Effective Visualization of File System
Access-Control

Alexander Heitzmann!, Bernardo Palazzi''?3, Charalampos Papamanthou?,
and Roberto Tamassia'

! Brown University, Department of Computer Science, Providence, RI, USA
2 Roma TRE University, Rome, Italy
3 ISCOM Italian Ministry of Communications, Rome, Italy
{aheitzma,bernardo, cpap,rt}@cs.brown.edu

Abstract. In this paper, we present a visual representation of access
control permissions in a standard hierarchical file system. Our visual-
ization of file permissions leverages treemaps, a popular graphical rep-
resentation of hierarchical data. In particular, we present a visualization
of access control for the NTFS file system that can help a non-expert
user understand and manipulate file system permissions in a simple and
effective way. While our examples are based on NTFS, our approach can
be used for many other hierarchical file systems as well.

1 Introduction

The access control model employed by current-generation file systems, such as
Microsoft Windows XP and Vista, is rather complex and often insufficiently
documented. In a large file system with multiple users, it is rather tricky to un-
derstand which users/groups can access which files and with which permissions.
Also, the effect of simple operations (such as copy and move) on the permissions
of a file are difficult to anticipate and sometimes unintuitive. For example, con-
sider a Windows user who changes the permissions of a certain file to make it
not readable by others and later moves this file to another folder where the read
permission is inherited from the parent folder. The user is unlikely to realize that
after the move, the file is no longer protected. This is due to the fact that in a
Windows NTFS file system, there are three types of permissions associated with
a file: the local permissions for the file, the inherited permissions derived from
the permissions of the parent folder, and the effective permissions, obtained as
the union of the local permissions and the inherited permissions.

Inherited permissions have many advantages and have been adopted by several
file systems.

Also, inherited permissions and other features of access control mechanisms
can make answering questions such as “What group has access to which files
during what time duration?” or “If I implement this policy, what conflicts this
result?” very difficult [8].

Understanding file permissions and setting them to achieve desired file shar-
ing and protection goals can be a daunting task for non-expert users and is

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 18 , 2008.
© Springer-Verlag Berlin Heidelberg 2008

Effective Visualization of File System Access-Control 19

non-trivial even for experts. A tool that helps users to understand how access-
control permissions are determined and the effect of file system operations on file
permissions would be extremely useful for both regular users and administrators.

We believe that an effective way to overcome difficulties of understanding file
permissions is through visualization. Therefore, in this paper, we present our
preliminary design of a visualization tool that displays access-control informa-
tion in a way that is easily understandable and helps the user set the correct
permissions to achieve file sharing and protection goals. Our visualization tool
uses treemaps [6], a popular graphical representation of hierarchical structures
based on a recursive decomposition of rectangles into sub-rectangles.

In Windows, advanced file system permissions are displayed as a list. Reeder et
al. [9] propose using a square matrix to visualize the permissions of a file system and
presents an example with changes of groups and users permissions. Montemayor et
al. [8] present a solution for access control visualization based on representing the
connections between groups, users, and resources, with a graph. The complexity
of access control safety and the administrator’s difficulty in dealing with it (which
makes visualization of access control very important) is analyzed in [5]. The us-
ability of access control systems is discussed in [3]. Some visualization solutions
for access-control and file-sharing policies are presented in [10].

Treemaps were introduced in 1991 [6] as a method of representing a complex
hierarchy in a compact space. Bladh et al. [I] provide a file system visualization
based on treemaps in the 3D space. Interactive ways to explore a file system
through visualization are presented in [4]. Stasko [I2] gives an evaluation of
different compact ways to represent hierarchical structures. The visualization
of dynamic hierarchies is presented in [I3]. Finally, in 1971, a method using a
nested rectangle representation (that resembles treemaps but though not for-
mally defined) to visualize program execution was presented [7].

2 Preliminaries

In this paper, we focus on the access control list (ACL) implemented in the Win-
dows NTFS (New Technology File System). NTFS [II] allows to define access
control information for each file system object. Using different security policies
it is possible to allow or deny access to files and folders for determined users
or groups. The file system driver manages all file system requests (i.e., create
new files, open existing files, write to files. etc.) as the intermediary between the
operating system and the storage device drivers. NTFS ACLs are composed of
access control entries (ACEs). Each ACE allows or denies specific permissions
(i.e., by a user or a group) to or from an object.

Starting with Windows 2000, NTFS allows to dynamically manage permission
inheritance. That is, when you create a subfolder or a file in a NTFS folder, the
child object not only inherits the parent’s permissions but maintains a kind of
link with its parent. Furthermore, parent’s permissions are stored separately
from any local permissions that are directly stored on the child. So for any
changes performed on the parent folder, this method allows the child objects

20 A. Heitzmann et al.

to automatically inherit the changes from their parents and to prevent from
overwriting all the local permissions.

