
J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 1–17, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Visual Reverse Engineering of Binary and Data Files

Gregory Conti, Erik Dean, Matthew Sinda, and Benjamin Sangster

Department of Electrical Engineering and Computer Science
United States Military Academy

West Point, New York
{gregory.conti,erik.dean,matthew.sinda,

benjamin.sangster}@usma.edu

Abstract. The analysis of computer files poses a difficult problem for security
researchers seeking to detect and analyze malicious content, software developers
stress testing file formats for their products, and for other researchers seeking to
understand the behavior and structure of undocumented file formats. Traditional
tools, including hex editors, disassemblers and debuggers, while powerful,
constrain analysis to primarily text based approaches. In this paper, we present
design principles for file analysis which support meaningful investigation when
there is little or no knowledge of the underlying file format, but are flexible
enough to allow integration of additional semantic information, when available.
We also present results from the implementation of a visual reverse engineering
system based on our analysis. We validate the efficacy of both our analysis and
our system with case studies depicting analysis use cases where a hex editor
would be of limited value. Our results indicate that visual approaches help
analysts rapidly identify files, analyze unfamiliar file structures, and gain insights
that inform and complement the current suite of tools currently in use.

1 Introduction

Individual files are a fundamental component of today’s computing paradigm as well
as one of today’s biggest threat vectors. With the advent of effective network security
devices based upon firewalls, intrusion detection systems and similar security
applications, attackers are moving away from network protocol attacks and toward
attacking applications themselves. This transition is problematic because firewalls
must pass some traffic in order to provide services to their users, particularly web and
email. It is through these services that users send, receive, upload and download files,
sometimes as email attachments, web downloads, or more worrisome, surreptitiously
through encrypted channels such as HTTPS or SSH. The problem is worsened by the
rapid evolution of file-based attacks that exploit vulnerabilities in parsing by applica-
tions and common software libraries, as well as by the attacker’s use of packers which
obfuscate the contents of files.

Legitimate files function as either stand alone executable programs or as data to be
used by other applications, such as word processors, text editors or graphics programs.

2 G. Conti et al.

Executable files are executed by the operating system, whereas, data files are loaded by
applications. In both cases the operating system and application assume some
knowledge of the file’s underlying format and structure in order to operate on it
successfully. In these legitimate cases, the user of the file only sees the interpreted
version of the file as determined by the application or operating system. The
underlying structure of the file is hidden. It is through this hidden nature that both
attackers and legitimate programmers attempt to place security mechanisms. While
file extensions and magic numbers serve the purposes of legitimate use, security
analysts are forced to dig much deeper and face the frequent task of exploring the raw
structure of files to detect modifications, determine file type, determine what a file
does, determine authorship, create virus signatures, and detect code evolution, among
other tasks. Further hampering analysis is that the file may be corrupted, obfuscated,
or encrypted to slow analysis. In some cases, files contain code designed to crash
analytic tools or function differently if used in a virtual machine. Sometimes files
contain largely legitimate data with a small fraction containing a malicious aspect and
others are dedicated malicious applications.

At their heart, files are just binary objects whose meaning is based on the
applications or the operating systems that use them. However, in some cases little
will be known about a given file. We therefore view the problem of reverse
engineering binary files as having two levels, a context independent level where we
assume the analyst has little or no knowledge about the structure and purpose of a
given file, and analysis must occur initially in a context-independent manner. At the
second level, the analyst knows some information, such as an expected file format,
and can make informed assumptions as they analyze the file. The difference between
these two levels is evident in the current suite of tools for reverse engineering files.
At the context independent level, the analyst employs general purpose tools such as
hex editors and byte frequency analysis to gain insight. At the semantic level, analyst
tools are crafted specifically to a given file format or family of related formats, such
as dissemblers and debuggers, leading to very precise insights.

Unfortunately, the vast majority of best of breed tools for reverse engineering of
files are strictly text based and provide only a tiny viewport into the file under
analysis. Visualization is underutilized in reverse engineering and bears great promise
for assisting analysts in their work and augmenting their existing tool suite. In this
paper we present an analysis of user tasks that is useful for the design of visualization
systems, and employ this analysis to implement a system which combines proven text
based techniques with innovative visualization approaches in order to augment the
analyst and complement their tool suite for a number of essential tasks. We validate
the efficacy of these contributions through several case studies. It is important to note
that we are addressing the problem of reverse engineering of binary file formats
across the entire range of possibilities and not focusing specifically on the special case
of reverse engineering of executable files.

