
N. Fuhr et al. (Eds.): INEX 2007, LNCS 4862, pp. 183–194, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Clustering XML Documents Using Closed Frequent
Subtrees: A Structural Similarity Approach

Sangeetha Kutty, Tien Tran, Richi Nayak, and Yuefeng Li

Faculty of Information Technology,
Queensland University of Technology, Brisbane, Australia

{s.kutty,t4.tran,r.nayak,y2.li}@qut.edu.au

Abstract. This paper presents the experimental study conducted over the INEX
2007 Document Mining Challenge corpus employing a frequent subtree-based
incremental clustering approach. Using the structural information of the XML
documents, the closed frequent subtrees are generated. A matrix is then devel-
oped representing the closed frequent subtree distribution in documents. This
matrix is used to progressively cluster the XML documents. In spite of the large
number of documents in INEX 2007 Wikipedia dataset, the proposed frequent
subtree-based incremental clustering approach was successful in clustering the
documents.

Keywords: Clustering, XML document mining, Frequent Mining, Frequent
subtrees, INEX, Structural mining.

1 Introduction

The rapid growth of XML (eXtensible Mark-up Language) after its standardization
has marked its acceptance in a wide array of industries ranging from education to en-
tertainment and business to government sectors. The major reason for its success can
be attributed to its flexibility and self-describing nature in using structure to store its
content. With the increasing number of XML documents there arise many issues con-
cerning the efficient data management and retrieval. XML document clustering has
been perceived as an effective solution to improve information retrieval, database
indexing, data integration, improved query processing [8] and so on.

Clustering task on XML documents involves grouping XML documents based on
their similarity without any prior knowledge on the taxonomy[10]. Clustering has
been frequently applied to group text documents based on the similarity of its content.
However, clustering XML documents presents a new challenge as it contains struc-
tural information with text data (or content). The structure of the XML documents is
hierarchical in nature and it represents the relationship between the elements at vari-
ous levels.

Clustering XML documents is a challenging task[10]. Majority of the existing algo-
rithms utilize the tree-edit distance to compute the structural similarity between each
pair of documents. This may lead to incorrect results as the calculated tree-edit distance
can be large for very similar trees conforming to the same schema for different size

184 S. Kutty et al.

trees [12]. A recent study showed that XML document clustering using tree summa-
ries provide high accuracy for documents [3]. The structural summaries of the XML
documents were extracted and used to compute the tree-edit distance. Due to the need
of calculating the tree-edit distance between each pair of document structural summa-
ries, this process becomes expensive for very large dataset such as INEX Wikipedia
test collection that contains 48305 documents. This lays the ground to employ a clus-
tering algorithm which does not utilise the expensive tree-edit distance computation.

In this paper, we propose CFSPC(Closed Frequent Structures-based Progressive
Clustering) technique to cluster XML documents incrementally using the closed fre-
quent subtrees. These closed frequent subtrees are called as the Pre-Cluster Form
(PCF). Using the PCFs of the XML documents the global similarity between the
XML documents is computed incrementally.

 The assumption that we have made in this paper, based on the previous research
[9] is that documents having a similar structure can be grouped together. For instance,
the document from a publication domain will have a different structure than a docu-
ment from a movie domain. Using this assumption we utilize only the hierarchical
structure of the documents to group the XML documents. We have not included the
content of the documents as it incurs a huge overhead in mining frequent trees and
finding similarity between documents.

Rest of the paper is organized as follows: Section 2 provides the overview of the
CFSPC method. Section 3 covers the pre-processing of XML documents for mining.
Section 4 details the mining process which includes frequent mining and clustering. In
Section 5, we present the experimental results and discussion. We conclude in Section 6
by presenting our future works in XML document mining.

2 The CFSPC (Closed Frequent Structures-Based Progressive
Clustering) Method: Overview

As illustrated in Fig.1 CFSPC involves two major phases Pre-processing and Mining.
The pre-processing phase involves extraction of the structure of a given XML docu-
ment to obtain a document tree. Each document tree contains nodes which represent
the tag names. The mining phase includes application of frequent subtree mining and

Fig. 1. The CFSPC Methodology

 Clustering XML Documents Using Closed Frequent Subtrees 185

clustering. The frequent subtree mining determines the closed frequent subtrees from
the document trees for a given support threshold. The closed frequent subtrees are
condensed representations of the frequent subtrees. The distribution of the closed fre-
quent subtrees in the corpus is modelled as a subtree-document matrix, CD|CFS|×|DT|,
where CFS represents the closed frequent subtrees and DT represents the document
trees in the given document tree collection. Each cell in the CD matrix represents the
presence or absence of a given closed frequent subtree in the document tree. This ma-
trix is used in calculating the similarity between documents.

