adapting SPI strategies based on organizational
characteristics that have positive or negative impact in SPI initiatives.

• SPI Implementation Projects Monitoring and Control: the objective of
this component is to support SPI activities monitoring by analyses of both
qualitative and quantitative data of projects execution. The component
must also support the effective control of factors that may significantly in-
fluence the SPI implementation projects results.

• Evaluation of Organizational Conditions to Implement SPI: the objective
of this component is to support the identification of factors that may
influence the success of SPI implementation initiatives since the begging
of the SPI project and throughout its execution.

 A Knowledge Management Approach to Support 171

4.3 Supporting Tools

A set of tools were developed to support the application of the presented approach.
These tools are integrated in a customizable process-centered knowledge management
environment, named CORE-KM (Customizable Organizational Resources Environ-
ment with Knowledge Management) [22].

A knowledge management environment was customized to the COPPE/UFRJ SPI
consultancy organization based on the CORE-KM. This environment is being used to
support the application of COPPE/UFRJ’s SPI implementation strategy, named
SPI-KM, in software development organizations. Although this strategy was used to
coordinate several SPI implementation initiatives in different Brazilian software or-
ganizations [23, 24], the SPI consultants had to deal with innumerous difficulties due
to lack of supporting tools, for instance, difficulty to transfer knowledge about the
strategy to new SPI consultants.

The set of tools developed to support the presented approach is the following:

• Tool to support Management of SPI Implementation Strategies: the objec-
tive of this tool is to support (i) the management of critical success factors
information that have influence in SPI initiatives, and (ii) the management
of SPI implementation strategy information of a specific SPI consultancy
organization.

• Tool to support Benchmarking of SPI Implementation Projects: the objec-
tive of this tool is to support (i) the definition of a benchmarking base of
SPI implementation projects coordinated by a specific SPI consultancy
organization, (ii) the management of information of SPI implementation
projects coordinated by a specific SPI consultancy organization, and (iii)
the access of information of similar SPI implementation projects coordi-
nated by a specific SPI consultancy organization. Figure 2 presents the
screen of this tool that consolidates information about different SPI im-
plementation strategies performances.

• Tool to support Management of SPI Implementation Projects: the objec-
tive of this tool is to support (i) the planning of SPI implementation pro-
jects coordinated by a SPI consultancy organization, (ii) the monitoring
and control of SPI implementation projects coordinated by a specific SPI
consultancy organization, and (iii) the assessment of organization condi-
tions to implement SPI. Figure 3 presents the screen of this tool that
supports the identification of critical success factors that influence SPI
implementation projects. From this screen, the SPI management can iden-
tify the critical success factors present in a specific SPI implementation
project and define a risk management plan constituted of mitigation and
contingency actions to manage the factors assessed negatively as potential
threats to the success of the project.

172 M.A. Montoni et al.

Fig. 2. Screen of the Benchmarking report

Fig. 3. Screen to support the identification of critical success factors

 A Knowledge Management Approach to Support 173

5 Conclusions

This work presented an approach to support SPI implementation initiatives. We also
presented a methodology for identifying critical success factors that influence SPI
initiatives. The main components of the approach and the supporting tools were also
discussed in this work.

A case study was designed aiming to answer the following research question: How
has the use of the developed approach facilitated the SPI implementation initiatives
conducted by a SPI consultancy organization? In order to answer this research ques-
tion, we assumed that SPI implementation initiatives are facilitated if some expected
benefits are achieved by an SPI consultancy organization while conducting a specific
SPI implementation initiative.

Therefore, we stated the following proposition to guide our study effort: The main
benefits expected to be achieved by applying the presented approach are: (i) to accu-
mulate knowledge about critical success factors that have influence on SPI implemen-
tation initiatives; (ii) to accumulate knowledge about SPI implementation strategies;
(iii) to facilitate the selection and adaptation of SPI implementation strategies in spe-
cific contexts; (iv) to facilitate the evaluation of organization conditions to implement
SPI; (v) to facilitate the management of SPI initiatives based on effective and efficient
SPI implementation strategies; (vi) to increase the visibility of SPI initiatives results;
(vii) to diminish costs, time and effort to conduct SPI initiatives; (viii) to preserve
knowledge related to SPI implementation execution; and (ix) to facilitate the identifi-
cation of best practices in SPI implementation.

The unit of analysis for this study, i.e., the case itself, is a specific SPI implementa-
tion initiative coordinated by the COPPE/UFRJ SPI consultancy organization. The
case study will show how the presented approach increases the success of this specific
SPI implementation initiative.

The data from which the study derive its conclusions will be collected in the form
of defined metrics that provides indications whether or not the expected benefits of
the application of the presented approach are being observed in the case of the study.
The SPI initiative object of this study has already began and we expect to conclude
this study by April 2009.

Statistical analysis will be applied aiming to conclude statistically significant re-
sults. These results will be validated by testing the study findings in another SPI im-
plementation initiative planned to start in early 2009. We are also planning to have an
external auditor to evaluate the procedures executed in the context of this research
aiming to guarantee the study reliability.

References

1. Coleman, G., O’Connor, R.: Software process in practice: A Grounded Theory of the irish
software industry. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006.
LNCS, vol. 4257, pp. 28–39. Springer, Heidelberg (2006)

2. Baddoo, N., Hall, T.: Motivators of Software Process Improvement: An analysis of practi-
tioners’ views. Journal of Systems and Software 62, 85–96 (2002)

174 M.A. Montoni et al.

3. Baddoo, N., Hall, T.: De-motivators for software process improvement: An analysis of
practitioners’ views. Journal of Systems and Software 66, 23–33 (2003)

4. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software process improve-
ment implementation: An empirical study. Software Process Improvement and Practice 11,
193–211 (2006)

5. Goldenson, D.R., Herbsleb, J.D.: After the Appraisal: A Systematic Survey of Process Im-
provement, its Benefits and Factors that Influence Success. Software Engineering Institute
(1995)

6. Zaharan, S.: Software Process Improvement – Practical Guidelines for Business Success.
Addison-Wesley, Reading (1998)

7. Niazi, M., Wilson, D., Zowghi, D.: A framework for assisting the design of effective soft-
ware process improvement implementation strategies. Journal of Systems and Software 78,
204–222 (2005)

8. Wu, M., Ying, J., Yu, C.: A methodology and its support environment for benchmark-
based adaptable software process improvement, vol. 6, pp. 5183–5188. Institute of Electri-
cal and Electronics Engineers Inc., New York (2004)

9. Baddoo, N., Hall, T.: Software process improvement motivators: An analysis using multi-
dimensional scaling. Empirical Software Engineering 7, 93–114 (2002)

10. El-Emam, K., Goldenson, D., McCurley, J., Herbsleb, J.: Modelling the likelihood of soft-
ware process improvement: An exploratory study. Empirical Software Engineering 6, 207–
229 (2001)

11. Wilson, D.N., Hall, T., Baddoo, N.: A framework for evaluation and prediction of software
process improvement success. Journal of Systems and Software 59, 135–142 (2001)

12. Dyba, T.: An Instrument for measuring the key factors of success in software process im-
provement. Empirical Software Engineering 5, 357–390 (2000)

13. Montoni, M., Rocha, A.R.: A Methodology for Identifying Critical Success Factors that
Influence Software Process Improvement Initiatives: An Application in the Brazilian
Software Industry. In: Abrahamsson, P., Baddoo, N., Margaria, T., Messnarz, R. (eds.) Eu-
roSPI 2007. LNCS, vol. 4764, pp. 175–186. Springer, Heidelberg (2007)

14. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage Publications, Thousand Oaks (1998)

15. SEI: CMMI® for Development (CMMI-DEV), V1.2. Software Engineering Institute
(2006)

16. StatSoft: STATISTICA Electronic Manual. StatSoft Inc. (2004)
17. Kim, J., Mueller, C.: Factor Analysis: Statistical Methods and Practical Issues. Sage Publi-

cations, Thousand Oaks (1978)
18. Gremba, J., Myers, C.: The IDEAL Model: A Practical Guide for Improvement (1997)
19. Montoni, M., Santos, G., Rocha, A.R., Weber, K.C., Araujo, E.E.R.d.: MPS Model and

TABA Workstation: Implementing Software Process Improvement Initiatives in Small
Settings. In: Santos, G. (ed.) Fifth International Workshop on Software Quality. WoSQ
2007: ICSE Workshops 2007, p. 4 (2007)

20. Montoni, M., Santos, G., Rocha, A.R., Figueiredo, S., Cabrai, R., Barcellos, R., Barreto,
A., Scares, A., Cerdeiral, C., Lupo, P.: Taba workstation: Supporting software process de-
ployment based on CMMI and MR-MPS. In: Münch, J., Vierimaa, M. (eds.) PROFES
2006. LNCS, vol. 4034, pp. 249–262. Springer, Heidelberg (2006)

21. Ferreira, A.I.F., Santos, G., Cerqueira, R., Montoni, M., Barreto, A., Rocha, A.R., Fi-
gueiredo, S., Barreto, A., Filho, R.C.S., Lupo, P., Cerdeiral, C.: Taba workstation: Sup-
porting software process improvement initiatives based on software standards and maturity

 A Knowledge Management Approach to Support 175

models. In: Richardson, I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006. LNCS,
vol. 4257, pp. 207–218. Springer, Heidelberg (2006)

22. Galotta, C., Zanetti, D., Rocha, A.R., Oliveira, K.M.: Organizational Learning Based on a
Customizable Environment for Knowledge Management Using Intranet. In: E-LEARN
2004 – World Conference on e-Learning in Corporate, Government, Healthcare & Higher
Education, Washington, EUA, vol. 2, pp. 2626–2633 (2004)

23. Santos, G., Montoni, M., Figueiredo, S., Rocha, A.R.: SPI-KM Lessons Learned from Ap-
pling a Software Process Improvement Strategy Supported by Knowledge Management.
In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 81–95.
Springer, Heidelberg (2007)

24. Santos, G., Montoni, M., Vasconcellos, J., Figueiredo, S., Cabral, R., Cerdeiral, C., Ka-
tsurayama, A.E., Lupo, P., Zanetti, D., Rocha, A.R.: Implementing Software Process Im-
provement Initiatives in Small and Medium-Size Enterprises in Brazil. In: 6th QUATIC
(International Conference on the Quality of Information and Communications Technol-
ogy), Lisboa, Portugal (2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 176–188, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Operational Approach for Selecting Open Source
Components in a Software Development Project*

Annick Majchrowski and Jean-Christophe Deprez

CETIC, Charleroi, Belgium
{am,jcd}@cetic.be
http://www.cetic.be

Abstract. Many organizations have started to integrate Free/Open Source
Software (FlOSS) components in their applications. It is therefore crucial for
these companies to select the most appropriate FlOSS components in terms of
functional and non-functional needs. Although FlOSS selection methods have
appeared in the last few years, they lack an operational description. In turn, this
has slowed their use in software development project. This work presents an
operational approach for selecting FlOSS components where the client, the de-
velopment team and their respective quality assurance teams are involved in the
selection process. Although the case study applying the FlOSS selection ap-
proach is left to future work, this article already describes an industrial case
where the approach presented in this paper has been approved for use by the
various partners, i.e., the client, the development firm and their respective qual-
ity teams.

1 Introduction

Many public and private organizations have started to integrate Free (libre) Open-
Source Software (FlOSS1) in their products and systems. Furthermore, software solu-
tions that rely on FlOSS components become more frequently available to customers
or external users. In turn, organizations want assurance regarding the quality of
FlOSS projects before integrating them in their solutions.

