
J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 44–59, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

GARNET: A Graphical Attack Graph and Reachability 
Network Evaluation Tool* 

Leevar Williams, Richard Lippmann, and Kyle Ingols 

MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02173 
{LCWILL,LIPPMANN,KWI}@LL.MIT.EDU 

Abstract. Attack graphs enable computation of important network security 
metrics by revealing potential attack paths an adversary could use to gain con-
trol of network assets. This paper presents GARNET (Graphical Attack graph 
and Reachability Network Evaluation Tool), an interactive visualization tool 
that facilitates attack graph analysis. It provides a simplified view of critical 
steps that can be taken by an attacker and of host-to-host network reachability 
that enables these exploits. It allows users to perform “what-if” experiments in-
cluding adding new zero-day attacks, following recommendations to patch 
software vulnerabilities, and changing the attacker starting location to analyze 
external and internal attackers. Users can also compute and view metrics of as-
sets captured versus attacker effort to compare the security of complex net-
works. For adversaries with three skill levels, it is possible to create graphs of 
assets captured versus attacker steps and the number of unique exploits re-
quired. GARNET is implemented as a Java application and is built on top of an 
existing C++ engine that performs reachability and attack graph computations. 
An initial round of user evaluations described in this paper led to many changes 
that significantly enhance usability. 

Keywords: attack graph, visualization, treemap, security metrics, adversary 
model, network, vulnerability, exploit, attack path, recommendation. 

1   Introduction 

Attack graphs have been proposed by many researchers as a way to identify critical 
network weaknesses, construct adversary models, analyze network security, and sug-
gest changes to improve security. Researchers and commercial companies have de-
veloped many differing approaches to generating attack graphs [8, 12, 14, 16, 18]. An 
annotated review of many of these approaches is available in [7]. 

Although there are various representations, the overall concept of attack graphs 
remains the same: they show the ways an attacker can compromise hosts within a net-
work. Attack graphs are constructed by starting an adversary at a given network loca-
tion and examining how the attacker can progressively compromise vulnerable hosts, 
using information about software vulnerabilities and network reachability. 
                                                           
* This work is sponsored by the United States Air Force under Air Force Contract FA8721-05-C-

0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are 
not necessarily endorsed by the United States Government. 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 45 

We have developed a system called NetSPA, or Network Security and Planning 
Architecture, which efficiently generates attack graphs for large complex networks. A 
full description of the system can be found in [4, 8]. It imports data from common 
sources, including vulnerability scanners, firewall configurations, and vulnerability 
databases. This information is used to generate attack graphs, make recommendations 
for improving network security, and compute important network security metrics. In a 
previous paper [21], we described a new interactive cascade display for attack graphs 
that incorporates treemaps to compactly display network subnets and shows host-to-
host reachability as well as attack graph data. A preliminary Java-based tool that pro-
vides a Graphical User Interface (GUI) to NetSPA and creates these displays using 
NetSPA as a computation engine was also presented.  

This paper describes GARNET (Graphical Attack graph and Reachability Network 
Evaluation Tool), an improved tool that incorporates the interactive cascade display 
[21] with the addition of many new capabilities and features. First, it provides a 
greatly extended and redesigned GUI. This new interface was designed based on care-
ful evaluations and feedback (described in this paper) that were provided by five users 
familiar with attack graphs. Second, it supports “what-if” analyses for determining the 
effects of following recommendations for patching hosts, adding and removing vul-
nerabilities, and modeling adversaries with three skill levels that start from either in-
side or outside a network. The differing network models created through consecutive 
applications of “what-if” changes are saved and the results for different variants can 
be easily compared.  

A final major new feature of GARNET is the ability to compute security metrics 
for complex networks that indicate how security has changed and if one network is 
more or less secure than another. This addresses a major shortcoming in the security 
field. Our ability to rapidly construct attack graphs using NetSPA provides an oppor-
tunity to develop attack metrics that overcome the limitations of past attempts. 

The remainder of this paper describes GARNET in detail. The following section 
provides an overview of related work on attack graph displays and security metrics. 
Section 3 describes the NetSPA system. Sections 4 and 5 show the visual representa-
tions used by the tool and describe the supported user interactions, including the gen-
eration of “what-if” scenarios. The security metrics and adversary models used by 
GARNET are presented in Section 6, and Section 7 presents results from user evalua-
tions of the tool. This is followed by a discussion of future work in Section 8 and a 
conclusion in Section 9. 