This paper is organized as follows. Section 2 places our research in the field of
related work. Section 3 contains a user-level requirements analysis that we used to
guide our development. Section 4 presents our system design and implementation.
Sections 5 demonstrate the utility of our approach through case studies. Section 6
presents our conclusions and suggested directions for future work.

 Visual Reverse Engineering of Binary and Data Files 3

2 Related Work

The most commonly employed tool for reverse engineering of files and file formats is
a hex editor, which typically displays files in hexadecimal and ASCII formats and
assumes no knowledge of the underlying file structure. Traditional hex editors offer
basic functionality, but modern hex editors contain advanced features including the
ability to view, search, and convert between hex, ASCII, Unicode, decimal and
floating point data types, among others. Such tools also include the ability to encrypt
and decrypt, calculate checksums, encode and decode, calculate computer hashes, and
compress and decompress blocks of data within a file. Navigation is straightforward,
including the use of scroll bars and the ability to jump to a given offset within the file,
but also includes the ability to place navigation labels at user specified locations. The
Hiew hex editor is noteworthy because it integrates an assembler and disassembler.
Other sophisticated editors, such as WinHex, also include the ability to edit memory,
create a byte frequency histogram of both the entire file and a user selected region,
and easily link to helper programs such as web browsers and media viewers. The 010
editor also includes binary templates which parse popular binary file formats into
their associated variables and data structures. Hex editors are the definitive tool for
text-based analysis of binary files and include powerful computation capabilities,
even scripting, but lack the ability to provide big picture context, a significant
problem due to the complexity of even moderately sized files.

Beyond hex editors, there are other general purpose tools for reverse engineering
files of both executable and data formats, including the command line strings utility
which outputs contiguous runs of printable ASCII. Similarly, the command line diff
command, the fc (file compare command) and related variants allow the comparison of
text and binary files in order to locate changes. Recently more powerful GUI-based
tools have emerged, such as Compare It!, ExamDiff, Guiffy, Merge, Meld, and
WindDiff which allow side-by-side comparison of files. Common attributes of this class
of tools include side-by-side views in text or hexadecimal representations, scripting,
directory comparison, reporting tools, syntax highlighting, the ability to detect changes
(diffing) and to merge files. Compare It! and Merge also provide the ability to compare
images. As is the case with hex editors, command line and GUI-based file comparison
tools are text based and lack the ability to provide big-picture context that visualization
can provide. However, there are several notable exceptions. The first is Visual Insights
Difference Viewer, which combines the two-pane textual view with a two column
graphical view similar to Eick’s Seesoft technique to provide context when comparing
two files, but this tool is apparently no longer available. The 010 editor also uses a
similar combined text and Seesoft-like view technique. Nwdiff is another interesting
approach. It plots pixels based on the actual bit values contained within a pair of files
and uses four graphical panes. Two of the panes show the raw structure of the files; the
other two panes graphically show similarities and differences between the files by using
a logical or and xor. BinaryViewer and RUMINT’s binary rainfall view [1] use similar
bit-level views, to view binary files and network packets, respectively. Another, albeit
rudimentary, technique for visualizing binary files is the raw2tiff program. raw2tiff
converts raw byte streams to the tiff image format. Designed for image file conversion,

4 G. Conti et al.

raw2tiff produces similar results by converting a binary file to a tiff image. We believe
these bit and byte-level approaches bear great promise in helping analyze binary files;
we will discuss these techniques later in the paper.

Other interesting approaches for visualizing binary files include Kaminsky’s use of
dot plot [2] patterns to explore self-similarity in binary files as well as his use of
context free grammars to highlight hex dumps [3]. We have incorporated Kaminsky’s
dot plot technique into our system as we will discuss later in the paper.

As part of considering tools for analyzing individual files, or pairs of files as in the
case of diffing, it is also useful to examine existing tools for visually displaying
complete file systems. These include Firelight which uses concentric segmented rings,
SequoiaView and GdMap which uses squarified treemaps, KDirStat, Baobab and
WinDirStat combine a treemap with a textual tabular view in the same display window.

The file fuzzing community also employs tools designed to manipulate binary files
in order to identify vulnerabilities in application parsing algorithms. Popular examples
include SPIKEFILE for Linux and FILEFUZZ for Windows. Such tools are primarily
text based, but would benefit from the interactive visualization techniques we present
later in the paper to assist in identifying promising locations in files that users are
attempting to fuzz.