Based on this need, several methodologies to help select appropriate FlOSS projects
were created in the past couple of years. Two prominent methodologies are the Quali-
fication and Selection Open Source (QSOS) backed by Atos Origin and Open Busi-
ness Readiness Rating (OpenBRR) created by Carnegie Mellon West and Intel [1, 2].
Unfortunately, these two methods are not presented in an operational way in turn they
cannot readily be applied in software development project that involve several part-
ners such as the client, the development team and their respective quality assurance
teams.

* This work is partly funded by QUALOSS (#33547), a research project funded under the FP6

programme of the European Commission.
1 FlOSS stands for Free libre Open Source Software.

 An Operational Approach for Selecting Open Source Components 177

The contribution of this paper is to propose an operational approach for selecting
FlOSS components to be integrated in a software application. In particular, the roles
of the various teams involved are clearly identified and their tasks described.

Furthermore, where QSOS and OpenBRR are lightweight methodologies that do
not require in-depth evaluation of FlOSS development endeavors, our approach sug-
gests that a much more thorough evaluation is often needed to respond to customer's
demand. We are currently working on creating this in-depth evaluation methodology
as part of the QUALOSS project (www.qualoss.eu). Consequently, once this in-depth
evaluation method is finalized, our selection approach will propose more objective
results and more accurate risk estimation regarding the integration of the FlOSS com-
ponents considered.

The challenge in creating our operational approach is to remain applicable to all
development projects interested in integrating FlOSS components. Furthermore, the
approach assigns the appropriate responsibilities to obtain an appropriate balance of
power between the client and the development team.

The rest of this paper is organized as follows. Section 2 presents the context where
our approach applies. Section 3 describes our FlOSS selection approach in details.
Section 4 explains how we plan to apply our approach on an industrial case. We then
compare our effort to other related works in Section 5 and present our conclusion and
planned future work in Section 6.

2 Context of Methodology

The methodology for selecting FlOSS components presented in this work is applica-
ble to the software development context illustrated in Figure 1.

Fig. 1. Software Development Context where our FlOSS Selection approach is applicable

The context of Figure 1 handles the following development scenarios:

Scenario 1: Internal Software Development Project.
In this scenario, the client and the software development team work for the same
company and the quality assurance may be handled by a single quality team. In other
words, the Client Quality team and the Development Quality team may be merged,
i.e., handled by a single team or person. Indeed, in the case of very small projects, the
client or the development team may also be responsible for performing the task of

Software
Development

Project

Software
Development
Team

Client

Client Quality Team Development
Quality Team

178 A. Majchrowski and J.-C. Deprez

quality assurance. Incidentally, our selection approach is independent of whether the
resulting software application will be for use internal to the developing firm only or
whether it will be distributed externally (free or for a fee).

Scenario 2: Consulting Software Development Project.
In this scenario, the client and the software development are different entities. In most
cases, the consulting firm will not only assign a development team to the project but
also a quality team in charge of monitoring the quality from the consulting firm’s
viewpoint. Depending on the client’s expertise and resource availability, the quality
assurance tasks may be performed by the client’s resources. However, there are also
cases where the client is not an IT expert or prefers to contract out the quality assur-
ance task to yet another third party different from the consulting firm in charge of
development.

Due to large portions of software project failing and running over budget [3], cli-
ents have become increasingly concerned about monitoring the quality of the software
product delivered as well as other work products related to the project such as project
planning and monitoring documents. Furthermore, clients are interested in monitoring
the quality of the code developed and also insist on software reuse. Where reuse was
synonymous to the use of component off-the-shelf (COTS) in the past, the advent of
Free libre Open Source Software (FlOSS) is shifting this trend. Many customers now
request that consulting firms reuse existing FlOSS components. Even in the case of
internal development projects many companies start considering integrating FlOSS
components to avoid reinventing the wheel.

We observe two trends when using FlOSS components:

• A client does not wish to become an integrating part of the FlOSS community
and thus, does not want to feedback its modifications to the FlOSS development
endeavor.

• A client wishes to become an integrating part of a FlOSS community and desires
that its modification be included in the new versions of the FlOSS component.

The optimal use of FlOSS is achieved when following the second model. However,
the FlOSS selection approach presented in this paper equally applies to both cases. In
both cases, the role of the two quality teams is to ensure that the FlOSS component
selected respect the quality criteria selected. In other words, both quality teams must
work in concert and take the context of the client and of the software development
team into account. For example, the client may be in a context where certain partner-
ship imposes certain FlOSS component. On the other side, the software development
team may have an internal expert on a particular FlOSS component in turn favoring
that component may lower risk of project failure, at least in terms of cost and time
schedule estimation. Our FlOSS selection approach includes steps where each party
can express its strengths and weaknesses. In turn, the FlOSS selection decision be-
come much more transparent and removes most of the subjectivity often hidden in
this kind of activities.

 An Operational Approach for Selecting Open Source Components 179

3 FlOSS Selection Approach

This section describes our approach for selecting FlOSS components to later integrate
in a custom-made software application. The main activities to conduct are summa-
rized in the workflow shown in Figure 2. Besides stating the responsibilities of the

Responsibility: Development
Business & Functional Analysis:

Identification client’s functional needs
Identification of client’s strategic constraints (business needs)

Responsibility: Client
1. Selection of a broad functional need (and associated lower level functions)

Responsibility: Client
2. Selection and refinement of
relevant strategic constraints

Responsibility: Development
3. Comprehensive Search for FlOSS components

Responsibility: Development
4. Evaluation of functional coverage of each FlOSS component

Responsibility: Client
5. Initial evaluation of strategic constraints satisfaction

Responsibility: Client Quality
6. Evaluation of FlOSS endeavors: evaluation of (1) work products
(including product and its code), (2) of the community and its members, (3)
of the software processes, and (4) tools and dependent libraries

Responsibility: Client
7. Final evaluation of strategic constraints satisfaction

Responsibility: Client
8. Final selection Decision

Responsibility: Development
Other Software Life Cycle Phases: design
implementation, integration, etc.

Scope of our selection approach

Fig. 2. Workflow used by our approach for Selecting FlOSS components

180 A. Majchrowski and J.-C. Deprez

different parties involved, Figure 2 also emphasizes it using various grey shed boxes.
The rationale for the leadership assignment of each activity is explained later.

It is worth noting that the top and bottom unnumbered boxes are not part of our ap-
proach. They indicate the point of the life cycle when our approach takes place, in
particular, between the analysis and the design phases.

Below, we present a detailed description of the activities within the scope of our
approach. In addition to explaining the job performed by each actor taking part in an
activity, our description also specifies the usual amount of time needed to perform an
activity. This duration information can be used to figure the resource needed to per-
form the selection process within a specified time frame.

It is understandable that selecting a FlOSS component should not slow down the
development process excessively. Nonetheless, it would also be useless to perform
light analysis that would barely increase our confidence in the selected FlOSS com-
ponent. In turn, our approach was created with the idea that the selection process
could take place in about 1 month, assuming adequate staffing and prompt availability
of each partner.

1) Selection of a broad functional need (and its associated lower level functions)
Short description: The first activity consists of selecting a broad functional need of
the application to develop. The broad functional need is a high level description of a
function needed in the application such as an ERP task manager module. Associated
lower level functions are functions that further details how the high level function is
to really behave. For example, registered users must be able to share tasks.

Rationale: It is important to have an initial step to communicate to every party in-
volved the beginning of the FlOSS selection process for a given functional need.

Input of the activity: A list of business functional analysis expressed by the client.
This list is usually specified in an analysis document.

Output of the activity:

• A one-paragraph description of the broad functional need that may be fulfilled by
a FlOSS component. This short description.

• A check list that enumerates all lower level functions associated to the broad
functional description also needed.

• A communication sent by the client to the contact person of each team involved,
that is, (1) the client, (2) the client quality team, (3) the consulting development
team, and (4) the consulting quality team. This communication informs the four
teams that the FlOSS component selection process has been initiated for the
specified broad functional need.

Hypothesis: Our premise for initiating this activity assumes that the result of the busi-
ness and functional analysis is far enough advanced that all broad functional needs
have been identified (in the context of the given project). This is required so that our
selection process is not impacted by the apparition of new broad functional need that
could affect the FlOSS selection context.

Actors and their roles: The client is the leader of this activity. However, that actual
bulk of the work is really performed by the consulting development team who will
actually select the appropriate need and explain to the client why that need was

 An Operational Approach for Selecting Open Source Components 181

selected. For example, if the implementation of need A is a prerequisite to the imple-
mentation of need B, it then makes sense to treat B before A. Furthermore, the devel-
opment team must also create the check list of lower level functions required by the
client.

The reason for assigning the leadership to the client is to guarantee that the client
and its quality team are aware that the selection process for one broad functional need
has been initiated. This leadership is express by requiring that the client sends a com-
munication to the four teams involved.

Estimated time: combined effort of 1 to 2 person-days depending on how easy it is to
transform the input functional analysis document into the check list of lower level
functions.

2) Selection and refinement of relevant strategic constraints
Short description: This activity consists of selecting the relevant strategic constraints
from the analysis document. Most constraints such as the cost of adapting a FlOSS
component equality applies to the selection exercises of all FlOSS components. How-
ever, certain strategic constraint may need to be refined to be better adapted to the
functionality selected in activity 1. For example, a strategic constraint may require
verifying the reputability of a FlOSS component, the notion of reputation may actu-
ally be adapted in accordance to the functional need. In some cases, it may be suffi-
cient to show a few reference uses of a FlOSS component while in other cases, it may
be required to show the publication of several books and the use of a FlOSS compo-
nent in business critical applications.

Strategic constraints identified in this step will be evaluated in a later activity.
However, this activity may already select the methods or procedure to use later for
quantifying the degree to which a strategic constraint is satisfied. For example, it may
be necessary to back estimation cost of adapting a FlOSS component with a method
such as COCOMO or similar but lighter approach. It is then during this step that such
methods are also selected (and eventually specified in details).

Besides cost estimation, in the context of selecting FlOSS components, strategic
constraints usually also include FlOSS license issues, FlOSS components already
used by the client’s partners. Furthermore, if the client desires to feedback its contri-
bution to the FlOSS communities, she will then be concerned with the permeability of
FlOSS communities, that is, how open are they to new contributors?

Rationale: It is important that early in the FlOSS selection process, the client commu-
nicates precisely her strategic constraints to the other teams involved. This will avoid
wasting time analyzing FlOSS components that do not meet certain strategic con-
straints.

Input of the activity:
• A list of strategic constraints identified in the business and functional analysis

document.
• The functional need selected in the previous step of our approach

Output of the activity:
• A list of specific strategic constraints (to verify in a later activity). This list

should be presented in the form of a check list to ease constraints verification.

182 A. Majchrowski and J.-C. Deprez

Furthermore, if the verification of some strategic constraints requires specific
methods or procedures, such methods and procedures must also be listed.

• A communication sent by the client to the contact person of each team involved,
that is, (1) the client, (2) the client quality team, (3) the consulting development
team, and (4) the consulting quality team. This communication informs the four
teams that the strategic constraints have been identified for this execution of the
FlOSS selection process.

Hypothesis: Our premise for initiating this activity is that the result of the business
and functional analysis is far enough advanced that all generic strategic constraints
have been identified. This is required so that the FlOSS selection process is not im-
pacted by the appearance of new business strategic constraints.

Actors and their roles: The client reviews the list of business constraints in the analy-
sis document to identify the strategic business constraints relevant to the particular
functional context. This activity may require refining generic strategic constraints into
specific ones adapted to the functional context.

