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Abstract. Graph Self-Organizing Maps (GraphSOMs) are a new con-
cept in the processing of structured objects using machine learning meth-
ods. The GraphSOM is a generalization of the Self-Organizing Maps for
Structured Domain (SOM-SD) which had been shown to be a capable un-
supervised machine learning method for some types of graph structured
information. An application of the SOM-SD to document mining tasks
as part of an international competition: Initiative for the Evaluation of
XML Retrieval (INEX), on the clustering of XML formatted documents
was conducted, and the method subsequently won the competition in
2005 and 2006 respectively. This paper applies the GraphSOM to the
clustering of a larger dataset in the INEX competition 2007. The results
are compared with those obtained when utilizing the more traditional
SOM-SD approach. Experimental results show that (1) the GraphSOM
is computationally more efficient than the SOM-SD, (2) the performances
of both approaches on the larger dataset in INEX 2007 are not compet-
itive when compared with those obtained by other participants of the
competition using other approaches, and, (3) different structural rep-
resentation of the same dataset can influence the performance of the
proposed GraphSOM technique.

1 Introduction

In general, structured objects can be described by graphs, e.g. acyclic directed
graphs, cyclic graphs, un-directed graphs, etc. Graphs are generalizations of
the more common vectorial representation as a graph can encode relationships
among structural elements of objects, or provide contextual information con-
cerning data points which may be described in vectorial form.

The machine learning community recognizes that any model which is capable
of dealing with structured information can potentially be more powerful than
approaches which are limited to the processing of vectorial information. This
observation motivates us to develop machine learning methods which are capable
of encoding structured information. A noteworthy result of such efforts is the
Graph Neural Network (GNN) which is a supervised machine learning method
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capable of learning from a set of graphs [1]. The GNN is probably one of the
more powerful supervised machine learning methods devised since it is capable
of processing arbitrary types of graphs, e.g. cyclic, un-directed, where (numeric)
labels may be attached to nodes and links in the graph. In other words, a GNN
can encode the topology of a given set of graph structures as well as the numerical
information which may be attached to the nodes or links in the graph.

Supervised machine learning methods require the availability of target infor-
mation for some of the data, and are typically applied to tasks requiring the
categorization or approximation of information. Unsupervised machine learning
methods have no such requirement on the target information, and are typically
applied to tasks requiring the clustering or segmentation of information. Unsu-
pervised machine learning techniques for graph structured information are often
based on the well-known Self-Organizing Maps [2] and are called Self-Organizing
Maps for Structures (SOM-SD) [3]. While a SOM-SD is restricted to the pro-
cessing of bounded positional acyclic directed graphs, it is found that this is
sufficient for many practical applications. An application of the SOM-SD to the
clustering of XML structured scientific documents at an international competi-
tion on document mining: Initiative for the Evaluation of XML Retrieval (INEX)
was conducted, and this technique won in the year 2005 [4].

The introduction of a contextual SOM-SD (CSOM-SD) extended the capabili-
ties of the SOM-SD model to allow for the contextual processing of bounded posi-
tional directed graphs which may contain cycles [5]. The SOM-SD and CSOM-SD
were again applied to document mining tasks at INEX 2006. Both approaches
produced winning results albeit amongst a fairly small group of participants [6].
However, it was observed that the CSOM-SD has a nonlinear computational
complexity; in most cases, this is close to quadratic. This would limit the appli-
cation of the CSOM-SD technique to small datasets. In this paper we will use
a modification of the CSOM-SD method which we called Graph Self-Organizing
Map (GraphSOM) [7], which (1) has a linear computational complexity, and (2)
allows the encoding of more general types of graphs which may be unbound,
cyclic, undirected, and non-positional. This paper demonstrates the efficiency
and capability of the GraphSOM technique. Comparisons are made with the
existing machine learning method: SOM-SD [3].

A drawback of the SOM-SD is that it does not scale well with the size of
a graph. In particular, the computational demand increases quadratically with
the maximum outdegree of any node in the dataset. Moreover, the SOM-SD
requires prior knowledge of the maximum outdegree, and hence, has limitations
in problem domains where the maximum outdegree is not known a priori, or for
which the outdegree cannot be fixed a priori. The GraphSOM addresses these
shortcomings through a modification of the underlying learning procedures [7].
The effect is that the computational complexity is reduced to a linear one, and,
as a side effect, allows the processing of much more general types of graphs which
may feature loops, undirected links, and for which the maximum outdegree is
not known a priori. A more detailed theoretical analysis of the computational
complexity of the GraphSOM is presented in [7].
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This paper is structured as follows: Section 2 introduces to the SOM-SD and
GraphSOM, and offers some comparisons. The experimental setting and exper-
imental findings are presented in Section 3. Conclusions are drawn in Section 4.

