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Abstract. In Pattern recognition, the supervised classifiers use a training set T 
for classifying new prototypes. In practice, not all information in T is useful for 
classification therefore it is necessary to discard irrelevant prototypes from T. 
This process is known as prototype selection, which is an important task for 
classifiers since through this process the time in the training and/or classifica-
tion stages could be reduced. Several prototype selection methods have been 
proposed following the Nearest Neighbor (NN) rule; in this work, we propose a 
new prototype selection method based on the prototype relevance and border 
prototypes, which is faster (over large datasets) than the other tested prototype 
selection methods. We report experimental results showing the effectiveness of 
our method and compare accuracy and runtimes against other prototype selec-
tion methods. 

Keywords: Prototype selection, border prototypes, supervised classification, 
data reduction. 

1   Introduction 

In Pattern Recognition, supervised classification is a process that assigns a class or 
label to new prototypes using a set of previously assessed prototypes, commonly, this 
set is called training set T. 

In practice, T contains useless information for the classification task, that is, super-
fluous prototypes, which can be noisy or redundant therefore a process to discard 
them from T is needed. This selection process is known as prototype selection. The 
main goal of a prototype selection method is to obtain a set S ⊂ T such that S does not 
contain superfluous prototypes.  

Through prototype selection, the training set size is reduced, which could be useful 
for reducing classification runtimes, particularly for instance-based classifiers. 

There are two strategies [1] for reducing the training set: 

Selection. Some prototypes from T are retained while ruling out those that do not  
significantly contribute to the classification accuracy. 

Replacement. The original training set is replaced by some prototypes that do not  
necessarily coincide with the prototypes in T. 
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In a training set, some prototypes could be more relevant than others, then for pro-
totype selection, it could be useful to determine the relevance of each prototype and 
select the most relevant prototypes for each class. In this work, we propose a new 
prototype selection method which, according to a prototype relevance function, se-
lects the most relevant prototypes in the training set and through them some border 
prototypes (prototypes located in a region where there are prototypes from different 
classes) are selected since these last give useful information to the classifier for pre-
serving the class discrimination regions [2, 3]. 

In order to show the performance of our method, we present an experimental com-
parison among our method and some other prototype selection methods using the ob-
tained prototype sets as training for the k-NN [4], C4.5 [5] and Naive Bayes [6, 7] 
classifiers. In addition, we report the runtimes for each method in order to show how 
fast is our method with respect to the other tested methods, mainly for large datasets, 
where prototype selection is more useful. 

This paper is structured as follows: in section 2, some works related to the proto-
type selection are described. Section 3 introduces our method for prototype selection 
and section 4 shows the experimental results. Finally, in section 5, some conclusions 
and directions for future work are given. 

2   Related Works 

Several methods have been proposed for solving the prototype selection problem, in 
this section, some of the most relevant methods are briefly described. 

The Condensed Nearest Neighbor (CNN) [8] and the Edited Nearest Neighbor 
(ENN) [9] rules are two of the first prototype selection methods. The CNN method 
starts with S = ∅  and its initial step consists in randomly including in S one proto-
type belonging to each class. Then each prototype in T is classified using only the 
prototypes in S. If a prototype is misclassified, it is added to S, to ensure that it will be 
correctly classified. This process is repeated until all prototypes in T are correctly 
classified. This method ensures that S correctly classifies all prototypes in T, this is, S 
is consistent but does not guarantee to find a minimal consistent subset. A variant of 
CNN is the Generalized Condensed Nearest Neighbor Rule (GCNN) [10], which is 
similar to CNN but GCNN includes in S prototypes according to the Absorption(p) 
criterion, which is calculated in terms of the nearest neighbor and the nearest enemy 
(nearest prototype with different class) of p in S. The selection process finishes when 
all prototypes in T have been strongly absorbed, that is, when their Absorption satis-
fies a threshold value given by the user. 

The ENN method consists in discarding from T those prototypes that do not belong 
to their k nearest neighbors' class. This method is used as noise filter because it de-
letes noisy prototypes, that is, prototypes with a different class in a neighborhood. A 
variant of this method is the Repeated ENN (RENN) where ENN is repeatedly applied 
until all prototypes in S have the same class that the majority of their k nearest 
neighbors. Another extension of ENN is the All k-NN prototype selection method [11]. 
This method works as follows: for i=1 to k, flag as bad any prototype misclassified by 
its i nearest neighbors. After completing the loop all k times, remove any prototype 
flagged as bad. 
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Devijver and Kittler [12] proposed the Multiedit method for prototype selection, 
which creates m random partitions (P1…Pm) from T. After that, ENN (using 1-NN) is 
applied over each partition Pi finding the neighbors of Pi in P(i+1)mod m. This process is 
repeated until there are not changes (eliminations) in f successive iterations. 