Most of the work is performed by the client, the client quality team may need to
get involved in order to refine the generic strategic constrains into more specific ones.

Minimal Estimated Effort: combined effort of 1 to 2 person-days.

3) Comprehensive Search for FlOSS components
Short description: The activity consists of selecting a fairly exhaustive list of FlOSS
components that match with the broad functional need selected in activity 1. The
usual way performed to search and found such components consists on using the
broad functional need as the keyword search in a search engine on websites. Another
possible way is to post a question related to the searched free component under the
site of some free communities.

Rationale: To avoid missing FlOSS components that may be of interest, it is impor-
tant to perform a fairly exhaustive search.

Input of the activity: The one-paragraph description of the broad functional need.

Output of the activity: a list of FlOSS components that implement the broad functional
need. We note that the coverage of the lower level functions is not verified at this
time.

Hypothesis: Our premise for this activity is that the general architecture specifying the
technical needs and environment in which the application being developed is known.
It is often already described in the call for tender.

Actors and their roles: Each of the four teams is free to suggest a list of FlOSS com-
ponents related to the broad functional need. However, the FlOSS components that do
not meet the architectural and technical needs are not even included. There is no rea-
son to include a Java component if the final solution is to be developed in C++ or to
include a MS Windows-only component if the final solution must solely run on Unix.

Minimal Estimated Effort: About 2 person-days. Each team is allocated half a person-
day for searching for relevant FlOSS components.

 An Operational Approach for Selecting Open Source Components 183

4) Evaluation of functional coverage of each FlOSS component
Short description: The activity consists of evaluating, that is, assigning scores to each
FlOSS components listed as output of activity 3 above. The scores will be obtained by
first filling for each FlOSS component, the checklist of the lower level functions pro-
vided by activity 1. The process of transforming a filled check list in a score must be
decided at the beginning of this activity. Moreover, to insure consistent treatment, the
same scoring rules should be applied to all FlOSS components. Efficient scoring pro-
cedures usually work in two steps. First, they specify how to assign a raw score to
each criteria and second, they allow to weigh each criteria according to its impor-
tance, in our context, the weight would represent the importance of each lower level
function in the checklist.

Rationale: Functional requirements are universally very important. It is therefore a
priority for our FlOSS selection approach to measure functional coverage early in the
process.

Input of the activity:

• The list of FlOSS components identified in activity 3
• The check list of the lower level functional needs created in activity 1

Output of the activity: Each FlOSS component is attributed a functional coverage
score.

Hypothesis: Our premise for this activity is that all FlOSS components meet the archi-
tectural and technological needs of the client. Furthermore, the checklist of lower
level functional needs should be complete.

Actors and their roles: The development team fills the check list for all FlOSS com-
ponents provided as input. It is important that the location of data used to fill the
checklist and compute the scores be recorded in order to explain the reason for the
proposed FlOSS component ranking to the client and its quality team.

Beside the objective scores obtained using the selected scoring procedure, the cli-
ent and the development team should be allowed to introduce subjective criteria, for
example, the client and the development teams may create a list of strengths and
weaknesses for each component. Furthermore, the client may also indicate the FlOSS
component that seems to best fit her trade.

Clearly, it is not the objective of this activity to be extremely thorough. In other
words, each FlOSS component being scored needn’t be installed and tested to evalu-
ate its functional coverage. The mature FlOSS components frequently provide list of
features and functionalities. Furthermore, they also propose tutorials and reference
manuals. The requirement of not installing FlOSS component to evaluate their func-
tional coverage is specified for the whole activity 4 to take place within a two week
time frame. Exceptionally, particular functional needs will not be satisfied by mature
FlOSS components and only very few, young FlOSS components will match the
need. Young FlOSS endeavors may not always propose functional documentation. In
turn, a quick installation of the few FlOSS components may be installed in order to
assess their functional coverage. Only a limited number of FlOSS components should
be analysis in this way so as to remain under the two weeks timeframe for activity 4.

184 A. Majchrowski and J.-C. Deprez

Although the ultimate goal of this activity is not to eliminate FlOSS components
from the initial list, this can however happen if functional coverage is below an ex-
pected threshold. It is crucial for the four teams of actors to agree on the threshold.

Minimal Estimated Effort: maximum 1 person-day per FlOSS component

5) Initial evaluation of strategic constraints satisfaction
Short description: The activity consists of evaluating all FlOSS components in the list
regarding its fulfillment of strategic constraints. The scores will be obtained by filling
the checklist provided as outcome of activity 2. The logical way to proceed could be to
follow the ranking provided by activity 4. The process of transforming a filled checklist
in a score must be decided at the beginning of this activity. Moreover, to insure consis-
tent treatment, the same scoring rules should be applied for all FlOSS components.

Rationale: In addition to functional coverage, it is important to evaluate whether
FlOSS components fulfill the strategic constraints of the client and also some of the
development team.

Input of the activity:

• List of FlOSS components ranked according to their functional coverage

Output of the activity:

• List of FlOSS components ranked according to both (1) functional coverage and
(2) fulfillment of strategic constraints.

• An expert opinion on which few FlOSS components should be analyzed thor-
oughly as part of activity 6.

Hypothesis: Even FlOSS components with lower functional coverage deserve being
evaluated as their ranking may improve thanks to better fulfillment of strategic con-
straints. It is however possible to agree on a threshold of functional coverage under
which FlOSS components mustn’t be analyzed for the strategic constraints.

Actors and their roles: The work in this activity is shared between the development
quality team and the client quality team. However, the client is responsible for this
activity because she will finally decide the few FlOSS components to analyze in more
details as part of the next activity.

Minimal Estimated Effort: 1 person-week.

6) Evaluation of FlOSS endeavors

Short description: The activity consists of evaluating a few FlOSS endeavors thor-
oughly. This evaluation presents objective, reproducible results. It is worth noting that
this activity evaluates FlOSS endeavors and not solely FlOSS components. A FlOSS
endeavor is composed of a set of community members, a set of the work products
(including the product and its code) produced by the FlOSS community, a set of de-
velopment processes executed by the community members, and a set of software tools
used to produce, support or run the FlOSS component. Where the evaluations of ac-
tivities 4 and 5 respectively, focused on the FlOSS components, the evaluation in this
activity analyzes the FlOSS endeavor that produces a FlOSS component. In analogy,
it is like evaluating the enterprise that produces a software application vs. merely ana-
lyzing a software application.

 An Operational Approach for Selecting Open Source Components 185

The method to help evaluate FlOSS endeavor is currently being developed as part
of the QUALOSS project (www.qualoss.eu). In the meantime, a combination of
QSOS, OpenBRR and various source code analyses including historical code evolu-
tion may be performed.

Rationale: To insure that the client’s concerns are well taken into account in the final
selection, the client quality team must be in charge of this evaluation. Furthermore,
although late in this selection process already, it is still better to backtrack at this mo-
ment due the bad quality of the FlOSS endeavors under current consideration.

Input of the activity: FlOSS endeavors corresponding to the FlOSS components se-
lected in activity 5.

Output of the activity:

• The objective results of the evaluation of selected FlOSS endeavors.
• The client quality team communicates its results during a meeting with the four

teams involved.

Hypothesis: The client and development teams have accepted the ranking and selec-
tion performed in activities 4 and 5.

Actors: The client quality team leads and performs most of the work. If required, the
development quality team may also intervene and help in this activity. However, it
will always be under the control of the client quality team.

Minimal Estimated Effort: 1 person-week per FlOSS endeavor

7) Final evaluation of strategic constraints satisfaction
Short description: The activity 6 consists of re-evaluating and measuring some strate-
gic constraints of the project in regards of the results of activity 6. For example, the
cost estimation method employed in activity 5 may not have taken into account that a
FlOSS component was poorly documented and contained little code comments.
Likewise, the architecture of the FlOSS components may show a high level of cou-
pling and low cohesion in its modules hence impacting further potential maintenance
effort. Besides, code assessment, the evaluation of activity 6 may show that the com-
munity heavily relies on the contribution of just a very few developers who do not
accept input from new contributors.

Rationale: In light of the new findings of activity 6, it is worth reevaluating certain
strategic constraints, particularly those related to cost and risk estimates.

Input to the activity: the strategic constraints identified in activity 2 and their current
evaluation from activity 5.

Output of the activity: A new, more accurate evaluation of the strategic constraints
based on the outcome of activity 6.

Actors: The leadership is given to the client along with the client quality team, they
decide on the strategic constraints that must be re-evaluated. It is then the develop-
ment team and its quality team who re-evaluate the strategic constraints based on the
outcome of activity 6.

Minimal Estimated Effort: 1 to 2 days per FlOSS endeavor

186 A. Majchrowski and J.-C. Deprez

8) Final selection Decision
Short description: This last activity exploits the results of activities 4 , 6 and 7 to per-
form the final selection decision of which FlOSS component will be integrated in the
application.

Input to the activity:

• Results of the evaluation of functional coverage of FlOSS components identified
in activity 3

• Results of the evaluation of a few FlOSS endeavors from activity 6
• Results of the re-evaluation of the strategic constraints from activity 7

Output of the activity: the selected FlOSS Component to integrate in the software
application.

Actors: All actors meet but it is finally the client who takes the final decision

Estimated time: 0.5 person-day per team

4 Our FlOSS Selection Approach in the Tabellio Project

The purpose of the Tabellio project is to develop a parliamentary software application
for the two francophone parliaments of Belgium (PCF and PFB). The application
must include an information system for drafting, managing and publishing legislative
and parliamentary documents. It must also include other generic tools commonly
found in public local administration to enable the sharing of information between re-
gional and local administrative authorities.

Furthermore, the two parliaments also desire to distribute the software application
developed during the Tabellio project under a GPL-compatible license. In turn, they
insist that the application reuses existing FlOSS components when it is possible. The
long-term objective is to initiate a FlOSS community around parliamentary software
components so that different level of government throughout the world can exchange
generic software components.

In one of the Tabellio subprojects, the four teams depicted in our FlOSS selection
approach are the following: The clients are the two Belgian parliaments, the client
quality team role is handled by CETIC, an independent research center where both
authors of this paper are working, the development team and the development quality
team are both handled by the software consulting firm Software AG.

Currently, Software AG is conducting the functional analysis, that is, the phase in
Figure 2 before our FlOSS selection approach. Besides functional needs, CETIC is
also gathering the generic strategic constraints already expressed by the parliaments in
the call for tender as well as other work products of the Tabellio project. Two impor-
tant generic strategic constraints are:

• A cost estimate must be computed for the effort needed to adapt every FlOSS
component considered.

• The ability to collaborate with a FlOSS community and contribute to its FlOSS
endeavor must be estimated.

An initial iteration of our FlOSS selection approach is in preparation. We plan to
present this application of our approach in our future work.

 An Operational Approach for Selecting Open Source Components 187

5 Related Works

The Qualification and Selection Open Source (QSOS) backed by Atos Origin and
Open Business Readiness Rating (OpenBRR) created by Carnegie Mellon West and
Intel are two methodologies to help selecting among FlOSS components [1, 2]. A
comparison of both methodologies is presented in [4]. Both methodologies are light-
weight and their descriptions are not operational in nature. Consequently, their appli-
cation in software development project seems not to gain in popularity.

Our approach has certain similarity to the main step of OpenBRR, which decom-
poses its evaluation in two steps. First, a viability check is performed, which is similar
to our strategic constraints, and then an evaluation, a bit more in-depth, of a few vi-
able FlOSS projects is undertaken. However, OpenBRR neither explains clearly the
scenario in which it is useful nor does it specify which persons (roles) are to perform
the various activities prescribed by OpenBRR.