This approach allows an administrator or a user to manage a hierarchical
tree of permissions that matches the directory tree. Since each child inherits
permissions recursively from its parent. So it is possible to perform changes of
permissions with little effort.

The main downside of dynamic inheritance is the increase of complexity and
the possibility to have conflicting ACEs. The NTFS security module combines
the specified permissions (i.e. local and inherited ACEs, allows or explicit denies)
and decides whether to grant or deny the access to a user, a group, or other secu-
rity entities. Microsoft introduced in Windows XP the effective permissions tab
to help the administrator in the quite tricky task of understanding the effective
permission for a user or a group on a specific file system object.

Treemaps (see, e.g., [2, 0]) were introduced in 1991 as a way to represent
large hierarchical structures in a compact way. The main idea of creating a
treemap can recursively be described as follows: Given a tree T" with root r,
assign a rectangle A to represent 7. Then, for all the subtrees 11,75, ..., Tk
of r, partition A into k rectangles Ay, Ao, ..., A and assign A, As, ..., A to
Ty,Ts, ..., k. This process continues until it reaches the leaves, where it assigns
distinct rectangles for every leaf of the tree. Given a tree with n nodes, a treemap
can be constructed in O(n) time using a bottom-up traversal.

Several algorithms have been proposed for assigning rectangles to subtrees.
The standard method is based on the “slice-and-dice” algorithm, originally intro-
duced in [6], which uses parallel lines to divide the rectangle assigned to a subtree
T into smaller areas that correspond to the subtrees of T'. It also alternates the
direction of the parallel lines (horizontal /vertical) from one level the next, so that
the change of levels is displayed. The standard treemap method often gives thin,
elongated rectangles. A new method—the “squarified” algorithm— is presented
in [2] to generate layouts in which the rectangles approximate squares.

3 Effective Access Control Visualization

In this section, we present the main features of the tool we have designed to
assist administrators and users in better understanding and managing access-
control of a hierarchical file system. The tool employs treemaps to visualize the
file system tree. We use colors to distingish the permissions of files and folders,
and we indicate where a break of inheritance occurs with a special border around
the relevent node in the treemap. The input to our tool consists of two items:

1. The “user” input, which indicates the user or group whose permissions we
are interested in. In Figure[I] this is indicated with the label “name”.

2. The “baseline” input, which basically indicates a certain combination of
permissions upon which the color scheme of our visualization is based. In
Figure [l this is indicated with the label “permission”.

Effective Visualization of File System Access-Control 21

& NTFS checker — 1ol =]
| Fil= Edit Wiew Fawvorites Tools Help | $
| Name @ Adrninistratol = | Permiss. Read & ‘wiite ;I
- Mo Access
%ASPNET == ho A
Guest Fiead & Wwiite
l%Help.ﬂ'«ssistant Full Cantral

lSSQLDebuggEr
SSUPPORT_SSBQ‘?S&D

o ndministrators

gBackup Operatars

gDebugger Users —
@Guests

HelpServicesGroup

Remote Deskkop Users

Fig. 1. The user interface of our visualization tool. The main screen consists of the
“user” input and the “baseline” input.

In the current design, the baseline”input can take four values, namely the
values no access, read, read&write, full control. These are sorted in “in-
creasing permission” order. The user can also propose (and insert into the drop-
down menu) another combination of permissions (e.g., read&execute) and the
administrator is responsible for putting the new feature in the correct order (see
Figure[l). The visualization tool reads this value and parses the file system tree,
building the treemap using the slice-and-dice algorithm. For every file encoun-
tered, the associated node in the treemap is painted green, red, or gray, if the
file’s permissions are weaker (more restricive), stronger (less restrictive), or the
same as those specified by the baseline, respectively. The tool could potentially
use different shades of the same color to declare intensity of permissions. Finally,
the tool draws an orange border around treemap nodes associated with files or
folders where inheritance is broken.

folder N.A. R R&kW F.C. I
EHS USER USER v
E45) Desktop Desktop v
EH{) AMERICA AMERICA v
- EHE Marth America North America v v
: B usi USA v
=) Rhode Island Rhode Island v s
EC3) Providence Providence v s
=15 Brovn University Brown University v v
: “{3 €5 Department CS Department v
=) EURCPE EUROPE v v
EHED) Greece Greece v s
3 Athens Thessaloniki v v
-l Thessaloniki Athens v v
EH) Tealy Ttaly v
5 Milan Milan v v
2 Rome Rome v
-3 Turin Turin v v

Fig. 2. The directory tree that we are going to visualize with our tool, as visualized
by Windows explorer. Beside the tree, we also show the effective permissions of each
folder of the tree. N.A. stands for “no access“, R stands for "read”, R& W stands for
“read and write“, F.C. stands for ”full control” and I stands for “inheritance‘.

