

Lecture Notes in Computer Science 5210
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

John R. Goodall Gregory Conti
Kwan-Liu Ma (Eds.)

Visualization for
Computer Security

5th International Workshop, VizSec 2008
Cambridge, MA, USA, September 15, 2008
Proceedings

13

Volume Editors

John R. Goodall
Secure Decisions division of Applied Visions
Albany, NY, USA
E-mail: johng@securedecisions.avi.com

Gregory Conti
United States Military Academy
West Point, NY, USA
E-mail: gregory.conti@usma.edu

Kwan-Liu Ma
University of California
Davis, CA, USA
E-mail: ma@cs.ucdavis.edu

Library of Congress Control Number: 2008934071

CR Subject Classification (1998): C.2, K.6.5, I.3, H.3.3, I.5.3

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-85931-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85931-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12515677 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at VizSec 2008, the 5th International
Workshop on Visualization for Cyber Security, held on September 15, 2008 in
Cambridge, Massachusetts, USA. VizSec 2008 was held in conjunction with the
11th International Symposium onRecentAdvances in Intrusion Detection (RAID).

There were 27 submissions to the long and short paper categories. Each
submission was reviewed by at least 2 reviewers and, on average, 2.9 program
committee members. The program committee decided to accept 18 papers.

The program also included an invited talk and a panel. The keynote address
was given by Ben Shneiderman, University of Maryland at College Park, on the
topic Information Forensics: Harnessing Visualization to Support Discovery. The
panel, on the topic The Need for Applied Visualization in Information Security
Today, was organized and moderated by Toby Kohlenberg from Intel Corporation.

July 2008 John R. Goodall

Conference Organization

Program Chairs

John R. Goodall Secure Decisions division of Applied Visions
Gregory Conti United States Military Academy
Kwan-Liu Ma University of California at Davis

Program Committee

Stefan Axelsson Blekinge Institute of Technology
Richard Bejtlich General Electric
Kris Cook Pacific Northwest National Laboratory
David Ebert Purdue University
Robert Erbacher Utah State University
Deborah Frincke Pacific Northwest National Laboratory
Carrie Gates CA Labs
John Gerth Stanford University
Barry Irwin Rhodes University
Daniel Keim University of Konstanz
Toby Kohlenberg Intel Corporation
Stuart Kurkowski Air Force Institute of Technology
Kiran Lakkaraju University of Illinois at Urbana-Champaign
Raffael Marty Splunk
Douglas Maughan Department of Homeland Security
John McHugh Dalhousie University
Penny Rheingans UMBC
Lawrence Rosenblum National Science Foundation
George Tadda Air Force Research Lab
Daniel Tesone Applied Visions
Alfonso Valdes SRI International
Kirsten Whitley Department of Defense

Local Organization

Robert K. Cunningham Lincoln Laboratory

Table of Contents

Visual Reverse Engineering of Binary and Data Files 1
Gregory Conti, Erik Dean, Matthew Sinda, and Benjamin Sangster

Effective Visualization of File System Access-Control 18
Alexander Heitzmann, Bernardo Palazzi,
Charalampos Papamanthou, and Roberto Tamassia

Visual Analysis of Program Flow Data with Data Propagation 26
Ying Xia, Kevin Fairbanks, and Henry Owen

A Term Distribution Visualization Approach to Digital Forensic String
Search . 36

Moses Schwartz and L.M. Liebrock

GARNET: A Graphical Attack Graph and Reachability Network
Evaluation Tool . 44

Leevar Williams, Richard Lippmann, and Kyle Ingols

A Graph-Theoretic Visualization Approach to Network Risk Analysis . . . 60
Scott O’Hare, Steven Noel, and Kenneth Prole

Improving Attack Graph Visualization through Data Reduction and
Attack Grouping . 68

John Homer, Ashok Varikuti, Xinming Ou, and Miles A. McQueen

Show Me How You See: Lessons from Studying Computer Forensics
Experts for Visualization . 80

T.J. Jankun-Kelly, Josh Franck, David Wilson, Jeffery Carver,
David Dampier, and J. Edward Swan II

A Task Centered Framework for Computer Security Data
Visualization . 87

Xiaoyuan Suo, Ying Zhu, and Scott Owen

BGPeep: An IP-Space Centered View for Internet Routing Data 95
James Shearer, Kwan-Liu Ma, and Toby Kohlenberg

Large-Scale Network Monitoring for Visual Analysis of Attacks 111
Fabian Fischer, Florian Mansmann, Daniel A. Keim,
Stephan Pietzko, and Marcel Waldvogel

Visualizing Real-Time Network Resource Usage . 119
Ryan Blue, Cody Dunne, Adam Fuchs, Kyle King, and
Aaron Schulman

VIII Table of Contents

Wireless Cyber Assets Discovery Visualization . 136
Kenneth Prole, John R. Goodall, Anita D. D’Amico, and
Jason K. Kopylec

NetFlow Data Visualization Based on Graphs . 144
Pavel Minarik and Tomas Dymacek

Backhoe, a Packet Trace and Log Browser . 152
Sergey Bratus, Axel Hansen, Fabio Pellacini, and Anna Shubina

Existence Plots: A Low-Resolution Time Series for Port Behavior
Analysis . 161

Jeff Janies

Using Time Series 3D AlertGraph and False Alert Classification to
Analyse Snort Alerts . 169

Shahrulniza Musa and David J. Parish

Network Traffic Exploration Application: A Tool to Assess, Visualize,
and Analyze Network Security Events . 181

Grant Vandenberghe

Author Index . 197

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 1–17, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Visual Reverse Engineering of Binary and Data Files

Gregory Conti, Erik Dean, Matthew Sinda, and Benjamin Sangster

Department of Electrical Engineering and Computer Science
United States Military Academy

West Point, New York
{gregory.conti,erik.dean,matthew.sinda,

benjamin.sangster}@usma.edu

Abstract. The analysis of computer files poses a difficult problem for security
researchers seeking to detect and analyze malicious content, software developers
stress testing file formats for their products, and for other researchers seeking to
understand the behavior and structure of undocumented file formats. Traditional
tools, including hex editors, disassemblers and debuggers, while powerful,
constrain analysis to primarily text based approaches. In this paper, we present
design principles for file analysis which support meaningful investigation when
there is little or no knowledge of the underlying file format, but are flexible
enough to allow integration of additional semantic information, when available.
We also present results from the implementation of a visual reverse engineering
system based on our analysis. We validate the efficacy of both our analysis and
our system with case studies depicting analysis use cases where a hex editor
would be of limited value. Our results indicate that visual approaches help
analysts rapidly identify files, analyze unfamiliar file structures, and gain insights
that inform and complement the current suite of tools currently in use.

1 Introduction

Individual files are a fundamental component of today’s computing paradigm as well
as one of today’s biggest threat vectors. With the advent of effective network security
devices based upon firewalls, intrusion detection systems and similar security
applications, attackers are moving away from network protocol attacks and toward
attacking applications themselves. This transition is problematic because firewalls
must pass some traffic in order to provide services to their users, particularly web and
email. It is through these services that users send, receive, upload and download files,
sometimes as email attachments, web downloads, or more worrisome, surreptitiously
through encrypted channels such as HTTPS or SSH. The problem is worsened by the
rapid evolution of file-based attacks that exploit vulnerabilities in parsing by applica-
tions and common software libraries, as well as by the attacker’s use of packers which
obfuscate the contents of files.

Legitimate files function as either stand alone executable programs or as data to be
used by other applications, such as word processors, text editors or graphics programs.

2 G. Conti et al.

Executable files are executed by the operating system, whereas, data files are loaded by
applications. In both cases the operating system and application assume some
knowledge of the file’s underlying format and structure in order to operate on it
successfully. In these legitimate cases, the user of the file only sees the interpreted
version of the file as determined by the application or operating system. The
underlying structure of the file is hidden. It is through this hidden nature that both
attackers and legitimate programmers attempt to place security mechanisms. While
file extensions and magic numbers serve the purposes of legitimate use, security
analysts are forced to dig much deeper and face the frequent task of exploring the raw
structure of files to detect modifications, determine file type, determine what a file
does, determine authorship, create virus signatures, and detect code evolution, among
other tasks. Further hampering analysis is that the file may be corrupted, obfuscated,
or encrypted to slow analysis. In some cases, files contain code designed to crash
analytic tools or function differently if used in a virtual machine. Sometimes files
contain largely legitimate data with a small fraction containing a malicious aspect and
others are dedicated malicious applications.

At their heart, files are just binary objects whose meaning is based on the
applications or the operating systems that use them. However, in some cases little
will be known about a given file. We therefore view the problem of reverse
engineering binary files as having two levels, a context independent level where we
assume the analyst has little or no knowledge about the structure and purpose of a
given file, and analysis must occur initially in a context-independent manner. At the
second level, the analyst knows some information, such as an expected file format,
and can make informed assumptions as they analyze the file. The difference between
these two levels is evident in the current suite of tools for reverse engineering files.
At the context independent level, the analyst employs general purpose tools such as
hex editors and byte frequency analysis to gain insight. At the semantic level, analyst
tools are crafted specifically to a given file format or family of related formats, such
as dissemblers and debuggers, leading to very precise insights.

Unfortunately, the vast majority of best of breed tools for reverse engineering of
files are strictly text based and provide only a tiny viewport into the file under
analysis. Visualization is underutilized in reverse engineering and bears great promise
for assisting analysts in their work and augmenting their existing tool suite. In this
paper we present an analysis of user tasks that is useful for the design of visualization
systems, and employ this analysis to implement a system which combines proven text
based techniques with innovative visualization approaches in order to augment the
analyst and complement their tool suite for a number of essential tasks. We validate
the efficacy of these contributions through several case studies. It is important to note
that we are addressing the problem of reverse engineering of binary file formats
across the entire range of possibilities and not focusing specifically on the special case
of reverse engineering of executable files.

This paper is organized as follows. Section 2 places our research in the field of
related work. Section 3 contains a user-level requirements analysis that we used to
guide our development. Section 4 presents our system design and implementation.
Sections 5 demonstrate the utility of our approach through case studies. Section 6
presents our conclusions and suggested directions for future work.

 Visual Reverse Engineering of Binary and Data Files 3

2 Related Work

The most commonly employed tool for reverse engineering of files and file formats is
a hex editor, which typically displays files in hexadecimal and ASCII formats and
assumes no knowledge of the underlying file structure. Traditional hex editors offer
basic functionality, but modern hex editors contain advanced features including the
ability to view, search, and convert between hex, ASCII, Unicode, decimal and
floating point data types, among others. Such tools also include the ability to encrypt
and decrypt, calculate checksums, encode and decode, calculate computer hashes, and
compress and decompress blocks of data within a file. Navigation is straightforward,
including the use of scroll bars and the ability to jump to a given offset within the file,
but also includes the ability to place navigation labels at user specified locations. The
Hiew hex editor is noteworthy because it integrates an assembler and disassembler.
Other sophisticated editors, such as WinHex, also include the ability to edit memory,
create a byte frequency histogram of both the entire file and a user selected region,
and easily link to helper programs such as web browsers and media viewers. The 010
editor also includes binary templates which parse popular binary file formats into
their associated variables and data structures. Hex editors are the definitive tool for
text-based analysis of binary files and include powerful computation capabilities,
even scripting, but lack the ability to provide big picture context, a significant
problem due to the complexity of even moderately sized files.

Beyond hex editors, there are other general purpose tools for reverse engineering
files of both executable and data formats, including the command line strings utility
which outputs contiguous runs of printable ASCII. Similarly, the command line diff
command, the fc (file compare command) and related variants allow the comparison of
text and binary files in order to locate changes. Recently more powerful GUI-based
tools have emerged, such as Compare It!, ExamDiff, Guiffy, Merge, Meld, and
WindDiff which allow side-by-side comparison of files. Common attributes of this class
of tools include side-by-side views in text or hexadecimal representations, scripting,
directory comparison, reporting tools, syntax highlighting, the ability to detect changes
(diffing) and to merge files. Compare It! and Merge also provide the ability to compare
images. As is the case with hex editors, command line and GUI-based file comparison
tools are text based and lack the ability to provide big-picture context that visualization
can provide. However, there are several notable exceptions. The first is Visual Insights
Difference Viewer, which combines the two-pane textual view with a two column
graphical view similar to Eick’s Seesoft technique to provide context when comparing
two files, but this tool is apparently no longer available. The 010 editor also uses a
similar combined text and Seesoft-like view technique. Nwdiff is another interesting
approach. It plots pixels based on the actual bit values contained within a pair of files
and uses four graphical panes. Two of the panes show the raw structure of the files; the
other two panes graphically show similarities and differences between the files by using
a logical or and xor. BinaryViewer and RUMINT’s binary rainfall view [1] use similar
bit-level views, to view binary files and network packets, respectively. Another, albeit
rudimentary, technique for visualizing binary files is the raw2tiff program. raw2tiff
converts raw byte streams to the tiff image format. Designed for image file conversion,

4 G. Conti et al.

raw2tiff produces similar results by converting a binary file to a tiff image. We believe
these bit and byte-level approaches bear great promise in helping analyze binary files;
we will discuss these techniques later in the paper.

Other interesting approaches for visualizing binary files include Kaminsky’s use of
dot plot [2] patterns to explore self-similarity in binary files as well as his use of
context free grammars to highlight hex dumps [3]. We have incorporated Kaminsky’s
dot plot technique into our system as we will discuss later in the paper.

As part of considering tools for analyzing individual files, or pairs of files as in the
case of diffing, it is also useful to examine existing tools for visually displaying
complete file systems. These include Firelight which uses concentric segmented rings,
SequoiaView and GdMap which uses squarified treemaps, KDirStat, Baobab and
WinDirStat combine a treemap with a textual tabular view in the same display window.

The file fuzzing community also employs tools designed to manipulate binary files
in order to identify vulnerabilities in application parsing algorithms. Popular examples
include SPIKEFILE for Linux and FILEFUZZ for Windows. Such tools are primarily
text based, but would benefit from the interactive visualization techniques we present
later in the paper to assist in identifying promising locations in files that users are
attempting to fuzz.

So far, we’ve discussed related work regarding the analysis of binary files in
general, however it is worth specifically discussing the special case of reverse code
engineering (RCE) which focuses on the analysis of executable files. There are
several ways to approach RCE. The first is static analysis, the examination of a file’s
contents without executing it. The second is dynamic analysis which studies the
internal operation of the code as it is executing. Another approach is to execute the
program and study how it interacts with the operating system and network. The
primary tools are hex editors, dissassemblers with IDA Pro being the best of breed,
debuggers including tools like OllyDbG and SoftIce, and decompilers. It is important
to note that IDA Pro allows user created plug-ins as well as scripting, and as a result,
there is an active developer community surrounding IDA Pro, such as OpenRCE and
IDA Palace. The wide range of binutils is often employed, including objdump which
displays information about object files and readelf which displays information about
ELF format object files. Tools from the Sysinternal’s tool suite augment debuggers
and decompilers, by allowing fine grained monitoring of an application’s interaction
with the operating system as it executes.

There has been a limited amount of work in the visualization of executable files.
Yoo used self-organizing maps to detect viruses [4]. The most current work is found
in the Zynamics’ BinDiff, BinNavi, and VxClass tools which utilize directed graphs.
Graph-based techniques have demonstrated great utility in analyzing malicious
software [5, 6, 7, 8] including diffing of executable files [9, 10].

The novelty of our work springs from our analysis of reverse engineering tasks,
novel visualizations, and our system for analyzing binary files. While there has been a
great deal of work on text-based analysis of files, there is only limited work of
visualization of files themselves, primarily only executable files, at both the context-
independent and context-dependent levels.

 Visual Reverse Engineering of Binary and Data Files 5

3 Requirements Analysis

Reverse engineering of file formats is both an art and a science. As such, many
analysts develop their own personal approaches to reverse engineering. These ill-
defined individual approaches are a significant challenge when attempting to design
systems that facilitate the work of many different users. To overcome this shortcoming
and ground our work in real-world user requirements we analyzed five different
approaches found in: Fuzzing – Brute Force Vulnerability Discovery by Sutton, Greene
and Amini, Wikibooks’ Reverse Engineering, Hacker Disassembling Uncovered by
Kaspersky, Hacking – The Art of Exploitation by Erickson, and Hack Proofing Your
Network by Russell et al. While each text provided unique approaches to reverse
engineering, we did find significant commonality. In addition, to supplement our

Table 1. Scenarios which require low-level analysis of files

Goal Examples
Analyze undocumented
file format

- Classify basic purpose of file
- Understand structure of file format
- Understand behavior of creating application
- Identify algorithms used for compression, encoding
and encryption within file

Audit files for vulnerabilities - Locate structures for targeted fuzzing
- Identify vulnerable code structures
- Locate caves (empty regions within file)

Compare files (Diffing) - Create signature of malware variant
- Determine purpose of a patch
- Track evolution of code between file versions

Cracking1 - Break copy protection
- Alter player resources in game (e.g. gold pieces)

Cryptanalysis - Validate protocol or algorithm operation
- Confirm encryption occurred
- Gain insight into encryption algorithm
- Find key or password
- Analyze files for steganographic content

Forensic analysis - Determine authorship
- Locate and extract metadata
- Locate and extract hidden content
- Identify compiler, language or application used to
create file

Identify unknown file format - Precisely determine application which created file
- Classify type of application which created file

Malware analysis - Reverse engineer file’s function
- Create antivirus or IDS signature
- Locate malicious code within file

Reporting - Create analyst annotated reports
- Share analytic results with analysts, management, and
customers.

1 While we don’t support file cracking, it is nonetheless a scenario which requires low-level

analysis of files and was repeatedly mentioned in our literature review.

6 G. Conti et al.

Table 2. Representative reverse engineering high-level tasks

Category Task
Analyze -Identify and analyze non-standard file formats and algorithms

-Understand, annotate and document the file’s structure, including
header/footer and block/record/field formats
-Test and evaluate hypothesis as to the meaning of the data and file format

Calculate -Perform decimal, hexadecimal, and binary calculations
-Encrypt and decrypt, encode and compress blocks of values within a file,
calculate checksums

Compare -Compare two or more files and precisely locate differences.
Explore -Understand the big picture context of a file’s structure

-Identify major structures within a file
Filter -Remove undesired content
Identify -Identify which algorithms and libraries were used

-Identify and analyze regions containing executable code and data
-Identify in-file references to data

Locate -Locate regions that have been encoded, compressed or encrypted
-Locate free/slack space

Modify -Edit values within files
-Fill regions with desired values
-Load and save text and binary files

Navigate -Easily navigate to regions within the file
Report -Generate report of analysis
Search -Locate specific values or sequences of values, including those in hex,

floating point, binary, decimal, ASCII and Unicode representations.
Semantics -Correctly parse binary file formats

-Apply external knowledge of file structure and format to gain additional
insight

View -View files and regions in native viewers/formats, including assembly
-View/convert values in native format/encodings/datatypes/byte orders
(e.g. 2 and 4 byte integers, floats, strings, Unicode, real and string, signed
and unsigned)

literature review of user requirements we conducted semi-structured interviews of 12
intermediate and advanced security analysts from the academic, industry and hacker
communities, conducting the interviews primarily at the RSA 2008 and Shmoocon
2008 Conferences. From the results of our literature review and interviews we
compiled scenarios which require low-level analysis of files, see Table 1, and catego-
rized specific tasks analysts face when seeking to reverse engineer data and executable
files, see Table 2.

When faced with an unfamiliar file, the analyst will also employ common
command line utilities such as strings, which looks for sequences of ASCII characters
contained within binary files, file, which attempts to identify a file’s format. The next
step is often to load the file in a hex editor and scroll the textual display looking for
regions of interest. In the case of an executable file, the analyst will likely run the file
and observe its interactions with the underlying operating system and network using
tools which monitor system calls, network activities, file accesses, and registry
changes. The analyst employs debuggers and disassemblers to understand the code in
operation.

 Visual Reverse Engineering of Binary and Data Files 7

When the file is untrusted, analysis will almost certainly be conducted on an
isolated malware analysis workstation, usually in a virtual machine environment to
provide additional isolation. Depending on the analyst’s objective, the machine may
have network connectivity. Reverse engineering of both executable and data files is,
in many ways, an adversarial relationship. For example, there is an increasing trend
by malware authors to attempt to detect virtual machine environments and behave in
an unexpected manner, such as crashing the debugger, to frustrate analysis. File
extensions and other metadata, particularly in forensic analysis, are not fully trusted
by the analyst. The designers of the file format will often go to great lengths to
obfuscate file contents by using encryption, packing, or obfuscated coding techniques.
There are legal issues as well. In some cases attempting to reverse engineer file
formats, particularly when encrypted or deliberately obfuscated, can be considered a
violation of intellectual property rights.

4 System Design and Implementation

There are a number of situations that necessitate low-level analysis of files and file
formats, but they fall into two main categories: context independent analysis when
little is known about a given file’s format and semantic analysis where the analyst
knows some information about the structure of the file. For our work we have chosen
to design our system to facilitate context independent analysis where a hex editor and
command line tools, such as strings, would be used. These include analyzing
undocumented file formats, auditing files for fuzzing opportunities, and forensic
analysis. More specifically, we designed our system to aid rapid analysis, provide big
picture context, facilitate navigation, and assist identification of internal structures
contained within files as we believe these are promising areas for visual support. We
leave semantic analysis and other user tasks for future work. That being said, an
understanding of file formats in general, is critically important even in the context
independent case.

Visualization of files allows the analyst to see structures within files and it is useful to
study file formatting techniques. File formats come in a myriad of different types, from
extremely simple to highly complex. While it is impossible to determine the exact
number of different file formats, the popular FILExt database of file extensions currently
tracks 24,048 different types and Wotsit, a leading file and data format website, provides
information on 1,030 different publicly available and closed file formats. The end result
is an environment with wide variety of commonly employed techniques as well as the
likely possibility of unique file formats written by individual authors.

Common file structuring techniques include embedding metadata (e.g. serial
numbers and magic numbers), storing fixed and variable length records, compressing
and encrypting regions within a file, embedding images, as well as various ap-
proaches to storing and encoding strings, integers and floating point values.

Analysis of files needn’t be constrained to data contained within the file itself, but
could incorporate external information stored by the operating system, such as file
name, file size, date of creation, date of modification. Similarly, a visualization system
may employ a wide range of statistical techniques to add meaning to the visualizations,
assist filtering, and aid navigation within the file, such as calculating the frequency of

8 G. Conti et al.

bytes, calculating entropy, and performing n-gram analysis. Such calculations could
occur across the entire file, or be constrained to a given window selected by an
algorithm or end user.

We implemented our system using C# in Microsoft Visual Studio .NET 2005. We
chose this environment because C# is a robust and comprehensive language and
because of Visual Studio’s strength in rapid GUI development. All testing was done
on a commodity PC (Dual Core AMD 2500, 1GB RAM, Windows XP). For future
work, we plan to explore implementing the system, including all interactive GUI
elements, in a platform independent language such as Java, Perl or Python. As
malware analysis often occurs inside virtual machines, it is also important that future
versions perform well in such an environment.

4.1 System Design Goals

Given our analysis of user requirements and the environment in which users operate,
we created the following design goals to guide our development. These goals, are just
that, goals. Later sections in the paper will demonstrate which we accomplished in
our current system implementation [11].

• Useful – Allow user to gain useful insight about the file, including big
picture structure, embedded objects, obfuscated or hidden data, malicious
content, and embedded metadata.

• Ease of use – The application should be easy to install, understand, and
operate.

• Extensible – A small group of developers cannot compete with the ingenuity
of an entire user base. An extensible design allows the open source
community to develop plug-ins.

• Incorporate best practices – Don’t rediscover fire. Create a design that can
incorporate best practices from existing tools.

• Open source – In order to gain trust of our security conscious user base,
releasing the source code helps increase adoption.

• Context independent analysis – Provide valuable insight into binary files,
even if the underlying file format is unknown.

• Semantic file analysis – Incorporate relevant semantic information into the
visualizations when file format is known or suspected.

• Multiple coordinated views – Provide useful windows into the file that
complement existing textual tools.

• Attack resistant – Design the tool with the understanding that it may be
attacked by a malicious file under analysis.

• Platform independence – The ideal system should function when used on all
major operating systems employed by users.

4.2 Visualization Design

Our system incorporated both textual and graphical visualization techniques in order to
combine the functionality of command line tools and best practices from hex editors
with insightful visualizations. In its current implementation, the system incorporates two

 Visual Reverse Engineering of Binary and Data Files 9

Fig. 1. System screenshot depicting each of the visualization techniques

textual views. The first view is the canonical hex/ASCII view commonly employed by
hex editors and hex dump command line utilities, see Figure 1(g). While we only
included a hex viewer window, a key idea is that a hex editor can be incorporated in its
entirety into the design we propose. The second textual view displays ASCII strings
contained within the file, see Figure 1(d). Both displays include the offset of the data
displayed. The system includes a number of graphical displays which are described in
the following sections. It is important to note that we view our textual and graphical
displays as a starting point. Our ultimate aim is to create an extensible architecture that
would inspire end users to create and share additional visualizations.

4.3 Byteview Visualization

The system includes four graphical displays2, the first is a byte plot visualization, see
Figure 1(c), which maps each byte in the file to a pixel on the display. The first byte
in the file is located in the top left corner, coordinate (1,1), the next byte is displayed
at position (2,1). The byteview is 640x480 resolution, so each row can display 640
bytes. When the end of the line is reached, plotting begins at the next line below. At
640x480 resolution, the byteview visualization can display 307,200 bytes. Thus byte
307,200 will be displayed at coordinate (640,480). The color of each pixel maps to the
value of the byte displayed, where a byte value of 00 would be black and FF would be
bright green. We chose 640x480 resolution because its relatively small size would
facilitate rapid drawing. In addition we believe choosing resolutions in multiples of 32

2 The following sections describe three displays, the fourth, the Byte Map display (Figure 1(f))

alters font size based on byte frequency, but is still under development.

10 G. Conti et al.

is important when analyzing files written for 32-bit PCs as many structures contained
within files are multiples of 32. When testing performance we found that the display
could be updated in 0.03 seconds, leaving open the possibility of creating byteview
visualizations at greater resolutions while still providing a responsive interface.3

4.4 Byte Presence Visualization

The byte presence visualization, see Figure 1(b), consists of 256 columns. Each row
displays the presence and absence of byte values within a given window in the file
being examined. This visualization is designed to act in concert with the byteview
display and each of the 480 rows from the byteview visualization is displayed as a
corresponding row in the byte presence display. For example, if the eighth row of the
byteview contains only byte values in the printable ASCII range (i.e. 32-127) the
eighth row of the byte presence visualization will have pixels in the 32nd through 127th
columns illuminated. By designing these two visualizations to act in concert, an
analyst is able to perform side-by-side comparison of a given region of interest. The
byte presence visualization is particularly useful for identifying regions of text
contained within a file (seen as vertical bars in columns 32-127), for detecting
regularly changing byte values in the file (seen as diagonal lines, where the slope
equals the direction and rate of change), for identifying regions of compression or
encryption (seen as a nearly complete horizontal line), as well as for detecting the set
of characters used by an encoding scheme, such as uuencoding which uses a subset of
printable ASCII characters. Our current implementation indicates the presence or
absence of a given byte value, a possible future enhancement is to use color to
highlight bytes based on frequency or entropy.

4.5 Dot Plot Visualization

The dot plot visualization, see Figure 1(e) is a powerful visualization technique used
by bioinformatics researchers to measure self-similarity. Kaminsky demonstrated that
the technique is also useful for the analysis of binary data, particularly for visually
detecting repeated sequences of bytes contained within a file [12]. Due to the promise
of Kaminsky’s results4, we included a dotplot visualization in our implementation.
Kaminsky’s dot plot works by creating a matrix out of a sequence of bytes from the
file. Similarly, in our system we used the file under analysis for labeling both the
horizontal and vertical axes. Pixels in the display are illuminated at all locations
where the horizontal and vertical axes values are identical. Note that the algorithm
may also be used to compare two different byte sequences, such as two different files,
and visually indicate each difference. In this case, one axis is labeled with the first
file and the other axis is labeled with the second file. The dot plot algorithm is O(n2),
thus plotting a full 1MB file would create a 1TB image, beyond the power of desktop
workstations. To overcome this shortcoming, we implemented a 500x500 dot plot as

3 We were able to achieve this level of performance by avoiding C#’s GetPixel and SetPixel

methods and directly accessing image memory, see http://www.bobpowell.net/lockingbits.htm
for more information.

4 Note that Kaminsky’s approach was not interactive. He generated extremely large dot plots of
entire files. Our approach is interactive.

 Visual Reverse Engineering of Binary and Data Files 11

a tradeoff between functionality and processing requirements. As the user navigates
the file, the dot plot is redrawn using a 500 byte window from the current offset
onward. A full description of the dot plot is beyond the scope of this paper, for more
information see Helfman as an introduction [15].

4.6 Navigation and Interaction Design

Navigation in our system is designed to be simple and intuitive, applying multiple
coordinated visualization windows, both graphical and textual. It is accomplished via
a small VCR-like display, Figure 1(a). The analyst may navigate to a new location by
adjusting a horizontal scroll bar or by clicking the play/stop buttons. The play button
causes each of the graphical displays to scroll automatically, allowing the user to
rapidly scan large files. The numeric display on the VCR depicts the current offset in
the file. The user may bring up specific textual detail by clicking the byteplot
visualization. As a future enhancement, we plan to add similar functionality to all
graphical visualizations. Similar navigation could be added to the strings and other
textual displays by allowing the user to click on a textual item and each of the other
displays would automatically change to reflect the new offset.

We use color coding to highlight specific attributes of the file under examination.
In our system, color coding is accomplished using a small toolbar consisting of four
buttons, see Figure 1(h). Our long-term intent is to allow individual analysts to create
coloring rules of their own choosing and influence each display, but in our current
implementation, we hard coded four, one per button, and they only affect the byte
view visualization. These rules include highlighting printable ASCII characters (blue
for bytes in the printable ASCII range and gray for all others), displaying byte
frequency (blue/low frequency to red/high frequency), inverting the color scheme of
the display, and finally a rule for the default color scheme.

5 Case Studies

In this section we demonstrate the utility of our approach by using the system in four
scenarios of increasing complexity: locating a hidden message contained within an
MP3 file, identifying fixed and variable length records contained in database files,
reverse engineering of a Microsoft Word document, and analyzing process memory of
a Firefox browser running under Windows XP.

5.1 Hidden Message in an MP3 File

This example was inspired by Johnny Long’s “Death of 1,000 Cuts” talk at the
Defcon 14 hacker conference. Long demonstrated numerous ways to hide information
from forensic investigators by creatively placing digital information in obscure
locations. He showed that it is possible to hide a textual message inside an MP3 audio
file by manually altering the file with a hex editor. The file could then be stored on an
MP3 player. Short messages, on the order of several hundred bytes or less, cause little
to no discernable distortion in the audio playback. Using this technique, we inserted a
331 byte message composed of a sequence of ASCII values in a 3.2MB, 3.5 minute

12 G. Conti et al.

(a) Full screen display of file

(b) Detail of message region

Fig. 2. Byte view visualization of an MP3 containing an ASCII message (a), the detail image
(b) more clearly illustrates the message as a horizontal line

song, see Figure 2. Because we were searching for ASCII characters, we turned on the
ASCII encoding filter to help highlight sequences of characters. As you examine the
figure, note that the remainder of the MP3 file format appears as visual noise, due to
the format’s compression algorithm, which allows the regularity of the embedded
message to become noticeable. By pointing to the suspected message and clicking,
the analyst can learn the offset and view the message in the text view window.

While this is a straight forward example, it does illustrate a key aspect of the byte
view visualization technique - internal structure is readily apparent. In this case, the
deviations from apparent randomness due to compression are easily discerned. It is
important to note that the ASCII encoding filter was not required to detect the region,
but we chose to use the filter in this example to demonstrate one possible use case.
Other means of encoding alphanumeric characters are also discernible using this
visualization. For example, alphanumeric characters from the Basic Latin Unicode Set

 Visual Reverse Engineering of Binary and Data Files 13

Fig. 3. Byte view of a Neverwinter Nights database file (left). Notice the regularity of the fixed
length record structure. The text view (right) allows the analyst to see the low level details.

are 16-bit, but are otherwise the same values as ASCII. These byte values appear as
alternating vertical lines in the byte view visualization. Another important insight is that
while the byte view visualization we implemented was 640x480 resolution, larger
display resolutions, such as a 1920x1200, are computationally feasible. Because preat-
tentive processing allows analysts to rapidly identify patterns, a 1920x1200 display
would allow far more rapid detection of embedded messages using Long’s technique.

5.2 Identifying Fixed and Variable Length Records

As the preceding example illustrated, the byte view visualization allows users to view
internal structure. This trait is particularly valuable when viewing files containing
regions of fixed or variable length records. Record structure is immediately visible, as
seen in Figure 3(left), which depicts a fixed length structure storing data from the
game Neverwinter Nights. Figure 4 depicts variable length packets stored in the
PCAP file format. After the analyst identifies the record structures, they can then
explore the details using the text view display, Figure 3 (right).

5.3 Microsoft Word Analysis

The Microsoft Word binary file format is extremely complex.5 To gain a better under-
standing of its inner workings, we used our visualization system to explore the internal
structure of a large (10.3MB) Microsoft Word document, containing approximately
5,000 words, 16 embedded images and 36 footnotes. Because of the file’s size, the
entire document required just over 33 pages in the byteview visualization to examine

5 The Microsoft Word specification document is 210 pages long and may be downloaded at

microsoft.com.

14 G. Conti et al.

Fig. 4. Byte view of a PCAP file from the Defcon Capture the Flag competition. Notice the
regularity of the fixed length record structure in the top half of the image and the variable
length records in the bottom half.

the file in its entirety. However, this same size document would require approximately
1,024 pages when displayed in a textual hex editor-style format. In addition, the scroll
bar on the VCR-like display greatly increased analysis speed. After initially loading the
file and opening the byteview window, we used the scroll bar to scan the entire file, a
process taking less than a minute. It quickly became apparent that the file contained a
header region Figure 5(a), a large compressed or encrypted region, Figure 5(b), and a
footer region, Figure 5(c). We used a combination of other visualization displays to
provide deeper insight and confirm these initial assumptions. For example, by clicking
on major structures in the header region and viewing the results in the text
visualization, we confirmed the document’s text was located in the top third of figure
5(a). Embedded images constituted the vast majority of the document and appeared as
white noise. Each image was preceded by a short header, which was visible in the
byteview visualization as a horizontal bar, see Figure 5(b). Closer examination of these
image headers using the text view revealed that they were compressed PNG images.
The footer contained a mixture of elements including a listing of all hyperlinks
contained in the document stored as Unicode. Recall that basic Latin Unicode appears
as vertical bars in the byteview visualization.

We believe our visual analysis approach bears great promise for analyzing
documents stored in binary files. ASCII data, Latin Unicode, internal record structures,
and compressed images are all readily apparent. Potential future applications include
using visualization to help guide fuzzing, the stress testing of application parsers, by

 Visual Reverse Engineering of Binary and Data Files 15

(a) Header Region

(b) Embedded Image Region

(c) Footer Region

Fig. 5. Microsoft Word Binary. The byteview visualization allows the analyst to quickly
discover the existence of three major regions in the file. A header region, which contains the
text of the document, followed by a large region containing compressed images, and a footer
region which includes hyperlinks stored as Unicode.

16 G. Conti et al.

facilitating identification of internal structures. A common best practice in the fuzzing
community is the study of complex file formats as the probability of discovering a
vulnerability increases with complexity [13].

5.4 Firefox Core Dump

This final example is a core dump created by a Firefox browser during a crash and
differs significantly from the preceding examples, as it is a snapshot of process
memory and not a static file format. As such, additional structures not seen during
static analysis become visible. For example, Figure 6, shows an image stored by the
browser in its process memory, note the gradients (left) and the corresponding byte
utilization in the byte presence view (right).

Additional analysis indicated that our visualization approach is useful for related,
and potentially very large chunks of binary data, including page files, hibernation files
and process memory. It is important to note however, that sharing byteplot images in
these cases is a security concern, because it is possible to convert the image back to
the raw byte values without loss.

Fig. 6. Byteplot view of process memory dumped by Microsoft Windows after a Firefox
browser crash. The left figure depicts an image stored in process memory (note the gradients)
and the right figure shows the corresponding byte values.

6 Conclusions and Future Work

The future of visual analysis of binary data is promising, particularly when such
visualization systems incorporate best practices from hex editors, a well-studied field
for over 30 years. Our work demonstrated that it is possible to extend the current
functionality of the hex editor metaphor by overcoming its significant constraint of a
tiny textual window and helping fill the distinct gap between the hex editor and
special case binary analysis tools such as disassemblers. Our intent was not to suggest

 Visual Reverse Engineering of Binary and Data Files 17

rejecting the hex editor, but instead buttress its weaknesses and complement its
strengths via visualization and improved interaction. A key question we sought to
answer was, “Is it possible to do better than the canonical hex/ASCII view provided
by today’s hex editors?” The answer is yes. Carefully crafted visualizations provide
big picture context and facilitate rapid analysis of both medium (on the order of
hundreds of kilobytes) and large (on the order of tens of megabytes and larger) binary
files. The traditional hex editor is an inadequate tool for dealing with files of these
sizes. However, the traditional hex editor view provides a useful means of providing
precise detail. It is possible to create a visualization-enhanced analysis system that
combines the functionality of the best hex editors with the strengths of visualization.
Key to this approach is the continued exploration of interaction techniques to
seamlessly blend visual displays with hex editor interaction best practices. To be most
successful, such a system should be based on an extensible plug-in architecture that
allows intermediate and advanced end-users to easily create and share both
visualization techniques and search/filtering/coloring rules, tapping the combined
insight of the user-community.

References

1. Conti, G., Grizzard, J., Ahamad, M., Owen, H.: Visual Exploration of Malicious Network
Objects Using Semantic Zoom, Interactive Encoding and Dynamic Queries. In: IEEE
Symposium on Information Visualization’s Workshop on Visualization for Computer
Security (VizSEC) (October 2005)

2. Helfman, J.: Dotplot Patterns: A Literal Look at Pattern Languages. TAPOS Journal 2(1),
31–41 (1995)

3. Kaminsky, D.: Black Ops 2006. Blackhat USA (2006) (last accessed December 20, 2007),
http://www.doxpara.com/slides/dmk_blackops2006.ppt

4. Yoo, I.: Visualizing Windows Executable Viruses Using Self-Organizing Maps.
VizSec/DMSec (2004)

5. Carrera, E., Erdelyi, G.: Digital Genome Mapping – Advanced Binary Malware Analysis.
In: Virus Bulletin Conference (2004)

6. Flake., H.: Structural Comparison of Executable Objects. Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), pp. 161–173 (2004)

7. A different look at Bagle. F-Secure Weblog (23 September 2005) (last accessed December
20, 2007), http://www.f-secure.com/weblog/archives/00000662.html

8. Graphing malware. F-Secure Weblog (25 October 2005) (last accessed December 20,
2007), http://www.f-secure.com/weblog/archives/00000324.html

9. Dullien, T., Rolles, R.: Graph-based comparison of Executable Objects. In: Symposium Sur
La Securite Des Technologies De L’Information Et Des Communications (SSTIC) (2005)

10. Flake, H.: Diff, Navigate, Audit – Three applications of graphs and graphing for security,
Blackhat USA (2004) (last accessed December 20, 2007), http://www.blackhat.
com/presentations/bh-usa-04/bh-us-04-flake.pdf

11. Nolan, B., Sinda, M.: File Visualization Environment (FiVE). In: National Conference on
Undergraduate Research (2008)

12. Kaminsky, D.: Black Ops 2006 : Viz Edition. Chaos Computer Congress (2006) (last
accessed May 1, 2008),

 http://www.doxpara.com/slides/dmk_blackops2006_ccc.ppt
13. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.

Addison-Wesley, Reading (2007)

Effective Visualization of File System

Access-Control

Alexander Heitzmann1, Bernardo Palazzi1,2,3, Charalampos Papamanthou1,
and Roberto Tamassia1

1 Brown University, Department of Computer Science, Providence, RI, USA
2 Roma TRE University, Rome, Italy

3 ISCOM Italian Ministry of Communications, Rome, Italy
{aheitzma,bernardo,cpap,rt}@cs.brown.edu

Abstract. In this paper, we present a visual representation of access
control permissions in a standard hierarchical file system. Our visual-
ization of file permissions leverages treemaps, a popular graphical rep-
resentation of hierarchical data. In particular, we present a visualization
of access control for the NTFS file system that can help a non-expert
user understand and manipulate file system permissions in a simple and
effective way. While our examples are based on NTFS, our approach can
be used for many other hierarchical file systems as well.

1 Introduction

The access control model employed by current-generation file systems, such as
Microsoft Windows XP and Vista, is rather complex and often insufficiently
documented. In a large file system with multiple users, it is rather tricky to un-
derstand which users/groups can access which files and with which permissions.
Also, the effect of simple operations (such as copy and move) on the permissions
of a file are difficult to anticipate and sometimes unintuitive. For example, con-
sider a Windows user who changes the permissions of a certain file to make it
not readable by others and later moves this file to another folder where the read
permission is inherited from the parent folder. The user is unlikely to realize that
after the move, the file is no longer protected. This is due to the fact that in a
Windows NTFS file system, there are three types of permissions associated with
a file: the local permissions for the file, the inherited permissions derived from
the permissions of the parent folder, and the effective permissions, obtained as
the union of the local permissions and the inherited permissions.

Inherited permissions have many advantages and have been adopted by several
file systems.

Also, inherited permissions and other features of access control mechanisms
can make answering questions such as “What group has access to which files
during what time duration?” or “If I implement this policy, what conflicts this
result?” very difficult [8].

Understanding file permissions and setting them to achieve desired file shar-
ing and protection goals can be a daunting task for non-expert users and is

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 18–25, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Effective Visualization of File System Access-Control 19

non-trivial even for experts. A tool that helps users to understand how access-
control permissions are determined and the effect of file system operations on file
permissions would be extremely useful for both regular users and administrators.

We believe that an effective way to overcome difficulties of understanding file
permissions is through visualization. Therefore, in this paper, we present our
preliminary design of a visualization tool that displays access-control informa-
tion in a way that is easily understandable and helps the user set the correct
permissions to achieve file sharing and protection goals. Our visualization tool
uses treemaps [6], a popular graphical representation of hierarchical structures
based on a recursive decomposition of rectangles into sub-rectangles.

In Windows, advanced file system permissions are displayed as a list. Reeder et
al. [9] propose using a squarematrix to visualize the permissions of a file system and
presents an example with changes of groups and users permissions. Montemayor et
al. [8] present a solution for access control visualization based on representing the
connections between groups, users, and resources, with a graph. The complexity
of access control safety and the administrator’s difficulty in dealing with it (which
makes visualization of access control very important) is analyzed in [5]. The us-
ability of access control systems is discussed in [3]. Some visualization solutions
for access-control and file-sharing policies are presented in [10].

Treemaps were introduced in 1991 [6] as a method of representing a complex
hierarchy in a compact space. Bladh et al. [1] provide a file system visualization
based on treemaps in the 3D space. Interactive ways to explore a file system
through visualization are presented in [4]. Stasko [12] gives an evaluation of
different compact ways to represent hierarchical structures. The visualization
of dynamic hierarchies is presented in [13]. Finally, in 1971, a method using a
nested rectangle representation (that resembles treemaps but though not for-
mally defined) to visualize program execution was presented [7].

2 Preliminaries

In this paper, we focus on the access control list (ACL) implemented in the Win-
dows NTFS (New Technology File System). NTFS [11] allows to define access
control information for each file system object. Using different security policies
it is possible to allow or deny access to files and folders for determined users
or groups. The file system driver manages all file system requests (i.e., create
new files, open existing files, write to files. etc.) as the intermediary between the
operating system and the storage device drivers. NTFS ACLs are composed of
access control entries (ACEs). Each ACE allows or denies specific permissions
(i.e., by a user or a group) to or from an object.

Starting with Windows 2000, NTFS allows to dynamically manage permission
inheritance. That is, when you create a subfolder or a file in a NTFS folder, the
child object not only inherits the parent’s permissions but maintains a kind of
link with its parent. Furthermore, parent’s permissions are stored separately
from any local permissions that are directly stored on the child. So for any
changes performed on the parent folder, this method allows the child objects

20 A. Heitzmann et al.

to automatically inherit the changes from their parents and to prevent from
overwriting all the local permissions.

This approach allows an administrator or a user to manage a hierarchical
tree of permissions that matches the directory tree. Since each child inherits
permissions recursively from its parent. So it is possible to perform changes of
permissions with little effort.

The main downside of dynamic inheritance is the increase of complexity and
the possibility to have conflicting ACEs. The NTFS security module combines
the specified permissions (i.e. local and inherited ACEs, allows or explicit denies)
and decides whether to grant or deny the access to a user, a group, or other secu-
rity entities. Microsoft introduced in Windows XP the effective permissions tab
to help the administrator in the quite tricky task of understanding the effective
permission for a user or a group on a specific file system object.

Treemaps (see, e.g., [2, 6]) were introduced in 1991 as a way to represent
large hierarchical structures in a compact way. The main idea of creating a
treemap can recursively be described as follows: Given a tree T with root r,
assign a rectangle A to represent T . Then, for all the subtrees T1, T2, . . . , Tk

of r, partition A into k rectangles A1, A2, . . . , Ak and assign A1, A2, . . . , Ak to
T1, T2, . . . , Tk. This process continues until it reaches the leaves, where it assigns
distinct rectangles for every leaf of the tree. Given a tree with n nodes, a treemap
can be constructed in O(n) time using a bottom-up traversal.

Several algorithms have been proposed for assigning rectangles to subtrees.
The standard method is based on the “slice-and-dice” algorithm, originally intro-
duced in [6], which uses parallel lines to divide the rectangle assigned to a subtree
T into smaller areas that correspond to the subtrees of T . It also alternates the
direction of the parallel lines (horizontal/vertical) from one level the next, so that
the change of levels is displayed. The standard treemap method often gives thin,
elongated rectangles. A new method—the “squarified” algorithm— is presented
in [2] to generate layouts in which the rectangles approximate squares.

3 Effective Access Control Visualization

In this section, we present the main features of the tool we have designed to
assist administrators and users in better understanding and managing access-
control of a hierarchical file system. The tool employs treemaps to visualize the
file system tree. We use colors to distingish the permissions of files and folders,
and we indicate where a break of inheritance occurs with a special border around
the relevent node in the treemap. The input to our tool consists of two items:

1. The “user” input, which indicates the user or group whose permissions we
are interested in. In Figure 1, this is indicated with the label “name”.

2. The “baseline” input, which basically indicates a certain combination of
permissions upon which the color scheme of our visualization is based. In
Figure 1, this is indicated with the label “permission”.

Effective Visualization of File System Access-Control 21

Fig. 1. The user interface of our visualization tool. The main screen consists of the
“user” input and the “baseline” input.

In the current design, the baseline”input can take four values, namely the
values no access, read, read&write, full control. These are sorted in “in-
creasing permission” order. The user can also propose (and insert into the drop-
down menu) another combination of permissions (e.g., read&execute) and the
administrator is responsible for putting the new feature in the correct order (see
Figure 1). The visualization tool reads this value and parses the file system tree,
building the treemap using the slice-and-dice algorithm. For every file encoun-
tered, the associated node in the treemap is painted green, red, or gray, if the
file’s permissions are weaker (more restricive), stronger (less restrictive), or the
same as those specified by the baseline, respectively. The tool could potentially
use different shades of the same color to declare intensity of permissions. Finally,
the tool draws an orange border around treemap nodes associated with files or
folders where inheritance is broken.

folder N.A. R R&W F.C. I

USER �
Desktop �
AMERICA �

North America � �
USA �

Rhode Island � �
Providence � �

Brown University � �
CS Department �

EUROPE � �
Greece � �

Thessaloniki � �
Athens � �
Italy �
Milan � �
Rome �
Turin � �

Fig. 2. The directory tree that we are going to visualize with our tool, as visualized
by Windows explorer. Beside the tree, we also show the effective permissions of each
folder of the tree. N.A. stands for “no access“, R stands for ”read”, R&W stands for
“read and write“, F.C. stands for ”full control” and I stands for “inheritance“.

22 A. Heitzmann et al.

(a) (b)

Fig. 3. Treemap (a) shows the access control permissions for user administrator. User
administrator has permission R on file AZ7 because the color is light green, indicat-
ing a weaker permission compared with the baseline R&W. One can see that these
permissions were inherited by CS Department because it is the first orange parent
folder, indicating a break of inheritance. Treemap (b) illustrates the result of moving
file AZ7 from the CS Department folder to the Rome folder. The permissions of this
file, indicated by the light green color, are preserved after the move. Furthermore, the
size of the rectangle associated with the moved file increases to accentuate the move.
Also, the color of the top right corner (the inherited permissions) of file AZ7 is light
green because after the move there is no inheritance from the parent.

