
J. Ruiz-Shulcloper and W.G. Kropatsch (Eds.): CIARP 2008, LNCS 5197, pp. 153–160, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Prototype Selection Via Prototype Relevance

J. Arturo Olvera-López, J. Ariel Carrasco-Ochoa, and J. Fco. Martínez-Trinidad

Computer Science Department
National Institute of Astrophysics, Optics and Electronics

Luis Enrique Erro No. 1, Sta. María Tonantzintla, Puebla, CP: 72840, Mexico
{aolvera,ariel,fmartine}@ccc.inaoep.mx

Abstract. In Pattern recognition, the supervised classifiers use a training set T
for classifying new prototypes. In practice, not all information in T is useful for
classification therefore it is necessary to discard irrelevant prototypes from T.
This process is known as prototype selection, which is an important task for
classifiers since through this process the time in the training and/or classifica-
tion stages could be reduced. Several prototype selection methods have been
proposed following the Nearest Neighbor (NN) rule; in this work, we propose a
new prototype selection method based on the prototype relevance and border
prototypes, which is faster (over large datasets) than the other tested prototype
selection methods. We report experimental results showing the effectiveness of
our method and compare accuracy and runtimes against other prototype selec-
tion methods.

Keywords: Prototype selection, border prototypes, supervised classification,
data reduction.

1 Introduction

In Pattern Recognition, supervised classification is a process that assigns a class or
label to new prototypes using a set of previously assessed prototypes, commonly, this
set is called training set T.

In practice, T contains useless information for the classification task, that is, super-
fluous prototypes, which can be noisy or redundant therefore a process to discard
them from T is needed. This selection process is known as prototype selection. The
main goal of a prototype selection method is to obtain a set S ⊂ T such that S does not
contain superfluous prototypes.

Through prototype selection, the training set size is reduced, which could be useful
for reducing classification runtimes, particularly for instance-based classifiers.

There are two strategies [1] for reducing the training set:

Selection. Some prototypes from T are retained while ruling out those that do not
significantly contribute to the classification accuracy.

Replacement. The original training set is replaced by some prototypes that do not
necessarily coincide with the prototypes in T.

154 J.A. Olvera-López, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

In a training set, some prototypes could be more relevant than others, then for pro-
totype selection, it could be useful to determine the relevance of each prototype and
select the most relevant prototypes for each class. In this work, we propose a new
prototype selection method which, according to a prototype relevance function, se-
lects the most relevant prototypes in the training set and through them some border
prototypes (prototypes located in a region where there are prototypes from different
classes) are selected since these last give useful information to the classifier for pre-
serving the class discrimination regions [2, 3].

In order to show the performance of our method, we present an experimental com-
parison among our method and some other prototype selection methods using the ob-
tained prototype sets as training for the k-NN [4], C4.5 [5] and Naive Bayes [6, 7]
classifiers. In addition, we report the runtimes for each method in order to show how
fast is our method with respect to the other tested methods, mainly for large datasets,
where prototype selection is more useful.

This paper is structured as follows: in section 2, some works related to the proto-
type selection are described. Section 3 introduces our method for prototype selection
and section 4 shows the experimental results. Finally, in section 5, some conclusions
and directions for future work are given.

2 Related Works

Several methods have been proposed for solving the prototype selection problem, in
this section, some of the most relevant methods are briefly described.

The Condensed Nearest Neighbor (CNN) [8] and the Edited Nearest Neighbor
(ENN) [9] rules are two of the first prototype selection methods. The CNN method
starts with S = ∅ and its initial step consists in randomly including in S one proto-
type belonging to each class. Then each prototype in T is classified using only the
prototypes in S. If a prototype is misclassified, it is added to S, to ensure that it will be
correctly classified. This process is repeated until all prototypes in T are correctly
classified. This method ensures that S correctly classifies all prototypes in T, this is, S
is consistent but does not guarantee to find a minimal consistent subset. A variant of
CNN is the Generalized Condensed Nearest Neighbor Rule (GCNN) [10], which is
similar to CNN but GCNN includes in S prototypes according to the Absorption(p)
criterion, which is calculated in terms of the nearest neighbor and the nearest enemy
(nearest prototype with different class) of p in S. The selection process finishes when
all prototypes in T have been strongly absorbed, that is, when their Absorption satis-
fies a threshold value given by the user.