2 Self-Organizing Maps

This section gives an overview to how unsupervised learning of graph structured
information is achieved when using Self-Organizing Map techniques1. Another
unsupervised neural network method capable of learning from graphs is [9] which
realizes an auto-associative memory for graph structures, and hence, is quite
different to clustering methods discussed in this paper. An alternative approach
is constituted by the use of standard clustering methods in conjunction with
metrics explicitly defined on graphs or induced by kernels for graphs, such as
in [10] where a version of SOM that uses a version of the edit distance for
graphs is presented. We are not aware of papers where kernels for undirected
and unbounded graphs are used within a traditional clustering method. Finally,
MLSOM [11] is an improved self-organizing map for handling tree structured
data and cannot deal with graphs.

Traditionally, Self-Organizing Maps (SOMs) are an extension of the Vec-
tor Quantization technique [2] in which prototype units are arranged on an
n-dimensional lattice. Each element of the lattice is associated with one unit
which has adjustable weights. SOMs are trained on vectorial inputs in an un-
supervised fashion through a suitable adjustment of the associated weights of
the best matching prototype unit and its neighbors. Training is repeated for
a number of iterations. The result is a topology preserving mapping of possi-
bly high-dimensional data onto a lower dimensional one, often 2-dimensional
mapping space. In practice, SOMs have found a wide range of applications to
problem domains requiring the clustering or projection onto lower dimensional
space of unlabeled high dimensional vectors. Self-Organizing Maps (SOMs) are
a classic concept in machine learning allowing the mapping of high-dimensional
data onto a low-dimensional display space [2].

An extension to data which can be described by graphs was made with the
introduction of the SOM-SD [3]. With SOM-SD it has become possible for the
first time to have an unsupervised machine learning method capable of mapping
graph structures onto a fixed dimensional display space.

2.1 Self-Organizing Maps for Structured Data

Approaches to enable SOMs to map graph structured information were proposed
relatively recently in [3,8]. The approach in [3] extends the classical SOM method
by processing individual nodes of a graph, and by incorporating topological in-
formation about a node’s offsprings in a directed acyclic graph. Nodes in the
graph can be labeled so as to encode properties of objects which are represented

1 This section does not contain any new material, but simply pulls together informa-
tion which were published by us [3,7,8] in a coherent and self consistent manner to
explain the basic motivation of using GraphSOM in this paper.
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by the node. One of the main advantages is that the SOM-SD is of linear compu-
tational complexity when processing graphs with a fixed out-degree, and hence,
the SOM-SD is capable of performing tasks such as clustering of graphs and sub-
graphs in linear time. The SOM-SD is an extension of the standard SOM in that
the network input is formed through a concatenation of the node label with the
mappings of each of the node’s offsprings. This implies that the SOM-SD is re-
stricted to the processing of ordered acyclic graphs (ordered trees), and requires
that the trees have a fixed (and relatively small) outdegree. The computational
complexity of the SOM-SD grows quadratically with the out-degree2, and hence,
the processing of trees with a large outdegree becomes quickly a very time con-
suming task. Moreover, the processing of nodes in a tree must be performed in
an inverse topological order so as to ensure that the mapping of child nodes is
available when processing a parent node.

The approach was extended through the introduction of CSOM-SD [8]. The
CSOM-SD incorporates topological information on all the node’s neighbors, and
hence, the method is capable of processing undirected and cyclic graphs. Both
approaches include the standard SOM as a special case, and when applied to
graphs, are restricted to learning domains for which the upper bound of any
node’s connectivity (outdegree) is known a priori (e.g. the maximum number of
neighbors for any node in a graph is known a priori). It was found that the com-
putational demand for learning problems involving a high level of connectivity
can be prohibitively high for both methods.