Wilson and Martinez [2] presented five methods DROP1… DROP5 (Decremental 
Reduction Optimization Procedure) for prototype selection. These methods are based 
on the concept of associate. The associates of a prototype p are those prototypes such 
that p is one of their k nearest neighbors. These methods discard the prototype p if its 
associates can be correctly classified without p. 

The Iterative Case Filtering algorithm (ICF) was proposed in [3]. ICF is based on 
the Coverage and Reachable sets which are the neighborhood set and associates set 
respectively. In this method, a prototype p is flagged for removal if 
|Reachable(p)|>|Coverage(p)|, which means that other prototypes can correctly clas-
sify to p (or prototypes similar to p ) without p. After, all prototypes flagged for re-
moval are deleted. 

The methods described above and most of the prototype selection methods have 
been proposed based on the k-NN rule, in this work we propose a prototype selection 
method which is not based on this rule and, for large datasets, it is faster than the 
other tested methods. 

3   Proposed Method 

In a training set, there are some prototypes which are more similar than others in the 
same class; the most similar prototypes could be more representative or relevant than 
the less similar ones, then it makes sense for prototype selection to retain the most 
relevant prototypes. In this paper, the relevance of each prototype is given in terms of 
the average similarity that it has with the others thus the most similar to all the proto-
types (in the same class) the most relevant in the class. 

In this paper, we propose the PSR (Prototype Selection by Relevance) method 
which computes the relevance of each prototype and retains the most relevant ones. 
Additionally, in order to preserve the discrimination regions between classes, PSR 
also retain border prototypes which are found through the most relevant prototypes. 
As we mentioned before, in this work, the relevance of a prototype p is given in terms 
of the average similarity (AN) which is computed as follows: 
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Where: 
 C is the set of training prototypes belonging to the same class than p. 

( , ')S p p is a similarity function for comparing prototypes. In particular, in this 

work we used HVDM (Heterogeneous Value Difference Metric) [13] as similarity 
function. This function works over numeric, non numeric and missing features. 

The initial phase of PSR consists in computing the relevance weight (average simi-
larity) of each prototype in the training set. Once the prototype relevance weights  
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have been computed, for each class i, the r most relevant prototypes are chosen and 
through them some border prototypes are selected. Notice that depending on the train-
ing set and/or the relevance function, some relevant prototypes could be border at the 
same time. PSR finds the border prototypes as follows: for each prototype among the 
r chosen, the nearest prototype belonging to each class different from i is selected as a 
border prototype. 

Finally, the prototype set obtained by PSR contains the r most relevant prototypes 
found through the relevance criterion described above and the border prototypes 
found from them. 

4   Experimental Results 

In this section, we compare PSR against the DROP3 and DROP5 methods, which are 
two of the most successful prototype selection methods (according to experiments 
reported in [2] and [3]). The GCNN method is also considered in our comparison 
since according to results reported by its authors, this method is competitive against 
the DROP methods. We applied these methods over ten small datasets and three me-
dium-large datasets taken from the UCI Repository [14]. For all the experiments, 10-
fold cross validation was used. 

For PSR, in the initial phase, it is necessary to choose the r most relevant proto-
types per class in the training set, therefore some experiments using different values 
for r were done. In table 1 we show the accuracy results (using k-NN, k=3) obtained 
by PSR selecting different percentage of relevant prototypes per class, the tested val-
ues for r were r= 10%, 20%, 30%, and 40% of the prototypes in each class.  
The classification accuracy is reported under the column Acc and Ret corresponds  
to the percentage of prototypes (retention) in T that were included in S, that is,  
Ret =100|S|/|T|. The averages of accuracy and retention are shown at the bottom of 
the table. 

Table 1. Classification accuracy (Acc) and retention (Ret) obtained by PSR selecting different 
number of relevant prototypes in the initial phase 