The ENN method consists in discarding from T those prototypes that do not belong
to their k nearest neighbors' class. This method is used as noise filter because it de-
letes noisy prototypes, that is, prototypes with a different class in a neighborhood. A
variant of this method is the Repeated ENN (RENN) where ENN is repeatedly applied
until all prototypes in S have the same class that the majority of their k nearest
neighbors. Another extension of ENN is the All k-NN prototype selection method [11].
This method works as follows: for i=1 to k, flag as bad any prototype misclassified by
its i nearest neighbors. After completing the loop all k times, remove any prototype
flagged as bad.

 Prototype Selection Via Prototype Relevance 155

Devijver and Kittler [12] proposed the Multiedit method for prototype selection,
which creates m random partitions (P1…Pm) from T. After that, ENN (using 1-NN) is
applied over each partition Pi finding the neighbors of Pi in P(i+1)mod m. This process is
repeated until there are not changes (eliminations) in f successive iterations.

Wilson and Martinez [2] presented five methods DROP1… DROP5 (Decremental
Reduction Optimization Procedure) for prototype selection. These methods are based
on the concept of associate. The associates of a prototype p are those prototypes such
that p is one of their k nearest neighbors. These methods discard the prototype p if its
associates can be correctly classified without p.

The Iterative Case Filtering algorithm (ICF) was proposed in [3]. ICF is based on
the Coverage and Reachable sets which are the neighborhood set and associates set
respectively. In this method, a prototype p is flagged for removal if
|Reachable(p)|>|Coverage(p)|, which means that other prototypes can correctly clas-
sify to p (or prototypes similar to p) without p. After, all prototypes flagged for re-
moval are deleted.

The methods described above and most of the prototype selection methods have
been proposed based on the k-NN rule, in this work we propose a prototype selection
method which is not based on this rule and, for large datasets, it is faster than the
other tested methods.

3 Proposed Method

In a training set, there are some prototypes which are more similar than others in the
same class; the most similar prototypes could be more representative or relevant than
the less similar ones, then it makes sense for prototype selection to retain the most
relevant prototypes. In this paper, the relevance of each prototype is given in terms of
the average similarity that it has with the others thus the most similar to all the proto-
types (in the same class) the most relevant in the class.

In this paper, we propose the PSR (Prototype Selection by Relevance) method
which computes the relevance of each prototype and retains the most relevant ones.
Additionally, in order to preserve the discrimination regions between classes, PSR
also retain border prototypes which are found through the most relevant prototypes.
As we mentioned before, in this work, the relevance of a prototype p is given in terms
of the average similarity (AN) which is computed as follows:

' , '

(, ')

()
| |

p C p p

N

S p p

A p
C 1

∈ ≠=
−

∑
 (1)

Where:
 C is the set of training prototypes belonging to the same class than p.

(, ')S p p is a similarity function for comparing prototypes. In particular, in this

work we used HVDM (Heterogeneous Value Difference Metric) [13] as similarity
function. This function works over numeric, non numeric and missing features.

The initial phase of PSR consists in computing the relevance weight (average simi-
larity) of each prototype in the training set. Once the prototype relevance weights

156 J.A. Olvera-López, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

have been computed, for each class i, the r most relevant prototypes are chosen and
through them some border prototypes are selected. Notice that depending on the train-
ing set and/or the relevance function, some relevant prototypes could be border at the
same time. PSR finds the border prototypes as follows: for each prototype among the
r chosen, the nearest prototype belonging to each class different from i is selected as a
border prototype.

Finally, the prototype set obtained by PSR contains the r most relevant prototypes
found through the relevance criterion described above and the border prototypes
found from them.

4 Experimental Results

In this section, we compare PSR against the DROP3 and DROP5 methods, which are
two of the most successful prototype selection methods (according to experiments
reported in [2] and [3]). The GCNN method is also considered in our comparison
since according to results reported by its authors, this method is competitive against
the DROP methods. We applied these methods over ten small datasets and three me-
dium-large datasets taken from the UCI Repository [14]. For all the experiments, 10-
fold cross validation was used.