22 A. Heitzmann et al.
[osER JISER
Deddy Pesda
E a
EURDFE EURGFE
[exTorezse v itay ez [cxToreese Cy Haly. ez
[x2 ox2 [rz ox2
v ovz
2 vz
= iz
i Tun [e
o = o b3] X3
(Theszalon ki
B =ERER (Theszaloniki
[[z %
Milan
IMilan (AE) el o3
e (23 oX3
Fthers -
[[z [me
fihens e @ e [
lFome e v v
2] 03
br
3
b
RMERICA
A2 e th Ameroa 53] pr
IRMERICA
Ty YT izt oth America 1]
Rhode land s v
I]
Rhade lsland e
fva i
Fovidence
(Browin University S [
5 Fiovidanes
(Browin Univesity s
e e
[C& Deparimert e
"
[C& Depattment
= =
[z ez
vz vz

Fig. 3. Treemap (a) shows the access control permissions for user administrator. User

(a)

(b)

administrator has permission R on file AZ7 because the color is light green, indicat-

ing a weaker permission compared with the baseline R&W. One can see that these

permissions were inherited by CS Department because it is the first orange parent
folder, indicating a break of inheritance. Treemap (b) illustrates the result of moving
file AZ7 from the CS Department folder to the Rome folder. The permissions of this
file, indicated by the light green color, are preserved after the move. Furthermore, the

size of the rectangle associated with the moved file increases to accentuate the move.

Also, the color of the top right corner (the inherited permissions) of file AZ7 is light
green because after the move there is no inheritance from the parent.

Effective Visualization of File System Access-Control 23

[7sER [usEr
[Deskto) [Pesitof
E E
[EUROPE EURDPE
[xforesce v fat 2] [fereese ritah iz
Fz X [B4
o2 BA
o2 BA
iz iz
= Tutin = Tutin
e [z e Ev3 ¥ B3]
Thessaloniki Thessalonik
e [z [e [z o
[Milan IMilan
e] EH] v z 5]
Rome Rome
fihers o [e phens s [z e o
b [z [k SIS
oY by
3 o3
MERICA PMERIEA
RYTTRZT oth America Tt [T RZT Jhoth America 5]
lUSA UsA
23 Fhode dand [z fava i3 TRhode lsland e v
q 5z
lkra [va
[Providence Frovidence
Brown Univers kv Brown Universty v
5G]]
3] fave
[C% Department IS Deparment
el — T A
=
IA—XZ iz
|sz vz

(a) (b)

Fig.4. Treemap (a) shows the result of copying file AZ7 from the CS Department
folder to the Rome folder. The permissions of the file change, as indicated by the light
red color, because of the inheritance from the destination folder. Treemap (b) shows the
result of changing the permissions of the USER folder from R&W to R. This change
propagates down to descendant files and folders until there is a break of inheritance.
Note that file CZ3 in the Thessaloniki folder changes its color from grey to light green
because the local permission (left bottom corner) has a level that is lower than that of
the inherited permission (top right corner). It is possible to see the opposite behavior
in file CZ3 in the Athens folder, where the inherited permission changes from grey to
light green but the color of the rectangle remains light red because the level of the local
permission is greater than that of the inherited permission.

24 A. Heitzmann et al.

We believe that this scheme makes it is easy to gain a general sense of current
permissions of the file system as far a certain user is concerned. Furthermore, a
more detailed understanding can be achieved simply by exploring the treemap
more thoroughly. For example suppose that a file is moved from a folder that has
weaker permissions than the baseline to a folder that has stronger permissions
than the baseline. The administrator, by using our tool, will be able to notice
that difference (since a small green area will appear in a greater red area). There
is no longer a need to manually (by exploring the directory with cd commands)
find files with changed permissions, a task that quickly becomes arduous as more
users and other commands such as copy or cacls are taken into consideration.

We show examples of using our tool to visualize the permissions of the direc-
tory tree of Figure 2l Figure 2 shows a directory tree and the effective permis-
sions of every folder contained in this tree. We show in the table of Figure[2 four
kinds of permissions, namely the permissions no access, read, read&write,
full control. Also in the table of Figure 21 we have a column that indicates
whether the certain folder inherits the permissions or not (the last column).