In the following, we will explain some of the basic mechanisms of SOM, and
SOM-SD as a prelude on the modifications introduced in GraphSOM [7] later.
Let us explain the underlying procedures as follows: The basic SOM [2] con-
sists of a q-dimensional lattice of neurons representing the display space. Ev-
ery neuron i of the map is associated with an n-dimensional codebook vector
mi = (mi1, . . . , min)T , where T transposes the vector. Figure 1 gives an example
of a simple SOM. The neurons are shown with a hexagonal neighborhood rela-
tionship; the most commonly used arrangement. This hexagonal neighborhood
is used in the training of the SOM.

The SOM is trained by updating the elements of mi as follows:
Step 1: One sample input vector u is randomly drawn from the input data

set and its similarity to the codebook vectors is computed. When using the
Euclidean distance measure, the winning neuron is obtained through:

r = arg min
i

‖u− mi‖ (1)

2 As is shown in [7], the computational demand of a SOM-SD is Nk(p + qn), where
N is the total number of nodes in the data set, k is the number of neurons on the
map, p is the dimension of the data label attached to the nodes in a graph, q is the
dimension of the map (typically q = 2), and n is the maximum number of neighbors
of any node in a graph. N , k, and n are often interdependent. An increase in N ,
p, or n often requires a larger mapping space k. In many data mining applications,
n >> k which in turn can require a large k. Thus, the computational complexity for
large scale learning problems is close to a quadratic one.
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Fig. 1. A simple 2-dimensional map of size 2 × 5. Each hexagon marks a neuron.
Number, associated codebook vector, and coordinate values for each neuron is shown.

Step 2: mr itself as well as its topological neighbours are moved closer to the
input vector in the input space. The magnitude of the attraction is governed
by the learning rate α and by a neighborhood function f(Δir), where Δir is
the topological distance between mr and mi. Here topological distance is used
to described the distance between the neurons topologically. In our case we
simply used the Euclidean distance to measure the distance topologically. This
is the most commonly used method. The updating algorithm is given by:

Δmi = α(t)f(Δir)(mi − u), (2)

where α is the learning rate decreasing to 0 with time t, f(.) is a neighbor-
hood function which controls the amount by which the codebooks are up-
dated. Most commonly used neighborhood function is the Gaussian function:

f(Δir) = exp
(
−‖li − lr‖2

2σ(t)2

)
, (3)

where the spread σ is called neighborhood radius which decreases with time t,
lr and li are the coordinates of the winning neuron and the i-th neuron in
the lattice respectively. It is worth noting that σ(t) must always be larger
than 1 as otherwise the SOM reduces to Vector Quantization and no longer
has topology preserving properties [2].

The steps 1 and 2 together constitute a single training step and they are
repeated a given number of times. The number of iterations must be fixed prior
to the commencement of the training process so that the rate of convergence in
the neighborhood function, and the learning rate, can be calculated accordingly.

After training a SOM on a set of training data it becomes then possible to
produce a mapping for input data from the same problem domain but which
may not necessarily be contained in the training dataset. The level of ability of
a trained SOM to properly map unseen data (data which are not part of the
training set) is commonly referred to as the generalization performance. The
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generalization performance is one of the most important performance measures.
However, in this paper, rather than computing the generalization performance
of the SOM, we will evaluate the performance on the basis of micro purity and
macro purity. This is done in order to comply with guidelines set out by the
INEX-XML mining competition.

To allow for the processing of structured data this training algorithm is ex-
tended in [3] by incorporating the information about a node’s neighbors. If ui

is used to denote the label of the i-th node in a graph, then an input vector
for the SOM is formed by concatenating the label with the coordinates of the
winning neuron of all the present node’s neighbors. These coordinates are re-
ferred to as the states of neighbors. A hybrid input vector, defined as a vector
xi = (ui,ych[i]) is formed, where ych[i] is the concatenated list of states (co-
ordinates of the winning neuron) of all the children of a node i. These states
summarise the information which is contained in the child nodes. Note that
here we assume a Markov assumption, in that the information on previous child
nodes, the child nodes of those child nodes, etc are contained in the states. Since
the size of vector ych[i] depends on the number of offsprings, and since the SOM
training algorithm requires constant sized input vectors, padding with a default
value is used for the missing offsprings or for nodes which have less than the
maximum outdegree on a graph. Thus, the dimension of xi is p + qw, where
p is the dimension of the data label u, q the dimension of the lattice, and w
the maximum outdegree value. The training algorithm of a SOM is altered to
account for the fact that an input vector now contains hybrid information (the
data label, and the state information of offsprings). Equation 1 and Equation 2
are respectively replaced by the following:

r = argmin
i

‖(xj − mi)T Λ‖ (4)