2   Related Work 

2.1   Attack Graph Displays 

Significant past research has focused on visualizing and interacting with attack graphs 
as summarized in [7, 21]. Most recently, two commercial companies have begun to 
provide attack graph displays. The RedSeal Security Risk Manager [16] reads vulner-
ability information from network vulnerability scanners and topology information from 
firewall and router configuration files to create a node-link network topology diagram. 
This network diagram is initially laid out automatically. System administrators can 
then collapse and manually reposition hosts and subnets to create easily understandable 



46 L. Williams, R. Lippmann, and K. Ingols 

displays that accurately represent a conceptual view of the network topology. The dis-
play identifies exploitable vulnerabilities and, on top of the network diagram, displays 
threat paths that an attacker can use to gain access to resources in the network. This 
tool only computes a few security metrics for a single adversary model. 

The second commercial product, Skybox [18], provides a similar network view. 
However, it requires active agents to capture network topology and host vulnerability 
information. Reachability is computed and attack paths are shown in a separate dis-
play as arrows between individual hosts or servers. The application allows “what-if” 
analyses to be performed through the simulation of attacks and proposed changes to 
the network. It is limited, though, by the fact that it does not show the entire attack 
graph but only displays parts of the overall graph that contain specified target hosts. 

GARNET incorporates good aspects of the above commercial displays as well as 
the cascade display we described in [21] that uses treemaps to display subnets. It pro-
vides a compact and fully interactive view of an attack graph that can be related to the 
underlying network and allows users to generate hypothetical, “what-if” scenarios. As 
in the RedSeal display, hosts and subnets are laid out automatically but can be reposi-
tioned manually to obtain a more intuitive display. Unlike Skybox, no network agents 
are required, vulnerability data is read from a number of open-source and commercial 
vulnerability scanners, and network topology information and filtering rules are read 
from firewall and router configuration files. GARNET computes hosts-to-host reach-
ability, attack graphs, and multiple important security metrics for three graded adver-
sary models to assess overall network security. 

2.2   Security Metrics 

Many different metrics have been proposed in the past to assess different aspects of 
security, such as the average number of vulnerabilities found per host by a network 
vulnerability scanner [5], but none accurately measure the overall security of diverse 
networks. These point measurements fail to take context into account, including the 
overall network topology, all vulnerabilities, and an adversary model that includes a 
starting location, goals, and steps that can be taken to achieve these goals. What is de-
sired are metrics that: are accurate, objective, and well defined; can be measured 
automatically; are easy to understand and explain; and provide insight into underlying 
causes of both security and insecurity.  

Our approach to developing metrics for inclusion in GARNET was motivated by 
current best practices for assessing network security. The current, most often-used  
approach is to use “red teams”. These are security experts who attempt to reach a 
specified goal in a network from a starting location and with a given amount of initial 
network knowledge. For example, [6] describes an interesting set of experiments 
where a red team attempts to access a database as extra layers of protection are added 
to provide “defense in depth”. The metric used in these experiments is red-team effort 
as measured by person hours required to develop and launch attacks. This approach 
includes an adversary model (the red team) and uses the actual network for experi-
mentation. It also produces an objective metric (red-team person hours), has high face 
validity, and can uncover unexpected weaknesses. Unfortunately, it is expensive, can-
not be automated, is difficult to replicate, and often is impossible to perform because 
it can disrupt essential services. 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 47 

An alternative to using live red teams is an approach called Mission-Oriented Risk 
and Design Analysis, or MORDA, which is described in [2, 3]. Experts are enlisted to 
understand a network and its mission, suggest effective adversarial goals that disrupt 
the network, construct adversary models, and develop attacks that reach goals. At-
tacks are then analyzed by comparing their cost and visibility. One major goal of a 
MORDA analysis is to make sure that there are no low-effort, stealthy attacks that an 
adversary could use to compromise a network’s mission. This analysis has much of 
the flexibility of a live red team experiment and can be used in a planning stage be-
fore a network exists. It does not have the realism of a red-team experiment, but it  
explicitly includes multiple adversary models, attacker goals, and attacker costs. Un-
fortunately, it is labor intensive, requires the cooperation of a diverse group of ex-
perts, and thus is not frequently used. 

Security metrics computed by GARNET are designed to support an automated 
form of MORDA analysis. Two metrics are provided to measure attacker effort, and 
one of these indirectly measures attack visibility. These measurements make it possi-
ble to identify the existence of attacks that can potentially be used to capture a net-
work’s assets. GARNET also models adversaries with three distinct skill levels. These 
adversary models and metrics make it possible to compare the security of different 
networks by examining the adversary skill level and effort required to compromise 
these networks. The metrics and adversary types are further described in Section 6. 