For PSR, in the initial phase, it is necessary to choose the r most relevant proto-
types per class in the training set, therefore some experiments using different values
for r were done. In table 1 we show the accuracy results (using k-NN, k=3) obtained
by PSR selecting different percentage of relevant prototypes per class, the tested val-
ues for r were r= 10%, 20%, 30%, and 40% of the prototypes in each class.
The classification accuracy is reported under the column Acc and Ret corresponds
to the percentage of prototypes (retention) in T that were included in S, that is,
Ret =100|S|/|T|. The averages of accuracy and retention are shown at the bottom of
the table.

Table 1. Classification accuracy (Acc) and retention (Ret) obtained by PSR selecting different
number of relevant prototypes in the initial phase

Percentage (r) of prototypes per class
r=10% r=20% r=30% r=40% Dataset

Acc Ret Acc Ret Acc Ret Acc Ret

Bridges 48.90 26.31 50.90 37.62 57.63 47.79 57.54 55.65

Echocardiogram 83.21 14.26 83.92 26.57 90.53 37.68 90.53 48.05

Glass 61.12 23.67 64.37 32.81 64.85 42.36 65.80 51.24

Heart Cleveland 75.81 14.22 75.84 25.70 79.18 36.96 78.20 49.39

Heart Swiss 92.88 11.01 92.88 21.94 93.71 30.53 93.71 41.10

Hepatitis 74.95 13.11 82.58 23.58 83.16 33.40 81.91 43.22

Iris 86.66 14.88 88.66 25.70 91.33 38.07 89.33 47.11

Letter 79.99 25.22 87.91 37.74 88.17 49.19 90.39 58.73

Liver 61.96 14.36 62.85 24.66 63.77 35.55 64.92 44.15

Segmentation 88.38 17.00 90.66 28.94 91.95 38.34 92.57 50.56

UPS 77.62 22.18 81.99 35.43 85.27 46.44 87.48 56.12

Wine 94.00 18.10 92.12 30.96 92.18 42.94 92.74 52.24

Zoo 93.33 29.50 93.33 39.75 93.33 51.11 93.33 59.13

Average 78.37 18.76 80.62 30.11 82.70 40.80 82.96 50.51

 Prototype Selection Via Prototype Relevance 157

Based on the table1, in the average case, the best accuracy was obtained using
r=40% but a very similar accuracy was obtained using r=30% which produced a bet-
ter percentage of reduction over the datasets, therefore we used r=30% in the next
experiments.

Once the PSR initial parameter has been fixed, a comparison among PSR, the
DROP methods and GCNN was done. The results are shown in table 2, (using k-NN,
k=3, the best value for the DROP methods [2]). In addition, we show the accuracy
obtained by the original datasets (Orig). In figure 1, the classification accuracy (hori-
zontal axis) versus retention (vertical axis) scatter graphic of the results shown in the
table 2 is depicted.

Table 2. Classification (Acc) and retention (Ret) results obtained by: the original training set
(Orig), DROP3, DROP5, GCNN and PSR using k-NN

Orig DROP3 DROP5 GCNN PSR
Dataset

Acc Ret Acc Ret Acc Ret Acc Ret Acc Ret

Bridges 66.09 100 56.36 14.78 62.82 20.66 68.20 88.20 57.63 47.79

Echocardiogram 95.71 100 92.86 13.95 94.82 14.87 93.39 22.67 90.53 37.68

Glass 71.42 100 66.28 24.35 62.16 25.91 69.61 61.62 64.85 42.36

Heart Cleveland 82.49 100 78.89 11.44 79.87 14.59 67.63 9.09 79.18 36.96

Heart Swiss 93.72 100 93.72 1.81 93.72 1.81 75.76 62.45 93.71 30.53

Hepatitis 79.29 100 78.13 11.47 75.42 15.05 60.66 17.75 83.16 33.40

Iris 94.66 100 95.33 15.33 94.00 12.44 96.00 38.00 91.33 38.07

Letter 95.00 100 92.68 16.33 92.17 13.63 95.29 34.08 88.17 49.19

Liver 65.22 100 67.82 26.83 63.46 30.59 66.09 83.70 63.77 35.55

Segmentation 95.10 100 92.19 15.94 91.86 14.30 92.71 13.82 91.95 38.34

UPS 96.48 100 94.59 10.27 93.99 7.96 94.78 34.53 85.27 46.44

Wine 94.44 100 94.41 15.04 93.86 10.55 94.44 78.89 92.18 42.94

Zoo 93.33 100 90.00 20.37 95.56 18.77 95.55 26.17 93.33 51.11

Average 86.38 100 84.10 15.22 84.13 15.47 82.32 43.92 82.70 40.80

Fig. 1. Scatter graphic from the average results shown in table 2

Based on the results in table 2 and figure 1, we can observe that in the average

case, the best methods were DROP3 and DROP5. The classification accuracy ob-
tained by PSR was smaller than those obtained by the DROP methods but PSR out-
performed GCNN.

