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Abstract. Selecting objects and features before classifying is a very important 
task, and can lead to big improvements in classifier accuracy and speed. There 
are many papers about this topic, but few of them consider the simultaneous or 
combined approach. In this paper, we present a new method for combined ob-
ject and feature selection for databases with features not purely numeric or non-
numeric. The experiments performed show that it attains the best tradeoff  
between object and feature reduction in 12 of 15 tested databases, without a sig-
nificant impact in 1-NN accuracy. 

Keywords: object selection, feature selection, supervised classification, classi-
fier accuracy, mixed and incomplete data. 

1   Introduction 

Object selection for supervised classification has been widely studied in Pattern Rec-
ognition. Its goal is to obtain a reduced subset of objects with similar or improved 
classification accuracy. Eliminating redundant objects decreases the classifier compu-
tational cost, and removing erroneous or noisy objects achieves better performance. 
On the other hand, feature selection aims at obtaining a feature subset with similar or 
better behavior than the original set, by deleting irrelevant and redundant features. 
Several methods have been proposed for these tasks [1, 2].  

As pointed out by Kuncheva and Jain [3] both object and feature selection aim at 
data reduction without a significant impact in the classification accuracy. Nevertheless, 
their semantics and search strategies are somewhat different, and we can consider them 
as complementary tasks. Their experiments showed that the jointly selection of fea-
tures and objects may lead to better results than applying an object selection method 
followed by a feature selection method or vice versa. However, a few papers have 
explored the combined or simultaneous approaches.   
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Another relatively unexplored area in object and feature selection is related to 
problems where objects are simultaneously described by numeric and non-numeric 
features, and some missing data appears (Mixed and Incomplete Data, MID). In this 
kind of problems some Logical Combinatorial Pattern Recognition (LCPR) tools have 
been successfully used [4].  

In this paper we introduce a novel method for combined object and feature selec-
tion in problems with MID. The proposed solution uses typical testors [5] for feature 
selection. A testor of a training matrix is a feature subset that does not confuse two 
subdescriptions of different classes in terms of these features. In the case of overlap-
ping classes, this feature subset does not introduce new confusions. The typical testor 
(TT) is an irreducible testor, so any feature deletion introduces new confusions.  

Despite the calculation of all typical testors of a given training matrix has exponen-
tial time complexity, algorithms like LEX [5] allow working with tens of features. 
Moreover, there are many real problems described in such amount of features. In our 
experimentation with 15 repository databases, we successfully compute all TT in a 
few minutes. The amount of typical testors in a training matrix is exponentially 
bounded, which can be a drawback for any TT-based method. However, in our ex-
periments with databases ranging from 9 features and 286 objects to 36 features and 
3196 objects, the number of TT vary from 1 to 45. We can also find this behavior in 
real world problems.  

In our method, we use compact sets for object selection. A compact set (CS) is a 
connected component of the maximum similarity graph, so all the objects in the CS 
are very similar to each other. Compact sets have been successfully used for object 
selection in the Compact Set Editing method (CSE), a method specially designed for 
working with MID [6] with a good behavior in experiments.  

We organize the paper as follows: Section 2 provides a review of the previous 
works, section 3 describes the proposed solution, section 4 presents the experimental 
results, and section 5 gives the conclusions.  

2   Previous Works 

In 1994 Skalak proposes the first algorithm for simultaneous feature and object selec-
tion (RMHC-FP) [7]. He uses a Random Mutation Hill Climbing algorithm, encoding 
features and objects in a binary string of length TF + , where the feature set is F  

and T  the training object set. In the string, the value 0 represents the exclusion of a 
feature/object and the value 1 its inclusion. It generates an initial random string and 
iteratively applies a mutation operator while the classification accuracy is improved, 
or until it reaches a fixed number of iterations.  

In 1999, Kuncheva and Jain [3] use a Genetic Algorithm (GA) for selecting simul-
taneously features and objects. They use binary chromosomes and the same encoding 
strategy of RMHC-FP. The selection strategy is elitist, so only the best chromosomes 
survive from one population to the next one. The authors use the following fitness 
function: 

( ) ( )( )TFsosfAfitness V ++−= α   
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where VA  is the classifier accuracy with respect to a validation set V , α  is a user 

defined parameter, sf is the number of selected features and so  is the number of 

selected objects.  
In 1999 Ishibushi and Nakashima [8] proposes another GA-based method with a 

different fitness function: 

sowsfwNCwfitness ofc +−=   

where NC  is the number of correctly classified objects of the training matrix, cw is 

the weight associated with the accuracy, while fw and ow  are the weights related 

with the number of features and objects selected, respectively. They also use two 
different mutation probabilities: a very small to mutate from 0 to 1 and a greater one 
to mutate from 1 to 0. This makes exclusions more probable than inclusions, allowing 
higher reduction in objects and features.  