So far, we’ve discussed related work regarding the analysis of binary files in
general, however it is worth specifically discussing the special case of reverse code
engineering (RCE) which focuses on the analysis of executable files. There are
several ways to approach RCE. The first is static analysis, the examination of a file’s
contents without executing it. The second is dynamic analysis which studies the
internal operation of the code as it is executing. Another approach is to execute the
program and study how it interacts with the operating system and network. The
primary tools are hex editors, dissassemblers with IDA Pro being the best of breed,
debuggers including tools like OllyDbG and SoftIce, and decompilers. It is important
to note that IDA Pro allows user created plug-ins as well as scripting, and as a result,
there is an active developer community surrounding IDA Pro, such as OpenRCE and
IDA Palace. The wide range of binutils is often employed, including objdump which
displays information about object files and readelf which displays information about
ELF format object files. Tools from the Sysinternal’s tool suite augment debuggers
and decompilers, by allowing fine grained monitoring of an application’s interaction
with the operating system as it executes.

There has been a limited amount of work in the visualization of executable files.
Yoo used self-organizing maps to detect viruses [4]. The most current work is found
in the Zynamics’ BinDiff, BinNavi, and VxClass tools which utilize directed graphs.
Graph-based techniques have demonstrated great utility in analyzing malicious
software [5, 6, 7, 8] including diffing of executable files [9, 10].

The novelty of our work springs from our analysis of reverse engineering tasks,
novel visualizations, and our system for analyzing binary files. While there has been a
great deal of work on text-based analysis of files, there is only limited work of
visualization of files themselves, primarily only executable files, at both the context-
independent and context-dependent levels.

 Visual Reverse Engineering of Binary and Data Files 5

3 Requirements Analysis

Reverse engineering of file formats is both an art and a science. As such, many
analysts develop their own personal approaches to reverse engineering. These ill-
defined individual approaches are a significant challenge when attempting to design
systems that facilitate the work of many different users. To overcome this shortcoming
and ground our work in real-world user requirements we analyzed five different
approaches found in: Fuzzing – Brute Force Vulnerability Discovery by Sutton, Greene
and Amini, Wikibooks’ Reverse Engineering, Hacker Disassembling Uncovered by
Kaspersky, Hacking – The Art of Exploitation by Erickson, and Hack Proofing Your
Network by Russell et al. While each text provided unique approaches to reverse
engineering, we did find significant commonality. In addition, to supplement our

Table 1. Scenarios which require low-level analysis of files

Goal Examples
Analyze undocumented
file format

- Classify basic purpose of file
- Understand structure of file format
- Understand behavior of creating application
- Identify algorithms used for compression, encoding
and encryption within file

Audit files for vulnerabilities - Locate structures for targeted fuzzing
- Identify vulnerable code structures
- Locate caves (empty regions within file)

Compare files (Diffing) - Create signature of malware variant
- Determine purpose of a patch
- Track evolution of code between file versions

Cracking1 - Break copy protection
- Alter player resources in game (e.g. gold pieces)

Cryptanalysis - Validate protocol or algorithm operation
- Confirm encryption occurred
- Gain insight into encryption algorithm
- Find key or password
- Analyze files for steganographic content

Forensic analysis - Determine authorship
- Locate and extract metadata
- Locate and extract hidden content
- Identify compiler, language or application used to
create file

Identify unknown file format - Precisely determine application which created file
- Classify type of application which created file

Malware analysis - Reverse engineer file’s function
- Create antivirus or IDS signature
- Locate malicious code within file

Reporting - Create analyst annotated reports
- Share analytic results with analysts, management, and
customers.

1 While we don’t support file cracking, it is nonetheless a scenario which requires low-level

analysis of files and was repeatedly mentioned in our literature review.

6 G. Conti et al.

Table 2. Representative reverse engineering high-level tasks

Category Task
Analyze -Identify and analyze non-standard file formats and algorithms

-Understand, annotate and document the file’s structure, including
header/footer and block/record/field formats
-Test and evaluate hypothesis as to the meaning of the data and file format

Calculate -Perform decimal, hexadecimal, and binary calculations
-Encrypt and decrypt, encode and compress blocks of values within a file,
calculate checksums

Compare -Compare two or more files and precisely locate differences.
Explore -Understand the big picture context of a file’s structure

-Identify major structures within a file
Filter -Remove undesired content
Identify -Identify which algorithms and libraries were used

-Identify and analyze regions containing executable code and data
-Identify in-file references to data

Locate -Locate regions that have been encoded, compressed or encrypted
-Locate free/slack space

Modify -Edit values within files
-Fill regions with desired values
-Load and save text and binary files