Effective Visualization of File System Access-Control 23

(a) (b)

Fig. 4. Treemap (a) shows the result of copying file AZ7 from the CS Department
folder to the Rome folder. The permissions of the file change, as indicated by the light
red color, because of the inheritance from the destination folder. Treemap (b) shows the
result of changing the permissions of the USER folder from R&W to R. This change
propagates down to descendant files and folders until there is a break of inheritance.
Note that file CZ3 in the Thessaloniki folder changes its color from grey to light green
because the local permission (left bottom corner) has a level that is lower than that of
the inherited permission (top right corner). It is possible to see the opposite behavior
in file CZ3 in the Athens folder, where the inherited permission changes from grey to
light green but the color of the rectangle remains light red because the level of the local
permission is greater than that of the inherited permission.

24 A. Heitzmann et al.

We believe that this scheme makes it is easy to gain a general sense of current
permissions of the file system as far a certain user is concerned. Furthermore, a
more detailed understanding can be achieved simply by exploring the treemap
more thoroughly. For example suppose that a file is moved from a folder that has
weaker permissions than the baseline to a folder that has stronger permissions
than the baseline. The administrator, by using our tool, will be able to notice
that difference (since a small green area will appear in a greater red area). There
is no longer a need to manually (by exploring the directory with cd commands)
find files with changed permissions, a task that quickly becomes arduous as more
users and other commands such as copy or cacls are taken into consideration.

We show examples of using our tool to visualize the permissions of the direc-
tory tree of Figure 2. Figure 2 shows a directory tree and the effective permis-
sions of every folder contained in this tree. We show in the table of Figure 2 four
kinds of permissions, namely the permissions no access, read, read&write,
full control. Also in the table of Figure 2 we have a column that indicates
whether the certain folder inherits the permissions or not (the last column).

In Figure 3(a) we see the representation of our file system with the treemap col-
ored with colors according to permissions, as defined before. In Figure 3(b) we see
the treemap layout of the file system after moving a file into a directory that has
different permissions from the file. Also, in Figure 4(a) we see the treemap layout
of a copy operation and in Figure 4(b) we see the treemap layout of the file system
where the permissions of the root node of the directory have changed. Also note
that in the presented visualizations we distinguish between the local and effective
permissions. Namely, if the local and effective permissions coincide the tiles are
painted with only one color.When this is not the case,we use the upper right corner
to indicate the inherited permissions and the bottom left corner to indicate the lo-
cal permissions. In this way we have a good overview of the permissions that corre-
spond to a file. Note that the figures do not present the break of inheritance of a file
since this will clutter up the space. The frames have been produced with the soft-
ware from University of Maryland (http://treemap.sourceforge.net/),where
we use the slice-and-dice algorithm for the layout and the increased border option
to better display the directory structure.

4 Conclusions and Future Work

In this paper, we have presented an effective method to visualize file system
access control. We have outlined the design of a tool that visualizes both effective
and local permissions and inheritance interruption for the Windows NTFS file
system. Work already in progress is the implementation of a full prototype of
our system and to perform user studies to evaluate our approach. As future
work, we plan to develop further variations of the treemap layout to display
additional file permission information. Also we plan to investigate the application
of our technique to visualize the tree-walking protocol result used in the RFID
singulation problem.

Effective Visualization of File System Access-Control 25

Acknowledgments

This work was supported in part by the U.S. National Science Foundation un-
der grants IIS–0713403 and OCI–0724806, by the Kanellakis Fellowship at Brown
University, and by the Italian Ministry of Research, grant number RBIP06BZW8,
project FIRB “Advanced tracking system in intermodal freight transportation”.

References

[1] Bladh, T., Carr, D.A., Schol, J.: Extending tree-maps to three dimensions: A
comparative study. In: Masoodian, M., Jones, S., Rogers, B. (eds.) APCHI 2004.
LNCS, vol. 3101, pp. 50–59. Springer, Heidelberg (2004)

[2] Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: Proc. of Joint Eu-
rographics and IEEE TCVG Symp. on Visualization (TCVG), pp. 33–42 (2000)

[3] Cao, X., Iverson, L.: Intentional access management: making access control us-
able for end-users. In: Proc. of Int. Symposium on Usable Privacy and Security
(SOUPS), pp. 20–31 (2006)

[4] Foster, J., Subramanian, K., Herring, R., Ahn, G.: Interactive exploration of the
AFS file system. In: Proc. of the IEEE Symposium on Information Visualization
(INFOVIS), p. 215 (2004)

[5] Jaeger, T., Tidswell, J.E.: Practical safety in flexible access control models. ACM
Trans. Information Systems Security 4(2), 158–190 (2001)

[6] Johnson, B., Shneiderman, B.: Tree maps: A space-filling approach to the visu-
alization of hierarchical information structures. In: Proc. IEEE Visualization, pp.
284–291 (1991)

[7] Johnston, J.B.: The contour model of block structured processes. SIGPLAN
Not. 6(2), 55–82 (1971)

[8] Montemayor, J., Freeman, A., Gersh, J., Llanso, T., Patrone, D.: Information
visualization for rule-based resource access control. In: Proc. of Int. Symposium
on Usable Privacy and Security (SOUPS) (2006)

[9] Reeder, R., Bauer, L., Cranor, L., Reiter, M., Bacon, K., How, K., Strong, H.:
Expandable grids for visualizing and authoring computer security policies. In:
Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 1473–
1482 (2008)

[10] Rode, J., Johansson, C., DiGioia, P., Filho, R.S.S., Nies, K., Nguyen, D.H., Ren,
J., Dourish, P., Redmiles, D.F.: Seeing further: extending visualization as a basis
for usable security. In: SOUPS, pp. 145–155 (2006)

[11] Russinovich, M.E., Solomon, D.A.: Microsoft Windows Internals, 4th edn.
Microsoft Windows Server TM2003, Windows XP, and Windows 2000 (Pro-
Developer). Microsoft Press, Redmond (2004)

[12] Stasko, J.: An evaluation of space-filling information visualizations for depicting
hierarchical structures. Int. J. Hum.-Comput. Stud. 53(5), 663–694 (2000)

[13] Wilson, R.M., Bergeron, R.D.: Dynamic hierarchy specification and visualization.
In: Proc. of the IEEE Symposium on Information Visualization (INFOVIS), p. 65
(1999)

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 26–35, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Visual Analysis of Program Flow Data with Data
Propagation

Ying Xia, Kevin Fairbanks, and Henry Owen

Georgia Institute of Technology
{yxia,Kevin.Fairbanks,owen}@gatech.edu

Abstract. Host based program monitoring tools are an essential part of main-
taining proper system integrity due to growing malicious network activity. As
systems become more complicated, the quantity of data collected by these tools
often grows beyond the ability of analysts to easily comprehend in a short
amount of time. In this paper, we present a method for visual exploration of a
system program flow over time to aid in the detection and identification of sig-
nificant events. This allows automatic accentuation of programs with irregular
file access and child process propagation, which results in more efficient foren-
sic analysis and system recovery times.

1 Introduction

Although many methods of system recovery after a compromise have been docu-
mented [1, 2, 3], this process is often complex and time consuming. This paper aims
to illustrate that visualization of captured program flow data can better enable a foren-
sics expert in their investigation for purposes of intrusion detection and recovery.
This is achieved through the automation of accentuation and propagation of data
gathered through detailed system call monitoring [4]. The resulting information is
then rendered with the Prefuse visualization toolkit [5].

The motivation of our research is to address the following points.

• Visualization of program flow data gives the user a better overall view of system
behavior.

• Irregular events are more intuitively identifiable when presented visually.
• Automatic accentuation of events lowers data analysis time and draws attention to

trouble spots.
• Taint propagation of process flows allows for rapid estimation of damage suffered

following an intrusion.

To achieve these goals, we first present our system call data as a flow diagram based
on time. As additional system processes spawn and files are accessed, each event is
displayed at the time interval in which it occurred. Over time, as repeated program
executions and file accesses occur, a standard pattern for proper behavior emerges for
the system. During periods of irregular activity, new flow patterns may emerge and
are brought to the attention of the user. Finally, should any process or file become
tainted, we then propagate that taint through the flow diagram based on program and
file access to show the extent of potential damage occurred on the system.

 Visual Analysis of Program Flow Data with Data Propagation 27

The remainder of the paper is organized as follows. Section two provides the nec-
essary background information about intrusion detection, visualization and related
work. Section three presents our approach for visualization and automation. The re-
sults of our research are presented in section four, and we conclude in section five.

2 Background and Related Work

There are several methods of obtaining the required program execution and file access
information such as through a combination of tools such as pstree and lsof. However,
these tools lack several key features, such as the lack of a history of prior processes
and files opened, and the lack of a timestamp and duration of use. Even repeated calls
to these tools will not guarantee the completeness of data. Thus, to obtain the requisite
program information detailing executions, file accesses, and forked processes, we
used the same method as discussed in [4]. By capturing necessary information from
chosen system calls and exporting them via the kernel message buffer to a database,
we minimize our impact on program execution. It was our intent that the data we wish
to obtain and visualize remains as close to actual program execution as possible with
minimal differences when our monitoring technique is in place. This technique makes
it difficult for an intruder to disable until they have obtained sufficiently elevated
privileges on the system. At that point, the points of intrusion and steps taken to reach
that point have already been logged. Finally, directly modifying the system calls
rather than replacing them with a kernel module avoids the possible detection meth-
ods discussed in [8].

Prefuse [5] is a software framework written in Java to aid developers in the crea-
tion of information visualization applications. The goal of Prefuse is to greatly sim-
plify the process of data handling and representation. The reason we chose Prefuse
over other visualization toolkits such as Piccolo, Dot, and the Visualization Toolkit is
its flexibility, the ability to render large amounts of data in an efficient manner, and
excellent documentation.

There are many similarities between the mapping of a program flow of an operat-
ing system and that of a process, such as the work presented in [6] and [7]. In [6],
Balzer et al used a landscape metaphor to visualize structures of large software sys-
tems. They used a defined hierarchal layout, which can be arbitrarily deep, to show
dependence and included packages. In [7], Bohnet and Dollner applied an effective
2½ D visualization to facilitate path discovery in the function call graph to identify
feature-implementing functions. Both of these techniques share several similarities,
such as using data clustering to show dependence and hierarchy.

3 Approach

Our approach to program flow visualization can be broken down into three stages:
data acquisition and storage, analysis, and visualization. It is not necessary that these
operations be performed in the order listed. In fact, further data analysis may be per-
formed based on user input from examining the resulting visualization. Finally, only
the data acquisition and storage aspects must be performed in real time on the target
system to be monitored. The analysis and visualization aspects can be performed
elsewhere. Figure 1 presents our system architecture.

28 Y. Xia, K. Fairbanks, and H. Owen

Fig. 1. System Architecture

3.1 Data Acquisition and Storage

As briefly discussed in section two, our data is obtained by monitoring specific sys-
tem calls and exporting that information from kernel space to user space using the
kernel message buffer. This is achieved by inserting additional code into our targeted
system calls. In our research, we chose to target the system calls dealing with file
access and program execution. Thus, sys_execve, sys_fork, sys_open, sys_read,
sys_write, and sys_close were modified. In particular, the data we are targeting is the
following: process identification number(PID), child process PIDs, executable name,
file names, file inode numbers, file descriptor numbers, reads and writes, and time
stamp information for all these actions. The acquired data is then stored in a SQL da-
tabase for further processing. This phase of the architecture is performed in real-time
on the target system.

3.2 Data Analysis

In order to present our data visually, we must first process the raw data obtained from
system call monitoring. This is achieved through the creation of several databases

 Visual Analysis of Program Flow Data with Data Propagation 29

Fig. 2. Visualization Concept

containing subsets of the logged information. The first such database contains the
program-file relationships. This database contains the file usage of programs during
execution, as seen by sys_open. Our goal for creating this database is to identify the
key library files used by the program for execution. The second database we create
using the system call data is a time ordered database which shows the order in which
a program accesses its library files. Generally, each program accesses files in a prede-
fined manner at predictable intervals between each access. Using the program-file
relationship database and the time ordered database, we are thus able to obtain a gen-
eral idea of proper program execution behavior. A third database, containing the list
of sensitive system files (such as /etc/passwd), is also generated for modification de-
tection and accentuation in the visualization phase. Please see [4] for further details
about the data acquisition and analysis stages.

3.3 Visualization

3.3.1 Rendering
As previously discussed in section one, one of the goals of visually representing the
program flow is to provide a better overall view of the entire system. To achieve this
goal, we chose to visually represent our data in the following way:

30 Y. Xia, K. Fairbanks, and H. Owen

• Each PID will be a node in the flow diagram; child PIDs and accessed files will be
children of that node.

• The flow diagram will be time ordered using the available time stamp of each
logged operation. Due to the fine-grained time unit used by Linux (1-10 seconds per
step), we chose to categorize every event that occurs in a certain time period as
concurrent. The way this is chosen is user defined. For example, the user may
chose that all events that occurred within the same second be treated as concurrent,
or perhaps all events that occurred within the same millisecond. The length and
scope of the tree will be determined by this user input.

• The diagram will be collapsible at each node and the tree will be in collapsed mode
by default. As the user clicks on each node, it will render itself into a sub-tree con-
sisting of child processes and accessed files.

• The files identified as library files under the program-file relationship database will
be displayed as a single collapsed cluster.

• A search option will also be provided for the user to quickly locate a particular PID
or file within the tree.

Figure 2 shows a generalized view of our visualization.For actual results, see
section 4.

3.3.2 Accentuation
For our research, we chose to target program-file access behavior for automatic accen-
tuation. Using the program-file relationship database, we can identify the necessary
library and support files required by each program for execution. These files are then
displayed as a cluster on our overall visualization. Should any particular program
access a different library file or one that is not in the order specified as by the time or-
dered database, then this program will be expanded and brought to the attention of the
user. Also, any program that modifies a declared sensitive file will also be noted for
further investigation.

3.3.3 Propagation
Our goal for propagation is to judge the extent of influence that any particular file or
process has on the entire system. This is also a way for the user to quickly estimate
the extent of damage caused by this intrusion should this file or program be later de-
termined as malicious. Once a specific PID or file has been marked on the tree as
being tainted, propagation takes places using the algorithm in figure 3.

This algorithm begins by popping the top item for processing. If the object is a file,
then any process that have modified the file as well as any process that have read
from the file will be pushed onto the queue. If the object is a process, three checks
are made. First, if the process has modified any tainted files, then any file modified by
the program that is not marked as tainted is added to the queue. Second, any parent
process that has modified the current process will be added to the queue. Third, any
child processes created by this process is added to the queue. This algorithm termi-
nates under two conditions, if the queue is empty, and if the distance to origin value
has been exceeded.

 Visual Analysis of Program Flow Data with Data Propagation 31

Fig. 3. Propagation Algorithm

To terminate this propagation, we use a value called distance to origin. This value is
specified by the user and is defined as the number of links between the current object to
the original marked source. For example, the process that directly modified the marked
tainted file is considered to have a distance of 1. The parent process or the files modi-
fied by that marked process have a distance value of 2. Once this distance value grows
beyond a limit, then the current examined item is dropped from the queue.

4 Results

4.1 Visualization Results

For our experiment, we obtained the data from a modified 2.6.20 kernel running Ub-
untu Linux. During the monitoring process, we executed several common programs,
such as Firefox, gedit, cp, and cat, and several Linux viruses.

32 Y. Xia, K. Fairbanks, and H. Owen

Fig. 4. Process Tree

Figure 4 shows a time slice of our process tree on the left and a view of the same
tree zoomed in on a particular file on the right. When an object is selected by clicking
on an object name, it will be highlighted as light green. All parent nodes within the
tree will be displayed as dark green.

Figure 5 shows our selection of the “/usr/lib/locale/en_US.utf8/LC” file package
(a commonly used set of files) and the subsequent accentuation of all such packages
on the process tree. Using file package selection quickly allows users to identify when
and where programs perform actions on those files, such as reading or modifying.
Highlighting file packages also allows users to identify programs that may not
have been executed through normal channels or was renamed in order to disguise the
program.

Figure 6 shows the results of marking a file as tainted and propagating the results
through the process tree. Everything marked as red is at risk for potential infection,
and a system restore must insure that every file marked thusly is examined. Further
improvements to the taint propagation algorithm can trim down the number of files to
be examined by the taint propagation.

 Visual Analysis of Program Flow Data with Data Propagation 33

Fig. 5. File Package Highlighting

4.2 Future Work

This method presented in this paper is still in the implementation phase and as such
we are currently not ready to deploy this as an application. There are still several
challenges that must be overcome.

First, for the purposes of demonstrating our method of visualizing program flow
with data propagation, the algorithm used for taint propagation and automated accen-
tuation are very simplistic and lacks a rigid definition. We hope to develop a better
and more concrete algorithm to perform the aforementioned tasks. Second, better
methods and optimization approaches must be explored to better streamline the visu-
alization and to improve on the intuitiveness of this display. Third, due to the size of
the visualization, it makes it difficult for users to easily identify particular processes

34 Y. Xia, K. Fairbanks, and H. Owen

Fig. 6. Taint Propagation

without zooming in on a particular section. In the future, perhaps additional overlays
and methods can be added for the user to be able to identify programs without zoom-
ing in. Finally, our current method of converting system call data into the visualiza-
tion is broken up into several stages and requires several conversions between various
types of data (text, sql, xml) using a variety of languages (c, python, java). In the
future, a direct kernel logging to visualization data tool should be explored to mini-
mize overhead and processing time.

5 Conclusions

We have presented our methodology to visually represent and analyze the program flow
of a system. Using this visualization, it is possible for the user to quickly detect irregu-
larities in program execution and accentuated trouble spots of illegal file access. More-
over, taint propagation gives the user the ability to quickly gauge the impact of a poten-
tially malicious program or file to aid in the recovery process. We have demonstrated

 Visual Analysis of Program Flow Data with Data Propagation 35

this method by using it to visualize the program flow of the Ubuntu Linux operating
system while performing several tasks. Finally, we have demonstrated how taint
propagation tracking through the program flow can provide important information to
an investigator by providing a way of quickly estimating program and file impact on a
system. We will continue to refine, improve, and draw additional conclusions from
our research based on the experiences gained.

References

[1] Ring, S., Esler, D., Cole, E.: Self Healing Mechanisms for Kernel System Compromises.
In: Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems. ACM
press, New York (2004)

[2] Grizzard, J., Owen, H.: On a µ-kernel Based System Architecture Enabling Recovery
from Rootkits. In: Proceedings of the First IEEE International Workshop on Critical In-
frastructure Protection, Darmstadt, Germany (2005)

[3] Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A Sense of Self for Unix Processes.
In: Proceedings of the 1996 IEEE Symposium on Security and Privacy (1996)

[4] Xia, Y., Fairbanks, K., Owen, H.: A Program Behavior Matching Architecture for Prob-
abilistic File System Forensics. In: ACM SIGOPS Operating Systems Review special is-
sue on Computer Forensics (April 2008)

[5] Prefuse: Information Visualization Toolkit, http://prefuse.org/doc/faq
[6] Balzer, M., Noack, A., Deussen, O., Lewerentz, C.: Software Landscapes: Visualizing the

Structure of Large Software Systems. In: Proceedings of the IEEE TCVG Symposium on
Visualization, Konstanz, Germany (2004)

[7] Bohnet, J., Dollner, J.: Visual Exploration of Function Call Graphs for Feature Location
in Complex Software Systems. In: Proceedings of the 2006 ACM symposium on Soft-
ware Visualization, Brighton, United Kingdom (2006)

[8] Dornseif, M., Holz, T., Klein, C.: NoSEBrEaK, Attacking Honeynets. In: Information
Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC (2004)

[9] Abdullah, K., Lee, C., Conti, G., Copeland, J., Stasko, J.: IDS Rainstorm: Visualizing
IDS Alarms. In: Visualization for Computer Security, VizSec 2005 (2005)

[10] Takada, T., Koike, H.: Tudumi: Information visualization system for monitoring and au-
diting computer logs. In: Proceedings of Information Visualization (2002)

A Term Distribution Visualization Approach to

Digital Forensic String Search

Moses Schwartz and L.M. Liebrock

New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
moses@nmt.edu, liebrock@cs.nmt.edu

Abstract. Digital forensic string search is vital to the forensic discovery
process, but there has been little research on improving tools or methods
for this task. We propose the use of term distribution visualizations to aid
digital forensic string search tasks. Our visualization model enables an
analyst to quickly identify relevant sections of a text and provides brush-
ing and drilling-down capabilities to support analysis of large datasets.
Initial user study results suggest that the visualizations are useful for
information retrieval tasks, but further studies must be performed to
obtain statistically significant results and to determine specific utility in
digital forensic investigations.

Keywords: Term distribution visualizations, digital forensics, text string
search.

1 Introduction

Digital forensic string search is a vital component of the forensic discovery pro-
cess [2,3,12]. By searching through strings, an analyst may identify forensic arti-
facts residing in slack space, in deleted files and unallocated space, or in existing
files without considering format details [2,12]. However, the state of the art
method for identifying artifacts in these datasets is to use a conventional search
tool such as Grep [7] and then rely on a human analyst to read through all of
the identified hits [3,6]. This task is different from most other string search tasks
in that the dataset is almost completely unstructured and the number of hits
is extremely high [3]. There has been very little work on reducing the informa-
tion retrieval overhead and information overload associated with this task [2,3].
Information visualization is one approach to addressing this problem [3].

We propose the use of term distribution visualizations (discussed in more
detail in [16]) to ease the task of digital forensic string search. These visualiza-
tions, based on the TileBars method [11], show the frequency of a set of search
terms throughout a document. This may act as a primary navigation aid for
an analyst, allowing her to quickly identify sections of the dataset that may
contain relevant information, and then present the text of identified sections. A
Focus+Context mechanism provides support for large datasets by allowing the
analyst to brush (or select) a large, potentially relevant section, and then drill

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 36–43, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Term Distribution Visualization Approach 37

down (or zoom) to a finer granularity version of the visualization. The visual-
ization and Focus+Context model is demonstrated in Fig. 2 in Section 4.

Section 2 of this paper provides an overview of related work. Section 3 presents
the term distribution visualizations and the Focus+Context model. We provide an
example of the use of the visualizations in a simulated forensic case in Section 4,
and describe our user study and initial results in Section 5. Plans for future work
and conclusions are presented in Sections 6 and 7.

2 Related Work

We have found no work that directly applies visualization to digital forensic
string search. There has been some work on using advanced search methods
for digital forensics [2,3] and much on visualizations that might be applied to
the problem [4,5,9,10,11,14,15,17,18,19,20], but none that explicitly discuss the
application of visualizations to digital forensic string search.

In [2], Beebe and Dietrich discuss the need for improved digital forensic text
string searching; their focus is clustering algorithms. In [3], Beebe and Clark use
a clustering algorithm for digital forensic string search. Visualization is suggested
in [3] to improve the digital forensic search process, but is not elaborated on.

Early work on visualizations of term distribution focused primarily on their
use as relevance-feedback mechanisms for conventional search engines. TileBars,
as presented in [11], compactly indicates relative document length, query term
frequency, and query term distribution throughout a document (e.g., see Fig.
1(a)). In [13] and [14], TileBars are included as part of a set of visualizations
to be used for improving World Wide Web search results. Relevance Curves are
also included, which are similar to the histogram visualizations presented here.
In [4], a TileBar-inspired term distribution visualization is placed in a scrollbar
as an unintrusive and effective within-document search aid.

There has been considerable work on visualizations for text mining, e.g., [5],
[18], and [20]. Text mining to identify relevant queries is an important aspect of
information retrieval; however, only [5] has a facility to directly view portions
of the text and these projects do not place much emphasis on within-document
information retrieval. None of this work considers digital forensics.

Visualizations of term distribution have been used for more general trend
analysis, as in [10], [15], [17], and [20]. The interaction paradigm in [17] is very
similar to the one presented here. It visualizes arbitrary time-series textual data
in a histogram format, based on user-supplied queries. However, its primary
applications are for information technology tasks such as auditing system logs,
its visualizations are relatively coarse, and it is not intended to be used as a
general-purpose information retrieval tool.

The most relevant work explicitly visualizes text for information retrieval,
e.g., [8], [9], and [19]. [19] visualizes term distribution in a histogram to support
information retrieval from speech archives; [19] is relatively specialized, does
not explicitly support very large datasets, and uses a relatively coarse visual-
ization. [9] and an accompanying case study, [8], present ProfileSkim, a tool to

38 M. Schwartz and L.M. Liebrock

visualize a document and provide a user interface for browsing and information
retrieval. ProfileSkim uses a language modeling approach to relevance profiling
and visualizes a document as a sequential histogram of relevance scores based
on user-supplied queries. ProfileSkim’s visualization does not provide granular
information on the distribution of each search term, nor support searching very
large datasets. Although much of this related work could be applied to digital
forensics, none explore the potential applications.

3 Visualization Techniques

TileBars and histograms, in conjunction with a Focus+Context model, comprise
a Query-Browse (QB) information retrieval model [1,21]. Both visualizations
support variable-granularity term distributions, which may be calculated using
either a sliding window or discrete blocks of text. In this paper, we show only
visualizations calculated with discrete blocks, exclude color TileBars [16] and
present a new visualization variant (filled-line histograms). The visualizations
shown in the following section correspond directly to those used in our user
study, as discussed in Section 5. All example images in this section have been
generated from a simulated digital forensic scenario, as discussed in Section 4.

3.1 TileBars

As in the original TileBars [11], the TileBar visualizations in this work are matri-
ces of tiles. Along the horizontal axis, each block represents a block of text. The
darkness the block indicates the number of occurrences of a search term in the
block. Fig. 1(a) shows an example of the results from our TileBar implementa-
tion. Term distribution appears to be obvious and intuitive in this visualization.
However, with large numbers of terms this visualization may become harder to
interpret and less intuitive. Quantifying this effect is a subject for future work.

3.2 Histograms

Histograms [16] are an extension to the original TileBars [11] visualization con-
cept, and very similar to Relevance Curves [14]. Here distributions are plotted
on a graph as a sequential histogram. This supports identification of frequency
as the height of a peak, as well as overlap by overlap of the distribution graphs.

Fig. 1(b) shows a greyscale histogram. Overlapping areas appear darker, so
distribution overlap is very apparent and intuitive, but there is no indicator of
which terms are overlapping or where each term occurs.

Fig. 1(c) shows a color histogram, where the lighter color (than the legend) is
used to permit color mixing. Where overlaps occur, the colors are mixed based on
how many terms are in the block of text. In this case, term-specific information
is readily available and distribution overlap is intuitive. However, interpreting
color blending as distribution overlap requires additional cognitive effort.

A Term Distribution Visualization Approach 39

Fig. 1. All visualization variants used in the user study. (a) shows a TileBar, and (b)
through (e) show histogram variants. All visualizations were generated with a simu-
lated digital forensic case, discussed in Section 4, and the search terms “Boondoggle,”
“Digitech,” “Jessie,” “Maggiano,” “Million,” and “Watson.”

Fig. 1(d) and Fig. 1(e) show two variants of color histograms—line histograms,
which present the same information but do not use color blending, and filled-line
histograms, which represent overlap by dark fill underneath a color line. In line
histograms, there is no need to lighten the color for mixing, so outline colors
more closely match the legend. In the filled-line histograms, the fill is done in
grey and terms’ occurrences are outlined in the legend color. This clarifies to
some extent the concentrations and the set of terms in any overlap area.

3.3 Focus+Context

The Focus+Context model allows a user to brush an area of interest within a
TileBar or histogram and drill down to visualize the dataset with finer gran-
ularity. The previous visualization remains visible to indicate relative location
within the overall dataset (see Fig. 2).

40 M. Schwartz and L.M. Liebrock

4 Digital Forensic Analysis

To illustrate the use of our visualization model for digital forensic string search,
we apply it to a digital forensics training module developed by Sandia National
Laboratories. In this exercise, we are presented with a seized hard drive image
and must perform a digital forensic string search on unallocated and slack space
on the drive image to find artifacts. In the fictional scenario, Roberta Hutchins
has been accused of attempting to sell trade secrets for Digitech’s Project Boon-
doggle to an individual named Jessie. Interviews have revealed that Roberta
planned to meet Jessie at the restaurant Maggiano’s, at which point she would
be given 1.5 million dollars.

We preprocess the dataset by running Grep, with a list of search terms, on the
extracted strings. Next, we use our visualization tool. Fig. 2 shows the reduced
dataset in the visualization utility with relevant sections brushed and drilled
down to a particular artifact supporting the case against Roberta.

Fig. 2. The visualization tool applied to a notional forensic case. The left pane shows
the dataset visualized with the queries “maggiano,” “meet,” and “million.” The section
that appears to contain all terms (as indicated by color blending) is brushed, and the
visualization drilled down. The drilled section may then be easily browsed. The right
pane shows the text of the selected area.

This simple digital forensics example shows that these visualizations can be
effective in focusing attention very quickly to the area of the data set that is
most likely of interest. This tool is even more effective in complex data sets
where search terms appear in many locations and the user must find where
certain terms appear in proximity to others to quickly find relevant evidence.

5 Usability Study

We performed a small pilot user study. Here we describe the study, show some
preliminary results, and draw what conclusions we can from the preliminary
data.

A Term Distribution Visualization Approach 41

5.1 Study Design

A pilot study was conducted on five subjects from New Mexico Institute of
Mining and Technology. Subjects were senior undergraduate students, graduate
students, or faculty in the Department of Computer Science. All subjects had
prior exposure to this research, but none had previously used the interface.

The study used eight electronic documents and was administered through a
web interface. Lewis Carroll’s “Through the Looking Glass” was used for train-
ing and 8000-line excerpts from the United States Federal Register were used for
testing. Unique information was identified in each excerpt by randomly identify-
ing a 400-line section and then selecting specific facts within that section. From
these “answers” we created questions and multiple-choice quizzes to determine
whether the subject found the correct information.

The study used five visualization variants and two web-based versions of Grep.
The visualization variants included: TileBars, greyscale histograms, color his-
tograms, line histograms, and filled-line histograms (see Fig. 1). The Grep vari-
ants showed either all occurrences of all search terms as generated by:

grep -C2 -aif terms file target file
or all overlapping sections as generated by:

grep -C15 -i term0 target file | ... | grep -C15 -i termN

Subjects filled out a survey before beginning the study, after each trial, and at
the end of the study. The first survey gathered basic demographic information.
The other surveys elicited qualitative feedback.

Before the actual trials, subjects were given as much time as they wanted to
familiarize themselves with the interface. Training used Lewis Carrol’s “Through
the Looking Glass” with the Grep interface, TileBars, and color histograms.

Subjects were presented with each document sequentially, with one of the de-
scribed tools. The order of the documents was fixed, but the search aids (visual-
ization or Grep) were counterbalanced to minimize carryover effects. In each trial,
the time until a subject answered the quiz (which presumably coincides with find-
ing desired information) was measured. Answer correctness was also recorded.

5.2 Usability Study Results

Fig. 3 shows the mean time to complete an information retrieval task for each
search aid and the time to complete the information retrieval task for each file.

5.3 Usability Study Analysis

Since the pilot study results involve a very small sample, we do not dwell on
analysis, as any claims would be suspect. However, many of the visualizations
appear to perform comparably to Grep with all hits shown—this is a very positive
early result. To see why, consider how long these searches would have taken with
no search aid at all! Grep that only shows overlapping occurrences of terms
seems to have been the most effective search aid, but excluding so much data
may render the technique unsuitable for digital forensic purposes.

42 M. Schwartz and L.M. Liebrock

Fig. 3. Mean time to complete an information retrieval task for each search aid and
mean time to complete the task for each file. Error bars show standard error.

The time taken for each file varied considerably, indicating that the informa-
tion retrieval difficulty was not uniform; this casts some doubt on the utility
of our results. However, with more subjects the counterbalancing will largely
negate these effects.

6 Future Work

We have identified numerous avenues of future work. Maximizing efficacy of the
visualizations is an obvious extension and will be greatly aided by performing
further work on the user study. Extensions to make the visualization more ap-
plicable to digital forensics, such as providing support for collaborative analysis
and showing file boundaries in the visualization will be explored.

7 Conclusions

Visualization for digital forensic string search is a virtually untouched field of
research. Our visualization model appears to be effective as an aid for digital
forensic string search, but needs full validation through further user studies, as
well as further specialization for digital forensics.

Acknowledgements. This workwas supported in part by NSF Grant#0313885.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press
/ Addison-Wesley (1999)

2. Beebe, N., Dietrich, G.: A New Process Model for Text String Searching. Springer,
Norwell (2007)

3. Beebe, N.L., Clark, J.G.: Digital forensic text string searching: Improving infor-
mation retrieval effectiveness by thematically clustering search results. In: Digital
Investigation, September 2007, vol. 4(suppl. 1) (2007)

A Term Distribution Visualization Approach 43

4. Byrd, D.: A scrollbar-based visualization for document navigation. In: Proceedings
of the Fourth ACM International Conference on Digital Libraries (1999)

5. Don, A., Zheleva, E., Gregory, M., Tarkan, S., Auvil, L., Clement, T., Shneiderman,
B., Plaisant, C.: Discovering interesting usage patterns in text collections: integrat-
ing text mining with visualization. In: CIKM 2007: Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management, pp.
213–222. ACM Press, New York (2007)

6. Forte, D.: The importance of text searches in digital forensics. In: Network Security,
April 2004, pp. 13–15 (2004)

7. Free Software Foundation. Tool: GNU Grep
8. Harper, D., Koychev, I., Sun, Y., Pirie, I.: Within-document retrieval: A user-

centred evaluation of relevance profiling. In: Information Retrieval, vol. 7, pp. 265–
290 (2004)

9. Harper, D.J., Coulthard, S., Yixing, S.: A language modelling approach to rele-
vance profiling for document browsing. In: JCDL 2002: Proceedings of the 2nd
ACM/IEEE-CS joint conference on Digital Libraries, New York, NY, USA (2002)

10. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic
changes in large document collections. IEEE Transactions on Visualization and
Computer Graphics 8(1), 9–20 (2002)

11. Hearst, M.A.: Tilebars: visualization of term distribution information in full text
information access. In: CHI 1995: Proceedings of the SIGCHI conference on
Human factors in computing systems, New York, NY, USA, pp. 59–66. ACM
Press/Addison-Wesley Publishing Co (1995)

12. Mandia, K., Prosise, C., Pepe, M.: Incident Response & Computer Forensics.
McGraw-Hill/Osborne, California (2003)

13. Mann, T., Reiterer, H.: Case study: A combined visualization approach for www-
search results. In: Proc. IEEE Information Visualization 1999, pp. 59–62 (1999)

14. Mann, T.M.: Visualization of WWW-search results. In: DEXA Workshop, pp. 264–
268 (1999)

15. Mao, Y., Dillon, J.V., Lebanon, G.: Sequential document visualization. In: IEEE
Transactions on Visualization and Computer Graphics, November/December 2007,
vol. 13(6), pp. 1208–1215 (2007)

16. Schwartz, M., Hash, C., Liebrock, L.: Term distribution visualizations with a fo-
cus+context model. Technical report, New Mexico Institute of Mining and Technol-
ogy (2008), http://cs.nmt.edu/∼liebrock/papers/SchwartzHashLiebrock.pdf

17. Splunk, Inc. Application: Splunk
18. Paley, W.B.: TextArc: Showing word frequency and distribution in text. Poster

presented at IEEE Symposium on Information Visualization (2002)
19. Whittaker, S., Hirschberg, J., Choi, J., Hindle, D., Pereira, F.C.N., Singhal, A.:

SCAN: Designing and evaluating user interfaces to support retrieval from speech
archives. In: Research and Development in Information Retrieval, pp. 26–33 (1999)

20. Wong, P.C., Cowley, W., Foote, H., Jurrus, E., Thomas, J.: Visualizing sequential
patterns for text mining. In: INFOVIS 2000: Proceedings of the IEEE Symposium
on Information Vizualization 2000, p. 105 (2000)

21. Zhang, J.: Visualization for Information Retrieval, 1st edn. Springer, Heidelberg
(2007)

http://cs.nmt.edu/~liebrock/papers/SchwartzHashLiebrock.pdf

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 44–59, 2008.
© Springer-Verlag Berlin Heidelberg 2008

GARNET: A Graphical Attack Graph and Reachability
Network Evaluation Tool*

Leevar Williams, Richard Lippmann, and Kyle Ingols

MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02173
{LCWILL,LIPPMANN,KWI}@LL.MIT.EDU

Abstract. Attack graphs enable computation of important network security
metrics by revealing potential attack paths an adversary could use to gain con-
trol of network assets. This paper presents GARNET (Graphical Attack graph
and Reachability Network Evaluation Tool), an interactive visualization tool
that facilitates attack graph analysis. It provides a simplified view of critical
steps that can be taken by an attacker and of host-to-host network reachability
that enables these exploits. It allows users to perform “what-if” experiments in-
cluding adding new zero-day attacks, following recommendations to patch
software vulnerabilities, and changing the attacker starting location to analyze
external and internal attackers. Users can also compute and view metrics of as-
sets captured versus attacker effort to compare the security of complex net-
works. For adversaries with three skill levels, it is possible to create graphs of
assets captured versus attacker steps and the number of unique exploits re-
quired. GARNET is implemented as a Java application and is built on top of an
existing C++ engine that performs reachability and attack graph computations.
An initial round of user evaluations described in this paper led to many changes
that significantly enhance usability.

Keywords: attack graph, visualization, treemap, security metrics, adversary
model, network, vulnerability, exploit, attack path, recommendation.

1 Introduction

Attack graphs have been proposed by many researchers as a way to identify critical
network weaknesses, construct adversary models, analyze network security, and sug-
gest changes to improve security. Researchers and commercial companies have de-
veloped many differing approaches to generating attack graphs [8, 12, 14, 16, 18]. An
annotated review of many of these approaches is available in [7].

Although there are various representations, the overall concept of attack graphs
remains the same: they show the ways an attacker can compromise hosts within a net-
work. Attack graphs are constructed by starting an adversary at a given network loca-
tion and examining how the attacker can progressively compromise vulnerable hosts,
using information about software vulnerabilities and network reachability.

* This work is sponsored by the United States Air Force under Air Force Contract FA8721-05-C-

0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are
not necessarily endorsed by the United States Government.

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 45

We have developed a system called NetSPA, or Network Security and Planning
Architecture, which efficiently generates attack graphs for large complex networks. A
full description of the system can be found in [4, 8]. It imports data from common
sources, including vulnerability scanners, firewall configurations, and vulnerability
databases. This information is used to generate attack graphs, make recommendations
for improving network security, and compute important network security metrics. In a
previous paper [21], we described a new interactive cascade display for attack graphs
that incorporates treemaps to compactly display network subnets and shows host-to-
host reachability as well as attack graph data. A preliminary Java-based tool that pro-
vides a Graphical User Interface (GUI) to NetSPA and creates these displays using
NetSPA as a computation engine was also presented.

This paper describes GARNET (Graphical Attack graph and Reachability Network
Evaluation Tool), an improved tool that incorporates the interactive cascade display
[21] with the addition of many new capabilities and features. First, it provides a
greatly extended and redesigned GUI. This new interface was designed based on care-
ful evaluations and feedback (described in this paper) that were provided by five users
familiar with attack graphs. Second, it supports “what-if” analyses for determining the
effects of following recommendations for patching hosts, adding and removing vul-
nerabilities, and modeling adversaries with three skill levels that start from either in-
side or outside a network. The differing network models created through consecutive
applications of “what-if” changes are saved and the results for different variants can
be easily compared.

A final major new feature of GARNET is the ability to compute security metrics
for complex networks that indicate how security has changed and if one network is
more or less secure than another. This addresses a major shortcoming in the security
field. Our ability to rapidly construct attack graphs using NetSPA provides an oppor-
tunity to develop attack metrics that overcome the limitations of past attempts.

The remainder of this paper describes GARNET in detail. The following section
provides an overview of related work on attack graph displays and security metrics.
Section 3 describes the NetSPA system. Sections 4 and 5 show the visual representa-
tions used by the tool and describe the supported user interactions, including the gen-
eration of “what-if” scenarios. The security metrics and adversary models used by
GARNET are presented in Section 6, and Section 7 presents results from user evalua-
tions of the tool. This is followed by a discussion of future work in Section 8 and a
conclusion in Section 9.

2 Related Work

2.1 Attack Graph Displays

Significant past research has focused on visualizing and interacting with attack graphs
as summarized in [7, 21]. Most recently, two commercial companies have begun to
provide attack graph displays. The RedSeal Security Risk Manager [16] reads vulner-
ability information from network vulnerability scanners and topology information from
firewall and router configuration files to create a node-link network topology diagram.
This network diagram is initially laid out automatically. System administrators can
then collapse and manually reposition hosts and subnets to create easily understandable

46 L. Williams, R. Lippmann, and K. Ingols

displays that accurately represent a conceptual view of the network topology. The dis-
play identifies exploitable vulnerabilities and, on top of the network diagram, displays
threat paths that an attacker can use to gain access to resources in the network. This
tool only computes a few security metrics for a single adversary model.

The second commercial product, Skybox [18], provides a similar network view.
However, it requires active agents to capture network topology and host vulnerability
information. Reachability is computed and attack paths are shown in a separate dis-
play as arrows between individual hosts or servers. The application allows “what-if”
analyses to be performed through the simulation of attacks and proposed changes to
the network. It is limited, though, by the fact that it does not show the entire attack
graph but only displays parts of the overall graph that contain specified target hosts.

GARNET incorporates good aspects of the above commercial displays as well as
the cascade display we described in [21] that uses treemaps to display subnets. It pro-
vides a compact and fully interactive view of an attack graph that can be related to the
underlying network and allows users to generate hypothetical, “what-if” scenarios. As
in the RedSeal display, hosts and subnets are laid out automatically but can be reposi-
tioned manually to obtain a more intuitive display. Unlike Skybox, no network agents
are required, vulnerability data is read from a number of open-source and commercial
vulnerability scanners, and network topology information and filtering rules are read
from firewall and router configuration files. GARNET computes hosts-to-host reach-
ability, attack graphs, and multiple important security metrics for three graded adver-
sary models to assess overall network security.

2.2 Security Metrics

Many different metrics have been proposed in the past to assess different aspects of
security, such as the average number of vulnerabilities found per host by a network
vulnerability scanner [5], but none accurately measure the overall security of diverse
networks. These point measurements fail to take context into account, including the
overall network topology, all vulnerabilities, and an adversary model that includes a
starting location, goals, and steps that can be taken to achieve these goals. What is de-
sired are metrics that: are accurate, objective, and well defined; can be measured
automatically; are easy to understand and explain; and provide insight into underlying
causes of both security and insecurity.

Our approach to developing metrics for inclusion in GARNET was motivated by
current best practices for assessing network security. The current, most often-used
approach is to use “red teams”. These are security experts who attempt to reach a
specified goal in a network from a starting location and with a given amount of initial
network knowledge. For example, [6] describes an interesting set of experiments
where a red team attempts to access a database as extra layers of protection are added
to provide “defense in depth”. The metric used in these experiments is red-team effort
as measured by person hours required to develop and launch attacks. This approach
includes an adversary model (the red team) and uses the actual network for experi-
mentation. It also produces an objective metric (red-team person hours), has high face
validity, and can uncover unexpected weaknesses. Unfortunately, it is expensive, can-
not be automated, is difficult to replicate, and often is impossible to perform because
it can disrupt essential services.

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 47

An alternative to using live red teams is an approach called Mission-Oriented Risk
and Design Analysis, or MORDA, which is described in [2, 3]. Experts are enlisted to
understand a network and its mission, suggest effective adversarial goals that disrupt
the network, construct adversary models, and develop attacks that reach goals. At-
tacks are then analyzed by comparing their cost and visibility. One major goal of a
MORDA analysis is to make sure that there are no low-effort, stealthy attacks that an
adversary could use to compromise a network’s mission. This analysis has much of
the flexibility of a live red team experiment and can be used in a planning stage be-
fore a network exists. It does not have the realism of a red-team experiment, but it
explicitly includes multiple adversary models, attacker goals, and attacker costs. Un-
fortunately, it is labor intensive, requires the cooperation of a diverse group of ex-
perts, and thus is not frequently used.

Security metrics computed by GARNET are designed to support an automated
form of MORDA analysis. Two metrics are provided to measure attacker effort, and
one of these indirectly measures attack visibility. These measurements make it possi-
ble to identify the existence of attacks that can potentially be used to capture a net-
work’s assets. GARNET also models adversaries with three distinct skill levels. These
adversary models and metrics make it possible to compare the security of different
networks by examining the adversary skill level and effort required to compromise
these networks. The metrics and adversary types are further described in Section 6.

3 NetSPA

In previous work, we described an efficient approach to generating a new type of at-
tack graph, the multiple-prerequisite (MP) graph, that scales well to large enterprise
networks. Descriptions of the NetSPA tool that generates MP graphs are available in
[4, 21]. Although MP graphs are not explicitly displayed in GARNET, an underlying
MP graph data structure is used to create its interactive display.

NetSPA models both hosts and network infrastructure devices such as firewalls
and routers. It assumes that hosts can have one or more open ports that accept connec-
tions from other hosts and that ports have zero or more vulnerabilities that may be ex-
ploitable by an attacker. Individual vulnerabilities provide one of four access levels on
a host: “root” or administrator access, “user” or guest access, “DoS” or denial-of-
service, or “other”, indicating a loss of confidentiality and/or integrity. Vulnerabilities
can either be exploited remotely from a different host or only locally from the vulner-
able host. Currently, it is assumed that an attacker obtains a host’s reachability if
“root” or “user” access is achieved. Attackers can also obtain credentials when com-
promising a host. Credentials refer to any information that can be used to gain access
to another host or other network resources such as a password or a private key, and
they are used to model trust relationships. Reachability and credentials serve as pre-
requisites for exploitation of other vulnerabilities.

NetSPA also incorporates a simple model of host asset values. Each host is as-
signed an asset value representing the worth to a network defender of the worst-case
compromise of that host’s confidentiality, integrity, or availability. Asset values cur-
rently default to 10 for all hosts and are typically hand-assigned to higher values for

48 L. Williams, R. Lippmann, and K. Ingols

critical hosts, such as key servers or hosts containing confidential information. They
are primarily used for prioritizing recommendations and computing security metrics.

NetSPA uses an import utility, written in PERL, to read in raw data such as Nessus
scans, firewall rulesets, and National Vulnerability Database (NVD) records [13], and
convert the data into a custom binary file format. The main computation engine, writ-
ten in C++, is responsible for reading in the binary file, computing reachability, gener-
ating attack graphs, analyzing the graphs to generate recommendations, and computing
security metrics. The computation engine was not originally designed to support effi-
cient “what-if” analysis. It was extended to support this capability by adding a network
model “delta” system. GARNET can use this system to make small, hypothetical
changes to the network as small “delta” objects to the network model, and the rest of
the computation engine can then operate on the delta as if it were a full network model.

4 GARNET Tool and Network Visualization

GARNET is a Java-based graphical user interface built on top of the NetSPA engine.
We developed a set of bindings between the GUI’s Java and NetSPA’s C++ code us-
ing the SWIG toolkit [19]. It generates a shared library which the tool can load and
drive programmatically to perform necessary tasks.

GARNET presents an MP attack graph in a readable and concise fashion while
preserving much of the essential information. Important features of the nodes are con-
veyed by grouping, size, and color, while other attributes and edge information are
initially hidden and can be displayed on demand. This approach is inspired by the se-
mantic substrate displays described in [17].

Nodes from the MP attack graph are grouped by subnet and a treemap layout is
used to illustrate these groupings. Subnets are represented within the display by rec-
tangular blocks labeled with the name of the subnet. Smaller rectangles within each
block correspond to host groups; the hosts in a host group can all be compromised to
the same extent, are all in the same subnet, and are treated identically by all network
filtering devices. Each group is colored according to its level of compromise, indicat-
ing one of four access levels (“root”, “user”, “DoS”, or “other”) or that the group of
hosts cannot be compromised. The relative size of a host group is proportional to the
number of hosts it contains.

Fig. 1 provides an example of this visualization for an actual network with 4 sub-
nets: an external subnet labeled “EXTLAN” containing 119 hosts, an internal subnet
labeled “lansubnet” containing 129 hosts, and two smaller subnets containing one host
each. The attacker starting location is indicated by the dark red band with a red dia-
mond in the center at the top of the “EXTLAN” subnet (1). The light red rectangle
below this band (2) shows a group of hosts compromised at the “root” level. The light-
green rectangle below (3) represents hosts that are not compromised, the blue rectangle
to the right (4) represents hosts compromised at the “other” level, and the smaller gray
rectangle (5) represents hosts compromised only at the “DoS” level. The lower red rec-
tangle in this subnet (6) represents hosts also compromised at the “root” level but with
different reachability to other hosts than those of the upper red rectangle (2). The
meaning of the rectangles in the other subnets of this figure is similar. Rectangles

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 49

Fig. 1. Subnet groups arranged in grid layout with weighted sizing

within each subnet group are laid out according to the strip treemap algorithm
presented in [1]. This particular algorithm was employed because it solves the bin-
packing problem of completely filling a rectangular region with boxes of different
areas, and it produces dimensions with reasonable aspect ratios.