As discussed earlier, the generation of distance matrix between each pair of docu-
ments is expensive for the INEX Wikipedia corpus due to its high dimension. Hence
in the second phase of mining, the incremental clustering method is used to progres-
sively cluster the documents in the corpus by comparing each document tree to the
existing clusters. The similarity is measured by computing the Common SubTree co-
efficient (Ω) using the CD matrix based on the number of common closed frequent
subtree between the document tree and existing clusters. Based on Ω, the document
tree is grouped into an existing cluster with which it has the maximum Ω and greater
than the user-defined cluster threshold otherwise the document tree is assigned to a
new cluster.

As incremental clustering avoids the expensive pair-wise computation, it can clus-
ter large data sets such as INEX 2007 Wikipedia dataset. However, this process re-
sults in undefined number of clusters according to the similarity measure used. In
order to obtain the user-defined number of clusters, we utilize the pair-wise partition-
ing clustering algorithm [5]. The similarity between each pair of clusters is computed
using Ω. Due to the reduced size of clusters, it is now computationally feasible to
generate the pair-wise similarity matrix. This similarity matrix becomes the input to
the partitional clustering algorithm. This algorithm generates the required number of
clusters.

By combining the incremental and pair-wise clustering method, the CFSPC
method is able to produce the clustering solution for the large data sets.

3 CFSPC Phase 1: Pre-processing

In the pre-processing phase, the XML document is decomposed into a tree structure
with nodes representing only the tag names. The tag names are then mapped to unique
integers for ease of computation. The semantic and syntactic meanings of tags are
ignored. The Wikipedia documents conform to the same schema using the same tag
set. Additionally previous research has shown that the semantic variations of tags do
not provide any significant contribution in the clustering process [9, 10]. Other node
information such as data types and constraints are also ignored.

There are several research works on clustering that use paths extracted from XML
documents as a document representation and form the basis of calculating similarity
between the documents[1, 10]. We have chosen to use the tree format to represent the
XML documents. The tree format includes the sibling information of the nodes which
is not included when an XML document is represented as a series of paths.

As shown in Fig. 2, the pre-processing of XML documents involves three sub-
phases. They are namely:

186 S. Kutty et al.

1. Parsing
2. Representation
3. Duplicate branches removal.

3.1 Parsing

The XML data model is a graph structure comprising of atomic and complex objects.
It can be modelled as a tree. Each XML document in INEX Wikipedia corpus is
parsed and modelled as a rooted labeled ordered document tree. The document tree is
rooted and labeled as there always exists a root node in the document tree and all the
nodes are labeled using the tag names. The left-to-right ordering is preserved among
the child nodes of a given parent in the document tree and therefore they are ordered.

Fig. 2. The Pre-processing phase

3.2 Representation

The document trees need to be represented in a way that is suitable for mining in the
next phase. A popular representation for trees, the depth-first string format[2], is used
to represent the document trees. The depth-first string encoding traverses a tree in the
depth-first order. It represents the depth-first traversal of a given document tree in a
string like format where every node has a “–1” to represent backtracking and “#” to
represent the end of the string encoding. For a document tree T with only one node r,
the depth-first string of T is S(T) = lr# where l is the label of the root node r. For a
document tree T with multiple nodes, where r is the root node and the children nodes
of r are r1,...,rk preserving left to right ordering, the depth-first string of T is S(T)= lr

lr1
-1 lr2

-1…lrk
-1#.

3.3 Duplicate Branches Removal

An analysis of the INEX Wikipedia dataset reveals that a large number of document
trees contain duplicate branches. These duplicate branches are redundant information

Representation

(Depth-first
String encoding)

Duplicate Removal
 Parsing
XML

documents
Document
trees

Convert
document
trees to
Paths

Remove
duplicate
paths by
string
matching

Convert Paths to
document trees

 Clustering XML Documents Using Closed Frequent Subtrees 187

and hence they could cause additional overhead in the mining process. In order to
remove the duplicate branches, the document tree is converted to a series of paths.
The duplicate paths of the document trees are identified using string matching and
removed. The remaining paths are combined together to create the document trees
without having duplicate branches.