Navigate -Easily navigate to regions within the file
Report -Generate report of analysis
Search -Locate specific values or sequences of values, including those in hex,

floating point, binary, decimal, ASCII and Unicode representations.
Semantics -Correctly parse binary file formats

-Apply external knowledge of file structure and format to gain additional
insight

View -View files and regions in native viewers/formats, including assembly
-View/convert values in native format/encodings/datatypes/byte orders
(e.g. 2 and 4 byte integers, floats, strings, Unicode, real and string, signed
and unsigned)

literature review of user requirements we conducted semi-structured interviews of 12
intermediate and advanced security analysts from the academic, industry and hacker
communities, conducting the interviews primarily at the RSA 2008 and Shmoocon
2008 Conferences. From the results of our literature review and interviews we
compiled scenarios which require low-level analysis of files, see Table 1, and catego-
rized specific tasks analysts face when seeking to reverse engineer data and executable
files, see Table 2.

When faced with an unfamiliar file, the analyst will also employ common
command line utilities such as strings, which looks for sequences of ASCII characters
contained within binary files, file, which attempts to identify a file’s format. The next
step is often to load the file in a hex editor and scroll the textual display looking for
regions of interest. In the case of an executable file, the analyst will likely run the file
and observe its interactions with the underlying operating system and network using
tools which monitor system calls, network activities, file accesses, and registry
changes. The analyst employs debuggers and disassemblers to understand the code in
operation.

 Visual Reverse Engineering of Binary and Data Files 7

When the file is untrusted, analysis will almost certainly be conducted on an
isolated malware analysis workstation, usually in a virtual machine environment to
provide additional isolation. Depending on the analyst’s objective, the machine may
have network connectivity. Reverse engineering of both executable and data files is,
in many ways, an adversarial relationship. For example, there is an increasing trend
by malware authors to attempt to detect virtual machine environments and behave in
an unexpected manner, such as crashing the debugger, to frustrate analysis. File
extensions and other metadata, particularly in forensic analysis, are not fully trusted
by the analyst. The designers of the file format will often go to great lengths to
obfuscate file contents by using encryption, packing, or obfuscated coding techniques.
There are legal issues as well. In some cases attempting to reverse engineer file
formats, particularly when encrypted or deliberately obfuscated, can be considered a
violation of intellectual property rights.

4 System Design and Implementation

There are a number of situations that necessitate low-level analysis of files and file
formats, but they fall into two main categories: context independent analysis when
little is known about a given file’s format and semantic analysis where the analyst
knows some information about the structure of the file. For our work we have chosen
to design our system to facilitate context independent analysis where a hex editor and
command line tools, such as strings, would be used. These include analyzing
undocumented file formats, auditing files for fuzzing opportunities, and forensic
analysis. More specifically, we designed our system to aid rapid analysis, provide big
picture context, facilitate navigation, and assist identification of internal structures
contained within files as we believe these are promising areas for visual support. We
leave semantic analysis and other user tasks for future work. That being said, an
understanding of file formats in general, is critically important even in the context
independent case.

Visualization of files allows the analyst to see structures within files and it is useful to
study file formatting techniques. File formats come in a myriad of different types, from
extremely simple to highly complex. While it is impossible to determine the exact
number of different file formats, the popular FILExt database of file extensions currently
tracks 24,048 different types and Wotsit, a leading file and data format website, provides
information on 1,030 different publicly available and closed file formats. The end result
is an environment with wide variety of commonly employed techniques as well as the
likely possibility of unique file formats written by individual authors.

Common file structuring techniques include embedding metadata (e.g. serial
numbers and magic numbers), storing fixed and variable length records, compressing
and encrypting regions within a file, embedding images, as well as various ap-
proaches to storing and encoding strings, integers and floating point values.

Analysis of files needn’t be constrained to data contained within the file itself, but
could incorporate external information stored by the operating system, such as file
name, file size, date of creation, date of modification. Similarly, a visualization system
may employ a wide range of statistical techniques to add meaning to the visualizations,
assist filtering, and aid navigation within the file, such as calculating the frequency of

8 G. Conti et al.

bytes, calculating entropy, and performing n-gram analysis. Such calculations could
occur across the entire file, or be constrained to a given window selected by an
algorithm or end user.

We implemented our system using C# in Microsoft Visual Studio .NET 2005. We
chose this environment because C# is a robust and comprehensive language and
because of Visual Studio’s strength in rapid GUI development. All testing was done
on a commodity PC (Dual Core AMD 2500, 1GB RAM, Windows XP). For future
work, we plan to explore implementing the system, including all interactive GUI
elements, in a platform independent language such as Java, Perl or Python. As
malware analysis often occurs inside virtual machines, it is also important that future
versions perform well in such an environment.