In 2000 Dasarathy proposes the first deterministic method for the combined selec-
tion of both features and objects [9]. His method employs a Sequential Backward 
Search (SBS) feature selection, using as fitness function a combined measure of the 
object reduction ratio and the classifier accuracy. For each SBS iteration, the algo-
rithm projects the training sample using the proper feature subset, applies an object 
selection procedure and then calculates the accuracy and fitness value. 

Rozsypal and Kubat propose in 2003 another GA-based method [10]. According to 
these authors, the method is more flexible and practical for large databases than pre-
vious methods, because it uses a different codification strategy: the value encoding. 
They use the following fitness function: 

( )AER NcNcEcfitness 3211 ++=   

where RE  is the number of misclassified objects of the training matrix, EN  is the 

number of selected objects and AN  is the number of selected features. The algorithm 

deletes objects with missing values and normalizes numeric features.  
In 2005 Villuendas et al. [11] propose the first combined method for feature and 

object selection specially designed for MID. The SOFSA algorithm merges object-
selected projections until it achieves at least the original accuracy. The algorithm 
calculates the original accuracy using all features and objects. Then it sorts the feature 
sets with respect to their informational weight. In some cases, it makes no reductions. 

Recently, Ahn et al. [12] apply a GA to simultaneously select features and objects 
in a real world problem, with an encoding strategy similar to [3, 7]. They use the 
classification accuracy with respect to the test data as the fitness function for the GA. 

Finally, we can conclude that most of the methods able to deal with MID are evo-
lutionary, so they have an important random component. This causes that two differ-
ent applications of the algorithm with the same data could have dramatically different 
results. Also, as pointed out by Kuncheva [3], GA can spend a long time to get a good 
solution. The deterministic solution proposed by Dasarathy is very time consuming, 
because it combines a time consuming object selection method with the SBS, a slow 
feature selection method. The other deterministic solution (SOFSA) may obtain no 
reductions at all. 
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3   Testor and Compact Set Based Combined Selection (TCCS) 
Method  

We will explain the TCCS algorithm with an example, using a training matrix T  of 5 
objects, described by 5 features. Suppose we have 2 typical testors { }21, xx  and { }4x .  

TCCS first projects the training matrix T  using each typical testor. Then it applies 
the CSE method to each projection (Figure 1). 

  

Fig. 1. Projecting and object selection in the 
TCCS method 

Fig. 2. Merging strategy of the TCCS method 

The method computes the classifier accuracy with respect to the respective projected 
validation matrix V , and sorts the submatrixes in descending order according to the 
accuracy results. We consider the accuracy as a measure of the importance of the ob-
jects and features in the submatrix for the classifier. Therefore, if a current solution does 
not achieve the original accuracy it means that the procedure omitted some necessary 
object and/or features. That is why the algorithm iteratively merges (see figure 2) and 
applies CSE to the current solution until it reaches at least the original accuracy. It is 
important to note that a combination of two testors always leads to a new testor, so the 
merged solution keeps the discriminative power of the combined testors. 

Formally, we can describe the algorithm as follows: Let be C  a supervised classi-
fier, T  the training matrix and V  the validation matrix. 

Step 1. Calculate all typical testors TT  in T .
Step 2. Calculate , the initial accuracy of  trained with0Acc C T  classifying V .

Step 3. For each TT , create a submatrix  by projectingS T using only the
features in TT . Then, apply CSE method to . Compute the accuracy of S
C , trained with , classifying the respective projection of V .S

Step 4. Sort the submatrixes in descending order according to the calculated
accuracy, and use the first one as the initial solution.

Step 5. Calculate the accuracy of the current solution, and if it is greater than or 
equal to , or all features are included, return the solution. Else, 0Acc

merge the current solution with the next submatrix, apply CSE to the
result and repeat Step 5.  
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4   Experimental Results 

We carry out experiments with the 15 UCI databases described in Table 1. We ran-
domly split 5 times each database in Training (70%), Validation (20%) and Testing 
(10%), averaging the results. 