Percentage (r) of prototypes per class 
r=10% r=20% r=30% r=40% Dataset 

Acc Ret Acc Ret Acc Ret Acc Ret 

Bridges 48.90 26.31 50.90 37.62 57.63 47.79 57.54 55.65 

Echocardiogram 83.21 14.26 83.92 26.57 90.53 37.68 90.53 48.05 

Glass 61.12 23.67 64.37 32.81 64.85 42.36 65.80 51.24 

Heart Cleveland 75.81 14.22 75.84 25.70 79.18 36.96 78.20 49.39 

Heart Swiss 92.88 11.01 92.88 21.94 93.71 30.53 93.71 41.10 

Hepatitis 74.95 13.11 82.58 23.58 83.16 33.40 81.91 43.22 

Iris 86.66 14.88 88.66 25.70 91.33 38.07 89.33 47.11 

Letter 79.99 25.22 87.91 37.74 88.17 49.19 90.39 58.73 

Liver 61.96 14.36 62.85 24.66 63.77 35.55 64.92 44.15 

Segmentation 88.38 17.00 90.66 28.94 91.95 38.34 92.57 50.56 

UPS 77.62 22.18 81.99 35.43 85.27 46.44 87.48 56.12 

Wine 94.00 18.10 92.12 30.96 92.18 42.94 92.74 52.24 

Zoo 93.33 29.50 93.33 39.75 93.33 51.11 93.33 59.13 

Average 78.37 18.76 80.62 30.11 82.70 40.80 82.96 50.51 
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Based on the table1, in the average case, the best accuracy was obtained using 
r=40% but a very similar accuracy was obtained using r=30% which produced a bet-
ter percentage of reduction over the datasets, therefore we used r=30% in the next 
experiments. 

Once the PSR initial parameter has been fixed, a comparison among PSR, the 
DROP methods and GCNN was done. The results are shown in table 2, (using k-NN, 
k=3, the best value for the DROP methods [2]). In addition, we show the accuracy 
obtained by the original datasets (Orig). In figure 1, the classification accuracy (hori-
zontal axis) versus retention (vertical axis) scatter graphic of the results shown in the 
table 2 is depicted. 

Table 2. Classification (Acc) and retention (Ret) results obtained by: the original training set 
(Orig), DROP3, DROP5, GCNN and PSR using k-NN  

Orig DROP3 DROP5 GCNN PSR 
Dataset 

Acc Ret Acc Ret Acc Ret Acc Ret Acc Ret 

Bridges 66.09 100 56.36 14.78 62.82 20.66 68.20 88.20 57.63 47.79 

Echocardiogram 95.71 100 92.86 13.95 94.82 14.87 93.39 22.67 90.53 37.68 

Glass 71.42 100 66.28 24.35 62.16 25.91 69.61 61.62 64.85 42.36 

Heart Cleveland 82.49 100 78.89 11.44 79.87 14.59 67.63 9.09 79.18 36.96 

Heart Swiss 93.72 100 93.72 1.81 93.72 1.81 75.76 62.45 93.71 30.53 

Hepatitis 79.29 100 78.13 11.47 75.42 15.05 60.66 17.75 83.16 33.40 

Iris 94.66 100 95.33 15.33 94.00 12.44 96.00 38.00 91.33 38.07 

Letter 95.00 100 92.68 16.33 92.17 13.63 95.29 34.08 88.17 49.19 

Liver 65.22 100 67.82 26.83 63.46 30.59 66.09 83.70 63.77 35.55 

Segmentation 95.10 100 92.19 15.94 91.86 14.30 92.71 13.82 91.95 38.34 

UPS 96.48 100 94.59 10.27 93.99 7.96 94.78 34.53 85.27 46.44 

Wine 94.44 100 94.41 15.04 93.86 10.55 94.44 78.89 92.18 42.94 

Zoo 93.33 100 90.00 20.37 95.56 18.77 95.55 26.17 93.33 51.11 

Average 86.38 100 84.10 15.22 84.13 15.47 82.32 43.92 82.70 40.80 

 

 
Fig. 1. Scatter graphic from the average results shown in table 2 

 
Based on the results in table 2 and figure 1, we can observe that in the average 

case, the best methods were DROP3 and DROP5. The classification accuracy ob-
tained by PSR was smaller than those obtained by the DROP methods but PSR out-
performed GCNN. 
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The best methods in table 2 were the DROP, however, they obtained good results 
since their selection criterion is related to the Nearest Neighbor rule and the same rule 
was used for evaluating the obtained prototype sets. For this reason, other experi-
ments were done using the prototype sets obtained by the DROP methods, GCNN and 
PSR as training for other classifiers different from k-NN. In particular, we used C4.5 
(decision trees) and Naive Bayes (NB) classifiers. The C4.5 and NB results are re-
ported in tables 3-4 and figures 2-3 respectively. 

Table 3. Classification results obtained using the original training set (Orig.) and the prototype 
sets obtained by DROPs, GCNN and PSR as training for the C4.5 classifier 

Dataset Orig. DROP3 DROP5 GCNN PSR 

Bridges 65.81 47.90 39.54 52.36 51.09 

Echocardiogram 95.71 84.10 92.85 91.78 95.71 

Glass 67.29 60.19 53.76 60.75 63.48 

Heart Cleveland 71.96 68.59 72.16 66.00 71.35 

Heart Swiss 93.71 93.71 93.71 81.59 92.05 

Hepatitis 76.70 63.33 63.41 65.16 83.20 

Iris 93.99 92.66 90.66 88.66 93.33 

Letter 88.29 72.96 73.00 81.21 78.65 

Liver 63.67 59.48 63.67 61.76 65.21 

Segmentation 96.02 81.61 88.75 85.71 89.00 

UPS 87.79 74.42 74.35 85.77 80.92 

Wine 94.44 84.43 78.88 95.55 94.44 

Zoo 93.33 81.10 88.88 81.10 95.55 

Average 83.75 74.19 74.89 76.72 81.08 

 