3   NetSPA 

In previous work, we described an efficient approach to generating a new type of at-
tack graph, the multiple-prerequisite (MP) graph, that scales well to large enterprise 
networks. Descriptions of the NetSPA tool that generates MP graphs are available in 
[4, 21]. Although MP graphs are not explicitly displayed in GARNET, an underlying 
MP graph data structure is used to create its interactive display. 

NetSPA models both hosts and network infrastructure devices such as firewalls 
and routers. It assumes that hosts can have one or more open ports that accept connec-
tions from other hosts and that ports have zero or more vulnerabilities that may be ex-
ploitable by an attacker. Individual vulnerabilities provide one of four access levels on 
a host: “root” or administrator access, “user” or guest access, “DoS” or denial-of-
service, or “other”, indicating a loss of confidentiality and/or integrity. Vulnerabilities 
can either be exploited remotely from a different host or only locally from the vulner-
able host. Currently, it is assumed that an attacker obtains a host’s reachability if 
“root” or “user” access is achieved. Attackers can also obtain credentials when com-
promising a host. Credentials refer to any information that can be used to gain access 
to another host or other network resources such as a password or a private key, and 
they are used to model trust relationships. Reachability and credentials serve as pre-
requisites for exploitation of other vulnerabilities.  

NetSPA also incorporates a simple model of host asset values. Each host is as-
signed an asset value representing the worth to a network defender of the worst-case 
compromise of that host’s confidentiality, integrity, or availability. Asset values cur-
rently default to 10 for all hosts and are typically hand-assigned to higher values for 



48 L. Williams, R. Lippmann, and K. Ingols 

critical hosts, such as key servers or hosts containing confidential information. They 
are primarily used for prioritizing recommendations and computing security metrics. 

NetSPA uses an import utility, written in PERL, to read in raw data such as Nessus 
scans, firewall rulesets, and National Vulnerability Database (NVD) records [13], and 
convert the data into a custom binary file format. The main computation engine, writ-
ten in C++, is responsible for reading in the binary file, computing reachability, gener-
ating attack graphs, analyzing the graphs to generate recommendations, and computing 
security metrics. The computation engine was not originally designed to support effi-
cient “what-if” analysis. It was extended to support this capability by adding a network 
model “delta” system. GARNET can use this system to make small, hypothetical 
changes to the network as small “delta” objects to the network model, and the rest of 
the computation engine can then operate on the delta as if it were a full network model. 

4   GARNET Tool and Network Visualization  

GARNET is a Java-based graphical user interface built on top of the NetSPA engine. 
We developed a set of bindings between the GUI’s Java and NetSPA’s C++ code us-
ing the SWIG toolkit [19]. It generates a shared library which the tool can load and 
drive programmatically to perform necessary tasks.  

GARNET presents an MP attack graph in a readable and concise fashion while 
preserving much of the essential information. Important features of the nodes are con-
veyed by grouping, size, and color, while other attributes and edge information are 
initially hidden and can be displayed on demand. This approach is inspired by the se-
mantic substrate displays described in [17].  

Nodes from the MP attack graph are grouped by subnet and a treemap layout is 
used to illustrate these groupings. Subnets are represented within the display by rec-
tangular blocks labeled with the name of the subnet. Smaller rectangles within each 
block correspond to host groups; the hosts in a host group can all be compromised to 
the same extent, are all in the same subnet, and are treated identically by all network 
filtering devices. Each group is colored according to its level of compromise, indicat-
ing one of four access levels (“root”, “user”, “DoS”, or “other”) or that the group of 
hosts cannot be compromised. The relative size of a host group is proportional to the 
number of hosts it contains. 

Fig. 1 provides an example of this visualization for an actual network with 4 sub-
nets: an external subnet labeled “EXTLAN” containing 119 hosts, an internal subnet 
labeled “lansubnet” containing 129 hosts, and two smaller subnets containing one host 
each. The attacker starting location is indicated by the dark red band with a red dia-
mond in the center at the top of the “EXTLAN” subnet (1). The light red rectangle  
below this band (2) shows a group of hosts compromised at the “root” level. The light-
green rectangle below (3) represents hosts that are not compromised, the blue rectangle 
to the right (4) represents hosts compromised at the “other” level, and the smaller gray 
rectangle (5) represents hosts compromised only at the “DoS” level. The lower red rec-
tangle in this subnet (6) represents hosts also compromised at the “root” level but with 
different reachability to other hosts than those of the upper red rectangle (2). The 
meaning of the rectangles in the other subnets of this figure is similar. Rectangles  
 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 49 

 

Fig. 1. Subnet groups arranged in grid layout with weighted sizing 

within each subnet group are laid out according to the strip treemap algorithm  
presented in [1]. This particular algorithm was employed because it solves the bin-
packing problem of completely filling a rectangular region with boxes of different  
areas, and it produces dimensions with reasonable aspect ratios. 