4.1 System Design Goals

Given our analysis of user requirements and the environment in which users operate,
we created the following design goals to guide our development. These goals, are just
that, goals. Later sections in the paper will demonstrate which we accomplished in
our current system implementation [11].

• Useful – Allow user to gain useful insight about the file, including big
picture structure, embedded objects, obfuscated or hidden data, malicious
content, and embedded metadata.

• Ease of use – The application should be easy to install, understand, and
operate.

• Extensible – A small group of developers cannot compete with the ingenuity
of an entire user base. An extensible design allows the open source
community to develop plug-ins.

• Incorporate best practices – Don’t rediscover fire. Create a design that can
incorporate best practices from existing tools.

• Open source – In order to gain trust of our security conscious user base,
releasing the source code helps increase adoption.

• Context independent analysis – Provide valuable insight into binary files,
even if the underlying file format is unknown.

• Semantic file analysis – Incorporate relevant semantic information into the
visualizations when file format is known or suspected.

• Multiple coordinated views – Provide useful windows into the file that
complement existing textual tools.

• Attack resistant – Design the tool with the understanding that it may be
attacked by a malicious file under analysis.

• Platform independence – The ideal system should function when used on all
major operating systems employed by users.

4.2 Visualization Design

Our system incorporated both textual and graphical visualization techniques in order to
combine the functionality of command line tools and best practices from hex editors
with insightful visualizations. In its current implementation, the system incorporates two

 Visual Reverse Engineering of Binary and Data Files 9

Fig. 1. System screenshot depicting each of the visualization techniques

textual views. The first view is the canonical hex/ASCII view commonly employed by
hex editors and hex dump command line utilities, see Figure 1(g). While we only
included a hex viewer window, a key idea is that a hex editor can be incorporated in its
entirety into the design we propose. The second textual view displays ASCII strings
contained within the file, see Figure 1(d). Both displays include the offset of the data
displayed. The system includes a number of graphical displays which are described in
the following sections. It is important to note that we view our textual and graphical
displays as a starting point. Our ultimate aim is to create an extensible architecture that
would inspire end users to create and share additional visualizations.

4.3 Byteview Visualization

The system includes four graphical displays2, the first is a byte plot visualization, see
Figure 1(c), which maps each byte in the file to a pixel on the display. The first byte
in the file is located in the top left corner, coordinate (1,1), the next byte is displayed
at position (2,1). The byteview is 640x480 resolution, so each row can display 640
bytes. When the end of the line is reached, plotting begins at the next line below. At
640x480 resolution, the byteview visualization can display 307,200 bytes. Thus byte
307,200 will be displayed at coordinate (640,480). The color of each pixel maps to the
value of the byte displayed, where a byte value of 00 would be black and FF would be
bright green. We chose 640x480 resolution because its relatively small size would
facilitate rapid drawing. In addition we believe choosing resolutions in multiples of 32

2 The following sections describe three displays, the fourth, the Byte Map display (Figure 1(f))

alters font size based on byte frequency, but is still under development.

10 G. Conti et al.

is important when analyzing files written for 32-bit PCs as many structures contained
within files are multiples of 32. When testing performance we found that the display
could be updated in 0.03 seconds, leaving open the possibility of creating byteview
visualizations at greater resolutions while still providing a responsive interface.3

4.4 Byte Presence Visualization

The byte presence visualization, see Figure 1(b), consists of 256 columns. Each row
displays the presence and absence of byte values within a given window in the file
being examined. This visualization is designed to act in concert with the byteview
display and each of the 480 rows from the byteview visualization is displayed as a
corresponding row in the byte presence display. For example, if the eighth row of the
byteview contains only byte values in the printable ASCII range (i.e. 32-127) the
eighth row of the byte presence visualization will have pixels in the 32nd through 127th
columns illuminated. By designing these two visualizations to act in concert, an
analyst is able to perform side-by-side comparison of a given region of interest. The
byte presence visualization is particularly useful for identifying regions of text
contained within a file (seen as vertical bars in columns 32-127), for detecting
regularly changing byte values in the file (seen as diagonal lines, where the slope
equals the direction and rate of change), for identifying regions of compression or
encryption (seen as a nearly complete horizontal line), as well as for detecting the set
of characters used by an encoding scheme, such as uuencoding which uses a subset of
printable ASCII characters. Our current implementation indicates the presence or
absence of a given byte value, a possible future enhancement is to use color to
highlight bytes based on frequency or entropy.