4 CFSPC Phase 2: Mining

The mining phase includes two phases namely incremental clustering and pair-wise
clustering. We first explain the generation of closed frequent subtrees from document
trees. We then explain the process of clustering with the use of closed frequent subtrees.

4.1 Incremental Clustering

Frequent Subtree mining is first applied on the XML documents to identify closed fre-
quent subtrees for a given user-specified support threshold. Closed frequent subtrees
are condensed representations of frequent subtrees without any information loss[7].
Frequent subtree mining on XML documents can be formally defined as follows:

Problem Definition for the Frequent Subtree Mining on XML Documents
Given a collection of XML documents D = {D1, D2, D3 ,…,Dn} modelled as document
trees DT = {DT1, DT2, DT3 ,…,DTn} where n represents the number of XML docu-
ments or document trees. There exists a subtree DT' ⊆ DTk that preserves the parent-
child relationship among the nodes as that of the document tree DTk.

Support(DT') (or frequency(DT')) is defined as the number of document trees in
DT where DT' is a subtree. A subtree DT' is frequent if its support is not less than a
user-defined minimum support threshold. In other words, DT' is a frequent subtree in
the document trees in DT such that,

frequency (DT')/|DT| ≥ min_supp (1)

where min_supp is the user-given support threshold and |DT| is the number of docu-
ment trees in the document tree dataset DT.

Due to the large number of frequent subtrees generated at lower support thresholds,
recent researchers have focused on using condensed representation without any in-
formation loss [6]. The popular condensed representation is the closed frequent sub-
trees which is defined as follows.

Problem Definition for Closed Subtree
For a given document tree dataset, DT = {DT1, DT2, DT3 ,…,DTn}, if there exists two
frequent subtrees DT' and DT'' ,the frequent subtree DT' is closed of DT'' iff for every
DT' ⊇ DT'', supp(DT') = supp(DT'') and there exists no superset for DT' having the
same support as that of DT' . This property is called as closure.

In order to generate the closed frequent subtrees from the pre-processed document
trees, the CMTreeMiner[2] is utilized. This algorithm adopts the apriori-based ap-
proach of generate-and-test to determine closed frequent subtrees. Having generated
the closed frequent subtrees, their distribution in the corpus is modelled as a Boolean

188 S. Kutty et al.

subtree-document matrix, CD|CFS|×|DT|, where CFS represents the closed frequent sub-
trees and DT represents the document trees in the given document tree collection.
Each cell in the CD matrix represents the presence or absence of a given closed fre-
quent subtree {cfs1, cfs2,…,cfsl} in the document tree {DT

1
,DT

2
,DT

3
,…,DT

n
}. Fig. 3

shows a CD|CFS|×|DT| with closed frequent subtree {cfs1, cfs2, cfs3} in the document
trees DT = {DT1, DT2, DT3 ,DT4}.

This matrix is used to compute the similarity between the document trees for clus-
tering. The column of CD matrix for each document tree is referred as Pre-cluster
Form (PCF).

 DT

1
 DT

2
DT

3
 DT

4

cfs1 1 0 1 1

cfs2 0 1 0 1

cfs3 1 1 1 0

Fig. 3. CD matrix

The computation of structural similarity between documents and clusters in the in-
cremental clustering process is given below.

Structural Similarity Computation
Using CD matrix, we compute the structural similarity between

1. two document trees
2. a tree and a cluster

Tree-to-Tree Similarity
To begin with, there exists no cluster. Firstly, the two trees are used to compute the
pair-wise similarity to form a cluster. It is measured by first finding the common
closed frequent subtrees between the two document trees using the CD matrix.

Problem Definition for Tree-to-Tree Similarity
Let there be two document trees DT

x
 and DT

y
and their pre-cluster forms (PCFs), dx

and dy respectively in the given CD matrix. For a given CD matrix, let CFS=
{cfs1,…, cfsn} be a set of closed frequent subtrees representing the rows and let DT =
{DT

1
,DT

2
,DT

3
,…,DT

n
} be the document trees representing the columns, the PCF of a

document tree DT
x
 is dx ={x1 , x2,…, xn} where x1 …xn }1,0{∈ and n =|CFS|.