 
Fig. 2. Scatter graphic from the average results shown in table 3 

According to the results obtained using C4.5 and NB, in the average case, in accu-
racy, the best prototype selection method was PSR followed by GCNN. Based on 
these results, we can observe that using other classifiers, different from k-NN, the pro-
totype subsets obtained by the DROP3, DROP5 and GCNN are not as good as those 
obtained by PSR. 

The dataset sizes and runtimes1 spent by each prototype selection method tested in 
our experiments are shown in table 5. Based on the runtimes, we can observe that  
 

                                                           
1 These runtimes do not depend on the used classifier and were obtained using an Intel Celeron 

CPU 2.4GHz, 512MB RAM. 
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Table 4. Classification results obtained using the original training set (Orig.) and the prototype 
sets obtained by DROPs, GCNN and PSR as training for the NB classifier 

Dataset Orig. DROP3 DROP5 GCNN PSR 

Bridges 64.00 49.61 39.81 44.36 50.90 

Echocardiogram 97.14 78.31 77.32 91.78 90.71 

Glass 48.05 49.56 47.74 47.57 60.71 

Heart Cleveland 83.81 78.20 81.16 75.52 81.86 

Heart Swiss 92.05 93.71 93.71 61.02 69.23 

Hepatitis 84.58 61.83 54.20 65.87 79.37 

Iris 95.33 91.99 93.99 95.33 91.99 

Letter 64.00 53.88 56.09 45.50 65.30 

Liver 56.02 61.50 61.77 56.88 66.94 

Segmentation 80.19 75.23 71.76 76.66 84.00 

UPS 77.21 71.58 70.51 72.27 74.77 

Wine 98.81 61.11 66.66 96.66 92.22 

Zoo 95.55 88.88 83.33 93.33 95.55 

Average 79.75 70.41 69.08 70.98 77.20 

 

 
Fig. 3. Scatter graphic from the average results shown in table 4 

Table 5. Datasets sizes and runtimes (in seconds) spent by the tested methods 

Size  Runtimes Dataset 
Prototypes Features Classes  DROP3 DROP5 GCNN PSR 

Echocardiogram 74 9 2  0.07 0.08 1.02 0.42 

Zoo 90 16 7  0.26 0.27 1.15 0.75 

Bridges 108 11 7  0.16 0.14 15.27 1.15 

Heart Swiss 123 12 2  0.22 0.36 16.63 1.47 

Iris 150 4 3  0.19 0.16 1.25 0.37 

Hepatitis 155 19 2  0.46 0.50 5.33 2.42 

Wine 178 13 3  0.84 0.59 3.03 0.46 

Glass 214 9 6  0.46 0.47 4.14 0.87 

Heart Cleveland 303 13 5  1.32 1.34 12.62 6.57 

Liver 345 6 2  0.76 0.76 19.45 0.73 

Segmentation 2100 19 7  208.39 208.91 716.28 59.49 

Letter 20000 16 26  15213.13 14339.61 64120.25 912.28 

UPS 9000 255 10  37854.95 64788.06 211200.26 3125.42 

for small datasets, the fastest methods were DROP3 and DROP5, however, for large 
datasets, PSR were much faster than all the other methods; therefore, PSR is particu-
larly useful for large datasets where the other prototype selection methods require 
very long time, and in some cases, these methods could be inapplicable. 
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5   Conclusions 

In this work, we have proposed, compared and tested the PSR method for prototype 
selection. PSR selects the most relevant prototypes per class in a training set and 
through them some border prototypes are selected in order to preserve discrimination 
capability between classes. 

The experimental results showed that PSR is a good method for solving the proto-
type selection problem mainly when a classifier different from k-NN is used. In our 
experiments, PSR obtained the best results using C4.5 and NB classifiers. When k-NN 
was used, in accuracy, PSR, DROP3, DROP5 and GCNN were similar. 

When prototype selection is required for small datasets, other methods outperform 
PSR in runtime but an important characteristic of our method is that it is faster for 
large datasets (datasets where prototype selection is particularly useful). This charac-
teristic is very important because other successful prototype selection methods spent a 
lot of time (or could be inapplicable) for processing these kind of datasets. 

In this work, we computed the prototypes relevance based on the average similar-
ity, but as future work we are interested in proposing another way for computing the 
prototypes relevance.  
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