Orthogonal to our research, we note that prior to being concerned with selecting
and evaluating FlOSS, the software engineering research addressed the evaluation and
selection of COTS (component-off-the-shelf) [5, 6]. Although similarities exist in
principle, the actual methods are quite different due to the unavailability of most data
in the case of COTS. Hence, the COTS selection approaches are quite different from
ours in practice. Furthermore, none of the COTS selection approach survey were op-
erationally described.

6 Conclusions and Future Works

Our FlOSS selection approach applies to most software development project
interested in integrating (or reusing) FlOSS component in their custom-developed
application. We now plan to study the applicability of our approach during real world
development projects. In particular, we are already involved in an industrial case
where public organizations (two Belgian parliaments) have hired a consulting firm for
assembling FlOSS components into a new application. The parliaments and the soft-
ware development consulting firm have approved our FlOSS selection approach.
Since our selection approach will be applied for selection several modules of the ap-
plication, we will later report on all selection occurrences of that software project.

References

1. Method for Qualification and Selection of Open Source software (QSOS) version 1.6 ©
Atos Origin (April 2006), http://qsos.org/

2. Business Readiness Rating for Open Source © OpenBRR.org, BRR 2005 – Request for
Comment 1 (2005), http://www.openbrr.org

3. Whittaker, J.A., Jorgensen, A.: Why software fails. SIGSOFT Softw. Eng. Notes 24(4),
81–83 (1999)

4. Deprez, J.-C., Alexandre, S.: Comparing Assessment Methodologies for Free/Open Source
Software: OpenBRR & QSOS. In: Proc. of the 9th International Conference on Product
Focused Software Process Improvement (PROFES 2008), Rome, Italy, June 23-25 (to ap-
pear, 2008)

188 A. Majchrowski and J.-C. Deprez

5. Briand, L.C.: COTS evaluation and selection. In: Proc. International Conference on Soft-
ware Maintenance, Bethesda, November 1998, pp. 222–223. IEEE Computer Society, Los
Alamitos (1998)

6. Henderson-Sellers, B., Gonzalez-Perez, C., Serour, M.K., Firesmith, D.G.: Method engi-
neering and COTS evaluation. SIGSOFT Softw. Eng. Notes 30(4), 1–4 (2005)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 189–200, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Case Study of Coordination in Distributed
Agile Software Development

Steinar Hole1 and Nils Brede Moe2

1 NTNU Department of Computer and Information Science
NO-7491 Trondheim, Norway
steinaho@stud.ntnu.no

2 SINTEF Information and Communication Technology
NO-7465 Trondheim, Norway
Nils.B.Moe@sintef.no

Abstract. Global Software Development (GSD) has gained significant popular-
ity as an emerging paradigm. Companies also show interest in applying agile
approaches in distributed development to combine the advantages of both ap-
proaches. However, in their most radical forms, agile and GSD can be placed in
each end of a plan-based/agile spectrum because of how work is coordinated.
We describe how three GSD projects applying agile methods coordinate their
work. We found that trust is needed to reduce the need of standardization and
direct supervision when coordinating work in a GSD project, and that electronic
chatting supports mutual adjustment. Further, co-location and modularization
mitigates communication problems, enables agility in at least part of a GSD
project, and renders the implementation of Scrum of Scrums possible.

Keywords: Agile development, Scrum, case study, coordinating work, mutual
adjustment, direct supervision, standardization, global software development.

1 Introduction

Many organizations turn toward global software development (GSD) in their quest for
cheap, higher-quality software with a short development cycle. GSD is becoming the
norm by promising potential advantages like global resources, attractive cost struc-
tures, round-the-clock development and closeness to local markets [1].

To unleash the potential, methods and tools for distributed software development
are designed to enable dispersed team members to share programming tasks and de-
velopment practices [2]. Methods and tools are needed to mitigate GSD problems
related to coordination, communication, control [3], and increased complexity [4].

Recently, there has been a growing interest in applying agile approaches in GSD to
solve some of the coordination and communication challenges [3]. Several reports on
the successful implementation of agile values and principles in different GSD projects
conclude that there are significant differences between the fundamental principles of
agile and distributed approaches, while there is a growing interest in assessing the
viability of using agile practices for distributed teams [5-7].

190 S. Hole and N.B. Moe

Agile development approaches and GSD approaches differ significantly in their
key tenets, e.g. regarding coordination mechanisms [6]. Traditional GSD focuses on
command-and-control, formal communication, and is usually implemented using a
mechanistic (bureaucratic with high formalization) organizational structure. Agile
development focuses on leadership-and-collaboration, informal communication and
the desire for an organic organizational form [8]. Therefore, applying agile principles
to GSD marks an intersection of two seemingly incompatible approaches.

Ramesh et al. [6] demonstrate how the balancing between agile and distributed ap-
proaches can help when introducing agility in GSD. They suggest that project leaders
and champions should participate in coordinating the activities of the local and remote
teams to help achieve project goals. Motivated by the work of Ramesh et al. [6], we
investigate how work is coordinated when introducing agile methods in a GSD envi-
ronment. Our research question is:

“How are tasks coordinated in GSD teams applying agile methods?”

The remainder of the paper is organized as follows. Section 2 describes GSD and
agile development, and the challenges associated with merging these two approaches.
Section 3 describes our research method. In Section 4, we present results from a mul-
tiple case study on agile methods and practices applied to three GSD projects. Find-
ings are discussed in Section 5. Section 6 concludes and suggests future research.

2 Background

In this section we present background information on agile development and GSD.
We use literature to describe challenges with coordination in an agile GSD context.

2.1 Agile Methods and Scrum

Agile software development comprises a number of practices and methods [9-11].
Among the most known and adopted agile methods are Extreme Programming (XP)
[12] and Scrum [13]. XP focuses primarily on the implementation of software, while
Scrum focuses on agile project management [14]. In this study the focus is on Scrum
since Scrum is an agile approach to the management of software development pro-
jects [9-11], and thus focuses on the coordination of work.

Scrum and agile development favor a leadership-and-collaboration style of
management where the traditional project manager’s role is replaced with the Scrum
master’s role of a facilitator or coordinator [9-11]. The Scrum master is in charge of
solving problems that prevents the Scrum team (5-9 people) from working effectively.
He or she is often described as a coach or facilitator and does not organize the team
(designers and developers); the team organizes itself and makes decisions concerning
what to do. The Scrum master works to remove the impediments of the process,
makes decisions in the daily meetings and validates them with management [13].

Software is developed by the self-organizing team in increments called "sprints",
starting with planning and ending with a review. The team coordinates on a daily
basis. Features to be implemented are registered in a backlog, and a product owner
decides which backlog items should be developed in the following sprint. These items
are specified in a sprint backlog.

 A Case Study of Coordination in Distributed Agile Software Development 191

The product backlog comprises a prioritized and constantly updated list of business
and technical requirements for the system being built or enhanced. Backlog items can
include features, functions, bug fixes, requested enhancements and technology up-
dates. Multiple stakeholders can participate in generating product backlog items, such
as customer, project team, marketing and sales, management and support [11].

2.2 Coordinating Mechanisms in Agile Development and GSD

The issue of agile approaches in distributed development has caught the attention of
several researchers. There have been many studies reporting on the successful imple-
mentation of agile practices in GSD [5-7, 15-17], but a number of implementation
barriers are also mentioned by these authors. The combination of both agile and GSD
is poorly understood although it is expected to be beneficial [3]. Exploring theories on
coordination of work is one way of understanding this combination.

Coordination of work is an important aspect of teamwork and team leadership [18].
Coordination together with communication and collaboration are recognized as the
key enablers of software development processes [19]. There are three basic coordinat-
ing mechanisms that seem to describe the fundamental ways in which organizations
can coordinate their work [20]:

1. Mutual adjustment - based on the simple process of informal communication
2. Direct supervision - one person takes responsibility for the work of others by issu-

ing instructions and monitoring their actions
3. Standardization - of which there are four types: work processes, output, skills (as

well as knowledge) and norms

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

GSD

Agile

Fig. 1. Relative emphasis on coordinating mechanisms: Agile development relies purely on
mutual adjustment, while GSD emphasizes standardization and some direct supervision

GSD usually relies mainly on formal mechanisms (coordination by standardization),
which exploit detailed architectural design and plans to address impediments to team
communication induced by geographical separation [3, 6]. Agile development relies on
people and their creativity rather than on processes [21], and emphasizes informal
communication (mutual adjustment) as the primary coordinating mechanism [8].

192 S. Hole and N.B. Moe

The major challenge of applying agile methods or practices in a GSD context is to
balance the coordinating mechanisms (Fig. 1). However there are obvious conflicts
when trying to balance mutual adjustment, direct supervision and standardization.

3 Research Design and Method

The goal of this research is to understand how the introduction of agility affects coor-
dination of tasks in global software development teams. It is therefore important to
study software development teams in practice. We have collected data from three
teams using Scrum and participating in globally distributed software projects.

We report on a multiple case holistic study [22], in which we studied one phe-
nomenon in several projects in one company. In a multiple case study, each case must
be selected carefully so that it either a) predicts similar results or b) predicts contrast-
ing results but for predictable reasons [22]. We chose option a).

3.1 Study Context

This study was done in the context of a larger action research program, where several
companies have introduced elements from agile development in response to identified
problems. The software company is medium-sized with approximately 150 employees
in four major departments. The second author of this paper participated in the intro-
duction and training of Scrum, and observed the company while using Scrum. The
first author conducted the interviews, which we use as the primary source of data for
this study. The projects participating in the study were all using Scrum for the first
time; however this company was experienced with using GSD.

3.2 Data Sources and Analysis

To address the research questions, we conducted semi-structured interviews with the
persons most responsible for coordination of work in the three projects, i.e. a Scrum
master, a project manager and a product owner. One person was selected from each
project. The interviews lasted from 30 to 40 minutes, and aimed at understanding how
Scrum was applied in a GSD context. The interview guide was based on the three
coordinating mechanism as proposed by Mintzberg [20] in addition to questions re-
lated to Scrum. We focused on understanding coordination of work, communication
within and between the teams, feedback-sessions, planning and estimation, use of
documentation, roles and specializations, and how decisions were made. All the inter-
views were transcribed.

4 Agility in GSD Projects

We now present the three GSD projects under study, how Scrum was implemented in
these projects, and how work was coordinated in the projects.

4.1 Project India I

The goal of the project is to develop a system for integrity management of pipelines
both offshore and onshore. Today several customers are interested in buying the

 A Case Study of Coordination in Distributed Agile Software Development 193

product, and so far three contracts have been signed. One of the biggest challenges in
this project is to align requirements from potential customers from all over the world.
Scrum was introduced one year after the project had started.

The project consists of six developers working full time (one is a Scrum master),
two GUI designers, one product owner, and one project manager working 50% on this
project. Four of the developers are situated in India together with one tester. To im-
prove communication one of them was in periods moved to Norway.

The sprints usually lasted three weeks, ending on a Friday with a retrospective- and
review-meting. The next sprint was planned the following Monday. The team organ-
ized a 15 minutes stand-up every morning discussing project related issues. The prod-
uct owner usually joined all the different Scrum meetings.

