
J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 60–67, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Graph-Theoretic Visualization Approach to Network
Risk Analysis

Scott O’Hare1, Steven Noel2, and Kenneth Prole1

1 Secure Decisions, Division of Applied Visions Inc., 6 Bayview Ave., Northport, NY, USA
2 Center for Secure Information Systems, George Mason University, Fairfax, VA, USA

{ScottO,KennyP}@securedecisions.avi.com, snoel@gmu.edu

Abstract. This paper describes a software system that provides significant new
capabilities for visualization and analysis of network attack graphs produced
through Topological Vulnerability Analysis (TVA). The TVA approach draws
on a database of known exploits and system vulnerabilities to provide a con-
nected graph representing possible cyber-attack paths within a given network.
Our visualization approach builds on the extensive functionality of the yWorks
suite of graphing tools, providing customized new capabilities for importing,
displaying, and interacting with large scale attack graphs, to facilitate compre-
hensive network security analysis. These visualization capabilities include
clustering of attack graph elements for reducing visual complexity, a hierarchi-
cal dictionary of attack graph elements, high-level overview with detail drill-
down, interactive on-graph hardening of attacker exploits, and interactive graph
layouts. This new visualization system is an integrated component of the
CAULDRON attack graph tool developed at George Mason University.

Keywords: network security, attack graph, exploit analysis, vulnerability as-
sessment, visualization, situational awareness.

1 Introduction

Powerful analytic tools generally require well-designed user interfaces in order to be
fully effective in their designated applications. This is especially true for tools de-
signed to enhance network security: There are order-of-magnitude complexity issues
associated with network topology maps, traffic data collection, and expert systems
built around attack profile data and traffic correlation. For such analysis to be com-
prehensible, we need sophisticated visualization and interaction mechanisms.

We describe a visualization component for network attack graph analysis. This is
an integrated component of the CAULDRON tool developed at the Center for Secure
Information Systems at George Mason University. CAULDRON analyzes network
topology and vulnerability data, combined with a comprehensive attack profile data-
base. This Topological Vulnerability Analysis (TVA) [1] generates a complete attack
graph showing all possible attack paths through a given network. The attack graph
represents vulnerable network hosts and exploits that may be launched against them,
with attack state transition data determined by the exploits. This attack graph, is still
generally too large to be viewed and understood in its entirety.

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 61

Our approach to the visualization problem for TVA is based on tools explicitly de-
signed for displaying and interactively analyzing graphs of interconnected nodes. A
number of such tools are available, including Tom Sawyer, JGraph, Prefuse, Jviews
Diagrammer, and yWorks. After a careful survey, we selected yWorks [2] for this
application, based on its extensive feature set, deep and comprehensive Java API, and
attractive deployment licensing terms.

The resulting software component provides powerful visualization capabilities for
CAULDRON TVA attack graphs. A key feature is the implementation of hierarchical
node and edge grouping along lines of protection domains. Protection domains are
sets of machines with unrestricted access to one another’s vulnerabilities, forming a
completely connected sub-graph. Within each domain, it is sufficient to encode a
particular host exploit only once, then implicitly, all hosts within the domain can carry
out that exploit. Across domains, the exploits are all explicit. Thus our protection
domain abstraction preserves all the information of the complete (ungrouped) graph,
including intra-domain exploits. This abstraction reduces complexity within each
protection domain from quadratic to linear, providing significant scalability, facilitat-
ing analyst navigation and cognition [3].

In our visualization system, a high-level view clearly displays exploit relationships
among protection domains, which can be opened individually or in groups for deeper
views of attack properties and relationships. A complete listing of active exploits and
their associated details is available at all times relative to any selected component.
Interactive hardening of on-graph nodes and exploits can be emulated to study the
effects of remediation and “what-if” scenarios. Additionally, a suite of interactive
layout tools, including manual repositioning of entities, along with full-scale layout
algorithms, is continuously available to restructure or simply clean up the display.

The next section gives an overview of the CAULDRON tool, including the nature
and utility of network attack graphs. In Section 3, we discuss yWorks architecture and
capabilities, in relation to requirements for CAULDRON attack graph visualization.
We also describe custom components that meet special requirements, as well as archi-
tectural features for performance and visual comprehension. Section 4 then describes
the resulting visualization capabilities, including operational scenarios and ideas for
future improvements.