Within the display area, subnet groups can be repositioned and resized by direct 
manipulations (clicking and dragging). A user can thus place subnets into an ar-
rangement that represents a physical or similarly intuitive view of the network. The 
interface also provides a variety of automatic layouts. Users can choose vertical or 
horizontal layouts, or a grid arrangement for the subnets. An “auto-sizing” function 
can also be used to size the subnet rectangles to be proportional to the number of 
hosts represented. The default is a grid layout with the subnet rectangles sized to be 
proportional to the number of hosts contained. This is a useful initial configuration 
because it clusters the subnets and quickly conveys their relative sizes and the overall 
scale of the network. This layout was used to generate Fig. 1. 

5   User Interaction 

GARNET’s user interface supports three separate modes of interaction: Network 
Map, Attack Graph, and Summary Plots. Each mode differs in the information that is 
available and the ways in which the display can be manipulated. A user can toggle be-
tween these different modes by clicking one of three tabs located in the upper left of 
the GARNET side panel shown in Fig. 2.  

The Network Map mode provides an overview of the network topology and hosts. 
In this view, the side panel contains controls for displaying reachability between sub-
nets. The user can select a subnet from a drop-down list or directly by clicking on its 
rectangle, and options are presented for showing incoming and outgoing connections 
between the groups of hosts within that subnet. The reachability amongst host groups 
is illustrated by directed edges drawn between pairs of groups. These edges indicate 
that the hosts in the source group can connect to ports on hosts in the target group. 
Fig. 2 shows the tool in this mode, with outgoing reachability being displayed from 
the “EXTLAN” subnet.  



50 L. Williams, R. Lippmann, and K. Ingols 

 

Fig. 2. GARNET in Network Map mode. The arrows indicate outgoing reachability for the 
EXTLAN subnet. 

GARNET’s side panel also contains an information pane that lists hosts and vul-
nerabilities for a particular host group, a subnet, or the entire network, depending on 
the selection that is made in the display area. The per-host information includes the IP 
address, asset value, and highest level of compromise achievable by the attacker, as 
well as a breakdown of the specific vulnerabilities that exist on the host’s open ports. 
The vulnerability listings include details such as a description, the locality and effect, 
and the affected host ports. Providing this information allows a system administrator 
to drill down into the network and identify attributes of an individual host or vulner-
ability and enables them to understand the overall connectivity between subnets. 

GARNET’s Attack Graph mode, selected by the middle tab in the control panel, 
provides an interface for direct interaction with NetSPA’s network model. The at-
tacker entry point into the network or starting location is specified by selecting one  
of the subnets in the right-hand display. This selection defines a critical characteristic 
of the current adversary model. NetSPA, by default, builds its attack graph under the 
assumption that an attack is able to originate from any source IP address. This is a 
good model of an attack originating from anywhere on the Internet. The range of ad-
dresses can also be constrained to model a more limited adversary or environments 
where IP spoofing is restricted. Once a starting location is selected, the attack graph is 
built and groupings are created for the hosts based on reachability and level of com-
promise. The user is allowed to change these parameters for the attacker at any time, 
and the network model is immediately altered and redisplayed. The edges of the at-
tack graph are displayed incrementally through the use of the depth control shown in  
 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 51 

 

Fig. 3. GARNET in Attack Graph mode. The arrows indicate attack paths and show the first 
two attacker hops. 

the upper left of Fig. 3 under the heading “Attacker Depth”. For the first attacker hop 
(corresponding to a depth of one), edges are drawn from the attacker node to all groups 
of vulnerable hosts that are directly reachable from the attacker’s initial location. For 
each subsequent level of depth, edges are drawn from the host groups compromised at 
the previous depth to the next set of compromisable hosts. As the edges are revealed, the 
target nodes become colored according to their level of depth. In Fig. 3, the first two  
attacker hops are shown for the given network. Nodes representing hosts compromised 
at one hop are colored red and nodes compromised at two hops are colored purple. 

To aid administrators in defending their networks, NetSPA automatically generates 
recommended actions to improve a network’s security posture. The GUI allows users 
to explore these recommendations and their impact. A recommendation is character-
ized by a list of vulnerabilities that must be removed from a certain set of hosts to pro-
tect them from being compromised at an administrator or user level. This information, 
along with the combined asset value of the protected hosts and the number of affected 
host groups, is presented for each of the recommendations. The user can immediately 
view the effect of patching a set of vulnerabilities by choosing the “Apply Selected 
Recommendation” button. This action creates a new network model with the vulner-
abilities removed from the indicated host ports, rebuilds the attack graph, and updates 
the display. In practice, this takes only a few seconds even for networks with thou-
sands of hosts. Host asset values can also be modified in GARNET to examine the ef-
fect on security metrics and recommendations.  