Coordinating GSD Work in the India I Project. Before using Scrum the team
relied on standardization and direct supervision when coordinating work with their
Indian team. In the beginning, the remote team was given some easy tasks specified
by the Norwegian team. The Scrum master said: “In the beginning the quality was
varying, and then we thought they should only concentrate on the testing. Then they
said ’No, this is not fun, please give us something more exiting to work on‘, and then
they got different tasks, and this worked pretty well.”

After using Scrum for 6 months the project had implemented all the Scrum prac-
tices, and felt they were succeeding with continuously improving their Scrum process.
The team tried to work as if they were all collocated, ignoring the geographical and
time differences. The Scrum master said: “It is a big barrier being distributed. We
used a lot of time on discussions between people in the two sub-teams. It did not work.
The solution was to appoint one of the remote developers the role of a local Scrum
master. And then we mostly communicated with her.”

To improve the communication it was decided to let the Indian Scrum master stay
in Norway for a period. The Scrum master said: “This improved the situation a lot.
The productivity increased while she was here. The important issue is to communicate
with only one person.” She was participating in all the Scrum meetings while situated
in Norway. At the same time it was also decided to let the remote team work on its
own module.

Even though they started applying Scrum, and assigning a member of the remote
team as a local Scrum master, the coordination between the two teams was still de-
scribed as a traditional way of developing software. During the planning meetings in
Norway, the local team would plan and suggest initial estimates for all the tasks in the
project, and then assign tasks to their remote partner. Later the remote team would
turn these tasks into sub-tasks, and provide new estimates. In the end, the Norwegian
team would check the results.

The Norwegian Scrum master, the Scrum master from India and one of the Norwe-
gian developers had frequent meetings (2-3 times a week) with the remote team. This
was a kind of distributed stand-up. In the meetings between the two sub-teams they
relied on chat and e-mail. The Scrum master said: “We tried to use telephone-
conferences, but it did not work well, because of language problems. It is also easier
to understand each other when relying on written communication. Also extensive use
of chatting makes it possible to ask a question right away. It takes time to organize a
telephone-conference.” He continued: “It was also difficult to only use 15 minutes on
the telephone. Often we used an hour. Chat is better.”

194 S. Hole and N.B. Moe

Coordination of work with the remote team was mostly based on direct-
supervision. The Scrum master from India was involved in the meetings but she then
decided who should do what.

4.2 Project India II

The goal of the project was to develop a system for quality audits in organizations.
This project represents the second release of the system and will provide multi user
support. Two departments of the studied company are involved, each acting as an
internal customer responsible for contracts with their own international customer.

The project consists of a product owner, who is also a project manager, and an ar-
chitect from Norway, while development is outsourced to India. Four remote devel-
opers are working 100% on the project, one of them as a team leader. In addition a
few remote developers contribute part time on the project. The Indian team members
are given specialized responsibilities, like GUI.

Scrum was applied from the inception of this project because, according to the
product owner, “our customer didn’t understand the creation of an old-fashioned
functional specification, so we thought: Okay, let’s try an agile approach.” They
agreed on a contract that allowed the use of a backlog with a constantly updated list of
business and technical requirements, and continuous deployment of short deliveries.
The backlog was maintained by the product owner. In addition to the described Scrum
practices, they used continuous integration and semi-automatic deployment, and code
reviews.

Coordinating GSD Work in the India II Project. The project started after the first
initial backlog was created by the product owner. After the initial design was created,
the work was then planned and divided into sprints in cooperation with the Indian
team. This failed. The product owner said: “I quickly gave up these sprints, that is, to
define them together with the remote team.” She continued: “It was very difficult
because of problems with the communication. […] We didn’t understand each other,
and then there were cultural differences, too.”

The product owner explained how they changed their way of coordinating work,
after finding it too time consuming to do the sprint planning in cooperation with the
remote team: “We then started sending them work-packages specified in detail, but
we realized it would be a too big job to do this for each work package.” The solution
was then to create a principal work plan and then further specify and document back-
log items with use-cases described in documents.

The product owner and the remote team leader communicate daily, often several
times a day. She said: “There has been a team leader down there who assigned the
tasks to the team, so I’ve only been dealing with him.”

The assignment of tasks to the Indian team became less detail oriented and instead
there was an increased focus on continuous communication. It seems like the product
owner tried to act more as described in the Scrum literature. She was maintaining the
backlog and specifications, while letting the Indian team work out the specifications:
“I do not know everything, therefore I try to communicate: ‘This is the use case, you
need to solve this. Work it out.’ And it works, and then they ask: ‘Can we discuss’,
and of course, we do.”

 A Case Study of Coordination in Distributed Agile Software Development 195

Coordination of work with the remote team was mainly based on direct supervision
and standardization in the form of written specifications and reporting of status, but
the team was also relying on frequent informal communication. However, the biggest
challenge was getting feedback from the remote team. The product owner said: “What
I miss, though, is that they should detect problems and show initiative.”

4.3 Project Eastern Europe

The goal of the project is to develop a system for collection and visualization of data
from ship-inspections. When ships are inspected, the results are stored in the system,
and the collected data are visualized through 3D models. The 3D engine was first
developed as a prototype 5 years ago, before it was integrated into the core system
and then released. Each time the product is sold to a new customer it requires adapta-
tion and modification of the system. Several contracts with different customers from
all over the world have been signed.

Four to five developers are situated in the remote team in an East European coun-
try, while two developers are situated in Norway, together with two persons from the
support department, one from sales and a project manager acting as a product owner.
The Norwegian team implements the daily Scrum. These meetings are also used for
discussion of future solutions. They tried to implement sprints for the whole project,
but failed. Tasks are mostly assigned to the Norwegian team’s members by the project
manager, who said, while pointing at the backlog: “There, I’ve been putting some
signatures on who is going to do what.”

Coordinating GSD Work in the Eastern Europe Project. The project was origin-
nally applying a traditional, waterfall inspired model. This changed a year ago when a
new project manager was assigned. The two distributed teams tried to use a common
Scrum process. They were conducting several joint stand-ups each week, and
implemented shared responsibilities. Originally, the remote team was only responsible
for the creation of 3D models, but when it was decided to integrate them in the total
development process, they faced new challenges. The project manager said: “We
thought that we should try Scrum, but because we wanted the remote team to take
part in development and bug fixing, stand-up became a challenge. […] We didn’t
manage to interact and cooperate, it became too time consuming.”

According to the project manager, the remote team was unfamiliar with the system.
This unfamiliarity made communication time consuming. The project manager said:
“We felt that the Norwegian team members used too much time communicating with
the remote team.” The project manager also felt that the remote team did not deliver
as expected. She said: “Often, the software seemed inadequately tested.” This dissat-
isfaction was communicated to the remote team.

The project manager considered the problem to be difficulties gaining a thorough
understanding of the complex source code, and commented on how tasks were
divided: “If we had managed to identify bigger chunks of new functionality to be
developed by the remote team, it might have been easier for them.” To improve the
situation it was decided to divide responsibility between the teams and to give the
remote team tasks that required less cross-site coordination. The Norwegian team is
now responsible for the core system, bug fixing, new functionality and customer rela-
tions, while the remote team is mainly responsible for system configuration and the

196 S. Hole and N.B. Moe

creation of 3D models for each customer. The project manager said: “Because of their
3D competency, it works, because then they don’t have to communicate with us all the
time. […] It’s only if they lack a specification or domain knowledge, for instance
when they miss an overview of what to put on the ship, then they come back and ask.”

Coordination of work between the teams was mainly based on standardization, and
to some degree direct supervision. The level of mutual adjustment was low.

5 Discussion

In this section we present our key observations in light of our research question: How
are tasks coordinated in GSD teams applying agile methods? To answer this question
we need to evaluate the degree to which the projects conformed to the generally ac-
cepted elements of the Scrum methodology. None of the projects succeeded in im-
plementing a shared Scrum process for both the local and remote team, and only the
local team in the India I project was using Scrum as intended. One reason for the
reported problems was the failed attempt to implement mutual adjustment in the dis-
tributed process. Agile development relies on mutual adjustment. All the projects
ended up using the traditional approach relying on direct supervision and standardiza-
tion when coordinating remote work. Figure 2 summarizes the coordinating mecha-
nisms used between the teams. The graphs are drawn from the bases of the interview
data and are also discussed with the interviewees.

5.1 Challenges Implementing Mutual Adjustment in GSD

All three projects tried to implement daily stand-ups as they are the most important
instrument for mutual adjustment. However, they all experienced these meetings as
time consuming, because of the flow of questions from the remote site. Language and
cultural differences were also a reason for the problems with these meetings. Com-
munication problems, often reported in GSD projects [6, 23], led to the replacement
of daily meetings with direct supervision and detailed specifications. This probably
made it difficult to solve the communication problems [24], discuss the backlog, and
to self-organize; one of the key tenets of agile development [25].

Ramesh et al. [6] suggest four practices to improve communication; synchronize
work hours, provide for informal communication through formal channels, balanced
coordination and constant communication. India II was only partly synchronized, but
managed to communicate frequently and relied on formal channels, i.e. communica-
tion through people with dedicated roles. India I reduced the need for synchronization
and coordination through modularization and communicated frequently with the re-
mote Scrum master. The team from Eastern Europe used synchronized work hours,
enabling constant communication, but the amount of communication and the lack of
formalized channels negated the positive effect.

All three projects were using Scrum for the first time, and it is possible that more
mature Scrum teams would communicate more efficiently because they may be more
knowledgeable about and have a better understanding of issues related to applying an
agile approach in a GSD project. Furthermore, none of the remote teams were trained
in Scrum and this probably resulted in a lack of process understanding.

 A Case Study of Coordination in Distributed Agile Software Development 197

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

Traditional GSD

India I

Scrum Theory

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

Traditional GSD

India II

Scrum Theory

R
el

at
iv

e
em

ph
as

is
 o

n
co

or
di

na
tin

g
m

ec
ha

ni
sm

Mutual
Adjustment

Direct
Supervision

Standardization

Traditional GSD
Eastern Europe

Scrum Theory

Fig. 2. Relative emphasis on coordinating mechanisms between the onshore and offshore
teams: More emphasis is placed on direct supervision and standardization than on mutual
adjustment

198 S. Hole and N.B. Moe

5.2 Implementing Scrum Practices

There was no joint Scrum process between the teams; however India I succeeded in
implementing Scrum in Norway by dividing the project into modules, appointing a
remote Scrum master, and by moving her to Norway for periods. The other projects
used a similar approach, making the remote team responsible for specific modules.
This reduced the need for everyone to communicate with everyone, and made com-
munication less critical. The Eastern Europe project chose to assign standardized
tasks to the remote team, as less complex tasks reduce the need for mutual adjustment
[20]. Fowler [26] argues that this kind of modularization is important to succeed with
distributed Scrum, because a remote team that is responsible for an entire module
from planning to testing gets a deeper understanding of the tasks it is working on. He
also suggests continuous integration to avoid surprises when integrating the modules.

Modularization also makes it possible to implement a Scrum of Scrums approach
[27], where several teams follow their own Scrum process. The total process will then
be coordinated through meetings between the Scrum masters. India I was in an early
phase of implementing Scrum of Scrums.

Two of the projects improved their level of mutual adjustment after first substitut-
ing this coordinating mechanism with standardization and direct supervision. Elec-
tronic chatting was the best remedy to support mutual adjustment, since it is instant,
written text is less hampered by noise than speech, and it was perceived as timesaving
compared to using a telephone conference.

All projects focused on direct supervision after failing to use Scrum, but after some
months, they all felt they could reduce their level of direct supervision because of an
increased level of trust. Among the reasons for increased trust are frequent and reli-
able communication [24] and frequent visits by distributed partners [6]. Trust is a
prerequisite for effective mutual adjustment [24].