2 CAULDRON Tool Capabilities

The CAULDRON TVA approach simulates incremental network penetration, show-
ing all possible attack paths through a network. This simulation is based on a detailed
model of the network configuration, attacker capabilities, and desired attack scenario.
Because of the inherent interdependencies of vulnerability across a network, such a
topological approach is necessary for a full understanding of attack risk.

CAULDRON captures configuration details for a network by processing the output
of network scanning tools (Fig.1). It combines scans from various network locations,
building a complete map of connectivity to vulnerable services throughout the net-
work. It integrates with Nessus, FoundScan, and Retina, and Symantec Discovery.
Integration with Altiris is currently under development.

62 S. O’Hare, S. Noel, and K. Prole

Fig. 1. CAULDRON architecture

CAULDRON maintains a comprehensive database of modeled attacker exploits
(currently over 20,000), based on software vulnerabilities reported in various sources,
including Symantec DeepSight (a direct XML feed of Bugtraq along with other data),
and MITRE’s Common Vulnerabilities and Exposures (CVE). From the input model
of network configuration and attacker exploits, CAULDRON computes a graph com-
prising all possible attack paths through the network. This graph is computed through
simulated multi-step attacks according to a given user scenario.

The TVA approach as implemented by CAULDRON is not simply a cross-
referencing of security data. Rather, it is a simulation of multi-step network penetration,
with a full range of host vulnerability types and network configuration variations. For
example, we have implemented exploit rules for buffer overflows, user logins, file trans-
fers, port forwarding, traffic sniffing, spoofing attacks, client-side attacks, and denial-
of-service.

Further, the ability to experiment through such what-if analyses is a powerful
CAULDRON capability. The analyst can specify a starting point for the attack (the
presumed threat source), as well as an attack goal (critical network asset to protect).
The analyst can also model the effects of software patches or other mitigation solu-
tions, which are included in the CAULDRON database. Once an attack graph has
been computed, CAULDRON analyzes the results and provides recommendations for
optimal network defenses [4].

3 Attack Graph Visualization

Capabilities for generating and visualizing TVA attack graphs have undergone sig-
nificant evolution over time. TVA technology was originally limited to computing
single attack paths, and the original presentation was a simple table, as in Fig.2(a).
Later, the capability for efficient computation of all possible paths was developed, but
visualization of the resulting graphs in their full detail is difficult to assimilate, e.g.,
Fig.2(b). Therefore primitive graph clustering techniques were developed, in special-
purpose code, which was cumbersome and had limited interactive capabilities, as
shown in Fig.2(c). Later, a more advanced visualization capability was developed

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 63

Fig. 2. Evolution of attack graph visualization capabilities

using Tom Sawyer, shown in Fig.2(d), although this exhibited performance problems
for larger attack graphs. Our implementation using yFiles adds new analytic and dis-
play capabilities, while addressing these problems.

3.1 Loading the Attack Graph

The attack graph structure is delivered in an XML document conforming to a specific
XML Schema Definition (XSD). We leverage Apache’s XMLBeans technology, a
Java-to-XML binding framework, to import the attack graph XML. Existing yFiles
XML import capabilities require the existence of an Extensible Stylesheet Language
Transformation (XSLT) into one of several standardized graph representations, which
is not sufficiently general for our purposes. The XMLBeans component uses an XSD
file to build a class library corresponding to the internal document structure. Utilities
parse XML data structures and ensure conformance with the XSD, allowing us to
acquire an attack graph as an organized collection of instantiated Java objects.

3.2 The Node Hierarchy

The attack graph is built within yWorks by transforming attack graph machine (host)
objects into graph nodes, and exploit objects into graph edges. Several layers of
graphical nesting are also performed. The most fundamental of these is based on pro-
tection domains, which are represented within the yFiles graph as group or folder
nodes. (From a display or layout perspective, a group node is essentially a folder node
that has been opened, and whose child elements are visible.) Machine nodes within a
protection domain are represented as child nodes of the corresponding group or
folder. We perform the layout of nodes within a group as the graph is assembled and
initially present the graph in its top-level layout, in which only protection domains
and the exploits connecting them are visible.

64 S. O’Hare, S. Noel, and K. Prole

Presenting an initial top-level view yields an enormous improvement in the initial
performance of the graph layout algorithm. Execution time of layout algorithms in-
creases rapidly with the number of visible nodes and edges to be displayed. Earlier
efforts to import large attack graphs were quite time-consuming, primarily due to this
initial layout overhead. A top-level layout approach, combined with yFile’s ability to
perform so-called incremental layout algorithms allow us to import and display large
attack graphs in seconds that formerly had taken several hours to load.