In addition to viewing the effects of removing vulnerabilities by applying recom-
mendations, a user can introduce vulnerabilities into the network. The “Add Zero-day 



52 L. Williams, R. Lippmann, and K. Ingols 

Vulnerability” button makes it possible to model adversaries with different skill levels 
by placing new vulnerabilities on selected ports of all hosts. We currently suggest 
performing analyses using three adversary models. The simple adversary has exploits 
for all known vulnerabilities. Since exploits are often available on the Internet a few 
days after a vulnerability is announced (e.g. [20]), this represents an attacker who 
downloads exploits at low cost but is not able to create new exploits. This is the de-
fault adversary model. The single-zero-day adversary has all the exploits of the simple 
adversary but is also able to create or buy one exploit for a currently non-public vul-
nerability. This represents a more capable attacker who can craft or purchase one 
zero-day exploit specifically designed to penetrate the network being analyzed. In the 
underlying NetSPA engine, the single zero-day exploit can be selected manually or it 
can be determined automatically by building an attack graph for each possibility to 
find the one that gains the most assets. The current GARNET interface supports man-
ual selection of a zero-day exploit by selecting a protocol and port. The new vulner-
ability is then placed on all hosts with this open port. A comprehensive-zero-day ad-
versary model is assumed to have an exploit for every open port in the network. This 
provides an upper bound on the percentage of network assets that can be captured by 
attackers that use server vulnerabilities. This adversary is selected by placing zero-day 
vulnerabilities on every port using the “All Open Ports” option in the “Add Zero-day 
Vulnerability” dialog box. 

The third and final mode of GARNET interaction, selected by the right tab labeled 
“Summary Plots” in the side panel, allows users to compute and compare two security 
metrics and also to enumerate vulnerability types in the network. Selecting the “Vul-
nerability Types” plot creates pie charts that show the types of vulnerabilities in the 
network. Selecting the other plot types creates security metric graphs as described in 
the following section. 

“What-if” experiments performed in GARNET generate new network variants and 
the Summary Plots mode makes it easy to compare these different networks. In par-
ticular, a new network model is created when a user applies recommendations, adds 
zero-day vulnerabilities, or changes host asset values. The interface uses a timeline 
component to visualize and manage the progression of models that are produced as a 
consequence of a user’s incremental modifications. These user-initiated changes, 
when applied in succession, are cumulative, and the timeline enforces the notion that 
each subsequently generated model is a different version of the previous one. Posi-
tioned at the bottom of the window, the component ties together the three modes of 
operation – changes made in one mode are reflected in the other two. The timeline 
contains an icon, label, and short description for each distinct version, beginning with 
the original network model that was loaded from disk.  

Each item displayed in the timeline is selectable by mouse click and the current se-
lection determines the model that is visually represented in the Network Map and At-
tack Graph modes. A view of the component is presented in Fig. 4, and it contains 
five different model versions, where “Model 4” is selected. The state of the side panel 
controls is also coordinated with the currently selected model, and the controls are 
updated whenever the selection changes.  

The charts in Summary Plots mode are likewise populated with data from the current 
model. Additionally, this mode allows multiple items to be simultaneously selected 
from the timeline, enabling side-by-side comparisons of the data from different versions  
 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 53 

 

Fig. 4. Example of the timeline component displaying a series of network model versions 

of the network model. This timeline control facilitates the “what-if” experimentation 
that GARNET supports. Several changes can be incrementally applied to the network 
model, and the user can quickly and easily jump between the different versions to 
examine the altered states of the network. 

6   Security Metric Plots  

GARNET’s security metrics graph the percentage of network assets captured by an 
attacker as a function of different measures of attacker effort. These metrics assume 
the attacker goal is to maximize the assets captured for each level of effort. They can 
be used to compare the security of different networks if it is assumed that a network is 
more secure when an attacker captures fewer assets for the same effort level. Our first 
security metric computes assets captured after each successive attacker hop. A hop 
indicates the set of hosts that become compromised at the corresponding depth in the 
attack graph. For example, the first hop represents the hosts that can be directly com-
promised from the adversary’s starting location. Each subsequent attacker hop repre-
sents those hosts that can be compromised from the set of already compromised hosts. 
A hop signifies extra effort on the part of the attacker since it delays capture of the 
most important assets, requires more involved attacks, and provides more opportunity 
for detection.  