Within the display area, subnet groups can be repositioned and resized by direct
manipulations (clicking and dragging). A user can thus place subnets into an ar-
rangement that represents a physical or similarly intuitive view of the network. The
interface also provides a variety of automatic layouts. Users can choose vertical or
horizontal layouts, or a grid arrangement for the subnets. An “auto-sizing” function
can also be used to size the subnet rectangles to be proportional to the number of
hosts represented. The default is a grid layout with the subnet rectangles sized to be
proportional to the number of hosts contained. This is a useful initial configuration
because it clusters the subnets and quickly conveys their relative sizes and the overall
scale of the network. This layout was used to generate Fig. 1.

5 User Interaction

GARNET’s user interface supports three separate modes of interaction: Network
Map, Attack Graph, and Summary Plots. Each mode differs in the information that is
available and the ways in which the display can be manipulated. A user can toggle be-
tween these different modes by clicking one of three tabs located in the upper left of
the GARNET side panel shown in Fig. 2.

The Network Map mode provides an overview of the network topology and hosts.
In this view, the side panel contains controls for displaying reachability between sub-
nets. The user can select a subnet from a drop-down list or directly by clicking on its
rectangle, and options are presented for showing incoming and outgoing connections
between the groups of hosts within that subnet. The reachability amongst host groups
is illustrated by directed edges drawn between pairs of groups. These edges indicate
that the hosts in the source group can connect to ports on hosts in the target group.
Fig. 2 shows the tool in this mode, with outgoing reachability being displayed from
the “EXTLAN” subnet.

50 L. Williams, R. Lippmann, and K. Ingols

Fig. 2. GARNET in Network Map mode. The arrows indicate outgoing reachability for the
EXTLAN subnet.

GARNET’s side panel also contains an information pane that lists hosts and vul-
nerabilities for a particular host group, a subnet, or the entire network, depending on
the selection that is made in the display area. The per-host information includes the IP
address, asset value, and highest level of compromise achievable by the attacker, as
well as a breakdown of the specific vulnerabilities that exist on the host’s open ports.
The vulnerability listings include details such as a description, the locality and effect,
and the affected host ports. Providing this information allows a system administrator
to drill down into the network and identify attributes of an individual host or vulner-
ability and enables them to understand the overall connectivity between subnets.

GARNET’s Attack Graph mode, selected by the middle tab in the control panel,
provides an interface for direct interaction with NetSPA’s network model. The at-
tacker entry point into the network or starting location is specified by selecting one
of the subnets in the right-hand display. This selection defines a critical characteristic
of the current adversary model. NetSPA, by default, builds its attack graph under the
assumption that an attack is able to originate from any source IP address. This is a
good model of an attack originating from anywhere on the Internet. The range of ad-
dresses can also be constrained to model a more limited adversary or environments
where IP spoofing is restricted. Once a starting location is selected, the attack graph is
built and groupings are created for the hosts based on reachability and level of com-
promise. The user is allowed to change these parameters for the attacker at any time,
and the network model is immediately altered and redisplayed. The edges of the at-
tack graph are displayed incrementally through the use of the depth control shown in

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 51

Fig. 3. GARNET in Attack Graph mode. The arrows indicate attack paths and show the first
two attacker hops.

the upper left of Fig. 3 under the heading “Attacker Depth”. For the first attacker hop
(corresponding to a depth of one), edges are drawn from the attacker node to all groups
of vulnerable hosts that are directly reachable from the attacker’s initial location. For
each subsequent level of depth, edges are drawn from the host groups compromised at
the previous depth to the next set of compromisable hosts. As the edges are revealed, the
target nodes become colored according to their level of depth. In Fig. 3, the first two
attacker hops are shown for the given network. Nodes representing hosts compromised
at one hop are colored red and nodes compromised at two hops are colored purple.

To aid administrators in defending their networks, NetSPA automatically generates
recommended actions to improve a network’s security posture. The GUI allows users
to explore these recommendations and their impact. A recommendation is character-
ized by a list of vulnerabilities that must be removed from a certain set of hosts to pro-
tect them from being compromised at an administrator or user level. This information,
along with the combined asset value of the protected hosts and the number of affected
host groups, is presented for each of the recommendations. The user can immediately
view the effect of patching a set of vulnerabilities by choosing the “Apply Selected
Recommendation” button. This action creates a new network model with the vulner-
abilities removed from the indicated host ports, rebuilds the attack graph, and updates
the display. In practice, this takes only a few seconds even for networks with thou-
sands of hosts. Host asset values can also be modified in GARNET to examine the ef-
fect on security metrics and recommendations.

In addition to viewing the effects of removing vulnerabilities by applying recom-
mendations, a user can introduce vulnerabilities into the network. The “Add Zero-day

52 L. Williams, R. Lippmann, and K. Ingols

Vulnerability” button makes it possible to model adversaries with different skill levels
by placing new vulnerabilities on selected ports of all hosts. We currently suggest
performing analyses using three adversary models. The simple adversary has exploits
for all known vulnerabilities. Since exploits are often available on the Internet a few
days after a vulnerability is announced (e.g. [20]), this represents an attacker who
downloads exploits at low cost but is not able to create new exploits. This is the de-
fault adversary model. The single-zero-day adversary has all the exploits of the simple
adversary but is also able to create or buy one exploit for a currently non-public vul-
nerability. This represents a more capable attacker who can craft or purchase one
zero-day exploit specifically designed to penetrate the network being analyzed. In the
underlying NetSPA engine, the single zero-day exploit can be selected manually or it
can be determined automatically by building an attack graph for each possibility to
find the one that gains the most assets. The current GARNET interface supports man-
ual selection of a zero-day exploit by selecting a protocol and port. The new vulner-
ability is then placed on all hosts with this open port. A comprehensive-zero-day ad-
versary model is assumed to have an exploit for every open port in the network. This
provides an upper bound on the percentage of network assets that can be captured by
attackers that use server vulnerabilities. This adversary is selected by placing zero-day
vulnerabilities on every port using the “All Open Ports” option in the “Add Zero-day
Vulnerability” dialog box.

The third and final mode of GARNET interaction, selected by the right tab labeled
“Summary Plots” in the side panel, allows users to compute and compare two security
metrics and also to enumerate vulnerability types in the network. Selecting the “Vul-
nerability Types” plot creates pie charts that show the types of vulnerabilities in the
network. Selecting the other plot types creates security metric graphs as described in
the following section.

“What-if” experiments performed in GARNET generate new network variants and
the Summary Plots mode makes it easy to compare these different networks. In par-
ticular, a new network model is created when a user applies recommendations, adds
zero-day vulnerabilities, or changes host asset values. The interface uses a timeline
component to visualize and manage the progression of models that are produced as a
consequence of a user’s incremental modifications. These user-initiated changes,
when applied in succession, are cumulative, and the timeline enforces the notion that
each subsequently generated model is a different version of the previous one. Posi-
tioned at the bottom of the window, the component ties together the three modes of
operation – changes made in one mode are reflected in the other two. The timeline
contains an icon, label, and short description for each distinct version, beginning with
the original network model that was loaded from disk.

Each item displayed in the timeline is selectable by mouse click and the current se-
lection determines the model that is visually represented in the Network Map and At-
tack Graph modes. A view of the component is presented in Fig. 4, and it contains
five different model versions, where “Model 4” is selected. The state of the side panel
controls is also coordinated with the currently selected model, and the controls are
updated whenever the selection changes.

The charts in Summary Plots mode are likewise populated with data from the current
model. Additionally, this mode allows multiple items to be simultaneously selected
from the timeline, enabling side-by-side comparisons of the data from different versions

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 53

Fig. 4. Example of the timeline component displaying a series of network model versions

of the network model. This timeline control facilitates the “what-if” experimentation
that GARNET supports. Several changes can be incrementally applied to the network
model, and the user can quickly and easily jump between the different versions to
examine the altered states of the network.

6 Security Metric Plots

GARNET’s security metrics graph the percentage of network assets captured by an
attacker as a function of different measures of attacker effort. These metrics assume
the attacker goal is to maximize the assets captured for each level of effort. They can
be used to compare the security of different networks if it is assumed that a network is
more secure when an attacker captures fewer assets for the same effort level. Our first
security metric computes assets captured after each successive attacker hop. A hop
indicates the set of hosts that become compromised at the corresponding depth in the
attack graph. For example, the first hop represents the hosts that can be directly com-
promised from the adversary’s starting location. Each subsequent attacker hop repre-
sents those hosts that can be compromised from the set of already compromised hosts.
A hop signifies extra effort on the part of the attacker since it delays capture of the
most important assets, requires more involved attacks, and provides more opportunity
for detection.

A second metric measures the number of unique exploits required by an adversary
to capture network assets. This metric assumes that it is much more work to obtain or
develop and test a new exploit than it is to reuse an existing exploit. One approach to
computing this metric would be to find the optimal set of unique exploits that would
be used by an omniscient attacker with full knowledge of a network for different
numbers of exploits. We feel that this would be misleading because actual attackers
have a limited horizon and can only probe hosts that are reachable from currently
compromised hosts. Thus, at each attack step, we randomly sample from the exploits
that have not yet been used and that compromise one or more hosts that are reachable
from currently compromised hosts. We produce many curves this way that represent
the range of capabilities for a limited-horizon attacker. If enough curves are created,
the upper limit of all the curves approximates the best performance that would be ob-
tained by an omniscient attacker and the spread of curves represents the spread that
would be seen in actual attackers. Since NetSPA computes attack graphs rapidly, we
currently sample 50 random exploit curves. This simple random sample approach
avoids local minima caused by multiple firewalls and has been effective for actual and
simulated test networks.

54 L. Williams, R. Lippmann, and K. Ingols

Fig. 5. Attack graph for a simple adversary a) before and b) after following a recommendation

Fig. 6. Security metrics for a simple adversary on the baseline network

Fig. 5 shows the attack graph for a simple adversary before (a) and after (b) the
most effective recommendation is applied. Before the recommendation is applied, the
attacker compromises many hosts in the upper right “EXTLAN” network and one
host in the upper left “lansubnet” network on the first hop at a root level. On the sec-
ond hop, further hosts in the “lansubnet” are compromised at root level as well as a
host in the small “enclaveDMZ” network. When the recommendation is followed and
the stepping stone host in “lansubnet” is patched, the attacker can no longer compro-
mise hosts outside the starting “EXTLAN” network at the root level. These attack
graphs provide the low-level details that explain how hosts are compromised.

Fig. 6 illustrates our two security metric plots for the simple adversary before the
recommendation is followed. These high-level metrics summarize the network secu-
rity posture for the simple adversary. The graphs in Fig. 6 show the combined asset
values of hosts compromised at a root or administrator level. The first plot of assets
captured versus hops (a) shows that 33% of all network assets are captured after one
hop and roughly 72% are captured after two hops. The second graph (b) consists of
curves representing samples of 50 different randomized attackers, indicating that
roughly 18 to 32 unique exploits need to be available to capture 72% of the total asset
value in this network. A large number of unique exploits is required because this is an
extremely heterogeneous network.

Fig. 7 shows four assets captured versus attack hop graphs displayed together in
GARNET’s Summary Plots mode, after three “what-if” scenarios have been gener-
ated. The upper left plot (a) is the graph for the baseline network and the simple

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 55

Fig. 7. Assets captured versus hop curves for a) a simple attacker on the baseline network, b) a
simple attacker on the patched network, c) a single-zero-day attacker on the patched network,
and d) a comprehensive zero-day adversary on the patched network

adversary. The graph to the right (b) shows the effect of applying the most effective
recommendation that blocks access into the second subnet. It illustrates that only one
hop is possible and that the simple attacker captures roughly 33% of the network as-
sets in that hop. These two graphs clearly indicate that following the recommendation
produces a network that is more secure. The maximum asset value captured is more
than halved and fewer assets are captured after patching. The bottom left graph (c)
shows how many assets can be captured by a single-zero-day adversary on the
patched network. This adversary uses a zero-day exploit to access the patched server
and captures the same assets that were available to the simple attacker without the
patch. The applied patch is thus ineffective for this more capable adversary. Protec-
tion could be provided by more advanced access control or by further compartmental-
izing the network. The lower right plot (d) shows how many assets can be captured by
a comprehensive-zero-day adversary. This upper bound on attacker capabilities shows
that patching and filtering in the existing network is providing some protection. Al-
though plots of assets captured versus unique exploits required are not shown due to
space limitations, they support the above conclusions.

7 Usability Analysis

User evaluations were performed to assess the effectiveness of GARNET’s visual rep-
resentation and GUI design. Previous research in the area of user interface evaluation
[11] suggests that formal methods, such as formulating a proper analysis model or ap-
plying a computerized procedure, are impractical for most applications. As a result,

56 L. Williams, R. Lippmann, and K. Ingols

we chose a more informal technique known as heuristic evaluation. This method
involves presenting evaluators with a user interface and asking them to subjectively
judge the interface according to a set of usability guidelines, known as heuristics.

A group of five evaluators was assembled, all of whom were knowledgeable about
the target domain. Each person was given a brief overview of GARNET and the
evaluation procedure, as well as a list of heuristic guidelines. For the list of guide-
lines, we used a widely accepted set of principles developed by Jakob Nielsen [10]
consisting of ten heuristics. The evaluators were encouraged to explore the interface
as thoroughly as possible, using the guidelines to help them identify aspects of the
tool that represented either a positive feature or a usability problem. They were also
asked to rate each problem in terms of severity and to suggest a solution if possible.
The evaluations were performed independently and at each individual’s own conven-
ience. Results of the evaluations were used to refine GARNET’s initial design and
create the improved version presented in this paper.

Evaluators produced descriptions of strengths and weaknesses of the interface and
recommendations for improvement. The number of comments ranged from 14 to 54
items, with a median of 44. In general, users perceived the layout of the interface as
clean and simple, and they liked the use of the treemaps and colors for conveying in-
formation. They also responded positively to the supported interactions for generating
new versions of the network, the ability to easily jump between these different mod-
els, and the responsiveness of the system in performing these actions. In addition,
they commented on the intuitiveness of being able to directly manipulate the subnet
groups within the display area.

 From the remaining comments that pointed to drawbacks of the system, we ex-
tracted a list of 55 distinct items representing bugs and specific features that could be
implemented or improved. An example of one of the more critical issues related to the
overall organization of the interface controls. In the evaluated version of the interface,
the controls for manipulating host asset values were only visible in Network Map
mode, and the Network Information panel was in its own separate tab and could be
accessed from all three modes. The majority of the evaluators found it difficult to lo-
cate information and thought some of the interactions were inconsistent across modes.
To address these concerns, the side panel controls were reorganized so that the net-
work information and reachability controls appear in Network Map mode and controls
for all interactions that alter the network model are unified in the Attack Graph mode.

Another problem involved the implementation of the timeline. In its original form,
a set of arrows was used to switch between models in two of the modes, while direct
selection of the icons was allowed in the third mode. In addition, the labels and icons
were not very informative. All of the evaluators mentioned that the interaction with
the timeline was inconsistent and non-intuitive. The component was redesigned to
have more descriptive icons and text, be consistent across modes, and use better vis-
ual cues to indicate the selection and progression of network models.

Several additional comments were addressed to further extend the functionality of
the interface and increase its ease of use. These improvements included adding sup-
port for modeling a comprehensive-zero-day attacker by allowing vulnerabilities to be
added to all open ports and enabling users to continuously modify the attacker starting
location. Also, a legend explaining the colors used for levels of compromise in the
attack graph was incorporated into the display.

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 57

The evaluations we collected were a valuable source of feedback about the usabil-
ity of GARNET’s interface. They confirmed the tool’s effectiveness in conveying in-
formation about the attack graph and providing a set of interactions that allows users
to experiment with different scenarios. The recommendations we received about prob-
lematic areas of the interface helped us develop a more functional design, while many
of the comments pointed to larger issues that provide directions for future work.

8 Limitations and Future Work

Although GARNET successfully conveys a significant amount of information through
its visual representation, it is still somewhat limited in its illustration of overall net-
work topology. The user is able to view reachability links between groups of hosts in
different subnets; however, for numerous host groups and dozens of subnets, display-
ing this reachability all at once can produce a confusing jumble of edges. A potential
alternative to displaying the individual links would be to utilize a flow map technique
[15], resulting in merged edges whose varying widths indicate the number of in-
bound/outbound connections. Furthermore, the tree structure of the flow map could be
used to dictate the initial layout of the subnet groups, and filtering devices (such as
routers and firewalls) could be shown along the edges between the subnets they con-
nect. This view would provide a clearer picture of the physical connectivity of the
network. We would also like to explore methods of subnet aggregation to display
large networks with many subnets.

Further work could also extend our adversary models by enabling client-side at-
tacks in which an attacker uses a malicious server to compromise a vulnerable client
machine or sends malicious email attachments. We would also like to explore other
measures of adversary effort such as those related to the complexity of launching at-
tacks or the cost of obtaining attacks. Some of these measures, such as a field called
“Access Complexity,” are already specified in the Common Vulnerability Scoring
System [9] and can be automatically extracted from the NVD [13].

Finally, GARNET should be exposed to further rounds of user testing, including
empirical evaluation by system administrators. This form of user evaluation would
involve presenting a set of target users with the interface and measuring how well
they perform various tasks that focus on important aspects of the tool’s functionality.

9 Conclusions

We have developed GARNET as a visualization tool for attack graphs and network
reachability. It produces a compact visual representation of a network and the ways in
which it can be compromised by an attacker, as well as metrics that summarize the
overall security of the network and recommendations that suggest preventative ac-
tions. Information about individual hosts, the vulnerabilities they possess, and the
reachability between them is easily accessible through the Network Map mode. The
interface enables users to perform “what-if” experimentation by applying recommen-
dations and modifying host asset values. The adversary model can be changed by

58 L. Williams, R. Lippmann, and K. Ingols

varying the attacker location and introducing new zero-day vulnerabilities. Because
the computation times for constructing attack graphs with thousands of hosts are typi-
cally less than a few seconds [4], we can dynamically regenerate displays at interac-
tive speeds. Finally, security metrics are calculated and displayed in chart form to
facilitate comparisons between networks. User testing provided excellent feedback
that improved many aspects of GARNET’s design and also provided insights for fu-
ture development which we hope to apply to subsequent iterations of this tool.

Acknowledgements. We would like to thank Seth Webster, Tamara Yu, and Chris Con-
nelly for their participation in the user evaluations and their feedback on GARNET’s
interface.

References

1. Bederson, B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making
effective use of 2d space to display hierarchies. ACM Transactions on Graphics 21(4),
833–854 (2002)

2. Buckshaw, D., Parnell, G., Unkenholz, W., Parks, D., Wallner, J., Saydjari, S.: Mission
oriented risk and design analysis of critical information systems. Military Operations Re-
search 10(2), 19–38 (2005)

3. Evans, S., Heinbuch, D., Kyle, E., Piorkowski, J., Wallner, J.: Risk-based systems security
engineering: stopping attacks with intention. IEEE Security and Privacy Magazine 2(4),
59–62 (2004)

4. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network
defense. In: Proceedings Computer Security Applications Conference (ACSAC), pp. 121–
130 (2006)

5. Jaquith, A.: Security metrics: replacing fear, uncertainty, and doubt. Addison Wesley,
Reading (2007)

6. Kewley, D., Lowry, J.: Observations on the effects of defense in depth on adversary be-
havior in cyber warfare. In: Proceedings of the 2001 IEEE Workshop on Information As-
surance and Security United States Military Academy, West Point, NY, 5-6 June (2001)

7. Lippmann, R., Ingols, K.: An annotated review of past papers on attack graphs. MIT Lin-
coln Laboratory, Lexington, MA, Tech. Rep., 2005, ESC-TR-2005-054 (2005)

8. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Cunningham, R.:
Validating and restoring defense in depth using attack graphs. In: MILCOM 2006, Wash-
ington, DC (2006)

9. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to common vulnerability scoring
system version 2.0 (2008) (Accessed 23 April 2008),

 http://www.first.org/cvss/cvss-guide.html
10. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection

Methods. John Wiley and Sons, New York (1994)
11. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings ACM CHI

1990 Conference, Seattle, WA, pp. 249–256 (1990)
12. Noel, S., Jajodia, S.: Understanding complex network attack graphs through clustered ad-

jacency matrices. In: Proceedings Computer Security Applications Conference (ACSAC),
pp. 160–169 (2005)

 GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool 59

13. NVD National Vulnerability Database (2008) (Accessed 11 April 2008),
 http://nvd.nist.gov
14. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: a logic- based network security ana-

lyzer. In: Proceedings of the 14th Usenix Security Symposium 2005, pp. 113–128 (2005)
15. Phan, D., Xiao, L., Yeh, R.B., Hanrahan, P., Winograd, T.: Flow map layout. In: Proceed-

ings of the IEEE Symposium on Information Visualization 2005, pp. 219–224 (2005)
16. RedSeal Systems Inc. (2008) (Accessed 11 April 2008), http://www.redseal.net
17. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE Transac-

tions on Visualization and Computer Graphics 12(5), 733–740 (2006)
18. Skybox Security Inc. (2008) (Accessed 11 April 2008),

 http://www.skyboxsecurity.com
19. SWIG (2008) (Accessed 11 April 2008), http://www.swig.org
20. Symantec Corp. Internet security threat report (2008) (Accessed 11 April 2008), http://

www.symantec.com/business/theme.jsp?themeid=threatreport
21. Williams, L., Lippmann, R., Ingols, K.: An interactive attack graph cascade and reachabil-

ity display. In: VizSec 2007, Sacramento, CA (2007)

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 60–67, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Graph-Theoretic Visualization Approach to Network
Risk Analysis

Scott O’Hare1, Steven Noel2, and Kenneth Prole1

1 Secure Decisions, Division of Applied Visions Inc., 6 Bayview Ave., Northport, NY, USA
2 Center for Secure Information Systems, George Mason University, Fairfax, VA, USA

{ScottO,KennyP}@securedecisions.avi.com, snoel@gmu.edu

Abstract. This paper describes a software system that provides significant new
capabilities for visualization and analysis of network attack graphs produced
through Topological Vulnerability Analysis (TVA). The TVA approach draws
on a database of known exploits and system vulnerabilities to provide a con-
nected graph representing possible cyber-attack paths within a given network.
Our visualization approach builds on the extensive functionality of the yWorks
suite of graphing tools, providing customized new capabilities for importing,
displaying, and interacting with large scale attack graphs, to facilitate compre-
hensive network security analysis. These visualization capabilities include
clustering of attack graph elements for reducing visual complexity, a hierarchi-
cal dictionary of attack graph elements, high-level overview with detail drill-
down, interactive on-graph hardening of attacker exploits, and interactive graph
layouts. This new visualization system is an integrated component of the
CAULDRON attack graph tool developed at George Mason University.

Keywords: network security, attack graph, exploit analysis, vulnerability as-
sessment, visualization, situational awareness.

1 Introduction

Powerful analytic tools generally require well-designed user interfaces in order to be
fully effective in their designated applications. This is especially true for tools de-
signed to enhance network security: There are order-of-magnitude complexity issues
associated with network topology maps, traffic data collection, and expert systems
built around attack profile data and traffic correlation. For such analysis to be com-
prehensible, we need sophisticated visualization and interaction mechanisms.

We describe a visualization component for network attack graph analysis. This is
an integrated component of the CAULDRON tool developed at the Center for Secure
Information Systems at George Mason University. CAULDRON analyzes network
topology and vulnerability data, combined with a comprehensive attack profile data-
base. This Topological Vulnerability Analysis (TVA) [1] generates a complete attack
graph showing all possible attack paths through a given network. The attack graph
represents vulnerable network hosts and exploits that may be launched against them,
with attack state transition data determined by the exploits. This attack graph, is still
generally too large to be viewed and understood in its entirety.

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 61

Our approach to the visualization problem for TVA is based on tools explicitly de-
signed for displaying and interactively analyzing graphs of interconnected nodes. A
number of such tools are available, including Tom Sawyer, JGraph, Prefuse, Jviews
Diagrammer, and yWorks. After a careful survey, we selected yWorks [2] for this
application, based on its extensive feature set, deep and comprehensive Java API, and
attractive deployment licensing terms.

The resulting software component provides powerful visualization capabilities for
CAULDRON TVA attack graphs. A key feature is the implementation of hierarchical
node and edge grouping along lines of protection domains. Protection domains are
sets of machines with unrestricted access to one another’s vulnerabilities, forming a
completely connected sub-graph. Within each domain, it is sufficient to encode a
particular host exploit only once, then implicitly, all hosts within the domain can carry
out that exploit. Across domains, the exploits are all explicit. Thus our protection
domain abstraction preserves all the information of the complete (ungrouped) graph,
including intra-domain exploits. This abstraction reduces complexity within each
protection domain from quadratic to linear, providing significant scalability, facilitat-
ing analyst navigation and cognition [3].

In our visualization system, a high-level view clearly displays exploit relationships
among protection domains, which can be opened individually or in groups for deeper
views of attack properties and relationships. A complete listing of active exploits and
their associated details is available at all times relative to any selected component.
Interactive hardening of on-graph nodes and exploits can be emulated to study the
effects of remediation and “what-if” scenarios. Additionally, a suite of interactive
layout tools, including manual repositioning of entities, along with full-scale layout
algorithms, is continuously available to restructure or simply clean up the display.

The next section gives an overview of the CAULDRON tool, including the nature
and utility of network attack graphs. In Section 3, we discuss yWorks architecture and
capabilities, in relation to requirements for CAULDRON attack graph visualization.
We also describe custom components that meet special requirements, as well as archi-
tectural features for performance and visual comprehension. Section 4 then describes
the resulting visualization capabilities, including operational scenarios and ideas for
future improvements.

2 CAULDRON Tool Capabilities

The CAULDRON TVA approach simulates incremental network penetration, show-
ing all possible attack paths through a network. This simulation is based on a detailed
model of the network configuration, attacker capabilities, and desired attack scenario.
Because of the inherent interdependencies of vulnerability across a network, such a
topological approach is necessary for a full understanding of attack risk.

CAULDRON captures configuration details for a network by processing the output
of network scanning tools (Fig.1). It combines scans from various network locations,
building a complete map of connectivity to vulnerable services throughout the net-
work. It integrates with Nessus, FoundScan, and Retina, and Symantec Discovery.
Integration with Altiris is currently under development.

62 S. O’Hare, S. Noel, and K. Prole

Fig. 1. CAULDRON architecture

CAULDRON maintains a comprehensive database of modeled attacker exploits
(currently over 20,000), based on software vulnerabilities reported in various sources,
including Symantec DeepSight (a direct XML feed of Bugtraq along with other data),
and MITRE’s Common Vulnerabilities and Exposures (CVE). From the input model
of network configuration and attacker exploits, CAULDRON computes a graph com-
prising all possible attack paths through the network. This graph is computed through
simulated multi-step attacks according to a given user scenario.

The TVA approach as implemented by CAULDRON is not simply a cross-
referencing of security data. Rather, it is a simulation of multi-step network penetration,
with a full range of host vulnerability types and network configuration variations. For
example, we have implemented exploit rules for buffer overflows, user logins, file trans-
fers, port forwarding, traffic sniffing, spoofing attacks, client-side attacks, and denial-
of-service.

Further, the ability to experiment through such what-if analyses is a powerful
CAULDRON capability. The analyst can specify a starting point for the attack (the
presumed threat source), as well as an attack goal (critical network asset to protect).
The analyst can also model the effects of software patches or other mitigation solu-
tions, which are included in the CAULDRON database. Once an attack graph has
been computed, CAULDRON analyzes the results and provides recommendations for
optimal network defenses [4].

3 Attack Graph Visualization

Capabilities for generating and visualizing TVA attack graphs have undergone sig-
nificant evolution over time. TVA technology was originally limited to computing
single attack paths, and the original presentation was a simple table, as in Fig.2(a).
Later, the capability for efficient computation of all possible paths was developed, but
visualization of the resulting graphs in their full detail is difficult to assimilate, e.g.,
Fig.2(b). Therefore primitive graph clustering techniques were developed, in special-
purpose code, which was cumbersome and had limited interactive capabilities, as
shown in Fig.2(c). Later, a more advanced visualization capability was developed

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 63

Fig. 2. Evolution of attack graph visualization capabilities

using Tom Sawyer, shown in Fig.2(d), although this exhibited performance problems
for larger attack graphs. Our implementation using yFiles adds new analytic and dis-
play capabilities, while addressing these problems.

3.1 Loading the Attack Graph

The attack graph structure is delivered in an XML document conforming to a specific
XML Schema Definition (XSD). We leverage Apache’s XMLBeans technology, a
Java-to-XML binding framework, to import the attack graph XML. Existing yFiles
XML import capabilities require the existence of an Extensible Stylesheet Language
Transformation (XSLT) into one of several standardized graph representations, which
is not sufficiently general for our purposes. The XMLBeans component uses an XSD
file to build a class library corresponding to the internal document structure. Utilities
parse XML data structures and ensure conformance with the XSD, allowing us to
acquire an attack graph as an organized collection of instantiated Java objects.

3.2 The Node Hierarchy

The attack graph is built within yWorks by transforming attack graph machine (host)
objects into graph nodes, and exploit objects into graph edges. Several layers of
graphical nesting are also performed. The most fundamental of these is based on pro-
tection domains, which are represented within the yFiles graph as group or folder
nodes. (From a display or layout perspective, a group node is essentially a folder node
that has been opened, and whose child elements are visible.) Machine nodes within a
protection domain are represented as child nodes of the corresponding group or
folder. We perform the layout of nodes within a group as the graph is assembled and
initially present the graph in its top-level layout, in which only protection domains
and the exploits connecting them are visible.

64 S. O’Hare, S. Noel, and K. Prole

Presenting an initial top-level view yields an enormous improvement in the initial
performance of the graph layout algorithm. Execution time of layout algorithms in-
creases rapidly with the number of visible nodes and edges to be displayed. Earlier
efforts to import large attack graphs were quite time-consuming, primarily due to this
initial layout overhead. A top-level layout approach, combined with yFile’s ability to
perform so-called incremental layout algorithms allow us to import and display large
attack graphs in seconds that formerly had taken several hours to load.

3.3 The Edge Hierarchy

Another feature to enhance layout performance involves the manner in which exploits
are represented as edges. Only exploits that connect machines in different protection
domains appear as edges in our graph, that is, we suppress edge creation for intra-
domain edges. This significantly accelerates initial graph setup, as well as subsequent
layout steps resulting from interactive and redrawing operations. We also aggregate
into a single edge any multiple edges connecting the same pair of nodes. These edge
policies provide significant improvements in graph readability in addition to perform-
ance enhancements.

In the hierarchical navigation of nodes, no information is lost; one has merely to
expand a folder node to acquire information hidden at a lower level. With the edge
representation policies described above, it is not possible, in general, to recover a full
edge set through simple expansion. Special mechanisms have been implemented to
remedy this. Aggregated edges are labeled with an edge count, and edge line thick-
ness also indicates the total number of exploits being represented. Additionally, the
tool contains an exploit table that displays the full list of exploits, with complete at-
tributes, associated with any single aggregated edge. Simply selecting an edge of the
graph populates this table, as shown in Fig.3.

The exploit table also tracks node selection: all exploits associated with a given
machine (node), or protection domain (folder or group node) are displayed in the
exploit table whenever the node is selected. This includes the display of intra-domain
exploits, even though these are not explicitly represented by edges. Thus the full set
of information provided by an attack graph is always available, and can be viewed in
an intuitive way within the user interface. The exploit table allows a “microscopic”
analysis of exploit details, while fundamental topology and network relationships are
kept simple and understandable within the graph view.

Fig. 3. Exploit table from the attack graph visualization tool

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 65

3.4 Additional Graph Visualization Features

Hardening: Viewing vulnerabilities or potential exploits within a network, the ana-
lyst is generally faced with multiple options for remediation. These options often
involve choosing a machine or set of machines to protect (harden), or identifying
specific exploits to protect against. We visually display the effects, in graphical terms,
that occur when a specific node or protection domain is hardened or when a specific
exploit is neutralized. This involves determining which elements are no longer vul-
nerable after the hardening, and removing these elements from the attack graph.
These elements are placed into a separate list, which in effect quantifies the benefits
to be obtained from the specific hardening operation.

Layout Algorithms: The yFiles engine incorporates an impressive architecture for
implementing layout algorithms on a given attack graph. Many of these algorithms are
the end product of significant mathematical and computational research. Having a rich
palette of alternate layouts to choose from greatly strengthens the analytic benefits of
graph visualization, since viewing data with different layout schemes can often enable
recognition of fundamental underlying patterns that might otherwise be invisible. In-
cremental layout algorithms are intended to optimize the results of small operations,
such as opening a folder or dragging a node, while from-scratch or global layout algo-
rithms generally produce radical transformations of the entire set into an entirely new
view. We permit the invocation at any time of hierarchical, organic, circular, or or-
thogonal layout algorithms.

Aggregation: The ability to apply additional levels of aggregation to an existing
display can be useful to an analyst wishing to study larger-scale behavior or simplify
an existing region of the graph. We allow selection of multiple entities and aggrega-
tion into a single folder. This requires incremental layout to be performed, and edge
aggregation quantities to be re-computed.

4 Visualization Features

Fig.4 shows the components of our attack graph visualization tool. The main graph
view is the attack graph showing all possible (directed) paths through the network, in
which the analyst may drilldown, perform what-if analysis, etc. In the scenario shown, a
particular attack starting point (green) and ending point (red) are specified. Two protec-
tion domains are expanded to show their member hosts and the exploits among them.
The exploit table displays the relevant exploits (as both attackers and victims) for the
selected protection domain. Mouse hovering over an exploit field shows the full data for
that field. The overview pane maintains the context of the overall graph. The tree view
represents the entire attack graph in the form of a directory hierarchy. The harden list
logs interactive what-if network hardening decisions, while the defense shows optimal
network hardening recommendations automatically computed by CAULDRON.

66 S. O’Hare, S. Noel, and K. Prole

Fig. 4. Major components of the attack graph visualization tool

Graph interactions: The graph view supports a number of interactive edit mode
features, including selection, deletion, relocation, and resizing of elements. Protection
domains and other higher level nodes are opened and closed by clicking the +/- icon
in the upper left corner. The graph can be zoomed to any magnification and posi-
tioned arbitrarily. The main graph view, tree view, and exploit table are all linked, so
that user focus on any one component shifts focus on the others.

Context Menu: Context menu options are available by right-clicking an item or
whitespace in the display, for network hardening simulation, deleting nodes, manipu-
lating folders, etc. The context menu is also supports aggregating nodes into new
folders. Another feature, called traversal, initiates an animated trace (in red) of all
exploits originating or terminating in a selected node, providing focus on specific
attack scenarios within a complex attack graph display.

Toolbar Features: A number of other useful features are implemented in the application
toolbar, such as buttons for invoking layout algorithms, and the interactive functions of
edit mode. The export function exports the graph view in *.JPG, *.GIF, or *.SVG for-
mats. The copy to clipboard transfers either the graph view or the entire graph to the
clipboard. The magnifying glass zoom tool has arbitrary radius and power, and the cursor
remains active at the center of the magnified view.

5 Related Work

Early work in automated generation of attack graphs involved explicit enumeration of
attack states, which had serious scalability problems [5][6][7]. Under reasonable
assumptions, complexity of attack graph generation was shown to be polynomial [8].
Attack graphs have also been generated efficiently through relational [9] and rule-
based [10] approaches. Attack graph research has generally focused on efficiency,

 A Graph-Theoretic Visualization Approach to Network Risk Analysis 67

rather than visualization methods. The approach in [11] visualizes single-step attacks
and reachability only. Attack graph visualization capabilities in commercial tools
remain limited [12][13]. Our work is unique in that it is the first practical application
of the attack graph visual clustering framework proposed in [3].

6 Summary

This paper describes a graph-theoretic approach to the problem of network risk visu-
alization. This provides powerful new capabilities for visual analysis of attack graphs,
and is an integrated component of the CAULDRON tool developed at George Mason
University. This approach is exemplary in that it leverages the comprehensive yFiles
architecture, bringing flexible new visualization and analysis capabilities to the net-
work security realm. This provides essential building blocks for analyzing, visualiz-
ing, editing, and drawing network attack graphs, opening the door to a wide range of
new analytic capabilities.

References

1. Jajodia, S., Noel, S.: Topological Vulnerability Analysis: A Powerful New Approach for
Network Attack Prevention, Detection, and Response. Indian Statistical Institute Mono-
graph Series. World Scientific Press, Singapore (2008)

2. yWorks – The Diagramming Company,
 http://www.yworks.com/en/index.html

3. Noel, S., Jajodia, S.: Managing Attack Graph Complexity through Visual Hierarchical Ag-
gregation. In: Workshop on Visualization and Data Mining for Computer Security (2004)

4. Wang, L., Noel, S., Jajodia, S.: Minimum-Cost Network Hardening Using Attack Graphs.
Computer Communications 29(18), 3812–3824 (2006)

5. Phillips, C., Swiler, L.: A Graph-Based System for Network-Vulnerability Analysis. In:
New Security Paradigms Workshop (1998)

6. Ritchey, R., Ammann, P.: Using Model Checking to Analyze Network Vulnerabilities. In:
IEEE Symposium on Security and Privacy (2000)

7. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated Generation and
Analysis of Attack Graphs. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy (2002)

8. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, Graph-Based Network Vulnerability
Analysis. In: 9th ACM Conference on Computer and Communications Security (2002)

9. Wang, L., Yao, C., Singhal, A., Jajodia, S.: Interactive Analysis of Attack Graphs Using
Relational Queries. In: Data and Applications Security XX (2006)

10. Ou, X., Boyer, W., McQueen, M.: A Scalable Approach to Attack Graph Generation. In:
13th ACM Conference on Computer and Communications Security (2006)

11. Williams, L., Lippmann, R., Ingols, K.: An Interactive Attack Graph Cascade and Reach-
ability Display. In: Workshop on Visualization for Computer Security (2007)

12. Skybox Security, http://www.skyboxsecurity.com/
13. RedSeal Systems, http://www.redseal.net/

Improving Attack Graph Visualization
through Data Reduction and Attack Grouping�

John Homer1, Ashok Varikuti1, Xinming Ou1, and Miles A. McQueen2

1 Kansas State University, USA
{jhomer,ashokv,xou}@ksu.edu

2 Idaho National Laboratory, USA
miles.mcqueen@inl.gov

Abstract. Various tools exist to analyze enterprise network systems and to pro-
duce attack graphs detailing how attackers might penetrate into the system. These
attack graphs, however, are often complex and difficult to comprehend fully, and a
human user may find it problematic to reach appropriate configuration decisions.
This paper presents methodologies that can 1) automatically identify portions of
an attack graph that do not help a user to understand the core security problems
and so can be trimmed, and 2) automatically group similar attack steps as virtual
nodes in a model of the network topology, to immediately increase the under-
standability of the data. We believe both methods are important steps toward im-
proving visualization of attack graphs to make them more useful in configuration
management for large enterprise networks. We implemented our methods using
one of the existing attack-graph toolkits. Initial experimentation shows that the
proposed approaches can 1) significantly reduce the complexity of attack graphs
by trimming a large portion of the graph that is not needed for a user to un-
derstand the security problem, and 2) significantly increase the accessibility and
understandability of the data presented in the attack graph by clearly showing,
within a generated visualization of the network topology, the number and type of
potential attacks to which each host is exposed.

Keywords: attack graph, attack graph visualization, dominator, graph clustering,
network security analysis.

1 Introduction

Attack graphs have been developed to aid in identification and correction of misconfig-
urations in enterprise network systems, by providing a visual representation of poten-
tial attack paths [1,2,3,4,5,6,7,8]. Much work has already been done in the generation
of attack graphs, producing more efficient techniques for building them [6,7]. Attack
graphs, however, are difficult for a human to utilize effectively because of their com-
plexity [9,10,11]. Even a network of moderate size can have dozens of possible attack
paths, overwhelming a human user with the amount of information presented. It is not

� This work is partially supported by the National Science Foundation under Grant No. 0716665,
and U.S. Department of Energy. Any opinions, findings and conclusions or recomendations
expressed in this paper are those of the authors and do not necessarily reflect the views of the
U.S. government agencies.

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 68–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improving Attack Graph Visualization 69

easy for a human to determine from the information in the attack graph which configura-
tion settings should be changed to best address the identified security problems. Without
a clear understanding of the existing security problems, it is difficult for a human user
to evaluate possible configuration changes and to verify that optimal changes are made.

Previous works have introduced improvements in the visualization of attack paths
and the overall presentation of attack graph data. Noel, et al. suggested that complexity
can be reduced through the use of protection domains to represent groups of machines
with unrestricted interconnectivity [9,10]. Lippmann, et al. introduced visualization ap-
proaches to emphasize critical attack steps while clearly showing host-to-host reacha-
bility [11].

In this paper, we show that by utilizing the logical semantics of an attack graph, one
can 1) distinguish attack steps based on their usefulness for a human to quickly under-
stand the core security problems in an enterprise network, and trim those that do not
contribute much for this purpose; 2) identify attack steps that share similar semantics,
and thus can be grouped and presented as a single virtual node. These techniques can
further improve the visualization of attack graphs to make them more useful in practice.

For our implementation, we use the MulVAL attack graph tool suite [7,12], which
provides reasonable performance and scalability for enterprise networks of a realistic
size. MulVAL produces complete logical attack graphs, which are easily mapped back
to a visualization of the network topology, based on the input data.

Figure 1 depicts an example enterprise network that is based on a real (and much big-
ger) system; we will return to this example throughout the paper. The network includes
three subnets: a DMZ (Demilitarized Zone), an internal subnet, and an EMS (Energy
Management System) subnet, which is a control-system network for power grids. In this

Enterprise Network

Control
Network
(EMS)

Communication Servers

Operating
Station

Data
Historian

Web Server

VPN Server

Citrix
Server

User
Workstations

File Server

Internet

DMZ
CORP Internal

Fig. 1. An example enterprise network

70 J. Homer et al.

example, we will assume that host-grouping has already been applied, based on similar
configurations; the workStation node, for example, might be an abstracted grouping of
one hundred workstation machines with comparable setups. Both the web server and
the VPN server are directly accessible from the Internet. The web server can access the
file server through the NFS file-sharing protocol; the VPN server is allowed access to all
hosts in the internal subnet (but not the EMS subnet). Outside access to the EMS subnet
is only allowed from the Citrix server in the internal subnet, and even then only to the
data historian. In this example, we assume that the attacker’s goal is to gain privileges to
execute code on the commServer. From the commServer, an attacker could send com-
mands to physical facilities such as power-generating turbines, which can cause grave
damage to critical infrastructures.

A visualization of the MulVAL attack graph is shown in Figure 2, identifying a large
number of potential attack paths in this network. This visualization is produced by
mapping the full MulVAL logical attack graph to the network subnet topology, using
GraphViz to construct the image, and applying clustering techniques similar to Noel et
al.’s approach [10]. The black solid lines represent connectivity between subnets and
gateways (router, firewall, et al.). Machines in the same subnet (represented as a rect-
angular cluster) have unrestricted access to each other. The red dotted lines indicate
attack propagation paths as mapped from the full logical attack graph. This visualiza-
tion omits a large amount of information from the original full attack graph, such as
pre- and postconditions for each attack step. We believe a simple visualization of at-
tack paths directly on the network topology will be useful in practice, since it relates
the information conveyed by the attack graph to the concrete entities in an enterprise
network, and a system administrator will likely find it easier to understand than the full
attack graph. The full logical attack graph (see Appendix A) contains all of the same
information shown in Figure 2, portraying all possible paths by which the commServer
could be compromised; the breadth of this information, however, leads to a graph so
large and complicated as to be unreadable by a human user.

Even after this simplification, the attack paths in the visualization may still overwhelm
a user. In this paper we will focus on how to further reduce the complexity through two
techniques. First, we observe that there are a number of logically valid attack steps that
probably need not be shwon to the user for him/her to understand the security problem.
For example, an attacker who has gained privileges on the workStation machine in the
internal subnet has opportunity to exploit the webServer in the DMZ. Though possi-
ble, this attack step is intuitively unhelpful to understanding the security problem: the
attacker would have to compromise DMZ to gain privilege on workStation in the first
place. Showing users the attack steps “back” to DMZ does not provide any additional in-
sights. In reality, these attack steps are likely to be useless to the attacker as well. Another
example of would be attacking the fileServer from the citrixServer; Since we assume
the commServer is the attacker’s goal, an attacker with privileges on the citrixServer
already has all of the necessary privileges to attack the EMS subnet through the dataHis-
torian. The user gains nothing useful by knowing that the attacker can further attack the
fileServer from the Citrix server. Second, we observe that the complexity of the attack
graph does not necessarily reflect complexity in security vulnerabilities. Employing a
compromised user account, an attacker can access the citrixServer from the vpnServer,

Improving Attack Graph Visualization 71

INTERNET

DMZ

CORP

EMS

attacker

webServer

vpnServer

fileServer

workStation

printer

citrixServer

operatingStation

dataHistorian

commServer

innerFirewall

outerFirewall

Fig. 2. Attack graph visualization

workStation, and fileServer; using a Trojan horse attack, an attacker can gain access to
the citrixServer from the fileServer. (The edge from fileServer to citrixServer represents
both potential attack steps). Although there are four distinct attack steps that can enable
an attacker to compromise the citrixServer, these attack steps utilize only two distinct ex-
ploitations. This fact is obscured in the attack graph by the separate attack steps leading
to citrixServer from different host machines.

We believe that the attack graph complexity can be further reduced. In order to make
an attack graph a useful tool for configuration management, we identify as a research
challenge the need for presenting the security problems expressed by an attack graph
in a manner that enables a human user to more quickly grasp the core of the security
problem. Our contributions are:

1. We developed an algorithm to identify portions of an attack graph that are not help-
ful for a user to understand the core security problems, and reduce the amount of
data presented to the user by trimming those portions. When the amount of in-
formation presented in the attack graph is reduced, we believe that core security
problems will be more quickly identifiable from the attack graph.

72 J. Homer et al.

2. We developed a method to create virtual nodes to represent groupings of similar
exploitations. In this approach, each attack step edge leading into a host represents
a unique attack on that machine. We believe that this approach will increase the un-
derstandability of the attack graph data by more clearly displaying the exploitability
of each host.

Our approach to trimming attack steps ensures that all distinct attack paths will be
retained in the trimmed attack graph, while removing data not beneficial to the under-
standing of core security problems. Host-grouping techniques have already been shown
to be effective for reducing complexity [6,9,10]. We show that further gains can be
made in grouping similar exploits from multiple sources, which makes clearly visible
the number of exploits available on a given machine and all of the possible sources for
each potential exploit. It is easy then to see all attack steps that can be eliminated by
resolving the vulnerability enabling a specific exploit.

The trimming algorithm is presented in Section 2. The exploit grouping approach is
presented in Section 3. We will discuss related work in Section 4 and conclude with a
discussion of future work on these approaches in Section 5.

2 Identifying and Removing “Useless” Attack Steps

In examining the attack graph, we found that many of the attack steps, while valid from
a logical point of view, are not helpful for a human user to comprehend the core security
problems in the network configurations. They share a common characteristic which is
they do not reveal the most important vulnerability in the system since the attacker does
not penetrate “deeper” into the enterprise network along those steps. While these steps
contain important information that would be useful if one wished to block every possible
attack path, they can also be distracting to a human reader and often hides the root causes
of the security problems. It is thus beneficial to remove these less useful attack steps from
the attack graph so that the security problems become easier to grasp for a human reader.

We refer to attack steps that are not useful for a human reader to understand the
underlying security problems as “useless” attack steps. Generally, these “useless” attack
steps involve an attack on a machine further from the goal machine than the machine
from which the attack is made. In the example described earlier, for instance, one valid
attack step enables an attacker with privileges on the workStation to gain privileges on
the webServer, but this attack would not bring the attacker any closer to the presumed
goal of accessing the commServer.

Our classification of “useful” and “useless” edges is meant to reflect a prioritization
of the data contained in the attack graph. We can then provide a simplification of the
original attack graph, highlighting attack reachability between hosts to enable a human
user to more quickly comprehend fundamental vulnerabilities in the network. It is im-
portant to emphasize that the so-called “useless” attack steps are valid and important to
consider when determining upon appropriate countermeasures. However, when the user
is first presented with the attack graph, understanding these paths is not crucial for un-
derstanding overall security threats. It would be more beneficial if the user can quickly
understand the core security problems from a simplified attack graph. For example, in
Figure 3 the attacker’s starting machine is host 1, and his goal is to compromise host 4.

Improving Attack Graph Visualization 73

11

22

33

44

Fig. 3. Example useless attack steps

INTERNET

DMZ

CORP

EMS

Fig. 4. Subnet graph, built from example in
Section 1

There are two paths: 1 → 2 → 3 → 4 and 1 → 3 → 4. Intuitively the attack step from
machine 3 to machine 2 is not useful, since it does not help the attacker to reach his
goal. We would like to trim those steps.

The immediately obvious solution for identifying these “useless” attack steps is to
implement a breadth-first search algorithm to compute the distance of machine from the
goal machine, as measured by the minimum number of inter-host attack steps necessary
to reach the goal from that machine. Machine 2 in the above example would have a
distance of 2 and machine 3 would have a distance of 1. Attack steps that move from a
machine to another machine with the same or greater distance (e.g. 3 → 2) could then
be labelled “useless” and trimmed. While this approach would work in some cases, in
many cases useful attack paths would be trimmed. For example, this algorithm would
also trim the step 1 → 2, and thus lose the complete attack path 1 → 2 → 3 → 4.
Actually only attack paths with the shortest length will be preserved and all other paths
will be trimmed. This approach can lose valuable information, especially in cases when
an attacker might follow a longer attack path due to ease of exploit or better stealthiness
along the longer path.