To compute the tree-to–tree similarity using the PCFs dx and dy in the CD matrix,

the common closed frequent subtrees (),(yxi ddζ), between the two document trees

DT
x
 and DT

y
are computed for a given i-th closed frequent subtree using,

 Clustering XML Documents Using Closed Frequent Subtrees 189

),(yxi ddζ = (dx (i)& dy(i)=1) ? 1 : 0 (2)

Using the PCFs dx and dy in the CD matrix, the possible i-th closed frequent sub-

trees (),(yxi ddα) is calculated between the two document trees DT
x
 and DT

y
using,

),(yxi ddα = (dx (i)| dy(i)=1) ? 1 : 0 (3)

The degree of similarity (Ωdx, dy) between the two document trees using their PCFs,
dx and dy is finally computed by combining the equations (2) and (3). The degree of
similarity between the two document trees is the probability of the occurrence of a
common closed frequent subtree in the possible closed frequent subtree space. It is
defined as the ratio of sum of the common closed frequent subtrees over the total
number of the possible closed frequent subtrees between a pair of document trees.

Ωdx, dy =

∑

∑

=

=
j

i
yxi

j

i
yxi

dd

dd

1

1

),(

),(

α

ζ
 where j = |CFS| (4)

If the tree-to-tree similarity value (Ωdx, dy) between the PCFs, dx and dy of DT
x
 and

DT
y

respectively is higher than the user-defined minimum cluster threshold (µ), then,

dx and dy are grouped into the same cluster otherwise they are assigned to two separate
clusters. If they are grouped into the same cluster then the two PCFs are merged by
union operation.

clustd (i)= (dx(i)| dy(i)=1) ? 1 : 0 (5)

Tree to Cluster Similarity
Once a cluster is formed, the similarity between the incoming document tree and the

existing cluster is computed using their PCFs given by dx and clustd respectively. It is

computed using the Equation (2) given by

),(clustxi ddζ = (dx(i) & clustd (i)= 1) ? 1 : 0 (6)

Similar to Equation (3), the possible closed frequent subtrees between a document
tree and a cluster is computed as follows,

),(clustxi ddα = (dx (i)| clustd (i)= 1) ? 1 : 0 (7)

Using equations (6) and (7), the degree of similarity between a document tree and a
cluster is computed. The degree of similarity between the document tree and a cluster
is the probability of the occurrence of a common closed frequent subtree in the possi-
ble closed frequent subtree space. It is defined as the ratio of the sum of common
closed frequent subtrees over the total number of possible closed frequent subtrees
between a document tree and its cluster.

190 S. Kutty et al.

Ωdx, clust =
),(

),(

1 clustxi

clustxi
j

i dd

dd

α
ζ∑

=

 where j =|CFS| (8)

If the tree-to-cluster similarity value (Ωdx, clust) between PCFs dx and clustd of DT
x

and DTclust

is higher than the user-defined minimum cluster threshold (µ), then, dx and

clustd are grouped into the DTclust cluster otherwise dx is assigned to a separate cluster.

In situations where dx is grouped into the DTclust cluster then the two clusters are
merged by union operation.

clustd (i)= (dx(i)| dclust(i)=1) ? 1 : 0 (9)

CFSPC is a progressive clustering algorithm. The clusters are formed in an incre-
mental fashion. The process starts without any cluster. When a new tree arrives, it is
assigned to a new cluster. A cluster is represented as the PCF of the document tree if
it has a single member. A cluster with multiple member document trees is represented
by the union of their PCFs. When the next tree arrives, the similarity between the cur-
rent document tree and the document tree in the cluster is computed using the tree to
tree similarity method. If the similarity value is greater than the user-defined cluster
threshold (μ) then the incoming document tree is grouped into the cluster otherwise it
is assigned to a new cluster. If there exists new PCF information with respect to the
closed frequent subtrees in the recently clustered document tree, then the additional
information is merged with the clustering information.

The incremental clustering results in a large number of clusters. This is due to al-
lowing the documents to form a separate cluster when an appropriate cluster is not
found for them. In order to control the number of clusters, the clusters are further
merged using pair-wise clustering.