A second metric measures the number of unique exploits required by an adversary 
to capture network assets. This metric assumes that it is much more work to obtain or 
develop and test a new exploit than it is to reuse an existing exploit. One approach to 
computing this metric would be to find the optimal set of unique exploits that would 
be used by an omniscient attacker with full knowledge of a network for different 
numbers of exploits. We feel that this would be misleading because actual attackers 
have a limited horizon and can only probe hosts that are reachable from currently 
compromised hosts. Thus, at each attack step, we randomly sample from the exploits 
that have not yet been used and that compromise one or more hosts that are reachable 
from currently compromised hosts. We produce many curves this way that represent 
the range of capabilities for a limited-horizon attacker. If enough curves are created, 
the upper limit of all the curves approximates the best performance that would be ob-
tained by an omniscient attacker and the spread of curves represents the spread that 
would be seen in actual attackers. Since NetSPA computes attack graphs rapidly, we 
currently sample 50 random exploit curves. This simple random sample approach 
avoids local minima caused by multiple firewalls and has been effective for actual and 
simulated test networks. 



54 L. Williams, R. Lippmann, and K. Ingols 

 

Fig. 5. Attack graph for a simple adversary a) before and b) after following a recommendation 

 

Fig. 6. Security metrics for a simple adversary on the baseline network 

Fig. 5 shows the attack graph for a simple adversary before (a) and after (b) the 
most effective recommendation is applied. Before the recommendation is applied, the 
attacker compromises many hosts in the upper right “EXTLAN” network and one 
host in the upper left “lansubnet” network on the first hop at a root level. On the sec-
ond hop, further hosts in the “lansubnet” are compromised at root level as well as a 
host in the small “enclaveDMZ” network. When the recommendation is followed and 
the stepping stone host in “lansubnet” is patched, the attacker can no longer compro-
mise hosts outside the starting “EXTLAN” network at the root level. These attack 
graphs provide the low-level details that explain how hosts are compromised. 

Fig. 6 illustrates our two security metric plots for the simple adversary before the 
recommendation is followed. These high-level metrics summarize the network secu-
rity posture for the simple adversary. The graphs in Fig. 6 show the combined asset 
values of hosts compromised at a root or administrator level. The first plot of assets 
captured versus hops (a) shows that 33% of all network assets are captured after one 
hop and roughly 72% are captured after two hops. The second graph (b) consists of 
curves representing samples of 50 different randomized attackers, indicating that 
roughly 18 to 32 unique exploits need to be available to capture 72% of the total asset 
value in this network. A large number of unique exploits is required because this is an 
extremely heterogeneous network. 

Fig. 7 shows four assets captured versus attack hop graphs displayed together in 
GARNET’s Summary Plots mode, after three “what-if” scenarios have been gener-
ated. The upper left plot (a) is the graph for the baseline network and the simple  
 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 55 

 

Fig. 7. Assets captured versus hop curves for a) a simple attacker on the baseline network, b) a 
simple attacker on the patched network, c) a single-zero-day attacker on the patched network, 
and d) a comprehensive zero-day adversary on the patched network 

adversary. The graph to the right (b) shows the effect of applying the most effective 
recommendation that blocks access into the second subnet. It illustrates that only one 
hop is possible and that the simple attacker captures roughly 33% of the network as-
sets in that hop. These two graphs clearly indicate that following the recommendation 
produces a network that is more secure. The maximum asset value captured is more 
than halved and fewer assets are captured after patching. The bottom left graph (c) 
shows how many assets can be captured by a single-zero-day adversary on the 
patched network. This adversary uses a zero-day exploit to access the patched server 
and captures the same assets that were available to the simple attacker without the 
patch. The applied patch is thus ineffective for this more capable adversary. Protec-
tion could be provided by more advanced access control or by further compartmental-
izing the network. The lower right plot (d) shows how many assets can be captured by 
a comprehensive-zero-day adversary. This upper bound on attacker capabilities shows 
that patching and filtering in the existing network is providing some protection. Al-
though plots of assets captured versus unique exploits required are not shown due to 
space limitations, they support the above conclusions.  

7   Usability Analysis 

User evaluations were performed to assess the effectiveness of GARNET’s visual rep-
resentation and GUI design. Previous research in the area of user interface evaluation 
[11] suggests that formal methods, such as formulating a proper analysis model or ap-
plying a computerized procedure, are impractical for most applications. As a result, 



56 L. Williams, R. Lippmann, and K. Ingols 

we chose a more informal technique known as heuristic evaluation. This method  
involves presenting evaluators with a user interface and asking them to subjectively 
judge the interface according to a set of usability guidelines, known as heuristics. 