158 J.A. Olvera-López, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

The best methods in table 2 were the DROP, however, they obtained good results
since their selection criterion is related to the Nearest Neighbor rule and the same rule
was used for evaluating the obtained prototype sets. For this reason, other experi-
ments were done using the prototype sets obtained by the DROP methods, GCNN and
PSR as training for other classifiers different from k-NN. In particular, we used C4.5
(decision trees) and Naive Bayes (NB) classifiers. The C4.5 and NB results are re-
ported in tables 3-4 and figures 2-3 respectively.

Table 3. Classification results obtained using the original training set (Orig.) and the prototype
sets obtained by DROPs, GCNN and PSR as training for the C4.5 classifier

Dataset Orig. DROP3 DROP5 GCNN PSR

Bridges 65.81 47.90 39.54 52.36 51.09

Echocardiogram 95.71 84.10 92.85 91.78 95.71

Glass 67.29 60.19 53.76 60.75 63.48

Heart Cleveland 71.96 68.59 72.16 66.00 71.35

Heart Swiss 93.71 93.71 93.71 81.59 92.05

Hepatitis 76.70 63.33 63.41 65.16 83.20

Iris 93.99 92.66 90.66 88.66 93.33

Letter 88.29 72.96 73.00 81.21 78.65

Liver 63.67 59.48 63.67 61.76 65.21

Segmentation 96.02 81.61 88.75 85.71 89.00

UPS 87.79 74.42 74.35 85.77 80.92

Wine 94.44 84.43 78.88 95.55 94.44

Zoo 93.33 81.10 88.88 81.10 95.55

Average 83.75 74.19 74.89 76.72 81.08

Fig. 2. Scatter graphic from the average results shown in table 3

According to the results obtained using C4.5 and NB, in the average case, in accu-
racy, the best prototype selection method was PSR followed by GCNN. Based on
these results, we can observe that using other classifiers, different from k-NN, the pro-
totype subsets obtained by the DROP3, DROP5 and GCNN are not as good as those
obtained by PSR.

The dataset sizes and runtimes1 spent by each prototype selection method tested in
our experiments are shown in table 5. Based on the runtimes, we can observe that

1 These runtimes do not depend on the used classifier and were obtained using an Intel Celeron

CPU 2.4GHz, 512MB RAM.

 Prototype Selection Via Prototype Relevance 159

Table 4. Classification results obtained using the original training set (Orig.) and the prototype
sets obtained by DROPs, GCNN and PSR as training for the NB classifier