4.2 Partitional Clustering

A similarity matrix is generated by computing the degree of similarity between each
pair of PCFs representing the clusters using the following equations,

),(
21 clustclusti ddα = (

1clustd (i)|
2clustd (i)= 1) ? 1 : 0 (10)

21
,clustclustΩ =

),(

),(

21

21

1 clustclusti

clustclusti
j

i dd

dd

α
ζ

∑
=

 where j =|CFS| (11)

where
21

,clustclustΩ is the cluster-to-cluster similarity value. The similarity matrix is

fed to a partitional clustering algorithm such as the k-way clustering solution[5]. The
k-way clustering algorithm groups the documents to the required number of clusters.
The k-way clustering solution computes cluster by performing a sequence of k-1 re-
peated bisections. In this approach, the matrix is first clustered into two groups, and
then one of these groups is chosen and bisected further. This process of bisection con-
tinues until the desired number of bisections is reached. During each step of bisection,

 Clustering XML Documents Using Closed Frequent Subtrees 191

the cluster is bisected so that the resulting 2-way clustering solution locally optimizes
a particular criterion function [5].

5 Experiments and Discussion

We implemented the CFSPC algorithm using Microsoft Visual C++ 2005 and con-
ducted experiments on the Wikipedia corpus from the INEX XML Mining Challenge
2007. The required numbers of clusters for INEX result submission were 21 and 10
clusters. The incremental clustering technique for a given clustering threshold often
generates a large number of clusters. Hence, the k-way clustering algorithm option in
CLUTO[5] is used to group the intermediate clusters to the required number of clus-
ters (21 and 10 clusters).

We submitted 2 results, one with 21 clusters and the other with 10 clusters using
the cluster threshold of 0.4. The following table summarizes the results based on Mi-
cro F1 and Macro F1 measure evaluation metrics for 10 and 21 clusters with the clus-
tering threshold of 0.4.

Table 1. Submitted clustering results for INEX Wikipedia XML Mining Track 2007

Clustering
Threshold

Number of
Clusters using
incremental
clustering

Number
of Clus-

ters

Micro F1 Macro F1

21 0.251 0.251 0.4 2396

10 0.251 0.250

We conducted several more experiments with varying support threshold and clus-

tering threshold. The experimental results for varying clustering threshold are shown
in Table 2.

Table 2. Results from INEX Wikipedia XML Mining Track 2007 with varying clustering
threshold

Clustering
Threshold

Number of
Clusters using
incremental
clustering

Number
of Clusters

Micro F1 Macro F1

21 0.252 0.248 0.5 3735
10 0.251 0.249
21 0.253 0.249 0.3 1682
10 0.251 0.247
21 0.252 0.261 0.2 1217
10 0.251 0.249
21 0.251 0.258 0.1 857
10 0.251 0.263

192 S. Kutty et al.

As indicated in the Tables 1 and 2, the number of clusters using incremental clus-
tering increases with the clustering threshold. The partitional clustering could provide
the required number of clusters. It can be seen from the Table 2 that there is not much
improvement in the Micro F1 average; however, there is an improvement for Macro
F1 average for lower clustering threshold. The results on the Wikipedia dataset clearly
indicates that there is not any significant improvement in performance for varying
clustering threshold using structural only information in clustering.

To analyse whether the number of closed frequent subtrees is an influential factor
in final clustering results, experiments are conducted with the higher support thresh-
old than the previous set of experiments. We ran the experiments with varying clus-
tering thresholds setting the 10% support threshold to generate the frequent trees.

Table 3. Results from INEX Wikipedia XML Mining Track 2007 for 10% Support threshold
and various clustering threshold

Support
Threshold

No. of
Closed

Frequent
Subtrees

Clustering
Threshold

No. of
Clusters

using Inc.
Clustering

No. of
Clusters

from Part.
clustering

Micro
average

(F1)

Macro
average

(F1)

21 0.253 0.269 0.4

1118

10 0.252 0.245
21 0.253 0.256 0.5 1633
10 0.251 0.247
21 0.252 0.248

10%

387

0.6 2510
10 0.251 0.243

Also, we wanted to analyse whether the number of clusters plays a significant role.

The above Table 3 summarizes the results on various numbers of clusters at 0.5 clus-
tering threshold with 10% support threshold. The results from Table 3 show that the
clustering performance does not vary much with the change of various parameters.