Table 1. Description of the databases used in the experiments 

UCI name 
Objects Numerical 

Features 
Categorical 

Features 
Missing 
Values 

breast cancer  286 3 6 Yes 
breast cancer Wisconsin  699 0 16 Yes 
credit screening  690 6 9 Yes 
echocardiogram  132 9 3 Yes 
heart disease Cleveland  303 7 7 Yes 
hepatitis  155 6 14 Yes 
horse colic  368 10 18 Yes 
hypothyroid 3772 7 23 Yes 
import85 205 16 9 Yes 
kdd Japanese vowels 640 12 0 No 
kr-vs-kp 3196 0 36 No 
mfeat morphological 2000 6 0 No 
page blocks 5437 10 0 No 
segment 2310 19 0 No 
sick 3772 7 23 Yes 

 
We compare the behavior of the proposed method with other simultaneous or com-

bined approaches. The methods selected for the comparisons include some of the 
most cited or more recently published. They were the Skalak RMHC-FP, Kuncheva 
and Jain genetic algorithm (KJ-GA), Ichibuchi and Nakashima genetic algorithm (IN-
GA), Ahn et al. genetic algorithm (AKH-GA), Dasarathy method (DM), and SOFSA. 
For RMHC-FP we substitute the City Block distance used in the original paper for 
HOEM [13], best suited for MID. We use the same function for the other methods and 
the same parameter values than in the original papers. Because of the high computa-
tional time complexity of both DS and IN-GA they exceed our maximum allowed 
execution time in some of the bigger databases (24 hours in a 1.8 GHz Dual Core 
processor with 2GB RAM), and they were not considered in the results. Our method 
takes less than a minute to execute in most databases, and has a maximum execution 
time of 30 minutes in kr-vs-kp. 

As the main goal of a combined selection method is to reduce the training matrix 
dimensions with no significant impact in the classification accuracy, the better 
method is that which finds a better tradeoff between accuracy and reduction. To com-
pare the behavior of these methods with respect to their tradeoff we build the Pareto 
frontier only with those methods having no significant accuracy degradation. The 
Pareto frontier is a common evaluation measure of multiobjective problems, and iden-
tifies those results for which no other result can simultaneously improves all the  
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objectives (Pareto Optimal). In this paper, a Pareto Optimal result is one that no other 
result has a lower retention in both objects and features simultaneously. That is, for 
keeping the accuracy any method with higher feature reduction has a lower object 
reduction and vice versa. To select the results with no significant accuracy degrada-
tion we made an independence t-test within a 0.05 confidence level.  

  

Fig. 3. Pareto frontier for echocardiogram 
database 

Fig. 4. Pareto frontier for page-blocks database 

In Figure 3 and Figure 4, we show the Pareto frontiers for echocardiogram and 
page-blocks databases, respectively. The methods that do not appear in those figures 
had significant accuracy degradation. In Figure 3, DS, TCCS and SOFSA have no 
significant accuracy difference; but TCCS and DS have lower object and feature re-
tention percents. Therefore, SOFSA is not Pareto optimal. On the other hand, DS and 
TCCS are both Pareto optimal because there is no method that can obtain lower object 
retention without higher feature retention and vice versa. We can follow an analogous 
reasoning for Figure 4.  

In Table 2, we present the appearance rate of each method in the Pareto frontier for 
the 15 tested databases. Notice that TCCS significantly outperforms the other methods, 
achieving a good tradeoff between feature and object reduction in 80% of the databases. 
The closest method obtains a good tradeoff in less than 50% of the databases. 

Table 2. Appearance rate in the Pareto frontier of each tested method 

Method Appearance rate 
TCCS 12/15 
SOFSA 7/15 
AKH-GA  6/15 
DS 4/15 
KJ-GA 2/15 
IN-GA 0 
RMHC-FP 0 

Object Retention Object Retention 
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An explanation of these results can be the following. SOFSA maintains the original 
accuracy in five databases, but with reduction in neither features nor objects. It usu-
ally attains good reduction in objects, but TCCS outperforms it, because it uses a 
multiple edition scheme with the same algorithm. In five databases, TCCS outper-
forms the accuracy of all methods and the original classifier, reducing between 32% 
and 72% of objects, and between 9% and 70% of features. DM leads to an important 
reduction in objects but makes no significant reduction in features and in larger tested 
databases takes too much time to execute. Genetic strategies, on the other hand, had 
important degradations in accuracy.  

After analyzing these results, we can conclude that our method achieves the best 
tradeoff between accuracy and reduction in both objects and features, being Pareto 
optimal in 80% of the tested databases.  

5   Conclusions 

In this paper, we introduce a new combined feature and object selection method for 
supervised classification. Our method is deterministic and does not use any evolution-
ary strategy, which is a distinctive characteristic with respect to most of the existing 
methods. It is based on the testor theory and compact sets, so it is especially well 
suited for Mixed and Incomplete Data. Based on the experimentation we can conclude 
that our method gets the best tradeoff between reduction rates in both objects and 
features with no significant drop in accuracy.  
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