6 Conclusion and Future Work

This paper presented data from a multiple case study. None of the projects succeeded
in implementing mutual adjustment, and Scrum was only implemented in one local
team. In the end the projects applied a subset of Scrum practices. We found that:

• A high level of trust is important for reducing direct supervision and standardiza-
tion which is important to enable mutual adjustment.

• Co-locating the remote Scrum master with the local team and making the remote
team responsible for dedicated modules, makes it possible to implement Scrum in
part of a GSD project, and to implement Scrum of Scrums. This also reduces the
need for everyone to communicate with everyone in the GSD project.

• The communication problems caused by distribution are a threat to mutual adjust-
ment, however electronic chatting enables mutual adjustment.

• In addition, there is a need for more research utilizing formal analytical methods on
how work is coordinated in mature agile GSD teams, e.g. teams using Scrum of
Scrums, and when there is a common Scrum process.

 A Case Study of Coordination in Distributed Agile Software Development 199

Acknowledgement

We appreciate the input received from the project participants of the investigated
company and from the review by Hamish Barney and Odd Nordland. This research is
supported by the Research Council of Norway under Grant 174390/I40.

References

1. Damian, D., Moitra, D.: Global software development: How far have we come? IEEE
Software 23, 17–19 (2006)

2. Canfora, G., Cimitile, A., Di Lucca, G.A., Visaggio, C.A.: How distribution affects the
success of pair programming. International Journal of Software Engineering and Knowl-
edge Engineering 16, 293–313 (2006)

3. Agerfalk, P.J., Fitzgerald, B.: Flexible and distributed software processes: Old petunias in
new bowls? Communications of the ACM 49, 26–34 (2006)

4. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global software
development. IEEE Software 18, 22–29 (2001)

5. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile practices reduce dis-
tance in global software development. Information Systems Management 23, 7–18 (2006)

6. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?
Communications of the ACM 49, 41–46 (2006)

7. Paasivaara, M., Lassenius, C.: Could Global Software Development Benefit from Agile
Methods? In: Casper, L. (ed.) ICGSE, International Conference on Global Software Engi-
neering, pp. 109–113 (2006)

8. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodologies.
Communications of the ACM 48, 72–78 (2005)

9. Erickson, J., Lyytinen, K., Siau, K.: Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Research. Journal of Database Management 16, 88–
100 (2005)

10. Cohen, D., Lindvall, M., Costa, P.: An Introduction to Agile Methods. In: Zelkowitz, M.V.
(ed.) Advances in Computers, Advances in Software Engineering, vol. 62. Elsevier, Am-
sterdam (2004)

11. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods
- Review and analysis, vol. 478. VTT Publications (2002)

12. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading (2004)

13. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River (2001)

14. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile meth-
ods A comparative analysis, pp. 244–254 (2003)

15. Farmer, M.: DecisionSpace infrastructure: agile development in a large, distributed team.
Agile Development Conference, pp. 95–99 (2004)

16. Nisar, M.F., Hameed, T.: Agile methods handling offshore software development issues.
In: Hameed, T. (ed.) International Multitopic Conference 2004, pp. 417–422 (2004)

17. Sulfaro, M.: Agile Practices in a Large Organization: The Experience of Poste Italiane. In:
Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536. Springer,
Heidelberg (2007)

200 S. Hole and N.B. Moe

18. Salas, E., Sims, D.E., Burke, C.S.: Is there a “big five” in teamwork? Small Group Re-
search 36, 555–599 (2005)

19. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for
Extreme Programming in a global software development team. Information and Software
Technology 48, 781–794 (2006)

20. Mintzberg, H.: Mintzberg on Management: Inside Our Strange World of Organizations
(1989)

21. Cockburn, A., Highsmith, J.: Agile software development: The people factor. Com-
puter 34, 131–133 (2001)

22. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications Inc., Thousand
Oaks (2003)

23. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering 29, 481–
494 (2003)

24. Moe, N.B., Smite, D.: Understanding Lacking Trust in Global Software Teams: A Multi-
Case Study. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp.
20–32. Springer, Heidelberg (2007)

25. Dyba, T., Dingsoyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology (2008)

26. Fowler, M.: Using an Agile Software Process with Offshore Development (2003),
http://www.martinfowler.com

27. Sutherland, J., Viktorov, A., Blount, J., Puntikov, N.: Distributed Scrum: Agile Project
Management with Outsourced Development Teams. In: HICSS, p. 274 (2007)

R.V. O’Connor et al. (Eds.): EuroSPI 2008, CCIS 16, pp. 201–212, 2008.
© Springer-Verlag Berlin Heidelberg 2008

ProPAMet: A Metric for Process and Project Alignment

Paula Ventura Martins1 and Alberto Rodrigues da Silva 2

1 INESC-ID, FCT/Universidade do Algarve
Campus de Gambelas, Faro, Portugal

pventura@ualg.pt
2 INESC-ID /Instituto Superior Técnico

Rua Alves Redol, nº 9 –1000-029 Lisboa, Portugal
alberto.silva@acm.org

Abstract. Software Process Improvement (SPI) is one of the main software
development challenges. Unfortunately, process descriptions generally do not
correspond to the processes actually performed during software development
projects. Process and project alignment is essential to really find out how proc-
ess improvement is important to achieve an organization’s strategic objectives.
Considering this approach, this paper presents a new software SPI methodology
designated by Process and Project Alignment Methodology (ProPAM). As a
complement to be aware about project changes and facilitate the migration to an
improved process, we propose a metric called ProPAMet to analyze the align-
ment between process and projects. To conclude, a case study contributed to
validate the effectiveness of ProPAM and ProPAMet.

1 Introduction

Software process improvement (SPI) is a challenge to organizations trying to continu-
ally improve the quality and productivity of software and to keep up their competi-
tiveness [1]. However, there has been limited success for many SPI efforts. Recent
reports concluded that 70% of organizations attempting to adopt the CMM (Capabil-
ity Maturity Model) failed in achieving the intended goals [2].

There is a vast literature about process improvement approaches, such as: CMM
[3], CMMI [4], ISO/IEC 15504 [5-7], BOOTSTRAP[8]. However, they don’t tell
though how to improve and which are the specific means to get into a particular ma-
turity level. These approaches don’t provide methods for process elicitation and mod-
elling in order that projects follow specific development processes. They don’t show
how project practices and knowledge is gathered to contribute for process improve-
ment. They don’t explain the mechanisms of team members’ collaboration to cope
with changing contexts or react to existing problems. These are the main reasons for
limited success in many SPI programs. Also important is the fact that some studies
recognize the need of further research on implementing SPI [9].

Evaluation and, as a consequent, improvement of software processes would be im-
possible without software measurement [10]. Software process assessment is a mean
for organizations to identify their strengths, weakness, existing improvement activities
and key disciplines for improvement. Measurement-based SPI enables organizations

202 P.V. Martins and A.R. da Silva

to determine the current state of their software process and to evaluate results of de-
veloped SPI programs. It also allows: (1) determining the effectiveness of applied
processes [11]; (2) studying the effects of new practices introduced through improve-
ment programs [12]; and (3) finally specifying process models that correspond to the
processes actually performed [11].

All these factors allowed identifying several problems associated to existing SPI
approaches, such as: (1) improvement actions focused on SPI models and ignoring
organizational culture; (2) existing SPI models require several investments, such as:
budget, time and human resources; (3) absence of key practitioners involvement result
in resistance to change; (4) process descriptions generally do not correspond to the
processes actually performed during software development projects; (5) existing SPI
models don’t provide methods for process and project representation; (6) existing SPI
models identify what to improve but don’t give any information about how to do it;
and (7) no indicator about how project practices are diverging from the base process.

One of the contributions of this paper is to present a new SPI approach, Process
and Project Alignment Methodology (ProPAM) is a SPI approach based on process
and project data in order to detect misalignments between projects and supporting
processes. The development of a metric for evaluating the accuracy of process and
project alignment and the need to improve the process is another contribution that we
intend to introduce in the domain of SPI. Process and Project Alignment Metric
(ProPAMet) allows determining the alignment between processes and projects con-
sidered as an indicator to perform changes in base processes.

This paper is organized in the following sections. Section 2 describes briefly the
proposed ProPAM methodology. Section 3 presents the proposed metric to analyse
process and project alignment. Section 4 presents a case study performed in a Portu-
guese organization. Finally, Section 5 concludes and introduces future trends.

2 ProPAM Methodology

As mentioned in previous section, existing SPI models are insufficient to guide
change in a constantly changing, constrained and increasingly unpredictable environ-
ment. Process and Project Alignment Methodology (ProPAM) directs attention to
organization’s needs for communication, coordination and collaboration within and
between project teams. The methodology is about how the process and project are
represented and how project teams acquire and use knowledge to improve work.
ProPAM methodology proposes solving the problems faced in software development
projects carried within the organizations. A critical feature in ProPAM is the integra-
tion of SPI activities with software development activities. This way, we considered
project teams and projects as the baseline for improvement. A detailed specification
of ProPAM can be found in [13].

As Figure 1 illustrates, ProPAM methodology includes SPI activities that intends
to develop and implement the software process of an organization (process level).
Nevertheless, SPI activities also include monitoring and tracking of software projects
(project level). At project level, the methodology proposes to assist organizations in
its efforts to assess and manage problematic situations of specific projects, and de-
velop and implement solutions that help manage these problems. The project level

 ProPAMet: A Metric for Process and Project Alignment 203

covers project(s) information needed to systematically support or reject many of deci-
sions about the process. At process level, project’s feedbacks conduct to process re-
views and iterative process improvement. The dynamic interplay between these two
levels (project level and process level) show the synergy between the activities per-
formed by project roles (project manager and team member) and the activities per-
formed by the process roles (process manager) involved in SPI.

Figure 1 overviews the ProPAM methodology that includes the alignment between
the process and project(s) illustrated through process and projects levels. The scope of
the levels is well defined in order for process and projects actors collaborate on SPI
programs. However, to manage the inherent complexity of these levels, namely
ProPAM represented at process level, it is current practice to divide such models into
views. In general, a view is defined as a projection of a process model that focuses on
selected features of the process [14]. ProPAM is organized in two correlated and
complementary views, the static view and the dynamic view that represent the behav-
iour at that particular level. Whereas the static view describes aspects of the method-
ology as core and supporting disciplines in terms of activities, work products and
roles, the dynamic view shows the lifecycle aspects of ProPAM expressed in terms of
stages and milestones.

ProPAM static view integrates project management, process management, SPI and
knowledge management (KM) disciplines, as illustrated in diagram of Figure 1. These
disciplines assure alignment of projects with organization vision and goals, and the
adopted and improved software process.

Fig. 1. Process and Project Alignment Methodology (ProPAM)

204 P.V. Martins and A.R. da Silva

ProPAM dynamic view covers iterative process improvement through a SPI life
cycle with three stages: (1) process definition; (2) apply process to project(s) and
monitoring; and (3) process assessment and refinement. The process definition stage
main goal is dedicated to an initial process specification through the application of the
PIT-ProcessM metamodel specified in Figure 2. Apply process to project(s) and
monitoring stage involves planning and executing the project within the base process
best practices. It also provides assurance that the project is progressing according to
the base process or reveals the need to take SPI actions because the activities per-
formed by team members are different from those specified in the process. Project
problems may occur and a new set of practices must be imposed or the process man-
ager detects that new practices are needed. In the process assessment and refine-
ment stage, initially, the project manager and process manager analyze project data
and produce assessments focused on project issues and process issues, respectively.
After that, the results gathered during assessments enable improvements and consis-
tent refinements of the base process creating a new process version.