Another seemingly correct solution is to perform a simple depth-first search and trim
the back edges in the DFS tree. However, depending on the order of traversing a node’s
multiple children, both edge 2 → 3 and 3 → 2 could be back edges in the DFS tree. So
this method does not work either.

We have developed a two-level approach to identifying and removing “useless” at-
tack steps. First, we create a directed graph with subnets as nodes and possible inter-
subnet attack steps as edges. From this directed graph, we then construct a dominator
tree to recognize dominance and post-dominance relationships between subnets with
respect to presumed attacker location and his goal. The subnet where the attacker is
located will be the source node and the subnet where the goal machine is located will
be the sink node. Let d, n, p be vertices in a directed graph. Then d dominates n if ev-
ery path from the source node to n must go through d. We write d dom n for this fact.
Also, p post-dominates n if every path from n to the sink node must go through p. We
write p postdom n for this fact. In the subnet graph of Figure 4, assuming that INTER-
NET is the source and EMS is the goal, some examples of dominance relationships are
DMZ dom CORP and CORP dom EMS. We also have EMS postdom CORP and CORP
postdom DMZ.

74 J. Homer et al.

For any two subnets X and Y, we then identify as “useless” all inter-subnet attack
steps X → Y where Y dom X or X postdom Y . If Y dom X , then an attacker who has
gained privileges in subnet X must already have privileges in subnet Y (or the attacker
would not have been able to transition to X). If X postdom Y , then moving from X
to Y will not help the attacker either since he would have to return to X in order to
reach his goal. Therefore, any transitions between two hosts in different subnets that
fits one or both of these cases is “useless” and will be trimmed from the attack graph.
They are distracting for a human reader trying to comprehend other, more enlightening
attack paths. In the attack graph shown in Figure 2, every transition from the CORP
subnet to the DMZ will be trimmed since DMZ dominates CORP. On the other hand,
the transition from CORP to the control network subnet EMS will be retained.

After applying the inter-subnet transition trimming, we then address intra-subnet
transitions. An attack step between two machines A → B in the same subnet is retained
in only two cases. First, if the subnet contains the goal machine, the transition is retained
only if B is the goal. Any other transition within this subnet will be trimmed. In reality,
an attacker might need to transition to other machines in the same subnet for the purpose
of, eg. obtaining more computing power. However, these attack steps are not useful for
a human to grasp the core security problem. Second, if the subnet does not contain the
goal machine, the transition is useful only if B would provide an attacker with access to
another subnet that would be deemed useful according to the subnet dominator tree, and
even then only if that same access is not available from A. In the attack graph shown in
Figure 2, the transition from fileServer to workStation is useless, since the workStation
would not provide an attacker with new, useful access; however, the transition from
fileServer to citrixServer is useful, since, from citrixServer, an attacker could access the
EMS subnet.

Figure 5 shows the resulting graph after both levels of trimming levels are applied
to the sample network. The attack graph now shows three key attack paths to reach the
Citrix server, from which subnet EMS is accessible:

Internet → web server → file server → Citrix server
Internet → VPN server → workstation → Citrix server
Internet → VPN server → Citrix server

A careful reader might ask why the second attack attack path is retained, given the
existence of a shorter path (3). As mentioned above, shorter attack paths cannot always
subsume longer ones, since the exploits along the path may be different.

3 Abstraction of Attack Traces

Even after identifying and removing “useless” attack steps, many edges will likely
remain in the visualization. Humans assessing the data presented in the attack graph
will benefit from the reduced amount of data, but still face other obstacles to clear and
straightforward understanding of the underlying security issues in the current network
configuration. One hindrance to easy understanding of attack graph data can be the
number of edges directed into a single host machine in the attack graph. In Figure 5, for
example, the citrixServer node in the Corp subnet is the destination point of four attack

Improving Attack Graph Visualization 75

INTERNET

DMZ

CORP

EMS

attacker

webServer

vpnServer

fileServer

workStation

printer

citrixServer

operatingStation

dataHistorian

commServer

innerFirewall

outerFirewall

Fig. 5. Attack graph with both inter- and intra-subnet trimming applied

steps (shown in three edges), even after “useless” attack steps have been trimmed from
the graph. It is not immediately clear to the user how many different possible exploita-
tions are being represented, and how many sources for exploitations of the citrixServer
are repetitions of a single attack type.

Our solution to this difficulty is to create an abstraction of each exploitation with
multiple sources, from which only one edge will lead into the exploited node. In this
way, it is much easier for a human user to see how many exploitations are possible on
a given host and what potential attack steps could be eliminated by resolving the con-
ditions enabling a specific exploitation. Potential exploits with only one source, on the
other hand, will be represented by a direct attack step edge between the two machines,
to maintain as much simplicity in the graph as possible.

In the attack graph shown in Figure 5, three of the edges that lead to the citrixServer
represent different source points but only a single security issue in the network, namely
the uncertain reliability of the user with account “ordinaryUser.” If this user account is
compromised, an attacker could gain access to the citrixServer from any of the three
host machines with edges leading to the abstracted exploitation node. By creating a
virtual node to represent the existence of this security concern, it is much easier to
see now that if the reliability of this user account can be verified, most of the possible

76 J. Homer et al.

DMZ

CORP

EMS

INTERNET

vpnServer

webServer

fileServer

workStation printer

principal
compromised

citrixServer

dataHistorian

commServer

attacker

operatingStation

innerFirewall

outerFirewall

Fig. 6. Attack graph, trimmed, with virtual exploitation nodes

attacks leading to citrixServer will be eliminated. Our attack graph visualization will
show transitions to an abstracted exploit node as blue lines, while red lines will indicate
direct host-to-host attacks as well as attacks from an abstracted exploit node.

The full attack graph, shown in Figure 2, included a number of “useless” attack steps
that are removed by the trimming algorithm. The trimming also reduces the number
of multiple-source attacks and thus the number of abstract exploit nodes that can be
created. For optimal effectiveness, this exploit abstraction technique is applied only to
the trimmed attack graph. The final attack graph is shown in Figure 6.

4 Related Work

A number of other previous works addressed the problem of how to use attack graphs
to better manage the security of enterprise networks [13,14,15,16,17]. The observa-
tions and insights from these previous works helped us develop the approach in this pa-
per, and our work either complements or improves upon them. Our contribution is the

Improving Attack Graph Visualization 77

development of formal, logic-based approaches to simplifying an attack graph for a
human to better understand.

Noel, et al. proposed a number of techniques for reducing complexity in attack graphs
[10]. We adopted some of the approaches in our work, such as using clustering tech-
niques to show the subnet topology of the network. Our approaches address comple-
mentary problems in visualization, namely identification and removal of attack paths
that are not useful for a human to better understand the core security problems, and
better represent attacks by grouping similar exploits targeted at a single host. Noel, et
al. also presents a notion of graph trimming, by removing redundant exploits and allow-
ing them to be implicitly conveyed in the graph. However, they do not systematically
address how to identify and trim the “useless” attack steps described in this paper.

Lippmann, et al. have built on the multiple-prerequisite graphs produced by the
NetSPA system with a goal of reducing attack graph complexity [11]. Their visualiza-
tion employs spatial grouping and color-coding to represent levels of potential compro-
mise. Groups of machines with similar levels of exploitability can then be collapsed,
reducing the overall complexity of the graph. Our approach differs in that we do not
group machines with similar vulnerabilities, but rather create abstract representations
of attacks, with edges leading to the potentially affected machines.

5 Conclusion

We have proposed two techniques for improving visualization of attack graphs — re-
ducing the amount of data by identifying attack steps that are not crucial for a human to
quickly understand the core security problems, and grouping similar attacks targeted at
a single host to better represent the number and type of security problems. These tech-
niques, in combination with visualization techniques developed by previous researchers,
will display attack graphs to a more human-readable manner. This is crucial for using
attack graphs to further automate enterprise network security management, since a hu-
man can only trust a tool if she/he understands its output. Our techniques will help a
human user quickly identify the core security problems in an enterprise network without
being overwhelmed by the amount of information contained in the full attack graphs.

References

1. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool.
In: DARPA Information Survivability Conference and Exposition (DISCEX II 2001), June
2001, vol. 2 (2001)

2. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analy-
sis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy,
pp. 254–265 (2002)

3. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability anal-
ysis. In: Proceedings of 9th ACM Conference on Computer and Communications Security,
Washington, DC (November 2002)

4. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnerability. In:
Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats: Issues, Approaches
and Challanges, ch. 5. Kluwer Academic Publishers, Dordrecht (2003)

78 J. Homer et al.

5. Lippmann, R., Ingols, K.W.: An annotated review of past papers on attack graphs. Technical
report, MIT Lincoln Laboratory (March 2005)

6. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network
defense. In: 22nd Annual Computer Security Applications Conference (ACSAC), Miami
Beach, Florida (December 2006)

7. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph generation. In:
13th ACM Conference on Computer and Communications Security (CCS), pp. 336–345
(2006)

8. Li, W., Vaughn, R.B., Dandass, Y.S.: An approach to model network exploitations using
exploitation graphs. SIMULATION 82(8), 523–541 (2006)

9. Noel, S., Jajodia, S.: Managing attack graph complexity through visual hierarchical aggrega-
tion. In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pp. 109–118. ACM Press, New York (2004)

10. Noel, S., Jacobs, M., Kalapa, P., Jajodia, S.: Multiple coordinated views for network attack
graphs. In: IEEE Workshop on Visualization for Computer Security (VizSEC 2005) (2005)

11. Williams, L., Lippmann, R., Ingols, K.: An interactive attack graph cascade and reachability
display. In: IEEE Workshop on Visualization for Computer Security (VizSEC 2007) (2007)

12. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: A logic-based network security analyzer.
In: 14th USENIX Security Symposium (2005)

13. Jha, S., Sheyner, O., Wing, J.M.: Two formal analyses of attack graphs. In: Proceedings of
the 15th IEEE Computer Security Foundations Workshop, Nova Scotia, Canada, June 2002,
pp. 49–63 (2002)

14. Lippmann, R.P., Ingols, K.W., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M., Cun-
ningham, R.: Evaluating and strengthening enterprise network security using attack graphs.
Technical Report ESC-TR-2005-064, MIT Lincoln Laboratory (October 2005)

15. Lippmann, R., Ingols, K., Scott, C., Piwowarski, K., Kratkiewicz, K., Artz, M., Cunningham,
R.: Validating and restoring defense in depth using attack graphs. In: Military Communica-
tions Conference (MILCOM), Washington, DC, U.S.A. (October 2006)

16. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking attack graphs. In: Proceedings
of Recent Advances in Intrusion Detection (RAID) (September 2006)

17. Wang, L., Singhal, A., Jajodia, S.: Measuring network security using attack graphs. In: Third
Workshop on Quality of Protection (QoP) (2007)

Improving Attack Graph Visualization 79

A MulVAL Logical Attack Graph

1:execCode(commServer,root)

2:RULE 2 (remote exploit of a server program):1

3:netAccess(commServer,iccpProtocol,iccpPort) 139:networkServiceInfo(commServer,iccpService,iccpProtocol,iccpPort,root)140:vulExists(commServer,iccpVulnerability,iccpService,remoteExploit,privEscalation)

4:RULE 5 (multi-hop access):0.56:RULE 5 (multi-hop access):0.5

5:hacl(commServer,commServer,iccpProtocol,iccpPort)7:hacl(dataHistorian,commServer,iccpProtocol,iccpPort)8:execCode(dataHistorian,root)

9:RULE 2 (remote exploit of a server program):1

10:netAccess(dataHistorian,sqlProtocol,sqlPort) 137:networkServiceInfo(dataHistorian,oracleSqlServer,sqlProtocol,sqlPort,root)138:vulExists(dataHistorian,oracleSqlVulnerability,oracleSqlServer,remoteExploit,privEscalation)

11:RULE 5 (multi-hop access):0.5 131:RULE 5 (multi-hop access):0.5 133:RULE 5 (multi-hop access):0.5135:RULE 5 (multi-hop access):0.5

132:hacl(citrixServer,dataHistorian,sqlProtocol,sqlPort)13:execCode(citrixServer,normalAccount)

14:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.5

15:canAccessHost(citrixServer)

79:principalCompromised(ordinaryEmployee)

130:hasAccount(ordinaryEmployee,citrixServer,normalAccount)

16:RULE 7 (Access a host through executing code on the machine):1

17:RULE 7 (Access a host through executing code on the machine):1

113:RULE 8 (Access a host through a log-in service):1

18:execCode(citrixServer,root)

19:RULE 4 (Trojan horse installation):0.2

20:accessFile(citrixServer,write,’/usr/local/share’)

21:RULE 15 (NFS semantics):1

22:accessFile(fileServer,write,’/export’) 112:nfsMounted(citrixServer,’/usr/local/share’,fileServer,’/export’,read)

23:RULE 16 (NFS shell):0.626:RULE 16 (NFS shell):0.629:RULE 16 (NFS shell):0.6 106:RULE 16 (NFS shell):0.6 109:RULE 16 (NFS shell):0.6

27:hacl(citrixServer,fileServer,nfsProtocol,nfsPort)28:nfsExportInfo(fileServer,’/export’,write,citrixServer)30:hacl(webServer,fileServer,nfsProtocol,nfsPort) 31:nfsExportInfo(fileServer,’/export’,write,webServer)32:execCode(webServer,apache)

33:RULE 2 (remote exploit of a server program):1

34:netAccess(webServer,httpProtocol,httpPort) 104:networkServiceInfo(webServer,httpd,httpProtocol,httpPort,apache) 105:vulExists(webServer,’CAN-2002-0392’,httpd,remoteExploit,privEscalation)

35:RULE 5 (multi-hop access):0.595:RULE 5 (multi-hop access):0.5 97:RULE 5 (multi-hop access):0.599:RULE 5 (multi-hop access):0.5101:RULE 6 (direct network access):1

36:hacl(vpnServer,webServer,httpProtocol,httpPort)37:execCode(vpnServer,normalAccount)

38:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.5

39:canAccessHost(vpnServer) 94:hasAccount(ordinaryEmployee,vpnServer,normalAccount)

40:RULE 7 (Access a host through executing code on the machine):1 41:RULE 8 (Access a host through a log-in service):1

42:netAccess(vpnServer,vpnProtocol,vpnPort)91:logInService(vpnServer,vpnProtocol,vpnPort)

43:RULE 5 (multi-hop access):0.5 45:RULE 5 (multi-hop access):0.547:RULE 5 (multi-hop access):0.586:RULE 5 (multi-hop access):0.5 88:RULE 6 (direct network access):1

44:hacl(vpnServer,vpnServer,vpnProtocol,vpnPort) 46:hacl(webServer,vpnServer,vpnProtocol,vpnPort)87:hacl(workStation,vpnServer,vpnProtocol,vpnPort) 49:execCode(workStation,normalAccount)

50:RULE 0 (When a principal is compromised any machine he has an account on will also be compromised):0.5

51:canAccessHost(workStation)

83:hasAccount(ordinaryEmployee,workStation,normalAccount)

52:RULE 7 (Access a host through executing code on the machine):1

53:RULE 7 (Access a host through executing code on the machine):1

59:RULE 8 (Access a host through a log-in service):1

54:execCode(workStation,root)

55:RULE 4 (Trojan horse installation):0.2

56:accessFile(workStation,write,’/usr/local/share’)

57:RULE 15 (NFS semantics):1

58:nfsMounted(workStation,’/usr/local/share’,fileServer,’/export’,read)

60:netAccess(workStation,tcp,sshProtocol) 75:logInService(workStation,tcp,sshProtocol)

61:RULE 5 (multi-hop access):0.5 63:RULE 5 (multi-hop access):0.5 65:RULE 5 (multi-hop access):0.569:RULE 5 (multi-hop access):0.5 71:RULE 5 (multi-hop access):0.573:RULE 5 (multi-hop access):0.5

64:hacl(citrixServer,workStation,tcp,sshProtocol) 66:hacl(fileServer,workStation,tcp,sshProtocol)67:execCode(fileServer,root)

68:RULE 4 (Trojan horse installation):0.2

70:hacl(vpnServer,workStation,tcp,sshProtocol) 74:hacl(workStation,workStation,tcp,sshProtocol)

76:RULE 12 ():1

77:networkServiceInfo(workStation,sshd,tcp,sshProtocol,sshPort)

80:RULE 10 (password sniffing):0.8 82:RULE 10 (password sniffing):0.8 84:RULE 11 (incompetent user):0.2

85:inCompetent(ordinaryEmployee)

89:hacl(attacker,vpnServer,vpnProtocol,vpnPort) 103:attackerLocated(attacker)

92:RULE 13 ():1

93:networkServiceInfo(vpnServer,vpnService,vpnProtocol,vpnPort,root)

96:hacl(webServer,webServer,httpProtocol,httpPort) 100:hacl(workStation,webServer,httpProtocol,httpPort)102:hacl(attacker,webServer,httpProtocol,httpPort)

110:hacl(workStation,fileServer,nfsProtocol,nfsPort)111:nfsExportInfo(fileServer,’/export’,write,workStation)

114:netAccess(citrixServer,sshProtocol,sshPort) 127:logInService(citrixServer,sshProtocol,sshPort)

115:RULE 5 (multi-hop access):0.5117:RULE 5 (multi-hop access):0.5119:RULE 5 (multi-hop access):0.5121:RULE 5 (multi-hop access):0.5 123:RULE 5 (multi-hop access):0.5125:RULE 5 (multi-hop access):0.5

118:hacl(citrixServer,citrixServer,sshProtocol,sshPort)120:hacl(fileServer,citrixServer,sshProtocol,sshPort)122:hacl(vpnServer,citrixServer,sshProtocol,sshPort) 126:hacl(workStation,citrixServer,sshProtocol,sshPort)

128:RULE 12 ():1

129:networkServiceInfo(citrixServer,sshd,sshProtocol,sshPort,root)

134:hacl(commServer,dataHistorian,sqlProtocol,sqlPort)136:hacl(dataHistorian,dataHistorian,sqlProtocol,sqlPort)

Fig. 7. Full logical attack graph, as generated by MulVAL

Show Me How You See: Lessons from Studying

Computer Forensics Experts for Visualization

T.J. Jankun-Kelly1, Josh Franck2, David Wilson1, Jeffery Carver3,
David Dampier1, and J. Edward Swan II1

1 Department of Computer Science and Engineering, Mississippi State University
{tjk,dw152,dampier,swan}@cse.msstate.edu

2 Department of Psychology, Mississippi State University
jaf210@msstate.edu

3 Department of Computer Science, University of Alabama
carver@cs.ua.edu

Abstract. As the first part of a Analyze-Visualize-Validate cycle, we
have initiated a domain analysis of email computer forensics to deter-
mine where visualization may be beneficial. To this end, we worked with
police detectives and other forensics professionals. However, the process
of designing and executing such a study with real-world experts has been
a non-trivial task. This paper presents our efforts in this area and the
lessons learned as guidance for other practitioners.

1 Introduction

While violent crimes such as armed robbery and murder are decreasing in the
U.S., computer crime is growing world-wide [1, 2, 3]. The growth of the Inter-
net has contributed to an increase in cyber crimes such as child pornography,
gambling, money laundering, financial scams, extortion, and sabotage [3, 4, 5].
Besides their using a computer in the commission of a crime, computer crimi-
nals share another similarity: The chances of their being caught and successfully
prosecuted are relatively small [1]. In one example, a sheriff’s department inves-
tigator working exclusively on computer crimes full-time for five years made only
five arrests, none of which led to convictions [6]. Thus, tools to assist computer
forensics practitioners are becoming increasingly important.

Several commercial and open-source tools exist to assist forensic detectives.
While these systems automate some tasks and facilitate others, we believe there
is room for visualization to be of assistance. Initial efforts have been made in
this area [7]. However, the work process of computer forensic detectives and the
interaction with their tools has not been thoroughly studied; we do not want
to use visualization to solve problems which are irrelevant or done better by
existing tools. We have therefore initiated a domain analysis of computer forensic
personnel before creating any visualization. In this paper, we discuss the iterative
process we went through when working with these experts, some preliminary
results, and the lessons learned from this effort. We hope this contribution will
serve as a case study for future efforts in security visualization in a similar vein
to other efforts in visualization and software engineering [8, 9].

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 80–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Show Me How You See: Lessons from Studying Computer Forensics Experts 81

2 Case Study: Webmail Forensics Domain Analysis

Computer crime takes on many forms; a study of forensic analysis of all such
crimes is beyond our scope. Thus, we focused on one aspect of computer foren-
sics: Webmail and Internet history analysis in fraud cases. The ability to generate
numerous web email accounts and the difficulty of putting together a coherent
timeline of webmail usage motivated our investigation. In addition, finding cor-
roborating evidence from other files on a hard drive (e.g., financial records) was
of interest. Existing forensic tools such as the Forensics Toolkit [10] and the Au-
topsy Forensic Browser [11,12] provide interfaces to search files and unallocated
sectors for relevant information, but do not necessarily provide guidance on what
to search or how best to find evidence. The effectiveness of these tools is thus
highly practitioner dependent. Therefore, we studied the workflow of such users
at different levels of expertise to discover how visualization could be of benefit.

2.1 Study Protocol and Design

Our study’s design evolved over several iterations as we interacted with our
experts, although the eventual visualization goal was kept fixed. We initially
considered a full verbal think-aloud protocol design [13,14]. Such analysis is one
in which the recorded, verbalized thoughts of subjects are broken into the small-
est information-bearing segments and coded categorically (e.g., Search, Navi-
gate). These coded segments can then be examined for frequency of individual
coding types, for recurring segments of coding types, and for tracking the evo-
lution of the subjects’ cognitions over the course of the task. Most importantly,
by connecting the time stamp of coded segments to the specific subtasks be-
ing performed during that period, these same connections can be drawn on a
subtask-by-subtask basis. Unfortunately, this process not only requires a great
deal of time and effort to perform, but generally produces an almost toxic level
of data. Also, it is the most complex and data-rich analysis method available to
examine this particular task. As the exact relationship between the data gath-
ered on the subject-side and the changes made on the visualization-side has yet
to be established, this method was deemed excessive for an initial study.

For our expert trails, we settled on a more open-ended contextual task anal-
ysis utilizing a greater range of data souces. During a contextual task analysis,
the goal is to observe users within their normal work context, as opposed to
an artificial setting such as a laboratory [15, 16, 17]. For this purpose, a lap-
top with the forensics software (Autopsy), test cases, and observational software
(screen/mouse capture and a web camera) was provided to subjects (Figure 1
left.). Subjects were instructed to “do what they do normally,” and were pro-
vided (unobtrusively) with a notepad and pen with which to take notes, should
they desire. There was also an embedded note-taking system within the analysis
suite used. These two note-taking sources were intended as the primary source
of data, and were to be analyzed in a fashion similar to the verbal protocols
described above, though at a higher (and less cognitively complete) level. The
screen/mouse capture and audio/video data provided by the laptop were used

82 T.J. Jankun-Kelly et al.

Fig. 1. Experimental setup for our task analysis. Left : Experimental rig. A version of
Autopsy [11] modified for capturing user events was the forensic software used. Right :
Analysis tool we developed to process expert trials. Webcam input is in the upper-left,
screen capture video in the upper right, mouse events on the lower left, and observer
notes and analysis on the lower right.

to complement these notes. The screen/mouse capture data was intended to be
examined for instances where activity indicated confusion, or where recurring
patterns of input required an excessive amount of movement in terms of screen
distance. The video and audio data were intended to be examined to inform
the design of our subsequent visualizations; we use a custom developed analysis
framework that syncs the video, screen capture, and mouse event display for this
purpose (Figure 1 right).

While we wished to observe experts analyzing real cases, the legal and time
concerns involved, especially for ongoing criminal investigations, forced us to cre-
ate test datasets. Based upon our discussion with our in-house forensics instruc-
tor (who also assists officers in real cases), we created two webmail fraud cases
that mimicked attributes of similar cases. We interjected fraud related emails
into email streams collected from active mailing list traffic to which our test
accounts were subscribed, and intermixed web-page views related to the fraud
with visits to high traffic sites such as Google, Yahoo!, and Wikipedia. The rest
of the hard drive images contained a standard Windows XP installation. Both
our test datasets were used in the task analysis as described next.

2.2 Study Execution

Once the task analysis study was designed, we set about soliciting subjects.
Initially, detectives taking courses at the Mississippi State Forensics Training
Center were considered; however, most did not possess sufficient knowledge to
provide any meaningful “expert” data. Consequently, we solicited known foren-
sics detectives throughout the state of Mississippi and neighboring areas through
email and phone calls. This recruitment process was lengthy, requiring on av-
erage 30 conversations per subject over a month’s time to establish a date for
observation.

Show Me How You See: Lessons from Studying Computer Forensics Experts 83

Over the Spring 2008 semester, five experts were recruited, three of which
completed the study. For each subject, a similar process was followed: The intent
of the study was described, the structure of the study (e.g., the purpose of the
rig, the advise to take notes, etc.) was discussed, basic details of the cases were
given, consent forms were provided, and then the study itself was performed. Of
the five recruited, two subjects refused to sign the consent form and thus were
excluded from the study; their reasons for refusal are discussed in Section 3.
Each study was conducted at the officer’s place of work, either a police station
or a prison. Subjects were observed for up to two hours or until they felt that
had made as much progress they could on the two cases. Officers were thanked
for their time, and then the anonymized data was processed for initial analysis.

2.3 Study Post Mortem

Several observations from our subject data can be made. First, subjects did
not make extensive use of the note taking capability of the forensics software
or use the provided note paper regardless of expertise level. This frustrated
our efforts to perform coding based upon these notes, leaving only the audio,
video, and logging data. Second, the audio and video streams are quite noisy,
possessing multiple interruptions of the task and non-task related questions by
the experts. While useful information was mined from these streams, it was
more labor intensive than initially planned. Data from logging proved more rich,
and we have begun to code sequences of events using our analysis tool—i.e,
identifying sequences of mouse clicks that correspond to search activity. Metrics
such as click counts per subtask will be used to identify areas where the task
performance could be improved and serve as candidates for visualization. Initial
results indicate the searching for terms and their relationships across documents
are possible areas of improvement; formal and rigorous results from this analysis
are beyond the scope of this paper.

3 Lessons Learned

In addition to the preliminary results, we analyzed the process of performing the
study. Given the length of time taken to elicit our three completed expert trials,
we felt improvements could be made. Herein, we present the lessons we learned
from this effort.

Keep the Goal in Mind. The goal of our study is to observe how visualization
may improve forensics. At several stages of our design, this eventual goal changed
the nature of the study. As discussed, we initially considered a more thorough and
intensive verbal analysis protocol. While this would be appropriate in the context
of cognitive science, where the the low-level details of how a subject thinks is vital,
more lightweight methods are sufficient for our purposes. In addition, screen and
mouse capture was added as some metrics for determining the complexity of a task
cannot be measured without such logs. These metrics can then be compared to the
same tasks performed using our eventual visualization solutions.

84 T.J. Jankun-Kelly et al.

Working with Experts is Time Consuming. While user studies in visualiza-
tion are generally time consuming [9], expert populations require significant ad-
ditional effort. Student populations for university-based studies are quite large,
especially where Psychology programs provide subject pools as part of their
curriculum. Experts, however, have to contend with their normal work assign-
ments, which prolongs the process of recruitment and observation. Our forensic
experts perform other tasks in addition to their forensic duties, complicating
matters. Persistent effort (over 50 emails and phone calls were required for one
subject, with 30 on average) is required. These factors confound the recruitment
of experts, as demonstrated by the recruitment of software professionals for case
studies [18]. We estimate that it took us two to three times longer to perform
our initial study than it would have if we used only local, non-expert subjects.

Go to the Experts. Though we had significant difficultly establishing contact
with subjects, going to the experts provided valuable. First, it strengthens the
relationship with the expert as it shows our willingness to work with them. Sec-
ond, observations about the expert’s work environment (such as the distractions
during the study) are pertinent to understanding the user. These observations
can then be used when creating profiles of the experts for later work, such as
using created personas for initial evaluation [19].

Clearly Communicate Expectations. While this is good advice for any
study, it is doubly important for experts. Our experts had no experience with
human subject studies, so the goals and procedures were unclear to each. Part
of the reason recruitment was protracted was due to anxiety over the nature of
the activity. One participant was concerned that the work would be used as part
of their job performance evaluation (a false impression); another was unfamiliar
with webmail cases, having dealt primarily with child pornography. With our
later subjects, we were more clear with our expectations, and, as a result, the
study went smoother.

Provide Consent Forms Early. Though this ties in with the previous lesson, it
deserves special mention. Though we communicated to all our potential subjects
that they would be recorded and their interactions with the software logged, two
of our recruited experts declined to participate when the consent forms for the
study were presented—this was after a 100 mile drive to meet them. As a consent
form is a binding agreement between the investigators and the experts, care must
be taken in explaining the factors involved. In the case of the withdrawn experts,
the consent form was rejected due to concerns about the study’s data being sub-
poenaed at a later date as evidence of the expert’s potential lack of proficiency;
as required by Mississippi State Institutional Review Board policy (and stated on
the consent form), this data would have to turned over in such a circumstance. If
we had provided the consent form during our initial contact with the experts, this
issue would have been discovered sooner and other measures taken.

Be Prepared to Develop Your own Tools. During the design phase of our
task study, we searched for software to assist in coding and analyzing the coded
results. Our results were disappointing, and we found no off-the-shelf software

Show Me How You See: Lessons from Studying Computer Forensics Experts 85

that would fit our needs. After queries to our empirical software engineering and
cognitive science colleagues, we concluded that most such studies were typically
conducted via spreadsheet software and labor intensive manual collating and
coding. For our more lightweight approach (video, audio, and logging), we did
not find any tools that made the analysis straightforward either. Thus, we ended
up creating our own software for coordinating the video, audio, and logging
events and for aggregating said events (Figure 1 right). In addition, we used
several open source programs to assist in gathering the data in the first place,
though some commercial software exists for this purpose.

But use the Tools the Experts Use. An early decision of our group was to use
the open source Autopsy software as our computer forensics platform; being open
source, we could modify it to gather the logging data we required more readily
than proprietary software. However, this proved to be a significant stumbling
block with our experts, as they were in large familiar with the Forensic Toolkit
(FTK). The lack of comfort with Autopsy uniformly caused extra training to be
required before the experts could perform the study. For further iterations of our
study, we plan to use FTK and have already instrumented it for this purpose.

4 Summary

Working with experts is required when an accurate understanding of their work
practices is needed. We performed such a domain analysis to determine where
visualization may benefit computer forensic practitioners. This study faced sev-
eral unexpected hurdles which we have described as guidelines for visualization
researchers interested in doing similar studies.

Though there were significant difficulties, working with experts was worth
the effort. Our data has provided us with some initial avenues to pursue for
visualization, and, more importantly, given us a better picture of how computer
forensics is actually performed. We are currently redesigning our study to incor-
porate the atomic tasks we have identified such that novice users (i.e., university
students) can perform them; this new design is informed by our interaction with
our experts. Finally, our pool of experts will be utilized to validate our visualiza-
tion designs when they are complete. Such validation would prove more difficult
without the groundwork of our initial study.

Acknowledgments

We gratefully acknowledge the support of the numerous law enforcement detec-
tives which either participated in the study, worked with us on its design, or
answered questions from us. We also thank Kendall Blaylock and Gary Cantrell
of the MSState Forensics Training Center for their assistance in recruiting sub-
jects. The work is funded by a National Science Foundation CyberTrust grant
#CNS-0627407.

86 T.J. Jankun-Kelly et al.

References

1. Householder, A., Houle, K., Dougherty, C.: Computer attack trends challenge in-
ternet security. IEEE Computer 35(4), 5–7 (2002)

2. Noblett, M., Pollit, M., Presley, L.: Recovering and examining computer forensic
evidence. Forensic Science Communications 2(4) (2000)

3. Wolfe, H.: Computer forensics. Computers and Security 22(1), 26–28 (2003)
4. Bequai, A.: Syndicated crime and international terrorism. Computers and Secu-

rity 21(4), 333–337 (2002)
5. Kessler, G., Schirling, M.: Computer forensics: Cracking the books, cracking the

case. Information Security, 68–81 (2002)
6. Thompson, R.: Chasing after ’petty’ computer crime. IEEE Potentials 18(1), 20–22

(1999)
7. Teelink, S., Erbacher, R.F.: Improving the computer forensic analysis process

through visualization. Communications of the ACM 49(2), 71–75 (2006)
8. Host, M., Runeson, P.: Checklists for sofware engineering case study research. In:

International Symposium on Empirical Software Engineering and Measurement,
pp. 479–481 (2007)

9. Kosara, R., Healey, C.G., Interrante, V., Laidlaw, D.H., Ware, C.: User studies:
Why, how, and when? IEEE Computer Graphics and Applications 23(4), 20–25
(2003)

10. AccessData: (Forensic toolkit 2.0) (Last checked May 2008),
http://www.accessdata.com/Products/ftk2test.aspx

11. Carrier, B.: (Autopsy forensic browser) (Last checked May 2008),
http://www.sleuthkit.org/autopsy/

12. Carrier, B.: Computer Forensics Basics. In: Know Your Enemy, ch. 11, 2nd edn.,
Addison Wesley, Reading (2004)

13. Singer, J., Lethbridge, T.: Methods for studying maintenance activities. In: Pro-
ceedings of the Workshop for Empirical Studies of Software Maintenance, pp. 105–
110 (1996)

14. VanSomeren, M.W., Bernard, Y.F., Sandberg, J.A.C.: The Think Aloud Method: A
Practical Guide to Modeling Cognitive Processes. Academic Press, London (1994)

15. Hackos, J.T., Redish, J.C.: User and Task Analysis for Interface Design. John Wiley
& Sons, Inc., New York (1998)

16. Hix, D., Hartson, H.R.: Developing User Interfaces: Ensuring Usability through
Product & Process. John Wiley & Sons, Inc., New York (1993)

17. Mayhew, D.: The Usability Engineering Lifecycle: a Practitioner’s Handbook for
User Interface Design. Morgan Kaufmann Publishers, San Francisco (1999)

18. Sjoberg, D.I.K., Anda, B., Arishold, E., Dyba, T., Jorgensen, M., Karahasanovic,
A., Koren, E.F., Vokac, M.: Conducting realistic experiments in software engineer-
ing. In: First International Symposium on Empirical Software Engineering, pp.
17–26 (2002)

19. Stoll, J., McColgin, D., Gregory, M., Crow, V., Edwards, W.K.: Exploiting the
user: Adapting personas for use in security visualization design. In: Proceedings of
the Fourth Workshop on Visualization for Computer Security (2007)

http://www.accessdata.com/Products/ftk2test.aspx
http://www.sleuthkit.org/autopsy/

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 87–94, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Task Centered Framework for Computer Security
Data Visualization

Xiaoyuan Suo, Ying Zhu, and Scott Owen

Department of Computer Science
Georgia State University

xsuo@student.gsu.edu, yzhu@cs.gsu.edu, sowen@gsu.edu

Abstract. Most of the existing computer security visualization programs are
data centered. However, some studies have shown that task centered visualiza-
tion is perhaps more effective. To test this hypothesis, we have developed a new
framework of visualization and apply it to computer security visualization. This
framework provides a new way for users to interact with data set and potentially
will provide new insights into how visualization can be better constructed to
serve users' specific tasks.

Keywords: visualization, task, computer security.

1 Introduction

A fundamental question for visualization design is what makes visualizations effective?
There have been different answers to this question. Some researchers take a more data-
centric view and suggest that effectiveness depends on the accurate interpretation of
presented data [1-3], or a matching between data structure and visual structure [4, 5].
However, a number of psychological studies have also shown that the effectiveness of
visualization is task specific [6, 7].

In this paper, we propose a new task centered framework of visualization and apply
it to computer security visualization. In our framework, a visualization system is
optimized for specific tasks by mapping the task related parameters to the visual ele-
ments that have high accuracy, utility, and efficiency ratings.

Before visualizations are created, users specify tasks and their associated pa-
rameters. This process is essentially a task complexity analysis. Knowing the data
parameters associated with a task helps users consciously control the complexity
of the tasks and correlate task complexity and visualization complexity. This new
framework provides a different way for users to interact with data set and poten-
tially will provide new insights into how visualization can be better constructed to
serve users' specific tasks.

2 Related Work

Many visualization designs have been proposed for computer security analysis. Noted
examples include TNV [8], IDS RainStorm [9], PortVis [10], etc. Most of these de-
signs, however, are prefabricated visualizations that cannot be easily reconfigured by

88 X. Suo, Y. Zhu, and S. Owen

users for different tasks. An implicit assumption is that users can use interaction tech-
niques to customize data visualization for different tasks. While interaction is essen-
tial for making visualization usable, two important issues need to be addressed. First,
for most existing visualization systems it is often not clear what specific tasks they are
designed for. As a result, users may use the visualization for unintended tasks. Sec-
ond, most existing visualization systems provide only low level interaction tech-
niques, such as zooming, panning, that are restrained by the predefined visualization
structure. They may be suitable for problem solving process with relatively stable
procedure and task structure. However, many complex problem solving process are
not so well defined. In many cases, problem solving is a process of searching in the
solution space. This means that users may constantly testing different hypotheses and
apply different strategies. The task structure may keep changing during the problem
solving process. A new set of higher level interaction techniques are needed to sup-
port this dynamic problem solving method.

Some visualization systems, such as RUMINT [11], do provide a more configurable
interface that allow users to assign parameters to different coordinate axes, or choose
different types of diagrams. Outside the field of computer security visualization, Tab-
leau Software is noted for its highly flexible and configurable interface that allows
users to quickly construct different data visualizations. Another example is Many
Eyes [12], a web site that allows different users to construct different visualizations of
the same data set. Although these are powerful user interface techniques, users are
still operating at the visualization level. But most end users would prefer to operate at
a higher level of thinking – ask questions, test hypotheses, etc. For end users, con-
structing and configuring visualization is a secondary activity to their primary tasks.
Again, we need a higher level interaction technique to help end users operate at the
level of tasks.

The research presented in this paper is an attempt to address this issue. The central
component of the proposed visualization framework is a task tree that is dynamically
linked to data visualizations and data tables. Users operate by constructing and main-
taining a task tree. A frame of data visualization is created automatically (or semi-
automatically) for each task on the task tree, with the support of a visualization engine.

3 Overview of Task Centered Visualization Framework

We propose a Task-centered Visualization Design Architecture (TVDA). Figure 1
shows the main components of TVDA.

To construct a visualization, users start with a visual frame and then drag and drop
visual structures into the view. They are assisted by a design-gallery style interface
[13, 14] that contains multiple visual structures provided by a visualization engine.

For domain experts, a typical visual problem solving process takes the following
steps:

• Open the data files or connect to the databases.
• Divide the work into multiple tasks. Create a hierarchical task tree.
• Associate data parameters with each task.

 A Task Centered Framework for Computer Security Data Visualization 89

Fig. 1. Overview of the Task-centered Visualization Architecture

• For each task, construct a data-visualization. A visualization engine will
automatically recommend multiple design choices, which are presented in a
design-gallery style interface. The designs are selected and ranked based on
their accuracy, utility, and efficiency scores in the visualization dictionaries.

• Explore the data visualization through interaction techniques.

Tree is an appropriate data structure for organizing and storing problem solving ac-
tivities [15-17]. Each node on the task tree represents a specific task. For each task,
users shall explicitly identify the type of this task, based on the task classification
conducted in step 3.

For each task, users are required to explicitly identify the data parameters that are
needed to perform the task. More specifically, these are the parameters that have to be
kept in the working memory simultaneously in order to carry out the task. Based on
the Relational Complexity Theory [18, 19], the complexity of the task is determined
by the number of these parameters. The proposed visualization tool allows users to
open data files, select parameters, and attach them to a task.

A task tree also has other benefits. First, the task tree itself can be seen as a visuali-
zation of the problem solving process, reducing the cognitive load by externalizing
the task structure that would otherwise be stored in the working memory. Second, a
task tree is essentially a visual language for describing a specific problem solving
strategy and expertise [20, 21], which can be shared or reused.

User controlled visualization construction is necessary for several reasons. First,
complex problem solving is a dynamic process. In search for a solution, users need to
test different hypotheses or different strategies. This means the task structure may be
constantly changing, and a good visualization tool should allow users to dynamically
reorganize visualizations to accommodate this change – because the effectiveness of
visualization is task specific. Second, studies have shown that the effectiveness of
visualizations depends on users’ background and knowledge. Visualization is also a
learned skill – as users become more experienced, their behavior for reading and con-
structing visualization may change [22]. Prefabricated visualizations combined with
low level interactions – such as zooming, panning, and level-of-detail – are insuffi-
cient to address the individual differences. Third, self-constructed visualizations may

90 X. Suo, Y. Zhu, and S. Owen

Fig. 2. Data table

assist problem solving in ways different from prefabricated visualizations [6, 23].
Over time, these benefits will outweigh the initial learning curve.

In addition to the traditional interaction techniques (e.g. zooming, panning, level-
of-detail [24]), the TVDA also allows users to be able to merge two or more visual
frames. This technique is designed to reduce the cognitive load of visual integration
and inference by externalizing the mental transformations [25-28].

Fig. 3(a). Task tree

 A Task Centered Framework for Computer Security Data Visualization 91

Fig. 3(b). High level task list

Fig. 4. Scatter plot. Different shapes represent different alert types. User can choose different
parameters (Source IP, time, date, priority, alert name) for the X and Y axes.

4 Implementation

We have built a prototype based on the proposed framework. This prototype is im-
plemented with Java and uses the prefuse [29] – an open source interactive informa-
tion visualization library.

92 X. Suo, Y. Zhu, and S. Owen

Current system has three main windows: data table, task tree, and visualization.

1. Data table (Figure 2):
When the data is loaded, the system will process the raw data (Snort etc.),
extract the necessary information, and then display the relevant data in a ta-
ble. The data table is intended for security experts to exam raw data and also
to drag and drop parameters into the task tree.

2. Task tree (Figure 3):
Tasks will be displayed in a tree format, in which each node represents a task.
A task can be divided into sub-tasks. Each task is associated with a number of
parameters, as explained earlier. Low level tasks are also available using menu
bars on top of the main visualization (zooming, panning, etc.).

3. Visualization (Figure 4):
When a task is selected in the task tree, the desired visual interface is auto-
matically generated for that task. In this visualization, each different shape
represents a different parameter. Figure 4 shows the visualization generated
for the task “Check IP Address” and “problem detection”. The different
shapes on scatter plot represented different information extracted during a
short period of time.

5 Conclusion and Future Work

We propose a task centered visualization design framework, in which tasks are explic-
itly identified and organized and visualizations are constructed for specific tasks and
their related data parameters. The center piece of this framework is a task tree which
dynamically links the raw data with automatically generated visualization. The task
tree serves as a high level interaction technique that allows users to conduct problem
solving naturally at the task level, while still giving end users flexible control over the
visualization construction.

Much work needs to be done to realize the full potential of the proposed frame-
work. Our future work includes developing a design gallery style visualization inter-
face that allows users to compare and select from multiple visualizations that are
automatically generated. A significant challenge is to develop a visualization engine
that helps automatically generate visualizations given a task and its related parame-
ters. The key is to codify the many design rules from the visualization research litera-
ture and to develop a systematic method to evaluate and optimize the visualization.
Our previous work on visualization complexity analysis [30] can be used as the basis
for the evaluation and optimization. Finally, we will develop an evaluation plan to test
the effectiveness of the proposed framework, working with domain experts in the
field of computer security.

References

[1] Mackinlay, J.: Automating the Design of Graphical Presentations of Relational Informa-
tion. ACM Transactions on Graphics 5, 110–141 (1986)

[2] Cleveland, W.S., McGill, R.: Graphical Perception: Theory, Experimentation, and Appli-
cation to the Development of Graphical Methods. Journal of the American Statistical As-
sociation 79, 531–554 (1984)

 A Task Centered Framework for Computer Security Data Visualization 93

[3] Cleveland, W.S., McGill, R.: Graphical Perception and Graphical Methods for Analyzing
Scientific Data. Science 229, 828–833 (1985)

[4] Dastani, M.: The Role of Visual Perception in DataVisualization. Journal of Visual Lan-
guages and Computing 13, 601–622 (2002)

[5] Wattenberg, M., Fisher, D.: Analyzing perceptual organization in information graphics.
Information Visualization 3, 123–133 (2004)

[6] Cox, R.: Representation construction, externalised cognition and individual differences.
Learning and Instruction 9, 343–363 (1999)

[7] Freedman, E.G., Shah, P.: Toward a Model of Knowledge-Based Graph Comprehension.
In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI),
vol. 2317, pp. 59–141. Springer, Heidelberg (2002)

[8] Goodall, J.R., Lutters, W.G., Rheingans, P., Komlodi, A.: Preserving the Big Picture:
Visual Network Traffic Analysis with TNV. In: Workshop on Visualization for Computer
Security, Minneapolis, MN, USA, pp. 47–54 (2005)

[9] Abdullah, K., Lee, C., Conti, G., Copeland, J.A., Stasko, J.: IDS RainStorm: Visualizing
IDS Alarms. In: IEEE Symposium on Information Visualization’s Workshop on Visuali-
zation for Computer Security (VizSEC) (2005)

[10] McPherson, J., Ma, K.-L., Krystosk, P., Bartoletti, T., Christensen, M.: PortVis: a tool for
port-based detection of security events. In: Proceedings of the 2004 ACM workshop on
Visualization and data mining for computer security, ACM Press, Washington (2004)

[11] Conti, G.: Security Data Visualization: Graphical Techniques for Network Analysis. No
Starch Press (2007)

[12] Viegas, F.B., Wattenberg, M., Ham, F.v., Kriss, J., McKeon, M.: Many Eyes: A Site for
Visualization at Internet Scale. In: Proceedings of the IEEE Symposium on Information
Visualization (2007)

[13] Marks, J., Andalman, B., Beardsley, P.A., Freeman, W., Gibson, S., Hodgins, J., Kang,
T.: Design Galleries: A General Approach to Setting Parameters for Computer Graphics
and Animation. In: Proceedings of ACM SIGGRAPH Conference (1997)

[14] Terry, M.: Set-Based User Interface, in PhD Thesis, School of Computing, Georgia Insti-
tute of Technology, Atlanta, Georgia (2005)

[15] Bratko, I.: PROLOG Programming for Artificial Intelligence, 2nd edn. Addison-Wesley
Longman Publishing Co., Inc., Amsterdam (1990)

[16] Pain, H., Bundy, A.: What stories should we tell novice PROLOG programmers? In: Arti-
ficial intelligence programming environments, pp. 119–130. John Wiley & Sons, New
York (1987)

[17] Simmons, R., Apfelbaum, D.: A Task Description Language for Robot Control. In: Pro-
ceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, Victoria, B.C., Canada (1998)

[18] Halford, G.S., Baker, R., McCredden, J.E., Bain, J.D.: How Many Variables Can Humans
Process? Psychological Science 16, 70–76 (2005)

[19] Halford, G.S., Wilson, W.H., Phillips, S.: Processing capacity defined by relational com-
plexity: Implications for comparative, developmental, and cognitive psychology. Behav-
ioral and Brain Sciences 21, 803–865 (1998)

[20] Casner, S., Bonar, J.: Using the expert’s diagram as a specification of expertise. In: Pro-
ceedings of IEEE Symposium on Visual Languages (1988)

[21] Davies, J., Goel, A.K.: Transfer of problem-solving strategy using Covlan. Journal of
Visual Languages and Computing 18, 149–164 (2007)

94 X. Suo, Y. Zhu, and S. Owen

[22] Petre, M., Green, T.R.G.: Learning to Read Graphics: Some Evidence that ’Seeing’ an In-
formation Display is an Acquired Skill. Journal of Visual Languages and Computing 4,
55–70 (1993)

[23] Cox, R., Brna, P.: Supporting the use of external representation in problem solving: the
need for flexible learning environments. Journal of Artificial Intelligence in Education 6,
239–302 (1995)

[24] Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information
Visualizations. In: Proceedings of the IEEE Conference on Visual Languages. IEEE, Los
Alamitos (1996)

[25] Ratwani, R.M., Trafton, J.G.: Making Graphical Inferences: A Hierarchical Framework.
In: Proceedings of the Annual Meeting of the Cognitive Science Society (CogSci) (2004)

[26] Ratwani, R.M., Trafton, J.G., Boehm-Davis, D.A.: Thinking Graphically: Extracting Lo-
cal and Global Information. In: Proceedings of the Annual Meeting of Cognitive Science
Society (2003)

[27] Trafton, J.G., Kirschenbaum, S.S., Tsui, T.L., Miyamoto, R.T., Ballas, J.A., Raymond,
P.D.: Turning pictures into numbers: extracting and generating information from complex
visualizations. International Journal of Human-Computer Studies 53, 827–850 (2000)

[28] Trafton, J.G., Trickett, S.B.: A New Model of Graph and Visualization Usage. In: Pro-
ceedings of the Annual Meeting of Cognitive Science Society (2001)

[29] Heer, J., Card, S.K., Landay, J.A.: Prefuse: A Toolkit for Interactive Information Visuali-
zation. In: Proceedings of the ACM Conference on Human Factors in Computing Sys-
tems (CHI) (2005)

[30] Suo, X., Zhu, Y., Owen, G.S.: Measuring the Complexity of Visualization Design. In:
Proceedings of the 2007 Workshop on Visualization for Computer Security (VizSEC)
(2007)

BGPeep: An IP-Space Centered View for

Internet Routing Data

James Shearer1, Kwan-Liu Ma1, and Toby Kohlenberg2

1 Visualization and Interaction Design Innovation lab
University of California, Davis, CA 95616

{jjshearer,klma}@ucdavis.edu
http://vidi.cs.ucdavis.edu

2 Intel Corporation
toby.kohlenberg@intel.com

Abstract. We present BGPeep, a tool for visualizing Border Gateway
Protocol traffic at a detailed level, using a novel depiction of IP-space.
This new visualization renders the network prefixes involved with such
traffic using a method that leverages the peculiarities of BGP traffic to
gain insight and highlight potential router misconfigurations. BGPeep
utilizes a simple interface and several methods of interaction to allow
users to quickly focus on the data of interest. Our tool highlights aspects
of BGP data which have received less attention in previous visualization
applications, in order to help form a more complete picture of this vital
part of the Internet communications infrastructure.