4.5 Dot Plot Visualization

The dot plot visualization, see Figure 1(e) is a powerful visualization technique used
by bioinformatics researchers to measure self-similarity. Kaminsky demonstrated that
the technique is also useful for the analysis of binary data, particularly for visually
detecting repeated sequences of bytes contained within a file [12]. Due to the promise
of Kaminsky’s results4, we included a dotplot visualization in our implementation.
Kaminsky’s dot plot works by creating a matrix out of a sequence of bytes from the
file. Similarly, in our system we used the file under analysis for labeling both the
horizontal and vertical axes. Pixels in the display are illuminated at all locations
where the horizontal and vertical axes values are identical. Note that the algorithm
may also be used to compare two different byte sequences, such as two different files,
and visually indicate each difference. In this case, one axis is labeled with the first
file and the other axis is labeled with the second file. The dot plot algorithm is O(n2),
thus plotting a full 1MB file would create a 1TB image, beyond the power of desktop
workstations. To overcome this shortcoming, we implemented a 500x500 dot plot as

3 We were able to achieve this level of performance by avoiding C#’s GetPixel and SetPixel

methods and directly accessing image memory, see http://www.bobpowell.net/lockingbits.htm
for more information.

4 Note that Kaminsky’s approach was not interactive. He generated extremely large dot plots of
entire files. Our approach is interactive.

 Visual Reverse Engineering of Binary and Data Files 11

a tradeoff between functionality and processing requirements. As the user navigates
the file, the dot plot is redrawn using a 500 byte window from the current offset
onward. A full description of the dot plot is beyond the scope of this paper, for more
information see Helfman as an introduction [15].

4.6 Navigation and Interaction Design

Navigation in our system is designed to be simple and intuitive, applying multiple
coordinated visualization windows, both graphical and textual. It is accomplished via
a small VCR-like display, Figure 1(a). The analyst may navigate to a new location by
adjusting a horizontal scroll bar or by clicking the play/stop buttons. The play button
causes each of the graphical displays to scroll automatically, allowing the user to
rapidly scan large files. The numeric display on the VCR depicts the current offset in
the file. The user may bring up specific textual detail by clicking the byteplot
visualization. As a future enhancement, we plan to add similar functionality to all
graphical visualizations. Similar navigation could be added to the strings and other
textual displays by allowing the user to click on a textual item and each of the other
displays would automatically change to reflect the new offset.

We use color coding to highlight specific attributes of the file under examination.
In our system, color coding is accomplished using a small toolbar consisting of four
buttons, see Figure 1(h). Our long-term intent is to allow individual analysts to create
coloring rules of their own choosing and influence each display, but in our current
implementation, we hard coded four, one per button, and they only affect the byte
view visualization. These rules include highlighting printable ASCII characters (blue
for bytes in the printable ASCII range and gray for all others), displaying byte
frequency (blue/low frequency to red/high frequency), inverting the color scheme of
the display, and finally a rule for the default color scheme.

5 Case Studies

In this section we demonstrate the utility of our approach by using the system in four
scenarios of increasing complexity: locating a hidden message contained within an
MP3 file, identifying fixed and variable length records contained in database files,
reverse engineering of a Microsoft Word document, and analyzing process memory of
a Firefox browser running under Windows XP.

5.1 Hidden Message in an MP3 File

This example was inspired by Johnny Long’s “Death of 1,000 Cuts” talk at the
Defcon 14 hacker conference. Long demonstrated numerous ways to hide information
from forensic investigators by creatively placing digital information in obscure
locations. He showed that it is possible to hide a textual message inside an MP3 audio
file by manually altering the file with a hex editor. The file could then be stored on an
MP3 player. Short messages, on the order of several hundred bytes or less, cause little
to no discernable distortion in the audio playback. Using this technique, we inserted a
331 byte message composed of a sequence of ASCII values in a 3.2MB, 3.5 minute

12 G. Conti et al.

(a) Full screen display of file

(b) Detail of message region

Fig. 2. Byte view visualization of an MP3 containing an ASCII message (a), the detail image
(b) more clearly illustrates the message as a horizontal line

song, see Figure 2. Because we were searching for ASCII characters, we turned on the
ASCII encoding filter to help highlight sequences of characters. As you examine the
figure, note that the remainder of the MP3 file format appears as visual noise, due to
the format’s compression algorithm, which allows the regularity of the embedded
message to become noticeable. By pointing to the suspected message and clicking,
the analyst can learn the offset and view the message in the text view window.