In FigureBl(a) we see the representation of our file system with the treemap col-
ored with colors according to permissions, as defined before. In FigureBl(b) we see
the treemap layout of the file system after moving a file into a directory that has
different permissions from the file. Also, in Figure[j(a) we see the treemap layout
of a copy operation and in Figure@(b) we see the treemap layout of the file system
where the permissions of the root node of the directory have changed. Also note
that in the presented visualizations we distinguish between the local and effective
permissions. Namely, if the local and effective permissions coincide the tiles are
painted with only one color. When this is not the case, we use the upper right corner
to indicate the inherited permissions and the bottom left corner to indicate the lo-
cal permissions. In this way we have a good overview of the permissions that corre-
spond to a file. Note that the figures do not present the break of inheritance of a file
since this will clutter up the space. The frames have been produced with the soft-
ware from University of Maryland (http://treemap.sourceforge.net/), where
we use the slice-and-dice algorithm for the layout and the increased border option
to better display the directory structure.

4 Conclusions and Future Work

In this paper, we have presented an effective method to visualize file system
access control. We have outlined the design of a tool that visualizes both effective
and local permissions and inheritance interruption for the Windows NTFS file
system. Work already in progress is the implementation of a full prototype of
our system and to perform user studies to evaluate our approach. As future
work, we plan to develop further variations of the treemap layout to display
additional file permission information. Also we plan to investigate the application
of our technique to visualize the tree-walking protocol result used in the RFID
singulation problem.

Effective Visualization of File System Access-Control 25

Acknowledgments

This work was supported in part by the U.S. National Science Foundation un-
der grants [1S-0713403 and OCI-0724806, by the Kanellakis Fellowship at Brown
University, and by the Italian Ministry of Research, grant number RBIPO6BZWS,
project FIRB “Advanced tracking system in intermodal freight transportation”.

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

Bladh, T., Carr, D.A., Schol, J.: Extending tree-maps to three dimensions: A
comparative study. In: Masoodian, M., Jones, S., Rogers, B. (eds.) APCHI 2004.
LNCS, vol. 3101, pp. 50-59. Springer, Heidelberg (2004)

Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: Proc. of Joint Eu-
rographics and IEEE TCVG Symp. on Visualization (TCVG), pp. 33-42 (2000)
Cao, X., Iverson, L.: Intentional access management: making access control us-
able for end-users. In: Proc. of Int. Symposium on Usable Privacy and Security
(SOUPS), pp. 20-31 (2006)

Foster, J., Subramanian, K., Herring, R., Ahn, G.: Interactive exploration of the
AFS file system. In: Proc. of the IEEE Symposium on Information Visualization
(INFOVIS), p. 215 (2004)

Jaeger, T., Tidswell, J.E.: Practical safety in flexible access control models. ACM
Trans. Information Systems Security 4(2), 158-190 (2001)

Johnson, B., Shneiderman, B.: Tree maps: A space-filling approach to the visu-
alization of hierarchical information structures. In: Proc. IEEE Visualization, pp.
284-291 (1991)

Johnston, J.B.: The contour model of block structured processes. SIGPLAN
Not. 6(2), 55-82 (1971)

Montemayor, J., Freeman, A., Gersh, J., Llanso, T., Patrone, D.: Information
visualization for rule-based resource access control. In: Proc. of Int. Symposium
on Usable Privacy and Security (SOUPS) (2006)

Reeder, R., Bauer, L., Cranor, L., Reiter, M., Bacon, K., How, K., Strong, H.:
Expandable grids for visualizing and authoring computer security policies. In:
Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 1473-
1482 (2008)

Rode, J., Johansson, C., DiGioia, P., Filho, R.S.S., Nies, K., Nguyen, D.H., Ren,
J., Dourish, P., Redmiles, D.F.: Seeing further: extending visualization as a basis
for usable security. In: SOUPS, pp. 145-155 (2006)

Russinovich, M.E., Solomon, D.A.: Microsoft Windows Internals, 4th edn.
Microsoft Windows Server "™2003, Windows XP, and Windows 2000 (Pro-
Developer). Microsoft Press, Redmond (2004)

Stasko, J.: An evaluation of space-filling information visualizations for depicting
hierarchical structures. Int. J. Hum.-Comput. Stud. 53(5), 663-694 (2000)
Wilson, R.M., Bergeron, R.D.: Dynamic hierarchy specification and visualization.
In: Proc. of the IEEE Symposium on Information Visualization (INFOVIS), p. 65
(1999)

	Effective Visualization of File System Access-Control
	Introduction
	Preliminaries
	Effective Access Control Visualization
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