3.3 The Edge Hierarchy

Another feature to enhance layout performance involves the manner in which exploits
are represented as edges. Only exploits that connect machines in different protection
domains appear as edges in our graph, that is, we suppress edge creation for intra-
domain edges. This significantly accelerates initial graph setup, as well as subsequent
layout steps resulting from interactive and redrawing operations. We also aggregate
into a single edge any multiple edges connecting the same pair of nodes. These edge
policies provide significant improvements in graph readability in addition to perform-
ance enhancements.

In the hierarchical navigation of nodes, no information is lost; one has merely to
expand a folder node to acquire information hidden at a lower level. With the edge
representation policies described above, it is not possible, in general, to recover a full
edge set through simple expansion. Special mechanisms have been implemented to
remedy this. Aggregated edges are labeled with an edge count, and edge line thick-
ness also indicates the total number of exploits being represented. Additionally, the
tool contains an exploit table that displays the full list of exploits, with complete at-
tributes, associated with any single aggregated edge. Simply selecting an edge of the
graph populates this table, as shown in Fig.3.

The exploit table also tracks node selection: all exploits associated with a given
machine (node), or protection domain (folder or group node) are displayed in the
exploit table whenever the node is selected. This includes the display of intra-domain
exploits, even though these are not explicitly represented by edges. Thus the full set
of information provided by an attack graph is always available, and can be viewed in
an intuitive way within the user interface. The exploit table allows a “microscopic”
analysis of exploit details, while fundamental topology and network relationships are
kept simple and understandable within the graph view.

Fig. 3. Exploit table from the attack graph visualization tool

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 65

3.4 Additional Graph Visualization Features

Hardening: Viewing vulnerabilities or potential exploits within a network, the ana-
lyst is generally faced with multiple options for remediation. These options often
involve choosing a machine or set of machines to protect (harden), or identifying
specific exploits to protect against. We visually display the effects, in graphical terms,
that occur when a specific node or protection domain is hardened or when a specific
exploit is neutralized. This involves determining which elements are no longer vul-
nerable after the hardening, and removing these elements from the attack graph.
These elements are placed into a separate list, which in effect quantifies the benefits
to be obtained from the specific hardening operation.

Layout Algorithms: The yFiles engine incorporates an impressive architecture for
implementing layout algorithms on a given attack graph. Many of these algorithms are
the end product of significant mathematical and computational research. Having a rich
palette of alternate layouts to choose from greatly strengthens the analytic benefits of
graph visualization, since viewing data with different layout schemes can often enable
recognition of fundamental underlying patterns that might otherwise be invisible. In-
cremental layout algorithms are intended to optimize the results of small operations,
such as opening a folder or dragging a node, while from-scratch or global layout algo-
rithms generally produce radical transformations of the entire set into an entirely new
view. We permit the invocation at any time of hierarchical, organic, circular, or or-
thogonal layout algorithms.

Aggregation: The ability to apply additional levels of aggregation to an existing
display can be useful to an analyst wishing to study larger-scale behavior or simplify
an existing region of the graph. We allow selection of multiple entities and aggrega-
tion into a single folder. This requires incremental layout to be performed, and edge
aggregation quantities to be re-computed.

4 Visualization Features

Fig.4 shows the components of our attack graph visualization tool. The main graph
view is the attack graph showing all possible (directed) paths through the network, in
which the analyst may drilldown, perform what-if analysis, etc. In the scenario shown, a
particular attack starting point (green) and ending point (red) are specified. Two protec-
tion domains are expanded to show their member hosts and the exploits among them.
The exploit table displays the relevant exploits (as both attackers and victims) for the
selected protection domain. Mouse hovering over an exploit field shows the full data for
that field. The overview pane maintains the context of the overall graph. The tree view
represents the entire attack graph in the form of a directory hierarchy. The harden list
logs interactive what-if network hardening decisions, while the defense shows optimal
network hardening recommendations automatically computed by CAULDRON.