While this is a straight forward example, it does illustrate a key aspect of the byte
view visualization technique - internal structure is readily apparent. In this case, the
deviations from apparent randomness due to compression are easily discerned. It is
important to note that the ASCII encoding filter was not required to detect the region,
but we chose to use the filter in this example to demonstrate one possible use case.
Other means of encoding alphanumeric characters are also discernible using this
visualization. For example, alphanumeric characters from the Basic Latin Unicode Set

 Visual Reverse Engineering of Binary and Data Files 13

Fig. 3. Byte view of a Neverwinter Nights database file (left). Notice the regularity of the fixed
length record structure. The text view (right) allows the analyst to see the low level details.

are 16-bit, but are otherwise the same values as ASCII. These byte values appear as
alternating vertical lines in the byte view visualization. Another important insight is that
while the byte view visualization we implemented was 640x480 resolution, larger
display resolutions, such as a 1920x1200, are computationally feasible. Because preat-
tentive processing allows analysts to rapidly identify patterns, a 1920x1200 display
would allow far more rapid detection of embedded messages using Long’s technique.

5.2 Identifying Fixed and Variable Length Records

As the preceding example illustrated, the byte view visualization allows users to view
internal structure. This trait is particularly valuable when viewing files containing
regions of fixed or variable length records. Record structure is immediately visible, as
seen in Figure 3(left), which depicts a fixed length structure storing data from the
game Neverwinter Nights. Figure 4 depicts variable length packets stored in the
PCAP file format. After the analyst identifies the record structures, they can then
explore the details using the text view display, Figure 3 (right).

5.3 Microsoft Word Analysis

The Microsoft Word binary file format is extremely complex.5 To gain a better under-
standing of its inner workings, we used our visualization system to explore the internal
structure of a large (10.3MB) Microsoft Word document, containing approximately
5,000 words, 16 embedded images and 36 footnotes. Because of the file’s size, the
entire document required just over 33 pages in the byteview visualization to examine

5 The Microsoft Word specification document is 210 pages long and may be downloaded at

microsoft.com.

14 G. Conti et al.

Fig. 4. Byte view of a PCAP file from the Defcon Capture the Flag competition. Notice the
regularity of the fixed length record structure in the top half of the image and the variable
length records in the bottom half.

the file in its entirety. However, this same size document would require approximately
1,024 pages when displayed in a textual hex editor-style format. In addition, the scroll
bar on the VCR-like display greatly increased analysis speed. After initially loading the
file and opening the byteview window, we used the scroll bar to scan the entire file, a
process taking less than a minute. It quickly became apparent that the file contained a
header region Figure 5(a), a large compressed or encrypted region, Figure 5(b), and a
footer region, Figure 5(c). We used a combination of other visualization displays to
provide deeper insight and confirm these initial assumptions. For example, by clicking
on major structures in the header region and viewing the results in the text
visualization, we confirmed the document’s text was located in the top third of figure
5(a). Embedded images constituted the vast majority of the document and appeared as
white noise. Each image was preceded by a short header, which was visible in the
byteview visualization as a horizontal bar, see Figure 5(b). Closer examination of these
image headers using the text view revealed that they were compressed PNG images.
The footer contained a mixture of elements including a listing of all hyperlinks
contained in the document stored as Unicode. Recall that basic Latin Unicode appears
as vertical bars in the byteview visualization.

We believe our visual analysis approach bears great promise for analyzing
documents stored in binary files. ASCII data, Latin Unicode, internal record structures,
and compressed images are all readily apparent. Potential future applications include
using visualization to help guide fuzzing, the stress testing of application parsers, by

 Visual Reverse Engineering of Binary and Data Files 15

(a) Header Region

(b) Embedded Image Region

(c) Footer Region

Fig. 5. Microsoft Word Binary. The byteview visualization allows the analyst to quickly
discover the existence of three major regions in the file. A header region, which contains the
text of the document, followed by a large region containing compressed images, and a footer
region which includes hyperlinks stored as Unicode.

16 G. Conti et al.

facilitating identification of internal structures. A common best practice in the fuzzing
community is the study of complex file formats as the probability of discovering a
vulnerability increases with complexity [13].

5.4 Firefox Core Dump

This final example is a core dump created by a Firefox browser during a crash and
differs significantly from the preceding examples, as it is a snapshot of process
memory and not a static file format. As such, additional structures not seen during
static analysis become visible. For example, Figure 6, shows an image stored by the
browser in its process memory, note the gradients (left) and the corresponding byte
utilization in the byte presence view (right).