1 Introduction

The Border Gateway Protocol (BGP) is the top-level routing protocol currently
utilized to maintain a constantly connected topology for the global Internet. Ev-
ery day, many thousands of border routers under the ownership of Autonomous
Systems (ASes) constantly converse, exchanging information about their own
IP-space ownership, distant network reach-ability, and broken peer connections.
This ongoing router “chatter” generates a huge amount of multi-variate data,
and at any given time governs the current state of the amorphous, global rout-
ing table. This ephemeral data exists exclusively in the rarely-glimpsed world
of the BGP speakers - diminutive routers that sit at the topological edge of our
networks.

Understanding BGP data is critical given its foundational nature regarding
the Internet. This protocol is so deeply entrenched in the communications in-
frastructure that updating and upgrading is extremely difficult, even though a
secure, authenticated version of the protocol is necessary. Router misconfigura-
tions and purposeful attacks can render dark whole swaths of the Internet in a
very short period of time. Unsurprisingly, much research exists - both in terms
of detection and analysis - to cope with these dangers.

We present BGPeep, a new tool for visualizing BGP update messages using
a novel visual encoding of IP-space. Our tool complements the many existing

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 95–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 J. Shearer, K.-L. Ma, and T. Kohlenberg

tools for viewing routing data in that it provides a unique picture of the data at
lowest-level, rather than focusing on overall AS connectivity. We provide intuitive
methods of interaction so that network operators can quickly isolate the data of
interest and produce a useful picture for aiding BGP problem diagnosis.

2 Related Work

Given its import and data-intensive nature, it is no surprise that BGP has re-
ceived given a thorough treatment from the visualization community. Several
recent works focus on providing a high-level view of the ever-changing topology
amongst autonomous systems, the best known of which is BGPlay [1]. With
this work, Colitti et al. allow network operators to monitor or observe the reach-
ability of a specified prefix from the perspective of a given border router. Colitti’s
colleagues at Roma Tre University extended BGPlay to include the AS “impor-
tance” hierarchy in the visualization, drawing inspiration from topographical
cartography [2]. Wong, et al described a method [3] of clustering voluminous
BGP data - called stemming - in order to present a clear, useful visualization of
routing from the perspective on one AS, and demonstrate how their technique
can help diagnose BGP anomalies. The described system, like BGPlay, uses an-
imation to show how the routing situation changes over time, allowing network
operators to quickly “see” the story rather than crawling through thousands,
perhaps millions, of update messages. The LinkRank visualization [4] developed
by Lad, Masset, and Zhang, provides a higher level view of AS connectivity in
that it simultaneously visualizes the number of routes lost or gained between
many different ASes. It can help show how the overall topology changes when
the link between two ASes fails.

The above cited works all focus on presenting a high-level view of BGP up-
date traffic, aiming to free the network operator from the river of data flowing
silently among the many border routers. Other tools deal with the data at a
somewhat lower level. Teoh, et al. provide a suite of visualization tools [5] for
examining individual update messages with the aim of problem diagnosis and
root-cause analysis. They also provide a technique for clustering and picturing
these messages as single, categorizable events.

Some visualization applications focus on specific types of BGP misconfigu-
ration or attack. For example, Teoh et al. describe techniques for visualizing
Change of Origin AS events [6] [7]. These tools include an encoding of the over-
all IP-space using a quad-tree. More recently, they have extended their previous
work on classification of update messages into BGP events, and provide new
tools for showing a more global picture of BGP activity with an application
suite called BGPEye [8]. This tool provides several different visualizations of
BGP activity from the perspective of one collection point. The different per-
spectives given by this tools show not only the overall BGP activity, but also
how it affects the network connectivity at the data collection point.

Most existing tools focus either on the high-level picture, or specific aspects of
the low-level data. BGPeep instead provides a general tool for visually examining

BGPeep: An IP-Space Centered View for Internet Routing Data 97

the raw update traffic provided by border routers. The novel IP-space encod-
ing we’ve developed provides a depiction of announced and withdrawn network
prefixes that more clearly conveys the size of the update, and can better show
overlapping or conflicting updates. As such, we see it as a useful tool to be used
in collaboration with the many existing packages for coping with BGP. Its aim
is to provide a tool for general exploration of the traffic generated by peer ASes,
a niche not yet filled by existing software.

3 BGPeep

BGPeep uses four linked views to present BGP update messages and allow users
to manipulate the visualization. Figure 1 shows the main application window,
which contains the prefix visualizer, the timeline, and the low-level data view.
Figure 2 depicts the AS tag cloud and corresponding user-interface controls,
which provide the means for initial data retrieval, filtering, and AS subset se-
lection. The typical data browsing scenario is as follows. The user selects and
loads a specific data set, and then runs one of the pre-defined queries against
the data. This action populates the tag cloud with matching ASes, which can
be restricted temporally using the timeline if desired. The user then interacts
directly with the tag cloud to select a subset of the ASes for examination in the
prefix visualizer. The following sections describe each component’s design and
interaction abilities in more detail.

Fig. 1. The update view is the visual center of BGPeep and contains three linked views.
The prefix visualizer (a) depicts the selected BGP update messages. The timeline (b)
provides an intuitive means for time-based restriction and provides a visualization of
the relative message traffic throughout the selected time. The data view (c) is a more
traditional tabular view of the BGP data for inspecting specific details of an update
message. It provides controls for filtering and focusing in on specific ASes or prefixes.

98 J. Shearer, K.-L. Ma, and T. Kohlenberg

Fig. 2. The AS tag cloud displays (b) the ASes matching the search criteria, specified
using the selection popup (c). Tag sizes are proportional to the relative number of
update messages sent in the selected time by the associated AS. Users can filter and
search the presented AS subset using the search field (a), select ASes for display by
clicking the tag, or obtain additional AS information using the detail viewer.

3.1 The Data

BGPeep currently supports ASCII dumps in MRT ‘machine’ format, such as
those provided by the University of Oregon RouteViews project [9]. These dumps
are collections of all BGP update messages sent by peer ASes to border routers
participating in the RouteViews project. Each record in a given dump is either
a BGP update or withdrawal message, with contents as specified in IETF RFC
4271 [10]. For the purposes of our discussion, it is sufficient to know that a
message contains at least the follow parts:

Peer AS. This is the topologically neighboring border router which sent the
update message to the collection router.

Announcement/Withdrawal. An announcement message is when an AS
claims a certain portion of IP-space is reachable through it, and a with-
drawal is when it revokes this claim.

A Prefix. The portion of IP-space for which this message applies. Essentially,
this is an IP address with a set number of bits marked as fixed. The re-
mainder - the variable bits - represent the range of address the prefix covers.
For example, 192.168.1.0/24 represents the range of addresses starting at
192.168.1.0 with the first 24 bits fixed. The remaining 8 bits are variable,
covering 256 unique IP addresses. IETF RFC 4632 [11] contains a detailed
description of CIDR addressing.

BGPeep: An IP-Space Centered View for Internet Routing Data 99

AS Path. For announcement messages, the AS path is simply an ordered list of
ASes that lead to a given prefix. The last AS on the path to a given network
prefix is called the origin AS. That AS is said to have originated that prefix.

3.2 AS Tag Cloud

Tag clouds are an interaction technique that has been popularized recently on
the world wide web. A tag cloud is a list of visual elements, typically words, that
are assigned different sizes based on some metric. A user can click directly on
a tag to instigate some action in the program or browser, often navigating to
some other application content. Though little academic research describes tag
clouds, Rivadeneira, et al. [12] present recent work which provides an overview
and describes evaluation strategies.

The AS tag cloud (Figure 2) is the primary interface element for querying
the BGP update data set. Users can select a query to run against the data
using the selection popup marked ‘c.’ These queries are written in a SQL-like
language, and are modifiable by the application designer. BGPeep currently
supports queries for returning all ASes which originate prefixes in the current
data set, for returning all peer ASes which present updates or withdrawals, and
for returning all ASes mentioned in an announced AS path. These queries can
be temporally restricted using the timeline, discussed below in Section 3.4.

The query populates the cloud with AS tags, listed alphabetically by AS
name, with the sizes assigned based on the relative number of matching updates
associated with the given AS. For example, if the user queried ‘ASes originating
prefixes,’ then the tag sizes would be based on the number of prefixes the AS
originated in the selected time range. As such, the most active ASes immediately
stand out against the background noise of the less active systems. Users can select
up to four ASes to display in the prefix viewer at a given time by clicking the ap-
propriate tags. Right-clicking a tag calls up a AS detail view, as depicted in Fig-
ure 3(c). This panel, which contains some simple statistics regarding the selected
AS for the given dataset, floats above the cloud when requested, and is invisible
otherwise. This provides a mechanism for unobtrusively providing information
that is not typically useful, but that the user might need to infrequently access.

The tag sizing is meant to help users in their initial encounter with a new
data set in order to identify the most active ASes. But for certain tasks, the
tag cloud sizing might not be useful. For example, if the user is searching for
a particular AS, or activity concerning a particular prefix, then the assigned
sizes might simply be distracting. For that reason, BGPeep provides a variety of
methods for filtering the cloud. The search field, marked ‘a’ in Figure 2, allows
the user to select from a list of pre-defined searches such as ‘AS name contains...’,
and ‘AS announces prefix...’. When the user enters text, all tags not matching
the criteria are visually darkened, while matching tags retain their visual impact
(Figure 3(b)). As such, a user can quickly locate the AS of interest and select it
for display in the other application views.

100 J. Shearer, K.-L. Ma, and T. Kohlenberg

(a) Unfiltered (b) Filtered (c) Detail display

Fig. 3. Filtering allows BGPeep users to more easily find the ASes of interest. Fig-
ure 3(a) shows a normal, unfiltered tag cloud. In Figure 3(b), the cloud is filtered
showing thoses ASes with a long description containing the string ‘net’. Figure 3(c)
shows several selected ASes and one displayed using the AS detail panel, which users
can show or hide by right-clicking on a tag.

3.3 Prefix Visualization

The prefix visualization in the main visual element of BGPeep, and provides a
novel view of IP-space in a BGP-centric fashion. The view contains five axis,
and selectable, colored labels naming the currently visualized ASes. Figure 4
provides a labeled version of the prefix visualization showing only a few updates.
The visualization components, rendering technique, and interaction methods are
described below.

The Axes. The topmost axis in the display represents the AS associated with
the update message, either as peer AS or originating AS, and has values ranging
from the lowest AS number in the data set to the highest. For example, if the
‘lowest’ AS mentioned in the data set was 100, and the highest was 41000, then
the midpoint of the first axis would correspond to AS number 20000.

The subsequent axes correspond to the various octets of the prefix’s CIDR-
style IP address range. For example, for the prefix 192.168.1.0/24, 192 would
be plotted on the second axis, 168 on the third, 1 on the fourth, and 0/24 on
the fifth. The axis for the second, third, and fourth octets are subdivided to
prevent display over-plotting. Using the method described below, a shape is
drawn through these axes which shows the viewer which AS(es) announced or
withdrew the prefix and what portion of IP-space it covers.

Update Rendering. Each prefix is rendered as a shape that passes through
all five axis. There are three situations that contribute to the overall shape of
the prefix:

AS to Octet 1. This portion of the shape is a line connecting the AS associated
with the update to the location of the first octet, where the Octet axis is
valued 0-255 from left to right.

BGPeep: An IP-Space Centered View for Internet Routing Data 101

Fig. 4. The prefix visualization, labeled for explanation, showing four prefix announce-
ments from two ASes. The top axes denotes the AS associated with the update message,
and the subsequent four axes represent the four IP address octets. Each axis is sub-
divided as detailed in section 3.3 to avoid extensive display over-plotting and allow
easier visual decoding of the prefix. Variable portions of the CIDR address are draw
as polygons that extend across the addresses in the range. Note that in this particular
image, we also see a potential inefficiency in the announcements for AS 14349. Instead
of announcing two /17 prefixes, it could instead announce one /16 and handle the
de-aggregation internally.

Octet to Octet. Octet 2, and later axes are subdivided into a set number of
sections, demarcated with small hash marks. Each section on the axis corre-
sponds to the entire 0-255 octet range for prefixes whose first octet falls above
it. This is evident from Figure 4. Prefix 12.47.65.0/24 flows down the left
side of the display due to this subdivision. This allows many more prefixes
to be shown simultaneously without overlapping.

Ranges. Almost all BGP updates involve a range of addresses, usually 256
unique IPs or more in size. Ranges are depicted using a triangle which covers
all the addresses contained in the update. Because most updates are /24 or
greater in size, the shape between axes 4 and 5 are usually a triangle or a
rectangle. This depicting of ranges means that larger ranges are fuller, larger
shapes. Also, prefixes announcing less than 256 addresses - usually indicative
of a misconfiguration - clearly show up as skinny shapes between the final
two axes.

All updates for the selected ASes are rendered simultaneously in the display
to allow intra- and inter-AS comparison. Each prefix is rendered with a user-
modifiable base opacity. This allows the user to see - at a glance - very chatty
ASes. If the base opacity is set very low, yet the prefix visualizer shows a rel-
atively solid-colored prefix, then this prefix was announced many times in the
selected time period. The user can then examine the specific timing details in
the data view table.

102 J. Shearer, K.-L. Ma, and T. Kohlenberg

(a) No emphasis

(b) AS Matrix emphasized

Fig. 5. AS emphasis can help isolate a particular AS for closer examination, or com-
pare/contrast two similar ASes. In the top image, three displayed ASes announce pre-
fixes in the same octect range, leading to some cluttering on subsequent axes. In the
bottom image, the unselected ASes are assigned 10% opacity, so that the selected AS
is highlighted, but all context is not lost.

AS Emphasis. Very active ASes can sometimes present many update an-
nouncements, which makes comparison with other ASes difficult. As a remedy,
BGPeep allows the user to select a specific AS for emphasis. When selected, the
rendered prefixes for that AS retain their opacity, while all other updates and
their corresponding labels are rendered with significantly reduced opacity. The
user can select another AS for emphasis either by selecting it from the selection
popup in the data view, or by clicking its label in the prefix visualizer. Figure 5

BGPeep: An IP-Space Centered View for Internet Routing Data 103

(a) No focus (b) Focused

Fig. 6. Individual prefix focus visually isolates the selected prefixes in a potentially
crowded display. The selected prefixes are rendered with full opacity, regardless of the
set base opacity, and are rendered on top of the other, non-focused prefixes. This allows
the user to highlight the prefix of interest without losing the context of the selected
AS’ overall announcement activity.

shows AS emphasis in action. Note that the other ASes are not entirely removed
- simply faded - so as to retain context for comparison.

Prefix Focusing. Similarly, the user might see a specific prefix in the data view
that she wants to highlight in a visually busy mass of updates. In this case, the
user can enable prefix focusing by clicking the associated check box in the data
view and then selecting one or more prefixes in the table. When focused, a prefix
is rendered last - and therefore on top of the other prefixes - with full opacity.

3.4 Timeline

The timeline allows the BGPeep user to temporally restrict queries in the other
views, including the initial tag cloud query. When the application starts, the
entire time range for the loaded data set is pre-selected, as depicted in Fig-
ure 7(a). By clicking and dragging in the upper portion of the timeline, the user
can intuitively select only a portion of the time range for display, Figure 7(b).

The bottom half of the timeline is the update frequency visualization, which
provides the user with a quick overview of update ‘hot spots’ for the selected

104 J. Shearer, K.-L. Ma, and T. Kohlenberg

(a) Timeline

(b) Timeline with selection

Fig. 7. The timeline view allows BGPeep users to temporally restrict both the rendered
messages and the initial AS cloud search. The top portion of the timeline is a simple
rectangle which represents the portion of the loaded data set currently selected. The
bottom portion divides the currently selected time range into equally-sized rectangles
and colors each region based on the number of updates in the corresponding time slice.
The more saturated the color, the greater the number of updates.

AS. This portion of the display is sub-divided into equally sized rectangles. Each
rectangle corresponds to an equal slice of time in the already selected time range.
BGPeep colors each rectangle based on the relative number of associated updates
that occur in that time. The more saturated the color, the greater the number
of updates in that time slice, relative to the whole selected range. By alternating
the selection between two ASes, the user can compare and contrast when the
main activity occurred for each system, which might be important for cases such
as that detailed in Section 4.2.

3.5 Data View

The data view provides controls for filtering the displayed update messages in
the prefix visualizer, and also provides a more traditional, table-based view of
the update messages. The various interface elements are described in Figure 8.
The topmost selection popup, labeled ‘a,’ allows the user to choose which AS’
data is shown in the table, marked ‘b’.

As previously noted, the data view contains interface elements for highlighting
specific ASes or prefixes.

The table view contains two distinct presentations of the update messages for
the currently selected AS. In the first, all update messages - including duplicates
- for the selected AS are listed in the table. For each update, the time, the type,
the prefix, the AS path, and other data are given. Users can sort on any column
in order to arrange the data in the most convenient manner. If an update is a
withdrawal, the text for that update is colored red. This allows the user to quick
spot flapping routes, as described in section 4.1.

The second table view shows only unique prefixes - filtering out repeat an-
nouncements - which can be more useful for initial data exploration. Often an AS
will make repeated announcements regarding the same prefix, with the same in-
formation. A user can combine all of these updates into a single table line which

BGPeep: An IP-Space Centered View for Internet Routing Data 105

Fig. 8. The data view provides controls for visually isolating specific ASes (a), specific
prefixes (c), examining low-level details of individual update messages (b), and varying
the type of visualized update messages (d). Note that the table view assigns a distinct
color to the text of withdrawal messages, which helps to identify cases of route flapping.

has only the prefix and the count of times it was announced. This is useful if the
user wants to quickly focus each individual prefix announced by a particular AS
in order to get a sense of the overall IP-space ownership claimed.

4 Results

The primary benefit of BGPeep is the ease by which it allows a user to quickly
navigate and visualize the traffic observed at a particular router. However, there
are some particular cases of router misconfiguration or mischief for which BG-
Peep can provide a unique perspective.

4.1 Route Flapping

Route flapping occurs when an AS repeatedly announces and then withdraws
a specific network prefix. While flapping usually has little effect on the overall
topology of the Internet, it can generate excessive network traffic and can un-
necessarily add to the workload of computationally constrained routers. BGPeep
provides features to help identify such cases. First, it renders withdrawal mes-
sages with a fixed opacity, black outline as detailed in Figure 9. The result is
that moderately-to-heavily flapping routes appear very different from those that
are simply announced. When the user adjusts the base rendering opacity to zero,
the withdrawn routes - even those withdrawn only once - leave behind a visible

106 J. Shearer, K.-L. Ma, and T. Kohlenberg

(a) Regular (b) Withdrawals (c) Flapping in the table

Fig. 9. Withdrawal messages are rendered slightly differently from prefix announce-
ments. Announcement borders have the same hue and base opacity as the fill color
for the given AS. Withdrawal messages, however, are drawn with a black border at a
fixed opacity. As a result, a flapping route will have a ‘pencil-sketch’ look (left) when
rendered with non-zero base opacity, and will leave behind a visual residue (center)
when the base opacity is set low. Combined with the distinct coloring and sort options
available in the data view table (right), it is easy to identify flapping routes.

outline. He or she can then use the data view table to see specific details of the
offending update messages by sorting on time and prefix. Withdrawal messages
are printed with red text, and the alternating red-black text makes flapping easy
to identify.

4.2 Prefix Highjacking

Prefix Highjacking occurs when AS A mistakenly or purposefully announces itself
as the owner of AS B’s network prefix. If the path announced by A is shorter
than that in the current global routing table, or the newly announced prefix is
more specific, then many systems will mistakenly route packets truly destined
for B to A.

A high-profile case of prefix hijacking occurred on February 24, 2008 when
Pakistan Telecom announced itself the origin AS of 208.65.153.0/24, an IP range
owned by YouTube. The announcement was mean to block YouTube from within
Pakistan, but somehow it mistakenly leaked out to neighboring ASes. As a result,
the announcement propagated throughout the Internet and many hosts could no
longer properly route packets to YouTube. Eventually, YouTube announced the

BGPeep: An IP-Space Centered View for Internet Routing Data 107

Fig. 10. This shows the prefix hijacking of YouTube’s 208.65.153.0/24 by Pakistan
Telecom on February 24th, 2008. Note how the AS lines ‘funnel’ into the same prefix.
Also note the later de-aggregation purposefully announced by YouTube to combat the
hijacking.

same IP-space as two smaller /25 prefixes, which repaired connectivity for many
hosts. The RIPE news archive contains a detailed analysis of this event [13].

Figure 10 shows this event, as rendered in the BGPeep prefix visualizer. The
image clearly shows that both Pakistan Telecom and YouTube claim ownership
of the same prefix, and that YouTube later announced two consecutive, smaller
prefixes. In order to obtain this image, we loaded data from the RouteViews
archive for February 24th into BGPeep and searched for ASes involved with
prefixes beginning with ‘208.65.153.0’ bounded by the time range of the event.
The timeline frequency visualization provided temporal context to the selected
announcements.

4.3 Inefficient Announcements

Inefficient prefix announcements, like flapping, can have a negative effect on
overall routing performance by generating unnecessary traffic, and by increasing
the size of the global routing table. For example, most ASes do not announce or
propagate announcements for prefixes smaller than 256 hosts, since almost all
ASes deal in chunks of IP-space of size /24 or greater. BGPeep’s prefix visualiza-
tion clearly shows suspiciously small announcements, as depicted in Figure 11.
Here the suspicious updates are obvious because they deviate from the typical
visual pattern of triangles between the bottom two axes.

Figure 12 shows another example of how BGPeep can highlight potentially
bad route announcements. Here an AS has announced three prefixes which are
consecutive in IP-space. Consulting the data view, we saw the for all three, the
announcement details, including the AS Path, were identical. It is likely that
these three prefixes could be collapsed into one announcement.

108 J. Shearer, K.-L. Ma, and T. Kohlenberg

Fig. 11. In this figure, we see that ERMS-EARTHLINK has announced many sub-/24
prefixes, including a few individual IP addresses. Because of the deviation from the
normal visual pattern, these ‘spikes’ on the last axis visually jump out at the user.
This could be of particular use in an animated, real-time monitoring application of
BGPeep.

Fig. 12. An example of possibly inefficient route announcements. The focused routes,
circled in red, announce consecutive ranges of IP address with the same AS path. Most
likely, the originating AS could collapse these announcements into one consecutive IP
range and perform and needed de-aggregation internally. This helps keep the global
routing table small, which is important given the limited computing power most BGP
speakers possess. These kinds of striated patterns are easy to see using BGPeep.

5 Future Work

This work presents the core visual elements and interaction design for BGPeep.
We’re currently working on extending our tool to incorporate animation to show
the announcements over time. With this feature, the user could place the tool into

BGPeep: An IP-Space Centered View for Internet Routing Data 109

a ‘monitoring’ or ‘playback’ mode and watch as live prefixes or a selected data
subset arrive at their AS’ border routers. As each update arrives, it would briefly
flash with full opacity, and then slowly fade away. In such an implementation,
flapping routes, overly chatty neighbors, and inefficient announcements would
be easy to spot. This could be combined with an overlay of the particular ASes
own prefix space, so that hijacking and de-aggregation would be immediately
evident to a watchful eye.

6 Conclusion

We have presented BGPeep, and interactive system for visualizing BGP update
messages at a lower level than most existing applications. Using BGPeep, an
network operator can interactively explore the update traffic as seen by her
border routers, and better understand the traffic generated by peering ASes. In
addition, our unique encoding of IP-space affords the user a fresh perspective on
such data sets, and can clearly show IP-space de-aggregation, prefix hijacking,
and route flapping. We believe BGPeep to be a useful addition to the already
powerful arsenal of visualization tools available for contending with the data
avalanche BGP presents.

Acknowledgements

This research was supported in part by Intel Corporation, the U.S. National
Science Foundation through grants CCF-0634913, IIS-0552334, CNS-0551727,
and OCI-0325934, and the U.S. Department of Energy through the SciDAC
program with Agreement No. DE-FC02-06ER25777.

Special thanks to the University of Oregon Route Views Project for providing
the data used in the development of BGPeep.

References

1. Colitti, L., Di Battista, G., Mariani, F., Patrignani, M., Pizzonia, M.: Visualizing
interdomain routing with bgplay. Journal of Graph Algorithms and Applications
9, 117–148 (2005); Special Issue on the 2003 Symposium on Graph Drawing, GD
2003

2. Cortese, P., Di Battista, G., Moneta, A., Patrignani, M., Pizzonia, M.: Topographic
visualization of prefix propagation in the internet. IEEE Transactions on Visual-
ization and Computer Graphics 12(5), 725–732 (2006)

3. Wong, T., Jacobson, V., Alaettinoglu, C.: Internet routing anomaly detection and
visualization. In: International Conference on Dependable Systems and Networks,
2005. DSN 2005. Proceedings, 28 June-1 July 2005, pp. 172–181 (2005)

4. Lad, M., Massey, D., Zhang, L.: Visualizing internet routing changes. IEEE Trans-
actions on Visualization and Computer Graphics 12(6), 1450–1460 (2006)

5. Teoh, S.T., Ma, K.L., Wu, S.F.: A visual exploration process for the analysis of in-
ternet routing data. In: VIS 2003: Proceedings of the 14th IEEE Visualization 2003
(VIS 2003), Washington, DC, USA, p. 69. IEEE Computer Society, Los Alamitos
(2003)

110 J. Shearer, K.-L. Ma, and T. Kohlenberg

6. Teoh, S.T., Ma, K.L., Wu, S.F., Zhao, X.: Case study: interactive visualization
for internet security. In: VIS 2002: Proceedings of the conference on Visualization
2002, Washington, DC, USA, pp. 505–508. IEEE Computer Society, Los Alamitos
(2002)

7. Teoh, S.T., Ma, K.L., Wu, S., Jankun-Kelly, T.: Detecting flaws and intruders with
visual data analysis. Computer Graphics and Applications 24(5), 27–35 (2004)

8. Teoh, S.T., Ranjan, S., Nucci, A., Chuah, C.N.: Bgp eye: a new visualization tool for
real-time detection and analysis of bgp anomalies. In: VizSEC 2006: Proceedings of
the 3rd international workshop on Visualization for computer security, pp. 81–90.
ACM, New York (2006)

9. University of Oregon RouteViews Project, http://www.routeviews.org
10. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). RFC 4271

(Draft Standard) (2006)
11. Fuller, V., Li, T.: Classless Inter-domain Routing (CIDR): The Internet Address

Assignment and Aggregation Plan. RFC 4632 (Best Current Practice) (2006)
12. Rivadeneira, A.W., Gruen, D.M., Muller, M.J., Millen, D.R.: Getting our head

in the clouds: toward evaluation studies of tagclouds. In: CHI 2007: Proceedings
of the SIGCHI conference on Human factors in computing systems, pp. 995–998.
ACM, New York (2007)

13. YouTube Hijacking: RIPE Analysis,
http://www.ripe.net/news/study-youtube-hijacking.html

http://www.routeviews.org
http://www.ripe.net/news/study-youtube-hijacking.html

Large-Scale Network Monitoring for Visual

Analysis of Attacks

Fabian Fischer, Florian Mansmann, Daniel A. Keim, Stephan Pietzko,
and Marcel Waldvogel

University of Konstanz, Computer and Information Science,
78457 Konstanz, Germany

{Fabian.Fischer,Florian.Mansmann,Daniel.Keim,
Stephan.Pietzko,Marcel.Waldvogel}@uni-konstanz.de

http://infovis.uni-konstanz.de

Abstract. The importance of the Internet and our dependency on com-
puter networks are steadily growing, which results in high costs and sub-
stantial consequences in case of successful intrusions, stolen data, and
interrupted services. At the same time, a trend towards massive attacks
against the network infrastructure is noticeable. Therefore, monitoring
large networks has become an important field in practice and research.
Through monitoring systems, attacks can be detected and analyzed to
gain knowledge of how to better protect the network in the future. In
the scope of this paper, we present a system to analyze NetFlow data us-
ing a relational database system. NetFlow records are linked with alerts
from an intrusion detection system to enable efficient exploration of sus-
picious activity within the monitored network. Within the system, the
monitored network is mapped to a TreeMap visualization, the attackers
are arranged at the borders and linked using splines parameterized with
prefix information. In a series of case studies, we demonstrate how the
tool can be used to judge the relevance of alerts, to reveal massive dis-
tributed attacks, and to analyze service usage within a network.

Keywords: visual network monitoring, visualization for network secu-
rity, large-scale netflow analysis.

1 Introduction

The increase of network attacks in terms of coverage, intensity, and aggressive-
ness is one of the most difficult challenges for network administrators today. A
major part of these developments is to be attributed to so-called Botnets, which
play a critical role in large-scale attacks [1]. In particular, more and more attacks
focus on corporate and governmental networks with the goal of stealing confi-
dential information or blackmailing companies whose business model depends on
uninterrupted availability of their business and services. These facts point out
the need for software to effectively and efficiently analyze network traffic both in
real-time and for forensic purposes. The latter analysis can be especially useful
for discovering compromised hosts within the local network.

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 111–118, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://infovis.uni-konstanz.de

112 F. Fischer et al.

Since the analysis of flow data in current analysis systems is only supported to
some extent, we propose a novel analysis system called NFlowVis with the goal
of enabling quick visual insights into communication patterns. The system is ca-
pable of storing NetFlow data of large systems, linking these flows to alerts from
intrusion detection systems or public warnings, and to visualize flows between
external and internal hosts. Using a TreeMap visualization, we depict the local
network infrastructure emphasizing high traffic subnets. On top of this visual-
ization, Splines in selected colors are utilized to connect the external host with
the local communication partners, thereby revealing insight into communication
patterns of malicious and legitimate network traffic.

To protect the privacy of our network users, we anonymized all IP addresses
used while maintaining the grouping according to the higher level prefixes. There-
fore, conclusions about the usage of a particular hosts, either internal or external
ones, cannot be drawn from the displayed figures.

The remainder of this paper is structured as follows: Section 2 discusses related
work, Section 3 introduces our NFlowVis application, Section 4 presents real-
world case studies, Section 5 discusses the tool’s applicability and scalability,
and Section 6 summarizes our contributions.

2 Related Work

Visualization for computer security is a relatively young research field. While
substantial research has been conducted in the field in the last few years, for
brevity this section will focus on visual network traffic monitoring and discuss
the roots of the used visualization concepts.

In the Open Source community, there are two popular tools: NfSen [2] and
Stager [3]. Both tools comprise web frontends to display aggregated information
about previously captured netflows. In the backend, database management sys-
tems enable efficient access to detailed information and efficient generation of ag-
gregated reports. For visual analysis, both systems use line charts for displaying
temporal overviews of network system load. While Stager only stores highly ag-
gregated data, NfSen reverts back to the original flow data for detailed analysis.

Since network monitoring is particularly important for the health of the com-
mercial network infrastructure, there exist a multitude of commercial systems. In
contrast to the previously discussed tool, commercial systems such as IBM Au-
rora1, NetQoS Reporter Analyzer2, Caligare Flow Inspector3, and Arbor Peak-
flow4 often include methods for intrusion detection in which generated alerts can
be examined through interactive reports. However, the used statistical charts and
diagramsonly scale to a limited number of alerts or highly aggregated information.

Visualization approaches in network monitoring aim at supporting the system
administrator in the exploration of network traffic by means of interactive visual
1 http://www.zurich.ibm.com/aurora
2 http://netqos.com/solutions/reporteranalyzer
3 http://www.caligare.com/netflow
4 http://www.arbornetworks.com

Large-Scale Network Monitoring for Visual Analysis of Attacks 113

displays. NVisionIP [4], for example, enables visual pattern recognition and drill-
down functionalities to inspect suspicious machines. TNV [5] is a network traffic
visualization tool focusing on temporal aspects by means of a time versus inter-
nal host matrix, which details traffic flows for each host and links the external
communication partners on the side. The home-centric network view of VISUAL
[6] is probably closest to our proposed visualization since a matrix showing all
internal hosts in the center is linked to external communication partners using
straight connecting lines.

In contrast to this work, we made two major conceptual changes:

a) Instead of using a matrix view for the internal hosts, we employ a TreeMap
[7] visualization, which hierarchically maps the monitored network infras-
tructure to prefixes of various granularity. Unlike in our previous work [8],
high-load entities are thereby enlarged.

b) Rather than using straight lines to link the communication partners, we
employ Hierarchical Edge Bundles [9] to visually group related flows, and
thereby avoid visual clutter.

While we visualized flows using Hierarchical Edge Bundles with both start
and end point within a TreeMap visualization in an earlier work [10], the work
presented in this paper explicitly focuses on a home-centric network view, which
represents the local IP prefixes or addresses in a TreeMap and places the external
hosts at its border.

3 Visual Analysis of Attacks

Keeping the general workflow of a network analyst in mind, we developed NFlow-
Vis to interpret the relevance of network security alerts. The system supports
this full workflow through its five analysis views with a general network overview,
an integrated intrusion detection view, the flow visualization of attackers’ con-
nections, a detailed host view, and the full NetFlow records of the specified
communications as the most detailed view. In the graphical user interface these
views are represented through several tabs to emphasize the drill-down and fil-
tering process. Fig. 1 describes the design of NFlowVis: the connection settings
to the database server and project creation wizard (A), project selection (B),
key data of the selected project (C), textual description (D), fast access to ex-
ternal tools and internal queries to retrieve host details (E), current status and
progress of operations (F), and the previously mentioned data exploration views
ordered according to the levels of details (G).

Within the overview tab, the system provides several user-defined plots (H).
With the help of these graphs the analyst is able get a rough overview of the
actual network situation and utilization detailing the aggregated traffic and port
usage within the whole network. To visualize these time series we use line charts
and grouped line-wise pixel arrangements. The use of both visualizations com-
bines the advantages of the well known line charts and the pixel visualization,
which provides identification of every single minute and enables recognition of

114 F. Fischer et al.

A)
B)

C)

E)

G)

F)

H)
D)

Fig. 1. User interface of the NFlowVis system showing the annotated main view (left)

recurring patterns. The overview also provides an interactive port activity map
to identify the most active ports.

The intrusion detection view links IDS alerts or public warning lists with
the full NetFlow records and displays the textual data in a colored table. By
calculating some statistics concerning the influence of the attacking hosts on the
whole network, the analyst gets a more realistic view of the relevance of the
alerts. For further investigation of a number of hosts, it is possible to select the
attackers and to visualize their connections to explore their influence. Besides
the integration of external IDS alerts and warning lists, this view also provides
a template editor to define database queries, which can directly access the flow
data. We included a variety of different predefined templates, such as grabbing
all SSH traffic or other suspicious activities.

Within the flow visualization view, we map the monitored network to a
TreeMap visualization in the center of the display and arrange the previously
selected attackers at the borders. The TreeMap comprises all hosts related to
the attacking hosts during the chosen timeframe, which can be defined in the
project creation wizard. Flows between the attackers and the local hosts or pre-
fixes are displayed through Splines, whose control points are the center points
of the network prefixes of various levels and the attackers on the outside. The
size of the TreeMap rectangles (weight), their background color, and the Spline

Large-Scale Network Monitoring for Visual Analysis of Attacks 115

width can be set to arbitrary attributes of the aggregated flow data, e.g., flow
count, transferred packets, or bytes.

In the default configuration the Spline color correlates with the attacker’s
IP prefix, which better shows the behavior of attackers with similar prefixes
supporting the analyst in gaining insight into the distribution of the attacking
IP addresses. Alternatively, random colors can be chosen.

The position of the attackers is calculated based on a k-Medoid clustering
algorithm [11], which identifies all attackers and clusters them based on similar
destination hosts. Therefore, it is possible to arrange hosts with similar victims
close to each other to minimize overlaps. Another positive effect is the meaningful
grouping of collaborating attackers in the same cluster.

For further analysis of single hosts under attack, the analyst is able to use the
host view detailing histograms, a port activity map, and an aggregated overview
of all attackers related to the chosen host. Likewise, the original NetFlow records
can be further analyzed by drilling-down and extracting the corresponding data
in the NetFlow records view.

4 Case Studies

In this section, we will demonstrate, how our NFlowVis tool can be applied to
analyze potentially successful attacks, how massive distributed SSH attacks can
be displayed, and how the tool can facilitate deeper understanding of service
usage within the administrated IP network.

It is widely known that brute-force and dictionary SSH attacks are on the
rise, as documented by huge numbers of explicit scans on port 22. The network
security officer is primarily interested in those hosts, which do not have any
prevention systems and do not block or throttle incoming login attacks. Since
the attacker is able to make unlimited login attempts on such servers, the prob-
ability of successful logins is drastically increased. Besides, the attacker might
automatically check the host’s functionality after a successful login. By increas-
ing a threshold slider in the visualization view, it is possible to smoothly hide all
splines not exceeding that threshold (see Fig. 2) in order to identify hosts with
high traffic to the attacker.

It is also possible to identify previously unknown attack scenarios. We were
not aware of a massive distributed SSH attack in May 2008 before conducting a
visual analysis of that day. The slow and low-volume attack pattern successfully
avoided a) detection by intrusion prevention systems since it did not exceed
common threshold limits and b) blocking of attacker IPs on the target machines.
Using NFlowVis, we were able to identify a massive distributed SSH attack
originating from a Botnet as shown in Fig. 3. The SSH connections originated
from several hundred hosts, lasted over two days, and targeted about 50 specific
university servers summing up to about 20 000 connections.

Besides the analysis of attacks, NFlowVis can also be used to gain insight
into legitimate network traffic, such as understanding of normal service usage or
identification of abnormal network behavior. Fig. 4 details such a usage scenario

116 F. Fischer et al.

Fig. 2. Identification of possibly compromised hosts using threshold adjustment (red)

Fig. 3. Massive distributed SSH attack conducted by a Botnet with 120 Zombie com-
puters against hosts of the university network on May 11, 2008

Large-Scale Network Monitoring for Visual Analysis of Attacks 117

Fig. 4. Connections of local hosts to time servers visualized with straight lines (left)
and Hierarchical Edge Bundles (right)

in which the security officer visualizes flows to time servers. In this case, the
IP addresses of the external time servers can reveal valuable information, for
example, the distribution of operating systems on the machines within the local
network since Macs have a tendency to connect to Apple’s time servers and Win-
dows machines preferably connect to Microsoft’s time servers. Similar analysis
can be conducted with IRC or DNS services, which might even be more relevant
for network security.

5 Discussion

In contrast to previous approaches to visualizing traffic between internal and ex-
ternal network hosts, the combination of advanced visualization techniques with
a clustering algorithm provides a scalable overview of the flows as demonstrated
in Fig. 4. In particular, using the Hierarchical Edge Bundles [9] after clustering
the external hosts based on the common internal connection hosts allowed us
to identify distributed attacks and insightful traffic patterns as demonstrated in
the previous section. In addition to that, the home-centric TreeMap visualization
of the network is visually scalable due to the possibility to apply it at different
granularity levels of the prefixes.

6 Conclusions

In the scope of this paper, we presented the NFlowVis system to analyze intru-
sion detection and flow data. The user interface of the system follows a drill-down
metaphor, guiding the analyst from an abstract overview of the overall network
activity to aggregated views of IDS data and thorough analysis of attackers, their
network traffic, and the victim hosts. In particular, this paper focused on a flow
visualization technique combining a TreeMap visualization, a clustering algo-
rithm, and Hierarchical Edge Bundles to group flows in a meaningful way. Three

118 F. Fischer et al.

small case studies demonstrated the tool’s applicability for exploring potentially
successful attacks, for detection of slow and low-volume distributed attacks, and
for analysis of service usage within our network.

In the future, we plan to extend our visualization technique to consider tem-
poral aspects of attacks in more details using interactive specification of time
intervals or a small multiples visualization.

Acknowledgment

This work has been funded by the BW-FIT research project “Information at
your Fingertips: Interactive Visualization for Gigapixel Displays”. We thank the
anonymous reviewers of the VizSec 2008 for their valuable comments.

References

1. McPherson, D., Labovitz, C., Hollyman, M.: Worldwide infrastructure security
report, volume III. Technical report, Arbor Networks (September 2007)

2. NfSen - Netflow Sensor: A graphical web based front end for the nfdump netflow
tools (2007), http://nfsen.sourceforge.net/

3. Oslebo, A.: Stager A Web Based Application for Presenting Network Statistics.
In: Network Operations and Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pp. 1–15 (2006)

4. Lakkaraju, K., Bearavolu, R., Slagell, A., Yurcik, W., North, S.: Closing-the-Loop
in NVisionIP: Integrating Discovery and Search in Security Visualizations. In:
IEEE Workshops on Visualization for Computer Security, 26 October 2005, p.
9 (2005)

5. Goodall, J.R., Lutters, W.G., Rheingans, P., Komlodi, A.: Preserving the Big Pic-
ture: Visual Network Traffic Analysis with TNV. In: VIZSEC 2005: Proceedings
of the IEEE Workshops on Visualization for Computer Security, Washington, DC,
USA. IEEE Computer Society, Los Alamitos (2005)

6. Ball, R., Fink, G., North, C.: Home-centric visualization of network traffic for se-
curity administration. In: Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pp. 55–64 (2004)

7. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph. 11(1), 92–99 (1992)

8. Mansmann, F., Keim, D.A., North, S.C., Rexroad, B., Sheleheda, D.: Visual Anal-
ysis of Network Traffic for Resource Planning, Interactive Monitoring, and Inter-
pretation of Security Threats. IEEE Transactions on Visualization and Computer
Graphics 13(6), 1105–1112 (2007)

9. Holten, D.: Hierarchical Edge Bundles: Visualization of Adjacency Relations in
Hierarchical Data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

10. Mansmann, F., Fischer, F., Keim, D., North, S.: Visualizing large-scale IP traf-
fic flows. In: Proceedings of 12th International Workshop Vision, Modeling, and
Visualization (2007)

11. Kaufman, L., Rousseeuw, P.: Finding groups in data. An introduction to cluster
analysis. In: Applied Probability and Statistics. Wiley Series in Probability and
Mathematical Statistics. Wiley, New York (1990)

http://nfsen.sourceforge.net/

Visualizing Real-Time Network Resource Usage

Ryan Blue, Cody Dunne, Adam Fuchs, Kyle King, and Aaron Schulman�

Department of Computer Science
University of Maryland, College Park

{blue,cdunne,afuchs,kking,schulman}@cs.umd.edu

Abstract. We present NetGrok, a tool for visualizing computer network
usage in real-time. NetGrok combines well-known information visualiza-
tion techniques—overview, zoom & filter, details on demand—with net-
work graph and treemap visualizations. NetGrok integrates these tools
with a shared data store that can read PCAP-formatted network traces,
capture traces from a live interface, and filter the data set dynamically
by bandwidth, number of connections, and time. We performed an ex-
pert user case study that demonstrates the benefits of applying these tech-
niques to static and real-time streaming packet data. Our user study shows
NetGrok serves as an “excellent real-time diagnostic,” enabling fast un-
derstanding of network resource usage and rapid anomaly detection.

Keywords: Real-Time, Network Administration, Force-Directed,
Treemap.

1 Introduction

Network administrators typically look for patterns in textual router logs in real-
time. Such patterns include: spotting attackers, validating routing configuration,
and monitoring for unfair resource usage. Often, these can be difficult to catch
by scanning logs or scripting, and it seems natural that visualization methods
could apply. Unfortunately, the task of finding network traffic patterns has long
been unable to benefit from information visualization; networks are difficult to
visually represent, and few visualization methods have been developed to handle
the real-time nature and sheer scale of network data. While forensics applications
can benefit from static, historical pictures of the network, network monitoring
functions require a view of the network that is always up-to-date.

In this paper, we present NetGrok, a tool that studies the application of pow-
erful visualizations—force directed network graphs [7] and treemaps [13]—to
problems faced by many network administrators. NetGrok allows network ad-
ministrators to view network traffic at a glance, and to interact with the visual-
izations in novel ways that allow them to discover phenomena such as network
host scanning. NetGrok’s primary goal and fundamental technical challenge is
to bring network visualization techniques into the realm of real-time, streaming
data. To this end, we extend both the network graph and treemap to handle
� Aaron Schulman was supported by NSF-0643443 (CAREER).

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 119–135, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

120 R. Blue et al.

real-time as well as static data. We also present an extension to treemaps, which
allows the user to see “edges”—network connections, in our setting—without
obscuring the treemap.

We describe the relevant work done in network visualization in section 2, our
visualization approach in section 3, NetGrok’s user interface in section 4, the back-
end infrastructure in section 5, a short case study in section 6, future work in
section 7, and our conclusions in section 8. The NetGrok source code and a demon-
stration video can be found at http://www.cs.umd.edu/projects/netgrok.

2 Related Work

In developing a network traffic visualization tool, a fundamental design question
is the following: At what network layer should the traffic be shown? Teoh et al.
introduced novel ways of representing network routing data [15] for analyzing
faults and anomalies, mainly in physical topologies. NetGrok focuses instead on
visualizing and interacting with the logical structure of networks at the IP layer:
what IP addresses are interacting, ignoring pass-throughs and infrastructure
carrying the IP packets.

Cheswick et al. presented one of the first large scale, static network visu-
alizations: the first force-directed map of the Internet [4]. This map shows all
connections between Internet routers, which unfortunately obscures the topol-
ogy of the network. Cheswick et al. also color coded the map by IP address; the
first three octets of the IP are red, green, and blue color values. Although this
visualization is useful for understanding a network’s structure as a snapshot,
it is not interactive. For larger networks, where many hosts may look visually
similar, analyzing such network graphs yields little discovery, unless, of course,
the user has an intimate understanding of the underlying data set.

Girardin proposed visualizing static network data through the use of self-
organizing maps for attack detection [8]. Girardin’s work mapped multi-
dimensional data onto a 2D map using an artificial neural network. Unfortunately,
the layout of the hosts varies with each run, forcing users to re-acquaint them-
selves spatially with the network. Moreover, the algorithm is computationally in-
tensive and designed for static data, making it challenging to use in real-time.

Herman and Melan presented a survey of the known techniques for visual-
izing networks [11]. Their work thoroughly characterizes the state of network
visualization at the end of the twentieth century. We adapted two of the tech-
niques mentioned in this paper to be used by NetGrok: the popular force directed
network graph [7], and treemaps [13].

Like the work of Ball et al., NetGrok focuses on viewing the network from a
home-centric perspective by segregating local and external hosts [1]. Ball et al.
provide stable internal and external host layouts through the use of grid pat-
terns derived from the hosts’ IP addresses. This has the drawback of sacrificing
significant screen space to show hosts that do not exist. NetGrok achieves effi-
cient space usage by using a force directed approach for the internal hosts, with
a hashed layout for external hosts. Host clustering reduces visual instability for

http://www.cs.umd.edu/projects/netgrok

Visualizing Real-Time Network Resource Usage 121

internal nodes, and increases the information content embedded in the external
node layout. The host anchoring feature also supports visual consistency.

There are a handful of free and commercially available network administration-
focused visualization tools. These include: The Multi Router Traffic Grapher
(MRTG) by Tobi Oetiker (available as a free download), QRadar from Q1 Labs
(commercially available), and several others. These tools provide traditional
statistics visualizations, including: pie charts, line graphs and histograms.

3 Visualizations

NetGrok’s main features are two visualizations: a network graph and a treemap.
Both of these visualizations capture: 1. IP hosts, 2. the hosts’ bandwidth usage,
and 3. links between hosts. We implemented both visualizations using the Prefuse
visualization library [10]. These visualizations are found in the upper left portion
of the overall interface that can be seen in Figure 1.

3.1 Network Graph

We now discuss the features of NetGrok’s network graph and how they aid in
finding patterns in network traffic, and developing familiarity with a particular
network.

Fig. 1. NetGrok’s visual elements include a main visualization (upper left), a time-line
histogram (lower left), a filter and search panel (upper right), and a details on demand
window (lower right)

122 R. Blue et al.

Fig. 2. NetGrok’s Network Graph Visualization

Grouping Hosts. As shown in Figure 2, NetGrok’s network graph groups
nodes in two ways: through their placement in or out of a large dashed ring, and
through convex hulls.