Table 4. Comparison of our approach against other structure-only approaches on INEX
Wikipedia dataset

Approaches Number
of

clusters

Micro
F1

Macro
F1

10 0.251 0.257 Hagenbuchner
et.al[4] 21 0.264 0.269

10 0.252 0.267 Hagenbuchner[4]
21 0.258 0.252
10 0.251 0.252 Tien et. Al[10]
21 0.251 0.253
10 0.251 0.263 Our approach
21 0.253 0.269

 Clustering XML Documents Using Closed Frequent Subtrees 193

Table 4 lists the comparison between our approach and other approaches using struc-
ture-only on INEX 2007 Wikipedia dataset. There were two other participants using
structure-only and their results are presented in Table 4. It is evident from Table 4
that there is no significant difference between our approach and other approaches using
only the structure of XML documents. Based on our experiments and the comparison
with other approaches[4, 11] using structure-only in the INEX 2007 Document Mining
challenge, it can be concluded that clustering using structural similarity between docu-
ments is not suitable for the INEX 2007 Wikipedia data set. As the INEX 2007 Wikipe-
dia dataset is a homogeneous collection with most of the documents having only one
schema and hence the structure of the XML document plays a less important role than
the content.

6 Conclusions and Future Direction

In this paper, we have proposed and presented the results of our progressive clustering
algorithm for mining only the structure of XML documents in INEX 2007 Wikipedia
dataset. The main aim of this study is to explore and understand the importance of
structure of the XML documents over the content of XML for clustering task. In order
to cluster the XML documents, we have used a frequent subtree – document matrix
generated from closed frequent subtrees. Using the matrix, we have computed the
similarity between XML documents and incrementally clustered them based on their
similarity values. From the experimental results, it is evident that the structure plays a
minor role in determining the similarity between the INEX documents.

This is the first study conducted on INEX dataset using common subtrees and
hence in the future, we will aim in devising efficient similarity computation tech-
niques to effectively cluster the XML documents. Also, as a future work, we will be
focusing on including the content of XML documents to provide more meaningful
cluster.

References

1. Aggarwal, C.C., et al.: Xproj: a framework for projected structural clustering of xml
documents. In: Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 46–55. ACM, San Jose (2007)

2. Chi, Y., et al.: Frequent Subtree Mining- An Overview. In: Fundamenta Informaticae, pp.
161–198. IOS Press, Amsterdam (2005)

3. Dalamagas, T., et al.: A methodology for clustering XML documents by structure. Inf.
Syst. 31(3), 187–228 (2006)

4. Hagenbuchner, M., et al.: Efficient clustering of structured documents using Graph Self-
Organizing Maps. In: Pre-proceedings of the Sixth Workshop of Initiative for the Evalua-
tion of XML Retrieval, Dagstuhl, Germany (2007)

5. Karypis, G.: CLUTO - Software for Clustering High-Dimensional Datasets Karypis Lab,
May 25 (2007)

6. Kutty, S., Nayak, R., Li, Y.: PCITMiner- Prefix-based Closed Induced Tree Miner for
finding closed induced frequent subtrees. In: Sixth Australasian Data Mining Conference
(AusDM 2007), ACS, Gold Coast (2007)

194 S. Kutty et al.

7. Kutty, S., Nayak, R., Li, Y.: XML Data Mining: Process and Applications. In: Song, M.,
Wu, Y.-F. (eds.) Handbook of Research on Text and Web Mining Technologies. Idea
Group Inc., USA (2008)

8. Nayak, R., Witt, R., Tonev, A.: Data Mining and XML Documents. In: International Con-
ference on Internet Computing (2002)

9. Nayak, R.: Investigating Semantic Measures in XML Clustering. In: Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 1042–1045.
IEEE Computer Society Press, Los Alamitos (2006)

10. Tran, T., Nayak, R.: Evaluating the Performance of XML Document Clustering by Struc-
ture Only. In: Comparative Evaluation of XML Information Retrieval Systems, pp. 473–
484 (2007)

11. Tran, T., Nayak, R.: Document Clustering using Incremental and Pairwise Approaches. In:
Pre-proceedings of the Sixth Workshop of Initiative for the Evaluation of XML Retrieval,
Dagstuhl, Germany (2007)

12. Xing, G., Xia, Z., Guo, J.: Clustering XML Documents Based on Structural Similarity. In:
Advances in Databases: Concepts, Systems and Applications, pp. 905–911 (2007)

	Clustering XML Documents Using Closed FrequentSubtrees: A Structural Similarity Approach
	Introduction
	The CFSPC (Closed Frequent Structures-Based Progressive Clustering) Method: Overview
	CFSPC Phase 1: Pre-processing
	Parsing
	Representation

	CFSPC Phase 2: Mining
	Incremental Clustering
	Partitional Clustering

	Experiments and Discussion
	Conclusions and Future Direction
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