A group of five evaluators was assembled, all of whom were knowledgeable about 
the target domain. Each person was given a brief overview of GARNET and the 
evaluation procedure, as well as a list of heuristic guidelines. For the list of guide-
lines, we used a widely accepted set of principles developed by Jakob Nielsen [10] 
consisting of ten heuristics. The evaluators were encouraged to explore the interface 
as thoroughly as possible, using the guidelines to help them identify aspects of the 
tool that represented either a positive feature or a usability problem. They were also 
asked to rate each problem in terms of severity and to suggest a solution if possible. 
The evaluations were performed independently and at each individual’s own conven-
ience. Results of the evaluations were used to refine GARNET’s initial design and 
create the improved version presented in this paper.  

Evaluators produced descriptions of strengths and weaknesses of the interface and 
recommendations for improvement. The number of comments ranged from 14 to 54 
items, with a median of 44. In general, users perceived the layout of the interface as 
clean and simple, and they liked the use of the treemaps and colors for conveying in-
formation. They also responded positively to the supported interactions for generating 
new versions of the network, the ability to easily jump between these different mod-
els, and the responsiveness of the system in performing these actions. In addition, 
they commented on the intuitiveness of being able to directly manipulate the subnet 
groups within the display area. 

 From the remaining comments that pointed to drawbacks of the system, we ex-
tracted a list of 55 distinct items representing bugs and specific features that could be 
implemented or improved. An example of one of the more critical issues related to the 
overall organization of the interface controls. In the evaluated version of the interface, 
the controls for manipulating host asset values were only visible in Network Map 
mode, and the Network Information panel was in its own separate tab and could be 
accessed from all three modes. The majority of the evaluators found it difficult to lo-
cate information and thought some of the interactions were inconsistent across modes. 
To address these concerns, the side panel controls were reorganized so that the net-
work information and reachability controls appear in Network Map mode and controls 
for all interactions that alter the network model are unified in the Attack Graph mode.  

Another problem involved the implementation of the timeline. In its original form, 
a set of arrows was used to switch between models in two of the modes, while direct 
selection of the icons was allowed in the third mode. In addition, the labels and icons 
were not very informative. All of the evaluators mentioned that the interaction with 
the timeline was inconsistent and non-intuitive. The component was redesigned to 
have more descriptive icons and text, be consistent across modes, and use better vis-
ual cues to indicate the selection and progression of network models. 

Several additional comments were addressed to further extend the functionality of 
the interface and increase its ease of use. These improvements included adding sup-
port for modeling a comprehensive-zero-day attacker by allowing vulnerabilities to be 
added to all open ports and enabling users to continuously modify the attacker starting 
location. Also, a legend explaining the colors used for levels of compromise in the  
attack graph was incorporated into the display. 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 57 

The evaluations we collected were a valuable source of feedback about the usabil-
ity of GARNET’s interface. They confirmed the tool’s effectiveness in conveying in-
formation about the attack graph and providing a set of interactions that allows users 
to experiment with different scenarios. The recommendations we received about prob-
lematic areas of the interface helped us develop a more functional design, while many 
of the comments pointed to larger issues that provide directions for future work. 

8   Limitations and Future Work 

Although GARNET successfully conveys a significant amount of information through 
its visual representation, it is still somewhat limited in its illustration of overall net-
work topology. The user is able to view reachability links between groups of hosts in 
different subnets; however, for numerous host groups and dozens of subnets, display-
ing this reachability all at once can produce a confusing jumble of edges. A potential 
alternative to displaying the individual links would be to utilize a flow map technique 
[15], resulting in merged edges whose varying widths indicate the number of in-
bound/outbound connections. Furthermore, the tree structure of the flow map could be 
used to dictate the initial layout of the subnet groups, and filtering devices (such as 
routers and firewalls) could be shown along the edges between the subnets they con-
nect. This view would provide a clearer picture of the physical connectivity of the 
network. We would also like to explore methods of subnet aggregation to display 
large networks with many subnets. 

Further work could also extend our adversary models by enabling client-side at-
tacks in which an attacker uses a malicious server to compromise a vulnerable client 
machine or sends malicious email attachments. We would also like to explore other 
measures of adversary effort such as those related to the complexity of launching at-
tacks or the cost of obtaining attacks. Some of these measures, such as a field called 
“Access Complexity,” are already specified in the Common Vulnerability Scoring 
System [9] and can be automatically extracted from the NVD [13]. 

Finally, GARNET should be exposed to further rounds of user testing, including 
empirical evaluation by system administrators. This form of user evaluation would 
involve presenting a set of target users with the interface and measuring how well 
they perform various tasks that focus on important aspects of the tool’s functionality.  