Traffic collected on a typical Internet-connected network will likely have far
more foreign hosts represented than local hosts. To prevent local network hosts
from becoming lost among an overwhelming number of foreign hosts, the network
graph contains a dashed ring. This ring serves as a boundary with local hosts
contained within the ring and foreign hosts outside, providing a home-centric
view of the network [1].

All hosts belonging to user-defined groups are encompassed by a uniquely
colored, semi-transparent convex hull. This technique allows users to visually
identify the logical groupings of hosts in the network and manipulate entire
groupings of hosts simultaneously. The google.com group can be seen on the
right side of Figure 2.

Navigation. An important feature of NetGrok is its ability to allow users to
navigate the vast amount of real-time network traffic in the visualizations. In
the network graph, this is done mainly through zooming and panning; both of
which are useful for exploring groups of hosts. A user can, for example, zoom in
on a group to see all members of the group simultaneously. A user may zoom
in on an item by double-clicking on it, or by scrolling with the scroll wheel.
Double-clicking the item a second time resets the zoom to encompass the entire
graph. The zoom can also be reset by right-clicking anywhere on the graph and
selecting the ”Reset Zoom” option.

As internal hosts are laid out using the force directed algorithm, the hosts will
move when new hosts are added. To overcome this problem, users arrange the

Visualizing Real-Time Network Resource Usage 123

Fig. 3. This graph shows group, host, and edge characteristics. The large node in the
center is a local host in the Wireless group. A download between the two dark nodes is
evident in the image. The group on the right contains hosts in the google.com domain.

internal hosts as they wish by fixing hosts or groups to their desired location
on the graph. This also allows the user to arrange the internal hosts to their
pleasure.

Host and Connection Characteristics. Every IP host on the network is
represented in the graph as a colored node labeled with the host’s IP address.
The label’s size is proportional to the size of the host, so that it does not occupy
more space on the graph than the host itself. A host’s size is proportional to
the number of unique hosts it communicates with. For example, in Figure 2, the
large node within the dashed ring has by far the most number of connections.

Hosts are coloredby their bandwidth usage.Colors range from green to red,with
green hosts utilizing the least bandwidth and red hosts utilizing the most. NetGrok
uses binned host colors. Host colors are assigned relative to the most bandwidth
consuming host in the network. Similarly, there are binned sizes for hosts, assigned
relative to a host’s degree. Figure 3 shows host and edge characteristics.

We define zero-byte hosts, shown in Figure 4, as the hosts that have received
IP traffic, but have not sent any IP traffic. Although these hosts might not have
sent any data, it is possible that they do not exist at all. For example, a ping
sweep is a scanning technique for finding active IP addresses by sending out ping
packets to a range of IP addresses, and waiting for a response from active hosts.
Since many of these addresses are not active, a ping sweep of a local subnet
might yield far more zero-byte hosts than responses. Figure 4 shows how a ping
sweep of a local network might look in NetGrok. Since there is no visual way to

124 R. Blue et al.

Fig. 4. An example of what a ping sweep looks like in the network graph. The large,
dark circle in the center is performing a scan and the smaller white circles are zero
byte hosts.

distinguish between low-degree hosts and zero-byte hosts, the visualization treats
them as a special case, coloring them white and giving them a dashed border.

Every connection between unique hosts is represented as an edge in the net-
work graph. Because the sheer number of edges in the graph can obscure the
visualization, only the edges to or from the host under the mouse are shown.
There are options to always show edges to or from certain nodes, and to show
all edges on the entire graph. Edges thickness depends on the number of bytes
transferred between two hosts. To aid in differentiation of edge thickness only
three values were chosen.

Discovering Abnormalities. Developing a familiarity with the graph of a
network helps to reduce the work required to discover network abnormalities. A
user that has become familiar with a network graph in which, for example, a large
red backup server appears every night, is likely to notice when the server fails
to appear. The ability to easily recognize network hosts is an important factor
in the developing of graph familiarity. Host recognizability is based on a host’s
size, color, and, most importantly, position on the graph. The more consistent
these characteristics are, the more recognizable the host will be to users.

Since local network hosts have well-defined grouping, established network
roles, and a dedicated area at the center of the graph, they are far more recog-
nizable than foreign hosts for which users have far less information. To increase
the recognizability of foreign hosts and the spatial stability of the graph, foreign
hosts are always placed in the same location on every graph.

The foreign host layout algorithm hashes the host’s IP, creates rectangular
coordinates from the halves of the hash, and then converts them into polar

Visualizing Real-Time Network Resource Usage 125

Fig. 5. A treemap visualization generated from the OSDI dataset. The dataset was
anonymized so groupings are not possible.

coordinates. The resulting coordinate is plotted in an exponential polar plot,
(eρ−1, θ) as the new coordinates where ρ and θ are set from parts of the hashed
IP [6]. This layout pushes the points away from the center while keeping them
from being bunched up at any particular radius. This algorithm guarantees that
the same foreign host will always occupy the same position on any network
graph. Users can override this position by fixing hosts to a desired position on
the graph.

3.2 Treemap

To augment the network graph NetGrok also offers a treemap visualization [13].
Just like the network graph, the treemap shows: IP hosts, their bandwidth usage
and connections, as well as groups and links between nodes. Treemaps comple-
ment network graphs as they can handle considerably more nodes, without oc-
clusion, than the network graph, and they layout nodes using all of the available
space. However, unlike the network graph the layout algorithm does not consis-
tently place a host in the same location. Figure 5 shows a treemap with many
hosts, generated from the OSDI 2006 dataset [3].

Host Characteristics. The treemap is structured using the squarified treemap
algorithm [2]. The tree is organized with hosts as leaf nodes and groups as inter-
nal nodes. The size of a host in the treemap indicates the number of connections
to it, while color denotes the host’s bandwidth usage, relative to the other hosts.

126 R. Blue et al.

Fig. 6. Showing links in a treemap

To allow for display of large networks, hosts do not contain any labels. Instead,
mousing over a host reveals this information in the details on demand window.

Showing links in a treemap. A treemap can coherently show more hosts
than the network graph, but a basic treemap does not show links between nodes.
Fekete et al. showed that links between nodes in a treemap can be overlaid on
top of the treemap [5]. Unfortunately, placing links on top of nodes can occlude
the nodes underlying the links. When there is high link density, even the links
themselves can be occluded. We take advantage NetGrok’s interactive nature to
show links in the treemap.

Figure 6 shows how we take advantage of mouse roll-over and color to quickly
view a host’s connections. Hovering over a host activates the link browsing view
of the treemap. The hosts that are not connected to the selected host will change
from color to black and white. Only the hosts that are connected to the hov-
ered over host will be in color. This technique allows the users to distinguish
between connected and unconnected hosts, while still being able to see the net-
work structure. When using a treemap, users first look for nodes that are larger
and a darker color. We expect users will want to inspect the connections for
these hosts.

4 Interface

In this section, we present the other elements of NetGrok’s user interface that
assist network administrators in exploring their real-time or static network data.

NetGrok provides a Swing-based GUI written in Java using the prefuse visual-
ization toolkit[10]. The NetGrok user interface (Figure 1) provides a consistent

Visualizing Real-Time Network Resource Usage 127

set of controls to manipulate the data model. In the current implementation,
these controls provide three methods to filter the hosts that are displayed in the
visualizations.

IP prefix filtering and bandwidth and degree sliders only filter on hosts, while
the time-line tool filters both hosts and links. There are many additional ways to
filter links and host, and the NetGrok framework is easily extensible for adding
such filters in the future.

4.1 IP Prefix Filtering

IP filtering is based on classless inter-domain routing (CIDR) prefixes1. The user
is presented with a text box in the filter pane, shown in Figure 7, that they can
use to input a CIDR prefix to filter by. IP filtering is helpful for focusing on
resource usage in contiguous IP blocks.

4.2 Bandwidth and Degree Filtering

Bandwidth and degree filtering are simple and effective methods for tailoring the
data displayed in the visualizations to answer particular questions. In network
traces, host behavior can be very different at opposite ends of the bandwidth and
degree spectra. Large classes of hosts can be quickly eliminated from the view by
using NetGrok’s bandwidth and degree filtering. Hosts are filtered by specifying
bandwidth and degree ranges using sliders in the filter pane. The sliders allow
users to interactively filter the hosts that are displayed by selecting a range or
eliminating extremes in host bandwidth and degree. These controls can be seen
in Figure 7. Filters affect only the visualization of the data. Their effects are
seen immediately and are completely reversible.

Fig. 7. NetGrok’s filter panel

1 For example, 172.26.0.0/16 represents IP addresses between 172.26.0.0 and
172.26.255.255.

128 R. Blue et al.

Fig. 8. NetGrok’s time-line histogram. This histogram shows a history of hundreds
of packets collected between 12:51:53 and 12:57:26 on April 30, 2008. The highlighted
region indicates a zoomed-in region of time that is used as a filter for the other NetGrok
visualizations. This region can be moved, broadened, or narrowed by using the double-
block slider shown.

4.3 Time-Line Histogram Filtering

NetGrok provides a time-line histogram and time-range slider filtering option,
as well. This filter can be seen in Figure 8. The time-line histogram filter has
two functions: it displays an overview of the collected packets over time, and it
allows users to zoom in to a particular time frame of interest. This histogram
automatically updates as data flows into the program, displaying the entire time
range of known packets. Like all of the visualization aspects of NetGrok, the
time-line histogram required significant design effort to deal with displaying
real-time streaming data.

Histogram Update Algorithm. Constructing an efficient algorithm to up-
date the histogram online is technically challenging. We require the histogram to
cover a time range that includes all of the packets in the visualization. However,
covering too much time diminishes the efficiency and accuracy of the histogram.
We also want the histogram to maintain a roughly constant number of buckets
in which to aggregate packet counts. When NetGrok starts, the time range that
will need to eventually be covered is unknown. As new packets arrive, that time
range grows into the future to include the new packet. For accuracy throughout
the execution of NetGrok, the range of the histogram must dynamically match
the range of packet times seen. Balancing efficiency and accuracy required the
creation of a histogram updating algorithm.

NetGrok never removes packets from its data set, hence one can assume that
the histogram only needs to grow, and never to shrink. The histogram can there-
fore effectively adapt to a growing time range by using a pair of grow operations:
one to grow back in time, and one to grow forwards in time. The forward growth
algorithm is as follows: When a packet is received that has a time greater than
the histogram covers, NetGrok finds an integral factor by which to grow the
width of the histogram so that it will cover the new point. For example, if we
have a histogram that covers 10:00 to 11:00, and we see a new packet from
11:30, we will grow the histogram forwards in time by a factor of 2, and the
new histogram will cover the time 10:00 to 12:00. The new histogram has the
same number of buckets as the old histogram. During the growth, all of the

Visualizing Real-Time Network Resource Usage 129

buckets of the previous histogram are dumped into the appropriate buckets of
the new histogram. With an expansion factor of n, we will see n buckets from
the previous histogram combined to form a single bucket in the first portion of
the new histogram. In this translation, we see no loss of accuracy on the bucket
boundaries. NetGrok uses a similar algorithm to grow the histogram backwards
in time, as it may need to do when loading historical data from a file.

Because of the dynamic updating algorithm, the histogram may cover a time
period wider than the time range of collected packets. This can be up to a factor
of 4 in the worst case, but generally is no more than a factor of 2. NetGrok does
not display this entire range, but instead only the range of the packets seen.
Only the part of the histogram from the first seen packet to the last seen packet
is drawn. The number of buckets in the histogram must be sized accordingly, so
enough precision is given at a zoom factor of four, and the curve is still relatively
smooth when showing every bucket. When the grow operations are called, users
see the view zoom out slightly to include the new range, and the histogram
smoothes slightly because the bucket width increases.

Filtering With the Timeline Histogram. The time-line includes a double-
block range slider that allows users to select a temporal region of interest, and
only see traffic from that time period. This resembles the technique used by
Girardin et al. [9], as well as many other projects since then. When users move
the range slider, the highlighted period of the histogram updates to reflect the
selected time period, and the other visualizations filter out data that is not
relevant to that time period.

The time range slider has two modes: forensic mode and real-time mode.
If a time period that does not include the latest packets is selected, the time
slider will be in forensic mode. In forensic mode, NetGrok does not change the
selected period when new packets arrive. When observing a historical time period
for forensic reasons, users most likely do not want that time period changing.
This can lead to the highlighted time period walking away from the position of
the double-block slider. When users move the slider again, the highlighted time
period will again line up with the slider. If the selected range includes the latest
packets, the time slider will be in real-time mode. In real-time mode, the selected
time window is updated when new packets arrive to include new packets that
are further in the future.

5 Infrastructure

5.1 Back-End Data Model

NetGrok uses the prefuse.data.Graph object as its primary data store [10], and
this is augmented by several auxiliary data sets. The program stores simplified
versions of collected packets, and a prefuse.data.Tree structure holds the hierar-
chical set of groups. The data store also keeps a collection of basic statistics for
normalizing visualizations. Lastly, the NetGrok data store has basic support for

130 R. Blue et al.

brushing and linking with shared filter and selection resources. These data struc-
tures take advantage of prefuse data models, where possible, for performance.
The data store manages the data and exposes the containing structures to the
visualization components.

For dynamic updates, NetGrok components can register to be notified when
new packets arrive and when graph attributes are modified. This is particu-
larly important for atomic real-time updating of data with multiple visualiza-
tion threads. This also allows NetGrok’s back-end data model to support batch
updating, where newly added data may not be accurate until the entire batch
is loaded. Large data sets and high bandwidth flows rely on batch updating for
efficiency.

5.2 Network Packet Collection

NetGrok provides a variety of options for importing data. First, a user can
directly connect to a local network interface and stream packets from that in-
terface. For a network administrator, local interfaces may not have access to
wide enough coverage of the network traffic. Thus, NetGrok also supports a re-
mote sensor system, where a set of remote network sniffers forward batches of
simplified packets to NetGrok, in real-time. In addition to live capture options,
NetGrok supports reading the standard PCAP packet capture file format. It
also has support for reading and saving data to a more compact format that
disregards packet data not used in the visualization.

5.3 Group Configuration

The groups.ini file defines the hierarchical groups used in NetGrok’s visualiza-
tions. This file allows the user to specify which IP addresses and ranges are
associated with each group (see Figure 9). The file is divided into two main
groups: local and foreign. Each line contains the group name followed by any
number of CIDR prefixes to represent networks. Initial group location can be
specified by two additional x and y parameters, as shown for the Slashdot foreign
group with location (100,200). If the location isn’t specified, it is automatically
set to the default root polar projection location for the first CIDR prefix as
described in Section 3.1.

[local]

UMD CP=128.8.0.0/16

local 0=192.168.0.0/24

local 1=192.168.1.0/24

[foreign]

Slashdot=66.35.250.55/24=100=200

Google=216.239.0.0/16,64.233.0.0/16,64.68.0.0/16

Fig. 9. Sample groups.ini file

Visualizing Real-Time Network Resource Usage 131

6 Evaluation

To evaluate NetGrok, we performed a single subject case study. Our subject,
Brad Plecs, is the network administrator for the University of Maryland Com-
puter Science Department. Mr. Plecs’s network monitoring is “usually in re-
sponse to a right-now network-is-broken situation,” but he is interested in net-
work visualization tools to aid with attack detection. His normal usage of network
monitoring tools is to find “interesting” hosts, meaning IP addresses that are
using a “disproportionate” share of bandwidth or number of connections. Mr.
Plecs’s current tools are a combination of grep, tcpdump, and “occasionally,”
Ethereal/Wireshark.

6.1 Hands-on Sessions

The study consisted of a short demonstration of NetGrok and two hands-on
sessions in which the subject used NetGrok to analyze PCAP packet traces, and
a live network. In the first session the subject used NetGrok to analyze PCAP
traces of the wireless network at the 2006 OSDI Conference (available from
CRAWDAD [3]). The purpose of this session was to familiarize the subject with
NetGrok by finding interesting features in the data. This session went quickly
because the interesting features—disproportionate bandwidth and connections—
were easy to locate with both visualizations’ use of color gradients and node size.
“Zero-byte” hosts also received a positive response.

Mr. Plecs gave two criticisms after the first session. First, that NetGrok needs
to incorporate transport layer information, specifically, TCP and UDP port num-
bers: “[NetGrok] lets you find IP addresses easily, but next you want to see what
they’re doing.”2 His second criticism was that there should be a division between
incoming and outgoing bandwidth, to make investigating zero-bytes hosts easier,
and for more fine-tuned filtering.

For the second session, Mr. Plecs gathered live traffic from a segment of the
UMD Computer Science network which hosts the department’s PlanetLab [12]
nodes. As soon as NetGrok started showing traffic in the network view, the
subject said the external host placement animation caused confusion. The hosts
appear in the center of the display then they slingshot to their final positions in
the external network area. When large internal hosts are near the start location,
it visually implies communication between the new external host and the existing
internal host.

Mr. Plecs quickly found the time slider useful to restrict what was displayed.
Initially, he used it to remove the distraction of hundreds of hosts entering the
display every second. He responded that—along with the histogram—the feature
was useful, allowing users to identify and investigate events that “could easily be
missed.” However, because the time slider is so closely tied with the histogram
display, Mr. Plecs initially attempted to use the edges of the histogram’s high-

2 TCP and UDP information greatly increases the complexity of network tools. This
data, while extremely useful, was simply beyond the scope of the initial project.

132 R. Blue et al.

lighted time section to modify the filter. He also liked the filter sliders because
he could remove the vast number of uninteresting hosts on the live network.

The subject appreciated NetGrok’s representation of the internal network (see
Figure 2). Within seconds, he understood the network segment and went on to
investigate the external hosts. We think that this is a successful demonstration
of applying semantic substrates—in this case, groups—to visualizing computer
networks. The subject responded positively to the groups and requested a dy-
namic grouping ability, so that users can maintain a watch-list or hide hosts on
demand and keep the display visually organized without restarting the applica-
tion and editing the groups configuration. He also noted that having the ability
to fix a node’s position helps, but is tedious for tasks like ignoring a large group.

6.2 Suggestions for Improvement

Investigating the network through the treemap view was difficult because the
treemap does not currently respond to the filtering or time overview and selec-
tion. Further, Mr. Plecs indicated that the treemap was unintuitive—obvious
patterns in the treemap were difficult to understand, and once understood, in-
dicated uninteresting features.

After the live session, Mr. Plecs said that the “biggest thing” is incorporating
transport layer data to give users more information. At the IP layer, NetGrok
helps users to discover interesting hosts, but cannot help users investigate exactly
why those hosts are interesting.

Mr. Plecs had two other criticisms about the network graph. First, that the
animation used to place hosts in the external network is distracting. Initially
hosts have a set position in the display, but then they are force-directed to avoid
overlapping; this works well with a moderate number of hosts, but when too
many hosts are on the graph, it causes constant shaking or jiggling. Mr. Plecs
commented that it’s fine for initial placement, but hosts should not continue
moving, especially when the traffic displayed is a static time-slice of live capture
or packet trace.

Second, Mr. Plecs wanted a more structured layout for the network graph.
Hosts are placed via hashing outside the internal network circle so that all of the
space on the screen is used. This, however, discards the structure of IP space
and isolates hosts that are potentially associated. Consequently, if a certain IP
subnet is sending malicious traffic (and it is not specifically grouped), the traffic
will visually appear to come from random places in the external network.

6.3 Questionnaire

In addition to working with Mr. Plecs’s during the sessions, we provided him
with a short questionnaire about NetGrok. For each task discussed in our initial
interview, Mr. Plecs was asked to gauge the speed and accuracy of NetGrok
when compared to his standard tools. The questionnaire presented a five-option

Visualizing Real-Time Network Resource Usage 133

Likert scale ranging from “much worse” to “much better” to record responses3.
Mr. Plecs rated NetGrok “much better” for all of the tasks using both PCAP
and live data sources.

The questionnaire also included Likert-scaled questions regarding the usability
of both the visualizations and user interface components. The scale for these
questions ranged from “bad” to “acceptable” to “good.”4 Mr. Plecs rated the
graph visualization and user controls (filtering) “good” in all areas, including
organization, the ability to identify features or details, and filtering. Mr. Plecs
rated the treemap visualization mostly “acceptable.”

The last part of the questionnaire asked Mr. Plecs to rate NetGrok’s ability
to aid in detecting problems and monitoring networks. Mr. Plecs rated NetGrok
“fair” on monitoring because “[monitoring tools] should be able to run automat-
ically and notify you when [they] detect something,” but rated NetGrok “good”
in the areas of problem detection. He noted: “NetGrok is excellent as a real-time
diagnostic.”

7 Future Work

One future direction for NetGrok is to rapidly prototype additional real-time net-
work visualizations. NetGrok has a modular construction, so new visualizations
can be added without repeating the back-end development effort. The current
version displays two primary visualizations, but there are countless others we
can potentially implement.

NetGrok’s filtering capabilities offer a good first solution to displaying large
datasets, but these capabilities need additional work. For NetGrok to truly sup-
port large scale data sets, it needs to contain an abstract overview capability that
displays the gist of the data set without showing every node. Many network vi-
sualization tools support graph clustering algorithms and cluster-based views of
the network. However, extending these clustering and visualization techniques to
real-time data flows is not trivial. NetGrok has the foundations for a real-time clus-
tered visualization, which can be seen in the group visualization. However, more
effort is needed to develop this into a complete, large scale overview capability.

The network graph was created under the assumption that there would be a
manageable number of hosts in the local network and a force-directed algorithm
would convey more information about the relationships between local hosts.
However, the force direction destroys the spatial stability, which disorients users.
In the future a hashed layout algorithm, like the foreign host layout, should be
applied to local hosts.

The current network view visualization consistently lays out non-local hosts
in the same location. However, that location is essentially randomly generated.
We think that there is room for improvement by using semantic substrates [14]
3 The actual choices for the first section of the questionnaire were: “much worse,”

“worse,” “equivalent,” “better,” and “much better.”
4 The actual choices for the second section of the questionnaire were: “bad,” “poor,”

“acceptable,” “fair,” and “good.”

134 R. Blue et al.

to meaningfully arrange hosts. The challenge of using a semantic substrate for
IP address layouts lies in grouping addresses from the same domain, while il-
lustrating one or two attributes of those addresses. Although we expect this is
possible, we did not find an appropriate set of attributes to generate a useful
semantic substrate to integrate into our visualization, and we must leave this as
future work.

8 Conclusion

The visualizations, filtering, and details on demand, provide network admin-
istrators with the capability to identify network scans, and hosts using a dis-
proportionate amount of network resources. The case study with our expert
subject shows that NetGrok’s approach holds promise. The study also confirms
that NetGrok’s network graph and treemap assist in rapid identification of high
bandwidth and degree hosts, as well as ping sweeps. The study gave us signif-
icant insight into which features need to be enhanced to create a production
quality tool for network administration visualization.

Acknowledgments

We thank Brad Plecs, our case study subject, for lending his time and expertise
to help evaluate NetGrok. We also thank the reviewers and Dave Levin for their
thoughtful comments.

References

1. Ball, R., Fink, G.A., North, C.: Home-centric visualization of network traffic for
security administration. In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pp. 55–64. ACM,
New York (2004)

2. Bruls, M., Huizing, K., van Wijk, J.: Squarified treemaps. In: Proc. of Joint Euro-
graphics and IEEE TCVG Symp. on Visualization (TCVG 2000), pp. 33–42. IEEE
Press, Los Alamitos (2000)

3. Chandra, R., Mahajan, R., Padmanabhan, V., Zhang, M.: CRAWDAD data set
microsoft/osdi2006 (v. 2007-05-23) (May 2007),
http://crawdad.cs.dartmouth.edu/microsoft/osdi2006

4. Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
ATEC 2000: Proceedings of the annual conference on USENIX Annual Technical
Conference, San Diego, California, p. 1. USENIX Association (2000)

5. Fekete, J.-D., Wang, D., Dang, N., Aris, A., Plaisant, C.: Overlaying graph links
on treemaps. In: Information Visualization Symposium Poster Compendium, pp.
82–83. IEEE, Los Alamitos (2003)

6. Fink, G., North, C.: Root polar layout of internet address data for security ad-
ministration. In: IEEE Workshop on Visualization for Computer Security, 2005
(VizSEC 2005), 26 October 2005, pp. 55–64 (2005)

http://crawdad.cs.dartmouth.edu/microsoft/osdi2006

Visualizing Real-Time Network Resource Usage 135

7. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software - Practice and Experience 21(11), 1129–1164 (1991)

8. Girardin, L.: An eye on network intruder-administrator shootouts. In: Proceed-
ings of the Workshop on Intrusion Detection and Network Monitoring (ID 1999),
Berkeley, CA, USA, pp. 19–28. USENIX Association (1999)

9. Girardin, L., Brodbeck, D.: A visual approach for monitoring logs. In: LISA 1998:
Proceedings of the 12th USENIX conference on System administration, Berkeley,
CA, USA, pp. 299–308. USENIX Association (1998)

10. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: CHI 2005: Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 421–430. ACM, New York (2005)

11. Herman, I., Melancon, G., Marshall, M.S.: Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics 06(1), 24–43 (2000)

12. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A blueprint for introducing
disruptive technology into the internet. SIGCOMM Comput. Commun. Rev. 33(1),
59–64 (2003)

13. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph. 11(1), 92–99 (1992)

14. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE
Transactions on Visualization and Computer Graphics 12(5), 733–740 (2006)

15. Teoh, S.T., Ma, K.-L., Wu, S.: A visual exploration process for the analysis of
internet routing data. In: Visualization, 2003. VIS 2003, 24-24 October 2003, pp.
523–530. IEEE, Los Alamitos (2003)

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 136–143, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Wireless Cyber Assets Discovery Visualization

Kenneth Prole, John R. Goodall, Anita D. D’Amico, and Jason K. Kopylec

Secure Decisions division of Applied Visions, Inc.
6 Bayview Avenue, Northport, NY 11768

{kennyp,johng,anitad,jasonk}@securedecisions.avi.com

Abstract. As wireless networking has become near ubiquitous, the ability to
discover, identify, and locate mobile cyber assets over time is becoming
increasingly important to information security auditors, penetration testers, and
network administrators. We describe a new prototype called MeerCAT (Mobile
Cyber Asset Tracks) for visualizing wireless assets, including their location,
security attributes, and relationships. This paper highlights our latest iteration of
our prototype for visual analysis of wireless asset data, including user
requirements and the various coordinated visualizations.

Keywords: Visual analytics, wireless discovery, wireless security, coordinated
views, geographic visualization, information visualization, wardriving.

1 Introduction

Wireless networks (WiFi, 802.11 protocols) are becoming increasingly more
prevalent. Wireless network devices and cards are cheap; most laptops and even
desktops are coming with wireless network interface cards preinstalled. While
traditional wired networks can be secured from external attackers through firewalls,
intrusion prevention systems, and the like, wireless networks open an entirely new
kind of security threat for network administrators. Even organizations that do not have
a wireless infrastructure are susceptible to wireless attacks. Unwitting end-users can
open to outsiders an otherwise secure internal network by simply turning on their
wireless cards while connected to the wired network, providing a bridge for malicious
outsiders to access the wired network. Attackers can breach wireless networks to steal
bandwidth, capture sensitive data, or attack and gain control of computers on both
wireless and wired networks. Wireless security vulnerabilities have been gaining
media attention. For example, the Wall Street Journal reported that the worst reported
security breach of credit card data, which resulted in at least 45 million stolen credit
and debit card numbers from TJX’s retail stores, stemmed from wardriving and weak
wireless encryption keys [1]. These types of occurrences are leading toward the
enforcement of various compliance standards, such as PCI DSS [3], the mandated
security program created by Visa and MasterCard for their merchants and service
providers to safeguard credit cardholder information.

To combat this new threat, security professionals have turned towards tools that
attempt to discover, identify, and locate wireless transmitters. This can help them
pinpoint rogue access points – wireless transmitters that act as a bridge between the

 Wireless Cyber Assets Discovery Visualization 137

wireless and wired networks – that are setup by attackers to sniff wireless traffic and
hijack legitimate users’ wireless communications. In other cases, wireless users
inadvertently plug in access points without any security measures enabled, leaving
them completely open to attack and misuse. Attackers can easily identify access
points with weak or no encryption.

There are several commonly used free tools for wireless discovery, such as
NetStumbler [4] and Kismet [5]. NetStumbler is an active wireless discovery tool for
Windows. Kismet is a passive wireless sniffer for Linux and Unix; it is often used for
wardriving, and can save GPS location-based data in addition to information related
to each of the wireless transmitters it detects. Because it listens for all wireless
communication passively, there are some kinds of traffic – such as access points that
do not broadcast their name to the world, an increasingly common setting, which
Kismet can capture.

Security professionals have some limited visual tools (e.g. GPSMAP, which is
included with Kismet) for presenting the results of a single wardrive, but there are no
widely adopted visual analysis tools for performing the analysis of many wireless
discovery sessions. Without these tools, security professionals report difficulty in
detecting changes in the wireless threats over time or geographic region.

Our prototype system, called MeerCAT (Mobile Cyber Asset Tracks), is designed
to provide a visual analytic tool for analysis of wireless discovery data. It visualizes
wireless transmitter locations, their security attributes, and the relationships among
transmitters. We currently use Kismet as our data source, but intend on extending our
prototype to visualize NetStumbler data as well.

Our goal is to support the analytic process of information security auditors, pene-
tration testers, and network administrators after performing a wardrive or site survey.
To do so, we have incorporated both information and geographic visualizations into a
visual analytics system that security practitioners can use for post hoc, interactive
analysis of wireless discovery data.

2 Related Work

Hurley [6] identifies and describes two of the most popular tools for visualizing
wireless discovery results, GPSMAP and StumbVerter. GPSMAP provides various
features, including travel path and interpolated signal ranges. GPSMAP is a command
line tool and does not provide interactive analysis of the data collected.

StumbVerter [7] is a wireless visualization tool that relies on Microsoft’s MapPoint
mapping library. It plots wireless transmitters on a street map using size and color to
denote signal strength and encryption mode. It lacks signal range mapping and it does
not appear to provide imagery data.

Other popular wireless visualization tools include KNSGEM [8] and Kismet Earth [9],
which convert discovery log files into 3D plots in Google Earth. One of the limitations of
this approach is that the visualization is constrained to the Google Earth framework; it
cannot be embedded in a custom application that adds additional visual displays.

A collaborative effort led by University of Kansas, performed a three-year study
tracking statistics on wireless market’s growth, vendor saturation, and security attributes
[11]. Using ESRI’s ArcGIS and gathered data, they generated various wireless visualization

138 K. Prole et al.

maps, which show signal propagation of an access point and its potential security risks.
Dartmouth College has also performed extensive research on the various existing wire-
less visualization and also presented techniques for generating wireless visualization
coverage map [12].

Lacking in existing wireless security visualizations is the ability to perform
comparisons over time, visual interactivity (most were static images), and difficulty in
accessing background imagery. Most importantly, these tools lack visual analytic
capabilities for parsing through the copious amount of data to find the most
interesting information.

3 User Requirements

We interviewed several potential commercial and military users to determine the
requirements for a wireless visualization system. This group included information
security auditors, penetration testers, and network administrators. This section
highlights the results of these interviews.

Although wardriving does not provide the fidelity of a Wireless Intrusion
Detection System (WIDS), many users find it is the best solution for performing ad
hoc security audits and for covering large areas, such as military bases or college
campuses, due to the low cost and ease of setup. A WIDS normally requires a large
number of costly sensors to be installed throughout the monitoring area to attain full
coverage.

Many of the users we met with perform periodic security audits, from daily to
quarterly. During these audits they are looking for rogue, misconfigured, or
suspicious devices, such as probing transmitters or ad hoc networks. Probe networks
represent clients trying to join a network; this could also indicate an active probe
performing reconnaissance of the wireless area. Ad hoc networks are peer-to-peer
networks in which computers can discover and communicate without involving a
central access point; there are inherent security issues with ad hoc networks [14].

The first step for many users to assess their current wireless security state is to
perform a baseline wireless discovery. During this process, devices are compared with
a list of known devices and configurations. Many organizations set security
configuration policies in which devices are checked against, such as encryption
requirements or SSID naming convention.

Unknown devices are analyzed to determine if they are a friendly neighbor or a
rogue device. These rogue devices are further analyzed, normally starting with
determining the most likely location. The location area of uncertainty will be needed
if in-depth network monitoring is to be done. Having easily accessible detailed
geographic imagery was also deemed important for the users we interviewed. This is
required when trying to pinpoint the location of devices for remediation.

For known devices, analysts want to understand the signal leakage associated with
the transmitters. Ideally, analysts would like the network range not to protrude beyond
their building or campus perimeter, therefore reducing their security risk. Analysts
also look for overlapping channels from neighboring devices, which may interfere
with the availability and reliability of the networks.

 Wireless Cyber Assets Discovery Visualization 139

When performing follow-up wardrives, analysts frequently performed the arduous
task of manually comparing device configurations against their baseline data.
Analysts currently have no tools to visually analyze the data collected, especially
when it comes to comparing changes over time. Having the ability to quickly filter
and group discovery data was also valued, yet lacking in existing tools.

A driving force to these security audits is the various compliance standards being
mandated by government (DoD Directive Number 8100.2) [15], healthcare (HIPAA)
[16], retailers (PCI DSS), and various other markets. To accommodate these new
requirements, reporting is becoming an important requirement in wireless auditing,
not just for compliance reporting, but also as a way to report to management and
collaborate with others.

We found that many users find great value in having a visualization to describe the
current state of devices of interest to others. Having a simple picture makes the
intricacies of wireless network security easy to describe to less technical savvy
people. These reports are general desired in both texture and visual representation and
in various formats, including PDF, PowerPoint, Word, and e-mail.

As we iteratively design and implement our system, we continue to work with our
identified user groups to elicit ongoing feedback that is incorporated in future iterations.

4 Coordinated Views for Wireless Security Analysis

The primary visualization in MeerCAT is the two dimensional geographic visualiza-
tion as shown in Fig. 1. The background imagery is provided by ESRI’s ArcGIS
Online repository [17], which provides 1 meter or better aerial imagery for
the contiguous United States and satellite imagery for the world at 500-meter and
15-meter resolutions, as well as detailed street map data.

This screenshot shows the 11 devices that were detected during a wardrive. The
device icon shows whether it is an access point or a client computer. Although color
is configurable, in this case it is used to indicate classification of devices: blue for
trusted, red for rogue or probe, purple for friendly, and orange for misconfigured.
Encrypted devices show a lock symbol and the level of encryption is shown on the
icon itself, either WPA (strong encryption) or WEP (weak encryption).

Some interesting items can be quickly spotted looking at the 2D geographic view.
We can see many trusted assets (in blue), one ad hoc network (two computers side-
by-side), one probing client (red laptop), and one rogue access point (red). The
misconfigured device in orange with an SSID of “linksys” is indicating that a known
device was found to be in a configuration other than what was expected. In this case
the security policy states this device should have WPA encryption enabled, but the
device was detected with no encryption. This device can be annotated and flagged as
something to watch during follow-up wireless surveys.

MeerCAT contains multiple views as shown in Fig. 2. These views are linked
together with the same data to provide an interactive visual analytic environment;
highlighting or filtering in one view is reflected in the others. The following
highlights each of these views:

• Device Tree (Fig. 2a): A hierarchy of the detection runs (an individual
wardrive) and the wireless transmitters and clients discovered during each run.
,

140 K. Prole et al.

Fig. 1. 2D geographic visualization

 Devices can be sorted, filtered, and grouped in various ways to help analyst
quickly find the information they are looking for.

• Geographic Visualizations (Fig. 2b, c): Two and three-dimensional geographic
fly-through visualizations showing satellite imagery locating the discovered
wireless transmitters. These views allow for displaying tooltips, popup
captions, signal ranges, drive path, and attached clients.

• Device Visualization (Fig. 2d): A tree visualization organizing the discovered
wireless transmitters according to their type, encryption, and connected clients,
colored according to the relative number of packets collected in that branch of
the tree.

• Network Visualization (Fig. 2e): A graph visualization showing the discovered
access points and clients that are connected to them. This view uses small
multiples [18] to show a given network’s change over time as shown. In the
figure, the same device is shown in four different wardrives (showed by the
dates under the device name, linksys); this device changed between wireless
surveys, from unencrypted (red without lock) to encrypted (blue with lock).

 Wireless Cyber Assets Discovery Visualization 141

This view can also be useful for quickly identifying networks with many
clients connected to it.

• Channel Visualization (Fig. 2f): A histogram showing selected transmitters
channel distribution. This provides a color legend when using geographic range
displays for analyzing signal propagation.

• Detail Tables (Fig. 2g): A tabular display showing the details of a selected
wireless transmitter and clients, allowing for sorting on columns of interest.

One of the use cases we have designed for is the need to see changes over time.
When performing follow-up detection runs, analysts can use MeerCAT’s various
features to perform this type of temporal analysis. These include the ability to filter
the device list to only show items that have changed one or more attributes, such as
encryption, SSID, channel, type, or if the location moved a certain number of feet.
The table view allows analysts to iterate through an individual device’s history,
causing the other views to update accordingly. The small multiples network
visualization can quickly show how networks evolve and change between wardrives.

Fig. 2. MeerCAT wireless cyber asset discovery visualization prototype. (a) Device Tree list of
detected devices; (b, c) Geographic Visualizations showing location of devices; (d) Device
Visualization showing transmitters by type and encryption; (e) Network Visualization showing
connections between transmitters; (f) Channel Visualization showing channel distributions; and
(g) Details Table showing details of networks and clients.

142 K. Prole et al.

5 Implementation

MeerCAT is implemented in Java using the Eclipse Rich Client Platform (RCP) [19] and
Standard Widget Toolkit (SWT) [20] to provide cross-platform support with a native
look-and-feel. A cross-platform solution was required as the users we interviewed
depended on both Windows and Linux for their data collection and analysis.

We are currently using ESRI’s ArcGIS [21] and NASA’s WorldWind [22] for
geographic visualizations and the open-source prefuse toolkit [23] for information
visualizations. For data processing, we are currently using Oracle’s TopLink
Essentials [24] implementation of the Java Persistence API (JPA) and H2 [25] as our
embedded database repository.

6 Conclusion and Future Work

The ability to discover, identify, and locate wireless transmitters is an increasingly
crucial aspect of information security. To facilitate the analysis of wireless discovery
data, we have developed a prototype visual analytic tool to enable security practitioners
to easily understand the attributes, relationships, and locations of wireless transmitters.
This prototype is intended to demonstrate the utility of the system and garner early
feedback from security practitioners.

We plan to incorporate visualizations that depict communication patterns, derived
from packet capture data collected by network discovery tools. We will also plan on
incorporating reporting features, the ability to display wired network topology in
addition to wireless, and in-building (floor plan) visualizations. Finally, we will be
bringing our prototype to security practitioners to solicit feedback that will be
incorporated into successive iterations.

Acknowledgments

This research and development effort is supported by DARPA Strategic Technologies
Office through a Small Business Innovative Research grant, under contract number
W31P4Q-07-C-0022.

References

1. Hole, K., Dyrnes, E., Thorsheim, P.: Securing Wi-Fi Networks. Computer 38(7), 28–34
(2005)

2. Pereira, J.: Breaking The Code: How Credit-Card Data Went Out Wireless Door. Wall
Street Journal, 5/4/07 Issue (2007)

3. PCI Security Standards Council (Accessed 1 June 2008),
 https://www.pcisecuritystandards.org

4. NetStumbler (Accessed 1 June 2008), http://www.netstumbler.com
5. Kismet (Accessed 1 June 2008), http://www.kismetwireless.net
6. Hurley, C., Thornton, F., Rogers, R., Connelly, D., Baker, B.: WarDriving & Wireless

Penetration Testing, pp. 219–246. Syngress Publishing, Inc. (2007)

 Wireless Cyber Assets Discovery Visualization 143

7. StumbVerter (Accessed 1 June 2008),
 http://www.sonar-security.com/sv.html

8. KNSGEM (Accessed 1 June 2008), http://www.rjpi.com/knsgem.htm
9. Kismet Earth (Accessed 1 June 2008),

 http://www.niquille.com/kismet-earth
10. Bittau, A.: WiFi Exposed, Crossroads, vol. 11(1), p. 3. ACM Press, New York (2004)
11. Wireless Network Visualization Project (Accessed 1 June 2008),

 http://www.ittc.ku.edu/wlan
12. Lentz, C.: 802.11b Wireless Network Visualization and Radiowave Propagation Modeling,

Dartmouth College Technical Report TR2003-451 (2003)
13. Connelly, C., Liu, Y., Bulwinkle, D., Miller, A., Bobbitt, I.: A Toolkit for Automatically

Constructing Outdoor Radio Maps. In: International Conference on Information
Technology: Coding and Computing (ITCC 2005), vol. II, pp. 248–253 (2005)

14. Zhou, L., Zygmunt, H.: Securing Ad Hoc Networks, IEEE Networks Special Issue on
Network Security. Cornell University, Ithaca (1999)

15. Department of Defense Directive Number 8100.2 (Accessed 1 June 2008),
 http://www.dtic.mil/dticasd/sbir/sbir041/srch/n076.pdf

16. HIPAA Security Standard (Accessed 1 June 2008),
 http://www.cms.hhs.gov/SecurityStandard

17. ArcGIS Online (Accessed 1 June 2008),
 http://www.esri.com/software/arcgis/arcgisonline

18. Tufte, E.: Envisioning Information, pp. 67–79. Graphics Press (1990)
19. Eclipse Rich Client Platform (Accessed 1 June 2008), http://eclipse.org/rcp
20. The Standard Widget Toolkit (SWT) (Accessed 1 June 2008),

 http://eclipse.org/swt
21. ArcGIS (Accessed 1 June 2008), http://www.esri.com/software/arcgis
22. NASA World Wind (Accessed 1 June 2008), http://worldwind.arc.nasa.gov
23. Heer, J., Card, S.K., Landay, J.A.: Prefuse: A Toolkit For Interactive Information

Visualization. In: ACM Conference on Human Factors in Computing Systems (CHI), pp.
421–430. ACM Press, New York (2005)

24. Oracle TopLink Essentials JPA (Accessed 1 June 2008), http://www.oracle.com/
technology/products/ias/toplink/jpa/index.html

25. H2 Database Engine (Accessed 1 June 2008), http://www.h2database.com

NetFlow Data Visualization Based on Graphs

Pavel Minarik1 and Tomas Dymacek2

1 Institute of Computer Science, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

pavel.minarik@mail.muni.cz
2 Mycroft Mind, Inc.

Lidická 28, 602 00 Brno, Czech Republic
dym@mycroftmind.com

Abstract. We present an innovative approach to NetFlow data pro-
cessing and visualization developed at Masaryk University in Brno. Our
visualization method based on graphs bridges the gap between highly ag-
gregated information visualization represented by charts and too much
detailed information represented by the log files. In our visualization
method the graph nodes stand for network devices and oriented edges
represent communication between these devices. We also present the uti-
lization of external data sources (DNS, port names, etc.), which helps to
present NetFlow data in more intuitive way. Hence this approach is very
natural one for both network administrators and non-specialists. Based
on these methods a proof-of-concept tool called NetFlow Visualizer has
been developed and is now offered as an plug-in for the NetFlow probes.

Keywords: visualization, visual analytics, NetFlow data, graphs.

1 Introduction

The usage of NetFlow data [1] in the network monitoring domain is growing.
Available tools for NetFlow data processing such as NFSen [2] are equipped
with large scale visualization represented by charts (see figure 1) on the one
hand and very detailed visualization represented by lists of NetFlow data log
files on the other (see figure 2).

We believe that these methods are not sufficient for the analysis of network
traffic and that there is a gap between these two methods. Charts may give the
analyst the whole picture of the situation in the network. Listing log files gives
the analyst all the details. However, with thousands of logged connections, it is
extremely complicated to process this data, particularly when the analyst does
not know exactly what he/she is looking for.

We are therefore introducing a visualization method of NetFlow data based on
graphs (see figure 3) which can supply chart-based visualizations. Our method
focuses on network devices (graph nodes) and communication between theses
devices (oriented edges) aggregated on different levels. This scalable level of
detail (level of aggregation) is suitable for the analysis of network traffic where

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 144–151, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

NetFlow Data Visualization Based on Graphs 145

the analyst is able to see the whole picture of the situation on the network and
is able to focus on every single data transfer (flow) at once.

It is also very important to do as much mechanical work for the analyst as
possible. The other concept addresses the utilization of external data sources.
The key idea is to provide additional information (domain names, port infor-
mation, etc.) to help the analyst during the process of data analysis. We should
note there that this is the piece of information which the analyst seeks manually
when working with the NetFlow log files.

2 Related Work

There are several approaches which use graph-based visualization in the network
monitoring domain.

Interactive Network Active-traffic Visualization (INAV) is a monitoring solu-
tion for use in real-time network environments. It monitors the traffic currently
active between nodes [3].

Netview is a graph-based network visualization tool that displays an animated
realtime view of the network. Traffic noticed by the netview-server is classified
and aggregated and in turn animated by the netview-client [4].

jpcap – a network packet capture library provides real-time decomposition and
graph-based visualization of network traffic [5].

Fig. 1. Chart (based on NetFlow data) visualization example

Fig. 2. NetFlow log file listing example

146 P. Minarik and T. Dymacek

Fig. 3. Visualization of NetFlow data based on graphs example

All of these solutions use a similar visualization method but they have a
different purpose to our approach. They are used for real-time network traffic
monitoring and do not support different time slots comparison and analysis.
Therefore only a limited number of traffic attributes is processed. Filtering pos-
sibilities are also not sufficient. They do not provide WHOIS information or
additional port information.

3 Visualization Method Properties

Motivation for our work is the research and development agenda for visual an-
alytics to facilitate advanced analytical insight. This agenda was presented by
the National Visualization and Analytics Center in the book called Illuminating
the Path [6].

Our visualization method reflects the recommendations presented in [6]. The
main properties of our visualization method may be characterized by the follow-
ing points (only fundamental functionality related to visualization is presented):

– Graph-based visualization (so called dynamic mind map visualization)
of the communicating network devices. Visualization method suitable for
presenting connections. Edges are oriented according to flow direction.

– Spreadsheet based visualization of communication details and statistics.
– Multiple level of detail offers communication aggregation between network

devices aggregatedby protocol, details of the communication aggregatedusing
protocol and destination port or pure NetFlow data visualization.

NetFlow Data Visualization Based on Graphs 147

Fig. 4. Example of graph-based visualization complemented with spreadsheet visual-
ization of statistics for selected node

– Dynamic visualization adjustment according to actual data. Coloring
and sizing of nodes representing network devices and edges representing com-
munication between these devices. Coloring and sizing changes dynamically
according to selected attributes of the NetFlow records and their current val-
ues (peaks and lows) present in current data. E.g., size of a node corresponds
to number of packets transmitted by the node, its color corresponds to to
amount of transferred data, size of an edge corresponds to number of flows
transferred and its color corresponds to the number of packets transferred.

– User defined visualization adjustment for selected nodes representing
network devices. These user defined devices may be visualized using different
node shape or size. Visualization settings are tied to IP addresses.

Presented visualization method is built on Prefuse [7] visualization toolkit
complemented by standard JAVA components for spreadsheet visualization (see
figure 4).

4 NetFlow Visualizer

The visualization method presented was implemented by Mycroft Mind Inc.
[8]. The resulting product is called NetFlow Visualizer [9] and is provided with
INVEA-TECH Inc. [10] FlowMon probes [11] as a freeware plug-in. Innovated
version of NetFlow Visualizer is being developed concurrently.

NetFlow Visualizer is the client-part of client-server solution. The server is
called NFSel and its purpose is to provide NetFlow data. NFSel is a part of the
FlowMon probe and is invisible for users. NFSel is a XML-RPC server which
provides NetFlow data from the NetFlow data collector using a standard tool
called NFDump [12]. NFSel converts this data into a GraphML format [13].
Figure 5 is a comprehensive illustration of the architecture.

NetFlow Visualizer itself is a client-side Java application which visualizes
NetFlow data provided by NFSel upon request in GraphML format. NetFlow
Visualizer uses the graph-based visualization method and provides user in-
terface (see figure 6) with additional filtering or search features and external
data sources utilization. NetFlow Visualizer provides basic filtering possibilities

148 P. Minarik and T. Dymacek

Fig. 5. System architecture overview diagram

Fig. 6. NetFlow Visualizer tool. Illustration of the visualization properties tab and IP
search feature.

utilizing parameters of pure NetFlow data (protocols, amount of transferred
bytes, packets, etc.).

Another extension lies in external data sources utilization. The purpose of data
sources utilization is to visualize communication on the network more naturally
and clearly for the operators. NetFlow Visualizer tries to do as much mechanical
work for the analyst as possible and so the analyst can focus on his/her work
instead of searching for port names or translating IPs into domain names. The
following data sources are utilized by NetFlow Visualizer :

– DNS (Domain Name Service) – Human beings are used to working with
names; computers, however, use numeric identifiers. Translating IP addresses
into corresponding domain names is crucial especially in large networks.
Information about domain name is not present in the NetFlow data. It should
therefore be obtained from a proper DNS server online.