Static View

Dynamic View

ProcessPhase

ProcessIteration
ProcessDiscipline

ProcessActiv ity ProcessWorkProduct

ProcessWorkProductKind

ProcessRole

Process

Operation

{subset}

Modification

+work product 1..*

assigned_to+responsible

1

1..*

organized

1..*

include

1..*

structured

0..* consume 0..*

0..*

related

*

supervise

1

1..*

orchestrized

0..*

preceded by

0..*

composed by

0..* produce 0..*

*

participate

*

+base 0..1

+derived 0..*

1..*has

includes

composed by

1
type of

*

Fig. 2. ProjectIT Process Meta-model

3 Process and Project Alignment Metric (ProPAMet)

Process descriptions generally do not correspond to the processes actually supporting
software development projects. They just represent high-level plans and so, do not
contain the concrete information necessary for a software project. This lack of align-
ment between the process and project(s) results from processes unrelated to project

 ProPAMet: A Metric for Process and Project Alignment 205

activities and failure in detecting project changes to improve the process. Process and
project alignment is essential to really find out how process management is important
to achieve an organization’s strategic objectives.

However, progressive modifications in projects can cause misalignments with the
original process. These modifications can be management innovations or changes in
the way the activities are executed. Furthermore, a modification may regard not only
the considered activity, product or actor but it can also affect other elements having a
dependence relation with the modified one. ProPAM methodology provides mecha-
nisms to detect misalignments between processes and projects through detection of
changes and innovations in project’s activities. This mechanism is based on a metric
that allows defining the alignment degree between process and project.

Process and project alignment is defined as the degree to which the project activi-
ties support and are supported by the process practices. Moreover, it involves a real
match between process practices and projects activities, products and actors. We pro-
pose a metric where the process is considered the reference, and the measure provides
a balanced assessment of the fidelity of matches and gaps.

Project metrics goals are important to improve project-by-project performance, di-
visional/sector performance, or organizational performance. Process metrics are also
important to quantify attributes of the development process and the development
environment. However, none of these approaches allows identifying the similarities
between the features considered in both domains (process and project). The align-
ment metric that we propose intends to characterize how closely the projects are re-
lated to their base process.

The Process and Project Alignment Metric (ProPAMet) evaluates the mapping
features of one project to features of the process. The alignment measure intends to
evaluate the correctly match between process and project features (aligned features)
divided by the total number of features identified in a project. The measurement proc-
ess contains the following phases:

• identification and classification of project features by categories, considering: (1)
unaligned features in process entities and (2) aligned features in process entities;

• calculating an aligned features value;
• calculating general project features value;
• calculating final process and project alignment value.

For measurement purposes, project features are organized according to process en-
tities in the following five categories: phase, discipline, role, work product and activ-
ity. The formula to derive process and project alignment can be written:

ProPAMet(AF,TPF)=AF/TPF . (1)

Where:
AF = number of project’s entities that have a correspondence in process’ entities

(Aligned Features).
TPF = number of project’s features (aligned and unaligned features) in all five

categories (Total Project Features).
In (1) each term AF and TPF is calculated by formulas (2) and (3). However, fea-

tures from different categories have a different impact in the process. To consider the

206 P.V. Martins and A.R. da Silva

Table 1. ProPAM weights

Category Weight factor
Phase 0,2
Discipline 0,25
Role 0,1
Work Product 0,05
Activity 0,05

relevance of each category, project features must be multiplied by a constant weight
w i in formulas (2) and (3). Each category has its own constant weight wi

(i=1,2,3,4,5) as presented on Table 1.
To derive the AF function, first identify all project entities that have correspon-

dence in process entities. Then weight each aligned feature based on one of the five
categories. The sum of these weights is called the aligned features function (AF):

AF(i,a,w)= Σ (ai.wi) . (2)

In (2) each term i, ai and wi represent:

i = features are classified through five categories (phase, discipline, role, work
product and activity)

ai = number of project aligned features classified in category i.
wi =weight assigned to category i.

However, some features could have no correspondence in process entities for re-
spective categories. Then, consider project features as the project activities with and
without correspondence in process entities. Then, weight each project feature based
on one of the five categories (Table 1). The sum of these weights is called the total
project features (TPF):

TPF(i,p,w) = Σ (pi.wi) . (3)

In (3) each term i, pi and wi represent:

i = features are classified through five categories (phase, discipline, role, work
product and activity)

pi = number of project features (aligned and unaligned) classified in category i.
wi = weight assigned to category i.

Over time, process and project misalignment happens when projects practices gradu-
ally changes to a point where differences to the base process are considered relevant.
ProPAMet, a metric to evaluate process and project alignment enables to compare per-
formed practices in current project with practices of the base process. The metric com-
pares the base process at time t0 with practices in projects at time ti, allowing notifying
practitioners about differences between process and project practices. When the
ProPAMet threshold is crossed, differences are significant and it is a recommended to
start a new SPI program which probably will conduct to an improved process version.

Figure 3 illustrates the second stage (apply process to projects and monitoring stage)
of a hypothetic SPI program. Three iterations were executed until achieve organization
goals. Iteration ends when the metric threshold is crossed and a new process version is
delivered. This cycle concludes when the SPI program goals are fulfilled.

 ProPAMet: A Metric for Process and Project Alignment 207

Iteration 1 Iteration 2 Iteration 3
40%

50%

60%

70%

80%

90%

100%

110%

Iterations (months)

Process V.1 Process V.2 Process V.3

Threshold

Project 1
Project 2

Project 3

Project 4
Project 5

Project 6

Project 8

Project 9
Project 10

Project 7

Fig. 3. Example of a SPI program with three iterations

4 Case Study

The purpose of the case study was to evaluate the effectiveness of ProPAM as a new
methodology for SPI in small and medium organizations. We collaborate with a Por-
tuguese software house that had demonstrated interest to define and improve their
software development process. The case study includes the observation of three dif-
ferent projects and the application of the proposed methodology – ProPAM – to de-
fine and improve their software development process.

A SPI program was conducted in order to control and analyse projects developed
by this organization. The SPI program was organized in three stages. The first stage
was dedicated to an initial process specification at process level. Wile in the second
stage several activities had been realized at process and project level. At project level,
three projects had been under inspection to detect, introduce and validate new soft-
ware development practices. Then, these practices had been analysed at process level
as candidates for future improvements in the base process. Final stage main is dedi-
cated to specify the improved process and includes a final feedback meeting to dis-
cuss introduced practices.

SPI roles planned and performed improvement activities over a period of ten months,
which resulted in the definition of the process (a process model, process documentation
guideline) and a knowledge base (documents, guidelines, projects data, template li-
brary). At the end, the changed process had been presented to senior manager and pro-
ject teams and further modified and improved based on their feedback.

208 P.V. Martins and A.R. da Silva

Critical work of a SPI program was developed during the second stage of the SI
program. At project level, the project PTF had been monitored during 12 iterations
that lasted one, two or three week’s time each. Project NGRID and PIS were organ-
ized in fewer iterations, respectively 5 and 4 as showed in Table 2. This table also
provides a profile of attributes for the three projects.

Table 2. Main features of the three inspected projects

Characteristic Project NGRID Project PIS Project PTF

Project name NGRID PIS PTF

Application Web-based applica-
tion

Web-based
application

Portal (front-end
and back-office)

Duration 7 weeks (planned)
10 weeks (actual)

6 weeks (planned)
9 weeks (actual)

18 weeks (planned)
25 weeks (actual)

Number of Iterations 5 iterations 4 iterations 12 iterations

Iteration length
5 x 2 weeks

1 x 2 weeks
1 x 1 week
2 x 3 weeks

3 x 2 weeks
1 x 1 week
6 x 3 weeks

Project Team Size 5 4 4

Fig. 4. SPI program performed at the Portuguese software house

At process level, only an iteration took place during the second stage. As we can
see, at process level, iterations act in a different time scale expressed in months. In
this case study, this iteration lasted six months. The nature of the project and process
level iterations won't necessarily change much, so we recommend at least one SPI
program each year. Figure 4 illustrates the difference between the time scale of the
iterations at process and project level. It also identifies main activities and demon-
strates the interaction between these two levels.

 ProPAMet: A Metric for Process and Project Alignment 209

Table 3. Existing and new practices organized by disciplines

Analyse and design
Interviews + + +

Prototyping + - -
Use cases - + +

Requirements specification + + +
Issue and change request management + + +

Modelling ± ± +
Design information - - -

Requirements management ± ± ±
Requirements traceability through design - ± ±

Development
Write code + + +

Test-Driven Development (TDD) techniques - - -
Pair programming - - -

Pair programming training - - -
TDD training - - -

Tests
Unitary tests ± ± ±
System tests ± ± ±

Final client test ± ± +
Pre-production debug + + +

Test cases ± ± ±
Client participation on test cases - - ±

Independent tester - - -
Peer review - - -

Cross-reference between requirements and test cases - - -
Defects management ± ± ±

Deployment
Prepare client installation + + +

Client installation + + +
Prepare project presentation + + +

Present project to client + + +

Project Management
Kick-off meeting + + +

Prepare project meetings - - -
Iteration meetings + + +

Elaborate commercial proposal ± ± ±
Historical data - - -

Estimation - - -
Planning/replanning ± ± ±

Tracking project - - ±
Periodic reports ± ± ±

Risk management - - ±
Quality management ± ± ±

Software configuration management - - -

NGRID PIS PTF

210 P.V. Martins and A.R. da Silva

During the period of the pilot case study from September 2006 to July 2007 we
collect data from these three projects. All the data presented here was obtained
through analysis of several projects’ work products and SPI documents. The data
collected were analysed statistically, and proposals were developed for improving the
software development process based on the results of an analysis of the qualitative
data collected in the assessment and other quality improvement findings from devel-
oped projects.

Finally, after analysing data collected through the three projects and comment final
metrics results, it is the moment to verify the impact of the proposed practices in the
base process. In accordance with ProPAM methodology, ProPAMet is a metric which
allow identifying the degree of alignment between projects and the correspondent
process. The main objective is to determine the degree of alignment in order to advice
improvements in the base process. A high degree of alignment indicates that projects
practices are highly synchronized with correspondent process.

Here the challenge occurs under changing project practices, such as the ones intro-
duced in these three projects (case study) that could result in a shift to a new process
version. When such changes take place, ProPAMet is used to evaluate the degree of
alignment or consensus between projects and the correspondent process. ProPAMet
calculus involved identification and classification of the features from projects and
from the base process according to specific categories (see table 1). To determine the
match between process and projects, two functions were applied (equation 2 and 3) to
determine aligned features (AF) and total project features (TPF) (see section 3). In
total and relative to the base process, project NGRID included the following un-
aligned features: 1 discipline, 10 work products and 6 activities. Whereas the corre-
sponding values were 1, 13 and 7 in project PIS and 1, 18 and 10 in project PTF (table
3). Projects PIS and PTF included one more role in the unaligned features, the Web
Designer.

Figure 5 shows the variance of the ProPAM metric (ProPAMet) within the three
projects. The graphic illustrates a decrease in the value of ProPAMet from project
NGRID to project PTF and, consequently, shows how changes proposals influenced
project practices and conduced to process improvement.