Dataset Orig. DROP3 DROP5 GCNN PSR

Bridges 64.00 49.61 39.81 44.36 50.90

Echocardiogram 97.14 78.31 77.32 91.78 90.71

Glass 48.05 49.56 47.74 47.57 60.71

Heart Cleveland 83.81 78.20 81.16 75.52 81.86

Heart Swiss 92.05 93.71 93.71 61.02 69.23

Hepatitis 84.58 61.83 54.20 65.87 79.37

Iris 95.33 91.99 93.99 95.33 91.99

Letter 64.00 53.88 56.09 45.50 65.30

Liver 56.02 61.50 61.77 56.88 66.94

Segmentation 80.19 75.23 71.76 76.66 84.00

UPS 77.21 71.58 70.51 72.27 74.77

Wine 98.81 61.11 66.66 96.66 92.22

Zoo 95.55 88.88 83.33 93.33 95.55

Average 79.75 70.41 69.08 70.98 77.20

Fig. 3. Scatter graphic from the average results shown in table 4

Table 5. Datasets sizes and runtimes (in seconds) spent by the tested methods

Size Runtimes Dataset
Prototypes Features Classes DROP3 DROP5 GCNN PSR

Echocardiogram 74 9 2 0.07 0.08 1.02 0.42

Zoo 90 16 7 0.26 0.27 1.15 0.75

Bridges 108 11 7 0.16 0.14 15.27 1.15

Heart Swiss 123 12 2 0.22 0.36 16.63 1.47

Iris 150 4 3 0.19 0.16 1.25 0.37

Hepatitis 155 19 2 0.46 0.50 5.33 2.42

Wine 178 13 3 0.84 0.59 3.03 0.46

Glass 214 9 6 0.46 0.47 4.14 0.87

Heart Cleveland 303 13 5 1.32 1.34 12.62 6.57

Liver 345 6 2 0.76 0.76 19.45 0.73

Segmentation 2100 19 7 208.39 208.91 716.28 59.49

Letter 20000 16 26 15213.13 14339.61 64120.25 912.28

UPS 9000 255 10 37854.95 64788.06 211200.26 3125.42

for small datasets, the fastest methods were DROP3 and DROP5, however, for large
datasets, PSR were much faster than all the other methods; therefore, PSR is particu-
larly useful for large datasets where the other prototype selection methods require
very long time, and in some cases, these methods could be inapplicable.

160 J.A. Olvera-López, J.A. Carrasco-Ochoa, and J.F. Martínez-Trinidad

5 Conclusions

In this work, we have proposed, compared and tested the PSR method for prototype
selection. PSR selects the most relevant prototypes per class in a training set and
through them some border prototypes are selected in order to preserve discrimination
capability between classes.

The experimental results showed that PSR is a good method for solving the proto-
type selection problem mainly when a classifier different from k-NN is used. In our
experiments, PSR obtained the best results using C4.5 and NB classifiers. When k-NN
was used, in accuracy, PSR, DROP3, DROP5 and GCNN were similar.

When prototype selection is required for small datasets, other methods outperform
PSR in runtime but an important characteristic of our method is that it is faster for
large datasets (datasets where prototype selection is particularly useful). This charac-
teristic is very important because other successful prototype selection methods spent a
lot of time (or could be inapplicable) for processing these kind of datasets.

In this work, we computed the prototypes relevance based on the average similar-
ity, but as future work we are interested in proposing another way for computing the
prototypes relevance.

References
1. Bezdek, J.C., Kuncheva, L.I.: Nearest prototype classifier designs: An experimental study.

International Journal of Intelligent Systems 16(12), 1445–1473 (2001)
2. Wilson, D.R., Martínez, T.R.: Reduction Techniques for Instance-Based Learning Algo-

rithms. Machine Learning 38, 257–286 (2000)
3. Brighton, H., Mellish, C.: Advances in Instance Selection for Instance-Based Learning Al-

gorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)
4. Cover, T., Hart, P.: Nearest Neighbor Pattern Classification. IEEE Transactions on Infor-

mation Theory 13, 21–27 (1967)
5. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Francisco

(1993)
6. Mitchell, T.M.: Machine Learning. WCB McGraw-Hill, Boston (1997)
7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons,

New York (2001)
8. Hart, P.E.: The Condensed Nearest Neighbor Rule. IEEE Transactions on Information

Theory 14(3), 515–516 (1968)
9. Wilson, D.L.: Asymptotic Properties of Nearest Neighbor Rules Using Edited Data. IEEE

Transactions on Systems, Man, and Cybernetics 2(3), 408–421 (1972)
10. Chien-Hsing, C., Bo-Han, K., Fu, C.: The Generalized Condensed Nearest Neighbor Rule

as A Data Reduction Method. In: 18th International Conference on Pattern Recognition,
vol. 2, pp. 556–559. IEEE press, Washington (2006)

11. Tomek, I.: An Experiment with the Edited Nearest-Neighbor Rule. IEEE Transactions on
Systems, Man, and Cybernetics 6-6, 448–452 (1976)

12. Devijver, P.A., Kittler, J.: On the edited nearest neighbor rule. In: 5th International Con-
ference on Pattern Recognition. The Institute of Electrical and Electronics Engineers, pp.
72–80 (1980)

13. Wilson, D.R., Martínez, T.R.: Improved Heterogeneous Distance Functions. Journal of Ar-
tificial Intelligence Research 6-1, 1–34 (1997)

14. UCI Machine Learning Repository, University of California, School of Information and
Computer Science, Irvine CA,
http://www.ics.uci.edu/~mlearn/MLRepository.html

	Prototype Selection Via Prototype Relevance
	Introduction
	Related Works
	Proposed Method
	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