9   Conclusions 

We have developed GARNET as a visualization tool for attack graphs and network 
reachability. It produces a compact visual representation of a network and the ways in 
which it can be compromised by an attacker, as well as metrics that summarize the 
overall security of the network and recommendations that suggest preventative ac-
tions. Information about individual hosts, the vulnerabilities they possess, and the 
reachability between them is easily accessible through the Network Map mode. The 
interface enables users to perform “what-if” experimentation by applying recommen-
dations and modifying host asset values. The adversary model can be changed by  
 



58 L. Williams, R. Lippmann, and K. Ingols 

varying the attacker location and introducing new zero-day vulnerabilities. Because 
the computation times for constructing attack graphs with thousands of hosts are typi-
cally less than a few seconds [4], we can dynamically regenerate displays at interac-
tive speeds. Finally, security metrics are calculated and displayed in chart form to  
facilitate comparisons between networks. User testing provided excellent feedback 
that improved many aspects of GARNET’s design and also provided insights for fu-
ture development which we hope to apply to subsequent iterations of this tool. 
 
Acknowledgements. We would like to thank Seth Webster, Tamara Yu, and Chris Con-
nelly for their participation in the user evaluations and their feedback on GARNET’s  
interface. 

References 

1. Bederson, B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making 
effective use of 2d space to display hierarchies. ACM Transactions on Graphics 21(4), 
833–854 (2002) 

2. Buckshaw, D., Parnell, G., Unkenholz, W., Parks, D., Wallner, J., Saydjari, S.: Mission 
oriented risk and design analysis of critical information systems. Military Operations Re-
search 10(2), 19–38 (2005) 

3. Evans, S., Heinbuch, D., Kyle, E., Piorkowski, J., Wallner, J.: Risk-based systems security 
engineering: stopping attacks with intention. IEEE Security and Privacy Magazine 2(4), 
59–62 (2004) 

4. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network 
defense. In: Proceedings Computer Security Applications Conference (ACSAC), pp. 121–
130 (2006) 

5. Jaquith, A.: Security metrics: replacing fear, uncertainty, and doubt. Addison Wesley, 
Reading (2007) 

6. Kewley, D., Lowry, J.: Observations on the effects of defense in depth on adversary be-
havior in cyber warfare. In: Proceedings of the 2001 IEEE Workshop on Information As-
surance and Security United States Military Academy, West Point, NY, 5-6 June (2001) 

7. Lippmann, R., Ingols, K.: An annotated review of past papers on attack graphs. MIT Lin-
coln Laboratory, Lexington, MA, Tech. Rep., 2005, ESC-TR-2005-054 (2005) 

8. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Cunningham, R.: 
Validating and restoring defense in depth using attack graphs. In: MILCOM 2006, Wash-
ington, DC (2006) 

9. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to common vulnerability scoring 
system version 2.0 (2008) (Accessed 23 April 2008),  

   http://www.first.org/cvss/cvss-guide.html 
10. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection 

Methods. John Wiley and Sons, New York (1994) 
11. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings ACM CHI 

1990 Conference, Seattle, WA, pp. 249–256 (1990) 
12. Noel, S., Jajodia, S.: Understanding complex network attack graphs through clustered ad-

jacency matrices. In: Proceedings Computer Security Applications Conference (ACSAC), 
pp. 160–169 (2005) 

 



 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 59 

13. NVD National Vulnerability Database (2008) (Accessed 11 April 2008),  
   http://nvd.nist.gov  
14. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic- based network security ana-

lyzer. In: Proceedings of the 14th Usenix Security Symposium 2005, pp. 113–128 (2005) 
15. Phan, D., Xiao, L., Yeh, R.B., Hanrahan, P., Winograd, T.: Flow map layout. In: Proceed-

ings of the IEEE Symposium on Information Visualization 2005, pp. 219–224 (2005) 
16. RedSeal Systems Inc. (2008) (Accessed 11 April 2008), http://www.redseal.net  
17. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Transac-

tions on Visualization and Computer Graphics 12(5), 733–740 (2006) 
18. Skybox Security Inc. (2008) (Accessed 11 April 2008),  

   http://www.skyboxsecurity.com  
19. SWIG (2008) (Accessed 11 April 2008), http://www.swig.org 
20. Symantec Corp. Internet security threat report (2008) (Accessed 11 April 2008), http:// 

www.symantec.com/business/theme.jsp?themeid=threatreport 
21. Williams, L., Lippmann, R., Ingols, K.: An interactive attack graph cascade and reachabil-

ity display. In: VizSec 2007, Sacramento, CA (2007) 


	GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool
	Introduction
	Related Work
	Attack Graph Displays
	Security Metrics

	NetSPA
	GARNET Tool and Network Visualization
	User Interaction
	Security Metric Plots
	Usability Analysis
	Limitations and Future Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