70,00%

75,00%

80,00%

85,00%

ProPAMet

ProPAMet 80,37% 76,11% 71,07%

Project NGRID Project PIS Project PTF

Fig. 5. ProPAM metric (ProPAMet) for each project

 ProPAMet: A Metric for Process and Project Alignment 211

5 Conclusions

Currently, existing process metamodels are not suitable for SPI, since their main goal
is on process specification without any consideration regarding project changes to
improve the process. These problems redirected our efforts to define two metamodels
(PIT-ProcessM and PIT-ProjectM) that are applied in process and project specifica-
tions and respective alignment. On the other hand, within ProPAM, PIT-metamodels
contributed to the solution of previously identified SPI problems. So, these metamod-
els had been proposed to fulfil the following requirements: (1) provide support for
process definition and improvement; (2) specify projects based on a previous process
description; (3) track project issues back to the process. Round trip was also an impor-
tant feature, since we used reverse engineering to improve the process model based on
the changes introduced in the project description (process and project alignment).

The contribution of this thesis was not just a modelling approach to align process
and project specifications, within ProPAM, we also proposed a mechanism to process
evolution based on the changing needs of the software development organization. The
case study, and consequent results evaluation, demonstrated the effectiveness of
ProPAM to improve an organization software process.

Concerning ProPAMet metric, this paper introduced a metric that graphically helps
to decide about process and project misalignments that will conduct to SPI actions to
improve an organization process. When an organization applies ProPAMet metric
during successive software projects, it obtains a feedback about how project practices
are diverging from proposed process practices. Therefore, we highly recommend
using ProPAMet during all developed software projects for two reasons: (1) evaluate
if projects changes proposed by SPI programs are relevant to justify a new and im-
proved version of the base process and (2) determine if current project practices are
not aligned with base project, justifying a new SPI program to improve the process.

References

[1] Salo, O.: Improving Software Development Practices in an Agile Fashion. In: Agile
Newsletter 2, Agile-ITEA edn., p. 8 (2005)

[2] Krasner, H.: Accumulating the body of evidence for the payoff of software process im-
provement 1997. Krasner Consulting (1997)

[3] SEI: Capability Maturity Model for Software (CMM), Version 1.1. Carnegie Mellon Uni-
versity (1993)

[4] SEI: Capability Maturity Model Integration (CMMI), Version 1.2. Software Engineering
Institute, USA (2002)

[5] ISO/IEC: 15504-2 Information technology - Software process assessment – Part 2: A ref-
erence model for processes and process capability, July ISO/IEC TR 15504-2 (1998)

[6] ISO/IEC: 15504-5 Information technology – Software process assessment – Part 5: An
assessment model and indicator guidance, ISO/IEC JTC1 / SC7 (1998)

[7] ISO/IEC: 15504-7 Information technology – Software process assessment – Part 7: Guide
for use in process improvement, International Organization for Standardization ISO/IEC
TR 15504-7 (1998)

212 P.V. Martins and A.R. da Silva

[8] Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Koch, G., Saukkonen, S.: Software Proc-
ess Assessment and Improvement: The BOOTSTRAP Approach. Blackwell Publishers,
Malden (1994)

[9] El Emam, K., Fusaro, P., Smith, B.: Success Factors and Barriers for Software Process
Improvement. Better Software Practice For Business Benefit: Principles and Experience,
355–371 (1999)

[10] Arthur, L.: Improving Software Quality: An Insider’s Guide to TQM, New York (1993)
[11] Pfleeger, S., Rombach, H.: Measurement Based Process Improvement. IEEE Software, 8–

11 (1994)
[12] Van Solingen, R., Berghout, E.: The Goal/Question/Metric Method: A Practical Guide for

Quality Improvement of Software Development. McGraw-Hill, Cambridge (1999)
[13] Martins, P.V., Silva, A.R.: ProPAM: SPI based on Process and Project Alignment. In:

2007 IRMA Internacional Conference. IGI Publishing, Vancouver (2007)
[14] Verlage, M.: Multi–view modeling of software processes. In: Third European Workshop

on Software Process Technology. Springer, Grenoble (1994)

Author Index

Alexandre, Simon 129
Allmann, Christian 142
Amescua, Antonio 82
Arcilla, Magdalena 106

Bannerman, Paul 94
Barafort, Béatrix 117
Barker, Trevor 1
Bernardo, Danilo Valeros 36

Calvo-Manzano, Jose A. 25, 106
Cavalcanti da Rocha, Ana Regina 164
Cerdeiral, Cristina 164
Chen, Xi 94
Chua, Bee Bee 36
Cuevas, Gonzalo 25, 106

da Silva, Alberto Rodrigues 201
Demirors, Onur 59
Deprez, Jean-Christophe 176
de Souza, Richard H. 70

Garćıa, Javier 82
Gómez, Gerzon 106
Gresse von Wangenheim, Christiane 70

Hall, Tracy 1
Hauck, Jean Carlo R. 70
Hole, Steinar 189

Jezek, David 117

Knauss, Eric 142

Landaeta, José Francisco 82
Laporte, Claude Y. 129

Ma, Nan 1
Majchrowski, Annick 176
Mäkinen, Timo 117
Moe, Nils Brede 189
Montoni, Mariano Angel 164

O’Connor, Rory V. 129
O’Donnell, Michael J. 13
Ozkan, Baris 59

Pietinen, Sami 47

Richardson, Ita 13
Ruiz, Elena 106

San Feliu, Tomás 25, 106
Serrano, Ariel 25
Sihvonen, Hanna-Miina 152
Stapel, Kai 142
Staples, Mark 94
Stolfa, Svatopluk 117

Tenhunen, Vesa 47
Thiry, Marcello 70
Tukiainen, Markku 47
Turetken, Oktay 59

Valtanen, Anu 152
Varkoi, Timo 117
Ventura Martins, Paula 201
Verner, June 36
Vondrak, Ivo 117

Zanetti, David 164

	Title Page
	Preface
	Organization
	Table of Contents
	Building a Narrative Based Requirements Engineering Mediation Model
	Introduction
	Conflict Resolution in RE
	A Brief Overview of Narrative Mediation
	Narrative Mediation’s Applicability to RE

	NREMM
	Model Translation Method
	NREMM

	Conclusion and Future Work
	References

	Problems Encountered When Implementing Agile Methods in a Very Small Company
	Introduction
	Why Agile Methods?
	Employing Agile Methods

	Research Methodology
	Case Study
	Project Instigation

	Effect of Implementing Agile Methods
	Problems Encountered
	Benefits Derived
	So What Went Wrong?

	Conclusion
	References

	A Process Asset Library to Support Software Process Improvement in Small Settings
	Introduction
	Process Asset Library Goals and Implementation Benefits
	The Process Asset Library Goals
	Process Asset Library Implementation Benefits

	Web-Based Process Assets Library Application Structure
	CMMI Model Components Descriptions
	Process Assets Library Structure Using CMMI Model Components as a Reference
	Components of the Web-Based Process Assets Library for Small Settings

	Conclusions
	References

	Criteria for Estimating Effort for Requirements Changes
	Introduction
	Literature Review
	Empirical Evidence Based on a Collection of Change Request Forms
	Proposed Framework
	Conclusions and Future Work
	References

	Productivity of Pair Programming in a Distributed Environment – Results from Two Controlled Case Studies
	Introduction
	Research Background
	SoPro Project
	Pair Programming
	Productivity

	Research Design
	Research Method
	Data Collection
	Research Setting
	Projects and Developers

	Productivity Factors
	Analyses
	Results
	Validity

	Discussion
	Conclusions and Future Work
	References

	Software Functional Size: For Cost Estimation and More
	Introduction
	Related Research
	Uses of Functional Size Measures in Project Management Knowledge Areas
	Conclusions
	References

	Process Reference Guides – Support for Improving Software Processes in Alignment with Reference Models and Standards
	Introduction
	ASPEI/MSC
	Introducing Process Reference Guides
	First Experiences
	Discussion
	Conclusions
	References

	Practical SPI Planning
	Introduction
	State of the Art
	IDEAL Model
	DMAIC Model
	Analysis of Project Management of SPI Models

	P4SPI Description
	Overview
	Initiation Phase
	Planning Phase
	Control and Monitoring
	Closure Phase
	P4SPI Components

	Case Study of CMMI Implementation Using P4SPI
	Conclusions
	References

	Analysis of Dependencies between Specific Practices in CMMI Maturity Level 2
	Introduction
	Work Products of CMMI Specific Practices
	Work Product-Based CMMI Specific Practice Dependencies
	Methodology
	Specific Practice Dependencies within Process Areas
	Specific Practices Dependencies Across Process Areas

	Discussion
	Interpreting the Model
	Validation
	Problems with Completeness and Terminology in the CMMI Specification
	Discussion of Specific Practice Dependencies and Process Area Relationships

	Conclusion
	References

	A Solution for Establishing the Information Technology Service Management Processes Implementation Sequence
	Introduction
	Organization and Structure of the ITSM Processes
	OPreSSD: Organizational Procedure for Service Support and Service Delivery
	Establish Dependency Relationships
	Generate Sequence

	Summary
	References

	Modeling and Assessment in IT Service Process Improvement
	Introduction
	Capability Assessments
	Process Assessment Models for IT Service Management
	Process Modeling
	Experiences of Combined Modeling and Assessment
	Integration of the Approaches
	Conclusions
	References

	A Software Engineering Lifecycle Standard for Very Small Enterprises
	Introduction
	Very Small Enterprises
	Characteristics of a VSE

	History of the ISO/IEC Working Group for VSEs
	Gathering VSE Requirements
	Categorization of the Sample According to the Size Criterion
	General Characteristics
	Use of Standards

	The WG24 Approach
	Recent Developments

	Conclusion and Future Work
	References

	Lightweight Process Documentation: Just Enough Structure in Automotive Pre-development
	Introduction
	Related Work
	Study Design
	Information Flow Basics
	Elicitation Design
	Elicitation Execution

	Information Flow Analysis
	Results
	Aggregation

	Drawing the Consequences
	Conclusion and Outlook
	References

	Employees’ Motivation for SPI: Case Study in a Small Finnish Software Company
	Introduction
	Case Context and Research Questions
	Research Strategy
	Data Collection Method
	Data Analysis

	Findings
	Motivation of the CEO
	Motivation of the Employees

	Discussion
	Conclusion
	References

	A Knowledge Management Approach to Support Software Process Improvement Implementation Initiatives
	Introduction
	Management of SPI Implementation Initiatives
	A Methodology for Identifying Critical Success Factors That Influence Software Process Improvement Initiatives
	A Knowledge Management Approach to Support Software Process Improvement Implementation Initiatives
	Standard SPI Implementation Process and SPI Implementation Strategy Concepts
	Architecture of the Approach
	Supporting Tools

	Conclusions
	References

	An Operational Approach for Selecting Open Source Components in a Software Development Project
	Introduction
	Context of Methodology
	FlOSS Selection Approach
	Our FlOSS Selection Approach in the Tabellio Project
	Related Works
	Conclusions and Future Works
	References

	A Case Study of Coordination in Distributed Agile Software Development
	Introduction
	Background
	Agile Methods and Scrum
	Coordinating Mechanisms in Agile Development and GSD

	Research Design and Method
	Study Context
	Data Sources and Analysis

	Agility in GSD Projects
	Project India I
	Project India II
	Project Eastern Europe

	Discussion
	Challenges Implementing Mutual Adjustment in GSD
	Implementing Scrum Practices

	Conclusion and Future Work
	References

	ProPAMet: A Metric for Process and Project Alignment
	Introduction
	ProPAM Methodology
	Process and Project Alignment Metric (ProPAMet)
	Case Study
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