Δmi = α(t)f(Δir)(mi − u) (5)

where Λ is a n×n dimensional diagonal matrix; its diagonal elements λ11 · · ·λpp

are set to μ1, all remaining diagonal elements are set to μ2. The constant μ1 in-
fluences the contribution of the data label component to the Euclidean distance,
while μ2 controls the influence of the states on the same distance measure. Thus,
if μ1 is large relative to μ2 then the contribution of data labels is more impor-
tant in the Euclidean distance measure relative to that exerted by the states
(past information contained in the child nodes), and vice versa. In reality, it is
the ratio µ1

µ2
that is important rather than their relative values. For simplicity,

μ2 = 1−μ1, 0 ≤ μ1 ≤ 1 is normally used. Then, the SOM-SD adds a new step
to the training algorithm [3]:

Step 3: The coordinates of the winning neuron are passed onto the parent node
which in turn updates its vector y accordingly.

The SOM-SD [3] which represents a first attempt in incorporating graph in-
formation in the SOM approach requires the processing of data in a strict causal
order from the leaf nodes towards the root. Thus strictly speaking it is only
applicable to processing tree structures, rather than the more general graph
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structures which may contain loops (where the Markov assumption that the in-
formation in the sub-tree processed so far is contained in the states of the child
nodes breaks down). We process nodes in a strict leaf nodes to root node order
so that in Step 3 all states of all neighbors are available. The SOM-SD approach
has a computational complexity which for large graphs could be quadratic [7].
Hence the SOM-SD approach can only be applied to process tree structured data
with small number of nodes.

However, there are many situations in which loops occur in graphs. Hence an
extension to circumvent this problem of having to process the information in a
strict leaf nodes to root order is necessary. A first attempt was proposed in the
CSOM-SD [8]. The CSOM-SD builds on the SOM-SD by adding new steps to
the training procedure to address the fact that both ancestors and descendants
of the node may need to be taken into account in some applications. There are
various ways to do this, but basically these make use of the information stored
from previous processing steps to be used as a proxy of the lack of information
imposed by the non-causal manner to process the graph as dictated by the graph
structure (which may contain loops). Fundamentally the approach is similar to
SOM-SD as it introduces yet another constant to take the additional requirement
of representing the ancestors (the nodes which are ahead of the current node in
the graph structure, and the information of which are represented by the stored
states obtained from previous processing steps) into account, and the CSOM-
SD can be reduced to the SOM-SD accordingly. Thus, the CSOM-SD suffers the
same computational complexity issue which arises in the SOM-SD approach,
Nevertheless, for small graphs, it can be applied to situations when there are
loops, or un-directed links in the graph structure.

2.2 The GraphSOM

The GraphSOM [7], a very recent development addresses some of the short-
comings of SOM-SD. This is made possible by making a key observation in the
SOM-SD and CSOM-SD processing of graphs: much of the information presented
to the network may be redundant because it concatenates state information of
every neighbor to the network input. Redundancies occur when several neighbors
are mapped onto the same location on the map. This likelihood increases with
increasing n, and becomes unavoidable when n > k. The GraphSOM processes
the graph structured data by concatenating the data label with the activation of
the map when mapping all of a node’s neighbors. Note that here it is the activa-
tion of the map rather than the states of the map that is being presented to the
GraphSOM inputs. Since the dimension of the map remains static, independent
of the size of a training set, and independent of the outdegree of graphs, this
implies that the GraphSOM’s computational complexity is reduced to a linear
one with respect to the outdegree of graphs. In other words, a GraphSOM can
process graphs with a large outdegree much more efficiently than a SOM-SD.
It is found that the GraphSOM includes the SOM-SD as a special case, and
hence, one can expect that the clustering performances of the GraphSOM can
be at least as good as that for the SOM-SD.
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Fig. 2. A 2-dimensional map of size 2× 5 (left), and an undirected graph (right). Each
hexagon is a neuron. ID, codebook, and coordinate value for each neuron is shown. For
each node, the node number, and coordinate of best matching codebook is shown.