66 S. O’Hare, S. Noel, and K. Prole

Fig. 4. Major components of the attack graph visualization tool

Graph interactions: The graph view supports a number of interactive edit mode
features, including selection, deletion, relocation, and resizing of elements. Protection
domains and other higher level nodes are opened and closed by clicking the +/- icon
in the upper left corner. The graph can be zoomed to any magnification and posi-
tioned arbitrarily. The main graph view, tree view, and exploit table are all linked, so
that user focus on any one component shifts focus on the others.

Context Menu: Context menu options are available by right-clicking an item or
whitespace in the display, for network hardening simulation, deleting nodes, manipu-
lating folders, etc. The context menu is also supports aggregating nodes into new
folders. Another feature, called traversal, initiates an animated trace (in red) of all
exploits originating or terminating in a selected node, providing focus on specific
attack scenarios within a complex attack graph display.

Toolbar Features: A number of other useful features are implemented in the application
toolbar, such as buttons for invoking layout algorithms, and the interactive functions of
edit mode. The export function exports the graph view in *.JPG, *.GIF, or *.SVG for-
mats. The copy to clipboard transfers either the graph view or the entire graph to the
clipboard. The magnifying glass zoom tool has arbitrary radius and power, and the cursor
remains active at the center of the magnified view.

5 Related Work

Early work in automated generation of attack graphs involved explicit enumeration of
attack states, which had serious scalability problems [5][6][7]. Under reasonable
assumptions, complexity of attack graph generation was shown to be polynomial [8].
Attack graphs have also been generated efficiently through relational [9] and rule-
based [10] approaches. Attack graph research has generally focused on efficiency,

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 67

rather than visualization methods. The approach in [11] visualizes single-step attacks
and reachability only. Attack graph visualization capabilities in commercial tools
remain limited [12][13]. Our work is unique in that it is the first practical application
of the attack graph visual clustering framework proposed in [3].

6 Summary

This paper describes a graph-theoretic approach to the problem of network risk visu-
alization. This provides powerful new capabilities for visual analysis of attack graphs,
and is an integrated component of the CAULDRON tool developed at George Mason
University. This approach is exemplary in that it leverages the comprehensive yFiles
architecture, bringing flexible new visualization and analysis capabilities to the net-
work security realm. This provides essential building blocks for analyzing, visualiz-
ing, editing, and drawing network attack graphs, opening the door to a wide range of
new analytic capabilities.

References

1. Jajodia, S., Noel, S.: Topological Vulnerability Analysis: A Powerful New Approach for
Network Attack Prevention, Detection, and Response. Indian Statistical Institute Mono-
graph Series. World Scientific Press, Singapore (2008)

2. yWorks – The Diagramming Company,
 http://www.yworks.com/en/index.html

3. Noel, S., Jajodia, S.: Managing Attack Graph Complexity through Visual Hierarchical Ag-
gregation. In: Workshop on Visualization and Data Mining for Computer Security (2004)

4. Wang, L., Noel, S., Jajodia, S.: Minimum-Cost Network Hardening Using Attack Graphs.
Computer Communications 29(18), 3812–3824 (2006)

5. Phillips, C., Swiler, L.: A Graph-Based System for Network-Vulnerability Analysis. In:
New Security Paradigms Workshop (1998)

6. Ritchey, R., Ammann, P.: Using Model Checking to Analyze Network Vulnerabilities. In:
IEEE Symposium on Security and Privacy (2000)

7. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated Generation and
Analysis of Attack Graphs. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy (2002)

8. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, Graph-Based Network Vulnerability
Analysis. In: 9th ACM Conference on Computer and Communications Security (2002)

9. Wang, L., Yao, C., Singhal, A., Jajodia, S.: Interactive Analysis of Attack Graphs Using
Relational Queries. In: Data and Applications Security XX (2006)

10. Ou, X., Boyer, W., McQueen, M.: A Scalable Approach to Attack Graph Generation. In:
13th ACM Conference on Computer and Communications Security (2006)

11. Williams, L., Lippmann, R., Ingols, K.: An Interactive Attack Graph Cascade and Reach-
ability Display. In: Workshop on Visualization for Computer Security (2007)

12. Skybox Security, http://www.skyboxsecurity.com/
13. RedSeal Systems, http://www.redseal.net/

	A Graph-Theoretic Visualization Approach to Network Risk Analysis
	Introduction
	CAULDRON Tool Capabilities
	Attack Graph Visualization
	Loading the Attack Graph
	The Node Hierarchy
	The Edge Hierarchy
	Additional Graph Visualization Features

	Visualization Features
	Related Work
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