Additional analysis indicated that our visualization approach is useful for related,
and potentially very large chunks of binary data, including page files, hibernation files
and process memory. It is important to note however, that sharing byteplot images in
these cases is a security concern, because it is possible to convert the image back to
the raw byte values without loss.

Fig. 6. Byteplot view of process memory dumped by Microsoft Windows after a Firefox
browser crash. The left figure depicts an image stored in process memory (note the gradients)
and the right figure shows the corresponding byte values.

6 Conclusions and Future Work

The future of visual analysis of binary data is promising, particularly when such
visualization systems incorporate best practices from hex editors, a well-studied field
for over 30 years. Our work demonstrated that it is possible to extend the current
functionality of the hex editor metaphor by overcoming its significant constraint of a
tiny textual window and helping fill the distinct gap between the hex editor and
special case binary analysis tools such as disassemblers. Our intent was not to suggest

 Visual Reverse Engineering of Binary and Data Files 17

rejecting the hex editor, but instead buttress its weaknesses and complement its
strengths via visualization and improved interaction. A key question we sought to
answer was, “Is it possible to do better than the canonical hex/ASCII view provided
by today’s hex editors?” The answer is yes. Carefully crafted visualizations provide
big picture context and facilitate rapid analysis of both medium (on the order of
hundreds of kilobytes) and large (on the order of tens of megabytes and larger) binary
files. The traditional hex editor is an inadequate tool for dealing with files of these
sizes. However, the traditional hex editor view provides a useful means of providing
precise detail. It is possible to create a visualization-enhanced analysis system that
combines the functionality of the best hex editors with the strengths of visualization.
Key to this approach is the continued exploration of interaction techniques to
seamlessly blend visual displays with hex editor interaction best practices. To be most
successful, such a system should be based on an extensible plug-in architecture that
allows intermediate and advanced end-users to easily create and share both
visualization techniques and search/filtering/coloring rules, tapping the combined
insight of the user-community.

References

1. Conti, G., Grizzard, J., Ahamad, M., Owen, H.: Visual Exploration of Malicious Network
Objects Using Semantic Zoom, Interactive Encoding and Dynamic Queries. In: IEEE
Symposium on Information Visualization’s Workshop on Visualization for Computer
Security (VizSEC) (October 2005)

2. Helfman, J.: Dotplot Patterns: A Literal Look at Pattern Languages. TAPOS Journal 2(1),
31–41 (1995)

3. Kaminsky, D.: Black Ops 2006. Blackhat USA (2006) (last accessed December 20, 2007),
http://www.doxpara.com/slides/dmk_blackops2006.ppt

4. Yoo, I.: Visualizing Windows Executable Viruses Using Self-Organizing Maps.
VizSec/DMSec (2004)

5. Carrera, E., Erdelyi, G.: Digital Genome Mapping – Advanced Binary Malware Analysis.
In: Virus Bulletin Conference (2004)

6. Flake., H.: Structural Comparison of Executable Objects. Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), pp. 161–173 (2004)

7. A different look at Bagle. F-Secure Weblog (23 September 2005) (last accessed December
20, 2007), http://www.f-secure.com/weblog/archives/00000662.html

8. Graphing malware. F-Secure Weblog (25 October 2005) (last accessed December 20,
2007), http://www.f-secure.com/weblog/archives/00000324.html

9. Dullien, T., Rolles, R.: Graph-based comparison of Executable Objects. In: Symposium Sur
La Securite Des Technologies De L’Information Et Des Communications (SSTIC) (2005)

10. Flake, H.: Diff, Navigate, Audit – Three applications of graphs and graphing for security,
Blackhat USA (2004) (last accessed December 20, 2007), http://www.blackhat.
com/presentations/bh-usa-04/bh-us-04-flake.pdf

11. Nolan, B., Sinda, M.: File Visualization Environment (FiVE). In: National Conference on
Undergraduate Research (2008)

12. Kaminsky, D.: Black Ops 2006 : Viz Edition. Chaos Computer Congress (2006) (last
accessed May 1, 2008),

 http://www.doxpara.com/slides/dmk_blackops2006_ccc.ppt
13. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.

Addison-Wesley, Reading (2007)

	Visual Reverse Engineering of Binary and Data Files
	Introduction
	Related Work
	Requirements Analysis
	System Design and Implementation
	System Design Goals
	Visualization Design
	Byteview Visualization
	Byte Presence Visualization
	Dot Plot Visualization
	Navigation and Interaction Design

	Case Studies
	Hidden Message in an MP3 File
	Identifying Fixed and Variable Length Records
	Microsoft Word Analysis
	Firefox Core Dump

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