Thus, the GraphSOM approach is to simply concatenate the activation (state)
of the map with respect to all of the node’s neighbors [7]. Formally, when pro-
cessing a node i the input to the SOM is xi = (ui,Mne[i]), where ui is defined as
before, and Mne[i] is a k dimensional vector containing the activation of the map
M when presented with the neighbors of node i. An element Mj of the map is
zero if none of the neighbors are mapped at the j-th neuron location, otherwise
it is the number of neighbors that were mapped at that particular location.

It is much easier to express the underlying concepts in the GraphSOM3 by
considering the following example as shown in Figure 2. This figure shows a
SOM. For simplicity, we assume further that no data label is associated with
any node in the graph. Then when processing node w = 3 the network input
is the k dimensional vector x3 = (0, 0, 2, 0, 0, 1, 0, 0, 0, 0). This is because two
of the neighbors of node 3 are mapped at the coordinate (1, 3) which refers to
the 2−nd neuron, and the third neighbour of node 3 is mapped at (2, 1) which
refers to the 5−th neuron. No other neuron is activated by a neighbour of node
3. These activations are listed in sequential order so as to form the vector x3.
It can thus be observed that x3 summarizes the mappings of the neighbors of
node 3 by listing the two activations: one at coordinate (1, 3), the third neuron,
and one at coordinate (2, 1), the sixth neuron. Then the mapping of node 3 can
be computed, and the information be passed onto its neighbors in the same way
as is done for the SOM-SD. Note that the input remains unchanged regardless
of the order of the neighbors; and that the dimension of x remains unchanged
regardless of the maximum outdegree of any node in the dataset.

In comparison, the dimension of input vectors for the same graph when pro-
cessed using SOM-SD is 6 (because q = 2 and n = 3). Thus, the number of
computations with the GraphSOM is similar to that of SOM-SD when process-
ing small graphs. But, the GraphSOM becomes more and more efficient as the
connectivity (and consequently the size) of a graph increases. When dealing with
large maps then the GraphSOM approach [7] can be approximated quite well

3 This is the same example used in [7] to illustrate the developing of the thought
process behind the proposed GraphSOM approach.
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by consolidating neighboring neurons into groups. This approximation is valid
since it exploits a general property with SOMs where only those nodes, which
are mapped in close proximity to one another, share the greatest similarities,
and hence, little information is lost by grouping them together. This leaves the
granularity of the mappings unchanged but allows for a more compact repre-
sentation of Mne[i]. For example, when using a 2 × 5 grouping for the map in
Figure 1 then the network input for node 3 becomes x3 = (1, 2, 0, 0, 0). A more
coarse grouping can be chosen to achieve greater speed gains at the cost of some
inaccuracy in the representation of the state of the map.

A summary of differences between the GraphSOM when compared to SOM-SD
(and CSOM-SD) can be given as follows: (1) GraphSOM has a lower computa-
tional complexity when dealing with large graphs than SOM-SD; (2) GraphSOM’s
computational complexity can be scaled arbitrarily through a grouping of neurons
at the cost of some inaccuracy in the representation of the graph while for SOM-
SD it grows quadratically; (3) the input dimension of GraphSOM is independent
of the level of connectivity in a graph while in SOM-SD it is a variable; and (4) the
GraphSOM allows the processing of cyclic, positional, and non-positional graphs
while SOM-SD can only be applied to trees, and CSOM-SD can be applied to cyclic
graphs, graphs with un-directed links with low dimensions.

In fact, the GraphSOM is capable of processing the same classes of graphs
as the GNN [1] with the exception that the labeling of links is currently not
supported. It is obvious to note that the GraphSOM includes the SOM-SD as a
special case.

We note in passing that a related idea has been proposed by some researchers
in the context of sequence processing. In particular, the Merge SOM model [12]
stores compressed information of the winner in the previous time step, whereby
the winner neuron is represented via its content rather than its location within
the map. The content of a neuron i consists of the weight wi and the context
ci. These two characteristics of neuron i are stored in a merged form, i.e. as a
linear combination of the two vectors. It should be stressed that this approach
is different from the GraphSOM approach [7].