– WHOIS Service – It is sometimes necessary to search for additional infor-
mation about a network device, e.g. its location or administrative contact.
Direct integration of the WHOIS service saves analyst’s time.

– Port names – Even experienced network administrators might not be famil-
iar with uncommon port numbers. The motivation is similar to DNS. Name
and description is much more than a number. This data source provides
translations from pairs protocol, port into a port name1 and its description.

1 A “port name” is just a shortcut for “typical service running on the given port and
available via the given transport protocol”.

NetFlow Data Visualization Based on Graphs 149

5 Use-Case

In this section we would like to present a simple use-case and compare NetFlow
Visualizer with the classic approach using NFDump [12] and NFSen [2] tool.
Our use-case will be the exploration of traffic between the top data produc-
ers/consumers in the monitored network.

Use-case procedure using NFDump

1. Construct query to obtain top N traffic producers or consumers. Mark the
results. Example of corresponding NFDump query:
nfdump -M /live/p3000 -T -r nfcapd.200805130405 -n 10 -s ip/bytes

2. Construct query to obtain the communication of the devices from the previous
step (aggregation using source IP address, destination IP address). Example of
corresponding NFDump query:
nfdump -M /live/p3000 -T -r nfcapd.200805130405 -a -A srcip,dstip,

proto IP XXX.YYY.ZZZ.UUU or IP...

3. Construct query to obtain the communication between selected IP addresses (pure
data or aggregated by destination port). Example of corresponding NFDump query
to get pure NetFlow data:
nfdump -M /live/p3000 -T -r nfcapd.200805130405

IP XXX.YYY.ZZZ.UUU or IP...

Use-case procedure using NFSen

1. Obtain top N traffic producers or consumers using user interface for top N
statistics (see figure 7).

2. Set the filter in user interface for flows listing. Copy IP addresses acquired
in the previous step into ”Filter” text box. Set aggregation using source IP
address, destination IP address and protocol in user interface.

3. Analogous to previous step. Add aggregation using destination port or re-
move aggregation completely to get pure NetFlow data.

Use-case procedure using NetFlow Visualizer

1. Set time interval and press the ”Load data” button, NFSel will acquire data
from the collector and deliver it to NetFlow Visualizer.

2. Set filter ”nodes transferred more than” using user interface (see figure 6).
3. Expand with a single mouse click one or all the nodes to obtain the commu-

nication of the devices satisfying the filter.

Fig. 7. NFSen user interface for top N statistics

150 P. Minarik and T. Dymacek

Fig. 8. Table of pure NetFlow data (replies of a web server to a client)

4. Open with a single mouse click the statistics tab for selected device to obtain
the data aggregatedby destination port (see figure 4) or open the edge between
two devices to obtain the pure NetFlow data in a table (see figure 8) using its
context menu.

Let’s summarize the use case presented. Using NFDump or NFSen users have
to think out and write their own commands or set up a complicated filter. It
is clear that using a tool such as NetFlow Visualizer can increase dramatically
the productivity of labour of network analysts and make NetFlow data analysis
accessible even to non-specialists.

6 Conclusion and Future Work

The NetFlow data visualization method based on graphs was created, presented,
evaluated and discussed with network and security experts. The main conclusion
is that such a method has big potential for complementing existing methods
and is very useful for specific use-cases. The fact that this method has been
implemented by a commercial company and is being provided to customers as a
visualization tool called NetFlow Visualizer with NetFlow data probes confirms
its usefulness and potential.

The visualization method presented was adapted in the CAMNEP project [14]
to provide visualization of anomalous traffic according to detection layer results.
Visualization tool NetFlow Visualizer was verified at Masaryk University within
the framework of the internal security targeted project.

The development of the visualization tool presented and the visualization
method itself is not yet finished. One of the biggest challenges is to provide
an analyst with the exact portion of information required. Network traffic data
are massive and quick insight will not be possible if the analyst is subjected to
information overload. It is necessary to provide the analyst with a powerful and
intuitive way of defining and expressing his/her actual focus. Another challenge
is to permit any number of centers of focus so that users will be able to view
details for more than one node at one time. The solution proposed is to combine
graph-based and spreadsheet-based visualization in one workspace. The graph
nodes will therefore contain spreadsheets with details.

NetFlow Data Visualization Based on Graphs 151

Acknowledgment. This material is based partially upon work supported by the
European Research Office of the US Army under Contract No. N62558-07-C-
0001. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of the European Research Office of the US Army.

References

1. Cisco Systems: Cisco IOS NetFlow (2007), http://www.cisco.com/go/netflow
2. Haag, P.: NfSen - NetFlow Sensor (2007), http://nfsen.sourceforge.net
3. Robinson, N., Scaparra, J.: Interactive Network Active-traffic Visualization

(INAV), http://inav.scaparra.com/docs/whitePapers/INAV.pdf
4. Cornell University, Department of Computer Science: Netview,

http://netview.gforge.cis.cornell.edu/index.php

5. Jcap project team: jpcap – a network packet capture library,
http://jpcap.sourceforge.net/

6. Chinchor, N., Hanrahan, P., Robertson, G., Rose, R.: Illuminating the Path: The
Research and Development Agenda for Visual Analytics. National Visualization
and Analytics Center (2006)

7. Berkeley Institute of Design: The Prefuse Visualization Toolkit,
http://www.prefuse.org

8. Mycroft Mind Inc.: Mycroft Mind Inc. Company Profile,
http://www.mycroftmind.com

9. Mycroft Mind Inc.: NetFlow Visualizer,
http://www.mycroftmind.com/products:nfvis

10. INVEA-TECH Inc.: INVEA-TECH Inc. Company Profile,
http://www.invea.cz/main/home

11. Čeleda, P., Kováčik, M., Końı̌r, T., Krmı́ček, V., Špringl, P., Žádńık, M.: FlowMon
Probe. Technical Report 31/2006, CESNET, z. s. p. o. (2006),
http://www.cesnet.cz/doc/techzpravy/2006/flowmon-probe

12. Haag, P.: NFDUMP - NetFlow processing tools (2007),
http://nfdump.sourceforge.net

13. Graph Drawing Steering Committee: GraphML format,
http://graphml.graphdrawing.org

14. Agent Technology Group, Gerstner Laboratory, Czech Technical University in
Prague and Institute of Computer Science, Masaryk University in Brno: CAM-
NEP (Cooperative Adaptive Mechanism for NEtwork Protection) project web
page, http://agents.felk.cvut.cz/projects/camnep

 http://www.cisco.com/go/netflow
 http://nfsen.sourceforge.net
http://inav.scaparra.com/docs/whitePapers/INAV.pdf
http://netview.gforge.cis.cornell.edu/index.php
http://jpcap.sourceforge.net/
http://www.prefuse.org
http://www.mycroftmind.com
http://www.mycroftmind.com/products:nfvis
http://www.invea.cz/main/home
http://www.cesnet.cz/doc/techzpravy/2006/flowmon-probe
 http://nfdump.sourceforge.net
http://graphml.graphdrawing.org
http://agents.felk.cvut.cz/projects/camnep

Backhoe, a Packet Trace and Log Browser

Sergey Bratus, Axel Hansen, Fabio Pellacini, and Anna Shubina

Dartmouth College, NH 03755, USA

Abstract. We present Backhoe, a tool for browsing packet trace or other
event logs that makes it easy to spot “statistical novelties” in the traffic,
i.e. changes in the character of frequency distributions of feature values
and in mutual relationships between pairs of features. Our visualization
uses feature entropy and mutual information displays as either the top-
level summary of the dataset or alongside the data. Our tool makes it
easy to switch between absolute and conditional metrics, and observe
their variations at a glance. We successfully used Backhoe for analysis of
proprietary protocols.

1 Introduction

Analysis of packet traces and event logs derived from packet traces by aggre-
gation or by matching for certain types of events is likely the most frequent
task performed by analysts. In particular, browsing for anomalies, for points
where the traffic changes in character, is a frequent fallback of the analyst or
administrator trying to form a hypothesis of what might have happened.

More precisely, users look for groups of records (selected according to some
restriction, for example by time intervals) where the distribution of some feature
substantially changes (e.g., goes from an almost random uniform distribution
to a highly skewed one, or vice versa), or the nature of the mutual relationship
between two features substantially changes (e.g., one feature stops being a good
predictor for the value of another, or vice versa). Such changes very often have
clear security implications; related heuristics are popular in anomaly-detecting
intrusion detection systems (IDSes).

Considering that such “novelties” may occur in any one of the usually many
features of interest (and in any one of the even more numerous pairwise rela-
tionships between these), the users need a tool that lets them examine such
relationships at a glance, pivot it easily on selected features, and quickly switch
between selections. In this paper, we present Backhoe, a proof-of-concept visual-
ization tool for exploring the features’ variability and mutual relationships across
slices of data, which builds on the prefuse toolkit [5].

Although many tools exist to help with the task of anomaly detection on either
static (captured) or dynamically flowing packet traces or event streams, most
of these tools use an IDS-style model, trained on ”normal” input, for judging
records as anomalous and highlight the detected anomalous records in the dis-
play. We, on the other hand, build our display itself around information-theoretic
metrics and let the user make judgements about the overall character of feature
interdependence; thus we are not bound by any particular IDS model.

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 152–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Backhoe, a Packet Trace and Log Browser 153

Our approach is based on information-theoretic metrics (explained later in 3)
and inspired by the multi-strata visuals ofNameVoyager ([9]). Unlike in NameVoy-
ager, however, the mutual positioning of strata in our display of a packet trace or
log is determined from the current dataset, and the relative thickness of some layers
is strongly determined by others (in fact, understanding such dependencies is likely
what the user is after). Accordingly, after the initial layout, the users can manually
re-order and otherwise manipulate the strata, as well as switch the entire view into
a mode relative to (“conditioned on”) a chosen layer and back.

2 Backhoe in Operation

Backhoe’s1 goal is to help the user make sense of a sequence of packets, or, generally
speaking, a sequence of log entries, each multi-field record representing an event.
Backhoe relies on some other tool to parse these packets or records into rows of a
table, the columns of which correspond to protocol fields or other relevant features.
For packetswe use tshark’s PDML output, for other kinds of records – the output of
our Kerf log browsing tools.2 From now on, we will refer to either parsed packets or
other parsed log entries as “records” or “sequence elements”. Also, we use “fields”
and “features” interchangeably, because at the point when the record (packet) is
parsed and represented as a set of key–value pairs, it does notmatter much whether
the value is extracted directly from the record or computed.

Besides this input sequence, Backhoe needs to know how to partition this
record sequence into groups, across which features’ distributions and their statis-
tical relationships could be compared and visualized. In most analysis scenarios
where sequence elements are time-stamped, it is natural to divide them by time
intervals; a group is made up by all records with the timestamp falling within
the interval, Gi = {r : t(r) ∈ [ti, ti+1]}. Alternatively, when the user is interested
in seeing how much adding new records changes the character of the features’
overall distribution, the groups can be defined as comprised of all records to
date, Gi = {r : t(r) ≤ ti}.

However, the splitting of records into groups need not necessarily be done by a
timestamp: any features, the values of which could be meaningfully ordered, would
do. For example, the user might choose to group packets by size, port numbers, and
so forth, or by ranges thereof. In fact, our Treeview tool from the above-mentioned
Kerf suite attempts to establish the series of features that, when used to recursively
group a log dataset, results in groupings that are most convenient for spotting
anomalies and classifying “normal” traffic [1].

Strata mode. Regardless of how the grouping is accomplished, Backhoe com-
putes a set of features {Fk} for each group and graphs the thickness of stratum
k at point i, i.e., over the group i to be Fk(Gi). We call the visualization mode

1 The resulting strata configurations reminded us of cross-sections of exposed rock
strata (in the proverbial “mountains of data”), hence the name for the tool that “ex-
poses” these strata.

2 For a description of our Kerf project, see http://kerf.cs.dartmouth.edu/ .

http://kerf.cs.dartmouth.edu/

154 S. Bratus et al.

Fig. 1. Strata mode, absolute entropies Fig. 2. Strata mode,conditional entropies

in which only this data is displayed strata mode (Fig. 1). This strata mode helps
the user to zero in on the interesting interval where the relative changes in the
thickness of the strata attract the user’s attention.

Packetfall mode. The strata mode helps the user choose an initial interval for
further exploration. Once the interval is chosen, the user can switch into the mode
we call the Packetfall mode, inspired by the Rainfall mode of the Rumint tool by
Greg Conti.3 In this mode, the packet summaries (or record group summaries
for non-packet data) are displayed to the right of the strata diagram, which in
turn is rotated (Fig. 3). To find and examine packet summaries of interest, the
user can take advantage of the fisheye and search functions, explained below.

Switching features sets. The default set Fk of strata features is H(Fk) =
{H(Fk(Gi))}k,i, the entropies of the respective features over the record groups.
The rationale for this choice is provided in Section 3. However, the user can
switch to other sets with a single keystroke. For example:

’v’ switches the thicknesses of the k-th stratum to the count of distinct values
of the feature Fk across each group, {#{distinctvalues(Fk|Gi)})}, and

’C’ pivots every layer except the selected one k0 to be the conditional entropy
H(Fk|Fk0) = {H(Fk|Fk0)|Gi}i.

We call these “conditional” (Fig. 9, left side) and “distinct values” sets. Strata
conditioned on another stratum are painted with a distinctive brush.

We also use custom features calculated from the underlying packets, such
as the length of the packet’s payload when compressed as a byte string by a
Lempel–Ziv type algorithm (see 4).

Mixing in conditional strata. When convenient, the user can mix-and-match
conditional layers with absolute ones, choosing the conditioning per layer. This
is useful when we know that some feature X is strongly dependent on Y , and W
is strongly dependent on Z, but Z and Y are virtually independent, and we want
3 Available at http://www.rumint.org/

http://www.rumint.org/

Backhoe, a Packet Trace and Log Browser 155

Fig. 3. Packetfall mode, base view

to show this manner of mutual dependencies at a glance and also save screen
space. The left side of Fig. 7 provides an example.

With additional Chow–Liu style precomputation (see [2]), the user can choose
to see the top m pairwise correlations (more precisely, the m feature pairs with
the highest mutual information) drawn from the start as conditional layers, show-
ing, at a glance, where these (on average) strongest dependencies are weakened,
as an exception to the general trend.4

Strata (re-)ordering. In the simplest display, the strata are sorted according
to their average thickness. The user is given the option of choosing the order and
the colors of strata via simple keystroke commands (e.g., ’d’ lowers the stratum,
’u’ raises it, ’f’ toggles colors, ’h’ hides it altogether). Since reordering operations
change the overall layout, their results are animated with fade-in color actions
to help the user spot the new position of the just-moved layer.

Fisheye and search. In packetfall mode, the records in the right (“packet”)
pane are necessarily rendered in tiny fonts or degenerate to pixel lines. Individual
records can be viewed by using the fisheye effect (Fig. 4, 6–7). The base (non-
fisheye) view allows text query searches on its elements: all matching characters
(or pixels, when such squashing is necessary) are highlighted in it, showing the
occurrences of the sought substrings (Fig. 5). This highlighting can then be used
to zero in on individual matches with fisheye (Fig. 6).

3 Why Use Information-Theoretic Metrics?

Entropy of a random variable X that takes distinct values {xi, i = 1, . . . , n}
with probabilities {pi, i = 1, . . . , n} is defined as H(X) =

∑n
i=1 pi log 1

pi
. H(X)

is interpreted as the “information content” of X , or a measure of uncertainty
about X . We are interested in the latter interpretation.
4 For reasons of space, we omit the details of our layout algorithm and refer the reader

to our upcoming technical report.

156 S. Bratus et al.

Fig. 4. Packetfall mode, fisheye view

g , y

Fig. 5. Packetfall mode, search activated

Consider a set of N log records with just one field of interest per record. The
values occurring in that field form a discrete probability distribution X , each
distinct value xi having the probability pi = ni/N , where ni is the number of
times xi occurs in the set. The less certain we are about which of these values
you encounter in a record, the higher is the entropy H(X).

Even for one-value records entropy can provide important security clues, espe-
cially when the expected variation of that value in normal operating conditions
is small. A raise in entropy would then signal a change of conditions (see, e.g.,
Lee et al. [8], [7]).

Entropy of a joint distribution of two variables X , Y is defined as H(X, Y)
=

∑
ij pij log 1

pij
, where pij is the probability that the distinct values xi of X

and yj of Y are taken simultaneously (in the simplest case, consider log records
with just two fields of interest and the distribution of pairs of values seen in
these fields together in a record). For independent X and Y we have H(X, Y)
= H(X) + H(Y); in this case knowing the value taken by X tells us nothing
about the likelihood of any particular value of Y co-occurring with it. Whenever

Backhoe, a Packet Trace and Log Browser 157

Fig. 6. Packetfall mode, all strata conditioned on destAddr, search + fisheye

Fig. 7. Mixed mode conditional, search + fisheye

dependence exists, knowing the value of X does help us predict the value of Y ,
through our knowledge of the likelihood of their observed co-occurrence.

Statistics that compare the joint entropy H(X, Y) with the single feature
entropies H(X) and H(Y) are very useful for describing dependence between
variables. In particular, the conditional entropy H(X |Y) = H(X, Y) − H(Y) is
a measure of uncertainty about the value X when that of Y is already known.

A big increase in H(X |Y) means that Y is no longer a good predictor for X ,
which has strong security implications for many mutually predictive field pairs
of many protocols designed with flexibility in mind but no longer exercising
that variability in normal operating environments, such as the use of diverse IP
options or fragmentation, overly long variable length headers, and so on.

Unusual use of protocol fields is characteristic of many exploits, but sophisti-
cated attackers take pains to disguise it, as IDSes might be watched for it5 It is
much harder, however, to disguise unusual payloads in such a way that does not
5 The “Dissembler” by Jon Erikson provides an interesting example among many.

158 S. Bratus et al.

Fig. 8. The BlueSnarfing scenario, en-
tropies

Fig. 9. BlueSnarfing, conditional entropies

introduce unusual statistical effects in any pair of protocol features. It is these
effects that our visualization aims to make conspicuous.

Scalability is a significant concern, since computing information-theoretic
metrics has high CPU and RAM costs. We are exploring lowering these costs
through use of streaming entropy estimation algorithms.

4 Evaluation

Backhoe was developed to assist with specific traffic and log analysis tasks. Here
we briefly cover two scenarios in which it proved itself.

Proprietary protocol analysis. In the course of vulnerability testing a pro-
prietary product, we needed to discover some facts about a proprietary client–
server protocol. Luckily, the protocol’s packets were not encrypted, and we could
obtain a packet trace. Furthermore, the trace contained many repetitive transac-
tion legs, and we were interested in spotting new kinds among these repetitions.

We configured one of the features computed on the packets to be the length
of the byte string resulting from Lempel–Ziv compression of the packet, using
the string table accumulated so far from compressing previous packets. This
feature served as a rough measure of the packet’s “novelty”: packets that con-
sisted mostly of previously seen substrings compressed really well, unlike “novel”
packets that started some new types of transactions.

The running stratum of the compression-length feature allowed us to quickly
locate different kinds of command packets in the packetfall mode, whereas high-
lighting of search byte strings helped us see the degree of repetition of function
codes and their approximate offsets in the packet traces at a glance.

The BlueSnarfing story. In another study, a group of Ohio-based security
researchers made available to us the logs of proximity scanning of Bluetooth
devices (the so-called BlueSnarfing). These logs were collected in the public
spaces of security conferences such as Defcon and Notacon. One of the objectives
of the analysis was to find out whether any spoofing of Bluetooth device MACs

Backhoe, a Packet Trace and Log Browser 159

was actually occurring. The “snarfed” log consisted of records that showed MAC,
manufacturer ID and capabilities strings, and other device-specific information.

Having loaded the logs into Backhoe (Fig. 8) and taking conditional views,
we noticed that the other features were perfectly predictable conditioned on
the device MAC address, expect for one interval. In that interval, capability and
manufacturer strings strata showed non-zero thickness, i.e., non-zero conditional
entropy H(·|MAC), making it obvious that the relationship between their values
was many-to-one (Fig. 9 shows that conditional view with the MAC stratum
hidden away for further clarity). This suggested that within that particular time
interval some device responses were inconsistent and probably spoofed. Backhoe
enabled us to zero in on this property of the log dataset right away.

5 Related Work

Most log visualization tools currently available are concerned with ways to rep-
resent frequency distributions of the data according to predefined rules. Despite
the complexity of selecting the optimal representation from the sheer graphi-
cal point of view (as summarized, for example, in [6]), these tools frequently
fall short in their support for anomaly detection. Another broad summary of
security visualization tools is given in [3].

Lee et al. in [8] argued for using information-theoretic measures to build mod-
els for anomaly detection in datasets, and Lakhina et al. in [7] demonstrated
their usefulness for practical traffic monitoring. Although sophisticated detec-
tion methods have been proposed since then (e.g., [4]),we are not aware of uses
of entropic metrics for visualization proper, although Kaminsky’s Sequitur visu-
alizations6 show the potential of related ideas.

References

1. Aslam, J., Bratus, S., Pavlu, V.: Semi-supervised data organization for interactive
anomaly analysis. In: ICMLA 2006: Proceedings of the 5th International Conference
on Machine Learning and Applications, pp. 55–62 (2006)

2. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence
trees. In: IEEE Trans. Information Theory, vol. 14, pp. 462–467 (1968)

3. Conti, G.: Security Data Visualization: Graphical Techniques for Network Analysis.
No Starch Press (2007)

4. Gu, Y., McCallum, A., Towsley, D.: Detecting anomalies in network traffic using
maximum entropy estimation. In: IMC 2005: Proceedings of the 5th ACM SIG-
COMM conference on Internet measurement, pp. 1–6 (2005)

5. Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information
visualization. In: CHI 2005: Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 421–430 (2005)

6 See http://www.doxpara.com/slides/dmk shmoo2007.ppt,
http://seattle.toorcon.org/2007/talks/dankaminsky.ppt.

http://www.doxpara.com/slides/dmk_shmoo2007.ppt
http://seattle.toorcon.org/2007/talks/dankaminsky.ppt

160 S. Bratus et al.

6. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and appli-
cations. IEEE Transactions on Visualization and Computer Graphics 6(1), 59–78
(2000)

7. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies in
traffic flows. In: IMC 2004: Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, pp. 201–206 (2004)

8. Lee, W., Xiang, D.: Information-theoretic measures for anomaly detection. In: Proc.
of the 2001 IEEE Symposium on Security and Privacy, pp. 130–143 (2001)

9. Wattenberg, M.: Baby names, visualization, and social data analysis. In: INFOVIS
2005: Proceedings of the Proceedings of the 2005 IEEE Symposium on Information
Visualization, p. 1 (2005)

Existence Plots: A Low-Resolution Time Series

for Port Behavior Analysis

Jeff Janies

CERT Network Situational Awareness Group
4500 Fifth Avenue

Pittsburgh, PA 15213
janies@cert.org

Abstract. An existence plot is a low-resolution visualization that con-
currently represents the activity of all 216 ports on a single host. By
doing so, we are able to show patterns of port usage which can indicate
server activity and demonstrate scanning. In this work we introduce the
existence plot as a visualization and discuss its use in gaining insight into
a host’s behavior.

Keywords: Network traffic visualization, Low-resolution visualization,
Time series.

1 Introduction

An existence plot is a time-series visualization of traffic over all the active ports
on a single monitored host. Existence plots summarize activity for a single host
in a limited space, regardless of the number of unique sources with which the host
communicates. For example, Figure 1 is the existence plot for an SMTP server.
Ports are listed on the y-axis, while the x-axis represents time. The box-and-
whisker diagram on the right of the plot shows a color coding of byte magnitude:
blue for the 1st quartile, green for the 2nd and 3rd quartiles, and red for the 4th
quartile. We also see two families of lines on the plot - a constant, horizontal
red line at port 25, indicating the host’s SMTP server activity, and a collection
of lines with similar slope in the ephemeral port range (1024-65535) indicating
client activity.

Existence plots offer useful, high-level summaries of traffic from a particular
host, due to their coarse representation of activity. Using the existence plot, we
provide a high-level view of all activity originating from a host. While we cannot
render exact information on the magnitude of activity from a particular port
and maintain readability, we note that the majority of network traffic contains
noise generated by automated scanning, bots and other hostile activity [1][7][10].
Because of this, it is not unusual for simple magnitude-based indicators to include
a large amount of trivial data due to prevalent, but meaningless low-volume
interactions caused by hostile activity.

This paper is a tutorial on the construction and use of existence plots. We
demonstrate that existence plots provide a method for analysts to rapidly iden-
tify aggregate host behavior such as hidden servers (hosts that are operating as

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 161–168, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 J. Janies

1024

25

 0 100 200 300 400 500 600 700

Time (900 seconds)

1 - 533
534 - 534

> 535

-535
-533

Common
server activity

Cyclic
ephemeral
port usage

Time (900 Second Bins)
Dec. 2007

Day 3 02h Day 5 04hDay 1 00h Day 7 06h

Fig. 1. Existence plot showing activity from December 1st to 7th, 2007 from an SMTP
server

public servers which the administrator may not be aware of), scanning conducted
by compromised hosts, and scan response.

The remainder of this paper is structured as follows: §2 describes the com-
position and construction of existence plots from traffic data; for our examples
we use the SiLK toolkit1, but plots can also be constructed using raw tcpdump
data. §3 shows how to interpret results from an existence plot, in particular the
identification of hidden servers and scanning activity. §4 discusses other visual-
izations that represent individual hosts. §5 concludes this work with a discussion
of future applications.

2 Constructing Plots

In this section, we outline the data requirements and method for generating
existence plots, as follows: §2.1 describes our source data and its format, and
§2.2 describes the process of plotting formatted source data.

2.1 Source Data Format

Existence plots represent a unidirectional count of bytes transfered on individual
ports. We format network traffic summaries as a series of values, Xp,τ , where
p is a port and τ represents a time interval. As with other time series, τ is a
discrete interval of time, in this case measured in seconds. Since we format the
data as unidirectional traffic summaries, each host, A, can be represented with
two non-equal data sets, inbound and outbound, where inbound is the set of
byte counts of all packets destined to A, and outbound is the set of byte counts
of all packets originating from A.
1 Available at http://tools.netsa.cert.org/silk/

http://tools.netsa.cert.org/silk/

Existence Plots: A Low-Resolution Time Series for Port Behavior Analysis 163

2.2 Plotting from Data

For the images in this paper, the y-axis represents the 216 TCP and UDP ports
plotted in log-scale, unless otherwise specified. This representation is a low-
resolution time-series; that is, instead of a precise delineation of every discrete
value (as is the case with MRTG2), we bin the values into broad categories to
provide a complete view of the data. We denote drastic changes in magnitude
with color and are able to compress more information into each image by using
the y-axis to represent unique variables instead of a shared scale measuring
magnitude.

color(p, t) =

⎧⎪⎪⎨
⎪⎪⎩

none Xp,τ = 0
blue 0 < Xp,τ < S0

green S0 ≤ Xp,τ ≤ S1

red S1 < Xp,τ

(1)

Equation 1 shows the mapping of magnitude to colors using the data-dependent
values: Xp,τ , S0 and S1. We set S0 and S1 as the 1st and 3rd quartile of all non-
zero values of Xp,τ (i.e. the values change per data set). However, alternative
approaches are viable: for example, if the magnitude of traffic is predictable, S0

and S1 can be fixed across images to provide consistency.
With the existence plot, we are equally interested in periods of activity and

inactivity. By representing both, patterns emerge. The most common ephemeral
port usage pattern is a series of lines with similar slopes, depicting port cycling in
client interaction (i.e. the host sequentially uses a set of ports in a finite range,
and this sequence is repeated). Servers consistently use ports common to the
service they provide. This results in a horizontal line of activity.

Figure 2 shows how variations in the size of τ affect the shapes in existence
plots. In this figure, we represent one day of outbound traffic from ports 1025
through 5000 of a frequently used Microsoft Windows machine, which comprises
32,100 NetFlow records. We vary τ sizes to be 1 hour, 30 minutes, 15 minutes, 10
minutes, 5 minutes and 1 minute and only display the port range 1025 through
5000. With the largest τ size of one hour, only the port cycles with a longer
period are discernible. As the τ size decreases the shorter period port cycles
become discernible. At 10 minutes the lines are distinct; therefore, we use a
resolution of 10 minutes for a majority of the images in this paper.

3 Interpreting Plot Data

Existence plots display aggregate port activity. In this section, we demonstrate
how this aggregated view can be used to identify various phenomena, specifically
hidden servers, scanning done by an internal host and scan response. This section
is divided as follows: §3.1 explains how existence plots can be used to identify
hidden servers. §3.2 shows how existence plots can portray scans.

2 See http://oss.oetiker.ch/mrtg/

http://oss.oetiker.ch/mrtg/

164 J. Janies

 0 5 10 15 20

po
rt

 n
um

be
r

(1
02

5-
50

00
)

Time (3600 seconds)

(a) 1 hour

 0 5 10 15 20 25 30 35 40 45

po
rt

 n
um

be
r

(1
02

5-
50

00
)

Time (1800 seconds)

(b) 30 minutes

 0 10 20 30 40 50 60 70 80 90

po
rt

 n
um

be
r

(1
02

5-
50

00
)

Time (900 seconds)

(c) 15 minutes

 0 20 40 60 80 100 120 140

po
rt

 n
um

be
r

(1
02

5-
50

00
)

Time (600 seconds)

(d) 10 minutes

 0 50 100 150 200 250

po
rt

 n
um

be
r

(1
02

5-
50

00
)

Time (300 seconds)

(e) 5 minutes

 0 200 400 600 800 1000 1200 1400

po
rt

 n
um

be
r

(1
02

5-
50

00
)

Time (60 seconds)

(f) 1 minute

Fig. 2. The x-axis represents time and the y-axis represents the port range 1025
through 5000. As the size of τ decreases the port cycles become more distinct.

3.1 Hidden Server Identification

We define a hidden server to be any host that provides a service to hosts outside
of the network, without the administrator’s knowledge or consent. Specifically,
we show a misconfiguration causing a client to function as its own mail relay.
We compare this behavior with a known mail relay.

Here, we display one day of a host’s activity with two existence plots, which
we refer to as existence plot pairs (see Figure 3). The existence plot on the
left represents the destination ports of packets in the data set inbound for the
host in question (dport inbound). The existence plot on the right represents the
source ports of packets in the data set outbound for the host in question (sport
outbound). In both plots we use a τ size of ten minutes (600 seconds).

Figure 3 shows a misconfigured host. Nominally, the host should use an inter-
nal mail server for mail inspection and distribution. However, due to a miscon-
figuration, the host begins forwarding mail to external hosts itself. As the figure
on the left shows, the host receives a great deal of traffic to a limited number
of ports but does not respond to these connection attempts (e.g. there is a lack
of activity in the figure on the right). Instead, a short quick burst of activity
occurs in the ephemeral port range. Upon inspection of the NetFlow records as-
sociated with this burst, we concluded that this burst encapsulates connections
to 75 unique mail servers and lasts for approximately one minute, after which no
further mail activity is observed from the host. This visualization yields two key
insights. First, the activity occurs in a very short time and is inconsistent with
the host’s modus operandi. Second, the host receives consistent scans to ports
associated with well-known vulnerabilities but does not respond. Therefore, we

Existence Plots: A Low-Resolution Time Series for Port Behavior Analysis 165

1024
500
445

139
137
113

89
88

25
24
22

-1122

-287

-2618

-2580

1024

Contacted
75 hosts

00h:00m 20h:00m10h:00m00h:00m 20h:00m10h:00m

Dport Inbound Sport Outbound

Time (600 Second Bins)

Fig. 3. Existence plot pair of a misconfiguration. The host contacts 75 mail servers in
a short time.

-1359

-368

-9778

-319

10241024

500

137
135
113

25

22

Time (600 Second Bins)
10h:00m 20h:00m00h:00m 10h:00m 20h:00m00h:00m

Sport OutboundDport Inbound

Fig. 4. Existence plot pair of a legitimate SMTP relay. The host only acts as a client,
forwarding mail to external mail servers.

are able to rule out the possibility of this being a compromised host functioning
as a mail relay for external hosts.

Contrary to the activity demonstrated in Figure 3, Figure 4 shows an exis-
tence plot pair of a known mail relay. Similar to Figure 3, this host receives a
large number of connection attempts from external hosts, and likewise, does not
respond. However, unlike Figure 3, the host has a consistent pattern of ephemeral
port activity, with no reserved port activity. Additionally, the ephemeral port
activity does not show drastic deviations, e.g. the port cycling continues through
the course of the day.

166 J. Janies

-1254

-163

-1059

-143

1024

500

53
49
48
47
28
26
25
23
21

4
3
2

1024
859

500
445

137
135

53

25
23
22
21

3

00h:00m 20h:00m10h:00m00h:00m 20h:00m10h:00m

Dport Inbound Sport Outbound

Time (600 Second Bins)

Fig. 5. Existence plot pair of a host using reserved ports to scan. Port cycling is present
in the reserved port range.

Linear Port
Scans

1024
1023

81

53

22
21

Sport Outbound

-42
-44

0 100 200 300 400 500 600 700

Time (900 seconds)
Time (900 Second Bins)

12/3/2007
02h:00m

12/5/2007
4h:00m

12/1/2007
00h:00m

12/7/2007
06h:00m

Fig. 6. Existence plot showing rampant scan response. The vertical bars denote scan
response.

3.2 Scan Detection

Figure 5 shows an existence plot pair representing the port usage of a compromised
host. Upon inspection, we find that the host appears to have two different instances
of port cycling. The first instance is in the ephemeral range, as is expected from a
client. The second is the port range 54 through 499. Since the second instance only
occurs in the image on the right, we can exclude scan response as a possible reason.
Upon inspection of the host’s connections, we find that this activity is directed at
external hosts listening on port 53 (DNS), 67 (DHCP) and 137 (NetBIOS). All of
the packets observed are of similar size and have a greater than 99% fail rate over
an observation period of 5 days (e.g. at no time in the observation period did the

Existence Plots: A Low-Resolution Time Series for Port Behavior Analysis 167

victims of the scan attempt to complete a connection with the host). From this we
conclude that this is an internal host scanning external hosts (presumably as the
result of compromise).

In addition to being able to visualize monitored hosts’ scan attempts, ex-
istence plots can demonstrate external hosts’ scan successes. By concurrently
representing the ports, existence plots are well-suited at demonstrating vertical
scanning (i.e. every port on the host was contacted by the scanner) and scan
response. Figure 6 shows the source port utilization of outbound traffic for a host
over one week. During this time the host was vertically scanned twice, which is
indicated by two vertical bars of activity.

4 Related Works

Work centering on visualizing a single host’s activities is limited in comparison to
work on large-scale visualizations of network communication. Some work [3][11]
centers on visualization of networks at multiple levels, but the focus is still heavily
skewed to higher-level views of network interactivity, providing only rudimentary
measurements of individual hosts.

It can be argued that existence plots are quite similar to scatterplots, which
are common in network traffic analysis [5][6][9]. Indeed, their are similarities, but
we note that, with the exception of Marchette [5], previous work limits traffic
representation to specific ports or events (an instance of specific phenomena
that meets some selection criteria), where existence plots place no emphasis on
aggregating activity based on attribution. Instead, existence plots emphasize
expressing activity from all ports for a given host over time. Existence plots can
be seen as an expansion on Marchette’s work in visualizing port activity over
time by adding color as a representation of changes in magnitude.

Two other visualization methods that represent individual hosts are graphlets
and heat maps. Graphlet approaches visualize expected protocol usage patterns
[4]. Mansmann et al.[4] abstracts expected server behavior into gravitational enti-
ties that affect a host’s position on a plane; hosts are drawn to their most prevalent
activity. Heat maps aid in detecting obfuscation by comparing the commonalities
among patterns of communication [2][8]. Wright et al.[8] use heat maps to clas-
sify encrypted connections based on prevalent patterns in a host’s network traffic,
and Hernandez-Campos et al.[2] use heat maps for broader-scale representation
of network traffic. Unlike heat maps, existence plots use only four discrete states
to display magnitude instead of a continuous color map. Since varying time res-
olution can greatly affect the smoothness of magnitude changes (causing jarring
color shifts in heat maps), we find the existence plot to be more informative.

5 Conclusions

In this work, we have demonstrated the use of a low-resolution visualization,
which we call the existence plot, in representing the port usage of individual
hosts, particularly in detecting hidden servers and scanning activity. In both

168 J. Janies

cases, the existence plot provides useful insight into the host’s activities by con-
currently representing ports’ usage over time. In the future, we intend to use
this visualization to further discussion about port interactivity and systematic
patterns of port usage. Also, we intend to introduce user interactivity to the
visualization, which will allow the user to select specific patterns of interest and
obtain the original NetFlow records that the pattern represents.

References

1. Collins, M., Shimeall, T., Faber, S., Janies, J., Weaver, R., De Shon, M., Kadane,
J.: Using uncleanliness to predict future botnet addresses. In: Proceedings of IMC
2007 (2007)

2. Hernandez-Campos, F., Nobel, A., Smith, F., Jeffay, K.: Understanding patterns
of tcp connection usage with statistical clustering. In: Proceedings of MASCOTS
2005. IEEE Computer Society, Los Alamitos (2005)

3. Lakkaraju, K., Yurcik, W., Lee, A.: Nvisionip: netflow visualizations of system
state for security situational awareness. In: Proceedings of VizSEC 2004 (2004)

4. Mansmann, F., Meier, L., Keim, D.: Visualization of host behavior for network
security. In: Proceedings of VizSEC 2007 (2007)

5. Marchette, D.: Computer Intrusion Detection and Network Monitoring: A Statis-
tical Viewpoint. Springer, New York (2001)

6. McPherson, J., Ma, K., Krystosek, P., Bartoletti, T., Christensen, M.: Portvis: a
tool for port-based detection of security events. In: Proceedings of VizSEC/DMSEC
2004. ACM, New York (2004)

7. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of internet background radiation. In: Proceedings of IMC 2004 (2004)

8. Wright, C., Monrose, F., Masson, G.: Using visual motifs to classify encrypted
traffic. In: proceedings of VizSEC 2006. ACM Press, New York (2006)

9. Xiao, L., Gerth, J., Hanrahan, P.: Enhancing visual analysis of network traffic using
a knowledge representation. VAST 0, 107–114 (2006)

10. Yegneswaran, V., Barford, P., Ullrich, J.: Internet intrusions: Global characteristics
and prevalence. In: Proceedings of ACM SIGMETRICS 2003 (2003)

11. Yin, X., Yurcik, W., Treaster, M., Li, Y., Lakkaraju, K.: Visflowconnect: netflow vi-
sualizations of link relationships for security situational awareness. In: Proceedings
of VizSEC/DMSEC 2004. ACM Press, New York (2004)

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 169–180, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Time Series 3D AlertGraph and False Alert
Classification to Analyse Snort Alerts

Shahrulniza Musa1 and David J. Parish2

1 University Kuala Lumpur, Malaysian Institute of Information Technology,
1016, Jalan Sultan Ismail, 50250 Kuala Lumpur
shahrulniza@miit.unikl.edu.my

2 Electronic and Electrical Eng. Dept. Loughborough University,
Loughborough, LE11 3TU U.K
D.J.Parish@lboro.ac.uk

Abstract. A top-level overview of Snort alerts using 3D visual and alert
classification is discussed. This paper describes the top-level view (time series
3D AlertGraph) with the integration of alert classification to visualise Snort
alerts. The advantages of using this view are (1) It summarised the alerts into
different colours to indicate the quantity of alerts from (SRCIP, DPORT) pairs;
(2) It used alert classification to highlight the true alerts; (3) Through interaction
tools, the alerts can be highlighted according to the source IP, destination IP or
destination port;. (4) A large numbers of alerts can be viewed in a single display
and (5) A temporal characteristic of attacks can be discovered.

Keywords: machine learning, alert visualization, network security information
visualization, alert classification.

1 Introduction

The difficulty to explore and analyse large quantities of network security alerts in text
form has inspired many researchers to use visual methods as an alternative. Current
research in network security visualisation has grown and many display techniques
have been explored. Some of the tools developed were NVisionIP [1], IDSRainstorm
[2], SnortView [3], VisFlowConnect [4] and many others. In general, the main focus
of visualisation software is to achieve visual patterns of the true alerts and to help the
analysts to explore them. Even with the aide of the visualisation software, identifying
the attack patterns is still a difficult task. This may be due to the occlusion or due to
the numerous alerts crowding the visualisation display.

One-way to overcome overcrowding alerts is by reducing the numbers of alerts to
ease the analysis. Lee [5] and Viinikka [6] employed statistical method such as
Granger Causality Analysis and EWMA Control Charts to remove alerts that formed
the normal behaviour of the monitored network. Tedesco [7] used token bucket filter
to limit the quantity of alerts in each alert category and monitoring window.
Pietraszek [8] and Bloedorn [9] employed machine learning techniques to classify
alerts into false and true alerts and then removed the false ones. In these methods
though, the classified alerts were not visualised and still presented in text form.

170 S. Musa and D.J. Parish

Work by J. Colombe [10] used multivariate Bernoulli event representation to
convert the text alerts from RealSecure IDS to a visual form with statistical method.
In this method, they convert each comma limited text alarm to a binary form (0 or 1)
that marks the present or absence of a text descriptor in the particular field. The
binary string will then form an alarm vector that corresponds to a specific descriptor
token. The typicality score of each alert is calculated using statistical method. This
score is then represented using colour code to give a differentiation of highly typical
alerts and anomaly alerts. On the other hand, work by Stefan Axelsson [11] used
visualisation with a self-learning Bayesian system to calculate each alert a token score
and assigned the token a colour code. Then, the alerts are visualised according to its
colour code.

2 The Visualisation Prototype Overview

We have developed prototype visualisation software to visualise Snort alerts for
network security monitoring and analysis using multiple 3-D visualisation [12]. The
visualisation prototype combines various displays in 3D to give visual insight of the
data such as scatter plot, parallel coordinates plot, timeline view, plane view and
geographical view. In this visualisation, we visualise the alert as an object that gives
abstract information of its value. Glyphs, lines, colour-coding and visual positioning
become the abstract information of the attacks. The details of the attack are the
signature or the class type, the severity, the victim IP address, the source IP address,
the protocol, the indicative quantity, the instance and the alert classification, the true
or false positive alert. We have also included interactions, filtering and drill-down in
our visualisation. We also incorporate animation of the alerts according to the
timeline and real-time monitoring.

In addition, we made an improvement to the visualisation prototype by summaris-
ing the alerts data and gave the overview of the network security status. This view
was plotted in a 3D plot named as time series 3D AlertGraph which was an extension
of the 2D histographs [13] into 3D. Ren and others [13] designed an interactive
visualisation system, IDGraph by plotting the aggregated number of unsuccessful
TCP connections on the vertical axis versus the time ordered sequence on the
horizontal axis of a 2D plot. Then the brightness of the mapped point was changed
according to the density of the data at each pixel. The mapped data was either the pair
of source IP-destination port, source IP-destination IP or destination IP-destination
Port. This technique was named the histographs technique and was derived from the
information mural visualisation technique [14].

This paper describes the novel time series 3D AlertGraph and false alert classifica-
tion to visualise Snort alerts. The advantages of using the 3D AlertGraph are:

• It summarises the alerts into different colours to indicate the quantity of
alerts from (SRCIP, DPORT) pairs.

• It uses false alert classifier to highlight the true alerts.
• Through interaction tools, the alerts are highlighted according to the source

IP, destination IP or destination port.
• A huge numbers of alerts are viewed in a single display.
• A temporal characteristic of attacks can be discovered.

 Using Time Series 3D AlertGraph and False Alert Classification 171

2.1 Dataset Used

The dataset used was obtained from the published Darpa Intrusion detection
evaluation dataset 1999 (DARPA 1999) from the Lincoln Laboratory, Massachusetts
Institute of Technology [15]. The offline tcpdump dataset was analysed using Snort
with a standard configuration and the alerts were logged into a MySQL database.
Another set of data for this study was obtained from honeynet tcpdump traffic data
from the High Speed Network research lab, Electronic and Engineering department,
Loughborough University. A month of data from 01/04/2006 until 30/04/2006 were
visualised and studied.

3 The Time Series 3D AlertGraph

3.1 The Design

The time series 3D AlertGraph was plotted by mapping the quantity of alerts received
from the source IP and destination port (SRCIP, DPORT) pair on the Z-axis, the
destination IP addresses on the Y-axis and the time ordered sequence on the X-axis of
the 3D plot (Figure 1). Each mapped point in the 3D plot was attached with a
coloured sphere. The sphere was coloured according to the number of the different
pairs of (SRCIP, DPORT) and the number of alerts received at that point.

3.2 The Colour Scheme

Each map point represented the number of alerts received by a destination IP in a
given interval from (SRCIP, DPORT) pairs. In an interval, there might be more than
one (SRCIP, DPORT) pair that had the same number of alerts. Therefore, we counted
the (SRCIP, DPORT) pairs and used it as one of the variables to colour the sphere.
Another variable used to colour the sphere was the number of alerts at that point
which was the Z-axis value. The scalar coefficient to colour the sphere was the sum of
number of alerts and number of (SRCIP, DPORT) pairs at a point.

By considering the quantity of alerts and the number of pairs available at a point,
ranges of colours could be achieved. In this method, the quantity of alerts and the
number of pairs available at a point would have the same importance in the colour
scheme. This variation of colours was helpful to understand the network status and
identify the true attacks. To automate the identification of true attacks, users can apply
the false alert classification. In this case, the true alerts sphere will be coloured in red.
This was achieved by assigning the maximum value between the number of pairs and
the number of alerts in each pair to the scalar coefficient of the true alert sphere.

Mapping the scalar coefficient to colour was achieved by using the
VTKLookupTable class in the VTK module. For the VTKLookupTable class to
create range of colours, we supplied the class with the minimum and the maximum
range of the scalar coefficient in the monitoring period. We set the mapping colour
table to vary from blue to red. The colour transformation was using the logarithmic
function in the VTKLookupTable. The blue colour represents the lowest value and the
red being the highest.

172 S. Musa and D.J. Parish

Fig. 1. The schematic diagram and a day of Snort alerts in 3D AlertGraph

This colour variation is to highlight to the user, the density of alerts and the
(SRCIP, DPORT) pairs in the data. The red colour will suggest either

• Many alerts from a unique (SRCIP, DPORT) pair or
• Many alerts from many (SRCIP, DPORT) pairs but with few alerts each or
• The alerts are the true alerts

3.3 The Interactive Features

This 3D AlertGraph also gave a temporal characteristic of the alerts received by
destination IP address, source IP address and destination port. We added interactive
features in such a way as to perform the Shneiderman’s visual information-seeking
Mantra, ‘Overview first, zoom and filter, details-on-demand’ [16] and to understand

 Using Time Series 3D AlertGraph and False Alert Classification 173

Fig. 2. Pop-up window when user picks a coloured sphere actor

the data easier. The first interaction was by ‘picking’ the coloured sphere actor. The
details of the source IP, destination IP and destination port will be popped-up with the
time period of the event, the alerts quantity and the number of (SRCIP, DPORT) pairs
(Figure 2).

The second interaction tool was to highlight a specific source IP or destination IP
or destination port. It was achieved by clicking the child item in the SRCIP-DSTIP-
DPORT tree panel. By double clicking a destination IP, a transparent green plane will
appear with yellow lines from the 3D plot base to all data points in that respective
destination IP (Figure 3). The yellow lines represent a histogram graph of the number
of alerts received according to the time. However, double clicking the source IP or
destination port will highlight the spheres having the source IP or destination port. At
the same time, yellow lines will be drawn from the 3D plot base to the respective data
points. Other settings the users can modify include the start time, the monitoring
period, the time interval and the scales of the 3D plot.

In summary, the 3D AlertGraph showed the alerts received by the destination IP
address from the pair of (SRCIP, DPORT) in a time interval. The colour of the sphere
showed the sum of the (SRCIP, DPORT) pairs with the number of alerts at a point.
By analysing the red colour spheres with the known attacks in the dataset, the red
colour spheres were the true attacks. A single red sphere at the top of the 3D plot may
suggest a possible DOS attack and continuous horizontal red spheres at the bottom of
the 3D plot may point out a port scanning or a port sweep attack (see Figure 1).

174 S. Musa and D.J. Parish

Fig. 3. A transparent green plane at the selected destination IP address

3.4 The False Alert Classification

This approach integrated the classification tree algorithm to help users to identify true
alerts. The classifier learns from the labelled training sample provided by the user and
builds a classifier model from it. As the objective was not to build a new classification
algorithm, we applied the decision tree learner provided by an open source machine
learning module, Orange [17]. The classification tree learner in Orange is actually
based on the C4.5 classification algorithm and in default setting provides the same
result as in C4.5 classification algorithm.