3 Experiments

This paper applies the SOM-SD and the GraphSOM to a large dataset con-
sisting of structured documents from the web as contained in the INEX 2007
dataset (for the XML mining competition task). More specifically, the methods
are applied to cluster a subset of documents from Wikipedia. The task is to
utilize any of the features (content or structure) of the documents in order to
produce a given grouping (clustering). We decided to investigate the importance
of structural information to the clustering of these documents. Such an approach
had been very successful at previous INEX clustering events. The documents are
formatted in XML, and, hence, are naturally represented as tree structures. The
dataset is made available in two parts, a training set and a test set. Each data
in these sets is labeled by one of 21 unique numeric labels. The label indicates
the desired grouping of the document. Hence, the task is to cluster pages into 21
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groups. The machine learning method used for the experiments is trained unsu-
pervised. This means that the data label is not used when training the SOM. The
labels are used to evaluate whether the trained SOM groups the training data
as desired. The SOMs’ ability to perform the desired grouping of the training
data is maximised by tweaking the various training parameters through trial and
error. After determining the best set of training parameters, the SOM is used to
map the unseen data in the test set. The performances reported in this paper
are computed based on the mappings of the test set.

Since the data is represented in a tree form, and hence, the application of the
SOM-SD is possible. However, it will be found that the outdegree of the dataset
is prohibitively large. The GraphSOM has a reduced computational complexity
relative to the SOM-SD. In applying the GraphSOM, the computational time
required, compared with the ones using SOM-SD, is reduced significantly. This
is especially important, as the INEX 2007 contains a relatively larger dataset.

The importance of this application is manifold:

– XML is an increasingly popular language for representing many types of
electronic documents.

– An application to data mining tasks can help to demonstrate the capabilities
of the GraphSOM, or the lack of it, over previous machine learning methods,
e.g. SOM-SD approach which are capable of clustering graphs.

– The datasets considered (viz. the INEX Wikipedia dataset) is a benchmark
problem used INEX 2007.

This paper gives some preliminary results4. Results presented here were ob-
tained from training the SOMs for eight runs each. The best result is presented
in this paper. Note that under normal circumstances, a SOM would have to
be run under possibly hundreds of training conditions in order to determine its
peak performance. This is due to the fact that a number of training parameters
need to be determined through trial and error (for any SOM training algorithm).
Amongst these parameters are the dimensionality of the map, the geometry of
the map, the type of neighborhood relationship between the codebook entries of
the map, a learning rate, the number of training iterations, weighting measures
for the data label and structural component of the inputs, and several others. A
suitable choice of training parameters is essential in obtaining a well performing
GraphSOM (similar to all SOM approaches of which GraphSOM is one).

A first set of experiments utilizes the XML structure of the documents. A node
in the graph represents an XML tag, the links represented the encapsulation of
the tags. For example, the XML sequence <a><b></b><c></c></a> produced
a graph with a root node representing the tag <a> and its two offsprings <b>
and <c>. We assigned a unique numerical ID number to each unique XML tag,
then added the ID number as a label to the corresponding node in the graph.
For example, if we assign the ID number 101 to tag <a>, then the node repre-
senting this tag will have been assigned the numeric label 101. In other words,

4 The GraphSOM has been developed very recently[7]. Time constraints and imple-
mentation issues prevented us from conducting experiments more thoroughly.
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Table 1. Results when clustering the test dataset into 21 clusters

SOM-SD GraphSOM
Micro average purity 0.262457 Micro average purity 0.26885
Macro average purity 0.26159 Macro average purity 0.26635

the SOMs are trained to cluster XML formatted documents solely on topological
information, and on the type of XML tag embedded in the document. No further
information is provided to the training algorithm.

The results when clustering the dataset into 21 clusters are summarized in
Table 1. In comparison, the performances of the clustering task obtained by
other participants of the competition is shown in Table 2. It is observed that
(1) despite successes of the SOM-SD method in earlier INEX competitions [4,6]
the performances obtained here are well below those obtained by others, and
(2) both the GraphSOM and the SOM-SD perform about equally well. A dif-
ference between the latter is the training times needed. Given that the training
dataset contained 48, 306 tree structures, one for each document, with a maxi-
mum out-degree of 1,945, this size of outdegree would require an estimated 40
years of training time for the SOM-SD on a top end desktop computer with
2.8 GHz clock rate! To avoid this, and to enable the use of the SOM-SD for
comparison purposes, we pruned the graphs to have a maximum outdegree of 32
by truncating nodes with a larger outdegree. This reduced the training time for
the SOM-SD to a more reasonable 36 hours5. In comparison, the GraphSOM is
capable of processing the graphs without pruning in about 48 hours by using a
8 × 8 grouping of nodes. The results shown were obtained when using for both
networks a size of 160 × 128, the number of training iterations equal to 200,
α(0) = 0.8, the weights μ1, μ2 were (0.05, 0.95), and σ(0) = 20.

Table 2. Results when clustering into 21 clusters obtained by competing groups

Name Micro avg. purity Macro avg. purity

Guangming Xing 0.62724 0.571855
Jin YAO & Nadia ZERIDA 0.51530897 0.61035

Pruning can have a negative impact on the clustering performance since some
relevant information may be removed. The GraphSOM allows the processing of
large graphs without requiring pruning, and hence, can be expected to produce
performances which are at least as good as those obtained by a SOM-SD if not
better. While this has been confirmed by these experiments, it is also found that

5 This is one of the major disadvantages of using SOM-SD in processing larger
datasets. In order to ensure a reasonable turn-around time it is necessary to prune
the data back so that the training time is kept to reasonable duration. In doing
the pruning, some information would be lost. In contrast, the GraphSOM does not
require as extensive pruning or no pruning at all, and hence it is far more efficient
than the SOM-SD.
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the pruning did not reduce the SOM-SD performance. These observations (gen-
erally relative poor performance, and pruning without effect on results) caused
us to suspect that the XML structure of the documents may not be a feature
which leads to a desired clustering result as was defined by INEX-2007.

Thus, one of the reasons for the relatively poor performance may be that the
desired clustering of the documents may not rely on the XML structure as much
as the learning tasks in previous years did. A difference with the datasets used
in previous years is that this year’s dataset contained embedded hyperlinks which
pointed from one document to another document. It may be that a successful clus-
tering requires the encoding of the link structure of the documents rather than the
XML structure. To verify this hypothesis, we created a new graph representation
of the dataset where a node represents a document as a whole, and the links rep-
resent the hyperlinks pointing from one document to another. This produced one
directed graph for each; the training set and the test set containing 48, 306 and
48, 305 nodes respectively. The graphs contained cycles. The maximum outdegree
for each of the two datasets were 410 and 544 respectively. Note that some docu-
ments have several (redundant) links to another document. We consolidated these
by listing only its first occurrence. This was performed since we assumed that such
redundancy may not significantly influence the results, and to help reduce the turn
around time for the experiments. Had we included redundant links, the maximum
outdegree would have increased to 471 and 579 respectively. Note also, that only
those links were used which pointed to documents within the same dataset (i.e.
for the training set we used only those links which pointed to other documents in
the training set). Links to documents outside the same dataset were discarded.
Nevertheless, we added the total number of (unique) hyperlinks as a data label
to each node in the graph. It is interesting to note that the maximum outdegree
of any node in the datasets is 2, 118 for the training set and 2, 088 for the test set
if all links (internal, external, and redundant links) are considered. This implies
(a) that most hyperlinks are to pages not within the same dataset, and (b) that
Wikipedia document hyperlink structure is relatively rich.

For the purpose of training the SOM-SD, we again had to resort to pruning.
Here, pruning was done selectively by identifying links which are involved in
cycles and pruning these first. This allowed the generation of an acyclic graph
with sufficiently small outdegree which allowed the training of a SOM-SD in a
timely fashion. No such pruning was necessary for the training of the GraphSOM.
Maps were trained with the same parameters as before on these datasets. The
results are summarized in Table 3.

It can be observed that this produced an improvement in the performance by 3
to 9 percentage points. It is also observed that the GraphSOM performs slightly
better than the SOM-SD which may be attributed to that the GraphSOM is
trained on a non-positional graph which was not pruned. The finding indicate
that information which is useful for obtaining the desired partitioning of the
test data set is embedded in the hyperlink structure of the documents, and that
the task does not appear to rely on positional information about the links (i.e.
the order of the hyperlinks does not appear to be important). Nevertheless, the



Efficient Clustering of Structured Documents 219

performances obtained still fall short of those obtained by other participants of
the competition. It shows that structural information may not be a key ingredient
to obtain the desired clustering. It is thus likely that textual information within
the documents is of importance for this given task. This can be addressed through
a suitable labeling of the nodes in the graph so as to encode textual information.
To surmise one of the reasons why the addition of content to link structure may
not result in improved accuracy is that there are many ways in which information
on content can be extracted. For example, in an XML document, content could
mean the extraction of information on each paragraph or on each document.
Since such information is contained in words, there will need to be a good way
to include the information and meaning conveyed by words, or combination
of words. This is not a particularly easy task to perform as it is well known
that some combination of words may lead to quite different meaning. However,
without an accurate representation of the contents, the SOM may not receive
sufficient information for it to discriminate web pages. This points to possible
ways in which our approach can be improved: through a better representation
of the content information of the documents. This is left for a future task and
will not be addressed further in this paper.