The parameters used to teach the classifier were the source IP, source port,
destination IP, destination port, alert class type, IP datagram length and IP protocol.
Before sending the alerts to the classifier, we first processed them into general form.
The source IP address and destination IP address were generalised to local or foreign
host. For the source and destination ports, they were generalised into standard ports,
ephemeral ports, unassigned ports or unknown ports. This was based on the Berkeley
Software Distribution (BSD) TCP/IP stack port ranges. Standard ports were the ports
with port number less than or equal to 1024. Ephemeral ports were the port numbers
between 1024 and 4999. While the unassigned port numbers, were the port numbers
greater than or equal to 5000. The unknown port number was assigned when there
was no information of the port number in the IDS alert data. All of the attributes were
discrete attributes except for the IP datagram length, which was a continuous
attribute. The objective of this generalisation process was to avoid the classifier from
memorising a specific example in the training set rather than producing general
predictive rules. Table 1 shows the summary of the alert generalisation.

 Using Time Series 3D AlertGraph and False Alert Classification 175

Table 1. Alert Generalisation

Alert attributes Generalisation

Source / Destination IP
address

Local host
Foreign host

Source / Destination
port

Standard (< 1024)
Ephemeral (between 1024 and 4999)

Unassigned (> 5000)
Unknown

Alert Classtype Class type as specified by Snort
IP Datagram length Actual byte value

IP protocol UDP, TCP, ICMP,Reserve,Other

In a decision tree learner, the end leaf will be the attribute associated with the

classification result, true or false. While the internal nodes correspond to each value of
its associated attributes takes. The decision tree is generated by a recursive loop of
learning element and by splitting the best attributes that splits the training example into
their proper class. We also applied a post-pruning (backwards pruning) to simplify the
classification tree. Pruning is one of a technique employed in machine learning to
tackle the situation when the algorithm memorises the training data but fails to predict
a new instance well in the future. This situation is also known as overfitting.

We used k-fold cross-validation technique [18] to measure the classifier perform-
ance. In this technique, the data set was divided randomly into k equal subset. The
classifier was then built from the (k-1) data subset and tested against the remaining
subset. This procedure was repeated k times with different training set and test set.
The average performance measures from all tests were then calculated. We chose
k=10 as recommended in the literature. The standard machine learning performances
scores calculated were the classification accuracy (CA), the Brier Score (BS) and the
area under the receiver operating characteristic (ROC) curve (AUC).

We measured the classifier performance using a training sample that consisted of
561 alerts. The training sample had been added through Add/Edit training sample
feature in the prototype. As the dataset is a skewed class distribution where there are
high numbers of false alert and low numbers of true alert, we sampled the training set
with balance number of true and false alerts. The training sample consisted of 273
false alerts and 288 true alerts. The performance scores and the confusion matrix were
shown in Table 2 and Table 3.

The result showed the performance scores of the classifier were excellent. The area
under the curve (AUC) ROC and classification accuracy (CA) were above 0.9857.
For Brier score (BS), the score was 0.0265 which showed high accuracy. In contrast,
Table 3 showed the confusion matrix score and the achieved true positive (TP), true

Table 2. Classifier Performance Scores

 CA BS AUC
Scores 0.9857 0.0265 0.9892

176 S. Musa and D.J. Parish

Table 3. Classifier Confusion Matrix

 Negative (false)
Predicted

Positive (true)
Predicted

Negative
(false)

a
267

(TN=0.9780)

b
6

(FP=0.0220)
Positive
(true)

c
5 (FN=0.0174)

d
283

(TP=0.9826)

negative (TN), false positive (FP) and false negative (FN) rates. The result showed the
classifier was not biased towards any class category in the training sample.

Finally, we tested the classifier with alerts dataset from DARPA1999. To measure
the classifier performance, we tested the classifier against the second week of the
dataset. We compared the classifier detections with the attacks in the intrusions list
from the dataset [15]. We assessed the classifier performance by counting the number
of its true detections. From the intrusions list, there were initially 43 attacks. However,
as Snort missed some of the attacks, the available attacks left were 18. We noted that
five of the attacks were in the training sample. We assumed it was appropriate to test
the classifier with the dataset, as the alerts used to build the classifier model were in
general form. There was no details information of the attacks available to the classifier
such as IP address, port number and others.

From the testing we found that our classifier detected 17 out of 18 attacks in the
intrusions list. Furthermore, the one wrongly classified attack could still be pointed
out with the help of visualisation. The circled red sphere in Figure 1 was the wrongly
classified alerts but was still highlighted in the 3D AlertGraph. Our classifier also
classified five more anomalies as true attacks.

3.5 The Overview Example

PortSweep
The display in the 3D AlertGraph for 24 hours period starting from 13:00 Monday 9
March 1999 highlighted a continuous horizontal red spheres and a high quantity of
alerts at the beginning hours of the monitoring. The details from the pick object
revealed that at the red spheres area, there were a unique host attacking a unique local
host using multiple destination port (see Figure 4). This was an indication of a
portsweep attack.

Slammer Worm Propagation
The slammer worm is a self-propagating malicious code that exploits the vulnerability
in the Resolution Service of Microsoft SQL Server 2000 and Microsoft Desktop
Engine (MSDE) 2000. It attacks port 1434 using the UDP protocol. An observation of
a day (07/04/2006) dataset which consists of 442 alerts from the Honeynet traffic
showed there were attacks by the slammer worm to the Honeynet. Observation in the

 Using Time Series 3D AlertGraph and False Alert Classification 177

Fig. 4. Image of PortSweep

Same number of alerts in
each interval the whole period

Highlight of Dport 1434

Fig. 5. The image of Slammer Worm propagation

3D AlertGraph on that day showed there were a constant number of alerts in each
interval for the whole period attacking the same destination port 1434 to the multiple
hosts. The two pictures in Figure 5 showed the view in the 3D AlertGraph.

178 S. Musa and D.J. Parish

4 The User Evaluation

Following the Nielsen [19] findings, we have conducted the usability test of three
participants. We tested our tool with researchers at High Speed Networks laboratory.
All of them were familiar with intrusion detection and have a good background in
network security in general. Their participation in this study is voluntary and they
have never used this tool before. In summary the usability issues found are (1) the
method to control the motion in 3D and (2) the mouse-over information when user
brings the mouse cursor over an object. Some users felt difficult to control the 3D
image movement using the VTK mouse control built-in features. It is due to lack of
training. However, after several trials, they managed to control it correctly. One
participant suggested a navigation control as in the ‘google map’ application to be
used. We plan this feature in the future work.

In the user evaluation, apart to find the usability problems and finding bugs, we
also asked each participant to analyse a day of alerts data which contained 1539 alerts.
From the data, we asked each participant to list three local hosts that were under
attacks and to identify the one that was severely attacked using the time series 3D
AlertGraph. All the participants had successfully identified the local hosts and the one
that was severely attacked almost immediately. They were agreed the time series 3D
AlertGraph was easy to understand and to identify the potential true attacks in the
network. We also asked the participants to evaluate the software on the following
themes (Table 4) using a Likert Scale 1 to 5 with 1 for most dissatisfied and 5 for
most satisfied.

For each of the themes, the average score was above 4.0 with standard deviation
less than or equal to 0.58. The result was positive and showed to us that this prototype
were successfully designed and addressed the needs of the user.

Table 4. Themes for user evaluation

Themes Average Std dev
GUI - user friendly 4.33 0.58
Interaction 4.67 0.58
Classifier features 4.67 0.58
Filter features 4.67 0.58
Real-time 4.00 0.00
Reporting features 4.67 0.58
Perform Security tasks 4.67 0.58

5 Conclusions

We have designed a visualisation tool with alerts classification to provide a better
visual pattern or highlight of true attacks. The 3D AlertGraph serves as a top level
overview of the network security status with temporal outline of the events. Using a

 Using Time Series 3D AlertGraph and False Alert Classification 179

classification tree based on C4.5 classification algorithm with visualisation also helps
users to identify the true positive alerts. User evaluation shows that the design provide
better understanding of the alerts and can identify true attacks in the network.

References

1. Lakkaraju, K., Yurcik, W., Lee, A.J.: NVisionIP: netflow visualizations of system state for
security situational awareness. In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security. ACM Press, New York
(2004)

2. Abdullah, K., et al.: IDS rainStorm: visualizing IDS alarms. In: IEEE Workshop on
Visualization for Computer Security, 2005 (VizSEC 2005) (2005)

3. Koike, H., Ohno, K.: SnortView: visualization system of snort logs. In: VizSEC/DMSEC
2004: Proceedings of the 2004 ACM workshop on Visualization and data mining for
computer security. ACM Press, New York (2004)

4. Yin, X., Yurcik, W., Slagell, A.: The Design of VisFlowConnect-IP: A Link Analysis
System for IP Security Situational Awareness. In: IWIA 2005: Proceedings of the Third
IEEE International Workshop on Information Assurance (IWIA 2005). IEEE Computer
Society, Los Alamitos (2005)

5. Lee, W., Qin, X.: Statistical Causality Analysis of INFOSEC Alert Data. In: Vigna, G.,
Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 73–93. Springer,
Heidelberg (2003)

6. Viinikka, J., et al.: Time series modeling for IDS alert management. In: ASIACCS 2006:
Proceedings of the 2006 ACM Symposium on Information, computer and communications
security. ACM, New York (2006)

7. Tedesco, G., Aickelin, U.: Data Reduction in Intrusion Alert Correlation. In: WSEAS
Transactions on Computers, pp. 186–193 (2006)

8. Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224,
pp. 102–124. Springer, Heidelberg (2004)

9. Bloedorn, E.E., Talbol, L.M., DeBarr, D.D.: Data Mining Applied to Intrusion Detection:
MITRE Experiences. Machine Learning and Data Mining for Computer Security, pp. 65–
87 (2006)

10. Colombe, J.B., Stephens, G.: Statistical profiling and visualization for detection of
malicious insider attacks on computer networks. In: VizSEC/DMSEC 2004: Proceedings
of the 2004 ACM workshop on Visualization and data mining for computer security. ACM
Press, New York (2004)

11. Axelsson, S.: Combining a bayesian classifier with visualisation: understanding the IDS.
In: VizSEC/DMSEC 2004: Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security. ACM Press, New York (2004)

12. Musa, S., Parish, D.J.: Visualising Communication Network Security Attacks. In: 11th
International Conference. IEEE Computer Society, Zurich (2007)

13. Ren, P., et al.: IDGraphs: Intrusion Detection and Analysis Using Histographs. In:
Proceedings of the IEEE Workshops on Visualization for Computer Security. IEEE
Computer Society, Los Alamitos (2005)

14. Dean, F.J., John, T.S.: The Information Mural: A Technique for Displaying and
Navigating Large Information Spaces. IEEE Educational Activities Department, pp. 257–
271 (1998)

180 S. Musa and D.J. Parish

15. MIT, L.L.: DARPA Intrusion detection evaluation dataset (1999)
16. Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information

Visualizations. In: Proceedings of the IEEE Symposium on Visual Languages. IEEE
Computer Society Press, Washington (1996)

17. Demsar, J., Zupan, B., Leban, G.: Orange: From Experimental Machine Learning to
Interactive Data Mining. White Paper, Faculty of Computer and Information Science,
University of Ljubljana (2004), http://www.ailab.si/orange

18. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection. In: Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI). Morgan Kaufmann, San Francisco (1995)

19. Nielsen, J.: Usability inspection methods. In: Conference companion on Human factors in
computing systems, ACM Press, Boston (1994)

J.R. Goodall, G. Conti, and K.-L. Ma (Eds.): VizSec 2008, LNCS 5210, pp. 181–196, 2008.
© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2008

Network Traffic Exploration Application:
A Tool to Assess, Visualize, and Analyze Network

Security Events

Grant Vandenberghe

Network Information Operations Section
Defence Research and Development Canada (DRDC)

Abstract. Defence Research and Development Canada (DRDC) is developing a
security event / packet analysis tool that is useful for analyzing a wide range of
network attacks. The tool allows the security analyst to visually analyze a
security event from a broad range of visual perspectives using a variety of
detection algorithms. The tool is easy to extend and can be used to generate
automated analysis scripts. The system architecture is presented and its
capabilities are demonstrated through the analysis of several covert tunnels.

Keywords: Packet Analysis, Network Forensics, Visualization, Covert Tunnels.

1 Introduction

Although many organizations recognize the value of an automated response to a cyber
attack, the trust in the response is lacking. False positives are routinely seen in many
systems and when a suspicious event occurs, an analyst is required to review the
event. The review process determines if the event is malicious. If an alert occurs often
enough then the analyst may write a script to validate it. Often, the time required to
write a script is considerable and requires the skills of a highly trained analyst.

Described in this paper is a data visualization tool that allows the analyst to
investigate network events and automatically create validation scripts that embed the
analyst’s experience into the security infrastructure. It also allows security teams to
progressively transform security analysis from a manual to an automated defensive
detection system.

Analysts make use of a range of tools to detect incursions, repel attacks, and
eliminate false positives. A taxonomy of these tools is shown in Figure 1. Analysts
use attack assessment tools such as vulnerability databases to understand intent and
determine what types of systems are vulnerable. Vulnerable systems can be protected
using attack abatement tools like a firewall. Although the analyst can limit network
exposures using a firewall, some potentially malicious packets may still inadvertently
enter the network. To detect malicious packets, the analyst will use either a host or
network-based intrusion detection system (IDS). A network-based product examines
all traffic crossing a point on the network. Alternatively, a host-based IDS is intended
to monitor a single host.

182 G. Vandenberghe

Attack Assessment (ex. Vulnerability List)

Security Analyst’s Toolbox-

Attack Abatement (ex. Firewall)

- Intrusion Detection System

- Attack Analysis Tools

- Network Based Detection

Signature Based

Anomaly Based

Network Analysis Tools

Security Event Management

Host Based Forensics

Reconnaissance Tools

- Host Based Detection

Signature Based

Anomaly Based

Fig. 1. Security Tool Taxonomy

The host and network-based IDS tools can be further categorized by their detection
algorithms. Both anomaly-based and signature-based algorithms are capable of detecting
a wide range of attacks but both have a number of weaknesses. Signature-based tools are
only effective at detecting known signatures and rely on well-written signatures to reduce
false alarms. Anomaly-based IDS’s are able to detect unusual patterns in network traffic
but often require an analyst to judge the significance of suspicious patterns [1,2]. Often,
the resulting text-based security events do not adequately convey the magnitude of an
abnormality that is best presented in graphical terms.

Some IDS systems are starting to support both signature-based and anomaly-based
algorithms. However, most network-based tools have a fairly rigid architecture that
makes adding new anomaly detection algorithms difficult. Even open source
signature-based tools like SNORT [3] have relatively few anomaly-based plug-ins
available for them.

A typical process used to collect and respond to a security event is shown in Figure 2.
With respect to IDS implementation, some security events generated by the IDS are
reliable enough to warrant an automated response. In other cases, the security events
need to be reviewed by an analyst. All events generated by the IDS are sent to some
type of database or security events management (SEM) system. Although SEM systems
can correlate events that surround a potential intrusion, the analyst still needs to validate
the event and determine a course of action [4].

There is a wide range of network-centric tools that can assist the analyst in
analyzing a network-based event. A quick survey showed that there were more than
50 tools freely available [5-10]. Many of these tools complement one another but, in
general, are not interoperable and do not provide unencumbered exchange of
information among them. Rather than trying to discuss all 50 tools that have already
been well covered in [5-10], four tools will be discussed.

SGUIL [11] is a GUI-based tool that combines SNORT [3], Wireshark [12], P0f [13],
tcpflow [14] and libpcap [15] / tcpdump [16] into a single environment. Some reviewers
have described SGUIL as a tool “by analysts, for analysts” [10]. This tool does not have
any script writing capability and has limited graphical visualization options.

 Network Traffic Exploration Application 183

OPNET-ACE [17] is a commercial tool that allows an analyst to characterize
application interactions. The product is not specifically tuned to security analysis but
it does have a very strong visualization component associated with it.

BRO [18] is essentially an enhanced signature-based IDS but it includes a very
robust scripting language. The tool significantly extends signature-based analysis and
is easier to program than scripts written in PERL or C. However, it does not try to
combine signature and anomaly-based methods together into a single environment.

CA- eHealth [19] is a network management system which can store and present the
state of the enterprises networking equipment however this tool does not allow the
user to examine packet activity on the network.

Host and Network Based IDSHost and Network Based IDS

Manual
Event

Response

Automated
Event

Response

Anomaly
Based
IDS

Signature
Based
IDS

Event Filter and Analysis

Events that require awareness and
judgment

Events that require awareness and
judgment

Database

Defensive
Measures

Defensive
Measures

Event
Management

Mitigation
Rules

Unqualified
Security
Events

Network Traffic

Blocked
Traffic

Fig. 2. Typical Cyber Defence Process

When the above tools are applied to the security event analysis process small
feature gaps exist. These feature gaps can be summarized as follows:

• Many IDS’s allow the analyst to add new signatures but most do not
allow the analyst to add new anomaly detection algorithms.

• Most security-based tools deal with events on a text basis and do not
exploit the full range of visualization options available to them.

• Scripting tools and analysis tools are highly separated. No existing tools
take the experience gained from performing an analysis and use it as a
basis for strengthening the defences in the future.

• There are many niche tools available but they are limited in their ability to
exchange information.

184 G. Vandenberghe

Traffic Analysis
• Heuristic Analysis
• Statistical Analysis
• Signature-Based

Reports and Graphical Insight
• Packet Activity
• Session Interaction
• Host-to-host based interactions

Scripting Tools

Network Diagrams
• Geographic and Logical Network Diagrams
• Shortest Path First Routing
• VCR Packet Playback
• Impact Assessment

Fig. 3. Core Functional Areas of the NTE

• Most tools deal with the high level network or the low level packet
analysis but there is little available to transition between the views. The
ability to relate a tiny packet level event to the significance of the network
at large is not well addressed.

To address the above limitations, the Network Traffic Exploration (NTE) tool was
developed. This in house tool is being used to explore different event analysis
approaches and is used internally for a wide range of packet analysis activities. This
tool combines six key functional areas into a single package as shown in Figure 3.
The tool includes rudimentary intrusion detection and extensive analysis
functionality. NTE readily connects to the SNORT signature-based IDS and includes
several simple anomaly-based features as well. The tool works with both anomaly
detection algorithms and text-based logs. It uses a wide range of visualization features
and text-based reports to bridge the gap between the different detection techniques.
The tool can generate scripts and is open enough to allow the analyst to easily add
new algorithms to any of the core areas.

NTE also provides several methods of traffic analysis. Each method can be used
individually or techniques can be combined to provide a stronger overall analysis
capability. Consider an ICMP packet exchange with the following abnormal
characteristics:

• Unusual timing patterns
• Unusual packet length
• Multiple responses to a single query
• Incorrect ICMP checksums.

Individually, each characteristic is circumstantial but together they point to a potential
covert tunnel.

 Network Traffic Exploration Application 185

Beyond the straight analysis capabilities, the NTE provides the analyst with the
ability to develop and test customized traffic analysis scripts. Although there are
many ways to create traffic analysis scripts, most require knowledge of a programm-
ing language like C or PERL. The NTE’s approach allows an analyst to create scripts
as a background activity and doesn’t require prior programming knowledge. The
analysis process is automatically stored by the NTE as the security event is processed.
The NTE can be later asked to create a custom script based on the user’s past actions.
This custom script can be manually reused or potentially deployed to an unattended
computer that would periodically run a series of these scripts in batches. An
operational implementation of the design is shown in Figure 4. In this potential
implementation, the script’s execution would be triggered when IDS alerts matching
certain characteristics are detected. The script would be rerun to validate the alert with
the results fed back into a centralized event management system.

Fig. 4. NTE Process Workflow

2 Architecture

The previous section discussed the limitations of the current cyber defence tools. This
section explains how NTE is structured to overcome these limitations using a layered
software architecture and interwoven feature set. With respect to the software
architecture, NTE has three layers. The software uses MATLAB as a development
environment, a low level packet analysis library to perform specific tasks, and finally
the NTE provides the unified application front end.

Generate Custom Detection Script
On Desktop

Algorithms can be
triggered by a

specific SNORT alert
or on a fixed time

interval

Deploy Script To Unattended Computer(s)

Alerts from the
computing array feed

into the event
management system.

186 G. Vandenberghe

Wireshark [12]

LIBPCAP [15]

TCPsplice [32]

TCPflow [14]

ngrep [21]

IPsumdump [20]
Netdude [27]

fprobe [23]

ntop [25]

Flow-Tools [28]
ipcad [29]

Argus [33]

editcap [22]

tcptrace[24]

MINDS [4]

BRO [18] OPNET-ACE [17]
TCPdstat [34]

SNORT [3]

SANCP [30]

SGUIL [11]

NTE Includes Functionality
Similar To That Found In

Ping [26] traceroute [31]
tcpdump [16]

mergecap [22]

Fig. 5. NTE Scope (with references)

The choice of MATLAB as a development environment is somewhat unusual but
has a number of advantages over a traditional high-level language. In a language like
C or JAVA, all variables disappear (unless the data is stored to disk) when the
program finishes executing. In MATLAB, the output of each algorithm is retained as
variables in the desktop environment. This allows the operator to maintain a highly
interactive interface with the data and makes portability between different algorithms
much easier. In a C coding paradigm it would be the equivalent trying to code from
within the debugger.

The packet analysis library was created by DRDC to provide a series of commonly
used traffic analysis functions. The functions are largely written in MATLAB’s
internal language but there are some functions written in C and JAVA as well.

The NTE software is built on top of the packet analysis library. The tool extends
well beyond the scope of the base library by adding an interactive GUI environment,
additional data structures, data query capabilities, traffic profiling, help system and
reporting capabilities.

The NTE has a broad suite of functions that are similar to that found in a broad
range of analysis tools as shown in Figure 5. It interfaces directly to some tools such
as SNORT and Wireshark. In other cases, the functions needed for general analysis
happen to directly overlap with the other tools. NTE provides an environment where
performance, visualization, statistical analysis, session analysis, and protocol analysis
functions can all exchange data on an unencumbered basis.

The general architecture of NTE is shown in Figure 6 and provides these functions:

• Interface, manage, control and exchange data with a series of external tools.
• Place information in a series of arrays that follow a common storage

philosophy.
• Analyze data from a variety of intrusion detection models
• Present information in text and graphical form to communicate the

findings.
• Support analyst activity with a central management framework to hold the

surrounding functionality together.

 Network Traffic Exploration Application 187

Management
and Control

Data Storage
and Retrieval

Data
Visualization

Data
Analysis

Data
Exchange

Fig. 6. NTE Architecture

Data
Exchange

Data
Exchange

Information
Storage /
Retrieval

Information
Storage /
Retrieval

Data
Analysis

Data
Analysis

VisualizationVisualization

Management
And

Control

Management
And

Control

Data Import/ExportData Import/Export

Run Third Party
Applications

Run Third Party
Applications

Tiered Data ModelTiered Data Model

Query EngineQuery Engine

Data ExtractionData Extraction

Signature BasedSignature Based

Protocol BasedProtocol Based

Behavior BasedBehavior Based

Activity BasedActivity Based

Exchange DiagramExchange Diagram

Session(s) PlotSession(s) Plot

Timeline ChartsTimeline Charts

Parallel Channel PlotsParallel Channel Plots

Single Host ViewSingle Host View

Histogram PlotHistogram Plot

User InterfaceUser Interface

Help InterfaceHelp Interface

Data LinkagesData Linkages

Class ManagementClass Management

Tier 1 GUITier 1 GUI

Tier 2 GUITier 2 GUI

Command LineCommand Line

SNORTSNORT

O/S toolsO/S tools

EtherealEthereal

PacketPacket

Session(s)Session(s)

ClientClient

ServerServer

Single NodeSingle Node

Multiple NodeMultiple Node

AlertsAlerts

Fig. 7. NTE High Level Diagram

Figure 7 expands on each of the previously described functional blocks. The
following subsections describe the functions in this figure in depth.

DATA EXCHANGE: NTE interfaces with a series of tools including Ethereal,
SNORT, ping, traceroute, nslookup. NTE also reads the libpcap [15] file format and
the fast and full SNORT alert data formats. Within NTE, there is a series of linkage

188 G. Vandenberghe

functions for the comparison or manipulation of data structures. Comparisons can be
made between different data types. These features allow the operator to associate
SNORT alerts to packets, sessions, or all packets communicated between a pair of
nodes. The operator can also correlate, merge, as well as split information from
multiple traffic loggers that may be skewed in time or distorted by a non-passive
networking device such as a router, or VPN tunnel.

DATA STORAGE AND RETRIEVAL: The information received by NTE is stored
in memory in a series of arrays that are similar to database tables. The tables
summarize network or SNORT-based alert information into a relatively compact form
that can be searched using a string-based query. Individual columns of the tables can
be exported to external tools for analysis.

DATA ANALYSIS: NTE includes a wide variety of investigation and detection
functions to provide:

• Checks for specific protocol attributes and behaviors
• Analysis of session-based communications
• Analysis of all packets exchanged between two end points
• Protocol profiling and session clustering functions to look for network traffic

behaviors that do not conform to the norm
• Activity and usage behavior statistics for clients and servers
• Incoming and outgoing communication activity associated with a single node

VISUALIZATION: At every stage of the analysis, the NTE offers either text or
graphical-based feedback. There is a diversified set of graphs and visualization
functions. The ability to see an attack signature is useful when planning or developing
countermeasures to known types of attacks.

MANAGEMENT AND CONTROL: A wide variety of support, management and
control functions are provided. There is a standard model for adding GUI interfaces.
The model allows a user to access internal functions through a complete GUI
environment, or a command line environment. Each data input field is assigned a
class type which allows the tool to know which variables on your desktop fit a given
function parameter field. The NTE tracks a user’s activity and recommends potential
analysis options.

3 Environment

Many security products have a closed environment. Most vendors do not allow end
users to add their own anomaly detection algorithms to a product. In contrast, the
NTE tool is an open and flexible environment. It has several hundred functions for
helping an analyst recognize network-based abnormalities, attacks and intrusions.
These functions were written in a way that allows the analyst to “surf” through large
volumes of data and display the results in a graphical window. By providing a suite of
visualization functions, the end user can understand the nature of an attack and the
validity of a given security event.

 Network Traffic Exploration Application 189

Fig. 8. NTE User Interface

NTE does not require that the analyst learn the hundreds of function calls. To
facilitate use, an interactive GUI environment was created as shown in Figure 8. The
buttons on the GUI show the options available to the user to solve a given problem. It
is important to note that the GUI environment is optional and the user can enter or
leave it at will. If there is a test or function that is not available, the user can swap
back and forth between the GUI and the MATLAB command line environment
without losing environment context or desktop variables.

To create scripts using the NTE the analyst must indicate the general approach to
be taken in analyzing the problem by pressing the various GUI buttons. As the buttons
are pressed, the tool builds the actual working program in the background. When the
user is finished, the script can be saved to disk or displayed to screen for verification.
The custom scripts can be reused in subsequent analysis sessions by entering the
script name or command line or pasted into larger programs.

4 Preliminary Evaluation of Covert Tunnel Detection Techniques

Covert tunnels or covert channels allow an attacker to communicate with another
system through a means that it was not intended or designed to do [35]. The most
common tunnels today are HTTP, but ICMP and DNS tunnels also exist [36-38]. To
demonstrate the NTE, a series of HTTP and ICMP tunnel applications were
downloaded from the Internet. Some of the signatures have been described [39-47]
and the tools to detect some of these covert tunnels are described in [39, 43]. The
emphasis here is to demonstrate the breadth of analysis and the way in which the
tunnel can be spotted using the built in visualization functions of the NTE.

EXAMPLE 1 – ICMP TUNNEL: The ICMP protocol typically follows a query-
response (ping) or is used to send a single packet error message. There are a variety of
ways to detect an ICMP covert tunnel, namely:

190 G. Vandenberghe

• Checksum problems between query and response
• Unusual byte patterns in the payload
• Sequence numbering that increment in an unusual way
• Responses without queries
• Queries with multiple responses
• Unusual packet lengths
• Unusual timing characteristics (pings typically occur once a second)

The packet exchange for an ICMP covert tunnel application downloaded from the
Internet [48] is shown in Figure 9. In this case, the number of arrows in each direction
does not match, the sequence numbers are not incremented by one, the inter-packet
timing is greater than the 1 second, and the packet length has an unusual size.

Fig. 9. Packet Exchange Diagram for a Sample ICMP Tunnel - Graph shows the packets
exchanged between the attacker and the victim

EXAMPLE 2 – SPYWARE: Spyware is a form of covert tunnel that involves leak-
age of data to an outside source. This type of tunnel often uses the HTTP protocol and
may have the following signatures:

• Repeated access to a number of HTTP sites
• Improper use of the HTTP protocol (binary data)
• Sequential access to a number of web sites on a fixed time interval
• Repeated session exchange patterns over multiple websites

An example of spyware activity is shown in Figure 10. This packet size versus time
graph shows transmitted packets as a positive value and received packets as a
negative value. Each unique communication sessions is shown in a different color.
The graph shows that one computer is involved in repeatedly attempting to
communicate with several targets. The variation of the timing characteristics are due

 Network Traffic Exploration Application 191

Fig. 10. Overlay Packet Exchange Diagram for a sample spyware - Data points above the black
horizontal line represent data transmitted and points below are data received

The constant space
between the bars is highly
unusual.

Fig. 11. GANTT Diagram for a sample In-band HTTP Tunnel

to network delays. Note how the packet exchange is exactly the same. Other
visualizations show that communication is periodic as one host repeatedly tries to the
same messages to three different websites (as the spyware attempts to connect to
several home bases simultaneously).

EXAMPLE 3 – IN-BAND HTTP TUNNEL: There are several types of of HTTP
tunnels. In-band tunnels hide their data in the payload while out-of-band tunnels
communicate using the packet/protocol header. HTTP in-band tunnels are more
difficult to detect because the HTTP protocol is very flexible. HTTP in-band tunnels
are frequently machine driven, with multiple session exchanges showing little
diversity in structure or timing characteristics. A sample HTTP tunnel [49] is shown
in Figure 11. Each bar on this gantt chart represents an HTTP session. The tunnel

192 G. Vandenberghe

Fig. 12. Host-to-host Diagram for a sample out-of-band HTTP Tunnel

signature is in the constant space between the bars. Typically an end user does not
wait X seconds from the end of one HTTP session before initiating the next.

EXAMPLE 4 – OUT-OF-BAND HTTP TUNNEL: HTTP out-of-band tunnels
manipulate the packet header fields to send messages in one or both directions. In this
example [50], the IP ID field is being manipulated to send commands in one direction
(there is no payload, only a protocol header) and HTTP messages are used to send
data back. The strange mix of incomplete and complete session patterns result in a
very distinctive multi-session profile. Figure 12 shows the multi-session host-to-host
graph with a covert tunnel and a single normal HTTP session for illustration. In this
case, the tunnel looks like a step function while the regular traffic appears as a
wandering line.

EXAMPLE 5 – AUTOMATED DETECTION USING NTE CODE: The signa-
tures in the previous 4 examples were extracted manually by an analyst. In this
example, the conversion of that experience to an automated response is demonstrated.
Specifically, this example shows how code could be generated by the NTE to detect
the out-of-band HTTP tunnel (see Figure 13). The code associated with plotting the
data has been removed. The code (including comments) was generated as a standard
part of the problem solving process and is executable as a standard MATLAB
program. The program can be summarized as follows:

• Load a trace (load_pcap_file_plus)
• Enumerate the communication sessions (assign session number)

 Network Traffic Exploration Application 193

% Load the the PCAP trace array
[PKT_DATA,IP_OPT,TCP_OPT,PAYLOAD]=load_pcap_file_plus_ev(...
 'C:\DATA \good_bad_2.dmp','TRACE_NUMBER','','BPF','ip');

% Assign session id numbers and host-2-host id numbers
% to the trace array
PKT_IDX=assign_session_number(PKT_DATA,PAYLOAD);

% Create the host to host array
[H2H_SUM,H2H_LIST]=create_h2h_array(PKT_DATA,PKT_IDX);

% Print a summary of the host to host connections
[SSN_NUM,H2H_NUM]=print_host_to_host_details(H2H_SUM, ...
 H2H_LIST,'ALL',5,’TTL_PKTS=1&SERV_PORT=80&PROTOCOL=6',50);

% Convert host to host connections back to packets
[PKT_REF_NUM]=find_pkt_from_h2h(PKT_IDX,H2H_NUM);

% Create SNORT alert
[S_ALERT,S_CPAYLOAD,S_PAYLOAD]=create_snort_alert_ev(...
 PKT_DATA,PKT_REF_NUM(1),'GID',1,'SID',6969,'VER',1, ...
 'MSG','Out of Band Covert Tunnel','PRIORITY',1);

%Store the SNORT alert
save_snort_alert_ev('my_file',S_ALERT,S_CPAYLOAD,S_PAYLOAD);

Fig. 13. Code generated by the NTE during the problem solving process to spot an out-of-band
HTTP tunnel

07/09-11:25:00.381048 [**] [1:6969:1] Out of Band
Covert Tunnel [**] [Classification:] [Priority: 1]
{TCP} 192.168.6.3:1234 -> 192.168.6.2:80

Fig. 14. SNORT alert generated by the NTE

• Compile a list of all systems which spoke together (builds the host–to-host array)
• Search the intercommunication arrays for high numbers of unrequited

communication sessions between two hosts that communicate using HTTP
(print_host_to_host_details)

• Convert activity that passes this test into packets (find_pkt_from_h2h) (note if
array is empty it is ignored)

• Convert packets to a SNORT alert which is saved to disk.

The function calls contained in the listing are standard NTE function calls. When
this program is run, no GUI appears and the code outputs events to a standard
SNORT alert file (see Figure 14). Note that the analyst can still modify this code and
add extra features using either the NTA toolbox, NTE or using any of the MATLAB
prepackaged function calls.

194 G. Vandenberghe

5 Discussion and Conclusion

The covert tunnel detection demonstration shows that NTE can handle a wide range
of situations. The tool’s broad range of graphs, reports, and visualization features
offers a high level of insight into security events.

The tool allows an analyst to examine a particular type of attack and recognize
signatures that distinguish it from routine traffic. Through the process of signature
detection and analysis, it is capable of writing the code in the background necessary to
detect future attacks or eliminate false positives.

NTE includes a wide range of functions and is easy to use and extend. The tool
provides good analyst support via an interactive GUI, detailed user guide, individual
help pages for functions as well as a unique tracking and guidance system. There is a
detailed technical manual available to guide developers through each step of the
function addition process. The tiered GUI system allows custom GUI front-ends for
different users while maintaining a single backend.

NTE allows the user to store data in a desktop environment and port data easily
between different functions. Linkage tools exist to facilitate comparison between
different data types. The data query language allows the analyst to find data quickly
and easily. The correlation functions allow the analyst to match multiple rows of data
across multiple data sets.

Currently, NTE comes equipped with interfaces to external tools such as SNORT
and Wireshark. The tool can read and write PCAP formatted files as well as SNORT’s
full and fast alerts. Future extensions could include fully automated event analysis
and passive host-fingerprinting. These additions would allow an analyst to respond to
network events faster and minimize repetitive analysis tasks.

References

[1] Valeur, F., et al.: A Comprehensive Approach to intrusion Detection Alert Correlation.
IEEE Transactions on Dependable and Secure Computing 1(3), 146–149 (2004)

[2] Farshchi, J.: Statistical based approach to Intrusion Detection, SANS Institute(2003)
(Access date 1 April 2008),

 http://www.sans.org/resources/idfaq/statistic_ids.php
[3] Roesch, M.P: SNORT (Access date 1 April 2008), http://www.snort.org/
[4] Ertoz, L., Eilerston, E. Lazarevic, A., Tan P. Srivastava, J. and Kumar, V.: Detection and

Summarization of Novel Network Attacks Using Data Mining, Techincal Report (2003),
 http://www-users.cs.umn.edu/~aleks/MINDS/papers/raid03.pdf

[5] Chakchai, S.: A Survey of Network Traffic Monitoring and Analysis Tools, (2006)
(Access date 1 April 2008),

 http://www.cse.wustl.edu/~cs5/567/traffic/index.html
[6] Ranum, M.: Packet Peekers, Information Security Magazine, p. 28 (2003)
[7] Keshav, T.: A Survey of Network Performance Monitoring Tools (2006)(Access date

1 April 2008), http://www.cs.wustl.edu/~jain/cse567-06/ftp/net_
perf_monitors1.pdf

[8] Fortunato, T.: The Technology Firm, web page (2007),
 http://www.thetechfirm.com/reviews/

 Network Traffic Exploration Application 195

[9] Lyon, G.: Top 100 Security Tools, Insecure.org (2006),
 http://www.insecure.org/tools.html

[10] Bejtlich, R.: The Tao of Network Security Monitoring: Beyond Intrusion Detection,
pp. 105–344. Addison-Wesley, Boston (2005)

[11] Vissher, R.: SGUIL (2007) (Access date 2 April 2008) ,
 http://sguil.sourceforge.net/

[12] Combs, G., et al.: wireshark (2008) (Access date 2 April 2008),
 http://www.wireshark.org/

[13] Zalewski, M.: P0f (2006) (Access date 2 April 2008),
 http://lcamtuf.coredump.cx/p0f.shtml

[14] Elson, J.: tcpflow (2003) (Access date 2 April 2008),
 http://www.circlemud.org/~jelson/software/tcpflow

[15] Jacobson, V., et al.: Libpcap (2007) (Access date 2 April 2008),
 http://www.tcpdump.org/

[16] Jacobson, V., Leres, C., and McCanne, S.: tcpdump (2007) (Access date 2 April 2008),
 http://www.tcpdump.org/

[17] OPNET ACE Application Characterization Environment (2007) (Access date 2 April
2008), http://www.opnet.com/solutions/brochures/Ace.pdf

[18] Paxon, V.: BRO (2007) (Access date 2 April 2008), http://bro-ids.org/
[19] Computer Associates, eHealth (2008) (Access date 2 April 2008),

 http://www.ca.com/us/products/product.aspx?ID=5637
[20] Kohler, E.: ipsumdump (2006) (Access date 2 April 2008),

 http://www.cs.ucla.edu/~kohler/ipsumdump/
[21] Ritter, J.: ngrep (2006) (Access date 2 April 2008),

 http://ngrep.sourceforge.net/
[22] Combs, G., et al.: editcap/ mergecap (2008) (Access date 2 April 2008),

 http://www.wireshark.org/
[23] Astashonok, S.: Fprobe (2005) (Access date 2 April 2008),

 http://sourceforge.net/projects/fprobe
[24] Ostermann, S.: tcptrace (2003) (Access date 2 April 2008),

 http://www.tcptrace.org/
[25] Deri, L.: ntop (2008) (Access date 2 April 2008), http://www.ntop.org/
[26] Postel, J.: RFC 792 - Internet Control Message Protocol, (1981) (Access date 2 April

2008), http://www.faqs.org/rfcs/rfc792.html
[27] Kreibich, C.: netdude (2007) (Access date 2 April 2008),

 http://netdude.sourceforge.net/
[28] Fullmer, M.: flow-tools (2005) (Access date 2 April 2008),

 http://www.splintered.net/sw/flow-tools/docs/flow-tools.html
[29] Walkin, L.: ipcad (2007) (Access date 2 April 2008),

 http://sourceforge.net/projects/ipcad/
[30] Curry, J.: SANCP (2003) (Access date 2 April 2008),

 http://www.metre.net/sancp.html
[31] Kernen, T.: Traceroute (2008) (Access date 2 April 2008),

 http://www.traceroute.org/
[32] Fenner, B.: tcpslice (2002) (Access date 2 April 2008),

 http://sourceforge.net/projects/tcpslice/
[33] Buyllard, C.: Argus, (2008) (Access date 2 April 2008),

 http://www.qosient.com/argus

196 G. Vandenberghe

[34] Cho, K., Dittrich, D.: tcpdstat (2000), http://staff.washington.edu/dittrich/
talks/core02/tools/tools.html

[35] Naval Research Laboratory, “Handbook for the Computer Security Certification of
Trusted Systems”, Technical Memorandum 5540, 062A (1996)

[36] Temmingh, R.: Setiri: Advances in Trojan Technology (2002) (Access date 2 April 2008),
http://www.blackhat.com/presentations/bh-asia-02/Sensepost/
bh-asia-02-sensepost.pdf

[37] Smith, J.: Covert Shells (2000) (Access date 2 April 2008),
 http://www.s0ftpj.org/docs/covert_shells.htm

[38] Kieltyka, P.: ICMP Shell (2002) (Access date 3 April 2008),
 http://sourceforge.net/projects/icmpshell

[39] Borders, K.: Web Tap: Detecting Covert Web Traffic. In: Proceedings of the 11th ACM
conference on Computer and communications security, pp. 110–120. ACM, Washington
(2004)

[40] Northcutt, S., Novak, J.: Network Intrusion Detection, An Analyst’s Handbook, New
Riders, Indianapolis, Indiana, pp. 63–65 (2000)

[41] Northcutt, S., Cooper, M., Fearnow, M., Fredrick, K.: Intrusion Signatures and Analysis,
New Riders, Indianapolis, Indiana, p. 137 (2001)

[42] Knight, G., et al.: Detecting covert tunnels within the hypertext transfer protocol (2003),
http://www.rmc.ca/academic/gradrech/abstracts/2003/ece2003-
2_e.html

[43] Castro, S.: Covert Channel and Tunneling over the HTTP protocol Detection: GW
implementation theoretical design (2003),

 http://www.infosecwriters.com/hhworld/cctde.html
[44] Dyatlov, A.: Exploitation of data streams authorized by a network access control system

for arbitrary data transfers: tunneling and covert channels over HTTP protocol (2003)
(Access date 2 April 2008),

 http://www.net-security.org/dl/articles/covertpaper.txt
[45] Feamster, N., Balazinska, M., Harfst, G., Balakrishnan, H., Karger, D.: Infranet:

Circumventing Web Censorship and Surveillance. In: 11th USENIX Security
Symposium, San Francisco, CA (2002)

[46] Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Detecting HTTP Tunnels with Statistical
Mechanisms. In: ICC 2007. IEEE International Conference on Communications, pp.
6162–6168 (2007)

[47] Castro, S.: Cctde - Covert Channel and Tunneling Over the HTTP Protocol Detection
(2003) (Access date 2 April 2008),

 http://gray-world.net/projects/papers/html/cctde.html
[48] Vecna. PacketStorm - 007Shell.tgz (1999) (Access date 2 April 2008),

 http://packetstormsecurity.org/groups/s0ftpj/
[49] Rowland, C.: Covert Channels in the TCP/IP Protocol Suite (1996) (Access date 2 April

2008), http://www.firstmonday.dk/issues/issue2_5/rowland/
[50] Hauser, V.: Reverse-WWW-Tunnel-Backdoor v1.6 (1998) (Access date 2 April 2008),

 http://packetstormsecurity.org/groups/thc/rwwwshell-1.6.perl

Author Index

Blue, Ryan 119
Bratus, Sergey 152

Carver, Jeffery 80
Conti, Gregory 1

D’Amico, Anita D. 136
Dampier, David 80
Dean, Erik 1
Dunne, Cody 119
Dymacek, Tomas 144

Fairbanks, Kevin 26
Fischer, Fabian 111
Franck, Josh 80
Fuchs, Adam 119

Goodall, John R. 136

Hansen, Axel 152
Heitzmann, Alexander 18
Homer, John 68

Ingols, Kyle 44

Janies, Jeff 161
Jankun-Kelly, T.J. 80

Keim, Daniel A. 111
King, Kyle 119
Kohlenberg, Toby 95
Kopylec, Jason K. 136

Liebrock, L.M. 36
Lippmann, Richard 44

Ma, Kwan-Liu 95
Mansmann, Florian 111
McQueen, Miles A. 68

Minarik, Pavel 144
Musa, Shahrulniza 169

Noel, Steven 60

O’Hare, Scott 60
Ou, Xinming 68
Owen, Henry 26
Owen, Scott 87

Palazzi, Bernardo 18
Papamanthou, Charalampos 18
Parish, David J. 169
Pellacini, Fabio 152
Pietzko, Stephan 111
Prole, Kenneth 60, 136

Sangster, Benjamin 1
Schulman, Aaron 119
Schwartz, Moses 36
Shearer, James 95
Shubina, Anna 152
Sinda, Matthew 1
Suo, Xiaoyuan 87
Swan II, J. Edward 80

Tamassia, Roberto 18

Vandenberghe, Grant 181
Varikuti, Ashok 68

Waldvogel, Marcel 111
Williams, Leevar 44
Wilson, David 80

Xia, Ying 26

Zhu, Ying 87

	Title Page
	Preface
	Organization
	Table of Contents
	Visual Reverse Engineering of Binary and Data Files
	Introduction
	Related Work
	Requirements Analysis
	System Design and Implementation
	System Design Goals
	Visualization Design
	Byteview Visualization
	Byte Presence Visualization
	Dot Plot Visualization
	Navigation and Interaction Design

	Case Studies
	Hidden Message in an MP3 File
	Identifying Fixed and Variable Length Records
	Microsoft Word Analysis
	Firefox Core Dump

	Conclusions and Future Work
	References

	Effective Visualization of File System Access-Control
	Introduction
	Preliminaries
	Effective Access Control Visualization
	Conclusions and Future Work
	References

	Visual Analysis of Program Flow Data with Data Propagation
	Introduction
	Background and Related Work
	Approach
	Data Acquisition and Storage
	Data Analysis
	Visualization

	Results
	Visualization Results
	Future Work

	Conclusions
	References

	A Term Distribution Visualization Approach to Digital Forensic String Search
	Introduction
	Related Work
	Visualization Techniques
	TileBars
	Histograms
	Focus+Context

	Digital Forensic Analysis
	Usability Study
	Study Design
	Usability Study Results
	Usability Study Analysis

	Future Work
	Conclusions
	References

	GARNET: A Graphical Attack Graph and Reachability Network Evaluation Tool
	Introduction
	Related Work
	Attack Graph Displays
	Security Metrics

	NetSPA
	GARNET Tool and Network Visualization
	User Interaction
	Security Metric Plots
	Usability Analysis
	Limitations and Future Work
	Conclusions
	References

	A Graph-Theoretic Visualization Approach to Network Risk Analysis
	Introduction
	CAULDRON Tool Capabilities
	Attack Graph Visualization
	Loading the Attack Graph
	The Node Hierarchy
	The Edge Hierarchy
	Additional Graph Visualization Features

	Visualization Features
	Related Work
	Summary
	References

	Improving Attack Graph Visualization through Data Reduction and Attack Grouping
	Introduction
	Identifying and Removing “Useless” Attack Steps
	Abstraction of Attack Traces
	Related Work
	Conclusion
	References
	MulVAL Logical Attack Graph

	Show Me How You See: Lessons from Studying Computer Forensics Experts for Visualization
	Introduction
	Case Study: Webmail Forensics Domain Analysis
	Study Protocol and Design
	Study Execution
	Study Post Mortem

	Lessons Learned
	Summary
	References

	A Task Centered Framework for Computer Security Data Visualization
	Introduction
	Related Work
	Overview of Task Centered Visualization Framework
	Implementation
	Conclusion and Future Work
	References

	BGPeep: An IP-Space Centered View for Internet Routing Data
	Introduction
	Related Work
	BGPeep
	The Data
	AS Tag Cloud
	Prefix Visualization
	Timeline
	Data View

	Results
	Route Flapping
	Prefix Highjacking
	Inefficient Announcements

	Future Work
	Conclusion
	References

	Large-Scale Network Monitoring for Visual Analysis of Attacks
	Introduction
	Related Work
	Visual Analysis of Attacks
	Case Studies
	Discussion
	Conclusions
	References

	Visualizing Real-Time Network Resource Usage
	Introduction
	Related Work
	Visualizations
	Network Graph
	Treemap

	Interface
	IP Prefix Filtering
	Bandwidth and Degree Filtering
	Time-Line Histogram Filtering

	Infrastructure
	Back-End Data Model
	Network Packet Collection
	Group Configuration

	Evaluation
	Hands-on Sessions
	Suggestions for Improvement
	Questionnaire

	Future Work
	Conclusion
	References

	Wireless Cyber Assets Discovery Visualization
	Introduction
	Related Work
	User Requirements
	Coordinated Views for Wireless Security Analysis
	Implementation
	Conclusion and Future Work
	References

	NetFlow Data Visualization Based on Graphs
	Introduction
	Related Work
	Visualization Method Properties
	NetFlow Visualizer
	Use-Case
	Conclusion and Future Work
	References

	Backhoe, a Packet Trace and Log Browser
	Introduction
	Backhoe in Operation
	Why Use Information-Theoretic Metrics?
	Evaluation
	Related Work
	References

	Existence Plots: A Low-Resolution Time Series for Port Behavior Analysis
	Introduction
	Constructing Plots
	Source Data Format
	Plotting from Data

	Interpreting Plot Data
	Hidden Server Identification
	Scan Detection

	Related Works
	Conclusions
	References

	Using Time Series 3D AlertGraph and False Alert Classification to Analyse Snort Alerts
	Introduction
	The Visualisation Prototype Overview
	Dataset Used

	The Time Series 3D AlertGraph
	The Design
	The Colour Scheme
	The Interactive Features
	The False Alert Classification
	The Overview Example

	The User Evaluation
	Conclusions
	References

	Network Traffic Exploration Application: A Tool to Assess, Visualize, and Analyze Network Security Events
	Introduction
	Architecture
	Environment
	Preliminary Evaluation of Covert Tunnel Detection Techniques
	Discussion and Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