4 Conclusions

The paper applied the newly developed GraphSOM [7] for the first time to a
relatively large clustering application represented by the INEX 2007 competi-
tion dataset. Comparisons with its predecessor (the SOM-SD) revealed that the
added capabilities of the GraphSOM can help to produce improved results. But
most importantly, it was demonstrated that the lower computational complexity
of the GraphSOM and its ready scalability to larger datasets allow the processing
of graphs without requiring pre-processing measures such as pruning in order to
reduce time requirements for the training procedures. This represents a major
advance on the SOM-SD approach in terms of its practicality, in that GraphSOM
is shown to be able to handle relatively large datasets without any pruning, thus
preserving the information content in the dataset. In contrast, the SOM-SD ap-
proach is required to prune the training dataset so as to keep the training time
to reasonable duration, and thus may lead to a loss of information.

This paper presented some initial experimental results which do not measure
up to results obtained by others on this clustering task. It can be assumed that by
fine-tuning training parameters, and by providing a richer set of information to the
GraphSOM learning procedure will help to improve the performances. For exam-
ple, the data label attached to nodes may contain a description of the content found
in the document. Such tuning may not improve the performance significantly if
the decisive criteria for the clustering task is based on structural components. One
could,moreover, attempt to train theGraphSOMonahybrid structurewhich com-
bines both the underlying XML structure of individual documents as well as the
hyperlink structure between documents. This may improve the performance of the
method as it takes into account the nature of a dataset which contains structured
documents, and a structural dependency between documents. There are various
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Fig. 3. Hybrid structures. When considering hyperlinks to point from one document
to another (left), or when considering hyperlinks to point from within an embedded
XML-tag to another document (right).

ways in which such combination can be effected. One way in which this can be
effected is that if we consider hyperlinks to be a binary relation between two doc-
uments as depicted in Figure 3 (left). Each document is represented by its XML
(tree-)structure. A SOM could be trained on these tree-structures as was carried
out in this paper. Then, once the SOM has converged to a final mapping, a second
SOM is trained on the underling hyperlink structure of the dataset where, to each
node, a data label which summarizes the activation of the first SOM (trained on
XML information) is attached. Since the XML representationof documents is done
through a tree structure, and since processing can be done in an inverse topologi-
cal order, and hence, the root of the XML tree structure can be a representation of
the tree structure as a whole. Thus, it would suffice to solely utilize the mapping
(state) of the root as a label for the corresponding node in the hyperlink structure.

Alternatively, one may wish to take account of the fact that hyperlinks are
embedded within a section defined by an XML tag (Figure 3 on the right), and
hence, the source of a hyperlink can be any node in the XML tree. Thus, it may
be more appropriate to use the mapping of the XML-tag which is the source of
a hyperlink for the label for the associated node.

One may observe that for both of these approaches, the dimensionality of
the node labels depends on the outdegree of all nodes in the XML tree. For in-
stance, in Figure 3 (right), Document A has two nodes with outgoing hyperlinks
to Document B. To account for the various activations of the nodes involved, con-
catenation could be used to obtain the associated data labels. However, to avoid
problems which would arise with large outdegrees, one could use the Graph-
SOM approach for forming the node labels (i.e. to use the activation of the map
rather than concatenating individual activations). The second map, once trained
on the underlying hyperlink structure, would produce a mapping of documents
according to the overall hybrid structure.

These instances show that one may not ignore the underlying structure of a
document, whether the inherent structure, or the extended structure as provided
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Table 3. Results when clustering into 21 clusters using the hyperlink structure

SOM-SD GraphSOM
Micro average purity 0.253804 Micro average purity 0.27423
Macro average purity 0.337051 Macro average purity 0.353241

through the hyperlink structure if one wishes to cluster the documents. The
validation of these hypotheses and intuition is left as a future research task.
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